OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gdb-7.2/] [gdb-7.2-or32-1.0rc3/] [gdb/] [macrotab.c] - Blame information for rev 513

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 330 jeremybenn
/* C preprocessor macro tables for GDB.
2
   Copyright (C) 2002, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
   Contributed by Red Hat, Inc.
4
 
5
   This file is part of GDB.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
 
20
#include "defs.h"
21
#include "gdb_obstack.h"
22
#include "splay-tree.h"
23
#include "symtab.h"
24
#include "symfile.h"
25
#include "objfiles.h"
26
#include "macrotab.h"
27
#include "gdb_assert.h"
28
#include "bcache.h"
29
#include "complaints.h"
30
 
31
 
32
/* The macro table structure.  */
33
 
34
struct macro_table
35
{
36
  /* The obstack this table's data should be allocated in, or zero if
37
     we should use xmalloc.  */
38
  struct obstack *obstack;
39
 
40
  /* The bcache we should use to hold macro names, argument names, and
41
     definitions, or zero if we should use xmalloc.  */
42
  struct bcache *bcache;
43
 
44
  /* The main source file for this compilation unit --- the one whose
45
     name was given to the compiler.  This is the root of the
46
     #inclusion tree; everything else is #included from here.  */
47
  struct macro_source_file *main_source;
48
 
49
  /* True if macros in this table can be redefined without issuing an
50
     error.  */
51
  int redef_ok;
52
 
53
  /* The table of macro definitions.  This is a splay tree (an ordered
54
     binary tree that stays balanced, effectively), sorted by macro
55
     name.  Where a macro gets defined more than once (presumably with
56
     an #undefinition in between), we sort the definitions by the
57
     order they would appear in the preprocessor's output.  That is,
58
     if `a.c' #includes `m.h' and then #includes `n.h', and both
59
     header files #define X (with an #undef somewhere in between),
60
     then the definition from `m.h' appears in our splay tree before
61
     the one from `n.h'.
62
 
63
     The splay tree's keys are `struct macro_key' pointers;
64
     the values are `struct macro_definition' pointers.
65
 
66
     The splay tree, its nodes, and the keys and values are allocated
67
     in obstack, if it's non-zero, or with xmalloc otherwise.  The
68
     macro names, argument names, argument name arrays, and definition
69
     strings are all allocated in bcache, if non-zero, or with xmalloc
70
     otherwise.  */
71
  splay_tree definitions;
72
};
73
 
74
 
75
 
76
/* Allocation and freeing functions.  */
77
 
78
/* Allocate SIZE bytes of memory appropriately for the macro table T.
79
   This just checks whether T has an obstack, or whether its pieces
80
   should be allocated with xmalloc.  */
81
static void *
82
macro_alloc (int size, struct macro_table *t)
83
{
84
  if (t->obstack)
85
    return obstack_alloc (t->obstack, size);
86
  else
87
    return xmalloc (size);
88
}
89
 
90
 
91
static void
92
macro_free (void *object, struct macro_table *t)
93
{
94
  if (t->obstack)
95
    /* There are cases where we need to remove entries from a macro
96
       table, even when reading debugging information.  This should be
97
       rare, and there's no easy way to free arbitrary data from an
98
       obstack, so we just leak it.  */
99
    ;
100
  else
101
    xfree (object);
102
}
103
 
104
 
105
/* If the macro table T has a bcache, then cache the LEN bytes at ADDR
106
   there, and return the cached copy.  Otherwise, just xmalloc a copy
107
   of the bytes, and return a pointer to that.  */
108
static const void *
109
macro_bcache (struct macro_table *t, const void *addr, int len)
110
{
111
  if (t->bcache)
112
    return bcache (addr, len, t->bcache);
113
  else
114
    {
115
      void *copy = xmalloc (len);
116
 
117
      memcpy (copy, addr, len);
118
      return copy;
119
    }
120
}
121
 
122
 
123
/* If the macro table T has a bcache, cache the null-terminated string
124
   S there, and return a pointer to the cached copy.  Otherwise,
125
   xmalloc a copy and return that.  */
126
static const char *
127
macro_bcache_str (struct macro_table *t, const char *s)
128
{
129
  return (char *) macro_bcache (t, s, strlen (s) + 1);
130
}
131
 
