OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [a-chtgbo.adb] - Blame information for rev 706

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT LIBRARY COMPONENTS                          --
4
--                                                                          --
5
--           ADA.CONTAINERS.HASH_TABLES.GENERIC_BOUNDED_OPERATIONS          --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 2004-2011, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- This unit was originally developed by Matthew J Heaney.                  --
28
------------------------------------------------------------------------------
29
 
30
with System;  use type System.Address;
31
 
32
package body Ada.Containers.Hash_Tables.Generic_Bounded_Operations is
33
 
34
   -----------
35
   -- Clear --
36
   -----------
37
 
38
   procedure Clear (HT : in out Hash_Table_Type'Class) is
39
   begin
40
      if HT.Busy > 0 then
41
         raise Program_Error with
42
           "attempt to tamper with cursors (container is busy)";
43
      end if;
44
 
45
      HT.Length := 0;
46
      --  HT.Busy := 0;
47
      --  HT.Lock := 0;
48
      HT.Free := -1;
49
      HT.Buckets := (others => 0);  -- optimize this somehow ???
50
   end Clear;
51
 
52
   ---------------------------
53
   -- Delete_Node_Sans_Free --
54
   ---------------------------
55
 
56
   procedure Delete_Node_Sans_Free
57
     (HT : in out Hash_Table_Type'Class;
58
      X  : Count_Type)
59
   is
60
      pragma Assert (X /= 0);
61
 
62
      Indx : Hash_Type;
63
      Prev : Count_Type;
64
      Curr : Count_Type;
65
 
66
   begin
67
      if HT.Length = 0 then
68
         raise Program_Error with
69
           "attempt to delete node from empty hashed container";
70
      end if;
71
 
72
      Indx := Index (HT, HT.Nodes (X));
73
      Prev := HT.Buckets (Indx);
74
 
75
      if Prev = 0 then
76
         raise Program_Error with
77
           "attempt to delete node from empty hash bucket";
78
      end if;
79
 
80
      if Prev = X then
81
         HT.Buckets (Indx) := Next (HT.Nodes (Prev));
82
         HT.Length := HT.Length - 1;
83
         return;
84
      end if;
85
 
86
      if HT.Length = 1 then
87
         raise Program_Error with
88
           "attempt to delete node not in its proper hash bucket";
89
      end if;
90
 
91
      loop
92
         Curr := Next (HT.Nodes (Prev));
93
 
94
         if Curr = 0 then
95
            raise Program_Error with
96
              "attempt to delete node not in its proper hash bucket";
97
         end if;
98
 
99
         if Curr = X then
100
            Set_Next (HT.Nodes (Prev), Next => Next (HT.Nodes (Curr)));
101
            HT.Length := HT.Length - 1;
102
            return;
103
         end if;
104
 
105
         Prev := Curr;
106
      end loop;
107
   end Delete_Node_Sans_Free;
108
 
109
   -----------
110
   -- First --
111
   -----------
112
 
113
   function First (HT : Hash_Table_Type'Class) return Count_Type is
114
      Indx : Hash_Type;
115
 
116
   begin
117
      if HT.Length = 0 then
118
         return 0;
119
      end if;
120
 
121
      Indx := HT.Buckets'First;
122
      loop
123
         if HT.Buckets (Indx) /= 0 then
124
            return HT.Buckets (Indx);
125
         end if;
126
 
127
         Indx := Indx + 1;
128
      end loop;
129
   end First;
130
 
131
   ----------
132
   -- Free --
133
   ----------
134
 
135
   procedure Free
136
     (HT : in out Hash_Table_Type'Class;
137
      X  : Count_Type)
138
   is
139
      N : Nodes_Type renames HT.Nodes;
140
 
141
   begin
142
      --  This subprogram "deallocates" a node by relinking the node off of the
143
      --  active list and onto the free list. Previously it would flag index
144
      --  value 0 as an error. The precondition was weakened, so that index
145
      --  value 0 is now allowed, and this value is interpreted to mean "do
146
      --  nothing". This makes its behavior analogous to the behavior of
147
      --  Ada.Unchecked_Deallocation, and allows callers to avoid having to add
148
      --  special-case checks at the point of call.
149
 
150
      if X = 0 then
151
         return;
152
      end if;
153
 
154
      pragma Assert (X <= HT.Capacity);
155
 
156
      --  pragma Assert (N (X).Prev >= 0);  -- node is active
157
      --  Find a way to mark a node as active vs. inactive; we could
158
      --  use a special value in Color_Type for this.  ???
159
 
