1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT RUN-TIME COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- A D A . T E X T _ I O . F I X E D _ I O --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
17 |
|
|
-- --
|
18 |
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
19 |
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
20 |
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
21 |
|
|
-- --
|
22 |
|
|
-- You should have received a copy of the GNU General Public License and --
|
23 |
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
24 |
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
25 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
26 |
|
|
-- --
|
27 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
28 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
29 |
|
|
-- --
|
30 |
|
|
------------------------------------------------------------------------------
|
31 |
|
|
|
32 |
|
|
-- Fixed point I/O
|
33 |
|
|
-- ---------------
|
34 |
|
|
|
35 |
|
|
-- The following documents implementation details of the fixed point
|
36 |
|
|
-- input/output routines in the GNAT run time. The first part describes
|
37 |
|
|
-- general properties of fixed point types as defined by the Ada 95 standard,
|
38 |
|
|
-- including the Information Systems Annex.
|
39 |
|
|
|
40 |
|
|
-- Subsequently these are reduced to implementation constraints and the impact
|
41 |
|
|
-- of these constraints on a few possible approaches to I/O are given.
|
42 |
|
|
-- Based on this analysis, a specific implementation is selected for use in
|
43 |
|
|
-- the GNAT run time. Finally, the chosen algorithm is analyzed numerically in
|
44 |
|
|
-- order to provide user-level documentation on limits for range and precision
|
45 |
|
|
-- of fixed point types as well as accuracy of input/output conversions.
|
46 |
|
|
|
47 |
|
|
-- -------------------------------------------
|
48 |
|
|
-- - General Properties of Fixed Point Types -
|
49 |
|
|
-- -------------------------------------------
|
50 |
|
|
|
51 |
|
|
-- Operations on fixed point values, other than input and output, are not
|
52 |
|
|
-- important for the purposes of this document. Only the set of values that a
|
53 |
|
|
-- fixed point type can represent and the input and output operations are
|
54 |
|
|
-- significant.
|
55 |
|
|
|
56 |
|
|
-- Values
|
57 |
|
|
-- ------
|
58 |
|
|
|
59 |
|
|
-- Set set of values of a fixed point type comprise the integral
|
60 |
|
|
-- multiples of a number called the small of the type. The small can
|
61 |
|
|
-- either be a power of ten, a power of two or (if the implementation
|
62 |
|
|
-- allows) an arbitrary strictly positive real value.
|
63 |
|
|
|
64 |
|
|
-- Implementations need to support fixed-point types with a precision
|
65 |
|
|
-- of at least 24 bits, and (in order to comply with the Information
|
66 |
|
|
-- Systems Annex) decimal types need to support at least digits 18.
|
67 |
|
|
-- For the rest, however, no requirements exist for the minimal small
|
68 |
|
|
-- and range that need to be supported.
|
69 |
|
|
|
70 |
|
|
-- Operations
|
71 |
|
|
-- ----------
|
72 |
|
|
|
73 |
|
|
-- 'Image and 'Wide_Image (see RM 3.5(34))
|
74 |
|
|
|
75 |
|
|
-- These attributes return a decimal real literal best approximating
|
76 |
|
|
-- the value (rounded away from zero if halfway between) with a
|
77 |
|
|
-- single leading character that is either a minus sign or a space,
|
78 |
|
|
-- one or more digits before the decimal point (with no redundant
|
79 |
|
|
-- leading zeros), a decimal point, and N digits after the decimal
|
80 |
|
|
-- point. For a subtype S, the value of N is S'Aft, the smallest
|
81 |
|
|
-- positive integer such that (10**N)*S'Delta is greater or equal to
|
82 |
|
|
-- one, see RM 3.5.10(5).
|
83 |
|
|
|
84 |
|
|
-- For an arbitrary small, this means large number arithmetic needs
|
85 |
|
|
-- to be performed.
|
86 |
|
|
|
87 |
|
|
-- Put (see RM A.10.9(22-26))
|
88 |
|
|
|
89 |
|
|
-- The requirements for Put add no extra constraints over the image
|
90 |
|
|
-- attributes, although it would be nice to be able to output more
|
91 |
|
|
-- than S'Aft digits after the decimal point for values of subtype S.
|
92 |
|
|
|
93 |
|
|
-- 'Value and 'Wide_Value attribute (RM 3.5(40-55))
|
94 |
|
|
|
95 |
|
|
-- Since the input can be given in any base in the range 2..16,
|
96 |
|
|
-- accurate conversion to a fixed point number may require
|
97 |
|
|
-- arbitrary precision arithmetic if there is no limit on the
|
98 |
|
|
-- magnitude of the small of the fixed point type.
|
99 |
|
|
|
100 |
|
|
-- Get (see RM A.10.9(12-21))
|
101 |
|
|
|
102 |
|
|
-- The requirements for Get are identical to those of the Value
|
103 |
|
|
-- attribute.