132
 
133
/* Free a possibly bcached object OBJ.  That is, if the macro table T
134
   has a bcache, do nothing; otherwise, xfree OBJ.  */
135
static void
136
macro_bcache_free (struct macro_table *t, void *obj)
137
{
138
  if (t->bcache)
139
    /* There are cases where we need to remove entries from a macro
140
       table, even when reading debugging information.  This should be
141
       rare, and there's no easy way to free data from a bcache, so we
142
       just leak it.  */
143
    ;
144
  else
145
    xfree (obj);
146
}
147
 
148
 
149
 
150
/* Macro tree keys, w/their comparison, allocation, and freeing functions.  */
151
 
152
/* A key in the splay tree.  */
153
struct macro_key
154
{
155
  /* The table we're in.  We only need this in order to free it, since
156
     the splay tree library's key and value freeing functions require
157
     that the key or value contain all the information needed to free
158
     themselves.  */
159
  struct macro_table *table;
160
 
161
  /* The name of the macro.  This is in the table's bcache, if it has
162
     one. */
163
  const char *name;
164
 
165
  /* The source file and line number where the definition's scope
166
     begins.  This is also the line of the definition itself.  */
167
  struct macro_source_file *start_file;
168
  int start_line;
169
 
170
  /* The first source file and line after the definition's scope.
171
     (That is, the scope does not include this endpoint.)  If end_file
172
     is zero, then the definition extends to the end of the
173
     compilation unit.  */
174
  struct macro_source_file *end_file;
175
  int end_line;
176
};
177
 
178
 
179
/* Return the #inclusion depth of the source file FILE.  This is the
180
   number of #inclusions it took to reach this file.  For the main
181
   source file, the #inclusion depth is zero; for a file it #includes
182
   directly, the depth would be one; and so on.  */
183
static int
184
inclusion_depth (struct macro_source_file *file)
185
{
186
  int depth;
187
 
188
  for (depth = 0; file->included_by; depth++)
189
    file = file->included_by;
190
 
191
  return depth;
192
}
193
 
194
 
195
/* Compare two source locations (from the same compilation unit).
196
   This is part of the comparison function for the tree of
197
   definitions.
198
 
199
   LINE1 and LINE2 are line numbers in the source files FILE1 and
200
   FILE2.  Return a value:
201
   - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2,
202
   - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or
203
   - zero if they are equal.
204
 
205
   When the two locations are in different source files --- perhaps
206
   one is in a header, while another is in the main source file --- we
207
   order them by where they would appear in the fully pre-processed
208
   sources, where all the #included files have been substituted into
209
   their places.  */
210
static int
211
compare_locations (struct macro_source_file *file1, int line1,
212
                   struct macro_source_file *file2, int line2)
213
{
214
  /* We want to treat positions in an #included file as coming *after*
215
     the line containing the #include, but *before* the line after the
216
     include.  As we walk up the #inclusion tree toward the main
217
     source file, we update fileX and lineX as we go; includedX
218
     indicates whether the original position was from the #included
219
     file.  */
220
  int included1 = 0;
221
  int included2 = 0;
222
 
223
  /* If a file is zero, that means "end of compilation unit."  Handle
224
     that specially.  */
225
  if (! file1)
226
    {
227
      if (! file2)
228
        return 0;
229
      else
230
        return 1;
231
    }
232
  else if (! file2)
233
    return -1;
234
 
235
  /* If the two files are not the same, find their common ancestor in
236
     the #inclusion tree.  */
237
  if (file1 != file2)
238
    {
239
      /* If one file is deeper than the other, walk up the #inclusion
240
         chain until the two files are at least at the same *depth*.
241
         Then, walk up both files in synchrony until they're the same
242
         file.  That file is the common ancestor.  */
243
      int depth1 = inclusion_depth (file1);
244
      int depth2 = inclusion_depth (file2);
245
 
