1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT LIBRARY COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_KEYS --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 2004-2011, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
17 |
|
|
-- --
|
18 |
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
19 |
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
20 |
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
21 |
|
|
-- --
|
22 |
|
|
-- You should have received a copy of the GNU General Public License and --
|
23 |
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
24 |
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
25 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
26 |
|
|
-- --
|
27 |
|
|
-- This unit was originally developed by Matthew J Heaney. --
|
28 |
|
|
------------------------------------------------------------------------------
|
29 |
|
|
|
30 |
|
|
package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys is
|
31 |
|
|
|
32 |
|
|
package Ops renames Tree_Operations;
|
33 |
|
|
|
34 |
|
|
-------------
|
35 |
|
|
-- Ceiling --
|
36 |
|
|
-------------
|
37 |
|
|
|
38 |
|
|
-- AKA Lower_Bound
|
39 |
|
|
|
40 |
|
|
function Ceiling
|
41 |
|
|
(Tree : Tree_Type'Class;
|
42 |
|
|
Key : Key_Type) return Count_Type
|
43 |
|
|
is
|
44 |
|
|
Y : Count_Type;
|
45 |
|
|
X : Count_Type;
|
46 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
47 |
|
|
|
48 |
|
|
begin
|
49 |
|
|
Y := 0;
|
50 |
|
|
|
51 |
|
|
X := Tree.Root;
|
52 |
|
|
while X /= 0 loop
|
53 |
|
|
if Is_Greater_Key_Node (Key, N (X)) then
|
54 |
|
|
X := Ops.Right (N (X));
|
55 |
|
|
else
|
56 |
|
|
Y := X;
|
57 |
|
|
X := Ops.Left (N (X));
|
58 |
|
|
end if;
|
59 |
|
|
end loop;
|
60 |
|
|
|
61 |
|
|
return Y;
|
62 |
|
|
end Ceiling;
|
63 |
|
|
|
64 |
|
|
----------
|
65 |
|
|
-- Find --
|
66 |
|
|
----------
|
67 |
|
|
|
68 |
|
|
function Find
|
69 |
|
|
(Tree : Tree_Type'Class;
|
70 |
|
|
Key : Key_Type) return Count_Type
|
71 |
|
|
is
|
72 |
|
|
Y : Count_Type;
|
73 |
|
|
X : Count_Type;
|
74 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
75 |
|
|
|
76 |
|
|
begin
|
77 |
|
|
Y := 0;
|
78 |
|
|
|
79 |
|
|
X := Tree.Root;
|
80 |
|
|
while X /= 0 loop
|
81 |
|
|
if Is_Greater_Key_Node (Key, N (X)) then
|
82 |
|
|
X := Ops.Right (N (X));
|
83 |
|
|
else
|
84 |
|
|
Y := X;
|
85 |
|
|
X := Ops.Left (N (X));
|
86 |
|
|
end if;
|
87 |
|
|
end loop;
|
88 |
|
|
|
89 |
|
|
if Y = 0 then
|
90 |
|
|
return 0;
|
91 |
|
|
end if;
|
92 |
|
|
|
93 |
|
|
if Is_Less_Key_Node (Key, N (Y)) then
|
94 |
|
|
return 0;
|
95 |
|
|
end if;
|
96 |
|
|
|
97 |
|
|
return Y;
|
98 |
|
|
end Find;
|
99 |
|
|
|
100 |
|
|
-----------
|
101 |
|
|
-- Floor --
|
102 |
|
|
-----------
|
103 |
|
|
|
104 |
|
|
function Floor
|
105 |
|
|
(Tree : Tree_Type'Class;
|
106 |
|
|
Key : Key_Type) return Count_Type
|
107 |
|
|
is
|
108 |
|
|
Y : Count_Type;
|
109 |
|
|
X : Count_Type;
|
110 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
111 |
|
|
|
112 |
|
|
begin
|
113 |
|
|
Y := 0;
|
114 |
|
|
|
115 |
|
|
X := Tree.Root;
|
116 |
|
|
while X /= 0 loop
|
117 |
|
|
if Is_Less_Key_Node (Key, N (X)) then
|
118 |
|
|
X := Ops.Left (N (X));
|
119 |
|
|
else
|
120 |
|
|
Y := X;
|
121 |
|
|
X := Ops.Right (N (X));
|
122 |
|
|
end if;
|
123 |
|
|
end loop;
|
124 |
|
|
|
125 |
|
|
return Y;
|
126 |
|
|
end Floor;
|
127 |
|
|
|
128 |
|
|
--------------------------------
|
129 |
|
|
-- Generic_Conditional_Insert --
|
130 |
|
|
--------------------------------
|
131 |
|
|
|
132 |
|
|
procedure Generic_Conditional_Insert
|
133 |
|
|
(Tree : in out Tree_Type'Class;
|
134 |
|
|
Key : Key_Type;
|
135 |
|
|
Node : out Count_Type;
|
136 |
|
|
Inserted : out Boolean)
|
137 |
|
|
is
|
138 |
|
|
Y : Count_Type;
|
139 |
|
|
X : Count_Type;
|
140 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
141 |
|
|
|
142 |
|
|
begin
|
143 |
|
|
-- This is a "conditional" insertion, meaning that the insertion request
|
144 |
|
|
-- can "fail" in the sense that no new node is created. If the Key is
|
145 |
|
|
-- equivalent to an existing node, then we return the existing node and
|
146 |
|
|
-- Inserted is set to False. Otherwise, we allocate a new node (via
|
147 |
|
|
-- Insert_Post) and Inserted is set to True.
