| 1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
| 2 |
|
|
-- --
|
| 3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
| 4 |
|
|
-- --
|
| 5 |
|
|
-- E X P _ A G G R --
|
| 6 |
|
|
-- --
|
| 7 |
|
|
-- B o d y --
|
| 8 |
|
|
-- --
|
| 9 |
|
|
-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
|
| 10 |
|
|
-- --
|
| 11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
| 12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
| 13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
| 14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
| 15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
| 16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
| 17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
| 18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
| 19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
| 20 |
|
|
-- --
|
| 21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
| 22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
| 23 |
|
|
-- --
|
| 24 |
|
|
------------------------------------------------------------------------------
|
| 25 |
|
|
|
| 26 |
|
|
with Atree; use Atree;
|
| 27 |
|
|
with Checks; use Checks;
|
| 28 |
|
|
with Debug; use Debug;
|
| 29 |
|
|
with Einfo; use Einfo;
|
| 30 |
|
|
with Elists; use Elists;
|
| 31 |
|
|
with Errout; use Errout;
|
| 32 |
|
|
with Expander; use Expander;
|
| 33 |
|
|
with Exp_Util; use Exp_Util;
|
| 34 |
|
|
with Exp_Ch3; use Exp_Ch3;
|
| 35 |
|
|
with Exp_Ch6; use Exp_Ch6;
|
| 36 |
|
|
with Exp_Ch7; use Exp_Ch7;
|
| 37 |
|
|
with Exp_Ch9; use Exp_Ch9;
|
| 38 |
|
|
with Exp_Disp; use Exp_Disp;
|
| 39 |
|
|
with Exp_Tss; use Exp_Tss;
|
| 40 |
|
|
with Fname; use Fname;
|
| 41 |
|
|
with Freeze; use Freeze;
|
| 42 |
|
|
with Itypes; use Itypes;
|
| 43 |
|
|
with Lib; use Lib;
|
| 44 |
|
|
with Namet; use Namet;
|
| 45 |
|
|
with Nmake; use Nmake;
|
| 46 |
|
|
with Nlists; use Nlists;
|
| 47 |
|
|
with Opt; use Opt;
|
| 48 |
|
|
with Restrict; use Restrict;
|
| 49 |
|
|
with Rident; use Rident;
|
| 50 |
|
|
with Rtsfind; use Rtsfind;
|
| 51 |
|
|
with Ttypes; use Ttypes;
|
| 52 |
|
|
with Sem; use Sem;
|
| 53 |
|
|
with Sem_Aggr; use Sem_Aggr;
|
| 54 |
|
|
with Sem_Aux; use Sem_Aux;
|
| 55 |
|
|
with Sem_Ch3; use Sem_Ch3;
|
| 56 |
|
|
with Sem_Eval; use Sem_Eval;
|
| 57 |
|
|
with Sem_Res; use Sem_Res;
|
| 58 |
|
|
with Sem_Util; use Sem_Util;
|
| 59 |
|
|
with Sinfo; use Sinfo;
|
| 60 |
|
|
with Snames; use Snames;
|
| 61 |
|
|
with Stand; use Stand;
|
| 62 |
|
|
with Targparm; use Targparm;
|
| 63 |
|
|
with Tbuild; use Tbuild;
|
| 64 |
|
|
with Uintp; use Uintp;
|
| 65 |
|
|
|
| 66 |
|
|
package body Exp_Aggr is
|
| 67 |
|
|
|
| 68 |
|
|
type Case_Bounds is record
|
| 69 |
|
|
Choice_Lo : Node_Id;
|
| 70 |
|
|
Choice_Hi : Node_Id;
|
| 71 |
|
|
Choice_Node : Node_Id;
|
| 72 |
|
|
end record;
|
| 73 |
|
|
|
| 74 |
|
|
type Case_Table_Type is array (Nat range <>) of Case_Bounds;
|
| 75 |
|
|
-- Table type used by Check_Case_Choices procedure
|
| 76 |
|
|
|
| 77 |
|
|
function Has_Default_Init_Comps (N : Node_Id) return Boolean;
|
| 78 |
|
|
-- N is an aggregate (record or array). Checks the presence of default
|
| 79 |
|
|
-- initialization (<>) in any component (Ada 2005: AI-287).
|
| 80 |
|
|
|
| 81 |
|
|
function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
|
| 82 |
|
|
-- Returns true if N is an aggregate used to initialize the components
|
| 83 |
|
|
-- of an statically allocated dispatch table.
|
| 84 |
|
|
|
| 85 |
|
|
function Must_Slide
|
| 86 |
|
|
(Obj_Type : Entity_Id;
|
| 87 |
|
|
Typ : Entity_Id) return Boolean;
|
| 88 |
|
|
-- A static array aggregate in an object declaration can in most cases be
|
| 89 |
|
|
-- expanded in place. The one exception is when the aggregate is given
|
| 90 |
|
|
-- with component associations that specify different bounds from those of
|
| 91 |
|
|
-- the type definition in the object declaration. In this pathological
|
| 92 |
|
|
-- case the aggregate must slide, and we must introduce an intermediate
|
| 93 |
|
|
-- temporary to hold it.
|
| 94 |
|
|
--
|
| 95 |
|
|
-- The same holds in an assignment to one-dimensional array of arrays,
|
| 96 |
|
|
-- when a component may be given with bounds that differ from those of the
|
| 97 |
|
|
-- component type.
|
| 98 |
|
|
|
| 99 |
|
|
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
|
| 100 |
|
|
-- Sort the Case Table using the Lower Bound of each Choice as the key.
|
| 101 |
|
|
-- A simple insertion sort is used since the number of choices in a case
|
| 102 |
|
|
-- statement of variant part will usually be small and probably in near
|
| 103 |
|
|
-- sorted order.
|
| 104 |
|
|
|
| 105 |
|
|
------------------------------------------------------
|
| 106 |
|
|
-- Local subprograms for Record Aggregate Expansion --
|
| 107 |
|
|
------------------------------------------------------
|
| 108 |
|
|
|
| 109 |
|
|
function Build_Record_Aggr_Code
|
| 110 |
|
|
(N : Node_Id;
|
| 111 |
|
|
Typ : Entity_Id;
|
| 112 |
|
|
Lhs : Node_Id) return List_Id;
|
| 113 |
|
|
-- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
|
| 114 |
|
|
-- aggregate. Target is an expression containing the location on which the
|
| 115 |
|
|
-- component by component assignments will take place. Returns the list of
|
| 116 |
|
|
-- assignments plus all other adjustments needed for tagged and controlled
|
| 117 |
|
|
-- types.
|
| 118 |
|
|
|
| 119 |
|
|
procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
|
| 120 |
|
|
-- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
|
| 121 |
|
|
-- aggregate (which can only be a record type, this procedure is only used
|
| 122 |
|
|
-- for record types). Transform the given aggregate into a sequence of
|
| 123 |
|
|
-- assignments performed component by component.
|
| 124 |
|
|
|
| 125 |
|
|
procedure Expand_Record_Aggregate
|
| 126 |
|
|
(N : Node_Id;
|
| 127 |
|
|
Orig_Tag : Node_Id := Empty;
|
| 128 |
|
|
Parent_Expr : Node_Id := Empty);
|
| 129 |
|
|
-- This is the top level procedure for record aggregate expansion.
|
| 130 |
|
|
-- Expansion for record aggregates needs expand aggregates for tagged
|
| 131 |
|
|
-- record types. Specifically Expand_Record_Aggregate adds the Tag
|
| 132 |
|
|
-- field in front of the Component_Association list that was created
|
| 133 |
|
|
-- during resolution by Resolve_Record_Aggregate.
|
| 134 |
|
|
--
|
| 135 |
|
|
-- N is the record aggregate node.
|
| 136 |
|
|
-- Orig_Tag is the value of the Tag that has to be provided for this
|
| 137 |
|
|
-- specific aggregate. It carries the tag corresponding to the type
|
| 138 |
|
|
-- of the outermost aggregate during the recursive expansion
|
| 139 |
|
|
-- Parent_Expr is the ancestor part of the original extension
|
| 140 |
|
|
-- aggregate
|
| 141 |
|
|
|
| 142 |
|
|
function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
|
| 143 |
|
|
-- Return true if one of the component is of a discriminated type with
|
| 144 |
|
|
-- defaults. An aggregate for a type with mutable components must be
|
| 145 |
|
|
-- expanded into individual assignments.
|
| 146 |
|
|
|
| 147 |
|
|
procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
|
| 148 |
|
|
-- If the type of the aggregate is a type extension with renamed discrimi-
|
| 149 |
|
|
-- nants, we must initialize the hidden discriminants of the parent.
|
| 150 |
|
|
-- Otherwise, the target object must not be initialized. The discriminants
|
| 151 |
|
|
-- are initialized by calling the initialization procedure for the type.
|
| 152 |
|
|
-- This is incorrect if the initialization of other components has any
|
| 153 |
|
|
-- side effects. We restrict this call to the case where the parent type
|
| 154 |
|
|
-- has a variant part, because this is the only case where the hidden
|
| 155 |
|
|
-- discriminants are accessed, namely when calling discriminant checking
|
| 156 |
|
|
-- functions of the parent type, and when applying a stream attribute to
|
| 157 |
|
|
-- an object of the derived type.
|
| 158 |
|
|
|
| 159 |
|
|
-----------------------------------------------------
|
| 160 |
|
|
-- Local Subprograms for Array Aggregate Expansion --
|
| 161 |
|
|
-----------------------------------------------------
|
| 162 |
|
|
|
| 163 |
|
|
function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
|
| 164 |
|
|
-- Very large static aggregates present problems to the back-end, and are
|
| 165 |
|
|
-- transformed into assignments and loops. This function verifies that the
|
| 166 |
|
|
-- total number of components of an aggregate is acceptable for rewriting
|
| 167 |
|
|
-- into a purely positional static form. Aggr_Size_OK must be called before
|
| 168 |
|
|
-- calling Flatten.
|
| 169 |
|
|
--
|
| 170 |
|
|
-- This function also detects and warns about one-component aggregates that
|
| 171 |
|
|
-- appear in a non-static context. Even if the component value is static,
|
| 172 |
|
|
-- such an aggregate must be expanded into an assignment.
|
| 173 |
|
|
|
| 174 |
|
|
function Backend_Processing_Possible (N : Node_Id) return Boolean;
|
| 175 |
|
|
-- This function checks if array aggregate N can be processed directly
|
| 176 |
|
|
-- by the backend. If this is the case True is returned.
|
| 177 |
|
|
|
| 178 |
|
|
function Build_Array_Aggr_Code
|
| 179 |
|
|
(N : Node_Id;
|
| 180 |
|
|
Ctype : Entity_Id;
|
| 181 |
|
|
Index : Node_Id;
|
| 182 |
|
|
Into : Node_Id;
|
| 183 |
|
|
Scalar_Comp : Boolean;
|
| 184 |
|
|
Indexes : List_Id := No_List) return List_Id;
|
| 185 |
|
|
-- This recursive routine returns a list of statements containing the
|
| 186 |
|
|
-- loops and assignments that are needed for the expansion of the array
|
| 187 |
|
|
-- aggregate N.
|
| 188 |
|
|
--
|
| 189 |
|
|
-- N is the (sub-)aggregate node to be expanded into code. This node has
|
| 190 |
|
|
-- been fully analyzed, and its Etype is properly set.
|
| 191 |
|
|
--
|
| 192 |
|
|
-- Index is the index node corresponding to the array sub-aggregate N
|
| 193 |
|
|
--
|
| 194 |
|
|
-- Into is the target expression into which we are copying the aggregate.
|
| 195 |
|
|
-- Note that this node may not have been analyzed yet, and so the Etype
|
| 196 |
|
|
-- field may not be set.
|
| 197 |
|
|
--
|
| 198 |
|
|
-- Scalar_Comp is True if the component type of the aggregate is scalar
|
| 199 |
|
|
--
|
| 200 |
|
|
-- Indexes is the current list of expressions used to index the object we
|
| 201 |
|
|
-- are writing into.
|
| 202 |
|
|
|
| 203 |
|
|
procedure Convert_Array_Aggr_In_Allocator
|
| 204 |
|
|
(Decl : Node_Id;
|
| 205 |
|
|
Aggr : Node_Id;
|
| 206 |
|
|
Target : Node_Id);
|
| 207 |
|
|
-- If the aggregate appears within an allocator and can be expanded in
|
| 208 |
|
|
-- place, this routine generates the individual assignments to components
|
| 209 |
|
|
-- of the designated object. This is an optimization over the general
|
| 210 |
|
|
-- case, where a temporary is first created on the stack and then used to
|
| 211 |
|
|
-- construct the allocated object on the heap.
|
| 212 |
|
|
|
| 213 |
|
|
procedure Convert_To_Positional
|
| 214 |
|
|
(N : Node_Id;
|
| 215 |
|
|
Max_Others_Replicate : Nat := 5;
|
| 216 |
|
|
Handle_Bit_Packed : Boolean := False);
|
| 217 |
|
|
-- If possible, convert named notation to positional notation. This
|
| 218 |
|
|
-- conversion is possible only in some static cases. If the conversion is
|
| 219 |
|
|
-- possible, then N is rewritten with the analyzed converted aggregate.
|
| 220 |
|
|
-- The parameter Max_Others_Replicate controls the maximum number of
|
| 221 |
|
|
-- values corresponding to an others choice that will be converted to
|
| 222 |
|
|
-- positional notation (the default of 5 is the normal limit, and reflects
|
| 223 |
|
|
-- the fact that normally the loop is better than a lot of separate
|
| 224 |
|
|
-- assignments). Note that this limit gets overridden in any case if
|
| 225 |
|
|
-- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
|
| 226 |
|
|
-- set. The parameter Handle_Bit_Packed is usually set False (since we do
|
| 227 |
|
|
-- not expect the back end to handle bit packed arrays, so the normal case
|
| 228 |
|
|
-- of conversion is pointless), but in the special case of a call from
|
| 229 |
|
|
-- Packed_Array_Aggregate_Handled, we set this parameter to True, since
|
| 230 |
|
|
-- these are cases we handle in there.
|
| 231 |
|
|
|
| 232 |
|
|
-- It would seem worthwhile to have a higher default value for Max_Others_
|
| 233 |
|
|
-- replicate, but aggregates in the compiler make this impossible: the
|
| 234 |
|
|
-- compiler bootstrap fails if Max_Others_Replicate is greater than 25.
|
| 235 |
|
|
-- This is unexpected ???
|
| 236 |
|
|
|
| 237 |
|
|
procedure Expand_Array_Aggregate (N : Node_Id);
|
| 238 |
|
|
-- This is the top-level routine to perform array aggregate expansion.
|
| 239 |
|
|
-- N is the N_Aggregate node to be expanded.
|
| 240 |
|
|
|
| 241 |
|
|
function Late_Expansion
|
| 242 |
|
|
(N : Node_Id;
|
| 243 |
|
|
Typ : Entity_Id;
|
| 244 |
|
|
Target : Node_Id) return List_Id;
|
| 245 |
|
|
-- This routine implements top-down expansion of nested aggregates. In
|
| 246 |
|
|
-- doing so, it avoids the generation of temporaries at each level. N is
|
| 247 |
|
|
-- a nested record or array aggregate with the Expansion_Delayed flag.
|
| 248 |
|
|
-- Typ is the expected type of the aggregate. Target is a (duplicatable)
|
| 249 |
|
|
-- expression that will hold the result of the aggregate expansion.
|
| 250 |
|
|
|
| 251 |
|
|
function Make_OK_Assignment_Statement
|
| 252 |
|
|
(Sloc : Source_Ptr;
|
| 253 |
|
|
Name : Node_Id;
|
| 254 |
|
|
Expression : Node_Id) return Node_Id;
|
| 255 |
|
|
-- This is like Make_Assignment_Statement, except that Assignment_OK
|
| 256 |
|
|
-- is set in the left operand. All assignments built by this unit use
|
| 257 |
|
|
-- this routine. This is needed to deal with assignments to initialized
|
| 258 |
|
|
-- constants that are done in place.
|
| 259 |
|
|
|
| 260 |
|
|
function Number_Of_Choices (N : Node_Id) return Nat;
|
| 261 |
|
|
-- Returns the number of discrete choices (not including the others choice
|
| 262 |
|
|
-- if present) contained in (sub-)aggregate N.
|
| 263 |
|
|
|
| 264 |
|
|
function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
|
| 265 |
|
|
-- Given an array aggregate, this function handles the case of a packed
|
| 266 |
|
|
-- array aggregate with all constant values, where the aggregate can be
|
| 267 |
|
|
-- evaluated at compile time. If this is possible, then N is rewritten
|
| 268 |
|
|
-- to be its proper compile time value with all the components properly
|
| 269 |
|
|
-- assembled. The expression is analyzed and resolved and True is returned.
|
| 270 |
|
|
-- If this transformation is not possible, N is unchanged and False is
|
| 271 |
|
|
-- returned.
|
| 272 |
|
|
|
| 273 |
|
|
function Safe_Slice_Assignment (N : Node_Id) return Boolean;
|
| 274 |
|
|
-- If a slice assignment has an aggregate with a single others_choice,
|
| 275 |
|
|
-- the assignment can be done in place even if bounds are not static,
|
| 276 |
|
|
-- by converting it into a loop over the discrete range of the slice.
|
| 277 |
|
|
|
| 278 |
|
|
------------------
|
| 279 |
|
|
-- Aggr_Size_OK --
|
| 280 |
|
|
------------------
|
| 281 |
|
|
|
| 282 |
|
|
function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
|
| 283 |
|
|
Lo : Node_Id;
|
| 284 |
|
|
Hi : Node_Id;
|
| 285 |
|
|
Indx : Node_Id;
|
| 286 |
|
|
Siz : Int;
|
| 287 |
|
|
Lov : Uint;
|
| 288 |
|
|
Hiv : Uint;
|
| 289 |
|
|
|
| 290 |
|
|
-- The following constant determines the maximum size of an array
|
| 291 |
|
|
-- aggregate produced by converting named to positional notation (e.g.
|
| 292 |
|
|
-- from others clauses). This avoids running away with attempts to
|
| 293 |
|
|
-- convert huge aggregates, which hit memory limits in the backend.
|
| 294 |
|
|
|
| 295 |
|
|
-- The normal limit is 5000, but we increase this limit to 2**24 (about
|
| 296 |
|
|
-- 16 million) if Restrictions (No_Elaboration_Code) or Restrictions
|
| 297 |
|
|
-- (No_Implicit_Loops) is specified, since in either case, we are at
|
| 298 |
|
|
-- risk of declaring the program illegal because of this limit.
|
| 299 |
|
|
|
| 300 |
|
|
Max_Aggr_Size : constant Nat :=
|
| 301 |
|
|
5000 + (2 ** 24 - 5000) *
|
| 302 |
|
|
Boolean'Pos
|
| 303 |
|
|
(Restriction_Active (No_Elaboration_Code)
|
| 304 |
|
|
or else
|
| 305 |
|
|
Restriction_Active (No_Implicit_Loops));
|
| 306 |
|
|
|
| 307 |
|
|
function Component_Count (T : Entity_Id) return Int;
|
| 308 |
|
|
-- The limit is applied to the total number of components that the
|
| 309 |
|
|
-- aggregate will have, which is the number of static expressions
|
| 310 |
|
|
-- that will appear in the flattened array. This requires a recursive
|
| 311 |
|
|
-- computation of the number of scalar components of the structure.
|
| 312 |
|
|
|
| 313 |
|
|
---------------------
|
| 314 |
|
|
-- Component_Count --
|
| 315 |
|
|
---------------------
|
| 316 |
|
|
|
| 317 |
|
|
function Component_Count (T : Entity_Id) return Int is
|
| 318 |
|
|
Res : Int := 0;
|
| 319 |
|
|
Comp : Entity_Id;
|
| 320 |
|
|
|
| 321 |
|
|
begin
|
| 322 |
|
|
if Is_Scalar_Type (T) then
|
| 323 |
|
|
return 1;
|
| 324 |
|
|
|
| 325 |
|
|
elsif Is_Record_Type (T) then
|
| 326 |
|
|
Comp := First_Component (T);
|
| 327 |
|
|
while Present (Comp) loop
|
| 328 |
|
|
Res := Res + Component_Count (Etype (Comp));
|
| 329 |
|
|
Next_Component (Comp);
|
| 330 |
|
|
end loop;
|
| 331 |
|
|
|
| 332 |
|
|
return Res;
|
| 333 |
|
|
|
| 334 |
|
|
elsif Is_Array_Type (T) then
|
| 335 |
|
|
declare
|
| 336 |
|
|
Lo : constant Node_Id :=
|
| 337 |
|
|
Type_Low_Bound (Etype (First_Index (T)));
|
| 338 |
|
|
Hi : constant Node_Id :=
|
| 339 |
|
|
Type_High_Bound (Etype (First_Index (T)));
|
| 340 |
|
|
|
| 341 |
|
|
Siz : constant Int := Component_Count (Component_Type (T));
|
| 342 |
|
|
|
| 343 |
|
|
begin
|
| 344 |
|
|
if not Compile_Time_Known_Value (Lo)
|
| 345 |
|
|
or else not Compile_Time_Known_Value (Hi)
|
| 346 |
|
|
then
|
| 347 |
|
|
return 0;
|
| 348 |
|
|
else
|
| 349 |
|
|
return
|
| 350 |
|
|
Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
|
| 351 |
|
|
end if;
|
| 352 |
|
|
end;
|
| 353 |
|
|
|
| 354 |
|
|
else
|
| 355 |
|
|
-- Can only be a null for an access type
|
| 356 |
|
|
|
| 357 |
|
|
return 1;
|
| 358 |
|
|
end if;
|
| 359 |
|
|
end Component_Count;
|
| 360 |
|
|
|
| 361 |
|
|
-- Start of processing for Aggr_Size_OK
|
| 362 |
|
|
|
| 363 |
|
|
begin
|
| 364 |
|
|
Siz := Component_Count (Component_Type (Typ));
|
| 365 |
|
|
|
| 366 |
|
|
Indx := First_Index (Typ);
|
| 367 |
|
|
while Present (Indx) loop
|
| 368 |
|
|
Lo := Type_Low_Bound (Etype (Indx));
|
| 369 |
|
|
Hi := Type_High_Bound (Etype (Indx));
|
| 370 |
|
|
|
| 371 |
|
|
-- Bounds need to be known at compile time
|
| 372 |
|
|
|
| 373 |
|
|
if not Compile_Time_Known_Value (Lo)
|
| 374 |
|
|
or else not Compile_Time_Known_Value (Hi)
|
| 375 |
|
|
then
|
| 376 |
|
|
return False;
|
| 377 |
|
|
end if;
|
| 378 |
|
|
|
| 379 |
|
|
Lov := Expr_Value (Lo);
|
| 380 |
|
|
Hiv := Expr_Value (Hi);
|
| 381 |
|
|
|
| 382 |
|
|
-- A flat array is always safe
|
| 383 |
|
|
|
| 384 |
|
|
if Hiv < Lov then
|
| 385 |
|
|
return True;
|
| 386 |
|
|
end if;
|
| 387 |
|
|
|
| 388 |
|
|
-- One-component aggregates are suspicious, and if the context type
|
| 389 |
|
|
-- is an object declaration with non-static bounds it will trip gcc;
|
| 390 |
|
|
-- such an aggregate must be expanded into a single assignment.
|
| 391 |
|
|
|
| 392 |
|
|
if Hiv = Lov
|
| 393 |
|
|
and then Nkind (Parent (N)) = N_Object_Declaration
|
| 394 |
|
|
then
|
| 395 |
|
|
declare
|
| 396 |
|
|
Index_Type : constant Entity_Id :=
|
| 397 |
|
|
Etype
|
| 398 |
|
|
(First_Index
|
| 399 |
|
|
(Etype (Defining_Identifier (Parent (N)))));
|
| 400 |
|
|
Indx : Node_Id;
|
| 401 |
|
|
|
| 402 |
|
|
begin
|
| 403 |
|
|
if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
|
| 404 |
|
|
or else not Compile_Time_Known_Value
|
| 405 |
|
|
(Type_High_Bound (Index_Type))
|
| 406 |
|
|
then
|
| 407 |
|
|
if Present (Component_Associations (N)) then
|
| 408 |
|
|
Indx :=
|
| 409 |
|
|
First (Choices (First (Component_Associations (N))));
|
| 410 |
|
|
if Is_Entity_Name (Indx)
|
| 411 |
|
|
and then not Is_Type (Entity (Indx))
|
| 412 |
|
|
then
|
| 413 |
|
|
Error_Msg_N
|
| 414 |
|
|
("single component aggregate in non-static context?",
|
| 415 |
|
|
Indx);
|
| 416 |
|
|
Error_Msg_N ("\maybe subtype name was meant?", Indx);
|
| 417 |
|
|
end if;
|
| 418 |
|
|
end if;
|
| 419 |
|
|
|
| 420 |
|
|
return False;
|
| 421 |
|
|
end if;
|
| 422 |
|
|
end;
|
| 423 |
|
|
end if;
|
| 424 |
|
|
|
| 425 |
|
|
declare
|
| 426 |
|
|
Rng : constant Uint := Hiv - Lov + 1;
|
| 427 |
|
|
|
| 428 |
|
|
begin
|
| 429 |
|
|
-- Check if size is too large
|
| 430 |
|
|
|
| 431 |
|
|
if not UI_Is_In_Int_Range (Rng) then
|
| 432 |
|
|
return False;
|
| 433 |
|
|
end if;
|
| 434 |
|
|
|
| 435 |
|
|
Siz := Siz * UI_To_Int (Rng);
|
| 436 |
|
|
end;
|
| 437 |
|
|
|
| 438 |
|
|
if Siz <= 0
|
| 439 |
|
|
or else Siz > Max_Aggr_Size
|
| 440 |
|
|
then
|
| 441 |
|
|
return False;
|
| 442 |
|
|
end if;
|
| 443 |
|
|
|
| 444 |
|
|
-- Bounds must be in integer range, for later array construction
|
| 445 |
|
|
|
| 446 |
|
|
if not UI_Is_In_Int_Range (Lov)
|
| 447 |
|
|
or else
|
| 448 |
|
|
not UI_Is_In_Int_Range (Hiv)
|
| 449 |
|
|
then
|
| 450 |
|
|
return False;
|
| 451 |
|
|
end if;
|
| 452 |
|
|
|
| 453 |
|
|
Next_Index (Indx);
|
| 454 |
|
|
end loop;
|
| 455 |
|
|
|
| 456 |
|
|
return True;
|
| 457 |
|
|
end Aggr_Size_OK;
|
| 458 |
|
|
|
| 459 |
|
|
---------------------------------
|
| 460 |
|
|
-- Backend_Processing_Possible --
|
| 461 |
|
|
---------------------------------
|
| 462 |
|
|
|
| 463 |
|
|
-- Backend processing by Gigi/gcc is possible only if all the following
|
| 464 |
|
|
-- conditions are met:
|
| 465 |
|
|
|
| 466 |
|
|
-- 1. N is fully positional
|
| 467 |
|
|
|
| 468 |
|
|
-- 2. N is not a bit-packed array aggregate;
|
| 469 |
|
|
|
| 470 |
|
|
-- 3. The size of N's array type must be known at compile time. Note
|
| 471 |
|
|
-- that this implies that the component size is also known
|
| 472 |
|
|
|
| 473 |
|
|
-- 4. The array type of N does not follow the Fortran layout convention
|
| 474 |
|
|
-- or if it does it must be 1 dimensional.
|
| 475 |
|
|
|
| 476 |
|
|
-- 5. The array component type may not be tagged (which could necessitate
|
| 477 |
|
|
-- reassignment of proper tags).
|
| 478 |
|
|
|
| 479 |
|
|
-- 6. The array component type must not have unaligned bit components
|
| 480 |
|
|
|
| 481 |
|
|
-- 7. None of the components of the aggregate may be bit unaligned
|
| 482 |
|
|
-- components.
|
| 483 |
|
|
|
| 484 |
|
|
-- 8. There cannot be delayed components, since we do not know enough
|
| 485 |
|
|
-- at this stage to know if back end processing is possible.
|
| 486 |
|
|
|
| 487 |
|
|
-- 9. There cannot be any discriminated record components, since the
|
| 488 |
|
|
-- back end cannot handle this complex case.
|
| 489 |
|
|
|
| 490 |
|
|
-- 10. No controlled actions need to be generated for components
|
| 491 |
|
|
|
| 492 |
|
|
-- 11. For a VM back end, the array should have no aliased components
|
| 493 |
|
|
|
| 494 |
|
|
function Backend_Processing_Possible (N : Node_Id) return Boolean is
|
| 495 |
|
|
Typ : constant Entity_Id := Etype (N);
|
| 496 |
|
|
-- Typ is the correct constrained array subtype of the aggregate
|
| 497 |
|
|
|
| 498 |
|
|
function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
|
| 499 |
|
|
-- This routine checks components of aggregate N, enforcing checks
|
| 500 |
|
|
-- 1, 7, 8, and 9. In the multi-dimensional case, these checks are
|
| 501 |
|
|
-- performed on subaggregates. The Index value is the current index
|
| 502 |
|
|
-- being checked in the multi-dimensional case.
|
| 503 |
|
|
|
| 504 |
|
|
---------------------
|
| 505 |
|
|
-- Component_Check --
|
| 506 |
|
|
---------------------
|
| 507 |
|
|
|
| 508 |
|
|
function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
|
| 509 |
|
|
Expr : Node_Id;
|
| 510 |
|
|
|
| 511 |
|
|
begin
|
| 512 |
|
|
-- Checks 1: (no component associations)
|
| 513 |
|
|
|
| 514 |
|
|
if Present (Component_Associations (N)) then
|
| 515 |
|
|
return False;
|
| 516 |
|
|
end if;
|
| 517 |
|
|
|
| 518 |
|
|
-- Checks on components
|
| 519 |
|
|
|
| 520 |
|
|
-- Recurse to check subaggregates, which may appear in qualified
|
| 521 |
|
|
-- expressions. If delayed, the front-end will have to expand.
|
| 522 |
|
|
-- If the component is a discriminated record, treat as non-static,
|
| 523 |
|
|
-- as the back-end cannot handle this properly.
|
| 524 |
|
|
|
| 525 |
|
|
Expr := First (Expressions (N));
|
| 526 |
|
|
while Present (Expr) loop
|
| 527 |
|
|
|
| 528 |
|
|
-- Checks 8: (no delayed components)
|
| 529 |
|
|
|
| 530 |
|
|
if Is_Delayed_Aggregate (Expr) then
|
| 531 |
|
|
return False;
|
| 532 |
|
|
end if;
|
| 533 |
|
|
|
| 534 |
|
|
-- Checks 9: (no discriminated records)
|
| 535 |
|
|
|
| 536 |
|
|
if Present (Etype (Expr))
|
| 537 |
|
|
and then Is_Record_Type (Etype (Expr))
|
| 538 |
|
|
and then Has_Discriminants (Etype (Expr))
|
| 539 |
|
|
then
|
| 540 |
|
|
return False;
|
| 541 |
|
|
end if;
|
| 542 |
|
|
|
| 543 |
|
|
-- Checks 7. Component must not be bit aligned component
|
| 544 |
|
|
|
| 545 |
|
|
if Possible_Bit_Aligned_Component (Expr) then
|
| 546 |
|
|
return False;
|
| 547 |
|
|
end if;
|
| 548 |
|
|
|
| 549 |
|
|
-- Recursion to following indexes for multiple dimension case
|
| 550 |
|
|
|
| 551 |
|
|
if Present (Next_Index (Index))
|
| 552 |
|
|
and then not Component_Check (Expr, Next_Index (Index))
|
| 553 |
|
|
then
|
| 554 |
|
|
return False;
|
| 555 |
|
|
end if;
|
| 556 |
|
|
|
| 557 |
|
|
-- All checks for that component finished, on to next
|
| 558 |
|
|
|
| 559 |
|
|
Next (Expr);
|
| 560 |
|
|
end loop;
|
| 561 |
|
|
|
| 562 |
|
|
return True;
|
| 563 |
|
|
end Component_Check;
|
| 564 |
|
|
|
| 565 |
|
|
-- Start of processing for Backend_Processing_Possible
|
| 566 |
|
|
|
| 567 |
|
|
begin
|
| 568 |
|
|
-- Checks 2 (array not bit packed) and 10 (no controlled actions)
|
| 569 |
|
|
|
| 570 |
|
|
if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
|
| 571 |
|
|
return False;
|
| 572 |
|
|
end if;
|
| 573 |
|
|
|
| 574 |
|
|
-- If component is limited, aggregate must be expanded because each
|
| 575 |
|
|
-- component assignment must be built in place.
|
| 576 |
|
|
|
| 577 |
|
|
if Is_Immutably_Limited_Type (Component_Type (Typ)) then
|
| 578 |
|
|
return False;
|
| 579 |
|
|
end if;
|
| 580 |
|
|
|
| 581 |
|
|
-- Checks 4 (array must not be multi-dimensional Fortran case)
|
| 582 |
|
|
|
| 583 |
|
|
if Convention (Typ) = Convention_Fortran
|
| 584 |
|
|
and then Number_Dimensions (Typ) > 1
|
| 585 |
|
|
then
|
| 586 |
|
|
return False;
|
| 587 |
|
|
end if;
|
| 588 |
|
|
|
| 589 |
|
|
-- Checks 3 (size of array must be known at compile time)
|
| 590 |
|
|
|
| 591 |
|
|
if not Size_Known_At_Compile_Time (Typ) then
|
| 592 |
|
|
return False;
|
| 593 |
|
|
end if;
|
| 594 |
|
|
|
| 595 |
|
|
-- Checks on components
|
| 596 |
|
|
|
| 597 |
|
|
if not Component_Check (N, First_Index (Typ)) then
|
| 598 |
|
|
return False;
|
| 599 |
|
|
end if;
|
| 600 |
|
|
|
| 601 |
|
|
-- Checks 5 (if the component type is tagged, then we may need to do
|
| 602 |
|
|
-- tag adjustments. Perhaps this should be refined to check for any
|
| 603 |
|
|
-- component associations that actually need tag adjustment, similar
|
| 604 |
|
|
-- to the test in Component_Not_OK_For_Backend for record aggregates
|
| 605 |
|
|
-- with tagged components, but not clear whether it's worthwhile ???;
|
| 606 |
|
|
-- in the case of the JVM, object tags are handled implicitly)
|
| 607 |
|
|
|
| 608 |
|
|
if Is_Tagged_Type (Component_Type (Typ))
|
| 609 |
|
|
and then Tagged_Type_Expansion
|
| 610 |
|
|
then
|
| 611 |
|
|
return False;
|
| 612 |
|
|
end if;
|
| 613 |
|
|
|
| 614 |
|
|
-- Checks 6 (component type must not have bit aligned components)
|
| 615 |
|
|
|
| 616 |
|
|
if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
|
| 617 |
|
|
return False;
|
| 618 |
|
|
end if;
|
| 619 |
|
|
|
| 620 |
|
|
-- Checks 11: Array aggregates with aliased components are currently
|
| 621 |
|
|
-- not well supported by the VM backend; disable temporarily this
|
| 622 |
|
|
-- backend processing until it is definitely supported.
|
| 623 |
|
|
|
| 624 |
|
|
if VM_Target /= No_VM
|
| 625 |
|
|
and then Has_Aliased_Components (Base_Type (Typ))
|
| 626 |
|
|
then
|
| 627 |
|
|
return False;
|
| 628 |
|
|
end if;
|
| 629 |
|
|
|
| 630 |
|
|
-- Backend processing is possible
|
| 631 |
|
|
|
| 632 |
|
|
Set_Size_Known_At_Compile_Time (Etype (N), True);
|
| 633 |
|
|
return True;
|
| 634 |
|
|
end Backend_Processing_Possible;
|
| 635 |
|
|
|
| 636 |
|
|
---------------------------
|
| 637 |
|
|
-- Build_Array_Aggr_Code --
|
| 638 |
|
|
---------------------------
|
| 639 |
|
|
|
| 640 |
|
|
-- The code that we generate from a one dimensional aggregate is
|
| 641 |
|
|
|
| 642 |
|
|
-- 1. If the sub-aggregate contains discrete choices we
|
| 643 |
|
|
|
| 644 |
|
|
-- (a) Sort the discrete choices
|
| 645 |
|
|
|
| 646 |
|
|
-- (b) Otherwise for each discrete choice that specifies a range we
|
| 647 |
|
|
-- emit a loop. If a range specifies a maximum of three values, or
|
| 648 |
|
|
-- we are dealing with an expression we emit a sequence of
|
| 649 |
|
|
-- assignments instead of a loop.
|
| 650 |
|
|
|
| 651 |
|
|
-- (c) Generate the remaining loops to cover the others choice if any
|
| 652 |
|
|
|
| 653 |
|
|
-- 2. If the aggregate contains positional elements we
|
| 654 |
|
|
|
| 655 |
|
|
-- (a) translate the positional elements in a series of assignments
|
| 656 |
|
|
|
| 657 |
|
|
-- (b) Generate a final loop to cover the others choice if any.
|
| 658 |
|
|
-- Note that this final loop has to be a while loop since the case
|
| 659 |
|
|
|
| 660 |
|
|
-- L : Integer := Integer'Last;
|
| 661 |
|
|
-- H : Integer := Integer'Last;
|
| 662 |
|
|
-- A : array (L .. H) := (1, others =>0);
|
| 663 |
|
|
|
| 664 |
|
|
-- cannot be handled by a for loop. Thus for the following
|
| 665 |
|
|
|
| 666 |
|
|
-- array (L .. H) := (.. positional elements.., others =>E);
|
| 667 |
|
|
|
| 668 |
|
|
-- we always generate something like:
|
| 669 |
|
|
|
| 670 |
|
|
-- J : Index_Type := Index_Of_Last_Positional_Element;
|
| 671 |
|
|
-- while J < H loop
|
| 672 |
|
|
-- J := Index_Base'Succ (J)
|
| 673 |
|
|
-- Tmp (J) := E;
|
| 674 |
|
|
-- end loop;
|
| 675 |
|
|
|
| 676 |
|
|
function Build_Array_Aggr_Code
|
| 677 |
|
|
(N : Node_Id;
|
| 678 |
|
|
Ctype : Entity_Id;
|
| 679 |
|
|
Index : Node_Id;
|
| 680 |
|
|
Into : Node_Id;
|
| 681 |
|
|
Scalar_Comp : Boolean;
|
| 682 |
|
|
Indexes : List_Id := No_List) return List_Id
|
| 683 |
|
|
is
|
| 684 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 685 |
|
|
Index_Base : constant Entity_Id := Base_Type (Etype (Index));
|
| 686 |
|
|
Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
|
| 687 |
|
|
Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
|
| 688 |
|
|
|
| 689 |
|
|
function Add (Val : Int; To : Node_Id) return Node_Id;
|
| 690 |
|
|
-- Returns an expression where Val is added to expression To, unless
|
| 691 |
|
|
-- To+Val is provably out of To's base type range. To must be an
|
| 692 |
|
|
-- already analyzed expression.
|
| 693 |
|
|
|
| 694 |
|
|
function Empty_Range (L, H : Node_Id) return Boolean;
|
| 695 |
|
|
-- Returns True if the range defined by L .. H is certainly empty
|
| 696 |
|
|
|
| 697 |
|
|
function Equal (L, H : Node_Id) return Boolean;
|
| 698 |
|
|
-- Returns True if L = H for sure
|
| 699 |
|
|
|
| 700 |
|
|
function Index_Base_Name return Node_Id;
|
| 701 |
|
|
-- Returns a new reference to the index type name
|
| 702 |
|
|
|
| 703 |
|
|
function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
|
| 704 |
|
|
-- Ind must be a side-effect free expression. If the input aggregate
|
| 705 |
|
|
-- N to Build_Loop contains no sub-aggregates, then this function
|
| 706 |
|
|
-- returns the assignment statement:
|
| 707 |
|
|
--
|
| 708 |
|
|
-- Into (Indexes, Ind) := Expr;
|
| 709 |
|
|
--
|
| 710 |
|
|
-- Otherwise we call Build_Code recursively
|
| 711 |
|
|
--
|
| 712 |
|
|
-- Ada 2005 (AI-287): In case of default initialized component, Expr
|
| 713 |
|
|
-- is empty and we generate a call to the corresponding IP subprogram.
|
| 714 |
|
|
|
| 715 |
|
|
function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
|
| 716 |
|
|
-- Nodes L and H must be side-effect free expressions.
|
| 717 |
|
|
-- If the input aggregate N to Build_Loop contains no sub-aggregates,
|
| 718 |
|
|
-- This routine returns the for loop statement
|
| 719 |
|
|
--
|
| 720 |
|
|
-- for J in Index_Base'(L) .. Index_Base'(H) loop
|
| 721 |
|
|
-- Into (Indexes, J) := Expr;
|
| 722 |
|
|
-- end loop;
|
| 723 |
|
|
--
|
| 724 |
|
|
-- Otherwise we call Build_Code recursively.
|
| 725 |
|
|
-- As an optimization if the loop covers 3 or less scalar elements we
|
| 726 |
|
|
-- generate a sequence of assignments.
|
| 727 |
|
|
|
| 728 |
|
|
function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
|
| 729 |
|
|
-- Nodes L and H must be side-effect free expressions.
|
| 730 |
|
|
-- If the input aggregate N to Build_Loop contains no sub-aggregates,
|
| 731 |
|
|
-- This routine returns the while loop statement
|
| 732 |
|
|
--
|
| 733 |
|
|
-- J : Index_Base := L;
|
| 734 |
|
|
-- while J < H loop
|
| 735 |
|
|
-- J := Index_Base'Succ (J);
|
| 736 |
|
|
-- Into (Indexes, J) := Expr;
|
| 737 |
|
|
-- end loop;
|
| 738 |
|
|
--
|
| 739 |
|
|
-- Otherwise we call Build_Code recursively
|
| 740 |
|
|
|
| 741 |
|
|
function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
|
| 742 |
|
|
function Local_Expr_Value (E : Node_Id) return Uint;
|
| 743 |
|
|
-- These two Local routines are used to replace the corresponding ones
|
| 744 |
|
|
-- in sem_eval because while processing the bounds of an aggregate with
|
| 745 |
|
|
-- discrete choices whose index type is an enumeration, we build static
|
| 746 |
|
|
-- expressions not recognized by Compile_Time_Known_Value as such since
|
| 747 |
|
|
-- they have not yet been analyzed and resolved. All the expressions in
|
| 748 |
|
|
-- question are things like Index_Base_Name'Val (Const) which we can
|
| 749 |
|
|
-- easily recognize as being constant.
|
| 750 |
|
|
|
| 751 |
|
|
---------
|
| 752 |
|
|
-- Add --
|
| 753 |
|
|
---------
|
| 754 |
|
|
|
| 755 |
|
|
function Add (Val : Int; To : Node_Id) return Node_Id is
|
| 756 |
|
|
Expr_Pos : Node_Id;
|
| 757 |
|
|
Expr : Node_Id;
|
| 758 |
|
|
To_Pos : Node_Id;
|
| 759 |
|
|
U_To : Uint;
|
| 760 |
|
|
U_Val : constant Uint := UI_From_Int (Val);
|
| 761 |
|
|
|
| 762 |
|
|
begin
|
| 763 |
|
|
-- Note: do not try to optimize the case of Val = 0, because
|
| 764 |
|
|
-- we need to build a new node with the proper Sloc value anyway.
|
| 765 |
|
|
|
| 766 |
|
|
-- First test if we can do constant folding
|
| 767 |
|
|
|
| 768 |
|
|
if Local_Compile_Time_Known_Value (To) then
|
| 769 |
|
|
U_To := Local_Expr_Value (To) + Val;
|
| 770 |
|
|
|
| 771 |
|
|
-- Determine if our constant is outside the range of the index.
|
| 772 |
|
|
-- If so return an Empty node. This empty node will be caught
|
| 773 |
|
|
-- by Empty_Range below.