|
104 |
|
|
|
105 |
|
|
-- ------------------------------
|
106 |
|
|
-- - Implementation Constraints -
|
107 |
|
|
-- ------------------------------
|
108 |
|
|
|
109 |
|
|
-- The requirements listed above for the input/output operations lead to
|
110 |
|
|
-- significant complexity, if no constraints are put on supported smalls.
|
111 |
|
|
|
112 |
|
|
-- Implementation Strategies
|
113 |
|
|
-- -------------------------
|
114 |
|
|
|
115 |
|
|
-- * Float arithmetic
|
116 |
|
|
-- * Arbitrary-precision integer arithmetic
|
117 |
|
|
-- * Fixed-precision integer arithmetic
|
118 |
|
|
|
119 |
|
|
-- Although it seems convenient to convert fixed point numbers to floating-
|
120 |
|
|
-- point and then print them, this leads to a number of restrictions.
|
121 |
|
|
-- The first one is precision. The widest floating-point type generally
|
122 |
|
|
-- available has 53 bits of mantissa. This means that Fine_Delta cannot
|
123 |
|
|
-- be less than 2.0**(-53).
|
124 |
|
|
|
125 |
|
|
-- In GNAT, Fine_Delta is 2.0**(-63), and Duration for example is a
|
126 |
|
|
-- 64-bit type. It would still be possible to use multi-precision
|
127 |
|
|
-- floating-point to perform calculations using longer mantissas,
|
128 |
|
|
-- but this is a much harder approach.
|
129 |
|
|
|
130 |
|
|
-- The base conversions needed for input and output of (non-decimal)
|
131 |
|
|
-- fixed point types can be seen as pairs of integer multiplications
|
132 |
|
|
-- and divisions.
|
133 |
|
|
|
134 |
|
|
-- Arbitrary-precision integer arithmetic would be suitable for the job
|
135 |
|
|
-- at hand, but has the draw-back that it is very heavy implementation-wise.
|
136 |
|
|
-- Especially in embedded systems, where fixed point types are often used,
|
137 |
|
|
-- it may not be desirable to require large amounts of storage and time
|
138 |
|
|
-- for fixed I/O operations.
|
139 |
|
|
|
140 |
|
|
-- Fixed-precision integer arithmetic has the advantage of simplicity and
|
141 |
|
|
-- speed. For the most common fixed point types this would be a perfect
|
142 |
|
|
-- solution. The downside however may be a too limited set of acceptable
|
143 |
|
|
-- fixed point types.
|
144 |
|
|
|
145 |
|
|
-- Extra Precision
|
146 |
|
|
-- ---------------
|
147 |
|
|
|
148 |
|
|
-- Using a scaled divide which truncates and returns a remainder R,
|
149 |
|
|
-- another E trailing digits can be calculated by computing the value
|
150 |
|
|
-- (R * (10.0**E)) / Z using another scaled divide. This procedure
|
151 |
|
|
-- can be repeated to compute an arbitrary number of digits in linear
|
152 |
|
|
-- time and storage. The last scaled divide should be rounded, with
|
153 |
|
|
-- a possible carry propagating to the more significant digits, to
|
154 |
|
|
-- ensure correct rounding of the unit in the last place.
|
155 |
|
|
|
156 |
|
|
-- An extension of this technique is to limit the value of Q to 9 decimal
|
157 |
|
|
-- digits, since 32-bit integers can be much more efficient than 64-bit
|
158 |
|
|
-- integers to output.
|
159 |
|
|
|
160 |
|
|
with Interfaces; use Interfaces;
|
161 |
|
|
with System.Arith_64; use System.Arith_64;
|
162 |
|
|
with System.Img_Real; use System.Img_Real;
|
163 |
|
|
with Ada.Text_IO; use Ada.Text_IO;
|
164 |
|
|
with Ada.Text_IO.Float_Aux;
|
165 |
|
|
with Ada.Text_IO.Generic_Aux;
|
166 |
|
|
|
167 |
|
|
package body Ada.Text_IO.Fixed_IO is
|
168 |
|
|
|
169 |
|
|
-- Note: we still use the floating-point I/O routines for input of
|
170 |
|
|
-- ordinary fixed-point and output using exponent format. This will
|
171 |
|
|
-- result in inaccuracies for fixed point types with a small that is
|
172 |
|
|
-- not a power of two, and for types that require more precision than
|
173 |
|
|
-- is available in Long_Long_Float.
|
174 |
|
|
|
175 |
|
|
package Aux renames Ada.Text_IO.Float_Aux;
|
176 |
|
|
|
177 |
|
|
Extra_Layout_Space : constant Field := 5 + Num'Fore;
|
178 |
|
|
-- Extra space that may be needed for output of sign, decimal point,
|
179 |
|
|
-- exponent indication and mandatory decimals after and before the
|
180 |
|
|
-- decimal point. A string with length
|
181 |
|
|
|
182 |
|
|
-- Fore + Aft + Exp + Extra_Layout_Space
|
183 |
|
|
|
184 |
|
|
-- is always long enough for formatting any fixed point number
|
185 |
|
|
|
186 |
|
|
-- Implementation of Put routines
|
187 |
|
|
|
188 |
|
|
-- The following section describes a specific implementation choice for
|
189 |
|
|
-- performing base conversions needed for output of values of a fixed
|
190 |
|
|
-- point type T with small T'Small. The goal is to be able to output
|
191 |
|
|
-- all values of types with a precision of 64 bits and a delta of at
|
192 |
|
|
-- least 2.0**(-63), as these are current GNAT limitations already.
