1 |
721 |
jeremybenn |
/*
|
2 |
|
|
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
|
3 |
|
|
* opyright (c) 1999-2000 by Hewlett-Packard Company. All rights reserved.
|
4 |
|
|
*
|
5 |
|
|
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
6 |
|
|
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
7 |
|
|
*
|
8 |
|
|
* Permission is hereby granted to use or copy this program
|
9 |
|
|
* for any purpose, provided the above notices are retained on all copies.
|
10 |
|
|
* Permission to modify the code and to distribute modified code is granted,
|
11 |
|
|
* provided the above notices are retained, and a notice that the code was
|
12 |
|
|
* modified is included with the above copyright notice.
|
13 |
|
|
*
|
14 |
|
|
*/
|
15 |
|
|
|
16 |
|
|
|
17 |
|
|
/*
|
18 |
|
|
* Some simple primitives for allocation with explicit type information.
|
19 |
|
|
* Simple objects are allocated such that they contain a GC_descr at the
|
20 |
|
|
* end (in the last allocated word). This descriptor may be a procedure
|
21 |
|
|
* which then examines an extended descriptor passed as its environment.
|
22 |
|
|
*
|
23 |
|
|
* Arrays are treated as simple objects if they have sufficiently simple
|
24 |
|
|
* structure. Otherwise they are allocated from an array kind that supplies
|
25 |
|
|
* a special mark procedure. These arrays contain a pointer to a
|
26 |
|
|
* complex_descriptor as their last word.
|
27 |
|
|
* This is done because the environment field is too small, and the collector
|
28 |
|
|
* must trace the complex_descriptor.
|
29 |
|
|
*
|
30 |
|
|
* Note that descriptors inside objects may appear cleared, if we encounter a
|
31 |
|
|
* false refrence to an object on a free list. In the GC_descr case, this
|
32 |
|
|
* is OK, since a 0 descriptor corresponds to examining no fields.
|
33 |
|
|
* In the complex_descriptor case, we explicitly check for that case.
|
34 |
|
|
*
|
35 |
|
|
* MAJOR PARTS OF THIS CODE HAVE NOT BEEN TESTED AT ALL and are not testable,
|
36 |
|
|
* since they are not accessible through the current interface.
|
37 |
|
|
*/
|
38 |
|
|
|
39 |
|
|
#include "private/gc_pmark.h"
|
40 |
|
|
#include "gc_typed.h"
|
41 |
|
|
|
42 |
|
|
# define TYPD_EXTRA_BYTES (sizeof(word) - EXTRA_BYTES)
|
43 |
|
|
|
44 |
|
|
GC_bool GC_explicit_typing_initialized = FALSE;
|
45 |
|
|
|
46 |
|
|
int GC_explicit_kind; /* Object kind for objects with indirect */
|
47 |
|
|
/* (possibly extended) descriptors. */
|
48 |
|
|
|
49 |
|
|
int GC_array_kind; /* Object kind for objects with complex */
|
50 |
|
|
/* descriptors and GC_array_mark_proc. */
|
51 |
|
|
|
52 |
|
|
/* Extended descriptors. GC_typed_mark_proc understands these. */
|
53 |
|
|
/* These are used for simple objects that are larger than what */
|
54 |
|
|
/* can be described by a BITMAP_BITS sized bitmap. */
|
55 |
|
|
typedef struct {
|
56 |
|
|
word ed_bitmap; /* lsb corresponds to first word. */
|
57 |
|
|
GC_bool ed_continued; /* next entry is continuation. */
|
58 |
|
|
} ext_descr;
|
59 |
|
|
|
60 |
|
|
/* Array descriptors. GC_array_mark_proc understands these. */
|
61 |
|
|
/* We may eventually need to add provisions for headers and */
|
62 |
|
|
/* trailers. Hence we provide for tree structured descriptors, */
|
63 |
|
|
/* though we don't really use them currently. */
|
64 |
|
|
typedef union ComplexDescriptor {
|
65 |
|
|
struct LeafDescriptor { /* Describes simple array */
|
66 |
|
|
word ld_tag;
|
67 |
|
|
# define LEAF_TAG 1
|
68 |
|
|
word ld_size; /* bytes per element */
|
69 |
|
|
/* multiple of ALIGNMENT */
|
70 |
|
|
word ld_nelements; /* Number of elements. */
|
71 |
|
|
GC_descr ld_descriptor; /* A simple length, bitmap, */
|
72 |
|
|
/* or procedure descriptor. */
|
73 |
|
|
} ld;
|
74 |
|
|
struct ComplexArrayDescriptor {
|
75 |
|
|
word ad_tag;
|
76 |
|
|
# define ARRAY_TAG 2
|
77 |
|
|
word ad_nelements;
|
78 |
|
|
union ComplexDescriptor * ad_element_descr;
|
79 |
|
|
} ad;
|
80 |
|
|
struct SequenceDescriptor {
|
81 |
|
|
word sd_tag;
|
82 |