246
      /* Only one of these while loops will ever execute in any given
247
         case.  */
248
      while (depth1 > depth2)
249
        {
250
          line1 = file1->included_at_line;
251
          file1 = file1->included_by;
252
          included1 = 1;
253
          depth1--;
254
        }
255
      while (depth2 > depth1)
256
        {
257
          line2 = file2->included_at_line;
258
          file2 = file2->included_by;
259
          included2 = 1;
260
          depth2--;
261
        }
262
 
263
      /* Now both file1 and file2 are at the same depth.  Walk toward
264
         the root of the tree until we find where the branches meet.  */
265
      while (file1 != file2)
266
        {
267
          line1 = file1->included_at_line;
268
          file1 = file1->included_by;
269
          /* At this point, we know that the case the includedX flags
270
             are trying to deal with won't come up, but we'll just
271
             maintain them anyway.  */
272
          included1 = 1;
273
 
274
          line2 = file2->included_at_line;
275
          file2 = file2->included_by;
276
          included2 = 1;
277
 
278
          /* Sanity check.  If file1 and file2 are really from the
279
             same compilation unit, then they should both be part of
280
             the same tree, and this shouldn't happen.  */
281
          gdb_assert (file1 && file2);
282
        }
283
    }
284
 
285
  /* Now we've got two line numbers in the same file.  */
286
  if (line1 == line2)
287
    {
288
      /* They can't both be from #included files.  Then we shouldn't
289
         have walked up this far.  */
290
      gdb_assert (! included1 || ! included2);
291
 
292
      /* Any #included position comes after a non-#included position
293
         with the same line number in the #including file.  */
294
      if (included1)
295
        return 1;
296
      else if (included2)
297
        return -1;
298
      else
299
        return 0;
300
    }
301
  else
302
    return line1 - line2;
303
}
304
 
305
 
306
/* Compare a macro key KEY against NAME, the source file FILE, and
307
   line number LINE.
308
 
309
   Sort definitions by name; for two definitions with the same name,
310
   place the one whose definition comes earlier before the one whose
311
   definition comes later.
312
 
313
   Return -1, 0, or 1 if key comes before, is identical to, or comes
314
   after NAME, FILE, and LINE.  */
315
static int
316
key_compare (struct macro_key *key,
317
             const char *name, struct macro_source_file *file, int line)
318
{
319
  int names = strcmp (key->name, name);
320
 
321
  if (names)
322
    return names;
323
 
324
  return compare_locations (key->start_file, key->start_line,
325
                            file, line);
326
}
327
 
328
 
329
/* The macro tree comparison function, typed for the splay tree
330
   library's happiness.  */
331
static int
332
macro_tree_compare (splay_tree_key untyped_key1,
333
                    splay_tree_key untyped_key2)
334
{
335
  struct macro_key *key1 = (struct macro_key *) untyped_key1;
336
  struct macro_key *key2 = (struct macro_key *) untyped_key2;
337
 
338
  return key_compare (key1, key2->name, key2->start_file, key2->start_line);
339
}
340
 
341
 
342
/* Construct a new macro key node for a macro in table T whose name is
343
   NAME, and whose scope starts at LINE in FILE; register the name in
344
   the bcache.  */
345
static struct macro_key *
346
new_macro_key (struct macro_table *t,
347
               const char *name,
348
               struct macro_source_file *file,
349
               int line)
350
{
351
  struct macro_key *k = macro_alloc (sizeof (*k), t);
352
 
353
  memset (k, 0, sizeof (*k));
354
  k->table = t;
355
  k->name = macro_bcache_str (t, name);
356
  k->start_file = file;
357
  k->start_line = line;
358
  k->end_file = 0;
359
 
360
  return k;
361
}
362
 
363
 
364
static void
365
macro_tree_delete_key (void *untyped_key)
366
{
367
  struct macro_key *key = (struct macro_key *) untyped_key;
368
 
369
  macro_bcache_free (key->table, (char *) key->name);
370
  macro_free (key, key->table);
371
}
372
 
373
 
374
 
375
/* Building and querying the tree of #included files.  */
376
 
377
 
378
/* Allocate and initialize a new source file structure.  */
379
static struct macro_source_file *
380
new_source_file (struct macro_table *t,
381
                 const char *filename)
382
{
383
  /* Get space for the source file structure itself.  */
384
  struct macro_source_file *f = macro_alloc (sizeof (*f), t);
385
 
