OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [checks.adb] - Blame information for rev 774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                               C H E C K S                                --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2011, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17
-- for  more details.  You should have  received  a copy of the GNU General --
18
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19
-- http://www.gnu.org/licenses for a complete copy of the license.          --
20
--                                                                          --
21
-- GNAT was originally developed  by the GNAT team at  New York University. --
22
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23
--                                                                          --
24
------------------------------------------------------------------------------
25
 
26
with Atree;    use Atree;
27
with Debug;    use Debug;
28
with Einfo;    use Einfo;
29
with Errout;   use Errout;
30
with Exp_Ch2;  use Exp_Ch2;
31
with Exp_Ch4;  use Exp_Ch4;
32
with Exp_Ch11; use Exp_Ch11;
33
with Exp_Pakd; use Exp_Pakd;
34
with Exp_Util; use Exp_Util;
35
with Elists;   use Elists;
36
with Eval_Fat; use Eval_Fat;
37
with Freeze;   use Freeze;
38
with Lib;      use Lib;
39
with Nlists;   use Nlists;
40
with Nmake;    use Nmake;
41
with Opt;      use Opt;
42
with Output;   use Output;
43
with Restrict; use Restrict;
44
with Rident;   use Rident;
45
with Rtsfind;  use Rtsfind;
46
with Sem;      use Sem;
47
with Sem_Aux;  use Sem_Aux;
48
with Sem_Eval; use Sem_Eval;
49
with Sem_Ch3;  use Sem_Ch3;
50
with Sem_Ch8;  use Sem_Ch8;
51
with Sem_Res;  use Sem_Res;
52
with Sem_Util; use Sem_Util;
53
with Sem_Warn; use Sem_Warn;
54
with Sinfo;    use Sinfo;
55
with Sinput;   use Sinput;
56
with Snames;   use Snames;
57
with Sprint;   use Sprint;
58
with Stand;    use Stand;
59
with Targparm; use Targparm;
60
with Tbuild;   use Tbuild;
61
with Ttypes;   use Ttypes;
62
with Urealp;   use Urealp;
63
with Validsw;  use Validsw;
64
 
65
package body Checks is
66
 
67
   --  General note: many of these routines are concerned with generating
68
   --  checking code to make sure that constraint error is raised at runtime.
69
   --  Clearly this code is only needed if the expander is active, since
70
   --  otherwise we will not be generating code or going into the runtime
71
   --  execution anyway.
72
 
73
   --  We therefore disconnect most of these checks if the expander is
74
   --  inactive. This has the additional benefit that we do not need to
75
   --  worry about the tree being messed up by previous errors (since errors
76
   --  turn off expansion anyway).
77
 
78
   --  There are a few exceptions to the above rule. For instance routines
79
   --  such as Apply_Scalar_Range_Check that do not insert any code can be
80
   --  safely called even when the Expander is inactive (but Errors_Detected
81
   --  is 0). The benefit of executing this code when expansion is off, is
82
   --  the ability to emit constraint error warning for static expressions
83
   --  even when we are not generating code.
84
 
85
   -------------------------------------
86
   -- Suppression of Redundant Checks --
87
   -------------------------------------
88
 
89
   --  This unit implements a limited circuit for removal of redundant
90
   --  checks. The processing is based on a tracing of simple sequential
91
   --  flow. For any sequence of statements, we save expressions that are
92
   --  marked to be checked, and then if the same expression appears later
93
   --  with the same check, then under certain circumstances, the second
94
   --  check can be suppressed.
95
 
96
   --  Basically, we can suppress the check if we know for certain that
97
   --  the previous expression has been elaborated (together with its
98
   --  check), and we know that the exception frame is the same, and that
99
   --  nothing has happened to change the result of the exception.
100
 
101
   --  Let us examine each of these three conditions in turn to describe
102
   --  how we ensure that this condition is met.
103
 
104
   --  First, we need to know for certain that the previous expression has
105
   --  been executed. This is done principally by the mechanism of calling
106
   --  Conditional_Statements_Begin at the start of any statement sequence
107
   --  and Conditional_Statements_End at the end. The End call causes all
108
   --  checks remembered since the Begin call to be discarded. This does
109
   --  miss a few cases, notably the case of a nested BEGIN-END block with
110
   --  no exception handlers. But the important thing is to be conservative.
111
   --  The other protection is that all checks are discarded if a label
112
   --  is encountered, since then the assumption of sequential execution
113
   --  is violated, and we don't know enough about the flow.
114
 
115
   --  Second, we need to know that the exception frame is the same. We
116
   --  do this by killing all remembered checks when we enter a new frame.
117
   --  Again, that's over-conservative, but generally the cases we can help
118
   --  with are pretty local anyway (like the body of a loop for example).
119
 
120
   --  Third, we must be sure to forget any checks which are no longer valid.
121
   --  This is done by two mechanisms, first the Kill_Checks_Variable call is
122
   --  used to note any changes to local variables. We only attempt to deal
123
   --  with checks involving local variables, so we do not need to worry
124
   --  about global variables. Second, a call to any non-global procedure
125
   --  causes us to abandon all stored checks, since such a all may affect
126
   --  the values of any local variables.
127
 
128
   --  The following define the data structures used to deal with remembering
129
   --  checks so that redundant checks can be eliminated as described above.
130
 
131
   --  Right now, the only expressions that we deal with are of the form of
132
   --  simple local objects (either declared locally, or IN parameters) or
133
   --  such objects plus/minus a compile time known constant. We can do
134
   --  more later on if it seems worthwhile, but this catches many simple
135
   --  cases in practice.
136
 
137
   --  The following record type reflects a single saved check. An entry
138
   --  is made in the stack of saved checks if and only if the expression
139
   --  has been elaborated with the indicated checks.
140
 
141
   type Saved_Check is record
142
      Killed : Boolean;
143
      --  Set True if entry is killed by Kill_Checks
144
 
145
      Entity : Entity_Id;
146
      --  The entity involved in the expression that is checked
147
 
148
      Offset : Uint;
149
      --  A compile time value indicating the result of adding or
150
      --  subtracting a compile time value. This value is to be
151
      --  added to the value of the Entity. A value of zero is
152
      --  used for the case of a simple entity reference.
153
 
154
      Check_Type : Character;
155
      --  This is set to 'R' for a range check (in which case Target_Type
156
      --  is set to the target type for the range check) or to 'O' for an
157
      --  overflow check (in which case Target_Type is set to Empty).
158
 
159
      Target_Type : Entity_Id;
160
      --  Used only if Do_Range_Check is set. Records the target type for
161
      --  the check. We need this, because a check is a duplicate only if
162
      --  it has the same target type (or more accurately one with a
163
      --  range that is smaller or equal to the stored target type of a
164
      --  saved check).
165
   end record;
166
 
167
   --  The following table keeps track of saved checks. Rather than use an
168
   --  extensible table. We just use a table of fixed size, and we discard
169
   --  any saved checks that do not fit. That's very unlikely to happen and
170
   --  this is only an optimization in any case.
171
 
172
   Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
173
   --  Array of saved checks
174
 
175
   Num_Saved_Checks : Nat := 0;
176
   --  Number of saved checks
177
 
178
   --  The following stack keeps track of statement ranges. It is treated
179
   --  as a stack. When Conditional_Statements_Begin is called, an entry
180
   --  is pushed onto this stack containing the value of Num_Saved_Checks
181
   --  at the time of the call. Then when Conditional_Statements_End is
182
   --  called, this value is popped off and used to reset Num_Saved_Checks.
183
 
184
   --  Note: again, this is a fixed length stack with a size that should
185
   --  always be fine. If the value of the stack pointer goes above the
186
   --  limit, then we just forget all saved checks.
187
 
188
   Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
189
   Saved_Checks_TOS : Nat := 0;
190
 
191
   -----------------------
192
   -- Local Subprograms --
193
   -----------------------
194
 
195
   procedure Apply_Float_Conversion_Check
196
     (Ck_Node    : Node_Id;
197
      Target_Typ : Entity_Id);
198
   --  The checks on a conversion from a floating-point type to an integer
199
   --  type are delicate. They have to be performed before conversion, they
200
   --  have to raise an exception when the operand is a NaN, and rounding must
201
   --  be taken into account to determine the safe bounds of the operand.
202
 
203
   procedure Apply_Selected_Length_Checks
204
     (Ck_Node    : Node_Id;
205
      Target_Typ : Entity_Id;
206
      Source_Typ : Entity_Id;
207
      Do_Static  : Boolean);
208
   --  This is the subprogram that does all the work for Apply_Length_Check
209
   --  and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
210
   --  described for the above routines. The Do_Static flag indicates that
211
   --  only a static check is to be done.
212
 
213
   procedure Apply_Selected_Range_Checks
214
     (Ck_Node    : Node_Id;
215
      Target_Typ : Entity_Id;
216
      Source_Typ : Entity_Id;
217
      Do_Static  : Boolean);
218
   --  This is the subprogram that does all the work for Apply_Range_Check.
219
   --  Expr, Target_Typ and Source_Typ are as described for the above
220
   --  routine. The Do_Static flag indicates that only a static check is
221
   --  to be done.
222
 
223
   type Check_Type is new Check_Id range Access_Check .. Division_Check;
224
   function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
225
   --  This function is used to see if an access or division by zero check is
226
   --  needed. The check is to be applied to a single variable appearing in the
227
   --  source, and N is the node for the reference. If N is not of this form,
228
   --  True is returned with no further processing. If N is of the right form,
229
   --  then further processing determines if the given Check is needed.
230
   --
231
   --  The particular circuit is to see if we have the case of a check that is
232
   --  not needed because it appears in the right operand of a short circuited
233
   --  conditional where the left operand guards the check. For example:
234
   --
235
   --    if Var = 0 or else Q / Var > 12 then
236
   --       ...
237
   --    end if;
238
   --
239
   --  In this example, the division check is not required. At the same time
240
   --  we can issue warnings for suspicious use of non-short-circuited forms,
241
   --  such as:
242
   --
243
   --    if Var = 0 or Q / Var > 12 then
244
   --       ...
245
   --    end if;
246
 
247
   procedure Find_Check
248
     (Expr        : Node_Id;
249
      Check_Type  : Character;
250
      Target_Type : Entity_Id;
251
      Entry_OK    : out Boolean;
252
      Check_Num   : out Nat;
253
      Ent         : out Entity_Id;
254
      Ofs         : out Uint);
255
   --  This routine is used by Enable_Range_Check and Enable_Overflow_Check
256
   --  to see if a check is of the form for optimization, and if so, to see
257
   --  if it has already been performed. Expr is the expression to check,
258
   --  and Check_Type is 'R' for a range check, 'O' for an overflow check.
259
   --  Target_Type is the target type for a range check, and Empty for an
260
   --  overflow check. If the entry is not of the form for optimization,
261
   --  then Entry_OK is set to False, and the remaining out parameters
262
   --  are undefined. If the entry is OK, then Ent/Ofs are set to the
263
   --  entity and offset from the expression. Check_Num is the number of
264
   --  a matching saved entry in Saved_Checks, or zero if no such entry
265
   --  is located.
266
 
267
   function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
268
   --  If a discriminal is used in constraining a prival, Return reference
269
   --  to the discriminal of the protected body (which renames the parameter
270
   --  of the enclosing protected operation). This clumsy transformation is
271
   --  needed because privals are created too late and their actual subtypes
272
   --  are not available when analysing the bodies of the protected operations.
273
   --  This function is called whenever the bound is an entity and the scope
274
   --  indicates a protected operation. If the bound is an in-parameter of
275
   --  a protected operation that is not a prival, the function returns the
276
   --  bound itself.
277
   --  To be cleaned up???
278
 
279
   function Guard_Access
280
     (Cond    : Node_Id;
281
      Loc     : Source_Ptr;
282
      Ck_Node : Node_Id) return Node_Id;
283
   --  In the access type case, guard the test with a test to ensure
284
   --  that the access value is non-null, since the checks do not
285
   --  not apply to null access values.
286
 
287
   procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
288
   --  Called by Apply_{Length,Range}_Checks to rewrite the tree with the
289
   --  Constraint_Error node.
290
 
291
   function Range_Or_Validity_Checks_Suppressed
292
     (Expr : Node_Id) return Boolean;
293
   --  Returns True if either range or validity checks or both are suppressed
294
   --  for the type of the given expression, or, if the expression is the name
295
   --  of an entity, if these checks are suppressed for the entity.
296
 
297
   function Selected_Length_Checks
298
     (Ck_Node    : Node_Id;
299
      Target_Typ : Entity_Id;
300
      Source_Typ : Entity_Id;
301
      Warn_Node  : Node_Id) return Check_Result;
302
   --  Like Apply_Selected_Length_Checks, except it doesn't modify
303
   --  anything, just returns a list of nodes as described in the spec of
304
   --  this package for the Range_Check function.
305
 
306
   function Selected_Range_Checks
307
     (Ck_Node    : Node_Id;
308
      Target_Typ : Entity_Id;
309
      Source_Typ : Entity_Id;
310
      Warn_Node  : Node_Id) return Check_Result;
311
   --  Like Apply_Selected_Range_Checks, except it doesn't modify anything,
312
   --  just returns a list of nodes as described in the spec of this package
313
   --  for the Range_Check function.
314
 
315
   ------------------------------
316
   -- Access_Checks_Suppressed --
317
   ------------------------------
318
 
319
   function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
320
   begin
321
      if Present (E) and then Checks_May_Be_Suppressed (E) then
322
         return Is_Check_Suppressed (E, Access_Check);
323
      else
324
         return Scope_Suppress (Access_Check);
325
      end if;
326
   end Access_Checks_Suppressed;
327
 
328
   -------------------------------------
329
   -- Accessibility_Checks_Suppressed --
330
   -------------------------------------
331
 
332
   function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
333
   begin
334
      if Present (E) and then Checks_May_Be_Suppressed (E) then
335
         return Is_Check_Suppressed (E, Accessibility_Check);
336
      else
337
         return Scope_Suppress (Accessibility_Check);
338
      end if;
339
   end Accessibility_Checks_Suppressed;
340
 
341
   -----------------------------
342
   -- Activate_Division_Check --
343
   -----------------------------
344
 
345
   procedure Activate_Division_Check (N : Node_Id) is
346
   begin
347
      Set_Do_Division_Check (N, True);
348
      Possible_Local_Raise (N, Standard_Constraint_Error);
349
   end Activate_Division_Check;
350
 
351
   -----------------------------
352
   -- Activate_Overflow_Check --
353
   -----------------------------
354
 
355
   procedure Activate_Overflow_Check (N : Node_Id) is
356
   begin
357
      Set_Do_Overflow_Check (N, True);
358
      Possible_Local_Raise (N, Standard_Constraint_Error);
359
   end Activate_Overflow_Check;
360
 
361
   --------------------------
362
   -- Activate_Range_Check --
363
   --------------------------
364
 
365
   procedure Activate_Range_Check (N : Node_Id) is
366
   begin
367
      Set_Do_Range_Check (N, True);
368
      Possible_Local_Raise (N, Standard_Constraint_Error);
369
   end Activate_Range_Check;
370
 
371
   ---------------------------------
372
   -- Alignment_Checks_Suppressed --
373
   ---------------------------------
374
 
375
   function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
376
   begin
377
      if Present (E) and then Checks_May_Be_Suppressed (E) then
378
         return Is_Check_Suppressed (E, Alignment_Check);
379
      else
380
         return Scope_Suppress (Alignment_Check);
381
      end if;
382
   end Alignment_Checks_Suppressed;
383
 
384
   -------------------------
385
   -- Append_Range_Checks --
386
   -------------------------
387
 
388
   procedure Append_Range_Checks
389
     (Checks       : Check_Result;
390
      Stmts        : List_Id;
391
      Suppress_Typ : Entity_Id;
392
      Static_Sloc  : Source_Ptr;
393
      Flag_Node    : Node_Id)
394
   is
395
      Internal_Flag_Node   : constant Node_Id    := Flag_Node;
396
      Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
397
 
398
      Checks_On : constant Boolean :=
399
                    (not Index_Checks_Suppressed (Suppress_Typ))
400
                       or else
401
                    (not Range_Checks_Suppressed (Suppress_Typ));
402
 
403
   begin
404
      --  For now we just return if Checks_On is false, however this should
405
      --  be enhanced to check for an always True value in the condition
406
      --  and to generate a compilation warning???
407
 
408
      if not Checks_On then
409
         return;
410
      end if;
411
 
412
      for J in 1 .. 2 loop
413
         exit when No (Checks (J));
414
 
415
         if Nkind (Checks (J)) = N_Raise_Constraint_Error
416
           and then Present (Condition (Checks (J)))
417
         then
418
            if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
419
               Append_To (Stmts, Checks (J));
420
               Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
421
            end if;
422
 
423
         else
424
            Append_To
425
              (Stmts,
426
                Make_Raise_Constraint_Error (Internal_Static_Sloc,
427
                  Reason => CE_Range_Check_Failed));
428
         end if;
429
      end loop;
430
   end Append_Range_Checks;
431
 
432
   ------------------------
433
   -- Apply_Access_Check --
434
   ------------------------
435
 
436
   procedure Apply_Access_Check (N : Node_Id) is
437
      P : constant Node_Id := Prefix (N);
438
 
439
   begin
440
      --  We do not need checks if we are not generating code (i.e. the
441
      --  expander is not active). This is not just an optimization, there
442
      --  are cases (e.g. with pragma Debug) where generating the checks
443
      --  can cause real trouble).
444
 
445
      if not Full_Expander_Active then
446
         return;
447
      end if;
448
 
449
      --  No check if short circuiting makes check unnecessary
450
 
451
      if not Check_Needed (P, Access_Check) then
452
         return;
453
      end if;
454
 
455
      --  No check if accessing the Offset_To_Top component of a dispatch
456
      --  table. They are safe by construction.
457
 
458
      if Tagged_Type_Expansion
459
        and then Present (Etype (P))
460
        and then RTU_Loaded (Ada_Tags)
461
        and then RTE_Available (RE_Offset_To_Top_Ptr)
462
        and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
463
      then
464
         return;
465
      end if;
466
 
467
      --  Otherwise go ahead and install the check
468
 
469
      Install_Null_Excluding_Check (P);
470
   end Apply_Access_Check;
471
 
472
   -------------------------------
473
   -- Apply_Accessibility_Check --
474
   -------------------------------
475
 
476
   procedure Apply_Accessibility_Check
477
     (N           : Node_Id;
478
      Typ         : Entity_Id;
479
      Insert_Node : Node_Id)
480
   is
481
      Loc         : constant Source_Ptr := Sloc (N);
482
      Param_Ent   : Entity_Id           := Param_Entity (N);
483
      Param_Level : Node_Id;
484
      Type_Level  : Node_Id;
485
 
486
   begin
487
      if Ada_Version >= Ada_2012
488
         and then not Present (Param_Ent)
489
         and then Is_Entity_Name (N)
490
         and then Ekind_In (Entity (N), E_Constant, E_Variable)
491
         and then Present (Effective_Extra_Accessibility (Entity (N)))
492
      then
493
         Param_Ent := Entity (N);
494
         while Present (Renamed_Object (Param_Ent)) loop
495
 
496
            --  Renamed_Object must return an Entity_Name here
497
            --  because of preceding "Present (E_E_A (...))" test.
498
 
499
            Param_Ent := Entity (Renamed_Object (Param_Ent));
500
         end loop;
501
      end if;
502
 
503
      if Inside_A_Generic then
504
         return;
505
 
506
      --  Only apply the run-time check if the access parameter has an
507
      --  associated extra access level parameter and when the level of the
508
      --  type is less deep than the level of the access parameter, and
509
      --  accessibility checks are not suppressed.
510
 
511
      elsif Present (Param_Ent)
512
         and then Present (Extra_Accessibility (Param_Ent))
513
         and then UI_Gt (Object_Access_Level (N),
514
                         Deepest_Type_Access_Level (Typ))
515
         and then not Accessibility_Checks_Suppressed (Param_Ent)
516
         and then not Accessibility_Checks_Suppressed (Typ)
517
      then
518
         Param_Level :=
519
           New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
520
 
521
         Type_Level :=
522
           Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
523
 
524
         --  Raise Program_Error if the accessibility level of the access
525
         --  parameter is deeper than the level of the target access type.
526
 
527
         Insert_Action (Insert_Node,
528
           Make_Raise_Program_Error (Loc,
529
             Condition =>
530
               Make_Op_Gt (Loc,
531
                 Left_Opnd  => Param_Level,
532
                 Right_Opnd => Type_Level),
533
             Reason => PE_Accessibility_Check_Failed));
534
 
535
         Analyze_And_Resolve (N);
536
      end if;
537
   end Apply_Accessibility_Check;
538
 
539
   --------------------------------
540
   -- Apply_Address_Clause_Check --
541
   --------------------------------
542
 
543
   procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
544
      AC   : constant Node_Id    := Address_Clause (E);
545
      Loc  : constant Source_Ptr := Sloc (AC);
546
      Typ  : constant Entity_Id  := Etype (E);
547
      Aexp : constant Node_Id    := Expression (AC);
548
 
549
      Expr : Node_Id;
550
      --  Address expression (not necessarily the same as Aexp, for example
551
      --  when Aexp is a reference to a constant, in which case Expr gets
552
      --  reset to reference the value expression of the constant.
553
 
554
      procedure Compile_Time_Bad_Alignment;
555
      --  Post error warnings when alignment is known to be incompatible. Note
556
      --  that we do not go as far as inserting a raise of Program_Error since
557
      --  this is an erroneous case, and it may happen that we are lucky and an
558
      --  underaligned address turns out to be OK after all.
559
 
560
      --------------------------------
561
      -- Compile_Time_Bad_Alignment --
562
      --------------------------------
563
 
564
      procedure Compile_Time_Bad_Alignment is
565
      begin
566
         if Address_Clause_Overlay_Warnings then
567
            Error_Msg_FE
568
              ("?specified address for& may be inconsistent with alignment ",
569
               Aexp, E);
570
            Error_Msg_FE
571
              ("\?program execution may be erroneous (RM 13.3(27))",
572
               Aexp, E);
573
            Set_Address_Warning_Posted (AC);
574
         end if;
575
      end Compile_Time_Bad_Alignment;
576
 
577
   --  Start of processing for Apply_Address_Clause_Check
578
 
579
   begin
580
      --  See if alignment check needed. Note that we never need a check if the
581
      --  maximum alignment is one, since the check will always succeed.
582
 
583
      --  Note: we do not check for checks suppressed here, since that check
584
      --  was done in Sem_Ch13 when the address clause was processed. We are
585
      --  only called if checks were not suppressed. The reason for this is
586
      --  that we have to delay the call to Apply_Alignment_Check till freeze
587
      --  time (so that all types etc are elaborated), but we have to check
588
      --  the status of check suppressing at the point of the address clause.
589
 
590
      if No (AC)
591
        or else not Check_Address_Alignment (AC)
592
        or else Maximum_Alignment = 1
593
      then
594
         return;
595
      end if;
596
 
597
      --  Obtain expression from address clause
598
 
599
      Expr := Expression (AC);
600
 
601
      --  The following loop digs for the real expression to use in the check
602
 
603
      loop
604
         --  For constant, get constant expression
605
 
606
         if Is_Entity_Name (Expr)
607
           and then Ekind (Entity (Expr)) = E_Constant
608
         then
609
            Expr := Constant_Value (Entity (Expr));
610
 
611
         --  For unchecked conversion, get result to convert
612
 
613
         elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
614
            Expr := Expression (Expr);
615
 
616
         --  For (common case) of To_Address call, get argument
617
 
618
         elsif Nkind (Expr) = N_Function_Call
619
           and then Is_Entity_Name (Name (Expr))
620
           and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
621
         then
622
            Expr := First (Parameter_Associations (Expr));
623
 
624
            if Nkind (Expr) = N_Parameter_Association then
625
               Expr := Explicit_Actual_Parameter (Expr);
626
            end if;
627
 
628
         --  We finally have the real expression
629
 
630
         else
631
            exit;
632
         end if;
633
      end loop;
634
 
635
      --  See if we know that Expr has a bad alignment at compile time
636
 
637
      if Compile_Time_Known_Value (Expr)
638
        and then (Known_Alignment (E) or else Known_Alignment (Typ))
639
      then
640
         declare
641
            AL : Uint := Alignment (Typ);
642
 
643
         begin
644
            --  The object alignment might be more restrictive than the
645
            --  type alignment.
646
 
647
            if Known_Alignment (E) then
648
               AL := Alignment (E);
649
            end if;
650
 
651
            if Expr_Value (Expr) mod AL /= 0 then
652
               Compile_Time_Bad_Alignment;
653
            else
654
               return;
655
            end if;
656
         end;
657
 
658
      --  If the expression has the form X'Address, then we can find out if
659
      --  the object X has an alignment that is compatible with the object E.
660
      --  If it hasn't or we don't know, we defer issuing the warning until
661
      --  the end of the compilation to take into account back end annotations.
662
 
663
      elsif Nkind (Expr) = N_Attribute_Reference
664
        and then Attribute_Name (Expr) = Name_Address
665
        and then Has_Compatible_Alignment (E, Prefix (Expr)) = Known_Compatible
666
      then
667
         return;
668
      end if;
669
 
670
      --  Here we do not know if the value is acceptable. Strictly we don't
671
      --  have to do anything, since if the alignment is bad, we have an
672
      --  erroneous program. However we are allowed to check for erroneous
673
      --  conditions and we decide to do this by default if the check is not
674
      --  suppressed.
675
 
676
      --  However, don't do the check if elaboration code is unwanted
677
 
678
      if Restriction_Active (No_Elaboration_Code) then
679
         return;
680
 
681
      --  Generate a check to raise PE if alignment may be inappropriate
682
 
683
      else
684
         --  If the original expression is a non-static constant, use the
685
         --  name of the constant itself rather than duplicating its
686
         --  defining expression, which was extracted above.
687
 
688
         --  Note: Expr is empty if the address-clause is applied to in-mode
689
         --  actuals (allowed by 13.1(22)).
690
 
691
         if not Present (Expr)
692
           or else
693
             (Is_Entity_Name (Expression (AC))
694
               and then Ekind (Entity (Expression (AC))) = E_Constant
695
               and then Nkind (Parent (Entity (Expression (AC))))
696
                                 = N_Object_Declaration)
697
         then
698
            Expr := New_Copy_Tree (Expression (AC));
699
         else
700
            Remove_Side_Effects (Expr);
701
         end if;
702
 
703
         Insert_After_And_Analyze (N,
704
           Make_Raise_Program_Error (Loc,
705
             Condition =>
706
               Make_Op_Ne (Loc,
707
                 Left_Opnd =>
708
                   Make_Op_Mod (Loc,
709
                     Left_Opnd =>
710
                       Unchecked_Convert_To
711
                         (RTE (RE_Integer_Address), Expr),
712
                     Right_Opnd =>
713
                       Make_Attribute_Reference (Loc,
714
                         Prefix => New_Occurrence_Of (E, Loc),
715
                         Attribute_Name => Name_Alignment)),
716
                 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
717
             Reason => PE_Misaligned_Address_Value),
718
           Suppress => All_Checks);
719
         return;
720
      end if;
721
 
722
   exception
723
      --  If we have some missing run time component in configurable run time
724
      --  mode then just skip the check (it is not required in any case).
725
 
726
      when RE_Not_Available =>
727
         return;
728
   end Apply_Address_Clause_Check;
729
 
730
   -------------------------------------
731
   -- Apply_Arithmetic_Overflow_Check --
732
   -------------------------------------
733
 
734
   --  This routine is called only if the type is an integer type, and a
735
   --  software arithmetic overflow check may be needed for op (add, subtract,
736
   --  or multiply). This check is performed only if Software_Overflow_Checking
737
   --  is enabled and Do_Overflow_Check is set. In this case we expand the
738
   --  operation into a more complex sequence of tests that ensures that
739
   --  overflow is properly caught.
740
 
741
   procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
742
      Loc   : constant Source_Ptr := Sloc (N);
743
      Typ   : constant Entity_Id  := Etype (N);
744
      Rtyp  : constant Entity_Id  := Root_Type (Typ);
745
 
746
   begin
747
      --  An interesting special case. If the arithmetic operation appears as
748
      --  the operand of a type conversion:
749
 
750
      --    type1 (x op y)
751
 
752
      --  and all the following conditions apply:
753
 
754
      --    arithmetic operation is for a signed integer type
755
      --    target type type1 is a static integer subtype
756
      --    range of x and y are both included in the range of type1
757
      --    range of x op y is included in the range of type1
758
      --    size of type1 is at least twice the result size of op
759
 
760
      --  then we don't do an overflow check in any case, instead we transform
761
      --  the operation so that we end up with:
762
 
763
      --    type1 (type1 (x) op type1 (y))
764
 
765
      --  This avoids intermediate overflow before the conversion. It is
766
      --  explicitly permitted by RM 3.5.4(24):
767
 
768
      --    For the execution of a predefined operation of a signed integer
769
      --    type, the implementation need not raise Constraint_Error if the
770
      --    result is outside the base range of the type, so long as the
771
      --    correct result is produced.
772
 
773
      --  It's hard to imagine that any programmer counts on the exception
774
      --  being raised in this case, and in any case it's wrong coding to
775
      --  have this expectation, given the RM permission. Furthermore, other
776
      --  Ada compilers do allow such out of range results.
777
 
778
      --  Note that we do this transformation even if overflow checking is
779
      --  off, since this is precisely about giving the "right" result and
780
      --  avoiding the need for an overflow check.
781
 
782
      --  Note: this circuit is partially redundant with respect to the similar
783
      --  processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
784
      --  with cases that do not come through here. We still need the following
785
      --  processing even with the Exp_Ch4 code in place, since we want to be
786
      --  sure not to generate the arithmetic overflow check in these cases
787
      --  (Exp_Ch4 would have a hard time removing them once generated).
788
 
789
      if Is_Signed_Integer_Type (Typ)
790
        and then Nkind (Parent (N)) = N_Type_Conversion
791
      then
792
         declare
793
            Target_Type : constant Entity_Id :=
794
                            Base_Type (Entity (Subtype_Mark (Parent (N))));
795
 
796
            Llo, Lhi : Uint;
797
            Rlo, Rhi : Uint;
798
            LOK, ROK : Boolean;
799
 
800
            Vlo : Uint;
801
            Vhi : Uint;
802
            VOK : Boolean;
803
 
804
            Tlo : Uint;
805
            Thi : Uint;
806
 
807
         begin
808
            if Is_Integer_Type (Target_Type)
809
              and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
810
            then
811
               Tlo := Expr_Value (Type_Low_Bound  (Target_Type));
812
               Thi := Expr_Value (Type_High_Bound (Target_Type));
813
 
814
               Determine_Range
815
                 (Left_Opnd  (N), LOK, Llo, Lhi, Assume_Valid => True);
816
               Determine_Range
817
                 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
818
 
819
               if (LOK and ROK)
820
                 and then Tlo <= Llo and then Lhi <= Thi
821
                 and then Tlo <= Rlo and then Rhi <= Thi
822
               then
823
                  Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
824
 
825
                  if VOK and then Tlo <= Vlo and then Vhi <= Thi then
826
                     Rewrite (Left_Opnd (N),
827
                       Make_Type_Conversion (Loc,
828
                         Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
829
                         Expression   => Relocate_Node (Left_Opnd (N))));
830
 
831
                     Rewrite (Right_Opnd (N),
832
                       Make_Type_Conversion (Loc,
833
                        Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
834
                        Expression   => Relocate_Node (Right_Opnd (N))));
835
 
836
                     --  Rewrite the conversion operand so that the original
837
                     --  node is retained, in order to avoid the warning for
838
                     --  redundant conversions in Resolve_Type_Conversion.
839
 
840
                     Rewrite (N, Relocate_Node (N));
841
 
842
                     Set_Etype (N, Target_Type);
843
 
844
                     Analyze_And_Resolve (Left_Opnd  (N), Target_Type);
845
                     Analyze_And_Resolve (Right_Opnd (N), Target_Type);
846
 
847
                     --  Given that the target type is twice the size of the
848
                     --  source type, overflow is now impossible, so we can
849
                     --  safely kill the overflow check and return.
850
 
851
                     Set_Do_Overflow_Check (N, False);
852
                     return;
853
                  end if;
854
               end if;
855
            end if;
856
         end;
857
      end if;
858
 
859
      --  Now see if an overflow check is required
860
 
861
      declare
862
         Siz   : constant Int := UI_To_Int (Esize (Rtyp));
863
         Dsiz  : constant Int := Siz * 2;
864
         Opnod : Node_Id;
865
         Ctyp  : Entity_Id;
866
         Opnd  : Node_Id;
867
         Cent  : RE_Id;
868
 
869
      begin
870
         --  Skip check if back end does overflow checks, or the overflow flag
871
         --  is not set anyway, or we are not doing code expansion, or the
872
         --  parent node is a type conversion whose operand is an arithmetic
873
         --  operation on signed integers on which the expander can promote
874
         --  later the operands to type Integer (see Expand_N_Type_Conversion).
875
 
876
         --  Special case CLI target, where arithmetic overflow checks can be
877
         --  performed for integer and long_integer
878
 