|
| 774 |
|
|
|
| 775 |
|
|
if Compile_Time_Known_Value (Index_Base_L)
|
| 776 |
|
|
and then U_To < Expr_Value (Index_Base_L)
|
| 777 |
|
|
then
|
| 778 |
|
|
return Empty;
|
| 779 |
|
|
|
| 780 |
|
|
elsif Compile_Time_Known_Value (Index_Base_H)
|
| 781 |
|
|
and then U_To > Expr_Value (Index_Base_H)
|
| 782 |
|
|
then
|
| 783 |
|
|
return Empty;
|
| 784 |
|
|
end if;
|
| 785 |
|
|
|
| 786 |
|
|
Expr_Pos := Make_Integer_Literal (Loc, U_To);
|
| 787 |
|
|
Set_Is_Static_Expression (Expr_Pos);
|
| 788 |
|
|
|
| 789 |
|
|
if not Is_Enumeration_Type (Index_Base) then
|
| 790 |
|
|
Expr := Expr_Pos;
|
| 791 |
|
|
|
| 792 |
|
|
-- If we are dealing with enumeration return
|
| 793 |
|
|
-- Index_Base'Val (Expr_Pos)
|
| 794 |
|
|
|
| 795 |
|
|
else
|
| 796 |
|
|
Expr :=
|
| 797 |
|
|
Make_Attribute_Reference
|
| 798 |
|
|
(Loc,
|
| 799 |
|
|
Prefix => Index_Base_Name,
|
| 800 |
|
|
Attribute_Name => Name_Val,
|
| 801 |
|
|
Expressions => New_List (Expr_Pos));
|
| 802 |
|
|
end if;
|
| 803 |
|
|
|
| 804 |
|
|
return Expr;
|
| 805 |
|
|
end if;
|
| 806 |
|
|
|
| 807 |
|
|
-- If we are here no constant folding possible
|
| 808 |
|
|
|
| 809 |
|
|
if not Is_Enumeration_Type (Index_Base) then
|
| 810 |
|
|
Expr :=
|
| 811 |
|
|
Make_Op_Add (Loc,
|
| 812 |
|
|
Left_Opnd => Duplicate_Subexpr (To),
|
| 813 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, U_Val));
|
| 814 |
|
|
|
| 815 |
|
|
-- If we are dealing with enumeration return
|
| 816 |
|
|
-- Index_Base'Val (Index_Base'Pos (To) + Val)
|
| 817 |
|
|
|
| 818 |
|
|
else
|
| 819 |
|
|
To_Pos :=
|
| 820 |
|
|
Make_Attribute_Reference
|
| 821 |
|
|
(Loc,
|
| 822 |
|
|
Prefix => Index_Base_Name,
|
| 823 |
|
|
Attribute_Name => Name_Pos,
|
| 824 |
|
|
Expressions => New_List (Duplicate_Subexpr (To)));
|
| 825 |
|
|
|
| 826 |
|
|
Expr_Pos :=
|
| 827 |
|
|
Make_Op_Add (Loc,
|
| 828 |
|
|
Left_Opnd => To_Pos,
|
| 829 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, U_Val));
|
| 830 |
|
|
|
| 831 |
|
|
Expr :=
|
| 832 |
|
|
Make_Attribute_Reference
|
| 833 |
|
|
(Loc,
|
| 834 |
|
|
Prefix => Index_Base_Name,
|
| 835 |
|
|
Attribute_Name => Name_Val,
|
| 836 |
|
|
Expressions => New_List (Expr_Pos));
|
| 837 |
|
|
end if;
|
| 838 |
|
|
|
| 839 |
|
|
return Expr;
|
| 840 |
|
|
end Add;
|
| 841 |
|
|
|
| 842 |
|
|
-----------------
|
| 843 |
|
|
-- Empty_Range --
|
| 844 |
|
|
-----------------
|
| 845 |
|
|
|
| 846 |
|
|
function Empty_Range (L, H : Node_Id) return Boolean is
|
| 847 |
|
|
Is_Empty : Boolean := False;
|
| 848 |
|
|
Low : Node_Id;
|
| 849 |
|
|
High : Node_Id;
|
| 850 |
|
|
|
| 851 |
|
|
begin
|
| 852 |
|
|
-- First check if L or H were already detected as overflowing the
|
| 853 |
|
|
-- index base range type by function Add above. If this is so Add
|
| 854 |
|
|
-- returns the empty node.
|
| 855 |
|
|
|
| 856 |
|
|
if No (L) or else No (H) then
|
| 857 |
|
|
return True;
|
| 858 |
|
|
end if;
|
| 859 |
|
|
|
| 860 |
|
|
for J in 1 .. 3 loop
|
| 861 |
|
|
case J is
|
| 862 |
|
|
|
| 863 |
|
|
-- L > H range is empty
|
| 864 |
|
|
|
| 865 |
|
|
when 1 =>
|
| 866 |
|
|
Low := L;
|
| 867 |
|
|
High := H;
|
| 868 |
|
|
|
| 869 |
|
|
-- B_L > H range must be empty
|
| 870 |
|
|
|
| 871 |
|
|
when 2 =>
|
| 872 |
|
|
Low := Index_Base_L;
|
| 873 |
|
|
High := H;
|
| 874 |
|
|
|
| 875 |
|
|
-- L > B_H range must be empty
|
| 876 |
|
|
|
| 877 |
|
|
when 3 =>
|
| 878 |
|
|
Low := L;
|
| 879 |
|
|
High := Index_Base_H;
|
| 880 |
|
|
end case;
|
| 881 |
|
|
|
| 882 |
|
|
if Local_Compile_Time_Known_Value (Low)
|
| 883 |
|
|
and then Local_Compile_Time_Known_Value (High)
|
| 884 |
|
|
then
|
| 885 |
|
|
Is_Empty :=
|
| 886 |
|
|
UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
|
| 887 |
|
|
end if;
|
| 888 |
|
|
|
| 889 |
|
|
exit when Is_Empty;
|
| 890 |
|
|
end loop;
|
| 891 |
|
|
|
| 892 |
|
|
return Is_Empty;
|
| 893 |
|
|
end Empty_Range;
|
| 894 |
|
|
|
| 895 |
|
|
-----------
|
| 896 |
|
|
-- Equal --
|
| 897 |
|
|
-----------
|
| 898 |
|
|
|
| 899 |
|
|
function Equal (L, H : Node_Id) return Boolean is
|
| 900 |
|
|
begin
|
| 901 |
|
|
if L = H then
|
| 902 |
|
|
return True;
|
| 903 |
|
|
|
| 904 |
|
|
elsif Local_Compile_Time_Known_Value (L)
|
| 905 |
|
|
and then Local_Compile_Time_Known_Value (H)
|
| 906 |
|
|
then
|
| 907 |
|
|
return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
|
| 908 |
|
|
end if;
|
| 909 |
|
|
|
| 910 |
|
|
return False;
|
| 911 |
|
|
end Equal;
|
| 912 |
|
|
|
| 913 |
|
|
----------------
|
| 914 |
|
|
-- Gen_Assign --
|
| 915 |
|
|
----------------
|
| 916 |
|
|
|
| 917 |
|
|
function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
|
| 918 |
|
|
L : constant List_Id := New_List;
|
| 919 |
|
|
A : Node_Id;
|
| 920 |
|
|
|
| 921 |
|
|
New_Indexes : List_Id;
|
| 922 |
|
|
Indexed_Comp : Node_Id;
|
| 923 |
|
|
Expr_Q : Node_Id;
|
| 924 |
|
|
Comp_Type : Entity_Id := Empty;
|
| 925 |
|
|
|
| 926 |
|
|
function Add_Loop_Actions (Lis : List_Id) return List_Id;
|
| 927 |
|
|
-- Collect insert_actions generated in the construction of a
|
| 928 |
|
|
-- loop, and prepend them to the sequence of assignments to
|
| 929 |
|
|
-- complete the eventual body of the loop.
|
| 930 |
|
|
|
| 931 |
|
|
----------------------
|
| 932 |
|
|
-- Add_Loop_Actions --
|
| 933 |
|
|
----------------------
|
| 934 |
|
|
|
| 935 |
|
|
function Add_Loop_Actions (Lis : List_Id) return List_Id is
|
| 936 |
|
|
Res : List_Id;
|
| 937 |
|
|
|
| 938 |
|
|
begin
|
| 939 |
|
|
-- Ada 2005 (AI-287): Do nothing else in case of default
|
| 940 |
|
|
-- initialized component.
|
| 941 |
|
|
|
| 942 |
|
|
if No (Expr) then
|
| 943 |
|
|
return Lis;
|
| 944 |
|
|
|
| 945 |
|
|
elsif Nkind (Parent (Expr)) = N_Component_Association
|
| 946 |
|
|
and then Present (Loop_Actions (Parent (Expr)))
|
| 947 |
|
|
then
|
| 948 |
|
|
Append_List (Lis, Loop_Actions (Parent (Expr)));
|
| 949 |
|
|
Res := Loop_Actions (Parent (Expr));
|
| 950 |
|
|
Set_Loop_Actions (Parent (Expr), No_List);
|
| 951 |
|
|
return Res;
|
| 952 |
|
|
|
| 953 |
|
|
else
|
| 954 |
|
|
return Lis;
|
| 955 |
|
|
end if;
|
| 956 |
|
|
end Add_Loop_Actions;
|
| 957 |
|
|
|
| 958 |
|
|
-- Start of processing for Gen_Assign
|
| 959 |
|
|
|
| 960 |
|
|
begin
|
| 961 |
|
|
if No (Indexes) then
|
| 962 |
|
|
New_Indexes := New_List;
|
| 963 |
|
|
else
|
| 964 |
|
|
New_Indexes := New_Copy_List_Tree (Indexes);
|
| 965 |
|
|
end if;
|
| 966 |
|
|
|
| 967 |
|
|
Append_To (New_Indexes, Ind);
|
| 968 |
|
|
|
| 969 |
|
|
if Present (Next_Index (Index)) then
|
| 970 |
|
|
return
|
| 971 |
|
|
Add_Loop_Actions (
|
| 972 |
|
|
Build_Array_Aggr_Code
|
| 973 |
|
|
(N => Expr,
|
| 974 |
|
|
Ctype => Ctype,
|
| 975 |
|
|
Index => Next_Index (Index),
|
| 976 |
|
|
Into => Into,
|
| 977 |
|
|
Scalar_Comp => Scalar_Comp,
|
| 978 |
|
|
Indexes => New_Indexes));
|
| 979 |
|
|
end if;
|
| 980 |
|
|
|
| 981 |
|
|
-- If we get here then we are at a bottom-level (sub-)aggregate
|
| 982 |
|
|
|
| 983 |
|
|
Indexed_Comp :=
|
| 984 |
|
|
Checks_Off
|
| 985 |
|
|
(Make_Indexed_Component (Loc,
|
| 986 |
|
|
Prefix => New_Copy_Tree (Into),
|
| 987 |
|
|
Expressions => New_Indexes));
|
| 988 |
|
|
|
| 989 |
|
|
Set_Assignment_OK (Indexed_Comp);
|
| 990 |
|
|
|
| 991 |
|
|
-- Ada 2005 (AI-287): In case of default initialized component, Expr
|
| 992 |
|
|
-- is not present (and therefore we also initialize Expr_Q to empty).
|
| 993 |
|
|
|
| 994 |
|
|
if No (Expr) then
|
| 995 |
|
|
Expr_Q := Empty;
|
| 996 |
|
|
elsif Nkind (Expr) = N_Qualified_Expression then
|
| 997 |
|
|
Expr_Q := Expression (Expr);
|
| 998 |
|
|
else
|
| 999 |
|
|
Expr_Q := Expr;
|
| 1000 |
|
|
end if;
|
| 1001 |
|
|
|
| 1002 |
|
|
if Present (Etype (N))
|
| 1003 |
|
|
and then Etype (N) /= Any_Composite
|
| 1004 |
|
|
then
|
| 1005 |
|
|
Comp_Type := Component_Type (Etype (N));
|
| 1006 |
|
|
pragma Assert (Comp_Type = Ctype); -- AI-287
|
| 1007 |
|
|
|
| 1008 |
|
|
elsif Present (Next (First (New_Indexes))) then
|
| 1009 |
|
|
|
| 1010 |
|
|
-- Ada 2005 (AI-287): Do nothing in case of default initialized
|
| 1011 |
|
|
-- component because we have received the component type in
|
| 1012 |
|
|
-- the formal parameter Ctype.
|
| 1013 |
|
|
|
| 1014 |
|
|
-- ??? Some assert pragmas have been added to check if this new
|
| 1015 |
|
|
-- formal can be used to replace this code in all cases.
|
| 1016 |
|
|
|
| 1017 |
|
|
if Present (Expr) then
|
| 1018 |
|
|
|
| 1019 |
|
|
-- This is a multidimensional array. Recover the component
|
| 1020 |
|
|
-- type from the outermost aggregate, because subaggregates
|
| 1021 |
|
|
-- do not have an assigned type.
|
| 1022 |
|
|
|
| 1023 |
|
|
declare
|
| 1024 |
|
|
P : Node_Id;
|
| 1025 |
|
|
|
| 1026 |
|
|
begin
|
| 1027 |
|
|
P := Parent (Expr);
|
| 1028 |
|
|
while Present (P) loop
|
| 1029 |
|
|
if Nkind (P) = N_Aggregate
|
| 1030 |
|
|
and then Present (Etype (P))
|
| 1031 |
|
|
then
|
| 1032 |
|
|
Comp_Type := Component_Type (Etype (P));
|
| 1033 |
|
|
exit;
|
| 1034 |
|
|
|
| 1035 |
|
|
else
|
| 1036 |
|
|
P := Parent (P);
|
| 1037 |
|
|
end if;
|
| 1038 |
|
|
end loop;
|
| 1039 |
|
|
|
| 1040 |
|
|
pragma Assert (Comp_Type = Ctype); -- AI-287
|
| 1041 |
|
|
end;
|
| 1042 |
|
|
end if;
|
| 1043 |
|
|
end if;
|
| 1044 |
|
|
|
| 1045 |
|
|
-- Ada 2005 (AI-287): We only analyze the expression in case of non-
|
| 1046 |
|
|
-- default initialized components (otherwise Expr_Q is not present).
|
| 1047 |
|
|
|
| 1048 |
|
|
if Present (Expr_Q)
|
| 1049 |
|
|
and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
|
| 1050 |
|
|
then
|
| 1051 |
|
|
-- At this stage the Expression may not have been analyzed yet
|
| 1052 |
|
|
-- because the array aggregate code has not been updated to use
|
| 1053 |
|
|
-- the Expansion_Delayed flag and avoid analysis altogether to
|
| 1054 |
|
|
-- solve the same problem (see Resolve_Aggr_Expr). So let us do
|
| 1055 |
|
|
-- the analysis of non-array aggregates now in order to get the
|
| 1056 |
|
|
-- value of Expansion_Delayed flag for the inner aggregate ???
|
| 1057 |
|
|
|
| 1058 |
|
|
if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
|
| 1059 |
|
|
Analyze_And_Resolve (Expr_Q, Comp_Type);
|
| 1060 |
|
|
end if;
|
| 1061 |
|
|
|
| 1062 |
|
|
if Is_Delayed_Aggregate (Expr_Q) then
|
| 1063 |
|
|
|
| 1064 |
|
|
-- This is either a subaggregate of a multidimensional array,
|
| 1065 |
|
|
-- or a component of an array type whose component type is
|
| 1066 |
|
|
-- also an array. In the latter case, the expression may have
|
| 1067 |
|
|
-- component associations that provide different bounds from
|
| 1068 |
|
|
-- those of the component type, and sliding must occur. Instead
|
| 1069 |
|
|
-- of decomposing the current aggregate assignment, force the
|
| 1070 |
|
|
-- re-analysis of the assignment, so that a temporary will be
|
| 1071 |
|
|
-- generated in the usual fashion, and sliding will take place.
|
| 1072 |
|
|
|
| 1073 |
|
|
if Nkind (Parent (N)) = N_Assignment_Statement
|
| 1074 |
|
|
and then Is_Array_Type (Comp_Type)
|
| 1075 |
|
|
and then Present (Component_Associations (Expr_Q))
|
| 1076 |
|
|
and then Must_Slide (Comp_Type, Etype (Expr_Q))
|
| 1077 |
|
|
then
|
| 1078 |
|
|
Set_Expansion_Delayed (Expr_Q, False);
|
| 1079 |
|
|
Set_Analyzed (Expr_Q, False);
|
| 1080 |
|
|
|
| 1081 |
|
|
else
|
| 1082 |
|
|
return
|
| 1083 |
|
|
Add_Loop_Actions (
|
| 1084 |
|
|
Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
|
| 1085 |
|
|
end if;
|
| 1086 |
|
|
end if;
|
| 1087 |
|
|
end if;
|
| 1088 |
|
|
|
| 1089 |
|
|
-- Ada 2005 (AI-287): In case of default initialized component, call
|
| 1090 |
|
|
-- the initialization subprogram associated with the component type.
|
| 1091 |
|
|
-- If the component type is an access type, add an explicit null
|
| 1092 |
|
|
-- assignment, because for the back-end there is an initialization
|
| 1093 |
|
|
-- present for the whole aggregate, and no default initialization
|
| 1094 |
|
|
-- will take place.
|
| 1095 |
|
|
|
| 1096 |
|
|
-- In addition, if the component type is controlled, we must call
|
| 1097 |
|
|
-- its Initialize procedure explicitly, because there is no explicit
|
| 1098 |
|
|
-- object creation that will invoke it otherwise.
|
| 1099 |
|
|
|
| 1100 |
|
|
if No (Expr) then
|
| 1101 |
|
|
if Present (Base_Init_Proc (Base_Type (Ctype)))
|
| 1102 |
|
|
or else Has_Task (Base_Type (Ctype))
|
| 1103 |
|
|
then
|
| 1104 |
|
|
Append_List_To (L,
|
| 1105 |
|
|
Build_Initialization_Call (Loc,
|
| 1106 |
|
|
Id_Ref => Indexed_Comp,
|
| 1107 |
|
|
Typ => Ctype,
|
| 1108 |
|
|
With_Default_Init => True));
|
| 1109 |
|
|
|
| 1110 |
|
|
elsif Is_Access_Type (Ctype) then
|
| 1111 |
|
|
Append_To (L,
|
| 1112 |
|
|
Make_Assignment_Statement (Loc,
|
| 1113 |
|
|
Name => Indexed_Comp,
|
| 1114 |
|
|
Expression => Make_Null (Loc)));
|
| 1115 |
|
|
end if;
|
| 1116 |
|
|
|
| 1117 |
|
|
if Needs_Finalization (Ctype) then
|
| 1118 |
|
|
Append_To (L,
|
| 1119 |
|
|
Make_Init_Call (
|
| 1120 |
|
|
Obj_Ref => New_Copy_Tree (Indexed_Comp),
|
| 1121 |
|
|
Typ => Ctype));
|
| 1122 |
|
|
end if;
|
| 1123 |
|
|
|
| 1124 |
|
|
else
|
| 1125 |
|
|
-- Now generate the assignment with no associated controlled
|
| 1126 |
|
|
-- actions since the target of the assignment may not have been
|
| 1127 |
|
|
-- initialized, it is not possible to Finalize it as expected by
|
| 1128 |
|
|
-- normal controlled assignment. The rest of the controlled
|
| 1129 |
|
|
-- actions are done manually with the proper finalization list
|
| 1130 |
|
|
-- coming from the context.
|
| 1131 |
|
|
|
| 1132 |
|
|
A :=
|
| 1133 |
|
|
Make_OK_Assignment_Statement (Loc,
|
| 1134 |
|
|
Name => Indexed_Comp,
|
| 1135 |
|
|
Expression => New_Copy_Tree (Expr));
|
| 1136 |
|
|
|
| 1137 |
|
|
if Present (Comp_Type) and then Needs_Finalization (Comp_Type) then
|
| 1138 |
|
|
Set_No_Ctrl_Actions (A);
|
| 1139 |
|
|
|
| 1140 |
|
|
-- If this is an aggregate for an array of arrays, each
|
| 1141 |
|
|
-- sub-aggregate will be expanded as well, and even with
|
| 1142 |
|
|
-- No_Ctrl_Actions the assignments of inner components will
|
| 1143 |
|
|
-- require attachment in their assignments to temporaries.
|
| 1144 |
|
|
-- These temporaries must be finalized for each subaggregate,
|
| 1145 |
|
|
-- to prevent multiple attachments of the same temporary
|
| 1146 |
|
|
-- location to same finalization chain (and consequently
|
| 1147 |
|
|
-- circular lists). To ensure that finalization takes place
|
| 1148 |
|
|
-- for each subaggregate we wrap the assignment in a block.
|
| 1149 |
|
|
|
| 1150 |
|
|
if Is_Array_Type (Comp_Type)
|
| 1151 |
|
|
and then Nkind (Expr) = N_Aggregate
|
| 1152 |
|
|
then
|
| 1153 |
|
|
A :=
|
| 1154 |
|
|
Make_Block_Statement (Loc,
|
| 1155 |
|
|
Handled_Statement_Sequence =>
|
| 1156 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
| 1157 |
|
|
Statements => New_List (A)));
|
| 1158 |
|
|
end if;
|
| 1159 |
|
|
end if;
|
| 1160 |
|
|
|
| 1161 |
|
|
Append_To (L, A);
|
| 1162 |
|
|
|
| 1163 |
|
|
-- Adjust the tag if tagged (because of possible view
|
| 1164 |
|
|
-- conversions), unless compiling for a VM where
|
| 1165 |
|
|
-- tags are implicit.
|
| 1166 |
|
|
|
| 1167 |
|
|
if Present (Comp_Type)
|
| 1168 |
|
|
and then Is_Tagged_Type (Comp_Type)
|
| 1169 |
|
|
and then Tagged_Type_Expansion
|
| 1170 |
|
|
then
|
| 1171 |
|
|
declare
|
| 1172 |
|
|
Full_Typ : constant Entity_Id := Underlying_Type (Comp_Type);
|
| 1173 |
|
|
|
| 1174 |
|
|
begin
|
| 1175 |
|
|
A :=
|
| 1176 |
|
|
Make_OK_Assignment_Statement (Loc,
|
| 1177 |
|
|
Name =>
|
| 1178 |
|
|
Make_Selected_Component (Loc,
|
| 1179 |
|
|
Prefix => New_Copy_Tree (Indexed_Comp),
|
| 1180 |
|
|
Selector_Name =>
|
| 1181 |
|
|
New_Reference_To
|
| 1182 |
|
|
(First_Tag_Component (Full_Typ), Loc)),
|
| 1183 |
|
|
|
| 1184 |
|
|
Expression =>
|
| 1185 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
| 1186 |
|
|
New_Reference_To
|
| 1187 |
|
|
(Node (First_Elmt (Access_Disp_Table (Full_Typ))),
|
| 1188 |
|
|
Loc)));
|
| 1189 |
|
|
|
| 1190 |
|
|
Append_To (L, A);
|
| 1191 |
|
|
end;
|
| 1192 |
|
|
end if;
|
| 1193 |
|
|
|
| 1194 |
|
|
-- Adjust and attach the component to the proper final list, which
|
| 1195 |
|
|
-- can be the controller of the outer record object or the final
|
| 1196 |
|
|
-- list associated with the scope.
|
| 1197 |
|
|
|
| 1198 |
|
|
-- If the component is itself an array of controlled types, whose
|
| 1199 |
|
|
-- value is given by a sub-aggregate, then the attach calls have
|
| 1200 |
|
|
-- been generated when individual subcomponent are assigned, and
|
| 1201 |
|
|
-- must not be done again to prevent malformed finalization chains
|
| 1202 |
|
|
-- (see comments above, concerning the creation of a block to hold
|
| 1203 |
|
|
-- inner finalization actions).
|
| 1204 |
|
|
|
| 1205 |
|
|
if Present (Comp_Type)
|
| 1206 |
|
|
and then Needs_Finalization (Comp_Type)
|
| 1207 |
|
|
and then not Is_Limited_Type (Comp_Type)
|
| 1208 |
|
|
and then not
|
| 1209 |
|
|
(Is_Array_Type (Comp_Type)
|
| 1210 |
|
|
and then Is_Controlled (Component_Type (Comp_Type))
|
| 1211 |
|
|
and then Nkind (Expr) = N_Aggregate)
|
| 1212 |
|
|
then
|
| 1213 |
|
|
Append_To (L,
|
| 1214 |
|
|
Make_Adjust_Call (
|
| 1215 |
|
|
Obj_Ref => New_Copy_Tree (Indexed_Comp),
|
| 1216 |
|
|
Typ => Comp_Type));
|
| 1217 |
|
|
end if;
|
| 1218 |
|
|
end if;
|
| 1219 |
|
|
|
| 1220 |
|
|
return Add_Loop_Actions (L);
|
| 1221 |
|
|
end Gen_Assign;
|
| 1222 |
|
|
|
| 1223 |
|
|
--------------
|
| 1224 |
|
|
-- Gen_Loop --
|
| 1225 |
|
|
--------------
|
| 1226 |
|
|
|
| 1227 |
|
|
function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
|
| 1228 |
|
|
L_J : Node_Id;
|
| 1229 |
|
|
|
| 1230 |
|
|
L_L : Node_Id;
|
| 1231 |
|
|
-- Index_Base'(L)
|
| 1232 |
|
|
|
| 1233 |
|
|
L_H : Node_Id;
|
| 1234 |
|
|
-- Index_Base'(H)
|
| 1235 |
|
|
|
| 1236 |
|
|
L_Range : Node_Id;
|
| 1237 |
|
|
-- Index_Base'(L) .. Index_Base'(H)
|
| 1238 |
|
|
|
| 1239 |
|
|
L_Iteration_Scheme : Node_Id;
|
| 1240 |
|
|
-- L_J in Index_Base'(L) .. Index_Base'(H)
|
| 1241 |
|
|
|
| 1242 |
|
|
L_Body : List_Id;
|
| 1243 |
|
|
-- The statements to execute in the loop
|
| 1244 |
|
|
|
| 1245 |
|
|
S : constant List_Id := New_List;
|
| 1246 |
|
|
-- List of statements
|
| 1247 |
|
|
|
| 1248 |
|
|
Tcopy : Node_Id;
|
| 1249 |
|
|
-- Copy of expression tree, used for checking purposes
|
| 1250 |
|
|
|
| 1251 |
|
|
begin
|
| 1252 |
|
|
-- If loop bounds define an empty range return the null statement
|
| 1253 |
|
|
|
| 1254 |
|
|
if Empty_Range (L, H) then
|
| 1255 |
|
|
Append_To (S, Make_Null_Statement (Loc));
|
| 1256 |
|
|
|
| 1257 |
|
|
-- Ada 2005 (AI-287): Nothing else need to be done in case of
|
| 1258 |
|
|
-- default initialized component.
|
| 1259 |
|
|
|
| 1260 |
|
|
if No (Expr) then
|
| 1261 |
|
|
null;
|
| 1262 |
|
|
|
| 1263 |
|
|
else
|
| 1264 |
|
|
-- The expression must be type-checked even though no component
|
| 1265 |
|
|
-- of the aggregate will have this value. This is done only for
|
| 1266 |
|
|
-- actual components of the array, not for subaggregates. Do
|
| 1267 |
|
|
-- the check on a copy, because the expression may be shared
|
| 1268 |
|
|
-- among several choices, some of which might be non-null.
|
| 1269 |
|
|
|
| 1270 |
|
|
if Present (Etype (N))
|
| 1271 |
|
|
and then Is_Array_Type (Etype (N))
|
| 1272 |
|
|
and then No (Next_Index (Index))
|
| 1273 |
|
|
then
|
| 1274 |
|
|
Expander_Mode_Save_And_Set (False);
|
| 1275 |
|
|
Tcopy := New_Copy_Tree (Expr);
|
| 1276 |
|
|
Set_Parent (Tcopy, N);
|
| 1277 |
|
|
Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
|
| 1278 |
|
|
Expander_Mode_Restore;
|
| 1279 |
|
|
end if;
|
| 1280 |
|
|
end if;
|
| 1281 |
|
|
|
| 1282 |
|
|
return S;
|
| 1283 |
|
|
|
| 1284 |
|
|
-- If loop bounds are the same then generate an assignment
|
| 1285 |
|
|
|
| 1286 |
|
|
elsif Equal (L, H) then
|
| 1287 |
|
|
return Gen_Assign (New_Copy_Tree (L), Expr);
|
| 1288 |
|
|
|
| 1289 |
|
|
-- If H - L <= 2 then generate a sequence of assignments when we are
|
| 1290 |
|
|
-- processing the bottom most aggregate and it contains scalar
|
| 1291 |
|
|
-- components.
|
| 1292 |
|
|
|
| 1293 |
|
|
elsif No (Next_Index (Index))
|
| 1294 |
|
|
and then Scalar_Comp
|
| 1295 |
|
|
and then Local_Compile_Time_Known_Value (L)
|
| 1296 |
|
|
and then Local_Compile_Time_Known_Value (H)
|
| 1297 |
|
|
and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
|
| 1298 |
|
|
then
|
| 1299 |
|
|
|
| 1300 |
|
|
Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
|
| 1301 |
|
|
Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
|
| 1302 |
|
|
|
| 1303 |
|
|
if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
|
| 1304 |
|
|
Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
|
| 1305 |
|
|
end if;
|
| 1306 |
|
|
|
| 1307 |
|
|
return S;
|
| 1308 |
|
|
end if;
|
| 1309 |
|
|
|
| 1310 |
|
|
-- Otherwise construct the loop, starting with the loop index L_J
|
| 1311 |
|
|
|
| 1312 |
|
|
L_J := Make_Temporary (Loc, 'J', L);
|
| 1313 |
|
|
|
| 1314 |
|
|
-- Construct "L .. H" in Index_Base. We use a qualified expression
|
| 1315 |
|
|
-- for the bound to convert to the index base, but we don't need
|
| 1316 |
|
|
-- to do that if we already have the base type at hand.
|
| 1317 |
|
|
|
| 1318 |
|
|
if Etype (L) = Index_Base then
|
| 1319 |
|
|
L_L := L;
|
| 1320 |
|
|
else
|
| 1321 |
|
|
L_L :=
|
| 1322 |
|
|
Make_Qualified_Expression (Loc,
|
| 1323 |
|
|
Subtype_Mark => Index_Base_Name,
|
| 1324 |
|
|
Expression => L);
|
| 1325 |
|
|
end if;
|
| 1326 |
|
|
|
| 1327 |
|
|
if Etype (H) = Index_Base then
|
| 1328 |
|
|
L_H := H;
|
| 1329 |
|
|
else
|
| 1330 |
|
|
L_H :=
|
| 1331 |
|
|
Make_Qualified_Expression (Loc,
|
| 1332 |
|
|
Subtype_Mark => Index_Base_Name,
|
| 1333 |
|
|
Expression => H);
|
| 1334 |
|
|
end if;
|
| 1335 |
|
|
|
| 1336 |
|
|
L_Range :=
|
| 1337 |
|
|
Make_Range (Loc,
|
| 1338 |
|
|
Low_Bound => L_L,
|
| 1339 |
|
|
High_Bound => L_H);
|
| 1340 |
|
|
|
| 1341 |
|
|
-- Construct "for L_J in Index_Base range L .. H"
|
| 1342 |
|
|
|
| 1343 |
|
|
L_Iteration_Scheme :=
|
| 1344 |
|
|
Make_Iteration_Scheme
|
| 1345 |
|
|
(Loc,
|
| 1346 |
|
|
Loop_Parameter_Specification =>
|
| 1347 |
|
|
Make_Loop_Parameter_Specification
|
| 1348 |
|
|
(Loc,
|
| 1349 |
|
|
Defining_Identifier => L_J,
|
| 1350 |
|
|
Discrete_Subtype_Definition => L_Range));
|
| 1351 |
|
|
|
| 1352 |
|
|
-- Construct the statements to execute in the loop body
|
| 1353 |
|
|
|
| 1354 |
|
|
L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
|
| 1355 |
|
|
|
| 1356 |
|
|
-- Construct the final loop
|
| 1357 |
|
|
|
| 1358 |
|
|
Append_To (S, Make_Implicit_Loop_Statement
|
| 1359 |
|
|
(Node => N,
|
| 1360 |
|
|
Identifier => Empty,
|
| 1361 |
|
|
Iteration_Scheme => L_Iteration_Scheme,
|
| 1362 |
|
|
Statements => L_Body));
|
| 1363 |
|
|
|
| 1364 |
|
|
-- A small optimization: if the aggregate is initialized with a box
|
| 1365 |
|
|
-- and the component type has no initialization procedure, remove the
|
| 1366 |
|
|
-- useless empty loop.
|
| 1367 |
|
|
|
| 1368 |
|
|
if Nkind (First (S)) = N_Loop_Statement
|
| 1369 |
|
|
and then Is_Empty_List (Statements (First (S)))
|
| 1370 |
|
|
then
|
| 1371 |
|
|
return New_List (Make_Null_Statement (Loc));
|
| 1372 |
|
|
else
|
| 1373 |
|
|
return S;
|
| 1374 |
|
|
end if;
|
| 1375 |
|
|
end Gen_Loop;
|
| 1376 |
|
|
|
| 1377 |
|
|
---------------
|
| 1378 |
|
|
-- Gen_While --
|
| 1379 |
|
|
---------------
|
| 1380 |
|
|
|
| 1381 |
|
|
-- The code built is
|
| 1382 |
|
|
|
| 1383 |
|
|
-- W_J : Index_Base := L;
|
| 1384 |
|
|
-- while W_J < H loop
|
| 1385 |
|
|
-- W_J := Index_Base'Succ (W);
|
| 1386 |
|
|
-- L_Body;
|
| 1387 |
|
|
-- end loop;
|
| 1388 |
|
|
|
| 1389 |
|
|
function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
|
| 1390 |
|
|
W_J : Node_Id;
|
| 1391 |
|
|
|
| 1392 |
|
|
W_Decl : Node_Id;
|
| 1393 |
|
|
-- W_J : Base_Type := L;
|
| 1394 |
|
|
|
| 1395 |
|
|
W_Iteration_Scheme : Node_Id;
|
| 1396 |
|
|
-- while W_J < H
|
| 1397 |
|
|
|
| 1398 |
|
|
W_Index_Succ : Node_Id;
|
| 1399 |
|
|
-- Index_Base'Succ (J)
|
| 1400 |
|
|
|
| 1401 |
|
|
W_Increment : Node_Id;
|
| 1402 |
|
|
-- W_J := Index_Base'Succ (W)
|
| 1403 |
|
|
|
| 1404 |
|
|
W_Body : constant List_Id := New_List;
|
| 1405 |
|
|
-- The statements to execute in the loop
|
| 1406 |
|
|
|
| 1407 |
|
|
S : constant List_Id := New_List;
|
| 1408 |
|
|
-- list of statement
|
| 1409 |
|
|
|
| 1410 |
|
|
begin
|
| 1411 |
|
|
-- If loop bounds define an empty range or are equal return null
|
| 1412 |
|
|
|
| 1413 |
|
|
if Empty_Range (L, H) or else Equal (L, H) then
|
| 1414 |
|
|
Append_To (S, Make_Null_Statement (Loc));
|
| 1415 |
|
|
return S;
|
| 1416 |
|
|
end if;
|
| 1417 |
|
|
|
| 1418 |
|
|
-- Build the decl of W_J
|
| 1419 |
|
|
|
| 1420 |
|
|
W_J := Make_Temporary (Loc, 'J', L);
|
| 1421 |
|
|
W_Decl :=
|
| 1422 |
|
|
Make_Object_Declaration
|
| 1423 |
|
|
(Loc,
|
| 1424 |
|
|
Defining_Identifier => W_J,
|
| 1425 |
|
|
Object_Definition => Index_Base_Name,
|
| 1426 |
|
|
Expression => L);
|
| 1427 |
|
|
|
| 1428 |
|
|
-- Theoretically we should do a New_Copy_Tree (L) here, but we know
|
| 1429 |
|
|
-- that in this particular case L is a fresh Expr generated by
|
| 1430 |
|
|
-- Add which we are the only ones to use.
|
| 1431 |
|
|
|
| 1432 |
|
|
Append_To (S, W_Decl);
|
| 1433 |
|
|
|
| 1434 |
|
|
-- Construct " while W_J < H"
|
| 1435 |
|
|
|
| 1436 |
|
|
W_Iteration_Scheme :=
|
| 1437 |
|
|
Make_Iteration_Scheme
|
| 1438 |
|
|
(Loc,
|
| 1439 |
|
|
Condition => Make_Op_Lt
|
| 1440 |
|
|
(Loc,
|
| 1441 |
|
|
Left_Opnd => New_Reference_To (W_J, Loc),
|
| 1442 |
|
|
Right_Opnd => New_Copy_Tree (H)));
|
| 1443 |
|
|
|
| 1444 |
|
|
-- Construct the statements to execute in the loop body
|
| 1445 |
|
|
|
| 1446 |
|
|
W_Index_Succ :=
|
| 1447 |
|
|
Make_Attribute_Reference
|
| 1448 |
|
|
(Loc,
|
| 1449 |
|
|
Prefix => Index_Base_Name,
|
| 1450 |
|
|
Attribute_Name => Name_Succ,
|
| 1451 |
|
|
Expressions => New_List (New_Reference_To (W_J, Loc)));
|
| 1452 |
|
|
|
| 1453 |
|
|
W_Increment :=
|
| 1454 |
|
|
Make_OK_Assignment_Statement
|
| 1455 |
|
|
(Loc,
|
| 1456 |
|
|
Name => New_Reference_To (W_J, Loc),
|
| 1457 |
|
|
Expression => W_Index_Succ);
|
| 1458 |
|
|
|
| 1459 |
|
|
Append_To (W_Body, W_Increment);
|
| 1460 |
|
|
Append_List_To (W_Body,
|
| 1461 |
|
|
Gen_Assign (New_Reference_To (W_J, Loc), Expr));
|
| 1462 |
|
|
|
| 1463 |
|
|
-- Construct the final loop
|
| 1464 |
|
|
|
| 1465 |
|
|
Append_To (S, Make_Implicit_Loop_Statement
|
| 1466 |
|
|
(Node => N,
|
| 1467 |
|
|
Identifier => Empty,
|
| 1468 |
|
|
Iteration_Scheme => W_Iteration_Scheme,
|
| 1469 |
|
|
Statements => W_Body));
|
| 1470 |
|
|
|
| 1471 |
|
|
return S;
|
| 1472 |
|
|
end Gen_While;
|
| 1473 |
|
|
|
| 1474 |
|
|
---------------------
|
| 1475 |
|
|
-- Index_Base_Name --
|
| 1476 |
|
|
---------------------
|
| 1477 |
|
|
|
| 1478 |
|
|
function Index_Base_Name return Node_Id is
|
| 1479 |
|
|
begin
|
| 1480 |
|
|
return New_Reference_To (Index_Base, Sloc (N));
|
| 1481 |
|
|
end Index_Base_Name;
|
| 1482 |
|
|
|
| 1483 |
|
|
------------------------------------
|
| 1484 |
|
|
-- Local_Compile_Time_Known_Value --
|
| 1485 |
|
|
------------------------------------
|
| 1486 |
|
|
|
| 1487 |
|
|
function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
|
| 1488 |
|
|
begin
|
| 1489 |
|
|
return Compile_Time_Known_Value (E)
|
| 1490 |
|
|
or else
|
| 1491 |
|
|
(Nkind (E) = N_Attribute_Reference
|
| 1492 |
|
|
and then Attribute_Name (E) = Name_Val
|
| 1493 |
|
|
and then Compile_Time_Known_Value (First (Expressions (E))));
|
| 1494 |
|
|
end Local_Compile_Time_Known_Value;
|
| 1495 |
|
|
|
| 1496 |
|
|
----------------------
|
| 1497 |
|
|
-- Local_Expr_Value --
|
| 1498 |
|
|
----------------------
|
| 1499 |
|
|
|
| 1500 |
|
|
function Local_Expr_Value (E : Node_Id) return Uint is
|
| 1501 |
|
|
begin
|
| 1502 |
|
|
if Compile_Time_Known_Value (E) then
|
| 1503 |
|
|
return Expr_Value (E);
|
| 1504 |
|
|
else
|
| 1505 |
|
|
return Expr_Value (First (Expressions (E)));
|
| 1506 |
|
|
end if;
|
| 1507 |
|
|
end Local_Expr_Value;
|
| 1508 |
|
|
|
| 1509 |
|
|
-- Build_Array_Aggr_Code Variables
|
| 1510 |
|
|
|
| 1511 |
|
|
Assoc : Node_Id;
|
| 1512 |
|
|
Choice : Node_Id;
|
| 1513 |
|
|
Expr : Node_Id;
|
| 1514 |
|
|
Typ : Entity_Id;
|
| 1515 |
|
|
|
| 1516 |
|
|
Others_Expr : Node_Id := Empty;
|
| 1517 |
|
|
Others_Box_Present : Boolean := False;
|
| 1518 |
|
|
|
| 1519 |
|
|
Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
|
| 1520 |
|
|
Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
|
| 1521 |
|
|
-- The aggregate bounds of this specific sub-aggregate. Note that if
|
| 1522 |
|
|
-- the code generated by Build_Array_Aggr_Code is executed then these
|
| 1523 |
|
|
-- bounds are OK. Otherwise a Constraint_Error would have been raised.
|
| 1524 |
|
|
|
| 1525 |
|
|
Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
|
| 1526 |
|
|
Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
|
| 1527 |
|
|
-- After Duplicate_Subexpr these are side-effect free
|
| 1528 |
|
|
|
| 1529 |
|
|
Low : Node_Id;
|
| 1530 |
|
|
High : Node_Id;
|
| 1531 |
|
|
|
| 1532 |
|
|
Nb_Choices : Nat := 0;
|
| 1533 |
|
|
Table : Case_Table_Type (1 .. Number_Of_Choices (N));
|
| 1534 |
|
|
-- Used to sort all the different choice values
|
| 1535 |
|
|
|
| 1536 |
|
|
Nb_Elements : Int;
|
| 1537 |
|
|
-- Number of elements in the positional aggregate
|
| 1538 |
|
|
|
| 1539 |
|
|
New_Code : constant List_Id := New_List;
|
| 1540 |
|
|
|
| 1541 |
|
|
-- Start of processing for Build_Array_Aggr_Code
|
| 1542 |
|
|
|
| 1543 |
|
|
begin
|
| 1544 |
|
|
-- First before we start, a special case. if we have a bit packed
|
| 1545 |
|
|
-- array represented as a modular type, then clear the value to
|
| 1546 |
|
|
-- zero first, to ensure that unused bits are properly cleared.
|
| 1547 |
|
|
|
| 1548 |
|
|
Typ := Etype (N);
|
| 1549 |
|
|
|
| 1550 |
|
|
if Present (Typ)
|
| 1551 |
|
|
and then Is_Bit_Packed_Array (Typ)
|
| 1552 |
|
|
and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
|
| 1553 |
|
|
then
|
| 1554 |
|
|
Append_To (New_Code,
|
| 1555 |
|
|
Make_Assignment_Statement (Loc,
|
| 1556 |
|
|
Name => New_Copy_Tree (Into),
|
| 1557 |
|
|
Expression =>
|
| 1558 |
|
|
Unchecked_Convert_To (Typ,
|
| 1559 |
|
|
Make_Integer_Literal (Loc, Uint_0))));
|
| 1560 |
|
|
end if;
|
| 1561 |
|
|
|
| 1562 |
|
|
-- If the component type contains tasks, we need to build a Master
|
| 1563 |
|
|
-- entity in the current scope, because it will be needed if build-
|
| 1564 |
|
|
-- in-place functions are called in the expanded code.
|
| 1565 |
|
|
|
| 1566 |
|
|
if Nkind (Parent (N)) = N_Object_Declaration
|
| 1567 |
|
|
and then Has_Task (Typ)
|
| 1568 |
|
|
then
|
| 1569 |
|
|
Build_Master_Entity (Defining_Identifier (Parent (N)));
|
| 1570 |
|
|
end if;
|
| 1571 |
|
|
|
| 1572 |
|
|
-- STEP 1: Process component associations
|
| 1573 |
|
|
|
| 1574 |
|
|
-- For those associations that may generate a loop, initialize
|
| 1575 |
|
|
-- Loop_Actions to collect inserted actions that may be crated.
