OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [boehm-gc/] [os_dep.c] - Blame information for rev 838

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 721 jeremybenn
/*
2
 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3
 * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
4
 * Copyright (c) 1996-1999 by Silicon Graphics.  All rights reserved.
5
 * Copyright (c) 1999 by Hewlett-Packard Company.  All rights reserved.
6
 *
7
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8
 * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
9
 *
10
 * Permission is hereby granted to use or copy this program
11
 * for any purpose,  provided the above notices are retained on all copies.
12
 * Permission to modify the code and to distribute modified code is granted,
13
 * provided the above notices are retained, and a notice that the code was
14
 * modified is included with the above copyright notice.
15
 */
16
 
17
# include "private/gc_priv.h"
18
 
19
# if defined(LINUX) && !defined(POWERPC)
20
#   include <linux/version.h>
21
#   if (LINUX_VERSION_CODE <= 0x10400)
22
      /* Ugly hack to get struct sigcontext_struct definition.  Required      */
23
      /* for some early 1.3.X releases.  Will hopefully go away soon. */
24
      /* in some later Linux releases, asm/sigcontext.h may have to   */
25
      /* be included instead.                                         */
26
#     define __KERNEL__
27
#     include <asm/signal.h>
28
#     undef __KERNEL__
29
#   else
30
      /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31
      /* struct sigcontext.  libc6 (glibc2) uses "struct sigcontext" in     */
32
      /* prototypes, so we have to include the top-level sigcontext.h to    */
33
      /* make sure the former gets defined to be the latter if appropriate. */
34
#     include <features.h>
35
#     if 2 <= __GLIBC__
36
#       if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37
          /* glibc 2.1 no longer has sigcontext.h.  But signal.h        */
38
          /* has the right declaration for glibc 2.1.                   */
39
#         include <sigcontext.h>
40
#       endif /* 0 == __GLIBC_MINOR__ */
41
#     else /* not 2 <= __GLIBC__ */
42
        /* libc5 doesn't have <sigcontext.h>: go directly with the kernel   */
43
        /* one.  Check LINUX_VERSION_CODE to see which we should reference. */
44
#       include <asm/sigcontext.h>
45
#     endif /* 2 <= __GLIBC__ */
46
#   endif
47
# endif
48
# if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49
    && !defined(MSWINCE)
50
#   include <sys/types.h>
51
#   if !defined(MSWIN32) && !defined(SUNOS4)
52
#       include <unistd.h>
53
#   endif
54
# endif
55
 
56
# include <stdio.h>
57
# if defined(MSWINCE)
58
#   define SIGSEGV 0 /* value is irrelevant */
59
# else
60
#   include <signal.h>
61
# endif
62
 
63
#if defined(LINUX) || defined(LINUX_STACKBOTTOM)
64
# include <ctype.h>
65
#endif
66
 
67
/* Blatantly OS dependent routines, except for those that are related   */
68
/* to dynamic loading.                                                  */
69
 
70
# if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71
#   define NEED_FIND_LIMIT
72
# endif
73
 
74
# if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75
#   define NEED_FIND_LIMIT
76
# endif
77
 
78
# if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79
#   define NEED_FIND_LIMIT
80
# endif
81
 
82
# if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83
      || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84
#   define NEED_FIND_LIMIT
85
# endif
86
 
87
#if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__))
88
#  include <machine/trap.h>
89
#  if !defined(PCR)
90
#    define NEED_FIND_LIMIT
91
#  endif
92
#endif
93
 
94
#if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95
    && !defined(NEED_FIND_LIMIT)
96
   /* Used by GC_init_netbsd_elf() below.       */
97
#  define NEED_FIND_LIMIT
98
#endif
99
 
100
#ifdef NEED_FIND_LIMIT
101
#   include <setjmp.h>
102
#endif
103
 
104
#ifdef AMIGA
105
# define GC_AMIGA_DEF
106
# include "AmigaOS.c"
107
# undef GC_AMIGA_DEF
108
#endif
109
 
110
#if defined(MSWIN32) || defined(MSWINCE) || defined(CYGWIN32)
111
# define WIN32_LEAN_AND_MEAN
112
# define NOSERVICE
113
# include <windows.h>
114
#endif
115
 
116
#ifdef MACOS
117
# include <Processes.h>
118
#endif
119
 
120
#ifdef IRIX5
121
# include <sys/uio.h>
122
# include <malloc.h>   /* for locking */
123
#endif
124
#if defined(USE_MMAP) || defined(USE_MUNMAP)
125
# ifndef USE_MMAP
126
    --> USE_MUNMAP requires USE_MMAP
127
# endif
128
# include <sys/types.h>
129
# include <sys/mman.h>
130
# include <sys/stat.h>
131
# include <errno.h>
132
#endif
133
 
134
#ifdef UNIX_LIKE
135
# include <fcntl.h>
136
# if defined(SUNOS5SIGS) && !defined(FREEBSD)
137
#  include <sys/siginfo.h>
138
# endif
139
  /* Define SETJMP and friends to be the version that restores  */
140
  /* the signal mask.                                           */
141
# define SETJMP(env) sigsetjmp(env, 1)
142
# define LONGJMP(env, val) siglongjmp(env, val)
143
# define JMP_BUF sigjmp_buf
144
#else
145
# define SETJMP(env) setjmp(env)
146
# define LONGJMP(env, val) longjmp(env, val)
147
# define JMP_BUF jmp_buf
148
#endif
149
 
150
#ifdef DARWIN
151
/* for get_etext and friends */
152
#include <mach-o/getsect.h>
153
#endif
154
 
155
#ifdef DJGPP
156
  /* Apparently necessary for djgpp 2.01.  May cause problems with      */
157
  /* other versions.                                                    */
158
  typedef long unsigned int caddr_t;
159
#endif
160
 
161
#ifdef PCR
162
# include "il/PCR_IL.h"
163
# include "th/PCR_ThCtl.h"
164
# include "mm/PCR_MM.h"
165
#endif
166
 
167
#if !defined(NO_EXECUTE_PERMISSION)
168
# define OPT_PROT_EXEC PROT_EXEC
169
#else
170
# define OPT_PROT_EXEC 0
171
#endif
172
 
173
#if defined(LINUX) && \
174
    (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
175
 
176
/* We need to parse /proc/self/maps, either to find dynamic libraries,  */
177
/* and/or to find the register backing store base (IA64).  Do it once   */
178
/* here.                                                                */
179
 
180
#define READ read
181
 
182
/* Repeatedly perform a read call until the buffer is filled or */
183
/* we encounter EOF.                                            */
184
ssize_t GC_repeat_read(int fd, char *buf, size_t count)
185
{
186
    ssize_t num_read = 0;
187
    ssize_t result;
188
 
189
    while (num_read < count) {
190
        result = READ(fd, buf + num_read, count - num_read);
191
        if (result < 0) return result;
192
        if (result == 0) break;
193
        num_read += result;
194
    }
195
    return num_read;
196
}
197
 
198
/*
199
 * Apply fn to a buffer containing the contents of /proc/self/maps.
200
 * Return the result of fn or, if we failed, 0.
201
 * We currently do nothing to /proc/self/maps other than simply read
202
 * it.  This code could be simplified if we could determine its size
203
 * ahead of time.
204
 */
205
 
206
word GC_apply_to_maps(word (*fn)(char *))
207
{
208
    int f;
209
    int result;
210
    size_t maps_size = 4000;  /* Initial guess.         */
211
    static char init_buf[1];
212
    static char *maps_buf = init_buf;
213
    static size_t maps_buf_sz = 1;
214
 
215
    /* Read /proc/self/maps, growing maps_buf as necessary.     */
216
        /* Note that we may not allocate conventionally, and    */
217
        /* thus can't use stdio.                                */
218
        do {
219
            if (maps_size >= maps_buf_sz) {
220
              /* Grow only by powers of 2, since we leak "too small" buffers. */
221
              while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
222
              maps_buf = GC_scratch_alloc(maps_buf_sz);
223
              if (maps_buf == 0) return 0;
224
            }
225
            f = open("/proc/self/maps", O_RDONLY);
226
            if (-1 == f) return 0;
227
            maps_size = 0;
228
            do {
229
                result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
230
                if (result <= 0) return 0;
231
                maps_size += result;
232
            } while (result == maps_buf_sz-1);
233
            close(f);
234
        } while (maps_size >= maps_buf_sz);
235
        maps_buf[maps_size] = '\0';
236
 
237
    /* Apply fn to result. */
238
        return fn(maps_buf);
239
}
240
 
241
#endif /* Need GC_apply_to_maps */
242
 
243
#if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
244
//
245
//  GC_parse_map_entry parses an entry from /proc/self/maps so we can
246
//  locate all writable data segments that belong to shared libraries.
247
//  The format of one of these entries and the fields we care about
248
//  is as follows:
249
//  XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537     name of mapping...\n
250
//  ^^^^^^^^ ^^^^^^^^ ^^^^          ^^
251
//  start    end      prot          maj_dev
252
//
253
//  Note that since about auguat 2003 kernels, the columns no longer have
254
//  fixed offsets on 64-bit kernels.  Hence we no longer rely on fixed offsets
255
//  anywhere, which is safer anyway.
256
//
257
 
258
/*
259
 * Assign various fields of the first line in buf_ptr to *start, *end,
260
 * *prot_buf and *maj_dev.  Only *prot_buf may be set for unwritable maps.
261
 */
262
char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
263
                                char *prot_buf, unsigned int *maj_dev)
264
{
265
    char *start_start, *end_start, *prot_start, *maj_dev_start;
266
    char *p;
267
    char *endp;
268
 
269
    if (buf_ptr == NULL || *buf_ptr == '\0') {
270
        return NULL;
271
    }
272
 
273
    p = buf_ptr;
274
    while (isspace(*p)) ++p;
275
    start_start = p;
276
    GC_ASSERT(isxdigit(*start_start));
277
    *start = strtoul(start_start, &endp, 16); p = endp;
278
    GC_ASSERT(*p=='-');
279
 
280
    ++p;
281
    end_start = p;
282
    GC_ASSERT(isxdigit(*end_start));
283
    *end = strtoul(end_start, &endp, 16); p = endp;
284
    GC_ASSERT(isspace(*p));
285
 
286
    while (isspace(*p)) ++p;
287
    prot_start = p;
288
    GC_ASSERT(*prot_start == 'r' || *prot_start == '-');
289
    memcpy(prot_buf, prot_start, 4);
290
    prot_buf[4] = '\0';
291
    if (prot_buf[1] == 'w') {/* we can skip the rest if it's not writable. */
292
        /* Skip past protection field to offset field */
293
          while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
294
          GC_ASSERT(isxdigit(*p));
295
        /* Skip past offset field, which we ignore */
296
          while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
297
        maj_dev_start = p;
298
        GC_ASSERT(isxdigit(*maj_dev_start));
299
        *maj_dev = strtoul(maj_dev_start, NULL, 16);
300
    }
301
 
302
    while (*p && *p++ != '\n');
303
 
304
    return p;
305
}
306
 
307
#endif /* Need to parse /proc/self/maps. */     
308
 
309
#if defined(SEARCH_FOR_DATA_START)
310
  /* The I386 case can be handled without a search.  The Alpha case     */
311
  /* used to be handled differently as well, but the rules changed      */
312
  /* for recent Linux versions.  This seems to be the easiest way to    */
313
  /* cover all versions.                                                */
314
 
315
# ifdef LINUX
316
    /* Some Linux distributions arrange to define __data_start.  Some   */
317
    /* define data_start as a weak symbol.  The latter is technically   */
318
    /* broken, since the user program may define data_start, in which   */
319
    /* case we lose.  Nonetheless, we try both, prefering __data_start. */
320
    /* We assume gcc-compatible pragmas.        */
321
#   pragma weak __data_start
322
    extern int __data_start[];
323
#   pragma weak data_start
324
    extern int data_start[];
325
# endif /* LINUX */
326
  extern int _end[];
327
 
328
  ptr_t GC_data_start;
329
 
330
  void GC_init_linux_data_start()
331
  {
332
    extern ptr_t GC_find_limit();
333
 
334
#   ifdef LINUX
335
      /* Try the easy approaches first: */
336
      if ((ptr_t)__data_start != 0) {
337
          GC_data_start = (ptr_t)(__data_start);
338
          return;
339
      }
340
      if ((ptr_t)data_start != 0) {
341
          GC_data_start = (ptr_t)(data_start);
342
          return;
343
      }
344
#   endif /* LINUX */
345
    GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
346
  }
347
#endif
348
 
349
# ifdef ECOS
350
 
351
# ifndef ECOS_GC_MEMORY_SIZE
352
# define ECOS_GC_MEMORY_SIZE (448 * 1024)
353
# endif /* ECOS_GC_MEMORY_SIZE */
354
 
355
// setjmp() function, as described in ANSI para 7.6.1.1
356
#undef SETJMP
357
#define SETJMP( __env__ )  hal_setjmp( __env__ )
358
 
359
// FIXME: This is a simple way of allocating memory which is
360
// compatible with ECOS early releases.  Later releases use a more
361
// sophisticated means of allocating memory than this simple static
362
// allocator, but this method is at least bound to work.
363
static char memory[ECOS_GC_MEMORY_SIZE];
364
static char *brk = memory;
365
 
366
static void *tiny_sbrk(ptrdiff_t increment)
367
{
368
  void *p = brk;
369
 
370
  brk += increment;
371
 
372
  if (brk >  memory + sizeof memory)
373
    {
374
      brk -= increment;
375
      return NULL;
376
    }
377
 
378
  return p;
379
}
380
#define sbrk tiny_sbrk
381
# endif /* ECOS */
382
 
383
#if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
384
  ptr_t GC_data_start;
385
 
386
  void GC_init_netbsd_elf()
387
  {
388
    extern ptr_t GC_find_limit();
389
    extern char **environ;
390
        /* This may need to be environ, without the underscore, for     */
391
        /* some versions.                                               */
392
    GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
393
  }
394
#endif
395
 
396
# ifdef OS2
397
 
398
# include <stddef.h>
399
 
400
# if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
401
 
402
struct exe_hdr {
403
    unsigned short      magic_number;
404
    unsigned short      padding[29];
405
    long                new_exe_offset;
406
};
407
 
408
#define E_MAGIC(x)      (x).magic_number
409
#define EMAGIC          0x5A4D  
410
#define E_LFANEW(x)     (x).new_exe_offset
411
 
412
struct e32_exe {
413
    unsigned char       magic_number[2];
414
    unsigned char       byte_order;
415
    unsigned char       word_order;
416
    unsigned long       exe_format_level;
417
    unsigned short      cpu;
418
    unsigned short      os;
419
    unsigned long       padding1[13];
420
    unsigned long       object_table_offset;
421
    unsigned long       object_count;
422
    unsigned long       padding2[31];
423
};
424
 
425
#define E32_MAGIC1(x)   (x).magic_number[0]
426
#define E32MAGIC1       'L'
427
#define E32_MAGIC2(x)   (x).magic_number[1]
428
#define E32MAGIC2       'X'
429
#define E32_BORDER(x)   (x).byte_order
430
#define E32LEBO         0
431
#define E32_WORDER(x)   (x).word_order
432
#define E32LEWO         0
433
#define E32_CPU(x)      (x).cpu
434
#define E32CPU286       1
435
#define E32_OBJTAB(x)   (x).object_table_offset
436
#define E32_OBJCNT(x)   (x).object_count
437
 
438
struct o32_obj {
439
    unsigned long       size;
440
    unsigned long       base;
441
    unsigned long       flags;
442
    unsigned long       pagemap;
443
    unsigned long       mapsize;
444
    unsigned long       reserved;
445
};
446
 
447
#define O32_FLAGS(x)    (x).flags
448
#define OBJREAD         0x0001L
449
#define OBJWRITE        0x0002L
450
#define OBJINVALID      0x0080L
451
#define O32_SIZE(x)     (x).size
452
#define O32_BASE(x)     (x).base
453
 
454
# else  /* IBM's compiler */
455
 
456
/* A kludge to get around what appears to be a header file bug */
457
# ifndef WORD
458
#   define WORD unsigned short
459
# endif
460
# ifndef DWORD
461
#   define DWORD unsigned long
462
# endif
463
 
464
# define EXE386 1
465
# include <newexe.h>
466
# include <exe386.h>
467
 
468
# endif  /* __IBMC__ */
469
 
470
# define INCL_DOSEXCEPTIONS
471
# define INCL_DOSPROCESS
472
# define INCL_DOSERRORS
473
# define INCL_DOSMODULEMGR
474
# define INCL_DOSMEMMGR
475
# include <os2.h>
476
 
477
 
478
/* Disable and enable signals during nontrivial allocations     */
479
 
480
void GC_disable_signals(void)
481
{
482
    ULONG nest;
483
 
484
    DosEnterMustComplete(&nest);
485
    if (nest != 1) ABORT("nested GC_disable_signals");
486
}
487
 
488
void GC_enable_signals(void)
489
{
490
    ULONG nest;
491
 
492
    DosExitMustComplete(&nest);
493
    if (nest != 0) ABORT("GC_enable_signals");
494
}
495
 
496
 
497
# else
498
 
499
#  if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
500
      && !defined(MSWINCE) \
501
      && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
502
      && !defined(NOSYS) && !defined(ECOS)
503
 
504
#   if defined(SIG_BLOCK)
505
        /* Use POSIX/SYSV interface */
506
#       define SIGSET_T sigset_t
507
#       define SIG_DEL(set, signal) sigdelset(&(set), (signal))
508
#       define SIG_FILL(set) sigfillset(&set)
509
#       define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
510
#   elif defined(sigmask) && !defined(UTS4) && !defined(HURD)
511
        /* Use the traditional BSD interface */
512
#       define SIGSET_T int
513
#       define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
514
#       define SIG_FILL(set)  (set) = 0x7fffffff
515
          /* Setting the leading bit appears to provoke a bug in some   */
516
          /* longjmp implementations.  Most systems appear not to have  */
517
          /* a signal 32.                                               */
518
#       define SIGSETMASK(old, new) (old) = sigsetmask(new)
519
#   else
520
#       error undetectable signal API
521
#   endif
522
 
523
static GC_bool mask_initialized = FALSE;
524
 
525
static SIGSET_T new_mask;
526
 
527
static SIGSET_T old_mask;
528
 
529
static SIGSET_T dummy;
530
 
531
#if defined(PRINTSTATS) && !defined(THREADS)
532
# define CHECK_SIGNALS
533
  int GC_sig_disabled = 0;
534
#endif
535
 
536
void GC_disable_signals()
537
{
538
    if (!mask_initialized) {
539
        SIG_FILL(new_mask);
540
 
541
        SIG_DEL(new_mask, SIGSEGV);
542
        SIG_DEL(new_mask, SIGILL);
543
        SIG_DEL(new_mask, SIGQUIT);
544
#       ifdef SIGBUS
545
            SIG_DEL(new_mask, SIGBUS);
546
#       endif
547
#       ifdef SIGIOT
548
            SIG_DEL(new_mask, SIGIOT);
549
#       endif
550
#       ifdef SIGEMT
551
            SIG_DEL(new_mask, SIGEMT);
552
#       endif
553
#       ifdef SIGTRAP
554
            SIG_DEL(new_mask, SIGTRAP);
555
#       endif 
556
        mask_initialized = TRUE;
557
    }
558
#   ifdef CHECK_SIGNALS
559
        if (GC_sig_disabled != 0) ABORT("Nested disables");
560
        GC_sig_disabled++;
561
#   endif
562
    SIGSETMASK(old_mask,new_mask);
563
}
564
 