|
148 |
|
|
|
149 |
|
|
-- Note that we are testing for equivalence here, not equality. Key must
|
150 |
|
|
-- be strictly less than its next neighbor, and strictly greater than
|
151 |
|
|
-- its previous neighbor, in order for the conditional insertion to
|
152 |
|
|
-- succeed.
|
153 |
|
|
|
154 |
|
|
-- We search the tree to find the nearest neighbor of Key, which is
|
155 |
|
|
-- either the smallest node greater than Key (Inserted is True), or the
|
156 |
|
|
-- largest node less or equivalent to Key (Inserted is False).
|
157 |
|
|
|
158 |
|
|
Y := 0;
|
159 |
|
|
X := Tree.Root;
|
160 |
|
|
Inserted := True;
|
161 |
|
|
while X /= 0 loop
|
162 |
|
|
Y := X;
|
163 |
|
|
Inserted := Is_Less_Key_Node (Key, N (X));
|
164 |
|
|
X := (if Inserted then Ops.Left (N (X)) else Ops.Right (N (X)));
|
165 |
|
|
end loop;
|
166 |
|
|
|
167 |
|
|
if Inserted then
|
168 |
|
|
|
169 |
|
|
-- Either Tree is empty, or Key is less than Y. If Y is the first
|
170 |
|
|
-- node in the tree, then there are no other nodes that we need to
|
171 |
|
|
-- search for, and we insert a new node into the tree.
|
172 |
|
|
|
173 |
|
|
if Y = Tree.First then
|
174 |
|
|
Insert_Post (Tree, Y, True, Node);
|
175 |
|
|
return;
|
176 |
|
|
end if;
|
177 |
|
|
|
178 |
|
|
-- Y is the next nearest-neighbor of Key. We know that Key is not
|
179 |
|
|
-- equivalent to Y (because Key is strictly less than Y), so we move
|
180 |
|
|
-- to the previous node, the nearest-neighbor just smaller or
|
181 |
|
|
-- equivalent to Key.
|
182 |
|
|
|
183 |
|
|
Node := Ops.Previous (Tree, Y);
|
184 |
|
|
|
185 |
|
|
else
|
186 |
|
|
-- Y is the previous nearest-neighbor of Key. We know that Key is not
|
187 |
|
|
-- less than Y, which means either that Key is equivalent to Y, or
|
188 |
|
|
-- greater than Y.
|
189 |
|
|
|
190 |
|
|
Node := Y;
|
191 |
|
|
end if;
|
192 |
|
|
|
193 |
|
|
-- Key is equivalent to or greater than Node. We must resolve which is
|
194 |
|
|
-- the case, to determine whether the conditional insertion succeeds.
|
195 |
|
|
|
196 |
|
|
if Is_Greater_Key_Node (Key, N (Node)) then
|
197 |
|
|
|
198 |
|
|
-- Key is strictly greater than Node, which means that Key is not
|
199 |
|
|
-- equivalent to Node. In this case, the insertion succeeds, and we
|
200 |
|
|
-- insert a new node into the tree.