386
  memset (f, 0, sizeof (*f));
387
  f->table = t;
388
  f->filename = macro_bcache_str (t, filename);
389
  f->includes = 0;
390
 
391
  return f;
392
}
393
 
394
 
395
/* Free a source file, and all the source files it #included.  */
396
static void
397
free_macro_source_file (struct macro_source_file *src)
398
{
399
  struct macro_source_file *child, *next_child;
400
 
401
  /* Free this file's children.  */
402
  for (child = src->includes; child; child = next_child)
403
    {
404
      next_child = child->next_included;
405
      free_macro_source_file (child);
406
    }
407
 
408
  macro_bcache_free (src->table, (char *) src->filename);
409
  macro_free (src, src->table);
410
}
411
 
412
 
413
struct macro_source_file *
414
macro_set_main (struct macro_table *t,
415
                const char *filename)
416
{
417
  /* You can't change a table's main source file.  What would that do
418
     to the tree?  */
419
  gdb_assert (! t->main_source);
420
 
421
  t->main_source = new_source_file (t, filename);
422
 
423
  return t->main_source;
424
}
425
 
426
 
427
struct macro_source_file *
428
macro_main (struct macro_table *t)
429
{
430
  gdb_assert (t->main_source);
431
 
432
  return t->main_source;
433
}
434
 
435
 
436
void
437
macro_allow_redefinitions (struct macro_table *t)
438
{
439
  gdb_assert (! t->obstack);
440
  t->redef_ok = 1;
441
}
442
 
443
 
444
struct macro_source_file *
445
macro_include (struct macro_source_file *source,
446
               int line,
447
               const char *included)
448
{
449
  struct macro_source_file *new;
450
  struct macro_source_file **link;
451
 
452
  /* Find the right position in SOURCE's `includes' list for the new
453
     file.  Skip inclusions at earlier lines, until we find one at the
454
     same line or later --- or until the end of the list.  */
455
  for (link = &source->includes;
456
       *link && (*link)->included_at_line < line;
457
       link = &(*link)->next_included)
458
    ;
459
 
460
  /* Did we find another file already #included at the same line as
461
     the new one?  */
462
  if (*link && line == (*link)->included_at_line)
463
    {
464
      /* This means the compiler is emitting bogus debug info.  (GCC
465
         circa March 2002 did this.)  It also means that the splay
466
         tree ordering function, macro_tree_compare, will abort,
467
         because it can't tell which #inclusion came first.  But GDB
468
         should tolerate bad debug info.  So:
469
 
470
         First, squawk.  */
471
      complaint (&symfile_complaints,
472
                 _("both `%s' and `%s' allegedly #included at %s:%d"), included,
473
                 (*link)->filename, source->filename, line);
474
 
475
      /* Now, choose a new, unoccupied line number for this
476
         #inclusion, after the alleged #inclusion line.  */
477
      while (*link && line == (*link)->included_at_line)
478
        {
479
          /* This line number is taken, so try the next line.  */
480
          line++;
481
          link = &(*link)->next_included;
482
        }
483
    }
484
 
485
  /* At this point, we know that LINE is an unused line number, and
486
     *LINK points to the entry an #inclusion at that line should
487
     precede.  */
488
  new = new_source_file (source->table, included);
489
  new->included_by = source;
490
  new->included_at_line = line;
491
  new->next_included = *link;
492
  *link = new;
493
 
494
  return new;
495
}
496
 
497
 
498
struct macro_source_file *
499
macro_lookup_inclusion (struct macro_source_file *source, const char *name)
500
{
501
  /* Is SOURCE itself named NAME?  */
502
  if (strcmp (name, source->filename) == 0)
503
    return source;
504
 
505
  /* The filename in the source structure is probably a full path, but
506
     NAME could be just the final component of the name.  */
507
  {
508
    int name_len = strlen (name);
509
    int src_name_len = strlen (source->filename);
510
 