565
void GC_enable_signals()
566
{
567
#   ifdef CHECK_SIGNALS
568
        if (GC_sig_disabled != 1) ABORT("Unmatched enable");
569
        GC_sig_disabled--;
570
#   endif
571
    SIGSETMASK(dummy,old_mask);
572
}
573
 
574
#  endif  /* !PCR */
575
 
576
# endif /*!OS/2 */
577
 
578
/* Ivan Demakov: simplest way (to me) */
579
#if defined (DOS4GW)
580
  void GC_disable_signals() { }
581
  void GC_enable_signals() { }
582
#endif
583
 
584
/* Find the page size */
585
word GC_page_size;
586
 
587
# if defined(MSWIN32) || defined(MSWINCE) || defined (CYGWIN32)
588
  void GC_setpagesize()
589
  {
590
    GetSystemInfo(&GC_sysinfo);
591
    GC_page_size = GC_sysinfo.dwPageSize;
592
  }
593
 
594
# else
595
#   if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
596
       || defined(USE_MUNMAP)
597
        void GC_setpagesize()
598
        {
599
            GC_page_size = GETPAGESIZE();
600
        }
601
#   else
602
        /* It's acceptable to fake it. */
603
        void GC_setpagesize()
604
        {
605
            GC_page_size = HBLKSIZE;
606
        }
607
#   endif
608
# endif
609
 
610
/*
611
 * Find the base of the stack.
612
 * Used only in single-threaded environment.
613
 * With threads, GC_mark_roots needs to know how to do this.
614
 * Called with allocator lock held.
615
 */
616
# if defined(MSWIN32) || defined(MSWINCE)
617
# define is_writable(prot) ((prot) == PAGE_READWRITE \
618
                            || (prot) == PAGE_WRITECOPY \
619
                            || (prot) == PAGE_EXECUTE_READWRITE \
620
                            || (prot) == PAGE_EXECUTE_WRITECOPY)
621
/* Return the number of bytes that are writable starting at p.  */
622
/* The pointer p is assumed to be page aligned.                 */
623
/* If base is not 0, *base becomes the beginning of the         */
624
/* allocation region containing p.                              */
625
word GC_get_writable_length(ptr_t p, ptr_t *base)
626
{
627
    MEMORY_BASIC_INFORMATION buf;
628
    word result;
629
    word protect;
630
 
631
    result = VirtualQuery(p, &buf, sizeof(buf));
632
    if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
633
    if (base != 0) *base = (ptr_t)(buf.AllocationBase);
634
    protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
635
    if (!is_writable(protect)) {
636
        return(0);
637
    }
638
    if (buf.State != MEM_COMMIT) return(0);
639
    return(buf.RegionSize);
640
}
641
 
642
ptr_t GC_get_stack_base()
643
{
644
    int dummy;
645
    ptr_t sp = (ptr_t)(&dummy);
646
    ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
647
    word size = GC_get_writable_length(trunc_sp, 0);
648
 
649
    return(trunc_sp + size);
650
}
651
 
652
 
653
# endif /* MS Windows */
654
 
655
# ifdef BEOS
656
# include <kernel/OS.h>
657
ptr_t GC_get_stack_base(){
658
        thread_info th;
659
        get_thread_info(find_thread(NULL),&th);
660
        return th.stack_end;
661
}
662
# endif /* BEOS */
663
 
664
 
665
# ifdef OS2
666
 
667
ptr_t GC_get_stack_base()
668
{
669
    PTIB ptib;
670
    PPIB ppib;
671
 
672
    if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
673
        GC_err_printf0("DosGetInfoBlocks failed\n");
674
        ABORT("DosGetInfoBlocks failed\n");
675
    }
676
    return((ptr_t)(ptib -> tib_pstacklimit));
677
}
678
 
679
# endif /* OS2 */
680
 
681
# ifdef AMIGA
682
#   define GC_AMIGA_SB
683
#   include "AmigaOS.c"
684
#   undef GC_AMIGA_SB
685
# endif /* AMIGA */
686
 
687
# if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
688
 
689
#   ifdef __STDC__
690
        typedef void (*handler)(int);
691
#   else
692
        typedef void (*handler)();
693
#   endif
694
 
695
#   if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
696
    || defined(HURD) || defined(NETBSD)
697
        static struct sigaction old_segv_act;
698
#       if defined(IRIX5) || defined(HPUX) \
699
        || defined(HURD) || defined(NETBSD)
700
            static struct sigaction old_bus_act;
701
#       endif
702
#   else
703
        static handler old_segv_handler, old_bus_handler;
704
#   endif
705
 
706
#   ifdef __STDC__
707
      void GC_set_and_save_fault_handler(handler h)
708
#   else
709
      void GC_set_and_save_fault_handler(h)
710
      handler h;
711
#   endif
712
    {
713
#       if defined(SUNOS5SIGS) || defined(IRIX5)  \
714
        || defined(OSF1) || defined(HURD) || defined(NETBSD)
715
          struct sigaction      act;
716
 
717
          act.sa_handler        = h;
718
#         if 0 /* Was necessary for Solaris 2.3 and very temporary      */
719
               /* NetBSD bugs.                                          */
720
            act.sa_flags          = SA_RESTART | SA_NODEFER;
721
#         else
722
            act.sa_flags          = SA_RESTART;
723
#         endif
724
 
725
          (void) sigemptyset(&act.sa_mask);
726
#         ifdef GC_IRIX_THREADS
727
                /* Older versions have a bug related to retrieving and  */
728
                /* and setting a handler at the same time.              */
729
                (void) sigaction(SIGSEGV, 0, &old_segv_act);
730
                (void) sigaction(SIGSEGV, &act, 0);
731
                (void) sigaction(SIGBUS, 0, &old_bus_act);
732
                (void) sigaction(SIGBUS, &act, 0);
733
#         else
734
                (void) sigaction(SIGSEGV, &act, &old_segv_act);
735
#               if defined(IRIX5) \
736
                   || defined(HPUX) || defined(HURD) || defined(NETBSD)
737
                    /* Under Irix 5.x or HP/UX, we may get SIGBUS.      */
738
                    /* Pthreads doesn't exist under Irix 5.x, so we     */
739
                    /* don't have to worry in the threads case.         */
740
                    (void) sigaction(SIGBUS, &act, &old_bus_act);
741
#               endif
742
#         endif /* GC_IRIX_THREADS */
743
#       else
744
          old_segv_handler = signal(SIGSEGV, h);
745
#         ifdef SIGBUS
746
            old_bus_handler = signal(SIGBUS, h);
747
#         endif
748
#       endif
749
    }
750
# endif /* NEED_FIND_LIMIT || UNIX_LIKE */
751
 
752
# ifdef NEED_FIND_LIMIT
753
  /* Some tools to implement HEURISTIC2 */
754
#   define MIN_PAGE_SIZE 256    /* Smallest conceivable page size, bytes */
755
    /* static */ JMP_BUF GC_jmp_buf;
756
 
757
    /*ARGSUSED*/
758
    void GC_fault_handler(sig)
759
    int sig;
760
    {
761
        LONGJMP(GC_jmp_buf, 1);
762
    }
763
 
764
    void GC_setup_temporary_fault_handler()
765
    {
766
        GC_set_and_save_fault_handler(GC_fault_handler);
767
    }
768
 
769
    void GC_reset_fault_handler()
770
    {
771
#       if defined(SUNOS5SIGS) || defined(IRIX5) \
772
           || defined(OSF1) || defined(HURD) || defined(NETBSD)
773
          (void) sigaction(SIGSEGV, &old_segv_act, 0);
774
#         if defined(IRIX5) \
775
             || defined(HPUX) || defined(HURD) || defined(NETBSD)
776
              (void) sigaction(SIGBUS, &old_bus_act, 0);
777
#         endif
778
#       else
779
          (void) signal(SIGSEGV, old_segv_handler);
780
#         ifdef SIGBUS
781
            (void) signal(SIGBUS, old_bus_handler);
782
#         endif
783
#       endif
784
    }
785
 
786
    /* Return the first nonaddressible location > p (up) or     */
787
    /* the smallest location q s.t. [q,p) is addressable (!up). */
788
    /* We assume that p (up) or p-1 (!up) is addressable.       */
789
    ptr_t GC_find_limit(p, up)
790
    ptr_t p;
791
    GC_bool up;
792
    {
793
        static VOLATILE ptr_t result;
794
                /* Needs to be static, since otherwise it may not be    */
795
                /* preserved across the longjmp.  Can safely be         */
796
                /* static since it's only called once, with the         */
797
                /* allocation lock held.                                */
798
 
799
 
800
        GC_setup_temporary_fault_handler();
801
        if (SETJMP(GC_jmp_buf) == 0) {
802
            result = (ptr_t)(((word)(p))
803
                              & ~(MIN_PAGE_SIZE-1));
804
            for (;;) {
805
                if (up) {
806
                    result += MIN_PAGE_SIZE;
807
                } else {
808
                    result -= MIN_PAGE_SIZE;
809
                }
810
                GC_noop1((word)(*result));
811
            }
812
        }
813
        GC_reset_fault_handler();
814
        if (!up) {
815
            result += MIN_PAGE_SIZE;
816
        }
817
        return(result);
818
    }
819
# endif
820
 
821
#if defined(ECOS) || defined(NOSYS)
822
  ptr_t GC_get_stack_base()
823
  {
824
    return STACKBOTTOM;
825
  }
826
#endif
827
 
828
#ifdef HPUX_STACKBOTTOM
829
 
830
#include <sys/param.h>
831
#include <sys/pstat.h>
832
 
833
  ptr_t GC_get_register_stack_base(void)
834
  {
835
    struct pst_vm_status vm_status;
836
 
837
    int i = 0;
838
    while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
839
      if (vm_status.pst_type == PS_RSESTACK) {
840
        return (ptr_t) vm_status.pst_vaddr;
841
      }
842
    }
843
 
844
    /* old way to get the register stackbottom */
845
    return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
846
                   & ~(BACKING_STORE_ALIGNMENT - 1));
847
  }
848
 
849
#endif /* HPUX_STACK_BOTTOM */
850
 
851
#ifdef LINUX_STACKBOTTOM
852
 
853
#include <sys/types.h>
854
#include <sys/stat.h>
855
 
856
# define STAT_SKIP 27   /* Number of fields preceding startstack        */
857
                        /* field in /proc/self/stat                     */
858
 
859
#ifdef USE_LIBC_PRIVATES
860
# pragma weak __libc_stack_end
861
  extern ptr_t __libc_stack_end;
862
#endif
863
 
864
# ifdef IA64
865
    /* Try to read the backing store base from /proc/self/maps. */
866
    /* We look for the writable mapping with a 0 major device,  */
867
    /* which is as close to our frame as possible, but below it.*/
868
    static word backing_store_base_from_maps(char *maps)
869
    {
870
      char prot_buf[5];
871
      char *buf_ptr = maps;
872
      word start, end;
873
      unsigned int maj_dev;
874
      word current_best = 0;
875
      word dummy;
876
 
877
      for (;;) {
878
        buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
879
        if (buf_ptr == NULL) return current_best;
880
        if (prot_buf[1] == 'w' && maj_dev == 0) {
881
            if (end < (word)(&dummy) && start > current_best) current_best = start;
882
        }
883
      }
884
      return current_best;
885
    }
886
 
887
    static word backing_store_base_from_proc(void)
888
    {
889
        return GC_apply_to_maps(backing_store_base_from_maps);
890
    }
891
 
892
#   ifdef USE_LIBC_PRIVATES
893
#     pragma weak __libc_ia64_register_backing_store_base
894
      extern ptr_t __libc_ia64_register_backing_store_base;
895
#   endif
896
 
897
    ptr_t GC_get_register_stack_base(void)
898
    {
899
#     ifdef USE_LIBC_PRIVATES
900
        if (0 != &__libc_ia64_register_backing_store_base
901
            && 0 != __libc_ia64_register_backing_store_base) {
902
          /* Glibc 2.2.4 has a bug such that for dynamically linked     */
903
          /* executables __libc_ia64_register_backing_store_base is     */
904
          /* defined but uninitialized during constructor calls.        */
905
          /* Hence we check for both nonzero address and value.         */
906
          return __libc_ia64_register_backing_store_base;
907
        }
908
#     endif
909
      word result = backing_store_base_from_proc();
910
      if (0 == result) {
911
          /* Use dumb heuristics.  Works only for default configuration. */
912
          result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
913
          result += BACKING_STORE_ALIGNMENT - 1;
914
          result &= ~(BACKING_STORE_ALIGNMENT - 1);
915
          /* Verify that it's at least readable.  If not, we goofed. */
916
          GC_noop1(*(word *)result);
917
      }
918
      return (ptr_t)result;
919
    }
920
# endif
921
 
922
  ptr_t GC_linux_stack_base(void)
923
  {
924
    /* We read the stack base value from /proc/self/stat.  We do this   */
925
    /* using direct I/O system calls in order to avoid calling malloc   */
926
    /* in case REDIRECT_MALLOC is defined.                              */
927
#   define STAT_BUF_SIZE 4096
928
#   define STAT_READ read
929
          /* Should probably call the real read, if read is wrapped.    */
930
    char stat_buf[STAT_BUF_SIZE];
931
    int f;
932
    char c;
933
    word result = 0;
934
    size_t i, buf_offset = 0;
935
 
936
    /* First try the easy way.  This should work for glibc 2.2  */
937
    /* This fails in a prelinked ("prelink" command) executable */
938
    /* since the correct value of __libc_stack_end never        */
939
    /* becomes visible to us.  The second test works around     */
940
    /* this.                                                    */
941
#   ifdef USE_LIBC_PRIVATES
942
      if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
943
#       ifdef IA64
944
          /* Some versions of glibc set the address 16 bytes too        */
945
          /* low while the initialization code is running.              */
946
          if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
947
            return __libc_stack_end + 0x10;
948
          } /* Otherwise it's not safe to add 16 bytes and we fall      */
949
            /* back to using /proc.                                     */
950
#       else 
951
#       ifdef SPARC
952
          /* Older versions of glibc for 64-bit Sparc do not set
953
           * this variable correctly, it gets set to either zero
954
           * or one.
955
           */
956
          if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
957
            return __libc_stack_end;
958
#       else
959
          return __libc_stack_end;
960
#       endif
961
#       endif
962
      }
963
#   endif
964
    f = open("/proc/self/stat", O_RDONLY);
965
    if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
966
        ABORT("Couldn't read /proc/self/stat");
967
    }
968
    c = stat_buf[buf_offset++];
969
    /* Skip the required number of fields.  This number is hopefully    */
970
    /* constant across all Linux implementations.                       */
971
      for (i = 0; i < STAT_SKIP; ++i) {
972
        while (isspace(c)) c = stat_buf[buf_offset++];
973
        while (!isspace(c)) c = stat_buf[buf_offset++];
974
      }
975
    while (isspace(c)) c = stat_buf[buf_offset++];
976
    while (isdigit(c)) {
977
      result *= 10;
978
      result += c - '0';
979
      c = stat_buf[buf_offset++];
980
    }
981
    close(f);
982
    if (result < 0x10000000) ABORT("Absurd stack bottom value");
983
    return (ptr_t)result;
984
  }
985
 
986
#endif /* LINUX_STACKBOTTOM */
987
 
988
#ifdef FREEBSD_STACKBOTTOM
989
 
990
/* This uses an undocumented sysctl call, but at least one expert       */
991
/* believes it will stay.                                               */
992
 
993
#include <unistd.h>
994
#include <sys/types.h>
995
#include <sys/sysctl.h>
996
 
997
  ptr_t GC_freebsd_stack_base(void)
998
  {
999
    int nm[2] = {CTL_KERN, KERN_USRSTACK};
1000
    ptr_t base;
1001
    size_t len = sizeof(ptr_t);
1002
    int r = sysctl(nm, 2, &base, &len, NULL, 0);
1003
 
1004
    if (r) ABORT("Error getting stack base");
1005
 
1006
    return base;
1007
  }
1008
 
1009
#endif /* FREEBSD_STACKBOTTOM */
1010
 
1011
#if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1012
    && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1013
 
1014
ptr_t GC_get_stack_base()
1015
{
1016
#   if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1017
       defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1018
    word dummy;
1019
    ptr_t result;
1020
#   endif
1021
 
1022
#   define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1023
 
1024
#   ifdef STACKBOTTOM
1025
        return(STACKBOTTOM);
1026
#   else
1027
#       ifdef HEURISTIC1
1028
#          ifdef STACK_GROWS_DOWN
1029
             result = (ptr_t)((((word)(&dummy))
1030
                               + STACKBOTTOM_ALIGNMENT_M1)
1031
                              & ~STACKBOTTOM_ALIGNMENT_M1);
1032
#          else
1033
             result = (ptr_t)(((word)(&dummy))
1034
                              & ~STACKBOTTOM_ALIGNMENT_M1);
1035
#          endif
1036
#       endif /* HEURISTIC1 */
1037
#       ifdef LINUX_STACKBOTTOM
1038
           result = GC_linux_stack_base();
1039
#       endif
1040
#       ifdef FREEBSD_STACKBOTTOM
1041
           result = GC_freebsd_stack_base();
1042
#       endif
1043
#       ifdef HEURISTIC2
1044
#           ifdef STACK_GROWS_DOWN
1045
                result = GC_find_limit((ptr_t)(&dummy), TRUE);
1046
#               ifdef HEURISTIC2_LIMIT
1047
                    if (result > HEURISTIC2_LIMIT
1048
                        && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1049
                            result = HEURISTIC2_LIMIT;
1050
                    }
1051
#               endif
1052
#           else
1053
                result = GC_find_limit((ptr_t)(&dummy), FALSE);
1054
#               ifdef HEURISTIC2_LIMIT
1055
                    if (result < HEURISTIC2_LIMIT
1056
                        && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1057
                            result = HEURISTIC2_LIMIT;
1058
                    }
1059
#               endif
1060
#           endif
1061
 
1062
#       endif /* HEURISTIC2 */
1063
#       ifdef STACK_GROWS_DOWN
1064
            if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1065
#       endif
1066
        return(result);
1067
#   endif /* STACKBOTTOM */
1068
}
1069
 
1070
# endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1071
 
1072
/*
1073
 * Register static data segment(s) as roots.
1074
 * If more data segments are added later then they need to be registered
1075
 * add that point (as we do with SunOS dynamic loading),
1076
 * or GC_mark_roots needs to check for them (as we do with PCR).
1077
 * Called with allocator lock held.
1078
 */
1079
 
1080
# ifdef OS2
1081
 
1082
void GC_register_data_segments()
1083
{
1084
    PTIB ptib;
1085
    PPIB ppib;
1086
    HMODULE module_handle;
1087
#   define PBUFSIZ 512
1088
    UCHAR path[PBUFSIZ];
1089
    FILE * myexefile;
1090
    struct exe_hdr hdrdos;      /* MSDOS header.        */
1091
    struct e32_exe hdr386;      /* Real header for my executable */
1092
    struct o32_obj seg; /* Currrent segment */
1093
    int nsegs;
1094
 