|
|
# define SEQUENCE_TAG 3
|
83 |
|
|
union ComplexDescriptor * sd_first;
|
84 |
|
|
union ComplexDescriptor * sd_second;
|
85 |
|
|
} sd;
|
86 |
|
|
} complex_descriptor;
|
87 |
|
|
#define TAG ld.ld_tag
|
88 |
|
|
|
89 |
|
|
ext_descr * GC_ext_descriptors; /* Points to array of extended */
|
90 |
|
|
/* descriptors. */
|
91 |
|
|
|
92 |
|
|
word GC_ed_size = 0; /* Current size of above arrays. */
|
93 |
|
|
# define ED_INITIAL_SIZE 100;
|
94 |
|
|
|
95 |
|
|
word GC_avail_descr = 0; /* Next available slot. */
|
96 |
|
|
|
97 |
|
|
int GC_typed_mark_proc_index; /* Indices of my mark */
|
98 |
|
|
int GC_array_mark_proc_index; /* procedures. */
|
99 |
|
|
|
100 |
|
|
/* Add a multiword bitmap to GC_ext_descriptors arrays. Return */
|
101 |
|
|
/* starting index. */
|
102 |
|
|
/* Returns -1 on failure. */
|
103 |
|
|
/* Caller does not hold allocation lock. */
|
104 |
|
|
signed_word GC_add_ext_descriptor(bm, nbits)
|
105 |
|
|
GC_bitmap bm;
|
106 |
|
|
word nbits;
|
107 |
|
|
{
|
108 |
|
|
register size_t nwords = divWORDSZ(nbits + WORDSZ-1);
|
109 |
|
|
register signed_word result;
|
110 |
|
|
register word i;
|
111 |
|
|
register word last_part;
|
112 |
|
|
register int extra_bits;
|
113 |
|
|
DCL_LOCK_STATE;
|
114 |
|
|
|
115 |
|
|
DISABLE_SIGNALS();
|
116 |
|
|
LOCK();
|
117 |
|
|
while (GC_avail_descr + nwords >= GC_ed_size) {
|
118 |
|
|
ext_descr * new;
|
119 |
|
|
size_t new_size;
|
120 |
|
|
word ed_size = GC_ed_size;
|
121 |
|
|
|
122 |
|
|
UNLOCK();
|
123 |
|
|
ENABLE_SIGNALS();
|
124 |
|
|
if (ed_size == 0) {
|
125 |
|
|
new_size = ED_INITIAL_SIZE;
|
126 |
|
|
} else {
|
127 |
|
|
new_size = 2 * ed_size;
|
128 |
|
|
if (new_size > MAX_ENV) return(-1);
|
129 |
|
|
}
|
130 |
|
|
new = (ext_descr *) GC_malloc_atomic(new_size * sizeof(ext_descr));
|
131 |
|
|
if (new == 0) return(-1);
|
132 |
|
|
DISABLE_SIGNALS();
|
133 |
|
|
LOCK();
|
134 |
|
|
if (ed_size == GC_ed_size) {
|
135 |
|
|
if (GC_avail_descr != 0) {
|
136 |
|
|
BCOPY(GC_ext_descriptors, new,
|
137 |
|
|
GC_avail_descr * sizeof(ext_descr));
|
138 |
|
|
}
|
139 |
|
|
GC_ed_size = new_size;
|
140 |
|
|
GC_ext_descriptors = new;
|
141 |
|
|
} /* else another thread already resized it in the meantime */
|
142 |
|
|
}
|
143 |
|
|
result = GC_avail_descr;
|
144 |
|
|
for (i = 0; i < nwords-1; i++) {
|
145 |
|
|
GC_ext_descriptors[result + i].ed_bitmap = bm[i];
|
146 |
|
|
GC_ext_descriptors[result + i].ed_continued = TRUE;
|
147 |
|
|
}
|
148 |
|
|
last_part = bm[i];
|
149 |
|
|
/* Clear irrelevant bits. */
|
150 |
|
|
extra_bits = nwords * WORDSZ - nbits;
|
151 |
|
|
last_part <<= extra_bits;
|
152 |
|
|
last_part >>= extra_bits;
|
153 |
|
|
GC_ext_descriptors[result + i].ed_bitmap = last_part;
|
154 |
|
|
GC_ext_descriptors[result + i].ed_continued = FALSE;
|
155 |
|
|
GC_avail_descr += nwords;
|
156 |
|
|
UNLOCK();
|
157 |
|
|
ENABLE_SIGNALS();
|
158 |
|
|
return(result);
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
/* Table of bitmap descriptors for n word long all pointer objects. */
|
162 |
|
|
GC_descr GC_bm_table[WORDSZ/2];
|
163 |
|
|
|
164 |
|
|
/* Return a descriptor for the concatenation of 2 nwords long objects, */
|
165 |
|
|
/* each of which is described by descriptor. */
|
166 |
|
|
/* The result is known to be short enough to fit into a bitmap */
|
167 |
|
|
/* descriptor. */
|
168 |
|
|
/* Descriptor is a GC_DS_LENGTH or GC_DS_BITMAP descriptor. */
|
169 |
|
|
GC_descr GC_double_descr(descriptor, nwords)
|
170 |
|
|
register GC_descr descriptor;
|
171 |
|
|
register word nwords;
|
172 |
|
|
{
|
173 |
|
|
if ((descriptor & GC_DS_TAGS) == GC_DS_LENGTH) {
|
174 |
|
|
descriptor = GC_bm_table[BYTES_TO_WORDS((word)descriptor)];
|
175 |
|
|
};
|
176 |
|
|
descriptor |= (descriptor & ~GC_DS_TAGS) >> nwords;
|
177 |
|
|
return(descriptor);
|
178 |
|
|
}
|
179 |
|
|
|
180 |
|
|
complex_descriptor * GC_make_sequence_descriptor();
|
181 |
|
|
|
182 |
|
|
/* Build a descriptor for an array with nelements elements, */
|
183 |
|
|