160
      --  The hash table actually contains two data structures: a list for
161
      --  the "active" nodes that contain elements that have been inserted
162
      --  onto the container, and another for the "inactive" nodes of the free
163
      --  store.
164
      --
165
      --  We desire that merely declaring an object should have only minimal
166
      --  cost; specially, we want to avoid having to initialize the free
167
      --  store (to fill in the links), especially if the capacity is large.
168
      --
169
      --  The head of the free list is indicated by Container.Free. If its
170
      --  value is non-negative, then the free store has been initialized
171
      --  in the "normal" way: Container.Free points to the head of the list
172
      --  of free (inactive) nodes, and the value 0 means the free list is
173
      --  empty. Each node on the free list has been initialized to point
174
      --  to the next free node (via its Parent component), and the value 0
175
      --  means that this is the last free node.
176
      --
177
      --  If Container.Free is negative, then the links on the free store
178
      --  have not been initialized. In this case the link values are
179
      --  implied: the free store comprises the components of the node array
180
      --  started with the absolute value of Container.Free, and continuing
181
      --  until the end of the array (Nodes'Last).
182
      --
183
      --  ???
184
      --  It might be possible to perform an optimization here. Suppose that
185
      --  the free store can be represented as having two parts: one
186
      --  comprising the non-contiguous inactive nodes linked together
187
      --  in the normal way, and the other comprising the contiguous
188
      --  inactive nodes (that are not linked together, at the end of the
189
      --  nodes array). This would allow us to never have to initialize
190
      --  the free store, except in a lazy way as nodes become inactive.
191
 
192
      --  When an element is deleted from the list container, its node
193
      --  becomes inactive, and so we set its Next component to value of
194
      --  the node's index (in the nodes array), to indicate that it is
195
      --  now inactive. This provides a useful way to detect a dangling
196
      --  cursor reference.  ???
197
 
198
      Set_Next (N (X), Next => X);  -- Node is deallocated (not on active list)
199
 
200
      if HT.Free >= 0 then
201
         --  The free store has previously been initialized. All we need to
202
         --  do here is link the newly-free'd node onto the free list.
203
 
204
         Set_Next (N (X), HT.Free);
205
         HT.Free := X;
206
 
207
      elsif X + 1 = abs HT.Free then
208
         --  The free store has not been initialized, and the node becoming
209
         --  inactive immediately precedes the start of the free store. All
210
         --  we need to do is move the start of the free store back by one.
211
 
212
         HT.Free := HT.Free + 1;
213
 
214
      else
215
         --  The free store has not been initialized, and the node becoming
216
         --  inactive does not immediately precede the free store. Here we
217
         --  first initialize the free store (meaning the links are given
218
         --  values in the traditional way), and then link the newly-free'd
219
         --  node onto the head of the free store.
220
 
221
         --  ???
222
         --  See the comments above for an optimization opportunity. If
223
         --  the next link for a node on the free store is negative, then
224
         --  this means the remaining nodes on the free store are
225
         --  physically contiguous, starting as the absolute value of
226
         --  that index value.
227
 
228
         HT.Free := abs HT.Free;
229
 
230
         if HT.Free > HT.Capacity then
231
            HT.Free := 0;
232
 
233
         else
234
            for I in HT.Free .. HT.Capacity - 1 loop
235
               Set_Next (Node => N (I), Next => I + 1);
236
            end loop;
237
 
238
            Set_Next (Node => N (HT.Capacity), Next => 0);
239
         end if;
240
 
241
         Set_Next (Node => N (X), Next => HT.Free);
242
         HT.Free := X;
243
      end if;
244
   end Free;
245
 
246
   ----------------------
247
   -- Generic_Allocate --
248
   ----------------------
249
 
250
   procedure Generic_Allocate
251
     (HT   : in out Hash_Table_Type'Class;
252
      Node : out Count_Type)
253
   is
254
      N : Nodes_Type renames HT.Nodes;
255
 
256
   begin
257
      if HT.Free >= 0 then
258
         Node := HT.Free;
259
 
260
         --  We always perform the assignment first, before we
261
         --  change container state, in order to defend against
262
         --  exceptions duration assignment.
263
 
264
         Set_Element (N (Node));
265
         HT.Free := Next (N (Node));
266
 
267
      else
268
         --  A negative free store value means that the links of the nodes
269
         --  in the free store have not been initialized. In this case, the
270
         --  nodes are physically contiguous in the array, starting at the
271
         --  index that is the absolute value of the Container.Free, and
272
         --  continuing until the end of the array (Nodes'Last).
273
 
274
         Node := abs HT.Free;
275
 
276
         --  As above, we perform this assignment first, before modifying
277
         --  any container state.
278
 
279
         Set_Element (N (Node));
280
         HT.Free := HT.Free - 1;
281
      end if;
282
   end Generic_Allocate;
283
 
284
   -------------------
285
   -- Generic_Equal --
286
   -------------------
287
 
288
   function Generic_Equal
289
     (L, R : Hash_Table_Type'Class) return Boolean
290
   is
291
      L_Index : Hash_Type;
292
      L_Node  : Count_Type;
293
 
294
      N : Count_Type;
295
 
296
   begin
297
      if L'Address = R'Address then
298
         return True;
299
      end if;
300
 
301
      if L.Length /= R.Length then
302
         return False;
303
      end if;
304
 
305
      if L.Length = 0 then
306
         return True;
307
      end if;
308
 
309
      --  Find the first node of hash table L
310
 
311
      L_Index := L.Buckets'First;
312
      loop
313
         L_Node := L.Buckets (L_Index);
314
         exit when L_Node /= 0;
315
         L_Index := L_Index + 1;
316
      end loop;
317
 
