OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [a-ciormu.adb] - Blame information for rev 750

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT LIBRARY COMPONENTS                          --
4
--                                                                          --
5
--               ADA.CONTAINERS.INDEFINITE_ORDERED_MULTISETS                --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 2004-2011, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- This unit was originally developed by Matthew J Heaney.                  --
28
------------------------------------------------------------------------------
29
 
30
with Ada.Unchecked_Deallocation;
31
 
32
with Ada.Containers.Red_Black_Trees.Generic_Operations;
33
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);
34
 
35
with Ada.Containers.Red_Black_Trees.Generic_Keys;
36
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);
37
 
38
with Ada.Containers.Red_Black_Trees.Generic_Set_Operations;
39
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations);
40
 
41
with System; use type System.Address;
42
 
43
package body Ada.Containers.Indefinite_Ordered_Multisets is
44
 
45
   type Iterator is new Limited_Controlled and
46
     Set_Iterator_Interfaces.Reversible_Iterator with
47
   record
48
      Container : Set_Access;
49
      Node      : Node_Access;
50
   end record;
51
 
52
   overriding procedure Finalize (Object : in out Iterator);
53
 
54
   overriding function First (Object : Iterator) return Cursor;
55
   overriding function Last  (Object : Iterator) return Cursor;
56
 
57
   overriding function Next
58
     (Object   : Iterator;
59
      Position : Cursor) return Cursor;
60
 
61
   overriding function Previous
62
     (Object   : Iterator;
63
      Position : Cursor) return Cursor;
64
 
65
   -----------------------------
66
   -- Node Access Subprograms --
67
   -----------------------------
68
 
69
   --  These subprograms provide a functional interface to access fields
70
   --  of a node, and a procedural interface for modifying these values.
71
 
72
   function Color (Node : Node_Access) return Color_Type;
73
   pragma Inline (Color);
74
 
75
   function Left (Node : Node_Access) return Node_Access;
76
   pragma Inline (Left);
77
 
78
   function Parent (Node : Node_Access) return Node_Access;
79
   pragma Inline (Parent);
80
 
81
   function Right (Node : Node_Access) return Node_Access;
82
   pragma Inline (Right);
83
 
84
   procedure Set_Parent (Node : Node_Access; Parent : Node_Access);
85
   pragma Inline (Set_Parent);
86
 
87
   procedure Set_Left (Node : Node_Access; Left : Node_Access);
88
   pragma Inline (Set_Left);
89
 
90
   procedure Set_Right (Node : Node_Access; Right : Node_Access);
91
   pragma Inline (Set_Right);
92
 
93
   procedure Set_Color (Node : Node_Access; Color : Color_Type);
94
   pragma Inline (Set_Color);
95
 
96
   -----------------------
97
   -- Local Subprograms --
98
   -----------------------
99
 
100
   function Copy_Node (Source : Node_Access) return Node_Access;
101
   pragma Inline (Copy_Node);
102
 
103
   procedure Free (X : in out Node_Access);
104
 
105
   procedure Insert_Sans_Hint
106
     (Tree     : in out Tree_Type;
107
      New_Item : Element_Type;
108
      Node     : out Node_Access);
109
 
110
   procedure Insert_With_Hint
111
     (Dst_Tree : in out Tree_Type;
112
      Dst_Hint : Node_Access;
113
      Src_Node : Node_Access;
114
      Dst_Node : out Node_Access);
115
 
116
   function Is_Equal_Node_Node (L, R : Node_Access) return Boolean;
117
   pragma Inline (Is_Equal_Node_Node);
118
 
119
   function Is_Greater_Element_Node
120
     (Left  : Element_Type;
121
      Right : Node_Access) return Boolean;
122
   pragma Inline (Is_Greater_Element_Node);
123
 
124
   function Is_Less_Element_Node
125
     (Left  : Element_Type;
126
      Right : Node_Access) return Boolean;
127
   pragma Inline (Is_Less_Element_Node);
128
 
129
   function Is_Less_Node_Node (L, R : Node_Access) return Boolean;
130
   pragma Inline (Is_Less_Node_Node);
131
 
132
   procedure Replace_Element
133
     (Tree : in out Tree_Type;
134
      Node : Node_Access;
135
      Item : Element_Type);
136
 
137
   --------------------------
138
   -- Local Instantiations --
139
   --------------------------
140
 
141
   package Tree_Operations is
142
     new Red_Black_Trees.Generic_Operations (Tree_Types);
143
 
144
   procedure Delete_Tree is
145
     new Tree_Operations.Generic_Delete_Tree (Free);
146
 
147
   function Copy_Tree is
148
     new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree);
149
 
150
   use Tree_Operations;
151
 
152
   procedure Free_Element is
153
     new Ada.Unchecked_Deallocation (Element_Type, Element_Access);
154
 
155
   function Is_Equal is
156
     new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
157
 
158
   package Set_Ops is
159
     new Generic_Set_Operations
160
       (Tree_Operations  => Tree_Operations,
161
        Insert_With_Hint => Insert_With_Hint,
162
        Copy_Tree        => Copy_Tree,
163
        Delete_Tree      => Delete_Tree,
164
        Is_Less          => Is_Less_Node_Node,
165
        Free             => Free);
166
 
167
   package Element_Keys is
168
     new Red_Black_Trees.Generic_Keys
169
       (Tree_Operations     => Tree_Operations,
170
        Key_Type            => Element_Type,
171
        Is_Less_Key_Node    => Is_Less_Element_Node,
172
        Is_Greater_Key_Node => Is_Greater_Element_Node);
173
 
174
   ---------
175
   -- "<" --
176
   ---------
177
 
178
   function "<" (Left, Right : Cursor) return Boolean is
179
   begin
180
      if Left.Node = null then
181
         raise Constraint_Error with "Left cursor equals No_Element";
182
      end if;
183
 
184
      if Right.Node = null then
185
         raise Constraint_Error with "Right cursor equals No_Element";
186
      end if;
187
 
188
      if Left.Node.Element = null then
189
         raise Program_Error with "Left cursor is bad";
190
      end if;
191
 
192
      if Right.Node.Element = null then
193
         raise Program_Error with "Right cursor is bad";
194
      end if;
195
 
196
      pragma Assert (Vet (Left.Container.Tree, Left.Node),
197
                     "bad Left cursor in ""<""");
198
 
199
      pragma Assert (Vet (Right.Container.Tree, Right.Node),
200
                     "bad Right cursor in ""<""");
201
 
202
      return Left.Node.Element.all < Right.Node.Element.all;
203
   end "<";
204
 
205
   function "<" (Left : Cursor; Right : Element_Type) return Boolean is
206
   begin
207
      if Left.Node = null then
208
         raise Constraint_Error with "Left cursor equals No_Element";
209
      end if;
210
 
211
      if Left.Node.Element = null then
212
         raise Program_Error with "Left cursor is bad";
213
      end if;
214
 
215
      pragma Assert (Vet (Left.Container.Tree, Left.Node),
216
                     "bad Left cursor in ""<""");
217
 
218
      return Left.Node.Element.all < Right;
219
   end "<";
220
 
221
   function "<" (Left : Element_Type; Right : Cursor) return Boolean is
222
   begin
223
      if Right.Node = null then
224
         raise Constraint_Error with "Right cursor equals No_Element";
225
      end if;
226
 
227
      if Right.Node.Element = null then
228
         raise Program_Error with "Right cursor is bad";
229
      end if;
230
 
231
      pragma Assert (Vet (Right.Container.Tree, Right.Node),
232
                     "bad Right cursor in ""<""");
233
 
234
      return Left < Right.Node.Element.all;
235
   end "<";
236
 
237
   ---------
238
   -- "=" --
239
   ---------
240
 
241
   function "=" (Left, Right : Set) return Boolean is
242
   begin
243
      return Is_Equal (Left.Tree, Right.Tree);
244
   end "=";
245
 