/* each of which can be described by a simple descriptor. */
|
184 |
|
|
/* We try to optimize some common cases. */
|
185 |
|
|
/* If the result is COMPLEX, then a complex_descr* is returned */
|
186 |
|
|
/* in *complex_d. */
|
187 |
|
|
/* If the result is LEAF, then we built a LeafDescriptor in */
|
188 |
|
|
/* the structure pointed to by leaf. */
|
189 |
|
|
/* The tag in the leaf structure is not set. */
|
190 |
|
|
/* If the result is SIMPLE, then a GC_descr */
|
191 |
|
|
/* is returned in *simple_d. */
|
192 |
|
|
/* If the result is NO_MEM, then */
|
193 |
|
|
/* we failed to allocate the descriptor. */
|
194 |
|
|
/* The implementation knows that GC_DS_LENGTH is 0. */
|
195 |
|
|
/* *leaf, *complex_d, and *simple_d may be used as temporaries */
|
196 |
|
|
/* during the construction. */
|
197 |
|
|
# define COMPLEX 2
|
198 |
|
|
# define LEAF 1
|
199 |
|
|
# define SIMPLE 0
|
200 |
|
|
# define NO_MEM (-1)
|
201 |
|
|
int GC_make_array_descriptor(nelements, size, descriptor,
|
202 |
|
|
simple_d, complex_d, leaf)
|
203 |
|
|
word size;
|
204 |
|
|
word nelements;
|
205 |
|
|
GC_descr descriptor;
|
206 |
|
|
GC_descr *simple_d;
|
207 |
|
|
complex_descriptor **complex_d;
|
208 |
|
|
struct LeafDescriptor * leaf;
|
209 |
|
|
{
|
210 |
|
|
# define OPT_THRESHOLD 50
|
211 |
|
|
/* For larger arrays, we try to combine descriptors of adjacent */
|
212 |
|
|
/* descriptors to speed up marking, and to reduce the amount */
|
213 |
|
|
/* of space needed on the mark stack. */
|
214 |
|
|
if ((descriptor & GC_DS_TAGS) == GC_DS_LENGTH) {
|
215 |
|
|
if ((word)descriptor == size) {
|
216 |
|
|
*simple_d = nelements * descriptor;
|
217 |
|
|
return(SIMPLE);
|
218 |
|
|
} else if ((word)descriptor == 0) {
|
219 |
|
|
*simple_d = (GC_descr)0;
|
220 |
|
|
return(SIMPLE);
|
221 |
|
|
}
|
222 |
|
|
}
|
223 |
|
|
if (nelements <= OPT_THRESHOLD) {
|
224 |
|
|
if (nelements <= 1) {
|
225 |
|
|
if (nelements == 1) {
|
226 |
|
|
*simple_d = descriptor;
|
227 |
|
|
return(SIMPLE);
|
228 |
|
|
} else {
|
229 |
|
|
*simple_d = (GC_descr)0;
|
230 |
|
|
return(SIMPLE);
|
231 |
|
|
}
|
232 |
|
|
}
|
233 |
|
|
} else if (size <= BITMAP_BITS/2
|
234 |
|
|
&& (descriptor & GC_DS_TAGS) != GC_DS_PROC
|
235 |
|
|
&& (size & (sizeof(word)-1)) == 0) {
|
236 |
|
|
int result =
|
237 |
|
|
GC_make_array_descriptor(nelements/2, 2*size,
|
238 |
|
|
GC_double_descr(descriptor,
|
239 |
|
|
BYTES_TO_WORDS(size)),
|
240 |
|
|
simple_d, complex_d, leaf);
|
241 |
|
|
if ((nelements & 1) == 0) {
|
242 |
|
|
return(result);
|
243 |
|
|
} else {
|
244 |
|
|
struct LeafDescriptor * one_element =
|
245 |
|
|
(struct LeafDescriptor *)
|
246 |
|
|
GC_malloc_atomic(sizeof(struct LeafDescriptor));
|
247 |
|
|
|
248 |
|
|
if (result == NO_MEM || one_element == 0) return(NO_MEM);
|
249 |
|
|
one_element -> ld_tag = LEAF_TAG;
|
250 |
|
|
one_element -> ld_size = size;
|
251 |
|
|
one_element -> ld_nelements = 1;
|
252 |
|
|
one_element -> ld_descriptor = descriptor;
|
253 |
|
|
switch(result) {
|
254 |
|
|
case SIMPLE:
|
255 |
|
|
{
|
256 |
|
|
struct LeafDescriptor * beginning =
|
257 |
|
|
(struct LeafDescriptor *)
|
258 |
|
|
GC_malloc_atomic(sizeof(struct LeafDescriptor));
|
259 |
|
|
if (beginning == 0) return(NO_MEM);
|
260 |
|
|
beginning -> ld_tag = LEAF_TAG;
|
261 |
|
|
beginning -> ld_size = size;
|
262 |
|
|
beginning -> ld_nelements = 1;
|
263 |
|
|
beginning -> ld_descriptor = *simple_d;
|
264 |
|
|
*complex_d = GC_make_sequence_descriptor(
|
265 |
|
|
(complex_descriptor *)beginning,
|
266 |
|
|
(complex_descriptor *)one_element);
|
267 |
|
|
break;
|
268 |
|
|
}
|
269 |
|
|
case LEAF:
|
270 |
|
|
{
|
271 |
|
|
struct LeafDescriptor * beginning =
|
272 |
|
|
(struct LeafDescriptor *)
|
273 |
|
|
GC_malloc_atomic(sizeof(struct LeafDescriptor));
|
274 |
|
|
if (beginning == 0) return(NO_MEM);
|
275 |
|
|
beginning -> ld_tag = LEAF_TAG;
|
276 |
|
|
beginning -> ld_size = leaf -> ld_size;
|
277 |
|
|
beginning -> ld_nelements = leaf -> ld_nelements;
|
278 |
|
|
