OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [newlib-1.18.0/] [newlib-1.18.0-or32-1.0rc1/] [newlib/] [libm/] [common/] [s_remquo.c] - Blame information for rev 207

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 207 jeremybenn
/* Adapted for Newlib, 2009.  (Allow for int < 32 bits; return *quo=0 during
2
 * errors to make test scripts easier.)  */
3
/* @(#)e_fmod.c 1.3 95/01/18 */
4
/*-
5
 * ====================================================
6
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7
 *
8
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
9
 * Permission to use, copy, modify, and distribute this
10
 * software is freely granted, provided that this notice
11
 * is preserved.
12
 * ====================================================
13
 */
14
/*
15
FUNCTION
16
<<remquo>>, <<remquof>>--remainder and part of quotient
17
INDEX
18
        remquo
19
INDEX
20
        remquof
21
 
22
ANSI_SYNOPSIS
23
        #include <math.h>
24
        double remquo(double <[x]>, double <[y]>, int *<[quo]>);
25
        float remquof(float <[x]>, float <[y]>, int *<[quo]>);
26
 
27
DESCRIPTION
28
The <<remquo>> functions compute the same remainder as the <<remainder>>
29
functions; this value is in the range -<[y]>/2 ... +<[y]>/2.  In the object
30
pointed to by <<quo>> they store a value whose sign is the sign of <<x>>/<<y>>
31
and whose magnitude is congruent modulo 2**n to the magnitude of the integral
32
quotient of <<x>>/<<y>>.  (That is, <<quo>> is given the n lsbs of the
33
quotient, not counting the sign.)  This implementation uses n=31 if int is 32
34
bits or more, otherwise, n is 1 less than the width of int.
35
 
36
For example:
37
.       remquo(-29.0, 3.0, &<[quo]>)
38
returns -1.0 and sets <[quo]>=10, and
39
.       remquo(-98307.0, 3.0, &<[quo]>)
40
returns -0.0 and sets <[quo]>=-32769, although for 16-bit int, <[quo]>=-1.  In
41
the latter case, the actual quotient of -(32769=0x8001) is reduced to -1
42
because of the 15-bit limitation for the quotient.
43
 
44
RETURNS
45
When either argument is NaN, NaN is returned.  If <[y]> is 0 or <[x]> is
46
infinite (and neither is NaN), a domain error occurs (i.e. the "invalid"
47
floating point exception is raised or errno is set to EDOM), and NaN is
48
returned.
49
Otherwise, the <<remquo>> functions return <[x]> REM <[y]>.
50
 
51
BUGS
52
IEEE754-2008 calls for <<remquo>>(subnormal, inf) to cause the "underflow"
53
floating-point exception.  This implementation does not.
54
 
55
PORTABILITY
56
C99, POSIX.
57
 
58
*/
59
 
60
#include <limits.h>
61
#include <math.h>
62
#include "fdlibm.h"
63
 
64
/* For quotient, return either all 31 bits that can from calculation (using
65
 * int32_t), or as many as can fit into an int that is smaller than 32 bits.  */
66
#if INT_MAX > 0x7FFFFFFFL
67
  #define QUO_MASK 0x7FFFFFFF
68
# else
69
  #define QUO_MASK INT_MAX
70
#endif
71
 
72
static const double Zero[] = {0.0, -0.0,};
73
 
74
/*
75
 * Return the IEEE remainder and set *quo to the last n bits of the
76
 * quotient, rounded to the nearest integer.  We choose n=31--if that many fit--
77
 * because we wind up computing all the integer bits of the quotient anyway as
78
 * a side-effect of computing the remainder by the shift and subtract
79
 * method.  In practice, this is far more bits than are needed to use
80
 * remquo in reduction algorithms.
81
 */
82
double
83
remquo(double x, double y, int *quo)
84
{
85
        __int32_t n,hx,hy,hz,ix,iy,sx,i;
86
        __uint32_t lx,ly,lz,q,sxy;
87
 
88
        EXTRACT_WORDS(hx,lx,x);
89
        EXTRACT_WORDS(hy,ly,y);
90
        sxy = (hx ^ hy) & 0x80000000;
91
        sx = hx&0x80000000;             /* sign of x */
92
        hx ^=sx;                /* |x| */
93
        hy &= 0x7fffffff;       /* |y| */
94
 