1095
 
1096
    if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1097
        GC_err_printf0("DosGetInfoBlocks failed\n");
1098
        ABORT("DosGetInfoBlocks failed\n");
1099
    }
1100
    module_handle = ppib -> pib_hmte;
1101
    if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1102
        GC_err_printf0("DosQueryModuleName failed\n");
1103
        ABORT("DosGetInfoBlocks failed\n");
1104
    }
1105
    myexefile = fopen(path, "rb");
1106
    if (myexefile == 0) {
1107
        GC_err_puts("Couldn't open executable ");
1108
        GC_err_puts(path); GC_err_puts("\n");
1109
        ABORT("Failed to open executable\n");
1110
    }
1111
    if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1112
        GC_err_puts("Couldn't read MSDOS header from ");
1113
        GC_err_puts(path); GC_err_puts("\n");
1114
        ABORT("Couldn't read MSDOS header");
1115
    }
1116
    if (E_MAGIC(hdrdos) != EMAGIC) {
1117
        GC_err_puts("Executable has wrong DOS magic number: ");
1118
        GC_err_puts(path); GC_err_puts("\n");
1119
        ABORT("Bad DOS magic number");
1120
    }
1121
    if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1122
        GC_err_puts("Seek to new header failed in ");
1123
        GC_err_puts(path); GC_err_puts("\n");
1124
        ABORT("Bad DOS magic number");
1125
    }
1126
    if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1127
        GC_err_puts("Couldn't read MSDOS header from ");
1128
        GC_err_puts(path); GC_err_puts("\n");
1129
        ABORT("Couldn't read OS/2 header");
1130
    }
1131
    if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1132
        GC_err_puts("Executable has wrong OS/2 magic number:");
1133
        GC_err_puts(path); GC_err_puts("\n");
1134
        ABORT("Bad OS/2 magic number");
1135
    }
1136
    if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1137
        GC_err_puts("Executable %s has wrong byte order: ");
1138
        GC_err_puts(path); GC_err_puts("\n");
1139
        ABORT("Bad byte order");
1140
    }
1141
    if ( E32_CPU(hdr386) == E32CPU286) {
1142
        GC_err_puts("GC can't handle 80286 executables: ");
1143
        GC_err_puts(path); GC_err_puts("\n");
1144
        EXIT();
1145
    }
1146
    if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1147
              SEEK_SET) != 0) {
1148
        GC_err_puts("Seek to object table failed: ");
1149
        GC_err_puts(path); GC_err_puts("\n");
1150
        ABORT("Seek to object table failed");
1151
    }
1152
    for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1153
      int flags;
1154
      if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1155
        GC_err_puts("Couldn't read obj table entry from ");
1156
        GC_err_puts(path); GC_err_puts("\n");
1157
        ABORT("Couldn't read obj table entry");
1158
      }
1159
      flags = O32_FLAGS(seg);
1160
      if (!(flags & OBJWRITE)) continue;
1161
      if (!(flags & OBJREAD)) continue;
1162
      if (flags & OBJINVALID) {
1163
          GC_err_printf0("Object with invalid pages?\n");
1164
          continue;
1165
      }
1166
      GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1167
    }
1168
}
1169
 
1170
# else /* !OS2 */
1171
 
1172
# if defined(MSWIN32) || defined(MSWINCE) || defined (CYGWIN32)
1173
 
1174
# ifdef CYGWIN32
1175
#    define GC_no_win32_dlls (FALSE)
1176
# endif
1177
 
1178
# ifdef MSWIN32
1179
  /* Unfortunately, we have to handle win32s very differently from NT,  */
1180
  /* Since VirtualQuery has very different semantics.  In particular,   */
1181
  /* under win32s a VirtualQuery call on an unmapped page returns an    */
1182
  /* invalid result.  Under NT, GC_register_data_segments is a noop and */
1183
  /* all real work is done by GC_register_dynamic_libraries.  Under     */
1184
  /* win32s, we cannot find the data segments associated with dll's.    */
1185
  /* We register the main data segment here.                            */
1186
  GC_bool GC_no_win32_dlls = FALSE;
1187
        /* This used to be set for gcc, to avoid dealing with           */
1188
        /* the structured exception handling issues.  But we now have   */
1189
        /* assembly code to do that right.                              */
1190
  GC_bool GC_wnt = FALSE;
1191
        /* This is a Windows NT derivative, i.e. NT, W2K, XP or later.  */
1192
 
1193
  void GC_init_win32()
1194
  {
1195
    /* if we're running under win32s, assume that no DLLs will be loaded */
1196
    DWORD v = GetVersion();
1197
    GC_wnt = !(v & 0x80000000);
1198
    GC_no_win32_dlls |= ((!GC_wnt) && (v & 0xff) <= 3);
1199
  }
1200
 
1201
  /* Return the smallest address a such that VirtualQuery               */
1202
  /* returns correct results for all addresses between a and start.     */
1203
  /* Assumes VirtualQuery returns correct information for start.        */
1204
  ptr_t GC_least_described_address(ptr_t start)
1205
  {
1206
    MEMORY_BASIC_INFORMATION buf;
1207
    DWORD result;
1208
    LPVOID limit;
1209
    ptr_t p;
1210
    LPVOID q;
1211
 
1212
    limit = GC_sysinfo.lpMinimumApplicationAddress;
1213
    p = (ptr_t)((word)start & ~(GC_page_size - 1));
1214
    for (;;) {
1215
        q = (LPVOID)(p - GC_page_size);
1216
        if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1217
        result = VirtualQuery(q, &buf, sizeof(buf));
1218
        if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1219
        p = (ptr_t)(buf.AllocationBase);
1220
    }
1221
    return(p);
1222
  }
1223
# endif
1224
 
1225
# ifndef REDIRECT_MALLOC
1226
  /* We maintain a linked list of AllocationBase values that we know    */
1227
  /* correspond to malloc heap sections.  Currently this is only called */
1228
  /* during a GC.  But there is some hope that for long running         */
1229
  /* programs we will eventually see most heap sections.                */
1230
 
1231
  /* In the long run, it would be more reliable to occasionally walk    */
1232
  /* the malloc heap with HeapWalk on the default heap.  But that       */
1233
  /* apparently works only for NT-based Windows.                        */
1234
 
1235
  /* In the long run, a better data structure would also be nice ...    */
1236
  struct GC_malloc_heap_list {
1237
    void * allocation_base;
1238
    struct GC_malloc_heap_list *next;
1239
  } *GC_malloc_heap_l = 0;
1240
 
1241
  /* Is p the base of one of the malloc heap sections we already know   */
1242
  /* about?                                                             */
1243
  GC_bool GC_is_malloc_heap_base(ptr_t p)
1244
  {
1245
    struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1246
 
1247
    while (0 != q) {
1248
      if (q -> allocation_base == p) return TRUE;
1249
      q = q -> next;
1250
    }
1251
    return FALSE;
1252
  }
1253
 
1254
  void *GC_get_allocation_base(void *p)
1255
  {
1256
    MEMORY_BASIC_INFORMATION buf;
1257
    DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1258
    if (result != sizeof(buf)) {
1259
      ABORT("Weird VirtualQuery result");
1260
    }
1261
    return buf.AllocationBase;
1262
  }
1263
 
1264
  size_t GC_max_root_size = 100000;     /* Appr. largest root size.     */
1265
 
1266
  void GC_add_current_malloc_heap()
1267
  {
1268
    struct GC_malloc_heap_list *new_l =
1269
                 malloc(sizeof(struct GC_malloc_heap_list));
1270
    void * candidate = GC_get_allocation_base(new_l);
1271
 
1272
    if (new_l == 0) return;
1273
    if (GC_is_malloc_heap_base(candidate)) {
1274
      /* Try a little harder to find malloc heap.                       */
1275
        size_t req_size = 10000;
1276
        do {
1277
          void *p = malloc(req_size);
1278
          if (0 == p) { free(new_l); return; }
1279
          candidate = GC_get_allocation_base(p);
1280
          free(p);
1281
          req_size *= 2;
1282
        } while (GC_is_malloc_heap_base(candidate)
1283
                 && req_size < GC_max_root_size/10 && req_size < 500000);
1284
        if (GC_is_malloc_heap_base(candidate)) {
1285
          free(new_l); return;
1286
        }
1287
    }
1288
#   ifdef CONDPRINT
1289
      if (GC_print_stats)
1290
          GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1291
                     candidate);
1292
#   endif
1293
    new_l -> allocation_base = candidate;
1294
    new_l -> next = GC_malloc_heap_l;
1295
    GC_malloc_heap_l = new_l;
1296
  }
1297
# endif /* REDIRECT_MALLOC */
1298
 
1299
  /* Is p the start of either the malloc heap, or of one of our */
1300
  /* heap sections?                                             */
1301
  GC_bool GC_is_heap_base (ptr_t p)
1302
  {
1303
 
1304
     unsigned i;
1305
 
1306
#    ifndef REDIRECT_MALLOC
1307
       static word last_gc_no = -1;
1308
 
1309
       if (last_gc_no != GC_gc_no) {
1310
         GC_add_current_malloc_heap();
1311
         last_gc_no = GC_gc_no;
1312
       }
1313
       if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1314
       if (GC_is_malloc_heap_base(p)) return TRUE;
1315
#    endif
1316
     for (i = 0; i < GC_n_heap_bases; i++) {
1317
         if (GC_heap_bases[i] == p) return TRUE;
1318
     }
1319
     return FALSE ;
1320
  }
1321
 
1322
# ifdef MSWIN32
1323
  void GC_register_root_section(ptr_t static_root)
1324
  {
1325
      MEMORY_BASIC_INFORMATION buf;
1326
      DWORD result;
1327
      DWORD protect;
1328
      LPVOID p;
1329
      char * base;
1330
      char * limit, * new_limit;
1331
 
1332
      if (!GC_no_win32_dlls) return;
1333
      p = base = limit = GC_least_described_address(static_root);
1334
      while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1335
        result = VirtualQuery(p, &buf, sizeof(buf));
1336
        if (result != sizeof(buf) || buf.AllocationBase == 0
1337
            || GC_is_heap_base(buf.AllocationBase)) break;
1338
        new_limit = (char *)p + buf.RegionSize;
1339
        protect = buf.Protect;
1340
        if (buf.State == MEM_COMMIT
1341
            && is_writable(protect)) {
1342
            if ((char *)p == limit) {
1343
                limit = new_limit;
1344
            } else {
1345
                if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1346
                base = p;
1347
                limit = new_limit;
1348
            }
1349
        }
1350
        if (p > (LPVOID)new_limit /* overflow */) break;
1351
        p = (LPVOID)new_limit;
1352
      }
1353
      if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1354
  }
1355
#endif
1356
 
1357
  void GC_register_data_segments()
1358
  {
1359
#     ifdef MSWIN32
1360
      static char dummy;
1361
      GC_register_root_section((ptr_t)(&dummy));
1362
#     endif
1363
  }
1364
 
1365
# else /* !OS2 && !Windows */
1366
 
1367
# if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1368
      || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1369
ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1370
int max_page_size;
1371
int * etext_addr;
1372
{
1373
    word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1374
                    & ~(sizeof(word) - 1);
1375
        /* etext rounded to word boundary       */
1376
    word next_page = ((text_end + (word)max_page_size - 1)
1377
                      & ~((word)max_page_size - 1));
1378
    word page_offset = (text_end & ((word)max_page_size - 1));
1379
    VOLATILE char * result = (char *)(next_page + page_offset);
1380
    /* Note that this isnt equivalent to just adding            */
1381
    /* max_page_size to &etext if &etext is at a page boundary  */
1382
 
1383
    GC_setup_temporary_fault_handler();
1384
    if (SETJMP(GC_jmp_buf) == 0) {
1385
        /* Try writing to the address.  */
1386
        *result = *result;
1387
        GC_reset_fault_handler();
1388
    } else {
1389
        GC_reset_fault_handler();
1390
        /* We got here via a longjmp.  The address is not readable.     */
1391
        /* This is known to happen under Solaris 2.4 + gcc, which place */
1392
        /* string constants in the text segment, but after etext.       */
1393
        /* Use plan B.  Note that we now know there is a gap between    */
1394
        /* text and data segments, so plan A bought us something.       */
1395
        result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1396
    }
1397
    return((ptr_t)result);
1398
}
1399
# endif
1400
 
1401
# if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__)) && !defined(PCR)
1402
/* Its unclear whether this should be identical to the above, or        */
1403
/* whether it should apply to non-X86 architectures.                    */
1404
/* For now we don't assume that there is always an empty page after     */
1405
/* etext.  But in some cases there actually seems to be slightly more.  */
1406
/* This also deals with holes between read-only data and writable data. */
1407
ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1408
int max_page_size;
1409
int * etext_addr;
1410
{
1411
    word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1412
                     & ~(sizeof(word) - 1);
1413
        /* etext rounded to word boundary       */
1414
    VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1415
                              & ~((word)max_page_size - 1);
1416
    VOLATILE ptr_t result = (ptr_t)text_end;
1417
    GC_setup_temporary_fault_handler();
1418
    if (SETJMP(GC_jmp_buf) == 0) {
1419
        /* Try reading at the address.                          */
1420
        /* This should happen before there is another thread.   */
1421
        for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1422
            *(VOLATILE char *)next_page;
1423
        GC_reset_fault_handler();
1424
    } else {
1425
        GC_reset_fault_handler();
1426
        /* As above, we go to plan B    */
1427
        result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1428
    }
1429
    return(result);
1430
}
1431
 
1432
# endif
1433
 
1434
 
1435
#ifdef AMIGA
1436
 
1437
#  define GC_AMIGA_DS
1438
#  include "AmigaOS.c"
1439
#  undef GC_AMIGA_DS
1440
 
1441
#else /* !OS2 && !Windows && !AMIGA */
1442
 
1443
void GC_register_data_segments()
1444
{
1445
#   if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1446
#     if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1447
        /* As of Solaris 2.3, the Solaris threads implementation        */
1448
        /* allocates the data structure for the initial thread with     */
1449
        /* sbrk at process startup.  It needs to be scanned, so that    */
1450
        /* we don't lose some malloc allocated data structures          */
1451
        /* hanging from it.  We're on thin ice here ...                 */
1452
        extern caddr_t sbrk();
1453
 
1454
        GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1455
#     else
1456
        GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1457
#       if defined(DATASTART2)
1458
         GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1459
#       endif
1460
#     endif
1461
#   endif
1462
#   if defined(MACOS)
1463
    {
1464
#   if defined(THINK_C)
1465
        extern void* GC_MacGetDataStart(void);
1466
        /* globals begin above stack and end at a5. */
1467
        GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1468
                           (ptr_t)LMGetCurrentA5(), FALSE);
1469
#   else
1470
#     if defined(__MWERKS__)
1471
#       if !__POWERPC__
1472
          extern void* GC_MacGetDataStart(void);
1473
          /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1474
#         if __option(far_data)
1475
          extern void* GC_MacGetDataEnd(void);
1476
#         endif
1477
          /* globals begin above stack and end at a5. */
1478
          GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1479
                             (ptr_t)LMGetCurrentA5(), FALSE);
1480
          /* MATTHEW: Handle Far Globals */
1481
#         if __option(far_data)
1482
      /* Far globals follow he QD globals: */
1483
          GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1484
                             (ptr_t)GC_MacGetDataEnd(), FALSE);
1485
#         endif
1486
#       else
1487
          extern char __data_start__[], __data_end__[];
1488
          GC_add_roots_inner((ptr_t)&__data_start__,
1489
                             (ptr_t)&__data_end__, FALSE);
1490
#       endif /* __POWERPC__ */
1491
#     endif /* __MWERKS__ */
1492
#   endif /* !THINK_C */
1493
    }
1494
#   endif /* MACOS */
1495
 
1496
    /* Dynamic libraries are added at every collection, since they may  */
1497
    /* change.                                                          */
1498
}
1499
 
1500
# endif  /* ! AMIGA */
1501
# endif  /* ! MSWIN32 && ! MSWINCE*/
1502
# endif  /* ! OS2 */
1503
 
1504
/*
1505
 * Auxiliary routines for obtaining memory from OS.
1506
 */
1507
 
1508
# if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1509
        && !defined(MSWIN32) && !defined(MSWINCE) \
1510
        && !defined(MACOS) && !defined(DOS4GW)
1511
 
1512
# ifdef SUNOS4
1513
    extern caddr_t sbrk();
1514
# endif
1515
# ifdef __STDC__
1516
#   define SBRK_ARG_T ptrdiff_t
1517
# else
1518
#   define SBRK_ARG_T int
1519
# endif
1520
 
1521
 
1522
# if 0 && defined(RS6000)  /* We now use mmap */
1523
/* The compiler seems to generate speculative reads one past the end of */
1524
/* an allocated object.  Hence we need to make sure that the page       */
1525
/* following the last heap page is also mapped.                         */
1526
ptr_t GC_unix_get_mem(bytes)
1527
word bytes;
1528
{
1529
    caddr_t cur_brk = (caddr_t)sbrk(0);
1530
    caddr_t result;
1531
    SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1532
    static caddr_t my_brk_val = 0;
1533
 
1534
    if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1535
    if (lsbs != 0) {
1536
        if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1537
    }
1538
    if (cur_brk == my_brk_val) {
1539
        /* Use the extra block we allocated last time. */
1540
        result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1541
        if (result == (caddr_t)(-1)) return(0);
1542
        result -= GC_page_size;
1543
    } else {
1544
        result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1545
        if (result == (caddr_t)(-1)) return(0);
1546
    }
1547
    my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1548
    return((ptr_t)result);
1549
}
1550
 
1551
#else  /* Not RS6000 */
1552
 
1553
#if defined(USE_MMAP) || defined(USE_MUNMAP)
1554
 
1555
#ifdef USE_MMAP_FIXED
1556
#   define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1557
        /* Seems to yield better performance on Solaris 2, but can      */
1558
        /* be unreliable if something is already mapped at the address. */
1559
#else
1560
#   define GC_MMAP_FLAGS MAP_PRIVATE
1561
#endif
1562
 
1563
#ifdef USE_MMAP_ANON
1564
# define zero_fd -1
1565
# if defined(MAP_ANONYMOUS)
1566
#   define OPT_MAP_ANON MAP_ANONYMOUS
1567
# else
1568
#   define OPT_MAP_ANON MAP_ANON
1569
# endif
1570
#else
1571
  static int zero_fd;
1572
# define OPT_MAP_ANON 0
1573
#endif 
1574
 
1575
#endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1576
 
1577
#if defined(USE_MMAP)
1578
/* Tested only under Linux, IRIX5 and Solaris 2 */
1579
 
1580
#ifndef HEAP_START
1581
#   define HEAP_START 0
1582
#endif
1583
 
1584
ptr_t GC_unix_get_mem(bytes)
1585
word bytes;
1586
{
1587
    void *result;
1588
    static ptr_t last_addr = HEAP_START;
1589
 
1590
#   ifndef USE_MMAP_ANON
1591
      static GC_bool initialized = FALSE;
1592
 
1593
      if (!initialized) {
1594
          zero_fd = open("/dev/zero", O_RDONLY);
1595
          fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1596
          initialized = TRUE;
1597
      }
1598
#   endif
1599
 
1600
    if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1601
    result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1602
                  GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1603
    if (result == MAP_FAILED) return(0);
1604
    last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1605
    last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1606
#   if !defined(LINUX)
1607
      if (last_addr == 0) {
1608
        /* Oops.  We got the end of the address space.  This isn't      */
1609
        /* usable by arbitrary C code, since one-past-end pointers      */
1610
        /* don't work, so we discard it and try again.                  */
1611
        munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1612
                        /* Leave last page mapped, so we can't repeat. */
1613
        return GC_unix_get_mem(bytes);
1614
      }
1615
#   else
1616
      GC_ASSERT(last_addr != 0);
1617
#   endif
1618
    return((ptr_t)result);
1619
}
1620
 