beginning -> ld_descriptor = leaf -> ld_descriptor;
|
279 |
|
|
*complex_d = GC_make_sequence_descriptor(
|
280 |
|
|
(complex_descriptor *)beginning,
|
281 |
|
|
(complex_descriptor *)one_element);
|
282 |
|
|
break;
|
283 |
|
|
}
|
284 |
|
|
case COMPLEX:
|
285 |
|
|
*complex_d = GC_make_sequence_descriptor(
|
286 |
|
|
*complex_d,
|
287 |
|
|
(complex_descriptor *)one_element);
|
288 |
|
|
break;
|
289 |
|
|
}
|
290 |
|
|
return(COMPLEX);
|
291 |
|
|
}
|
292 |
|
|
}
|
293 |
|
|
{
|
294 |
|
|
leaf -> ld_size = size;
|
295 |
|
|
leaf -> ld_nelements = nelements;
|
296 |
|
|
leaf -> ld_descriptor = descriptor;
|
297 |
|
|
return(LEAF);
|
298 |
|
|
}
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
complex_descriptor * GC_make_sequence_descriptor(first, second)
|
302 |
|
|
complex_descriptor * first;
|
303 |
|
|
complex_descriptor * second;
|
304 |
|
|
{
|
305 |
|
|
struct SequenceDescriptor * result =
|
306 |
|
|
(struct SequenceDescriptor *)
|
307 |
|
|
GC_malloc(sizeof(struct SequenceDescriptor));
|
308 |
|
|
/* Can't result in overly conservative marking, since tags are */
|
309 |
|
|
/* very small integers. Probably faster than maintaining type */
|
310 |
|
|
/* info. */
|
311 |
|
|
if (result != 0) {
|
312 |
|
|
result -> sd_tag = SEQUENCE_TAG;
|
313 |
|
|
result -> sd_first = first;
|
314 |
|
|
result -> sd_second = second;
|
315 |
|
|
}
|
316 |
|
|
return((complex_descriptor *)result);
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
#ifdef UNDEFINED
|
320 |
|
|
complex_descriptor * GC_make_complex_array_descriptor(nelements, descr)
|
321 |
|
|
word nelements;
|
322 |
|
|
complex_descriptor * descr;
|
323 |
|
|
{
|
324 |
|
|
struct ComplexArrayDescriptor * result =
|
325 |
|
|
(struct ComplexArrayDescriptor *)
|
326 |
|
|
GC_malloc(sizeof(struct ComplexArrayDescriptor));
|
327 |
|
|
|
328 |
|
|
if (result != 0) {
|
329 |
|
|
result -> ad_tag = ARRAY_TAG;
|
330 |
|
|
result -> ad_nelements = nelements;
|
331 |
|
|
result -> ad_element_descr = descr;
|
332 |
|
|
}
|
333 |
|
|
return((complex_descriptor *)result);
|
334 |
|
|
}
|
335 |
|
|
#endif
|
336 |
|
|
|
337 |
|
|
ptr_t * GC_eobjfreelist;
|
338 |
|
|
|
339 |
|
|
ptr_t * GC_arobjfreelist;
|
340 |
|
|
|
341 |
|
|
mse * GC_typed_mark_proc GC_PROTO((register word * addr,
|
342 |
|
|
register mse * mark_stack_ptr,
|
343 |
|
|
mse * mark_stack_limit,
|
344 |
|
|
word env));
|
345 |
|
|
|
346 |
|
|
mse * GC_array_mark_proc GC_PROTO((register word * addr,
|
347 |
|
|
register mse * mark_stack_ptr,
|
348 |
|
|
mse * mark_stack_limit,
|
349 |
|
|
word env));
|
350 |
|
|
|
351 |
|
|
/* Caller does not hold allocation lock. */
|
352 |
|
|
void GC_init_explicit_typing()
|
353 |
|
|
{
|
354 |
|
|
register int i;
|
355 |
|
|
DCL_LOCK_STATE;
|
356 |
|
|
|
357 |
|
|
|
358 |
|
|
# ifdef PRINTSTATS
|
359 |
|
|
if (sizeof(struct LeafDescriptor) % sizeof(word) != 0)
|
360 |
|
|
ABORT("Bad leaf descriptor size");
|
361 |
|
|
# endif
|
362 |
|
|
DISABLE_SIGNALS();
|
363 |
|
|
LOCK();
|
364 |
|
|
if (GC_explicit_typing_initialized) {
|
365 |
|
|
UNLOCK();
|
366 |
|
|
ENABLE_SIGNALS();
|
367 |
|
|
return;
|
368 |
|
|
}
|
369 |
|
|
GC_explicit_typing_initialized = TRUE;
|
370 |
|
|
/* Set up object kind with simple indirect descriptor. */
|
371 |
|
|
GC_eobjfreelist = (ptr_t *)GC_new_free_list_inner();
|
372 |
|
|
GC_explicit_kind = GC_new_kind_inner(
|
373 |
|
|
(void **)GC_eobjfreelist,
|
374 |
|
|
(((word)WORDS_TO_BYTES(-1)) | GC_DS_PER_OBJECT),
|
375 |
|
|
TRUE, TRUE);
|
376 |
|
|
/* Descriptors are in the last word of the object. */
|
377 |
|
|
GC_typed_mark_proc_index = GC_new_proc_inner(GC_typed_mark_proc);
|
378 |
|
|
/* Set up object kind with array descriptor. */
|
379 |
|
|
GC_arobjfreelist = (ptr_t *)GC_new_free_list_inner();
|
380 |
|
|
GC_array_mark_proc_index = GC_new_proc_inner(GC_array_mark_proc);
|
381 |
|
|
GC_array_kind = GC_new_kind_inner(
|
382 |
|
|
(void **)GC_arobjfreelist,
|
383 |
|
|
GC_MAKE_PROC(GC_array_mark_proc_index, 0),
|
384 |
|
|
FALSE, TRUE);
|
385 |
|
|
for (i = 0; i < WORDSZ/2; i++) {
