| 1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
| 2 |
|
|
-- --
|
| 3 |
|
|
-- GNAT RUN-TIME COMPONENTS --
|
| 4 |
|
|
-- --
|
| 5 |
|
|
-- A D A . N U M E R I C S . A U X --
|
| 6 |
|
|
-- --
|
| 7 |
|
|
-- S p e c --
|
| 8 |
|
|
-- (Apple OS X Version) --
|
| 9 |
|
|
-- --
|
| 10 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
| 11 |
|
|
-- --
|
| 12 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
| 13 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
| 14 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
| 15 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
| 16 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
| 17 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
| 18 |
|
|
-- --
|
| 19 |
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
| 20 |
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
| 21 |
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
| 22 |
|
|
-- --
|
| 23 |
|
|
-- You should have received a copy of the GNU General Public License and --
|
| 24 |
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
| 25 |
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
| 26 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
| 27 |
|
|
-- --
|
| 28 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
| 29 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
| 30 |
|
|
-- --
|
| 31 |
|
|
------------------------------------------------------------------------------
|
| 32 |
|
|
|
| 33 |
|
|
-- This version is for use with normal Unix math functions, except for
|
| 34 |
|
|
-- sine/cosine which have been implemented directly in Ada to get
|
| 35 |
|
|
-- the required accuracy in OS X. Alternative packages are used
|
| 36 |
|
|
-- on OpenVMS (different import names), VxWorks (no need for the
|
| 37 |
|
|
-- -lm Linker_Options), and on the x86 (where we have two
|
| 38 |
|
|
-- versions one using inline ASM, and one importing from the C long
|
| 39 |
|
|
-- routines that take 80-bit arguments).
|
| 40 |
|
|
|
| 41 |
|
|
package Ada.Numerics.Aux is
|
| 42 |
|
|
pragma Pure;
|
| 43 |
|
|
|
| 44 |
|
|
pragma Linker_Options ("-lm");
|
| 45 |
|
|
|
| 46 |
|
|
type Double is digits 15;
|
| 47 |
|
|
-- Type Double is the type used to call the C routines
|
| 48 |
|
|
|
| 49 |
|
|
-- The following functions have been implemented in Ada, since
|
| 50 |
|
|
-- the OS X math library didn't meet accuracy requirements for
|
| 51 |
|
|
-- argument reduction. The implementation here has been tailored
|
| 52 |
|
|
-- to match Ada strict mode Numerics requirements while maintaining
|
| 53 |
|
|
-- maximum efficiency.
|
| 54 |
|
|
function Sin (X : Double) return Double;
|
| 55 |
|
|
pragma Inline (Sin);
|
| 56 |
|
|
|
| 57 |
|
|
function Cos (X : Double) return Double;
|
| 58 |
|
|
pragma Inline (Cos);
|
| 59 |
|
|
|
| 60 |
|
|
-- We import these functions directly from C. Note that we label them
|
| 61 |
|
|
-- all as pure functions, because indeed all of them are in fact pure!
|
| 62 |
|
|
|
| 63 |
|
|
function Tan (X : Double) return Double;
|
| 64 |
|
|
pragma Import (C, Tan, "tan");
|
| 65 |
|
|
pragma Pure_Function (Tan);
|
| 66 |
|
|
|
| 67 |
|
|
function Exp (X : Double) return Double;
|
| 68 |
|
|
pragma Import (C, Exp, "exp");
|
| 69 |
|
|
pragma Pure_Function (Exp);
|
| 70 |
|
|
|
| 71 |
|
|
function Sqrt (X : Double) return Double;
|
| 72 |
|
|
pragma Import (C, Sqrt, "sqrt");
|
| 73 |
|
|
pragma Pure_Function (Sqrt);
|
| 74 |
|
|
|
| 75 |
|
|
function Log (X : Double) return Double;
|
| 76 |
|
|
pragma Import (C, Log, "log");
|
| 77 |
|
|
pragma Pure_Function (Log);
|
| 78 |
|
|
|
| 79 |
|
|
function Acos (X : Double) return Double;
|
| 80 |
|
|
pragma Import (C, Acos, "acos");
|
| 81 |
|
|
pragma Pure_Function (Acos);
|
| 82 |
|
|
|
| 83 |
|
|
function Asin (X : Double) return Double;
|
| 84 |
|
|
pragma Import (C, Asin, "asin");
|
| 85 |
|
|
pragma Pure_Function (Asin);
|
| 86 |
|
|
|
| 87 |
|
|
function Atan (X : Double) return Double;
|
| 88 |
|
|
pragma Import (C, Atan, "atan");
|
| 89 |
|
|
pragma Pure_Function (Atan);
|
| 90 |
|
|
|
| 91 |
|
|
function Sinh (X : Double) return Double;
|
| 92 |
|
|
pragma Import (C, Sinh, "sinh");
|
| 93 |
|
|
pragma Pure_Function (Sinh);
|
| 94 |
|
|
|
| 95 |
|
|
function Cosh (X : Double) return Double;
|
| 96 |
|
|
pragma Import (C, Cosh, "cosh");
|
| 97 |
|
|
pragma Pure_Function (Cosh);
|
| 98 |
|
|
|
| 99 |
|
|
function Tanh (X : Double) return Double;
|
| 100 |
|
|
pragma Import (C, Tanh, "tanh");
|
| 101 |
|
|
pragma Pure_Function (Tanh);
|
| 102 |
|
|
|
| 103 |
|
|
function Pow (X, Y : Double) return Double;
|
| 104 |
|
|
pragma Import (C, Pow, "pow");
|
| 105 |
|
|
pragma Pure_Function (Pow);
|
| 106 |
|
|
|
| 107 |
|
|
end Ada.Numerics.Aux;
|