1621
#else /* Not RS6000, not USE_MMAP */
1622
ptr_t GC_unix_get_mem(bytes)
1623
word bytes;
1624
{
1625
  ptr_t result;
1626
# ifdef IRIX5
1627
    /* Bare sbrk isn't thread safe.  Play by malloc rules.      */
1628
    /* The equivalent may be needed on other systems as well.   */
1629
    __LOCK_MALLOC();
1630
# endif
1631
  {
1632
    ptr_t cur_brk = (ptr_t)sbrk(0);
1633
    SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1634
 
1635
    if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1636
    if (lsbs != 0) {
1637
        if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1638
    }
1639
    result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1640
    if (result == (ptr_t)(-1)) result = 0;
1641
  }
1642
# ifdef IRIX5
1643
    __UNLOCK_MALLOC();
1644
# endif
1645
  return(result);
1646
}
1647
 
1648
#endif /* Not USE_MMAP */
1649
#endif /* Not RS6000 */
1650
 
1651
# endif /* UN*X */
1652
 
1653
# ifdef OS2
1654
 
1655
void * os2_alloc(size_t bytes)
1656
{
1657
    void * result;
1658
 
1659
    if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1660
                                    PAG_WRITE | PAG_COMMIT)
1661
                    != NO_ERROR) {
1662
        return(0);
1663
    }
1664
    if (result == 0) return(os2_alloc(bytes));
1665
    return(result);
1666
}
1667
 
1668
# endif /* OS2 */
1669
 
1670
 
1671
# if defined(MSWIN32) || defined(MSWINCE) || defined(CYGWIN32)
1672
SYSTEM_INFO GC_sysinfo;
1673
# endif
1674
 
1675
# if defined(MSWIN32) || defined(CYGWIN32)
1676
 
1677
word GC_n_heap_bases = 0;
1678
 
1679
# ifdef USE_GLOBAL_ALLOC
1680
#   define GLOBAL_ALLOC_TEST 1
1681
# else
1682
#   define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1683
# endif
1684
 
1685
ptr_t GC_win32_get_mem(bytes)
1686
word bytes;
1687
{
1688
    ptr_t result;
1689
 
1690
# ifdef CYGWIN32
1691
    result = GC_unix_get_mem (bytes);
1692
# else
1693
    if (GLOBAL_ALLOC_TEST) {
1694
        /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE.    */
1695
        /* There are also unconfirmed rumors of other           */
1696
        /* problems, so we dodge the issue.                     */
1697
        result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1698
        result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1699
    } else {
1700
        /* VirtualProtect only works on regions returned by a   */
1701
        /* single VirtualAlloc call.  Thus we allocate one      */
1702
        /* extra page, which will prevent merging of blocks     */
1703
        /* in separate regions, and eliminate any temptation    */
1704
        /* to call VirtualProtect on a range spanning regions.  */
1705
        /* This wastes a small amount of memory, and risks      */
1706
        /* increased fragmentation.  But better alternatives    */
1707
        /* would require effort.                                */
1708
        result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1709
                                      MEM_COMMIT | MEM_RESERVE,
1710
                                      PAGE_EXECUTE_READWRITE);
1711
    }
1712
#endif
1713
    if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1714
        /* If I read the documentation correctly, this can      */
1715
        /* only happen if HBLKSIZE > 64k or not a power of 2.   */
1716
    if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1717
    GC_heap_bases[GC_n_heap_bases++] = result;
1718
    return(result);
1719
}
1720
 
1721
void GC_win32_free_heap ()
1722
{
1723
    if (GC_no_win32_dlls) {
1724
        while (GC_n_heap_bases > 0) {
1725
# ifdef CYGWIN32
1726
            free (GC_heap_bases[--GC_n_heap_bases]);
1727
# else
1728
            GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1729
# endif
1730
            GC_heap_bases[GC_n_heap_bases] = 0;
1731
        }
1732
    }
1733
}
1734
# endif
1735
 
1736
#ifdef AMIGA
1737
# define GC_AMIGA_AM
1738
# include "AmigaOS.c"
1739
# undef GC_AMIGA_AM
1740
#endif
1741
 
1742
 
1743
# ifdef MSWINCE
1744
word GC_n_heap_bases = 0;
1745
 
1746
ptr_t GC_wince_get_mem(bytes)
1747
word bytes;
1748
{
1749
    ptr_t result;
1750
    word i;
1751
 
1752
    /* Round up allocation size to multiple of page size */
1753
    bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1754
 
1755
    /* Try to find reserved, uncommitted pages */
1756
    for (i = 0; i < GC_n_heap_bases; i++) {
1757
        if (((word)(-(signed_word)GC_heap_lengths[i])
1758
             & (GC_sysinfo.dwAllocationGranularity-1))
1759
            >= bytes) {
1760
            result = GC_heap_bases[i] + GC_heap_lengths[i];
1761
            break;
1762
        }
1763
    }
1764
 
1765
    if (i == GC_n_heap_bases) {
1766
        /* Reserve more pages */
1767
        word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1768
                         & ~(GC_sysinfo.dwAllocationGranularity-1);
1769
        /* If we ever support MPROTECT_VDB here, we will probably need to       */
1770
        /* ensure that res_bytes is strictly > bytes, so that VirtualProtect    */
1771
        /* never spans regions.  It seems to be OK for a VirtualFree argument   */
1772
        /* to span regions, so we should be OK for now.                         */
1773
        result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1774
                                      MEM_RESERVE | MEM_TOP_DOWN,
1775
                                      PAGE_EXECUTE_READWRITE);
1776
        if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1777
            /* If I read the documentation correctly, this can  */
1778
            /* only happen if HBLKSIZE > 64k or not a power of 2.       */
1779
        if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1780
        GC_heap_bases[GC_n_heap_bases] = result;
1781
        GC_heap_lengths[GC_n_heap_bases] = 0;
1782
        GC_n_heap_bases++;
1783
    }
1784
 
1785
    /* Commit pages */
1786
    result = (ptr_t) VirtualAlloc(result, bytes,
1787
                                  MEM_COMMIT,
1788
                                  PAGE_EXECUTE_READWRITE);
1789
    if (result != NULL) {
1790
        if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1791
        GC_heap_lengths[i] += bytes;
1792
    }
1793
 
1794
    return(result);
1795
}
1796
# endif
1797
 
1798
#ifdef USE_MUNMAP
1799
 
1800
/* For now, this only works on Win32/WinCE and some Unix-like   */
1801
/* systems.  If you have something else, don't define           */
1802
/* USE_MUNMAP.                                                  */
1803
/* We assume ANSI C to support this feature.                    */
1804
 
1805
#if !defined(MSWIN32) && !defined(MSWINCE)
1806
 
1807
#include <unistd.h>
1808
#include <sys/mman.h>
1809
#include <sys/stat.h>
1810
#include <sys/types.h>
1811
 
1812
#endif
1813
 
1814
/* Compute a page aligned starting address for the unmap        */
1815
/* operation on a block of size bytes starting at start.        */
1816
/* Return 0 if the block is too small to make this feasible.    */
1817
ptr_t GC_unmap_start(ptr_t start, word bytes)
1818
{
1819
    ptr_t result = start;
1820
    /* Round start to next page boundary.       */
1821
        result += GC_page_size - 1;
1822
        result = (ptr_t)((word)result & ~(GC_page_size - 1));
1823
    if (result + GC_page_size > start + bytes) return 0;
1824
    return result;
1825
}
1826
 
1827
/* Compute end address for an unmap operation on the indicated  */
1828
/* block.                                                       */
1829
ptr_t GC_unmap_end(ptr_t start, word bytes)
1830
{
1831
    ptr_t end_addr = start + bytes;
1832
    end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1833
    return end_addr;
1834
}
1835
 
1836
/* Under Win32/WinCE we commit (map) and decommit (unmap)       */
1837
/* memory using VirtualAlloc and VirtualFree.  These functions  */
1838
/* work on individual allocations of virtual memory, made       */
1839
/* previously using VirtualAlloc with the MEM_RESERVE flag.     */
1840
/* The ranges we need to (de)commit may span several of these   */
1841
/* allocations; therefore we use VirtualQuery to check          */
1842
/* allocation lengths, and split up the range as necessary.     */
1843
 
1844
/* We assume that GC_remap is called on exactly the same range  */
1845
/* as a previous call to GC_unmap.  It is safe to consistently  */
1846
/* round the endpoints in both places.                          */
1847
void GC_unmap(ptr_t start, word bytes)
1848
{
1849
    ptr_t start_addr = GC_unmap_start(start, bytes);
1850
    ptr_t end_addr = GC_unmap_end(start, bytes);
1851
    word len = end_addr - start_addr;
1852
    if (0 == start_addr) return;
1853
#   if defined(MSWIN32) || defined(MSWINCE)
1854
      while (len != 0) {
1855
          MEMORY_BASIC_INFORMATION mem_info;
1856
          GC_word free_len;
1857
          if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1858
              != sizeof(mem_info))
1859
              ABORT("Weird VirtualQuery result");
1860
          free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1861
          if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1862
              ABORT("VirtualFree failed");
1863
          GC_unmapped_bytes += free_len;
1864
          start_addr += free_len;
1865
          len -= free_len;
1866
      }
1867
#   else
1868
      /* We immediately remap it to prevent an intervening mmap from    */
1869
      /* accidentally grabbing the same address space.                  */
1870
      {
1871
        void * result;
1872
        result = mmap(start_addr, len, PROT_NONE,
1873
                      MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
1874
                      zero_fd, 0/* offset */);
1875
        if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
1876
      }
1877
      GC_unmapped_bytes += len;
1878
#   endif
1879
}
1880
 
1881
 
1882
void GC_remap(ptr_t start, word bytes)
1883
{
1884
    ptr_t start_addr = GC_unmap_start(start, bytes);
1885
    ptr_t end_addr = GC_unmap_end(start, bytes);
1886
    word len = end_addr - start_addr;
1887
 
1888
#   if defined(MSWIN32) || defined(MSWINCE)
1889
      ptr_t result;
1890
 
1891
      if (0 == start_addr) return;
1892
      while (len != 0) {
1893
          MEMORY_BASIC_INFORMATION mem_info;
1894
          GC_word alloc_len;
1895
          if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1896
              != sizeof(mem_info))
1897
              ABORT("Weird VirtualQuery result");
1898
          alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1899
          result = VirtualAlloc(start_addr, alloc_len,
1900
                                MEM_COMMIT,
1901
                                PAGE_EXECUTE_READWRITE);
1902
          if (result != start_addr) {
1903
              ABORT("VirtualAlloc remapping failed");
1904
          }
1905
          GC_unmapped_bytes -= alloc_len;
1906
          start_addr += alloc_len;
1907
          len -= alloc_len;
1908
      }
1909
#   else
1910
      /* It was already remapped with PROT_NONE. */
1911
      int result;
1912
 
1913
      if (0 == start_addr) return;
1914
      result = mprotect(start_addr, len,
1915
                        PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
1916
      if (result != 0) {
1917
          GC_err_printf3(
1918
                "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1919
                start_addr, len, errno);
1920
          ABORT("Mprotect remapping failed");
1921
      }
1922
      GC_unmapped_bytes -= len;
1923
#   endif
1924
}
1925
 
1926
/* Two adjacent blocks have already been unmapped and are about to      */
1927
/* be merged.  Unmap the whole block.  This typically requires          */
1928
/* that we unmap a small section in the middle that was not previously  */
1929
/* unmapped due to alignment constraints.                               */
1930
void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1931
{
1932
    ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1933
    ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1934
    ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1935
    ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1936
    ptr_t start_addr = end1_addr;
1937
    ptr_t end_addr = start2_addr;
1938
    word len;
1939
    GC_ASSERT(start1 + bytes1 == start2);
1940
    if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1941
    if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1942
    if (0 == start_addr) return;
1943
    len = end_addr - start_addr;
1944
#   if defined(MSWIN32) || defined(MSWINCE)
1945
      while (len != 0) {
1946
          MEMORY_BASIC_INFORMATION mem_info;
1947
          GC_word free_len;
1948
          if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1949
              != sizeof(mem_info))
1950
              ABORT("Weird VirtualQuery result");
1951
          free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1952
          if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1953
              ABORT("VirtualFree failed");
1954
          GC_unmapped_bytes += free_len;
1955
          start_addr += free_len;
1956
          len -= free_len;
1957
      }
1958
#   else
1959
      if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1960
      GC_unmapped_bytes += len;
1961
#   endif
1962
}
1963
 
1964
#endif /* USE_MUNMAP */
1965
 
1966
/* Routine for pushing any additional roots.  In THREADS        */
1967
/* environment, this is also responsible for marking from       */
1968
/* thread stacks.                                               */
1969
#ifndef THREADS
1970
void (*GC_push_other_roots)() = 0;
1971
#else /* THREADS */
1972
 
1973
# ifdef PCR
1974
PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1975
{
1976
    struct PCR_ThCtl_TInfoRep info;
1977
    PCR_ERes result;
1978
 
1979
    info.ti_stkLow = info.ti_stkHi = 0;
1980
    result = PCR_ThCtl_GetInfo(t, &info);
1981
    GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1982
    return(result);
1983
}
1984
 
1985
/* Push the contents of an old object. We treat this as stack   */
1986
/* data only becasue that makes it robust against mark stack    */
1987
/* overflow.                                                    */
1988
PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1989
{
1990
    GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1991
    return(PCR_ERes_okay);
1992
}
1993
 
1994
 
1995
void GC_default_push_other_roots GC_PROTO((void))
1996
{
1997
    /* Traverse data allocated by previous memory managers.             */
1998
        {
1999
          extern struct PCR_MM_ProcsRep * GC_old_allocator;
2000
 
2001
          if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
2002
                                                   GC_push_old_obj, 0)
2003
              != PCR_ERes_okay) {
2004
              ABORT("Old object enumeration failed");
2005
          }
2006
        }
2007
    /* Traverse all thread stacks. */
2008
        if (PCR_ERes_IsErr(
2009
                PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
2010
              || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
2011
              ABORT("Thread stack marking failed\n");
2012
        }
2013
}
2014
 
2015
# endif /* PCR */
2016
 
2017
# ifdef SRC_M3
2018
 
2019
# ifdef ALL_INTERIOR_POINTERS
2020
    --> misconfigured
2021
# endif
2022
 
2023
void GC_push_thread_structures GC_PROTO((void))
2024
{
2025
    /* Not our responsibibility. */
2026
}
2027
 
2028
extern void ThreadF__ProcessStacks();
2029
 
2030
void GC_push_thread_stack(start, stop)
2031
word start, stop;
2032
{
2033
   GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2034
}
2035
 
2036
/* Push routine with M3 specific calling convention. */
2037
GC_m3_push_root(dummy1, p, dummy2, dummy3)
2038
word *p;
2039
ptr_t dummy1, dummy2;
2040
int dummy3;
2041
{
2042
    word q = *p;
2043
 
2044
    GC_PUSH_ONE_STACK(q, p);
2045
}
2046
 
2047
/* M3 set equivalent to RTHeap.TracedRefTypes */
2048
typedef struct { int elts[1]; }  RefTypeSet;
2049
RefTypeSet GC_TracedRefTypes = {{0x1}};
2050
 
2051
void GC_default_push_other_roots GC_PROTO((void))
2052
{
2053
    /* Use the M3 provided routine for finding static roots.     */
2054
    /* This is a bit dubious, since it presumes no C roots.      */
2055
    /* We handle the collector roots explicitly in GC_push_roots */
2056
        RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2057
        if (GC_words_allocd > 0) {
2058
            ThreadF__ProcessStacks(GC_push_thread_stack);
2059
        }
2060
        /* Otherwise this isn't absolutely necessary, and we have       */
2061
        /* startup ordering problems.                                   */
2062
}
2063
 
2064
# endif /* SRC_M3 */
2065
 
2066
# if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2067
     defined(GC_WIN32_THREADS)
2068
 
2069
extern void GC_push_all_stacks();
2070
 
2071
void GC_default_push_other_roots GC_PROTO((void))
2072
{
2073
    GC_push_all_stacks();
2074
}
2075
 
2076
# endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2077
 
2078
void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2079
 
2080
#endif /* THREADS */
2081
 
2082
/*
2083
 * Routines for accessing dirty  bits on virtual pages.
2084
 * We plan to eventually implement four strategies for doing so:
2085
 * DEFAULT_VDB: A simple dummy implementation that treats every page
2086
 *              as possibly dirty.  This makes incremental collection
2087
 *              useless, but the implementation is still correct.
2088
 * PCR_VDB:     Use PPCRs virtual dirty bit facility.
2089
 * PROC_VDB:    Use the /proc facility for reading dirty bits.  Only
2090
 *              works under some SVR4 variants.  Even then, it may be
2091
 *              too slow to be entirely satisfactory.  Requires reading
2092
 *              dirty bits for entire address space.  Implementations tend
2093
 *              to assume that the client is a (slow) debugger.
2094
 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2095
 *              dirtied pages.  The implementation (and implementability)
2096
 *              is highly system dependent.  This usually fails when system
2097
 *              calls write to a protected page.  We prevent the read system
2098
 *              call from doing so.  It is the clients responsibility to
2099
 *              make sure that other system calls are similarly protected
2100
 *              or write only to the stack.
2101
 */
2102
GC_bool GC_dirty_maintained = FALSE;
2103
 
2104
# ifdef DEFAULT_VDB
2105
 
2106
/* All of the following assume the allocation lock is held, and */
2107
/* signals are disabled.                                        */
2108
 
2109
/* The client asserts that unallocated pages in the heap are never      */
2110
/* written.                                                             */
2111
 
2112
/* Initialize virtual dirty bit implementation.                 */
2113
void GC_dirty_init()
2114
{
2115
#   ifdef PRINTSTATS
2116
      GC_printf0("Initializing DEFAULT_VDB...\n");
2117
#   endif
2118
    GC_dirty_maintained = TRUE;
2119
}
2120
 
2121
/* Retrieve system dirty bits for heap to a local buffer.       */
2122
/* Restore the systems notion of which pages are dirty.         */
2123
void GC_read_dirty()
2124
{}
2125
 
2126
/* Is the HBLKSIZE sized page at h marked dirty in the local buffer?    */
2127
/* If the actual page size is different, this returns TRUE if any       */
2128
/* of the pages overlapping h are dirty.  This routine may err on the   */
2129
/* side of labelling pages as dirty (and this implementation does).     */
2130
/*ARGSUSED*/
2131
GC_bool GC_page_was_dirty(h)
2132
struct hblk *h;
2133
{
2134
    return(TRUE);
2135
}
2136
 
2137
/*
2138
 * The following two routines are typically less crucial.  They matter
2139
 * most with large dynamic libraries, or if we can't accurately identify
2140
 * stacks, e.g. under Solaris 2.X.  Otherwise the following default
2141
 * versions are adequate.
2142
 */
2143
 
2144
/* Could any valid GC heap pointer ever have been written to this page? */
2145
/*ARGSUSED*/
2146
GC_bool GC_page_was_ever_dirty(h)
2147
struct hblk *h;
2148
{
2149
    return(TRUE);
2150
}
2151
 
2152
/* Reset the n pages starting at h to "was never dirty" status. */
2153
void GC_is_fresh(h, n)
2154
struct hblk *h;
2155
word n;
2156
{
2157
}
2158
 
