OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gdb-7.2/] [gdb-7.2-or32-1.0rc1/] [gdb/] [gnulib/] [str-two-way.h] - Blame information for rev 578

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 330 jeremybenn
/* Byte-wise substring search, using the Two-Way algorithm.
2
   Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
3
   This file is part of the GNU C Library.
4
   Written by Eric Blake <ebb9@byu.net>, 2008.
5
 
6
   This program is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 3, or (at your option)
9
   any later version.
10
 
11
   This program is distributed in the hope that it will be useful,
12
   but WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
   GNU General Public License for more details.
15
 
16
   You should have received a copy of the GNU General Public License along
17
   with this program; if not, write to the Free Software Foundation,
18
   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
19
 
20
/* Before including this file, you need to include <config.h> and
21
   <string.h>, and define:
22
     RESULT_TYPE             A macro that expands to the return type.
23
     AVAILABLE(h, h_l, j, n_l)
24
                             A macro that returns nonzero if there are
25
                             at least N_L bytes left starting at H[J].
26
                             H is 'unsigned char *', H_L, J, and N_L
27
                             are 'size_t'; H_L is an lvalue.  For
28
                             NUL-terminated searches, H_L can be
29
                             modified each iteration to avoid having
30
                             to compute the end of H up front.
31
 
32
  For case-insensitivity, you may optionally define:
33
     CMP_FUNC(p1, p2, l)     A macro that returns 0 iff the first L
34
                             characters of P1 and P2 are equal.
35
     CANON_ELEMENT(c)        A macro that canonicalizes an element right after
36
                             it has been fetched from one of the two strings.
37
                             The argument is an 'unsigned char'; the result
38
                             must be an 'unsigned char' as well.
39
 
40
  This file undefines the macros documented above, and defines
41
  LONG_NEEDLE_THRESHOLD.
42
*/
43
 
44
#include <limits.h>
45
#include <stdint.h>
46
 
47
/* We use the Two-Way string matching algorithm, which guarantees
48
   linear complexity with constant space.  Additionally, for long
49
   needles, we also use a bad character shift table similar to the
50
   Boyer-Moore algorithm to achieve improved (potentially sub-linear)
51
   performance.
52
 
53
   See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
54
   and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
55
*/
56
 
57
/* Point at which computing a bad-byte shift table is likely to be
58
   worthwhile.  Small needles should not compute a table, since it
59
   adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
60
   speedup no greater than a factor of NEEDLE_LEN.  The larger the
61
   needle, the better the potential performance gain.  On the other
62
   hand, on non-POSIX systems with CHAR_BIT larger than eight, the
63
   memory required for the table is prohibitive.  */
64
#if CHAR_BIT < 10
65
# define LONG_NEEDLE_THRESHOLD 32U
66
#else
67
# define LONG_NEEDLE_THRESHOLD SIZE_MAX
68
#endif
69
 
70
#ifndef MAX
71
# define MAX(a, b) ((a < b) ? (b) : (a))
72
#endif
73
 
74
#ifndef CANON_ELEMENT
75
# define CANON_ELEMENT(c) c
76
#endif
77
#ifndef CMP_FUNC
78
# define CMP_FUNC memcmp
79
#endif
80
 
81
/* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
82
   Return the index of the first byte in the right half, and set
83
   *PERIOD to the global period of the right half.
84
 
85
   The global period of a string is the smallest index (possibly its
86
   length) at which all remaining bytes in the string are repetitions
87
   of the prefix (the last repetition may be a subset of the prefix).
88
 
89
   When NEEDLE is factored into two halves, a local period is the
90
   length of the smallest word that shares a suffix with the left half
91
   and shares a prefix with the right half.  All factorizations of a
92
   non-empty NEEDLE have a local period of at least 1 and no greater
93
   than NEEDLE_LEN.
94
 