|
386 |
|
|
GC_descr d = (((word)(-1)) >> (WORDSZ - i)) << (WORDSZ - i);
|
387 |
|
|
d |= GC_DS_BITMAP;
|
388 |
|
|
GC_bm_table[i] = d;
|
389 |
|
|
}
|
390 |
|
|
UNLOCK();
|
391 |
|
|
ENABLE_SIGNALS();
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
# if defined(__STDC__) || defined(__cplusplus)
|
395 |
|
|
mse * GC_typed_mark_proc(register word * addr,
|
396 |
|
|
register mse * mark_stack_ptr,
|
397 |
|
|
mse * mark_stack_limit,
|
398 |
|
|
word env)
|
399 |
|
|
# else
|
400 |
|
|
mse * GC_typed_mark_proc(addr, mark_stack_ptr, mark_stack_limit, env)
|
401 |
|
|
register word * addr;
|
402 |
|
|
register mse * mark_stack_ptr;
|
403 |
|
|
mse * mark_stack_limit;
|
404 |
|
|
word env;
|
405 |
|
|
# endif
|
406 |
|
|
{
|
407 |
|
|
register word bm = GC_ext_descriptors[env].ed_bitmap;
|
408 |
|
|
register word * current_p = addr;
|
409 |
|
|
register word current;
|
410 |
|
|
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
|
411 |
|
|
register ptr_t least_ha = GC_least_plausible_heap_addr;
|
412 |
|
|
|
413 |
|
|
for (; bm != 0; bm >>= 1, current_p++) {
|
414 |
|
|
if (bm & 1) {
|
415 |
|
|
current = *current_p;
|
416 |
|
|
FIXUP_POINTER(current);
|
417 |
|
|
if ((ptr_t)current >= least_ha && (ptr_t)current <= greatest_ha) {
|
418 |
|
|
PUSH_CONTENTS((ptr_t)current, mark_stack_ptr,
|
419 |
|
|
mark_stack_limit, current_p, exit1);
|
420 |
|
|
}
|
421 |
|
|
}
|
422 |
|
|
}
|
423 |
|
|
if (GC_ext_descriptors[env].ed_continued) {
|
424 |
|
|
/* Push an entry with the rest of the descriptor back onto the */
|
425 |
|
|
/* stack. Thus we never do too much work at once. Note that */
|
426 |
|
|
/* we also can't overflow the mark stack unless we actually */
|
427 |
|
|
/* mark something. */
|
428 |
|
|
mark_stack_ptr++;
|
429 |
|
|
if (mark_stack_ptr >= mark_stack_limit) {
|
430 |
|
|
mark_stack_ptr = GC_signal_mark_stack_overflow(mark_stack_ptr);
|
431 |
|
|
}
|
432 |
|
|
mark_stack_ptr -> mse_start = addr + WORDSZ;
|
433 |
|
|
mark_stack_ptr -> mse_descr =
|
434 |
|
|
GC_MAKE_PROC(GC_typed_mark_proc_index, env+1);
|
435 |
|
|
}
|
436 |
|
|
return(mark_stack_ptr);
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
/* Return the size of the object described by d. It would be faster to */
|
440 |
|
|
/* store this directly, or to compute it as part of */
|
441 |
|
|
/* GC_push_complex_descriptor, but hopefully it doesn't matter. */
|
442 |
|
|
word GC_descr_obj_size(d)
|
443 |
|
|
register complex_descriptor *d;
|
444 |
|
|
{
|
445 |
|
|
switch(d -> TAG) {
|
446 |
|
|
case LEAF_TAG:
|
447 |
|
|
return(d -> ld.ld_nelements * d -> ld.ld_size);
|
448 |
|
|
case ARRAY_TAG:
|
449 |
|
|
return(d -> ad.ad_nelements
|
450 |
|
|
* GC_descr_obj_size(d -> ad.ad_element_descr));
|
451 |
|
|
case SEQUENCE_TAG:
|
452 |
|
|
return(GC_descr_obj_size(d -> sd.sd_first)
|
453 |
|
|
+ GC_descr_obj_size(d -> sd.sd_second));
|
454 |
|
|
default:
|
455 |
|
|
ABORT("Bad complex descriptor");
|
456 |
|
|
/*NOTREACHED*/ return 0; /*NOTREACHED*/
|
457 |
|
|
}
|
458 |
|
|
}
|
459 |
|
|
|
460 |
|
|
/* Push descriptors for the object at addr with complex descriptor d */
|
461 |
|
|
/* onto the mark stack. Return 0 if the mark stack overflowed. */
|
462 |
|
|
mse * GC_push_complex_descriptor(addr, d, msp, msl)
|
463 |
|
|
word * addr;
|
464 |
|
|
register complex_descriptor *d;
|
465 |
|
|
register mse * msp;
|
466 |
|
|
mse * msl;
|
467 |
|
|
{
|
468 |
|
|
register ptr_t current = (ptr_t) addr;
|
469 |
|
|
register word nelements;
|
470 |
|
|
register word sz;
|
471 |
|
|
register word i;
|
472 |
|
|
|
473 |
|
|
switch(d -> TAG) {
|
474 |
|
|
case LEAF_TAG:
|
475 |
|
|
{
|
476 |
|
|
register GC_descr descr = d -> ld.ld_descriptor;
|
477 |
|
|
|
478 |
|
|
nelements = d -> ld.ld_nelements;
|
479 |
|
|
if (msl - msp <= (ptrdiff_t)nelements) return(0);
|
480 |
|
|
sz = d -> ld.ld_size;
|
481 |
|
|
for (i = 0; i < nelements; i++) {
|
482 |
|
|
msp++;
|
483 |
|
|
msp -> mse_start = (word *)current;
|
484 |
|
|
msp -> mse_descr = descr;
|
485 |
|