|
201 |
|
|
|
202 |
|
|
Insert_Post (Tree, Y, Inserted, Node);
|
203 |
|
|
Inserted := True;
|
204 |
|
|
return;
|
205 |
|
|
end if;
|
206 |
|
|
|
207 |
|
|
-- Key is equivalent to Node. This is a conditional insertion, so we do
|
208 |
|
|
-- not insert a new node in this case. We return the existing node and
|
209 |
|
|
-- report that no insertion has occurred.
|
210 |
|
|
|
211 |
|
|
Inserted := False;
|
212 |
|
|
end Generic_Conditional_Insert;
|
213 |
|
|
|
214 |
|
|
------------------------------------------
|
215 |
|
|
-- Generic_Conditional_Insert_With_Hint --
|
216 |
|
|
------------------------------------------
|
217 |
|
|
|
218 |
|
|
procedure Generic_Conditional_Insert_With_Hint
|
219 |
|
|
(Tree : in out Tree_Type'Class;
|
220 |
|
|
Position : Count_Type;
|
221 |
|
|
Key : Key_Type;
|
222 |
|
|
Node : out Count_Type;
|
223 |
|
|
Inserted : out Boolean)
|
224 |
|
|
is
|
225 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
226 |
|
|
|
227 |
|
|
begin
|
228 |
|
|
-- The purpose of a hint is to avoid a search from the root of
|
229 |
|
|
-- tree. If we have it hint it means we only need to traverse the
|
230 |
|
|
-- subtree rooted at the hint to find the nearest neighbor. Note
|
231 |
|
|
-- that finding the neighbor means merely walking the tree; this
|
232 |
|
|
-- is not a search and the only comparisons that occur are with
|
233 |
|
|
-- the hint and its neighbor.
|
234 |
|
|
|
235 |
|
|
-- If Position is 0, this is interpreted to mean that Key is
|
236 |
|
|
-- large relative to the nodes in the tree. If the tree is empty,
|
237 |
|
|
-- or Key is greater than the last node in the tree, then we're
|
238 |
|
|
-- done; otherwise the hint was "wrong" and we must search.
|
239 |
|
|
|
240 |
|
|
if Position = 0 then -- largest
|
241 |
|
|
if Tree.Last = 0
|
242 |
|
|
or else Is_Greater_Key_Node (Key, N (Tree.Last))
|
243 |
|
|
then
|
244 |
|
|
Insert_Post (Tree, Tree.Last, False, Node);
|
245 |
|
|
Inserted := True;
|
246 |
|
|
else
|
247 |
|
|
Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
|
248 |
|
|
end if;
|
249 |
|
|
|
250 |
|
|
return;
|
251 |
|
|
end if;
|
252 |
|
|
|
253 |
|
|
pragma Assert (Tree.Length > 0);
|
254 |
|
|
|
255 |
|
|
-- A hint can either name the node that immediately follows Key,
|
256 |
|
|
-- or immediately precedes Key. We first test whether Key is
|
257 |
|
|
-- less than the hint, and if so we compare Key to the node that
|
258 |
|
|
-- precedes the hint. If Key is both less than the hint and
|
259 |
|
|
-- greater than the hint's preceding neighbor, then we're done;
|
260 |
|
|
-- otherwise we must search.
|
261 |
|
|
|
262 |
|
|
-- Note also that a hint can either be an anterior node or a leaf
|
263 |
|
|
-- node. A new node is always inserted at the bottom of the tree
|
264 |
|
|
-- (at least prior to rebalancing), becoming the new left or
|
265 |
|
|
-- right child of leaf node (which prior to the insertion must
|
266 |
|
|
-- necessarily be null, since this is a leaf). If the hint names
|
267 |
|
|
-- an anterior node then its neighbor must be a leaf, and so
|
268 |
|
|
-- (here) we insert after the neighbor. If the hint names a leaf
|
269 |
|
|
-- then its neighbor must be anterior and so we insert before the
|
270 |
|
|
-- hint.