95
   A critical factorization has the property that the local period
96
   equals the global period.  All strings have at least one critical
97
   factorization with the left half smaller than the global period.
98
 
99
   Given an ordered alphabet, a critical factorization can be computed
100
   in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
101
   larger of two ordered maximal suffixes.  The ordered maximal
102
   suffixes are determined by lexicographic comparison of
103
   periodicity.  */
104
static size_t
105
critical_factorization (const unsigned char *needle, size_t needle_len,
106
                        size_t *period)
107
{
108
  /* Index of last byte of left half, or SIZE_MAX.  */
109
  size_t max_suffix, max_suffix_rev;
110
  size_t j; /* Index into NEEDLE for current candidate suffix.  */
111
  size_t k; /* Offset into current period.  */
112
  size_t p; /* Intermediate period.  */
113
  unsigned char a, b; /* Current comparison bytes.  */
114
 
115
  /* Invariants:
116
 
117
     -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
118
     min(max_suffix, max_suffix_rev) < global period of NEEDLE
119
     1 <= p <= global period of NEEDLE
120
     p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
121
     1 <= k <= p
122
  */
123
 
124
  /* Perform lexicographic search.  */
125
  max_suffix = SIZE_MAX;
126
  j = 0;
127
  k = p = 1;
128
  while (j + k < needle_len)
129
    {
130
      a = CANON_ELEMENT (needle[j + k]);
131
      b = CANON_ELEMENT (needle[max_suffix + k]);
132
      if (a < b)
133
        {
134
          /* Suffix is smaller, period is entire prefix so far.  */
135
          j += k;
136
          k = 1;
137
          p = j - max_suffix;
138
        }
139
      else if (a == b)
140
        {
141
          /* Advance through repetition of the current period.  */
142
          if (k != p)
143
            ++k;
144
          else
145
            {
146
              j += p;
147
              k = 1;
148
            }
149
        }
150
      else /* b < a */
151
        {
152
          /* Suffix is larger, start over from current location.  */
153
          max_suffix = j++;
154
          k = p = 1;
155
        }
156
    }
157
  *period = p;
158
 
159
  /* Perform reverse lexicographic search.  */
160
  max_suffix_rev = SIZE_MAX;
161
  j = 0;
162
  k = p = 1;
163
  while (j + k < needle_len)
164
    {
165
      a = CANON_ELEMENT (needle[j + k]);
166
      b = CANON_ELEMENT (needle[max_suffix_rev + k]);
167
      if (b < a)
168
        {
169
          /* Suffix is smaller, period is entire prefix so far.  */
170
          j += k;
171
          k = 1;
172
          p = j - max_suffix_rev;
173
        }
174
      else if (a == b)
175
        {
176
          /* Advance through repetition of the current period.  */
177
          if (k != p)
178
            ++k;
179
          else
180
            {
181
              j += p;
182
              k = 1;
183
            }
184
        }
185
      else /* a < b */
186
        {
187
          /* Suffix is larger, start over from current location.  */
188
          max_suffix_rev = j++;
189
          k = p = 1;
190
        }
191
    }
192
 
193
  /* Choose the longer suffix.  Return the first byte of the right
194
     half, rather than the last byte of the left half.  */
195
  if (max_suffix_rev + 1 < max_suffix + 1)
196
    return max_suffix + 1;
197
  *period = p;
198
  return max_suffix_rev + 1;
199
}
200
 
201
/* Return the first location of non-empty NEEDLE within HAYSTACK, or
202
   NULL.  HAYSTACK_LEN is the minimum known length of HAYSTACK.  This
203
   method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.
204
   Performance is guaranteed to be linear, with an initialization cost
205
   of 2 * NEEDLE_LEN comparisons.
206
 
207
   If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
208
   most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.
209
   If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
210
   HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.  */
211
static RETURN_TYPE
212
two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
213
                      const unsigned char *needle, size_t needle_len)
214
{
215
  size_t i; /* Index into current byte of NEEDLE.  */
216
  size_t j; /* Index into current window of HAYSTACK.  */
217
  size_t period; /* The period of the right half of needle.  */
218
  size_t suffix; /* The index of the right half of needle.  */
219
 