|
current += sz;
|
486 |
|
|
}
|
487 |
|
|
return(msp);
|
488 |
|
|
}
|
489 |
|
|
case ARRAY_TAG:
|
490 |
|
|
{
|
491 |
|
|
register complex_descriptor *descr = d -> ad.ad_element_descr;
|
492 |
|
|
|
493 |
|
|
nelements = d -> ad.ad_nelements;
|
494 |
|
|
sz = GC_descr_obj_size(descr);
|
495 |
|
|
for (i = 0; i < nelements; i++) {
|
496 |
|
|
msp = GC_push_complex_descriptor((word *)current, descr,
|
497 |
|
|
msp, msl);
|
498 |
|
|
if (msp == 0) return(0);
|
499 |
|
|
current += sz;
|
500 |
|
|
}
|
501 |
|
|
return(msp);
|
502 |
|
|
}
|
503 |
|
|
case SEQUENCE_TAG:
|
504 |
|
|
{
|
505 |
|
|
sz = GC_descr_obj_size(d -> sd.sd_first);
|
506 |
|
|
msp = GC_push_complex_descriptor((word *)current, d -> sd.sd_first,
|
507 |
|
|
msp, msl);
|
508 |
|
|
if (msp == 0) return(0);
|
509 |
|
|
current += sz;
|
510 |
|
|
msp = GC_push_complex_descriptor((word *)current, d -> sd.sd_second,
|
511 |
|
|
msp, msl);
|
512 |
|
|
return(msp);
|
513 |
|
|
}
|
514 |
|
|
default:
|
515 |
|
|
ABORT("Bad complex descriptor");
|
516 |
|
|
/*NOTREACHED*/ return 0; /*NOTREACHED*/
|
517 |
|
|
}
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
/*ARGSUSED*/
|
521 |
|
|
# if defined(__STDC__) || defined(__cplusplus)
|
522 |
|
|
mse * GC_array_mark_proc(register word * addr,
|
523 |
|
|
register mse * mark_stack_ptr,
|
524 |
|
|
mse * mark_stack_limit,
|
525 |
|
|
word env)
|
526 |
|
|
# else
|
527 |
|
|
mse * GC_array_mark_proc(addr, mark_stack_ptr, mark_stack_limit, env)
|
528 |
|
|
register word * addr;
|
529 |
|
|
register mse * mark_stack_ptr;
|
530 |
|
|
mse * mark_stack_limit;
|
531 |
|
|
word env;
|
532 |
|
|
# endif
|
533 |
|
|
{
|
534 |
|
|
register hdr * hhdr = HDR(addr);
|
535 |
|
|
register word sz = hhdr -> hb_sz;
|
536 |
|
|
register complex_descriptor * descr = (complex_descriptor *)(addr[sz-1]);
|
537 |
|
|
mse * orig_mark_stack_ptr = mark_stack_ptr;
|
538 |
|
|
mse * new_mark_stack_ptr;
|
539 |
|
|
|
540 |
|
|
if (descr == 0) {
|
541 |
|
|
/* Found a reference to a free list entry. Ignore it. */
|
542 |
|
|
return(orig_mark_stack_ptr);
|
543 |
|
|
}
|
544 |
|
|
/* In use counts were already updated when array descriptor was */
|
545 |
|
|
/* pushed. Here we only replace it by subobject descriptors, so */
|
546 |
|
|
/* no update is necessary. */
|
547 |
|
|
new_mark_stack_ptr = GC_push_complex_descriptor(addr, descr,
|
548 |
|
|
mark_stack_ptr,
|
549 |
|
|
mark_stack_limit-1);
|
550 |
|
|
if (new_mark_stack_ptr == 0) {
|
551 |
|
|
/* Doesn't fit. Conservatively push the whole array as a unit */
|
552 |
|
|
/* and request a mark stack expansion. */
|
553 |
|
|
/* This cannot cause a mark stack overflow, since it replaces */
|
554 |
|
|
/* the original array entry. */
|
555 |
|
|
GC_mark_stack_too_small = TRUE;
|
556 |
|
|
new_mark_stack_ptr = orig_mark_stack_ptr + 1;
|
557 |
|
|
new_mark_stack_ptr -> mse_start = addr;
|
558 |
|
|
new_mark_stack_ptr -> mse_descr = WORDS_TO_BYTES(sz) | GC_DS_LENGTH;
|
559 |
|
|
} else {
|
560 |
|
|
/* Push descriptor itself */
|
561 |
|
|
new_mark_stack_ptr++;
|
562 |
|
|
new_mark_stack_ptr -> mse_start = addr + sz - 1;
|
563 |
|
|
new_mark_stack_ptr -> mse_descr = sizeof(word) | GC_DS_LENGTH;
|
564 |
|
|
}
|
565 |
|
|
return(new_mark_stack_ptr);
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
#if defined(__STDC__) || defined(__cplusplus)
|
569 |
|
|
GC_descr GC_make_descriptor(GC_bitmap bm, size_t len)
|
570 |
|
|
#else
|
571 |
|
|
GC_descr GC_make_descriptor(bm, len)
|
572 |
|
|
GC_bitmap bm;
|
573 |
|
|
size_t len;
|
574 |
|
|
#endif
|
575 |
|
|
{
|
576 |
|
|
register signed_word last_set_bit = len - 1;
|
577 |
|
|
register word result;
|
578 |
|
|
register int i;
|
579 |
|
|
# define HIGH_BIT (((word)1) << (WORDSZ - 1))
|
580 |
|
|
|
581 |
|
|
if (!GC_explicit_typing_initialized) GC_init_explicit_typing();
|
582 |
|
|
while (last_set_bit >= 0 && !GC_get_bit(bm, last_set_bit)) last_set_bit --;
|
583 |
|
|
if (last_set_bit < 0) return(0 /* no pointers */);
|
584 |
|
|
# if ALIGNMENT == CPP_WORDSZ/8
|