|
| 1576 |
|
|
|
| 1577 |
|
|
-- Skip this if no component associations
|
| 1578 |
|
|
|
| 1579 |
|
|
if No (Expressions (N)) then
|
| 1580 |
|
|
|
| 1581 |
|
|
-- STEP 1 (a): Sort the discrete choices
|
| 1582 |
|
|
|
| 1583 |
|
|
Assoc := First (Component_Associations (N));
|
| 1584 |
|
|
while Present (Assoc) loop
|
| 1585 |
|
|
Choice := First (Choices (Assoc));
|
| 1586 |
|
|
while Present (Choice) loop
|
| 1587 |
|
|
if Nkind (Choice) = N_Others_Choice then
|
| 1588 |
|
|
Set_Loop_Actions (Assoc, New_List);
|
| 1589 |
|
|
|
| 1590 |
|
|
if Box_Present (Assoc) then
|
| 1591 |
|
|
Others_Box_Present := True;
|
| 1592 |
|
|
else
|
| 1593 |
|
|
Others_Expr := Expression (Assoc);
|
| 1594 |
|
|
end if;
|
| 1595 |
|
|
exit;
|
| 1596 |
|
|
end if;
|
| 1597 |
|
|
|
| 1598 |
|
|
Get_Index_Bounds (Choice, Low, High);
|
| 1599 |
|
|
|
| 1600 |
|
|
if Low /= High then
|
| 1601 |
|
|
Set_Loop_Actions (Assoc, New_List);
|
| 1602 |
|
|
end if;
|
| 1603 |
|
|
|
| 1604 |
|
|
Nb_Choices := Nb_Choices + 1;
|
| 1605 |
|
|
if Box_Present (Assoc) then
|
| 1606 |
|
|
Table (Nb_Choices) := (Choice_Lo => Low,
|
| 1607 |
|
|
Choice_Hi => High,
|
| 1608 |
|
|
Choice_Node => Empty);
|
| 1609 |
|
|
else
|
| 1610 |
|
|
Table (Nb_Choices) := (Choice_Lo => Low,
|
| 1611 |
|
|
Choice_Hi => High,
|
| 1612 |
|
|
Choice_Node => Expression (Assoc));
|
| 1613 |
|
|
end if;
|
| 1614 |
|
|
Next (Choice);
|
| 1615 |
|
|
end loop;
|
| 1616 |
|
|
|
| 1617 |
|
|
Next (Assoc);
|
| 1618 |
|
|
end loop;
|
| 1619 |
|
|
|
| 1620 |
|
|
-- If there is more than one set of choices these must be static
|
| 1621 |
|
|
-- and we can therefore sort them. Remember that Nb_Choices does not
|
| 1622 |
|
|
-- account for an others choice.
|
| 1623 |
|
|
|
| 1624 |
|
|
if Nb_Choices > 1 then
|
| 1625 |
|
|
Sort_Case_Table (Table);
|
| 1626 |
|
|
end if;
|
| 1627 |
|
|
|
| 1628 |
|
|
-- STEP 1 (b): take care of the whole set of discrete choices
|
| 1629 |
|
|
|
| 1630 |
|
|
for J in 1 .. Nb_Choices loop
|
| 1631 |
|
|
Low := Table (J).Choice_Lo;
|
| 1632 |
|
|
High := Table (J).Choice_Hi;
|
| 1633 |
|
|
Expr := Table (J).Choice_Node;
|
| 1634 |
|
|
Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
|
| 1635 |
|
|
end loop;
|
| 1636 |
|
|
|
| 1637 |
|
|
-- STEP 1 (c): generate the remaining loops to cover others choice
|
| 1638 |
|
|
-- We don't need to generate loops over empty gaps, but if there is
|
| 1639 |
|
|
-- a single empty range we must analyze the expression for semantics
|
| 1640 |
|
|
|
| 1641 |
|
|
if Present (Others_Expr) or else Others_Box_Present then
|
| 1642 |
|
|
declare
|
| 1643 |
|
|
First : Boolean := True;
|
| 1644 |
|
|
|
| 1645 |
|
|
begin
|
| 1646 |
|
|
for J in 0 .. Nb_Choices loop
|
| 1647 |
|
|
if J = 0 then
|
| 1648 |
|
|
Low := Aggr_Low;
|
| 1649 |
|
|
else
|
| 1650 |
|
|
Low := Add (1, To => Table (J).Choice_Hi);
|
| 1651 |
|
|
end if;
|
| 1652 |
|
|
|
| 1653 |
|
|
if J = Nb_Choices then
|
| 1654 |
|
|
High := Aggr_High;
|
| 1655 |
|
|
else
|
| 1656 |
|
|
High := Add (-1, To => Table (J + 1).Choice_Lo);
|
| 1657 |
|
|
end if;
|
| 1658 |
|
|
|
| 1659 |
|
|
-- If this is an expansion within an init proc, make
|
| 1660 |
|
|
-- sure that discriminant references are replaced by
|
| 1661 |
|
|
-- the corresponding discriminal.
|
| 1662 |
|
|
|
| 1663 |
|
|
if Inside_Init_Proc then
|
| 1664 |
|
|
if Is_Entity_Name (Low)
|
| 1665 |
|
|
and then Ekind (Entity (Low)) = E_Discriminant
|
| 1666 |
|
|
then
|
| 1667 |
|
|
Set_Entity (Low, Discriminal (Entity (Low)));
|
| 1668 |
|
|
end if;
|
| 1669 |
|
|
|
| 1670 |
|
|
if Is_Entity_Name (High)
|
| 1671 |
|
|
and then Ekind (Entity (High)) = E_Discriminant
|
| 1672 |
|
|
then
|
| 1673 |
|
|
Set_Entity (High, Discriminal (Entity (High)));
|
| 1674 |
|
|
end if;
|
| 1675 |
|
|
end if;
|
| 1676 |
|
|
|
| 1677 |
|
|
if First
|
| 1678 |
|
|
or else not Empty_Range (Low, High)
|
| 1679 |
|
|
then
|
| 1680 |
|
|
First := False;
|
| 1681 |
|
|
Append_List
|
| 1682 |
|
|
(Gen_Loop (Low, High, Others_Expr), To => New_Code);
|
| 1683 |
|
|
end if;
|
| 1684 |
|
|
end loop;
|
| 1685 |
|
|
end;
|
| 1686 |
|
|
end if;
|
| 1687 |
|
|
|
| 1688 |
|
|
-- STEP 2: Process positional components
|
| 1689 |
|
|
|
| 1690 |
|
|
else
|
| 1691 |
|
|
-- STEP 2 (a): Generate the assignments for each positional element
|
| 1692 |
|
|
-- Note that here we have to use Aggr_L rather than Aggr_Low because
|
| 1693 |
|
|
-- Aggr_L is analyzed and Add wants an analyzed expression.
|
| 1694 |
|
|
|
| 1695 |
|
|
Expr := First (Expressions (N));
|
| 1696 |
|
|
Nb_Elements := -1;
|
| 1697 |
|
|
while Present (Expr) loop
|
| 1698 |
|
|
Nb_Elements := Nb_Elements + 1;
|
| 1699 |
|
|
Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
|
| 1700 |
|
|
To => New_Code);
|
| 1701 |
|
|
Next (Expr);
|
| 1702 |
|
|
end loop;
|
| 1703 |
|
|
|
| 1704 |
|
|
-- STEP 2 (b): Generate final loop if an others choice is present
|
| 1705 |
|
|
-- Here Nb_Elements gives the offset of the last positional element.
|
| 1706 |
|
|
|
| 1707 |
|
|
if Present (Component_Associations (N)) then
|
| 1708 |
|
|
Assoc := Last (Component_Associations (N));
|
| 1709 |
|
|
|
| 1710 |
|
|
-- Ada 2005 (AI-287)
|
| 1711 |
|
|
|
| 1712 |
|
|
if Box_Present (Assoc) then
|
| 1713 |
|
|
Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
|
| 1714 |
|
|
Aggr_High,
|
| 1715 |
|
|
Empty),
|
| 1716 |
|
|
To => New_Code);
|
| 1717 |
|
|
else
|
| 1718 |
|
|
Expr := Expression (Assoc);
|
| 1719 |
|
|
|
| 1720 |
|
|
Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
|
| 1721 |
|
|
Aggr_High,
|
| 1722 |
|
|
Expr), -- AI-287
|
| 1723 |
|
|
To => New_Code);
|
| 1724 |
|
|
end if;
|
| 1725 |
|
|
end if;
|
| 1726 |
|
|
end if;
|
| 1727 |
|
|
|
| 1728 |
|
|
return New_Code;
|
| 1729 |
|
|
end Build_Array_Aggr_Code;
|
| 1730 |
|
|
|
| 1731 |
|
|
----------------------------
|
| 1732 |
|
|
-- Build_Record_Aggr_Code --
|
| 1733 |
|
|
----------------------------
|
| 1734 |
|
|
|
| 1735 |
|
|
function Build_Record_Aggr_Code
|
| 1736 |
|
|
(N : Node_Id;
|
| 1737 |
|
|
Typ : Entity_Id;
|
| 1738 |
|
|
Lhs : Node_Id) return List_Id
|
| 1739 |
|
|
is
|
| 1740 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 1741 |
|
|
L : constant List_Id := New_List;
|
| 1742 |
|
|
N_Typ : constant Entity_Id := Etype (N);
|
| 1743 |
|
|
|
| 1744 |
|
|
Comp : Node_Id;
|
| 1745 |
|
|
Instr : Node_Id;
|
| 1746 |
|
|
Ref : Node_Id;
|
| 1747 |
|
|
Target : Entity_Id;
|
| 1748 |
|
|
Comp_Type : Entity_Id;
|
| 1749 |
|
|
Selector : Entity_Id;
|
| 1750 |
|
|
Comp_Expr : Node_Id;
|
| 1751 |
|
|
Expr_Q : Node_Id;
|
| 1752 |
|
|
|
| 1753 |
|
|
-- If this is an internal aggregate, the External_Final_List is an
|
| 1754 |
|
|
-- expression for the controller record of the enclosing type.
|
| 1755 |
|
|
|
| 1756 |
|
|
-- If the current aggregate has several controlled components, this
|
| 1757 |
|
|
-- expression will appear in several calls to attach to the finali-
|
| 1758 |
|
|
-- zation list, and it must not be shared.
|
| 1759 |
|
|
|
| 1760 |
|
|
Ancestor_Is_Expression : Boolean := False;
|
| 1761 |
|
|
Ancestor_Is_Subtype_Mark : Boolean := False;
|
| 1762 |
|
|
|
| 1763 |
|
|
Init_Typ : Entity_Id := Empty;
|
| 1764 |
|
|
|
| 1765 |
|
|
Finalization_Done : Boolean := False;
|
| 1766 |
|
|
-- True if Generate_Finalization_Actions has already been called; calls
|
| 1767 |
|
|
-- after the first do nothing.
|
| 1768 |
|
|
|
| 1769 |
|
|
function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
|
| 1770 |
|
|
-- Returns the value that the given discriminant of an ancestor type
|
| 1771 |
|
|
-- should receive (in the absence of a conflict with the value provided
|
| 1772 |
|
|
-- by an ancestor part of an extension aggregate).
|
| 1773 |
|
|
|
| 1774 |
|
|
procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
|
| 1775 |
|
|
-- Check that each of the discriminant values defined by the ancestor
|
| 1776 |
|
|
-- part of an extension aggregate match the corresponding values
|
| 1777 |
|
|
-- provided by either an association of the aggregate or by the
|
| 1778 |
|
|
-- constraint imposed by a parent type (RM95-4.3.2(8)).
|
| 1779 |
|
|
|
| 1780 |
|
|
function Compatible_Int_Bounds
|
| 1781 |
|
|
(Agg_Bounds : Node_Id;
|
| 1782 |
|
|
Typ_Bounds : Node_Id) return Boolean;
|
| 1783 |
|
|
-- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
|
| 1784 |
|
|
-- assumed that both bounds are integer ranges.
|
| 1785 |
|
|
|
| 1786 |
|
|
procedure Generate_Finalization_Actions;
|
| 1787 |
|
|
-- Deal with the various controlled type data structure initializations
|
| 1788 |
|
|
-- (but only if it hasn't been done already).
|
| 1789 |
|
|
|
| 1790 |
|
|
function Get_Constraint_Association (T : Entity_Id) return Node_Id;
|
| 1791 |
|
|
-- Returns the first discriminant association in the constraint
|
| 1792 |
|
|
-- associated with T, if any, otherwise returns Empty.
|
| 1793 |
|
|
|
| 1794 |
|
|
procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
|
| 1795 |
|
|
-- If Typ is derived, and constrains discriminants of the parent type,
|
| 1796 |
|
|
-- these discriminants are not components of the aggregate, and must be
|
| 1797 |
|
|
-- initialized. The assignments are appended to List.
|
| 1798 |
|
|
|
| 1799 |
|
|
function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
|
| 1800 |
|
|
-- Check whether Bounds is a range node and its lower and higher bounds
|
| 1801 |
|
|
-- are integers literals.
|
| 1802 |
|
|
|
| 1803 |
|
|
---------------------------------
|
| 1804 |
|
|
-- Ancestor_Discriminant_Value --
|
| 1805 |
|
|
---------------------------------
|
| 1806 |
|
|
|
| 1807 |
|
|
function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
|
| 1808 |
|
|
Assoc : Node_Id;
|
| 1809 |
|
|
Assoc_Elmt : Elmt_Id;
|
| 1810 |
|
|
Aggr_Comp : Entity_Id;
|
| 1811 |
|
|
Corresp_Disc : Entity_Id;
|
| 1812 |
|
|
Current_Typ : Entity_Id := Base_Type (Typ);
|
| 1813 |
|
|
Parent_Typ : Entity_Id;
|
| 1814 |
|
|
Parent_Disc : Entity_Id;
|
| 1815 |
|
|
Save_Assoc : Node_Id := Empty;
|
| 1816 |
|
|
|
| 1817 |
|
|
begin
|
| 1818 |
|
|
-- First check any discriminant associations to see if any of them
|
| 1819 |
|
|
-- provide a value for the discriminant.
|
| 1820 |
|
|
|
| 1821 |
|
|
if Present (Discriminant_Specifications (Parent (Current_Typ))) then
|
| 1822 |
|
|
Assoc := First (Component_Associations (N));
|
| 1823 |
|
|
while Present (Assoc) loop
|
| 1824 |
|
|
Aggr_Comp := Entity (First (Choices (Assoc)));
|
| 1825 |
|
|
|
| 1826 |
|
|
if Ekind (Aggr_Comp) = E_Discriminant then
|
| 1827 |
|
|
Save_Assoc := Expression (Assoc);
|
| 1828 |
|
|
|
| 1829 |
|
|
Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
|
| 1830 |
|
|
while Present (Corresp_Disc) loop
|
| 1831 |
|
|
|
| 1832 |
|
|
-- If found a corresponding discriminant then return the
|
| 1833 |
|
|
-- value given in the aggregate. (Note: this is not
|
| 1834 |
|
|
-- correct in the presence of side effects. ???)
|
| 1835 |
|
|
|
| 1836 |
|
|
if Disc = Corresp_Disc then
|
| 1837 |
|
|
return Duplicate_Subexpr (Expression (Assoc));
|
| 1838 |
|
|
end if;
|
| 1839 |
|
|
|
| 1840 |
|
|
Corresp_Disc :=
|
| 1841 |
|
|
Corresponding_Discriminant (Corresp_Disc);
|
| 1842 |
|
|
end loop;
|
| 1843 |
|
|
end if;
|
| 1844 |
|
|
|
| 1845 |
|
|
Next (Assoc);
|
| 1846 |
|
|
end loop;
|
| 1847 |
|
|
end if;
|
| 1848 |
|
|
|
| 1849 |
|
|
-- No match found in aggregate, so chain up parent types to find
|
| 1850 |
|
|
-- a constraint that defines the value of the discriminant.
|
| 1851 |
|
|
|
| 1852 |
|
|
Parent_Typ := Etype (Current_Typ);
|
| 1853 |
|
|
while Current_Typ /= Parent_Typ loop
|
| 1854 |
|
|
if Has_Discriminants (Parent_Typ)
|
| 1855 |
|
|
and then not Has_Unknown_Discriminants (Parent_Typ)
|
| 1856 |
|
|
then
|
| 1857 |
|
|
Parent_Disc := First_Discriminant (Parent_Typ);
|
| 1858 |
|
|
|
| 1859 |
|
|
-- We either get the association from the subtype indication
|
| 1860 |
|
|
-- of the type definition itself, or from the discriminant
|
| 1861 |
|
|
-- constraint associated with the type entity (which is
|
| 1862 |
|
|
-- preferable, but it's not always present ???)
|
| 1863 |
|
|
|
| 1864 |
|
|
if Is_Empty_Elmt_List (
|
| 1865 |
|
|
Discriminant_Constraint (Current_Typ))
|
| 1866 |
|
|
then
|
| 1867 |
|
|
Assoc := Get_Constraint_Association (Current_Typ);
|
| 1868 |
|
|
Assoc_Elmt := No_Elmt;
|
| 1869 |
|
|
else
|
| 1870 |
|
|
Assoc_Elmt :=
|
| 1871 |
|
|
First_Elmt (Discriminant_Constraint (Current_Typ));
|
| 1872 |
|
|
Assoc := Node (Assoc_Elmt);
|
| 1873 |
|
|
end if;
|
| 1874 |
|
|
|
| 1875 |
|
|
-- Traverse the discriminants of the parent type looking
|
| 1876 |
|
|
-- for one that corresponds.
|
| 1877 |
|
|
|
| 1878 |
|
|
while Present (Parent_Disc) and then Present (Assoc) loop
|
| 1879 |
|
|
Corresp_Disc := Parent_Disc;
|
| 1880 |
|
|
while Present (Corresp_Disc)
|
| 1881 |
|
|
and then Disc /= Corresp_Disc
|
| 1882 |
|
|
loop
|
| 1883 |
|
|
Corresp_Disc :=
|
| 1884 |
|
|
Corresponding_Discriminant (Corresp_Disc);
|
| 1885 |
|
|
end loop;
|
| 1886 |
|
|
|
| 1887 |
|
|
if Disc = Corresp_Disc then
|
| 1888 |
|
|
if Nkind (Assoc) = N_Discriminant_Association then
|
| 1889 |
|
|
Assoc := Expression (Assoc);
|
| 1890 |
|
|
end if;
|
| 1891 |
|
|
|
| 1892 |
|
|
-- If the located association directly denotes a
|
| 1893 |
|
|
-- discriminant, then use the value of a saved
|
| 1894 |
|
|
-- association of the aggregate. This is a kludge to
|
| 1895 |
|
|
-- handle certain cases involving multiple discriminants
|
| 1896 |
|
|
-- mapped to a single discriminant of a descendant. It's
|
| 1897 |
|
|
-- not clear how to locate the appropriate discriminant
|
| 1898 |
|
|
-- value for such cases. ???
|
| 1899 |
|
|
|
| 1900 |
|
|
if Is_Entity_Name (Assoc)
|
| 1901 |
|
|
and then Ekind (Entity (Assoc)) = E_Discriminant
|
| 1902 |
|
|
then
|
| 1903 |
|
|
Assoc := Save_Assoc;
|
| 1904 |
|
|
end if;
|
| 1905 |
|
|
|
| 1906 |
|
|
return Duplicate_Subexpr (Assoc);
|
| 1907 |
|
|
end if;
|
| 1908 |
|
|
|
| 1909 |
|
|
Next_Discriminant (Parent_Disc);
|
| 1910 |
|
|
|
| 1911 |
|
|
if No (Assoc_Elmt) then
|
| 1912 |
|
|
Next (Assoc);
|
| 1913 |
|
|
else
|
| 1914 |
|
|
Next_Elmt (Assoc_Elmt);
|
| 1915 |
|
|
if Present (Assoc_Elmt) then
|
| 1916 |
|
|
Assoc := Node (Assoc_Elmt);
|
| 1917 |
|
|
else
|
| 1918 |
|
|
Assoc := Empty;
|
| 1919 |
|
|
end if;
|
| 1920 |
|
|
end if;
|
| 1921 |
|
|
end loop;
|
| 1922 |
|
|
end if;
|
| 1923 |
|
|
|
| 1924 |
|
|
Current_Typ := Parent_Typ;
|
| 1925 |
|
|
Parent_Typ := Etype (Current_Typ);
|
| 1926 |
|
|
end loop;
|
| 1927 |
|
|
|
| 1928 |
|
|
-- In some cases there's no ancestor value to locate (such as
|
| 1929 |
|
|
-- when an ancestor part given by an expression defines the
|
| 1930 |
|
|
-- discriminant value).
|
| 1931 |
|
|
|
| 1932 |
|
|
return Empty;
|
| 1933 |
|
|
end Ancestor_Discriminant_Value;
|
| 1934 |
|
|
|
| 1935 |
|
|
----------------------------------
|
| 1936 |
|
|
-- Check_Ancestor_Discriminants --
|
| 1937 |
|
|
----------------------------------
|
| 1938 |
|
|
|
| 1939 |
|
|
procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
|
| 1940 |
|
|
Discr : Entity_Id;
|
| 1941 |
|
|
Disc_Value : Node_Id;
|
| 1942 |
|
|
Cond : Node_Id;
|
| 1943 |
|
|
|
| 1944 |
|
|
begin
|
| 1945 |
|
|
Discr := First_Discriminant (Base_Type (Anc_Typ));
|
| 1946 |
|
|
while Present (Discr) loop
|
| 1947 |
|
|
Disc_Value := Ancestor_Discriminant_Value (Discr);
|
| 1948 |
|
|
|
| 1949 |
|
|
if Present (Disc_Value) then
|
| 1950 |
|
|
Cond := Make_Op_Ne (Loc,
|
| 1951 |
|
|
Left_Opnd =>
|
| 1952 |
|
|
Make_Selected_Component (Loc,
|
| 1953 |
|
|
Prefix => New_Copy_Tree (Target),
|
| 1954 |
|
|
Selector_Name => New_Occurrence_Of (Discr, Loc)),
|
| 1955 |
|
|
Right_Opnd => Disc_Value);
|
| 1956 |
|
|
|
| 1957 |
|
|
Append_To (L,
|
| 1958 |
|
|
Make_Raise_Constraint_Error (Loc,
|
| 1959 |
|
|
Condition => Cond,
|
| 1960 |
|
|
Reason => CE_Discriminant_Check_Failed));
|
| 1961 |
|
|
end if;
|
| 1962 |
|
|
|
| 1963 |
|
|
Next_Discriminant (Discr);
|
| 1964 |
|
|
end loop;
|
| 1965 |
|
|
end Check_Ancestor_Discriminants;
|
| 1966 |
|
|
|
| 1967 |
|
|
---------------------------
|
| 1968 |
|
|
-- Compatible_Int_Bounds --
|
| 1969 |
|
|
---------------------------
|
| 1970 |
|
|
|
| 1971 |
|
|
function Compatible_Int_Bounds
|
| 1972 |
|
|
(Agg_Bounds : Node_Id;
|
| 1973 |
|
|
Typ_Bounds : Node_Id) return Boolean
|
| 1974 |
|
|
is
|
| 1975 |
|
|
Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
|
| 1976 |
|
|
Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
|
| 1977 |
|
|
Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
|
| 1978 |
|
|
Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
|
| 1979 |
|
|
begin
|
| 1980 |
|
|
return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
|
| 1981 |
|
|
end Compatible_Int_Bounds;
|
| 1982 |
|
|
|
| 1983 |
|
|
--------------------------------
|
| 1984 |
|
|
-- Get_Constraint_Association --
|
| 1985 |
|
|
--------------------------------
|
| 1986 |
|
|
|
| 1987 |
|
|
function Get_Constraint_Association (T : Entity_Id) return Node_Id is
|
| 1988 |
|
|
Indic : Node_Id;
|
| 1989 |
|
|
Typ : Entity_Id;
|
| 1990 |
|
|
|
| 1991 |
|
|
begin
|
| 1992 |
|
|
Typ := T;
|
| 1993 |
|
|
|
| 1994 |
|
|
-- Handle private types in instances
|
| 1995 |
|
|
|
| 1996 |
|
|
if In_Instance
|
| 1997 |
|
|
and then Is_Private_Type (Typ)
|
| 1998 |
|
|
and then Present (Full_View (Typ))
|
| 1999 |
|
|
then
|
| 2000 |
|
|
Typ := Full_View (Typ);
|
| 2001 |
|
|
end if;
|
| 2002 |
|
|
|
| 2003 |
|
|
Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
|
| 2004 |
|
|
|
| 2005 |
|
|
-- ??? Also need to cover case of a type mark denoting a subtype
|
| 2006 |
|
|
-- with constraint.
|
| 2007 |
|
|
|
| 2008 |
|
|
if Nkind (Indic) = N_Subtype_Indication
|
| 2009 |
|
|
and then Present (Constraint (Indic))
|
| 2010 |
|
|
then
|
| 2011 |
|
|
return First (Constraints (Constraint (Indic)));
|
| 2012 |
|
|
end if;
|
| 2013 |
|
|
|
| 2014 |
|
|
return Empty;
|
| 2015 |
|
|
end Get_Constraint_Association;
|
| 2016 |
|
|
|
| 2017 |
|
|
-------------------------------
|
| 2018 |
|
|
-- Init_Hidden_Discriminants --
|
| 2019 |
|
|
-------------------------------
|
| 2020 |
|
|
|
| 2021 |
|
|
procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
|
| 2022 |
|
|
Btype : Entity_Id;
|
| 2023 |
|
|
Parent_Type : Entity_Id;
|
| 2024 |
|
|
Disc : Entity_Id;
|
| 2025 |
|
|
Discr_Val : Elmt_Id;
|
| 2026 |
|
|
|
| 2027 |
|
|
begin
|
| 2028 |
|
|
Btype := Base_Type (Typ);
|
| 2029 |
|
|
while Is_Derived_Type (Btype)
|
| 2030 |
|
|
and then Present (Stored_Constraint (Btype))
|
| 2031 |
|
|
loop
|
| 2032 |
|
|
Parent_Type := Etype (Btype);
|
| 2033 |
|
|
|
| 2034 |
|
|
Disc := First_Discriminant (Parent_Type);
|
| 2035 |
|
|
Discr_Val := First_Elmt (Stored_Constraint (Base_Type (Typ)));
|
| 2036 |
|
|
while Present (Discr_Val) loop
|
| 2037 |
|
|
|
| 2038 |
|
|
-- Only those discriminants of the parent that are not
|
| 2039 |
|
|
-- renamed by discriminants of the derived type need to
|
| 2040 |
|
|
-- be added explicitly.
|
| 2041 |
|
|
|
| 2042 |
|
|
if not Is_Entity_Name (Node (Discr_Val))
|
| 2043 |
|
|
or else Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
|
| 2044 |
|
|
then
|
| 2045 |
|
|
Comp_Expr :=
|
| 2046 |
|
|
Make_Selected_Component (Loc,
|
| 2047 |
|
|
Prefix => New_Copy_Tree (Target),
|
| 2048 |
|
|
Selector_Name => New_Occurrence_Of (Disc, Loc));
|
| 2049 |
|
|
|
| 2050 |
|
|
Instr :=
|
| 2051 |
|
|
Make_OK_Assignment_Statement (Loc,
|
| 2052 |
|
|
Name => Comp_Expr,
|
| 2053 |
|
|
Expression => New_Copy_Tree (Node (Discr_Val)));
|
| 2054 |
|
|
|
| 2055 |
|
|
Set_No_Ctrl_Actions (Instr);
|
| 2056 |
|
|
Append_To (List, Instr);
|
| 2057 |
|
|
end if;
|
| 2058 |
|
|
|
| 2059 |
|
|
Next_Discriminant (Disc);
|
| 2060 |
|
|
Next_Elmt (Discr_Val);
|
| 2061 |
|
|
end loop;
|
| 2062 |
|
|
|
| 2063 |
|
|
Btype := Base_Type (Parent_Type);
|
| 2064 |
|
|
end loop;
|
| 2065 |
|
|
end Init_Hidden_Discriminants;
|
| 2066 |
|
|
|
| 2067 |
|
|
-------------------------
|
| 2068 |
|
|
-- Is_Int_Range_Bounds --
|
| 2069 |
|
|
-------------------------
|
| 2070 |
|
|
|
| 2071 |
|
|
function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
|
| 2072 |
|
|
begin
|
| 2073 |
|
|
return Nkind (Bounds) = N_Range
|
| 2074 |
|
|
and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
|
| 2075 |
|
|
and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
|
| 2076 |
|
|
end Is_Int_Range_Bounds;
|
| 2077 |
|
|
|
| 2078 |
|
|
-----------------------------------
|
| 2079 |
|
|
-- Generate_Finalization_Actions --
|
| 2080 |
|
|
-----------------------------------
|
| 2081 |
|
|
|
| 2082 |
|
|
procedure Generate_Finalization_Actions is
|
| 2083 |
|
|
begin
|
| 2084 |
|
|
-- Do the work only the first time this is called
|
| 2085 |
|
|
|
| 2086 |
|
|
if Finalization_Done then
|
| 2087 |
|
|
return;
|
| 2088 |
|
|
end if;
|
| 2089 |
|
|
|
| 2090 |
|
|
Finalization_Done := True;
|
| 2091 |
|
|
|
| 2092 |
|
|
-- Determine the external finalization list. It is either the
|
| 2093 |
|
|
-- finalization list of the outer-scope or the one coming from
|
| 2094 |
|
|
-- an outer aggregate. When the target is not a temporary, the
|
| 2095 |
|
|
-- proper scope is the scope of the target rather than the
|
| 2096 |
|
|
-- potentially transient current scope.
|
| 2097 |
|
|
|
| 2098 |
|
|
if Is_Controlled (Typ)
|
| 2099 |
|
|
and then Ancestor_Is_Subtype_Mark
|
| 2100 |
|
|
then
|
| 2101 |
|
|
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
|
| 2102 |
|
|
Set_Assignment_OK (Ref);
|
| 2103 |
|
|
|
| 2104 |
|
|
Append_To (L,
|
| 2105 |
|
|
Make_Procedure_Call_Statement (Loc,
|
| 2106 |
|
|
Name =>
|
| 2107 |
|
|
New_Reference_To
|
| 2108 |
|
|
(Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
|
| 2109 |
|
|
Parameter_Associations => New_List (New_Copy_Tree (Ref))));
|
| 2110 |
|
|
end if;
|
| 2111 |
|
|
end Generate_Finalization_Actions;
|
| 2112 |
|
|
|
| 2113 |
|
|
function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
|
| 2114 |
|
|
-- If default expression of a component mentions a discriminant of the
|
| 2115 |
|
|
-- type, it must be rewritten as the discriminant of the target object.
|
| 2116 |
|
|
|
| 2117 |
|
|
function Replace_Type (Expr : Node_Id) return Traverse_Result;
|
| 2118 |
|
|
-- If the aggregate contains a self-reference, traverse each expression
|
| 2119 |
|
|
-- to replace a possible self-reference with a reference to the proper
|
| 2120 |
|
|
-- component of the target of the assignment.
|
| 2121 |
|
|
|
| 2122 |
|
|
--------------------------
|
| 2123 |
|
|
-- Rewrite_Discriminant --
|
| 2124 |
|
|
--------------------------
|
| 2125 |
|
|
|
| 2126 |
|
|
function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
|
| 2127 |
|
|
begin
|
| 2128 |
|
|
if Is_Entity_Name (Expr)
|
| 2129 |
|
|
and then Present (Entity (Expr))
|
| 2130 |
|
|
and then Ekind (Entity (Expr)) = E_In_Parameter
|
| 2131 |
|
|
and then Present (Discriminal_Link (Entity (Expr)))
|
| 2132 |
|
|
and then Scope (Discriminal_Link (Entity (Expr)))
|
| 2133 |
|
|
= Base_Type (Etype (N))
|
| 2134 |
|
|
then
|
| 2135 |
|
|
Rewrite (Expr,
|
| 2136 |
|
|
Make_Selected_Component (Loc,
|
| 2137 |
|
|
Prefix => New_Copy_Tree (Lhs),
|
| 2138 |
|
|
Selector_Name => Make_Identifier (Loc, Chars (Expr))));
|
| 2139 |
|
|
end if;
|
| 2140 |
|
|
return OK;
|
| 2141 |
|
|
end Rewrite_Discriminant;
|
| 2142 |
|
|
|
| 2143 |
|
|
------------------
|
| 2144 |
|
|
-- Replace_Type --
|
| 2145 |
|
|
------------------
|
| 2146 |
|
|
|
| 2147 |
|
|
function Replace_Type (Expr : Node_Id) return Traverse_Result is
|
| 2148 |
|
|
begin
|
| 2149 |
|
|
-- Note regarding the Root_Type test below: Aggregate components for
|
| 2150 |
|
|
-- self-referential types include attribute references to the current
|
| 2151 |
|
|
-- instance, of the form: Typ'access, etc.. These references are
|
| 2152 |
|
|
-- rewritten as references to the target of the aggregate: the
|
| 2153 |
|
|
-- left-hand side of an assignment, the entity in a declaration,
|
| 2154 |
|
|
-- or a temporary. Without this test, we would improperly extended
|
| 2155 |
|
|
-- this rewriting to attribute references whose prefix was not the
|
| 2156 |
|
|
-- type of the aggregate.
|
| 2157 |
|
|
|
| 2158 |
|
|
if Nkind (Expr) = N_Attribute_Reference
|
| 2159 |
|
|
and then Is_Entity_Name (Prefix (Expr))
|
| 2160 |
|
|
and then Is_Type (Entity (Prefix (Expr)))
|
| 2161 |
|
|
and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
|
| 2162 |
|
|
then
|
| 2163 |
|
|
if Is_Entity_Name (Lhs) then
|
| 2164 |
|
|
Rewrite (Prefix (Expr),
|
| 2165 |
|
|
New_Occurrence_Of (Entity (Lhs), Loc));
|
| 2166 |
|
|
|
| 2167 |
|
|
elsif Nkind (Lhs) = N_Selected_Component then
|
| 2168 |
|
|
Rewrite (Expr,
|
| 2169 |
|
|
Make_Attribute_Reference (Loc,
|
| 2170 |
|
|
Attribute_Name => Name_Unrestricted_Access,
|
| 2171 |
|
|
Prefix => New_Copy_Tree (Lhs)));
|
| 2172 |
|
|
Set_Analyzed (Parent (Expr), False);
|
| 2173 |
|
|
|
| 2174 |
|
|
else
|
| 2175 |
|
|
Rewrite (Expr,
|
| 2176 |
|
|
Make_Attribute_Reference (Loc,
|
| 2177 |
|
|
Attribute_Name => Name_Unrestricted_Access,
|
| 2178 |
|
|
Prefix => New_Copy_Tree (Lhs)));
|
| 2179 |
|
|
Set_Analyzed (Parent (Expr), False);
|
| 2180 |
|
|
end if;
|
| 2181 |
|
|
end if;
|
| 2182 |
|
|
|
| 2183 |
|
|
return OK;
|
| 2184 |
|
|
end Replace_Type;
|
| 2185 |
|
|
|
| 2186 |
|
|
procedure Replace_Self_Reference is
|
| 2187 |
|
|
new Traverse_Proc (Replace_Type);
|
| 2188 |
|
|
|
| 2189 |
|
|
procedure Replace_Discriminants is
|
| 2190 |
|
|
new Traverse_Proc (Rewrite_Discriminant);
|
| 2191 |
|
|
|
| 2192 |
|
|
-- Start of processing for Build_Record_Aggr_Code
|
| 2193 |
|
|
|
| 2194 |
|
|
begin
|
| 2195 |
|
|
if Has_Self_Reference (N) then
|
| 2196 |
|
|
Replace_Self_Reference (N);
|
| 2197 |
|
|
end if;
|
| 2198 |
|
|
|
| 2199 |
|
|
-- If the target of the aggregate is class-wide, we must convert it
|
| 2200 |
|
|
-- to the actual type of the aggregate, so that the proper components
|
| 2201 |
|
|
-- are visible. We know already that the types are compatible.
|
| 2202 |
|
|
|
| 2203 |
|
|
if Present (Etype (Lhs))
|
| 2204 |
|
|
and then Is_Class_Wide_Type (Etype (Lhs))
|
| 2205 |
|
|
then
|
| 2206 |
|
|
Target := Unchecked_Convert_To (Typ, Lhs);
|
| 2207 |
|
|
else
|
| 2208 |
|
|
Target := Lhs;
|
| 2209 |
|
|
end if;
|
| 2210 |
|
|
|
| 2211 |
|
|
-- Deal with the ancestor part of extension aggregates or with the
|
| 2212 |
|
|
-- discriminants of the root type.
|
| 2213 |
|
|
|
| 2214 |
|
|
if Nkind (N) = N_Extension_Aggregate then
|
| 2215 |
|
|
declare
|
| 2216 |
|
|
Ancestor : constant Node_Id := Ancestor_Part (N);
|
| 2217 |
|
|
Assign : List_Id;
|
| 2218 |
|
|
|
| 2219 |
|
|
begin
|
| 2220 |
|
|
-- If the ancestor part is a subtype mark "T", we generate
|
| 2221 |
|
|
|
| 2222 |
|
|
-- init-proc (T (tmp)); if T is constrained and
|
| 2223 |
|
|
-- init-proc (S (tmp)); where S applies an appropriate
|
| 2224 |
|
|
-- constraint if T is unconstrained
|
| 2225 |
|
|
|
| 2226 |
|
|
if Is_Entity_Name (Ancestor)
|
| 2227 |
|
|
and then Is_Type (Entity (Ancestor))
|
| 2228 |
|
|
then
|
| 2229 |
|
|
Ancestor_Is_Subtype_Mark := True;
|
| 2230 |
|
|
|
| 2231 |
|
|
if Is_Constrained (Entity (Ancestor)) then
|
| 2232 |
|
|
Init_Typ := Entity (Ancestor);
|
| 2233 |
|
|
|
| 2234 |
|
|
-- For an ancestor part given by an unconstrained type mark,
|
| 2235 |
|
|
-- create a subtype constrained by appropriate corresponding
|
| 2236 |
|
|
-- discriminant values coming from either associations of the
|
| 2237 |
|
|
-- aggregate or a constraint on a parent type. The subtype will
|
| 2238 |
|
|
-- be used to generate the correct default value for the
|
| 2239 |
|
|
-- ancestor part.
|
| 2240 |
|
|
|
| 2241 |
|
|
elsif Has_Discriminants (Entity (Ancestor)) then
|
| 2242 |
|
|
declare
|
| 2243 |
|
|
Anc_Typ : constant Entity_Id := Entity (Ancestor);
|
| 2244 |
|
|
Anc_Constr : constant List_Id := New_List;
|
| 2245 |
|
|
Discrim : Entity_Id;
|
| 2246 |
|
|
Disc_Value : Node_Id;
|
| 2247 |
|
|
New_Indic : Node_Id;
|
| 2248 |
|
|
Subt_Decl : Node_Id;
|
| 2249 |
|
|
|
| 2250 |
|
|
begin
|
| 2251 |
|
|
Discrim := First_Discriminant (Anc_Typ);
|
| 2252 |
|
|
while Present (Discrim) loop
|
| 2253 |
|
|
Disc_Value := Ancestor_Discriminant_Value (Discrim);
|
| 2254 |
|
|
Append_To (Anc_Constr, Disc_Value);
|
| 2255 |
|
|
Next_Discriminant (Discrim);
|
| 2256 |
|
|
end loop;
|
| 2257 |
|
|
|
| 2258 |
|
|
New_Indic :=
|
| 2259 |
|
|
Make_Subtype_Indication (Loc,
|
| 2260 |
|
|
Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
|
| 2261 |
|
|
Constraint =>
|
| 2262 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
| 2263 |
|
|
Constraints => Anc_Constr));
|
| 2264 |
|
|
|
| 2265 |
|
|
Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
|
| 2266 |
|
|
|
| 2267 |
|
|
Subt_Decl :=
|
| 2268 |
|
|
Make_Subtype_Declaration (Loc,
|
| 2269 |
|
|
Defining_Identifier => Init_Typ,
|
| 2270 |
|
|
Subtype_Indication => New_Indic);
|
| 2271 |
|
|
|
| 2272 |
|
|
-- Itypes must be analyzed with checks off Declaration
|
| 2273 |
|
|
-- must have a parent for proper handling of subsidiary
|
| 2274 |
|
|
-- actions.
|
| 2275 |
|
|
|
| 2276 |
|
|
Set_Parent (Subt_Decl, N);
|
| 2277 |
|
|
Analyze (Subt_Decl, Suppress => All_Checks);
|
| 2278 |
|
|
end;
|
| 2279 |
|
|
end if;
|
| 2280 |
|
|
|
| 2281 |
|
|
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
|
| 2282 |
|
|
Set_Assignment_OK (Ref);
|
| 2283 |
|
|
|
| 2284 |
|
|
if not Is_Interface (Init_Typ) then
|
| 2285 |
|
|
Append_List_To (L,
|
| 2286 |
|
|
Build_Initialization_Call (Loc,
|
| 2287 |
|
|
Id_Ref => Ref,
|
| 2288 |
|
|
Typ => Init_Typ,
|
| 2289 |
|
|
In_Init_Proc => Within_Init_Proc,
|
| 2290 |
|
|
With_Default_Init => Has_Default_Init_Comps (N)
|
| 2291 |
|
|
or else
|
| 2292 |
|
|
Has_Task (Base_Type (Init_Typ))));
|
| 2293 |
|
|
|
| 2294 |
|
|
if Is_Constrained (Entity (Ancestor))
|
| 2295 |
|
|
and then Has_Discriminants (Entity (Ancestor))
|
| 2296 |
|
|
then
|
| 2297 |
|
|
Check_Ancestor_Discriminants (Entity (Ancestor));
|
| 2298 |
|
|
end if;
|
| 2299 |
|
|
end if;
|
| 2300 |
|
|
|
| 2301 |
|
|
-- Handle calls to C++ constructors
|
| 2302 |
|
|
|
| 2303 |
|
|
elsif Is_CPP_Constructor_Call (Ancestor) then
|
| 2304 |
|
|
Init_Typ := Etype (Ancestor);
|
| 2305 |
|
|
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
|
| 2306 |
|
|
Set_Assignment_OK (Ref);
|
| 2307 |
|
|
|
| 2308 |
|
|
Append_List_To (L,
|
| 2309 |
|
|
Build_Initialization_Call (Loc,
|
| 2310 |
|
|
Id_Ref => Ref,
|
| 2311 |
|
|
Typ => Init_Typ,
|
| 2312 |
|
|
In_Init_Proc => Within_Init_Proc,
|
| 2313 |
|
|
With_Default_Init => Has_Default_Init_Comps (N),
|
| 2314 |
|
|
Constructor_Ref => Ancestor));
|
| 2315 |
|
|
|
| 2316 |
|
|
-- Ada 2005 (AI-287): If the ancestor part is an aggregate of
|
| 2317 |
|
|
-- limited type, a recursive call expands the ancestor. Note that
|
| 2318 |
|
|
-- in the limited case, the ancestor part must be either a
|
| 2319 |
|
|
-- function call (possibly qualified, or wrapped in an unchecked
|
| 2320 |
|
|
-- conversion) or aggregate (definitely qualified).
|
| 2321 |
|
|
-- The ancestor part can also be a function call (that may be
|
| 2322 |
|
|
-- transformed into an explicit dereference) or a qualification
|
| 2323 |
|
|
-- of one such.
|
| 2324 |
|
|
|
| 2325 |
|
|
elsif Is_Limited_Type (Etype (Ancestor))
|
| 2326 |
|
|
and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
|
| 2327 |
|
|
N_Extension_Aggregate)
|
| 2328 |
|
|
then
|
| 2329 |
|
|
Ancestor_Is_Expression := True;
|
| 2330 |
|
|
|
| 2331 |
|
|
-- Set up finalization data for enclosing record, because
|
| 2332 |
|
|
-- controlled subcomponents of the ancestor part will be
|
| 2333 |
|
|
-- attached to it.
|
| 2334 |
|
|
|
| 2335 |
|
|
Generate_Finalization_Actions;
|
| 2336 |
|
|
|
| 2337 |
|
|
Append_List_To (L,
|
| 2338 |
|
|
Build_Record_Aggr_Code
|
| 2339 |
|
|
(N => Unqualify (Ancestor),
|
| 2340 |
|
|
Typ => Etype (Unqualify (Ancestor)),
|
| 2341 |
|
|
Lhs => Target));
|
| 2342 |
|
|
|
| 2343 |
|
|
-- If the ancestor part is an expression "E", we generate
|
| 2344 |
|
|
|
| 2345 |
|
|
-- T (tmp) := E;
|
| 2346 |
|
|
|
| 2347 |
|
|
-- In Ada 2005, this includes the case of a (possibly qualified)
|
| 2348 |
|
|
-- limited function call. The assignment will turn into a
|
| 2349 |
|
|
-- build-in-place function call (for further details, see
|
| 2350 |
|
|
-- Make_Build_In_Place_Call_In_Assignment).
|
| 2351 |
|
|
|
| 2352 |
|
|
else
|
| 2353 |
|
|
Ancestor_Is_Expression := True;
|
| 2354 |
|
|
Init_Typ := Etype (Ancestor);
|
| 2355 |
|
|
|
| 2356 |
|
|
-- If the ancestor part is an aggregate, force its full
|
| 2357 |
|
|
-- expansion, which was delayed.