2159
/* A call that:                                         */
2160
/* I) hints that [h, h+nblocks) is about to be written. */
2161
/* II) guarantees that protection is removed.           */
2162
/* (I) may speed up some dirty bit implementations.     */
2163
/* (II) may be essential if we need to ensure that      */
2164
/* pointer-free system call buffers in the heap are     */
2165
/* not protected.                                       */
2166
/*ARGSUSED*/
2167
void GC_remove_protection(h, nblocks, is_ptrfree)
2168
struct hblk *h;
2169
word nblocks;
2170
GC_bool is_ptrfree;
2171
{
2172
}
2173
 
2174
# endif /* DEFAULT_VDB */
2175
 
2176
 
2177
# ifdef MPROTECT_VDB
2178
 
2179
/*
2180
 * See DEFAULT_VDB for interface descriptions.
2181
 */
2182
 
2183
/*
2184
 * This implementation maintains dirty bits itself by catching write
2185
 * faults and keeping track of them.  We assume nobody else catches
2186
 * SIGBUS or SIGSEGV.  We assume no write faults occur in system calls.
2187
 * This means that clients must ensure that system calls don't write
2188
 * to the write-protected heap.  Probably the best way to do this is to
2189
 * ensure that system calls write at most to POINTERFREE objects in the
2190
 * heap, and do even that only if we are on a platform on which those
2191
 * are not protected.  Another alternative is to wrap system calls
2192
 * (see example for read below), but the current implementation holds
2193
 * a lock across blocking calls, making it problematic for multithreaded
2194
 * applications.
2195
 * We assume the page size is a multiple of HBLKSIZE.
2196
 * We prefer them to be the same.  We avoid protecting POINTERFREE
2197
 * objects only if they are the same.
2198
 */
2199
 
2200
# if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2201
 
2202
#   include <sys/mman.h>
2203
#   include <signal.h>
2204
#   include <sys/syscall.h>
2205
 
2206
#   define PROTECT(addr, len) \
2207
          if (mprotect((caddr_t)(addr), (size_t)(len), \
2208
                       PROT_READ | OPT_PROT_EXEC) < 0) { \
2209
            ABORT("mprotect failed"); \
2210
          }
2211
#   define UNPROTECT(addr, len) \
2212
          if (mprotect((caddr_t)(addr), (size_t)(len), \
2213
                       PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2214
            ABORT("un-mprotect failed"); \
2215
          }
2216
 
2217
# else
2218
 
2219
# ifdef DARWIN
2220
    /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2221
       decrease the likelihood of some of the problems described below. */
2222
    #include <mach/vm_map.h>
2223
    static mach_port_t GC_task_self;
2224
    #define PROTECT(addr,len) \
2225
        if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2226
                FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2227
            ABORT("vm_portect failed"); \
2228
        }
2229
    #define UNPROTECT(addr,len) \
2230
        if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2231
                FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2232
            ABORT("vm_portect failed"); \
2233
        }
2234
# else
2235
 
2236
#   ifndef MSWINCE
2237
#     include <signal.h>
2238
#   endif
2239
 
2240
    static DWORD protect_junk;
2241
#   define PROTECT(addr, len) \
2242
          if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2243
                              &protect_junk)) { \
2244
            DWORD last_error = GetLastError(); \
2245
            GC_printf1("Last error code: %lx\n", last_error); \
2246
            ABORT("VirtualProtect failed"); \
2247
          }
2248
#   define UNPROTECT(addr, len) \
2249
          if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2250
                              &protect_junk)) { \
2251
            ABORT("un-VirtualProtect failed"); \
2252
          }
2253
# endif /* !DARWIN */
2254
# endif /* MSWIN32 || MSWINCE || DARWIN */
2255
 
2256
#if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2257
    typedef void (* SIG_PF)();
2258
#endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2259
 
2260
#if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2261
    || defined(HURD)
2262
# ifdef __STDC__
2263
    typedef void (* SIG_PF)(int);
2264
# else
2265
    typedef void (* SIG_PF)();
2266
# endif
2267
#endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2268
 
2269
#if defined(MSWIN32)
2270
    typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2271
#   undef SIG_DFL
2272
#   define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2273
#endif
2274
#if defined(MSWINCE)
2275
    typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2276
#   undef SIG_DFL
2277
#   define SIG_DFL (SIG_PF) (-1)
2278
#endif
2279
 
2280
#if defined(IRIX5) || defined(OSF1) || defined(HURD)
2281
    typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2282
#endif /* IRIX5 || OSF1 || HURD */
2283
 
2284
#if defined(SUNOS5SIGS)
2285
# if defined(HPUX) || defined(FREEBSD)
2286
#   define SIGINFO_T siginfo_t
2287
# else
2288
#   define SIGINFO_T struct siginfo
2289
# endif
2290
# ifdef __STDC__
2291
    typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2292
# else
2293
    typedef void (* REAL_SIG_PF)();
2294
# endif
2295
#endif /* SUNOS5SIGS */
2296
 
2297
#if defined(LINUX)
2298
#   if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2299
      typedef struct sigcontext s_c;
2300
#   else  /* glibc < 2.2 */
2301
#     include <linux/version.h>
2302
#     if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2303
        typedef struct sigcontext s_c;
2304
#     else
2305
        typedef struct sigcontext_struct s_c;
2306
#     endif
2307
#   endif  /* glibc < 2.2 */
2308
#   if defined(ALPHA) || defined(M68K)
2309
      typedef void (* REAL_SIG_PF)(int, int, s_c *);
2310
#   else
2311
#     if defined(IA64) || defined(HP_PA) || defined(X86_64)
2312
        typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2313
        /* FIXME:                                                 */
2314
        /* According to SUSV3, the last argument should have type */
2315
        /* void * or ucontext_t *                                 */
2316
#     else
2317
        typedef void (* REAL_SIG_PF)(int, s_c);
2318
#     endif
2319
#   endif
2320
#   ifdef ALPHA
2321
    /* Retrieve fault address from sigcontext structure by decoding     */
2322
    /* instruction.                                                     */
2323
    char * get_fault_addr(s_c *sc) {
2324
        unsigned instr;
2325
        word faultaddr;
2326
 
2327
        instr = *((unsigned *)(sc->sc_pc));
2328
        faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2329
        faultaddr += (word) (((int)instr << 16) >> 16);
2330
        return (char *)faultaddr;
2331
    }
2332
#   endif /* !ALPHA */
2333
# endif /* LINUX */
2334
 
2335
#ifndef DARWIN
2336
SIG_PF GC_old_bus_handler;
2337
SIG_PF GC_old_segv_handler;     /* Also old MSWIN32 ACCESS_VIOLATION filter */
2338
#endif /* !DARWIN */
2339
 
2340
#if defined(THREADS)
2341
/* We need to lock around the bitmap update in the write fault handler  */
2342
/* in order to avoid the risk of losing a bit.  We do this with a       */
2343
/* test-and-set spin lock if we know how to do that.  Otherwise we      */
2344
/* check whether we are already in the handler and use the dumb but     */
2345
/* safe fallback algorithm of setting all bits in the word.             */
2346
/* Contention should be very rare, so we do the minimum to handle it    */
2347
/* correctly.                                                           */
2348
#ifdef GC_TEST_AND_SET_DEFINED
2349
  static VOLATILE unsigned int fault_handler_lock = 0;
2350
  void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2351
    while (GC_test_and_set(&fault_handler_lock)) {}
2352
    /* Could also revert to set_pht_entry_from_index_safe if initial    */
2353
    /* GC_test_and_set fails.                                           */
2354
    set_pht_entry_from_index(db, index);
2355
    GC_clear(&fault_handler_lock);
2356
  }
2357
#else /* !GC_TEST_AND_SET_DEFINED */
2358
  /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong,  */
2359
  /* just before we notice the conflict and correct it. We may end up   */
2360
  /* looking at it while it's wrong.  But this requires contention      */
2361
  /* exactly when a GC is triggered, which seems far less likely to     */
2362
  /* fail than the old code, which had no reported failures.  Thus we   */
2363
  /* leave it this way while we think of something better, or support   */
2364
  /* GC_test_and_set on the remaining platforms.                        */
2365
  static VOLATILE word currently_updating = 0;
2366
  void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2367
    unsigned int update_dummy;
2368
    currently_updating = (word)(&update_dummy);
2369
    set_pht_entry_from_index(db, index);
2370
    /* If we get contention in the 10 or so instruction window here,    */
2371
    /* and we get stopped by a GC between the two updates, we lose!     */
2372
    if (currently_updating != (word)(&update_dummy)) {
2373
        set_pht_entry_from_index_safe(db, index);
2374
        /* We claim that if two threads concurrently try to update the  */
2375
        /* dirty bit vector, the first one to execute UPDATE_START      */
2376
        /* will see it changed when UPDATE_END is executed.  (Note that */
2377
        /* &update_dummy must differ in two distinct threads.)  It      */
2378
        /* will then execute set_pht_entry_from_index_safe, thus        */
2379
        /* returning us to a safe state, though not soon enough.        */
2380
    }
2381
  }
2382
#endif /* !GC_TEST_AND_SET_DEFINED */
2383
#else /* !THREADS */
2384
# define async_set_pht_entry_from_index(db, index) \
2385
        set_pht_entry_from_index(db, index)
2386
#endif /* !THREADS */
2387
 
2388
/*ARGSUSED*/
2389
#if !defined(DARWIN)
2390
# if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2391
    void GC_write_fault_handler(sig, code, scp, addr)
2392
    int sig, code;
2393
    struct sigcontext *scp;
2394
    char * addr;
2395
#   ifdef SUNOS4
2396
#     define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2397
#     define CODE_OK (FC_CODE(code) == FC_PROT \
2398
                    || (FC_CODE(code) == FC_OBJERR \
2399
                       && FC_ERRNO(code) == FC_PROT))
2400
#   endif
2401
#   ifdef FREEBSD
2402
#     define SIG_OK (sig == SIGBUS)
2403
#     define CODE_OK TRUE
2404
#   endif
2405
# endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2406
 
2407
# if defined(IRIX5) || defined(OSF1) || defined(HURD)
2408
#   include <errno.h>
2409
    void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2410
#   ifdef OSF1
2411
#     define SIG_OK (sig == SIGSEGV)
2412
#     define CODE_OK (code == 2 /* experimentally determined */)
2413
#   endif
2414
#   ifdef IRIX5
2415
#     define SIG_OK (sig == SIGSEGV)
2416
#     define CODE_OK (code == EACCES)
2417
#   endif
2418
#   ifdef HURD
2419
#     define SIG_OK (sig == SIGBUS || sig == SIGSEGV)   
2420
#     define CODE_OK  TRUE
2421
#   endif
2422
# endif /* IRIX5 || OSF1 || HURD */
2423
 
2424
# if defined(LINUX)
2425
#   if defined(ALPHA) || defined(M68K)
2426
      void GC_write_fault_handler(int sig, int code, s_c * sc)
2427
#   else
2428
#     if defined(IA64) || defined(HP_PA) || defined(X86_64)
2429
        void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2430
#     else
2431
#       if defined(ARM32)
2432
          void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2433
#       else
2434
          void GC_write_fault_handler(int sig, s_c sc)
2435
#       endif
2436
#     endif
2437
#   endif
2438
#   define SIG_OK (sig == SIGSEGV)
2439
#   define CODE_OK TRUE
2440
        /* Empirically c.trapno == 14, on IA32, but is that useful?     */
2441
        /* Should probably consider alignment issues on other           */
2442
        /* architectures.                                               */
2443
# endif /* LINUX */
2444
 
2445
# if defined(SUNOS5SIGS)
2446
#  ifdef __STDC__
2447
    void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2448
#  else
2449
    void GC_write_fault_handler(sig, scp, context)
2450
    int sig;
2451
    SIGINFO_T *scp;
2452
    void * context;
2453
#  endif
2454
#   ifdef HPUX
2455
#     define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2456
#     define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2457
                     || (scp -> si_code == BUS_ADRERR) \
2458
                     || (scp -> si_code == BUS_UNKNOWN) \
2459
                     || (scp -> si_code == SEGV_UNKNOWN) \
2460
                     || (scp -> si_code == BUS_OBJERR)
2461
#   else
2462
#     ifdef FREEBSD
2463
#       define SIG_OK (sig == SIGBUS)
2464
#       define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2465
#     else
2466
#       define SIG_OK (sig == SIGSEGV)
2467
#       define CODE_OK (scp -> si_code == SEGV_ACCERR)
2468
#     endif
2469
#   endif    
2470
# endif /* SUNOS5SIGS */
2471
 
2472
# if defined(MSWIN32) || defined(MSWINCE)
2473
    LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2474
#   define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2475
                        STATUS_ACCESS_VIOLATION)
2476
#   define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2477
                        /* Write fault */
2478
# endif /* MSWIN32 || MSWINCE */
2479
{
2480
    register unsigned i;
2481
#   if defined(HURD) 
2482
        char *addr = (char *) code;
2483
#   endif
2484
#   ifdef IRIX5
2485
        char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2486
#   endif
2487
#   if defined(OSF1) && defined(ALPHA)
2488
        char * addr = (char *) (scp -> sc_traparg_a0);
2489
#   endif
2490
#   ifdef SUNOS5SIGS
2491
        char * addr = (char *) (scp -> si_addr);
2492
#   endif
2493
#   ifdef LINUX
2494
#     if defined(I386)
2495
        char * addr = (char *) (sc.cr2);
2496
#     else
2497
#       if defined(M68K)
2498
          char * addr = NULL;
2499
 
2500
          struct sigcontext *scp = (struct sigcontext *)(sc);
2501
 
2502
          int format = (scp->sc_formatvec >> 12) & 0xf;
2503
          unsigned long *framedata = (unsigned long *)(scp + 1);
2504
          unsigned long ea;
2505
 
2506
          if (format == 0xa || format == 0xb) {
2507
                /* 68020/030 */
2508
                ea = framedata[2];
2509
          } else if (format == 7) {
2510
                /* 68040 */
2511
                ea = framedata[3];
2512
                if (framedata[1] & 0x08000000) {
2513
                        /* correct addr on misaligned access */
2514
                        ea = (ea+4095)&(~4095);
2515
                }
2516
          } else if (format == 4) {
2517
                /* 68060 */
2518
                ea = framedata[0];
2519
                if (framedata[1] & 0x08000000) {
2520
                        /* correct addr on misaligned access */
2521
                        ea = (ea+4095)&(~4095);
2522
                }
2523
          }
2524
          addr = (char *)ea;
2525
#       else
2526
#         ifdef ALPHA
2527
            char * addr = get_fault_addr(sc);
2528
#         else
2529
#           if defined(IA64) || defined(HP_PA) || defined(X86_64)
2530
              char * addr = si -> si_addr;
2531
              /* I believe this is claimed to work on all platforms for */
2532
              /* Linux 2.3.47 and later.  Hopefully we don't have to    */
2533
              /* worry about earlier kernels on IA64.                   */
2534
#           else
2535
#             if defined(POWERPC)
2536
                char * addr = (char *) (sc.regs->dar);
2537
#             else
2538
#               if defined(ARM32)
2539
                  char * addr = (char *)sc.fault_address;
2540
#               else
2541
#                 if defined(CRIS)
2542
                    char * addr = (char *)sc.regs.csraddr;
2543
#                 else
2544
                    --> architecture not supported
2545
#                 endif
2546
#               endif
2547
#             endif
2548
#           endif
2549
#         endif
2550
#       endif
2551
#     endif
2552
#   endif
2553
#   if defined(MSWIN32) || defined(MSWINCE)
2554
        char * addr = (char *) (exc_info -> ExceptionRecord
2555
                                -> ExceptionInformation[1]);
2556
#       define sig SIGSEGV
2557
#   endif
2558
 
2559
    if (SIG_OK && CODE_OK) {
2560
        register struct hblk * h =
2561
                        (struct hblk *)((word)addr & ~(GC_page_size-1));
2562
        GC_bool in_allocd_block;
2563
 
2564
#       ifdef SUNOS5SIGS
2565
            /* Address is only within the correct physical page.        */
2566
            in_allocd_block = FALSE;
2567
            for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2568
              if (HDR(h+i) != 0) {
2569
                in_allocd_block = TRUE;
2570
              }
2571
            }
2572
#       else
2573
            in_allocd_block = (HDR(addr) != 0);
2574
#       endif
2575
        if (!in_allocd_block) {
2576
            /* FIXME - We should make sure that we invoke the   */
2577
            /* old handler with the appropriate calling         */
2578
            /* sequence, which often depends on SA_SIGINFO.     */
2579
 
2580
            /* Heap blocks now begin and end on page boundaries */
2581
            SIG_PF old_handler;
2582
 
2583
            if (sig == SIGSEGV) {
2584
                old_handler = GC_old_segv_handler;
2585
            } else {
2586
                old_handler = GC_old_bus_handler;
2587
            }
2588
            if (old_handler == SIG_DFL) {
2589
#               if !defined(MSWIN32) && !defined(MSWINCE)
2590
                    GC_err_printf1("Segfault at 0x%lx\n", addr);
2591
                    ABORT("Unexpected bus error or segmentation fault");
2592
#               else
2593
                    return(EXCEPTION_CONTINUE_SEARCH);
2594
#               endif
2595
            } else {
2596
#               if defined (SUNOS4) \
2597
                    || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2598
                    (*old_handler) (sig, code, scp, addr);
2599
                    return;
2600
#               endif
2601
#               if defined (SUNOS5SIGS)
2602
                    /*
2603
                     * FIXME: For FreeBSD, this code should check if the
2604
                     * old signal handler used the traditional BSD style and
2605
                     * if so call it using that style.
2606
                     */
2607
                    (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2608
                    return;
2609
#               endif
2610
#               if defined (LINUX)
2611
#                   if defined(ALPHA) || defined(M68K)
2612
                        (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2613
#                   else 
2614
#                     if defined(IA64) || defined(HP_PA) || defined(X86_64)
2615
                        (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2616
#                     else
2617
                        (*(REAL_SIG_PF)old_handler) (sig, sc);
2618
#                     endif
2619
#                   endif
2620
                    return;
2621
#               endif
2622
#               if defined (IRIX5) || defined(OSF1) || defined(HURD)
2623
                    (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2624
                    return;
2625
#               endif
2626
#               ifdef MSWIN32
2627
                    return((*old_handler)(exc_info));
2628
#               endif
2629
            }
2630
        }
2631
        UNPROTECT(h, GC_page_size);
2632
        /* We need to make sure that no collection occurs between       */
2633
        /* the UNPROTECT and the setting of the dirty bit.  Otherwise   */
2634
        /* a write by a third thread might go unnoticed.  Reversing     */
2635
        /* the order is just as bad, since we would end up unprotecting */
2636
        /* a page in a GC cycle during which it's not marked.           */
2637
        /* Currently we do this by disabling the thread stopping        */
2638
        /* signals while this handler is running.  An alternative might */
2639
        /* be to record the fact that we're about to unprotect, or      */
2640
        /* have just unprotected a page in the GC's thread structure,   */
2641
        /* and then to have the thread stopping code set the dirty      */
2642
        /* flag, if necessary.                                          */
2643
        for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2644
            register int index = PHT_HASH(h+i);
2645
 