585 |
|
|
{
|
586 |
|
|
register GC_bool all_bits_set = TRUE;
|
587 |
|
|
for (i = 0; i < last_set_bit; i++) {
|
588 |
|
|
if (!GC_get_bit(bm, i)) {
|
589 |
|
|
all_bits_set = FALSE;
|
590 |
|
|
break;
|
591 |
|
|
}
|
592 |
|
|
}
|
593 |
|
|
if (all_bits_set) {
|
594 |
|
|
/* An initial section contains all pointers. Use length descriptor. */
|
595 |
|
|
return(WORDS_TO_BYTES(last_set_bit+1) | GC_DS_LENGTH);
|
596 |
|
|
}
|
597 |
|
|
}
|
598 |
|
|
# endif
|
599 |
|
|
if (last_set_bit < BITMAP_BITS) {
|
600 |
|
|
/* Hopefully the common case. */
|
601 |
|
|
/* Build bitmap descriptor (with bits reversed) */
|
602 |
|
|
result = HIGH_BIT;
|
603 |
|
|
for (i = last_set_bit - 1; i >= 0; i--) {
|
604 |
|
|
result >>= 1;
|
605 |
|
|
if (GC_get_bit(bm, i)) result |= HIGH_BIT;
|
606 |
|
|
}
|
607 |
|
|
result |= GC_DS_BITMAP;
|
608 |
|
|
return(result);
|
609 |
|
|
} else {
|
610 |
|
|
signed_word index;
|
611 |
|
|
|
612 |
|
|
index = GC_add_ext_descriptor(bm, (word)last_set_bit+1);
|
613 |
|
|
if (index == -1) return(WORDS_TO_BYTES(last_set_bit+1) | GC_DS_LENGTH);
|
614 |
|
|
/* Out of memory: use conservative */
|
615 |
|
|
/* approximation. */
|
616 |
|
|
result = GC_MAKE_PROC(GC_typed_mark_proc_index, (word)index);
|
617 |
|
|
return(result);
|
618 |
|
|
}
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
ptr_t GC_clear_stack();
|
622 |
|
|
|
623 |
|
|
#define GENERAL_MALLOC(lb,k) \
|
624 |
|
|
(GC_PTR)GC_clear_stack(GC_generic_malloc((word)lb, k))
|
625 |
|
|
|
626 |
|
|
#define GENERAL_MALLOC_IOP(lb,k) \
|
627 |
|
|
(GC_PTR)GC_clear_stack(GC_generic_malloc_ignore_off_page(lb, k))
|
628 |
|
|
|
629 |
|
|
#if defined(__STDC__) || defined(__cplusplus)
|
630 |
|
|
void * GC_malloc_explicitly_typed(size_t lb, GC_descr d)
|
631 |
|
|
#else
|
632 |
|
|
char * GC_malloc_explicitly_typed(lb, d)
|
633 |
|
|
size_t lb;
|
634 |
|
|
GC_descr d;
|
635 |
|
|
#endif
|
636 |
|
|
{
|
637 |
|
|
register ptr_t op;
|
638 |
|
|
register ptr_t * opp;
|
639 |
|
|
register word lw;
|
640 |
|
|
DCL_LOCK_STATE;
|
641 |
|
|
|
642 |
|
|
lb += TYPD_EXTRA_BYTES;
|
643 |
|
|
if( SMALL_OBJ(lb) ) {
|
644 |
|
|
# ifdef MERGE_SIZES
|
645 |
|
|
lw = GC_size_map[lb];
|
646 |
|
|
# else
|
647 |
|
|
lw = ALIGNED_WORDS(lb);
|
648 |
|
|
# endif
|
649 |
|
|
opp = &(GC_eobjfreelist[lw]);
|
650 |
|
|
FASTLOCK();
|
651 |
|
|
if( !FASTLOCK_SUCCEEDED() || (op = *opp) == 0 ) {
|
652 |
|
|
FASTUNLOCK();
|
653 |
|
|
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_explicit_kind);
|
654 |
|
|
if (0 == op) return 0;
|
655 |
|
|
# ifdef MERGE_SIZES
|
656 |
|
|
lw = GC_size_map[lb]; /* May have been uninitialized. */
|
657 |
|
|
# endif
|
658 |
|
|
} else {
|
659 |
|
|
*opp = obj_link(op);
|
660 |
|
|
obj_link(op) = 0;
|
661 |
|
|
GC_words_allocd += lw;
|
662 |
|
|
FASTUNLOCK();
|
663 |
|
|
}
|
664 |
|
|
} else {
|
665 |
|
|
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_explicit_kind);
|
666 |
|
|
if (op != NULL)
|
667 |
|
|
lw = BYTES_TO_WORDS(GC_size(op));
|
668 |
|
|
}
|
669 |
|
|
if (op != NULL)
|
670 |
|
|
((word *)op)[lw - 1] = d;
|
671 |
|
|
return((GC_PTR) op);
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
#if defined(__STDC__) || defined(__cplusplus)
|
675 |
|
|
void * GC_malloc_explicitly_typed_ignore_off_page(size_t lb, GC_descr d)
|
676 |
|
|
#else
|
677 |
|
|
char * GC_malloc_explicitly_typed_ignore_off_page(lb, d)
|
678 |
|
|
size_t lb;
|
679 |
|
|
GC_descr d;
|
680 |
|
|
#endif
|
681 |
|
|
{
|
682 |
|
|
register ptr_t op;
|
683 |
|
|
register ptr_t * opp;
|
684 |
|
|
register word lw;
|
685 |
|
|
DCL_LOCK_STATE;
|
686 |
|
|
|
687 |
|
|
lb += TYPD_EXTRA_BYTES;
|
688 |
|
|
if( SMALL_OBJ(lb) ) {
|
689 |
|
|
# ifdef MERGE_SIZES
|
690 |
|
|
lw = GC_size_map[lb];
|
691 |
|
|
# else
|
692 |
|
|
lw = ALIGNED_WORDS(lb);
|
693 |
|
|
# endif
|
694 |
|
|
opp = &(GC_eobjfreelist[lw]);
|
695 |
|
|
FASTLOCK();
|
696 |
|
|
if( !FASTLOCK_SUCCEEDED() || (op = *opp) == 0 ) {
|
697 |
|
|
FASTUNLOCK();
|
698 |
|
|
op = (ptr_t)GENERAL_MALLOC_IOP(lb, GC_explicit_kind);