879
         if Backend_Overflow_Checks_On_Target
880
           or else not Do_Overflow_Check (N)
881
           or else not Full_Expander_Active
882
           or else (Present (Parent (N))
883
                     and then Nkind (Parent (N)) = N_Type_Conversion
884
                     and then Integer_Promotion_Possible (Parent (N)))
885
           or else
886
             (VM_Target = CLI_Target and then Siz >= Standard_Integer_Size)
887
         then
888
            return;
889
         end if;
890
 
891
         --  Otherwise, generate the full general code for front end overflow
892
         --  detection, which works by doing arithmetic in a larger type:
893
 
894
         --    x op y
895
 
896
         --  is expanded into
897
 
898
         --    Typ (Checktyp (x) op Checktyp (y));
899
 
900
         --  where Typ is the type of the original expression, and Checktyp is
901
         --  an integer type of sufficient length to hold the largest possible
902
         --  result.
903
 
904
         --  If the size of check type exceeds the size of Long_Long_Integer,
905
         --  we use a different approach, expanding to:
906
 
907
         --    typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
908
 
909
         --  where xxx is Add, Multiply or Subtract as appropriate
910
 
911
         --  Find check type if one exists
912
 
913
         if Dsiz <= Standard_Integer_Size then
914
            Ctyp := Standard_Integer;
915
 
916
         elsif Dsiz <= Standard_Long_Long_Integer_Size then
917
            Ctyp := Standard_Long_Long_Integer;
918
 
919
            --  No check type exists, use runtime call
920
 
921
         else
922
            if Nkind (N) = N_Op_Add then
923
               Cent := RE_Add_With_Ovflo_Check;
924
 
925
            elsif Nkind (N) = N_Op_Multiply then
926
               Cent := RE_Multiply_With_Ovflo_Check;
927
 
928
            else
929
               pragma Assert (Nkind (N) = N_Op_Subtract);
930
               Cent := RE_Subtract_With_Ovflo_Check;
931
            end if;
932
 
933
            Rewrite (N,
934
              OK_Convert_To (Typ,
935
                Make_Function_Call (Loc,
936
                  Name => New_Reference_To (RTE (Cent), Loc),
937
                  Parameter_Associations => New_List (
938
                    OK_Convert_To (RTE (RE_Integer_64), Left_Opnd  (N)),
939
                    OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
940
 
941
            Analyze_And_Resolve (N, Typ);
942
            return;
943
         end if;
944
 
945
         --  If we fall through, we have the case where we do the arithmetic
946
         --  in the next higher type and get the check by conversion. In these
947
         --  cases Ctyp is set to the type to be used as the check type.
948
 
949
         Opnod := Relocate_Node (N);
950
 
951
         Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
952
 
953
         Analyze (Opnd);
954
         Set_Etype (Opnd, Ctyp);
955
         Set_Analyzed (Opnd, True);
956
         Set_Left_Opnd (Opnod, Opnd);
957
 
958
         Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
959
 
960
         Analyze (Opnd);
961
         Set_Etype (Opnd, Ctyp);
962
         Set_Analyzed (Opnd, True);
963
         Set_Right_Opnd (Opnod, Opnd);
964
 
965
         --  The type of the operation changes to the base type of the check
966
         --  type, and we reset the overflow check indication, since clearly no
967
         --  overflow is possible now that we are using a double length type.
968
         --  We also set the Analyzed flag to avoid a recursive attempt to
969
         --  expand the node.
970
 
971
         Set_Etype             (Opnod, Base_Type (Ctyp));
972
         Set_Do_Overflow_Check (Opnod, False);
973
         Set_Analyzed          (Opnod, True);
974
 
975
         --  Now build the outer conversion
976
 
977
         Opnd := OK_Convert_To (Typ, Opnod);
978
         Analyze (Opnd);
979
         Set_Etype (Opnd, Typ);
980
 
981
         --  In the discrete type case, we directly generate the range check
982
         --  for the outer operand. This range check will implement the
983
         --  required overflow check.
984
 
985
         if Is_Discrete_Type (Typ) then
986
            Rewrite (N, Opnd);
987
            Generate_Range_Check
988
              (Expression (N), Typ, CE_Overflow_Check_Failed);
989
 
990
         --  For other types, we enable overflow checking on the conversion,
991
         --  after setting the node as analyzed to prevent recursive attempts
992
         --  to expand the conversion node.
993
 
994
         else
995
            Set_Analyzed (Opnd, True);
996
            Enable_Overflow_Check (Opnd);
997
            Rewrite (N, Opnd);
998
         end if;
999
 
1000
      exception
1001
         when RE_Not_Available =>
1002
            return;
1003
      end;
1004
   end Apply_Arithmetic_Overflow_Check;
1005
 
1006
   ----------------------------
1007
   -- Apply_Constraint_Check --
1008
   ----------------------------
1009
 
1010
   procedure Apply_Constraint_Check
1011
     (N          : Node_Id;
1012
      Typ        : Entity_Id;
1013
      No_Sliding : Boolean := False)
1014
   is
1015
      Desig_Typ : Entity_Id;
1016
 
1017
   begin
1018
      --  No checks inside a generic (check the instantiations)
1019
 
1020
      if Inside_A_Generic then
1021
         return;
1022
      end if;
1023
 
1024
      --  Apply required constraint checks
1025
 
1026
      if Is_Scalar_Type (Typ) then
1027
         Apply_Scalar_Range_Check (N, Typ);
1028
 
1029
      elsif Is_Array_Type (Typ) then
1030
 
1031
         --  A useful optimization: an aggregate with only an others clause
1032
         --  always has the right bounds.
1033
 
1034
         if Nkind (N) = N_Aggregate
1035
           and then No (Expressions (N))
1036
           and then Nkind
1037
            (First (Choices (First (Component_Associations (N)))))
1038
              = N_Others_Choice
1039
         then
1040
            return;
1041
         end if;
1042
 
1043
         if Is_Constrained (Typ) then
1044
            Apply_Length_Check (N, Typ);
1045
 
1046
            if No_Sliding then
1047
               Apply_Range_Check (N, Typ);
1048
            end if;
1049
         else
1050
            Apply_Range_Check (N, Typ);
1051
         end if;
1052
 
1053
      elsif (Is_Record_Type (Typ)
1054
               or else Is_Private_Type (Typ))
1055
        and then Has_Discriminants (Base_Type (Typ))
1056
        and then Is_Constrained (Typ)
1057
      then
1058
         Apply_Discriminant_Check (N, Typ);
1059
 
1060
      elsif Is_Access_Type (Typ) then
1061
 
1062
         Desig_Typ := Designated_Type (Typ);
1063
 
1064
         --  No checks necessary if expression statically null
1065
 
1066
         if Known_Null (N) then
1067
            if Can_Never_Be_Null (Typ) then
1068
               Install_Null_Excluding_Check (N);
1069
            end if;
1070
 
1071
         --  No sliding possible on access to arrays
1072
 
1073
         elsif Is_Array_Type (Desig_Typ) then
1074
            if Is_Constrained (Desig_Typ) then
1075
               Apply_Length_Check (N, Typ);
1076
            end if;
1077
 
1078
            Apply_Range_Check (N, Typ);
1079
 
1080
         elsif Has_Discriminants (Base_Type (Desig_Typ))
1081
            and then Is_Constrained (Desig_Typ)
1082
         then
1083
            Apply_Discriminant_Check (N, Typ);
1084
         end if;
1085
 
1086
         --  Apply the 2005 Null_Excluding check. Note that we do not apply
1087
         --  this check if the constraint node is illegal, as shown by having
1088
         --  an error posted. This additional guard prevents cascaded errors
1089
         --  and compiler aborts on illegal programs involving Ada 2005 checks.
1090
 
1091
         if Can_Never_Be_Null (Typ)
1092
           and then not Can_Never_Be_Null (Etype (N))
1093
           and then not Error_Posted (N)
1094
         then
1095
            Install_Null_Excluding_Check (N);
1096
         end if;
1097
      end if;
1098
   end Apply_Constraint_Check;
1099
 
1100
   ------------------------------
1101
   -- Apply_Discriminant_Check --
1102
   ------------------------------
1103
 
1104
   procedure Apply_Discriminant_Check
1105
     (N   : Node_Id;
1106
      Typ : Entity_Id;
1107
      Lhs : Node_Id := Empty)
1108
   is
1109
      Loc       : constant Source_Ptr := Sloc (N);
1110
      Do_Access : constant Boolean    := Is_Access_Type (Typ);
1111
      S_Typ     : Entity_Id  := Etype (N);
1112
      Cond      : Node_Id;
1113
      T_Typ     : Entity_Id;
1114
 
1115
      function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1116
      --  A heap object with an indefinite subtype is constrained by its
1117
      --  initial value, and assigning to it requires a constraint_check.
1118
      --  The target may be an explicit dereference, or a renaming of one.
1119
 
1120
      function Is_Aliased_Unconstrained_Component return Boolean;
1121
      --  It is possible for an aliased component to have a nominal
1122
      --  unconstrained subtype (through instantiation). If this is a
1123
      --  discriminated component assigned in the expansion of an aggregate
1124
      --  in an initialization, the check must be suppressed. This unusual
1125
      --  situation requires a predicate of its own.
1126
 
1127
      ----------------------------------
1128
      -- Denotes_Explicit_Dereference --
1129
      ----------------------------------
1130
 
1131
      function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1132
      begin
1133
         return
1134
           Nkind (Obj) = N_Explicit_Dereference
1135
             or else
1136
               (Is_Entity_Name (Obj)
1137
                 and then Present (Renamed_Object (Entity (Obj)))
1138
                 and then Nkind (Renamed_Object (Entity (Obj))) =
1139
                                              N_Explicit_Dereference);
1140
      end Denotes_Explicit_Dereference;
1141
 
1142
      ----------------------------------------
1143
      -- Is_Aliased_Unconstrained_Component --
1144
      ----------------------------------------
1145
 
1146
      function Is_Aliased_Unconstrained_Component return Boolean is
1147
         Comp : Entity_Id;
1148
         Pref : Node_Id;
1149
 
1150
      begin
1151
         if Nkind (Lhs) /= N_Selected_Component then
1152
            return False;
1153
         else
1154
            Comp := Entity (Selector_Name (Lhs));
1155
            Pref := Prefix (Lhs);
1156
         end if;
1157
 
1158
         if Ekind (Comp) /= E_Component
1159
           or else not Is_Aliased (Comp)
1160
         then
1161
            return False;
1162
         end if;
1163
 
1164
         return not Comes_From_Source (Pref)
1165
           and then In_Instance
1166
           and then not Is_Constrained (Etype (Comp));
1167
      end Is_Aliased_Unconstrained_Component;
1168
 
1169
   --  Start of processing for Apply_Discriminant_Check
1170
 
1171
   begin
1172
      if Do_Access then
1173
         T_Typ := Designated_Type (Typ);
1174
      else
1175
         T_Typ := Typ;
1176
      end if;
1177
 
1178
      --  Nothing to do if discriminant checks are suppressed or else no code
1179
      --  is to be generated
1180
 
1181
      if not Full_Expander_Active
1182
        or else Discriminant_Checks_Suppressed (T_Typ)
1183
      then
1184
         return;
1185
      end if;
1186
 
1187
      --  No discriminant checks necessary for an access when expression is
1188
      --  statically Null. This is not only an optimization, it is fundamental
1189
      --  because otherwise discriminant checks may be generated in init procs
1190
      --  for types containing an access to a not-yet-frozen record, causing a
1191
      --  deadly forward reference.
1192
 
1193
      --  Also, if the expression is of an access type whose designated type is
1194
      --  incomplete, then the access value must be null and we suppress the
1195
      --  check.
1196
 
1197
      if Known_Null (N) then
1198
         return;
1199
 
1200
      elsif Is_Access_Type (S_Typ) then
1201
         S_Typ := Designated_Type (S_Typ);
1202
 
1203
         if Ekind (S_Typ) = E_Incomplete_Type then
1204
            return;
1205
         end if;
1206
      end if;
1207
 
1208
      --  If an assignment target is present, then we need to generate the
1209
      --  actual subtype if the target is a parameter or aliased object with
1210
      --  an unconstrained nominal subtype.
1211
 
1212
      --  Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1213
      --  subtype to the parameter and dereference cases, since other aliased
1214
      --  objects are unconstrained (unless the nominal subtype is explicitly
1215
      --  constrained).
1216
 
1217
      if Present (Lhs)
1218
        and then (Present (Param_Entity (Lhs))
1219
                   or else (Ada_Version < Ada_2005
1220
                             and then not Is_Constrained (T_Typ)
1221
                             and then Is_Aliased_View (Lhs)
1222
                             and then not Is_Aliased_Unconstrained_Component)
1223
                   or else (Ada_Version >= Ada_2005
1224
                             and then not Is_Constrained (T_Typ)
1225
                             and then Denotes_Explicit_Dereference (Lhs)
1226
                             and then Nkind (Original_Node (Lhs)) /=
1227
                                        N_Function_Call))
1228
      then
1229
         T_Typ := Get_Actual_Subtype (Lhs);
1230
      end if;
1231
 
1232
      --  Nothing to do if the type is unconstrained (this is the case where
1233
      --  the actual subtype in the RM sense of N is unconstrained and no check
1234
      --  is required).
1235
 
1236
      if not Is_Constrained (T_Typ) then
1237
         return;
1238
 
1239
      --  Ada 2005: nothing to do if the type is one for which there is a
1240
      --  partial view that is constrained.
1241
 
1242
      elsif Ada_Version >= Ada_2005
1243
        and then Effectively_Has_Constrained_Partial_View
1244
                   (Typ  => Base_Type (T_Typ),
1245
                    Scop => Current_Scope)
1246
      then
1247
         return;
1248
      end if;
1249
 
1250
      --  Nothing to do if the type is an Unchecked_Union
1251
 
1252
      if Is_Unchecked_Union (Base_Type (T_Typ)) then
1253
         return;
1254
      end if;
1255
 
1256
      --  Suppress checks if the subtypes are the same. the check must be
1257
      --  preserved in an assignment to a formal, because the constraint is
1258
      --  given by the actual.
1259
 
1260
      if Nkind (Original_Node (N)) /= N_Allocator
1261
        and then (No (Lhs)
1262
          or else not Is_Entity_Name (Lhs)
1263
          or else No (Param_Entity (Lhs)))
1264
      then
1265
         if (Etype (N) = Typ
1266
              or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1267
           and then not Is_Aliased_View (Lhs)
1268
         then
1269
            return;
1270
         end if;
1271
 
1272
      --  We can also eliminate checks on allocators with a subtype mark that
1273
      --  coincides with the context type. The context type may be a subtype
1274
      --  without a constraint (common case, a generic actual).
1275
 
1276
      elsif Nkind (Original_Node (N)) = N_Allocator
1277
        and then Is_Entity_Name (Expression (Original_Node (N)))
1278
      then
1279
         declare
1280
            Alloc_Typ : constant Entity_Id :=
1281
                          Entity (Expression (Original_Node (N)));
1282
 
1283
         begin
1284
            if Alloc_Typ = T_Typ
1285
              or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1286
                        and then Is_Entity_Name (
1287
                          Subtype_Indication (Parent (T_Typ)))
1288
                        and then Alloc_Typ = Base_Type (T_Typ))
1289
 
1290
            then
1291
               return;
1292
            end if;
1293
         end;
1294
      end if;
1295
 
1296
      --  See if we have a case where the types are both constrained, and all
1297
      --  the constraints are constants. In this case, we can do the check
1298
      --  successfully at compile time.
1299
 
1300
      --  We skip this check for the case where the node is a rewritten`
1301
      --  allocator, because it already carries the context subtype, and
1302
      --  extracting the discriminants from the aggregate is messy.
1303
 
1304
      if Is_Constrained (S_Typ)
1305
        and then Nkind (Original_Node (N)) /= N_Allocator
1306
      then
1307
         declare
1308
            DconT : Elmt_Id;
1309
            Discr : Entity_Id;
1310
            DconS : Elmt_Id;
1311
            ItemS : Node_Id;
1312
            ItemT : Node_Id;
1313
 
1314
         begin
1315
            --  S_Typ may not have discriminants in the case where it is a
1316
            --  private type completed by a default discriminated type. In that
1317
            --  case, we need to get the constraints from the underlying_type.
1318
            --  If the underlying type is unconstrained (i.e. has no default
1319
            --  discriminants) no check is needed.
1320
 
1321
            if Has_Discriminants (S_Typ) then
1322
               Discr := First_Discriminant (S_Typ);
1323
               DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1324
 
1325
            else
1326
               Discr := First_Discriminant (Underlying_Type (S_Typ));
1327
               DconS :=
1328
                 First_Elmt
1329
                   (Discriminant_Constraint (Underlying_Type (S_Typ)));
1330
 
1331
               if No (DconS) then
1332
                  return;
1333
               end if;
1334
 
1335
               --  A further optimization: if T_Typ is derived from S_Typ
1336
               --  without imposing a constraint, no check is needed.
1337
 
1338
               if Nkind (Original_Node (Parent (T_Typ))) =
1339
                 N_Full_Type_Declaration
1340
               then
1341
                  declare
1342
                     Type_Def : constant Node_Id :=
1343
                                 Type_Definition
1344
                                   (Original_Node (Parent (T_Typ)));
1345
                  begin
1346
                     if Nkind (Type_Def) = N_Derived_Type_Definition
1347
                       and then Is_Entity_Name (Subtype_Indication (Type_Def))
1348
                       and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1349
                     then
1350
                        return;
1351
                     end if;
1352
                  end;
1353
               end if;
1354
            end if;
1355
 
1356
            DconT  := First_Elmt (Discriminant_Constraint (T_Typ));
1357
 
1358
            while Present (Discr) loop
1359
               ItemS := Node (DconS);
1360
               ItemT := Node (DconT);
1361
 
1362
               --  For a discriminated component type constrained by the
1363
               --  current instance of an enclosing type, there is no
1364
               --  applicable discriminant check.
1365
 
1366
               if Nkind (ItemT) = N_Attribute_Reference
1367
                 and then Is_Access_Type (Etype (ItemT))
1368
                 and then Is_Entity_Name (Prefix (ItemT))
1369
                 and then Is_Type (Entity (Prefix (ItemT)))
1370
               then
1371
                  return;
1372
               end if;
1373
 
1374
               --  If the expressions for the discriminants are identical
1375
               --  and it is side-effect free (for now just an entity),
1376
               --  this may be a shared constraint, e.g. from a subtype
1377
               --  without a constraint introduced as a generic actual.
1378
               --  Examine other discriminants if any.
1379
 
1380
               if ItemS = ItemT
1381
                 and then Is_Entity_Name (ItemS)
1382
               then
1383
                  null;
1384
 
1385
               elsif not Is_OK_Static_Expression (ItemS)
1386
                 or else not Is_OK_Static_Expression (ItemT)
1387
               then
1388
                  exit;
1389
 
1390
               elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1391
                  if Do_Access then   --  needs run-time check.
1392
                     exit;
1393
                  else
1394
                     Apply_Compile_Time_Constraint_Error
1395
                       (N, "incorrect value for discriminant&?",
1396
                        CE_Discriminant_Check_Failed, Ent => Discr);
1397
                     return;
1398
                  end if;
1399
               end if;
1400
 
1401
               Next_Elmt (DconS);
1402
               Next_Elmt (DconT);
1403
               Next_Discriminant (Discr);
1404
            end loop;
1405
 
1406
            if No (Discr) then
1407
               return;
1408
            end if;
1409
         end;
1410
      end if;
1411
 
1412
      --  Here we need a discriminant check. First build the expression
1413
      --  for the comparisons of the discriminants:
1414
 
1415
      --    (n.disc1 /= typ.disc1) or else
1416
      --    (n.disc2 /= typ.disc2) or else
1417
      --     ...
1418
      --    (n.discn /= typ.discn)
1419
 
1420
      Cond := Build_Discriminant_Checks (N, T_Typ);
1421
 
1422
      --  If Lhs is set and is a parameter, then the condition is
1423
      --  guarded by: lhs'constrained and then (condition built above)
1424
 
1425
      if Present (Param_Entity (Lhs)) then
1426
         Cond :=
1427
           Make_And_Then (Loc,
1428
             Left_Opnd =>
1429
               Make_Attribute_Reference (Loc,
1430
                 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1431
                 Attribute_Name => Name_Constrained),
1432
             Right_Opnd => Cond);
1433
      end if;
1434
 
1435
      if Do_Access then
1436
         Cond := Guard_Access (Cond, Loc, N);
1437
      end if;
1438
 
1439
      Insert_Action (N,
1440
        Make_Raise_Constraint_Error (Loc,
1441
          Condition => Cond,
1442
          Reason    => CE_Discriminant_Check_Failed));
1443
   end Apply_Discriminant_Check;
1444
 
1445
   ------------------------
1446
   -- Apply_Divide_Check --
1447
   ------------------------
1448
 
1449
   procedure Apply_Divide_Check (N : Node_Id) is
1450
      Loc   : constant Source_Ptr := Sloc (N);
1451
      Typ   : constant Entity_Id  := Etype (N);
1452
      Left  : constant Node_Id    := Left_Opnd (N);
1453
      Right : constant Node_Id    := Right_Opnd (N);
1454
 
1455
      LLB : Uint;
1456
      Llo : Uint;
1457
      Lhi : Uint;
1458
      LOK : Boolean;
1459
      Rlo : Uint;
1460
      Rhi : Uint;
1461
      ROK   : Boolean;
1462
 
1463
      pragma Warnings (Off, Lhi);
1464
      --  Don't actually use this value
1465
 
1466
   begin
1467
      if Full_Expander_Active
1468
        and then not Backend_Divide_Checks_On_Target
1469
        and then Check_Needed (Right, Division_Check)
1470
      then
1471
         Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1472
 
1473
         --  See if division by zero possible, and if so generate test. This
1474
         --  part of the test is not controlled by the -gnato switch.
1475
 
1476
         if Do_Division_Check (N) then
1477
            if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1478
               Insert_Action (N,
1479
                 Make_Raise_Constraint_Error (Loc,
1480
                   Condition =>
1481
                     Make_Op_Eq (Loc,
1482
                       Left_Opnd  => Duplicate_Subexpr_Move_Checks (Right),
1483
                       Right_Opnd => Make_Integer_Literal (Loc, 0)),
1484
                   Reason => CE_Divide_By_Zero));
1485
            end if;
1486
         end if;
1487
 
1488
         --  Test for extremely annoying case of xxx'First divided by -1
1489
 
1490
         if Do_Overflow_Check (N) then
1491
            if Nkind (N) = N_Op_Divide
1492
              and then Is_Signed_Integer_Type (Typ)
1493
            then
1494
               Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1495
               LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1496
 
1497
               if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1498
                 and then
1499
                 ((not LOK) or else (Llo = LLB))
1500
               then
1501
                  Insert_Action (N,
1502
                    Make_Raise_Constraint_Error (Loc,
1503
                      Condition =>
1504
                        Make_And_Then (Loc,
1505
 
1506
                           Make_Op_Eq (Loc,
1507
                             Left_Opnd  =>
1508
                               Duplicate_Subexpr_Move_Checks (Left),
1509
                             Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1510
 
1511
                           Make_Op_Eq (Loc,
1512
                             Left_Opnd =>
1513
                               Duplicate_Subexpr (Right),
1514
                             Right_Opnd =>
1515
                               Make_Integer_Literal (Loc, -1))),
1516
                      Reason => CE_Overflow_Check_Failed));
1517
               end if;
1518
            end if;
1519
         end if;
1520
      end if;
1521
   end Apply_Divide_Check;
1522
 
1523
   ----------------------------------
1524
   -- Apply_Float_Conversion_Check --
1525
   ----------------------------------
1526
 
1527
   --  Let F and I be the source and target types of the conversion. The RM
1528
   --  specifies that a floating-point value X is rounded to the nearest
1529
   --  integer, with halfway cases being rounded away from zero. The rounded
1530
   --  value of X is checked against I'Range.
1531
 
1532
   --  The catch in the above paragraph is that there is no good way to know
1533
   --  whether the round-to-integer operation resulted in overflow. A remedy is
1534
   --  to perform a range check in the floating-point domain instead, however:
1535
 
1536
   --      (1)  The bounds may not be known at compile time
1537
   --      (2)  The check must take into account rounding or truncation.
1538
   --      (3)  The range of type I may not be exactly representable in F.
1539
   --      (4)  For the rounding case, The end-points I'First - 0.5 and
1540
   --           I'Last + 0.5 may or may not be in range, depending on the
1541
   --           sign of  I'First and I'Last.
1542
   --      (5)  X may be a NaN, which will fail any comparison
1543
 
1544
   --  The following steps correctly convert X with rounding:
1545
 
1546
   --      (1) If either I'First or I'Last is not known at compile time, use
1547
   --          I'Base instead of I in the next three steps and perform a
1548
   --          regular range check against I'Range after conversion.
1549
   --      (2) If I'First - 0.5 is representable in F then let Lo be that
1550
   --          value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1551
   --          F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1552
   --          In other words, take one of the closest floating-point numbers
1553
   --          (which is an integer value) to I'First, and see if it is in
1554
   --          range or not.
1555
   --      (3) If I'Last + 0.5 is representable in F then let Hi be that value
1556
   --          and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1557
   --          F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1558
   --      (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1559
   --                     or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1560
 
1561
   --  For the truncating case, replace steps (2) and (3) as follows:
1562
   --      (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1563
   --          be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1564
   --          Lo_OK be True.
1565
   --      (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1566
   --          be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1567
   --          Hi_OK be True.
1568
 
1569
   procedure Apply_Float_Conversion_Check
1570
     (Ck_Node    : Node_Id;
1571
      Target_Typ : Entity_Id)
1572
   is
1573
      LB          : constant Node_Id    := Type_Low_Bound (Target_Typ);
1574
      HB          : constant Node_Id    := Type_High_Bound (Target_Typ);
1575
      Loc         : constant Source_Ptr := Sloc (Ck_Node);
1576
      Expr_Type   : constant Entity_Id  := Base_Type (Etype (Ck_Node));
1577
      Target_Base : constant Entity_Id  :=
1578
                      Implementation_Base_Type (Target_Typ);
1579
 
1580
      Par : constant Node_Id := Parent (Ck_Node);
1581
      pragma Assert (Nkind (Par) = N_Type_Conversion);
1582
      --  Parent of check node, must be a type conversion
1583
 
1584
      Truncate  : constant Boolean := Float_Truncate (Par);
1585
      Max_Bound : constant Uint :=
1586
                    UI_Expon
1587
                      (Machine_Radix_Value (Expr_Type),
1588
                       Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1589
 
1590
      --  Largest bound, so bound plus or minus half is a machine number of F
1591
 
1592
      Ifirst, Ilast : Uint;
1593
      --  Bounds of integer type
1594
 
1595
      Lo, Hi : Ureal;
1596
      --  Bounds to check in floating-point domain
1597
 
1598
      Lo_OK, Hi_OK : Boolean;
1599
      --  True iff Lo resp. Hi belongs to I'Range
1600
 
1601
      Lo_Chk, Hi_Chk : Node_Id;
1602
      --  Expressions that are False iff check fails
1603
 
1604
      Reason : RT_Exception_Code;
1605
 
1606
   begin
1607
      if not Compile_Time_Known_Value (LB)
1608
          or not Compile_Time_Known_Value (HB)
1609
      then
1610
         declare
1611
            --  First check that the value falls in the range of the base type,
1612
            --  to prevent overflow during conversion and then perform a
1613
            --  regular range check against the (dynamic) bounds.
1614
 
1615
            pragma Assert (Target_Base /= Target_Typ);
1616
 
1617
            Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
1618
 
1619
         begin
1620
            Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1621
            Set_Etype (Temp, Target_Base);
1622
 
1623
            Insert_Action (Parent (Par),
1624
              Make_Object_Declaration (Loc,
1625
                Defining_Identifier => Temp,
1626
                Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1627
                Expression => New_Copy_Tree (Par)),
1628
                Suppress => All_Checks);
1629
 
1630
            Insert_Action (Par,
1631
              Make_Raise_Constraint_Error (Loc,
1632
                Condition =>
1633
                  Make_Not_In (Loc,
1634
                    Left_Opnd  => New_Occurrence_Of (Temp, Loc),
1635
                    Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1636
                Reason => CE_Range_Check_Failed));
1637
            Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1638
 
1639
            return;
1640
         end;
1641
      end if;
1642
 
1643
      --  Get the (static) bounds of the target type
1644
 
1645
      Ifirst := Expr_Value (LB);
1646
      Ilast  := Expr_Value (HB);
1647
 
1648
      --  A simple optimization: if the expression is a universal literal,
1649
      --  we can do the comparison with the bounds and the conversion to
1650
      --  an integer type statically. The range checks are unchanged.
1651
 
1652
      if Nkind (Ck_Node) = N_Real_Literal
1653
        and then Etype (Ck_Node) = Universal_Real
1654
        and then Is_Integer_Type (Target_Typ)
1655
        and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
1656
      then
1657
         declare
1658
            Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
1659
 
1660
         begin
1661
            if Int_Val <= Ilast and then Int_Val >= Ifirst then
1662
 
1663
               --  Conversion is safe
1664
 
1665
               Rewrite (Parent (Ck_Node),
1666
                 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
1667
               Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
1668
               return;
1669
            end if;
1670
         end;
1671
      end if;
1672
 
1673
      --  Check against lower bound
1674
 
1675
      if Truncate and then Ifirst > 0 then
1676
         Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
1677
         Lo_OK := False;
1678
 
1679
      elsif Truncate then
1680
         Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
1681
         Lo_OK := True;
1682
 
1683
      elsif abs (Ifirst) < Max_Bound then
1684
         Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1685
         Lo_OK := (Ifirst > 0);
1686
 
1687
      else
1688
         Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1689
         Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1690
      end if;
1691
 
1692
      if Lo_OK then
1693
 
1694
         --  Lo_Chk := (X >= Lo)
1695
 
1696
         Lo_Chk := Make_Op_Ge (Loc,
1697
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1698
                     Right_Opnd => Make_Real_Literal (Loc, Lo));
1699
 
1700
      else
1701
         --  Lo_Chk := (X > Lo)
1702
 
1703
         Lo_Chk := Make_Op_Gt (Loc,
1704
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1705
                     Right_Opnd => Make_Real_Literal (Loc, Lo));
1706
      end if;
1707
 
1708
      --  Check against higher bound
1709
 
1710
      if Truncate and then Ilast < 0 then
1711
         Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
1712
         Hi_OK := False;
1713
 
1714
      elsif Truncate then
1715
         Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
1716
         Hi_OK := True;
1717
 
1718
      elsif abs (Ilast) < Max_Bound then
1719
         Hi := UR_From_Uint (Ilast) + Ureal_Half;
1720
         Hi_OK := (Ilast < 0);
1721
      else
1722
         Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
1723
         Hi_OK := (Hi <= UR_From_Uint (Ilast));
1724
      end if;
1725
 
1726
      if Hi_OK then
1727
 
1728
         --  Hi_Chk := (X <= Hi)
1729
 
1730
         Hi_Chk := Make_Op_Le (Loc,
1731
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1732
                     Right_Opnd => Make_Real_Literal (Loc, Hi));
1733
 
1734
      else
1735
         --  Hi_Chk := (X < Hi)
1736
 
1737
         Hi_Chk := Make_Op_Lt (Loc,
1738
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1739
                     Right_Opnd => Make_Real_Literal (Loc, Hi));
1740
      end if;
1741
 
1742
      --  If the bounds of the target type are the same as those of the base
1743
      --  type, the check is an overflow check as a range check is not
1744
      --  performed in these cases.
1745
 
1746
      if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
1747
        and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
1748
      then
1749
         Reason := CE_Overflow_Check_Failed;
1750
      else
1751
         Reason := CE_Range_Check_Failed;
1752
      end if;
1753
 
1754
      --  Raise CE if either conditions does not hold
1755
 
1756
      Insert_Action (Ck_Node,
1757
        Make_Raise_Constraint_Error (Loc,
1758
          Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
1759
          Reason    => Reason));
1760
   end Apply_Float_Conversion_Check;
1761
 
1762
   ------------------------
1763
   -- Apply_Length_Check --
1764
   ------------------------
1765
 
1766
   procedure Apply_Length_Check
1767
     (Ck_Node    : Node_Id;
1768
      Target_Typ : Entity_Id;
1769
      Source_Typ : Entity_Id := Empty)
1770
   is
1771
   begin
1772
      Apply_Selected_Length_Checks
1773
        (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1774
   end Apply_Length_Check;
1775
 
1776
   ---------------------------
1777
   -- Apply_Predicate_Check --
1778
   ---------------------------
1779
 
1780
   procedure Apply_Predicate_Check (N : Node_Id; Typ : Entity_Id) is
1781
   begin
1782
      if Present (Predicate_Function (Typ)) then
1783
         Insert_Action (N,
1784
           Make_Predicate_Check (Typ, Duplicate_Subexpr (N)));
1785
      end if;
1786
   end Apply_Predicate_Check;
1787
 
1788
   -----------------------
1789
   -- Apply_Range_Check --
1790
   -----------------------
1791
 