|
193 |
|
|
|
194 |
|
|
-- The chosen algorithm uses fixed precision integer arithmetic for
|
195 |
|
|
-- reasons of simplicity and efficiency. It is important to understand
|
196 |
|
|
-- in what ways the most simple and accurate approach to fixed point I/O
|
197 |
|
|
-- is limiting, before considering more complicated schemes.
|
198 |
|
|
|
199 |
|
|
-- Without loss of generality assume T has a range (-2.0**63) * T'Small
|
200 |
|
|
-- .. (2.0**63 - 1) * T'Small, and is output with Aft digits after the
|
201 |
|
|
-- decimal point and T'Fore - 1 before. If T'Small is integer, or
|
202 |
|
|
-- 1.0 / T'Small is integer, let S = T'Small and E = 0. For other T'Small,
|
203 |
|
|
-- let S and E be integers such that S / 10**E best approximates T'Small
|
204 |
|
|
-- and S is in the range 10**17 .. 10**18 - 1. The extra decimal scaling
|
205 |
|
|
-- factor 10**E can be trivially handled during final output, by adjusting
|
206 |
|
|
-- the decimal point or exponent.
|
207 |
|
|
|
208 |
|
|
-- Convert a value X * S of type T to a 64-bit integer value Q equal
|
209 |
|
|
-- to 10.0**D * (X * S) rounded to the nearest integer.
|
210 |
|
|
-- This conversion is a scaled integer divide of the form
|
211 |
|
|
|
212 |
|
|
-- Q := (X * Y) / Z,
|
213 |
|
|
|
214 |
|
|
-- where all variables are 64-bit signed integers using 2's complement,
|
215 |
|
|
-- and both the multiplication and division are done using full
|
216 |
|
|
-- intermediate precision. The final decimal value to be output is
|
217 |
|
|
|
218 |
|
|
-- Q * 10**(E-D)
|
219 |
|
|
|
220 |
|
|
-- This value can be written to the output file or to the result string
|
221 |
|
|
-- according to the format described in RM A.3.10. The details of this
|
222 |
|
|
-- operation are omitted here.
|
223 |
|
|
|
224 |
|
|
-- A 64-bit value can contain all integers with 18 decimal digits, but
|
225 |
|
|
-- not all with 19 decimal digits. If the total number of requested output
|
226 |
|
|
-- digits (Fore - 1) + Aft is greater than 18, for purposes of the
|
227 |
|
|
-- conversion Aft is adjusted to 18 - (Fore - 1). In that case, or
|
228 |
|
|
-- when Fore > 19, trailing zeros can complete the output after writing
|
229 |
|
|
-- the first 18 significant digits, or the technique described in the
|
230 |
|
|
-- next section can be used.
|
231 |
|
|
|
232 |
|
|
-- The final expression for D is
|
233 |
|
|
|
234 |
|
|
-- D := Integer'Max (-18, Integer'Min (Aft, 18 - (Fore - 1)));
|
235 |
|
|
|
236 |
|
|
-- For Y and Z the following expressions can be derived:
|
237 |
|
|
|
238 |
|
|
-- Q / (10.0**D) = X * S
|
239 |
|
|
|
240 |
|
|
-- Q = X * S * (10.0**D) = (X * Y) / Z
|
241 |
|
|
|
242 |
|
|
-- S * 10.0**D = Y / Z;
|
243 |
|
|
|
244 |
|
|
-- If S is an integer greater than or equal to one, then Fore must be at
|
245 |
|
|
-- least 20 in order to print T'First, which is at most -2.0**63.
|
246 |
|
|
-- This means D < 0, so use
|
247 |
|
|
|
248 |
|
|
-- (1) Y = -S and Z = -10**(-D)
|
249 |
|
|
|
250 |
|
|
-- If 1.0 / S is an integer greater than one, use
|
251 |
|
|
|
252 |
|
|
-- (2) Y = -10**D and Z = -(1.0 / S), for D >= 0
|
253 |
|
|
|
254 |
|
|
-- or
|
255 |
|
|
|
256 |
|
|
-- (3) Y = 1 and Z = (1.0 / S) * 10**(-D), for D < 0
|
257 |
|
|
|
258 |
|
|
-- Negative values are used for nominator Y and denominator Z, so that S
|
259 |
|
|
-- can have a maximum value of 2.0**63 and a minimum of 2.0**(-63).