|
| 2358 |
|
|
|
| 2359 |
|
|
if Nkind_In (Unqualify (Ancestor), N_Aggregate,
|
| 2360 |
|
|
N_Extension_Aggregate)
|
| 2361 |
|
|
then
|
| 2362 |
|
|
Set_Analyzed (Ancestor, False);
|
| 2363 |
|
|
Set_Analyzed (Expression (Ancestor), False);
|
| 2364 |
|
|
end if;
|
| 2365 |
|
|
|
| 2366 |
|
|
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
|
| 2367 |
|
|
Set_Assignment_OK (Ref);
|
| 2368 |
|
|
|
| 2369 |
|
|
-- Make the assignment without usual controlled actions since
|
| 2370 |
|
|
-- we only want the post adjust but not the pre finalize here
|
| 2371 |
|
|
-- Add manual adjust when necessary.
|
| 2372 |
|
|
|
| 2373 |
|
|
Assign := New_List (
|
| 2374 |
|
|
Make_OK_Assignment_Statement (Loc,
|
| 2375 |
|
|
Name => Ref,
|
| 2376 |
|
|
Expression => Ancestor));
|
| 2377 |
|
|
Set_No_Ctrl_Actions (First (Assign));
|
| 2378 |
|
|
|
| 2379 |
|
|
-- Assign the tag now to make sure that the dispatching call in
|
| 2380 |
|
|
-- the subsequent deep_adjust works properly (unless VM_Target,
|
| 2381 |
|
|
-- where tags are implicit).
|
| 2382 |
|
|
|
| 2383 |
|
|
if Tagged_Type_Expansion then
|
| 2384 |
|
|
Instr :=
|
| 2385 |
|
|
Make_OK_Assignment_Statement (Loc,
|
| 2386 |
|
|
Name =>
|
| 2387 |
|
|
Make_Selected_Component (Loc,
|
| 2388 |
|
|
Prefix => New_Copy_Tree (Target),
|
| 2389 |
|
|
Selector_Name =>
|
| 2390 |
|
|
New_Reference_To
|
| 2391 |
|
|
(First_Tag_Component (Base_Type (Typ)), Loc)),
|
| 2392 |
|
|
|
| 2393 |
|
|
Expression =>
|
| 2394 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
| 2395 |
|
|
New_Reference_To
|
| 2396 |
|
|
(Node (First_Elmt
|
| 2397 |
|
|
(Access_Disp_Table (Base_Type (Typ)))),
|
| 2398 |
|
|
Loc)));
|
| 2399 |
|
|
|
| 2400 |
|
|
Set_Assignment_OK (Name (Instr));
|
| 2401 |
|
|
Append_To (Assign, Instr);
|
| 2402 |
|
|
|
| 2403 |
|
|
-- Ada 2005 (AI-251): If tagged type has progenitors we must
|
| 2404 |
|
|
-- also initialize tags of the secondary dispatch tables.
|
| 2405 |
|
|
|
| 2406 |
|
|
if Has_Interfaces (Base_Type (Typ)) then
|
| 2407 |
|
|
Init_Secondary_Tags
|
| 2408 |
|
|
(Typ => Base_Type (Typ),
|
| 2409 |
|
|
Target => Target,
|
| 2410 |
|
|
Stmts_List => Assign);
|
| 2411 |
|
|
end if;
|
| 2412 |
|
|
end if;
|
| 2413 |
|
|
|
| 2414 |
|
|
-- Call Adjust manually
|
| 2415 |
|
|
|
| 2416 |
|
|
if Needs_Finalization (Etype (Ancestor))
|
| 2417 |
|
|
and then not Is_Limited_Type (Etype (Ancestor))
|
| 2418 |
|
|
then
|
| 2419 |
|
|
Append_To (Assign,
|
| 2420 |
|
|
Make_Adjust_Call (
|
| 2421 |
|
|
Obj_Ref => New_Copy_Tree (Ref),
|
| 2422 |
|
|
Typ => Etype (Ancestor)));
|
| 2423 |
|
|
end if;
|
| 2424 |
|
|
|
| 2425 |
|
|
Append_To (L,
|
| 2426 |
|
|
Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
|
| 2427 |
|
|
|
| 2428 |
|
|
if Has_Discriminants (Init_Typ) then
|
| 2429 |
|
|
Check_Ancestor_Discriminants (Init_Typ);
|
| 2430 |
|
|
end if;
|
| 2431 |
|
|
end if;
|
| 2432 |
|
|
end;
|
| 2433 |
|
|
|
| 2434 |
|
|
-- Generate assignments of hidden assignments. If the base type is an
|
| 2435 |
|
|
-- unchecked union, the discriminants are unknown to the back-end and
|
| 2436 |
|
|
-- absent from a value of the type, so assignments for them are not
|
| 2437 |
|
|
-- emitted.
|
| 2438 |
|
|
|
| 2439 |
|
|
if Has_Discriminants (Typ)
|
| 2440 |
|
|
and then not Is_Unchecked_Union (Base_Type (Typ))
|
| 2441 |
|
|
then
|
| 2442 |
|
|
Init_Hidden_Discriminants (Typ, L);
|
| 2443 |
|
|
end if;
|
| 2444 |
|
|
|
| 2445 |
|
|
-- Normal case (not an extension aggregate)
|
| 2446 |
|
|
|
| 2447 |
|
|
else
|
| 2448 |
|
|
-- Generate the discriminant expressions, component by component.
|
| 2449 |
|
|
-- If the base type is an unchecked union, the discriminants are
|
| 2450 |
|
|
-- unknown to the back-end and absent from a value of the type, so
|
| 2451 |
|
|
-- assignments for them are not emitted.
|
| 2452 |
|
|
|
| 2453 |
|
|
if Has_Discriminants (Typ)
|
| 2454 |
|
|
and then not Is_Unchecked_Union (Base_Type (Typ))
|
| 2455 |
|
|
then
|
| 2456 |
|
|
Init_Hidden_Discriminants (Typ, L);
|
| 2457 |
|
|
|
| 2458 |
|
|
-- Generate discriminant init values for the visible discriminants
|
| 2459 |
|
|
|
| 2460 |
|
|
declare
|
| 2461 |
|
|
Discriminant : Entity_Id;
|
| 2462 |
|
|
Discriminant_Value : Node_Id;
|
| 2463 |
|
|
|
| 2464 |
|
|
begin
|
| 2465 |
|
|
Discriminant := First_Stored_Discriminant (Typ);
|
| 2466 |
|
|
while Present (Discriminant) loop
|
| 2467 |
|
|
Comp_Expr :=
|
| 2468 |
|
|
Make_Selected_Component (Loc,
|
| 2469 |
|
|
Prefix => New_Copy_Tree (Target),
|
| 2470 |
|
|
Selector_Name => New_Occurrence_Of (Discriminant, Loc));
|
| 2471 |
|
|
|
| 2472 |
|
|
Discriminant_Value :=
|
| 2473 |
|
|
Get_Discriminant_Value (
|
| 2474 |
|
|
Discriminant,
|
| 2475 |
|
|
N_Typ,
|
| 2476 |
|
|
Discriminant_Constraint (N_Typ));
|
| 2477 |
|
|
|
| 2478 |
|
|
Instr :=
|
| 2479 |
|
|
Make_OK_Assignment_Statement (Loc,
|
| 2480 |
|
|
Name => Comp_Expr,
|
| 2481 |
|
|
Expression => New_Copy_Tree (Discriminant_Value));
|
| 2482 |
|
|
|
| 2483 |
|
|
Set_No_Ctrl_Actions (Instr);
|
| 2484 |
|
|
Append_To (L, Instr);
|
| 2485 |
|
|
|
| 2486 |
|
|
Next_Stored_Discriminant (Discriminant);
|
| 2487 |
|
|
end loop;
|
| 2488 |
|
|
end;
|
| 2489 |
|
|
end if;
|
| 2490 |
|
|
end if;
|
| 2491 |
|
|
|
| 2492 |
|
|
-- For CPP types we generate an implicit call to the C++ default
|
| 2493 |
|
|
-- constructor to ensure the proper initialization of the _Tag
|
| 2494 |
|
|
-- component.
|
| 2495 |
|
|
|
| 2496 |
|
|
if Is_CPP_Class (Root_Type (Typ))
|
| 2497 |
|
|
and then CPP_Num_Prims (Typ) > 0
|
| 2498 |
|
|
then
|
| 2499 |
|
|
Invoke_Constructor : declare
|
| 2500 |
|
|
CPP_Parent : constant Entity_Id :=
|
| 2501 |
|
|
Enclosing_CPP_Parent (Typ);
|
| 2502 |
|
|
|
| 2503 |
|
|
procedure Invoke_IC_Proc (T : Entity_Id);
|
| 2504 |
|
|
-- Recursive routine used to climb to parents. Required because
|
| 2505 |
|
|
-- parents must be initialized before descendants to ensure
|
| 2506 |
|
|
-- propagation of inherited C++ slots.
|
| 2507 |
|
|
|
| 2508 |
|
|
--------------------
|
| 2509 |
|
|
-- Invoke_IC_Proc --
|
| 2510 |
|
|
--------------------
|
| 2511 |
|
|
|
| 2512 |
|
|
procedure Invoke_IC_Proc (T : Entity_Id) is
|
| 2513 |
|
|
begin
|
| 2514 |
|
|
-- Avoid generating extra calls. Initialization required
|
| 2515 |
|
|
-- only for types defined from the level of derivation of
|
| 2516 |
|
|
-- type of the constructor and the type of the aggregate.
|
| 2517 |
|
|
|
| 2518 |
|
|
if T = CPP_Parent then
|
| 2519 |
|
|
return;
|
| 2520 |
|
|
end if;
|
| 2521 |
|
|
|
| 2522 |
|
|
Invoke_IC_Proc (Etype (T));
|
| 2523 |
|
|
|
| 2524 |
|
|
-- Generate call to the IC routine
|
| 2525 |
|
|
|
| 2526 |
|
|
if Present (CPP_Init_Proc (T)) then
|
| 2527 |
|
|
Append_To (L,
|
| 2528 |
|
|
Make_Procedure_Call_Statement (Loc,
|
| 2529 |
|
|
New_Reference_To (CPP_Init_Proc (T), Loc)));
|
| 2530 |
|
|
end if;
|
| 2531 |
|
|
end Invoke_IC_Proc;
|
| 2532 |
|
|
|
| 2533 |
|
|
-- Start of processing for Invoke_Constructor
|
| 2534 |
|
|
|
| 2535 |
|
|
begin
|
| 2536 |
|
|
-- Implicit invocation of the C++ constructor
|
| 2537 |
|
|
|
| 2538 |
|
|
if Nkind (N) = N_Aggregate then
|
| 2539 |
|
|
Append_To (L,
|
| 2540 |
|
|
Make_Procedure_Call_Statement (Loc,
|
| 2541 |
|
|
Name =>
|
| 2542 |
|
|
New_Reference_To
|
| 2543 |
|
|
(Base_Init_Proc (CPP_Parent), Loc),
|
| 2544 |
|
|
Parameter_Associations => New_List (
|
| 2545 |
|
|
Unchecked_Convert_To (CPP_Parent,
|
| 2546 |
|
|
New_Copy_Tree (Lhs)))));
|
| 2547 |
|
|
end if;
|
| 2548 |
|
|
|
| 2549 |
|
|
Invoke_IC_Proc (Typ);
|
| 2550 |
|
|
end Invoke_Constructor;
|
| 2551 |
|
|
end if;
|
| 2552 |
|
|
|
| 2553 |
|
|
-- Generate the assignments, component by component
|
| 2554 |
|
|
|
| 2555 |
|
|
-- tmp.comp1 := Expr1_From_Aggr;
|
| 2556 |
|
|
-- tmp.comp2 := Expr2_From_Aggr;
|
| 2557 |
|
|
-- ....
|
| 2558 |
|
|
|
| 2559 |
|
|
Comp := First (Component_Associations (N));
|
| 2560 |
|
|
while Present (Comp) loop
|
| 2561 |
|
|
Selector := Entity (First (Choices (Comp)));
|
| 2562 |
|
|
|
| 2563 |
|
|
-- C++ constructors
|
| 2564 |
|
|
|
| 2565 |
|
|
if Is_CPP_Constructor_Call (Expression (Comp)) then
|
| 2566 |
|
|
Append_List_To (L,
|
| 2567 |
|
|
Build_Initialization_Call (Loc,
|
| 2568 |
|
|
Id_Ref => Make_Selected_Component (Loc,
|
| 2569 |
|
|
Prefix => New_Copy_Tree (Target),
|
| 2570 |
|
|
Selector_Name =>
|
| 2571 |
|
|
New_Occurrence_Of (Selector, Loc)),
|
| 2572 |
|
|
Typ => Etype (Selector),
|
| 2573 |
|
|
Enclos_Type => Typ,
|
| 2574 |
|
|
With_Default_Init => True,
|
| 2575 |
|
|
Constructor_Ref => Expression (Comp)));
|
| 2576 |
|
|
|
| 2577 |
|
|
-- Ada 2005 (AI-287): For each default-initialized component generate
|
| 2578 |
|
|
-- a call to the corresponding IP subprogram if available.
|
| 2579 |
|
|
|
| 2580 |
|
|
elsif Box_Present (Comp)
|
| 2581 |
|
|
and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
|
| 2582 |
|
|
then
|
| 2583 |
|
|
if Ekind (Selector) /= E_Discriminant then
|
| 2584 |
|
|
Generate_Finalization_Actions;
|
| 2585 |
|
|
end if;
|
| 2586 |
|
|
|
| 2587 |
|
|
-- Ada 2005 (AI-287): If the component type has tasks then
|
| 2588 |
|
|
-- generate the activation chain and master entities (except
|
| 2589 |
|
|
-- in case of an allocator because in that case these entities
|
| 2590 |
|
|
-- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
|
| 2591 |
|
|
|
| 2592 |
|
|
declare
|
| 2593 |
|
|
Ctype : constant Entity_Id := Etype (Selector);
|
| 2594 |
|
|
Inside_Allocator : Boolean := False;
|
| 2595 |
|
|
P : Node_Id := Parent (N);
|
| 2596 |
|
|
|
| 2597 |
|
|
begin
|
| 2598 |
|
|
if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
|
| 2599 |
|
|
while Present (P) loop
|
| 2600 |
|
|
if Nkind (P) = N_Allocator then
|
| 2601 |
|
|
Inside_Allocator := True;
|
| 2602 |
|
|
exit;
|
| 2603 |
|
|
end if;
|
| 2604 |
|
|
|
| 2605 |
|
|
P := Parent (P);
|
| 2606 |
|
|
end loop;
|
| 2607 |
|
|
|
| 2608 |
|
|
if not Inside_Init_Proc and not Inside_Allocator then
|
| 2609 |
|
|
Build_Activation_Chain_Entity (N);
|
| 2610 |
|
|
end if;
|
| 2611 |
|
|
end if;
|
| 2612 |
|
|
end;
|
| 2613 |
|
|
|
| 2614 |
|
|
Append_List_To (L,
|
| 2615 |
|
|
Build_Initialization_Call (Loc,
|
| 2616 |
|
|
Id_Ref => Make_Selected_Component (Loc,
|
| 2617 |
|
|
Prefix => New_Copy_Tree (Target),
|
| 2618 |
|
|
Selector_Name =>
|
| 2619 |
|
|
New_Occurrence_Of (Selector, Loc)),
|
| 2620 |
|
|
Typ => Etype (Selector),
|
| 2621 |
|
|
Enclos_Type => Typ,
|
| 2622 |
|
|
With_Default_Init => True));
|
| 2623 |
|
|
|
| 2624 |
|
|
-- Prepare for component assignment
|
| 2625 |
|
|
|
| 2626 |
|
|
elsif Ekind (Selector) /= E_Discriminant
|
| 2627 |
|
|
or else Nkind (N) = N_Extension_Aggregate
|
| 2628 |
|
|
then
|
| 2629 |
|
|
-- All the discriminants have now been assigned
|
| 2630 |
|
|
|
| 2631 |
|
|
-- This is now a good moment to initialize and attach all the
|
| 2632 |
|
|
-- controllers. Their position may depend on the discriminants.
|
| 2633 |
|
|
|
| 2634 |
|
|
if Ekind (Selector) /= E_Discriminant then
|
| 2635 |
|
|
Generate_Finalization_Actions;
|
| 2636 |
|
|
end if;
|
| 2637 |
|
|
|
| 2638 |
|
|
Comp_Type := Underlying_Type (Etype (Selector));
|
| 2639 |
|
|
Comp_Expr :=
|
| 2640 |
|
|
Make_Selected_Component (Loc,
|
| 2641 |
|
|
Prefix => New_Copy_Tree (Target),
|
| 2642 |
|
|
Selector_Name => New_Occurrence_Of (Selector, Loc));
|
| 2643 |
|
|
|
| 2644 |
|
|
if Nkind (Expression (Comp)) = N_Qualified_Expression then
|
| 2645 |
|
|
Expr_Q := Expression (Expression (Comp));
|
| 2646 |
|
|
else
|
| 2647 |
|
|
Expr_Q := Expression (Comp);
|
| 2648 |
|
|
end if;
|
| 2649 |
|
|
|
| 2650 |
|
|
-- Now either create the assignment or generate the code for the
|
| 2651 |
|
|
-- inner aggregate top-down.
|
| 2652 |
|
|
|
| 2653 |
|
|
if Is_Delayed_Aggregate (Expr_Q) then
|
| 2654 |
|
|
|
| 2655 |
|
|
-- We have the following case of aggregate nesting inside
|
| 2656 |
|
|
-- an object declaration:
|
| 2657 |
|
|
|
| 2658 |
|
|
-- type Arr_Typ is array (Integer range <>) of ...;
|
| 2659 |
|
|
|
| 2660 |
|
|
-- type Rec_Typ (...) is record
|
| 2661 |
|
|
-- Obj_Arr_Typ : Arr_Typ (A .. B);
|
| 2662 |
|
|
-- end record;
|
| 2663 |
|
|
|
| 2664 |
|
|
-- Obj_Rec_Typ : Rec_Typ := (...,
|
| 2665 |
|
|
-- Obj_Arr_Typ => (X => (...), Y => (...)));
|
| 2666 |
|
|
|
| 2667 |
|
|
-- The length of the ranges of the aggregate and Obj_Add_Typ
|
| 2668 |
|
|
-- are equal (B - A = Y - X), but they do not coincide (X /=
|
| 2669 |
|
|
-- A and B /= Y). This case requires array sliding which is
|
| 2670 |
|
|
-- performed in the following manner:
|
| 2671 |
|
|
|
| 2672 |
|
|
-- subtype Arr_Sub is Arr_Typ (X .. Y);
|
| 2673 |
|
|
-- Temp : Arr_Sub;
|
| 2674 |
|
|
-- Temp (X) := (...);
|
| 2675 |
|
|
-- ...
|
| 2676 |
|
|
-- Temp (Y) := (...);
|
| 2677 |
|
|
-- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
|
| 2678 |
|
|
|
| 2679 |
|
|
if Ekind (Comp_Type) = E_Array_Subtype
|
| 2680 |
|
|
and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
|
| 2681 |
|
|
and then Is_Int_Range_Bounds (First_Index (Comp_Type))
|
| 2682 |
|
|
and then not
|
| 2683 |
|
|
Compatible_Int_Bounds
|
| 2684 |
|
|
(Agg_Bounds => Aggregate_Bounds (Expr_Q),
|
| 2685 |
|
|
Typ_Bounds => First_Index (Comp_Type))
|
| 2686 |
|
|
then
|
| 2687 |
|
|
-- Create the array subtype with bounds equal to those of
|
| 2688 |
|
|
-- the corresponding aggregate.
|
| 2689 |
|
|
|
| 2690 |
|
|
declare
|
| 2691 |
|
|
SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
|
| 2692 |
|
|
|
| 2693 |
|
|
SubD : constant Node_Id :=
|
| 2694 |
|
|
Make_Subtype_Declaration (Loc,
|
| 2695 |
|
|
Defining_Identifier => SubE,
|
| 2696 |
|
|
Subtype_Indication =>
|
| 2697 |
|
|
Make_Subtype_Indication (Loc,
|
| 2698 |
|
|
Subtype_Mark =>
|
| 2699 |
|
|
New_Reference_To
|
| 2700 |
|
|
(Etype (Comp_Type), Loc),
|
| 2701 |
|
|
Constraint =>
|
| 2702 |
|
|
Make_Index_Or_Discriminant_Constraint
|
| 2703 |
|
|
(Loc,
|
| 2704 |
|
|
Constraints => New_List (
|
| 2705 |
|
|
New_Copy_Tree
|
| 2706 |
|
|
(Aggregate_Bounds (Expr_Q))))));
|
| 2707 |
|
|
|
| 2708 |
|
|
-- Create a temporary array of the above subtype which
|
| 2709 |
|
|
-- will be used to capture the aggregate assignments.
|
| 2710 |
|
|
|
| 2711 |
|
|
TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
|
| 2712 |
|
|
|
| 2713 |
|
|
TmpD : constant Node_Id :=
|
| 2714 |
|
|
Make_Object_Declaration (Loc,
|
| 2715 |
|
|
Defining_Identifier => TmpE,
|
| 2716 |
|
|
Object_Definition =>
|
| 2717 |
|
|
New_Reference_To (SubE, Loc));
|
| 2718 |
|
|
|
| 2719 |
|
|
begin
|
| 2720 |
|
|
Set_No_Initialization (TmpD);
|
| 2721 |
|
|
Append_To (L, SubD);
|
| 2722 |
|
|
Append_To (L, TmpD);
|
| 2723 |
|
|
|
| 2724 |
|
|
-- Expand aggregate into assignments to the temp array
|
| 2725 |
|
|
|
| 2726 |
|
|
Append_List_To (L,
|
| 2727 |
|
|
Late_Expansion (Expr_Q, Comp_Type,
|
| 2728 |
|
|
New_Reference_To (TmpE, Loc)));
|
| 2729 |
|
|
|
| 2730 |
|
|
-- Slide
|
| 2731 |
|
|
|
| 2732 |
|
|
Append_To (L,
|
| 2733 |
|
|
Make_Assignment_Statement (Loc,
|
| 2734 |
|
|
Name => New_Copy_Tree (Comp_Expr),
|
| 2735 |
|
|
Expression => New_Reference_To (TmpE, Loc)));
|
| 2736 |
|
|
end;
|
| 2737 |
|
|
|
| 2738 |
|
|
-- Normal case (sliding not required)
|
| 2739 |
|
|
|
| 2740 |
|
|
else
|
| 2741 |
|
|
Append_List_To (L,
|
| 2742 |
|
|
Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
|
| 2743 |
|
|
end if;
|
| 2744 |
|
|
|
| 2745 |
|
|
-- Expr_Q is not delayed aggregate
|
| 2746 |
|
|
|
| 2747 |
|
|
else
|
| 2748 |
|
|
if Has_Discriminants (Typ) then
|
| 2749 |
|
|
Replace_Discriminants (Expr_Q);
|
| 2750 |
|
|
end if;
|
| 2751 |
|
|
|
| 2752 |
|
|
Instr :=
|
| 2753 |
|
|
Make_OK_Assignment_Statement (Loc,
|
| 2754 |
|
|
Name => Comp_Expr,
|
| 2755 |
|
|
Expression => Expr_Q);
|
| 2756 |
|
|
|
| 2757 |
|
|
Set_No_Ctrl_Actions (Instr);
|
| 2758 |
|
|
Append_To (L, Instr);
|
| 2759 |
|
|
|
| 2760 |
|
|
-- Adjust the tag if tagged (because of possible view
|
| 2761 |
|
|
-- conversions), unless compiling for a VM where tags are
|
| 2762 |
|
|
-- implicit.
|
| 2763 |
|
|
|
| 2764 |
|
|
-- tmp.comp._tag := comp_typ'tag;
|
| 2765 |
|
|
|
| 2766 |
|
|
if Is_Tagged_Type (Comp_Type)
|
| 2767 |
|
|
and then Tagged_Type_Expansion
|
| 2768 |
|
|
then
|
| 2769 |
|
|
Instr :=
|
| 2770 |
|
|
Make_OK_Assignment_Statement (Loc,
|
| 2771 |
|
|
Name =>
|
| 2772 |
|
|
Make_Selected_Component (Loc,
|
| 2773 |
|
|
Prefix => New_Copy_Tree (Comp_Expr),
|
| 2774 |
|
|
Selector_Name =>
|
| 2775 |
|
|
New_Reference_To
|
| 2776 |
|
|
(First_Tag_Component (Comp_Type), Loc)),
|
| 2777 |
|
|
|
| 2778 |
|
|
Expression =>
|
| 2779 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
| 2780 |
|
|
New_Reference_To
|
| 2781 |
|
|
(Node (First_Elmt (Access_Disp_Table (Comp_Type))),
|
| 2782 |
|
|
Loc)));
|
| 2783 |
|
|
|
| 2784 |
|
|
Append_To (L, Instr);
|
| 2785 |
|
|
end if;
|
| 2786 |
|
|
|
| 2787 |
|
|
-- Generate:
|
| 2788 |
|
|
-- Adjust (tmp.comp);
|
| 2789 |
|
|
|
| 2790 |
|
|
if Needs_Finalization (Comp_Type)
|
| 2791 |
|
|
and then not Is_Limited_Type (Comp_Type)
|
| 2792 |
|
|
then
|
| 2793 |
|
|
Append_To (L,
|
| 2794 |
|
|
Make_Adjust_Call (
|
| 2795 |
|
|
Obj_Ref => New_Copy_Tree (Comp_Expr),
|
| 2796 |
|
|
Typ => Comp_Type));
|
| 2797 |
|
|
end if;
|
| 2798 |
|
|
end if;
|
| 2799 |
|
|
|
| 2800 |
|
|
-- ???
|
| 2801 |
|
|
|
| 2802 |
|
|
elsif Ekind (Selector) = E_Discriminant
|
| 2803 |
|
|
and then Nkind (N) /= N_Extension_Aggregate
|
| 2804 |
|
|
and then Nkind (Parent (N)) = N_Component_Association
|
| 2805 |
|
|
and then Is_Constrained (Typ)
|
| 2806 |
|
|
then
|
| 2807 |
|
|
-- We must check that the discriminant value imposed by the
|
| 2808 |
|
|
-- context is the same as the value given in the subaggregate,
|
| 2809 |
|
|
-- because after the expansion into assignments there is no
|
| 2810 |
|
|
-- record on which to perform a regular discriminant check.
|
| 2811 |
|
|
|
| 2812 |
|
|
declare
|
| 2813 |
|
|
D_Val : Elmt_Id;
|
| 2814 |
|
|
Disc : Entity_Id;
|
| 2815 |
|
|
|
| 2816 |
|
|
begin
|
| 2817 |
|
|
D_Val := First_Elmt (Discriminant_Constraint (Typ));
|
| 2818 |
|
|
Disc := First_Discriminant (Typ);
|
| 2819 |
|
|
while Chars (Disc) /= Chars (Selector) loop
|
| 2820 |
|
|
Next_Discriminant (Disc);
|
| 2821 |
|
|
Next_Elmt (D_Val);
|
| 2822 |
|
|
end loop;
|
| 2823 |
|
|
|
| 2824 |
|
|
pragma Assert (Present (D_Val));
|
| 2825 |
|
|
|
| 2826 |
|
|
-- This check cannot performed for components that are
|
| 2827 |
|
|
-- constrained by a current instance, because this is not a
|
| 2828 |
|
|
-- value that can be compared with the actual constraint.
|
| 2829 |
|
|
|
| 2830 |
|
|
if Nkind (Node (D_Val)) /= N_Attribute_Reference
|
| 2831 |
|
|
or else not Is_Entity_Name (Prefix (Node (D_Val)))
|
| 2832 |
|
|
or else not Is_Type (Entity (Prefix (Node (D_Val))))
|
| 2833 |
|
|
then
|
| 2834 |
|
|
Append_To (L,
|
| 2835 |
|
|
Make_Raise_Constraint_Error (Loc,
|
| 2836 |
|
|
Condition =>
|
| 2837 |
|
|
Make_Op_Ne (Loc,
|
| 2838 |
|
|
Left_Opnd => New_Copy_Tree (Node (D_Val)),
|
| 2839 |
|
|
Right_Opnd => Expression (Comp)),
|
| 2840 |
|
|
Reason => CE_Discriminant_Check_Failed));
|
| 2841 |
|
|
|
| 2842 |
|
|
else
|
| 2843 |
|
|
-- Find self-reference in previous discriminant assignment,
|
| 2844 |
|
|
-- and replace with proper expression.
|
| 2845 |
|
|
|
| 2846 |
|
|
declare
|
| 2847 |
|
|
Ass : Node_Id;
|
| 2848 |
|
|
|
| 2849 |
|
|
begin
|
| 2850 |
|
|
Ass := First (L);
|
| 2851 |
|
|
while Present (Ass) loop
|
| 2852 |
|
|
if Nkind (Ass) = N_Assignment_Statement
|
| 2853 |
|
|
and then Nkind (Name (Ass)) = N_Selected_Component
|
| 2854 |
|
|
and then Chars (Selector_Name (Name (Ass))) =
|
| 2855 |
|
|
Chars (Disc)
|
| 2856 |
|
|
then
|
| 2857 |
|
|
Set_Expression
|
| 2858 |
|
|
(Ass, New_Copy_Tree (Expression (Comp)));
|
| 2859 |
|
|
exit;
|
| 2860 |
|
|
end if;
|
| 2861 |
|
|
Next (Ass);
|
| 2862 |
|
|
end loop;
|
| 2863 |
|
|
end;
|
| 2864 |
|
|
end if;
|
| 2865 |
|
|
end;
|
| 2866 |
|
|
end if;
|
| 2867 |
|
|
|
| 2868 |
|
|
Next (Comp);
|
| 2869 |
|
|
end loop;
|
| 2870 |
|
|
|
| 2871 |
|
|
-- If the type is tagged, the tag needs to be initialized (unless
|
| 2872 |
|
|
-- compiling for the Java VM where tags are implicit). It is done
|
| 2873 |
|
|
-- late in the initialization process because in some cases, we call
|
| 2874 |
|
|
-- the init proc of an ancestor which will not leave out the right tag
|
| 2875 |
|
|
|
| 2876 |
|
|
if Ancestor_Is_Expression then
|
| 2877 |
|
|
null;
|
| 2878 |
|
|
|
| 2879 |
|
|
-- For CPP types we generated a call to the C++ default constructor
|
| 2880 |
|
|
-- before the components have been initialized to ensure the proper
|
| 2881 |
|
|
-- initialization of the _Tag component (see above).
|
| 2882 |
|
|
|
| 2883 |
|
|
elsif Is_CPP_Class (Typ) then
|
| 2884 |
|
|
null;
|
| 2885 |
|
|
|
| 2886 |
|
|
elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
|
| 2887 |
|
|
Instr :=
|
| 2888 |
|
|
Make_OK_Assignment_Statement (Loc,
|
| 2889 |
|
|
Name =>
|
| 2890 |
|
|
Make_Selected_Component (Loc,
|
| 2891 |
|
|
Prefix => New_Copy_Tree (Target),
|
| 2892 |
|
|
Selector_Name =>
|
| 2893 |
|
|
New_Reference_To
|
| 2894 |
|
|
(First_Tag_Component (Base_Type (Typ)), Loc)),
|
| 2895 |
|
|
|
| 2896 |
|
|
Expression =>
|
| 2897 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
| 2898 |
|
|
New_Reference_To
|
| 2899 |
|
|
(Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
|
| 2900 |
|
|
Loc)));
|
| 2901 |
|
|
|
| 2902 |
|
|
Append_To (L, Instr);
|
| 2903 |
|
|
|
| 2904 |
|
|
-- Ada 2005 (AI-251): If the tagged type has been derived from
|
| 2905 |
|
|
-- abstract interfaces we must also initialize the tags of the
|
| 2906 |
|
|
-- secondary dispatch tables.
|
| 2907 |
|
|
|
| 2908 |
|
|
if Has_Interfaces (Base_Type (Typ)) then
|
| 2909 |
|
|
Init_Secondary_Tags
|
| 2910 |
|
|
(Typ => Base_Type (Typ),
|
| 2911 |
|
|
Target => Target,
|
| 2912 |
|
|
Stmts_List => L);
|
| 2913 |
|
|
end if;
|
| 2914 |
|
|
end if;
|
| 2915 |
|
|
|
| 2916 |
|
|
-- If the controllers have not been initialized yet (by lack of non-
|
| 2917 |
|
|
-- discriminant components), let's do it now.
|
| 2918 |
|
|
|
| 2919 |
|
|
Generate_Finalization_Actions;
|
| 2920 |
|
|
|
| 2921 |
|
|
return L;
|
| 2922 |
|
|
end Build_Record_Aggr_Code;
|
| 2923 |
|
|
|
| 2924 |
|
|
-------------------------------
|
| 2925 |
|
|
-- Convert_Aggr_In_Allocator --
|
| 2926 |
|
|
-------------------------------
|
| 2927 |
|
|
|
| 2928 |
|
|
procedure Convert_Aggr_In_Allocator
|
| 2929 |
|
|
(Alloc : Node_Id;
|
| 2930 |
|
|
Decl : Node_Id;
|
| 2931 |
|
|
Aggr : Node_Id)
|
| 2932 |
|
|
is
|
| 2933 |
|
|
Loc : constant Source_Ptr := Sloc (Aggr);
|
| 2934 |
|
|
Typ : constant Entity_Id := Etype (Aggr);
|
| 2935 |
|
|
Temp : constant Entity_Id := Defining_Identifier (Decl);
|
| 2936 |
|
|
|
| 2937 |
|
|
Occ : constant Node_Id :=
|
| 2938 |
|
|
Unchecked_Convert_To (Typ,
|
| 2939 |
|
|
Make_Explicit_Dereference (Loc,
|
| 2940 |
|
|
New_Reference_To (Temp, Loc)));
|
| 2941 |
|
|
|
| 2942 |
|
|
begin
|
| 2943 |
|
|
if Is_Array_Type (Typ) then
|
| 2944 |
|
|
Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
|
| 2945 |
|
|
|
| 2946 |
|
|
elsif Has_Default_Init_Comps (Aggr) then
|
| 2947 |
|
|
declare
|
| 2948 |
|
|
L : constant List_Id := New_List;
|
| 2949 |
|
|
Init_Stmts : List_Id;
|
| 2950 |
|
|
|
| 2951 |
|
|
begin
|
| 2952 |
|
|
Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
|
| 2953 |
|
|
|
| 2954 |
|
|
if Has_Task (Typ) then
|
| 2955 |
|
|
Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
|
| 2956 |
|
|
Insert_Actions (Alloc, L);
|
| 2957 |
|
|
else
|
| 2958 |
|
|
Insert_Actions (Alloc, Init_Stmts);
|
| 2959 |
|
|
end if;
|
| 2960 |
|
|
end;
|
| 2961 |
|
|
|
| 2962 |
|
|
else
|
| 2963 |
|
|
Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
|
| 2964 |
|
|
end if;
|
| 2965 |
|
|
end Convert_Aggr_In_Allocator;
|
| 2966 |
|
|
|
| 2967 |
|
|
--------------------------------
|
| 2968 |
|
|
-- Convert_Aggr_In_Assignment --
|
| 2969 |
|
|
--------------------------------
|
| 2970 |
|
|
|
| 2971 |
|
|
procedure Convert_Aggr_In_Assignment (N : Node_Id) is
|
| 2972 |
|
|
Aggr : Node_Id := Expression (N);
|
| 2973 |
|
|
Typ : constant Entity_Id := Etype (Aggr);
|
| 2974 |
|
|
Occ : constant Node_Id := New_Copy_Tree (Name (N));
|
| 2975 |
|
|
|
| 2976 |
|
|
begin
|
| 2977 |
|
|
if Nkind (Aggr) = N_Qualified_Expression then
|
| 2978 |
|
|
Aggr := Expression (Aggr);
|
| 2979 |
|
|
end if;
|
| 2980 |
|
|
|
| 2981 |
|
|
Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
|
| 2982 |
|
|
end Convert_Aggr_In_Assignment;
|
| 2983 |
|
|
|
| 2984 |
|
|
---------------------------------
|
| 2985 |
|
|
-- Convert_Aggr_In_Object_Decl --
|
| 2986 |
|
|
---------------------------------
|
| 2987 |
|
|
|
| 2988 |
|
|
procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
|
| 2989 |
|
|
Obj : constant Entity_Id := Defining_Identifier (N);
|
| 2990 |
|
|
Aggr : Node_Id := Expression (N);
|
| 2991 |
|
|
Loc : constant Source_Ptr := Sloc (Aggr);
|
| 2992 |
|
|
Typ : constant Entity_Id := Etype (Aggr);
|
| 2993 |
|
|
Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
|
| 2994 |
|
|
|
| 2995 |
|
|
function Discriminants_Ok return Boolean;
|
| 2996 |
|
|
-- If the object type is constrained, the discriminants in the
|
| 2997 |
|
|
-- aggregate must be checked against the discriminants of the subtype.
|
| 2998 |
|
|
-- This cannot be done using Apply_Discriminant_Checks because after
|
| 2999 |
|
|
-- expansion there is no aggregate left to check.
|
| 3000 |
|
|
|
| 3001 |
|
|
----------------------
|
| 3002 |
|
|
-- Discriminants_Ok --
|
| 3003 |
|
|
----------------------
|
| 3004 |
|
|
|
| 3005 |
|
|
function Discriminants_Ok return Boolean is
|
| 3006 |
|
|
Cond : Node_Id := Empty;
|
| 3007 |
|
|
Check : Node_Id;
|
| 3008 |
|
|
D : Entity_Id;
|
| 3009 |
|
|
Disc1 : Elmt_Id;
|
| 3010 |
|
|
Disc2 : Elmt_Id;
|
| 3011 |
|
|
Val1 : Node_Id;
|
| 3012 |
|
|
Val2 : Node_Id;
|
| 3013 |
|
|
|
| 3014 |
|
|
begin
|
| 3015 |
|
|
D := First_Discriminant (Typ);
|
| 3016 |
|
|
Disc1 := First_Elmt (Discriminant_Constraint (Typ));
|
| 3017 |
|
|
Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
|
| 3018 |
|
|
while Present (Disc1) and then Present (Disc2) loop
|
| 3019 |
|
|
Val1 := Node (Disc1);
|
| 3020 |
|
|
Val2 := Node (Disc2);
|
| 3021 |
|
|
|
| 3022 |
|
|
if not Is_OK_Static_Expression (Val1)
|
| 3023 |
|
|
or else not Is_OK_Static_Expression (Val2)
|
| 3024 |
|
|
then
|
| 3025 |
|
|
Check := Make_Op_Ne (Loc,
|
| 3026 |
|
|
Left_Opnd => Duplicate_Subexpr (Val1),
|
| 3027 |
|
|
Right_Opnd => Duplicate_Subexpr (Val2));
|
| 3028 |
|
|
|
| 3029 |
|
|
if No (Cond) then
|
| 3030 |
|
|
Cond := Check;
|
| 3031 |
|
|
|
| 3032 |
|
|
else
|
| 3033 |
|
|
Cond := Make_Or_Else (Loc,
|
| 3034 |
|
|
Left_Opnd => Cond,
|
| 3035 |
|
|
Right_Opnd => Check);
|
| 3036 |
|
|
end if;
|
| 3037 |
|
|
|
| 3038 |
|
|
elsif Expr_Value (Val1) /= Expr_Value (Val2) then
|
| 3039 |
|
|
Apply_Compile_Time_Constraint_Error (Aggr,
|
| 3040 |
|
|
Msg => "incorrect value for discriminant&?",
|
| 3041 |
|
|
Reason => CE_Discriminant_Check_Failed,
|
| 3042 |
|
|
Ent => D);
|
| 3043 |
|
|
return False;
|
| 3044 |
|
|
end if;
|
| 3045 |
|
|
|
| 3046 |
|
|
Next_Discriminant (D);
|
| 3047 |
|
|
Next_Elmt (Disc1);
|
| 3048 |
|
|
Next_Elmt (Disc2);
|
| 3049 |
|
|
end loop;
|
| 3050 |
|
|
|
| 3051 |
|
|
-- If any discriminant constraint is non-static, emit a check
|
| 3052 |
|
|
|
| 3053 |
|
|
if Present (Cond) then
|
| 3054 |
|
|
Insert_Action (N,
|
| 3055 |
|
|
Make_Raise_Constraint_Error (Loc,
|
| 3056 |
|
|
Condition => Cond,
|
| 3057 |
|
|
Reason => CE_Discriminant_Check_Failed));
|
| 3058 |
|
|
end if;
|
| 3059 |
|
|
|
| 3060 |
|
|
return True;
|
| 3061 |
|
|
end Discriminants_Ok;
|
| 3062 |
|
|
|
| 3063 |
|
|
-- Start of processing for Convert_Aggr_In_Object_Decl
|
| 3064 |
|
|
|
| 3065 |
|
|
begin
|
| 3066 |
|
|
Set_Assignment_OK (Occ);
|
| 3067 |
|
|
|
| 3068 |
|
|
if Nkind (Aggr) = N_Qualified_Expression then
|
| 3069 |
|
|
Aggr := Expression (Aggr);
|
| 3070 |
|
|
end if;
|
| 3071 |
|
|
|
| 3072 |
|
|
if Has_Discriminants (Typ)
|
| 3073 |
|
|
and then Typ /= Etype (Obj)
|
| 3074 |
|
|
and then Is_Constrained (Etype (Obj))
|
| 3075 |
|
|
and then not Discriminants_Ok
|
| 3076 |
|
|
then
|
| 3077 |
|
|
return;
|
| 3078 |
|
|
end if;
|
| 3079 |
|
|
|
| 3080 |
|
|
-- If the context is an extended return statement, it has its own
|
| 3081 |
|
|
-- finalization machinery (i.e. works like a transient scope) and
|
| 3082 |
|
|
-- we do not want to create an additional one, because objects on
|
| 3083 |
|
|
-- the finalization list of the return must be moved to the caller's
|
| 3084 |
|
|
-- finalization list to complete the return.
|
| 3085 |
|
|
|
| 3086 |
|
|
-- However, if the aggregate is limited, it is built in place, and the
|
| 3087 |
|
|
-- controlled components are not assigned to intermediate temporaries
|
| 3088 |
|
|
-- so there is no need for a transient scope in this case either.
|
| 3089 |
|
|
|
| 3090 |
|
|
if Requires_Transient_Scope (Typ)
|
| 3091 |
|
|
and then Ekind (Current_Scope) /= E_Return_Statement
|
| 3092 |
|
|
and then not Is_Limited_Type (Typ)
|
| 3093 |
|
|
then
|
| 3094 |
|
|
Establish_Transient_Scope
|
| 3095 |
|
|
(Aggr,
|
| 3096 |
|
|
Sec_Stack =>
|
| 3097 |
|
|
Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
|
| 3098 |
|
|
end if;
|
| 3099 |
|
|
|
| 3100 |
|
|
Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
|
| 3101 |
|
|
Set_No_Initialization (N);
|
| 3102 |
|
|
Initialize_Discriminants (N, Typ);
|
| 3103 |
|
|
end Convert_Aggr_In_Object_Decl;
|
| 3104 |
|
|
|
| 3105 |
|
|
-------------------------------------
|
| 3106 |
|
|
-- Convert_Array_Aggr_In_Allocator --
|
| 3107 |
|
|
-------------------------------------
|
| 3108 |
|
|
|
| 3109 |
|
|
procedure Convert_Array_Aggr_In_Allocator
|
| 3110 |
|
|
(Decl : Node_Id;
|
| 3111 |
|
|
Aggr : Node_Id;
|
| 3112 |
|
|
Target : Node_Id)
|
| 3113 |
|
|
is
|
| 3114 |
|
|
Aggr_Code : List_Id;
|
| 3115 |
|
|
Typ : constant Entity_Id := Etype (Aggr);
|
| 3116 |
|
|
Ctyp : constant Entity_Id := Component_Type (Typ);
|
| 3117 |
|
|
|
| 3118 |
|
|
begin
|
| 3119 |
|
|
-- The target is an explicit dereference of the allocated object.
|
| 3120 |
|
|
-- Generate component assignments to it, as for an aggregate that
|
| 3121 |
|
|
-- appears on the right-hand side of an assignment statement.