95
    /* purge off exception values */
96
        if((hy|ly)==0||(hx>=0x7ff00000)||        /* y=0,or x not finite */
97
          ((hy|((ly|-ly)>>31))>0x7ff00000))  {  /* or y is NaN */
98
            *quo = 0;    /* Not necessary, but return consistent value */
99
            return (x*y)/(x*y);
100
        }
101
        if(hx<=hy) {
102
            if((hx<hy)||(lx<ly)) {
103
                q = 0;
104
                goto fixup;     /* |x|<|y| return x or x-y */
105
            }
106
            if(lx==ly) {
107
                *quo = (sxy ? -1 : 1);
108
                return Zero[(__uint32_t)sx>>31];        /* |x|=|y| return x*0 */
109
            }
110
        }
111
 
112
    /* determine ix = ilogb(x) */
113
        if(hx<0x00100000) {     /* subnormal x */
114
            if(hx==0) {
115
                for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
116
            } else {
117
                for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
118
            }
119
        } else ix = (hx>>20)-1023;
120
 
121
    /* determine iy = ilogb(y) */
122
        if(hy<0x00100000) {     /* subnormal y */
123
            if(hy==0) {
124
                for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
125
            } else {
126
                for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
127
            }
128
        } else iy = (hy>>20)-1023;
129
 
130
    /* set up {hx,lx}, {hy,ly} and align y to x */
131
        if(ix >= -1022)
132
            hx = 0x00100000|(0x000fffff&hx);
133
        else {          /* subnormal x, shift x to normal */
134
            n = -1022-ix;
135
            if(n<=31) {
136
                hx = (hx<<n)|(lx>>(32-n));
137
                lx <<= n;
138
            } else {
139
                hx = lx<<(n-32);
140
                lx = 0;
141
            }
142
        }
143
        if(iy >= -1022)
144
            hy = 0x00100000|(0x000fffff&hy);
145
        else {          /* subnormal y, shift y to normal */
146
            n = -1022-iy;
147
            if(n<=31) {
148
                hy = (hy<<n)|(ly>>(32-n));
149
                ly <<= n;
150
            } else {
151
                hy = ly<<(n-32);
152
                ly = 0;
153
            }
154
        }
155
 
156
    /* fix point fmod */
157
        n = ix - iy;
158
        q = 0;
159
        while(n--) {
160
            hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
161
            if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
162
            else {hx = hz+hz+(lz>>31); lx = lz+lz; q++;}
163
            q <<= 1;
164
        }
165
        hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
166
        if(hz>=0) {hx=hz;lx=lz;q++;}
167
 
168
    /* convert back to floating value and restore the sign */
169
        if((hx|lx)==0) {                 /* return sign(x)*0 */
170
            q &= QUO_MASK;
171
            *quo = (sxy ? -q : q);
172
            return Zero[(__uint32_t)sx>>31];
173
        }
174
        while(hx<0x00100000) {          /* normalize x */
175
            hx = hx+hx+(lx>>31); lx = lx+lx;
176
            iy -= 1;
177
        }
178
        if(iy>= -1022) {        /* normalize output */
179
            hx = ((hx-0x00100000)|((iy+1023)<<20));
180
        } else {                /* subnormal output */
181
            n = -1022 - iy;
182
            if(n<=20) {
183
                lx = (lx>>n)|((__uint32_t)hx<<(32-n));
184
                hx >>= n;
185
            } else if (n<=31) {
186
                lx = (hx<<(32-n))|(lx>>n); hx = sx;
187
            } else {
188
                lx = hx>>(n-32); hx = sx;
189
            }
190
        }
191
fixup:
192
        INSERT_WORDS(x,hx,lx);
193
        y = fabs(y);
194
        if (y < 0x1p-1021) {
195
            if (x+x>y || (x+x==y && (q & 1))) {
196
                q++;
197
                x-=y;
198
            }
199
        } else if (x>0.5*y || (x==0.5*y && (q & 1))) {
200
            q++;
201
            x-=y;
202
        }
203
        GET_HIGH_WORD(hx,x);
204
        SET_HIGH_WORD(x,hx^sx);
205
        q &= QUO_MASK;
206
        *quo = (sxy ? -q : q);
207
        return x;
208
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.