2646
            async_set_pht_entry_from_index(GC_dirty_pages, index);
2647
        }
2648
#       if defined(OSF1)
2649
            /* These reset the signal handler each time by default. */
2650
            signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2651
#       endif
2652
        /* The write may not take place before dirty bits are read.     */
2653
        /* But then we'll fault again ...                               */
2654
#       if defined(MSWIN32) || defined(MSWINCE)
2655
            return(EXCEPTION_CONTINUE_EXECUTION);
2656
#       else
2657
            return;
2658
#       endif
2659
    }
2660
#if defined(MSWIN32) || defined(MSWINCE)
2661
    return EXCEPTION_CONTINUE_SEARCH;
2662
#else
2663
    GC_err_printf1("Segfault at 0x%lx\n", addr);
2664
    ABORT("Unexpected bus error or segmentation fault");
2665
#endif
2666
}
2667
#endif /* !DARWIN */
2668
 
2669
/*
2670
 * We hold the allocation lock.  We expect block h to be written
2671
 * shortly.  Ensure that all pages containing any part of the n hblks
2672
 * starting at h are no longer protected.  If is_ptrfree is false,
2673
 * also ensure that they will subsequently appear to be dirty.
2674
 */
2675
void GC_remove_protection(h, nblocks, is_ptrfree)
2676
struct hblk *h;
2677
word nblocks;
2678
GC_bool is_ptrfree;
2679
{
2680
    struct hblk * h_trunc;  /* Truncated to page boundary */
2681
    struct hblk * h_end;    /* Page boundary following block end */
2682
    struct hblk * current;
2683
    GC_bool found_clean;
2684
 
2685
    if (!GC_dirty_maintained) return;
2686
    h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2687
    h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2688
                            & ~(GC_page_size-1));
2689
    found_clean = FALSE;
2690
    for (current = h_trunc; current < h_end; ++current) {
2691
        int index = PHT_HASH(current);
2692
 
2693
        if (!is_ptrfree || current < h || current >= h + nblocks) {
2694
            async_set_pht_entry_from_index(GC_dirty_pages, index);
2695
        }
2696
    }
2697
    UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2698
}
2699
 
2700
#if !defined(DARWIN)
2701
void GC_dirty_init()
2702
{
2703
#   if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2704
       defined(OSF1) || defined(HURD)
2705
      struct sigaction  act, oldact;
2706
      /* We should probably specify SA_SIGINFO for Linux, and handle    */
2707
      /* the different architectures more uniformly.                    */
2708
#     if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2709
         || defined(OSF1) || defined(HURD)
2710
        act.sa_flags    = SA_RESTART;
2711
        act.sa_handler  = (SIG_PF)GC_write_fault_handler;
2712
#     else
2713
        act.sa_flags    = SA_RESTART | SA_SIGINFO;
2714
        act.sa_sigaction = GC_write_fault_handler;
2715
#     endif
2716
      (void)sigemptyset(&act.sa_mask);
2717
#     ifdef SIG_SUSPEND
2718
        /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2719
        /* handler.  This effectively makes the handler atomic w.r.t.   */
2720
        /* stopping the world for GC.                                   */
2721
        (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2722
#     endif /* SIG_SUSPEND */
2723
#    endif
2724
#   ifdef PRINTSTATS
2725
        GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2726
#   endif
2727
    GC_dirty_maintained = TRUE;
2728
    if (GC_page_size % HBLKSIZE != 0) {
2729
        GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2730
        ABORT("Page size not multiple of HBLKSIZE");
2731
    }
2732
#   if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2733
      GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2734
      if (GC_old_bus_handler == SIG_IGN) {
2735
        GC_err_printf0("Previously ignored bus error!?");
2736
        GC_old_bus_handler = SIG_DFL;
2737
      }
2738
      if (GC_old_bus_handler != SIG_DFL) {
2739
#       ifdef PRINTSTATS
2740
          GC_err_printf0("Replaced other SIGBUS handler\n");
2741
#       endif
2742
      }
2743
#   endif
2744
#   if defined(SUNOS4)
2745
      GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2746
      if (GC_old_segv_handler == SIG_IGN) {
2747
        GC_err_printf0("Previously ignored segmentation violation!?");
2748
        GC_old_segv_handler = SIG_DFL;
2749
      }
2750
      if (GC_old_segv_handler != SIG_DFL) {
2751
#       ifdef PRINTSTATS
2752
          GC_err_printf0("Replaced other SIGSEGV handler\n");
2753
#       endif
2754
      }
2755
#   endif
2756
#   if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2757
       || defined(LINUX) || defined(OSF1) || defined(HURD)
2758
      /* SUNOS5SIGS includes HPUX */
2759
#     if defined(GC_IRIX_THREADS)
2760
        sigaction(SIGSEGV, 0, &oldact);
2761
        sigaction(SIGSEGV, &act, 0);
2762
#     else 
2763
        {
2764
          int res = sigaction(SIGSEGV, &act, &oldact);
2765
          if (res != 0) ABORT("Sigaction failed");
2766
        }
2767
#     endif
2768
#     if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2769
        /* This is Irix 5.x, not 6.x.  Irix 5.x does not have   */
2770
        /* sa_sigaction.                                        */
2771
        GC_old_segv_handler = oldact.sa_handler;
2772
#     else /* Irix 6.x or SUNOS5SIGS or LINUX */
2773
        if (oldact.sa_flags & SA_SIGINFO) {
2774
          GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2775
        } else {
2776
          GC_old_segv_handler = oldact.sa_handler;
2777
        }
2778
#     endif
2779
      if (GC_old_segv_handler == SIG_IGN) {
2780
             GC_err_printf0("Previously ignored segmentation violation!?");
2781
             GC_old_segv_handler = SIG_DFL;
2782
      }
2783
      if (GC_old_segv_handler != SIG_DFL) {
2784
#       ifdef PRINTSTATS
2785
          GC_err_printf0("Replaced other SIGSEGV handler\n");
2786
#       endif
2787
      }
2788
#   endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2789
#   if defined(HPUX) || defined(LINUX) || defined(HURD) \
2790
      || (defined(FREEBSD) && defined(SUNOS5SIGS))
2791
      sigaction(SIGBUS, &act, &oldact);
2792
      GC_old_bus_handler = oldact.sa_handler;
2793
      if (GC_old_bus_handler == SIG_IGN) {
2794
             GC_err_printf0("Previously ignored bus error!?");
2795
             GC_old_bus_handler = SIG_DFL;
2796
      }
2797
      if (GC_old_bus_handler != SIG_DFL) {
2798
#       ifdef PRINTSTATS
2799
          GC_err_printf0("Replaced other SIGBUS handler\n");
2800
#       endif
2801
      }
2802
#   endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2803
#   if defined(MSWIN32)
2804
      GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2805
      if (GC_old_segv_handler != NULL) {
2806
#       ifdef PRINTSTATS
2807
          GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2808
#       endif
2809
      } else {
2810
          GC_old_segv_handler = SIG_DFL;
2811
      }
2812
#   endif
2813
}
2814
#endif /* !DARWIN */
2815
 
2816
int GC_incremental_protection_needs()
2817
{
2818
    if (GC_page_size == HBLKSIZE) {
2819
        return GC_PROTECTS_POINTER_HEAP;
2820
    } else {
2821
        return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2822
    }
2823
}
2824
 
2825
#define HAVE_INCREMENTAL_PROTECTION_NEEDS
2826
 
2827
#define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2828
 
2829
#define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2830
void GC_protect_heap()
2831
{
2832
    ptr_t start;
2833
    word len;
2834
    struct hblk * current;
2835
    struct hblk * current_start;  /* Start of block to be protected. */
2836
    struct hblk * limit;
2837
    unsigned i;
2838
    GC_bool protect_all =
2839
          (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2840
    for (i = 0; i < GC_n_heap_sects; i++) {
2841
        start = GC_heap_sects[i].hs_start;
2842
        len = GC_heap_sects[i].hs_bytes;
2843
        if (protect_all) {
2844
          PROTECT(start, len);
2845
        } else {
2846
          GC_ASSERT(PAGE_ALIGNED(len))
2847
          GC_ASSERT(PAGE_ALIGNED(start))
2848
          current_start = current = (struct hblk *)start;
2849
          limit = (struct hblk *)(start + len);
2850
          while (current < limit) {
2851
            hdr * hhdr;
2852
            word nhblks;
2853
            GC_bool is_ptrfree;
2854
 
2855
            GC_ASSERT(PAGE_ALIGNED(current));
2856
            GET_HDR(current, hhdr);
2857
            if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2858
              /* This can happen only if we're at the beginning of a    */
2859
              /* heap segment, and a block spans heap segments.         */
2860
              /* We will handle that block as part of the preceding     */
2861
              /* segment.                                               */
2862
              GC_ASSERT(current_start == current);
2863
              current_start = ++current;
2864
              continue;
2865
            }
2866
            if (HBLK_IS_FREE(hhdr)) {
2867
              GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2868
              nhblks = divHBLKSZ(hhdr -> hb_sz);
2869
              is_ptrfree = TRUE;        /* dirty on alloc */
2870
            } else {
2871
              nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2872
              is_ptrfree = IS_PTRFREE(hhdr);
2873
            }
2874
            if (is_ptrfree) {
2875
              if (current_start < current) {
2876
                PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2877
              }
2878
              current_start = (current += nhblks);
2879
            } else {
2880
              current += nhblks;
2881
            }
2882
          }
2883
          if (current_start < current) {
2884
            PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2885
          }
2886
        }
2887
    }
2888
}
2889
 
2890
/* We assume that either the world is stopped or its OK to lose dirty   */
2891
/* bits while this is happenning (as in GC_enable_incremental).         */
2892
void GC_read_dirty()
2893
{
2894
    BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2895
          (sizeof GC_dirty_pages));
2896
    BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2897
    GC_protect_heap();
2898
}
2899
 
2900
GC_bool GC_page_was_dirty(h)
2901
struct hblk * h;
2902
{
2903
    register word index = PHT_HASH(h);
2904
 
2905
    return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2906
}
2907
 
2908
/*
2909
 * Acquiring the allocation lock here is dangerous, since this
2910
 * can be called from within GC_call_with_alloc_lock, and the cord
2911
 * package does so.  On systems that allow nested lock acquisition, this
2912
 * happens to work.
2913
 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2914
 */
2915
 
2916
static GC_bool syscall_acquired_lock = FALSE;   /* Protected by GC lock. */
2917
 
2918
void GC_begin_syscall()
2919
{
2920
    if (!I_HOLD_LOCK()) {
2921
        LOCK();
2922
        syscall_acquired_lock = TRUE;
2923
    }
2924
}
2925
 
2926
void GC_end_syscall()
2927
{
2928
    if (syscall_acquired_lock) {
2929
        syscall_acquired_lock = FALSE;
2930
        UNLOCK();
2931
    }
2932
}
2933
 
2934
void GC_unprotect_range(addr, len)
2935
ptr_t addr;
2936
word len;
2937
{
2938
    struct hblk * start_block;
2939
    struct hblk * end_block;
2940
    register struct hblk *h;
2941
    ptr_t obj_start;
2942
 
2943
    if (!GC_dirty_maintained) return;
2944
    obj_start = GC_base(addr);
2945
    if (obj_start == 0) return;
2946
    if (GC_base(addr + len - 1) != obj_start) {
2947
        ABORT("GC_unprotect_range(range bigger than object)");
2948
    }
2949
    start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2950
    end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2951
    end_block += GC_page_size/HBLKSIZE - 1;
2952
    for (h = start_block; h <= end_block; h++) {
2953
        register word index = PHT_HASH(h);
2954
 
2955
        async_set_pht_entry_from_index(GC_dirty_pages, index);
2956
    }
2957
    UNPROTECT(start_block,
2958
              ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2959
}
2960
 
2961
#if 0
2962
 
2963
/* We no longer wrap read by default, since that was causing too many   */
2964
/* problems.  It is preferred that the client instead avoids writing    */
2965
/* to the write-protected heap with a system call.                      */
2966
/* This still serves as sample code if you do want to wrap system calls.*/
2967
 
2968
#if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2969
/* Replacement for UNIX system call.                                      */
2970
/* Other calls that write to the heap should be handled similarly.        */
2971
/* Note that this doesn't work well for blocking reads:  It will hold     */
2972
/* the allocation lock for the entire duration of the call. Multithreaded */
2973
/* clients should really ensure that it won't block, either by setting    */
2974
/* the descriptor nonblocking, or by calling select or poll first, to     */
2975
/* make sure that input is available.                                     */
2976
/* Another, preferred alternative is to ensure that system calls never    */
2977
/* write to the protected heap (see above).                               */
2978
# if defined(__STDC__) && !defined(SUNOS4)
2979
#   include <unistd.h>
2980
#   include <sys/uio.h>
2981
    ssize_t read(int fd, void *buf, size_t nbyte)
2982
# else
2983
#   ifndef LINT
2984
      int read(fd, buf, nbyte)
2985
#   else
2986
      int GC_read(fd, buf, nbyte)
2987
#   endif
2988
    int fd;
2989
    char *buf;
2990
    int nbyte;
2991
# endif
2992
{
2993
    int result;
2994
 
2995
    GC_begin_syscall();
2996
    GC_unprotect_range(buf, (word)nbyte);
2997
#   if defined(IRIX5) || defined(GC_LINUX_THREADS)
2998
        /* Indirect system call may not always be easily available.     */
2999
        /* We could call _read, but that would interfere with the       */
3000
        /* libpthread interception of read.                             */
3001
        /* On Linux, we have to be careful with the linuxthreads        */
3002
        /* read interception.                                           */
3003
        {
3004
            struct iovec iov;
3005
 
3006
            iov.iov_base = buf;
3007
            iov.iov_len = nbyte;
3008
            result = readv(fd, &iov, 1);
3009
        }
3010
#   else
3011
#     if defined(HURD)  
3012
        result = __read(fd, buf, nbyte);
3013
#     else
3014
        /* The two zero args at the end of this list are because one
3015
           IA-64 syscall() implementation actually requires six args
3016
           to be passed, even though they aren't always used. */
3017
        result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
3018
#     endif /* !HURD */
3019
#   endif
3020
    GC_end_syscall();
3021
    return(result);
3022
}
3023
#endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3024
 
3025
#if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3026
    /* We use the GNU ld call wrapping facility.                        */
3027
    /* This requires that the linker be invoked with "--wrap read".     */
3028
    /* This can be done by passing -Wl,"--wrap read" to gcc.            */
3029
    /* I'm not sure that this actually wraps whatever version of read   */
3030
    /* is called by stdio.  That code also mentions __read.             */
3031
#   include <unistd.h>
3032
    ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3033
    {
3034
        int result;
3035
 
3036
        GC_begin_syscall();
3037
        GC_unprotect_range(buf, (word)nbyte);
3038
        result = __real_read(fd, buf, nbyte);
3039
        GC_end_syscall();
3040
        return(result);
3041
    }
3042
 
3043
    /* We should probably also do this for __read, or whatever stdio    */
3044
    /* actually calls.                                                  */
3045
#endif
3046
 
3047
#endif /* 0 */
3048
 
3049
/*ARGSUSED*/
3050
GC_bool GC_page_was_ever_dirty(h)
3051
struct hblk *h;
3052
{
3053
    return(TRUE);
3054
}
3055
 
3056
/* Reset the n pages starting at h to "was never dirty" status. */
3057
/*ARGSUSED*/
3058
void GC_is_fresh(h, n)
3059
struct hblk *h;
3060
word n;
3061
{
3062
}
3063
 
3064
# endif /* MPROTECT_VDB */
3065
 
3066
# ifdef PROC_VDB
3067
 
3068
/*
3069
 * See DEFAULT_VDB for interface descriptions.
3070
 */
3071
 
3072
/*
3073
 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3074
 * from which we can read page modified bits.  This facility is far from
3075
 * optimal (e.g. we would like to get the info for only some of the
3076
 * address space), but it avoids intercepting system calls.
3077
 */
3078
 
3079
#include <errno.h>
3080
#include <sys/types.h>
3081
#include <sys/signal.h>
3082
#include <sys/fault.h>
3083
#include <sys/syscall.h>
3084
#include <sys/procfs.h>
3085
#include <sys/stat.h>
3086
 
3087
#define INITIAL_BUF_SZ 16384
3088
word GC_proc_buf_size = INITIAL_BUF_SZ;
3089
char *GC_proc_buf;
3090
 
3091
#ifdef GC_SOLARIS_THREADS
3092
/* We don't have exact sp values for threads.  So we count on   */
3093
/* occasionally declaring stack pages to be fresh.  Thus we     */
3094
/* need a real implementation of GC_is_fresh.  We can't clear   */
3095
/* entries in GC_written_pages, since that would declare all    */
3096
/* pages with the given hash address to be fresh.               */
3097
#   define MAX_FRESH_PAGES 8*1024       /* Must be power of 2 */
3098
    struct hblk ** GC_fresh_pages;      /* A direct mapped cache.       */
3099
                                        /* Collisions are dropped.      */
3100
 
3101
#   define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3102
#   define ADD_FRESH_PAGE(h) \
3103
        GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3104
#   define PAGE_IS_FRESH(h) \
3105
        (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3106
#endif
3107
 
3108
/* Add all pages in pht2 to pht1 */
3109
void GC_or_pages(pht1, pht2)
3110
page_hash_table pht1, pht2;
3111
{
3112
    register int i;
3113
 
3114
    for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3115
}
3116
 
3117
int GC_proc_fd;
3118
 
3119
void GC_dirty_init()
3120
{
3121
    int fd;
3122
    char buf[30];
3123
 
3124
    GC_dirty_maintained = TRUE;
3125
    if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3126
        register int i;
3127
 
3128
        for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3129
#       ifdef PRINTSTATS
3130
            GC_printf1("Allocated words:%lu:all pages may have been written\n",
3131
                       (unsigned long)
3132
                                (GC_words_allocd + GC_words_allocd_before_gc));
3133
#       endif       
3134
    }
3135
    sprintf(buf, "/proc/%d", getpid());
3136
    fd = open(buf, O_RDONLY);
3137
    if (fd < 0) {
3138
        ABORT("/proc open failed");
3139
    }
3140
    GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3141
    close(fd);
3142
    syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3143
    if (GC_proc_fd < 0) {
3144
        ABORT("/proc ioctl failed");
3145
    }
3146
    GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3147
#   ifdef GC_SOLARIS_THREADS
3148
        GC_fresh_pages = (struct hblk **)
3149
          GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3150
        if (GC_fresh_pages == 0) {
3151
            GC_err_printf0("No space for fresh pages\n");
3152
            EXIT();
3153
        }
3154
        BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3155
#   endif
3156
}
3157
 
3158
/* Ignore write hints. They don't help us here. */
3159
/*ARGSUSED*/
3160
void GC_remove_protection(h, nblocks, is_ptrfree)
3161
struct hblk *h;
3162
word nblocks;
3163
GC_bool is_ptrfree;
3164
{
3165
}
3166
 
3167
#ifdef GC_SOLARIS_THREADS
3168
#   define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3169
#else
3170
#   define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3171
#endif
3172
 
3173
void GC_read_dirty()
3174
{
3175
    unsigned long ps, np;
3176
    int nmaps;
3177
    ptr_t vaddr;
3178
    struct prasmap * map;
3179
    char * bufp;
3180
    ptr_t current_addr, limit;
3181
    int i;
3182
int dummy;
3183
 
3184
    BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3185
 
3186
    bufp = GC_proc_buf;
3187
    if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3188
#       ifdef PRINTSTATS
3189
            GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3190
                       GC_proc_buf_size);
3191
#       endif       
3192
        {
3193
            /* Retry with larger buffer. */
3194
            word new_size = 2 * GC_proc_buf_size;
3195
            char * new_buf = GC_scratch_alloc(new_size);
3196
 