1792
   procedure Apply_Range_Check
1793
     (Ck_Node    : Node_Id;
1794
      Target_Typ : Entity_Id;
1795
      Source_Typ : Entity_Id := Empty)
1796
   is
1797
   begin
1798
      Apply_Selected_Range_Checks
1799
        (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1800
   end Apply_Range_Check;
1801
 
1802
   ------------------------------
1803
   -- Apply_Scalar_Range_Check --
1804
   ------------------------------
1805
 
1806
   --  Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
1807
   --  off if it is already set on.
1808
 
1809
   procedure Apply_Scalar_Range_Check
1810
     (Expr       : Node_Id;
1811
      Target_Typ : Entity_Id;
1812
      Source_Typ : Entity_Id := Empty;
1813
      Fixed_Int  : Boolean   := False)
1814
   is
1815
      Parnt   : constant Node_Id := Parent (Expr);
1816
      S_Typ   : Entity_Id;
1817
      Arr     : Node_Id   := Empty;  -- initialize to prevent warning
1818
      Arr_Typ : Entity_Id := Empty;  -- initialize to prevent warning
1819
      OK      : Boolean;
1820
 
1821
      Is_Subscr_Ref : Boolean;
1822
      --  Set true if Expr is a subscript
1823
 
1824
      Is_Unconstrained_Subscr_Ref : Boolean;
1825
      --  Set true if Expr is a subscript of an unconstrained array. In this
1826
      --  case we do not attempt to do an analysis of the value against the
1827
      --  range of the subscript, since we don't know the actual subtype.
1828
 
1829
      Int_Real : Boolean;
1830
      --  Set to True if Expr should be regarded as a real value even though
1831
      --  the type of Expr might be discrete.
1832
 
1833
      procedure Bad_Value;
1834
      --  Procedure called if value is determined to be out of range
1835
 
1836
      ---------------
1837
      -- Bad_Value --
1838
      ---------------
1839
 
1840
      procedure Bad_Value is
1841
      begin
1842
         Apply_Compile_Time_Constraint_Error
1843
           (Expr, "value not in range of}?", CE_Range_Check_Failed,
1844
            Ent => Target_Typ,
1845
            Typ => Target_Typ);
1846
      end Bad_Value;
1847
 
1848
   --  Start of processing for Apply_Scalar_Range_Check
1849
 
1850
   begin
1851
      --  Return if check obviously not needed
1852
 
1853
      if
1854
         --  Not needed inside generic
1855
 
1856
         Inside_A_Generic
1857
 
1858
         --  Not needed if previous error
1859
 
1860
         or else Target_Typ = Any_Type
1861
         or else Nkind (Expr) = N_Error
1862
 
1863
         --  Not needed for non-scalar type
1864
 
1865
         or else not Is_Scalar_Type (Target_Typ)
1866
 
1867
         --  Not needed if we know node raises CE already
1868
 
1869
         or else Raises_Constraint_Error (Expr)
1870
      then
1871
         return;
1872
      end if;
1873
 
1874
      --  Now, see if checks are suppressed
1875
 
1876
      Is_Subscr_Ref :=
1877
        Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
1878
 
1879
      if Is_Subscr_Ref then
1880
         Arr := Prefix (Parnt);
1881
         Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
1882
 
1883
         if Is_Access_Type (Arr_Typ) then
1884
            Arr_Typ := Designated_Type (Arr_Typ);
1885
         end if;
1886
      end if;
1887
 
1888
      if not Do_Range_Check (Expr) then
1889
 
1890
         --  Subscript reference. Check for Index_Checks suppressed
1891
 
1892
         if Is_Subscr_Ref then
1893
 
1894
            --  Check array type and its base type
1895
 
1896
            if Index_Checks_Suppressed (Arr_Typ)
1897
              or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
1898
            then
1899
               return;
1900
 
1901
            --  Check array itself if it is an entity name
1902
 
1903
            elsif Is_Entity_Name (Arr)
1904
              and then Index_Checks_Suppressed (Entity (Arr))
1905
            then
1906
               return;
1907
 
1908
            --  Check expression itself if it is an entity name
1909
 
1910
            elsif Is_Entity_Name (Expr)
1911
              and then Index_Checks_Suppressed (Entity (Expr))
1912
            then
1913
               return;
1914
            end if;
1915
 
1916
         --  All other cases, check for Range_Checks suppressed
1917
 
1918
         else
1919
            --  Check target type and its base type
1920
 
1921
            if Range_Checks_Suppressed (Target_Typ)
1922
              or else Range_Checks_Suppressed (Base_Type (Target_Typ))
1923
            then
1924
               return;
1925
 
1926
            --  Check expression itself if it is an entity name
1927
 
1928
            elsif Is_Entity_Name (Expr)
1929
              and then Range_Checks_Suppressed (Entity (Expr))
1930
            then
1931
               return;
1932
 
1933
            --  If Expr is part of an assignment statement, then check left
1934
            --  side of assignment if it is an entity name.
1935
 
1936
            elsif Nkind (Parnt) = N_Assignment_Statement
1937
              and then Is_Entity_Name (Name (Parnt))
1938
              and then Range_Checks_Suppressed (Entity (Name (Parnt)))
1939
            then
1940
               return;
1941
            end if;
1942
         end if;
1943
      end if;
1944
 
1945
      --  Do not set range checks if they are killed
1946
 
1947
      if Nkind (Expr) = N_Unchecked_Type_Conversion
1948
        and then Kill_Range_Check (Expr)
1949
      then
1950
         return;
1951
      end if;
1952
 
1953
      --  Do not set range checks for any values from System.Scalar_Values
1954
      --  since the whole idea of such values is to avoid checking them!
1955
 
1956
      if Is_Entity_Name (Expr)
1957
        and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
1958
      then
1959
         return;
1960
      end if;
1961
 
1962
      --  Now see if we need a check
1963
 
1964
      if No (Source_Typ) then
1965
         S_Typ := Etype (Expr);
1966
      else
1967
         S_Typ := Source_Typ;
1968
      end if;
1969
 
1970
      if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
1971
         return;
1972
      end if;
1973
 
1974
      Is_Unconstrained_Subscr_Ref :=
1975
        Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
1976
 
1977
      --  Always do a range check if the source type includes infinities and
1978
      --  the target type does not include infinities. We do not do this if
1979
      --  range checks are killed.
1980
 
1981
      if Is_Floating_Point_Type (S_Typ)
1982
        and then Has_Infinities (S_Typ)
1983
        and then not Has_Infinities (Target_Typ)
1984
      then
1985
         Enable_Range_Check (Expr);
1986
      end if;
1987
 
1988
      --  Return if we know expression is definitely in the range of the target
1989
      --  type as determined by Determine_Range. Right now we only do this for
1990
      --  discrete types, and not fixed-point or floating-point types.
1991
 
1992
      --  The additional less-precise tests below catch these cases
1993
 
1994
      --  Note: skip this if we are given a source_typ, since the point of
1995
      --  supplying a Source_Typ is to stop us looking at the expression.
1996
      --  We could sharpen this test to be out parameters only ???
1997
 
1998
      if Is_Discrete_Type (Target_Typ)
1999
        and then Is_Discrete_Type (Etype (Expr))
2000
        and then not Is_Unconstrained_Subscr_Ref
2001
        and then No (Source_Typ)
2002
      then
2003
         declare
2004
            Tlo : constant Node_Id := Type_Low_Bound  (Target_Typ);
2005
            Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2006
            Lo  : Uint;
2007
            Hi  : Uint;
2008
 
2009
         begin
2010
            if Compile_Time_Known_Value (Tlo)
2011
              and then Compile_Time_Known_Value (Thi)
2012
            then
2013
               declare
2014
                  Lov : constant Uint := Expr_Value (Tlo);
2015
                  Hiv : constant Uint := Expr_Value (Thi);
2016
 
2017
               begin
2018
                  --  If range is null, we for sure have a constraint error
2019
                  --  (we don't even need to look at the value involved,
2020
                  --  since all possible values will raise CE).
2021
 
2022
                  if Lov > Hiv then
2023
                     Bad_Value;
2024
                     return;
2025
                  end if;
2026
 
2027
                  --  Otherwise determine range of value
2028
 
2029
                  Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
2030
 
2031
                  if OK then
2032
 
2033
                     --  If definitely in range, all OK
2034
 
2035
                     if Lo >= Lov and then Hi <= Hiv then
2036
                        return;
2037
 
2038
                     --  If definitely not in range, warn
2039
 
2040
                     elsif Lov > Hi or else Hiv < Lo then
2041
                        Bad_Value;
2042
                        return;
2043
 
2044
                     --  Otherwise we don't know
2045
 
2046
                     else
2047
                        null;
2048
                     end if;
2049
                  end if;
2050
               end;
2051
            end if;
2052
         end;
2053
      end if;
2054
 
2055
      Int_Real :=
2056
        Is_Floating_Point_Type (S_Typ)
2057
          or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
2058
 
2059
      --  Check if we can determine at compile time whether Expr is in the
2060
      --  range of the target type. Note that if S_Typ is within the bounds
2061
      --  of Target_Typ then this must be the case. This check is meaningful
2062
      --  only if this is not a conversion between integer and real types.
2063
 
2064
      if not Is_Unconstrained_Subscr_Ref
2065
        and then
2066
           Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
2067
        and then
2068
          (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
2069
             or else
2070
               Is_In_Range (Expr, Target_Typ,
2071
                            Assume_Valid => True,
2072
                            Fixed_Int => Fixed_Int,
2073
                            Int_Real  => Int_Real))
2074
      then
2075
         return;
2076
 
2077
      elsif Is_Out_Of_Range (Expr, Target_Typ,
2078
                             Assume_Valid => True,
2079
                             Fixed_Int    => Fixed_Int,
2080
                             Int_Real     => Int_Real)
2081
      then
2082
         Bad_Value;
2083
         return;
2084
 
2085
      --  In the floating-point case, we only do range checks if the type is
2086
      --  constrained. We definitely do NOT want range checks for unconstrained
2087
      --  types, since we want to have infinities
2088
 
2089
      elsif Is_Floating_Point_Type (S_Typ) then
2090
         if Is_Constrained (S_Typ) then
2091
            Enable_Range_Check (Expr);
2092
         end if;
2093
 
2094
      --  For all other cases we enable a range check unconditionally
2095
 
2096
      else
2097
         Enable_Range_Check (Expr);
2098
         return;
2099
      end if;
2100
   end Apply_Scalar_Range_Check;
2101
 
2102
   ----------------------------------
2103
   -- Apply_Selected_Length_Checks --
2104
   ----------------------------------
2105
 
2106
   procedure Apply_Selected_Length_Checks
2107
     (Ck_Node    : Node_Id;
2108
      Target_Typ : Entity_Id;
2109
      Source_Typ : Entity_Id;
2110
      Do_Static  : Boolean)
2111
   is
2112
      Cond     : Node_Id;
2113
      R_Result : Check_Result;
2114
      R_Cno    : Node_Id;
2115
 
2116
      Loc         : constant Source_Ptr := Sloc (Ck_Node);
2117
      Checks_On   : constant Boolean :=
2118
                      (not Index_Checks_Suppressed (Target_Typ))
2119
                        or else
2120
                      (not Length_Checks_Suppressed (Target_Typ));
2121
 
2122
   begin
2123
      if not Full_Expander_Active then
2124
         return;
2125
      end if;
2126
 
2127
      R_Result :=
2128
        Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2129
 
2130
      for J in 1 .. 2 loop
2131
         R_Cno := R_Result (J);
2132
         exit when No (R_Cno);
2133
 
2134
         --  A length check may mention an Itype which is attached to a
2135
         --  subsequent node. At the top level in a package this can cause
2136
         --  an order-of-elaboration problem, so we make sure that the itype
2137
         --  is referenced now.
2138
 
2139
         if Ekind (Current_Scope) = E_Package
2140
           and then Is_Compilation_Unit (Current_Scope)
2141
         then
2142
            Ensure_Defined (Target_Typ, Ck_Node);
2143
 
2144
            if Present (Source_Typ) then
2145
               Ensure_Defined (Source_Typ, Ck_Node);
2146
 
2147
            elsif Is_Itype (Etype (Ck_Node)) then
2148
               Ensure_Defined (Etype (Ck_Node), Ck_Node);
2149
            end if;
2150
         end if;
2151
 
2152
         --  If the item is a conditional raise of constraint error, then have
2153
         --  a look at what check is being performed and ???
2154
 
2155
         if Nkind (R_Cno) = N_Raise_Constraint_Error
2156
           and then Present (Condition (R_Cno))
2157
         then
2158
            Cond := Condition (R_Cno);
2159
 
2160
            --  Case where node does not now have a dynamic check
2161
 
2162
            if not Has_Dynamic_Length_Check (Ck_Node) then
2163
 
2164
               --  If checks are on, just insert the check
2165
 
2166
               if Checks_On then
2167
                  Insert_Action (Ck_Node, R_Cno);
2168
 
2169
                  if not Do_Static then
2170
                     Set_Has_Dynamic_Length_Check (Ck_Node);
2171
                  end if;
2172
 
2173
               --  If checks are off, then analyze the length check after
2174
               --  temporarily attaching it to the tree in case the relevant
2175
               --  condition can be evaluated at compile time. We still want a
2176
               --  compile time warning in this case.
2177
 
2178
               else
2179
                  Set_Parent (R_Cno, Ck_Node);
2180
                  Analyze (R_Cno);
2181
               end if;
2182
            end if;
2183
 
2184
            --  Output a warning if the condition is known to be True
2185
 
2186
            if Is_Entity_Name (Cond)
2187
              and then Entity (Cond) = Standard_True
2188
            then
2189
               Apply_Compile_Time_Constraint_Error
2190
                 (Ck_Node, "wrong length for array of}?",
2191
                  CE_Length_Check_Failed,
2192
                  Ent => Target_Typ,
2193
                  Typ => Target_Typ);
2194
 
2195
            --  If we were only doing a static check, or if checks are not
2196
            --  on, then we want to delete the check, since it is not needed.
2197
            --  We do this by replacing the if statement by a null statement
2198
 
2199
            elsif Do_Static or else not Checks_On then
2200
               Remove_Warning_Messages (R_Cno);
2201
               Rewrite (R_Cno, Make_Null_Statement (Loc));
2202
            end if;
2203
 
2204
         else
2205
            Install_Static_Check (R_Cno, Loc);
2206
         end if;
2207
      end loop;
2208
   end Apply_Selected_Length_Checks;
2209
 
2210
   ---------------------------------
2211
   -- Apply_Selected_Range_Checks --
2212
   ---------------------------------
2213
 
2214
   procedure Apply_Selected_Range_Checks
2215
     (Ck_Node    : Node_Id;
2216
      Target_Typ : Entity_Id;
2217
      Source_Typ : Entity_Id;
2218
      Do_Static  : Boolean)
2219
   is
2220
      Cond     : Node_Id;
2221
      R_Result : Check_Result;
2222
      R_Cno    : Node_Id;
2223
 
2224
      Loc       : constant Source_Ptr := Sloc (Ck_Node);
2225
      Checks_On : constant Boolean :=
2226
                    (not Index_Checks_Suppressed (Target_Typ))
2227
                      or else
2228
                    (not Range_Checks_Suppressed (Target_Typ));
2229
 
2230
   begin
2231
      if not Full_Expander_Active or else not Checks_On then
2232
         return;
2233
      end if;
2234
 
2235
      R_Result :=
2236
        Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2237
 
2238
      for J in 1 .. 2 loop
2239
 
2240
         R_Cno := R_Result (J);
2241
         exit when No (R_Cno);
2242
 
2243
         --  If the item is a conditional raise of constraint error, then have
2244
         --  a look at what check is being performed and ???
2245
 
2246
         if Nkind (R_Cno) = N_Raise_Constraint_Error
2247
           and then Present (Condition (R_Cno))
2248
         then
2249
            Cond := Condition (R_Cno);
2250
 
2251
            if not Has_Dynamic_Range_Check (Ck_Node) then
2252
               Insert_Action (Ck_Node, R_Cno);
2253
 
2254
               if not Do_Static then
2255
                  Set_Has_Dynamic_Range_Check (Ck_Node);
2256
               end if;
2257
            end if;
2258
 
2259
            --  Output a warning if the condition is known to be True
2260
 
2261
            if Is_Entity_Name (Cond)
2262
              and then Entity (Cond) = Standard_True
2263
            then
2264
               --  Since an N_Range is technically not an expression, we have
2265
               --  to set one of the bounds to C_E and then just flag the
2266
               --  N_Range. The warning message will point to the lower bound
2267
               --  and complain about a range, which seems OK.
2268
 
2269
               if Nkind (Ck_Node) = N_Range then
2270
                  Apply_Compile_Time_Constraint_Error
2271
                    (Low_Bound (Ck_Node), "static range out of bounds of}?",
2272
                     CE_Range_Check_Failed,
2273
                     Ent => Target_Typ,
2274
                     Typ => Target_Typ);
2275
 
2276
                  Set_Raises_Constraint_Error (Ck_Node);
2277
 
2278
               else
2279
                  Apply_Compile_Time_Constraint_Error
2280
                    (Ck_Node, "static value out of range of}?",
2281
                     CE_Range_Check_Failed,
2282
                     Ent => Target_Typ,
2283
                     Typ => Target_Typ);
2284
               end if;
2285
 
2286
            --  If we were only doing a static check, or if checks are not
2287
            --  on, then we want to delete the check, since it is not needed.
2288
            --  We do this by replacing the if statement by a null statement
2289
 
2290
            elsif Do_Static or else not Checks_On then
2291
               Remove_Warning_Messages (R_Cno);
2292
               Rewrite (R_Cno, Make_Null_Statement (Loc));
2293
            end if;
2294
 
2295
         else
2296
            Install_Static_Check (R_Cno, Loc);
2297
         end if;
2298
      end loop;
2299
   end Apply_Selected_Range_Checks;
2300
 
2301
   -------------------------------
2302
   -- Apply_Static_Length_Check --
2303
   -------------------------------
2304
 
2305
   procedure Apply_Static_Length_Check
2306
     (Expr       : Node_Id;
2307
      Target_Typ : Entity_Id;
2308
      Source_Typ : Entity_Id := Empty)
2309
   is
2310
   begin
2311
      Apply_Selected_Length_Checks
2312
        (Expr, Target_Typ, Source_Typ, Do_Static => True);
2313
   end Apply_Static_Length_Check;
2314
 
2315
   -------------------------------------
2316
   -- Apply_Subscript_Validity_Checks --
2317
   -------------------------------------
2318
 
2319
   procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
2320
      Sub : Node_Id;
2321
 
2322
   begin
2323
      pragma Assert (Nkind (Expr) = N_Indexed_Component);
2324
 
2325
      --  Loop through subscripts
2326
 
2327
      Sub := First (Expressions (Expr));
2328
      while Present (Sub) loop
2329
 
2330
         --  Check one subscript. Note that we do not worry about enumeration
2331
         --  type with holes, since we will convert the value to a Pos value
2332
         --  for the subscript, and that convert will do the necessary validity
2333
         --  check.
2334
 
2335
         Ensure_Valid (Sub, Holes_OK => True);
2336
 
2337
         --  Move to next subscript
2338
 
2339
         Sub := Next (Sub);
2340
      end loop;
2341
   end Apply_Subscript_Validity_Checks;
2342
 
2343
   ----------------------------------
2344
   -- Apply_Type_Conversion_Checks --
2345
   ----------------------------------
2346
 
2347
   procedure Apply_Type_Conversion_Checks (N : Node_Id) is
2348
      Target_Type : constant Entity_Id := Etype (N);
2349
      Target_Base : constant Entity_Id := Base_Type (Target_Type);
2350
      Expr        : constant Node_Id   := Expression (N);
2351
 
2352
      Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
2353
      --  Note: if Etype (Expr) is a private type without discriminants, its
2354
      --  full view might have discriminants with defaults, so we need the
2355
      --  full view here to retrieve the constraints.
2356
 
2357
   begin
2358
      if Inside_A_Generic then
2359
         return;
2360
 
2361
      --  Skip these checks if serious errors detected, there are some nasty
2362
      --  situations of incomplete trees that blow things up.
2363
 
2364
      elsif Serious_Errors_Detected > 0 then
2365
         return;
2366
 
2367
      --  Scalar type conversions of the form Target_Type (Expr) require a
2368
      --  range check if we cannot be sure that Expr is in the base type of
2369
      --  Target_Typ and also that Expr is in the range of Target_Typ. These
2370
      --  are not quite the same condition from an implementation point of
2371
      --  view, but clearly the second includes the first.
2372
 
2373
      elsif Is_Scalar_Type (Target_Type) then
2374
         declare
2375
            Conv_OK  : constant Boolean := Conversion_OK (N);
2376
            --  If the Conversion_OK flag on the type conversion is set and no
2377
            --  floating point type is involved in the type conversion then
2378
            --  fixed point values must be read as integral values.
2379
 
2380
            Float_To_Int : constant Boolean :=
2381
                             Is_Floating_Point_Type (Expr_Type)
2382
                               and then Is_Integer_Type (Target_Type);
2383
 
2384
         begin
2385
            if not Overflow_Checks_Suppressed (Target_Base)
2386
              and then not
2387
                In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
2388
              and then not Float_To_Int
2389
            then
2390
               Activate_Overflow_Check (N);
2391
            end if;
2392
 
2393
            if not Range_Checks_Suppressed (Target_Type)
2394
              and then not Range_Checks_Suppressed (Expr_Type)
2395
            then
2396
               if Float_To_Int then
2397
                  Apply_Float_Conversion_Check (Expr, Target_Type);
2398
               else
2399
                  Apply_Scalar_Range_Check
2400
                    (Expr, Target_Type, Fixed_Int => Conv_OK);
2401
 
2402
                  --  If the target type has predicates, we need to indicate
2403
                  --  the need for a check, even if Determine_Range finds
2404
                  --  that the value is within bounds. This may be the case
2405
                  --  e.g for a division with a constant denominator.
2406
 
2407
                  if Has_Predicates (Target_Type) then
2408
                     Enable_Range_Check (Expr);
2409
                  end if;
2410
               end if;
2411
            end if;
2412
         end;
2413
 
2414
      elsif Comes_From_Source (N)
2415
        and then not Discriminant_Checks_Suppressed (Target_Type)
2416
        and then Is_Record_Type (Target_Type)
2417
        and then Is_Derived_Type (Target_Type)
2418
        and then not Is_Tagged_Type (Target_Type)
2419
        and then not Is_Constrained (Target_Type)
2420
        and then Present (Stored_Constraint (Target_Type))
2421
      then
2422
         --  An unconstrained derived type may have inherited discriminant.
2423
         --  Build an actual discriminant constraint list using the stored
2424
         --  constraint, to verify that the expression of the parent type
2425
         --  satisfies the constraints imposed by the (unconstrained!)
2426
         --  derived type. This applies to value conversions, not to view
2427
         --  conversions of tagged types.
2428
 
2429
         declare
2430
            Loc         : constant Source_Ptr := Sloc (N);
2431
            Cond        : Node_Id;
2432
            Constraint  : Elmt_Id;
2433
            Discr_Value : Node_Id;
2434
            Discr       : Entity_Id;
2435
 
2436
            New_Constraints : constant Elist_Id := New_Elmt_List;
2437
            Old_Constraints : constant Elist_Id :=
2438
                                Discriminant_Constraint (Expr_Type);
2439
 
2440
         begin
2441
            Constraint := First_Elmt (Stored_Constraint (Target_Type));
2442
            while Present (Constraint) loop
2443
               Discr_Value := Node (Constraint);
2444
 
2445
               if Is_Entity_Name (Discr_Value)
2446
                 and then Ekind (Entity (Discr_Value)) = E_Discriminant
2447
               then
2448
                  Discr := Corresponding_Discriminant (Entity (Discr_Value));
2449
 
2450
                  if Present (Discr)
2451
                    and then Scope (Discr) = Base_Type (Expr_Type)
2452
                  then
2453
                     --  Parent is constrained by new discriminant. Obtain
2454
                     --  Value of original discriminant in expression. If the
2455
                     --  new discriminant has been used to constrain more than
2456
                     --  one of the stored discriminants, this will provide the
2457
                     --  required consistency check.
2458
 
2459
                     Append_Elmt
2460
                       (Make_Selected_Component (Loc,
2461
                          Prefix        =>
2462
                            Duplicate_Subexpr_No_Checks
2463
                              (Expr, Name_Req => True),
2464
                          Selector_Name =>
2465
                            Make_Identifier (Loc, Chars (Discr))),
2466
                        New_Constraints);
2467
 
2468
                  else
2469
                     --  Discriminant of more remote ancestor ???
2470
 
2471
                     return;
2472
                  end if;
2473
 
2474
               --  Derived type definition has an explicit value for this
2475
               --  stored discriminant.
2476
 
2477
               else
2478
                  Append_Elmt
2479
                    (Duplicate_Subexpr_No_Checks (Discr_Value),
2480
                     New_Constraints);
2481
               end if;
2482
 
2483
               Next_Elmt (Constraint);
2484
            end loop;
2485
 
2486
            --  Use the unconstrained expression type to retrieve the
2487
            --  discriminants of the parent, and apply momentarily the
2488
            --  discriminant constraint synthesized above.
2489
 
2490
            Set_Discriminant_Constraint (Expr_Type, New_Constraints);
2491
            Cond := Build_Discriminant_Checks (Expr, Expr_Type);
2492
            Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
2493
 
2494
            Insert_Action (N,
2495
              Make_Raise_Constraint_Error (Loc,
2496
                Condition => Cond,
2497
                Reason    => CE_Discriminant_Check_Failed));
2498
         end;
2499
 
2500
      --  For arrays, conversions are applied during expansion, to take into
2501
      --  accounts changes of representation. The checks become range checks on
2502
      --  the base type or length checks on the subtype, depending on whether
2503
      --  the target type is unconstrained or constrained.
2504
 
2505
      else
2506
         null;
2507
      end if;
2508
   end Apply_Type_Conversion_Checks;
2509
 
2510
   ----------------------------------------------
2511
   -- Apply_Universal_Integer_Attribute_Checks --
2512
   ----------------------------------------------
2513
 
2514
   procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
2515
      Loc : constant Source_Ptr := Sloc (N);
2516
      Typ : constant Entity_Id  := Etype (N);
2517
 
2518
   begin
2519
      if Inside_A_Generic then
2520
         return;
2521
 
2522
      --  Nothing to do if checks are suppressed
2523
 
2524
      elsif Range_Checks_Suppressed (Typ)
2525
        and then Overflow_Checks_Suppressed (Typ)
2526
      then
2527
         return;
2528
 
2529
      --  Nothing to do if the attribute does not come from source. The
2530
      --  internal attributes we generate of this type do not need checks,
2531
      --  and furthermore the attempt to check them causes some circular
2532
      --  elaboration orders when dealing with packed types.
2533
 
2534
      elsif not Comes_From_Source (N) then
2535
         return;
2536
 
2537
      --  If the prefix is a selected component that depends on a discriminant
2538
      --  the check may improperly expose a discriminant instead of using
2539
      --  the bounds of the object itself. Set the type of the attribute to
2540
      --  the base type of the context, so that a check will be imposed when
2541
      --  needed (e.g. if the node appears as an index).
2542
 
2543
      elsif Nkind (Prefix (N)) = N_Selected_Component
2544
        and then Ekind (Typ) = E_Signed_Integer_Subtype
2545
        and then Depends_On_Discriminant (Scalar_Range (Typ))
2546
      then
2547
         Set_Etype (N, Base_Type (Typ));
2548
 
2549
      --  Otherwise, replace the attribute node with a type conversion node
2550
      --  whose expression is the attribute, retyped to universal integer, and
2551
      --  whose subtype mark is the target type. The call to analyze this
2552
      --  conversion will set range and overflow checks as required for proper
2553
      --  detection of an out of range value.
2554
 
2555
      else
2556
         Set_Etype    (N, Universal_Integer);
2557
         Set_Analyzed (N, True);
2558
 
2559
         Rewrite (N,
2560
           Make_Type_Conversion (Loc,
2561
             Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2562
             Expression   => Relocate_Node (N)));
2563
 
2564
         Analyze_And_Resolve (N, Typ);
2565
         return;
2566
      end if;
2567
   end Apply_Universal_Integer_Attribute_Checks;
2568
 
2569
   -------------------------------------
2570
   -- Atomic_Synchronization_Disabled --
2571
   -------------------------------------
2572
 
2573
   --  Note: internally Disable/Enable_Atomic_Synchronization is implemented
2574
   --  using a bogus check called Atomic_Synchronization. This is to make it
2575
   --  more convenient to get exactly the same semantics as [Un]Suppress.
2576
 
2577
   function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
2578
   begin
2579
      --  If debug flag d.e is set, always return False, i.e. all atomic sync
2580
      --  looks enabled, since it is never disabled.
2581
 
2582
      if Debug_Flag_Dot_E then
2583
         return False;
2584
 
2585
      --  If debug flag d.d is set then always return True, i.e. all atomic
2586
      --  sync looks disabled, since it always tests True.
2587
 
2588
      elsif Debug_Flag_Dot_D then
2589
         return True;
2590
 
2591
      --  If entity present, then check result for that entity
2592
 
2593
      elsif Present (E) and then Checks_May_Be_Suppressed (E) then
2594
         return Is_Check_Suppressed (E, Atomic_Synchronization);
2595
 
2596
      --  Otherwise result depends on current scope setting
2597
 
2598
      else
2599
         return Scope_Suppress (Atomic_Synchronization);
2600
      end if;
2601
   end Atomic_Synchronization_Disabled;
2602
 
2603
   -------------------------------
2604
   -- Build_Discriminant_Checks --
2605
   -------------------------------
2606
 
2607
   function Build_Discriminant_Checks
2608
     (N     : Node_Id;
2609
      T_Typ : Entity_Id) return Node_Id
2610
   is
2611
      Loc      : constant Source_Ptr := Sloc (N);
2612
      Cond     : Node_Id;
2613
      Disc     : Elmt_Id;
2614
      Disc_Ent : Entity_Id;
2615
      Dref     : Node_Id;
2616
      Dval     : Node_Id;
2617
 
2618
      function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
2619
 
2620
      ----------------------------------
2621
      -- Aggregate_Discriminant_Value --
2622
      ----------------------------------
2623
 
2624
      function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
2625
         Assoc : Node_Id;
2626
 
2627
      begin
2628
         --  The aggregate has been normalized with named associations. We use
2629
         --  the Chars field to locate the discriminant to take into account
2630
         --  discriminants in derived types, which carry the same name as those
2631
         --  in the parent.
2632
 
2633
         Assoc := First (Component_Associations (N));
2634
         while Present (Assoc) loop
2635
            if Chars (First (Choices (Assoc))) = Chars (Disc) then
2636
               return Expression (Assoc);
2637
            else
2638
               Next (Assoc);
2639
            end if;
2640
         end loop;
2641
 
2642
         --  Discriminant must have been found in the loop above
2643
 
2644
         raise Program_Error;
2645
      end Aggregate_Discriminant_Val;
2646
 
2647
   --  Start of processing for Build_Discriminant_Checks
2648
 
2649
   begin
2650
      --  Loop through discriminants evolving the condition
2651
 
2652
      Cond := Empty;
2653
      Disc := First_Elmt (Discriminant_Constraint (T_Typ));
2654
 
2655
      --  For a fully private type, use the discriminants of the parent type
2656
 
2657
      if Is_Private_Type (T_Typ)
2658
        and then No (Full_View (T_Typ))
2659
      then
2660
         Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
2661
      else
2662
         Disc_Ent := First_Discriminant (T_Typ);
2663
      end if;
2664
 
2665
      while Present (Disc) loop
2666
         Dval := Node (Disc);
2667
 
2668
         if Nkind (Dval) = N_Identifier
2669
           and then Ekind (Entity (Dval)) = E_Discriminant
2670
         then
2671
            Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
2672
         else
2673
            Dval := Duplicate_Subexpr_No_Checks (Dval);
2674
         end if;
2675
 
2676
         --  If we have an Unchecked_Union node, we can infer the discriminants
2677
         --  of the node.
2678
 
2679
         if Is_Unchecked_Union (Base_Type (T_Typ)) then
2680
            Dref := New_Copy (
2681
              Get_Discriminant_Value (
2682
                First_Discriminant (T_Typ),
2683
                T_Typ,
2684
                Stored_Constraint (T_Typ)));
2685
 
2686
         elsif Nkind (N) = N_Aggregate then
2687
            Dref :=
2688
               Duplicate_Subexpr_No_Checks
2689
                 (Aggregate_Discriminant_Val (Disc_Ent));
2690
 
2691
         else
2692
            Dref :=
2693
              Make_Selected_Component (Loc,
2694
                Prefix =>
2695
                  Duplicate_Subexpr_No_Checks (N, Name_Req => True),
2696
                Selector_Name =>
2697
                  Make_Identifier (Loc, Chars (Disc_Ent)));
2698
 
2699
            Set_Is_In_Discriminant_Check (Dref);
2700
         end if;
2701
 
2702
         Evolve_Or_Else (Cond,
2703
           Make_Op_Ne (Loc,
2704
             Left_Opnd => Dref,
2705
             Right_Opnd => Dval));
2706
 
2707
         Next_Elmt (Disc);
2708
         Next_Discriminant (Disc_Ent);
2709
      end loop;
2710
 
2711
      return Cond;
2712
   end Build_Discriminant_Checks;
2713
 
2714
   ------------------
2715
   -- Check_Needed --
2716
   ------------------
2717
 