511
    /* We do mean < here, and not <=; if the lengths are the same,
512
       then the strcmp above should have triggered, and we need to
513
       check for a slash here.  */
514
    if (name_len < src_name_len
515
        && source->filename[src_name_len - name_len - 1] == '/'
516
        && strcmp (name, source->filename + src_name_len - name_len) == 0)
517
      return source;
518
  }
519
 
520
  /* It's not us.  Try all our children, and return the lowest.  */
521
  {
522
    struct macro_source_file *child;
523
    struct macro_source_file *best = NULL;
524
    int best_depth = 0;
525
 
526
    for (child = source->includes; child; child = child->next_included)
527
      {
528
        struct macro_source_file *result
529
          = macro_lookup_inclusion (child, name);
530
 
531
        if (result)
532
          {
533
            int result_depth = inclusion_depth (result);
534
 
535
            if (! best || result_depth < best_depth)
536
              {
537
                best = result;
538
                best_depth = result_depth;
539
              }
540
          }
541
      }
542
 
543
    return best;
544
  }
545
}
546
 
547
 
548
 
549
/* Registering and looking up macro definitions.  */
550
 
551
 
552
/* Construct a definition for a macro in table T.  Cache all strings,
553
   and the macro_definition structure itself, in T's bcache.  */
554
static struct macro_definition *
555
new_macro_definition (struct macro_table *t,
556
                      enum macro_kind kind,
557
                      int argc, const char **argv,
558
                      const char *replacement)
559
{
560
  struct macro_definition *d = macro_alloc (sizeof (*d), t);
561
 
562
  memset (d, 0, sizeof (*d));
563
  d->table = t;
564
  d->kind = kind;
565
  d->replacement = macro_bcache_str (t, replacement);
566
 
567
  if (kind == macro_function_like)
568
    {
569
      int i;
570
      const char **cached_argv;
571
      int cached_argv_size = argc * sizeof (*cached_argv);
572
 
573
      /* Bcache all the arguments.  */
574
      cached_argv = alloca (cached_argv_size);
575
      for (i = 0; i < argc; i++)
576
        cached_argv[i] = macro_bcache_str (t, argv[i]);
577
 
578
      /* Now bcache the array of argument pointers itself.  */
579
      d->argv = macro_bcache (t, cached_argv, cached_argv_size);
580
      d->argc = argc;
581
    }
582
 
583
  /* We don't bcache the entire definition structure because it's got
584
     a pointer to the macro table in it; since each compilation unit
585
     has its own macro table, you'd only get bcache hits for identical
586
     definitions within a compilation unit, which seems unlikely.
587
 
588
     "So, why do macro definitions have pointers to their macro tables
589
     at all?"  Well, when the splay tree library wants to free a
590
     node's value, it calls the value freeing function with nothing
591
     but the value itself.  It makes the (apparently reasonable)
592
     assumption that the value carries enough information to free
593
     itself.  But not all macro tables have bcaches, so not all macro
594
     definitions would be bcached.  There's no way to tell whether a
595
     given definition is bcached without knowing which table the
596
     definition belongs to.  ...  blah.  The thing's only sixteen
597
     bytes anyway, and we can still bcache the name, args, and
598
     definition, so we just don't bother bcaching the definition
599
     structure itself.  */
600
  return d;
601
}
602
 
603
 
604
/* Free a macro definition.  */
605
static void
606
macro_tree_delete_value (void *untyped_definition)
607
{
608
  struct macro_definition *d = (struct macro_definition *) untyped_definition;
609
  struct macro_table *t = d->table;
610
 
611
  if (d->kind == macro_function_like)
612
    {
613
      int i;
614
 
615
      for (i = 0; i < d->argc; i++)
616
        macro_bcache_free (t, (char *) d->argv[i]);
617
      macro_bcache_free (t, (char **) d->argv);
618
    }
619
 
620
  macro_bcache_free (t, (char *) d->replacement);
621
  macro_free (d, t);
622
}
623
 
624
 
625
/* Find the splay tree node for the definition of NAME at LINE in
626
   SOURCE, or zero if there is none.  */
627
static splay_tree_node
628
find_definition (const char *name,
629
                 struct macro_source_file *file,
630
                 int line)
631
{
632
  struct macro_table *t = file->table;
633
  splay_tree_node n;
634
 
