OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [a-numaux-x86.adb] - Blame information for rev 774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT RUN-TIME COMPONENTS                         --
4
--                                                                          --
5
--                     A D A . N U M E R I C S . A U X                      --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                        (Machine Version for x86)                         --
9
--                                                                          --
10
--          Copyright (C) 1998-2009, Free Software Foundation, Inc.         --
11
--                                                                          --
12
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
13
-- terms of the  GNU General Public License as published  by the Free Soft- --
14
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
15
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
16
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
17
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
18
--                                                                          --
19
-- As a special exception under Section 7 of GPL version 3, you are granted --
20
-- additional permissions described in the GCC Runtime Library Exception,   --
21
-- version 3.1, as published by the Free Software Foundation.               --
22
--                                                                          --
23
-- You should have received a copy of the GNU General Public License and    --
24
-- a copy of the GCC Runtime Library Exception along with this program;     --
25
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
26
-- <http://www.gnu.org/licenses/>.                                          --
27
--                                                                          --
28
-- GNAT was originally developed  by the GNAT team at  New York University. --
29
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
30
--                                                                          --
31
------------------------------------------------------------------------------
32
 
33
--  File a-numaux.adb <- 86numaux.adb
34
 
35
--  This version of Numerics.Aux is for the IEEE Double Extended floating
36
--  point format on x86.
37
 
38
with System.Machine_Code; use System.Machine_Code;
39
 
40
package body Ada.Numerics.Aux is
41
 
42
   NL : constant String := ASCII.LF & ASCII.HT;
43
 
44
   -----------------------
45
   -- Local subprograms --
46
   -----------------------
47
 
48
   function Is_Nan (X : Double) return Boolean;
49
   --  Return True iff X is a IEEE NaN value
50
 
51
   function Logarithmic_Pow (X, Y : Double) return Double;
52
   --  Implementation of X**Y using Exp and Log functions (binary base)
53
   --  to calculate the exponentiation. This is used by Pow for values
54
   --  for values of Y in the open interval (-0.25, 0.25)
55
 
56
   procedure Reduce (X : in out Double; Q : out Natural);
57
   --  Implements reduction of X by Pi/2. Q is the quadrant of the final
58
   --  result in the range 0 .. 3. The absolute value of X is at most Pi.
59
 
60
   pragma Inline (Is_Nan);
61
   pragma Inline (Reduce);
62
 
63
   --------------------------------
64
   -- Basic Elementary Functions --
65
   --------------------------------
66
 
67
   --  This section implements a few elementary functions that are used to
68
   --  build the more complex ones. This ordering enables better inlining.
69
 
70
   ----------
71
   -- Atan --
72
   ----------
73
 
74
   function Atan (X : Double) return Double is
75
      Result  : Double;
76
 
77
   begin
78
      Asm (Template =>
79
           "fld1" & NL
80
         & "fpatan",
81
         Outputs  => Double'Asm_Output ("=t", Result),
82
         Inputs   => Double'Asm_Input  ("0", X));
83
 
84
      --  The result value is NaN iff input was invalid
85
 
86
      if not (Result = Result) then
87
         raise Argument_Error;
88
      end if;
89
 
90
      return Result;
91
   end Atan;
92
 
93
   ---------
94
   -- Exp --
95
   ---------
96
 
97
   function Exp (X : Double) return Double is
98
      Result : Double;
99
   begin
100
      Asm (Template =>
101
         "fldl2e               " & NL
102
       & "fmulp   %%st, %%st(1)" & NL -- X * log2 (E)
103
       & "fld     %%st(0)      " & NL
104
       & "frndint              " & NL -- Integer (X * Log2 (E))
105
       & "fsubr   %%st, %%st(1)" & NL -- Fraction (X * Log2 (E))
106
       & "fxch                 " & NL
107
       & "f2xm1                " & NL -- 2**(...) - 1
108
       & "fld1                 " & NL
109
       & "faddp   %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E)))
110
       & "fscale               " & NL -- E ** X
111
       & "fstp    %%st(1)      ",
112
         Outputs  => Double'Asm_Output ("=t", Result),
113
         Inputs   => Double'Asm_Input  ("0", X));
114
      return Result;
115
   end Exp;
116
 
117
   ------------
118
   -- Is_Nan --
119
   ------------
120
 
121
   function Is_Nan (X : Double) return Boolean is
122
   begin
123
      --  The IEEE NaN values are the only ones that do not equal themselves
124
 
125
      return not (X = X);
126
   end Is_Nan;
127
 
128
   ---------
129
   -- Log --
130
   ---------
131
 
132
   function Log (X : Double) return Double is
133
      Result : Double;
134
 
135
   begin
136
      Asm (Template =>
137
         "fldln2               " & NL
138
       & "fxch                 " & NL
139
       & "fyl2x                " & NL,
140
         Outputs  => Double'Asm_Output ("=t", Result),
141
         Inputs   => Double'Asm_Input  ("0", X));
142
      return Result;
143
   end Log;
144
 