|
271 |
|
|
|
272 |
|
|
if Is_Less_Key_Node (Key, N (Position)) then
|
273 |
|
|
declare
|
274 |
|
|
Before : constant Count_Type := Ops.Previous (Tree, Position);
|
275 |
|
|
|
276 |
|
|
begin
|
277 |
|
|
if Before = 0 then
|
278 |
|
|
Insert_Post (Tree, Tree.First, True, Node);
|
279 |
|
|
Inserted := True;
|
280 |
|
|
|
281 |
|
|
elsif Is_Greater_Key_Node (Key, N (Before)) then
|
282 |
|
|
if Ops.Right (N (Before)) = 0 then
|
283 |
|
|
Insert_Post (Tree, Before, False, Node);
|
284 |
|
|
else
|
285 |
|
|
Insert_Post (Tree, Position, True, Node);
|
286 |
|
|
end if;
|
287 |
|
|
|
288 |
|
|
Inserted := True;
|
289 |
|
|
|
290 |
|
|
else
|
291 |
|
|
Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
|
292 |
|
|
end if;
|
293 |
|
|
end;
|
294 |
|
|
|
295 |
|
|
return;
|
296 |
|
|
end if;
|
297 |
|
|
|
298 |
|
|
-- We know that Key isn't less than the hint so we try again,
|
299 |
|
|
-- this time to see if it's greater than the hint. If so we
|
300 |
|
|
-- compare Key to the node that follows the hint. If Key is both
|
301 |
|
|
-- greater than the hint and less than the hint's next neighbor,
|
302 |
|
|
-- then we're done; otherwise we must search.
|
303 |
|
|
|
304 |
|
|
if Is_Greater_Key_Node (Key, N (Position)) then
|
305 |
|
|
declare
|
306 |
|
|
After : constant Count_Type := Ops.Next (Tree, Position);
|
307 |
|
|
|
308 |
|
|
begin
|
309 |
|
|
if After = 0 then
|
310 |
|
|
Insert_Post (Tree, Tree.Last, False, Node);
|
311 |
|
|
Inserted := True;
|
312 |
|
|
|
313 |
|
|
elsif Is_Less_Key_Node (Key, N (After)) then
|
314 |
|
|
if Ops.Right (N (Position)) = 0 then
|
315 |
|
|
Insert_Post (Tree, Position, False, Node);
|
316 |
|
|
else
|
317 |
|
|
Insert_Post (Tree, After, True, Node);
|
318 |
|
|
end if;
|
319 |
|
|
|
320 |
|
|
Inserted := True;
|
321 |
|
|
|
322 |
|
|
else
|
323 |
|
|
Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
|
324 |
|
|
end if;
|
325 |
|
|
end;
|
326 |
|
|
|
327 |
|
|
return;
|
328 |
|
|
end if;
|
329 |
|
|
|
330 |
|
|
-- We know that Key is neither less than the hint nor greater
|
331 |
|
|
-- than the hint, and that's the definition of equivalence.
|
332 |
|
|
-- There's nothing else we need to do, since a search would just
|
333 |
|
|
-- reach the same conclusion.
|
334 |
|
|
|
335 |
|
|
Node := Position;
|
336 |
|
|
Inserted := False;
|
337 |
|
|
end Generic_Conditional_Insert_With_Hint;
|
338 |
|
|
|
339 |
|
|
-------------------------
|
340 |
|
|
-- Generic_Insert_Post --
|
341 |
|
|
-------------------------
|
342 |
|
|
|
343 |
|
|
procedure Generic_Insert_Post
|
344 |
|
|
(Tree : in out Tree_Type'Class;
|
345 |
|
|
Y : Count_Type;
|
346 |
|
|
Before : Boolean;
|
347 |
|
|
Z : out Count_Type)
|
348 |
|
|
is
|
349 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
350 |
|
|
|
351 |
|
|
begin
|
352 |
|
|
if Tree.Length >= Tree.Capacity then
|
353 |
|
|
raise Capacity_Error with "not enough capacity to insert new item";
|
354 |
|
|
end if;
|
355 |
|
|
|
356 |
|
|
if Tree.Busy > 0 then
|
357 |
|
|
raise Program_Error with
|
358 |
|
|
"attempt to tamper with cursors (container is busy)";
|