635
  /* Construct a macro_key object, just for the query.  */
636
  struct macro_key query;
637
 
638
  query.name = name;
639
  query.start_file = file;
640
  query.start_line = line;
641
  query.end_file = NULL;
642
 
643
  n = splay_tree_lookup (t->definitions, (splay_tree_key) &query);
644
  if (! n)
645
    {
646
      /* It's okay for us to do two queries like this: the real work
647
         of the searching is done when we splay, and splaying the tree
648
         a second time at the same key is a constant time operation.
649
         If this still bugs you, you could always just extend the
650
         splay tree library with a predecessor-or-equal operation, and
651
         use that.  */
652
      splay_tree_node pred = splay_tree_predecessor (t->definitions,
653
                                                     (splay_tree_key) &query);
654
 
655
      if (pred)
656
        {
657
          /* Make sure this predecessor actually has the right name.
658
             We just want to search within a given name's definitions.  */
659
          struct macro_key *found = (struct macro_key *) pred->key;
660
 
661
          if (strcmp (found->name, name) == 0)
662
            n = pred;
663
        }
664
    }
665
 
666
  if (n)
667
    {
668
      struct macro_key *found = (struct macro_key *) n->key;
669
 
670
      /* Okay, so this definition has the right name, and its scope
671
         begins before the given source location.  But does its scope
672
         end after the given source location?  */
673
      if (compare_locations (file, line, found->end_file, found->end_line) < 0)
674
        return n;
675
      else
676
        return 0;
677
    }
678
  else
679
    return 0;
680
}
681
 
682
 
683
/* If NAME already has a definition in scope at LINE in SOURCE, return
684
   the key.  If the old definition is different from the definition
685
   given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too.
686
   Otherwise, return zero.  (ARGC and ARGV are meaningless unless KIND
687
   is `macro_function_like'.)  */
688
static struct macro_key *
689
check_for_redefinition (struct macro_source_file *source, int line,
690
                        const char *name, enum macro_kind kind,
691
                        int argc, const char **argv,
692
                        const char *replacement)
693
{
694
  splay_tree_node n = find_definition (name, source, line);
695
 
696
  if (n)
697
    {
698
      struct macro_key *found_key = (struct macro_key *) n->key;
699
      struct macro_definition *found_def
700
        = (struct macro_definition *) n->value;
701
      int same = 1;
702
 
703
      /* Is this definition the same as the existing one?
704
         According to the standard, this comparison needs to be done
705
         on lists of tokens, not byte-by-byte, as we do here.  But
706
         that's too hard for us at the moment, and comparing
707
         byte-by-byte will only yield false negatives (i.e., extra
708
         warning messages), not false positives (i.e., unnoticed
709
         definition changes).  */
710
      if (kind != found_def->kind)
711
        same = 0;
712
      else if (strcmp (replacement, found_def->replacement))
713
        same = 0;
714
      else if (kind == macro_function_like)
715
        {
716
          if (argc != found_def->argc)
717
            same = 0;
718
          else
719
            {
720
              int i;
721
 
722
              for (i = 0; i < argc; i++)
723
                if (strcmp (argv[i], found_def->argv[i]))
724
                  same = 0;
725
            }
726
        }
727
 
728
      if (! same)
729
        {
730
          complaint (&symfile_complaints,
731
                     _("macro `%s' redefined at %s:%d; original definition at %s:%d"),
732
                     name, source->filename, line,
733
                     found_key->start_file->filename, found_key->start_line);
734
        }
735
 
736
      return found_key;
737
    }
738
  else
739
    return 0;
740
}
741
 
742
 
743
void
744
macro_define_object (struct macro_source_file *source, int line,
745
                     const char *name, const char *replacement)
746
{
747
  struct macro_table *t = source->table;
748
  struct macro_key *k = NULL;
749
  struct macro_definition *d;
750
 
751
  if (! t->redef_ok)
752
    k = check_for_redefinition (source, line,
753
                                name, macro_object_like,
754
                                0, 0,
755
                                replacement);
756
 