220
  /* Factor the needle into two halves, such that the left half is
221
     smaller than the global period, and the right half is
222
     periodic (with a period as large as NEEDLE_LEN - suffix).  */
223
  suffix = critical_factorization (needle, needle_len, &period);
224
 
225
  /* Perform the search.  Each iteration compares the right half
226
     first.  */
227
  if (CMP_FUNC (needle, needle + period, suffix) == 0)
228
    {
229
      /* Entire needle is periodic; a mismatch can only advance by the
230
         period, so use memory to avoid rescanning known occurrences
231
         of the period.  */
232
      size_t memory = 0;
233
      j = 0;
234
      while (AVAILABLE (haystack, haystack_len, j, needle_len))
235
        {
236
          /* Scan for matches in right half.  */
237
          i = MAX (suffix, memory);
238
          while (i < needle_len && (CANON_ELEMENT (needle[i])
239
                                    == CANON_ELEMENT (haystack[i + j])))
240
            ++i;
241
          if (needle_len <= i)
242
            {
243
              /* Scan for matches in left half.  */
244
              i = suffix - 1;
245
              while (memory < i + 1 && (CANON_ELEMENT (needle[i])
246
                                        == CANON_ELEMENT (haystack[i + j])))
247
                --i;
248
              if (i + 1 < memory + 1)
249
                return (RETURN_TYPE) (haystack + j);
250
              /* No match, so remember how many repetitions of period
251
                 on the right half were scanned.  */
252
              j += period;
253
              memory = needle_len - period;
254
            }
255
          else
256
            {
257
              j += i - suffix + 1;
258
              memory = 0;
259
            }
260
        }
261
    }
262
  else
263
    {
264
      /* The two halves of needle are distinct; no extra memory is
265
         required, and any mismatch results in a maximal shift.  */
266
      period = MAX (suffix, needle_len - suffix) + 1;
267
      j = 0;
268
      while (AVAILABLE (haystack, haystack_len, j, needle_len))
269
        {
270
          /* Scan for matches in right half.  */
271
          i = suffix;
272
          while (i < needle_len && (CANON_ELEMENT (needle[i])
273
                                    == CANON_ELEMENT (haystack[i + j])))
274
            ++i;
275
          if (needle_len <= i)
276
            {
277
              /* Scan for matches in left half.  */
278
              i = suffix - 1;
279
              while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
280
                                       == CANON_ELEMENT (haystack[i + j])))
281
                --i;
282
              if (i == SIZE_MAX)
283
                return (RETURN_TYPE) (haystack + j);
284
              j += period;
285
            }
286
          else
287
            j += i - suffix + 1;
288
        }
289
    }
290
  return NULL;
291
}
292
 
293
/* Return the first location of non-empty NEEDLE within HAYSTACK, or
294
   NULL.  HAYSTACK_LEN is the minimum known length of HAYSTACK.  This
295
   method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.
296
   Performance is guaranteed to be linear, with an initialization cost
297
   of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations.
298
 
299
   If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
300
   most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching,
301
   and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible.
302
   If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
303
   HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and
304
   sublinear performance is not possible.  */
305
static RETURN_TYPE
306
two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
307
                     const unsigned char *needle, size_t needle_len)
308
{
309
  size_t i; /* Index into current byte of NEEDLE.  */
310
  size_t j; /* Index into current window of HAYSTACK.  */
311
  size_t period; /* The period of the right half of needle.  */
312
  size_t suffix; /* The index of the right half of needle.  */
313
  size_t shift_table[1U << CHAR_BIT]; /* See below.  */
314
 