359 |
|
|
end if;
|
360 |
|
|
|
361 |
|
|
Z := New_Node;
|
362 |
|
|
pragma Assert (Z /= 0);
|
363 |
|
|
|
364 |
|
|
if Y = 0 then
|
365 |
|
|
pragma Assert (Tree.Length = 0);
|
366 |
|
|
pragma Assert (Tree.Root = 0);
|
367 |
|
|
pragma Assert (Tree.First = 0);
|
368 |
|
|
pragma Assert (Tree.Last = 0);
|
369 |
|
|
|
370 |
|
|
Tree.Root := Z;
|
371 |
|
|
Tree.First := Z;
|
372 |
|
|
Tree.Last := Z;
|
373 |
|
|
|
374 |
|
|
elsif Before then
|
375 |
|
|
pragma Assert (Ops.Left (N (Y)) = 0);
|
376 |
|
|
|
377 |
|
|
Ops.Set_Left (N (Y), Z);
|
378 |
|
|
|
379 |
|
|
if Y = Tree.First then
|
380 |
|
|
Tree.First := Z;
|
381 |
|
|
end if;
|
382 |
|
|
|
383 |
|
|
else
|
384 |
|
|
pragma Assert (Ops.Right (N (Y)) = 0);
|
385 |
|
|
|
386 |
|
|
Ops.Set_Right (N (Y), Z);
|
387 |
|
|
|
388 |
|
|
if Y = Tree.Last then
|
389 |
|
|
Tree.Last := Z;
|
390 |
|
|
end if;
|
391 |
|
|
end if;
|
392 |
|
|
|
393 |
|
|
Ops.Set_Color (N (Z), Red);
|
394 |
|
|
Ops.Set_Parent (N (Z), Y);
|
395 |
|
|
Ops.Rebalance_For_Insert (Tree, Z);
|
396 |
|
|
Tree.Length := Tree.Length + 1;
|
397 |
|
|
end Generic_Insert_Post;
|
398 |
|
|
|
399 |
|
|
-----------------------
|
400 |
|
|
-- Generic_Iteration --
|
401 |
|
|
-----------------------
|
402 |
|
|
|
403 |
|
|
procedure Generic_Iteration
|
404 |
|
|
(Tree : Tree_Type'Class;
|
405 |
|
|
Key : Key_Type)
|
406 |
|
|
is
|
407 |
|
|
procedure Iterate (Index : Count_Type);
|
408 |
|
|
|
409 |
|
|
-------------
|
410 |
|
|
-- Iterate --
|
411 |
|
|
-------------
|
412 |
|
|
|
413 |
|
|
procedure Iterate (Index : Count_Type) is
|
414 |
|
|
J : Count_Type;
|
415 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
416 |
|
|
|
417 |
|
|
begin
|
418 |
|
|
J := Index;
|
419 |
|
|
while J /= 0 loop
|
420 |
|
|
if Is_Less_Key_Node (Key, N (J)) then
|
421 |
|
|
J := Ops.Left (N (J));
|
422 |
|
|
elsif Is_Greater_Key_Node (Key, N (J)) then
|
423 |
|
|
J := Ops.Right (N (J));
|
424 |
|
|
else
|
425 |
|
|
Iterate (Ops.Left (N (J)));
|
426 |
|
|
Process (J);
|
427 |
|
|
J := Ops.Right (N (J));
|
428 |
|
|
end if;
|
429 |
|
|
end loop;
|
430 |
|
|
end Iterate;
|
431 |
|
|
|
432 |
|
|
-- Start of processing for Generic_Iteration
|
433 |
|
|
|
434 |
|
|
begin
|
435 |
|
|
Iterate (Tree.Root);
|
436 |
|
|
end Generic_Iteration;
|
437 |
|
|
|
438 |
|
|
-------------------------------
|
439 |
|
|
-- Generic_Reverse_Iteration --
|
440 |
|
|
-------------------------------
|
441 |
|
|
|
442 |
|
|
procedure Generic_Reverse_Iteration
|
443 |
|
|
(Tree : Tree_Type'Class;
|
444 |
|
|
Key : Key_Type)
|
445 |
|
|
is
|
446 |
|
|
procedure Iterate (Index : Count_Type);
|
447 |
|
|
|
448 |
|
|
-------------
|
449 |
|
|
-- Iterate --
|
450 |
|
|
-------------
|
451 |
|
|
|
452 |
|
|
procedure Iterate (Index : Count_Type) is
|
453 |
|
|
J : Count_Type;
|
454 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
455 |
|
|
|
456 |
|
|
begin
|
457 |
|
|
J := Index;
|
458 |
|
|
while J /= 0 loop
|
459 |
|
|
if Is_Less_Key_Node (Key, N (J)) then
|
460 |
|
|
J := Ops.Left (N (J));
|
461 |
|
|
elsif Is_Greater_Key_Node (Key, N (J)) then
|
462 |
|
|