|
| 3122 |
|
|
|
| 3123 |
|
|
Aggr_Code :=
|
| 3124 |
|
|
Build_Array_Aggr_Code (Aggr,
|
| 3125 |
|
|
Ctype => Ctyp,
|
| 3126 |
|
|
Index => First_Index (Typ),
|
| 3127 |
|
|
Into => Target,
|
| 3128 |
|
|
Scalar_Comp => Is_Scalar_Type (Ctyp));
|
| 3129 |
|
|
|
| 3130 |
|
|
Insert_Actions_After (Decl, Aggr_Code);
|
| 3131 |
|
|
end Convert_Array_Aggr_In_Allocator;
|
| 3132 |
|
|
|
| 3133 |
|
|
----------------------------
|
| 3134 |
|
|
-- Convert_To_Assignments --
|
| 3135 |
|
|
----------------------------
|
| 3136 |
|
|
|
| 3137 |
|
|
procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
|
| 3138 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 3139 |
|
|
T : Entity_Id;
|
| 3140 |
|
|
Temp : Entity_Id;
|
| 3141 |
|
|
|
| 3142 |
|
|
Instr : Node_Id;
|
| 3143 |
|
|
Target_Expr : Node_Id;
|
| 3144 |
|
|
Parent_Kind : Node_Kind;
|
| 3145 |
|
|
Unc_Decl : Boolean := False;
|
| 3146 |
|
|
Parent_Node : Node_Id;
|
| 3147 |
|
|
|
| 3148 |
|
|
begin
|
| 3149 |
|
|
pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
|
| 3150 |
|
|
pragma Assert (Is_Record_Type (Typ));
|
| 3151 |
|
|
|
| 3152 |
|
|
Parent_Node := Parent (N);
|
| 3153 |
|
|
Parent_Kind := Nkind (Parent_Node);
|
| 3154 |
|
|
|
| 3155 |
|
|
if Parent_Kind = N_Qualified_Expression then
|
| 3156 |
|
|
|
| 3157 |
|
|
-- Check if we are in a unconstrained declaration because in this
|
| 3158 |
|
|
-- case the current delayed expansion mechanism doesn't work when
|
| 3159 |
|
|
-- the declared object size depend on the initializing expr.
|
| 3160 |
|
|
|
| 3161 |
|
|
begin
|
| 3162 |
|
|
Parent_Node := Parent (Parent_Node);
|
| 3163 |
|
|
Parent_Kind := Nkind (Parent_Node);
|
| 3164 |
|
|
|
| 3165 |
|
|
if Parent_Kind = N_Object_Declaration then
|
| 3166 |
|
|
Unc_Decl :=
|
| 3167 |
|
|
not Is_Entity_Name (Object_Definition (Parent_Node))
|
| 3168 |
|
|
or else Has_Discriminants
|
| 3169 |
|
|
(Entity (Object_Definition (Parent_Node)))
|
| 3170 |
|
|
or else Is_Class_Wide_Type
|
| 3171 |
|
|
(Entity (Object_Definition (Parent_Node)));
|
| 3172 |
|
|
end if;
|
| 3173 |
|
|
end;
|
| 3174 |
|
|
end if;
|
| 3175 |
|
|
|
| 3176 |
|
|
-- Just set the Delay flag in the cases where the transformation will be
|
| 3177 |
|
|
-- done top down from above.
|
| 3178 |
|
|
|
| 3179 |
|
|
if False
|
| 3180 |
|
|
|
| 3181 |
|
|
-- Internal aggregate (transformed when expanding the parent)
|
| 3182 |
|
|
|
| 3183 |
|
|
or else Parent_Kind = N_Aggregate
|
| 3184 |
|
|
or else Parent_Kind = N_Extension_Aggregate
|
| 3185 |
|
|
or else Parent_Kind = N_Component_Association
|
| 3186 |
|
|
|
| 3187 |
|
|
-- Allocator (see Convert_Aggr_In_Allocator)
|
| 3188 |
|
|
|
| 3189 |
|
|
or else Parent_Kind = N_Allocator
|
| 3190 |
|
|
|
| 3191 |
|
|
-- Object declaration (see Convert_Aggr_In_Object_Decl)
|
| 3192 |
|
|
|
| 3193 |
|
|
or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
|
| 3194 |
|
|
|
| 3195 |
|
|
-- Safe assignment (see Convert_Aggr_Assignments). So far only the
|
| 3196 |
|
|
-- assignments in init procs are taken into account.
|
| 3197 |
|
|
|
| 3198 |
|
|
or else (Parent_Kind = N_Assignment_Statement
|
| 3199 |
|
|
and then Inside_Init_Proc)
|
| 3200 |
|
|
|
| 3201 |
|
|
-- (Ada 2005) An inherently limited type in a return statement,
|
| 3202 |
|
|
-- which will be handled in a build-in-place fashion, and may be
|
| 3203 |
|
|
-- rewritten as an extended return and have its own finalization
|
| 3204 |
|
|
-- machinery. In the case of a simple return, the aggregate needs
|
| 3205 |
|
|
-- to be delayed until the scope for the return statement has been
|
| 3206 |
|
|
-- created, so that any finalization chain will be associated with
|
| 3207 |
|
|
-- that scope. For extended returns, we delay expansion to avoid the
|
| 3208 |
|
|
-- creation of an unwanted transient scope that could result in
|
| 3209 |
|
|
-- premature finalization of the return object (which is built in
|
| 3210 |
|
|
-- in place within the caller's scope).
|
| 3211 |
|
|
|
| 3212 |
|
|
or else
|
| 3213 |
|
|
(Is_Immutably_Limited_Type (Typ)
|
| 3214 |
|
|
and then
|
| 3215 |
|
|
(Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
|
| 3216 |
|
|
or else Nkind (Parent_Node) = N_Simple_Return_Statement))
|
| 3217 |
|
|
then
|
| 3218 |
|
|
Set_Expansion_Delayed (N);
|
| 3219 |
|
|
return;
|
| 3220 |
|
|
end if;
|
| 3221 |
|
|
|
| 3222 |
|
|
if Requires_Transient_Scope (Typ) then
|
| 3223 |
|
|
Establish_Transient_Scope
|
| 3224 |
|
|
(N, Sec_Stack =>
|
| 3225 |
|
|
Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
|
| 3226 |
|
|
end if;
|
| 3227 |
|
|
|
| 3228 |
|
|
-- If the aggregate is non-limited, create a temporary. If it is limited
|
| 3229 |
|
|
-- and the context is an assignment, this is a subaggregate for an
|
| 3230 |
|
|
-- enclosing aggregate being expanded. It must be built in place, so use
|
| 3231 |
|
|
-- the target of the current assignment.
|
| 3232 |
|
|
|
| 3233 |
|
|
if Is_Limited_Type (Typ)
|
| 3234 |
|
|
and then Nkind (Parent (N)) = N_Assignment_Statement
|
| 3235 |
|
|
then
|
| 3236 |
|
|
Target_Expr := New_Copy_Tree (Name (Parent (N)));
|
| 3237 |
|
|
Insert_Actions (Parent (N),
|
| 3238 |
|
|
Build_Record_Aggr_Code (N, Typ, Target_Expr));
|
| 3239 |
|
|
Rewrite (Parent (N), Make_Null_Statement (Loc));
|
| 3240 |
|
|
|
| 3241 |
|
|
else
|
| 3242 |
|
|
Temp := Make_Temporary (Loc, 'A', N);
|
| 3243 |
|
|
|
| 3244 |
|
|
-- If the type inherits unknown discriminants, use the view with
|
| 3245 |
|
|
-- known discriminants if available.
|
| 3246 |
|
|
|
| 3247 |
|
|
if Has_Unknown_Discriminants (Typ)
|
| 3248 |
|
|
and then Present (Underlying_Record_View (Typ))
|
| 3249 |
|
|
then
|
| 3250 |
|
|
T := Underlying_Record_View (Typ);
|
| 3251 |
|
|
else
|
| 3252 |
|
|
T := Typ;
|
| 3253 |
|
|
end if;
|
| 3254 |
|
|
|
| 3255 |
|
|
Instr :=
|
| 3256 |
|
|
Make_Object_Declaration (Loc,
|
| 3257 |
|
|
Defining_Identifier => Temp,
|
| 3258 |
|
|
Object_Definition => New_Occurrence_Of (T, Loc));
|
| 3259 |
|
|
|
| 3260 |
|
|
Set_No_Initialization (Instr);
|
| 3261 |
|
|
Insert_Action (N, Instr);
|
| 3262 |
|
|
Initialize_Discriminants (Instr, T);
|
| 3263 |
|
|
Target_Expr := New_Occurrence_Of (Temp, Loc);
|
| 3264 |
|
|
Insert_Actions (N, Build_Record_Aggr_Code (N, T, Target_Expr));
|
| 3265 |
|
|
Rewrite (N, New_Occurrence_Of (Temp, Loc));
|
| 3266 |
|
|
Analyze_And_Resolve (N, T);
|
| 3267 |
|
|
end if;
|
| 3268 |
|
|
end Convert_To_Assignments;
|
| 3269 |
|
|
|
| 3270 |
|
|
---------------------------
|
| 3271 |
|
|
-- Convert_To_Positional --
|
| 3272 |
|
|
---------------------------
|
| 3273 |
|
|
|
| 3274 |
|
|
procedure Convert_To_Positional
|
| 3275 |
|
|
(N : Node_Id;
|
| 3276 |
|
|
Max_Others_Replicate : Nat := 5;
|
| 3277 |
|
|
Handle_Bit_Packed : Boolean := False)
|
| 3278 |
|
|
is
|
| 3279 |
|
|
Typ : constant Entity_Id := Etype (N);
|
| 3280 |
|
|
|
| 3281 |
|
|
Static_Components : Boolean := True;
|
| 3282 |
|
|
|
| 3283 |
|
|
procedure Check_Static_Components;
|
| 3284 |
|
|
-- Check whether all components of the aggregate are compile-time known
|
| 3285 |
|
|
-- values, and can be passed as is to the back-end without further
|
| 3286 |
|
|
-- expansion.
|
| 3287 |
|
|
|
| 3288 |
|
|
function Flatten
|
| 3289 |
|
|
(N : Node_Id;
|
| 3290 |
|
|
Ix : Node_Id;
|
| 3291 |
|
|
Ixb : Node_Id) return Boolean;
|
| 3292 |
|
|
-- Convert the aggregate into a purely positional form if possible. On
|
| 3293 |
|
|
-- entry the bounds of all dimensions are known to be static, and the
|
| 3294 |
|
|
-- total number of components is safe enough to expand.
|
| 3295 |
|
|
|
| 3296 |
|
|
function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
|
| 3297 |
|
|
-- Return True iff the array N is flat (which is not trivial in the case
|
| 3298 |
|
|
-- of multidimensional aggregates).
|
| 3299 |
|
|
|
| 3300 |
|
|
-----------------------------
|
| 3301 |
|
|
-- Check_Static_Components --
|
| 3302 |
|
|
-----------------------------
|
| 3303 |
|
|
|
| 3304 |
|
|
procedure Check_Static_Components is
|
| 3305 |
|
|
Expr : Node_Id;
|
| 3306 |
|
|
|
| 3307 |
|
|
begin
|
| 3308 |
|
|
Static_Components := True;
|
| 3309 |
|
|
|
| 3310 |
|
|
if Nkind (N) = N_String_Literal then
|
| 3311 |
|
|
null;
|
| 3312 |
|
|
|
| 3313 |
|
|
elsif Present (Expressions (N)) then
|
| 3314 |
|
|
Expr := First (Expressions (N));
|
| 3315 |
|
|
while Present (Expr) loop
|
| 3316 |
|
|
if Nkind (Expr) /= N_Aggregate
|
| 3317 |
|
|
or else not Compile_Time_Known_Aggregate (Expr)
|
| 3318 |
|
|
or else Expansion_Delayed (Expr)
|
| 3319 |
|
|
then
|
| 3320 |
|
|
Static_Components := False;
|
| 3321 |
|
|
exit;
|
| 3322 |
|
|
end if;
|
| 3323 |
|
|
|
| 3324 |
|
|
Next (Expr);
|
| 3325 |
|
|
end loop;
|
| 3326 |
|
|
end if;
|
| 3327 |
|
|
|
| 3328 |
|
|
if Nkind (N) = N_Aggregate
|
| 3329 |
|
|
and then Present (Component_Associations (N))
|
| 3330 |
|
|
then
|
| 3331 |
|
|
Expr := First (Component_Associations (N));
|
| 3332 |
|
|
while Present (Expr) loop
|
| 3333 |
|
|
if Nkind_In (Expression (Expr), N_Integer_Literal,
|
| 3334 |
|
|
N_Real_Literal)
|
| 3335 |
|
|
then
|
| 3336 |
|
|
null;
|
| 3337 |
|
|
|
| 3338 |
|
|
elsif Is_Entity_Name (Expression (Expr))
|
| 3339 |
|
|
and then Present (Entity (Expression (Expr)))
|
| 3340 |
|
|
and then Ekind (Entity (Expression (Expr))) =
|
| 3341 |
|
|
E_Enumeration_Literal
|
| 3342 |
|
|
then
|
| 3343 |
|
|
null;
|
| 3344 |
|
|
|
| 3345 |
|
|
elsif Nkind (Expression (Expr)) /= N_Aggregate
|
| 3346 |
|
|
or else not Compile_Time_Known_Aggregate (Expression (Expr))
|
| 3347 |
|
|
or else Expansion_Delayed (Expression (Expr))
|
| 3348 |
|
|
then
|
| 3349 |
|
|
Static_Components := False;
|
| 3350 |
|
|
exit;
|
| 3351 |
|
|
end if;
|
| 3352 |
|
|
|
| 3353 |
|
|
Next (Expr);
|
| 3354 |
|
|
end loop;
|
| 3355 |
|
|
end if;
|
| 3356 |
|
|
end Check_Static_Components;
|
| 3357 |
|
|
|
| 3358 |
|
|
-------------
|
| 3359 |
|
|
-- Flatten --
|
| 3360 |
|
|
-------------
|
| 3361 |
|
|
|
| 3362 |
|
|
function Flatten
|
| 3363 |
|
|
(N : Node_Id;
|
| 3364 |
|
|
Ix : Node_Id;
|
| 3365 |
|
|
Ixb : Node_Id) return Boolean
|
| 3366 |
|
|
is
|
| 3367 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 3368 |
|
|
Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
|
| 3369 |
|
|
Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
|
| 3370 |
|
|
Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
|
| 3371 |
|
|
Lov : Uint;
|
| 3372 |
|
|
Hiv : Uint;
|
| 3373 |
|
|
|
| 3374 |
|
|
Others_Present : Boolean := False;
|
| 3375 |
|
|
|
| 3376 |
|
|
begin
|
| 3377 |
|
|
if Nkind (Original_Node (N)) = N_String_Literal then
|
| 3378 |
|
|
return True;
|
| 3379 |
|
|
end if;
|
| 3380 |
|
|
|
| 3381 |
|
|
if not Compile_Time_Known_Value (Lo)
|
| 3382 |
|
|
or else not Compile_Time_Known_Value (Hi)
|
| 3383 |
|
|
then
|
| 3384 |
|
|
return False;
|
| 3385 |
|
|
end if;
|
| 3386 |
|
|
|
| 3387 |
|
|
Lov := Expr_Value (Lo);
|
| 3388 |
|
|
Hiv := Expr_Value (Hi);
|
| 3389 |
|
|
|
| 3390 |
|
|
-- Check if there is an others choice
|
| 3391 |
|
|
|
| 3392 |
|
|
if Present (Component_Associations (N)) then
|
| 3393 |
|
|
declare
|
| 3394 |
|
|
Assoc : Node_Id;
|
| 3395 |
|
|
Choice : Node_Id;
|
| 3396 |
|
|
|
| 3397 |
|
|
begin
|
| 3398 |
|
|
Assoc := First (Component_Associations (N));
|
| 3399 |
|
|
while Present (Assoc) loop
|
| 3400 |
|
|
|
| 3401 |
|
|
-- If this is a box association, flattening is in general
|
| 3402 |
|
|
-- not possible because at this point we cannot tell if the
|
| 3403 |
|
|
-- default is static or even exists.
|
| 3404 |
|
|
|
| 3405 |
|
|
if Box_Present (Assoc) then
|
| 3406 |
|
|
return False;
|
| 3407 |
|
|
end if;
|
| 3408 |
|
|
|
| 3409 |
|
|
Choice := First (Choices (Assoc));
|
| 3410 |
|
|
|
| 3411 |
|
|
while Present (Choice) loop
|
| 3412 |
|
|
if Nkind (Choice) = N_Others_Choice then
|
| 3413 |
|
|
Others_Present := True;
|
| 3414 |
|
|
end if;
|
| 3415 |
|
|
|
| 3416 |
|
|
Next (Choice);
|
| 3417 |
|
|
end loop;
|
| 3418 |
|
|
|
| 3419 |
|
|
Next (Assoc);
|
| 3420 |
|
|
end loop;
|
| 3421 |
|
|
end;
|
| 3422 |
|
|
end if;
|
| 3423 |
|
|
|
| 3424 |
|
|
-- If the low bound is not known at compile time and others is not
|
| 3425 |
|
|
-- present we can proceed since the bounds can be obtained from the
|
| 3426 |
|
|
-- aggregate.
|
| 3427 |
|
|
|
| 3428 |
|
|
-- Note: This case is required in VM platforms since their backends
|
| 3429 |
|
|
-- normalize array indexes in the range 0 .. N-1. Hence, if we do
|
| 3430 |
|
|
-- not flat an array whose bounds cannot be obtained from the type
|
| 3431 |
|
|
-- of the index the backend has no way to properly generate the code.
|
| 3432 |
|
|
-- See ACATS c460010 for an example.
|
| 3433 |
|
|
|
| 3434 |
|
|
if Hiv < Lov
|
| 3435 |
|
|
or else (not Compile_Time_Known_Value (Blo)
|
| 3436 |
|
|
and then Others_Present)
|
| 3437 |
|
|
then
|
| 3438 |
|
|
return False;
|
| 3439 |
|
|
end if;
|
| 3440 |
|
|
|
| 3441 |
|
|
-- Determine if set of alternatives is suitable for conversion and
|
| 3442 |
|
|
-- build an array containing the values in sequence.
|
| 3443 |
|
|
|
| 3444 |
|
|
declare
|
| 3445 |
|
|
Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
|
| 3446 |
|
|
of Node_Id := (others => Empty);
|
| 3447 |
|
|
-- The values in the aggregate sorted appropriately
|
| 3448 |
|
|
|
| 3449 |
|
|
Vlist : List_Id;
|
| 3450 |
|
|
-- Same data as Vals in list form
|
| 3451 |
|
|
|
| 3452 |
|
|
Rep_Count : Nat;
|
| 3453 |
|
|
-- Used to validate Max_Others_Replicate limit
|
| 3454 |
|
|
|
| 3455 |
|
|
Elmt : Node_Id;
|
| 3456 |
|
|
Num : Int := UI_To_Int (Lov);
|
| 3457 |
|
|
Choice_Index : Int;
|
| 3458 |
|
|
Choice : Node_Id;
|
| 3459 |
|
|
Lo, Hi : Node_Id;
|
| 3460 |
|
|
|
| 3461 |
|
|
begin
|
| 3462 |
|
|
if Present (Expressions (N)) then
|
| 3463 |
|
|
Elmt := First (Expressions (N));
|
| 3464 |
|
|
while Present (Elmt) loop
|
| 3465 |
|
|
if Nkind (Elmt) = N_Aggregate
|
| 3466 |
|
|
and then Present (Next_Index (Ix))
|
| 3467 |
|
|
and then
|
| 3468 |
|
|
not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
|
| 3469 |
|
|
then
|
| 3470 |
|
|
return False;
|
| 3471 |
|
|
end if;
|
| 3472 |
|
|
|
| 3473 |
|
|
Vals (Num) := Relocate_Node (Elmt);
|
| 3474 |
|
|
Num := Num + 1;
|
| 3475 |
|
|
|
| 3476 |
|
|
Next (Elmt);
|
| 3477 |
|
|
end loop;
|
| 3478 |
|
|
end if;
|
| 3479 |
|
|
|
| 3480 |
|
|
if No (Component_Associations (N)) then
|
| 3481 |
|
|
return True;
|
| 3482 |
|
|
end if;
|
| 3483 |
|
|
|
| 3484 |
|
|
Elmt := First (Component_Associations (N));
|
| 3485 |
|
|
|
| 3486 |
|
|
if Nkind (Expression (Elmt)) = N_Aggregate then
|
| 3487 |
|
|
if Present (Next_Index (Ix))
|
| 3488 |
|
|
and then
|
| 3489 |
|
|
not Flatten
|
| 3490 |
|
|
(Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
|
| 3491 |
|
|
then
|
| 3492 |
|
|
return False;
|
| 3493 |
|
|
end if;
|
| 3494 |
|
|
end if;
|
| 3495 |
|
|
|
| 3496 |
|
|
Component_Loop : while Present (Elmt) loop
|
| 3497 |
|
|
Choice := First (Choices (Elmt));
|
| 3498 |
|
|
Choice_Loop : while Present (Choice) loop
|
| 3499 |
|
|
|
| 3500 |
|
|
-- If we have an others choice, fill in the missing elements
|
| 3501 |
|
|
-- subject to the limit established by Max_Others_Replicate.
|
| 3502 |
|
|
|
| 3503 |
|
|
if Nkind (Choice) = N_Others_Choice then
|
| 3504 |
|
|
Rep_Count := 0;
|
| 3505 |
|
|
|
| 3506 |
|
|
for J in Vals'Range loop
|
| 3507 |
|
|
if No (Vals (J)) then
|
| 3508 |
|
|
Vals (J) := New_Copy_Tree (Expression (Elmt));
|
| 3509 |
|
|
Rep_Count := Rep_Count + 1;
|
| 3510 |
|
|
|
| 3511 |
|
|
-- Check for maximum others replication. Note that
|
| 3512 |
|
|
-- we skip this test if either of the restrictions
|
| 3513 |
|
|
-- No_Elaboration_Code or No_Implicit_Loops is
|
| 3514 |
|
|
-- active, if this is a preelaborable unit or a
|
| 3515 |
|
|
-- predefined unit. This ensures that predefined
|
| 3516 |
|
|
-- units get the same level of constant folding in
|
| 3517 |
|
|
-- Ada 95 and Ada 2005, where their categorization
|
| 3518 |
|
|
-- has changed.
|
| 3519 |
|
|
|
| 3520 |
|
|
declare
|
| 3521 |
|
|
P : constant Entity_Id :=
|
| 3522 |
|
|
Cunit_Entity (Current_Sem_Unit);
|
| 3523 |
|
|
|
| 3524 |
|
|
begin
|
| 3525 |
|
|
-- Check if duplication OK and if so continue
|
| 3526 |
|
|
-- processing.
|
| 3527 |
|
|
|
| 3528 |
|
|
if Restriction_Active (No_Elaboration_Code)
|
| 3529 |
|
|
or else Restriction_Active (No_Implicit_Loops)
|
| 3530 |
|
|
or else Is_Preelaborated (P)
|
| 3531 |
|
|
or else (Ekind (P) = E_Package_Body
|
| 3532 |
|
|
and then
|
| 3533 |
|
|
Is_Preelaborated (Spec_Entity (P)))
|
| 3534 |
|
|
or else
|
| 3535 |
|
|
Is_Predefined_File_Name
|
| 3536 |
|
|
(Unit_File_Name (Get_Source_Unit (P)))
|
| 3537 |
|
|
then
|
| 3538 |
|
|
null;
|
| 3539 |
|
|
|
| 3540 |
|
|
-- If duplication not OK, then we return False
|
| 3541 |
|
|
-- if the replication count is too high
|
| 3542 |
|
|
|
| 3543 |
|
|
elsif Rep_Count > Max_Others_Replicate then
|
| 3544 |
|
|
return False;
|
| 3545 |
|
|
|
| 3546 |
|
|
-- Continue on if duplication not OK, but the
|
| 3547 |
|
|
-- replication count is not excessive.
|
| 3548 |
|
|
|
| 3549 |
|
|
else
|
| 3550 |
|
|
null;
|
| 3551 |
|
|
end if;
|
| 3552 |
|
|
end;
|
| 3553 |
|
|
end if;
|
| 3554 |
|
|
end loop;
|
| 3555 |
|
|
|
| 3556 |
|
|
exit Component_Loop;
|
| 3557 |
|
|
|
| 3558 |
|
|
-- Case of a subtype mark, identifier or expanded name
|
| 3559 |
|
|
|
| 3560 |
|
|
elsif Is_Entity_Name (Choice)
|
| 3561 |
|
|
and then Is_Type (Entity (Choice))
|
| 3562 |
|
|
then
|
| 3563 |
|
|
Lo := Type_Low_Bound (Etype (Choice));
|
| 3564 |
|
|
Hi := Type_High_Bound (Etype (Choice));
|
| 3565 |
|
|
|
| 3566 |
|
|
-- Case of subtype indication
|
| 3567 |
|
|
|
| 3568 |
|
|
elsif Nkind (Choice) = N_Subtype_Indication then
|
| 3569 |
|
|
Lo := Low_Bound (Range_Expression (Constraint (Choice)));
|
| 3570 |
|
|
Hi := High_Bound (Range_Expression (Constraint (Choice)));
|
| 3571 |
|
|
|
| 3572 |
|
|
-- Case of a range
|
| 3573 |
|
|
|
| 3574 |
|
|
elsif Nkind (Choice) = N_Range then
|
| 3575 |
|
|
Lo := Low_Bound (Choice);
|
| 3576 |
|
|
Hi := High_Bound (Choice);
|
| 3577 |
|
|
|
| 3578 |
|
|
-- Normal subexpression case
|
| 3579 |
|
|
|
| 3580 |
|
|
else pragma Assert (Nkind (Choice) in N_Subexpr);
|
| 3581 |
|
|
if not Compile_Time_Known_Value (Choice) then
|
| 3582 |
|
|
return False;
|
| 3583 |
|
|
|
| 3584 |
|
|
else
|
| 3585 |
|
|
Choice_Index := UI_To_Int (Expr_Value (Choice));
|
| 3586 |
|
|
if Choice_Index in Vals'Range then
|
| 3587 |
|
|
Vals (Choice_Index) :=
|
| 3588 |
|
|
New_Copy_Tree (Expression (Elmt));
|
| 3589 |
|
|
goto Continue;
|
| 3590 |
|
|
|
| 3591 |
|
|
else
|
| 3592 |
|
|
-- Choice is statically out-of-range, will be
|
| 3593 |
|
|
-- rewritten to raise Constraint_Error.
|
| 3594 |
|
|
|
| 3595 |
|
|
return False;
|
| 3596 |
|
|
end if;
|
| 3597 |
|
|
end if;
|
| 3598 |
|
|
end if;
|
| 3599 |
|
|
|
| 3600 |
|
|
-- Range cases merge with Lo,Hi set
|
| 3601 |
|
|
|
| 3602 |
|
|
if not Compile_Time_Known_Value (Lo)
|
| 3603 |
|
|
or else
|
| 3604 |
|
|
not Compile_Time_Known_Value (Hi)
|
| 3605 |
|
|
then
|
| 3606 |
|
|
return False;
|
| 3607 |
|
|
else
|
| 3608 |
|
|
for J in UI_To_Int (Expr_Value (Lo)) ..
|
| 3609 |
|
|
UI_To_Int (Expr_Value (Hi))
|
| 3610 |
|
|
loop
|
| 3611 |
|
|
Vals (J) := New_Copy_Tree (Expression (Elmt));
|
| 3612 |
|
|
end loop;
|
| 3613 |
|
|
end if;
|
| 3614 |
|
|
|
| 3615 |
|
|
<<Continue>>
|
| 3616 |
|
|
Next (Choice);
|
| 3617 |
|
|
end loop Choice_Loop;
|
| 3618 |
|
|
|
| 3619 |
|
|
Next (Elmt);
|
| 3620 |
|
|
end loop Component_Loop;
|
| 3621 |
|
|
|
| 3622 |
|
|
-- If we get here the conversion is possible
|
| 3623 |
|
|
|
| 3624 |
|
|
Vlist := New_List;
|
| 3625 |
|
|
for J in Vals'Range loop
|
| 3626 |
|
|
Append (Vals (J), Vlist);
|
| 3627 |
|
|
end loop;
|
| 3628 |
|
|
|
| 3629 |
|
|
Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
|
| 3630 |
|
|
Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
|
| 3631 |
|
|
return True;
|
| 3632 |
|
|
end;
|
| 3633 |
|
|
end Flatten;
|
| 3634 |
|
|
|
| 3635 |
|
|
-------------
|
| 3636 |
|
|
-- Is_Flat --
|
| 3637 |
|
|
-------------
|
| 3638 |
|
|
|
| 3639 |
|
|
function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
|
| 3640 |
|
|
Elmt : Node_Id;
|
| 3641 |
|
|
|
| 3642 |
|
|
begin
|
| 3643 |
|
|
if Dims = 0 then
|
| 3644 |
|
|
return True;
|
| 3645 |
|
|
|
| 3646 |
|
|
elsif Nkind (N) = N_Aggregate then
|
| 3647 |
|
|
if Present (Component_Associations (N)) then
|
| 3648 |
|
|
return False;
|
| 3649 |
|
|
|
| 3650 |
|
|
else
|
| 3651 |
|
|
Elmt := First (Expressions (N));
|
| 3652 |
|
|
while Present (Elmt) loop
|
| 3653 |
|
|
if not Is_Flat (Elmt, Dims - 1) then
|
| 3654 |
|
|
return False;
|
| 3655 |
|
|
end if;
|
| 3656 |
|
|
|
| 3657 |
|
|
Next (Elmt);
|
| 3658 |
|
|
end loop;
|
| 3659 |
|
|
|
| 3660 |
|
|
return True;
|
| 3661 |
|
|
end if;
|
| 3662 |
|
|
else
|
| 3663 |
|
|
return True;
|
| 3664 |
|
|
end if;
|
| 3665 |
|
|
end Is_Flat;
|
| 3666 |
|
|
|
| 3667 |
|
|
-- Start of processing for Convert_To_Positional
|
| 3668 |
|
|
|
| 3669 |
|
|
begin
|
| 3670 |
|
|
-- Ada 2005 (AI-287): Do not convert in case of default initialized
|
| 3671 |
|
|
-- components because in this case will need to call the corresponding
|
| 3672 |
|
|
-- IP procedure.
|
| 3673 |
|
|
|
| 3674 |
|
|
if Has_Default_Init_Comps (N) then
|
| 3675 |
|
|
return;
|
| 3676 |
|
|
end if;
|
| 3677 |
|
|
|
| 3678 |
|
|
if Is_Flat (N, Number_Dimensions (Typ)) then
|
| 3679 |
|
|
return;
|
| 3680 |
|
|
end if;
|
| 3681 |
|
|
|
| 3682 |
|
|
if Is_Bit_Packed_Array (Typ)
|
| 3683 |
|
|
and then not Handle_Bit_Packed
|
| 3684 |
|
|
then
|
| 3685 |
|
|
return;
|
| 3686 |
|
|
end if;
|
| 3687 |
|
|
|
| 3688 |
|
|
-- Do not convert to positional if controlled components are involved
|
| 3689 |
|
|
-- since these require special processing
|
| 3690 |
|
|
|
| 3691 |
|
|
if Has_Controlled_Component (Typ) then
|
| 3692 |
|
|
return;
|
| 3693 |
|
|
end if;
|
| 3694 |
|
|
|
| 3695 |
|
|
Check_Static_Components;
|
| 3696 |
|
|
|
| 3697 |
|
|
-- If the size is known, or all the components are static, try to
|
| 3698 |
|
|
-- build a fully positional aggregate.
|
| 3699 |
|
|
|
| 3700 |
|
|
-- The size of the type may not be known for an aggregate with
|
| 3701 |
|
|
-- discriminated array components, but if the components are static
|
| 3702 |
|
|
-- it is still possible to verify statically that the length is
|
| 3703 |
|
|
-- compatible with the upper bound of the type, and therefore it is
|
| 3704 |
|
|
-- worth flattening such aggregates as well.
|
| 3705 |
|
|
|
| 3706 |
|
|
-- For now the back-end expands these aggregates into individual
|
| 3707 |
|
|
-- assignments to the target anyway, but it is conceivable that
|
| 3708 |
|
|
-- it will eventually be able to treat such aggregates statically???
|
| 3709 |
|
|
|
| 3710 |
|
|
if Aggr_Size_OK (N, Typ)
|
| 3711 |
|
|
and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
|
| 3712 |
|
|
then
|
| 3713 |
|
|
if Static_Components then
|
| 3714 |
|
|
Set_Compile_Time_Known_Aggregate (N);
|
| 3715 |
|
|
Set_Expansion_Delayed (N, False);
|
| 3716 |
|
|
end if;
|
| 3717 |
|
|
|
| 3718 |
|
|
Analyze_And_Resolve (N, Typ);
|
| 3719 |
|
|
end if;
|
| 3720 |
|
|
end Convert_To_Positional;
|
| 3721 |
|
|
|
| 3722 |
|
|
----------------------------
|
| 3723 |
|
|
-- Expand_Array_Aggregate --
|
| 3724 |
|
|
----------------------------
|
| 3725 |
|
|
|
| 3726 |
|
|
-- Array aggregate expansion proceeds as follows:
|
| 3727 |
|
|
|
| 3728 |
|
|
-- 1. If requested we generate code to perform all the array aggregate
|
| 3729 |
|
|
-- bound checks, specifically
|
| 3730 |
|
|
|
| 3731 |
|
|
-- (a) Check that the index range defined by aggregate bounds is
|
| 3732 |
|
|
-- compatible with corresponding index subtype.
|
| 3733 |
|
|
|
| 3734 |
|
|
-- (b) If an others choice is present check that no aggregate
|
| 3735 |
|
|
-- index is outside the bounds of the index constraint.
|
| 3736 |
|
|
|
| 3737 |
|
|
-- (c) For multidimensional arrays make sure that all subaggregates
|
| 3738 |
|
|
-- corresponding to the same dimension have the same bounds.
|
| 3739 |
|
|
|
| 3740 |
|
|
-- 2. Check for packed array aggregate which can be converted to a
|
| 3741 |
|
|
-- constant so that the aggregate disappeares completely.
|
| 3742 |
|
|
|
| 3743 |
|
|
-- 3. Check case of nested aggregate. Generally nested aggregates are
|
| 3744 |
|
|
-- handled during the processing of the parent aggregate.
|
| 3745 |
|
|
|
| 3746 |
|
|
-- 4. Check if the aggregate can be statically processed. If this is the
|
| 3747 |
|
|
-- case pass it as is to Gigi. Note that a necessary condition for
|
| 3748 |
|
|
-- static processing is that the aggregate be fully positional.
|
| 3749 |
|
|
|
| 3750 |
|
|
-- 5. If in place aggregate expansion is possible (i.e. no need to create
|
| 3751 |
|
|
-- a temporary) then mark the aggregate as such and return. Otherwise
|
| 3752 |
|
|
-- create a new temporary and generate the appropriate initialization
|
| 3753 |
|
|
-- code.
|
| 3754 |
|
|
|
| 3755 |
|
|
procedure Expand_Array_Aggregate (N : Node_Id) is
|
| 3756 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 3757 |
|
|
|
| 3758 |
|
|
Typ : constant Entity_Id := Etype (N);
|
| 3759 |
|
|
Ctyp : constant Entity_Id := Component_Type (Typ);
|
| 3760 |
|
|
-- Typ is the correct constrained array subtype of the aggregate
|
| 3761 |
|
|
-- Ctyp is the corresponding component type.
|
| 3762 |
|
|
|
| 3763 |
|
|
Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
|
| 3764 |
|
|
-- Number of aggregate index dimensions
|
| 3765 |
|
|
|
| 3766 |
|
|
Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
|
| 3767 |
|
|
Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
|
| 3768 |
|
|
-- Low and High bounds of the constraint for each aggregate index
|
| 3769 |
|
|
|
| 3770 |
|
|
Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
|
| 3771 |
|
|
-- The type of each index
|
| 3772 |
|
|
|
| 3773 |
|
|
Maybe_In_Place_OK : Boolean;
|
| 3774 |
|
|
-- If the type is neither controlled nor packed and the aggregate
|
| 3775 |
|
|
-- is the expression in an assignment, assignment in place may be
|
| 3776 |
|
|
-- possible, provided other conditions are met on the LHS.
|
| 3777 |
|
|
|
| 3778 |
|
|
Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
|
| 3779 |
|
|
(others => False);
|
| 3780 |
|
|
-- If Others_Present (J) is True, then there is an others choice
|
| 3781 |
|
|
-- in one of the sub-aggregates of N at dimension J.
|
| 3782 |
|
|
|
| 3783 |
|
|
procedure Build_Constrained_Type (Positional : Boolean);
|
| 3784 |
|
|
-- If the subtype is not static or unconstrained, build a constrained
|
| 3785 |
|
|
-- type using the computable sizes of the aggregate and its sub-
|
| 3786 |
|
|
-- aggregates.
|
| 3787 |
|
|
|
| 3788 |
|
|
procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
|
| 3789 |
|
|
-- Checks that the bounds of Aggr_Bounds are within the bounds defined
|
| 3790 |
|
|
-- by Index_Bounds.
|
| 3791 |
|
|
|
| 3792 |
|
|
procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
|
| 3793 |
|
|
-- Checks that in a multi-dimensional array aggregate all subaggregates
|
| 3794 |
|
|
-- corresponding to the same dimension have the same bounds.
|
| 3795 |
|
|
-- Sub_Aggr is an array sub-aggregate. Dim is the dimension
|
| 3796 |
|
|
-- corresponding to the sub-aggregate.
|
| 3797 |
|
|
|
| 3798 |
|
|
procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
|
| 3799 |
|
|
-- Computes the values of array Others_Present. Sub_Aggr is the
|
| 3800 |
|
|
-- array sub-aggregate we start the computation from. Dim is the
|
| 3801 |
|
|
-- dimension corresponding to the sub-aggregate.
|
| 3802 |
|
|
|
| 3803 |
|
|
function In_Place_Assign_OK return Boolean;
|
| 3804 |
|
|
-- Simple predicate to determine whether an aggregate assignment can
|
| 3805 |
|
|
-- be done in place, because none of the new values can depend on the
|
| 3806 |
|
|
-- components of the target of the assignment.
|
| 3807 |
|
|
|
| 3808 |
|
|
procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
|
| 3809 |
|
|
-- Checks that if an others choice is present in any sub-aggregate no
|
| 3810 |
|
|
-- aggregate index is outside the bounds of the index constraint.
|
| 3811 |
|
|
-- Sub_Aggr is an array sub-aggregate. Dim is the dimension
|
| 3812 |
|
|
-- corresponding to the sub-aggregate.
|
| 3813 |
|
|
|
| 3814 |
|
|
function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
|
| 3815 |
|
|
-- In addition to Maybe_In_Place_OK, in order for an aggregate to be
|
| 3816 |
|
|
-- built directly into the target of the assignment it must be free
|
| 3817 |
|
|
-- of side-effects.
|
| 3818 |
|
|
|
| 3819 |
|
|
----------------------------
|
| 3820 |
|
|
-- Build_Constrained_Type --
|
| 3821 |
|
|
----------------------------
|
| 3822 |
|
|
|
| 3823 |
|
|
procedure Build_Constrained_Type (Positional : Boolean) is
|
| 3824 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 3825 |
|
|
Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
|
| 3826 |
|
|
Comp : Node_Id;
|
| 3827 |
|
|
Decl : Node_Id;
|
| 3828 |
|
|
Typ : constant Entity_Id := Etype (N);
|
| 3829 |
|
|
Indexes : constant List_Id := New_List;
|
| 3830 |
|
|
Num : Int;
|
| 3831 |
|
|
Sub_Agg : Node_Id;
|
| 3832 |
|
|
|
| 3833 |
|
|
begin
|
| 3834 |
|
|
-- If the aggregate is purely positional, all its subaggregates
|
| 3835 |
|
|
-- have the same size. We collect the dimensions from the first
|
| 3836 |
|
|
-- subaggregate at each level.
|
| 3837 |
|
|
|
| 3838 |
|
|
if Positional then
|
| 3839 |
|
|
Sub_Agg := N;
|
| 3840 |
|
|
|
| 3841 |
|
|
for D in 1 .. Number_Dimensions (Typ) loop
|
| 3842 |
|
|
Sub_Agg := First (Expressions (Sub_Agg));
|
| 3843 |
|
|
|
| 3844 |
|
|
Comp := Sub_Agg;
|
| 3845 |
|
|
Num := 0;
|
| 3846 |
|
|
while Present (Comp) loop
|
| 3847 |
|
|
Num := Num + 1;
|
| 3848 |
|
|
Next (Comp);
|
| 3849 |
|
|
end loop;
|
| 3850 |
|
|
|
| 3851 |
|
|
Append_To (Indexes,
|
| 3852 |
|
|
Make_Range (Loc,
|
| 3853 |
|
|
Low_Bound => Make_Integer_Literal (Loc, 1),
|
| 3854 |
|
|
High_Bound => Make_Integer_Literal (Loc, Num)));
|
| 3855 |
|
|
end loop;
|
| 3856 |
|
|
|
| 3857 |
|
|
else
|
| 3858 |
|
|
-- We know the aggregate type is unconstrained and the aggregate
|
| 3859 |
|
|
-- is not processable by the back end, therefore not necessarily
|
| 3860 |
|
|
-- positional. Retrieve each dimension bounds (computed earlier).
|
| 3861 |
|
|
|
| 3862 |
|
|
for D in 1 .. Number_Dimensions (Typ) loop
|
| 3863 |
|
|
Append (
|
| 3864 |
|
|
Make_Range (Loc,
|
| 3865 |
|
|
Low_Bound => Aggr_Low (D),
|
| 3866 |
|
|
High_Bound => Aggr_High (D)),
|
| 3867 |
|
|
Indexes);
|
| 3868 |
|
|
end loop;
|
| 3869 |
|
|
end if;
|
| 3870 |
|
|
|
| 3871 |
|
|
Decl :=
|
| 3872 |
|
|
Make_Full_Type_Declaration (Loc,
|
| 3873 |
|
|
Defining_Identifier => Agg_Type,
|
| 3874 |
|
|
Type_Definition =>
|
| 3875 |
|
|
Make_Constrained_Array_Definition (Loc,
|
| 3876 |
|
|
Discrete_Subtype_Definitions => Indexes,
|
| 3877 |
|
|
Component_Definition =>
|
| 3878 |
|
|
Make_Component_Definition (Loc,
|
| 3879 |
|
|
Aliased_Present => False,
|
| 3880 |
|
|
Subtype_Indication =>
|
| 3881 |
|
|
New_Occurrence_Of (Component_Type (Typ), Loc))));
|
| 3882 |
|
|
|
| 3883 |
|
|
Insert_Action (N, Decl);
|
| 3884 |
|
|
Analyze (Decl);
|
| 3885 |
|
|
Set_Etype (N, Agg_Type);
|
| 3886 |
|
|
Set_Is_Itype (Agg_Type);
|
| 3887 |
|
|
Freeze_Itype (Agg_Type, N);
|
| 3888 |
|
|
end Build_Constrained_Type;
|
| 3889 |
|
|
|
| 3890 |
|
|
------------------
|
| 3891 |
|
|
-- Check_Bounds --
|
| 3892 |
|
|
------------------
|
| 3893 |
|
|
|
| 3894 |
|
|
procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
|
| 3895 |
|
|
Aggr_Lo : Node_Id;
|
| 3896 |
|
|
Aggr_Hi : Node_Id;
|
| 3897 |
|
|
|
| 3898 |
|
|
Ind_Lo : Node_Id;
|
| 3899 |
|
|
Ind_Hi : Node_Id;
|
| 3900 |
|
|
|
| 3901 |
|
|
Cond : Node_Id := Empty;
|
| 3902 |
|
|
|
| 3903 |
|
|
begin
|
| 3904 |
|
|
Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
|
| 3905 |
|
|
Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
|
| 3906 |
|
|
|
| 3907 |
|
|
-- Generate the following test:
|
| 3908 |
|
|
--
|
| 3909 |
|
|
-- [constraint_error when
|
| 3910 |
|
|
-- Aggr_Lo <= Aggr_Hi and then
|
| 3911 |
|
|
-- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
|
| 3912 |
|
|
|
| 3913 |
|
|
-- As an optimization try to see if some tests are trivially vacuous
|
| 3914 |
|
|
-- because we are comparing an expression against itself.