757
  /* If we're redefining a symbol, and the existing key would be
758
     identical to our new key, then the splay_tree_insert function
759
     will try to delete the old definition.  When the definition is
760
     living on an obstack, this isn't a happy thing.
761
 
762
     Since this only happens in the presence of questionable debug
763
     info, we just ignore all definitions after the first.  The only
764
     case I know of where this arises is in GCC's output for
765
     predefined macros, and all the definitions are the same in that
766
     case.  */
767
  if (k && ! key_compare (k, name, source, line))
768
    return;
769
 
770
  k = new_macro_key (t, name, source, line);
771
  d = new_macro_definition (t, macro_object_like, 0, 0, replacement);
772
  splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
773
}
774
 
775
 
776
void
777
macro_define_function (struct macro_source_file *source, int line,
778
                       const char *name, int argc, const char **argv,
779
                       const char *replacement)
780
{
781
  struct macro_table *t = source->table;
782
  struct macro_key *k = NULL;
783
  struct macro_definition *d;
784
 
785
  if (! t->redef_ok)
786
    k = check_for_redefinition (source, line,
787
                                name, macro_function_like,
788
                                argc, argv,
789
                                replacement);
790
 
791
  /* See comments about duplicate keys in macro_define_object.  */
792
  if (k && ! key_compare (k, name, source, line))
793
    return;
794
 
795
  /* We should also check here that all the argument names in ARGV are
796
     distinct.  */
797
 
798
  k = new_macro_key (t, name, source, line);
799
  d = new_macro_definition (t, macro_function_like, argc, argv, replacement);
800
  splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
801
}
802
 
803
 
804
void
805
macro_undef (struct macro_source_file *source, int line,
806
             const char *name)
807
{
808
  splay_tree_node n = find_definition (name, source, line);
809
 
810
  if (n)
811
    {
812
      struct macro_key *key = (struct macro_key *) n->key;
813
 
814
      /* If we're removing a definition at exactly the same point that
815
         we defined it, then just delete the entry altogether.  GCC
816
         4.1.2 will generate DWARF that says to do this if you pass it
817
         arguments like '-DFOO -UFOO -DFOO=2'.  */
818
      if (source == key->start_file
819
          && line == key->start_line)
820
        splay_tree_remove (source->table->definitions, n->key);
821
 
822
      else
823
        {
824
          /* This function is the only place a macro's end-of-scope
825
             location gets set to anything other than "end of the
826
             compilation unit" (i.e., end_file is zero).  So if this
827
             macro already has its end-of-scope set, then we're
828
             probably seeing a second #undefinition for the same
829
             #definition.  */
830
          if (key->end_file)
831
            {
832
              complaint (&symfile_complaints,
833
                         _("macro '%s' is #undefined twice,"
834
                           " at %s:%d and %s:%d"),
835
                         name,
836
                         source->filename, line,
837
                         key->end_file->filename, key->end_line);
838
            }
839
 
840
          /* Whether or not we've seen a prior #undefinition, wipe out
841
             the old ending point, and make this the ending point.  */
842
          key->end_file = source;
843
          key->end_line = line;
844
        }
845
    }
846
  else
847
    {
848
      /* According to the ISO C standard, an #undef for a symbol that
849
         has no macro definition in scope is ignored.  So we should
850
         ignore it too.  */
851
#if 0
852
      complaint (&symfile_complaints,
853
                 _("no definition for macro `%s' in scope to #undef at %s:%d"),
854
                 name, source->filename, line);
855
#endif
856
    }
857
}
858
 
859
 
860
struct macro_definition *
861
macro_lookup_definition (struct macro_source_file *source,
862
                         int line, const char *name)
863
{
864
  splay_tree_node n = find_definition (name, source, line);
865
 
866
  if (n)
867
    return (struct macro_definition *) n->value;
868
  else
869
    return 0;
870
}
871
 
872
 
873
struct macro_source_file *
874
macro_definition_location (struct macro_source_file *source,
875
                           int line,
876
                           const char *name,
877
                           int *definition_line)
878
{
879
  splay_tree_node n = find_definition (name, source, line);
880
 
881
  if (n)
882
    {
883
      struct macro_key *key = (struct macro_key *) n->key;
884
 