145
   ------------
146
   -- Reduce --
147
   ------------
148
 
149
   procedure Reduce (X : in out Double; Q : out Natural) is
150
      Half_Pi     : constant := Pi / 2.0;
151
      Two_Over_Pi : constant := 2.0 / Pi;
152
 
153
      HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
154
      M  : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
155
      P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
156
      P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
157
      P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
158
      P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
159
      P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
160
                                                                 - P4, HM);
161
      P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
162
      K  : Double := X * Two_Over_Pi;
163
   begin
164
      --  For X < 2.0**32, all products below are computed exactly.
165
      --  Due to cancellation effects all subtractions are exact as well.
166
      --  As no double extended floating-point number has more than 75
167
      --  zeros after the binary point, the result will be the correctly
168
      --  rounded result of X - K * (Pi / 2.0).
169
 
170
      while abs K >= 2.0**HM loop
171
         K := K * M - (K * M - K);
172
         X := (((((X - K * P1) - K * P2) - K * P3)
173
                     - K * P4) - K * P5) - K * P6;
174
         K := X * Two_Over_Pi;
175
      end loop;
176
 
177
      if K /= K then
178
 
179
         --  K is not a number, because X was not finite
180
 
181
         raise Constraint_Error;
182
      end if;
183
 
184
      K := Double'Rounding (K);
185
      Q := Integer (K) mod 4;
186
      X := (((((X - K * P1) - K * P2) - K * P3)
187
                  - K * P4) - K * P5) - K * P6;
188
   end Reduce;
189
 
190
   ----------
191
   -- Sqrt --
192
   ----------
193
 
194
   function Sqrt (X : Double) return Double is
195
      Result  : Double;
196
 
197
   begin
198
      if X < 0.0 then
199
         raise Argument_Error;
200
      end if;
201
 
202
      Asm (Template => "fsqrt",
203
           Outputs  => Double'Asm_Output ("=t", Result),
204
           Inputs   => Double'Asm_Input  ("0", X));
205
 
206
      return Result;
207
   end Sqrt;
208
 
209
   --------------------------------
210
   -- Other Elementary Functions --
211
   --------------------------------
212
 
213
   --  These are built using the previously implemented basic functions
214
 
215
   ----------
216
   -- Acos --
217
   ----------
218
 
219
   function Acos (X : Double) return Double is
220
      Result  : Double;
221
 
222
   begin
223
      Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X)));
224
 
225
      --  The result value is NaN iff input was invalid
226
 
227
      if Is_Nan (Result) then
228
         raise Argument_Error;
229
      end if;
230
 
231
      return Result;
232
   end Acos;
233
 
234
   ----------
235
   -- Asin --
236
   ----------
237
 
238
   function Asin (X : Double) return Double is
239
      Result  : Double;
240
 
241
   begin
242
      Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X)));
243
 
244
      --  The result value is NaN iff input was invalid
245
 
246
      if Is_Nan (Result) then
247
         raise Argument_Error;
248
      end if;
249
 
250
      return Result;
251
   end Asin;
252
 
253
   ---------
254
   -- Cos --
255
   ---------
256
 
257
   function Cos (X : Double) return Double is
258
      Reduced_X : Double := abs X;
259
      Result    : Double;
260
      Quadrant  : Natural range 0 .. 3;
261
 
262
   begin
263
      if Reduced_X > Pi / 4.0 then
264
         Reduce (Reduced_X, Quadrant);
265
 
266
         case Quadrant is
267
            when 0 =>
268
               Asm (Template  => "fcos",
269
                  Outputs  => Double'Asm_Output ("=t", Result),
270
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
271
            when 1 =>
272
               Asm (Template  => "fsin",
273
                  Outputs  => Double'Asm_Output ("=t", Result),
274
                  Inputs   => Double'Asm_Input  ("0", -Reduced_X));
275
            when 2 =>
276
               Asm (Template  => "fcos ; fchs",
277
                  Outputs  => Double'Asm_Output ("=t", Result),
278
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
279
            when 3 =>
280
               Asm (Template  => "fsin",
281
                  Outputs  => Double'Asm_Output ("=t", Result),
282
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
283
         end case;
284
 
285
      else
286
         Asm (Template  => "fcos",
287
              Outputs  => Double'Asm_Output ("=t", Result),
288
              Inputs   => Double'Asm_Input  ("0", Reduced_X));
289
      end if;
290
 
291
      return Result;
292
   end Cos;
293
 
294
   ---------------------
295
   -- Logarithmic_Pow --
296
   ---------------------
297
 