246
   ---------
247
   -- ">" --
248
   ---------
249
 
250
   function ">" (Left, Right : Cursor) return Boolean is
251
   begin
252
      if Left.Node = null then
253
         raise Constraint_Error with "Left cursor equals No_Element";
254
      end if;
255
 
256
      if Right.Node = null then
257
         raise Constraint_Error with "Right cursor equals No_Element";
258
      end if;
259
 
260
      if Left.Node.Element = null then
261
         raise Program_Error with "Left cursor is bad";
262
      end if;
263
 
264
      if Right.Node.Element = null then
265
         raise Program_Error with "Right cursor is bad";
266
      end if;
267
 
268
      pragma Assert (Vet (Left.Container.Tree, Left.Node),
269
                     "bad Left cursor in "">""");
270
 
271
      pragma Assert (Vet (Right.Container.Tree, Right.Node),
272
                     "bad Right cursor in "">""");
273
 
274
      --  L > R same as R < L
275
 
276
      return Right.Node.Element.all < Left.Node.Element.all;
277
   end ">";
278
 
279
   function ">" (Left : Cursor; Right : Element_Type) return Boolean is
280
   begin
281
      if Left.Node = null then
282
         raise Constraint_Error with "Left cursor equals No_Element";
283
      end if;
284
 
285
      if Left.Node.Element = null then
286
         raise Program_Error with "Left cursor is bad";
287
      end if;
288
 
289
      pragma Assert (Vet (Left.Container.Tree, Left.Node),
290
                     "bad Left cursor in "">""");
291
 
292
      return Right < Left.Node.Element.all;
293
   end ">";
294
 
295
   function ">" (Left : Element_Type; Right : Cursor) return Boolean is
296
   begin
297
      if Right.Node = null then
298
         raise Constraint_Error with "Right cursor equals No_Element";
299
      end if;
300
 
301
      if Right.Node.Element = null then
302
         raise Program_Error with "Right cursor is bad";
303
      end if;
304
 
305
      pragma Assert (Vet (Right.Container.Tree, Right.Node),
306
                     "bad Right cursor in "">""");
307
 
308
      return Right.Node.Element.all < Left;
309
   end ">";
310
 
311
   ------------
312
   -- Adjust --
313
   ------------
314
 
315
   procedure Adjust is
316
      new Tree_Operations.Generic_Adjust (Copy_Tree);
317
 
318
   procedure Adjust (Container : in out Set) is
319
   begin
320
      Adjust (Container.Tree);
321
   end Adjust;
322
 
323
   ------------
324
   -- Assign --
325
   ------------
326
 
327
   procedure Assign (Target : in out Set; Source : Set) is
328
   begin
329
      if Target'Address = Source'Address then
330
         return;
331
      end if;
332
 
333
      Target.Clear;
334
      Target.Union (Source);
335
   end Assign;
336
 
337
   -------------
338
   -- Ceiling --
339
   -------------
340
 
341
   function Ceiling (Container : Set; Item : Element_Type) return Cursor is
342
      Node : constant Node_Access :=
343
               Element_Keys.Ceiling (Container.Tree, Item);
344
 
345
   begin
346
      if Node = null then
347
         return No_Element;
348
      end if;
349
 
350
      return Cursor'(Container'Unrestricted_Access, Node);
351
   end Ceiling;
352
 
353
   -----------
354
   -- Clear --
355
   -----------
356
 
357
   procedure Clear is
358
      new Tree_Operations.Generic_Clear (Delete_Tree);
359
 
360
   procedure Clear (Container : in out Set) is
361
   begin
362
      Clear (Container.Tree);
363
   end Clear;
364
 
365
   -----------
366
   -- Color --
367
   -----------
368
 
369
   function Color (Node : Node_Access) return Color_Type is
370
   begin
371
      return Node.Color;
372
   end Color;
373
 
374
   --------------
375
   -- Contains --
376
   --------------
377
 
378
   function Contains (Container : Set; Item : Element_Type) return Boolean is
379
   begin
380
      return Find (Container, Item) /= No_Element;
381
   end Contains;
382
 
383
   ----------
384
   -- Copy --
385
   ----------
386
 
387
   function Copy (Source : Set) return Set is
388
   begin
389
      return Target : Set do
390
         Target.Assign (Source);
391
      end return;
392
   end Copy;
393
 
394
   ---------------
395
   -- Copy_Node --
396
   ---------------
397
 
398
   function Copy_Node (Source : Node_Access) return Node_Access is
399
      X : Element_Access := new Element_Type'(Source.Element.all);
400
 
401
   begin
402
      return new Node_Type'(Parent  => null,
403
                            Left    => null,
404
                            Right   => null,
405
                            Color   => Source.Color,
406
                            Element => X);
407
 
408
   exception
409
      when others =>
410
         Free_Element (X);
411
         raise;
412
   end Copy_Node;
413
 
414
   ------------
415
   -- Delete --
416
   ------------
417
 
418
   procedure Delete (Container : in out Set; Item : Element_Type) is
419
      Tree : Tree_Type renames Container.Tree;
420
      Node : Node_Access := Element_Keys.Ceiling (Tree, Item);
421
      Done : constant Node_Access := Element_Keys.Upper_Bound (Tree, Item);
422
      X    : Node_Access;
423
 
424
   begin
425
      if Node = Done then
426
         raise Constraint_Error with "attempt to delete element not in set";
427
      end if;
428
 
429
      loop
430
         X := Node;
431
         Node := Tree_Operations.Next (Node);
432
         Tree_Operations.Delete_Node_Sans_Free (Tree, X);
433
         Free (X);
434
 
435
         exit when Node = Done;
436
      end loop;
437
   end Delete;
438
 
439
   procedure Delete (Container : in out Set; Position : in out Cursor) is
440
   begin
441
      if Position.Node = null then
442
         raise Constraint_Error with "Position cursor equals No_Element";
443
      end if;
444
 
445
      if Position.Node.Element = null then
446
         raise Program_Error with "Position cursor is bad";
447
      end if;
448
 
449
      if Position.Container /= Container'Unrestricted_Access then
450
         raise Program_Error with "Position cursor designates wrong set";
451
      end if;
452
 
453
      pragma Assert (Vet (Container.Tree, Position.Node),
454
                     "bad cursor in Delete");
455
 
456
      Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node);
457
      Free (Position.Node);
458
 
459
      Position.Container := null;
460
   end Delete;
461
 
462
   ------------------
463
   -- Delete_First --
464
   ------------------
465
 
466
   procedure Delete_First (Container : in out Set) is
467
      Tree : Tree_Type renames Container.Tree;
468
      X    : Node_Access := Tree.First;
469
 
470
   begin
471
      if X = null then
472
         return;
473
      end if;
474
 
475
      Tree_Operations.Delete_Node_Sans_Free (Tree, X);
476
      Free (X);
477
   end Delete_First;
478
 
479
   -----------------
480
   -- Delete_Last --
481
   -----------------
482
 
483
   procedure Delete_Last (Container : in out Set) is
484
      Tree : Tree_Type renames Container.Tree;
485
      X    : Node_Access := Tree.Last;
486
 
487
   begin
488
      if X = null then
489
         return;
490
      end if;
491
 
492
      Tree_Operations.Delete_Node_Sans_Free (Tree, X);
493
      Free (X);
494
   end Delete_Last;
495
 
496
   ----------------
497
   -- Difference --
498
   ----------------
499
 
500
   procedure Difference (Target : in out Set; Source : Set) is
501
   begin
502
      Set_Ops.Difference (Target.Tree, Source.Tree);
503
   end Difference;
504
 
505
   function Difference (Left, Right : Set) return Set is
506
      Tree : constant Tree_Type :=
507
               Set_Ops.Difference (Left.Tree, Right.Tree);
508
   begin
509
      return Set'(Controlled with Tree);
510
   end Difference;
511
 