|
| 3915 |
|
|
|
| 3916 |
|
|
if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
|
| 3917 |
|
|
Cond := Empty;
|
| 3918 |
|
|
|
| 3919 |
|
|
elsif Aggr_Hi = Ind_Hi then
|
| 3920 |
|
|
Cond :=
|
| 3921 |
|
|
Make_Op_Lt (Loc,
|
| 3922 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
|
| 3923 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
|
| 3924 |
|
|
|
| 3925 |
|
|
elsif Aggr_Lo = Ind_Lo then
|
| 3926 |
|
|
Cond :=
|
| 3927 |
|
|
Make_Op_Gt (Loc,
|
| 3928 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
|
| 3929 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
|
| 3930 |
|
|
|
| 3931 |
|
|
else
|
| 3932 |
|
|
Cond :=
|
| 3933 |
|
|
Make_Or_Else (Loc,
|
| 3934 |
|
|
Left_Opnd =>
|
| 3935 |
|
|
Make_Op_Lt (Loc,
|
| 3936 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
|
| 3937 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
|
| 3938 |
|
|
|
| 3939 |
|
|
Right_Opnd =>
|
| 3940 |
|
|
Make_Op_Gt (Loc,
|
| 3941 |
|
|
Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
|
| 3942 |
|
|
Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
|
| 3943 |
|
|
end if;
|
| 3944 |
|
|
|
| 3945 |
|
|
if Present (Cond) then
|
| 3946 |
|
|
Cond :=
|
| 3947 |
|
|
Make_And_Then (Loc,
|
| 3948 |
|
|
Left_Opnd =>
|
| 3949 |
|
|
Make_Op_Le (Loc,
|
| 3950 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
|
| 3951 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
|
| 3952 |
|
|
|
| 3953 |
|
|
Right_Opnd => Cond);
|
| 3954 |
|
|
|
| 3955 |
|
|
Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
|
| 3956 |
|
|
Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
|
| 3957 |
|
|
Insert_Action (N,
|
| 3958 |
|
|
Make_Raise_Constraint_Error (Loc,
|
| 3959 |
|
|
Condition => Cond,
|
| 3960 |
|
|
Reason => CE_Length_Check_Failed));
|
| 3961 |
|
|
end if;
|
| 3962 |
|
|
end Check_Bounds;
|
| 3963 |
|
|
|
| 3964 |
|
|
----------------------------
|
| 3965 |
|
|
-- Check_Same_Aggr_Bounds --
|
| 3966 |
|
|
----------------------------
|
| 3967 |
|
|
|
| 3968 |
|
|
procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
|
| 3969 |
|
|
Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
|
| 3970 |
|
|
Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
|
| 3971 |
|
|
-- The bounds of this specific sub-aggregate
|
| 3972 |
|
|
|
| 3973 |
|
|
Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
|
| 3974 |
|
|
Aggr_Hi : constant Node_Id := Aggr_High (Dim);
|
| 3975 |
|
|
-- The bounds of the aggregate for this dimension
|
| 3976 |
|
|
|
| 3977 |
|
|
Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
|
| 3978 |
|
|
-- The index type for this dimension.xxx
|
| 3979 |
|
|
|
| 3980 |
|
|
Cond : Node_Id := Empty;
|
| 3981 |
|
|
Assoc : Node_Id;
|
| 3982 |
|
|
Expr : Node_Id;
|
| 3983 |
|
|
|
| 3984 |
|
|
begin
|
| 3985 |
|
|
-- If index checks are on generate the test
|
| 3986 |
|
|
|
| 3987 |
|
|
-- [constraint_error when
|
| 3988 |
|
|
-- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
|
| 3989 |
|
|
|
| 3990 |
|
|
-- As an optimization try to see if some tests are trivially vacuos
|
| 3991 |
|
|
-- because we are comparing an expression against itself. Also for
|
| 3992 |
|
|
-- the first dimension the test is trivially vacuous because there
|
| 3993 |
|
|
-- is just one aggregate for dimension 1.
|
| 3994 |
|
|
|
| 3995 |
|
|
if Index_Checks_Suppressed (Ind_Typ) then
|
| 3996 |
|
|
Cond := Empty;
|
| 3997 |
|
|
|
| 3998 |
|
|
elsif Dim = 1
|
| 3999 |
|
|
or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
|
| 4000 |
|
|
then
|
| 4001 |
|
|
Cond := Empty;
|
| 4002 |
|
|
|
| 4003 |
|
|
elsif Aggr_Hi = Sub_Hi then
|
| 4004 |
|
|
Cond :=
|
| 4005 |
|
|
Make_Op_Ne (Loc,
|
| 4006 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
|
| 4007 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
|
| 4008 |
|
|
|
| 4009 |
|
|
elsif Aggr_Lo = Sub_Lo then
|
| 4010 |
|
|
Cond :=
|
| 4011 |
|
|
Make_Op_Ne (Loc,
|
| 4012 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
|
| 4013 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
|
| 4014 |
|
|
|
| 4015 |
|
|
else
|
| 4016 |
|
|
Cond :=
|
| 4017 |
|
|
Make_Or_Else (Loc,
|
| 4018 |
|
|
Left_Opnd =>
|
| 4019 |
|
|
Make_Op_Ne (Loc,
|
| 4020 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
|
| 4021 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
|
| 4022 |
|
|
|
| 4023 |
|
|
Right_Opnd =>
|
| 4024 |
|
|
Make_Op_Ne (Loc,
|
| 4025 |
|
|
Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
|
| 4026 |
|
|
Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
|
| 4027 |
|
|
end if;
|
| 4028 |
|
|
|
| 4029 |
|
|
if Present (Cond) then
|
| 4030 |
|
|
Insert_Action (N,
|
| 4031 |
|
|
Make_Raise_Constraint_Error (Loc,
|
| 4032 |
|
|
Condition => Cond,
|
| 4033 |
|
|
Reason => CE_Length_Check_Failed));
|
| 4034 |
|
|
end if;
|
| 4035 |
|
|
|
| 4036 |
|
|
-- Now look inside the sub-aggregate to see if there is more work
|
| 4037 |
|
|
|
| 4038 |
|
|
if Dim < Aggr_Dimension then
|
| 4039 |
|
|
|
| 4040 |
|
|
-- Process positional components
|
| 4041 |
|
|
|
| 4042 |
|
|
if Present (Expressions (Sub_Aggr)) then
|
| 4043 |
|
|
Expr := First (Expressions (Sub_Aggr));
|
| 4044 |
|
|
while Present (Expr) loop
|
| 4045 |
|
|
Check_Same_Aggr_Bounds (Expr, Dim + 1);
|
| 4046 |
|
|
Next (Expr);
|
| 4047 |
|
|
end loop;
|
| 4048 |
|
|
end if;
|
| 4049 |
|
|
|
| 4050 |
|
|
-- Process component associations
|
| 4051 |
|
|
|
| 4052 |
|
|
if Present (Component_Associations (Sub_Aggr)) then
|
| 4053 |
|
|
Assoc := First (Component_Associations (Sub_Aggr));
|
| 4054 |
|
|
while Present (Assoc) loop
|
| 4055 |
|
|
Expr := Expression (Assoc);
|
| 4056 |
|
|
Check_Same_Aggr_Bounds (Expr, Dim + 1);
|
| 4057 |
|
|
Next (Assoc);
|
| 4058 |
|
|
end loop;
|
| 4059 |
|
|
end if;
|
| 4060 |
|
|
end if;
|
| 4061 |
|
|
end Check_Same_Aggr_Bounds;
|
| 4062 |
|
|
|
| 4063 |
|
|
----------------------------
|
| 4064 |
|
|
-- Compute_Others_Present --
|
| 4065 |
|
|
----------------------------
|
| 4066 |
|
|
|
| 4067 |
|
|
procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
|
| 4068 |
|
|
Assoc : Node_Id;
|
| 4069 |
|
|
Expr : Node_Id;
|
| 4070 |
|
|
|
| 4071 |
|
|
begin
|
| 4072 |
|
|
if Present (Component_Associations (Sub_Aggr)) then
|
| 4073 |
|
|
Assoc := Last (Component_Associations (Sub_Aggr));
|
| 4074 |
|
|
|
| 4075 |
|
|
if Nkind (First (Choices (Assoc))) = N_Others_Choice then
|
| 4076 |
|
|
Others_Present (Dim) := True;
|
| 4077 |
|
|
end if;
|
| 4078 |
|
|
end if;
|
| 4079 |
|
|
|
| 4080 |
|
|
-- Now look inside the sub-aggregate to see if there is more work
|
| 4081 |
|
|
|
| 4082 |
|
|
if Dim < Aggr_Dimension then
|
| 4083 |
|
|
|
| 4084 |
|
|
-- Process positional components
|
| 4085 |
|
|
|
| 4086 |
|
|
if Present (Expressions (Sub_Aggr)) then
|
| 4087 |
|
|
Expr := First (Expressions (Sub_Aggr));
|
| 4088 |
|
|
while Present (Expr) loop
|
| 4089 |
|
|
Compute_Others_Present (Expr, Dim + 1);
|
| 4090 |
|
|
Next (Expr);
|
| 4091 |
|
|
end loop;
|
| 4092 |
|
|
end if;
|
| 4093 |
|
|
|
| 4094 |
|
|
-- Process component associations
|
| 4095 |
|
|
|
| 4096 |
|
|
if Present (Component_Associations (Sub_Aggr)) then
|
| 4097 |
|
|
Assoc := First (Component_Associations (Sub_Aggr));
|
| 4098 |
|
|
while Present (Assoc) loop
|
| 4099 |
|
|
Expr := Expression (Assoc);
|
| 4100 |
|
|
Compute_Others_Present (Expr, Dim + 1);
|
| 4101 |
|
|
Next (Assoc);
|
| 4102 |
|
|
end loop;
|
| 4103 |
|
|
end if;
|
| 4104 |
|
|
end if;
|
| 4105 |
|
|
end Compute_Others_Present;
|
| 4106 |
|
|
|
| 4107 |
|
|
------------------------
|
| 4108 |
|
|
-- In_Place_Assign_OK --
|
| 4109 |
|
|
------------------------
|
| 4110 |
|
|
|
| 4111 |
|
|
function In_Place_Assign_OK return Boolean is
|
| 4112 |
|
|
Aggr_In : Node_Id;
|
| 4113 |
|
|
Aggr_Lo : Node_Id;
|
| 4114 |
|
|
Aggr_Hi : Node_Id;
|
| 4115 |
|
|
Obj_In : Node_Id;
|
| 4116 |
|
|
Obj_Lo : Node_Id;
|
| 4117 |
|
|
Obj_Hi : Node_Id;
|
| 4118 |
|
|
|
| 4119 |
|
|
function Safe_Aggregate (Aggr : Node_Id) return Boolean;
|
| 4120 |
|
|
-- Check recursively that each component of a (sub)aggregate does
|
| 4121 |
|
|
-- not depend on the variable being assigned to.
|
| 4122 |
|
|
|
| 4123 |
|
|
function Safe_Component (Expr : Node_Id) return Boolean;
|
| 4124 |
|
|
-- Verify that an expression cannot depend on the variable being
|
| 4125 |
|
|
-- assigned to. Room for improvement here (but less than before).
|
| 4126 |
|
|
|
| 4127 |
|
|
--------------------
|
| 4128 |
|
|
-- Safe_Aggregate --
|
| 4129 |
|
|
--------------------
|
| 4130 |
|
|
|
| 4131 |
|
|
function Safe_Aggregate (Aggr : Node_Id) return Boolean is
|
| 4132 |
|
|
Expr : Node_Id;
|
| 4133 |
|
|
|
| 4134 |
|
|
begin
|
| 4135 |
|
|
if Present (Expressions (Aggr)) then
|
| 4136 |
|
|
Expr := First (Expressions (Aggr));
|
| 4137 |
|
|
while Present (Expr) loop
|
| 4138 |
|
|
if Nkind (Expr) = N_Aggregate then
|
| 4139 |
|
|
if not Safe_Aggregate (Expr) then
|
| 4140 |
|
|
return False;
|
| 4141 |
|
|
end if;
|
| 4142 |
|
|
|
| 4143 |
|
|
elsif not Safe_Component (Expr) then
|
| 4144 |
|
|
return False;
|
| 4145 |
|
|
end if;
|
| 4146 |
|
|
|
| 4147 |
|
|
Next (Expr);
|
| 4148 |
|
|
end loop;
|
| 4149 |
|
|
end if;
|
| 4150 |
|
|
|
| 4151 |
|
|
if Present (Component_Associations (Aggr)) then
|
| 4152 |
|
|
Expr := First (Component_Associations (Aggr));
|
| 4153 |
|
|
while Present (Expr) loop
|
| 4154 |
|
|
if Nkind (Expression (Expr)) = N_Aggregate then
|
| 4155 |
|
|
if not Safe_Aggregate (Expression (Expr)) then
|
| 4156 |
|
|
return False;
|
| 4157 |
|
|
end if;
|
| 4158 |
|
|
|
| 4159 |
|
|
-- If association has a box, no way to determine yet
|
| 4160 |
|
|
-- whether default can be assigned in place.
|
| 4161 |
|
|
|
| 4162 |
|
|
elsif Box_Present (Expr) then
|
| 4163 |
|
|
return False;
|
| 4164 |
|
|
|
| 4165 |
|
|
elsif not Safe_Component (Expression (Expr)) then
|
| 4166 |
|
|
return False;
|
| 4167 |
|
|
end if;
|
| 4168 |
|
|
|
| 4169 |
|
|
Next (Expr);
|
| 4170 |
|
|
end loop;
|
| 4171 |
|
|
end if;
|
| 4172 |
|
|
|
| 4173 |
|
|
return True;
|
| 4174 |
|
|
end Safe_Aggregate;
|
| 4175 |
|
|
|
| 4176 |
|
|
--------------------
|
| 4177 |
|
|
-- Safe_Component --
|
| 4178 |
|
|
--------------------
|
| 4179 |
|
|
|
| 4180 |
|
|
function Safe_Component (Expr : Node_Id) return Boolean is
|
| 4181 |
|
|
Comp : Node_Id := Expr;
|
| 4182 |
|
|
|
| 4183 |
|
|
function Check_Component (Comp : Node_Id) return Boolean;
|
| 4184 |
|
|
-- Do the recursive traversal, after copy
|
| 4185 |
|
|
|
| 4186 |
|
|
---------------------
|
| 4187 |
|
|
-- Check_Component --
|
| 4188 |
|
|
---------------------
|
| 4189 |
|
|
|
| 4190 |
|
|
function Check_Component (Comp : Node_Id) return Boolean is
|
| 4191 |
|
|
begin
|
| 4192 |
|
|
if Is_Overloaded (Comp) then
|
| 4193 |
|
|
return False;
|
| 4194 |
|
|
end if;
|
| 4195 |
|
|
|
| 4196 |
|
|
return Compile_Time_Known_Value (Comp)
|
| 4197 |
|
|
|
| 4198 |
|
|
or else (Is_Entity_Name (Comp)
|
| 4199 |
|
|
and then Present (Entity (Comp))
|
| 4200 |
|
|
and then No (Renamed_Object (Entity (Comp))))
|
| 4201 |
|
|
|
| 4202 |
|
|
or else (Nkind (Comp) = N_Attribute_Reference
|
| 4203 |
|
|
and then Check_Component (Prefix (Comp)))
|
| 4204 |
|
|
|
| 4205 |
|
|
or else (Nkind (Comp) in N_Binary_Op
|
| 4206 |
|
|
and then Check_Component (Left_Opnd (Comp))
|
| 4207 |
|
|
and then Check_Component (Right_Opnd (Comp)))
|
| 4208 |
|
|
|
| 4209 |
|
|
or else (Nkind (Comp) in N_Unary_Op
|
| 4210 |
|
|
and then Check_Component (Right_Opnd (Comp)))
|
| 4211 |
|
|
|
| 4212 |
|
|
or else (Nkind (Comp) = N_Selected_Component
|
| 4213 |
|
|
and then Check_Component (Prefix (Comp)))
|
| 4214 |
|
|
|
| 4215 |
|
|
or else (Nkind (Comp) = N_Unchecked_Type_Conversion
|
| 4216 |
|
|
and then Check_Component (Expression (Comp)));
|
| 4217 |
|
|
end Check_Component;
|
| 4218 |
|
|
|
| 4219 |
|
|
-- Start of processing for Safe_Component
|
| 4220 |
|
|
|
| 4221 |
|
|
begin
|
| 4222 |
|
|
-- If the component appears in an association that may
|
| 4223 |
|
|
-- correspond to more than one element, it is not analyzed
|
| 4224 |
|
|
-- before the expansion into assignments, to avoid side effects.
|
| 4225 |
|
|
-- We analyze, but do not resolve the copy, to obtain sufficient
|
| 4226 |
|
|
-- entity information for the checks that follow. If component is
|
| 4227 |
|
|
-- overloaded we assume an unsafe function call.
|
| 4228 |
|
|
|
| 4229 |
|
|
if not Analyzed (Comp) then
|
| 4230 |
|
|
if Is_Overloaded (Expr) then
|
| 4231 |
|
|
return False;
|
| 4232 |
|
|
|
| 4233 |
|
|
elsif Nkind (Expr) = N_Aggregate
|
| 4234 |
|
|
and then not Is_Others_Aggregate (Expr)
|
| 4235 |
|
|
then
|
| 4236 |
|
|
return False;
|
| 4237 |
|
|
|
| 4238 |
|
|
elsif Nkind (Expr) = N_Allocator then
|
| 4239 |
|
|
|
| 4240 |
|
|
-- For now, too complex to analyze
|
| 4241 |
|
|
|
| 4242 |
|
|
return False;
|
| 4243 |
|
|
end if;
|
| 4244 |
|
|
|
| 4245 |
|
|
Comp := New_Copy_Tree (Expr);
|
| 4246 |
|
|
Set_Parent (Comp, Parent (Expr));
|
| 4247 |
|
|
Analyze (Comp);
|
| 4248 |
|
|
end if;
|
| 4249 |
|
|
|
| 4250 |
|
|
if Nkind (Comp) = N_Aggregate then
|
| 4251 |
|
|
return Safe_Aggregate (Comp);
|
| 4252 |
|
|
else
|
| 4253 |
|
|
return Check_Component (Comp);
|
| 4254 |
|
|
end if;
|
| 4255 |
|
|
end Safe_Component;
|
| 4256 |
|
|
|
| 4257 |
|
|
-- Start of processing for In_Place_Assign_OK
|
| 4258 |
|
|
|
| 4259 |
|
|
begin
|
| 4260 |
|
|
if Present (Component_Associations (N)) then
|
| 4261 |
|
|
|
| 4262 |
|
|
-- On assignment, sliding can take place, so we cannot do the
|
| 4263 |
|
|
-- assignment in place unless the bounds of the aggregate are
|
| 4264 |
|
|
-- statically equal to those of the target.
|
| 4265 |
|
|
|
| 4266 |
|
|
-- If the aggregate is given by an others choice, the bounds
|
| 4267 |
|
|
-- are derived from the left-hand side, and the assignment is
|
| 4268 |
|
|
-- safe if the expression is.
|
| 4269 |
|
|
|
| 4270 |
|
|
if Is_Others_Aggregate (N) then
|
| 4271 |
|
|
return
|
| 4272 |
|
|
Safe_Component
|
| 4273 |
|
|
(Expression (First (Component_Associations (N))));
|
| 4274 |
|
|
end if;
|
| 4275 |
|
|
|
| 4276 |
|
|
Aggr_In := First_Index (Etype (N));
|
| 4277 |
|
|
|
| 4278 |
|
|
if Nkind (Parent (N)) = N_Assignment_Statement then
|
| 4279 |
|
|
Obj_In := First_Index (Etype (Name (Parent (N))));
|
| 4280 |
|
|
|
| 4281 |
|
|
else
|
| 4282 |
|
|
-- Context is an allocator. Check bounds of aggregate
|
| 4283 |
|
|
-- against given type in qualified expression.
|
| 4284 |
|
|
|
| 4285 |
|
|
pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
|
| 4286 |
|
|
Obj_In :=
|
| 4287 |
|
|
First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
|
| 4288 |
|
|
end if;
|
| 4289 |
|
|
|
| 4290 |
|
|
while Present (Aggr_In) loop
|
| 4291 |
|
|
Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
|
| 4292 |
|
|
Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
|
| 4293 |
|
|
|
| 4294 |
|
|
if not Compile_Time_Known_Value (Aggr_Lo)
|
| 4295 |
|
|
or else not Compile_Time_Known_Value (Aggr_Hi)
|
| 4296 |
|
|
or else not Compile_Time_Known_Value (Obj_Lo)
|
| 4297 |
|
|
or else not Compile_Time_Known_Value (Obj_Hi)
|
| 4298 |
|
|
or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
|
| 4299 |
|
|
or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
|
| 4300 |
|
|
then
|
| 4301 |
|
|
return False;
|
| 4302 |
|
|
end if;
|
| 4303 |
|
|
|
| 4304 |
|
|
Next_Index (Aggr_In);
|
| 4305 |
|
|
Next_Index (Obj_In);
|
| 4306 |
|
|
end loop;
|
| 4307 |
|
|
end if;
|
| 4308 |
|
|
|
| 4309 |
|
|
-- Now check the component values themselves
|
| 4310 |
|
|
|
| 4311 |
|
|
return Safe_Aggregate (N);
|
| 4312 |
|
|
end In_Place_Assign_OK;
|
| 4313 |
|
|
|
| 4314 |
|
|
------------------
|
| 4315 |
|
|
-- Others_Check --
|
| 4316 |
|
|
------------------
|
| 4317 |
|
|
|
| 4318 |
|
|
procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
|
| 4319 |
|
|
Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
|
| 4320 |
|
|
Aggr_Hi : constant Node_Id := Aggr_High (Dim);
|
| 4321 |
|
|
-- The bounds of the aggregate for this dimension
|
| 4322 |
|
|
|
| 4323 |
|
|
Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
|
| 4324 |
|
|
-- The index type for this dimension
|
| 4325 |
|
|
|
| 4326 |
|
|
Need_To_Check : Boolean := False;
|
| 4327 |
|
|
|
| 4328 |
|
|
Choices_Lo : Node_Id := Empty;
|
| 4329 |
|
|
Choices_Hi : Node_Id := Empty;
|
| 4330 |
|
|
-- The lowest and highest discrete choices for a named sub-aggregate
|
| 4331 |
|
|
|
| 4332 |
|
|
Nb_Choices : Int := -1;
|
| 4333 |
|
|
-- The number of discrete non-others choices in this sub-aggregate
|
| 4334 |
|
|
|
| 4335 |
|
|
Nb_Elements : Uint := Uint_0;
|
| 4336 |
|
|
-- The number of elements in a positional aggregate
|
| 4337 |
|
|
|
| 4338 |
|
|
Cond : Node_Id := Empty;
|
| 4339 |
|
|
|
| 4340 |
|
|
Assoc : Node_Id;
|
| 4341 |
|
|
Choice : Node_Id;
|
| 4342 |
|
|
Expr : Node_Id;
|
| 4343 |
|
|
|
| 4344 |
|
|
begin
|
| 4345 |
|
|
-- Check if we have an others choice. If we do make sure that this
|
| 4346 |
|
|
-- sub-aggregate contains at least one element in addition to the
|
| 4347 |
|
|
-- others choice.
|
| 4348 |
|
|
|
| 4349 |
|
|
if Range_Checks_Suppressed (Ind_Typ) then
|
| 4350 |
|
|
Need_To_Check := False;
|
| 4351 |
|
|
|
| 4352 |
|
|
elsif Present (Expressions (Sub_Aggr))
|
| 4353 |
|
|
and then Present (Component_Associations (Sub_Aggr))
|
| 4354 |
|
|
then
|
| 4355 |
|
|
Need_To_Check := True;
|
| 4356 |
|
|
|
| 4357 |
|
|
elsif Present (Component_Associations (Sub_Aggr)) then
|
| 4358 |
|
|
Assoc := Last (Component_Associations (Sub_Aggr));
|
| 4359 |
|
|
|
| 4360 |
|
|
if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
|
| 4361 |
|
|
Need_To_Check := False;
|
| 4362 |
|
|
|
| 4363 |
|
|
else
|
| 4364 |
|
|
-- Count the number of discrete choices. Start with -1 because
|
| 4365 |
|
|
-- the others choice does not count.
|
| 4366 |
|
|
|
| 4367 |
|
|
Nb_Choices := -1;
|
| 4368 |
|
|
Assoc := First (Component_Associations (Sub_Aggr));
|
| 4369 |
|
|
while Present (Assoc) loop
|
| 4370 |
|
|
Choice := First (Choices (Assoc));
|
| 4371 |
|
|
while Present (Choice) loop
|
| 4372 |
|
|
Nb_Choices := Nb_Choices + 1;
|
| 4373 |
|
|
Next (Choice);
|
| 4374 |
|
|
end loop;
|
| 4375 |
|
|
|
| 4376 |
|
|
Next (Assoc);
|
| 4377 |
|
|
end loop;
|
| 4378 |
|
|
|
| 4379 |
|
|
-- If there is only an others choice nothing to do
|
| 4380 |
|
|
|
| 4381 |
|
|
Need_To_Check := (Nb_Choices > 0);
|
| 4382 |
|
|
end if;
|
| 4383 |
|
|
|
| 4384 |
|
|
else
|
| 4385 |
|
|
Need_To_Check := False;
|
| 4386 |
|
|
end if;
|
| 4387 |
|
|
|
| 4388 |
|
|
-- If we are dealing with a positional sub-aggregate with an others
|
| 4389 |
|
|
-- choice then compute the number or positional elements.
|
| 4390 |
|
|
|
| 4391 |
|
|
if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
|
| 4392 |
|
|
Expr := First (Expressions (Sub_Aggr));
|
| 4393 |
|
|
Nb_Elements := Uint_0;
|
| 4394 |
|
|
while Present (Expr) loop
|
| 4395 |
|
|
Nb_Elements := Nb_Elements + 1;
|
| 4396 |
|
|
Next (Expr);
|
| 4397 |
|
|
end loop;
|
| 4398 |
|
|
|
| 4399 |
|
|
-- If the aggregate contains discrete choices and an others choice
|
| 4400 |
|
|
-- compute the smallest and largest discrete choice values.
|
| 4401 |
|
|
|
| 4402 |
|
|
elsif Need_To_Check then
|
| 4403 |
|
|
Compute_Choices_Lo_And_Choices_Hi : declare
|
| 4404 |
|
|
|
| 4405 |
|
|
Table : Case_Table_Type (1 .. Nb_Choices);
|
| 4406 |
|
|
-- Used to sort all the different choice values
|
| 4407 |
|
|
|
| 4408 |
|
|
J : Pos := 1;
|
| 4409 |
|
|
Low : Node_Id;
|
| 4410 |
|
|
High : Node_Id;
|
| 4411 |
|
|
|
| 4412 |
|
|
begin
|
| 4413 |
|
|
Assoc := First (Component_Associations (Sub_Aggr));
|
| 4414 |
|
|
while Present (Assoc) loop
|
| 4415 |
|
|
Choice := First (Choices (Assoc));
|
| 4416 |
|
|
while Present (Choice) loop
|
| 4417 |
|
|
if Nkind (Choice) = N_Others_Choice then
|
| 4418 |
|
|
exit;
|
| 4419 |
|
|
end if;
|
| 4420 |
|
|
|
| 4421 |
|
|
Get_Index_Bounds (Choice, Low, High);
|
| 4422 |
|
|
Table (J).Choice_Lo := Low;
|
| 4423 |
|
|
Table (J).Choice_Hi := High;
|
| 4424 |
|
|
|
| 4425 |
|
|
J := J + 1;
|
| 4426 |
|
|
Next (Choice);
|
| 4427 |
|
|
end loop;
|
| 4428 |
|
|
|
| 4429 |
|
|
Next (Assoc);
|
| 4430 |
|
|
end loop;
|
| 4431 |
|
|
|
| 4432 |
|
|
-- Sort the discrete choices
|
| 4433 |
|
|
|
| 4434 |
|
|
Sort_Case_Table (Table);
|
| 4435 |
|
|
|
| 4436 |
|
|
Choices_Lo := Table (1).Choice_Lo;
|
| 4437 |
|
|
Choices_Hi := Table (Nb_Choices).Choice_Hi;
|
| 4438 |
|
|
end Compute_Choices_Lo_And_Choices_Hi;
|
| 4439 |
|
|
end if;
|
| 4440 |
|
|
|
| 4441 |
|
|
-- If no others choice in this sub-aggregate, or the aggregate
|
| 4442 |
|
|
-- comprises only an others choice, nothing to do.
|
| 4443 |
|
|
|
| 4444 |
|
|
if not Need_To_Check then
|
| 4445 |
|
|
Cond := Empty;
|
| 4446 |
|
|
|
| 4447 |
|
|
-- If we are dealing with an aggregate containing an others choice
|
| 4448 |
|
|
-- and positional components, we generate the following test:
|
| 4449 |
|
|
|
| 4450 |
|
|
-- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
|
| 4451 |
|
|
-- Ind_Typ'Pos (Aggr_Hi)
|
| 4452 |
|
|
-- then
|
| 4453 |
|
|
-- raise Constraint_Error;
|
| 4454 |
|
|
-- end if;
|
| 4455 |
|
|
|
| 4456 |
|
|
elsif Nb_Elements > Uint_0 then
|
| 4457 |
|
|
Cond :=
|
| 4458 |
|
|
Make_Op_Gt (Loc,
|
| 4459 |
|
|
Left_Opnd =>
|
| 4460 |
|
|
Make_Op_Add (Loc,
|
| 4461 |
|
|
Left_Opnd =>
|
| 4462 |
|
|
Make_Attribute_Reference (Loc,
|
| 4463 |
|
|
Prefix => New_Reference_To (Ind_Typ, Loc),
|
| 4464 |
|
|
Attribute_Name => Name_Pos,
|
| 4465 |
|
|
Expressions =>
|
| 4466 |
|
|
New_List
|
| 4467 |
|
|
(Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
|
| 4468 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
|
| 4469 |
|
|
|
| 4470 |
|
|
Right_Opnd =>
|
| 4471 |
|
|
Make_Attribute_Reference (Loc,
|
| 4472 |
|
|
Prefix => New_Reference_To (Ind_Typ, Loc),
|
| 4473 |
|
|
Attribute_Name => Name_Pos,
|
| 4474 |
|
|
Expressions => New_List (
|
| 4475 |
|
|
Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
|
| 4476 |
|
|
|
| 4477 |
|
|
-- If we are dealing with an aggregate containing an others choice
|
| 4478 |
|
|
-- and discrete choices we generate the following test:
|
| 4479 |
|
|
|
| 4480 |
|
|
-- [constraint_error when
|
| 4481 |
|
|
-- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
|
| 4482 |
|
|
|
| 4483 |
|
|
else
|
| 4484 |
|
|
Cond :=
|
| 4485 |
|
|
Make_Or_Else (Loc,
|
| 4486 |
|
|
Left_Opnd =>
|
| 4487 |
|
|
Make_Op_Lt (Loc,
|
| 4488 |
|
|
Left_Opnd =>
|
| 4489 |
|
|
Duplicate_Subexpr_Move_Checks (Choices_Lo),
|
| 4490 |
|
|
Right_Opnd =>
|
| 4491 |
|
|
Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
|
| 4492 |
|
|
|
| 4493 |
|
|
Right_Opnd =>
|
| 4494 |
|
|
Make_Op_Gt (Loc,
|
| 4495 |
|
|
Left_Opnd =>
|
| 4496 |
|
|
Duplicate_Subexpr (Choices_Hi),
|
| 4497 |
|
|
Right_Opnd =>
|
| 4498 |
|
|
Duplicate_Subexpr (Aggr_Hi)));
|
| 4499 |
|
|
end if;
|
| 4500 |
|
|
|
| 4501 |
|
|
if Present (Cond) then
|
| 4502 |
|
|
Insert_Action (N,
|
| 4503 |
|
|
Make_Raise_Constraint_Error (Loc,
|
| 4504 |
|
|
Condition => Cond,
|
| 4505 |
|
|
Reason => CE_Length_Check_Failed));
|
| 4506 |
|
|
-- Questionable reason code, shouldn't that be a
|
| 4507 |
|
|
-- CE_Range_Check_Failed ???
|
| 4508 |
|
|
end if;
|
| 4509 |
|
|
|
| 4510 |
|
|
-- Now look inside the sub-aggregate to see if there is more work
|
| 4511 |
|
|
|
| 4512 |
|
|
if Dim < Aggr_Dimension then
|
| 4513 |
|
|
|
| 4514 |
|
|
-- Process positional components
|
| 4515 |
|
|
|
| 4516 |
|
|
if Present (Expressions (Sub_Aggr)) then
|
| 4517 |
|
|
Expr := First (Expressions (Sub_Aggr));
|
| 4518 |
|
|
while Present (Expr) loop
|
| 4519 |
|
|
Others_Check (Expr, Dim + 1);
|
| 4520 |
|
|
Next (Expr);
|
| 4521 |
|
|
end loop;
|
| 4522 |
|
|
end if;
|
| 4523 |
|
|
|
| 4524 |
|
|
-- Process component associations
|
| 4525 |
|
|
|
| 4526 |
|
|
if Present (Component_Associations (Sub_Aggr)) then
|
| 4527 |
|
|
Assoc := First (Component_Associations (Sub_Aggr));
|
| 4528 |
|
|
while Present (Assoc) loop
|
| 4529 |
|
|
Expr := Expression (Assoc);
|
| 4530 |
|
|
Others_Check (Expr, Dim + 1);
|
| 4531 |
|
|
Next (Assoc);
|
| 4532 |
|
|
end loop;
|
| 4533 |
|
|
end if;
|
| 4534 |
|
|
end if;
|
| 4535 |
|
|
end Others_Check;
|
| 4536 |
|
|
|
| 4537 |
|
|
-------------------------
|
| 4538 |
|
|
-- Safe_Left_Hand_Side --
|
| 4539 |
|
|
-------------------------
|
| 4540 |
|
|
|
| 4541 |
|
|
function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
|
| 4542 |
|
|
function Is_Safe_Index (Indx : Node_Id) return Boolean;
|
| 4543 |
|
|
-- If the left-hand side includes an indexed component, check that
|
| 4544 |
|
|
-- the indexes are free of side-effect.
|
| 4545 |
|
|
|
| 4546 |
|
|
-------------------
|
| 4547 |
|
|
-- Is_Safe_Index --
|
| 4548 |
|
|
-------------------
|
| 4549 |
|
|
|
| 4550 |
|
|
function Is_Safe_Index (Indx : Node_Id) return Boolean is
|
| 4551 |
|
|
begin
|
| 4552 |
|
|
if Is_Entity_Name (Indx) then
|
| 4553 |
|
|
return True;
|
| 4554 |
|
|
|
| 4555 |
|
|
elsif Nkind (Indx) = N_Integer_Literal then
|
| 4556 |
|
|
return True;
|
| 4557 |
|
|
|
| 4558 |
|
|
elsif Nkind (Indx) = N_Function_Call
|
| 4559 |
|
|
and then Is_Entity_Name (Name (Indx))
|
| 4560 |
|
|
and then
|
| 4561 |
|
|
Has_Pragma_Pure_Function (Entity (Name (Indx)))
|
| 4562 |
|
|
then
|
| 4563 |
|
|
return True;
|
| 4564 |
|
|
|
| 4565 |
|
|
elsif Nkind (Indx) = N_Type_Conversion
|
| 4566 |
|
|
and then Is_Safe_Index (Expression (Indx))
|
| 4567 |
|
|
then
|
| 4568 |
|
|
return True;
|
| 4569 |
|
|
|
| 4570 |
|
|
else
|
| 4571 |
|
|
return False;
|
| 4572 |
|
|
end if;
|
| 4573 |
|
|
end Is_Safe_Index;
|
| 4574 |
|
|
|
| 4575 |
|
|
-- Start of processing for Safe_Left_Hand_Side
|
| 4576 |
|
|
|
| 4577 |
|
|
begin
|
| 4578 |
|
|
if Is_Entity_Name (N) then
|
| 4579 |
|
|
return True;
|
| 4580 |
|
|
|
| 4581 |
|
|
elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
|
| 4582 |
|
|
and then Safe_Left_Hand_Side (Prefix (N))
|
| 4583 |
|
|
then
|
| 4584 |
|
|
return True;
|
| 4585 |
|
|
|
| 4586 |
|
|
elsif Nkind (N) = N_Indexed_Component
|
| 4587 |
|
|
and then Safe_Left_Hand_Side (Prefix (N))
|
| 4588 |
|
|
and then
|
| 4589 |
|
|
Is_Safe_Index (First (Expressions (N)))
|
| 4590 |
|
|
then
|
| 4591 |
|
|
return True;
|
| 4592 |
|
|
|
| 4593 |
|
|
elsif Nkind (N) = N_Unchecked_Type_Conversion then
|
| 4594 |
|
|
return Safe_Left_Hand_Side (Expression (N));
|
| 4595 |
|
|
|
| 4596 |
|
|
else
|
| 4597 |
|
|
return False;
|
| 4598 |
|
|
end if;
|
| 4599 |
|
|
end Safe_Left_Hand_Side;
|
| 4600 |
|
|
|
| 4601 |
|
|
-- Local variables
|
| 4602 |
|
|
|
| 4603 |
|
|
Tmp : Entity_Id;
|
| 4604 |
|
|
-- Holds the temporary aggregate value
|
| 4605 |
|
|
|
| 4606 |
|
|
Tmp_Decl : Node_Id;
|
| 4607 |
|
|
-- Holds the declaration of Tmp
|
| 4608 |
|
|
|
| 4609 |
|
|
Aggr_Code : List_Id;
|
| 4610 |
|
|
Parent_Node : Node_Id;
|
| 4611 |
|
|
Parent_Kind : Node_Kind;
|
| 4612 |
|
|
|
| 4613 |
|
|
-- Start of processing for Expand_Array_Aggregate
|
| 4614 |
|
|
|
| 4615 |
|
|
begin
|
| 4616 |
|
|
-- Do not touch the special aggregates of attributes used for Asm calls
|
| 4617 |
|
|
|
| 4618 |
|
|
if Is_RTE (Ctyp, RE_Asm_Input_Operand)
|
| 4619 |
|
|
or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
|
| 4620 |
|
|
then
|
| 4621 |
|
|
return;
|
| 4622 |
|
|
|
| 4623 |
|
|
-- Do not expand an aggregate for an array type which contains tasks if
|
| 4624 |
|
|
-- the aggregate is associated with an unexpanded return statement of a
|
| 4625 |
|
|
-- build-in-place function. The aggregate is expanded when the related
|
| 4626 |
|
|
-- return statement (rewritten into an extended return) is processed.
|
| 4627 |
|
|
-- This delay ensures that any temporaries and initialization code
|
| 4628 |
|
|
-- generated for the aggregate appear in the proper return block and
|
| 4629 |
|
|
-- use the correct _chain and _master.
|
| 4630 |
|
|
|
| 4631 |
|
|
elsif Has_Task (Base_Type (Etype (N)))
|
| 4632 |
|
|
and then Nkind (Parent (N)) = N_Simple_Return_Statement
|
| 4633 |
|
|
and then Is_Build_In_Place_Function
|
| 4634 |
|
|
(Return_Applies_To (Return_Statement_Entity (Parent (N))))
|
| 4635 |
|
|
then
|
| 4636 |
|
|
return;
|
| 4637 |
|
|
end if;
|
| 4638 |
|
|
|
| 4639 |
|
|
-- If the semantic analyzer has determined that aggregate N will raise
|
| 4640 |
|
|
-- Constraint_Error at run time, then the aggregate node has been
|
| 4641 |
|
|
-- replaced with an N_Raise_Constraint_Error node and we should
|
| 4642 |
|
|
-- never get here.
|
| 4643 |
|
|
|
| 4644 |
|
|
pragma Assert (not Raises_Constraint_Error (N));
|
| 4645 |
|
|
|
| 4646 |
|
|
-- STEP 1a
|
| 4647 |
|
|
|
| 4648 |
|
|
-- Check that the index range defined by aggregate bounds is
|
| 4649 |
|
|
-- compatible with corresponding index subtype.
|
| 4650 |
|
|
|
| 4651 |
|
|
Index_Compatibility_Check : declare
|
| 4652 |
|
|
Aggr_Index_Range : Node_Id := First_Index (Typ);
|
| 4653 |
|
|
-- The current aggregate index range
|
| 4654 |
|
|
|
| 4655 |
|
|
Index_Constraint : Node_Id := First_Index (Etype (Typ));
|
| 4656 |
|
|
-- The corresponding index constraint against which we have to
|
| 4657 |
|
|
-- check the above aggregate index range.
|
| 4658 |
|
|
|
| 4659 |
|
|
begin
|
| 4660 |
|
|
Compute_Others_Present (N, 1);
|
| 4661 |
|
|
|
| 4662 |
|
|
for J in 1 .. Aggr_Dimension loop
|
| 4663 |
|
|
-- There is no need to emit a check if an others choice is
|
| 4664 |
|
|
-- present for this array aggregate dimension since in this
|
| 4665 |
|
|
-- case one of N's sub-aggregates has taken its bounds from the
|
| 4666 |
|
|
-- context and these bounds must have been checked already. In
|
| 4667 |
|
|
-- addition all sub-aggregates corresponding to the same
|
| 4668 |
|
|
-- dimension must all have the same bounds (checked in (c) below).
|
| 4669 |
|
|
|
| 4670 |
|
|
if not Range_Checks_Suppressed (Etype (Index_Constraint))
|
| 4671 |
|
|
and then not Others_Present (J)
|
| 4672 |
|
|
then
|
| 4673 |
|
|
-- We don't use Checks.Apply_Range_Check here because it emits
|
| 4674 |
|
|
-- a spurious check. Namely it checks that the range defined by
|
| 4675 |
|
|
-- the aggregate bounds is non empty. But we know this already
|
| 4676 |
|
|
-- if we get here.
|
| 4677 |
|
|
|
| 4678 |
|
|
Check_Bounds (Aggr_Index_Range, Index_Constraint);
|
| 4679 |
|
|
end if;
|
| 4680 |
|
|
|
| 4681 |
|
|
-- Save the low and high bounds of the aggregate index as well as
|
| 4682 |
|
|
-- the index type for later use in checks (b) and (c) below.
|
| 4683 |
|
|
|
| 4684 |
|
|
Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
|
| 4685 |
|
|
Aggr_High (J) := High_Bound (Aggr_Index_Range);
|
| 4686 |
|
|
|
| 4687 |
|
|
Aggr_Index_Typ (J) := Etype (Index_Constraint);
|
| 4688 |
|
|
|
| 4689 |
|
|
Next_Index (Aggr_Index_Range);
|
| 4690 |
|
|
Next_Index (Index_Constraint);
|
| 4691 |
|
|
end loop;
|
| 4692 |
|
|
end Index_Compatibility_Check;
|
| 4693 |
|
|
|
| 4694 |
|
|
-- STEP 1b
|
| 4695 |
|
|
|
| 4696 |
|
|
-- If an others choice is present check that no aggregate index is
|
| 4697 |
|
|
-- outside the bounds of the index constraint.
|
| 4698 |
|
|
|
| 4699 |
|
|
Others_Check (N, 1);
|
| 4700 |
|
|
|
| 4701 |
|
|
-- STEP 1c
|
| 4702 |
|
|
|
| 4703 |
|
|
-- For multidimensional arrays make sure that all subaggregates
|
| 4704 |
|
|
-- corresponding to the same dimension have the same bounds.
|
| 4705 |
|
|
|
| 4706 |
|
|
if Aggr_Dimension > 1 then
|
| 4707 |
|
|
Check_Same_Aggr_Bounds (N, 1);
|
| 4708 |
|
|
end if;
|
| 4709 |
|
|
|
| 4710 |
|
|
-- STEP 2
|
| 4711 |
|
|
|
| 4712 |
|
|
-- Here we test for is packed array aggregate that we can handle at
|
| 4713 |
|
|
-- compile time. If so, return with transformation done. Note that we do
|
| 4714 |
|
|
-- this even if the aggregate is nested, because once we have done this
|
| 4715 |
|
|
-- processing, there is no more nested aggregate!
|
| 4716 |
|
|
|
| 4717 |
|
|
if Packed_Array_Aggregate_Handled (N) then
|
| 4718 |
|
|
return;
|
| 4719 |
|
|
end if;
|
| 4720 |
|
|
|
| 4721 |
|
|
-- At this point we try to convert to positional form
|
| 4722 |
|
|
|
| 4723 |
|
|
if Ekind (Current_Scope) = E_Package
|
| 4724 |
|
|
and then Static_Elaboration_Desired (Current_Scope)
|
| 4725 |
|
|
then
|
| 4726 |
|
|
Convert_To_Positional (N, Max_Others_Replicate => 100);
|
| 4727 |
|
|
else
|
| 4728 |
|
|
Convert_To_Positional (N);
|
| 4729 |
|
|
end if;
|
| 4730 |
|
|
|
| 4731 |
|
|
-- if the result is no longer an aggregate (e.g. it may be a string
|
| 4732 |
|
|
-- literal, or a temporary which has the needed value), then we are
|
| 4733 |
|
|
-- done, since there is no longer a nested aggregate.