2718
   function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
2719
      N : Node_Id;
2720
      P : Node_Id;
2721
      K : Node_Kind;
2722
      L : Node_Id;
2723
      R : Node_Id;
2724
 
2725
   begin
2726
      --  Always check if not simple entity
2727
 
2728
      if Nkind (Nod) not in N_Has_Entity
2729
        or else not Comes_From_Source (Nod)
2730
      then
2731
         return True;
2732
      end if;
2733
 
2734
      --  Look up tree for short circuit
2735
 
2736
      N := Nod;
2737
      loop
2738
         P := Parent (N);
2739
         K := Nkind (P);
2740
 
2741
         --  Done if out of subexpression (note that we allow generated stuff
2742
         --  such as itype declarations in this context, to keep the loop going
2743
         --  since we may well have generated such stuff in complex situations.
2744
         --  Also done if no parent (probably an error condition, but no point
2745
         --  in behaving nasty if we find it!)
2746
 
2747
         if No (P)
2748
           or else (K not in N_Subexpr and then Comes_From_Source (P))
2749
         then
2750
            return True;
2751
 
2752
         --  Or/Or Else case, where test is part of the right operand, or is
2753
         --  part of one of the actions associated with the right operand, and
2754
         --  the left operand is an equality test.
2755
 
2756
         elsif K = N_Op_Or then
2757
            exit when N = Right_Opnd (P)
2758
              and then Nkind (Left_Opnd (P)) = N_Op_Eq;
2759
 
2760
         elsif K = N_Or_Else then
2761
            exit when (N = Right_Opnd (P)
2762
                        or else
2763
                          (Is_List_Member (N)
2764
                             and then List_Containing (N) = Actions (P)))
2765
              and then Nkind (Left_Opnd (P)) = N_Op_Eq;
2766
 
2767
         --  Similar test for the And/And then case, where the left operand
2768
         --  is an inequality test.
2769
 
2770
         elsif K = N_Op_And then
2771
            exit when N = Right_Opnd (P)
2772
              and then Nkind (Left_Opnd (P)) = N_Op_Ne;
2773
 
2774
         elsif K = N_And_Then then
2775
            exit when (N = Right_Opnd (P)
2776
                        or else
2777
                          (Is_List_Member (N)
2778
                             and then List_Containing (N) = Actions (P)))
2779
              and then Nkind (Left_Opnd (P)) = N_Op_Ne;
2780
         end if;
2781
 
2782
         N := P;
2783
      end loop;
2784
 
2785
      --  If we fall through the loop, then we have a conditional with an
2786
      --  appropriate test as its left operand. So test further.
2787
 
2788
      L := Left_Opnd (P);
2789
      R := Right_Opnd (L);
2790
      L := Left_Opnd (L);
2791
 
2792
      --  Left operand of test must match original variable
2793
 
2794
      if Nkind (L) not in N_Has_Entity
2795
        or else Entity (L) /= Entity (Nod)
2796
      then
2797
         return True;
2798
      end if;
2799
 
2800
      --  Right operand of test must be key value (zero or null)
2801
 
2802
      case Check is
2803
         when Access_Check =>
2804
            if not Known_Null (R) then
2805
               return True;
2806
            end if;
2807
 
2808
         when Division_Check =>
2809
            if not Compile_Time_Known_Value (R)
2810
              or else Expr_Value (R) /= Uint_0
2811
            then
2812
               return True;
2813
            end if;
2814
 
2815
         when others =>
2816
            raise Program_Error;
2817
      end case;
2818
 
2819
      --  Here we have the optimizable case, warn if not short-circuited
2820
 
2821
      if K = N_Op_And or else K = N_Op_Or then
2822
         case Check is
2823
            when Access_Check =>
2824
               Error_Msg_N
2825
                 ("Constraint_Error may be raised (access check)?",
2826
                  Parent (Nod));
2827
            when Division_Check =>
2828
               Error_Msg_N
2829
                 ("Constraint_Error may be raised (zero divide)?",
2830
                  Parent (Nod));
2831
 
2832
            when others =>
2833
               raise Program_Error;
2834
         end case;
2835
 
2836
         if K = N_Op_And then
2837
            Error_Msg_N -- CODEFIX
2838
              ("use `AND THEN` instead of AND?", P);
2839
         else
2840
            Error_Msg_N -- CODEFIX
2841
              ("use `OR ELSE` instead of OR?", P);
2842
         end if;
2843
 
2844
         --  If not short-circuited, we need the check
2845
 
2846
         return True;
2847
 
2848
      --  If short-circuited, we can omit the check
2849
 
2850
      else
2851
         return False;
2852
      end if;
2853
   end Check_Needed;
2854
 
2855
   -----------------------------------
2856
   -- Check_Valid_Lvalue_Subscripts --
2857
   -----------------------------------
2858
 
2859
   procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
2860
   begin
2861
      --  Skip this if range checks are suppressed
2862
 
2863
      if Range_Checks_Suppressed (Etype (Expr)) then
2864
         return;
2865
 
2866
      --  Only do this check for expressions that come from source. We assume
2867
      --  that expander generated assignments explicitly include any necessary
2868
      --  checks. Note that this is not just an optimization, it avoids
2869
      --  infinite recursions!
2870
 
2871
      elsif not Comes_From_Source (Expr) then
2872
         return;
2873
 
2874
      --  For a selected component, check the prefix
2875
 
2876
      elsif Nkind (Expr) = N_Selected_Component then
2877
         Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2878
         return;
2879
 
2880
      --  Case of indexed component
2881
 
2882
      elsif Nkind (Expr) = N_Indexed_Component then
2883
         Apply_Subscript_Validity_Checks (Expr);
2884
 
2885
         --  Prefix may itself be or contain an indexed component, and these
2886
         --  subscripts need checking as well.
2887
 
2888
         Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2889
      end if;
2890
   end Check_Valid_Lvalue_Subscripts;
2891
 
2892
   ----------------------------------
2893
   -- Null_Exclusion_Static_Checks --
2894
   ----------------------------------
2895
 
2896
   procedure Null_Exclusion_Static_Checks (N : Node_Id) is
2897
      Error_Node : Node_Id;
2898
      Expr       : Node_Id;
2899
      Has_Null   : constant Boolean := Has_Null_Exclusion (N);
2900
      K          : constant Node_Kind := Nkind (N);
2901
      Typ        : Entity_Id;
2902
 
2903
   begin
2904
      pragma Assert
2905
        (K = N_Component_Declaration
2906
           or else K = N_Discriminant_Specification
2907
           or else K = N_Function_Specification
2908
           or else K = N_Object_Declaration
2909
           or else K = N_Parameter_Specification);
2910
 
2911
      if K = N_Function_Specification then
2912
         Typ := Etype (Defining_Entity (N));
2913
      else
2914
         Typ := Etype (Defining_Identifier (N));
2915
      end if;
2916
 
2917
      case K is
2918
         when N_Component_Declaration =>
2919
            if Present (Access_Definition (Component_Definition (N))) then
2920
               Error_Node := Component_Definition (N);
2921
            else
2922
               Error_Node := Subtype_Indication (Component_Definition (N));
2923
            end if;
2924
 
2925
         when N_Discriminant_Specification =>
2926
            Error_Node    := Discriminant_Type (N);
2927
 
2928
         when N_Function_Specification =>
2929
            Error_Node    := Result_Definition (N);
2930
 
2931
         when N_Object_Declaration =>
2932
            Error_Node    := Object_Definition (N);
2933
 
2934
         when N_Parameter_Specification =>
2935
            Error_Node    := Parameter_Type (N);
2936
 
2937
         when others =>
2938
            raise Program_Error;
2939
      end case;
2940
 
2941
      if Has_Null then
2942
 
2943
         --  Enforce legality rule 3.10 (13): A null exclusion can only be
2944
         --  applied to an access [sub]type.
2945
 
2946
         if not Is_Access_Type (Typ) then
2947
            Error_Msg_N
2948
              ("`NOT NULL` allowed only for an access type", Error_Node);
2949
 
2950
         --  Enforce legality rule RM 3.10(14/1): A null exclusion can only
2951
         --  be applied to a [sub]type that does not exclude null already.
2952
 
2953
         elsif Can_Never_Be_Null (Typ)
2954
           and then Comes_From_Source (Typ)
2955
         then
2956
            Error_Msg_NE
2957
              ("`NOT NULL` not allowed (& already excludes null)",
2958
               Error_Node, Typ);
2959
         end if;
2960
      end if;
2961
 
2962
      --  Check that null-excluding objects are always initialized, except for
2963
      --  deferred constants, for which the expression will appear in the full
2964
      --  declaration.
2965
 
2966
      if K = N_Object_Declaration
2967
        and then No (Expression (N))
2968
        and then not Constant_Present (N)
2969
        and then not No_Initialization (N)
2970
      then
2971
         --  Add an expression that assigns null. This node is needed by
2972
         --  Apply_Compile_Time_Constraint_Error, which will replace this with
2973
         --  a Constraint_Error node.
2974
 
2975
         Set_Expression (N, Make_Null (Sloc (N)));
2976
         Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
2977
 
2978
         Apply_Compile_Time_Constraint_Error
2979
           (N      => Expression (N),
2980
            Msg    => "(Ada 2005) null-excluding objects must be initialized?",
2981
            Reason => CE_Null_Not_Allowed);
2982
      end if;
2983
 
2984
      --  Check that a null-excluding component, formal or object is not being
2985
      --  assigned a null value. Otherwise generate a warning message and
2986
      --  replace Expression (N) by an N_Constraint_Error node.
2987
 
2988
      if K /= N_Function_Specification then
2989
         Expr := Expression (N);
2990
 
2991
         if Present (Expr) and then Known_Null (Expr) then
2992
            case K is
2993
               when N_Component_Declaration      |
2994
                    N_Discriminant_Specification =>
2995
                  Apply_Compile_Time_Constraint_Error
2996
                    (N      => Expr,
2997
                     Msg    => "(Ada 2005) null not allowed " &
2998
                               "in null-excluding components?",
2999
                     Reason => CE_Null_Not_Allowed);
3000
 
3001
               when N_Object_Declaration =>
3002
                  Apply_Compile_Time_Constraint_Error
3003
                    (N      => Expr,
3004
                     Msg    => "(Ada 2005) null not allowed " &
3005
                               "in null-excluding objects?",
3006
                     Reason => CE_Null_Not_Allowed);
3007
 
3008
               when N_Parameter_Specification =>
3009
                  Apply_Compile_Time_Constraint_Error
3010
                    (N      => Expr,
3011
                     Msg    => "(Ada 2005) null not allowed " &
3012
                               "in null-excluding formals?",
3013
                     Reason => CE_Null_Not_Allowed);
3014
 
3015
               when others =>
3016
                  null;
3017
            end case;
3018
         end if;
3019
      end if;
3020
   end Null_Exclusion_Static_Checks;
3021
 
3022
   ----------------------------------
3023
   -- Conditional_Statements_Begin --
3024
   ----------------------------------
3025
 
3026
   procedure Conditional_Statements_Begin is
3027
   begin
3028
      Saved_Checks_TOS := Saved_Checks_TOS + 1;
3029
 
3030
      --  If stack overflows, kill all checks, that way we know to simply reset
3031
      --  the number of saved checks to zero on return. This should never occur
3032
      --  in practice.
3033
 
3034
      if Saved_Checks_TOS > Saved_Checks_Stack'Last then
3035
         Kill_All_Checks;
3036
 
3037
      --  In the normal case, we just make a new stack entry saving the current
3038
      --  number of saved checks for a later restore.
3039
 
3040
      else
3041
         Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
3042
 
3043
         if Debug_Flag_CC then
3044
            w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
3045
               Num_Saved_Checks);
3046
         end if;
3047
      end if;
3048
   end Conditional_Statements_Begin;
3049
 
3050
   --------------------------------
3051
   -- Conditional_Statements_End --
3052
   --------------------------------
3053
 
3054
   procedure Conditional_Statements_End is
3055
   begin
3056
      pragma Assert (Saved_Checks_TOS > 0);
3057
 
3058
      --  If the saved checks stack overflowed, then we killed all checks, so
3059
      --  setting the number of saved checks back to zero is correct. This
3060
      --  should never occur in practice.
3061
 
3062
      if Saved_Checks_TOS > Saved_Checks_Stack'Last then
3063
         Num_Saved_Checks := 0;
3064
 
3065
      --  In the normal case, restore the number of saved checks from the top
3066
      --  stack entry.
3067
 
3068
      else
3069
         Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
3070
         if Debug_Flag_CC then
3071
            w ("Conditional_Statements_End: Num_Saved_Checks = ",
3072
               Num_Saved_Checks);
3073
         end if;
3074
      end if;
3075
 
3076
      Saved_Checks_TOS := Saved_Checks_TOS - 1;
3077
   end Conditional_Statements_End;
3078
 
3079
   ---------------------
3080
   -- Determine_Range --
3081
   ---------------------
3082
 
3083
   Cache_Size : constant := 2 ** 10;
3084
   type Cache_Index is range 0 .. Cache_Size - 1;
3085
   --  Determine size of below cache (power of 2 is more efficient!)
3086
 
3087
   Determine_Range_Cache_N  : array (Cache_Index) of Node_Id;
3088
   Determine_Range_Cache_V  : array (Cache_Index) of Boolean;
3089
   Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
3090
   Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
3091
   --  The above arrays are used to implement a small direct cache for
3092
   --  Determine_Range calls. Because of the way Determine_Range recursively
3093
   --  traces subexpressions, and because overflow checking calls the routine
3094
   --  on the way up the tree, a quadratic behavior can otherwise be
3095
   --  encountered in large expressions. The cache entry for node N is stored
3096
   --  in the (N mod Cache_Size) entry, and can be validated by checking the
3097
   --  actual node value stored there. The Range_Cache_V array records the
3098
   --  setting of Assume_Valid for the cache entry.
3099
 
3100
   procedure Determine_Range
3101
     (N            : Node_Id;
3102
      OK           : out Boolean;
3103
      Lo           : out Uint;
3104
      Hi           : out Uint;
3105
      Assume_Valid : Boolean := False)
3106
   is
3107
      Typ : Entity_Id := Etype (N);
3108
      --  Type to use, may get reset to base type for possibly invalid entity
3109
 
3110
      Lo_Left : Uint;
3111
      Hi_Left : Uint;
3112
      --  Lo and Hi bounds of left operand
3113
 
3114
      Lo_Right : Uint;
3115
      Hi_Right : Uint;
3116
      --  Lo and Hi bounds of right (or only) operand
3117
 
3118
      Bound : Node_Id;
3119
      --  Temp variable used to hold a bound node
3120
 
3121
      Hbound : Uint;
3122
      --  High bound of base type of expression
3123
 
3124
      Lor : Uint;
3125
      Hir : Uint;
3126
      --  Refined values for low and high bounds, after tightening
3127
 
3128
      OK1 : Boolean;
3129
      --  Used in lower level calls to indicate if call succeeded
3130
 
3131
      Cindex : Cache_Index;
3132
      --  Used to search cache
3133
 
3134
      function OK_Operands return Boolean;
3135
      --  Used for binary operators. Determines the ranges of the left and
3136
      --  right operands, and if they are both OK, returns True, and puts
3137
      --  the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
3138
 
3139
      -----------------
3140
      -- OK_Operands --
3141
      -----------------
3142
 
3143
      function OK_Operands return Boolean is
3144
      begin
3145
         Determine_Range
3146
           (Left_Opnd  (N), OK1, Lo_Left,  Hi_Left, Assume_Valid);
3147
 
3148
         if not OK1 then
3149
            return False;
3150
         end if;
3151
 
3152
         Determine_Range
3153
           (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
3154
         return OK1;
3155
      end OK_Operands;
3156
 
3157
   --  Start of processing for Determine_Range
3158
 
3159
   begin
3160
      --  For temporary constants internally generated to remove side effects
3161
      --  we must use the corresponding expression to determine the range of
3162
      --  the expression.
3163
 
3164
      if Is_Entity_Name (N)
3165
        and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3166
        and then Ekind (Entity (N)) = E_Constant
3167
        and then Is_Internal_Name (Chars (Entity (N)))
3168
      then
3169
         Determine_Range
3170
           (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
3171
         return;
3172
      end if;
3173
 
3174
      --  Prevent junk warnings by initializing range variables
3175
 
3176
      Lo  := No_Uint;
3177
      Hi  := No_Uint;
3178
      Lor := No_Uint;
3179
      Hir := No_Uint;
3180
 
3181
      --  If type is not defined, we can't determine its range
3182
 
3183
      if No (Typ)
3184
 
3185
        --  We don't deal with anything except discrete types
3186
 
3187
        or else not Is_Discrete_Type (Typ)
3188
 
3189
        --  Ignore type for which an error has been posted, since range in
3190
        --  this case may well be a bogosity deriving from the error. Also
3191
        --  ignore if error posted on the reference node.
3192
 
3193
        or else Error_Posted (N) or else Error_Posted (Typ)
3194
      then
3195
         OK := False;
3196
         return;
3197
      end if;
3198
 
3199
      --  For all other cases, we can determine the range
3200
 
3201
      OK := True;
3202
 
3203
      --  If value is compile time known, then the possible range is the one
3204
      --  value that we know this expression definitely has!
3205
 
3206
      if Compile_Time_Known_Value (N) then
3207
         Lo := Expr_Value (N);
3208
         Hi := Lo;
3209
         return;
3210
      end if;
3211
 
3212
      --  Return if already in the cache
3213
 
3214
      Cindex := Cache_Index (N mod Cache_Size);
3215
 
3216
      if Determine_Range_Cache_N (Cindex) = N
3217
           and then
3218
         Determine_Range_Cache_V (Cindex) = Assume_Valid
3219
      then
3220
         Lo := Determine_Range_Cache_Lo (Cindex);
3221
         Hi := Determine_Range_Cache_Hi (Cindex);
3222
         return;
3223
      end if;
3224
 
3225
      --  Otherwise, start by finding the bounds of the type of the expression,
3226
      --  the value cannot be outside this range (if it is, then we have an
3227
      --  overflow situation, which is a separate check, we are talking here
3228
      --  only about the expression value).
3229
 
3230
      --  First a check, never try to find the bounds of a generic type, since
3231
      --  these bounds are always junk values, and it is only valid to look at
3232
      --  the bounds in an instance.
3233
 
3234
      if Is_Generic_Type (Typ) then
3235
         OK := False;
3236
         return;
3237
      end if;
3238
 
3239
      --  First step, change to use base type unless we know the value is valid
3240
 
3241
      if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
3242
        or else Assume_No_Invalid_Values
3243
        or else Assume_Valid
3244
      then
3245
         null;
3246
      else
3247
         Typ := Underlying_Type (Base_Type (Typ));
3248
      end if;
3249
 
3250
      --  We use the actual bound unless it is dynamic, in which case use the
3251
      --  corresponding base type bound if possible. If we can't get a bound
3252
      --  then we figure we can't determine the range (a peculiar case, that
3253
      --  perhaps cannot happen, but there is no point in bombing in this
3254
      --  optimization circuit.
3255
 
3256
      --  First the low bound
3257
 
3258
      Bound := Type_Low_Bound (Typ);
3259
 
3260
      if Compile_Time_Known_Value (Bound) then
3261
         Lo := Expr_Value (Bound);
3262
 
3263
      elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
3264
         Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
3265
 
3266
      else
3267
         OK := False;
3268
         return;
3269
      end if;
3270
 
3271
      --  Now the high bound
3272
 
3273
      Bound := Type_High_Bound (Typ);
3274
 
3275
      --  We need the high bound of the base type later on, and this should
3276
      --  always be compile time known. Again, it is not clear that this
3277
      --  can ever be false, but no point in bombing.
3278
 
3279
      if Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
3280
         Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
3281
         Hi := Hbound;
3282
 
3283
      else
3284
         OK := False;
3285
         return;
3286
      end if;
3287
 
3288
      --  If we have a static subtype, then that may have a tighter bound so
3289
      --  use the upper bound of the subtype instead in this case.
3290
 
3291
      if Compile_Time_Known_Value (Bound) then
3292
         Hi := Expr_Value (Bound);
3293
      end if;
3294
 
3295
      --  We may be able to refine this value in certain situations. If any
3296
      --  refinement is possible, then Lor and Hir are set to possibly tighter
3297
      --  bounds, and OK1 is set to True.
3298
 
3299
      case Nkind (N) is
3300
 
3301
         --  For unary plus, result is limited by range of operand
3302
 
3303
         when N_Op_Plus =>
3304
            Determine_Range
3305
              (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
3306
 
3307
         --  For unary minus, determine range of operand, and negate it
3308
 
3309
         when N_Op_Minus =>
3310
            Determine_Range
3311
              (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
3312
 
3313
            if OK1 then
3314
               Lor := -Hi_Right;
3315
               Hir := -Lo_Right;
3316
            end if;
3317
 
3318
         --  For binary addition, get range of each operand and do the
3319
         --  addition to get the result range.
3320
 
3321
         when N_Op_Add =>
3322
            if OK_Operands then
3323
               Lor := Lo_Left + Lo_Right;
3324
               Hir := Hi_Left + Hi_Right;
3325
            end if;
3326
 
3327
         --  Division is tricky. The only case we consider is where the right
3328
         --  operand is a positive constant, and in this case we simply divide
3329
         --  the bounds of the left operand
3330
 
3331
         when N_Op_Divide =>
3332
            if OK_Operands then
3333
               if Lo_Right = Hi_Right
3334
                 and then Lo_Right > 0
3335
               then
3336
                  Lor := Lo_Left / Lo_Right;
3337
                  Hir := Hi_Left / Lo_Right;
3338
 
3339
               else
3340
                  OK1 := False;
3341
               end if;
3342
            end if;
3343
 
3344
         --  For binary subtraction, get range of each operand and do the worst
3345
         --  case subtraction to get the result range.
3346
 
3347
         when N_Op_Subtract =>
3348
            if OK_Operands then
3349
               Lor := Lo_Left - Hi_Right;
3350
               Hir := Hi_Left - Lo_Right;
3351
            end if;
3352
 
3353
         --  For MOD, if right operand is a positive constant, then result must
3354
         --  be in the allowable range of mod results.
3355
 
3356
         when N_Op_Mod =>
3357
            if OK_Operands then
3358
               if Lo_Right = Hi_Right
3359
                 and then Lo_Right /= 0
3360
               then
3361
                  if Lo_Right > 0 then
3362
                     Lor := Uint_0;
3363
                     Hir := Lo_Right - 1;
3364
 
3365
                  else -- Lo_Right < 0
3366
                     Lor := Lo_Right + 1;
3367
                     Hir := Uint_0;
3368
                  end if;
3369
 
3370
               else
3371
                  OK1 := False;
3372
               end if;
3373
            end if;
3374
 
3375
         --  For REM, if right operand is a positive constant, then result must
3376
         --  be in the allowable range of mod results.
3377
 
3378
         when N_Op_Rem =>
3379
            if OK_Operands then
3380
               if Lo_Right = Hi_Right
3381
                 and then Lo_Right /= 0
3382
               then
3383
                  declare
3384
                     Dval : constant Uint := (abs Lo_Right) - 1;
3385
 
3386
                  begin
3387
                     --  The sign of the result depends on the sign of the
3388
                     --  dividend (but not on the sign of the divisor, hence
3389
                     --  the abs operation above).
3390
 
3391
                     if Lo_Left < 0 then
3392
                        Lor := -Dval;
3393
                     else
3394
                        Lor := Uint_0;
3395
                     end if;
3396
 
3397
                     if Hi_Left < 0 then
3398
                        Hir := Uint_0;
3399
                     else
3400
                        Hir := Dval;
3401
                     end if;
3402
                  end;
3403
 
3404
               else
3405
                  OK1 := False;
3406
               end if;
3407
            end if;
3408
 
3409
         --  Attribute reference cases
3410
 
3411
         when N_Attribute_Reference =>
3412
            case Attribute_Name (N) is
3413
 
3414
               --  For Pos/Val attributes, we can refine the range using the
3415
               --  possible range of values of the attribute expression.
3416
 
3417
               when Name_Pos | Name_Val =>
3418
                  Determine_Range
3419
                    (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
3420
 
3421
               --  For Length attribute, use the bounds of the corresponding
3422
               --  index type to refine the range.
3423
 
3424
               when Name_Length =>
3425
                  declare
3426
                     Atyp : Entity_Id := Etype (Prefix (N));
3427
                     Inum : Nat;
3428
                     Indx : Node_Id;
3429
 
3430
                     LL, LU : Uint;
3431
                     UL, UU : Uint;
3432
 
3433
                  begin
3434
                     if Is_Access_Type (Atyp) then
3435
                        Atyp := Designated_Type (Atyp);
3436
                     end if;
3437
 
3438
                     --  For string literal, we know exact value
3439
 
3440
                     if Ekind (Atyp) = E_String_Literal_Subtype then
3441
                        OK := True;
3442
                        Lo := String_Literal_Length (Atyp);
3443
                        Hi := String_Literal_Length (Atyp);
3444
                        return;
3445
                     end if;
3446
 
3447
                     --  Otherwise check for expression given
3448
 
3449
                     if No (Expressions (N)) then
3450
                        Inum := 1;
3451
                     else
3452
                        Inum :=
3453
                          UI_To_Int (Expr_Value (First (Expressions (N))));
3454
                     end if;
3455
 
3456
                     Indx := First_Index (Atyp);
3457
                     for J in 2 .. Inum loop
3458
                        Indx := Next_Index (Indx);
3459
                     end loop;
3460
 
3461
                     --  If the index type is a formal type or derived from
3462
                     --  one, the bounds are not static.
3463
 
3464
                     if Is_Generic_Type (Root_Type (Etype (Indx))) then
3465
                        OK := False;
3466
                        return;
3467
                     end if;
3468
 
3469
                     Determine_Range
3470
                       (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
3471
                        Assume_Valid);
3472
 
3473
                     if OK1 then
3474
                        Determine_Range
3475
                          (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
3476
                           Assume_Valid);
3477
 
3478
                        if OK1 then
3479
 
3480
                           --  The maximum value for Length is the biggest
3481
                           --  possible gap between the values of the bounds.
3482
                           --  But of course, this value cannot be negative.
3483
 
3484
                           Hir := UI_Max (Uint_0, UU - LL + 1);
3485
 
3486
                           --  For constrained arrays, the minimum value for
3487
                           --  Length is taken from the actual value of the
3488
                           --  bounds, since the index will be exactly of this
3489
                           --  subtype.
3490
 
3491
                           if Is_Constrained (Atyp) then
3492
                              Lor := UI_Max (Uint_0, UL - LU + 1);
3493
 
3494
                           --  For an unconstrained array, the minimum value
3495
                           --  for length is always zero.
3496
 
3497
                           else
3498
                              Lor := Uint_0;
3499
                           end if;
3500
                        end if;
3501
                     end if;
3502
                  end;
3503
 
3504
               --  No special handling for other attributes
3505
               --  Probably more opportunities exist here???
3506
 
3507
               when others =>
3508
                  OK1 := False;
3509
 
3510
            end case;
3511
 
3512
         --  For type conversion from one discrete type to another, we can
3513
         --  refine the range using the converted value.
3514
 
3515
         when N_Type_Conversion =>
3516
            Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
3517
 
3518
         --  Nothing special to do for all other expression kinds
3519
 
3520
         when others =>
3521
            OK1 := False;
3522
            Lor := No_Uint;
3523
            Hir := No_Uint;
3524
      end case;
3525
 
3526
      --  At this stage, if OK1 is true, then we know that the actual result of
3527
      --  the computed expression is in the range Lor .. Hir. We can use this
3528
      --  to restrict the possible range of results.
3529
 
3530
      --  If one of the computed bounds is outside the range of the base type,
3531
      --  the expression may raise an exception and we had better indicate that
3532
      --  the evaluation has failed, at least if checks are enabled.
3533
 
3534
      if OK1
3535
        and then Enable_Overflow_Checks
3536
        and then not Is_Entity_Name (N)
3537
        and then (Lor < Lo or else Hir > Hi)
3538
      then
3539
         OK := False;
3540
         return;
3541
      end if;
3542
 
3543
      if OK1 then
3544
 
3545
         --  If the refined value of the low bound is greater than the type
3546
         --  high bound, then reset it to the more restrictive value. However,
3547
         --  we do NOT do this for the case of a modular type where the
3548
         --  possible upper bound on the value is above the base type high
3549
         --  bound, because that means the result could wrap.
3550
 
3551
         if Lor > Lo
3552
           and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
3553
         then
3554
            Lo := Lor;
3555
         end if;
3556
 
3557
         --  Similarly, if the refined value of the high bound is less than the
3558
         --  value so far, then reset it to the more restrictive value. Again,
3559
         --  we do not do this if the refined low bound is negative for a
3560
         --  modular type, since this would wrap.
3561
 
3562
         if Hir < Hi
3563
           and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
3564
         then
3565
            Hi := Hir;
3566
         end if;
3567
      end if;
3568
 
3569
      --  Set cache entry for future call and we are all done
3570
 
3571
      Determine_Range_Cache_N  (Cindex) := N;
3572
      Determine_Range_Cache_V  (Cindex) := Assume_Valid;
3573
      Determine_Range_Cache_Lo (Cindex) := Lo;
3574
      Determine_Range_Cache_Hi (Cindex) := Hi;
3575
      return;
3576
 
3577
   --  If any exception occurs, it means that we have some bug in the compiler,
3578
   --  possibly triggered by a previous error, or by some unforeseen peculiar
3579
   --  occurrence. However, this is only an optimization attempt, so there is
3580
   --  really no point in crashing the compiler. Instead we just decide, too
3581
   --  bad, we can't figure out a range in this case after all.
3582
 
3583
   exception
3584
      when others =>
3585
 
3586
         --  Debug flag K disables this behavior (useful for debugging)
3587
 
3588
         if Debug_Flag_K then
3589
            raise;
3590
         else
3591
            OK := False;
3592
            Lo := No_Uint;
3593
            Hi := No_Uint;
3594
            return;
3595
         end if;
3596
   end Determine_Range;
3597
 
3598
   ------------------------------------
3599
   -- Discriminant_Checks_Suppressed --
3600
   ------------------------------------
3601
 
3602
   function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
3603
   begin
3604
      if Present (E) then
3605
         if Is_Unchecked_Union (E) then
3606
            return True;
3607
         elsif Checks_May_Be_Suppressed (E) then
3608
            return Is_Check_Suppressed (E, Discriminant_Check);
3609
         end if;
3610
      end if;
3611
 
3612
      return Scope_Suppress (Discriminant_Check);
3613
   end Discriminant_Checks_Suppressed;
3614
 
3615
   --------------------------------
3616
   -- Division_Checks_Suppressed --
3617
   --------------------------------
3618
 
3619
   function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
3620
   begin
3621
      if Present (E) and then Checks_May_Be_Suppressed (E) then
3622
         return Is_Check_Suppressed (E, Division_Check);
3623
      else
3624
         return Scope_Suppress (Division_Check);
3625
      end if;
3626
   end Division_Checks_Suppressed;
3627
 
3628
   -----------------------------------
3629
   -- Elaboration_Checks_Suppressed --
3630
   -----------------------------------
3631
 
3632
   function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
3633
   begin
3634
      --  The complication in this routine is that if we are in the dynamic
3635
      --  model of elaboration, we also check All_Checks, since All_Checks
3636
      --  does not set Elaboration_Check explicitly.
3637
 
3638
      if Present (E) then
3639
         if Kill_Elaboration_Checks (E) then
3640
            return True;
3641
 
3642
         elsif Checks_May_Be_Suppressed (E) then
3643
            if Is_Check_Suppressed (E, Elaboration_Check) then
3644
               return True;
3645
            elsif Dynamic_Elaboration_Checks then
3646
               return Is_Check_Suppressed (E, All_Checks);
3647
            else
3648
               return False;
3649
            end if;
3650
         end if;
3651
      end if;
3652
 
3653
      if Scope_Suppress (Elaboration_Check) then
3654
         return True;
3655
      elsif Dynamic_Elaboration_Checks then
3656
         return Scope_Suppress (All_Checks);
3657
      else
3658
         return False;
3659
      end if;
3660
   end Elaboration_Checks_Suppressed;
3661
 
3662
   ---------------------------
3663
   -- Enable_Overflow_Check --
3664
   ---------------------------
3665
 
3666
   procedure Enable_Overflow_Check (N : Node_Id) is
3667
      Typ : constant Entity_Id  := Base_Type (Etype (N));
3668
      Chk : Nat;
3669
      OK  : Boolean;
3670
      Ent : Entity_Id;
3671
      Ofs : Uint;
3672
      Lo  : Uint;
3673
      Hi  : Uint;
3674
 
3675
   begin
3676
      if Debug_Flag_CC then
3677
         w ("Enable_Overflow_Check for node ", Int (N));
3678
         Write_Str ("  Source location = ");
3679
         wl (Sloc (N));
3680
         pg (Union_Id (N));
3681
      end if;
3682
 
3683
      --  No check if overflow checks suppressed for type of node
3684
 
3685
      if Present (Etype (N))
3686
        and then Overflow_Checks_Suppressed (Etype (N))
3687
      then
3688
         return;
3689
 