512
   -------------
513
   -- Element --
514
   -------------
515
 
516
   function Element (Position : Cursor) return Element_Type is
517
   begin
518
      if Position.Node = null then
519
         raise Constraint_Error with "Position cursor equals No_Element";
520
      end if;
521
 
522
      if Position.Node.Element = null then
523
         raise Program_Error with "Position cursor is bad";
524
      end if;
525
 
526
      pragma Assert (Vet (Position.Container.Tree, Position.Node),
527
                     "bad cursor in Element");
528
 
529
      return Position.Node.Element.all;
530
   end Element;
531
 
532
   -------------------------
533
   -- Equivalent_Elements --
534
   -------------------------
535
 
536
   function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
537
   begin
538
      if Left < Right
539
        or else Right < Left
540
      then
541
         return False;
542
      else
543
         return True;
544
      end if;
545
   end Equivalent_Elements;
546
 
547
   ---------------------
548
   -- Equivalent_Sets --
549
   ---------------------
550
 
551
   function Equivalent_Sets (Left, Right : Set) return Boolean is
552
 
553
      function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean;
554
      pragma Inline (Is_Equivalent_Node_Node);
555
 
556
      function Is_Equivalent is
557
         new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
558
 
559
      -----------------------------
560
      -- Is_Equivalent_Node_Node --
561
      -----------------------------
562
 
563
      function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is
564
      begin
565
         if L.Element.all < R.Element.all then
566
            return False;
567
         elsif R.Element.all < L.Element.all then
568
            return False;
569
         else
570
            return True;
571
         end if;
572
      end Is_Equivalent_Node_Node;
573
 
574
   --  Start of processing for Equivalent_Sets
575
 
576
   begin
577
      return Is_Equivalent (Left.Tree, Right.Tree);
578
   end Equivalent_Sets;
579
 
580
   -------------
581
   -- Exclude --
582
   -------------
583
 
584
   procedure Exclude (Container : in out Set; Item : Element_Type) is
585
      Tree : Tree_Type renames Container.Tree;
586
      Node : Node_Access := Element_Keys.Ceiling (Tree, Item);
587
      Done : constant Node_Access := Element_Keys.Upper_Bound (Tree, Item);
588
      X    : Node_Access;
589
 
590
   begin
591
      while Node /= Done loop
592
         X := Node;
593
         Node := Tree_Operations.Next (Node);
594
         Tree_Operations.Delete_Node_Sans_Free (Tree, X);
595
         Free (X);
596
      end loop;
597
   end Exclude;
598
 
599
   ----------
600
   -- Find --
601
   ----------
602
 
603
   function Find (Container : Set; Item : Element_Type) return Cursor is
604
      Node : constant Node_Access :=
605
               Element_Keys.Find (Container.Tree, Item);
606
 
607
   begin
608
      if Node = null then
609
         return No_Element;
610
      end if;
611
 
612
      return Cursor'(Container'Unrestricted_Access, Node);
613
   end Find;
614
 
615
   --------------
616
   -- Finalize --
617
   --------------
618
 
619
   procedure Finalize (Object : in out Iterator) is
620
      B : Natural renames Object.Container.Tree.Busy;
621
      pragma Assert (B > 0);
622
   begin
623
      B := B - 1;
624
   end Finalize;
625
 
626
   -----------
627
   -- First --
628
   -----------
629
 
630
   function First (Container : Set) return Cursor is
631
   begin
632
      if Container.Tree.First = null then
633
         return No_Element;
634
      end if;
635
 
636
      return Cursor'(Container'Unrestricted_Access, Container.Tree.First);
637
   end First;
638
 
639
   function First (Object : Iterator) return Cursor is
640
   begin
641
      --  The value of the iterator object's Node component influences the
642
      --  behavior of the First (and Last) selector function.
643
 
644
      --  When the Node component is null, this means the iterator object was
645
      --  constructed without a start expression, in which case the (forward)
646
      --  iteration starts from the (logical) beginning of the entire sequence
647
      --  of items (corresponding to Container.First, for a forward iterator).
648
 
649
      --  Otherwise, this is iteration over a partial sequence of items. When
650
      --  the Node component is non-null, the iterator object was constructed
651
      --  with a start expression, that specifies the position from which the
652
      --  (forward) partial iteration begins.
653
 
654
      if Object.Node = null then
655
         return Object.Container.First;
656
      else
657
         return Cursor'(Object.Container, Object.Node);
658
      end if;
659
   end First;
660
 
661
   -------------------
662
   -- First_Element --
663
   -------------------
664
 
665
   function First_Element (Container : Set) return Element_Type is
666
   begin
667
      if Container.Tree.First = null then
668
         raise Constraint_Error with "set is empty";
669
      end if;
670
 
671
      pragma Assert (Container.Tree.First.Element /= null);
672
      return Container.Tree.First.Element.all;
673
   end First_Element;
674
 
675
   -----------
676
   -- Floor --
677
   -----------
678
 
679
   function Floor (Container : Set; Item : Element_Type) return Cursor is
680
      Node : constant Node_Access :=
681
               Element_Keys.Floor (Container.Tree, Item);
682
 
683
   begin
684
      if Node = null then
685
         return No_Element;
686
      end if;
687
 
688
      return Cursor'(Container'Unrestricted_Access, Node);
689
   end Floor;
690
 
691
   ----------
692
   -- Free --
693
   ----------
694
 
695
   procedure Free (X : in out Node_Access) is
696
      procedure Deallocate is
697
        new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
698
 
699
   begin
700
      if X = null then
701
         return;
702
      end if;
703
 
704
      X.Parent := X;
705
      X.Left := X;
706
      X.Right := X;
707
 
708
      begin
709
         Free_Element (X.Element);
710
      exception
711
         when others =>
712
            X.Element := null;
713
            Deallocate (X);
714
            raise;
715
      end;
716
 
717
      Deallocate (X);
718
   end Free;
719
 
720
   ------------------
721
   -- Generic_Keys --
722
   ------------------
723
 
724
   package body Generic_Keys is
725
 
726
      -----------------------
727
      -- Local Subprograms --
728
      -----------------------
729
 
730
      function Is_Less_Key_Node
731
        (Left  : Key_Type;
732
         Right : Node_Access) return Boolean;
733
      pragma Inline (Is_Less_Key_Node);
734
 
735
      function Is_Greater_Key_Node
736
        (Left  : Key_Type;
737
         Right : Node_Access) return Boolean;
738
      pragma Inline (Is_Greater_Key_Node);
739
 
740
      --------------------------
741
      -- Local Instantiations --
742
      --------------------------
743
 
744
      package Key_Keys is
745
        new Red_Black_Trees.Generic_Keys
746
          (Tree_Operations     => Tree_Operations,
747
           Key_Type            => Key_Type,
748
           Is_Less_Key_Node    => Is_Less_Key_Node,
749
           Is_Greater_Key_Node => Is_Greater_Key_Node);
750
 
751
      -------------
752
      -- Ceiling --
753
      -------------
754
 
755
      function Ceiling (Container : Set; Key : Key_Type) return Cursor is
756
         Node : constant Node_Access :=
757
                  Key_Keys.Ceiling (Container.Tree, Key);
758
 
759
      begin
760
         if Node = null then
761
            return No_Element;
762
         end if;
763
 
764
         return Cursor'(Container'Unrestricted_Access, Node);
765
      end Ceiling;
766
 
767
      --------------
768
      -- Contains --
769
      --------------
770
 
771
      function Contains (Container : Set; Key : Key_Type) return Boolean is
772
      begin
773
         return Find (Container, Key) /= No_Element;
774
      end Contains;
775
 
776
      ------------
777
      -- Delete --
778
      ------------
779
 
780
      procedure Delete (Container : in out Set; Key : Key_Type) is
781
         Tree : Tree_Type renames Container.Tree;
782
         Node : Node_Access := Key_Keys.Ceiling (Tree, Key);
783
         Done : constant Node_Access := Key_Keys.Upper_Bound (Tree, Key);
784
         X    : Node_Access;
785
 