|
260 |
|
|
-- For Z in -1 .. -9, Fore will still be 20, and D will be negative, as
|
261 |
|
|
-- (-2.0**63) / -9 is greater than 10**18. In these cases there is room
|
262 |
|
|
-- in the denominator for the extra decimal scaling required, so case (3)
|
263 |
|
|
-- will not overflow.
|
264 |
|
|
|
265 |
|
|
pragma Assert (System.Fine_Delta >= 2.0**(-63));
|
266 |
|
|
pragma Assert (Num'Small in 2.0**(-63) .. 2.0**63);
|
267 |
|
|
pragma Assert (Num'Fore <= 37);
|
268 |
|
|
-- These assertions need to be relaxed to allow for a Small of
|
269 |
|
|
-- 2.0**(-64) at least, since there is an ACATS test for this ???
|
270 |
|
|
|
271 |
|
|
Max_Digits : constant := 18;
|
272 |
|
|
-- Maximum number of decimal digits that can be represented in a
|
273 |
|
|
-- 64-bit signed number, see above
|
274 |
|
|
|
275 |
|
|
-- The constants E0 .. E5 implement a binary search for the appropriate
|
276 |
|
|
-- power of ten to scale the small so that it has one digit before the
|
277 |
|
|
-- decimal point.
|
278 |
|
|
|
279 |
|
|
subtype Int is Integer;
|
280 |
|
|
E0 : constant Int := -(20 * Boolean'Pos (Num'Small >= 1.0E1));
|
281 |
|
|
E1 : constant Int := E0 + 10 * Boolean'Pos (Num'Small * 10.0**E0 < 1.0E-10);
|
282 |
|
|
E2 : constant Int := E1 + 5 * Boolean'Pos (Num'Small * 10.0**E1 < 1.0E-5);
|
283 |
|
|
E3 : constant Int := E2 + 3 * Boolean'Pos (Num'Small * 10.0**E2 < 1.0E-3);
|
284 |
|
|
E4 : constant Int := E3 + 2 * Boolean'Pos (Num'Small * 10.0**E3 < 1.0E-1);
|
285 |
|
|
E5 : constant Int := E4 + 1 * Boolean'Pos (Num'Small * 10.0**E4 < 1.0E-0);
|
286 |
|
|
|
287 |
|
|
Scale : constant Integer := E5;
|
288 |
|
|
|
289 |
|
|
pragma Assert (Num'Small * 10.0**Scale >= 1.0
|
290 |
|
|
and then Num'Small * 10.0**Scale < 10.0);
|
291 |
|
|
|
292 |
|
|
Exact : constant Boolean :=
|
293 |
|
|
Float'Floor (Num'Small) = Float'Ceiling (Num'Small)
|
294 |
|
|
or else Float'Floor (1.0 / Num'Small) =
|
295 |
|
|
Float'Ceiling (1.0 / Num'Small)
|
296 |
|
|
or else Num'Small >= 10.0**Max_Digits;
|
297 |
|
|
-- True iff a numerator and denominator can be calculated such that
|
298 |
|
|
-- their ratio exactly represents the small of Num.
|
299 |
|
|
|
300 |
|
|
procedure Put
|
301 |
|
|
(To : out String;
|
302 |
|
|
Last : out Natural;
|
303 |
|
|
Item : Num;
|
304 |
|
|
Fore : Integer;
|
305 |
|
|
Aft : Field;
|
306 |
|
|
Exp : Field);
|
307 |
|
|
-- Actual output function, used internally by all other Put routines.
|
308 |
|
|
-- The formal Fore is an Integer, not a Field, because the routine is
|
309 |
|
|
-- also called from the version of Put that performs I/O to a string,
|
310 |
|
|
-- where the starting position depends on the size of the String, and
|
311 |
|
|
-- bears no relation to the bounds of Field.