J := Ops.Right (N (J));
|
463 |
|
|
else
|
464 |
|
|
Iterate (Ops.Right (N (J)));
|
465 |
|
|
Process (J);
|
466 |
|
|
J := Ops.Left (N (J));
|
467 |
|
|
end if;
|
468 |
|
|
end loop;
|
469 |
|
|
end Iterate;
|
470 |
|
|
|
471 |
|
|
-- Start of processing for Generic_Reverse_Iteration
|
472 |
|
|
|
473 |
|
|
begin
|
474 |
|
|
Iterate (Tree.Root);
|
475 |
|
|
end Generic_Reverse_Iteration;
|
476 |
|
|
|
477 |
|
|
----------------------------------
|
478 |
|
|
-- Generic_Unconditional_Insert --
|
479 |
|
|
----------------------------------
|
480 |
|
|
|
481 |
|
|
procedure Generic_Unconditional_Insert
|
482 |
|
|
(Tree : in out Tree_Type'Class;
|
483 |
|
|
Key : Key_Type;
|
484 |
|
|
Node : out Count_Type)
|
485 |
|
|
is
|
486 |
|
|
Y : Count_Type;
|
487 |
|
|
X : Count_Type;
|
488 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
489 |
|
|
|
490 |
|
|
Before : Boolean;
|
491 |
|
|
|
492 |
|
|
begin
|
493 |
|
|
Y := 0;
|
494 |
|
|
Before := False;
|
495 |
|
|
|
496 |
|
|
X := Tree.Root;
|
497 |
|
|
while X /= 0 loop
|
498 |
|
|
Y := X;
|
499 |
|
|
Before := Is_Less_Key_Node (Key, N (X));
|
500 |
|
|
X := (if Before then Ops.Left (N (X)) else Ops.Right (N (X)));
|
501 |
|
|
end loop;
|
502 |
|
|
|
503 |
|
|
Insert_Post (Tree, Y, Before, Node);
|
504 |
|
|
end Generic_Unconditional_Insert;
|
505 |
|
|
|
506 |
|
|
--------------------------------------------
|
507 |
|
|
-- Generic_Unconditional_Insert_With_Hint --
|
508 |
|
|
--------------------------------------------
|
509 |
|
|
|
510 |
|
|
procedure Generic_Unconditional_Insert_With_Hint
|
511 |
|
|
(Tree : in out Tree_Type'Class;
|
512 |
|
|
Hint : Count_Type;
|
513 |
|
|
Key : Key_Type;
|
514 |
|
|
Node : out Count_Type)
|
515 |
|
|
is
|
516 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
517 |
|
|
|
518 |
|
|
begin
|
519 |
|
|
-- There are fewer constraints for an unconditional insertion
|
520 |
|
|
-- than for a conditional insertion, since we allow duplicate
|
521 |
|
|
-- keys. So instead of having to check (say) whether Key is
|
522 |
|
|
-- (strictly) greater than the hint's previous neighbor, here we
|
523 |
|
|
-- allow Key to be equal to or greater than the previous node.
|
524 |
|
|
|
525 |
|
|
-- There is the issue of what to do if Key is equivalent to the
|
526 |
|
|
-- hint. Does the new node get inserted before or after the hint?
|
527 |
|
|
-- We decide that it gets inserted after the hint, reasoning that
|
528 |
|
|
-- this is consistent with behavior for non-hint insertion, which
|
529 |
|
|
-- inserts a new node after existing nodes with equivalent keys.
|
530 |
|
|
|
531 |
|
|
-- First we check whether the hint is null, which is interpreted
|
532 |
|
|
-- to mean that Key is large relative to existing nodes.
|
533 |
|
|
-- Following our rule above, if Key is equal to or greater than
|
534 |
|
|
-- the last node, then we insert the new node immediately after
|
535 |
|
|
-- last. (We don't have an operation for testing whether a key is
|
536 |
|
|
-- "equal to or greater than" a node, so we must say instead "not
|
537 |
|
|
-- less than", which is equivalent.)