786
      begin
787
         if Node = Done then
788
            raise Constraint_Error with "attempt to delete key not in set";
789
         end if;
790
 
791
         loop
792
            X := Node;
793
            Node := Tree_Operations.Next (Node);
794
            Tree_Operations.Delete_Node_Sans_Free (Tree, X);
795
            Free (X);
796
 
797
            exit when Node = Done;
798
         end loop;
799
      end Delete;
800
 
801
      -------------
802
      -- Element --
803
      -------------
804
 
805
      function Element (Container : Set; Key : Key_Type) return Element_Type is
806
         Node : constant Node_Access :=
807
                  Key_Keys.Find (Container.Tree, Key);
808
 
809
      begin
810
         if Node = null then
811
            raise Constraint_Error with "key not in set";
812
         end if;
813
 
814
         return Node.Element.all;
815
      end Element;
816
 
817
      ---------------------
818
      -- Equivalent_Keys --
819
      ---------------------
820
 
821
      function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
822
      begin
823
         if Left < Right
824
           or else Right < Left
825
         then
826
            return False;
827
         else
828
            return True;
829
         end if;
830
      end Equivalent_Keys;
831
 
832
      -------------
833
      -- Exclude --
834
      -------------
835
 
836
      procedure Exclude (Container : in out Set; Key : Key_Type) is
837
         Tree : Tree_Type renames Container.Tree;
838
         Node : Node_Access := Key_Keys.Ceiling (Tree, Key);
839
         Done : constant Node_Access := Key_Keys.Upper_Bound (Tree, Key);
840
         X    : Node_Access;
841
 
842
      begin
843
         while Node /= Done loop
844
            X := Node;
845
            Node := Tree_Operations.Next (Node);
846
            Tree_Operations.Delete_Node_Sans_Free (Tree, X);
847
            Free (X);
848
         end loop;
849
      end Exclude;
850
 
851
      ----------
852
      -- Find --
853
      ----------
854
 
855
      function Find (Container : Set; Key : Key_Type) return Cursor is
856
         Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
857
 
858
      begin
859
         if Node = null then
860
            return No_Element;
861
         end if;
862
 
863
         return Cursor'(Container'Unrestricted_Access, Node);
864
      end Find;
865
 
866
      -----------
867
      -- Floor --
868
      -----------
869
 
870
      function Floor (Container : Set; Key : Key_Type) return Cursor is
871
         Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key);
872
 
873
      begin
874
         if Node = null then
875
            return No_Element;
876
         end if;
877
 
878
         return Cursor'(Container'Unrestricted_Access, Node);
879
      end Floor;
880
 
881
      -------------------------
882
      -- Is_Greater_Key_Node --
883
      -------------------------
884
 
885
      function Is_Greater_Key_Node
886
        (Left  : Key_Type;
887
         Right : Node_Access) return Boolean
888
      is
889
      begin
890
         return Key (Right.Element.all) < Left;
891
      end Is_Greater_Key_Node;
892
 
893
      ----------------------
894
      -- Is_Less_Key_Node --
895
      ----------------------
896
 
897
      function Is_Less_Key_Node
898
        (Left  : Key_Type;
899
         Right : Node_Access) return Boolean
900
      is
901
      begin
902
         return Left < Key (Right.Element.all);
903
      end Is_Less_Key_Node;
904
 
905
      -------------
906
      -- Iterate --
907
      -------------
908
 
909
      procedure Iterate
910
        (Container : Set;
911
         Key       : Key_Type;
912
         Process   : not null access procedure (Position : Cursor))
913
      is
914
         procedure Process_Node (Node : Node_Access);
915
         pragma Inline (Process_Node);
916
 
917
         procedure Local_Iterate is
918
           new Key_Keys.Generic_Iteration (Process_Node);
919
 
920
         ------------------
921
         -- Process_Node --
922
         ------------------
923
 
924
         procedure Process_Node (Node : Node_Access) is
925
         begin
926
            Process (Cursor'(Container'Unrestricted_Access, Node));
927
         end Process_Node;
928
 
929
         T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
930
         B : Natural renames T.Busy;
931
 
932
      --  Start of processing for Iterate
933
 
934
      begin
935
         B := B + 1;
936
 
937
         begin
938
            Local_Iterate (T, Key);
939
         exception
940
            when others =>
941
               B := B - 1;
942
               raise;
943
         end;
944
 
945
         B := B - 1;
946
      end Iterate;
947
 
948
      ---------
949
      -- Key --
950
      ---------
951
 
952
      function Key (Position : Cursor) return Key_Type is
953
      begin
954
         if Position.Node = null then
955
            raise Constraint_Error with
956
              "Position cursor equals No_Element";
957
         end if;
958
 
959
         if Position.Node.Element = null then
960
            raise Program_Error with
961
              "Position cursor is bad";
962
         end if;
963
 
964
         pragma Assert (Vet (Position.Container.Tree, Position.Node),
965
                        "bad cursor in Key");
966
 
967
         return Key (Position.Node.Element.all);
968
      end Key;
969
 
970
      ---------------------
971
      -- Reverse_Iterate --
972
      ---------------------
973
 
974
      procedure Reverse_Iterate
975
        (Container : Set;
976
         Key       : Key_Type;
977
         Process   : not null access procedure (Position : Cursor))
978
      is
979
         procedure Process_Node (Node : Node_Access);
980
         pragma Inline (Process_Node);
981
 
982
         -------------
983
         -- Iterate --
984
         -------------
985
 
986
         procedure Local_Reverse_Iterate is
987
            new Key_Keys.Generic_Reverse_Iteration (Process_Node);
988
 
989
         ------------------
990
         -- Process_Node --
991
         ------------------
992
 
993
         procedure Process_Node (Node : Node_Access) is
994
         begin
995
            Process (Cursor'(Container'Unrestricted_Access, Node));
996
         end Process_Node;
997
 
998
         T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
999
         B : Natural renames T.Busy;
1000
 
1001
      --  Start of processing for Reverse_Iterate
1002
 
1003
      begin
1004
         B := B + 1;
1005
 
1006
         begin
1007
            Local_Reverse_Iterate (T, Key);
1008
         exception
1009
            when others =>
1010
               B := B - 1;
1011
               raise;
1012
         end;
1013
 
1014
         B := B - 1;
1015
      end Reverse_Iterate;
1016
 
1017
      --------------------
1018
      -- Update_Element --
1019
      --------------------
1020
 
1021
      procedure Update_Element
1022
        (Container : in out Set;
1023
         Position  : Cursor;
1024
         Process   : not null access procedure (Element : in out Element_Type))
1025
      is
1026
         Tree : Tree_Type renames Container.Tree;
1027
         Node : constant Node_Access := Position.Node;
1028
 
1029
      begin
1030
         if Node = null then
1031
            raise Constraint_Error with "Position cursor equals No_Element";
1032
         end if;
1033
 
1034
         if Node.Element = null then
1035
            raise Program_Error with "Position cursor is bad";
1036
         end if;
1037
 
1038
         if Position.Container /= Container'Unrestricted_Access then
1039
            raise Program_Error with "Position cursor designates wrong set";
1040
         end if;
1041
 
1042
         pragma Assert (Vet (Tree, Node),
1043
                        "bad cursor in Update_Element");
1044
 
1045
         declare
1046
            E : Element_Type renames Node.Element.all;
1047
            K : constant Key_Type := Key (E);
1048
 
1049
            B : Natural renames Tree.Busy;
1050
            L : Natural renames Tree.Lock;
1051
 
1052
         begin
1053
            B := B + 1;
1054
            L := L + 1;
1055
 