|
312 |
|
|
|
313 |
|
|
---------
|
314 |
|
|
-- Get --
|
315 |
|
|
---------
|
316 |
|
|
|
317 |
|
|
procedure Get
|
318 |
|
|
(File : File_Type;
|
319 |
|
|
Item : out Num;
|
320 |
|
|
Width : Field := 0)
|
321 |
|
|
is
|
322 |
|
|
pragma Unsuppress (Range_Check);
|
323 |
|
|
begin
|
324 |
|
|
Aux.Get (File, Long_Long_Float (Item), Width);
|
325 |
|
|
exception
|
326 |
|
|
when Constraint_Error => raise Data_Error;
|
327 |
|
|
end Get;
|
328 |
|
|
|
329 |
|
|
procedure Get
|
330 |
|
|
(Item : out Num;
|
331 |
|
|
Width : Field := 0)
|
332 |
|
|
is
|
333 |
|
|
pragma Unsuppress (Range_Check);
|
334 |
|
|
begin
|
335 |
|
|
Aux.Get (Current_In, Long_Long_Float (Item), Width);
|
336 |
|
|
exception
|
337 |
|
|
when Constraint_Error => raise Data_Error;
|
338 |
|
|
end Get;
|
339 |
|
|
|
340 |
|
|
procedure Get
|
341 |
|
|
(From : String;
|
342 |
|
|
Item : out Num;
|
343 |
|
|
Last : out Positive)
|
344 |
|
|
is
|
345 |
|
|
pragma Unsuppress (Range_Check);
|
346 |
|
|
begin
|
347 |
|
|
Aux.Gets (From, Long_Long_Float (Item), Last);
|
348 |
|
|
exception
|
349 |
|
|
when Constraint_Error => raise Data_Error;
|
350 |
|
|
end Get;
|
351 |
|
|
|
352 |
|
|
---------
|
353 |
|
|
-- Put --
|
354 |
|
|
---------
|
355 |
|
|
|
356 |
|
|
procedure Put
|
357 |
|
|
(File : File_Type;
|
358 |
|
|
Item : Num;
|
359 |
|
|
Fore : Field := Default_Fore;
|
360 |
|
|
Aft : Field := Default_Aft;
|
361 |
|
|
Exp : Field := Default_Exp)
|
362 |
|
|
is
|
363 |
|
|
S : String (1 .. Fore + Aft + Exp + Extra_Layout_Space);
|
364 |
|
|
Last : Natural;
|
365 |
|
|
begin
|
366 |
|
|
Put (S, Last, Item, Fore, Aft, Exp);
|
367 |
|
|
Generic_Aux.Put_Item (File, S (1 .. Last));
|
368 |
|
|
end Put;
|
369 |
|
|
|
370 |
|
|
procedure Put
|
371 |
|
|
(Item : Num;
|
372 |
|
|
Fore : Field := Default_Fore;
|
373 |
|
|
Aft : Field := Default_Aft;
|
374 |
|
|
Exp : Field := Default_Exp)
|
375 |
|
|
is
|
376 |
|
|
S : String (1 .. Fore + Aft + Exp + Extra_Layout_Space);
|
377 |
|
|
Last : Natural;
|
378 |
|
|
begin
|
379 |
|
|
Put (S, Last, Item, Fore, Aft, Exp);
|
380 |
|
|
Generic_Aux.Put_Item (Text_IO.Current_Out, S (1 .. Last));
|
381 |
|
|
end Put;
|
382 |
|
|
|
383 |
|
|
procedure Put
|
384 |
|
|
(To : out String;
|
385 |
|
|
Item : Num;
|
386 |
|
|
Aft : Field := Default_Aft;
|
387 |
|
|
Exp : Field := Default_Exp)
|
388 |
|
|
is
|
389 |
|
|
Fore : constant Integer :=
|
390 |
|
|
To'Length
|
391 |
|
|
- 1 -- Decimal point
|
392 |
|
|
- Field'Max (1, Aft) -- Decimal part
|
393 |
|
|
- Boolean'Pos (Exp /= 0) -- Exponent indicator
|
394 |
|
|
- Exp; -- Exponent
|
395 |
|
|
|
396 |
|
|
Last : Natural;
|
397 |
|
|
|
398 |
|
|
begin
|
399 |
|
|
if Fore - Boolean'Pos (Item < 0.0) < 1 then
|
400 |
|
|
raise Layout_Error;
|
401 |
|
|
end if;
|
402 |
|
|
|
403 |
|
|
Put (To, Last, Item, Fore, Aft, Exp);
|
404 |
|
|
|
405 |
|
|
if Last /= To'Last then
|
406 |
|
|
raise Layout_Error;
|
407 |
|
|
end if;
|
408 |
|
|
end Put;
|
409 |
|
|
|
410 |
|
|
procedure Put
|
411 |
|
|
(To : out String;
|
412 |
|
|
Last : out Natural;
|
413 |
|
|
Item : Num;
|
414 |
|
|
Fore : Integer;
|
415 |
|
|
Aft : Field;
|
416 |
|
|
Exp : Field)
|
417 |
|
|
is
|
418 |
|
|
subtype Digit is Int64 range 0 .. 9;
|
419 |
|
|
|
420 |
|
|
X : constant Int64 := Int64'Integer_Value (Item);
|
421 |
|
|
A : constant Field := Field'Max (Aft, 1);
|
422 |
|
|
Neg : constant Boolean := (Item < 0.0);
|
423 |
|
|
Pos : Integer := 0; -- Next digit X has value X * 10.0**Pos;
|
424 |
|
|
|
425 |
|
|
procedure Put_Character (C : Character);
|
426 |
|
|
pragma Inline (Put_Character);
|
427 |
|
|
-- Add C to the output string To, updating Last
|
428 |
|
|
|
429 |
|
|
procedure Put_Digit (X : Digit);
|
430 |
|
|
-- Add digit X to the output string (going from left to right), updating
|
431 |
|
|
-- Last and Pos, and inserting the sign, leading zeros or a decimal
|
432 |
|
|
-- point when necessary. After outputting the first digit, Pos must not
|
433 |
|
|
-- be changed outside Put_Digit anymore.