298
   function Logarithmic_Pow (X, Y : Double) return Double is
299
      Result  : Double;
300
   begin
301
      Asm (Template => ""             --  X                  : Y
302
       & "fyl2x                " & NL --  Y * Log2 (X)
303
       & "fld     %%st(0)      " & NL --  Y * Log2 (X)       : Y * Log2 (X)
304
       & "frndint              " & NL --  Int (...)          : Y * Log2 (X)
305
       & "fsubr   %%st, %%st(1)" & NL --  Int (...)          : Fract (...)
306
       & "fxch                 " & NL --  Fract (...)        : Int (...)
307
       & "f2xm1                " & NL --  2**Fract (...) - 1 : Int (...)
308
       & "fld1                 " & NL --  1 : 2**Fract (...) - 1 : Int (...)
309
       & "faddp   %%st, %%st(1)" & NL --  2**Fract (...)     : Int (...)
310
       & "fscale               ",     --  2**(Fract (...) + Int (...))
311
         Outputs  => Double'Asm_Output ("=t", Result),
312
         Inputs   =>
313
           (Double'Asm_Input  ("0", X),
314
            Double'Asm_Input  ("u", Y)));
315
      return Result;
316
   end Logarithmic_Pow;
317
 
318
   ---------
319
   -- Pow --
320
   ---------
321
 
322
   function Pow (X, Y : Double) return Double is
323
      type Mantissa_Type is mod 2**Double'Machine_Mantissa;
324
      --  Modular type that can hold all bits of the mantissa of Double
325
 
326
      --  For negative exponents, do divide at the end of the processing
327
 
328
      Negative_Y : constant Boolean := Y < 0.0;
329
      Abs_Y      : constant Double := abs Y;
330
 
331
      --  During this function the following invariant is kept:
332
      --  X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor
333
 
334
      Base : Double := X;
335
 
336
      Exp_High : Double := Double'Floor (Abs_Y);
337
      Exp_Mid  : Double;
338
      Exp_Low  : Double;
339
      Exp_Int  : Mantissa_Type;
340
 
341
      Factor : Double := 1.0;
342
 
343
   begin
344
      --  Select algorithm for calculating Pow (integer cases fall through)
345
 
346
      if Exp_High >= 2.0**Double'Machine_Mantissa then
347
 
348
         --  In case of Y that is IEEE infinity, just raise constraint error
349
 
350
         if Exp_High > Double'Safe_Last then
351
            raise Constraint_Error;
352
         end if;
353
 
354
         --  Large values of Y are even integers and will stay integer
355
         --  after division by two.
356
 
357
         loop
358
            --  Exp_Mid and Exp_Low are zero, so
359
            --    X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2)
360
 
361
            Exp_High := Exp_High / 2.0;
362
            Base := Base * Base;
363
            exit when Exp_High < 2.0**Double'Machine_Mantissa;
364
         end loop;
365
 
366
      elsif Exp_High /= Abs_Y then
367
         Exp_Low := Abs_Y - Exp_High;
368
         Factor := 1.0;
369
 
370
         if Exp_Low /= 0.0 then
371
 
372
            --  Exp_Low now is in interval (0.0, 1.0)
373
            --  Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0;
374
 
375
            Exp_Mid := 0.0;
376
            Exp_Low := Exp_Low - Exp_Mid;
377
 
378
            if Exp_Low >= 0.5 then
379
               Factor := Sqrt (X);
380
               Exp_Low := Exp_Low - 0.5;  -- exact
381
 
382
               if Exp_Low >= 0.25 then
383
                  Factor := Factor * Sqrt (Factor);
384
                  Exp_Low := Exp_Low - 0.25; --  exact
385
               end if;
386
 
387
            elsif Exp_Low >= 0.25 then
388
               Factor := Sqrt (Sqrt (X));
389
               Exp_Low := Exp_Low - 0.25; --  exact
390
            end if;
391
 
392
            --  Exp_Low now is in interval (0.0, 0.25)
393
 
394
            --  This means it is safe to call Logarithmic_Pow
395
            --  for the remaining part.
396
 
397
            Factor := Factor * Logarithmic_Pow (X, Exp_Low);
398
         end if;
399
 
400
      elsif X = 0.0 then
401
         return 0.0;
402
      end if;
403
 
404
      --  Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa
405
 
406
      Exp_Int := Mantissa_Type (Exp_High);
407
 
408
      --  Standard way for processing integer powers > 0
409
 
410
      while Exp_Int > 1 loop
411
         if (Exp_Int and 1) = 1 then
412
 
413
            --  Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0
414
 
415
            Factor := Factor * Base;
416
         end if;
417
 
418
         --  Exp_Int is even and Exp_Int > 0, so
419
         --    Base**Y = (Base**2)**(Exp_Int / 2)
420
 