3690
      --  Nothing to do for unsigned integer types, which do not overflow
3691
 
3692
      elsif Is_Modular_Integer_Type (Typ) then
3693
         return;
3694
 
3695
      --  Nothing to do if the range of the result is known OK. We skip this
3696
      --  for conversions, since the caller already did the check, and in any
3697
      --  case the condition for deleting the check for a type conversion is
3698
      --  different.
3699
 
3700
      elsif Nkind (N) /= N_Type_Conversion then
3701
         Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
3702
 
3703
         --  Note in the test below that we assume that the range is not OK
3704
         --  if a bound of the range is equal to that of the type. That's not
3705
         --  quite accurate but we do this for the following reasons:
3706
 
3707
         --   a) The way that Determine_Range works, it will typically report
3708
         --      the bounds of the value as being equal to the bounds of the
3709
         --      type, because it either can't tell anything more precise, or
3710
         --      does not think it is worth the effort to be more precise.
3711
 
3712
         --   b) It is very unusual to have a situation in which this would
3713
         --      generate an unnecessary overflow check (an example would be
3714
         --      a subtype with a range 0 .. Integer'Last - 1 to which the
3715
         --      literal value one is added).
3716
 
3717
         --   c) The alternative is a lot of special casing in this routine
3718
         --      which would partially duplicate Determine_Range processing.
3719
 
3720
         if OK
3721
           and then Lo > Expr_Value (Type_Low_Bound  (Typ))
3722
           and then Hi < Expr_Value (Type_High_Bound (Typ))
3723
         then
3724
            if Debug_Flag_CC then
3725
               w ("No overflow check required");
3726
            end if;
3727
 
3728
            return;
3729
         end if;
3730
      end if;
3731
 
3732
      --  If not in optimizing mode, set flag and we are done. We are also done
3733
      --  (and just set the flag) if the type is not a discrete type, since it
3734
      --  is not worth the effort to eliminate checks for other than discrete
3735
      --  types. In addition, we take this same path if we have stored the
3736
      --  maximum number of checks possible already (a very unlikely situation,
3737
      --  but we do not want to blow up!)
3738
 
3739
      if Optimization_Level = 0
3740
        or else not Is_Discrete_Type (Etype (N))
3741
        or else Num_Saved_Checks = Saved_Checks'Last
3742
      then
3743
         Activate_Overflow_Check (N);
3744
 
3745
         if Debug_Flag_CC then
3746
            w ("Optimization off");
3747
         end if;
3748
 
3749
         return;
3750
      end if;
3751
 
3752
      --  Otherwise evaluate and check the expression
3753
 
3754
      Find_Check
3755
        (Expr        => N,
3756
         Check_Type  => 'O',
3757
         Target_Type => Empty,
3758
         Entry_OK    => OK,
3759
         Check_Num   => Chk,
3760
         Ent         => Ent,
3761
         Ofs         => Ofs);
3762
 
3763
      if Debug_Flag_CC then
3764
         w ("Called Find_Check");
3765
         w ("  OK = ", OK);
3766
 
3767
         if OK then
3768
            w ("  Check_Num = ", Chk);
3769
            w ("  Ent       = ", Int (Ent));
3770
            Write_Str ("  Ofs       = ");
3771
            pid (Ofs);
3772
         end if;
3773
      end if;
3774
 
3775
      --  If check is not of form to optimize, then set flag and we are done
3776
 
3777
      if not OK then
3778
         Activate_Overflow_Check (N);
3779
         return;
3780
      end if;
3781
 
3782
      --  If check is already performed, then return without setting flag
3783
 
3784
      if Chk /= 0 then
3785
         if Debug_Flag_CC then
3786
            w ("Check suppressed!");
3787
         end if;
3788
 
3789
         return;
3790
      end if;
3791
 
3792
      --  Here we will make a new entry for the new check
3793
 
3794
      Activate_Overflow_Check (N);
3795
      Num_Saved_Checks := Num_Saved_Checks + 1;
3796
      Saved_Checks (Num_Saved_Checks) :=
3797
        (Killed      => False,
3798
         Entity      => Ent,
3799
         Offset      => Ofs,
3800
         Check_Type  => 'O',
3801
         Target_Type => Empty);
3802
 
3803
      if Debug_Flag_CC then
3804
         w ("Make new entry, check number = ", Num_Saved_Checks);
3805
         w ("  Entity = ", Int (Ent));
3806
         Write_Str ("  Offset = ");
3807
         pid (Ofs);
3808
         w ("  Check_Type = O");
3809
         w ("  Target_Type = Empty");
3810
      end if;
3811
 
3812
   --  If we get an exception, then something went wrong, probably because of
3813
   --  an error in the structure of the tree due to an incorrect program. Or it
3814
   --  may be a bug in the optimization circuit. In either case the safest
3815
   --  thing is simply to set the check flag unconditionally.
3816
 
3817
   exception
3818
      when others =>
3819
         Activate_Overflow_Check (N);
3820
 
3821
         if Debug_Flag_CC then
3822
            w ("  exception occurred, overflow flag set");
3823
         end if;
3824
 
3825
         return;
3826
   end Enable_Overflow_Check;
3827
 
3828
   ------------------------
3829
   -- Enable_Range_Check --
3830
   ------------------------
3831
 
3832
   procedure Enable_Range_Check (N : Node_Id) is
3833
      Chk  : Nat;
3834
      OK   : Boolean;
3835
      Ent  : Entity_Id;
3836
      Ofs  : Uint;
3837
      Ttyp : Entity_Id;
3838
      P    : Node_Id;
3839
 
3840
   begin
3841
      --  Return if unchecked type conversion with range check killed. In this
3842
      --  case we never set the flag (that's what Kill_Range_Check is about!)
3843
 
3844
      if Nkind (N) = N_Unchecked_Type_Conversion
3845
        and then Kill_Range_Check (N)
3846
      then
3847
         return;
3848
      end if;
3849
 
3850
      --  Do not set range check flag if parent is assignment statement or
3851
      --  object declaration with Suppress_Assignment_Checks flag set
3852
 
3853
      if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
3854
        and then Suppress_Assignment_Checks (Parent (N))
3855
      then
3856
         return;
3857
      end if;
3858
 
3859
      --  Check for various cases where we should suppress the range check
3860
 
3861
      --  No check if range checks suppressed for type of node
3862
 
3863
      if Present (Etype (N))
3864
        and then Range_Checks_Suppressed (Etype (N))
3865
      then
3866
         return;
3867
 
3868
      --  No check if node is an entity name, and range checks are suppressed
3869
      --  for this entity, or for the type of this entity.
3870
 
3871
      elsif Is_Entity_Name (N)
3872
        and then (Range_Checks_Suppressed (Entity (N))
3873
                    or else Range_Checks_Suppressed (Etype (Entity (N))))
3874
      then
3875
         return;
3876
 
3877
      --  No checks if index of array, and index checks are suppressed for
3878
      --  the array object or the type of the array.
3879
 
3880
      elsif Nkind (Parent (N)) = N_Indexed_Component then
3881
         declare
3882
            Pref : constant Node_Id := Prefix (Parent (N));
3883
         begin
3884
            if Is_Entity_Name (Pref)
3885
              and then Index_Checks_Suppressed (Entity (Pref))
3886
            then
3887
               return;
3888
            elsif Index_Checks_Suppressed (Etype (Pref)) then
3889
               return;
3890
            end if;
3891
         end;
3892
      end if;
3893
 
3894
      --  Debug trace output
3895
 
3896
      if Debug_Flag_CC then
3897
         w ("Enable_Range_Check for node ", Int (N));
3898
         Write_Str ("  Source location = ");
3899
         wl (Sloc (N));
3900
         pg (Union_Id (N));
3901
      end if;
3902
 
3903
      --  If not in optimizing mode, set flag and we are done. We are also done
3904
      --  (and just set the flag) if the type is not a discrete type, since it
3905
      --  is not worth the effort to eliminate checks for other than discrete
3906
      --  types. In addition, we take this same path if we have stored the
3907
      --  maximum number of checks possible already (a very unlikely situation,
3908
      --  but we do not want to blow up!)
3909
 
3910
      if Optimization_Level = 0
3911
        or else No (Etype (N))
3912
        or else not Is_Discrete_Type (Etype (N))
3913
        or else Num_Saved_Checks = Saved_Checks'Last
3914
      then
3915
         Activate_Range_Check (N);
3916
 
3917
         if Debug_Flag_CC then
3918
            w ("Optimization off");
3919
         end if;
3920
 
3921
         return;
3922
      end if;
3923
 
3924
      --  Otherwise find out the target type
3925
 
3926
      P := Parent (N);
3927
 
3928
      --  For assignment, use left side subtype
3929
 
3930
      if Nkind (P) = N_Assignment_Statement
3931
        and then Expression (P) = N
3932
      then
3933
         Ttyp := Etype (Name (P));
3934
 
3935
      --  For indexed component, use subscript subtype
3936
 
3937
      elsif Nkind (P) = N_Indexed_Component then
3938
         declare
3939
            Atyp : Entity_Id;
3940
            Indx : Node_Id;
3941
            Subs : Node_Id;
3942
 
3943
         begin
3944
            Atyp := Etype (Prefix (P));
3945
 
3946
            if Is_Access_Type (Atyp) then
3947
               Atyp := Designated_Type (Atyp);
3948
 
3949
               --  If the prefix is an access to an unconstrained array,
3950
               --  perform check unconditionally: it depends on the bounds of
3951
               --  an object and we cannot currently recognize whether the test
3952
               --  may be redundant.
3953
 
3954
               if not Is_Constrained (Atyp) then
3955
                  Activate_Range_Check (N);
3956
                  return;
3957
               end if;
3958
 
3959
            --  Ditto if the prefix is an explicit dereference whose designated
3960
            --  type is unconstrained.
3961
 
3962
            elsif Nkind (Prefix (P)) = N_Explicit_Dereference
3963
              and then not Is_Constrained (Atyp)
3964
            then
3965
               Activate_Range_Check (N);
3966
               return;
3967
            end if;
3968
 
3969
            Indx := First_Index (Atyp);
3970
            Subs := First (Expressions (P));
3971
            loop
3972
               if Subs = N then
3973
                  Ttyp := Etype (Indx);
3974
                  exit;
3975
               end if;
3976
 
3977
               Next_Index (Indx);
3978
               Next (Subs);
3979
            end loop;
3980
         end;
3981
 
3982
      --  For now, ignore all other cases, they are not so interesting
3983
 
3984
      else
3985
         if Debug_Flag_CC then
3986
            w ("  target type not found, flag set");
3987
         end if;
3988
 
3989
         Activate_Range_Check (N);
3990
         return;
3991
      end if;
3992
 
3993
      --  Evaluate and check the expression
3994
 
3995
      Find_Check
3996
        (Expr        => N,
3997
         Check_Type  => 'R',
3998
         Target_Type => Ttyp,
3999
         Entry_OK    => OK,
4000
         Check_Num   => Chk,
4001
         Ent         => Ent,
4002
         Ofs         => Ofs);
4003
 
4004
      if Debug_Flag_CC then
4005
         w ("Called Find_Check");
4006
         w ("Target_Typ = ", Int (Ttyp));
4007
         w ("  OK = ", OK);
4008
 
4009
         if OK then
4010
            w ("  Check_Num = ", Chk);
4011
            w ("  Ent       = ", Int (Ent));
4012
            Write_Str ("  Ofs       = ");
4013
            pid (Ofs);
4014
         end if;
4015
      end if;
4016
 
4017
      --  If check is not of form to optimize, then set flag and we are done
4018
 
4019
      if not OK then
4020
         if Debug_Flag_CC then
4021
            w ("  expression not of optimizable type, flag set");
4022
         end if;
4023
 
4024
         Activate_Range_Check (N);
4025
         return;
4026
      end if;
4027
 
4028
      --  If check is already performed, then return without setting flag
4029
 
4030
      if Chk /= 0 then
4031
         if Debug_Flag_CC then
4032
            w ("Check suppressed!");
4033
         end if;
4034
 
4035
         return;
4036
      end if;
4037
 
4038
      --  Here we will make a new entry for the new check
4039
 
4040
      Activate_Range_Check (N);
4041
      Num_Saved_Checks := Num_Saved_Checks + 1;
4042
      Saved_Checks (Num_Saved_Checks) :=
4043
        (Killed      => False,
4044
         Entity      => Ent,
4045
         Offset      => Ofs,
4046
         Check_Type  => 'R',
4047
         Target_Type => Ttyp);
4048
 
4049
      if Debug_Flag_CC then
4050
         w ("Make new entry, check number = ", Num_Saved_Checks);
4051
         w ("  Entity = ", Int (Ent));
4052
         Write_Str ("  Offset = ");
4053
         pid (Ofs);
4054
         w ("  Check_Type = R");
4055
         w ("  Target_Type = ", Int (Ttyp));
4056
         pg (Union_Id (Ttyp));
4057
      end if;
4058
 
4059
   --  If we get an exception, then something went wrong, probably because of
4060
   --  an error in the structure of the tree due to an incorrect program. Or
4061
   --  it may be a bug in the optimization circuit. In either case the safest
4062
   --  thing is simply to set the check flag unconditionally.
4063
 
4064
   exception
4065
      when others =>
4066
         Activate_Range_Check (N);
4067
 
4068
         if Debug_Flag_CC then
4069
            w ("  exception occurred, range flag set");
4070
         end if;
4071
 
4072
         return;
4073
   end Enable_Range_Check;
4074
 
4075
   ------------------
4076
   -- Ensure_Valid --
4077
   ------------------
4078
 
4079
   procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
4080
      Typ : constant Entity_Id  := Etype (Expr);
4081
 
4082
   begin
4083
      --  Ignore call if we are not doing any validity checking
4084
 
4085
      if not Validity_Checks_On then
4086
         return;
4087
 
4088
      --  Ignore call if range or validity checks suppressed on entity or type
4089
 
4090
      elsif Range_Or_Validity_Checks_Suppressed (Expr) then
4091
         return;
4092
 
4093
      --  No check required if expression is from the expander, we assume the
4094
      --  expander will generate whatever checks are needed. Note that this is
4095
      --  not just an optimization, it avoids infinite recursions!
4096
 
4097
      --  Unchecked conversions must be checked, unless they are initialized
4098
      --  scalar values, as in a component assignment in an init proc.
4099
 
4100
      --  In addition, we force a check if Force_Validity_Checks is set
4101
 
4102
      elsif not Comes_From_Source (Expr)
4103
        and then not Force_Validity_Checks
4104
        and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
4105
                    or else Kill_Range_Check (Expr))
4106
      then
4107
         return;
4108
 
4109
      --  No check required if expression is known to have valid value
4110
 
4111
      elsif Expr_Known_Valid (Expr) then
4112
         return;
4113
 
4114
      --  Ignore case of enumeration with holes where the flag is set not to
4115
      --  worry about holes, since no special validity check is needed
4116
 
4117
      elsif Is_Enumeration_Type (Typ)
4118
        and then Has_Non_Standard_Rep (Typ)
4119
        and then Holes_OK
4120
      then
4121
         return;
4122
 
4123
      --  No check required on the left-hand side of an assignment
4124
 
4125
      elsif Nkind (Parent (Expr)) = N_Assignment_Statement
4126
        and then Expr = Name (Parent (Expr))
4127
      then
4128
         return;
4129
 
4130
      --  No check on a universal real constant. The context will eventually
4131
      --  convert it to a machine number for some target type, or report an
4132
      --  illegality.
4133
 
4134
      elsif Nkind (Expr) = N_Real_Literal
4135
        and then Etype (Expr) = Universal_Real
4136
      then
4137
         return;
4138
 
4139
      --  If the expression denotes a component of a packed boolean array,
4140
      --  no possible check applies. We ignore the old ACATS chestnuts that
4141
      --  involve Boolean range True..True.
4142
 
4143
      --  Note: validity checks are generated for expressions that yield a
4144
      --  scalar type, when it is possible to create a value that is outside of
4145
      --  the type. If this is a one-bit boolean no such value exists. This is
4146
      --  an optimization, and it also prevents compiler blowing up during the
4147
      --  elaboration of improperly expanded packed array references.
4148
 
4149
      elsif Nkind (Expr) = N_Indexed_Component
4150
        and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
4151
        and then Root_Type (Etype (Expr)) = Standard_Boolean
4152
      then
4153
         return;
4154
 
4155
      --  An annoying special case. If this is an out parameter of a scalar
4156
      --  type, then the value is not going to be accessed, therefore it is
4157
      --  inappropriate to do any validity check at the call site.
4158
 
4159
      else
4160
         --  Only need to worry about scalar types
4161
 
4162
         if Is_Scalar_Type (Typ) then
4163
            declare
4164
               P : Node_Id;
4165
               N : Node_Id;
4166
               E : Entity_Id;
4167
               F : Entity_Id;
4168
               A : Node_Id;
4169
               L : List_Id;
4170
 
4171
            begin
4172
               --  Find actual argument (which may be a parameter association)
4173
               --  and the parent of the actual argument (the call statement)
4174
 
4175
               N := Expr;
4176
               P := Parent (Expr);
4177
 
4178
               if Nkind (P) = N_Parameter_Association then
4179
                  N := P;
4180
                  P := Parent (N);
4181
               end if;
4182
 
4183
               --  Only need to worry if we are argument of a procedure call
4184
               --  since functions don't have out parameters. If this is an
4185
               --  indirect or dispatching call, get signature from the
4186
               --  subprogram type.
4187
 
4188
               if Nkind (P) = N_Procedure_Call_Statement then
4189
                  L := Parameter_Associations (P);
4190
 
4191
                  if Is_Entity_Name (Name (P)) then
4192
                     E := Entity (Name (P));
4193
                  else
4194
                     pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
4195
                     E := Etype (Name (P));
4196
                  end if;
4197
 
4198
                  --  Only need to worry if there are indeed actuals, and if
4199
                  --  this could be a procedure call, otherwise we cannot get a
4200
                  --  match (either we are not an argument, or the mode of the
4201
                  --  formal is not OUT). This test also filters out the
4202
                  --  generic case.
4203
 
4204
                  if Is_Non_Empty_List (L)
4205
                    and then Is_Subprogram (E)
4206
                  then
4207
                     --  This is the loop through parameters, looking for an
4208
                     --  OUT parameter for which we are the argument.
4209
 
4210
                     F := First_Formal (E);
4211
                     A := First (L);
4212
                     while Present (F) loop
4213
                        if Ekind (F) = E_Out_Parameter and then A = N then
4214
                           return;
4215
                        end if;
4216
 
4217
                        Next_Formal (F);
4218
                        Next (A);
4219
                     end loop;
4220
                  end if;
4221
               end if;
4222
            end;
4223
         end if;
4224
      end if;
4225
 
4226
      --  If this is a boolean expression, only its elementary operands need
4227
      --  checking: if they are valid, a boolean or short-circuit operation
4228
      --  with them will be valid as well.
4229
 
4230
      if Base_Type (Typ) = Standard_Boolean
4231
        and then
4232
         (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
4233
      then
4234
         return;
4235
      end if;
4236
 
4237
      --  If we fall through, a validity check is required
4238
 
4239
      Insert_Valid_Check (Expr);
4240
 
4241
      if Is_Entity_Name (Expr)
4242
        and then Safe_To_Capture_Value (Expr, Entity (Expr))
4243
      then
4244
         Set_Is_Known_Valid (Entity (Expr));
4245
      end if;
4246
   end Ensure_Valid;
4247
 
4248
   ----------------------
4249
   -- Expr_Known_Valid --
4250
   ----------------------
4251
 
4252
   function Expr_Known_Valid (Expr : Node_Id) return Boolean is
4253
      Typ : constant Entity_Id := Etype (Expr);
4254
 
4255
   begin
4256
      --  Non-scalar types are always considered valid, since they never give
4257
      --  rise to the issues of erroneous or bounded error behavior that are
4258
      --  the concern. In formal reference manual terms the notion of validity
4259
      --  only applies to scalar types. Note that even when packed arrays are
4260
      --  represented using modular types, they are still arrays semantically,
4261
      --  so they are also always valid (in particular, the unused bits can be
4262
      --  random rubbish without affecting the validity of the array value).
4263
 
4264
      if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
4265
         return True;
4266
 
4267
      --  If no validity checking, then everything is considered valid
4268
 
4269
      elsif not Validity_Checks_On then
4270
         return True;
4271
 
4272
      --  Floating-point types are considered valid unless floating-point
4273
      --  validity checks have been specifically turned on.
4274
 
4275
      elsif Is_Floating_Point_Type (Typ)
4276
        and then not Validity_Check_Floating_Point
4277
      then
4278
         return True;
4279
 
4280
      --  If the expression is the value of an object that is known to be
4281
      --  valid, then clearly the expression value itself is valid.
4282
 
4283
      elsif Is_Entity_Name (Expr)
4284
        and then Is_Known_Valid (Entity (Expr))
4285
      then
4286
         return True;
4287
 
4288
      --  References to discriminants are always considered valid. The value
4289
      --  of a discriminant gets checked when the object is built. Within the
4290
      --  record, we consider it valid, and it is important to do so, since
4291
      --  otherwise we can try to generate bogus validity checks which
4292
      --  reference discriminants out of scope. Discriminants of concurrent
4293
      --  types are excluded for the same reason.
4294
 
4295
      elsif Is_Entity_Name (Expr)
4296
        and then Denotes_Discriminant (Expr, Check_Concurrent => True)
4297
      then
4298
         return True;
4299
 
4300
      --  If the type is one for which all values are known valid, then we are
4301
      --  sure that the value is valid except in the slightly odd case where
4302
      --  the expression is a reference to a variable whose size has been
4303
      --  explicitly set to a value greater than the object size.
4304
 
4305
      elsif Is_Known_Valid (Typ) then
4306
         if Is_Entity_Name (Expr)
4307
           and then Ekind (Entity (Expr)) = E_Variable
4308
           and then Esize (Entity (Expr)) > Esize (Typ)
4309
         then
4310
            return False;
4311
         else
4312
            return True;
4313
         end if;
4314
 
4315
      --  Integer and character literals always have valid values, where
4316
      --  appropriate these will be range checked in any case.
4317
 
4318
      elsif Nkind (Expr) = N_Integer_Literal
4319
              or else
4320
            Nkind (Expr) = N_Character_Literal
4321
      then
4322
         return True;
4323
 
4324
      --  If we have a type conversion or a qualification of a known valid
4325
      --  value, then the result will always be valid.
4326
 
4327
      elsif Nkind (Expr) = N_Type_Conversion
4328
              or else
4329
            Nkind (Expr) = N_Qualified_Expression
4330
      then
4331
         return Expr_Known_Valid (Expression (Expr));
4332
 
4333
      --  The result of any operator is always considered valid, since we
4334
      --  assume the necessary checks are done by the operator. For operators
4335
      --  on floating-point operations, we must also check when the operation
4336
      --  is the right-hand side of an assignment, or is an actual in a call.
4337
 
4338
      elsif Nkind (Expr) in N_Op then
4339
         if Is_Floating_Point_Type (Typ)
4340
            and then Validity_Check_Floating_Point
4341
            and then
4342
              (Nkind (Parent (Expr)) = N_Assignment_Statement
4343
                or else Nkind (Parent (Expr)) = N_Function_Call
4344
                or else Nkind (Parent (Expr)) = N_Parameter_Association)
4345
         then
4346
            return False;
4347
         else
4348
            return True;
4349
         end if;
4350
 
4351
      --  The result of a membership test is always valid, since it is true or
4352
      --  false, there are no other possibilities.
4353
 
4354
      elsif Nkind (Expr) in N_Membership_Test then
4355
         return True;
4356
 
4357
      --  For all other cases, we do not know the expression is valid
4358
 
4359
      else
4360
         return False;
4361
      end if;
4362
   end Expr_Known_Valid;
4363
 
4364
   ----------------
4365
   -- Find_Check --
4366
   ----------------
4367
 
4368
   procedure Find_Check
4369
     (Expr        : Node_Id;
4370
      Check_Type  : Character;
4371
      Target_Type : Entity_Id;
4372
      Entry_OK    : out Boolean;
4373
      Check_Num   : out Nat;
4374
      Ent         : out Entity_Id;
4375
      Ofs         : out Uint)
4376
   is
4377
      function Within_Range_Of
4378
        (Target_Type : Entity_Id;
4379
         Check_Type  : Entity_Id) return Boolean;
4380
      --  Given a requirement for checking a range against Target_Type, and
4381
      --  and a range Check_Type against which a check has already been made,
4382
      --  determines if the check against check type is sufficient to ensure
4383
      --  that no check against Target_Type is required.
4384
 
4385
      ---------------------
4386
      -- Within_Range_Of --
4387
      ---------------------
4388
 
4389
      function Within_Range_Of
4390
        (Target_Type : Entity_Id;
4391
         Check_Type  : Entity_Id) return Boolean
4392
      is
4393
      begin
4394
         if Target_Type = Check_Type then
4395
            return True;
4396
 
4397
         else
4398
            declare
4399
               Tlo : constant Node_Id := Type_Low_Bound  (Target_Type);
4400
               Thi : constant Node_Id := Type_High_Bound (Target_Type);
4401
               Clo : constant Node_Id := Type_Low_Bound  (Check_Type);
4402
               Chi : constant Node_Id := Type_High_Bound (Check_Type);
4403
 
4404
            begin
4405
               if (Tlo = Clo
4406
                     or else (Compile_Time_Known_Value (Tlo)
4407
                                and then
4408
                              Compile_Time_Known_Value (Clo)
4409
                                and then
4410
                              Expr_Value (Clo) >= Expr_Value (Tlo)))
4411
                 and then
4412
                  (Thi = Chi
4413
                     or else (Compile_Time_Known_Value (Thi)
4414
                                and then
4415
                              Compile_Time_Known_Value (Chi)
4416
                                and then
4417
                              Expr_Value (Chi) <= Expr_Value (Clo)))
4418
               then
4419
                  return True;
4420
               else
4421
                  return False;
4422
               end if;
4423
            end;
4424
         end if;
4425
      end Within_Range_Of;
4426
 
4427
   --  Start of processing for Find_Check
4428
 
4429
   begin
4430
      --  Establish default, in case no entry is found
4431
 
4432
      Check_Num := 0;
4433
 
4434
      --  Case of expression is simple entity reference
4435
 
4436
      if Is_Entity_Name (Expr) then
4437
         Ent := Entity (Expr);
4438
         Ofs := Uint_0;
4439
 
4440
      --  Case of expression is entity + known constant
4441
 
4442
      elsif Nkind (Expr) = N_Op_Add
4443
        and then Compile_Time_Known_Value (Right_Opnd (Expr))
4444
        and then Is_Entity_Name (Left_Opnd (Expr))
4445
      then
4446
         Ent := Entity (Left_Opnd (Expr));
4447
         Ofs := Expr_Value (Right_Opnd (Expr));
4448
 
4449
      --  Case of expression is entity - known constant
4450
 
4451
      elsif Nkind (Expr) = N_Op_Subtract
4452
        and then Compile_Time_Known_Value (Right_Opnd (Expr))
4453
        and then Is_Entity_Name (Left_Opnd (Expr))
4454
      then
4455
         Ent := Entity (Left_Opnd (Expr));
4456
         Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
4457
 
4458
      --  Any other expression is not of the right form
4459
 
4460
      else
4461
         Ent := Empty;
4462
         Ofs := Uint_0;
4463
         Entry_OK := False;
4464
         return;
4465
      end if;
4466
 
4467
      --  Come here with expression of appropriate form, check if entity is an
4468
      --  appropriate one for our purposes.
4469
 
4470
      if (Ekind (Ent) = E_Variable
4471
            or else Is_Constant_Object (Ent))
4472
        and then not Is_Library_Level_Entity (Ent)
4473
      then
4474
         Entry_OK := True;
4475
      else
4476
         Entry_OK := False;
4477
         return;
4478
      end if;
4479
 
4480
      --  See if there is matching check already
4481
 
4482
      for J in reverse 1 .. Num_Saved_Checks loop
4483
         declare
4484
            SC : Saved_Check renames Saved_Checks (J);
4485
 
4486
         begin
4487
            if SC.Killed = False
4488
              and then SC.Entity = Ent
4489
              and then SC.Offset = Ofs
4490
              and then SC.Check_Type = Check_Type
4491
              and then Within_Range_Of (Target_Type, SC.Target_Type)
4492
            then
4493
               Check_Num := J;
4494
               return;
4495
            end if;
4496
         end;
4497
      end loop;
4498
 
4499
      --  If we fall through entry was not found
4500
 
4501
      return;
4502
   end Find_Check;
4503
 
4504
   ---------------------------------
4505
   -- Generate_Discriminant_Check --
4506
   ---------------------------------
4507
 
4508
   --  Note: the code for this procedure is derived from the
4509
   --  Emit_Discriminant_Check Routine in trans.c.
4510
 
4511
   procedure Generate_Discriminant_Check (N : Node_Id) is
4512
      Loc  : constant Source_Ptr := Sloc (N);
4513
      Pref : constant Node_Id    := Prefix (N);
4514
      Sel  : constant Node_Id    := Selector_Name (N);
4515
 
4516
      Orig_Comp : constant Entity_Id :=
4517
                    Original_Record_Component (Entity (Sel));
4518
      --  The original component to be checked
4519
 
4520
      Discr_Fct : constant Entity_Id :=
4521
                    Discriminant_Checking_Func (Orig_Comp);
4522
      --  The discriminant checking function
4523
 
4524
      Discr : Entity_Id;
4525
      --  One discriminant to be checked in the type
4526
 
4527
      Real_Discr : Entity_Id;
4528
      --  Actual discriminant in the call
4529
 
4530
      Pref_Type : Entity_Id;
4531
      --  Type of relevant prefix (ignoring private/access stuff)
4532
 
4533
      Args : List_Id;
4534
      --  List of arguments for function call
4535
 
4536
      Formal : Entity_Id;
4537
      --  Keep track of the formal corresponding to the actual we build for
4538
      --  each discriminant, in order to be able to perform the necessary type
4539
      --  conversions.
4540
 
4541
      Scomp : Node_Id;
4542
      --  Selected component reference for checking function argument
4543
 
4544
   begin
4545
      Pref_Type := Etype (Pref);
4546
 
4547
      --  Force evaluation of the prefix, so that it does not get evaluated
4548
      --  twice (once for the check, once for the actual reference). Such a
4549
      --  double evaluation is always a potential source of inefficiency,
4550
      --  and is functionally incorrect in the volatile case, or when the
4551
      --  prefix may have side-effects. An entity or a component of an
4552
      --  entity requires no evaluation.
4553
 
4554
      if Is_Entity_Name (Pref) then
4555
         if Treat_As_Volatile (Entity (Pref)) then
4556
            Force_Evaluation (Pref, Name_Req => True);
4557
         end if;
4558
 
4559
      elsif Treat_As_Volatile (Etype (Pref)) then
4560
            Force_Evaluation (Pref, Name_Req => True);
4561
 
4562
      elsif Nkind (Pref) = N_Selected_Component
4563
        and then Is_Entity_Name (Prefix (Pref))
4564
      then
4565
         null;
4566
 
4567
      else
4568
         Force_Evaluation (Pref, Name_Req => True);
4569
      end if;
4570
 
4571
      --  For a tagged type, use the scope of the original component to
4572
      --  obtain the type, because ???
4573
 
4574
      if Is_Tagged_Type (Scope (Orig_Comp)) then
4575
         Pref_Type := Scope (Orig_Comp);
4576
 
4577
      --  For an untagged derived type, use the discriminants of the parent
4578
      --  which have been renamed in the derivation, possibly by a one-to-many
4579
      --  discriminant constraint. For non-tagged type, initially get the Etype
4580
      --  of the prefix
4581
 
4582
      else
4583
         if Is_Derived_Type (Pref_Type)
4584
           and then Number_Discriminants (Pref_Type) /=
4585
                    Number_Discriminants (Etype (Base_Type (Pref_Type)))
4586
         then
4587
            Pref_Type := Etype (Base_Type (Pref_Type));
4588
         end if;
4589
      end if;
4590
 
4591
      --  We definitely should have a checking function, This routine should
4592
      --  not be called if no discriminant checking function is present.
4593
 
4594
      pragma Assert (Present (Discr_Fct));
4595
 
4596
      --  Create the list of the actual parameters for the call. This list
4597
      --  is the list of the discriminant fields of the record expression to
4598
      --  be discriminant checked.
4599
 
4600
      Args   := New_List;
4601
      Formal := First_Formal (Discr_Fct);
4602
      Discr  := First_Discriminant (Pref_Type);
4603
      while Present (Discr) loop
4604
 
4605
         --  If we have a corresponding discriminant field, and a parent
4606
         --  subtype is present, then we want to use the corresponding
4607
         --  discriminant since this is the one with the useful value.
4608
 
4609
         if Present (Corresponding_Discriminant (Discr))
4610
           and then Ekind (Pref_Type) = E_Record_Type
4611
           and then Present (Parent_Subtype (Pref_Type))
4612
         then
4613
            Real_Discr := Corresponding_Discriminant (Discr);
4614
         else
4615
            Real_Discr := Discr;
4616
         end if;
4617
 