|
434 |
|
|
|
435 |
|
|
procedure Put_Int64 (X : Int64; Scale : Integer);
|
436 |
|
|
-- Output the decimal number abs X * 10**Scale
|
437 |
|
|
|
438 |
|
|
procedure Put_Scaled
|
439 |
|
|
(X, Y, Z : Int64;
|
440 |
|
|
A : Field;
|
441 |
|
|
E : Integer);
|
442 |
|
|
-- Output the decimal number (X * Y / Z) * 10**E, producing A digits
|
443 |
|
|
-- after the decimal point and rounding the final digit. The value
|
444 |
|
|
-- X * Y / Z is computed with full precision, but must be in the
|
445 |
|
|
-- range of Int64.
|
446 |
|
|
|
447 |
|
|
-------------------
|
448 |
|
|
-- Put_Character --
|
449 |
|
|
-------------------
|
450 |
|
|
|
451 |
|
|
procedure Put_Character (C : Character) is
|
452 |
|
|
begin
|
453 |
|
|
Last := Last + 1;
|
454 |
|
|
|
455 |
|
|
-- Never put a character outside of string To. Exception Layout_Error
|
456 |
|
|
-- will be raised later if Last is greater than To'Last.
|
457 |
|
|
|
458 |
|
|
if Last <= To'Last then
|
459 |
|
|
To (Last) := C;
|
460 |
|
|
end if;
|
461 |
|
|
end Put_Character;
|
462 |
|
|
|
463 |
|
|
---------------
|
464 |
|
|
-- Put_Digit --
|
465 |
|
|
---------------
|
466 |
|
|
|
467 |
|
|
procedure Put_Digit (X : Digit) is
|
468 |
|
|
Digs : constant array (Digit) of Character := "0123456789";
|
469 |
|
|
|
470 |
|
|
begin
|
471 |
|
|
if Last = To'First - 1 then
|
472 |
|
|
if X /= 0 or else Pos <= 0 then
|
473 |
|
|
|
474 |
|
|
-- Before outputting first digit, include leading space,
|
475 |
|
|
-- possible minus sign and, if the first digit is fractional,
|
476 |
|
|
-- decimal seperator and leading zeros.
|
477 |
|
|
|
478 |
|
|
-- The Fore part has Pos + 1 + Boolean'Pos (Neg) characters,
|
479 |
|
|
-- if Pos >= 0 and otherwise has a single zero digit plus minus
|
480 |
|
|
-- sign if negative. Add leading space if necessary.
|
481 |
|
|
|
482 |
|
|
for J in Integer'Max (0, Pos) + 2 + Boolean'Pos (Neg) .. Fore
|
483 |
|
|
loop
|
484 |
|
|
Put_Character (' ');
|
485 |
|
|
end loop;
|
486 |
|
|
|
487 |
|
|
-- Output minus sign, if number is negative
|
488 |
|
|
|
489 |
|
|
if Neg then
|
490 |
|
|
Put_Character ('-');
|
491 |
|
|
end if;
|
492 |
|
|
|
493 |
|
|
-- If starting with fractional digit, output leading zeros
|
494 |
|
|
|
495 |
|
|
if Pos < 0 then
|
496 |
|
|
Put_Character ('0');
|
497 |
|
|
Put_Character ('.');
|
498 |
|
|
|
499 |
|
|
for J in Pos .. -2 loop
|
500 |
|
|
Put_Character ('0');
|
501 |
|
|
end loop;
|
502 |
|
|
end if;
|
503 |
|
|
|
504 |
|
|
Put_Character (Digs (X));
|
505 |
|
|
end if;
|
506 |
|
|
|
507 |
|
|
else
|
508 |
|
|
-- This is not the first digit to be output, so the only
|
509 |
|
|
-- special handling is that for the decimal point
|
510 |
|
|
|
511 |
|
|
if Pos = -1 then
|
512 |
|
|
Put_Character ('.');
|
513 |
|
|
end if;
|
514 |
|
|
|
515 |
|
|
Put_Character (Digs (X));
|
516 |
|
|
end if;
|
517 |
|
|
|
518 |
|
|
Pos := Pos - 1;
|
519 |
|
|
end Put_Digit;
|
520 |
|
|
|
521 |
|
|
---------------
|
522 |
|
|
-- Put_Int64 --
|
523 |
|
|
---------------
|
524 |
|
|
|
525 |
|
|
procedure Put_Int64 (X : Int64; Scale : Integer) is
|
526 |
|
|
begin
|
527 |
|
|
if X = 0 then
|
528 |
|
|
return;
|
529 |
|
|
end if;
|
530 |
|
|
|
531 |
|
|
if X not in -9 .. 9 then
|
532 |
|
|
Put_Int64 (X / 10, Scale + 1);
|
533 |
|
|
end if;
|
534 |
|
|
|
535 |
|
|
-- Use Put_Digit to advance Pos. This fixes a case where the second
|
536 |
|
|
-- or later Scaled_Divide would omit leading zeroes, resulting in
|
537 |
|
|
-- too few digits produced and a Layout_Error as result.