885
      *definition_line = key->start_line;
886
      return key->start_file;
887
    }
888
  else
889
    return 0;
890
}
891
 
892
 
893
/* The type for callback data for iterating the splay tree in
894
   macro_for_each and macro_for_each_in_scope.  Only the latter uses
895
   the FILE and LINE fields.  */
896
struct macro_for_each_data
897
{
898
  macro_callback_fn fn;
899
  void *user_data;
900
  struct macro_source_file *file;
901
  int line;
902
};
903
 
904
/* Helper function for macro_for_each.  */
905
static int
906
foreach_macro (splay_tree_node node, void *arg)
907
{
908
  struct macro_for_each_data *datum = (struct macro_for_each_data *) arg;
909
  struct macro_key *key = (struct macro_key *) node->key;
910
  struct macro_definition *def = (struct macro_definition *) node->value;
911
 
912
  (*datum->fn) (key->name, def, datum->user_data);
913
  return 0;
914
}
915
 
916
/* Call FN for every macro in TABLE.  */
917
void
918
macro_for_each (struct macro_table *table, macro_callback_fn fn,
919
                void *user_data)
920
{
921
  struct macro_for_each_data datum;
922
 
923
  datum.fn = fn;
924
  datum.user_data = user_data;
925
  datum.file = NULL;
926
  datum.line = 0;
927
  splay_tree_foreach (table->definitions, foreach_macro, &datum);
928
}
929
 
930
static int
931
foreach_macro_in_scope (splay_tree_node node, void *info)
932
{
933
  struct macro_for_each_data *datum = (struct macro_for_each_data *) info;
934
  struct macro_key *key = (struct macro_key *) node->key;
935
  struct macro_definition *def = (struct macro_definition *) node->value;
936
 
937
  /* See if this macro is defined before the passed-in line, and
938
     extends past that line.  */
939
  if (compare_locations (key->start_file, key->start_line,
940
                         datum->file, datum->line) < 0
941
      && (!key->end_file
942
          || compare_locations (key->end_file, key->end_line,
943
                                datum->file, datum->line) >= 0))
944
    (*datum->fn) (key->name, def, datum->user_data);
945
  return 0;
946
}
947
 
948
/* Call FN for every macro is visible in SCOPE.  */
949
void
950
macro_for_each_in_scope (struct macro_source_file *file, int line,
951
                         macro_callback_fn fn, void *user_data)
952
{
953
  struct macro_for_each_data datum;
954
 
955
  datum.fn = fn;
956
  datum.user_data = user_data;
957
  datum.file = file;
958
  datum.line = line;
959
  splay_tree_foreach (file->table->definitions,
960
                      foreach_macro_in_scope, &datum);
961
}
962
 
963
 
964
 
965
/* Creating and freeing macro tables.  */
966
 
967
 
968
struct macro_table *
969
new_macro_table (struct obstack *obstack,
970
                 struct bcache *b)
971
{
972
  struct macro_table *t;
973
 
974
  /* First, get storage for the `struct macro_table' itself.  */
975
  if (obstack)
976
    t = obstack_alloc (obstack, sizeof (*t));
977
  else
978
    t = xmalloc (sizeof (*t));
979
 
980
  memset (t, 0, sizeof (*t));
981
  t->obstack = obstack;
982
  t->bcache = b;
983
  t->main_source = NULL;
984
  t->redef_ok = 0;
985
  t->definitions = (splay_tree_new_with_allocator
986
                    (macro_tree_compare,
987
                     ((splay_tree_delete_key_fn) macro_tree_delete_key),
988
                     ((splay_tree_delete_value_fn) macro_tree_delete_value),
989
                     ((splay_tree_allocate_fn) macro_alloc),
990
                     ((splay_tree_deallocate_fn) macro_free),
991
                     t));
992
 
993
  return t;
994
}
995
 
996
 
997
void
998
free_macro_table (struct macro_table *table)
999
{
1000
  /* Free the source file tree.  */
1001
  free_macro_source_file (table->main_source);
1002
 
1003
  /* Free the table of macro definitions.  */
1004
  splay_tree_delete (table->definitions);
1005
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.