4618
         --  Construct the reference to the discriminant
4619
 
4620
         Scomp :=
4621
           Make_Selected_Component (Loc,
4622
             Prefix =>
4623
               Unchecked_Convert_To (Pref_Type,
4624
                 Duplicate_Subexpr (Pref)),
4625
             Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
4626
 
4627
         --  Manually analyze and resolve this selected component. We really
4628
         --  want it just as it appears above, and do not want the expander
4629
         --  playing discriminal games etc with this reference. Then we append
4630
         --  the argument to the list we are gathering.
4631
 
4632
         Set_Etype (Scomp, Etype (Real_Discr));
4633
         Set_Analyzed (Scomp, True);
4634
         Append_To (Args, Convert_To (Etype (Formal), Scomp));
4635
 
4636
         Next_Formal_With_Extras (Formal);
4637
         Next_Discriminant (Discr);
4638
      end loop;
4639
 
4640
      --  Now build and insert the call
4641
 
4642
      Insert_Action (N,
4643
        Make_Raise_Constraint_Error (Loc,
4644
          Condition =>
4645
            Make_Function_Call (Loc,
4646
              Name => New_Occurrence_Of (Discr_Fct, Loc),
4647
              Parameter_Associations => Args),
4648
          Reason => CE_Discriminant_Check_Failed));
4649
   end Generate_Discriminant_Check;
4650
 
4651
   ---------------------------
4652
   -- Generate_Index_Checks --
4653
   ---------------------------
4654
 
4655
   procedure Generate_Index_Checks (N : Node_Id) is
4656
 
4657
      function Entity_Of_Prefix return Entity_Id;
4658
      --  Returns the entity of the prefix of N (or Empty if not found)
4659
 
4660
      ----------------------
4661
      -- Entity_Of_Prefix --
4662
      ----------------------
4663
 
4664
      function Entity_Of_Prefix return Entity_Id is
4665
         P : Node_Id;
4666
 
4667
      begin
4668
         P := Prefix (N);
4669
         while not Is_Entity_Name (P) loop
4670
            if not Nkind_In (P, N_Selected_Component,
4671
                                N_Indexed_Component)
4672
            then
4673
               return Empty;
4674
            end if;
4675
 
4676
            P := Prefix (P);
4677
         end loop;
4678
 
4679
         return Entity (P);
4680
      end Entity_Of_Prefix;
4681
 
4682
      --  Local variables
4683
 
4684
      Loc   : constant Source_Ptr := Sloc (N);
4685
      A     : constant Node_Id    := Prefix (N);
4686
      A_Ent : constant Entity_Id  := Entity_Of_Prefix;
4687
      Sub   : Node_Id;
4688
 
4689
   --  Start of processing for Generate_Index_Checks
4690
 
4691
   begin
4692
      --  Ignore call if the prefix is not an array since we have a serious
4693
      --  error in the sources. Ignore it also if index checks are suppressed
4694
      --  for array object or type.
4695
 
4696
      if not Is_Array_Type (Etype (A))
4697
        or else (Present (A_Ent)
4698
                  and then Index_Checks_Suppressed (A_Ent))
4699
        or else Index_Checks_Suppressed (Etype (A))
4700
      then
4701
         return;
4702
      end if;
4703
 
4704
      --  Generate a raise of constraint error with the appropriate reason and
4705
      --  a condition of the form:
4706
 
4707
      --    Base_Type (Sub) not in Array'Range (Subscript)
4708
 
4709
      --  Note that the reason we generate the conversion to the base type here
4710
      --  is that we definitely want the range check to take place, even if it
4711
      --  looks like the subtype is OK. Optimization considerations that allow
4712
      --  us to omit the check have already been taken into account in the
4713
      --  setting of the Do_Range_Check flag earlier on.
4714
 
4715
      Sub := First (Expressions (N));
4716
 
4717
      --  Handle string literals
4718
 
4719
      if Ekind (Etype (A)) = E_String_Literal_Subtype then
4720
         if Do_Range_Check (Sub) then
4721
            Set_Do_Range_Check (Sub, False);
4722
 
4723
            --  For string literals we obtain the bounds of the string from the
4724
            --  associated subtype.
4725
 
4726
            Insert_Action (N,
4727
               Make_Raise_Constraint_Error (Loc,
4728
                 Condition =>
4729
                    Make_Not_In (Loc,
4730
                      Left_Opnd  =>
4731
                        Convert_To (Base_Type (Etype (Sub)),
4732
                          Duplicate_Subexpr_Move_Checks (Sub)),
4733
                      Right_Opnd =>
4734
                        Make_Attribute_Reference (Loc,
4735
                          Prefix         => New_Reference_To (Etype (A), Loc),
4736
                          Attribute_Name => Name_Range)),
4737
                 Reason => CE_Index_Check_Failed));
4738
         end if;
4739
 
4740
      --  General case
4741
 
4742
      else
4743
         declare
4744
            A_Idx   : Node_Id := Empty;
4745
            A_Range : Node_Id;
4746
            Ind     : Nat;
4747
            Num     : List_Id;
4748
            Range_N : Node_Id;
4749
 
4750
         begin
4751
            A_Idx := First_Index (Etype (A));
4752
            Ind   := 1;
4753
            while Present (Sub) loop
4754
               if Do_Range_Check (Sub) then
4755
                  Set_Do_Range_Check (Sub, False);
4756
 
4757
                  --  Force evaluation except for the case of a simple name of
4758
                  --  a non-volatile entity.
4759
 
4760
                  if not Is_Entity_Name (Sub)
4761
                    or else Treat_As_Volatile (Entity (Sub))
4762
                  then
4763
                     Force_Evaluation (Sub);
4764
                  end if;
4765
 
4766
                  if Nkind (A_Idx) = N_Range then
4767
                     A_Range := A_Idx;
4768
 
4769
                  elsif Nkind (A_Idx) = N_Identifier
4770
                    or else Nkind (A_Idx) = N_Expanded_Name
4771
                  then
4772
                     A_Range := Scalar_Range (Entity (A_Idx));
4773
 
4774
                  else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
4775
                     A_Range := Range_Expression (Constraint (A_Idx));
4776
                  end if;
4777
 
4778
                  --  For array objects with constant bounds we can generate
4779
                  --  the index check using the bounds of the type of the index
4780
 
4781
                  if Present (A_Ent)
4782
                    and then Ekind (A_Ent) = E_Variable
4783
                    and then Is_Constant_Bound (Low_Bound (A_Range))
4784
                    and then Is_Constant_Bound (High_Bound (A_Range))
4785
                  then
4786
                     Range_N :=
4787
                       Make_Attribute_Reference (Loc,
4788
                         Prefix         =>
4789
                           New_Reference_To (Etype (A_Idx), Loc),
4790
                         Attribute_Name => Name_Range);
4791
 
4792
                  --  For arrays with non-constant bounds we cannot generate
4793
                  --  the index check using the bounds of the type of the index
4794
                  --  since it may reference discriminants of some enclosing
4795
                  --  type. We obtain the bounds directly from the prefix
4796
                  --  object.
4797
 
4798
                  else
4799
                     if Ind = 1 then
4800
                        Num := No_List;
4801
                     else
4802
                        Num := New_List (Make_Integer_Literal (Loc, Ind));
4803
                     end if;
4804
 
4805
                     Range_N :=
4806
                       Make_Attribute_Reference (Loc,
4807
                         Prefix =>
4808
                           Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
4809
                         Attribute_Name => Name_Range,
4810
                         Expressions    => Num);
4811
                  end if;
4812
 
4813
                  Insert_Action (N,
4814
                     Make_Raise_Constraint_Error (Loc,
4815
                       Condition =>
4816
                          Make_Not_In (Loc,
4817
                            Left_Opnd  =>
4818
                              Convert_To (Base_Type (Etype (Sub)),
4819
                                Duplicate_Subexpr_Move_Checks (Sub)),
4820
                            Right_Opnd => Range_N),
4821
                       Reason => CE_Index_Check_Failed));
4822
               end if;
4823
 
4824
               A_Idx := Next_Index (A_Idx);
4825
               Ind := Ind + 1;
4826
               Next (Sub);
4827
            end loop;
4828
         end;
4829
      end if;
4830
   end Generate_Index_Checks;
4831
 
4832
   --------------------------
4833
   -- Generate_Range_Check --
4834
   --------------------------
4835
 
4836
   procedure Generate_Range_Check
4837
     (N           : Node_Id;
4838
      Target_Type : Entity_Id;
4839
      Reason      : RT_Exception_Code)
4840
   is
4841
      Loc              : constant Source_Ptr := Sloc (N);
4842
      Source_Type      : constant Entity_Id  := Etype (N);
4843
      Source_Base_Type : constant Entity_Id  := Base_Type (Source_Type);
4844
      Target_Base_Type : constant Entity_Id  := Base_Type (Target_Type);
4845
 
4846
   begin
4847
      --  First special case, if the source type is already within the range
4848
      --  of the target type, then no check is needed (probably we should have
4849
      --  stopped Do_Range_Check from being set in the first place, but better
4850
      --  late than later in preventing junk code!
4851
 
4852
      --  We do NOT apply this if the source node is a literal, since in this
4853
      --  case the literal has already been labeled as having the subtype of
4854
      --  the target.
4855
 
4856
      if In_Subrange_Of (Source_Type, Target_Type)
4857
        and then not
4858
          (Nkind (N) = N_Integer_Literal
4859
             or else
4860
           Nkind (N) = N_Real_Literal
4861
             or else
4862
           Nkind (N) = N_Character_Literal
4863
             or else
4864
           (Is_Entity_Name (N)
4865
              and then Ekind (Entity (N)) = E_Enumeration_Literal))
4866
      then
4867
         return;
4868
      end if;
4869
 
4870
      --  We need a check, so force evaluation of the node, so that it does
4871
      --  not get evaluated twice (once for the check, once for the actual
4872
      --  reference). Such a double evaluation is always a potential source
4873
      --  of inefficiency, and is functionally incorrect in the volatile case.
4874
 
4875
      if not Is_Entity_Name (N)
4876
        or else Treat_As_Volatile (Entity (N))
4877
      then
4878
         Force_Evaluation (N);
4879
      end if;
4880
 
4881
      --  The easiest case is when Source_Base_Type and Target_Base_Type are
4882
      --  the same since in this case we can simply do a direct check of the
4883
      --  value of N against the bounds of Target_Type.
4884
 
4885
      --    [constraint_error when N not in Target_Type]
4886
 
4887
      --  Note: this is by far the most common case, for example all cases of
4888
      --  checks on the RHS of assignments are in this category, but not all
4889
      --  cases are like this. Notably conversions can involve two types.
4890
 
4891
      if Source_Base_Type = Target_Base_Type then
4892
         Insert_Action (N,
4893
           Make_Raise_Constraint_Error (Loc,
4894
             Condition =>
4895
               Make_Not_In (Loc,
4896
                 Left_Opnd  => Duplicate_Subexpr (N),
4897
                 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4898
             Reason => Reason));
4899
 
4900
      --  Next test for the case where the target type is within the bounds
4901
      --  of the base type of the source type, since in this case we can
4902
      --  simply convert these bounds to the base type of T to do the test.
4903
 
4904
      --    [constraint_error when N not in
4905
      --       Source_Base_Type (Target_Type'First)
4906
      --         ..
4907
      --       Source_Base_Type(Target_Type'Last))]
4908
 
4909
      --  The conversions will always work and need no check
4910
 
4911
      --  Unchecked_Convert_To is used instead of Convert_To to handle the case
4912
      --  of converting from an enumeration value to an integer type, such as
4913
      --  occurs for the case of generating a range check on Enum'Val(Exp)
4914
      --  (which used to be handled by gigi). This is OK, since the conversion
4915
      --  itself does not require a check.
4916
 
4917
      elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
4918
         Insert_Action (N,
4919
           Make_Raise_Constraint_Error (Loc,
4920
             Condition =>
4921
               Make_Not_In (Loc,
4922
                 Left_Opnd  => Duplicate_Subexpr (N),
4923
 
4924
                 Right_Opnd =>
4925
                   Make_Range (Loc,
4926
                     Low_Bound =>
4927
                       Unchecked_Convert_To (Source_Base_Type,
4928
                         Make_Attribute_Reference (Loc,
4929
                           Prefix =>
4930
                             New_Occurrence_Of (Target_Type, Loc),
4931
                           Attribute_Name => Name_First)),
4932
 
4933
                     High_Bound =>
4934
                       Unchecked_Convert_To (Source_Base_Type,
4935
                         Make_Attribute_Reference (Loc,
4936
                           Prefix =>
4937
                             New_Occurrence_Of (Target_Type, Loc),
4938
                           Attribute_Name => Name_Last)))),
4939
             Reason => Reason));
4940
 
4941
      --  Note that at this stage we now that the Target_Base_Type is not in
4942
      --  the range of the Source_Base_Type (since even the Target_Type itself
4943
      --  is not in this range). It could still be the case that Source_Type is
4944
      --  in range of the target base type since we have not checked that case.
4945
 
4946
      --  If that is the case, we can freely convert the source to the target,
4947
      --  and then test the target result against the bounds.
4948
 
4949
      elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
4950
 
4951
         --  We make a temporary to hold the value of the converted value
4952
         --  (converted to the base type), and then we will do the test against
4953
         --  this temporary.
4954
 
4955
         --     Tnn : constant Target_Base_Type := Target_Base_Type (N);
4956
         --     [constraint_error when Tnn not in Target_Type]
4957
 
4958
         --  Then the conversion itself is replaced by an occurrence of Tnn
4959
 
4960
         declare
4961
            Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
4962
 
4963
         begin
4964
            Insert_Actions (N, New_List (
4965
              Make_Object_Declaration (Loc,
4966
                Defining_Identifier => Tnn,
4967
                Object_Definition   =>
4968
                  New_Occurrence_Of (Target_Base_Type, Loc),
4969
                Constant_Present    => True,
4970
                Expression          =>
4971
                  Make_Type_Conversion (Loc,
4972
                    Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
4973
                    Expression   => Duplicate_Subexpr (N))),
4974
 
4975
              Make_Raise_Constraint_Error (Loc,
4976
                Condition =>
4977
                  Make_Not_In (Loc,
4978
                    Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
4979
                    Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4980
 
4981
                Reason => Reason)));
4982
 
4983
            Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4984
 
4985
            --  Set the type of N, because the declaration for Tnn might not
4986
            --  be analyzed yet, as is the case if N appears within a record
4987
            --  declaration, as a discriminant constraint or expression.
4988
 
4989
            Set_Etype (N, Target_Base_Type);
4990
         end;
4991
 
4992
      --  At this stage, we know that we have two scalar types, which are
4993
      --  directly convertible, and where neither scalar type has a base
4994
      --  range that is in the range of the other scalar type.
4995
 
4996
      --  The only way this can happen is with a signed and unsigned type.
4997
      --  So test for these two cases:
4998
 
4999
      else
5000
         --  Case of the source is unsigned and the target is signed
5001
 
5002
         if Is_Unsigned_Type (Source_Base_Type)
5003
           and then not Is_Unsigned_Type (Target_Base_Type)
5004
         then
5005
            --  If the source is unsigned and the target is signed, then we
5006
            --  know that the source is not shorter than the target (otherwise
5007
            --  the source base type would be in the target base type range).
5008
 
5009
            --  In other words, the unsigned type is either the same size as
5010
            --  the target, or it is larger. It cannot be smaller.
5011
 
5012
            pragma Assert
5013
              (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
5014
 
5015
            --  We only need to check the low bound if the low bound of the
5016
            --  target type is non-negative. If the low bound of the target
5017
            --  type is negative, then we know that we will fit fine.
5018
 
5019
            --  If the high bound of the target type is negative, then we
5020
            --  know we have a constraint error, since we can't possibly
5021
            --  have a negative source.
5022
 
5023
            --  With these two checks out of the way, we can do the check
5024
            --  using the source type safely
5025
 
5026
            --  This is definitely the most annoying case!
5027
 
5028
            --    [constraint_error
5029
            --       when (Target_Type'First >= 0
5030
            --               and then
5031
            --                 N < Source_Base_Type (Target_Type'First))
5032
            --         or else Target_Type'Last < 0
5033
            --         or else N > Source_Base_Type (Target_Type'Last)];
5034
 
5035
            --  We turn off all checks since we know that the conversions
5036
            --  will work fine, given the guards for negative values.
5037
 
5038
            Insert_Action (N,
5039
              Make_Raise_Constraint_Error (Loc,
5040
                Condition =>
5041
                  Make_Or_Else (Loc,
5042
                    Make_Or_Else (Loc,
5043
                      Left_Opnd =>
5044
                        Make_And_Then (Loc,
5045
                          Left_Opnd => Make_Op_Ge (Loc,
5046
                            Left_Opnd =>
5047
                              Make_Attribute_Reference (Loc,
5048
                                Prefix =>
5049
                                  New_Occurrence_Of (Target_Type, Loc),
5050
                                Attribute_Name => Name_First),
5051
                            Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
5052
 
5053
                          Right_Opnd =>
5054
                            Make_Op_Lt (Loc,
5055
                              Left_Opnd => Duplicate_Subexpr (N),
5056
                              Right_Opnd =>
5057
                                Convert_To (Source_Base_Type,
5058
                                  Make_Attribute_Reference (Loc,
5059
                                    Prefix =>
5060
                                      New_Occurrence_Of (Target_Type, Loc),
5061
                                    Attribute_Name => Name_First)))),
5062
 
5063
                      Right_Opnd =>
5064
                        Make_Op_Lt (Loc,
5065
                          Left_Opnd =>
5066
                            Make_Attribute_Reference (Loc,
5067
                              Prefix => New_Occurrence_Of (Target_Type, Loc),
5068
                              Attribute_Name => Name_Last),
5069
                            Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
5070
 
5071
                    Right_Opnd =>
5072
                      Make_Op_Gt (Loc,
5073
                        Left_Opnd => Duplicate_Subexpr (N),
5074
                        Right_Opnd =>
5075
                          Convert_To (Source_Base_Type,
5076
                            Make_Attribute_Reference (Loc,
5077
                              Prefix => New_Occurrence_Of (Target_Type, Loc),
5078
                              Attribute_Name => Name_Last)))),
5079
 
5080
                Reason => Reason),
5081
              Suppress  => All_Checks);
5082
 
5083
         --  Only remaining possibility is that the source is signed and
5084
         --  the target is unsigned.
5085
 
5086
         else
5087
            pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
5088
                             and then Is_Unsigned_Type (Target_Base_Type));
5089
 
5090
            --  If the source is signed and the target is unsigned, then we
5091
            --  know that the target is not shorter than the source (otherwise
5092
            --  the target base type would be in the source base type range).
5093
 
5094
            --  In other words, the unsigned type is either the same size as
5095
            --  the target, or it is larger. It cannot be smaller.
5096
 
5097
            --  Clearly we have an error if the source value is negative since
5098
            --  no unsigned type can have negative values. If the source type
5099
            --  is non-negative, then the check can be done using the target
5100
            --  type.
5101
 
5102
            --    Tnn : constant Target_Base_Type (N) := Target_Type;
5103
 
5104
            --    [constraint_error
5105
            --       when N < 0 or else Tnn not in Target_Type];
5106
 
5107
            --  We turn off all checks for the conversion of N to the target
5108
            --  base type, since we generate the explicit check to ensure that
5109
            --  the value is non-negative
5110
 
5111
            declare
5112
               Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
5113
 
5114
            begin
5115
               Insert_Actions (N, New_List (
5116
                 Make_Object_Declaration (Loc,
5117
                   Defining_Identifier => Tnn,
5118
                   Object_Definition   =>
5119
                     New_Occurrence_Of (Target_Base_Type, Loc),
5120
                   Constant_Present    => True,
5121
                   Expression          =>
5122
                     Make_Unchecked_Type_Conversion (Loc,
5123
                       Subtype_Mark =>
5124
                         New_Occurrence_Of (Target_Base_Type, Loc),
5125
                       Expression   => Duplicate_Subexpr (N))),
5126
 
5127
                 Make_Raise_Constraint_Error (Loc,
5128
                   Condition =>
5129
                     Make_Or_Else (Loc,
5130
                       Left_Opnd =>
5131
                         Make_Op_Lt (Loc,
5132
                           Left_Opnd  => Duplicate_Subexpr (N),
5133
                           Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
5134
 
5135
                       Right_Opnd =>
5136
                         Make_Not_In (Loc,
5137
                           Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
5138
                           Right_Opnd =>
5139
                             New_Occurrence_Of (Target_Type, Loc))),
5140
 
5141
                   Reason => Reason)),
5142
                 Suppress => All_Checks);
5143
 
5144
               --  Set the Etype explicitly, because Insert_Actions may have
5145
               --  placed the declaration in the freeze list for an enclosing
5146
               --  construct, and thus it is not analyzed yet.
5147
 
5148
               Set_Etype (Tnn, Target_Base_Type);
5149
               Rewrite (N, New_Occurrence_Of (Tnn, Loc));
5150
            end;
5151
         end if;
5152
      end if;
5153
   end Generate_Range_Check;
5154
 
5155
   ------------------
5156
   -- Get_Check_Id --
5157
   ------------------
5158
 
5159
   function Get_Check_Id (N : Name_Id) return Check_Id is
5160
   begin
5161
      --  For standard check name, we can do a direct computation
5162
 
5163
      if N in First_Check_Name .. Last_Check_Name then
5164
         return Check_Id (N - (First_Check_Name - 1));
5165
 
5166
      --  For non-standard names added by pragma Check_Name, search table
5167
 
5168
      else
5169
         for J in All_Checks + 1 .. Check_Names.Last loop
5170
            if Check_Names.Table (J) = N then
5171
               return J;
5172
            end if;
5173
         end loop;
5174
      end if;
5175
 
5176
      --  No matching name found
5177
 
5178
      return No_Check_Id;
5179
   end Get_Check_Id;
5180
 
5181
   ---------------------
5182
   -- Get_Discriminal --
5183
   ---------------------
5184
 
5185
   function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
5186
      Loc : constant Source_Ptr := Sloc (E);
5187
      D   : Entity_Id;
5188
      Sc  : Entity_Id;
5189
 
5190
   begin
5191
      --  The bound can be a bona fide parameter of a protected operation,
5192
      --  rather than a prival encoded as an in-parameter.
5193
 
5194
      if No (Discriminal_Link (Entity (Bound))) then
5195
         return Bound;
5196
      end if;
5197
 
5198
      --  Climb the scope stack looking for an enclosing protected type. If
5199
      --  we run out of scopes, return the bound itself.
5200
 
5201
      Sc := Scope (E);
5202
      while Present (Sc) loop
5203
         if Sc = Standard_Standard then
5204
            return Bound;
5205
 
5206
         elsif Ekind (Sc) = E_Protected_Type then
5207
            exit;
5208
         end if;
5209
 
5210
         Sc := Scope (Sc);
5211
      end loop;
5212
 
5213
      D := First_Discriminant (Sc);
5214
      while Present (D) loop
5215
         if Chars (D) = Chars (Bound) then
5216
            return New_Occurrence_Of (Discriminal (D), Loc);
5217
         end if;
5218
 
5219
         Next_Discriminant (D);
5220
      end loop;
5221
 
5222
      return Bound;
5223
   end Get_Discriminal;
5224
 
5225
   ----------------------
5226
   -- Get_Range_Checks --
5227
   ----------------------
5228
 
5229
   function Get_Range_Checks
5230
     (Ck_Node    : Node_Id;
5231
      Target_Typ : Entity_Id;
5232
      Source_Typ : Entity_Id := Empty;
5233
      Warn_Node  : Node_Id   := Empty) return Check_Result
5234
   is
5235
   begin
5236
      return Selected_Range_Checks
5237
        (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
5238
   end Get_Range_Checks;
5239
 
5240
   ------------------
5241
   -- Guard_Access --
5242
   ------------------
5243
 
5244
   function Guard_Access
5245
     (Cond    : Node_Id;
5246
      Loc     : Source_Ptr;
5247
      Ck_Node : Node_Id) return Node_Id
5248
   is
5249
   begin
5250
      if Nkind (Cond) = N_Or_Else then
5251
         Set_Paren_Count (Cond, 1);
5252
      end if;
5253
 
5254
      if Nkind (Ck_Node) = N_Allocator then
5255
         return Cond;
5256
      else
5257
         return
5258
           Make_And_Then (Loc,
5259
             Left_Opnd =>
5260
               Make_Op_Ne (Loc,
5261
                 Left_Opnd  => Duplicate_Subexpr_No_Checks (Ck_Node),
5262
                 Right_Opnd => Make_Null (Loc)),
5263
             Right_Opnd => Cond);
5264
      end if;
5265
   end Guard_Access;
5266
 
5267
   -----------------------------
5268
   -- Index_Checks_Suppressed --
5269
   -----------------------------
5270
 
5271
   function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
5272
   begin
5273
      if Present (E) and then Checks_May_Be_Suppressed (E) then
5274
         return Is_Check_Suppressed (E, Index_Check);
5275
      else
5276
         return Scope_Suppress (Index_Check);
5277
      end if;
5278
   end Index_Checks_Suppressed;
5279
 
5280
   ----------------
5281
   -- Initialize --
5282
   ----------------
5283
 
5284
   procedure Initialize is
5285
   begin
5286
      for J in Determine_Range_Cache_N'Range loop
5287
         Determine_Range_Cache_N (J) := Empty;
5288
      end loop;
5289
 
5290
      Check_Names.Init;
5291
 
5292
      for J in Int range 1 .. All_Checks loop
5293
         Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
5294
      end loop;
5295
   end Initialize;
5296
 
5297
   -------------------------
5298
   -- Insert_Range_Checks --
5299
   -------------------------
5300
 
5301
   procedure Insert_Range_Checks
5302
     (Checks       : Check_Result;
5303
      Node         : Node_Id;
5304
      Suppress_Typ : Entity_Id;
5305
      Static_Sloc  : Source_Ptr := No_Location;
5306
      Flag_Node    : Node_Id    := Empty;
5307
      Do_Before    : Boolean    := False)
5308
   is
5309
      Internal_Flag_Node   : Node_Id    := Flag_Node;
5310
      Internal_Static_Sloc : Source_Ptr := Static_Sloc;
5311
 
5312
      Check_Node : Node_Id;
5313
      Checks_On  : constant Boolean :=
5314
                     (not Index_Checks_Suppressed (Suppress_Typ))
5315
                       or else
5316
                     (not Range_Checks_Suppressed (Suppress_Typ));
5317
 
5318
   begin
5319
      --  For now we just return if Checks_On is false, however this should be
5320
      --  enhanced to check for an always True value in the condition and to
5321
      --  generate a compilation warning???
5322
 
5323
      if not Full_Expander_Active or else not Checks_On then
5324
         return;
5325
      end if;
5326
 
5327
      if Static_Sloc = No_Location then
5328
         Internal_Static_Sloc := Sloc (Node);
5329
      end if;
5330
 
5331
      if No (Flag_Node) then
5332
         Internal_Flag_Node := Node;
5333
      end if;
5334
 
5335
      for J in 1 .. 2 loop
5336
         exit when No (Checks (J));
5337
 
5338
         if Nkind (Checks (J)) = N_Raise_Constraint_Error
5339
           and then Present (Condition (Checks (J)))
5340
         then
5341
            if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
5342
               Check_Node := Checks (J);
5343
               Mark_Rewrite_Insertion (Check_Node);
5344
 
5345
               if Do_Before then
5346
                  Insert_Before_And_Analyze (Node, Check_Node);
5347
               else
5348
                  Insert_After_And_Analyze (Node, Check_Node);
5349
               end if;
5350
 
5351
               Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
5352
            end if;
5353
 
5354
         else
5355
            Check_Node :=
5356
              Make_Raise_Constraint_Error (Internal_Static_Sloc,
5357
                Reason => CE_Range_Check_Failed);
5358
            Mark_Rewrite_Insertion (Check_Node);
5359
 
5360
            if Do_Before then
5361
               Insert_Before_And_Analyze (Node, Check_Node);
5362
            else
5363
               Insert_After_And_Analyze (Node, Check_Node);
5364
            end if;
5365
         end if;
5366
      end loop;
5367
   end Insert_Range_Checks;
5368
 
5369
   ------------------------
5370
   -- Insert_Valid_Check --
5371
   ------------------------
5372
 
5373
   procedure Insert_Valid_Check (Expr : Node_Id) is
5374
      Loc : constant Source_Ptr := Sloc (Expr);
5375
      Exp : Node_Id;
5376
 
5377
   begin
5378
      --  Do not insert if checks off, or if not checking validity or
5379
      --  if expression is known to be valid
5380
 
5381
      if not Validity_Checks_On
5382
        or else Range_Or_Validity_Checks_Suppressed (Expr)
5383
        or else Expr_Known_Valid (Expr)
5384
      then
5385
         return;
5386
      end if;
5387
 
5388
      --  If we have a checked conversion, then validity check applies to
5389
      --  the expression inside the conversion, not the result, since if
5390
      --  the expression inside is valid, then so is the conversion result.
5391
 
5392
      Exp := Expr;
5393
      while Nkind (Exp) = N_Type_Conversion loop
5394
         Exp := Expression (Exp);
5395
      end loop;
5396
 
5397
      --  We are about to insert the validity check for Exp. We save and
5398
      --  reset the Do_Range_Check flag over this validity check, and then
5399
      --  put it back for the final original reference (Exp may be rewritten).
5400
 
5401
      declare
5402
         DRC : constant Boolean := Do_Range_Check (Exp);
5403
 
5404
      begin
5405
         Set_Do_Range_Check (Exp, False);
5406
 
5407
         --  Force evaluation to avoid multiple reads for atomic/volatile
5408
 
5409
         if Is_Entity_Name (Exp)
5410
           and then Is_Volatile (Entity (Exp))
5411
         then
5412
            Force_Evaluation (Exp, Name_Req => True);
5413
         end if;
5414
 
5415
         --  Insert the validity check. Note that we do this with validity
5416
         --  checks turned off, to avoid recursion, we do not want validity
5417
         --  checks on the validity checking code itself!
5418
 
5419
         Insert_Action
5420
           (Expr,
5421
            Make_Raise_Constraint_Error (Loc,
5422
              Condition =>
5423
                Make_Op_Not (Loc,
5424
                  Right_Opnd =>
5425
                    Make_Attribute_Reference (Loc,
5426
                      Prefix =>
5427
                        Duplicate_Subexpr_No_Checks (Exp, Name_Req => True),
5428
                      Attribute_Name => Name_Valid)),
5429
              Reason => CE_Invalid_Data),
5430
            Suppress => Validity_Check);
5431
 
5432
         --  If the expression is a reference to an element of a bit-packed
5433
         --  array, then it is rewritten as a renaming declaration. If the
5434
         --  expression is an actual in a call, it has not been expanded,
5435
         --  waiting for the proper point at which to do it. The same happens
5436
         --  with renamings, so that we have to force the expansion now. This
5437
         --  non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
5438
         --  and exp_ch6.adb.
5439
 
5440
         if Is_Entity_Name (Exp)
5441
           and then Nkind (Parent (Entity (Exp))) =
5442
                      N_Object_Renaming_Declaration
5443
         then
5444
            declare
5445
               Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
5446
            begin
5447
               if Nkind (Old_Exp) = N_Indexed_Component
5448
                 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
5449
               then
5450
                  Expand_Packed_Element_Reference (Old_Exp);
5451
               end if;
5452
            end;
5453
         end if;
5454
 
5455
         --  Put back the Do_Range_Check flag on the resulting (possibly
5456
         --  rewritten) expression.
5457
 
5458
         --  Note: it might be thought that a validity check is not required
5459
         --  when a range check is present, but that's not the case, because
5460
         --  the back end is allowed to assume for the range check that the
5461
         --  operand is within its declared range (an assumption that validity
5462
         --  checking is all about NOT assuming!)
5463
 
5464
         --  Note: no need to worry about Possible_Local_Raise here, it will
5465
         --  already have been called if original node has Do_Range_Check set.
5466
 
5467
         Set_Do_Range_Check (Exp, DRC);
5468
      end;
5469
   end Insert_Valid_Check;
5470
 
5471
   ----------------------------------
5472
   -- Install_Null_Excluding_Check --
5473
   ----------------------------------
5474
 
5475
   procedure Install_Null_Excluding_Check (N : Node_Id) is
5476
      Loc : constant Source_Ptr := Sloc (Parent (N));
5477
      Typ : constant Entity_Id  := Etype (N);
5478
 
5479
      function Safe_To_Capture_In_Parameter_Value return Boolean;
5480
      --  Determines if it is safe to capture Known_Non_Null status for an
5481
      --  the entity referenced by node N. The caller ensures that N is indeed
5482
      --  an entity name. It is safe to capture the non-null status for an IN
5483
      --  parameter when the reference occurs within a declaration that is sure
5484
      --  to be executed as part of the declarative region.
5485
 
5486
      procedure Mark_Non_Null;
5487
      --  After installation of check, if the node in question is an entity
5488
      --  name, then mark this entity as non-null if possible.
5489
 
5490
      function Safe_To_Capture_In_Parameter_Value return Boolean is
5491
         E     : constant Entity_Id := Entity (N);
5492
         S     : constant Entity_Id := Current_Scope;
5493
         S_Par : Node_Id;
5494
 