|
538 |
|
|
|
539 |
|
|
while Pos > Scale loop
|
540 |
|
|
Put_Digit (0);
|
541 |
|
|
end loop;
|
542 |
|
|
|
543 |
|
|
-- If and only if more than one digit is output before the decimal
|
544 |
|
|
-- point, pos will be unequal to scale when outputting the first
|
545 |
|
|
-- digit.
|
546 |
|
|
|
547 |
|
|
pragma Assert (Pos = Scale or else Last = To'First - 1);
|
548 |
|
|
|
549 |
|
|
Pos := Scale;
|
550 |
|
|
|
551 |
|
|
Put_Digit (abs (X rem 10));
|
552 |
|
|
end Put_Int64;
|
553 |
|
|
|
554 |
|
|
----------------
|
555 |
|
|
-- Put_Scaled --
|
556 |
|
|
----------------
|
557 |
|
|
|
558 |
|
|
procedure Put_Scaled
|
559 |
|
|
(X, Y, Z : Int64;
|
560 |
|
|
A : Field;
|
561 |
|
|
E : Integer)
|
562 |
|
|
is
|
563 |
|
|
pragma Assert (E >= -Max_Digits);
|
564 |
|
|
AA : constant Field := E + A;
|
565 |
|
|
N : constant Natural := (AA + Max_Digits - 1) / Max_Digits + 1;
|
566 |
|
|
|
567 |
|
|
Q : array (0 .. N - 1) of Int64 := (others => 0);
|
568 |
|
|
-- Each element of Q has Max_Digits decimal digits, except the
|
569 |
|
|
-- last, which has eAA rem Max_Digits. Only Q (Q'First) may have an
|
570 |
|
|
-- absolute value equal to or larger than 10**Max_Digits. Only the
|
571 |
|
|
-- absolute value of the elements is not significant, not the sign.
|
572 |
|
|
|
573 |
|
|
XX : Int64 := X;
|
574 |
|
|
YY : Int64 := Y;
|
575 |
|
|
|
576 |
|
|
begin
|
577 |
|
|
for J in Q'Range loop
|
578 |
|
|
exit when XX = 0;
|
579 |
|
|
|
580 |
|
|
if J > 0 then
|
581 |
|
|
YY := 10**(Integer'Min (Max_Digits, AA - (J - 1) * Max_Digits));
|
582 |
|
|
end if;
|
583 |
|
|
|
584 |
|
|
Scaled_Divide (XX, YY, Z, Q (J), R => XX, Round => False);
|
585 |
|
|
end loop;
|
586 |
|
|
|
587 |
|
|
if -E > A then
|
588 |
|
|
pragma Assert (N = 1);
|
589 |
|
|
|
590 |
|
|
Discard_Extra_Digits : declare
|
591 |
|
|
Factor : constant Int64 := 10**(-E - A);
|
592 |
|
|
|
593 |
|
|
begin
|
594 |
|
|
-- The scaling factors were such that the first division
|
595 |
|
|
-- produced more digits than requested. So divide away extra
|
596 |
|
|
-- digits and compute new remainder for later rounding.
|
597 |
|
|
|
598 |
|
|
if abs (Q (0) rem Factor) >= Factor / 2 then
|
599 |
|
|
Q (0) := abs (Q (0) / Factor) + 1;
|
600 |
|
|
else
|
601 |
|
|
Q (0) := Q (0) / Factor;
|
602 |
|
|
end if;
|
603 |
|
|
|
604 |
|
|
XX := 0;
|
605 |
|
|
end Discard_Extra_Digits;
|
606 |
|
|
end if;
|
607 |
|
|
|
608 |
|
|
-- At this point XX is a remainder and we need to determine if the
|
609 |
|
|
-- quotient in Q must be rounded away from zero.
|
610 |
|
|
|
611 |
|
|
-- As XX is less than the divisor, it is safe to take its absolute
|
612 |
|
|
-- without chance of overflow. The check to see if XX is at least
|
613 |
|
|
-- half the absolute value of the divisor must be done carefully to
|
614 |
|
|
-- avoid overflow or lose precision.
|
615 |
|
|
|
616 |
|
|
XX := abs XX;
|
617 |
|
|
|
618 |
|
|
if XX >= 2**62
|
619 |
|
|
or else (Z < 0 and then (-XX) * 2 <= Z)
|
620 |
|
|
or else (Z >= 0 and then XX * 2 >= Z)
|
621 |
|
|
then
|
622 |
|
|
-- OK, rounding is necessary. As the sign is not significant,
|
623 |
|
|
-- take advantage of the fact that an extra negative value will
|
624 |
|
|
-- always be available when propagating the carry.