3197
            if (new_buf != 0) {
3198
                GC_proc_buf = bufp = new_buf;
3199
                GC_proc_buf_size = new_size;
3200
            }
3201
            if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3202
                WARN("Insufficient space for /proc read\n", 0);
3203
                /* Punt:        */
3204
                memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3205
                memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3206
#               ifdef GC_SOLARIS_THREADS
3207
                    BZERO(GC_fresh_pages,
3208
                          MAX_FRESH_PAGES * sizeof (struct hblk *));
3209
#               endif
3210
                return;
3211
            }
3212
        }
3213
    }
3214
    /* Copy dirty bits into GC_grungy_pages */
3215
        nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3216
        /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3217
                     nmaps, PG_REFERENCED, PG_MODIFIED); */
3218
        bufp = bufp + sizeof(struct prpageheader);
3219
        for (i = 0; i < nmaps; i++) {
3220
            map = (struct prasmap *)bufp;
3221
            vaddr = (ptr_t)(map -> pr_vaddr);
3222
            ps = map -> pr_pagesize;
3223
            np = map -> pr_npage;
3224
            /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3225
            limit = vaddr + ps * np;
3226
            bufp += sizeof (struct prasmap);
3227
            for (current_addr = vaddr;
3228
                 current_addr < limit; current_addr += ps){
3229
                if ((*bufp++) & PG_MODIFIED) {
3230
                    register struct hblk * h = (struct hblk *) current_addr;
3231
 
3232
                    while ((ptr_t)h < current_addr + ps) {
3233
                        register word index = PHT_HASH(h);
3234
 
3235
                        set_pht_entry_from_index(GC_grungy_pages, index);
3236
#                       ifdef GC_SOLARIS_THREADS
3237
                          {
3238
                            register int slot = FRESH_PAGE_SLOT(h);
3239
 
3240
                            if (GC_fresh_pages[slot] == h) {
3241
                                GC_fresh_pages[slot] = 0;
3242
                            }
3243
                          }
3244
#                       endif
3245
                        h++;
3246
                    }
3247
                }
3248
            }
3249
            bufp += sizeof(long) - 1;
3250
            bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3251
        }
3252
    /* Update GC_written_pages. */
3253
        GC_or_pages(GC_written_pages, GC_grungy_pages);
3254
#   ifdef GC_SOLARIS_THREADS
3255
      /* Make sure that old stacks are considered completely clean      */
3256
      /* unless written again.                                          */
3257
        GC_old_stacks_are_fresh();
3258
#   endif
3259
}
3260
 
3261
#undef READ
3262
 
3263
GC_bool GC_page_was_dirty(h)
3264
struct hblk *h;
3265
{
3266
    register word index = PHT_HASH(h);
3267
    register GC_bool result;
3268
 
3269
    result = get_pht_entry_from_index(GC_grungy_pages, index);
3270
#   ifdef GC_SOLARIS_THREADS
3271
        if (result && PAGE_IS_FRESH(h)) result = FALSE;
3272
        /* This happens only if page was declared fresh since   */
3273
        /* the read_dirty call, e.g. because it's in an unused  */
3274
        /* thread stack.  It's OK to treat it as clean, in      */
3275
        /* that case.  And it's consistent with                 */
3276
        /* GC_page_was_ever_dirty.                              */
3277
#   endif
3278
    return(result);
3279
}
3280
 
3281
GC_bool GC_page_was_ever_dirty(h)
3282
struct hblk *h;
3283
{
3284
    register word index = PHT_HASH(h);
3285
    register GC_bool result;
3286
 
3287
    result = get_pht_entry_from_index(GC_written_pages, index);
3288
#   ifdef GC_SOLARIS_THREADS
3289
        if (result && PAGE_IS_FRESH(h)) result = FALSE;
3290
#   endif
3291
    return(result);
3292
}
3293
 
3294
/* Caller holds allocation lock.        */
3295
void GC_is_fresh(h, n)
3296
struct hblk *h;
3297
word n;
3298
{
3299
 
3300
    register word index;
3301
 
3302
#   ifdef GC_SOLARIS_THREADS
3303
      register word i;
3304
 
3305
      if (GC_fresh_pages != 0) {
3306
        for (i = 0; i < n; i++) {
3307
          ADD_FRESH_PAGE(h + i);
3308
        }
3309
      }
3310
#   endif
3311
}
3312
 
3313
# endif /* PROC_VDB */
3314
 
3315
 
3316
# ifdef PCR_VDB
3317
 
3318
# include "vd/PCR_VD.h"
3319
 
3320
# define NPAGES (32*1024)       /* 128 MB */
3321
 
3322
PCR_VD_DB  GC_grungy_bits[NPAGES];
3323
 
3324
ptr_t GC_vd_base;       /* Address corresponding to GC_grungy_bits[0]   */
3325
                        /* HBLKSIZE aligned.                            */
3326
 
3327
void GC_dirty_init()
3328
{
3329
    GC_dirty_maintained = TRUE;
3330
    /* For the time being, we assume the heap generally grows up */
3331
    GC_vd_base = GC_heap_sects[0].hs_start;
3332
    if (GC_vd_base == 0) {
3333
        ABORT("Bad initial heap segment");
3334
    }
3335
    if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3336
        != PCR_ERes_okay) {
3337
        ABORT("dirty bit initialization failed");
3338
    }
3339
}
3340
 
3341
void GC_read_dirty()
3342
{
3343
    /* lazily enable dirty bits on newly added heap sects */
3344
    {
3345
        static int onhs = 0;
3346
        int nhs = GC_n_heap_sects;
3347
        for( ; onhs < nhs; onhs++ ) {
3348
            PCR_VD_WriteProtectEnable(
3349
                    GC_heap_sects[onhs].hs_start,
3350
                    GC_heap_sects[onhs].hs_bytes );
3351
        }
3352
    }
3353
 
3354
 
3355
    if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3356
        != PCR_ERes_okay) {
3357
        ABORT("dirty bit read failed");
3358
    }
3359
}
3360
 
3361
GC_bool GC_page_was_dirty(h)
3362
struct hblk *h;
3363
{
3364
    if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3365
        return(TRUE);
3366
    }
3367
    return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3368
}
3369
 
3370
/*ARGSUSED*/
3371
void GC_remove_protection(h, nblocks, is_ptrfree)
3372
struct hblk *h;
3373
word nblocks;
3374
GC_bool is_ptrfree;
3375
{
3376
    PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3377
    PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3378
}
3379
 
3380
# endif /* PCR_VDB */
3381
 
3382
#if defined(MPROTECT_VDB) && defined(DARWIN)
3383
/* The following sources were used as a *reference* for this exception handling
3384
   code:
3385
      1. Apple's mach/xnu documentation
3386
      2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3387
         omnigroup's macosx-dev list.
3388
         www.omnigroup.com/mailman/archive/macosx-dev/2000-June/014178.html
3389
      3. macosx-nat.c from Apple's GDB source code.
3390
*/
3391
 
3392
/* The bug that caused all this trouble should now be fixed. This should
3393
   eventually be removed if all goes well. */
3394
/* define BROKEN_EXCEPTION_HANDLING */
3395
 
3396
#include <mach/mach.h>
3397
#include <mach/mach_error.h>
3398
#include <mach/thread_status.h>
3399
#include <mach/exception.h>
3400
#include <mach/task.h>
3401
#include <pthread.h>
3402
 
3403
/* These are not defined in any header, although they are documented */
3404
extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3405
extern kern_return_t exception_raise(
3406
    mach_port_t,mach_port_t,mach_port_t,
3407
    exception_type_t,exception_data_t,mach_msg_type_number_t);
3408
extern kern_return_t exception_raise_state(
3409
    mach_port_t,mach_port_t,mach_port_t,
3410
    exception_type_t,exception_data_t,mach_msg_type_number_t,
3411
    thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3412
    thread_state_t,mach_msg_type_number_t*);
3413
extern kern_return_t exception_raise_state_identity(
3414
    mach_port_t,mach_port_t,mach_port_t,
3415
    exception_type_t,exception_data_t,mach_msg_type_number_t,
3416
    thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3417
    thread_state_t,mach_msg_type_number_t*);
3418
 
3419
 
3420
#define MAX_EXCEPTION_PORTS 16
3421
 
3422
static struct {
3423
    mach_msg_type_number_t count;
3424
    exception_mask_t      masks[MAX_EXCEPTION_PORTS];
3425
    exception_handler_t   ports[MAX_EXCEPTION_PORTS];
3426
    exception_behavior_t  behaviors[MAX_EXCEPTION_PORTS];
3427
    thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3428
} GC_old_exc_ports;
3429
 
3430
static struct {
3431
    mach_port_t exception;
3432
#if defined(THREADS)
3433
    mach_port_t reply;
3434
#endif
3435
} GC_ports;
3436
 
3437
typedef struct {
3438
    mach_msg_header_t head;
3439
} GC_msg_t;
3440
 
3441
typedef enum {
3442
    GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3443
} GC_mprotect_state_t;
3444
 
3445
/* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3446
   but it isn't  documented. Use the source and see if they
3447
   should be ok. */
3448
#define ID_STOP 1
3449
#define ID_RESUME 2
3450
 
3451
/* These values are only used on the reply port */
3452
#define ID_ACK 3
3453
 
3454
#if defined(THREADS)
3455
 
3456
GC_mprotect_state_t GC_mprotect_state;
3457
 
3458
/* The following should ONLY be called when the world is stopped  */
3459
static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3460
    struct {
3461
        GC_msg_t msg;
3462
        mach_msg_trailer_t trailer;
3463
    } buf;
3464
    mach_msg_return_t r;
3465
    /* remote, local */
3466
    buf.msg.head.msgh_bits =
3467
        MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3468
    buf.msg.head.msgh_size = sizeof(buf.msg);
3469
    buf.msg.head.msgh_remote_port = GC_ports.exception;
3470
    buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3471
    buf.msg.head.msgh_id = id;
3472
 
3473
    r = mach_msg(
3474
        &buf.msg.head,
3475
        MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3476
        sizeof(buf.msg),
3477
        sizeof(buf),
3478
        GC_ports.reply,
3479
        MACH_MSG_TIMEOUT_NONE,
3480
        MACH_PORT_NULL);
3481
    if(r != MACH_MSG_SUCCESS)
3482
        ABORT("mach_msg failed in GC_mprotect_thread_notify");
3483
    if(buf.msg.head.msgh_id != ID_ACK)
3484
        ABORT("invalid ack in GC_mprotect_thread_notify");
3485
}
3486
 
3487
/* Should only be called by the mprotect thread */
3488
static void GC_mprotect_thread_reply() {
3489
    GC_msg_t msg;
3490
    mach_msg_return_t r;
3491
    /* remote, local */
3492
    msg.head.msgh_bits =
3493
        MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3494
    msg.head.msgh_size = sizeof(msg);
3495
    msg.head.msgh_remote_port = GC_ports.reply;
3496
    msg.head.msgh_local_port = MACH_PORT_NULL;
3497
    msg.head.msgh_id = ID_ACK;
3498
 
3499
    r = mach_msg(
3500
        &msg.head,
3501
        MACH_SEND_MSG,
3502
        sizeof(msg),
3503
        0,
3504
        MACH_PORT_NULL,
3505
        MACH_MSG_TIMEOUT_NONE,
3506
        MACH_PORT_NULL);
3507
    if(r != MACH_MSG_SUCCESS)
3508
        ABORT("mach_msg failed in GC_mprotect_thread_reply");
3509
}
3510
 
3511
void GC_mprotect_stop() {
3512
    GC_mprotect_thread_notify(ID_STOP);
3513
}
3514
void GC_mprotect_resume() {
3515
    GC_mprotect_thread_notify(ID_RESUME);
3516
}
3517
 
3518
#else /* !THREADS */
3519
/* The compiler should optimize away any GC_mprotect_state computations */
3520
#define GC_mprotect_state GC_MP_NORMAL
3521
#endif
3522
 
3523
static void *GC_mprotect_thread(void *arg) {
3524
    mach_msg_return_t r;
3525
    /* These two structures contain some private kernel data. We don't need to
3526
       access any of it so we don't bother defining a proper struct. The
3527
       correct definitions are in the xnu source code. */
3528
    struct {
3529
        mach_msg_header_t head;
3530
        char data[256];
3531
    } reply;
3532
    struct {
3533
        mach_msg_header_t head;
3534
        mach_msg_body_t msgh_body;
3535
        char data[1024];
3536
    } msg;
3537
 
3538
    mach_msg_id_t id;
3539
 
3540
    GC_darwin_register_mach_handler_thread(mach_thread_self());
3541
 
3542
    for(;;) {
3543
        r = mach_msg(
3544
            &msg.head,
3545
            MACH_RCV_MSG|MACH_RCV_LARGE|
3546
                (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3547
            0,
3548
            sizeof(msg),
3549
            GC_ports.exception,
3550
            GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3551
            MACH_PORT_NULL);
3552
 
3553
        id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3554
 
3555
#if defined(THREADS)
3556
        if(GC_mprotect_state == GC_MP_DISCARDING) {
3557
            if(r == MACH_RCV_TIMED_OUT) {
3558
                GC_mprotect_state = GC_MP_STOPPED;
3559
                GC_mprotect_thread_reply();
3560
                continue;
3561
            }
3562
            if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3563
                ABORT("out of order mprotect thread request");
3564
        }
3565
#endif
3566
 
3567
        if(r != MACH_MSG_SUCCESS) {
3568
            GC_err_printf2("mach_msg failed with %d %s\n",
3569
                (int)r,mach_error_string(r));
3570
            ABORT("mach_msg failed");
3571
        }
3572
 
3573
        switch(id) {
3574
#if defined(THREADS)
3575
            case ID_STOP:
3576
                if(GC_mprotect_state != GC_MP_NORMAL)
3577
                    ABORT("Called mprotect_stop when state wasn't normal");
3578
                GC_mprotect_state = GC_MP_DISCARDING;
3579
                break;
3580
            case ID_RESUME:
3581
                if(GC_mprotect_state != GC_MP_STOPPED)
3582
                    ABORT("Called mprotect_resume when state wasn't stopped");
3583
                GC_mprotect_state = GC_MP_NORMAL;
3584
                GC_mprotect_thread_reply();
3585
                break;
3586
#endif /* THREADS */
3587
            default:
3588
                    /* Handle the message (calls catch_exception_raise) */
3589
                if(!exc_server(&msg.head,&reply.head))
3590
                    ABORT("exc_server failed");
3591
                /* Send the reply */
3592
                r = mach_msg(
3593
                    &reply.head,
3594
                    MACH_SEND_MSG,
3595
                    reply.head.msgh_size,
3596
                    0,
3597
                    MACH_PORT_NULL,
3598
                    MACH_MSG_TIMEOUT_NONE,
3599
                    MACH_PORT_NULL);
3600
                if(r != MACH_MSG_SUCCESS) {
3601
                        /* This will fail if the thread dies, but the thread shouldn't
3602
                           die... */
3603
                        #ifdef BROKEN_EXCEPTION_HANDLING
3604
                        GC_err_printf2(
3605
                        "mach_msg failed with %d %s while sending exc reply\n",
3606
                        (int)r,mach_error_string(r));
3607
                #else
3608
                        ABORT("mach_msg failed while sending exception reply");
3609
                #endif
3610
                }
3611
        } /* switch */
3612
    } /* for(;;) */
3613
    /* NOT REACHED */
3614
    return NULL;
3615
}
3616
 
3617
/* All this SIGBUS code shouldn't be necessary. All protection faults should
3618
   be going throught the mach exception handler. However, it seems a SIGBUS is
3619
   occasionally sent for some unknown reason. Even more odd, it seems to be
3620
   meaningless and safe to ignore. */
3621
#ifdef BROKEN_EXCEPTION_HANDLING
3622
 
3623
typedef void (* SIG_PF)();
3624
static SIG_PF GC_old_bus_handler;
3625
 
3626
/* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3627
   Even if this doesn't get updated property, it isn't really a problem */
3628
static int GC_sigbus_count;
3629
 
3630
static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3631
    if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3632
 
3633
    /* Ugh... some seem safe to ignore, but too many in a row probably means
3634
       trouble. GC_sigbus_count is reset for each mach exception that is
3635
       handled */
3636
    if(GC_sigbus_count >= 8) {
3637
        ABORT("Got more than 8 SIGBUSs in a row!");
3638
    } else {
3639
        GC_sigbus_count++;
3640
        GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3641
    }
3642
}
3643
#endif /* BROKEN_EXCEPTION_HANDLING */
3644
 
3645
void GC_dirty_init() {
3646
    kern_return_t r;
3647
    mach_port_t me;
3648
    pthread_t thread;
3649
    pthread_attr_t attr;
3650
    exception_mask_t mask;
3651
 
3652
#   ifdef PRINTSTATS
3653
        GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3654
            "implementation\n");
3655
#   endif  
3656
#       ifdef BROKEN_EXCEPTION_HANDLING
3657
        GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3658
            "exception handling bugs.\n");
3659
#       endif
3660
    GC_dirty_maintained = TRUE;
3661
    if (GC_page_size % HBLKSIZE != 0) {
3662
        GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3663
        ABORT("Page size not multiple of HBLKSIZE");
3664
    }
3665
 
3666
    GC_task_self = me = mach_task_self();
3667
 
3668
    r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3669
    if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3670
 
3671
    r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3672
        MACH_MSG_TYPE_MAKE_SEND);
3673
    if(r != KERN_SUCCESS)
3674
        ABORT("mach_port_insert_right failed (exception port)");
3675
 
3676
    #if defined(THREADS)
3677
        r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3678
        if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3679
    #endif
3680
 
3681
    /* The exceptions we want to catch */
3682
    mask = EXC_MASK_BAD_ACCESS;
3683
 
3684
    r = task_get_exception_ports(
3685
        me,
3686
        mask,
3687
        GC_old_exc_ports.masks,
3688
        &GC_old_exc_ports.count,
3689
        GC_old_exc_ports.ports,
3690
        GC_old_exc_ports.behaviors,
3691
        GC_old_exc_ports.flavors
3692
    );
3693
    if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3694
 
3695
    r = task_set_exception_ports(
3696
        me,
3697
        mask,
3698
        GC_ports.exception,
3699
        EXCEPTION_DEFAULT,
3700
        GC_MACH_THREAD_STATE
3701
    );
3702
    if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3703
 
3704
    if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3705
    if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3706
        ABORT("pthread_attr_setdetachedstate failed");
3707
 
3708
#       undef pthread_create
3709
    /* This will call the real pthread function, not our wrapper */
3710
    if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3711
        ABORT("pthread_create failed");
3712
    pthread_attr_destroy(&attr);
3713
 
3714
    /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3715
    #ifdef BROKEN_EXCEPTION_HANDLING 
3716
    {
3717
        struct sigaction sa, oldsa;
3718
        sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3719
        sigemptyset(&sa.sa_mask);
3720
        sa.sa_flags = SA_RESTART|SA_SIGINFO;
3721
        if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3722
        GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3723
        if (GC_old_bus_handler != SIG_DFL) {
3724
#               ifdef PRINTSTATS
3725
                GC_err_printf0("Replaced other SIGBUS handler\n");
3726
#               endif
3727
        }
3728
    }
3729
    #endif /* BROKEN_EXCEPTION_HANDLING  */
3730
}
3731
 