5495
      begin
5496
         if Ekind (E) /= E_In_Parameter then
5497
            return False;
5498
         end if;
5499
 
5500
         --  Two initial context checks. We must be inside a subprogram body
5501
         --  with declarations and reference must not appear in nested scopes.
5502
 
5503
         if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
5504
           or else Scope (E) /= S
5505
         then
5506
            return False;
5507
         end if;
5508
 
5509
         S_Par := Parent (Parent (S));
5510
 
5511
         if Nkind (S_Par) /= N_Subprogram_Body
5512
           or else No (Declarations (S_Par))
5513
         then
5514
            return False;
5515
         end if;
5516
 
5517
         declare
5518
            N_Decl : Node_Id;
5519
            P      : Node_Id;
5520
 
5521
         begin
5522
            --  Retrieve the declaration node of N (if any). Note that N
5523
            --  may be a part of a complex initialization expression.
5524
 
5525
            P := Parent (N);
5526
            N_Decl := Empty;
5527
            while Present (P) loop
5528
 
5529
               --  If we have a short circuit form, and we are within the right
5530
               --  hand expression, we return false, since the right hand side
5531
               --  is not guaranteed to be elaborated.
5532
 
5533
               if Nkind (P) in N_Short_Circuit
5534
                 and then N = Right_Opnd (P)
5535
               then
5536
                  return False;
5537
               end if;
5538
 
5539
               --  Similarly, if we are in a conditional expression and not
5540
               --  part of the condition, then we return False, since neither
5541
               --  the THEN or ELSE expressions will always be elaborated.
5542
 
5543
               if Nkind (P) = N_Conditional_Expression
5544
                 and then N /= First (Expressions (P))
5545
               then
5546
                  return False;
5547
               end if;
5548
 
5549
               --  If we are in a case expression, and not part of the
5550
               --  expression, then we return False, since a particular
5551
               --  branch may not always be elaborated
5552
 
5553
               if Nkind (P) = N_Case_Expression
5554
                 and then N /= Expression (P)
5555
               then
5556
                  return False;
5557
               end if;
5558
 
5559
               --  While traversing the parent chain, we find that N
5560
               --  belongs to a statement, thus it may never appear in
5561
               --  a declarative region.
5562
 
5563
               if Nkind (P) in N_Statement_Other_Than_Procedure_Call
5564
                 or else Nkind (P) = N_Procedure_Call_Statement
5565
               then
5566
                  return False;
5567
               end if;
5568
 
5569
               --  If we are at a declaration, record it and exit
5570
 
5571
               if Nkind (P) in N_Declaration
5572
                 and then Nkind (P) not in N_Subprogram_Specification
5573
               then
5574
                  N_Decl := P;
5575
                  exit;
5576
               end if;
5577
 
5578
               P := Parent (P);
5579
            end loop;
5580
 
5581
            if No (N_Decl) then
5582
               return False;
5583
            end if;
5584
 
5585
            return List_Containing (N_Decl) = Declarations (S_Par);
5586
         end;
5587
      end Safe_To_Capture_In_Parameter_Value;
5588
 
5589
      -------------------
5590
      -- Mark_Non_Null --
5591
      -------------------
5592
 
5593
      procedure Mark_Non_Null is
5594
      begin
5595
         --  Only case of interest is if node N is an entity name
5596
 
5597
         if Is_Entity_Name (N) then
5598
 
5599
            --  For sure, we want to clear an indication that this is known to
5600
            --  be null, since if we get past this check, it definitely is not!
5601
 
5602
            Set_Is_Known_Null (Entity (N), False);
5603
 
5604
            --  We can mark the entity as known to be non-null if either it is
5605
            --  safe to capture the value, or in the case of an IN parameter,
5606
            --  which is a constant, if the check we just installed is in the
5607
            --  declarative region of the subprogram body. In this latter case,
5608
            --  a check is decisive for the rest of the body if the expression
5609
            --  is sure to be elaborated, since we know we have to elaborate
5610
            --  all declarations before executing the body.
5611
 
5612
            --  Couldn't this always be part of Safe_To_Capture_Value ???
5613
 
5614
            if Safe_To_Capture_Value (N, Entity (N))
5615
              or else Safe_To_Capture_In_Parameter_Value
5616
            then
5617
               Set_Is_Known_Non_Null (Entity (N));
5618
            end if;
5619
         end if;
5620
      end Mark_Non_Null;
5621
 
5622
   --  Start of processing for Install_Null_Excluding_Check
5623
 
5624
   begin
5625
      pragma Assert (Is_Access_Type (Typ));
5626
 
5627
      --  No check inside a generic (why not???)
5628
 
5629
      if Inside_A_Generic then
5630
         return;
5631
      end if;
5632
 
5633
      --  No check needed if known to be non-null
5634
 
5635
      if Known_Non_Null (N) then
5636
         return;
5637
      end if;
5638
 
5639
      --  If known to be null, here is where we generate a compile time check
5640
 
5641
      if Known_Null (N) then
5642
 
5643
         --  Avoid generating warning message inside init procs
5644
 
5645
         if not Inside_Init_Proc then
5646
            Apply_Compile_Time_Constraint_Error
5647
              (N,
5648
               "null value not allowed here?",
5649
               CE_Access_Check_Failed);
5650
         else
5651
            Insert_Action (N,
5652
              Make_Raise_Constraint_Error (Loc,
5653
                Reason => CE_Access_Check_Failed));
5654
         end if;
5655
 
5656
         Mark_Non_Null;
5657
         return;
5658
      end if;
5659
 
5660
      --  If entity is never assigned, for sure a warning is appropriate
5661
 
5662
      if Is_Entity_Name (N) then
5663
         Check_Unset_Reference (N);
5664
      end if;
5665
 
5666
      --  No check needed if checks are suppressed on the range. Note that we
5667
      --  don't set Is_Known_Non_Null in this case (we could legitimately do
5668
      --  so, since the program is erroneous, but we don't like to casually
5669
      --  propagate such conclusions from erroneosity).
5670
 
5671
      if Access_Checks_Suppressed (Typ) then
5672
         return;
5673
      end if;
5674
 
5675
      --  No check needed for access to concurrent record types generated by
5676
      --  the expander. This is not just an optimization (though it does indeed
5677
      --  remove junk checks). It also avoids generation of junk warnings.
5678
 
5679
      if Nkind (N) in N_Has_Chars
5680
        and then Chars (N) = Name_uObject
5681
        and then Is_Concurrent_Record_Type
5682
                   (Directly_Designated_Type (Etype (N)))
5683
      then
5684
         return;
5685
      end if;
5686
 
5687
      --  No check needed for the Get_Current_Excep.all.all idiom generated by
5688
      --  the expander within exception handlers, since we know that the value
5689
      --  can never be null.
5690
 
5691
      --  Is this really the right way to do this? Normally we generate such
5692
      --  code in the expander with checks off, and that's how we suppress this
5693
      --  kind of junk check ???
5694
 
5695
      if Nkind (N) = N_Function_Call
5696
        and then Nkind (Name (N)) = N_Explicit_Dereference
5697
        and then Nkind (Prefix (Name (N))) = N_Identifier
5698
        and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
5699
      then
5700
         return;
5701
      end if;
5702
 
5703
      --  Otherwise install access check
5704
 
5705
      Insert_Action (N,
5706
        Make_Raise_Constraint_Error (Loc,
5707
          Condition =>
5708
            Make_Op_Eq (Loc,
5709
              Left_Opnd  => Duplicate_Subexpr_Move_Checks (N),
5710
              Right_Opnd => Make_Null (Loc)),
5711
          Reason => CE_Access_Check_Failed));
5712
 
5713
      Mark_Non_Null;
5714
   end Install_Null_Excluding_Check;
5715
 
5716
   --------------------------
5717
   -- Install_Static_Check --
5718
   --------------------------
5719
 
5720
   procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
5721
      Stat : constant Boolean   := Is_Static_Expression (R_Cno);
5722
      Typ  : constant Entity_Id := Etype (R_Cno);
5723
 
5724
   begin
5725
      Rewrite (R_Cno,
5726
        Make_Raise_Constraint_Error (Loc,
5727
          Reason => CE_Range_Check_Failed));
5728
      Set_Analyzed (R_Cno);
5729
      Set_Etype (R_Cno, Typ);
5730
      Set_Raises_Constraint_Error (R_Cno);
5731
      Set_Is_Static_Expression (R_Cno, Stat);
5732
 
5733
      --  Now deal with possible local raise handling
5734
 
5735
      Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
5736
   end Install_Static_Check;
5737
 
5738
   ---------------------
5739
   -- Kill_All_Checks --
5740
   ---------------------
5741
 
5742
   procedure Kill_All_Checks is
5743
   begin
5744
      if Debug_Flag_CC then
5745
         w ("Kill_All_Checks");
5746
      end if;
5747
 
5748
      --  We reset the number of saved checks to zero, and also modify all
5749
      --  stack entries for statement ranges to indicate that the number of
5750
      --  checks at each level is now zero.
5751
 
5752
      Num_Saved_Checks := 0;
5753
 
5754
      --  Note: the Int'Min here avoids any possibility of J being out of
5755
      --  range when called from e.g. Conditional_Statements_Begin.
5756
 
5757
      for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
5758
         Saved_Checks_Stack (J) := 0;
5759
      end loop;
5760
   end Kill_All_Checks;
5761
 
5762
   -----------------
5763
   -- Kill_Checks --
5764
   -----------------
5765
 
5766
   procedure Kill_Checks (V : Entity_Id) is
5767
   begin
5768
      if Debug_Flag_CC then
5769
         w ("Kill_Checks for entity", Int (V));
5770
      end if;
5771
 
5772
      for J in 1 .. Num_Saved_Checks loop
5773
         if Saved_Checks (J).Entity = V then
5774
            if Debug_Flag_CC then
5775
               w ("   Checks killed for saved check ", J);
5776
            end if;
5777
 
5778
            Saved_Checks (J).Killed := True;
5779
         end if;
5780
      end loop;
5781
   end Kill_Checks;
5782
 
5783
   ------------------------------
5784
   -- Length_Checks_Suppressed --
5785
   ------------------------------
5786
 
5787
   function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
5788
   begin
5789
      if Present (E) and then Checks_May_Be_Suppressed (E) then
5790
         return Is_Check_Suppressed (E, Length_Check);
5791
      else
5792
         return Scope_Suppress (Length_Check);
5793
      end if;
5794
   end Length_Checks_Suppressed;
5795
 
5796
   --------------------------------
5797
   -- Overflow_Checks_Suppressed --
5798
   --------------------------------
5799
 
5800
   function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
5801
   begin
5802
      if Present (E) and then Checks_May_Be_Suppressed (E) then
5803
         return Is_Check_Suppressed (E, Overflow_Check);
5804
      else
5805
         return Scope_Suppress (Overflow_Check);
5806
      end if;
5807
   end Overflow_Checks_Suppressed;
5808
 
5809
   -----------------------------
5810
   -- Range_Checks_Suppressed --
5811
   -----------------------------
5812
 
5813
   function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
5814
   begin
5815
      if Present (E) then
5816
 
5817
         --  Note: for now we always suppress range checks on Vax float types,
5818
         --  since Gigi does not know how to generate these checks.
5819
 
5820
         if Vax_Float (E) then
5821
            return True;
5822
         elsif Kill_Range_Checks (E) then
5823
            return True;
5824
         elsif Checks_May_Be_Suppressed (E) then
5825
            return Is_Check_Suppressed (E, Range_Check);
5826
         end if;
5827
      end if;
5828
 
5829
      return Scope_Suppress (Range_Check);
5830
   end Range_Checks_Suppressed;
5831
 
5832
   -----------------------------------------
5833
   -- Range_Or_Validity_Checks_Suppressed --
5834
   -----------------------------------------
5835
 
5836
   --  Note: the coding would be simpler here if we simply made appropriate
5837
   --  calls to Range/Validity_Checks_Suppressed, but that would result in
5838
   --  duplicated checks which we prefer to avoid.
5839
 
5840
   function Range_Or_Validity_Checks_Suppressed
5841
     (Expr : Node_Id) return Boolean
5842
   is
5843
   begin
5844
      --  Immediate return if scope checks suppressed for either check
5845
 
5846
      if Scope_Suppress (Range_Check) or Scope_Suppress (Validity_Check) then
5847
         return True;
5848
      end if;
5849
 
5850
      --  If no expression, that's odd, decide that checks are suppressed,
5851
      --  since we don't want anyone trying to do checks in this case, which
5852
      --  is most likely the result of some other error.
5853
 
5854
      if No (Expr) then
5855
         return True;
5856
      end if;
5857
 
5858
      --  Expression is present, so perform suppress checks on type
5859
 
5860
      declare
5861
         Typ : constant Entity_Id := Etype (Expr);
5862
      begin
5863
         if Vax_Float (Typ) then
5864
            return True;
5865
         elsif Checks_May_Be_Suppressed (Typ)
5866
           and then (Is_Check_Suppressed (Typ, Range_Check)
5867
                       or else
5868
                     Is_Check_Suppressed (Typ, Validity_Check))
5869
         then
5870
            return True;
5871
         end if;
5872
      end;
5873
 
5874
      --  If expression is an entity name, perform checks on this entity
5875
 
5876
      if Is_Entity_Name (Expr) then
5877
         declare
5878
            Ent : constant Entity_Id := Entity (Expr);
5879
         begin
5880
            if Checks_May_Be_Suppressed (Ent) then
5881
               return Is_Check_Suppressed (Ent, Range_Check)
5882
                 or else Is_Check_Suppressed (Ent, Validity_Check);
5883
            end if;
5884
         end;
5885
      end if;
5886
 
5887
      --  If we fall through, no checks suppressed
5888
 
5889
      return False;
5890
   end Range_Or_Validity_Checks_Suppressed;
5891
 
5892
   -------------------
5893
   -- Remove_Checks --
5894
   -------------------
5895
 
5896
   procedure Remove_Checks (Expr : Node_Id) is
5897
      function Process (N : Node_Id) return Traverse_Result;
5898
      --  Process a single node during the traversal
5899
 
5900
      procedure Traverse is new Traverse_Proc (Process);
5901
      --  The traversal procedure itself
5902
 
5903
      -------------
5904
      -- Process --
5905
      -------------
5906
 
5907
      function Process (N : Node_Id) return Traverse_Result is
5908
      begin
5909
         if Nkind (N) not in N_Subexpr then
5910
            return Skip;
5911
         end if;
5912
 
5913
         Set_Do_Range_Check (N, False);
5914
 
5915
         case Nkind (N) is
5916
            when N_And_Then =>
5917
               Traverse (Left_Opnd (N));
5918
               return Skip;
5919
 
5920
            when N_Attribute_Reference =>
5921
               Set_Do_Overflow_Check (N, False);
5922
 
5923
            when N_Function_Call =>
5924
               Set_Do_Tag_Check (N, False);
5925
 
5926
            when N_Op =>
5927
               Set_Do_Overflow_Check (N, False);
5928
 
5929
               case Nkind (N) is
5930
                  when N_Op_Divide =>
5931
                     Set_Do_Division_Check (N, False);
5932
 
5933
                  when N_Op_And =>
5934
                     Set_Do_Length_Check (N, False);
5935
 
5936
                  when N_Op_Mod =>
5937
                     Set_Do_Division_Check (N, False);
5938
 
5939
                  when N_Op_Or =>
5940
                     Set_Do_Length_Check (N, False);
5941
 
5942
                  when N_Op_Rem =>
5943
                     Set_Do_Division_Check (N, False);
5944
 
5945
                  when N_Op_Xor =>
5946
                     Set_Do_Length_Check (N, False);
5947
 
5948
                  when others =>
5949
                     null;
5950
               end case;
5951
 
5952
            when N_Or_Else =>
5953
               Traverse (Left_Opnd (N));
5954
               return Skip;
5955
 
5956
            when N_Selected_Component =>
5957
               Set_Do_Discriminant_Check (N, False);
5958
 
5959
            when N_Type_Conversion =>
5960
               Set_Do_Length_Check   (N, False);
5961
               Set_Do_Tag_Check      (N, False);
5962
               Set_Do_Overflow_Check (N, False);
5963
 
5964
            when others =>
5965
               null;
5966
         end case;
5967
 
5968
         return OK;
5969
      end Process;
5970
 
5971
   --  Start of processing for Remove_Checks
5972
 
5973
   begin
5974
      Traverse (Expr);
5975
   end Remove_Checks;
5976
 
5977
   ----------------------------
5978
   -- Selected_Length_Checks --
5979
   ----------------------------
5980
 
5981
   function Selected_Length_Checks
5982
     (Ck_Node    : Node_Id;
5983
      Target_Typ : Entity_Id;
5984
      Source_Typ : Entity_Id;
5985
      Warn_Node  : Node_Id) return Check_Result
5986
   is
5987
      Loc         : constant Source_Ptr := Sloc (Ck_Node);
5988
      S_Typ       : Entity_Id;
5989
      T_Typ       : Entity_Id;
5990
      Expr_Actual : Node_Id;
5991
      Exptyp      : Entity_Id;
5992
      Cond        : Node_Id := Empty;
5993
      Do_Access   : Boolean := False;
5994
      Wnode       : Node_Id := Warn_Node;
5995
      Ret_Result  : Check_Result := (Empty, Empty);
5996
      Num_Checks  : Natural := 0;
5997
 
5998
      procedure Add_Check (N : Node_Id);
5999
      --  Adds the action given to Ret_Result if N is non-Empty
6000
 
6001
      function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
6002
      function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
6003
      --  Comments required ???
6004
 
6005
      function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
6006
      --  True for equal literals and for nodes that denote the same constant
6007
      --  entity, even if its value is not a static constant. This includes the
6008
      --  case of a discriminal reference within an init proc. Removes some
6009
      --  obviously superfluous checks.
6010
 
6011
      function Length_E_Cond
6012
        (Exptyp : Entity_Id;
6013
         Typ    : Entity_Id;
6014
         Indx   : Nat) return Node_Id;
6015
      --  Returns expression to compute:
6016
      --    Typ'Length /= Exptyp'Length
6017
 
6018
      function Length_N_Cond
6019
        (Expr : Node_Id;
6020
         Typ  : Entity_Id;
6021
         Indx : Nat) return Node_Id;
6022
      --  Returns expression to compute:
6023
      --    Typ'Length /= Expr'Length
6024
 
6025
      ---------------
6026
      -- Add_Check --
6027
      ---------------
6028
 
6029
      procedure Add_Check (N : Node_Id) is
6030
      begin
6031
         if Present (N) then
6032
 
6033
            --  For now, ignore attempt to place more than 2 checks ???
6034
 
6035
            if Num_Checks = 2 then
6036
               return;
6037
            end if;
6038
 
6039
            pragma Assert (Num_Checks <= 1);
6040
            Num_Checks := Num_Checks + 1;
6041
            Ret_Result (Num_Checks) := N;
6042
         end if;
6043
      end Add_Check;
6044
 
6045
      ------------------
6046
      -- Get_E_Length --
6047
      ------------------
6048
 
6049
      function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
6050
         SE : constant Entity_Id := Scope (E);
6051
         N  : Node_Id;
6052
         E1 : Entity_Id := E;
6053
 
6054
      begin
6055
         if Ekind (Scope (E)) = E_Record_Type
6056
           and then Has_Discriminants (Scope (E))
6057
         then
6058
            N := Build_Discriminal_Subtype_Of_Component (E);
6059
 
6060
            if Present (N) then
6061
               Insert_Action (Ck_Node, N);
6062
               E1 := Defining_Identifier (N);
6063
            end if;
6064
         end if;
6065
 
6066
         if Ekind (E1) = E_String_Literal_Subtype then
6067
            return
6068
              Make_Integer_Literal (Loc,
6069
                Intval => String_Literal_Length (E1));
6070
 
6071
         elsif SE /= Standard_Standard
6072
           and then Ekind (Scope (SE)) = E_Protected_Type
6073
           and then Has_Discriminants (Scope (SE))
6074
           and then Has_Completion (Scope (SE))
6075
           and then not Inside_Init_Proc
6076
         then
6077
            --  If the type whose length is needed is a private component
6078
            --  constrained by a discriminant, we must expand the 'Length
6079
            --  attribute into an explicit computation, using the discriminal
6080
            --  of the current protected operation. This is because the actual
6081
            --  type of the prival is constructed after the protected opera-
6082
            --  tion has been fully expanded.
6083
 
6084
            declare
6085
               Indx_Type : Node_Id;
6086
               Lo        : Node_Id;
6087
               Hi        : Node_Id;
6088
               Do_Expand : Boolean := False;
6089
 
6090
            begin
6091
               Indx_Type := First_Index (E);
6092
 
6093
               for J in 1 .. Indx - 1 loop
6094
                  Next_Index (Indx_Type);
6095
               end loop;
6096
 
6097
               Get_Index_Bounds (Indx_Type, Lo, Hi);
6098
 
6099
               if Nkind (Lo) = N_Identifier
6100
                 and then Ekind (Entity (Lo)) = E_In_Parameter
6101
               then
6102
                  Lo := Get_Discriminal (E, Lo);
6103
                  Do_Expand := True;
6104
               end if;
6105
 
6106
               if Nkind (Hi) = N_Identifier
6107
                 and then Ekind (Entity (Hi)) = E_In_Parameter
6108
               then
6109
                  Hi := Get_Discriminal (E, Hi);
6110
                  Do_Expand := True;
6111
               end if;
6112
 
6113
               if Do_Expand then
6114
                  if not Is_Entity_Name (Lo) then
6115
                     Lo := Duplicate_Subexpr_No_Checks (Lo);
6116
                  end if;
6117
 
6118
                  if not Is_Entity_Name (Hi) then
6119
                     Lo := Duplicate_Subexpr_No_Checks (Hi);
6120
                  end if;
6121
 
6122
                  N :=
6123
                    Make_Op_Add (Loc,
6124
                      Left_Opnd =>
6125
                        Make_Op_Subtract (Loc,
6126
                          Left_Opnd  => Hi,
6127
                          Right_Opnd => Lo),
6128
 
6129
                      Right_Opnd => Make_Integer_Literal (Loc, 1));
6130
                  return N;
6131
 
6132
               else
6133
                  N :=
6134
                    Make_Attribute_Reference (Loc,
6135
                      Attribute_Name => Name_Length,
6136
                      Prefix =>
6137
                        New_Occurrence_Of (E1, Loc));
6138
 
6139
                  if Indx > 1 then
6140
                     Set_Expressions (N, New_List (
6141
                       Make_Integer_Literal (Loc, Indx)));
6142
                  end if;
6143
 
6144
                  return N;
6145
               end if;
6146
            end;
6147
 
6148
         else
6149
            N :=
6150
              Make_Attribute_Reference (Loc,
6151
                Attribute_Name => Name_Length,
6152
                Prefix =>
6153
                  New_Occurrence_Of (E1, Loc));
6154
 
6155
            if Indx > 1 then
6156
               Set_Expressions (N, New_List (
6157
                 Make_Integer_Literal (Loc, Indx)));
6158
            end if;
6159
 
6160
            return N;
6161
         end if;
6162
      end Get_E_Length;
6163
 
6164
      ------------------
6165
      -- Get_N_Length --
6166
      ------------------
6167
 
6168
      function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
6169
      begin
6170
         return
6171
           Make_Attribute_Reference (Loc,
6172
             Attribute_Name => Name_Length,
6173
             Prefix =>
6174
               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
6175
             Expressions => New_List (
6176
               Make_Integer_Literal (Loc, Indx)));
6177
      end Get_N_Length;
6178
 
6179
      -------------------
6180
      -- Length_E_Cond --
6181
      -------------------
6182
 
6183
      function Length_E_Cond
6184
        (Exptyp : Entity_Id;
6185
         Typ    : Entity_Id;
6186
         Indx   : Nat) return Node_Id
6187
      is
6188
      begin
6189
         return
6190
           Make_Op_Ne (Loc,
6191
             Left_Opnd  => Get_E_Length (Typ, Indx),
6192
             Right_Opnd => Get_E_Length (Exptyp, Indx));
6193
      end Length_E_Cond;
6194
 
6195
      -------------------
6196
      -- Length_N_Cond --
6197
      -------------------
6198
 
6199
      function Length_N_Cond
6200
        (Expr : Node_Id;
6201
         Typ  : Entity_Id;
6202
         Indx : Nat) return Node_Id
6203
      is
6204
      begin
6205
         return
6206
           Make_Op_Ne (Loc,
6207
             Left_Opnd  => Get_E_Length (Typ, Indx),
6208
             Right_Opnd => Get_N_Length (Expr, Indx));
6209
      end Length_N_Cond;
6210
 
6211
      -----------------
6212
      -- Same_Bounds --
6213
      -----------------
6214
 
6215
      function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
6216
      begin
6217
         return
6218
           (Nkind (L) = N_Integer_Literal
6219
             and then Nkind (R) = N_Integer_Literal
6220
             and then Intval (L) = Intval (R))
6221
 
6222
          or else
6223
            (Is_Entity_Name (L)
6224
              and then Ekind (Entity (L)) = E_Constant
6225
              and then ((Is_Entity_Name (R)
6226
                         and then Entity (L) = Entity (R))
6227
                        or else
6228
                       (Nkind (R) = N_Type_Conversion
6229
                         and then Is_Entity_Name (Expression (R))
6230
                         and then Entity (L) = Entity (Expression (R)))))
6231
 
6232
          or else
6233
            (Is_Entity_Name (R)
6234
              and then Ekind (Entity (R)) = E_Constant
6235
              and then Nkind (L) = N_Type_Conversion
6236
              and then Is_Entity_Name (Expression (L))
6237
              and then Entity (R) = Entity (Expression (L)))
6238
 
6239
         or else
6240
            (Is_Entity_Name (L)
6241
              and then Is_Entity_Name (R)
6242
              and then Entity (L) = Entity (R)
6243
              and then Ekind (Entity (L)) = E_In_Parameter
6244
              and then Inside_Init_Proc);
6245
      end Same_Bounds;
6246
 
6247
   --  Start of processing for Selected_Length_Checks
6248
 
6249
   begin
6250
      if not Full_Expander_Active then
6251
         return Ret_Result;
6252
      end if;
6253
 
6254
      if Target_Typ = Any_Type
6255
        or else Target_Typ = Any_Composite
6256
        or else Raises_Constraint_Error (Ck_Node)
6257
      then
6258
         return Ret_Result;
6259
      end if;
6260
 
6261
      if No (Wnode) then
6262
         Wnode := Ck_Node;
6263
      end if;
6264
 
6265
      T_Typ := Target_Typ;
6266
 
6267
      if No (Source_Typ) then
6268
         S_Typ := Etype (Ck_Node);
6269
      else
6270
         S_Typ := Source_Typ;
6271
      end if;
6272
 
6273
      if S_Typ = Any_Type or else S_Typ = Any_Composite then
6274
         return Ret_Result;
6275
      end if;
6276
 
6277
      if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
6278
         S_Typ := Designated_Type (S_Typ);
6279
         T_Typ := Designated_Type (T_Typ);
6280
         Do_Access := True;
6281
 
6282
         --  A simple optimization for the null case
6283
 
6284
         if Known_Null (Ck_Node) then
6285
            return Ret_Result;
6286
         end if;
6287
      end if;
6288
 
6289
      if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
6290
         if Is_Constrained (T_Typ) then
6291
 
6292
            --  The checking code to be generated will freeze the
6293
            --  corresponding array type. However, we must freeze the
6294
            --  type now, so that the freeze node does not appear within
6295
            --  the generated conditional expression, but ahead of it.
6296
 
6297
            Freeze_Before (Ck_Node, T_Typ);
6298
 
6299
            Expr_Actual := Get_Referenced_Object (Ck_Node);
6300
            Exptyp      := Get_Actual_Subtype (Ck_Node);
6301
 
6302
            if Is_Access_Type (Exptyp) then
6303
               Exptyp := Designated_Type (Exptyp);
6304
            end if;
6305
 
6306
            --  String_Literal case. This needs to be handled specially be-
6307
            --  cause no index types are available for string literals. The
6308
            --  condition is simply:
6309
 
6310
            --    T_Typ'Length = string-literal-length
6311
 
6312
            if Nkind (Expr_Actual) = N_String_Literal
6313
              and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
6314
            then
6315
               Cond :=
6316
                 Make_Op_Ne (Loc,
6317
                   Left_Opnd  => Get_E_Length (T_Typ, 1),
6318
                   Right_Opnd =>
6319
                     Make_Integer_Literal (Loc,
6320
                       Intval =>
6321
                         String_Literal_Length (Etype (Expr_Actual))));
6322
 
6323
            --  General array case. Here we have a usable actual subtype for
6324
            --  the expression, and the condition is built from the two types
6325
            --  (Do_Length):
6326
 
6327
            --     T_Typ'Length     /= Exptyp'Length     or else
6328
            --     T_Typ'Length (2) /= Exptyp'Length (2) or else
6329
            --     T_Typ'Length (3) /= Exptyp'Length (3) or else
6330
            --     ...
6331
 
6332
            elsif Is_Constrained (Exptyp) then
6333
               declare
6334
                  Ndims : constant Nat := Number_Dimensions (T_Typ);
6335
 
6336
                  L_Index  : Node_Id;
6337
                  R_Index  : Node_Id;
6338
                  L_Low    : Node_Id;
6339
                  L_High   : Node_Id;
6340
                  R_Low    : Node_Id;
6341
                  R_High   : Node_Id;
6342
                  L_Length : Uint;
6343
                  R_Length : Uint;
6344
                  Ref_Node : Node_Id;
6345
 
6346
               begin
6347
                  --  At the library level, we need to ensure that the type of
6348
                  --  the object is elaborated before the check itself is
6349
                  --  emitted. This is only done if the object is in the
6350
                  --  current compilation unit, otherwise the type is frozen
6351
                  --  and elaborated in its unit.
6352
 
6353
                  if Is_Itype (Exptyp)
6354
                    and then
6355
                      Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
6356
                    and then
6357
                      not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
6358
                    and then In_Open_Scopes (Scope (Exptyp))
6359
                  then
6360
                     Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
6361
                     Set_Itype (Ref_Node, Exptyp);
6362
                     Insert_Action (Ck_Node, Ref_Node);
6363
                  end if;
6364
 
6365
                  L_Index := First_Index (T_Typ);
6366
                  R_Index := First_Index (Exptyp);
6367
 
6368
                  for Indx in 1 .. Ndims loop
6369
                     if not (Nkind (L_Index) = N_Raise_Constraint_Error
6370
                               or else
6371
                             Nkind (R_Index) = N_Raise_Constraint_Error)
6372
                     then
6373
                        Get_Index_Bounds (L_Index, L_Low, L_High);
6374
                        Get_Index_Bounds (R_Index, R_Low, R_High);
6375
 
6376
                        --  Deal with compile time length check. Note that we
6377
                        --  skip this in the access case, because the access
6378
                        --  value may be null, so we cannot know statically.
6379
 
6380
                        if not Do_Access
6381
                          and then Compile_Time_Known_Value (L_Low)
6382
                          and then Compile_Time_Known_Value (L_High)
6383
                          and then Compile_Time_Known_Value (R_Low)
6384
                          and then Compile_Time_Known_Value (R_High)
6385
                        then
6386
                           if Expr_Value (L_High) >= Expr_Value (L_Low) then
6387
                              L_Length := Expr_Value (L_High) -
6388
                                          Expr_Value (L_Low) + 1;
6389
                           else
6390
                              L_Length := UI_From_Int (0);
6391
                           end if;
6392
 
6393
                           if Expr_Value (R_High) >= Expr_Value (R_Low) then
6394
                              R_Length := Expr_Value (R_High) -
6395
                                          Expr_Value (R_Low) + 1;
6396
                           else
6397
                              R_Length := UI_From_Int (0);
6398
                           end if;
6399
 
6400
                           if L_Length > R_Length then
6401
                              Add_Check
6402
                                (Compile_Time_Constraint_Error
6403
                                  (Wnode, "too few elements for}?", T_Typ));
6404
 
6405
                           elsif  L_Length < R_Length then
6406
                              Add_Check
6407
                                (Compile_Time_Constraint_Error
6408
                                  (Wnode, "too many elements for}?", T_Typ));
6409
                           end if;
6410
 
6411
                        --  The comparison for an individual index subtype
6412
                        --  is omitted if the corresponding index subtypes
6413
                        --  statically match, since the result is known to
6414
                        --  be true. Note that this test is worth while even
6415
                        --  though we do static evaluation, because non-static
6416
                        --  subtypes can statically match.
6417
 
6418
                        elsif not
6419
                          Subtypes_Statically_Match
6420
                            (Etype (L_Index), Etype (R_Index))
6421
 
6422
                          and then not
6423
                            (Same_Bounds (L_Low, R_Low)
6424
                              and then Same_Bounds (L_High, R_High))
6425
                        then
6426
                           Evolve_Or_Else
6427
                             (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
6428
                        end if;
6429
 
6430
                        Next (L_Index);
6431
                        Next (R_Index);
6432
                     end if;
6433
                  end loop;
6434
               end;
6435
 