|
699 |
|
|
# ifdef MERGE_SIZES
|
700 |
|
|
lw = GC_size_map[lb]; /* May have been uninitialized. */
|
701 |
|
|
# endif
|
702 |
|
|
} else {
|
703 |
|
|
*opp = obj_link(op);
|
704 |
|
|
obj_link(op) = 0;
|
705 |
|
|
GC_words_allocd += lw;
|
706 |
|
|
FASTUNLOCK();
|
707 |
|
|
}
|
708 |
|
|
} else {
|
709 |
|
|
op = (ptr_t)GENERAL_MALLOC_IOP(lb, GC_explicit_kind);
|
710 |
|
|
if (op != NULL)
|
711 |
|
|
lw = BYTES_TO_WORDS(GC_size(op));
|
712 |
|
|
}
|
713 |
|
|
if (op != NULL)
|
714 |
|
|
((word *)op)[lw - 1] = d;
|
715 |
|
|
return((GC_PTR) op);
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
#if defined(__STDC__) || defined(__cplusplus)
|
719 |
|
|
void * GC_calloc_explicitly_typed(size_t n,
|
720 |
|
|
size_t lb,
|
721 |
|
|
GC_descr d)
|
722 |
|
|
#else
|
723 |
|
|
char * GC_calloc_explicitly_typed(n, lb, d)
|
724 |
|
|
size_t n;
|
725 |
|
|
size_t lb;
|
726 |
|
|
GC_descr d;
|
727 |
|
|
#endif
|
728 |
|
|
{
|
729 |
|
|
register ptr_t op;
|
730 |
|
|
register ptr_t * opp;
|
731 |
|
|
register word lw;
|
732 |
|
|
GC_descr simple_descr;
|
733 |
|
|
complex_descriptor *complex_descr;
|
734 |
|
|
register int descr_type;
|
735 |
|
|
struct LeafDescriptor leaf;
|
736 |
|
|
DCL_LOCK_STATE;
|
737 |
|
|
|
738 |
|
|
descr_type = GC_make_array_descriptor((word)n, (word)lb, d,
|
739 |
|
|
&simple_descr, &complex_descr, &leaf);
|
740 |
|
|
switch(descr_type) {
|
741 |
|
|
case NO_MEM: return(0);
|
742 |
|
|
case SIMPLE: return(GC_malloc_explicitly_typed(n*lb, simple_descr));
|
743 |
|
|
case LEAF:
|
744 |
|
|
lb *= n;
|
745 |
|
|
lb += sizeof(struct LeafDescriptor) + TYPD_EXTRA_BYTES;
|
746 |
|
|
break;
|
747 |
|
|
case COMPLEX:
|
748 |
|
|
lb *= n;
|
749 |
|
|
lb += TYPD_EXTRA_BYTES;
|
750 |
|
|
break;
|
751 |
|
|
}
|
752 |
|
|
if( SMALL_OBJ(lb) ) {
|
753 |
|
|
# ifdef MERGE_SIZES
|
754 |
|
|
lw = GC_size_map[lb];
|
755 |
|
|
# else
|
756 |
|
|
lw = ALIGNED_WORDS(lb);
|
757 |
|
|
# endif
|
758 |
|
|
opp = &(GC_arobjfreelist[lw]);
|
759 |
|
|
FASTLOCK();
|
760 |
|
|
if( !FASTLOCK_SUCCEEDED() || (op = *opp) == 0 ) {
|
761 |
|
|
FASTUNLOCK();
|
762 |
|
|
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_array_kind);
|
763 |
|
|
if (0 == op) return(0);
|
764 |
|
|
# ifdef MERGE_SIZES
|
765 |
|
|
lw = GC_size_map[lb]; /* May have been uninitialized. */
|
766 |
|
|
# endif
|
767 |
|
|
} else {
|
768 |
|
|
*opp = obj_link(op);
|
769 |
|
|
obj_link(op) = 0;
|
770 |
|
|
GC_words_allocd += lw;
|
771 |
|
|
FASTUNLOCK();
|
772 |
|
|
}
|
773 |
|
|
} else {
|
774 |
|
|
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_array_kind);
|
775 |
|
|
if (0 == op) return(0);
|
776 |
|
|
lw = BYTES_TO_WORDS(GC_size(op));
|
777 |
|
|
}
|
778 |
|
|
if (descr_type == LEAF) {
|
779 |
|
|
/* Set up the descriptor inside the object itself. */
|
780 |
|
|
VOLATILE struct LeafDescriptor * lp =
|
781 |
|
|
(struct LeafDescriptor *)
|
782 |
|
|
((word *)op
|
783 |
|
|
+ lw - (BYTES_TO_WORDS(sizeof(struct LeafDescriptor)) + 1));
|
784 |
|
|
|
785 |
|
|
lp -> ld_tag = LEAF_TAG;
|
786 |
|
|
lp -> ld_size = leaf.ld_size;
|
787 |
|
|
lp -> ld_nelements = leaf.ld_nelements;
|
788 |
|
|
lp -> ld_descriptor = leaf.ld_descriptor;
|
789 |
|
|
((VOLATILE word *)op)[lw - 1] = (word)lp;
|
790 |
|
|
} else {
|
791 |
|
|
extern unsigned GC_finalization_failures;
|
792 |
|
|
unsigned ff = GC_finalization_failures;
|
793 |
|
|
|
794 |
|
|
((word *)op)[lw - 1] = (word)complex_descr;
|
795 |
|
|
/* Make sure the descriptor is cleared once there is any danger */
|
796 |
|
|
/* it may have been collected. */
|
797 |
|
|
(void)
|
798 |
|
|
GC_general_register_disappearing_link((GC_PTR *)
|
799 |
|
|
((word *)op+lw-1),
|
800 |
|
|
(GC_PTR) op);
|
801 |
|
|
if (ff != GC_finalization_failures) {
|
802 |
|
|
/* Couldn't register it due to lack of memory. Punt. */
|
803 |
|
|
/* This will probably fail too, but gives the recovery code */
|
804 |
|
|
/* a chance. */
|
805 |
|
|
return(GC_malloc(n*lb));
|
806 |
|
|
}
|
807 |
|
|
}
|
808 |
|
|
return((GC_PTR) op);
|
809 |
|
|
}
|