1056
            begin
1057
               Process (E);
1058
            exception
1059
               when others =>
1060
                  L := L - 1;
1061
                  B := B - 1;
1062
                  raise;
1063
            end;
1064
 
1065
            L := L - 1;
1066
            B := B - 1;
1067
 
1068
            if Equivalent_Keys (Left => K, Right => Key (E)) then
1069
               return;
1070
            end if;
1071
         end;
1072
 
1073
         --  Delete_Node checks busy-bit
1074
 
1075
         Tree_Operations.Delete_Node_Sans_Free (Tree, Node);
1076
 
1077
         Insert_New_Item : declare
1078
            function New_Node return Node_Access;
1079
            pragma Inline (New_Node);
1080
 
1081
            procedure Insert_Post is
1082
               new Element_Keys.Generic_Insert_Post (New_Node);
1083
 
1084
            procedure Unconditional_Insert is
1085
               new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
1086
 
1087
            --------------
1088
            -- New_Node --
1089
            --------------
1090
 
1091
            function New_Node return Node_Access is
1092
            begin
1093
               Node.Color := Red_Black_Trees.Red;
1094
               Node.Parent := null;
1095
               Node.Left := null;
1096
               Node.Right := null;
1097
 
1098
               return Node;
1099
            end New_Node;
1100
 
1101
            Result : Node_Access;
1102
 
1103
         --  Start of processing for Insert_New_Item
1104
 
1105
         begin
1106
            Unconditional_Insert
1107
              (Tree => Tree,
1108
               Key  => Node.Element.all,
1109
               Node => Result);
1110
 
1111
            pragma Assert (Result = Node);
1112
         end Insert_New_Item;
1113
      end Update_Element;
1114
 
1115
   end Generic_Keys;
1116
 
1117
   -----------------
1118
   -- Has_Element --
1119
   -----------------
1120
 
1121
   function Has_Element (Position : Cursor) return Boolean is
1122
   begin
1123
      return Position /= No_Element;
1124
   end Has_Element;
1125
 
1126
   ------------
1127
   -- Insert --
1128
   ------------
1129
 
1130
   procedure Insert (Container : in out Set; New_Item : Element_Type) is
1131
      Position : Cursor;
1132
      pragma Unreferenced (Position);
1133
   begin
1134
      Insert (Container, New_Item, Position);
1135
   end Insert;
1136
 
1137
   procedure Insert
1138
     (Container : in out Set;
1139
      New_Item  : Element_Type;
1140
      Position  : out Cursor)
1141
   is
1142
   begin
1143
      Insert_Sans_Hint (Container.Tree, New_Item, Position.Node);
1144
      Position.Container := Container'Unrestricted_Access;
1145
   end Insert;
1146
 
1147
   ----------------------
1148
   -- Insert_Sans_Hint --
1149
   ----------------------
1150
 
1151
   procedure Insert_Sans_Hint
1152
     (Tree     : in out Tree_Type;
1153
      New_Item : Element_Type;
1154
      Node     : out Node_Access)
1155
   is
1156
      function New_Node return Node_Access;
1157
      pragma Inline (New_Node);
1158
 
1159
      procedure Insert_Post is
1160
        new Element_Keys.Generic_Insert_Post (New_Node);
1161
 
1162
      procedure Unconditional_Insert is
1163
        new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
1164
 
1165
      --------------
1166
      -- New_Node --
1167
      --------------
1168
 
1169
      function New_Node return Node_Access is
1170
         Element : Element_Access := new Element_Type'(New_Item);
1171
 
1172
      begin
1173
         return new Node_Type'(Parent  => null,
1174
                               Left    => null,
1175
                               Right   => null,
1176
                               Color   => Red_Black_Trees.Red,
1177
                               Element => Element);
1178
      exception
1179
         when others =>
1180
            Free_Element (Element);
1181
            raise;
1182
      end New_Node;
1183
 
1184
   --  Start of processing for Insert_Sans_Hint
1185
 
1186
   begin
1187
      Unconditional_Insert (Tree, New_Item, Node);
1188
   end Insert_Sans_Hint;
1189
 
1190
   ----------------------
1191
   -- Insert_With_Hint --
1192
   ----------------------
1193
 
1194
   procedure Insert_With_Hint
1195
     (Dst_Tree : in out Tree_Type;
1196
      Dst_Hint : Node_Access;
1197
      Src_Node : Node_Access;
1198
      Dst_Node : out Node_Access)
1199
   is
1200
      function New_Node return Node_Access;
1201
      pragma Inline (New_Node);
1202
 
1203
      procedure Insert_Post is
1204
        new Element_Keys.Generic_Insert_Post (New_Node);
1205
 
1206
      procedure Insert_Sans_Hint is
1207
        new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
1208
 
1209
      procedure Local_Insert_With_Hint is
1210
        new Element_Keys.Generic_Unconditional_Insert_With_Hint
1211
          (Insert_Post,
1212
           Insert_Sans_Hint);
1213
 
1214
      --------------
1215
      -- New_Node --
1216
      --------------
1217
 
1218
      function New_Node return Node_Access is
1219
         X : Element_Access := new Element_Type'(Src_Node.Element.all);
1220
 
1221
      begin
1222
         return new Node_Type'(Parent  => null,
1223
                               Left    => null,
1224
                               Right   => null,
1225
                               Color   => Red,
1226
                               Element => X);
1227
 
1228
      exception
1229
         when others =>
1230
            Free_Element (X);
1231
            raise;
1232
      end New_Node;
1233
 
1234
   --  Start of processing for Insert_With_Hint
1235
 
1236
   begin
1237
      Local_Insert_With_Hint
1238
        (Dst_Tree,
1239
         Dst_Hint,
1240
         Src_Node.Element.all,
1241
         Dst_Node);
1242
   end Insert_With_Hint;
1243
 
1244
   ------------------
1245
   -- Intersection --
1246
   ------------------
1247
 
1248
   procedure Intersection (Target : in out Set; Source : Set) is
1249
   begin
1250
      Set_Ops.Intersection (Target.Tree, Source.Tree);
1251
   end Intersection;
1252
 
1253
   function Intersection (Left, Right : Set) return Set is
1254
      Tree : constant Tree_Type :=
1255
               Set_Ops.Intersection (Left.Tree, Right.Tree);
1256
   begin
1257
      return Set'(Controlled with Tree);
1258
   end Intersection;
1259
 
1260
   --------------
1261
   -- Is_Empty --
1262
   --------------
1263
 
1264
   function Is_Empty (Container : Set) return Boolean is
1265
   begin
1266
      return Container.Tree.Length = 0;
1267
   end Is_Empty;
1268
 
1269
   ------------------------
1270
   -- Is_Equal_Node_Node --
1271
   ------------------------
1272
 
1273
   function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
1274
   begin
1275
      return L.Element.all = R.Element.all;
1276
   end Is_Equal_Node_Node;
1277
 
1278
   -----------------------------
1279
   -- Is_Greater_Element_Node --
1280
   -----------------------------
1281
 
1282
   function Is_Greater_Element_Node
1283
     (Left  : Element_Type;
1284
      Right : Node_Access) return Boolean
1285
   is
1286
   begin
1287
      --  e > node same as node < e
1288
 
1289
      return Right.Element.all < Left;
1290
   end Is_Greater_Element_Node;
1291
 
1292
   --------------------------
1293
   -- Is_Less_Element_Node --
1294
   --------------------------
1295
 
1296
   function Is_Less_Element_Node
1297
     (Left  : Element_Type;
1298
      Right : Node_Access) return Boolean
1299
   is
1300
   begin
1301
      return Left < Right.Element.all;
1302
   end Is_Less_Element_Node;
1303
 
1304
   -----------------------
1305
   -- Is_Less_Node_Node --
1306
   -----------------------
1307
 
1308
   function Is_Less_Node_Node (L, R : Node_Access) return Boolean is
1309
   begin
1310
      return L.Element.all < R.Element.all;
1311
   end Is_Less_Node_Node;
1312
 