6436
            --  Handle cases where we do not get a usable actual subtype that
6437
            --  is constrained. This happens for example in the function call
6438
            --  and explicit dereference cases. In these cases, we have to get
6439
            --  the length or range from the expression itself, making sure we
6440
            --  do not evaluate it more than once.
6441
 
6442
            --  Here Ck_Node is the original expression, or more properly the
6443
            --  result of applying Duplicate_Expr to the original tree, forcing
6444
            --  the result to be a name.
6445
 
6446
            else
6447
               declare
6448
                  Ndims : constant Nat := Number_Dimensions (T_Typ);
6449
 
6450
               begin
6451
                  --  Build the condition for the explicit dereference case
6452
 
6453
                  for Indx in 1 .. Ndims loop
6454
                     Evolve_Or_Else
6455
                       (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
6456
                  end loop;
6457
               end;
6458
            end if;
6459
         end if;
6460
      end if;
6461
 
6462
      --  Construct the test and insert into the tree
6463
 
6464
      if Present (Cond) then
6465
         if Do_Access then
6466
            Cond := Guard_Access (Cond, Loc, Ck_Node);
6467
         end if;
6468
 
6469
         Add_Check
6470
           (Make_Raise_Constraint_Error (Loc,
6471
              Condition => Cond,
6472
              Reason => CE_Length_Check_Failed));
6473
      end if;
6474
 
6475
      return Ret_Result;
6476
   end Selected_Length_Checks;
6477
 
6478
   ---------------------------
6479
   -- Selected_Range_Checks --
6480
   ---------------------------
6481
 
6482
   function Selected_Range_Checks
6483
     (Ck_Node    : Node_Id;
6484
      Target_Typ : Entity_Id;
6485
      Source_Typ : Entity_Id;
6486
      Warn_Node  : Node_Id) return Check_Result
6487
   is
6488
      Loc         : constant Source_Ptr := Sloc (Ck_Node);
6489
      S_Typ       : Entity_Id;
6490
      T_Typ       : Entity_Id;
6491
      Expr_Actual : Node_Id;
6492
      Exptyp      : Entity_Id;
6493
      Cond        : Node_Id := Empty;
6494
      Do_Access   : Boolean := False;
6495
      Wnode       : Node_Id  := Warn_Node;
6496
      Ret_Result  : Check_Result := (Empty, Empty);
6497
      Num_Checks  : Integer := 0;
6498
 
6499
      procedure Add_Check (N : Node_Id);
6500
      --  Adds the action given to Ret_Result if N is non-Empty
6501
 
6502
      function Discrete_Range_Cond
6503
        (Expr : Node_Id;
6504
         Typ  : Entity_Id) return Node_Id;
6505
      --  Returns expression to compute:
6506
      --    Low_Bound (Expr) < Typ'First
6507
      --      or else
6508
      --    High_Bound (Expr) > Typ'Last
6509
 
6510
      function Discrete_Expr_Cond
6511
        (Expr : Node_Id;
6512
         Typ  : Entity_Id) return Node_Id;
6513
      --  Returns expression to compute:
6514
      --    Expr < Typ'First
6515
      --      or else
6516
      --    Expr > Typ'Last
6517
 
6518
      function Get_E_First_Or_Last
6519
        (Loc  : Source_Ptr;
6520
         E    : Entity_Id;
6521
         Indx : Nat;
6522
         Nam  : Name_Id) return Node_Id;
6523
      --  Returns an attribute reference
6524
      --    E'First or E'Last
6525
      --  with a source location of Loc.
6526
      --
6527
      --  Nam is Name_First or Name_Last, according to which attribute is
6528
      --  desired. If Indx is non-zero, it is passed as a literal in the
6529
      --  Expressions of the attribute reference (identifying the desired
6530
      --  array dimension).
6531
 
6532
      function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
6533
      function Get_N_Last  (N : Node_Id; Indx : Nat) return Node_Id;
6534
      --  Returns expression to compute:
6535
      --    N'First or N'Last using Duplicate_Subexpr_No_Checks
6536
 
6537
      function Range_E_Cond
6538
        (Exptyp : Entity_Id;
6539
         Typ    : Entity_Id;
6540
         Indx   : Nat)
6541
         return   Node_Id;
6542
      --  Returns expression to compute:
6543
      --    Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
6544
 
6545
      function Range_Equal_E_Cond
6546
        (Exptyp : Entity_Id;
6547
         Typ    : Entity_Id;
6548
         Indx   : Nat) return Node_Id;
6549
      --  Returns expression to compute:
6550
      --    Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
6551
 
6552
      function Range_N_Cond
6553
        (Expr : Node_Id;
6554
         Typ  : Entity_Id;
6555
         Indx : Nat) return Node_Id;
6556
      --  Return expression to compute:
6557
      --    Expr'First < Typ'First or else Expr'Last > Typ'Last
6558
 
6559
      ---------------
6560
      -- Add_Check --
6561
      ---------------
6562
 
6563
      procedure Add_Check (N : Node_Id) is
6564
      begin
6565
         if Present (N) then
6566
 
6567
            --  For now, ignore attempt to place more than 2 checks ???
6568
 
6569
            if Num_Checks = 2 then
6570
               return;
6571
            end if;
6572
 
6573
            pragma Assert (Num_Checks <= 1);
6574
            Num_Checks := Num_Checks + 1;
6575
            Ret_Result (Num_Checks) := N;
6576
         end if;
6577
      end Add_Check;
6578
 
6579
      -------------------------
6580
      -- Discrete_Expr_Cond --
6581
      -------------------------
6582
 
6583
      function Discrete_Expr_Cond
6584
        (Expr : Node_Id;
6585
         Typ  : Entity_Id) return Node_Id
6586
      is
6587
      begin
6588
         return
6589
           Make_Or_Else (Loc,
6590
             Left_Opnd =>
6591
               Make_Op_Lt (Loc,
6592
                 Left_Opnd =>
6593
                   Convert_To (Base_Type (Typ),
6594
                     Duplicate_Subexpr_No_Checks (Expr)),
6595
                 Right_Opnd =>
6596
                   Convert_To (Base_Type (Typ),
6597
                               Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
6598
 
6599
             Right_Opnd =>
6600
               Make_Op_Gt (Loc,
6601
                 Left_Opnd =>
6602
                   Convert_To (Base_Type (Typ),
6603
                     Duplicate_Subexpr_No_Checks (Expr)),
6604
                 Right_Opnd =>
6605
                   Convert_To
6606
                     (Base_Type (Typ),
6607
                      Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
6608
      end Discrete_Expr_Cond;
6609
 
6610
      -------------------------
6611
      -- Discrete_Range_Cond --
6612
      -------------------------
6613
 
6614
      function Discrete_Range_Cond
6615
        (Expr : Node_Id;
6616
         Typ  : Entity_Id) return Node_Id
6617
      is
6618
         LB : Node_Id := Low_Bound (Expr);
6619
         HB : Node_Id := High_Bound (Expr);
6620
 
6621
         Left_Opnd  : Node_Id;
6622
         Right_Opnd : Node_Id;
6623
 
6624
      begin
6625
         if Nkind (LB) = N_Identifier
6626
           and then Ekind (Entity (LB)) = E_Discriminant
6627
         then
6628
            LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6629
         end if;
6630
 
6631
         if Nkind (HB) = N_Identifier
6632
           and then Ekind (Entity (HB)) = E_Discriminant
6633
         then
6634
            HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6635
         end if;
6636
 
6637
         Left_Opnd :=
6638
           Make_Op_Lt (Loc,
6639
             Left_Opnd  =>
6640
               Convert_To
6641
                 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
6642
 
6643
             Right_Opnd =>
6644
               Convert_To
6645
                 (Base_Type (Typ),
6646
                  Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
6647
 
6648
         if Base_Type (Typ) = Typ then
6649
            return Left_Opnd;
6650
 
6651
         elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
6652
            and then
6653
               Compile_Time_Known_Value (High_Bound (Scalar_Range
6654
                                                     (Base_Type (Typ))))
6655
         then
6656
            if Is_Floating_Point_Type (Typ) then
6657
               if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
6658
                  Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
6659
               then
6660
                  return Left_Opnd;
6661
               end if;
6662
 
6663
            else
6664
               if Expr_Value (High_Bound (Scalar_Range (Typ))) =
6665
                  Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
6666
               then
6667
                  return Left_Opnd;
6668
               end if;
6669
            end if;
6670
         end if;
6671
 
6672
         Right_Opnd :=
6673
           Make_Op_Gt (Loc,
6674
             Left_Opnd  =>
6675
               Convert_To
6676
                 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
6677
 
6678
             Right_Opnd =>
6679
               Convert_To
6680
                 (Base_Type (Typ),
6681
                  Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
6682
 
6683
         return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
6684
      end Discrete_Range_Cond;
6685
 
6686
      -------------------------
6687
      -- Get_E_First_Or_Last --
6688
      -------------------------
6689
 
6690
      function Get_E_First_Or_Last
6691
        (Loc  : Source_Ptr;
6692
         E    : Entity_Id;
6693
         Indx : Nat;
6694
         Nam  : Name_Id) return Node_Id
6695
      is
6696
         Exprs : List_Id;
6697
      begin
6698
         if Indx > 0 then
6699
            Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
6700
         else
6701
            Exprs := No_List;
6702
         end if;
6703
 
6704
         return Make_Attribute_Reference (Loc,
6705
                  Prefix         => New_Occurrence_Of (E, Loc),
6706
                  Attribute_Name => Nam,
6707
                  Expressions    => Exprs);
6708
      end Get_E_First_Or_Last;
6709
 
6710
      -----------------
6711
      -- Get_N_First --
6712
      -----------------
6713
 
6714
      function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
6715
      begin
6716
         return
6717
           Make_Attribute_Reference (Loc,
6718
             Attribute_Name => Name_First,
6719
             Prefix =>
6720
               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
6721
             Expressions => New_List (
6722
               Make_Integer_Literal (Loc, Indx)));
6723
      end Get_N_First;
6724
 
6725
      ----------------
6726
      -- Get_N_Last --
6727
      ----------------
6728
 
6729
      function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
6730
      begin
6731
         return
6732
           Make_Attribute_Reference (Loc,
6733
             Attribute_Name => Name_Last,
6734
             Prefix =>
6735
               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
6736
             Expressions => New_List (
6737
              Make_Integer_Literal (Loc, Indx)));
6738
      end Get_N_Last;
6739
 
6740
      ------------------
6741
      -- Range_E_Cond --
6742
      ------------------
6743
 
6744
      function Range_E_Cond
6745
        (Exptyp : Entity_Id;
6746
         Typ    : Entity_Id;
6747
         Indx   : Nat) return Node_Id
6748
      is
6749
      begin
6750
         return
6751
           Make_Or_Else (Loc,
6752
             Left_Opnd =>
6753
               Make_Op_Lt (Loc,
6754
                 Left_Opnd   =>
6755
                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
6756
                 Right_Opnd  =>
6757
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
6758
 
6759
             Right_Opnd =>
6760
               Make_Op_Gt (Loc,
6761
                 Left_Opnd   =>
6762
                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
6763
                 Right_Opnd  =>
6764
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
6765
      end Range_E_Cond;
6766
 
6767
      ------------------------
6768
      -- Range_Equal_E_Cond --
6769
      ------------------------
6770
 
6771
      function Range_Equal_E_Cond
6772
        (Exptyp : Entity_Id;
6773
         Typ    : Entity_Id;
6774
         Indx   : Nat) return Node_Id
6775
      is
6776
      begin
6777
         return
6778
           Make_Or_Else (Loc,
6779
             Left_Opnd =>
6780
               Make_Op_Ne (Loc,
6781
                 Left_Opnd   =>
6782
                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
6783
                 Right_Opnd  =>
6784
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
6785
 
6786
             Right_Opnd =>
6787
               Make_Op_Ne (Loc,
6788
                 Left_Opnd   =>
6789
                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
6790
                 Right_Opnd  =>
6791
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
6792
      end Range_Equal_E_Cond;
6793
 
6794
      ------------------
6795
      -- Range_N_Cond --
6796
      ------------------
6797
 
6798
      function Range_N_Cond
6799
        (Expr : Node_Id;
6800
         Typ  : Entity_Id;
6801
         Indx : Nat) return Node_Id
6802
      is
6803
      begin
6804
         return
6805
           Make_Or_Else (Loc,
6806
             Left_Opnd =>
6807
               Make_Op_Lt (Loc,
6808
                 Left_Opnd  =>
6809
                   Get_N_First (Expr, Indx),
6810
                 Right_Opnd =>
6811
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
6812
 
6813
             Right_Opnd =>
6814
               Make_Op_Gt (Loc,
6815
                 Left_Opnd  =>
6816
                   Get_N_Last (Expr, Indx),
6817
                 Right_Opnd =>
6818
                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
6819
      end Range_N_Cond;
6820
 
6821
   --  Start of processing for Selected_Range_Checks
6822
 
6823
   begin
6824
      if not Full_Expander_Active then
6825
         return Ret_Result;
6826
      end if;
6827
 
6828
      if Target_Typ = Any_Type
6829
        or else Target_Typ = Any_Composite
6830
        or else Raises_Constraint_Error (Ck_Node)
6831
      then
6832
         return Ret_Result;
6833
      end if;
6834
 
6835
      if No (Wnode) then
6836
         Wnode := Ck_Node;
6837
      end if;
6838
 
6839
      T_Typ := Target_Typ;
6840
 
6841
      if No (Source_Typ) then
6842
         S_Typ := Etype (Ck_Node);
6843
      else
6844
         S_Typ := Source_Typ;
6845
      end if;
6846
 
6847
      if S_Typ = Any_Type or else S_Typ = Any_Composite then
6848
         return Ret_Result;
6849
      end if;
6850
 
6851
      --  The order of evaluating T_Typ before S_Typ seems to be critical
6852
      --  because S_Typ can be derived from Etype (Ck_Node), if it's not passed
6853
      --  in, and since Node can be an N_Range node, it might be invalid.
6854
      --  Should there be an assert check somewhere for taking the Etype of
6855
      --  an N_Range node ???
6856
 
6857
      if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
6858
         S_Typ := Designated_Type (S_Typ);
6859
         T_Typ := Designated_Type (T_Typ);
6860
         Do_Access := True;
6861
 
6862
         --  A simple optimization for the null case
6863
 
6864
         if Known_Null (Ck_Node) then
6865
            return Ret_Result;
6866
         end if;
6867
      end if;
6868
 
6869
      --  For an N_Range Node, check for a null range and then if not
6870
      --  null generate a range check action.
6871
 
6872
      if Nkind (Ck_Node) = N_Range then
6873
 
6874
         --  There's no point in checking a range against itself
6875
 
6876
         if Ck_Node = Scalar_Range (T_Typ) then
6877
            return Ret_Result;
6878
         end if;
6879
 
6880
         declare
6881
            T_LB       : constant Node_Id := Type_Low_Bound  (T_Typ);
6882
            T_HB       : constant Node_Id := Type_High_Bound (T_Typ);
6883
            Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
6884
            Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
6885
 
6886
            LB         : Node_Id := Low_Bound (Ck_Node);
6887
            HB         : Node_Id := High_Bound (Ck_Node);
6888
            Known_LB   : Boolean;
6889
            Known_HB   : Boolean;
6890
 
6891
            Null_Range     : Boolean;
6892
            Out_Of_Range_L : Boolean;
6893
            Out_Of_Range_H : Boolean;
6894
 
6895
         begin
6896
            --  Compute what is known at compile time
6897
 
6898
            if Known_T_LB and Known_T_HB then
6899
               if Compile_Time_Known_Value (LB) then
6900
                  Known_LB := True;
6901
 
6902
               --  There's no point in checking that a bound is within its
6903
               --  own range so pretend that it is known in this case. First
6904
               --  deal with low bound.
6905
 
6906
               elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
6907
                 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
6908
               then
6909
                  LB := T_LB;
6910
                  Known_LB := True;
6911
 
6912
               else
6913
                  Known_LB := False;
6914
               end if;
6915
 
6916
               --  Likewise for the high bound
6917
 
6918
               if Compile_Time_Known_Value (HB) then
6919
                  Known_HB := True;
6920
 
6921
               elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
6922
                 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
6923
               then
6924
                  HB := T_HB;
6925
                  Known_HB := True;
6926
 
6927
               else
6928
                  Known_HB := False;
6929
               end if;
6930
            end if;
6931
 
6932
            --  Check for case where everything is static and we can do the
6933
            --  check at compile time. This is skipped if we have an access
6934
            --  type, since the access value may be null.
6935
 
6936
            --  ??? This code can be improved since you only need to know that
6937
            --  the two respective bounds (LB & T_LB or HB & T_HB) are known at
6938
            --  compile time to emit pertinent messages.
6939
 
6940
            if Known_T_LB and Known_T_HB and Known_LB and Known_HB
6941
              and not Do_Access
6942
            then
6943
               --  Floating-point case
6944
 
6945
               if Is_Floating_Point_Type (S_Typ) then
6946
                  Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
6947
                  Out_Of_Range_L :=
6948
                    (Expr_Value_R (LB) < Expr_Value_R (T_LB))
6949
                      or else
6950
                    (Expr_Value_R (LB) > Expr_Value_R (T_HB));
6951
 
6952
                  Out_Of_Range_H :=
6953
                    (Expr_Value_R (HB) > Expr_Value_R (T_HB))
6954
                      or else
6955
                    (Expr_Value_R (HB) < Expr_Value_R (T_LB));
6956
 
6957
               --  Fixed or discrete type case
6958
 
6959
               else
6960
                  Null_Range := Expr_Value (HB) < Expr_Value (LB);
6961
                  Out_Of_Range_L :=
6962
                    (Expr_Value (LB) < Expr_Value (T_LB))
6963
                      or else
6964
                    (Expr_Value (LB) > Expr_Value (T_HB));
6965
 
6966
                  Out_Of_Range_H :=
6967
                    (Expr_Value (HB) > Expr_Value (T_HB))
6968
                      or else
6969
                    (Expr_Value (HB) < Expr_Value (T_LB));
6970
               end if;
6971
 
6972
               if not Null_Range then
6973
                  if Out_Of_Range_L then
6974
                     if No (Warn_Node) then
6975
                        Add_Check
6976
                          (Compile_Time_Constraint_Error
6977
                             (Low_Bound (Ck_Node),
6978
                              "static value out of range of}?", T_Typ));
6979
 
6980
                     else
6981
                        Add_Check
6982
                          (Compile_Time_Constraint_Error
6983
                            (Wnode,
6984
                             "static range out of bounds of}?", T_Typ));
6985
                     end if;
6986
                  end if;
6987
 
6988
                  if Out_Of_Range_H then
6989
                     if No (Warn_Node) then
6990
                        Add_Check
6991
                          (Compile_Time_Constraint_Error
6992
                             (High_Bound (Ck_Node),
6993
                              "static value out of range of}?", T_Typ));
6994
 
6995
                     else
6996
                        Add_Check
6997
                          (Compile_Time_Constraint_Error
6998
                             (Wnode,
6999
                              "static range out of bounds of}?", T_Typ));
7000
                     end if;
7001
                  end if;
7002
               end if;
7003
 
7004
            else
7005
               declare
7006
                  LB : Node_Id := Low_Bound (Ck_Node);
7007
                  HB : Node_Id := High_Bound (Ck_Node);
7008
 
7009
               begin
7010
                  --  If either bound is a discriminant and we are within the
7011
                  --  record declaration, it is a use of the discriminant in a
7012
                  --  constraint of a component, and nothing can be checked
7013
                  --  here. The check will be emitted within the init proc.
7014
                  --  Before then, the discriminal has no real meaning.
7015
                  --  Similarly, if the entity is a discriminal, there is no
7016
                  --  check to perform yet.
7017
 
7018
                  --  The same holds within a discriminated synchronized type,
7019
                  --  where the discriminant may constrain a component or an
7020
                  --  entry family.
7021
 
7022
                  if Nkind (LB) = N_Identifier
7023
                    and then Denotes_Discriminant (LB, True)
7024
                  then
7025
                     if Current_Scope = Scope (Entity (LB))
7026
                       or else Is_Concurrent_Type (Current_Scope)
7027
                       or else Ekind (Entity (LB)) /= E_Discriminant
7028
                     then
7029
                        return Ret_Result;
7030
                     else
7031
                        LB :=
7032
                          New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
7033
                     end if;
7034
                  end if;
7035
 
7036
                  if Nkind (HB) = N_Identifier
7037
                    and then Denotes_Discriminant (HB, True)
7038
                  then
7039
                     if Current_Scope = Scope (Entity (HB))
7040
                       or else Is_Concurrent_Type (Current_Scope)
7041
                       or else Ekind (Entity (HB)) /= E_Discriminant
7042
                     then
7043
                        return Ret_Result;
7044
                     else
7045
                        HB :=
7046
                          New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
7047
                     end if;
7048
                  end if;
7049
 
7050
                  Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
7051
                  Set_Paren_Count (Cond, 1);
7052
 
7053
                  Cond :=
7054
                    Make_And_Then (Loc,
7055
                      Left_Opnd =>
7056
                        Make_Op_Ge (Loc,
7057
                          Left_Opnd  => Duplicate_Subexpr_No_Checks (HB),
7058
                          Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
7059
                      Right_Opnd => Cond);
7060
               end;
7061
            end if;
7062
         end;
7063
 
7064
      elsif Is_Scalar_Type (S_Typ) then
7065
 
7066
         --  This somewhat duplicates what Apply_Scalar_Range_Check does,
7067
         --  except the above simply sets a flag in the node and lets
7068
         --  gigi generate the check base on the Etype of the expression.
7069
         --  Sometimes, however we want to do a dynamic check against an
7070
         --  arbitrary target type, so we do that here.
7071
 
7072
         if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
7073
            Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
7074
 
7075
         --  For literals, we can tell if the constraint error will be
7076
         --  raised at compile time, so we never need a dynamic check, but
7077
         --  if the exception will be raised, then post the usual warning,
7078
         --  and replace the literal with a raise constraint error
7079
         --  expression. As usual, skip this for access types
7080
 
7081
         elsif Compile_Time_Known_Value (Ck_Node)
7082
           and then not Do_Access
7083
         then
7084
            declare
7085
               LB : constant Node_Id := Type_Low_Bound (T_Typ);
7086
               UB : constant Node_Id := Type_High_Bound (T_Typ);
7087
 
7088
               Out_Of_Range  : Boolean;
7089
               Static_Bounds : constant Boolean :=
7090
                                 Compile_Time_Known_Value (LB)
7091
                                   and Compile_Time_Known_Value (UB);
7092
 
7093
            begin
7094
               --  Following range tests should use Sem_Eval routine ???
7095
 
7096
               if Static_Bounds then
7097
                  if Is_Floating_Point_Type (S_Typ) then
7098
                     Out_Of_Range :=
7099
                       (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
7100
                         or else
7101
                       (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
7102
 
7103
                  --  Fixed or discrete type
7104
 
7105
                  else
7106
                     Out_Of_Range :=
7107
                       Expr_Value (Ck_Node) < Expr_Value (LB)
7108
                         or else
7109
                       Expr_Value (Ck_Node) > Expr_Value (UB);
7110
                  end if;
7111
 
7112
                  --  Bounds of the type are static and the literal is out of
7113
                  --  range so output a warning message.
7114
 
7115
                  if Out_Of_Range then
7116
                     if No (Warn_Node) then
7117
                        Add_Check
7118
                          (Compile_Time_Constraint_Error
7119
                             (Ck_Node,
7120
                              "static value out of range of}?", T_Typ));
7121
 
7122
                     else
7123
                        Add_Check
7124
                          (Compile_Time_Constraint_Error
7125
                             (Wnode,
7126
                              "static value out of range of}?", T_Typ));
7127
                     end if;
7128
                  end if;
7129
 
7130
               else
7131
                  Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
7132
               end if;
7133
            end;
7134
 
7135
         --  Here for the case of a non-static expression, we need a runtime
7136
         --  check unless the source type range is guaranteed to be in the
7137
         --  range of the target type.
7138
 
7139
         else
7140
            if not In_Subrange_Of (S_Typ, T_Typ) then
7141
               Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
7142
            end if;
7143
         end if;
7144
      end if;
7145
 
7146
      if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
7147
         if Is_Constrained (T_Typ) then
7148
 
7149
            Expr_Actual := Get_Referenced_Object (Ck_Node);
7150
            Exptyp      := Get_Actual_Subtype (Expr_Actual);
7151
 
7152
            if Is_Access_Type (Exptyp) then
7153
               Exptyp := Designated_Type (Exptyp);
7154
            end if;
7155
 
7156
            --  String_Literal case. This needs to be handled specially be-
7157
            --  cause no index types are available for string literals. The
7158
            --  condition is simply:
7159
 
7160
            --    T_Typ'Length = string-literal-length
7161
 
7162
            if Nkind (Expr_Actual) = N_String_Literal then
7163
               null;
7164
 
7165
            --  General array case. Here we have a usable actual subtype for
7166
            --  the expression, and the condition is built from the two types
7167
 
7168
            --     T_Typ'First     < Exptyp'First     or else
7169
            --     T_Typ'Last      > Exptyp'Last      or else
7170
            --     T_Typ'First(1)  < Exptyp'First(1)  or else
7171
            --     T_Typ'Last(1)   > Exptyp'Last(1)   or else
7172
            --     ...
7173
 
7174
            elsif Is_Constrained (Exptyp) then
7175
               declare
7176
                  Ndims : constant Nat := Number_Dimensions (T_Typ);
7177
 
7178
                  L_Index : Node_Id;
7179
                  R_Index : Node_Id;
7180
 
7181
               begin
7182
                  L_Index := First_Index (T_Typ);
7183
                  R_Index := First_Index (Exptyp);
7184
 
7185
                  for Indx in 1 .. Ndims loop
7186
                     if not (Nkind (L_Index) = N_Raise_Constraint_Error
7187
                               or else
7188
                             Nkind (R_Index) = N_Raise_Constraint_Error)
7189
                     then
7190
                        --  Deal with compile time length check. Note that we
7191
                        --  skip this in the access case, because the access
7192
                        --  value may be null, so we cannot know statically.
7193
 
7194
                        if not
7195
                          Subtypes_Statically_Match
7196
                            (Etype (L_Index), Etype (R_Index))
7197
                        then
7198
                           --  If the target type is constrained then we
7199
                           --  have to check for exact equality of bounds
7200
                           --  (required for qualified expressions).
7201
 
7202
                           if Is_Constrained (T_Typ) then
7203
                              Evolve_Or_Else
7204
                                (Cond,
7205
                                 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
7206
                           else
7207
                              Evolve_Or_Else
7208
                                (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
7209
                           end if;
7210
                        end if;
7211
 
7212
                        Next (L_Index);
7213
                        Next (R_Index);
7214
                     end if;
7215
                  end loop;
7216
               end;
7217
 
7218
            --  Handle cases where we do not get a usable actual subtype that
7219
            --  is constrained. This happens for example in the function call
7220
            --  and explicit dereference cases. In these cases, we have to get
7221
            --  the length or range from the expression itself, making sure we
7222
            --  do not evaluate it more than once.
7223
 
7224
            --  Here Ck_Node is the original expression, or more properly the
7225
            --  result of applying Duplicate_Expr to the original tree,
7226
            --  forcing the result to be a name.
7227
 
7228
            else
7229
               declare
7230
                  Ndims : constant Nat := Number_Dimensions (T_Typ);
7231
 
7232
               begin
7233
                  --  Build the condition for the explicit dereference case
7234
 
7235
                  for Indx in 1 .. Ndims loop
7236
                     Evolve_Or_Else
7237
                       (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
7238
                  end loop;
7239
               end;
7240
            end if;
7241
 
7242
         else
7243
            --  For a conversion to an unconstrained array type, generate an
7244
            --  Action to check that the bounds of the source value are within
7245
            --  the constraints imposed by the target type (RM 4.6(38)). No
7246
            --  check is needed for a conversion to an access to unconstrained
7247
            --  array type, as 4.6(24.15/2) requires the designated subtypes
7248
            --  of the two access types to statically match.
7249
 
7250
            if Nkind (Parent (Ck_Node)) = N_Type_Conversion
7251
              and then not Do_Access
7252
            then
7253
               declare
7254
                  Opnd_Index : Node_Id;
7255
                  Targ_Index : Node_Id;
7256
                  Opnd_Range : Node_Id;
7257
 
7258
               begin
7259
                  Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
7260
                  Targ_Index := First_Index (T_Typ);
7261
                  while Present (Opnd_Index) loop
7262
 
7263
                     --  If the index is a range, use its bounds. If it is an
7264
                     --  entity (as will be the case if it is a named subtype
7265
                     --  or an itype created for a slice) retrieve its range.
7266
 
7267
                     if Is_Entity_Name (Opnd_Index)
7268
                       and then Is_Type (Entity (Opnd_Index))
7269
                     then
7270
                        Opnd_Range := Scalar_Range (Entity (Opnd_Index));
7271
                     else
7272
                        Opnd_Range := Opnd_Index;
7273
                     end if;
7274
 
7275
                     if Nkind (Opnd_Range) = N_Range then
7276
                        if  Is_In_Range
7277
                             (Low_Bound (Opnd_Range), Etype (Targ_Index),
7278
                              Assume_Valid => True)
7279
                          and then
7280
                            Is_In_Range
7281
                             (High_Bound (Opnd_Range), Etype (Targ_Index),
7282
                              Assume_Valid => True)
7283
                        then
7284
                           null;
7285
 
7286
                        --  If null range, no check needed
7287
 
7288
                        elsif
7289
                          Compile_Time_Known_Value (High_Bound (Opnd_Range))
7290
                            and then
7291
                          Compile_Time_Known_Value (Low_Bound (Opnd_Range))
7292
                            and then
7293
                              Expr_Value (High_Bound (Opnd_Range)) <
7294
                                  Expr_Value (Low_Bound (Opnd_Range))
7295
                        then
7296
                           null;
7297
 
7298
                        elsif Is_Out_Of_Range
7299
                                (Low_Bound (Opnd_Range), Etype (Targ_Index),
7300
                                 Assume_Valid => True)
7301
                          or else
7302
                              Is_Out_Of_Range
7303
                                (High_Bound (Opnd_Range), Etype (Targ_Index),
7304
                                 Assume_Valid => True)
7305
                        then
7306
                           Add_Check
7307
                             (Compile_Time_Constraint_Error
7308
                               (Wnode, "value out of range of}?", T_Typ));
7309
 
7310
                        else
7311
                           Evolve_Or_Else
7312
                             (Cond,
7313
                              Discrete_Range_Cond
7314
                                (Opnd_Range, Etype (Targ_Index)));
7315
                        end if;
7316
                     end if;
7317
 
7318
                     Next_Index (Opnd_Index);
7319
                     Next_Index (Targ_Index);
7320
                  end loop;
7321
               end;
7322
            end if;
7323
         end if;
7324
      end if;
7325
 
7326
      --  Construct the test and insert into the tree
7327
 
7328
      if Present (Cond) then
7329
         if Do_Access then
7330
            Cond := Guard_Access (Cond, Loc, Ck_Node);
7331
         end if;
7332
 
7333
         Add_Check
7334
           (Make_Raise_Constraint_Error (Loc,
7335
             Condition => Cond,
7336
             Reason    => CE_Range_Check_Failed));
7337
      end if;
7338
 
7339
      return Ret_Result;
7340
   end Selected_Range_Checks;
7341
 
7342
   -------------------------------
7343
   -- Storage_Checks_Suppressed --
7344
   -------------------------------
7345
 
7346
   function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
7347
   begin
7348
      if Present (E) and then Checks_May_Be_Suppressed (E) then
7349
         return Is_Check_Suppressed (E, Storage_Check);
7350
      else
7351
         return Scope_Suppress (Storage_Check);
7352
      end if;
7353
   end Storage_Checks_Suppressed;
7354
 
7355
   ---------------------------
7356
   -- Tag_Checks_Suppressed --
7357
   ---------------------------
7358
 
7359
   function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
7360
   begin
7361
      if Present (E) then
7362
         if Kill_Tag_Checks (E) then
7363
            return True;
7364
         elsif Checks_May_Be_Suppressed (E) then
7365
            return Is_Check_Suppressed (E, Tag_Check);
7366
         end if;
7367
      end if;
7368
 
7369
      return Scope_Suppress (Tag_Check);
7370
   end Tag_Checks_Suppressed;
7371
 
7372
   --------------------------
7373
   -- Validity_Check_Range --
7374
   --------------------------
7375
 
7376
   procedure Validity_Check_Range (N : Node_Id) is
7377
   begin
7378
      if Validity_Checks_On and Validity_Check_Operands then
7379
         if Nkind (N) = N_Range then
7380
            Ensure_Valid (Low_Bound (N));
7381
            Ensure_Valid (High_Bound (N));
7382
         end if;
7383
      end if;
7384
   end Validity_Check_Range;
7385
 
7386
   --------------------------------
7387
   -- Validity_Checks_Suppressed --
7388
   --------------------------------
7389
 
7390
   function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
7391
   begin
7392
      if Present (E) and then Checks_May_Be_Suppressed (E) then
7393
         return Is_Check_Suppressed (E, Validity_Check);
7394
      else
7395
         return Scope_Suppress (Validity_Check);
7396
      end if;
7397
   end Validity_Checks_Suppressed;
7398
 
7399
end Checks;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.