|
538 |
|
|
|
539 |
|
|
if Hint = 0 then -- largest
|
540 |
|
|
if Tree.Last = 0 then
|
541 |
|
|
Insert_Post (Tree, 0, False, Node);
|
542 |
|
|
elsif Is_Less_Key_Node (Key, N (Tree.Last)) then
|
543 |
|
|
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
|
544 |
|
|
else
|
545 |
|
|
Insert_Post (Tree, Tree.Last, False, Node);
|
546 |
|
|
end if;
|
547 |
|
|
|
548 |
|
|
return;
|
549 |
|
|
end if;
|
550 |
|
|
|
551 |
|
|
pragma Assert (Tree.Length > 0);
|
552 |
|
|
|
553 |
|
|
-- We decide here whether to insert the new node prior to the
|
554 |
|
|
-- hint. Key could be equivalent to the hint, so in theory we
|
555 |
|
|
-- could write the following test as "not greater than" (same as
|
556 |
|
|
-- "less than or equal to"). If Key were equivalent to the hint,
|
557 |
|
|
-- that would mean that the new node gets inserted before an
|
558 |
|
|
-- equivalent node. That wouldn't break any container invariants,
|
559 |
|
|
-- but our rule above says that new nodes always get inserted
|
560 |
|
|
-- after equivalent nodes. So here we test whether Key is both
|
561 |
|
|
-- less than the hint and equal to or greater than the hint's
|
562 |
|
|
-- previous neighbor, and if so insert it before the hint.
|
563 |
|
|
|
564 |
|
|
if Is_Less_Key_Node (Key, N (Hint)) then
|
565 |
|
|
declare
|
566 |
|
|
Before : constant Count_Type := Ops.Previous (Tree, Hint);
|
567 |
|
|
begin
|
568 |
|
|
if Before = 0 then
|
569 |
|
|
Insert_Post (Tree, Hint, True, Node);
|
570 |
|
|
elsif Is_Less_Key_Node (Key, N (Before)) then
|
571 |
|
|
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
|
572 |
|
|
elsif Ops.Right (N (Before)) = 0 then
|
573 |
|
|
Insert_Post (Tree, Before, False, Node);
|
574 |
|
|
else
|
575 |
|
|
Insert_Post (Tree, Hint, True, Node);
|
576 |
|
|
end if;
|
577 |
|
|
end;
|
578 |
|
|
|
579 |
|
|
return;
|
580 |
|
|
end if;
|
581 |
|
|
|
582 |
|
|
-- We know that Key isn't less than the hint, so it must be equal
|
583 |
|
|
-- or greater. So we just test whether Key is less than or equal
|
584 |
|
|
-- to (same as "not greater than") the hint's next neighbor, and
|
585 |
|
|
-- if so insert it after the hint.
|
586 |
|
|
|
587 |
|
|
declare
|
588 |
|
|
After : constant Count_Type := Ops.Next (Tree, Hint);
|
589 |
|
|
begin
|
590 |
|
|
if After = 0 then
|
591 |
|
|
Insert_Post (Tree, Hint, False, Node);
|
592 |
|
|
elsif Is_Greater_Key_Node (Key, N (After)) then
|
593 |
|
|
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
|
594 |
|
|
elsif Ops.Right (N (Hint)) = 0 then
|
595 |
|
|
Insert_Post (Tree, Hint, False, Node);
|
596 |
|
|
else
|
597 |
|
|
Insert_Post (Tree, After, True, Node);
|
598 |
|
|
end if;
|
599 |
|
|
end;
|
600 |
|
|
end Generic_Unconditional_Insert_With_Hint;
|
601 |
|
|
|
602 |
|
|
-----------------
|
603 |
|
|
-- Upper_Bound --
|
604 |
|
|
-----------------
|
605 |
|
|
|
606 |
|
|
function Upper_Bound
|
607 |
|
|
(Tree : Tree_Type'Class;
|
608 |
|
|
Key : Key_Type) return Count_Type
|
609 |
|
|
is
|
610 |
|
|
Y : Count_Type;
|
611 |
|
|
X : Count_Type;
|
612 |
|
|
N : Nodes_Type renames Tree.Nodes;
|
613 |
|
|
|
614 |
|
|
begin
|
615 |
|
|
Y := 0;
|
616 |
|
|
|
617 |
|
|
X := Tree.Root;
|
618 |
|
|
while X /= 0 loop
|
619 |
|
|
if Is_Less_Key_Node (Key, N (X)) then
|
620 |
|
|
Y := X;
|
621 |
|
|
X := Ops.Left (N (X));
|
622 |
|
|
else
|
623 |
|
|
X := Ops.Right (N (X));
|
624 |
|
|
end if;
|
625 |
|
|
end loop;
|
626 |
|
|
|
627 |
|
|
return Y;
|
628 |
|
|
end Upper_Bound;
|
629 |
|
|
|
630 |
|
|
end Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
|