1313
   ---------------
1314
   -- Is_Subset --
1315
   ---------------
1316
 
1317
   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
1318
   begin
1319
      return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree);
1320
   end Is_Subset;
1321
 
1322
   -------------
1323
   -- Iterate --
1324
   -------------
1325
 
1326
   procedure Iterate
1327
     (Container : Set;
1328
      Item      : Element_Type;
1329
      Process   : not null access procedure (Position : Cursor))
1330
   is
1331
      procedure Process_Node (Node : Node_Access);
1332
      pragma Inline (Process_Node);
1333
 
1334
      procedure Local_Iterate is
1335
        new Element_Keys.Generic_Iteration (Process_Node);
1336
 
1337
      ------------------
1338
      -- Process_Node --
1339
      ------------------
1340
 
1341
      procedure Process_Node (Node : Node_Access) is
1342
      begin
1343
         Process (Cursor'(Container'Unrestricted_Access, Node));
1344
      end Process_Node;
1345
 
1346
      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
1347
      B : Natural renames T.Busy;
1348
 
1349
   --  Start of processing for Iterate
1350
 
1351
   begin
1352
      B := B + 1;
1353
 
1354
      begin
1355
         Local_Iterate (T, Item);
1356
      exception
1357
         when others =>
1358
            B := B - 1;
1359
            raise;
1360
      end;
1361
 
1362
      B := B - 1;
1363
   end Iterate;
1364
 
1365
   procedure Iterate
1366
     (Container : Set;
1367
      Process   : not null access procedure (Position : Cursor))
1368
   is
1369
      procedure Process_Node (Node : Node_Access);
1370
      pragma Inline (Process_Node);
1371
 
1372
      procedure Local_Iterate is
1373
        new Tree_Operations.Generic_Iteration (Process_Node);
1374
 
1375
      ------------------
1376
      -- Process_Node --
1377
      ------------------
1378
 
1379
      procedure Process_Node (Node : Node_Access) is
1380
      begin
1381
         Process (Cursor'(Container'Unrestricted_Access, Node));
1382
      end Process_Node;
1383
 
1384
      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
1385
      B : Natural renames T.Busy;
1386
 
1387
   --  Start of processing for Iterate
1388
 
1389
   begin
1390
      B := B + 1;
1391
 
1392
      begin
1393
         Local_Iterate (T);
1394
      exception
1395
         when others =>
1396
            B := B - 1;
1397
            raise;
1398
      end;
1399
 
1400
      B := B - 1;
1401
   end Iterate;
1402
 
1403
   function Iterate (Container : Set)
1404
     return Set_Iterator_Interfaces.Reversible_Iterator'Class
1405
   is
1406
      S : constant Set_Access := Container'Unrestricted_Access;
1407
      B : Natural renames S.Tree.Busy;
1408
 
1409
   begin
1410
      --  The value of the Node component influences the behavior of the First
1411
      --  and Last selector functions of the iterator object. When the Node
1412
      --  component is null (as is the case here), this means the iterator
1413
      --  object was constructed without a start expression. This is a complete
1414
      --  iterator, meaning that the iteration starts from the (logical)
1415
      --  beginning of the sequence of items.
1416
 
1417
      --  Note: For a forward iterator, Container.First is the beginning, and
1418
      --  for a reverse iterator, Container.Last is the beginning.
1419
 
1420
      return It : constant Iterator := (Limited_Controlled with S, null) do
1421
         B := B + 1;
1422
      end return;
1423
   end Iterate;
1424
 
1425
   function Iterate (Container : Set; Start : Cursor)
1426
     return Set_Iterator_Interfaces.Reversible_Iterator'Class
1427
   is
1428
      S : constant Set_Access := Container'Unrestricted_Access;
1429
      B : Natural renames S.Tree.Busy;
1430
 
1431
   begin
1432
      --  It was formerly the case that when Start = No_Element, the partial
1433
      --  iterator was defined to behave the same as for a complete iterator,
1434
      --  and iterate over the entire sequence of items. However, those
1435
      --  semantics were unintuitive and arguably error-prone (it is too easy
1436
      --  to accidentally create an endless loop), and so they were changed,
1437
      --  per the ARG meeting in Denver on 2011/11. However, there was no
1438
      --  consensus about what positive meaning this corner case should have,
1439
      --  and so it was decided to simply raise an exception. This does imply,
1440
      --  however, that it is not possible to use a partial iterator to specify
1441
      --  an empty sequence of items.
1442
 
1443
      if Start = No_Element then
1444
         raise Constraint_Error with
1445
           "Start position for iterator equals No_Element";
1446
      end if;
1447
 
1448
      if Start.Container /= Container'Unrestricted_Access then
1449
         raise Program_Error with
1450
           "Start cursor of Iterate designates wrong set";
1451
      end if;
1452
 
1453
      pragma Assert (Vet (Container.Tree, Start.Node),
1454
                     "Start cursor of Iterate is bad");
1455
 
1456
      --  The value of the Node component influences the behavior of the First
1457
      --  and Last selector functions of the iterator object. When the Node
1458
      --  component is non-null (as is the case here), it means that this is a
1459
      --  partial iteration, over a subset of the complete sequence of
1460
      --  items. The iterator object was constructed with a start expression,
1461
      --  indicating the position from which the iteration begins. Note that
1462
      --  the start position has the same value irrespective of whether this is
1463
      --  a forward or reverse iteration.
1464
 
1465
      return It : constant Iterator :=
1466
                    (Limited_Controlled with S, Start.Node)
1467
      do
1468
         B := B + 1;
1469
      end return;
1470
   end Iterate;
1471
 
1472
   ----------
1473
   -- Last --
1474
   ----------
1475
 
1476
   function Last (Container : Set) return Cursor is
1477
   begin
1478
      if Container.Tree.Last = null then
1479
         return No_Element;
1480
      end if;
1481
 
1482
      return Cursor'(Container'Unrestricted_Access, Container.Tree.Last);
1483
   end Last;
1484
 
1485
   function Last (Object : Iterator) return Cursor is
1486
   begin
1487
      --  The value of the iterator object's Node component influences the
1488
      --  behavior of the Last (and First) selector function.
1489
 
1490
      --  When the Node component is null, this means the iterator object was
1491
      --  constructed without a start expression, in which case the (reverse)
1492
      --  iteration starts from the (logical) beginning of the entire sequence
1493
      --  (corresponding to Container.Last, for a reverse iterator).
1494
 
1495
      --  Otherwise, this is iteration over a partial sequence of items. When
1496
      --  the Node component is non-null, the iterator object was constructed
1497
      --  with a start expression, that specifies the position from which the
1498
      --  (reverse) partial iteration begins.
1499
 
1500
      if Object.Node = null then
1501
         return Object.Container.Last;
1502
      else
1503
         return Cursor'(Object.Container, Object.Node);
1504
      end if;
1505
   end Last;
1506
 
1507
   ------------------
1508
   -- Last_Element --
1509
   ------------------
1510
 
1511
   function Last_Element (Container : Set) return Element_Type is
1512
   begin
1513
      if Container.Tree.Last = null then
1514
         raise Constraint_Error with "set is empty";
1515
      end if;
1516
 
1517
      pragma Assert (Container.Tree.Last.Element /= null);
1518
      return Container.Tree.Last.Element.all;
1519
   end Last_Element;
1520
 
1521
   ----------
1522
   -- Left --
1523
   ----------
1524
 
1525
   function Left (Node : Node_Access) return Node_Access is
1526
   begin
1527
      return Node.Left;
1528
   end Left;
1529
 
1530
   ------------
1531
   -- Length --
1532
   ------------
1533
 
1534
   function Length (Container : Set) return Count_Type is
1535
   begin
1536
      return Container.Tree.Length;
1537
   end Length;
1538
 