3732
/* The source code for Apple's GDB was used as a reference for the exception
3733
   forwarding code. This code is similar to be GDB code only because there is
3734
   only one way to do it. */
3735
static kern_return_t GC_forward_exception(
3736
        mach_port_t thread,
3737
        mach_port_t task,
3738
        exception_type_t exception,
3739
        exception_data_t data,
3740
        mach_msg_type_number_t data_count
3741
) {
3742
    int i;
3743
    kern_return_t r;
3744
    mach_port_t port;
3745
    exception_behavior_t behavior;
3746
    thread_state_flavor_t flavor;
3747
 
3748
    thread_state_t thread_state;
3749
    mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3750
 
3751
    for(i=0;i<GC_old_exc_ports.count;i++)
3752
        if(GC_old_exc_ports.masks[i] & (1 << exception))
3753
            break;
3754
    if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3755
 
3756
    port = GC_old_exc_ports.ports[i];
3757
    behavior = GC_old_exc_ports.behaviors[i];
3758
    flavor = GC_old_exc_ports.flavors[i];
3759
 
3760
    if(behavior != EXCEPTION_DEFAULT) {
3761
        r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3762
        if(r != KERN_SUCCESS)
3763
            ABORT("thread_get_state failed in forward_exception");
3764
    }
3765
 
3766
    switch(behavior) {
3767
        case EXCEPTION_DEFAULT:
3768
            r = exception_raise(port,thread,task,exception,data,data_count);
3769
            break;
3770
        case EXCEPTION_STATE:
3771
            r = exception_raise_state(port,thread,task,exception,data,
3772
                data_count,&flavor,thread_state,thread_state_count,
3773
                thread_state,&thread_state_count);
3774
            break;
3775
        case EXCEPTION_STATE_IDENTITY:
3776
            r = exception_raise_state_identity(port,thread,task,exception,data,
3777
                data_count,&flavor,thread_state,thread_state_count,
3778
                thread_state,&thread_state_count);
3779
            break;
3780
        default:
3781
            r = KERN_FAILURE; /* make gcc happy */
3782
            ABORT("forward_exception: unknown behavior");
3783
            break;
3784
    }
3785
 
3786
    if(behavior != EXCEPTION_DEFAULT) {
3787
        r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3788
        if(r != KERN_SUCCESS)
3789
            ABORT("thread_set_state failed in forward_exception");
3790
    }
3791
 
3792
    return r;
3793
}
3794
 
3795
#define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3796
 
3797
/* This violates the namespace rules but there isn't anything that can be done
3798
   about it. The exception handling stuff is hard coded to call this */
3799
kern_return_t
3800
catch_exception_raise(
3801
   mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3802
   exception_type_t exception,exception_data_t code,
3803
   mach_msg_type_number_t code_count
3804
) {
3805
    kern_return_t r;
3806
    char *addr;
3807
    struct hblk *h;
3808
    int i;
3809
#   if defined(POWERPC)
3810
#     if CPP_WORDSZ == 32
3811
        thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3812
        mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3813
        ppc_exception_state_t exc_state;
3814
#     else
3815
        thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64;
3816
        mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT;
3817
        ppc_exception_state64_t exc_state;
3818
#     endif
3819
#   elif defined(I386) || defined(X86_64)
3820
#     if CPP_WORDSZ == 32
3821
        thread_state_flavor_t flavor = x86_EXCEPTION_STATE32;
3822
        mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE32_COUNT;
3823
        x86_exception_state32_t exc_state;
3824
#     else
3825
        thread_state_flavor_t flavor = x86_EXCEPTION_STATE64;
3826
        mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE64_COUNT;
3827
        x86_exception_state64_t exc_state;
3828
#     endif
3829
#   else
3830
#       error FIXME for non-ppc darwin
3831
#   endif
3832
 
3833
 
3834
    if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3835
        #ifdef DEBUG_EXCEPTION_HANDLING
3836
        /* We aren't interested, pass it on to the old handler */
3837
        GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3838
            exception,
3839
            code_count > 0 ? code[0] : -1,
3840
            code_count > 1 ? code[1] : -1);
3841
        #endif
3842
        return FWD();
3843
    }
3844
 
3845
    r = thread_get_state(thread,flavor,
3846
        (natural_t*)&exc_state,&exc_state_count);
3847
    if(r != KERN_SUCCESS) {
3848
        /* The thread is supposed to be suspended while the exception handler
3849
           is called. This shouldn't fail. */
3850
        #ifdef BROKEN_EXCEPTION_HANDLING
3851
            GC_err_printf0("thread_get_state failed in "
3852
                "catch_exception_raise\n");
3853
            return KERN_SUCCESS;
3854
        #else
3855
            ABORT("thread_get_state failed in catch_exception_raise");
3856
        #endif
3857
    }
3858
 
3859
    /* This is the address that caused the fault */
3860
#if defined(POWERPC)
3861
    addr = (char*) exc_state. THREAD_FLD(dar);
3862
#elif defined (I386) || defined (X86_64)
3863
    addr = (char*) exc_state. THREAD_FLD(faultvaddr);
3864
#else
3865
#   error FIXME for non POWERPC/I386
3866
#endif
3867
 
3868
    if((HDR(addr)) == 0) {
3869
        /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3870
           KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3871
           a bunch in a row before doing anything about it. If a "real" fault
3872
           ever occurres it'll just keep faulting over and over and we'll hit
3873
           the limit pretty quickly. */
3874
        #ifdef BROKEN_EXCEPTION_HANDLING
3875
            static char *last_fault;
3876
            static int last_fault_count;
3877
 
3878
            if(addr != last_fault) {
3879
                last_fault = addr;
3880
                last_fault_count = 0;
3881
            }
3882
            if(++last_fault_count < 32) {
3883
                if(last_fault_count == 1)
3884
                    GC_err_printf1(
3885
                        "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3886
                        addr);
3887
                return KERN_SUCCESS;
3888
            }
3889
 
3890
            GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3891
            /* Can't pass it along to the signal handler because that is
3892
               ignoring SIGBUS signals. We also shouldn't call ABORT here as
3893
               signals don't always work too well from the exception handler. */
3894
            GC_err_printf0("Aborting\n");
3895
            exit(EXIT_FAILURE);
3896
        #else /* BROKEN_EXCEPTION_HANDLING */
3897
            /* Pass it along to the next exception handler
3898
               (which should call SIGBUS/SIGSEGV) */
3899
            return FWD();
3900
        #endif /* !BROKEN_EXCEPTION_HANDLING */
3901
    }
3902
 
3903
    #ifdef BROKEN_EXCEPTION_HANDLING
3904
        /* Reset the number of consecutive SIGBUSs */
3905
        GC_sigbus_count = 0;
3906
    #endif
3907
 
3908
    if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3909
        h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3910
        UNPROTECT(h, GC_page_size);
3911
        for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3912
            register int index = PHT_HASH(h+i);
3913
            async_set_pht_entry_from_index(GC_dirty_pages, index);
3914
        }
3915
    } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3916
        /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3917
           when we're just going to PROTECT() it again later. The thread
3918
           will just fault again once it resumes */
3919
    } else {
3920
        /* Shouldn't happen, i don't think */
3921
        GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3922
        return FWD();
3923
    }
3924
    return KERN_SUCCESS;
3925
}
3926
#undef FWD
3927
 
3928
/* These should never be called, but just in case...  */
3929
kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3930
    int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3931
    int flavor, thread_state_t old_state, int old_stateCnt,
3932
    thread_state_t new_state, int new_stateCnt)
3933
{
3934
    ABORT("catch_exception_raise_state");
3935
    return(KERN_INVALID_ARGUMENT);
3936
}
3937
kern_return_t catch_exception_raise_state_identity(
3938
    mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3939
    int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3940
    int flavor, thread_state_t old_state, int old_stateCnt,
3941
    thread_state_t new_state, int new_stateCnt)
3942
{
3943
    ABORT("catch_exception_raise_state_identity");
3944
    return(KERN_INVALID_ARGUMENT);
3945
}
3946
 
3947
 
3948
#endif /* DARWIN && MPROTECT_VDB */
3949
 
3950
# ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3951
  int GC_incremental_protection_needs()
3952
  {
3953
    return GC_PROTECTS_NONE;
3954
  }
3955
# endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3956
 
3957
/*
3958
 * Call stack save code for debugging.
3959
 * Should probably be in mach_dep.c, but that requires reorganization.
3960
 */
3961
 
3962
/* I suspect the following works for most X86 *nix variants, so         */
3963
/* long as the frame pointer is explicitly stored.  In the case of gcc, */
3964
/* compiler flags (e.g. -fomit-frame-pointer) determine whether it is.  */
3965
#if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3966
#   include <features.h>
3967
 
3968
    struct frame {
3969
        struct frame *fr_savfp;
3970
        long    fr_savpc;
3971
        long    fr_arg[NARGS];  /* All the arguments go here.   */
3972
    };
3973
#endif
3974
 
3975
#if defined(SPARC)
3976
#  if defined(LINUX)
3977
#    include <features.h>
3978
 
3979
     struct frame {
3980
        long    fr_local[8];
3981
        long    fr_arg[6];
3982
        struct frame *fr_savfp;
3983
        long    fr_savpc;
3984
#       ifndef __arch64__
3985
          char  *fr_stret;
3986
#       endif
3987
        long    fr_argd[6];
3988
        long    fr_argx[0];
3989
     };
3990
#  else
3991
#    if defined(SUNOS4)
3992
#      include <machine/frame.h>
3993
#    else
3994
#      if defined (DRSNX)
3995
#        include <sys/sparc/frame.h>
3996
#      else
3997
#        if defined(OPENBSD)
3998
#          include <frame.h>
3999
#        else
4000
#          if defined(FREEBSD) || defined(NETBSD)
4001
#            include <machine/frame.h>
4002
#          else
4003
#            include <sys/frame.h>
4004
#          endif
4005
#        endif
4006
#      endif
4007
#    endif
4008
#  endif
4009
#  if NARGS > 6
4010
        --> We only know how to to get the first 6 arguments
4011
#  endif
4012
#endif /* SPARC */
4013
 
4014
#ifdef  NEED_CALLINFO
4015
/* Fill in the pc and argument information for up to NFRAMES of my      */
4016
/* callers.  Ignore my frame and my callers frame.                      */
4017
 
4018
#ifdef LINUX
4019
#   include <unistd.h>
4020
#endif
4021
 
4022
#endif /* NEED_CALLINFO */
4023
 
4024
#if defined(GC_HAVE_BUILTIN_BACKTRACE)
4025
# include <execinfo.h>
4026
#endif
4027
 
4028
#ifdef SAVE_CALL_CHAIN
4029
 
4030
#if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
4031
    && defined(GC_HAVE_BUILTIN_BACKTRACE)
4032
 
4033
#ifdef REDIRECT_MALLOC
4034
  /* Deal with possible malloc calls in backtrace by omitting   */
4035
  /* the infinitely recursing backtrace.                        */
4036
# ifdef THREADS
4037
    __thread    /* If your compiler doesn't understand this */
4038
                /* you could use something like pthread_getspecific.    */
4039
# endif
4040
  GC_in_save_callers = FALSE;
4041
#endif
4042
 
4043
void GC_save_callers (info)
4044
struct callinfo info[NFRAMES];
4045
{
4046
  void * tmp_info[NFRAMES + 1];
4047
  int npcs, i;
4048
# define IGNORE_FRAMES 1
4049
 
4050
  /* We retrieve NFRAMES+1 pc values, but discard the first, since it   */
4051
  /* points to our own frame.                                           */
4052
# ifdef REDIRECT_MALLOC
4053
    if (GC_in_save_callers) {
4054
      info[0].ci_pc = (word)(&GC_save_callers);
4055
      for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0;
4056
      return;
4057
    }
4058
    GC_in_save_callers = TRUE;
4059
# endif
4060
  GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
4061
  npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
4062
  BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
4063
  for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
4064
# ifdef REDIRECT_MALLOC
4065
    GC_in_save_callers = FALSE;
4066
# endif
4067
}
4068
 
4069
#else /* No builtin backtrace; do it ourselves */
4070
 
4071
#if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4072
#  define FR_SAVFP fr_fp
4073
#  define FR_SAVPC fr_pc
4074
#else
4075
#  define FR_SAVFP fr_savfp
4076
#  define FR_SAVPC fr_savpc
4077
#endif
4078
 
4079
#if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4080
#   define BIAS 2047
4081
#else
4082
#   define BIAS 0
4083
#endif
4084
 
4085
void GC_save_callers (info)
4086
struct callinfo info[NFRAMES];
4087
{
4088
  struct frame *frame;
4089
  struct frame *fp;
4090
  int nframes = 0;
4091
# ifdef I386
4092
    /* We assume this is turned on only with gcc as the compiler. */
4093
    asm("movl %%ebp,%0" : "=r"(frame));
4094
    fp = frame;
4095
# else
4096
    frame = (struct frame *) GC_save_regs_in_stack ();
4097
    fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4098
#endif
4099
 
4100
   for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4101
           && (nframes < NFRAMES));
4102
       fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4103
      register int i;
4104
 
4105
      info[nframes].ci_pc = fp->FR_SAVPC;
4106
#     if NARGS > 0
4107
        for (i = 0; i < NARGS; i++) {
4108
          info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4109
        }
4110
#     endif /* NARGS > 0 */
4111
  }
4112
  if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4113
}
4114
 
4115
#endif /* No builtin backtrace */
4116
 
4117
#endif /* SAVE_CALL_CHAIN */
4118
 
4119
#ifdef NEED_CALLINFO
4120
 
4121
/* Print info to stderr.  We do NOT hold the allocation lock */
4122
void GC_print_callers (info)
4123
struct callinfo info[NFRAMES];
4124
{
4125
    register int i;
4126
    static int reentry_count = 0;
4127
    GC_bool stop = FALSE;
4128
 
4129
    /* FIXME: This should probably use a different lock, so that we     */
4130
    /* become callable with or without the allocation lock.             */
4131
    LOCK();
4132
      ++reentry_count;
4133
    UNLOCK();
4134
 
4135
#   if NFRAMES == 1
4136
      GC_err_printf0("\tCaller at allocation:\n");
4137
#   else
4138
      GC_err_printf0("\tCall chain at allocation:\n");
4139
#   endif
4140
    for (i = 0; i < NFRAMES && !stop ; i++) {
4141
        if (info[i].ci_pc == 0) break;
4142
#       if NARGS > 0
4143
        {
4144
          int j;
4145
 
4146
          GC_err_printf0("\t\targs: ");
4147
          for (j = 0; j < NARGS; j++) {
4148
            if (j != 0) GC_err_printf0(", ");
4149
            GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4150
                                        ~(info[i].ci_arg[j]));
4151
          }
4152
          GC_err_printf0("\n");
4153
        }
4154
#       endif
4155
        if (reentry_count > 1) {
4156
            /* We were called during an allocation during       */
4157
            /* a previous GC_print_callers call; punt.          */
4158
            GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4159
            continue;
4160
        }
4161
        {
4162
#         ifdef LINUX
4163
            FILE *pipe;
4164
#         endif
4165
#         if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4166
             && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4167
            char **sym_name =
4168
              backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4169
            char *name = sym_name[0];
4170
#         else
4171
            char buf[40];
4172
            char *name = buf;
4173
            sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4174
#         endif
4175
#         if defined(LINUX) && !defined(SMALL_CONFIG)
4176
            /* Try for a line number. */
4177
            {
4178
#               define EXE_SZ 100
4179
                static char exe_name[EXE_SZ];
4180
#               define CMD_SZ 200
4181
                char cmd_buf[CMD_SZ];
4182
#               define RESULT_SZ 200
4183
                static char result_buf[RESULT_SZ];
4184
                size_t result_len;
4185
                char *old_preload;
4186
#               define PRELOAD_SZ 200
4187
                char preload_buf[PRELOAD_SZ];
4188
                static GC_bool found_exe_name = FALSE;
4189
                static GC_bool will_fail = FALSE;
4190
                int ret_code;
4191
                /* Try to get it via a hairy and expensive scheme.      */
4192
                /* First we get the name of the executable:             */
4193
                if (will_fail) goto out;
4194
                if (!found_exe_name) {
4195
                  ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4196
                  if (ret_code < 0 || ret_code >= EXE_SZ
4197
                      || exe_name[0] != '/') {
4198
                    will_fail = TRUE;   /* Dont try again. */
4199
                    goto out;
4200
                  }
4201
                  exe_name[ret_code] = '\0';
4202
                  found_exe_name = TRUE;
4203
                }
4204
                /* Then we use popen to start addr2line -e <exe> <addr> */
4205
                /* There are faster ways to do this, but hopefully this */
4206
                /* isn't time critical.                                 */
4207
                sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4208
                                 (unsigned long)info[i].ci_pc);
4209
                old_preload = getenv ("LD_PRELOAD");
4210
                if (0 != old_preload) {
4211
                  if (strlen (old_preload) >= PRELOAD_SZ) {
4212
                    will_fail = TRUE;
4213
                    goto out;
4214
                  }
4215
                  strcpy (preload_buf, old_preload);
4216
                  unsetenv ("LD_PRELOAD");
4217
                }
4218
                pipe = popen(cmd_buf, "r");
4219
                if (0 != old_preload
4220
                    && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4221
                  WARN("Failed to reset LD_PRELOAD\n", 0);
4222
                }
4223
                if (pipe == NULL
4224
                    || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4225
                       == 0) {
4226
                  if (pipe != NULL) pclose(pipe);
4227
                  will_fail = TRUE;
4228
                  goto out;
4229
                }
4230
                if (result_buf[result_len - 1] == '\n') --result_len;
4231
                result_buf[result_len] = 0;
4232
                if (result_buf[0] == '?'
4233
                    || result_buf[result_len-2] == ':'
4234
                       && result_buf[result_len-1] == '0') {
4235
                    pclose(pipe);
4236
                    goto out;
4237
                }
4238
                /* Get rid of embedded newline, if any.  Test for "main" */
4239
                {
4240
                   char * nl = strchr(result_buf, '\n');
4241
                   if (nl != NULL && nl < result_buf + result_len) {
4242
                     *nl = ':';
4243
                   }
4244
                   if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4245
                     stop = TRUE;
4246
                   }
4247
                }
4248
                if (result_len < RESULT_SZ - 25) {
4249
                  /* Add in hex address */
4250
                    sprintf(result_buf + result_len, " [0x%lx]",
4251
                          (unsigned long)info[i].ci_pc);
4252
                }
4253
                name = result_buf;
4254
                pclose(pipe);
4255
                out:;
4256
            }
4257
#         endif /* LINUX */
4258
          GC_err_printf1("\t\t%s\n", name);
4259
#         if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4260
             && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4261
            free(sym_name);  /* May call GC_free; that's OK */
4262
#         endif
4263
        }
4264
    }
4265
    LOCK();
4266
      --reentry_count;
4267
    UNLOCK();
4268
}
4269
 
4270
#endif /* NEED_CALLINFO */
4271
 
4272
 
4273
 
4274
#if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4275
 
4276
/* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4277
   addresses in FIND_LEAK output. */
4278
 
4279
static word dump_maps(char *maps)
4280
{
4281
    GC_err_write(maps, strlen(maps));
4282
    return 1;
4283
}
4284
 
4285
void GC_print_address_map()
4286
{
4287
    GC_err_printf0("---------- Begin address map ----------\n");
4288
    GC_apply_to_maps(dump_maps);
4289
    GC_err_printf0("---------- End address map ----------\n");
4290
}
4291
 
4292
#endif
4293
 
4294
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.