318
      --  For each node of hash table L, search for an equivalent node in hash
319
      --  table R.
320
 
321
      N := L.Length;
322
      loop
323
         if not Find (HT => R, Key => L.Nodes (L_Node)) then
324
            return False;
325
         end if;
326
 
327
         N := N - 1;
328
 
329
         L_Node := Next (L.Nodes (L_Node));
330
 
331
         if L_Node = 0 then
332
            --  We have exhausted the nodes in this bucket
333
 
334
            if N = 0 then
335
               return True;
336
            end if;
337
 
338
            --  Find the next bucket
339
 
340
            loop
341
               L_Index := L_Index + 1;
342
               L_Node := L.Buckets (L_Index);
343
               exit when L_Node /= 0;
344
            end loop;
345
         end if;
346
      end loop;
347
   end Generic_Equal;
348
 
349
   -----------------------
350
   -- Generic_Iteration --
351
   -----------------------
352
 
353
   procedure Generic_Iteration (HT : Hash_Table_Type'Class) is
354
      Node : Count_Type;
355
 
356
   begin
357
      if HT.Length = 0 then
358
         return;
359
      end if;
360
 
361
      for Indx in HT.Buckets'Range loop
362
         Node := HT.Buckets (Indx);
363
         while Node /= 0 loop
364
            Process (Node);
365
            Node := Next (HT.Nodes (Node));
366
         end loop;
367
      end loop;
368
   end Generic_Iteration;
369
 
370
   ------------------
371
   -- Generic_Read --
372
   ------------------
373
 
374
   procedure Generic_Read
375
     (Stream : not null access Root_Stream_Type'Class;
376
      HT     : out Hash_Table_Type'Class)
377
   is
378
      N  : Count_Type'Base;
379
 
380
   begin
381
      Clear (HT);
382
 
383
      Count_Type'Base'Read (Stream, N);
384
 
385
      if N < 0 then
386
         raise Program_Error with "stream appears to be corrupt";
387
      end if;
388
 
389
      if N = 0 then
390
         return;
391
      end if;
392
 
393
      if N > HT.Capacity then
394
         raise Capacity_Error with "too many elements in stream";
395
      end if;
396
 
397
      for J in 1 .. N loop
398
         declare
399
            Node : constant Count_Type := New_Node (Stream);
400
            Indx : constant Hash_Type := Index (HT, HT.Nodes (Node));
401
            B    : Count_Type renames HT.Buckets (Indx);
402
         begin
403
            Set_Next (HT.Nodes (Node), Next => B);
404
            B := Node;
405
         end;
406
 
407
         HT.Length := HT.Length + 1;
408
      end loop;
409
   end Generic_Read;
410
 
411
   -------------------
412
   -- Generic_Write --
413
   -------------------
414
 
415
   procedure Generic_Write
416
     (Stream : not null access Root_Stream_Type'Class;
417
      HT     : Hash_Table_Type'Class)
418
   is
419
      procedure Write (Node : Count_Type);
420
      pragma Inline (Write);
421
 
422
      procedure Write is new Generic_Iteration (Write);
423
 
424
      -----------
425
      -- Write --
426
      -----------
427
 
428
      procedure Write (Node : Count_Type) is
429
      begin
430
         Write (Stream, HT.Nodes (Node));
431
      end Write;
432
 
433
   begin
434
      Count_Type'Base'Write (Stream, HT.Length);
435
      Write (HT);
436
   end Generic_Write;
437
 
438
   -----------
439
   -- Index --
440
   -----------
441
 
442
   function Index
443
     (Buckets : Buckets_Type;
444
      Node    : Node_Type) return Hash_Type is
445
   begin
446
      return Buckets'First + Hash_Node (Node) mod Buckets'Length;
447
   end Index;
448
 
449
   function Index
450
     (HT   : Hash_Table_Type'Class;
451
      Node : Node_Type) return Hash_Type is
452
   begin
453
      return Index (HT.Buckets, Node);
454
   end Index;
455
 
456
   ----------
457
   -- Next --
458
   ----------
459
 
460
   function Next
461
     (HT   : Hash_Table_Type'Class;
462
      Node : Count_Type) return Count_Type
463
   is
464
      Result : Count_Type := Next (HT.Nodes (Node));
465
 
466
   begin
467
      if Result /= 0 then  -- another node in same bucket
468
         return Result;
469
      end if;
470
 
471
      --  This was the last node in the bucket, so move to the next
472
      --  bucket, and start searching for next node from there.
473
 
474
      for Indx in Index (HT, HT.Nodes (Node)) + 1 .. HT.Buckets'Last loop
475
         Result := HT.Buckets (Indx);
476
 
477
         if Result /= 0 then  -- bucket is not empty
478
            return Result;
479
         end if;
480
      end loop;
481
 
482
      return 0;
483
   end Next;
484
 
485
end Ada.Containers.Hash_Tables.Generic_Bounded_Operations;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.