315
  /* Factor the needle into two halves, such that the left half is
316
     smaller than the global period, and the right half is
317
     periodic (with a period as large as NEEDLE_LEN - suffix).  */
318
  suffix = critical_factorization (needle, needle_len, &period);
319
 
320
  /* Populate shift_table.  For each possible byte value c,
321
     shift_table[c] is the distance from the last occurrence of c to
322
     the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
323
     shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0.  */
324
  for (i = 0; i < 1U << CHAR_BIT; i++)
325
    shift_table[i] = needle_len;
326
  for (i = 0; i < needle_len; i++)
327
    shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1;
328
 
329
  /* Perform the search.  Each iteration compares the right half
330
     first.  */
331
  if (CMP_FUNC (needle, needle + period, suffix) == 0)
332
    {
333
      /* Entire needle is periodic; a mismatch can only advance by the
334
         period, so use memory to avoid rescanning known occurrences
335
         of the period.  */
336
      size_t memory = 0;
337
      size_t shift;
338
      j = 0;
339
      while (AVAILABLE (haystack, haystack_len, j, needle_len))
340
        {
341
          /* Check the last byte first; if it does not match, then
342
             shift to the next possible match location.  */
343
          shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
344
          if (0 < shift)
345
            {
346
              if (memory && shift < period)
347
                {
348
                  /* Since needle is periodic, but the last period has
349
                     a byte out of place, there can be no match until
350
                     after the mismatch.  */
351
                  shift = needle_len - period;
352
                  memory = 0;
353
                }
354
              j += shift;
355
              continue;
356
            }
357
          /* Scan for matches in right half.  The last byte has
358
             already been matched, by virtue of the shift table.  */
359
          i = MAX (suffix, memory);
360
          while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
361
                                        == CANON_ELEMENT (haystack[i + j])))
362
            ++i;
363
          if (needle_len - 1 <= i)
364
            {
365
              /* Scan for matches in left half.  */
366
              i = suffix - 1;
367
              while (memory < i + 1 && (CANON_ELEMENT (needle[i])
368
                                        == CANON_ELEMENT (haystack[i + j])))
369
                --i;
370
              if (i + 1 < memory + 1)
371
                return (RETURN_TYPE) (haystack + j);
372
              /* No match, so remember how many repetitions of period
373
                 on the right half were scanned.  */
374
              j += period;
375
              memory = needle_len - period;
376
            }
377
          else
378
            {
379
              j += i - suffix + 1;
380
              memory = 0;
381
            }
382
        }
383
    }
384
  else
385
    {
386
      /* The two halves of needle are distinct; no extra memory is
387
         required, and any mismatch results in a maximal shift.  */
388
      size_t shift;
389
      period = MAX (suffix, needle_len - suffix) + 1;
390
      j = 0;
391
      while (AVAILABLE (haystack, haystack_len, j, needle_len))
392
        {
393
          /* Check the last byte first; if it does not match, then
394
             shift to the next possible match location.  */
395
          shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
396
          if (0 < shift)
397
            {
398
              j += shift;
399
              continue;
400
            }
401
          /* Scan for matches in right half.  The last byte has
402
             already been matched, by virtue of the shift table.  */
403
          i = suffix;
404
          while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
405
                                        == CANON_ELEMENT (haystack[i + j])))
406
            ++i;
407
          if (needle_len - 1 <= i)
408
            {
409
              /* Scan for matches in left half.  */
410
              i = suffix - 1;
411
              while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
412
                                       == CANON_ELEMENT (haystack[i + j])))
413
                --i;
414
              if (i == SIZE_MAX)
415
                return (RETURN_TYPE) (haystack + j);
416
              j += period;
417
            }
418
          else
419
            j += i - suffix + 1;
420
        }
421
    }
422
  return NULL;
423
}
424
 
425
#undef AVAILABLE
426
#undef CANON_ELEMENT
427
#undef CMP_FUNC
428
#undef MAX
429
#undef RETURN_TYPE

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.