|
| 4734 |
|
|
|
| 4735 |
|
|
if Nkind (N) /= N_Aggregate then
|
| 4736 |
|
|
return;
|
| 4737 |
|
|
|
| 4738 |
|
|
-- We are also done if the result is an analyzed aggregate
|
| 4739 |
|
|
-- This case could use more comments ???
|
| 4740 |
|
|
|
| 4741 |
|
|
elsif Analyzed (N)
|
| 4742 |
|
|
and then N /= Original_Node (N)
|
| 4743 |
|
|
then
|
| 4744 |
|
|
return;
|
| 4745 |
|
|
end if;
|
| 4746 |
|
|
|
| 4747 |
|
|
-- If all aggregate components are compile-time known and the aggregate
|
| 4748 |
|
|
-- has been flattened, nothing left to do. The same occurs if the
|
| 4749 |
|
|
-- aggregate is used to initialize the components of an statically
|
| 4750 |
|
|
-- allocated dispatch table.
|
| 4751 |
|
|
|
| 4752 |
|
|
if Compile_Time_Known_Aggregate (N)
|
| 4753 |
|
|
or else Is_Static_Dispatch_Table_Aggregate (N)
|
| 4754 |
|
|
then
|
| 4755 |
|
|
Set_Expansion_Delayed (N, False);
|
| 4756 |
|
|
return;
|
| 4757 |
|
|
end if;
|
| 4758 |
|
|
|
| 4759 |
|
|
-- Now see if back end processing is possible
|
| 4760 |
|
|
|
| 4761 |
|
|
if Backend_Processing_Possible (N) then
|
| 4762 |
|
|
|
| 4763 |
|
|
-- If the aggregate is static but the constraints are not, build
|
| 4764 |
|
|
-- a static subtype for the aggregate, so that Gigi can place it
|
| 4765 |
|
|
-- in static memory. Perform an unchecked_conversion to the non-
|
| 4766 |
|
|
-- static type imposed by the context.
|
| 4767 |
|
|
|
| 4768 |
|
|
declare
|
| 4769 |
|
|
Itype : constant Entity_Id := Etype (N);
|
| 4770 |
|
|
Index : Node_Id;
|
| 4771 |
|
|
Needs_Type : Boolean := False;
|
| 4772 |
|
|
|
| 4773 |
|
|
begin
|
| 4774 |
|
|
Index := First_Index (Itype);
|
| 4775 |
|
|
while Present (Index) loop
|
| 4776 |
|
|
if not Is_Static_Subtype (Etype (Index)) then
|
| 4777 |
|
|
Needs_Type := True;
|
| 4778 |
|
|
exit;
|
| 4779 |
|
|
else
|
| 4780 |
|
|
Next_Index (Index);
|
| 4781 |
|
|
end if;
|
| 4782 |
|
|
end loop;
|
| 4783 |
|
|
|
| 4784 |
|
|
if Needs_Type then
|
| 4785 |
|
|
Build_Constrained_Type (Positional => True);
|
| 4786 |
|
|
Rewrite (N, Unchecked_Convert_To (Itype, N));
|
| 4787 |
|
|
Analyze (N);
|
| 4788 |
|
|
end if;
|
| 4789 |
|
|
end;
|
| 4790 |
|
|
|
| 4791 |
|
|
return;
|
| 4792 |
|
|
end if;
|
| 4793 |
|
|
|
| 4794 |
|
|
-- STEP 3
|
| 4795 |
|
|
|
| 4796 |
|
|
-- Delay expansion for nested aggregates: it will be taken care of
|
| 4797 |
|
|
-- when the parent aggregate is expanded.
|
| 4798 |
|
|
|
| 4799 |
|
|
Parent_Node := Parent (N);
|
| 4800 |
|
|
Parent_Kind := Nkind (Parent_Node);
|
| 4801 |
|
|
|
| 4802 |
|
|
if Parent_Kind = N_Qualified_Expression then
|
| 4803 |
|
|
Parent_Node := Parent (Parent_Node);
|
| 4804 |
|
|
Parent_Kind := Nkind (Parent_Node);
|
| 4805 |
|
|
end if;
|
| 4806 |
|
|
|
| 4807 |
|
|
if Parent_Kind = N_Aggregate
|
| 4808 |
|
|
or else Parent_Kind = N_Extension_Aggregate
|
| 4809 |
|
|
or else Parent_Kind = N_Component_Association
|
| 4810 |
|
|
or else (Parent_Kind = N_Object_Declaration
|
| 4811 |
|
|
and then Needs_Finalization (Typ))
|
| 4812 |
|
|
or else (Parent_Kind = N_Assignment_Statement
|
| 4813 |
|
|
and then Inside_Init_Proc)
|
| 4814 |
|
|
then
|
| 4815 |
|
|
if Static_Array_Aggregate (N)
|
| 4816 |
|
|
or else Compile_Time_Known_Aggregate (N)
|
| 4817 |
|
|
then
|
| 4818 |
|
|
Set_Expansion_Delayed (N, False);
|
| 4819 |
|
|
return;
|
| 4820 |
|
|
else
|
| 4821 |
|
|
Set_Expansion_Delayed (N);
|
| 4822 |
|
|
return;
|
| 4823 |
|
|
end if;
|
| 4824 |
|
|
end if;
|
| 4825 |
|
|
|
| 4826 |
|
|
-- STEP 4
|
| 4827 |
|
|
|
| 4828 |
|
|
-- Look if in place aggregate expansion is possible
|
| 4829 |
|
|
|
| 4830 |
|
|
-- For object declarations we build the aggregate in place, unless
|
| 4831 |
|
|
-- the array is bit-packed or the component is controlled.
|
| 4832 |
|
|
|
| 4833 |
|
|
-- For assignments we do the assignment in place if all the component
|
| 4834 |
|
|
-- associations have compile-time known values. For other cases we
|
| 4835 |
|
|
-- create a temporary. The analysis for safety of on-line assignment
|
| 4836 |
|
|
-- is delicate, i.e. we don't know how to do it fully yet ???
|
| 4837 |
|
|
|
| 4838 |
|
|
-- For allocators we assign to the designated object in place if the
|
| 4839 |
|
|
-- aggregate meets the same conditions as other in-place assignments.
|
| 4840 |
|
|
-- In this case the aggregate may not come from source but was created
|
| 4841 |
|
|
-- for default initialization, e.g. with Initialize_Scalars.
|
| 4842 |
|
|
|
| 4843 |
|
|
if Requires_Transient_Scope (Typ) then
|
| 4844 |
|
|
Establish_Transient_Scope
|
| 4845 |
|
|
(N, Sec_Stack => Has_Controlled_Component (Typ));
|
| 4846 |
|
|
end if;
|
| 4847 |
|
|
|
| 4848 |
|
|
if Has_Default_Init_Comps (N) then
|
| 4849 |
|
|
Maybe_In_Place_OK := False;
|
| 4850 |
|
|
|
| 4851 |
|
|
elsif Is_Bit_Packed_Array (Typ)
|
| 4852 |
|
|
or else Has_Controlled_Component (Typ)
|
| 4853 |
|
|
then
|
| 4854 |
|
|
Maybe_In_Place_OK := False;
|
| 4855 |
|
|
|
| 4856 |
|
|
else
|
| 4857 |
|
|
Maybe_In_Place_OK :=
|
| 4858 |
|
|
(Nkind (Parent (N)) = N_Assignment_Statement
|
| 4859 |
|
|
and then Comes_From_Source (N)
|
| 4860 |
|
|
and then In_Place_Assign_OK)
|
| 4861 |
|
|
|
| 4862 |
|
|
or else
|
| 4863 |
|
|
(Nkind (Parent (Parent (N))) = N_Allocator
|
| 4864 |
|
|
and then In_Place_Assign_OK);
|
| 4865 |
|
|
end if;
|
| 4866 |
|
|
|
| 4867 |
|
|
-- If this is an array of tasks, it will be expanded into build-in-place
|
| 4868 |
|
|
-- assignments. Build an activation chain for the tasks now.
|
| 4869 |
|
|
|
| 4870 |
|
|
if Has_Task (Etype (N)) then
|
| 4871 |
|
|
Build_Activation_Chain_Entity (N);
|
| 4872 |
|
|
end if;
|
| 4873 |
|
|
|
| 4874 |
|
|
-- Should document these individual tests ???
|
| 4875 |
|
|
|
| 4876 |
|
|
if not Has_Default_Init_Comps (N)
|
| 4877 |
|
|
and then Comes_From_Source (Parent (N))
|
| 4878 |
|
|
and then Nkind (Parent (N)) = N_Object_Declaration
|
| 4879 |
|
|
and then not
|
| 4880 |
|
|
Must_Slide (Etype (Defining_Identifier (Parent (N))), Typ)
|
| 4881 |
|
|
and then N = Expression (Parent (N))
|
| 4882 |
|
|
and then not Is_Bit_Packed_Array (Typ)
|
| 4883 |
|
|
and then not Has_Controlled_Component (Typ)
|
| 4884 |
|
|
|
| 4885 |
|
|
-- If the aggregate is the expression in an object declaration, it
|
| 4886 |
|
|
-- cannot be expanded in place. Lookahead in the current declarative
|
| 4887 |
|
|
-- part to find an address clause for the object being declared. If
|
| 4888 |
|
|
-- one is present, we cannot build in place. Unclear comment???
|
| 4889 |
|
|
|
| 4890 |
|
|
and then not Has_Following_Address_Clause (Parent (N))
|
| 4891 |
|
|
then
|
| 4892 |
|
|
Tmp := Defining_Identifier (Parent (N));
|
| 4893 |
|
|
Set_No_Initialization (Parent (N));
|
| 4894 |
|
|
Set_Expression (Parent (N), Empty);
|
| 4895 |
|
|
|
| 4896 |
|
|
-- Set the type of the entity, for use in the analysis of the
|
| 4897 |
|
|
-- subsequent indexed assignments. If the nominal type is not
|
| 4898 |
|
|
-- constrained, build a subtype from the known bounds of the
|
| 4899 |
|
|
-- aggregate. If the declaration has a subtype mark, use it,
|
| 4900 |
|
|
-- otherwise use the itype of the aggregate.
|
| 4901 |
|
|
|
| 4902 |
|
|
if not Is_Constrained (Typ) then
|
| 4903 |
|
|
Build_Constrained_Type (Positional => False);
|
| 4904 |
|
|
elsif Is_Entity_Name (Object_Definition (Parent (N)))
|
| 4905 |
|
|
and then Is_Constrained (Entity (Object_Definition (Parent (N))))
|
| 4906 |
|
|
then
|
| 4907 |
|
|
Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
|
| 4908 |
|
|
else
|
| 4909 |
|
|
Set_Size_Known_At_Compile_Time (Typ, False);
|
| 4910 |
|
|
Set_Etype (Tmp, Typ);
|
| 4911 |
|
|
end if;
|
| 4912 |
|
|
|
| 4913 |
|
|
elsif Maybe_In_Place_OK
|
| 4914 |
|
|
and then Nkind (Parent (N)) = N_Qualified_Expression
|
| 4915 |
|
|
and then Nkind (Parent (Parent (N))) = N_Allocator
|
| 4916 |
|
|
then
|
| 4917 |
|
|
Set_Expansion_Delayed (N);
|
| 4918 |
|
|
return;
|
| 4919 |
|
|
|
| 4920 |
|
|
-- In the remaining cases the aggregate is the RHS of an assignment
|
| 4921 |
|
|
|
| 4922 |
|
|
elsif Maybe_In_Place_OK
|
| 4923 |
|
|
and then Safe_Left_Hand_Side (Name (Parent (N)))
|
| 4924 |
|
|
then
|
| 4925 |
|
|
Tmp := Name (Parent (N));
|
| 4926 |
|
|
|
| 4927 |
|
|
if Etype (Tmp) /= Etype (N) then
|
| 4928 |
|
|
Apply_Length_Check (N, Etype (Tmp));
|
| 4929 |
|
|
|
| 4930 |
|
|
if Nkind (N) = N_Raise_Constraint_Error then
|
| 4931 |
|
|
|
| 4932 |
|
|
-- Static error, nothing further to expand
|
| 4933 |
|
|
|
| 4934 |
|
|
return;
|
| 4935 |
|
|
end if;
|
| 4936 |
|
|
end if;
|
| 4937 |
|
|
|
| 4938 |
|
|
elsif Maybe_In_Place_OK
|
| 4939 |
|
|
and then Nkind (Name (Parent (N))) = N_Slice
|
| 4940 |
|
|
and then Safe_Slice_Assignment (N)
|
| 4941 |
|
|
then
|
| 4942 |
|
|
-- Safe_Slice_Assignment rewrites assignment as a loop
|
| 4943 |
|
|
|
| 4944 |
|
|
return;
|
| 4945 |
|
|
|
| 4946 |
|
|
-- Step 5
|
| 4947 |
|
|
|
| 4948 |
|
|
-- In place aggregate expansion is not possible
|
| 4949 |
|
|
|
| 4950 |
|
|
else
|
| 4951 |
|
|
Maybe_In_Place_OK := False;
|
| 4952 |
|
|
Tmp := Make_Temporary (Loc, 'A', N);
|
| 4953 |
|
|
Tmp_Decl :=
|
| 4954 |
|
|
Make_Object_Declaration
|
| 4955 |
|
|
(Loc,
|
| 4956 |
|
|
Defining_Identifier => Tmp,
|
| 4957 |
|
|
Object_Definition => New_Occurrence_Of (Typ, Loc));
|
| 4958 |
|
|
Set_No_Initialization (Tmp_Decl, True);
|
| 4959 |
|
|
|
| 4960 |
|
|
-- If we are within a loop, the temporary will be pushed on the
|
| 4961 |
|
|
-- stack at each iteration. If the aggregate is the expression for an
|
| 4962 |
|
|
-- allocator, it will be immediately copied to the heap and can
|
| 4963 |
|
|
-- be reclaimed at once. We create a transient scope around the
|
| 4964 |
|
|
-- aggregate for this purpose.
|
| 4965 |
|
|
|
| 4966 |
|
|
if Ekind (Current_Scope) = E_Loop
|
| 4967 |
|
|
and then Nkind (Parent (Parent (N))) = N_Allocator
|
| 4968 |
|
|
then
|
| 4969 |
|
|
Establish_Transient_Scope (N, False);
|
| 4970 |
|
|
end if;
|
| 4971 |
|
|
|
| 4972 |
|
|
Insert_Action (N, Tmp_Decl);
|
| 4973 |
|
|
end if;
|
| 4974 |
|
|
|
| 4975 |
|
|
-- Construct and insert the aggregate code. We can safely suppress index
|
| 4976 |
|
|
-- checks because this code is guaranteed not to raise CE on index
|
| 4977 |
|
|
-- checks. However we should *not* suppress all checks.
|
| 4978 |
|
|
|
| 4979 |
|
|
declare
|
| 4980 |
|
|
Target : Node_Id;
|
| 4981 |
|
|
|
| 4982 |
|
|
begin
|
| 4983 |
|
|
if Nkind (Tmp) = N_Defining_Identifier then
|
| 4984 |
|
|
Target := New_Reference_To (Tmp, Loc);
|
| 4985 |
|
|
|
| 4986 |
|
|
else
|
| 4987 |
|
|
|
| 4988 |
|
|
if Has_Default_Init_Comps (N) then
|
| 4989 |
|
|
|
| 4990 |
|
|
-- Ada 2005 (AI-287): This case has not been analyzed???
|
| 4991 |
|
|
|
| 4992 |
|
|
raise Program_Error;
|
| 4993 |
|
|
end if;
|
| 4994 |
|
|
|
| 4995 |
|
|
-- Name in assignment is explicit dereference
|
| 4996 |
|
|
|
| 4997 |
|
|
Target := New_Copy (Tmp);
|
| 4998 |
|
|
end if;
|
| 4999 |
|
|
|
| 5000 |
|
|
Aggr_Code :=
|
| 5001 |
|
|
Build_Array_Aggr_Code (N,
|
| 5002 |
|
|
Ctype => Ctyp,
|
| 5003 |
|
|
Index => First_Index (Typ),
|
| 5004 |
|
|
Into => Target,
|
| 5005 |
|
|
Scalar_Comp => Is_Scalar_Type (Ctyp));
|
| 5006 |
|
|
end;
|
| 5007 |
|
|
|
| 5008 |
|
|
if Comes_From_Source (Tmp) then
|
| 5009 |
|
|
Insert_Actions_After (Parent (N), Aggr_Code);
|
| 5010 |
|
|
|
| 5011 |
|
|
else
|
| 5012 |
|
|
Insert_Actions (N, Aggr_Code);
|
| 5013 |
|
|
end if;
|
| 5014 |
|
|
|
| 5015 |
|
|
-- If the aggregate has been assigned in place, remove the original
|
| 5016 |
|
|
-- assignment.
|
| 5017 |
|
|
|
| 5018 |
|
|
if Nkind (Parent (N)) = N_Assignment_Statement
|
| 5019 |
|
|
and then Maybe_In_Place_OK
|
| 5020 |
|
|
then
|
| 5021 |
|
|
Rewrite (Parent (N), Make_Null_Statement (Loc));
|
| 5022 |
|
|
|
| 5023 |
|
|
elsif Nkind (Parent (N)) /= N_Object_Declaration
|
| 5024 |
|
|
or else Tmp /= Defining_Identifier (Parent (N))
|
| 5025 |
|
|
then
|
| 5026 |
|
|
Rewrite (N, New_Occurrence_Of (Tmp, Loc));
|
| 5027 |
|
|
Analyze_And_Resolve (N, Typ);
|
| 5028 |
|
|
end if;
|
| 5029 |
|
|
end Expand_Array_Aggregate;
|
| 5030 |
|
|
|
| 5031 |
|
|
------------------------
|
| 5032 |
|
|
-- Expand_N_Aggregate --
|
| 5033 |
|
|
------------------------
|
| 5034 |
|
|
|
| 5035 |
|
|
procedure Expand_N_Aggregate (N : Node_Id) is
|
| 5036 |
|
|
begin
|
| 5037 |
|
|
if Is_Record_Type (Etype (N)) then
|
| 5038 |
|
|
Expand_Record_Aggregate (N);
|
| 5039 |
|
|
else
|
| 5040 |
|
|
Expand_Array_Aggregate (N);
|
| 5041 |
|
|
end if;
|
| 5042 |
|
|
exception
|
| 5043 |
|
|
when RE_Not_Available =>
|
| 5044 |
|
|
return;
|
| 5045 |
|
|
end Expand_N_Aggregate;
|
| 5046 |
|
|
|
| 5047 |
|
|
----------------------------------
|
| 5048 |
|
|
-- Expand_N_Extension_Aggregate --
|
| 5049 |
|
|
----------------------------------
|
| 5050 |
|
|
|
| 5051 |
|
|
-- If the ancestor part is an expression, add a component association for
|
| 5052 |
|
|
-- the parent field. If the type of the ancestor part is not the direct
|
| 5053 |
|
|
-- parent of the expected type, build recursively the needed ancestors.
|
| 5054 |
|
|
-- If the ancestor part is a subtype_mark, replace aggregate with a decla-
|
| 5055 |
|
|
-- ration for a temporary of the expected type, followed by individual
|
| 5056 |
|
|
-- assignments to the given components.
|
| 5057 |
|
|
|
| 5058 |
|
|
procedure Expand_N_Extension_Aggregate (N : Node_Id) is
|
| 5059 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 5060 |
|
|
A : constant Node_Id := Ancestor_Part (N);
|
| 5061 |
|
|
Typ : constant Entity_Id := Etype (N);
|
| 5062 |
|
|
|
| 5063 |
|
|
begin
|
| 5064 |
|
|
-- If the ancestor is a subtype mark, an init proc must be called
|
| 5065 |
|
|
-- on the resulting object which thus has to be materialized in
|
| 5066 |
|
|
-- the front-end
|
| 5067 |
|
|
|
| 5068 |
|
|
if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
|
| 5069 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5070 |
|
|
|
| 5071 |
|
|
-- The extension aggregate is transformed into a record aggregate
|
| 5072 |
|
|
-- of the following form (c1 and c2 are inherited components)
|
| 5073 |
|
|
|
| 5074 |
|
|
-- (Exp with c3 => a, c4 => b)
|
| 5075 |
|
|
-- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
|
| 5076 |
|
|
|
| 5077 |
|
|
else
|
| 5078 |
|
|
Set_Etype (N, Typ);
|
| 5079 |
|
|
|
| 5080 |
|
|
if Tagged_Type_Expansion then
|
| 5081 |
|
|
Expand_Record_Aggregate (N,
|
| 5082 |
|
|
Orig_Tag =>
|
| 5083 |
|
|
New_Occurrence_Of
|
| 5084 |
|
|
(Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
|
| 5085 |
|
|
Parent_Expr => A);
|
| 5086 |
|
|
|
| 5087 |
|
|
-- No tag is needed in the case of a VM
|
| 5088 |
|
|
|
| 5089 |
|
|
else
|
| 5090 |
|
|
Expand_Record_Aggregate (N, Parent_Expr => A);
|
| 5091 |
|
|
end if;
|
| 5092 |
|
|
end if;
|
| 5093 |
|
|
|
| 5094 |
|
|
exception
|
| 5095 |
|
|
when RE_Not_Available =>
|
| 5096 |
|
|
return;
|
| 5097 |
|
|
end Expand_N_Extension_Aggregate;
|
| 5098 |
|
|
|
| 5099 |
|
|
-----------------------------
|
| 5100 |
|
|
-- Expand_Record_Aggregate --
|
| 5101 |
|
|
-----------------------------
|
| 5102 |
|
|
|
| 5103 |
|
|
procedure Expand_Record_Aggregate
|
| 5104 |
|
|
(N : Node_Id;
|
| 5105 |
|
|
Orig_Tag : Node_Id := Empty;
|
| 5106 |
|
|
Parent_Expr : Node_Id := Empty)
|
| 5107 |
|
|
is
|
| 5108 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 5109 |
|
|
Comps : constant List_Id := Component_Associations (N);
|
| 5110 |
|
|
Typ : constant Entity_Id := Etype (N);
|
| 5111 |
|
|
Base_Typ : constant Entity_Id := Base_Type (Typ);
|
| 5112 |
|
|
|
| 5113 |
|
|
Static_Components : Boolean := True;
|
| 5114 |
|
|
-- Flag to indicate whether all components are compile-time known,
|
| 5115 |
|
|
-- and the aggregate can be constructed statically and handled by
|
| 5116 |
|
|
-- the back-end.
|
| 5117 |
|
|
|
| 5118 |
|
|
function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
|
| 5119 |
|
|
-- Returns true if N is an expression of composite type which can be
|
| 5120 |
|
|
-- fully evaluated at compile time without raising constraint error.
|
| 5121 |
|
|
-- Such expressions can be passed as is to Gigi without any expansion.
|
| 5122 |
|
|
--
|
| 5123 |
|
|
-- This returns true for N_Aggregate with Compile_Time_Known_Aggregate
|
| 5124 |
|
|
-- set and constants whose expression is such an aggregate, recursively.
|
| 5125 |
|
|
|
| 5126 |
|
|
function Component_Not_OK_For_Backend return Boolean;
|
| 5127 |
|
|
-- Check for presence of component which makes it impossible for the
|
| 5128 |
|
|
-- backend to process the aggregate, thus requiring the use of a series
|
| 5129 |
|
|
-- of assignment statements. Cases checked for are a nested aggregate
|
| 5130 |
|
|
-- needing Late_Expansion, the presence of a tagged component which may
|
| 5131 |
|
|
-- need tag adjustment, and a bit unaligned component reference.
|
| 5132 |
|
|
--
|
| 5133 |
|
|
-- We also force expansion into assignments if a component is of a
|
| 5134 |
|
|
-- mutable type (including a private type with discriminants) because
|
| 5135 |
|
|
-- in that case the size of the component to be copied may be smaller
|
| 5136 |
|
|
-- than the side of the target, and there is no simple way for gigi
|
| 5137 |
|
|
-- to compute the size of the object to be copied.
|
| 5138 |
|
|
--
|
| 5139 |
|
|
-- NOTE: This is part of the ongoing work to define precisely the
|
| 5140 |
|
|
-- interface between front-end and back-end handling of aggregates.
|
| 5141 |
|
|
-- In general it is desirable to pass aggregates as they are to gigi,
|
| 5142 |
|
|
-- in order to minimize elaboration code. This is one case where the
|
| 5143 |
|
|
-- semantics of Ada complicate the analysis and lead to anomalies in
|
| 5144 |
|
|
-- the gcc back-end if the aggregate is not expanded into assignments.
|
| 5145 |
|
|
|
| 5146 |
|
|
function Has_Visible_Private_Ancestor (Id : E) return Boolean;
|
| 5147 |
|
|
-- If any ancestor of the current type is private, the aggregate
|
| 5148 |
|
|
-- cannot be built in place. We canot rely on Has_Private_Ancestor,
|
| 5149 |
|
|
-- because it will not be set when type and its parent are in the
|
| 5150 |
|
|
-- same scope, and the parent component needs expansion.
|
| 5151 |
|
|
|
| 5152 |
|
|
function Top_Level_Aggregate (N : Node_Id) return Node_Id;
|
| 5153 |
|
|
-- For nested aggregates return the ultimate enclosing aggregate; for
|
| 5154 |
|
|
-- non-nested aggregates return N.
|
| 5155 |
|
|
|
| 5156 |
|
|
----------------------------------------
|
| 5157 |
|
|
-- Compile_Time_Known_Composite_Value --
|
| 5158 |
|
|
----------------------------------------
|
| 5159 |
|
|
|
| 5160 |
|
|
function Compile_Time_Known_Composite_Value
|
| 5161 |
|
|
(N : Node_Id) return Boolean
|
| 5162 |
|
|
is
|
| 5163 |
|
|
begin
|
| 5164 |
|
|
-- If we have an entity name, then see if it is the name of a
|
| 5165 |
|
|
-- constant and if so, test the corresponding constant value.
|
| 5166 |
|
|
|
| 5167 |
|
|
if Is_Entity_Name (N) then
|
| 5168 |
|
|
declare
|
| 5169 |
|
|
E : constant Entity_Id := Entity (N);
|
| 5170 |
|
|
V : Node_Id;
|
| 5171 |
|
|
begin
|
| 5172 |
|
|
if Ekind (E) /= E_Constant then
|
| 5173 |
|
|
return False;
|
| 5174 |
|
|
else
|
| 5175 |
|
|
V := Constant_Value (E);
|
| 5176 |
|
|
return Present (V)
|
| 5177 |
|
|
and then Compile_Time_Known_Composite_Value (V);
|
| 5178 |
|
|
end if;
|
| 5179 |
|
|
end;
|
| 5180 |
|
|
|
| 5181 |
|
|
-- We have a value, see if it is compile time known
|
| 5182 |
|
|
|
| 5183 |
|
|
else
|
| 5184 |
|
|
if Nkind (N) = N_Aggregate then
|
| 5185 |
|
|
return Compile_Time_Known_Aggregate (N);
|
| 5186 |
|
|
end if;
|
| 5187 |
|
|
|
| 5188 |
|
|
-- All other types of values are not known at compile time
|
| 5189 |
|
|
|
| 5190 |
|
|
return False;
|
| 5191 |
|
|
end if;
|
| 5192 |
|
|
|
| 5193 |
|
|
end Compile_Time_Known_Composite_Value;
|
| 5194 |
|
|
|
| 5195 |
|
|
----------------------------------
|
| 5196 |
|
|
-- Component_Not_OK_For_Backend --
|
| 5197 |
|
|
----------------------------------
|
| 5198 |
|
|
|
| 5199 |
|
|
function Component_Not_OK_For_Backend return Boolean is
|
| 5200 |
|
|
C : Node_Id;
|
| 5201 |
|
|
Expr_Q : Node_Id;
|
| 5202 |
|
|
|
| 5203 |
|
|
begin
|
| 5204 |
|
|
if No (Comps) then
|
| 5205 |
|
|
return False;
|
| 5206 |
|
|
end if;
|
| 5207 |
|
|
|
| 5208 |
|
|
C := First (Comps);
|
| 5209 |
|
|
while Present (C) loop
|
| 5210 |
|
|
|
| 5211 |
|
|
-- If the component has box initialization, expansion is needed
|
| 5212 |
|
|
-- and component is not ready for backend.
|
| 5213 |
|
|
|
| 5214 |
|
|
if Box_Present (C) then
|
| 5215 |
|
|
return True;
|
| 5216 |
|
|
end if;
|
| 5217 |
|
|
|
| 5218 |
|
|
if Nkind (Expression (C)) = N_Qualified_Expression then
|
| 5219 |
|
|
Expr_Q := Expression (Expression (C));
|
| 5220 |
|
|
else
|
| 5221 |
|
|
Expr_Q := Expression (C);
|
| 5222 |
|
|
end if;
|
| 5223 |
|
|
|
| 5224 |
|
|
-- Return true if the aggregate has any associations for tagged
|
| 5225 |
|
|
-- components that may require tag adjustment.
|
| 5226 |
|
|
|
| 5227 |
|
|
-- These are cases where the source expression may have a tag that
|
| 5228 |
|
|
-- could differ from the component tag (e.g., can occur for type
|
| 5229 |
|
|
-- conversions and formal parameters). (Tag adjustment not needed
|
| 5230 |
|
|
-- if VM_Target because object tags are implicit in the machine.)
|
| 5231 |
|
|
|
| 5232 |
|
|
if Is_Tagged_Type (Etype (Expr_Q))
|
| 5233 |
|
|
and then (Nkind (Expr_Q) = N_Type_Conversion
|
| 5234 |
|
|
or else (Is_Entity_Name (Expr_Q)
|
| 5235 |
|
|
and then
|
| 5236 |
|
|
Ekind (Entity (Expr_Q)) in Formal_Kind))
|
| 5237 |
|
|
and then Tagged_Type_Expansion
|
| 5238 |
|
|
then
|
| 5239 |
|
|
Static_Components := False;
|
| 5240 |
|
|
return True;
|
| 5241 |
|
|
|
| 5242 |
|
|
elsif Is_Delayed_Aggregate (Expr_Q) then
|
| 5243 |
|
|
Static_Components := False;
|
| 5244 |
|
|
return True;
|
| 5245 |
|
|
|
| 5246 |
|
|
elsif Possible_Bit_Aligned_Component (Expr_Q) then
|
| 5247 |
|
|
Static_Components := False;
|
| 5248 |
|
|
return True;
|
| 5249 |
|
|
end if;
|
| 5250 |
|
|
|
| 5251 |
|
|
if Is_Elementary_Type (Etype (Expr_Q)) then
|
| 5252 |
|
|
if not Compile_Time_Known_Value (Expr_Q) then
|
| 5253 |
|
|
Static_Components := False;
|
| 5254 |
|
|
end if;
|
| 5255 |
|
|
|
| 5256 |
|
|
elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
|
| 5257 |
|
|
Static_Components := False;
|
| 5258 |
|
|
|
| 5259 |
|
|
if Is_Private_Type (Etype (Expr_Q))
|
| 5260 |
|
|
and then Has_Discriminants (Etype (Expr_Q))
|
| 5261 |
|
|
then
|
| 5262 |
|
|
return True;
|
| 5263 |
|
|
end if;
|
| 5264 |
|
|
end if;
|
| 5265 |
|
|
|
| 5266 |
|
|
Next (C);
|
| 5267 |
|
|
end loop;
|
| 5268 |
|
|
|
| 5269 |
|
|
return False;
|
| 5270 |
|
|
end Component_Not_OK_For_Backend;
|
| 5271 |
|
|
|
| 5272 |
|
|
-----------------------------------
|
| 5273 |
|
|
-- Has_Visible_Private_Ancestor --
|
| 5274 |
|
|
-----------------------------------
|
| 5275 |
|
|
|
| 5276 |
|
|
function Has_Visible_Private_Ancestor (Id : E) return Boolean is
|
| 5277 |
|
|
R : constant Entity_Id := Root_Type (Id);
|
| 5278 |
|
|
T1 : Entity_Id := Id;
|
| 5279 |
|
|
|
| 5280 |
|
|
begin
|
| 5281 |
|
|
loop
|
| 5282 |
|
|
if Is_Private_Type (T1) then
|
| 5283 |
|
|
return True;
|
| 5284 |
|
|
|
| 5285 |
|
|
elsif T1 = R then
|
| 5286 |
|
|
return False;
|
| 5287 |
|
|
|
| 5288 |
|
|
else
|
| 5289 |
|
|
T1 := Etype (T1);
|
| 5290 |
|
|
end if;
|
| 5291 |
|
|
end loop;
|
| 5292 |
|
|
end Has_Visible_Private_Ancestor;
|
| 5293 |
|
|
|
| 5294 |
|
|
-------------------------
|
| 5295 |
|
|
-- Top_Level_Aggregate --
|
| 5296 |
|
|
-------------------------
|
| 5297 |
|
|
|
| 5298 |
|
|
function Top_Level_Aggregate (N : Node_Id) return Node_Id is
|
| 5299 |
|
|
Aggr : Node_Id;
|
| 5300 |
|
|
|
| 5301 |
|
|
begin
|
| 5302 |
|
|
Aggr := N;
|
| 5303 |
|
|
while Present (Parent (Aggr))
|
| 5304 |
|
|
and then Nkind_In (Parent (Aggr), N_Component_Association,
|
| 5305 |
|
|
N_Aggregate)
|
| 5306 |
|
|
loop
|
| 5307 |
|
|
Aggr := Parent (Aggr);
|
| 5308 |
|
|
end loop;
|
| 5309 |
|
|
|
| 5310 |
|
|
return Aggr;
|
| 5311 |
|
|
end Top_Level_Aggregate;
|
| 5312 |
|
|
|
| 5313 |
|
|
-- Local variables
|
| 5314 |
|
|
|
| 5315 |
|
|
Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
|
| 5316 |
|
|
Tag_Value : Node_Id;
|
| 5317 |
|
|
Comp : Entity_Id;
|
| 5318 |
|
|
New_Comp : Node_Id;
|
| 5319 |
|
|
|
| 5320 |
|
|
-- Start of processing for Expand_Record_Aggregate
|
| 5321 |
|
|
|
| 5322 |
|
|
begin
|
| 5323 |
|
|
-- If the aggregate is to be assigned to an atomic variable, we
|
| 5324 |
|
|
-- have to prevent a piecemeal assignment even if the aggregate
|
| 5325 |
|
|
-- is to be expanded. We create a temporary for the aggregate, and
|
| 5326 |
|
|
-- assign the temporary instead, so that the back end can generate
|
| 5327 |
|
|
-- an atomic move for it.
|
| 5328 |
|
|
|
| 5329 |
|
|
if Is_Atomic (Typ)
|
| 5330 |
|
|
and then Comes_From_Source (Parent (N))
|
| 5331 |
|
|
and then Is_Atomic_Aggregate (N, Typ)
|
| 5332 |
|
|
then
|
| 5333 |
|
|
return;
|
| 5334 |
|
|
|
| 5335 |
|
|
-- No special management required for aggregates used to initialize
|
| 5336 |
|
|
-- statically allocated dispatch tables
|
| 5337 |
|
|
|
| 5338 |
|
|
elsif Is_Static_Dispatch_Table_Aggregate (N) then
|
| 5339 |
|
|
return;
|
| 5340 |
|
|
end if;
|
| 5341 |
|
|
|
| 5342 |
|
|
-- Ada 2005 (AI-318-2): We need to convert to assignments if components
|
| 5343 |
|
|
-- are build-in-place function calls. The assignments will each turn
|
| 5344 |
|
|
-- into a build-in-place function call. If components are all static,
|
| 5345 |
|
|
-- we can pass the aggregate to the backend regardless of limitedness.
|
| 5346 |
|
|
|
| 5347 |
|
|
-- Extension aggregates, aggregates in extended return statements, and
|
| 5348 |
|
|
-- aggregates for C++ imported types must be expanded.
|
| 5349 |
|
|
|
| 5350 |
|
|
if Ada_Version >= Ada_2005 and then Is_Immutably_Limited_Type (Typ) then
|
| 5351 |
|
|
if not Nkind_In (Parent (N), N_Object_Declaration,
|
| 5352 |
|
|
N_Component_Association)
|
| 5353 |
|
|
then
|
| 5354 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5355 |
|
|
|
| 5356 |
|
|
elsif Nkind (N) = N_Extension_Aggregate
|
| 5357 |
|
|
or else Convention (Typ) = Convention_CPP
|
| 5358 |
|
|
then
|
| 5359 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5360 |
|
|
|
| 5361 |
|
|
elsif not Size_Known_At_Compile_Time (Typ)
|
| 5362 |
|
|
or else Component_Not_OK_For_Backend
|
| 5363 |
|
|
or else not Static_Components
|
| 5364 |
|
|
then
|
| 5365 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5366 |
|
|
|
| 5367 |
|
|
else
|
| 5368 |
|
|
Set_Compile_Time_Known_Aggregate (N);
|
| 5369 |
|
|
Set_Expansion_Delayed (N, False);
|
| 5370 |
|
|
end if;
|
| 5371 |
|
|
|
| 5372 |
|
|
-- Gigi doesn't properly handle temporaries of variable size so we
|
| 5373 |
|
|
-- generate it in the front-end
|
| 5374 |
|
|
|
| 5375 |
|
|
elsif not Size_Known_At_Compile_Time (Typ)
|
| 5376 |
|
|
and then Tagged_Type_Expansion
|
| 5377 |
|
|
then
|
| 5378 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5379 |
|
|
|
| 5380 |
|
|
-- Temporaries for controlled aggregates need to be attached to a final
|
| 5381 |
|
|
-- chain in order to be properly finalized, so it has to be created in
|
| 5382 |
|
|
-- the front-end
|
| 5383 |
|
|
|
| 5384 |
|
|
elsif Is_Controlled (Typ)
|
| 5385 |
|
|
or else Has_Controlled_Component (Base_Type (Typ))
|
| 5386 |
|
|
then
|
| 5387 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5388 |
|
|
|
| 5389 |
|
|
-- Ada 2005 (AI-287): In case of default initialized components we
|
| 5390 |
|
|
-- convert the aggregate into assignments.
|
| 5391 |
|
|
|
| 5392 |
|
|
elsif Has_Default_Init_Comps (N) then
|
| 5393 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5394 |
|
|
|
| 5395 |
|
|
-- Check components
|
| 5396 |
|
|
|
| 5397 |
|
|
elsif Component_Not_OK_For_Backend then
|
| 5398 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5399 |
|
|
|
| 5400 |
|
|
-- If an ancestor is private, some components are not inherited and we
|
| 5401 |
|
|
-- cannot expand into a record aggregate.
|
| 5402 |
|
|
|
| 5403 |
|
|
elsif Has_Visible_Private_Ancestor (Typ) then
|
| 5404 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5405 |
|
|
|
| 5406 |
|
|
-- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
|
| 5407 |
|
|
-- is not able to handle the aggregate for Late_Request.
|
| 5408 |
|
|
|
| 5409 |
|
|
elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
|
| 5410 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5411 |
|
|
|
| 5412 |
|
|
-- If the tagged types covers interface types we need to initialize all
|
| 5413 |
|
|
-- hidden components containing pointers to secondary dispatch tables.
|
| 5414 |
|
|
|
| 5415 |
|
|
elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
|
| 5416 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5417 |
|
|
|
| 5418 |
|
|
-- If some components are mutable, the size of the aggregate component
|
| 5419 |
|
|
-- may be distinct from the default size of the type component, so
|
| 5420 |
|
|
-- we need to expand to insure that the back-end copies the proper
|
| 5421 |
|
|
-- size of the data. However, if the aggregate is the initial value of
|
| 5422 |
|
|
-- a constant, the target is immutable and might be built statically
|
| 5423 |
|
|
-- if components are appropriate.
|
| 5424 |
|
|
|
| 5425 |
|
|
elsif Has_Mutable_Components (Typ)
|
| 5426 |
|
|
and then
|
| 5427 |
|
|
(Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
|
| 5428 |
|
|
or else not Constant_Present (Parent (Top_Level_Aggr))
|
| 5429 |
|
|
or else not Static_Components)
|
| 5430 |
|
|
then
|
| 5431 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5432 |
|
|
|
| 5433 |
|
|
-- If the type involved has any non-bit aligned components, then we are
|
| 5434 |
|
|
-- not sure that the back end can handle this case correctly.
|
| 5435 |
|
|
|
| 5436 |
|
|
elsif Type_May_Have_Bit_Aligned_Components (Typ) then
|
| 5437 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5438 |
|
|
|
| 5439 |
|
|
-- In all other cases, build a proper aggregate handlable by gigi
|
| 5440 |
|
|
|
| 5441 |
|
|
else
|
| 5442 |
|
|
if Nkind (N) = N_Aggregate then
|
| 5443 |
|
|
|
| 5444 |
|
|
-- If the aggregate is static and can be handled by the back-end,
|
| 5445 |
|
|
-- nothing left to do.
|
| 5446 |
|
|
|
| 5447 |
|
|
if Static_Components then
|
| 5448 |
|
|
Set_Compile_Time_Known_Aggregate (N);
|
| 5449 |
|
|
Set_Expansion_Delayed (N, False);
|
| 5450 |
|
|
end if;
|
| 5451 |
|
|
end if;
|
| 5452 |
|
|
|
| 5453 |
|
|
-- If no discriminants, nothing special to do
|
| 5454 |
|
|
|
| 5455 |
|
|
if not Has_Discriminants (Typ) then
|
| 5456 |
|
|
null;
|
| 5457 |
|
|
|
| 5458 |
|
|
-- Case of discriminants present
|
| 5459 |
|
|
|
| 5460 |
|
|
elsif Is_Derived_Type (Typ) then
|
| 5461 |
|
|
|
| 5462 |
|
|
-- For untagged types, non-stored discriminants are replaced
|
| 5463 |
|
|
-- with stored discriminants, which are the ones that gigi uses
|
| 5464 |
|
|
-- to describe the type and its components.
|
| 5465 |
|
|
|
| 5466 |
|
|
Generate_Aggregate_For_Derived_Type : declare
|
| 5467 |
|
|
Constraints : constant List_Id := New_List;
|
| 5468 |
|
|
First_Comp : Node_Id;
|
| 5469 |
|
|
Discriminant : Entity_Id;
|
| 5470 |
|
|
Decl : Node_Id;
|
| 5471 |
|
|
Num_Disc : Int := 0;
|
| 5472 |
|
|
Num_Gird : Int := 0;
|
| 5473 |
|
|
|
| 5474 |
|
|
procedure Prepend_Stored_Values (T : Entity_Id);
|
| 5475 |
|
|
-- Scan the list of stored discriminants of the type, and add
|
| 5476 |
|
|
-- their values to the aggregate being built.
|
| 5477 |
|
|
|
| 5478 |
|
|
---------------------------
|
| 5479 |
|
|
-- Prepend_Stored_Values --
|
| 5480 |
|
|
---------------------------
|
| 5481 |
|
|
|
| 5482 |
|
|
procedure Prepend_Stored_Values (T : Entity_Id) is
|
| 5483 |
|
|
begin
|
| 5484 |
|
|
Discriminant := First_Stored_Discriminant (T);
|
| 5485 |
|
|
while Present (Discriminant) loop
|
| 5486 |
|
|
New_Comp :=
|
| 5487 |
|
|
Make_Component_Association (Loc,
|
| 5488 |
|
|
Choices =>
|
| 5489 |
|
|
New_List (New_Occurrence_Of (Discriminant, Loc)),
|
| 5490 |
|
|
|
| 5491 |
|
|
Expression =>
|
| 5492 |
|
|
New_Copy_Tree (
|
| 5493 |
|
|
Get_Discriminant_Value (
|
| 5494 |
|
|
Discriminant,
|
| 5495 |
|
|
Typ,
|
| 5496 |
|
|
Discriminant_Constraint (Typ))));
|
| 5497 |
|
|
|
| 5498 |
|
|
if No (First_Comp) then
|
| 5499 |
|
|
Prepend_To (Component_Associations (N), New_Comp);
|
| 5500 |
|
|
else
|
| 5501 |
|
|
Insert_After (First_Comp, New_Comp);
|
| 5502 |
|
|
end if;
|
| 5503 |
|
|
|
| 5504 |
|
|
First_Comp := New_Comp;
|
| 5505 |
|
|
Next_Stored_Discriminant (Discriminant);
|
| 5506 |
|
|
end loop;
|
| 5507 |
|
|
end Prepend_Stored_Values;
|
| 5508 |
|
|
|
| 5509 |
|
|
-- Start of processing for Generate_Aggregate_For_Derived_Type
|
| 5510 |
|
|
|
| 5511 |
|
|
begin
|
| 5512 |
|
|
-- Remove the associations for the discriminant of derived type
|
| 5513 |
|
|
|
| 5514 |
|
|
First_Comp := First (Component_Associations (N));
|
| 5515 |
|
|
while Present (First_Comp) loop
|
| 5516 |
|
|
Comp := First_Comp;
|
| 5517 |
|
|
Next (First_Comp);
|
| 5518 |
|
|
|
| 5519 |
|
|
if Ekind (Entity
|
| 5520 |
|
|
(First (Choices (Comp)))) = E_Discriminant
|
| 5521 |
|
|
then
|
| 5522 |
|
|
Remove (Comp);
|
| 5523 |
|
|
Num_Disc := Num_Disc + 1;
|
| 5524 |
|
|
end if;
|
| 5525 |
|
|
end loop;
|
| 5526 |
|
|
|
| 5527 |
|
|
-- Insert stored discriminant associations in the correct
|
| 5528 |
|
|
-- order. If there are more stored discriminants than new
|
| 5529 |
|
|
-- discriminants, there is at least one new discriminant that
|
| 5530 |
|
|
-- constrains more than one of the stored discriminants. In
|
| 5531 |
|
|
-- this case we need to construct a proper subtype of the
|
| 5532 |
|
|
-- parent type, in order to supply values to all the
|
| 5533 |
|
|
-- components. Otherwise there is one-one correspondence
|
| 5534 |
|
|
-- between the constraints and the stored discriminants.