1539
   ----------
1540
   -- Move --
1541
   ----------
1542
 
1543
   procedure Move is
1544
      new Tree_Operations.Generic_Move (Clear);
1545
 
1546
   procedure Move (Target : in out Set; Source : in out Set) is
1547
   begin
1548
      Move (Target => Target.Tree, Source => Source.Tree);
1549
   end Move;
1550
 
1551
   ----------
1552
   -- Next --
1553
   ----------
1554
 
1555
   function Next (Position : Cursor) return Cursor is
1556
   begin
1557
      if Position = No_Element then
1558
         return No_Element;
1559
      end if;
1560
 
1561
      pragma Assert (Vet (Position.Container.Tree, Position.Node),
1562
                     "bad cursor in Next");
1563
 
1564
      declare
1565
         Node : constant Node_Access :=
1566
                  Tree_Operations.Next (Position.Node);
1567
 
1568
      begin
1569
         if Node = null then
1570
            return No_Element;
1571
         end if;
1572
 
1573
         return Cursor'(Position.Container, Node);
1574
      end;
1575
   end Next;
1576
 
1577
   procedure Next (Position : in out Cursor) is
1578
   begin
1579
      Position := Next (Position);
1580
   end Next;
1581
 
1582
   function Next (Object : Iterator; Position : Cursor) return Cursor is
1583
   begin
1584
      if Position.Container = null then
1585
         return No_Element;
1586
      end if;
1587
 
1588
      if Position.Container /= Object.Container then
1589
         raise Program_Error with
1590
           "Position cursor of Next designates wrong set";
1591
      end if;
1592
 
1593
      return Next (Position);
1594
   end Next;
1595
 
1596
   -------------
1597
   -- Overlap --
1598
   -------------
1599
 
1600
   function Overlap (Left, Right : Set) return Boolean is
1601
   begin
1602
      return Set_Ops.Overlap (Left.Tree, Right.Tree);
1603
   end Overlap;
1604
 
1605
   ------------
1606
   -- Parent --
1607
   ------------
1608
 
1609
   function Parent (Node : Node_Access) return Node_Access is
1610
   begin
1611
      return Node.Parent;
1612
   end Parent;
1613
 
1614
   --------------
1615
   -- Previous --
1616
   --------------
1617
 
1618
   function Previous (Position : Cursor) return Cursor is
1619
   begin
1620
      if Position = No_Element then
1621
         return No_Element;
1622
      end if;
1623
 
1624
      pragma Assert (Vet (Position.Container.Tree, Position.Node),
1625
                     "bad cursor in Previous");
1626
 
1627
      declare
1628
         Node : constant Node_Access :=
1629
                  Tree_Operations.Previous (Position.Node);
1630
 
1631
      begin
1632
         if Node = null then
1633
            return No_Element;
1634
         end if;
1635
 
1636
         return Cursor'(Position.Container, Node);
1637
      end;
1638
   end Previous;
1639
 
1640
   procedure Previous (Position : in out Cursor) is
1641
   begin
1642
      Position := Previous (Position);
1643
   end Previous;
1644
 
1645
   function Previous (Object : Iterator; Position : Cursor) return Cursor is
1646
   begin
1647
      if Position.Container = null then
1648
         return No_Element;
1649
      end if;
1650
 
1651
      if Position.Container /= Object.Container then
1652
         raise Program_Error with
1653
           "Position cursor of Previous designates wrong set";
1654
      end if;
1655
 
1656
      return Previous (Position);
1657
   end Previous;
1658
 
1659
   -------------------
1660
   -- Query_Element --
1661
   -------------------
1662
 
1663
   procedure Query_Element
1664
     (Position : Cursor;
1665
      Process  : not null access procedure (Element : Element_Type))
1666
   is
1667
   begin
1668
      if Position.Node = null then
1669
         raise Constraint_Error with "Position cursor equals No_Element";
1670
      end if;
1671
 
1672
      if Position.Node.Element = null then
1673
         raise Program_Error with "Position cursor is bad";
1674
      end if;
1675
 
1676
      pragma Assert (Vet (Position.Container.Tree, Position.Node),
1677
                     "bad cursor in Query_Element");
1678
 
1679
      declare
1680
         T : Tree_Type renames Position.Container.Tree;
1681
 
1682
         B : Natural renames T.Busy;
1683
         L : Natural renames T.Lock;
1684
 
1685
      begin
1686
         B := B + 1;
1687
         L := L + 1;
1688
 
1689
         begin
1690
            Process (Position.Node.Element.all);
1691
         exception
1692
            when others =>
1693
               L := L - 1;
1694
               B := B - 1;
1695
               raise;
1696
         end;
1697
 
1698
         L := L - 1;
1699
         B := B - 1;
1700
      end;
1701
   end Query_Element;
1702
 
1703
   ----------
1704
   -- Read --
1705
   ----------
1706
 
1707
   procedure Read
1708
     (Stream    : not null access Root_Stream_Type'Class;
1709
      Container : out Set)
1710
   is
1711
      function Read_Node
1712
        (Stream : not null access Root_Stream_Type'Class) return Node_Access;
1713
      pragma Inline (Read_Node);
1714
 
1715
      procedure Read is
1716
         new Tree_Operations.Generic_Read (Clear, Read_Node);
1717
 
1718
      ---------------
1719
      -- Read_Node --
1720
      ---------------
1721
 
1722
      function Read_Node
1723
        (Stream : not null access Root_Stream_Type'Class) return Node_Access
1724
      is
1725
         Node : Node_Access := new Node_Type;
1726
      begin
1727
         Node.Element := new Element_Type'(Element_Type'Input (Stream));
1728
         return Node;
1729
      exception
1730
         when others =>
1731
            Free (Node);  --  Note that Free deallocates elem too
1732
            raise;
1733
      end Read_Node;
1734
 
1735
   --  Start of processing for Read
1736
 
1737
   begin
1738
      Read (Stream, Container.Tree);
1739
   end Read;
1740
 
1741
   procedure Read
1742
     (Stream : not null access Root_Stream_Type'Class;
1743
      Item   : out Cursor)
1744
   is
1745
   begin
1746
      raise Program_Error with "attempt to stream set cursor";
1747
   end Read;
1748
 
1749
   ---------------------
1750
   -- Replace_Element --
1751
   ---------------------
1752
 
1753
   procedure Replace_Element
1754
     (Tree : in out Tree_Type;
1755
      Node : Node_Access;
1756
      Item : Element_Type)
1757
   is
1758
   begin
1759
      if Item < Node.Element.all
1760
        or else Node.Element.all < Item
1761
      then
1762
         null;
1763
      else
1764
         if Tree.Lock > 0 then
1765
            raise Program_Error with
1766
              "attempt to tamper with elements (set is locked)";
1767
         end if;
1768
 
1769
         declare
1770
            X : Element_Access := Node.Element;
1771
         begin
1772
            Node.Element := new Element_Type'(Item);
1773
            Free_Element (X);
1774
         end;
1775
 
1776
         return;
1777
      end if;
1778
 
1779
      Tree_Operations.Delete_Node_Sans_Free (Tree, Node);  -- Checks busy-bit
1780
 
1781
      Insert_New_Item : declare
1782
         function New_Node return Node_Access;
1783
         pragma Inline (New_Node);
1784
 
1785
         procedure Insert_Post is
1786
            new Element_Keys.Generic_Insert_Post (New_Node);
1787
 
1788
         procedure Unconditional_Insert is
1789
            new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
1790
 
1791
         --------------
1792
         -- New_Node --
1793
         --------------
1794
 
1795
         function New_Node return Node_Access is
1796
         begin
1797
            Node.Element := new Element_Type'(Item);  -- OK if fails
1798
            Node.Color := Red_Black_Trees.Red;
1799
            Node.Parent := null;
1800
            Node.Left := null;
1801
            Node.Right := null;
1802
 