421
         Base := Base * Base;
422
         Exp_Int := Exp_Int / 2;
423
      end loop;
424
 
425
      --  Exp_Int = 1 or Exp_Int = 0
426
 
427
      if Exp_Int = 1 then
428
         Factor := Base * Factor;
429
      end if;
430
 
431
      if Negative_Y then
432
         Factor := 1.0 / Factor;
433
      end if;
434
 
435
      return Factor;
436
   end Pow;
437
 
438
   ---------
439
   -- Sin --
440
   ---------
441
 
442
   function Sin (X : Double) return Double is
443
      Reduced_X : Double := X;
444
      Result    : Double;
445
      Quadrant  : Natural range 0 .. 3;
446
 
447
   begin
448
      if abs X > Pi / 4.0 then
449
         Reduce (Reduced_X, Quadrant);
450
 
451
         case Quadrant is
452
            when 0 =>
453
               Asm (Template  => "fsin",
454
                  Outputs  => Double'Asm_Output ("=t", Result),
455
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
456
            when 1 =>
457
               Asm (Template  => "fcos",
458
                  Outputs  => Double'Asm_Output ("=t", Result),
459
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
460
            when 2 =>
461
               Asm (Template  => "fsin",
462
                  Outputs  => Double'Asm_Output ("=t", Result),
463
                  Inputs   => Double'Asm_Input  ("0", -Reduced_X));
464
            when 3 =>
465
               Asm (Template  => "fcos ; fchs",
466
                  Outputs  => Double'Asm_Output ("=t", Result),
467
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
468
         end case;
469
 
470
      else
471
         Asm (Template  => "fsin",
472
            Outputs  => Double'Asm_Output ("=t", Result),
473
            Inputs   => Double'Asm_Input  ("0", Reduced_X));
474
      end if;
475
 
476
      return Result;
477
   end Sin;
478
 
479
   ---------
480
   -- Tan --
481
   ---------
482
 
483
   function Tan (X : Double) return Double is
484
      Reduced_X : Double := X;
485
      Result    : Double;
486
      Quadrant  : Natural range 0 .. 3;
487
 
488
   begin
489
      if abs X > Pi / 4.0 then
490
         Reduce (Reduced_X, Quadrant);
491
 
492
         if Quadrant mod 2 = 0 then
493
            Asm (Template  => "fptan" & NL
494
                            & "ffree   %%st(0)"  & NL
495
                            & "fincstp",
496
                  Outputs  => Double'Asm_Output ("=t", Result),
497
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
498
         else
499
            Asm (Template  => "fsincos" & NL
500
                            & "fdivp   %%st, %%st(1)" & NL
501
                            & "fchs",
502
                  Outputs  => Double'Asm_Output ("=t", Result),
503
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
504
         end if;
505
 
506
      else
507
         Asm (Template  =>
508
               "fptan                 " & NL
509
             & "ffree   %%st(0)      " & NL
510
             & "fincstp              ",
511
               Outputs  => Double'Asm_Output ("=t", Result),
512
               Inputs   => Double'Asm_Input  ("0", Reduced_X));
513
      end if;
514
 
515
      return Result;
516
   end Tan;
517
 
518
   ----------
519
   -- Sinh --
520
   ----------
521
 
522
   function Sinh (X : Double) return Double is
523
   begin
524
      --  Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0
525
 
526
      if abs X < 25.0 then
527
         return (Exp (X) - Exp (-X)) / 2.0;
528
      else
529
         return Exp (X) / 2.0;
530
      end if;
531
   end Sinh;
532
 
533
   ----------
534
   -- Cosh --
535
   ----------
536
 
537
   function Cosh (X : Double) return Double is
538
   begin
539
      --  Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0
540
 
541
      if abs X < 22.0 then
542
         return (Exp (X) + Exp (-X)) / 2.0;
543
      else
544
         return Exp (X) / 2.0;
545
      end if;
546
   end Cosh;
547
 
548
   ----------
549
   -- Tanh --
550
   ----------
551
 
552
   function Tanh (X : Double) return Double is
553
   begin
554
      --  Return the Hyperbolic Tangent of x
555
 
556
      --                                    x    -x
557
      --                                   e  - e        Sinh (X)
558
      --       Tanh (X) is defined to be -----------   = --------
559
      --                                    x    -x      Cosh (X)
560
      --                                   e  + e
561
 
562
      if abs X > 23.0 then
563
         return Double'Copy_Sign (1.0, X);
564
      end if;
565
 
566
      return 1.0 / (1.0 + Exp (-(2.0 * X))) - 1.0 / (1.0 + Exp (2.0 * X));
567
   end Tanh;
568
 
569
end Ada.Numerics.Aux;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.