|
625 |
|
|
|
626 |
|
|
Q (Q'Last) := -abs Q (Q'Last) - 1;
|
627 |
|
|
|
628 |
|
|
Propagate_Carry :
|
629 |
|
|
for J in reverse 1 .. Q'Last loop
|
630 |
|
|
if Q (J) = YY or else Q (J) = -YY then
|
631 |
|
|
Q (J) := 0;
|
632 |
|
|
Q (J - 1) := -abs Q (J - 1) - 1;
|
633 |
|
|
|
634 |
|
|
else
|
635 |
|
|
exit Propagate_Carry;
|
636 |
|
|
end if;
|
637 |
|
|
end loop Propagate_Carry;
|
638 |
|
|
end if;
|
639 |
|
|
|
640 |
|
|
for J in Q'First .. Q'Last - 1 loop
|
641 |
|
|
Put_Int64 (Q (J), E - J * Max_Digits);
|
642 |
|
|
end loop;
|
643 |
|
|
|
644 |
|
|
Put_Int64 (Q (Q'Last), -A);
|
645 |
|
|
end Put_Scaled;
|
646 |
|
|
|
647 |
|
|
-- Start of processing for Put
|
648 |
|
|
|
649 |
|
|
begin
|
650 |
|
|
Last := To'First - 1;
|
651 |
|
|
|
652 |
|
|
if Exp /= 0 then
|
653 |
|
|
|
654 |
|
|
-- With the Exp format, it is not known how many output digits to
|
655 |
|
|
-- generate, as leading zeros must be ignored. Computing too many
|
656 |
|
|
-- digits and then truncating the output will not give the closest
|
657 |
|
|
-- output, it is necessary to round at the correct digit.
|
658 |
|
|
|
659 |
|
|
-- The general approach is as follows: as long as no digits have
|
660 |
|
|
-- been generated, compute the Aft next digits (without rounding).
|
661 |
|
|
-- Once a non-zero digit is generated, determine the exact number
|
662 |
|
|
-- of digits remaining and compute them with rounding.
|
663 |
|
|
|
664 |
|
|
-- Since a large number of iterations might be necessary in case
|
665 |
|
|
-- of Aft = 1, the following optimization would be desirable.
|
666 |
|
|
|
667 |
|
|
-- Count the number Z of leading zero bits in the integer
|
668 |
|
|
-- representation of X, and start with producing Aft + Z * 1000 /
|
669 |
|
|
-- 3322 digits in the first scaled division.
|
670 |
|
|
|
671 |
|
|
-- However, the floating-point routines are still used now ???
|
672 |
|
|
|
673 |
|
|
System.Img_Real.Set_Image_Real (Long_Long_Float (Item), To, Last,
|
674 |
|
|
Fore, Aft, Exp);
|
675 |
|
|
return;
|
676 |
|
|
end if;
|
677 |
|
|
|
678 |
|
|
if Exact then
|
679 |
|
|
declare
|
680 |
|
|
D : constant Integer := Integer'Min (A, Max_Digits
|
681 |
|
|
- (Num'Fore - 1));
|
682 |
|
|
Y : constant Int64 := Int64'Min (Int64 (-Num'Small), -1)
|
683 |
|
|
* 10**Integer'Max (0, D);
|
684 |
|
|
Z : constant Int64 := Int64'Min (Int64 (-(1.0 / Num'Small)), -1)
|
685 |
|
|
* 10**Integer'Max (0, -D);
|
686 |
|
|
begin
|
687 |
|
|
Put_Scaled (X, Y, Z, A, -D);
|
688 |
|
|
end;
|
689 |
|
|
|
690 |
|
|
else -- not Exact
|
691 |
|
|
declare
|
692 |
|
|
E : constant Integer := Max_Digits - 1 + Scale;
|
693 |
|
|
D : constant Integer := Scale - 1;
|
694 |
|
|
Y : constant Int64 := Int64 (-Num'Small * 10.0**E);
|
695 |
|
|
Z : constant Int64 := -10**Max_Digits;
|
696 |
|
|
begin
|
697 |
|
|
Put_Scaled (X, Y, Z, A, -D);
|
698 |
|
|
end;
|
699 |
|
|
end if;
|
700 |
|
|
|
701 |
|
|
-- If only zero digits encountered, unit digit has not been output yet
|
702 |
|
|
|
703 |
|
|
if Last < To'First then
|
704 |
|
|
Pos := 0;
|
705 |
|
|
|
706 |
|
|
elsif Last > To'Last then
|
707 |
|
|
raise Layout_Error; -- Not enough room in the output variable
|
708 |
|
|
end if;
|
709 |
|
|
|
710 |
|
|
-- Always output digits up to the first one after the decimal point
|
711 |
|
|
|
712 |
|
|
while Pos >= -A loop
|
713 |
|
|
Put_Digit (0);
|
714 |
|
|
end loop;
|
715 |
|
|
end Put;
|
716 |
|
|
|
717 |
|
|
end Ada.Text_IO.Fixed_IO;
|