1803
            return Node;
1804
         end New_Node;
1805
 
1806
         Result : Node_Access;
1807
 
1808
         X : Element_Access := Node.Element;
1809
 
1810
      --  Start of processing for Insert_New_Item
1811
 
1812
      begin
1813
         Unconditional_Insert
1814
           (Tree => Tree,
1815
            Key  => Item,
1816
            Node => Result);
1817
         pragma Assert (Result = Node);
1818
 
1819
         Free_Element (X);  -- OK if fails
1820
      end Insert_New_Item;
1821
   end Replace_Element;
1822
 
1823
   procedure Replace_Element
1824
    (Container : in out Set;
1825
     Position  : Cursor;
1826
     New_Item  : Element_Type)
1827
   is
1828
   begin
1829
      if Position.Node = null then
1830
         raise Constraint_Error with "Position cursor equals No_Element";
1831
      end if;
1832
 
1833
      if Position.Node.Element = null then
1834
         raise Program_Error with "Position cursor is bad";
1835
      end if;
1836
 
1837
      if Position.Container /= Container'Unrestricted_Access then
1838
         raise Program_Error with "Position cursor designates wrong set";
1839
      end if;
1840
 
1841
      pragma Assert (Vet (Container.Tree, Position.Node),
1842
                     "bad cursor in Replace_Element");
1843
 
1844
      Replace_Element (Container.Tree, Position.Node, New_Item);
1845
   end Replace_Element;
1846
 
1847
   ---------------------
1848
   -- Reverse_Iterate --
1849
   ---------------------
1850
 
1851
   procedure Reverse_Iterate
1852
     (Container : Set;
1853
      Item      : Element_Type;
1854
      Process   : not null access procedure (Position : Cursor))
1855
   is
1856
      procedure Process_Node (Node : Node_Access);
1857
      pragma Inline (Process_Node);
1858
 
1859
      procedure Local_Reverse_Iterate is
1860
        new Element_Keys.Generic_Reverse_Iteration (Process_Node);
1861
 
1862
      ------------------
1863
      -- Process_Node --
1864
      ------------------
1865
 
1866
      procedure Process_Node (Node : Node_Access) is
1867
      begin
1868
         Process (Cursor'(Container'Unrestricted_Access, Node));
1869
      end Process_Node;
1870
 
1871
      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
1872
      B : Natural renames T.Busy;
1873
 
1874
   --  Start of processing for Reverse_Iterate
1875
 
1876
   begin
1877
      B := B + 1;
1878
 
1879
      begin
1880
         Local_Reverse_Iterate (T, Item);
1881
      exception
1882
         when others =>
1883
            B := B - 1;
1884
            raise;
1885
      end;
1886
 
1887
      B := B - 1;
1888
   end Reverse_Iterate;
1889
 
1890
   procedure Reverse_Iterate
1891
     (Container : Set;
1892
      Process   : not null access procedure (Position : Cursor))
1893
   is
1894
      procedure Process_Node (Node : Node_Access);
1895
      pragma Inline (Process_Node);
1896
 
1897
      procedure Local_Reverse_Iterate is
1898
        new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1899
 
1900
      ------------------
1901
      -- Process_Node --
1902
      ------------------
1903
 
1904
      procedure Process_Node (Node : Node_Access) is
1905
      begin
1906
         Process (Cursor'(Container'Unrestricted_Access, Node));
1907
      end Process_Node;
1908
 
1909
      T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
1910
      B : Natural renames T.Busy;
1911
 
1912
   --  Start of processing for Reverse_Iterate
1913
 
1914
   begin
1915
      B := B + 1;
1916
 
1917
      begin
1918
         Local_Reverse_Iterate (T);
1919
      exception
1920
         when others =>
1921
            B := B - 1;
1922
            raise;
1923
      end;
1924
 
1925
      B := B - 1;
1926
   end Reverse_Iterate;
1927
 
1928
   -----------
1929
   -- Right --
1930
   -----------
1931
 
1932
   function Right (Node : Node_Access) return Node_Access is
1933
   begin
1934
      return Node.Right;
1935
   end Right;
1936
 
1937
   ---------------
1938
   -- Set_Color --
1939
   ---------------
1940
 
1941
   procedure Set_Color (Node : Node_Access; Color : Color_Type) is
1942
   begin
1943
      Node.Color := Color;
1944
   end Set_Color;
1945
 
1946
   --------------
1947
   -- Set_Left --
1948
   --------------
1949
 
1950
   procedure Set_Left (Node : Node_Access; Left : Node_Access) is
1951
   begin
1952
      Node.Left := Left;
1953
   end Set_Left;
1954
 
1955
   ----------------
1956
   -- Set_Parent --
1957
   ----------------
1958
 
1959
   procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
1960
   begin
1961
      Node.Parent := Parent;
1962
   end Set_Parent;
1963
 
1964
   ---------------
1965
   -- Set_Right --
1966
   ---------------
1967
 
1968
   procedure Set_Right (Node : Node_Access; Right : Node_Access) is
1969
   begin
1970
      Node.Right := Right;
1971
   end Set_Right;
1972
 
1973
   --------------------------
1974
   -- Symmetric_Difference --
1975
   --------------------------
1976
 
1977
   procedure Symmetric_Difference (Target : in out Set; Source : Set) is
1978
   begin
1979
      Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree);
1980
   end Symmetric_Difference;
1981
 
1982
   function Symmetric_Difference (Left, Right : Set) return Set is
1983
      Tree : constant Tree_Type :=
1984
               Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree);
1985
   begin
1986
      return Set'(Controlled with Tree);
1987
   end Symmetric_Difference;
1988
 
1989
   ------------
1990
   -- To_Set --
1991
   ------------
1992
 
1993
   function To_Set (New_Item : Element_Type) return Set is
1994
      Tree : Tree_Type;
1995
      Node : Node_Access;
1996
      pragma Unreferenced (Node);
1997
   begin
1998
      Insert_Sans_Hint (Tree, New_Item, Node);
1999
      return Set'(Controlled with Tree);
2000
   end To_Set;
2001
 
2002
   -----------
2003
   -- Union --
2004
   -----------
2005
 
2006
   procedure Union (Target : in out Set; Source : Set) is
2007
   begin
2008
      Set_Ops.Union (Target.Tree, Source.Tree);
2009
   end Union;
2010
 
2011
   function Union (Left, Right : Set) return Set is
2012
      Tree : constant Tree_Type :=
2013
               Set_Ops.Union (Left.Tree, Right.Tree);
2014
   begin
2015
      return Set'(Controlled with Tree);
2016
   end Union;
2017
 
2018
   -----------
2019
   -- Write --
2020
   -----------
2021
 
2022
   procedure Write
2023
     (Stream    : not null access Root_Stream_Type'Class;
2024
      Container : Set)
2025
   is
2026
      procedure Write_Node
2027
        (Stream : not null access Root_Stream_Type'Class;
2028
         Node   : Node_Access);
2029
      pragma Inline (Write_Node);
2030
 
2031
      procedure Write is
2032
         new Tree_Operations.Generic_Write (Write_Node);
2033
 
2034
      ----------------
2035
      -- Write_Node --
2036
      ----------------
2037
 
2038
      procedure Write_Node
2039
        (Stream : not null access Root_Stream_Type'Class;
2040
         Node   : Node_Access)
2041
      is
2042
      begin
2043
         Element_Type'Output (Stream, Node.Element.all);
2044
      end Write_Node;
2045
 
2046
   --  Start of processing for Write
2047
 
2048
   begin
2049
      Write (Stream, Container.Tree);
2050
   end Write;
2051
 
2052
   procedure Write
2053
     (Stream : not null access Root_Stream_Type'Class;
2054
      Item   : Cursor)
2055
   is
2056
   begin
2057
      raise Program_Error with "attempt to stream set cursor";
2058
   end Write;
2059
 
2060
end Ada.Containers.Indefinite_Ordered_Multisets;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.