|
| 5535 |
|
|
|
| 5536 |
|
|
First_Comp := Empty;
|
| 5537 |
|
|
|
| 5538 |
|
|
Discriminant := First_Stored_Discriminant (Base_Type (Typ));
|
| 5539 |
|
|
while Present (Discriminant) loop
|
| 5540 |
|
|
Num_Gird := Num_Gird + 1;
|
| 5541 |
|
|
Next_Stored_Discriminant (Discriminant);
|
| 5542 |
|
|
end loop;
|
| 5543 |
|
|
|
| 5544 |
|
|
-- Case of more stored discriminants than new discriminants
|
| 5545 |
|
|
|
| 5546 |
|
|
if Num_Gird > Num_Disc then
|
| 5547 |
|
|
|
| 5548 |
|
|
-- Create a proper subtype of the parent type, which is the
|
| 5549 |
|
|
-- proper implementation type for the aggregate, and convert
|
| 5550 |
|
|
-- it to the intended target type.
|
| 5551 |
|
|
|
| 5552 |
|
|
Discriminant := First_Stored_Discriminant (Base_Type (Typ));
|
| 5553 |
|
|
while Present (Discriminant) loop
|
| 5554 |
|
|
New_Comp :=
|
| 5555 |
|
|
New_Copy_Tree (
|
| 5556 |
|
|
Get_Discriminant_Value (
|
| 5557 |
|
|
Discriminant,
|
| 5558 |
|
|
Typ,
|
| 5559 |
|
|
Discriminant_Constraint (Typ)));
|
| 5560 |
|
|
Append (New_Comp, Constraints);
|
| 5561 |
|
|
Next_Stored_Discriminant (Discriminant);
|
| 5562 |
|
|
end loop;
|
| 5563 |
|
|
|
| 5564 |
|
|
Decl :=
|
| 5565 |
|
|
Make_Subtype_Declaration (Loc,
|
| 5566 |
|
|
Defining_Identifier => Make_Temporary (Loc, 'T'),
|
| 5567 |
|
|
Subtype_Indication =>
|
| 5568 |
|
|
Make_Subtype_Indication (Loc,
|
| 5569 |
|
|
Subtype_Mark =>
|
| 5570 |
|
|
New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
|
| 5571 |
|
|
Constraint =>
|
| 5572 |
|
|
Make_Index_Or_Discriminant_Constraint
|
| 5573 |
|
|
(Loc, Constraints)));
|
| 5574 |
|
|
|
| 5575 |
|
|
Insert_Action (N, Decl);
|
| 5576 |
|
|
Prepend_Stored_Values (Base_Type (Typ));
|
| 5577 |
|
|
|
| 5578 |
|
|
Set_Etype (N, Defining_Identifier (Decl));
|
| 5579 |
|
|
Set_Analyzed (N);
|
| 5580 |
|
|
|
| 5581 |
|
|
Rewrite (N, Unchecked_Convert_To (Typ, N));
|
| 5582 |
|
|
Analyze (N);
|
| 5583 |
|
|
|
| 5584 |
|
|
-- Case where we do not have fewer new discriminants than
|
| 5585 |
|
|
-- stored discriminants, so in this case we can simply use the
|
| 5586 |
|
|
-- stored discriminants of the subtype.
|
| 5587 |
|
|
|
| 5588 |
|
|
else
|
| 5589 |
|
|
Prepend_Stored_Values (Typ);
|
| 5590 |
|
|
end if;
|
| 5591 |
|
|
end Generate_Aggregate_For_Derived_Type;
|
| 5592 |
|
|
end if;
|
| 5593 |
|
|
|
| 5594 |
|
|
if Is_Tagged_Type (Typ) then
|
| 5595 |
|
|
|
| 5596 |
|
|
-- In the tagged case, _parent and _tag component must be created
|
| 5597 |
|
|
|
| 5598 |
|
|
-- Reset Null_Present unconditionally. Tagged records always have
|
| 5599 |
|
|
-- at least one field (the tag or the parent).
|
| 5600 |
|
|
|
| 5601 |
|
|
Set_Null_Record_Present (N, False);
|
| 5602 |
|
|
|
| 5603 |
|
|
-- When the current aggregate comes from the expansion of an
|
| 5604 |
|
|
-- extension aggregate, the parent expr is replaced by an
|
| 5605 |
|
|
-- aggregate formed by selected components of this expr.
|
| 5606 |
|
|
|
| 5607 |
|
|
if Present (Parent_Expr)
|
| 5608 |
|
|
and then Is_Empty_List (Comps)
|
| 5609 |
|
|
then
|
| 5610 |
|
|
Comp := First_Component_Or_Discriminant (Typ);
|
| 5611 |
|
|
while Present (Comp) loop
|
| 5612 |
|
|
|
| 5613 |
|
|
-- Skip all expander-generated components
|
| 5614 |
|
|
|
| 5615 |
|
|
if
|
| 5616 |
|
|
not Comes_From_Source (Original_Record_Component (Comp))
|
| 5617 |
|
|
then
|
| 5618 |
|
|
null;
|
| 5619 |
|
|
|
| 5620 |
|
|
else
|
| 5621 |
|
|
New_Comp :=
|
| 5622 |
|
|
Make_Selected_Component (Loc,
|
| 5623 |
|
|
Prefix =>
|
| 5624 |
|
|
Unchecked_Convert_To (Typ,
|
| 5625 |
|
|
Duplicate_Subexpr (Parent_Expr, True)),
|
| 5626 |
|
|
|
| 5627 |
|
|
Selector_Name => New_Occurrence_Of (Comp, Loc));
|
| 5628 |
|
|
|
| 5629 |
|
|
Append_To (Comps,
|
| 5630 |
|
|
Make_Component_Association (Loc,
|
| 5631 |
|
|
Choices =>
|
| 5632 |
|
|
New_List (New_Occurrence_Of (Comp, Loc)),
|
| 5633 |
|
|
Expression =>
|
| 5634 |
|
|
New_Comp));
|
| 5635 |
|
|
|
| 5636 |
|
|
Analyze_And_Resolve (New_Comp, Etype (Comp));
|
| 5637 |
|
|
end if;
|
| 5638 |
|
|
|
| 5639 |
|
|
Next_Component_Or_Discriminant (Comp);
|
| 5640 |
|
|
end loop;
|
| 5641 |
|
|
end if;
|
| 5642 |
|
|
|
| 5643 |
|
|
-- Compute the value for the Tag now, if the type is a root it
|
| 5644 |
|
|
-- will be included in the aggregate right away, otherwise it will
|
| 5645 |
|
|
-- be propagated to the parent aggregate.
|
| 5646 |
|
|
|
| 5647 |
|
|
if Present (Orig_Tag) then
|
| 5648 |
|
|
Tag_Value := Orig_Tag;
|
| 5649 |
|
|
elsif not Tagged_Type_Expansion then
|
| 5650 |
|
|
Tag_Value := Empty;
|
| 5651 |
|
|
else
|
| 5652 |
|
|
Tag_Value :=
|
| 5653 |
|
|
New_Occurrence_Of
|
| 5654 |
|
|
(Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
|
| 5655 |
|
|
end if;
|
| 5656 |
|
|
|
| 5657 |
|
|
-- For a derived type, an aggregate for the parent is formed with
|
| 5658 |
|
|
-- all the inherited components.
|
| 5659 |
|
|
|
| 5660 |
|
|
if Is_Derived_Type (Typ) then
|
| 5661 |
|
|
|
| 5662 |
|
|
declare
|
| 5663 |
|
|
First_Comp : Node_Id;
|
| 5664 |
|
|
Parent_Comps : List_Id;
|
| 5665 |
|
|
Parent_Aggr : Node_Id;
|
| 5666 |
|
|
Parent_Name : Node_Id;
|
| 5667 |
|
|
|
| 5668 |
|
|
begin
|
| 5669 |
|
|
-- Remove the inherited component association from the
|
| 5670 |
|
|
-- aggregate and store them in the parent aggregate
|
| 5671 |
|
|
|
| 5672 |
|
|
First_Comp := First (Component_Associations (N));
|
| 5673 |
|
|
Parent_Comps := New_List;
|
| 5674 |
|
|
while Present (First_Comp)
|
| 5675 |
|
|
and then Scope (Original_Record_Component (
|
| 5676 |
|
|
Entity (First (Choices (First_Comp))))) /= Base_Typ
|
| 5677 |
|
|
loop
|
| 5678 |
|
|
Comp := First_Comp;
|
| 5679 |
|
|
Next (First_Comp);
|
| 5680 |
|
|
Remove (Comp);
|
| 5681 |
|
|
Append (Comp, Parent_Comps);
|
| 5682 |
|
|
end loop;
|
| 5683 |
|
|
|
| 5684 |
|
|
Parent_Aggr := Make_Aggregate (Loc,
|
| 5685 |
|
|
Component_Associations => Parent_Comps);
|
| 5686 |
|
|
Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
|
| 5687 |
|
|
|
| 5688 |
|
|
-- Find the _parent component
|
| 5689 |
|
|
|
| 5690 |
|
|
Comp := First_Component (Typ);
|
| 5691 |
|
|
while Chars (Comp) /= Name_uParent loop
|
| 5692 |
|
|
Comp := Next_Component (Comp);
|
| 5693 |
|
|
end loop;
|
| 5694 |
|
|
|
| 5695 |
|
|
Parent_Name := New_Occurrence_Of (Comp, Loc);
|
| 5696 |
|
|
|
| 5697 |
|
|
-- Insert the parent aggregate
|
| 5698 |
|
|
|
| 5699 |
|
|
Prepend_To (Component_Associations (N),
|
| 5700 |
|
|
Make_Component_Association (Loc,
|
| 5701 |
|
|
Choices => New_List (Parent_Name),
|
| 5702 |
|
|
Expression => Parent_Aggr));
|
| 5703 |
|
|
|
| 5704 |
|
|
-- Expand recursively the parent propagating the right Tag
|
| 5705 |
|
|
|
| 5706 |
|
|
Expand_Record_Aggregate
|
| 5707 |
|
|
(Parent_Aggr, Tag_Value, Parent_Expr);
|
| 5708 |
|
|
|
| 5709 |
|
|
-- The ancestor part may be a nested aggregate that has
|
| 5710 |
|
|
-- delayed expansion: recheck now.
|
| 5711 |
|
|
|
| 5712 |
|
|
if Component_Not_OK_For_Backend then
|
| 5713 |
|
|
Convert_To_Assignments (N, Typ);
|
| 5714 |
|
|
end if;
|
| 5715 |
|
|
end;
|
| 5716 |
|
|
|
| 5717 |
|
|
-- For a root type, the tag component is added (unless compiling
|
| 5718 |
|
|
-- for the VMs, where tags are implicit).
|
| 5719 |
|
|
|
| 5720 |
|
|
elsif Tagged_Type_Expansion then
|
| 5721 |
|
|
declare
|
| 5722 |
|
|
Tag_Name : constant Node_Id :=
|
| 5723 |
|
|
New_Occurrence_Of
|
| 5724 |
|
|
(First_Tag_Component (Typ), Loc);
|
| 5725 |
|
|
Typ_Tag : constant Entity_Id := RTE (RE_Tag);
|
| 5726 |
|
|
Conv_Node : constant Node_Id :=
|
| 5727 |
|
|
Unchecked_Convert_To (Typ_Tag, Tag_Value);
|
| 5728 |
|
|
|
| 5729 |
|
|
begin
|
| 5730 |
|
|
Set_Etype (Conv_Node, Typ_Tag);
|
| 5731 |
|
|
Prepend_To (Component_Associations (N),
|
| 5732 |
|
|
Make_Component_Association (Loc,
|
| 5733 |
|
|
Choices => New_List (Tag_Name),
|
| 5734 |
|
|
Expression => Conv_Node));
|
| 5735 |
|
|
end;
|
| 5736 |
|
|
end if;
|
| 5737 |
|
|
end if;
|
| 5738 |
|
|
end if;
|
| 5739 |
|
|
|
| 5740 |
|
|
end Expand_Record_Aggregate;
|
| 5741 |
|
|
|
| 5742 |
|
|
----------------------------
|
| 5743 |
|
|
-- Has_Default_Init_Comps --
|
| 5744 |
|
|
----------------------------
|
| 5745 |
|
|
|
| 5746 |
|
|
function Has_Default_Init_Comps (N : Node_Id) return Boolean is
|
| 5747 |
|
|
Comps : constant List_Id := Component_Associations (N);
|
| 5748 |
|
|
C : Node_Id;
|
| 5749 |
|
|
Expr : Node_Id;
|
| 5750 |
|
|
begin
|
| 5751 |
|
|
pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
|
| 5752 |
|
|
|
| 5753 |
|
|
if No (Comps) then
|
| 5754 |
|
|
return False;
|
| 5755 |
|
|
end if;
|
| 5756 |
|
|
|
| 5757 |
|
|
if Has_Self_Reference (N) then
|
| 5758 |
|
|
return True;
|
| 5759 |
|
|
end if;
|
| 5760 |
|
|
|
| 5761 |
|
|
-- Check if any direct component has default initialized components
|
| 5762 |
|
|
|
| 5763 |
|
|
C := First (Comps);
|
| 5764 |
|
|
while Present (C) loop
|
| 5765 |
|
|
if Box_Present (C) then
|
| 5766 |
|
|
return True;
|
| 5767 |
|
|
end if;
|
| 5768 |
|
|
|
| 5769 |
|
|
Next (C);
|
| 5770 |
|
|
end loop;
|
| 5771 |
|
|
|
| 5772 |
|
|
-- Recursive call in case of aggregate expression
|
| 5773 |
|
|
|
| 5774 |
|
|
C := First (Comps);
|
| 5775 |
|
|
while Present (C) loop
|
| 5776 |
|
|
Expr := Expression (C);
|
| 5777 |
|
|
|
| 5778 |
|
|
if Present (Expr)
|
| 5779 |
|
|
and then
|
| 5780 |
|
|
Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
|
| 5781 |
|
|
and then Has_Default_Init_Comps (Expr)
|
| 5782 |
|
|
then
|
| 5783 |
|
|
return True;
|
| 5784 |
|
|
end if;
|
| 5785 |
|
|
|
| 5786 |
|
|
Next (C);
|
| 5787 |
|
|
end loop;
|
| 5788 |
|
|
|
| 5789 |
|
|
return False;
|
| 5790 |
|
|
end Has_Default_Init_Comps;
|
| 5791 |
|
|
|
| 5792 |
|
|
--------------------------
|
| 5793 |
|
|
-- Is_Delayed_Aggregate --
|
| 5794 |
|
|
--------------------------
|
| 5795 |
|
|
|
| 5796 |
|
|
function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
|
| 5797 |
|
|
Node : Node_Id := N;
|
| 5798 |
|
|
Kind : Node_Kind := Nkind (Node);
|
| 5799 |
|
|
|
| 5800 |
|
|
begin
|
| 5801 |
|
|
if Kind = N_Qualified_Expression then
|
| 5802 |
|
|
Node := Expression (Node);
|
| 5803 |
|
|
Kind := Nkind (Node);
|
| 5804 |
|
|
end if;
|
| 5805 |
|
|
|
| 5806 |
|
|
if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
|
| 5807 |
|
|
return False;
|
| 5808 |
|
|
else
|
| 5809 |
|
|
return Expansion_Delayed (Node);
|
| 5810 |
|
|
end if;
|
| 5811 |
|
|
end Is_Delayed_Aggregate;
|
| 5812 |
|
|
|
| 5813 |
|
|
----------------------------------------
|
| 5814 |
|
|
-- Is_Static_Dispatch_Table_Aggregate --
|
| 5815 |
|
|
----------------------------------------
|
| 5816 |
|
|
|
| 5817 |
|
|
function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
|
| 5818 |
|
|
Typ : constant Entity_Id := Base_Type (Etype (N));
|
| 5819 |
|
|
|
| 5820 |
|
|
begin
|
| 5821 |
|
|
return Static_Dispatch_Tables
|
| 5822 |
|
|
and then Tagged_Type_Expansion
|
| 5823 |
|
|
and then RTU_Loaded (Ada_Tags)
|
| 5824 |
|
|
|
| 5825 |
|
|
-- Avoid circularity when rebuilding the compiler
|
| 5826 |
|
|
|
| 5827 |
|
|
and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
|
| 5828 |
|
|
and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
|
| 5829 |
|
|
or else
|
| 5830 |
|
|
Typ = RTE (RE_Address_Array)
|
| 5831 |
|
|
or else
|
| 5832 |
|
|
Typ = RTE (RE_Type_Specific_Data)
|
| 5833 |
|
|
or else
|
| 5834 |
|
|
Typ = RTE (RE_Tag_Table)
|
| 5835 |
|
|
or else
|
| 5836 |
|
|
(RTE_Available (RE_Interface_Data)
|
| 5837 |
|
|
and then Typ = RTE (RE_Interface_Data))
|
| 5838 |
|
|
or else
|
| 5839 |
|
|
(RTE_Available (RE_Interfaces_Array)
|
| 5840 |
|
|
and then Typ = RTE (RE_Interfaces_Array))
|
| 5841 |
|
|
or else
|
| 5842 |
|
|
(RTE_Available (RE_Interface_Data_Element)
|
| 5843 |
|
|
and then Typ = RTE (RE_Interface_Data_Element)));
|
| 5844 |
|
|
end Is_Static_Dispatch_Table_Aggregate;
|
| 5845 |
|
|
|
| 5846 |
|
|
--------------------
|
| 5847 |
|
|
-- Late_Expansion --
|
| 5848 |
|
|
--------------------
|
| 5849 |
|
|
|
| 5850 |
|
|
function Late_Expansion
|
| 5851 |
|
|
(N : Node_Id;
|
| 5852 |
|
|
Typ : Entity_Id;
|
| 5853 |
|
|
Target : Node_Id) return List_Id
|
| 5854 |
|
|
is
|
| 5855 |
|
|
begin
|
| 5856 |
|
|
if Is_Record_Type (Etype (N)) then
|
| 5857 |
|
|
return Build_Record_Aggr_Code (N, Typ, Target);
|
| 5858 |
|
|
|
| 5859 |
|
|
else pragma Assert (Is_Array_Type (Etype (N)));
|
| 5860 |
|
|
return
|
| 5861 |
|
|
Build_Array_Aggr_Code
|
| 5862 |
|
|
(N => N,
|
| 5863 |
|
|
Ctype => Component_Type (Etype (N)),
|
| 5864 |
|
|
Index => First_Index (Typ),
|
| 5865 |
|
|
Into => Target,
|
| 5866 |
|
|
Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
|
| 5867 |
|
|
Indexes => No_List);
|
| 5868 |
|
|
end if;
|
| 5869 |
|
|
end Late_Expansion;
|
| 5870 |
|
|
|
| 5871 |
|
|
----------------------------------
|
| 5872 |
|
|
-- Make_OK_Assignment_Statement --
|
| 5873 |
|
|
----------------------------------
|
| 5874 |
|
|
|
| 5875 |
|
|
function Make_OK_Assignment_Statement
|
| 5876 |
|
|
(Sloc : Source_Ptr;
|
| 5877 |
|
|
Name : Node_Id;
|
| 5878 |
|
|
Expression : Node_Id) return Node_Id
|
| 5879 |
|
|
is
|
| 5880 |
|
|
begin
|
| 5881 |
|
|
Set_Assignment_OK (Name);
|
| 5882 |
|
|
|
| 5883 |
|
|
return Make_Assignment_Statement (Sloc, Name, Expression);
|
| 5884 |
|
|
end Make_OK_Assignment_Statement;
|
| 5885 |
|
|
|
| 5886 |
|
|
-----------------------
|
| 5887 |
|
|
-- Number_Of_Choices --
|
| 5888 |
|
|
-----------------------
|
| 5889 |
|
|
|
| 5890 |
|
|
function Number_Of_Choices (N : Node_Id) return Nat is
|
| 5891 |
|
|
Assoc : Node_Id;
|
| 5892 |
|
|
Choice : Node_Id;
|
| 5893 |
|
|
|
| 5894 |
|
|
Nb_Choices : Nat := 0;
|
| 5895 |
|
|
|
| 5896 |
|
|
begin
|
| 5897 |
|
|
if Present (Expressions (N)) then
|
| 5898 |
|
|
return 0;
|
| 5899 |
|
|
end if;
|
| 5900 |
|
|
|
| 5901 |
|
|
Assoc := First (Component_Associations (N));
|
| 5902 |
|
|
while Present (Assoc) loop
|
| 5903 |
|
|
Choice := First (Choices (Assoc));
|
| 5904 |
|
|
while Present (Choice) loop
|
| 5905 |
|
|
if Nkind (Choice) /= N_Others_Choice then
|
| 5906 |
|
|
Nb_Choices := Nb_Choices + 1;
|
| 5907 |
|
|
end if;
|
| 5908 |
|
|
|
| 5909 |
|
|
Next (Choice);
|
| 5910 |
|
|
end loop;
|
| 5911 |
|
|
|
| 5912 |
|
|
Next (Assoc);
|
| 5913 |
|
|
end loop;
|
| 5914 |
|
|
|
| 5915 |
|
|
return Nb_Choices;
|
| 5916 |
|
|
end Number_Of_Choices;
|
| 5917 |
|
|
|
| 5918 |
|
|
------------------------------------
|
| 5919 |
|
|
-- Packed_Array_Aggregate_Handled --
|
| 5920 |
|
|
------------------------------------
|
| 5921 |
|
|
|
| 5922 |
|
|
-- The current version of this procedure will handle at compile time
|
| 5923 |
|
|
-- any array aggregate that meets these conditions:
|
| 5924 |
|
|
|
| 5925 |
|
|
-- One dimensional, bit packed
|
| 5926 |
|
|
-- Underlying packed type is modular type
|
| 5927 |
|
|
-- Bounds are within 32-bit Int range
|
| 5928 |
|
|
-- All bounds and values are static
|
| 5929 |
|
|
|
| 5930 |
|
|
function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
|
| 5931 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 5932 |
|
|
Typ : constant Entity_Id := Etype (N);
|
| 5933 |
|
|
Ctyp : constant Entity_Id := Component_Type (Typ);
|
| 5934 |
|
|
|
| 5935 |
|
|
Not_Handled : exception;
|
| 5936 |
|
|
-- Exception raised if this aggregate cannot be handled
|
| 5937 |
|
|
|
| 5938 |
|
|
begin
|
| 5939 |
|
|
-- For now, handle only one dimensional bit packed arrays
|
| 5940 |
|
|
|
| 5941 |
|
|
if not Is_Bit_Packed_Array (Typ)
|
| 5942 |
|
|
or else Number_Dimensions (Typ) > 1
|
| 5943 |
|
|
or else not Is_Modular_Integer_Type (Packed_Array_Type (Typ))
|
| 5944 |
|
|
then
|
| 5945 |
|
|
return False;
|
| 5946 |
|
|
end if;
|
| 5947 |
|
|
|
| 5948 |
|
|
if not Is_Scalar_Type (Component_Type (Typ))
|
| 5949 |
|
|
and then Has_Non_Standard_Rep (Component_Type (Typ))
|
| 5950 |
|
|
then
|
| 5951 |
|
|
return False;
|
| 5952 |
|
|
end if;
|
| 5953 |
|
|
|
| 5954 |
|
|
declare
|
| 5955 |
|
|
Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
|
| 5956 |
|
|
|
| 5957 |
|
|
Lo : Node_Id;
|
| 5958 |
|
|
Hi : Node_Id;
|
| 5959 |
|
|
-- Bounds of index type
|
| 5960 |
|
|
|
| 5961 |
|
|
Lob : Uint;
|
| 5962 |
|
|
Hib : Uint;
|
| 5963 |
|
|
-- Values of bounds if compile time known
|
| 5964 |
|
|
|
| 5965 |
|
|
function Get_Component_Val (N : Node_Id) return Uint;
|
| 5966 |
|
|
-- Given a expression value N of the component type Ctyp, returns a
|
| 5967 |
|
|
-- value of Csiz (component size) bits representing this value. If
|
| 5968 |
|
|
-- the value is non-static or any other reason exists why the value
|
| 5969 |
|
|
-- cannot be returned, then Not_Handled is raised.
|
| 5970 |
|
|
|
| 5971 |
|
|
-----------------------
|
| 5972 |
|
|
-- Get_Component_Val --
|
| 5973 |
|
|
-----------------------
|
| 5974 |
|
|
|
| 5975 |
|
|
function Get_Component_Val (N : Node_Id) return Uint is
|
| 5976 |
|
|
Val : Uint;
|
| 5977 |
|
|
|
| 5978 |
|
|
begin
|
| 5979 |
|
|
-- We have to analyze the expression here before doing any further
|
| 5980 |
|
|
-- processing here. The analysis of such expressions is deferred
|
| 5981 |
|
|
-- till expansion to prevent some problems of premature analysis.
|
| 5982 |
|
|
|
| 5983 |
|
|
Analyze_And_Resolve (N, Ctyp);
|
| 5984 |
|
|
|
| 5985 |
|
|
-- Must have a compile time value. String literals have to be
|
| 5986 |
|
|
-- converted into temporaries as well, because they cannot easily
|
| 5987 |
|
|
-- be converted into their bit representation.
|
| 5988 |
|
|
|
| 5989 |
|
|
if not Compile_Time_Known_Value (N)
|
| 5990 |
|
|
or else Nkind (N) = N_String_Literal
|
| 5991 |
|
|
then
|
| 5992 |
|
|
raise Not_Handled;
|
| 5993 |
|
|
end if;
|
| 5994 |
|
|
|
| 5995 |
|
|
Val := Expr_Rep_Value (N);
|
| 5996 |
|
|
|
| 5997 |
|
|
-- Adjust for bias, and strip proper number of bits
|
| 5998 |
|
|
|
| 5999 |
|
|
if Has_Biased_Representation (Ctyp) then
|
| 6000 |
|
|
Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
|
| 6001 |
|
|
end if;
|
| 6002 |
|
|
|
| 6003 |
|
|
return Val mod Uint_2 ** Csiz;
|
| 6004 |
|
|
end Get_Component_Val;
|
| 6005 |
|
|
|
| 6006 |
|
|
-- Here we know we have a one dimensional bit packed array
|
| 6007 |
|
|
|
| 6008 |
|
|
begin
|
| 6009 |
|
|
Get_Index_Bounds (First_Index (Typ), Lo, Hi);
|
| 6010 |
|
|
|
| 6011 |
|
|
-- Cannot do anything if bounds are dynamic
|
| 6012 |
|
|
|
| 6013 |
|
|
if not Compile_Time_Known_Value (Lo)
|
| 6014 |
|
|
or else
|
| 6015 |
|
|
not Compile_Time_Known_Value (Hi)
|
| 6016 |
|
|
then
|
| 6017 |
|
|
return False;
|
| 6018 |
|
|
end if;
|
| 6019 |
|
|
|
| 6020 |
|
|
-- Or are silly out of range of int bounds
|
| 6021 |
|
|
|
| 6022 |
|
|
Lob := Expr_Value (Lo);
|
| 6023 |
|
|
Hib := Expr_Value (Hi);
|
| 6024 |
|
|
|
| 6025 |
|
|
if not UI_Is_In_Int_Range (Lob)
|
| 6026 |
|
|
or else
|
| 6027 |
|
|
not UI_Is_In_Int_Range (Hib)
|
| 6028 |
|
|
then
|
| 6029 |
|
|
return False;
|
| 6030 |
|
|
end if;
|
| 6031 |
|
|
|
| 6032 |
|
|
-- At this stage we have a suitable aggregate for handling at compile
|
| 6033 |
|
|
-- time (the only remaining checks are that the values of expressions
|
| 6034 |
|
|
-- in the aggregate are compile time known (check is performed by
|
| 6035 |
|
|
-- Get_Component_Val), and that any subtypes or ranges are statically
|
| 6036 |
|
|
-- known.
|
| 6037 |
|
|
|
| 6038 |
|
|
-- If the aggregate is not fully positional at this stage, then
|
| 6039 |
|
|
-- convert it to positional form. Either this will fail, in which
|
| 6040 |
|
|
-- case we can do nothing, or it will succeed, in which case we have
|
| 6041 |
|
|
-- succeeded in handling the aggregate, or it will stay an aggregate,
|
| 6042 |
|
|
-- in which case we have failed to handle this case.
|
| 6043 |
|
|
|
| 6044 |
|
|
if Present (Component_Associations (N)) then
|
| 6045 |
|
|
Convert_To_Positional
|
| 6046 |
|
|
(N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
|
| 6047 |
|
|
return Nkind (N) /= N_Aggregate;
|
| 6048 |
|
|
end if;
|
| 6049 |
|
|
|
| 6050 |
|
|
-- Otherwise we are all positional, so convert to proper value
|
| 6051 |
|
|
|
| 6052 |
|
|
declare
|
| 6053 |
|
|
Lov : constant Int := UI_To_Int (Lob);
|
| 6054 |
|
|
Hiv : constant Int := UI_To_Int (Hib);
|
| 6055 |
|
|
|
| 6056 |
|
|
Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
|
| 6057 |
|
|
-- The length of the array (number of elements)
|
| 6058 |
|
|
|
| 6059 |
|
|
Aggregate_Val : Uint;
|
| 6060 |
|
|
-- Value of aggregate. The value is set in the low order bits of
|
| 6061 |
|
|
-- this value. For the little-endian case, the values are stored
|
| 6062 |
|
|
-- from low-order to high-order and for the big-endian case the
|
| 6063 |
|
|
-- values are stored from high-order to low-order. Note that gigi
|
| 6064 |
|
|
-- will take care of the conversions to left justify the value in
|
| 6065 |
|
|
-- the big endian case (because of left justified modular type
|
| 6066 |
|
|
-- processing), so we do not have to worry about that here.
|
| 6067 |
|
|
|
| 6068 |
|
|
Lit : Node_Id;
|
| 6069 |
|
|
-- Integer literal for resulting constructed value
|
| 6070 |
|
|
|
| 6071 |
|
|
Shift : Nat;
|
| 6072 |
|
|
-- Shift count from low order for next value
|
| 6073 |
|
|
|
| 6074 |
|
|
Incr : Int;
|
| 6075 |
|
|
-- Shift increment for loop
|
| 6076 |
|
|
|
| 6077 |
|
|
Expr : Node_Id;
|
| 6078 |
|
|
-- Next expression from positional parameters of aggregate
|
| 6079 |
|
|
|
| 6080 |
|
|
begin
|
| 6081 |
|
|
-- For little endian, we fill up the low order bits of the target
|
| 6082 |
|
|
-- value. For big endian we fill up the high order bits of the
|
| 6083 |
|
|
-- target value (which is a left justified modular value).
|
| 6084 |
|
|
|
| 6085 |
|
|
if Bytes_Big_Endian xor Debug_Flag_8 then
|
| 6086 |
|
|
Shift := Csiz * (Len - 1);
|
| 6087 |
|
|
Incr := -Csiz;
|
| 6088 |
|
|
else
|
| 6089 |
|
|
Shift := 0;
|
| 6090 |
|
|
Incr := +Csiz;
|
| 6091 |
|
|
end if;
|
| 6092 |
|
|
|
| 6093 |
|
|
-- Loop to set the values
|
| 6094 |
|
|
|
| 6095 |
|
|
if Len = 0 then
|
| 6096 |
|
|
Aggregate_Val := Uint_0;
|
| 6097 |
|
|
else
|
| 6098 |
|
|
Expr := First (Expressions (N));
|
| 6099 |
|
|
Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
|
| 6100 |
|
|
|
| 6101 |
|
|
for J in 2 .. Len loop
|
| 6102 |
|
|
Shift := Shift + Incr;
|
| 6103 |
|
|
Next (Expr);
|
| 6104 |
|
|
Aggregate_Val :=
|
| 6105 |
|
|
Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
|
| 6106 |
|
|
end loop;
|
| 6107 |
|
|
end if;
|
| 6108 |
|
|
|
| 6109 |
|
|
-- Now we can rewrite with the proper value
|
| 6110 |
|
|
|
| 6111 |
|
|
Lit :=
|
| 6112 |
|
|
Make_Integer_Literal (Loc,
|
| 6113 |
|
|
Intval => Aggregate_Val);
|
| 6114 |
|
|
Set_Print_In_Hex (Lit);
|
| 6115 |
|
|
|
| 6116 |
|
|
-- Construct the expression using this literal. Note that it is
|
| 6117 |
|
|
-- important to qualify the literal with its proper modular type
|
| 6118 |
|
|
-- since universal integer does not have the required range and
|
| 6119 |
|
|
-- also this is a left justified modular type, which is important
|
| 6120 |
|
|
-- in the big-endian case.
|
| 6121 |
|
|
|
| 6122 |
|
|
Rewrite (N,
|
| 6123 |
|
|
Unchecked_Convert_To (Typ,
|
| 6124 |
|
|
Make_Qualified_Expression (Loc,
|
| 6125 |
|
|
Subtype_Mark =>
|
| 6126 |
|
|
New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
|
| 6127 |
|
|
Expression => Lit)));
|
| 6128 |
|
|
|
| 6129 |
|
|
Analyze_And_Resolve (N, Typ);
|
| 6130 |
|
|
return True;
|
| 6131 |
|
|
end;
|
| 6132 |
|
|
end;
|
| 6133 |
|
|
|
| 6134 |
|
|
exception
|
| 6135 |
|
|
when Not_Handled =>
|
| 6136 |
|
|
return False;
|
| 6137 |
|
|
end Packed_Array_Aggregate_Handled;
|
| 6138 |
|
|
|
| 6139 |
|
|
----------------------------
|
| 6140 |
|
|
-- Has_Mutable_Components --
|
| 6141 |
|
|
----------------------------
|
| 6142 |
|
|
|
| 6143 |
|
|
function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
|
| 6144 |
|
|
Comp : Entity_Id;
|
| 6145 |
|
|
|
| 6146 |
|
|
begin
|
| 6147 |
|
|
Comp := First_Component (Typ);
|
| 6148 |
|
|
while Present (Comp) loop
|
| 6149 |
|
|
if Is_Record_Type (Etype (Comp))
|
| 6150 |
|
|
and then Has_Discriminants (Etype (Comp))
|
| 6151 |
|
|
and then not Is_Constrained (Etype (Comp))
|
| 6152 |
|
|
then
|
| 6153 |
|
|
return True;
|
| 6154 |
|
|
end if;
|
| 6155 |
|
|
|
| 6156 |
|
|
Next_Component (Comp);
|
| 6157 |
|
|
end loop;
|
| 6158 |
|
|
|
| 6159 |
|
|
return False;
|
| 6160 |
|
|
end Has_Mutable_Components;
|
| 6161 |
|
|
|
| 6162 |
|
|
------------------------------
|
| 6163 |
|
|
-- Initialize_Discriminants --
|
| 6164 |
|
|
------------------------------
|
| 6165 |
|
|
|
| 6166 |
|
|
procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
|
| 6167 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 6168 |
|
|
Bas : constant Entity_Id := Base_Type (Typ);
|
| 6169 |
|
|
Par : constant Entity_Id := Etype (Bas);
|
| 6170 |
|
|
Decl : constant Node_Id := Parent (Par);
|
| 6171 |
|
|
Ref : Node_Id;
|
| 6172 |
|
|
|
| 6173 |
|
|
begin
|
| 6174 |
|
|
if Is_Tagged_Type (Bas)
|
| 6175 |
|
|
and then Is_Derived_Type (Bas)
|
| 6176 |
|
|
and then Has_Discriminants (Par)
|
| 6177 |
|
|
and then Has_Discriminants (Bas)
|
| 6178 |
|
|
and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
|
| 6179 |
|
|
and then Nkind (Decl) = N_Full_Type_Declaration
|
| 6180 |
|
|
and then Nkind (Type_Definition (Decl)) = N_Record_Definition
|
| 6181 |
|
|
and then Present
|
| 6182 |
|
|
(Variant_Part (Component_List (Type_Definition (Decl))))
|
| 6183 |
|
|
and then Nkind (N) /= N_Extension_Aggregate
|
| 6184 |
|
|
then
|
| 6185 |
|
|
|
| 6186 |
|
|
-- Call init proc to set discriminants.
|
| 6187 |
|
|
-- There should eventually be a special procedure for this ???
|
| 6188 |
|
|
|
| 6189 |
|
|
Ref := New_Reference_To (Defining_Identifier (N), Loc);
|
| 6190 |
|
|
Insert_Actions_After (N,
|
| 6191 |
|
|
Build_Initialization_Call (Sloc (N), Ref, Typ));
|
| 6192 |
|
|
end if;
|
| 6193 |
|
|
end Initialize_Discriminants;
|
| 6194 |
|
|
|
| 6195 |
|
|
----------------
|
| 6196 |
|
|
-- Must_Slide --
|
| 6197 |
|
|
----------------
|
| 6198 |
|
|
|
| 6199 |
|
|
function Must_Slide
|
| 6200 |
|
|
(Obj_Type : Entity_Id;
|
| 6201 |
|
|
Typ : Entity_Id) return Boolean
|
| 6202 |
|
|
is
|
| 6203 |
|
|
L1, L2, H1, H2 : Node_Id;
|
| 6204 |
|
|
begin
|
| 6205 |
|
|
-- No sliding if the type of the object is not established yet, if it is
|
| 6206 |
|
|
-- an unconstrained type whose actual subtype comes from the aggregate,
|
| 6207 |
|
|
-- or if the two types are identical.
|
| 6208 |
|
|
|
| 6209 |
|
|
if not Is_Array_Type (Obj_Type) then
|
| 6210 |
|
|
return False;
|
| 6211 |
|
|
|
| 6212 |
|
|
elsif not Is_Constrained (Obj_Type) then
|
| 6213 |
|
|
return False;
|
| 6214 |
|
|
|
| 6215 |
|
|
elsif Typ = Obj_Type then
|
| 6216 |
|
|
return False;
|
| 6217 |
|
|
|
| 6218 |
|
|
else
|
| 6219 |
|
|
-- Sliding can only occur along the first dimension
|
| 6220 |
|
|
|
| 6221 |
|
|
Get_Index_Bounds (First_Index (Typ), L1, H1);
|
| 6222 |
|
|
Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
|
| 6223 |
|
|
|
| 6224 |
|
|
if not Is_Static_Expression (L1)
|
| 6225 |
|
|
or else not Is_Static_Expression (L2)
|
| 6226 |
|
|
or else not Is_Static_Expression (H1)
|
| 6227 |
|
|
or else not Is_Static_Expression (H2)
|
| 6228 |
|
|
then
|
| 6229 |
|
|
return False;
|
| 6230 |
|
|
else
|
| 6231 |
|
|
return Expr_Value (L1) /= Expr_Value (L2)
|
| 6232 |
|
|
or else Expr_Value (H1) /= Expr_Value (H2);
|
| 6233 |
|
|
end if;
|
| 6234 |
|
|
end if;
|
| 6235 |
|
|
end Must_Slide;
|
| 6236 |
|
|
|
| 6237 |
|
|
---------------------------
|
| 6238 |
|
|
-- Safe_Slice_Assignment --
|
| 6239 |
|
|
---------------------------
|
| 6240 |
|
|
|
| 6241 |
|
|
function Safe_Slice_Assignment (N : Node_Id) return Boolean is
|
| 6242 |
|
|
Loc : constant Source_Ptr := Sloc (Parent (N));
|
| 6243 |
|
|
Pref : constant Node_Id := Prefix (Name (Parent (N)));
|
| 6244 |
|
|
Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N)));
|
| 6245 |
|
|
Expr : Node_Id;
|
| 6246 |
|
|
L_J : Entity_Id;
|
| 6247 |
|
|
L_Iter : Node_Id;
|
| 6248 |
|
|
L_Body : Node_Id;
|
| 6249 |
|
|
Stat : Node_Id;
|
| 6250 |
|
|
|
| 6251 |
|
|
begin
|
| 6252 |
|
|
-- Generate: for J in Range loop Pref (J) := Expr; end loop;
|
| 6253 |
|
|
|
| 6254 |
|
|
if Comes_From_Source (N)
|
| 6255 |
|
|
and then No (Expressions (N))
|
| 6256 |
|
|
and then Nkind (First (Choices (First (Component_Associations (N)))))
|
| 6257 |
|
|
= N_Others_Choice
|
| 6258 |
|
|
then
|
| 6259 |
|
|
Expr := Expression (First (Component_Associations (N)));
|
| 6260 |
|
|
L_J := Make_Temporary (Loc, 'J');
|
| 6261 |
|
|
|
| 6262 |
|
|
L_Iter :=
|
| 6263 |
|
|
Make_Iteration_Scheme (Loc,
|
| 6264 |
|
|
Loop_Parameter_Specification =>
|
| 6265 |
|
|
Make_Loop_Parameter_Specification
|
| 6266 |
|
|
(Loc,
|
| 6267 |
|
|
Defining_Identifier => L_J,
|
| 6268 |
|
|
Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
|
| 6269 |
|
|
|
| 6270 |
|
|
L_Body :=
|
| 6271 |
|
|
Make_Assignment_Statement (Loc,
|
| 6272 |
|
|
Name =>
|
| 6273 |
|
|
Make_Indexed_Component (Loc,
|
| 6274 |
|
|
Prefix => Relocate_Node (Pref),
|
| 6275 |
|
|
Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
|
| 6276 |
|
|
Expression => Relocate_Node (Expr));
|
| 6277 |
|
|
|
| 6278 |
|
|
-- Construct the final loop
|
| 6279 |
|
|
|
| 6280 |
|
|
Stat :=
|
| 6281 |
|
|
Make_Implicit_Loop_Statement
|
| 6282 |
|
|
(Node => Parent (N),
|
| 6283 |
|
|
Identifier => Empty,
|
| 6284 |
|
|
Iteration_Scheme => L_Iter,
|
| 6285 |
|
|
Statements => New_List (L_Body));
|
| 6286 |
|
|
|
| 6287 |
|
|
-- Set type of aggregate to be type of lhs in assignment,
|
| 6288 |
|
|
-- to suppress redundant length checks.
|
| 6289 |
|
|
|
| 6290 |
|
|
Set_Etype (N, Etype (Name (Parent (N))));
|
| 6291 |
|
|
|
| 6292 |
|
|
Rewrite (Parent (N), Stat);
|
| 6293 |
|
|
Analyze (Parent (N));
|
| 6294 |
|
|
return True;
|
| 6295 |
|
|
|
| 6296 |
|
|
else
|
| 6297 |
|
|
return False;
|
| 6298 |
|
|
end if;
|
| 6299 |
|
|
end Safe_Slice_Assignment;
|
| 6300 |
|
|
|
| 6301 |
|
|
---------------------
|
| 6302 |
|
|
-- Sort_Case_Table --
|
| 6303 |
|
|
---------------------
|
| 6304 |
|
|
|
| 6305 |
|
|
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
|
| 6306 |
|
|
L : constant Int := Case_Table'First;
|
| 6307 |
|
|
U : constant Int := Case_Table'Last;
|
| 6308 |
|
|
K : Int;
|
| 6309 |
|
|
J : Int;
|
| 6310 |
|
|
T : Case_Bounds;
|
| 6311 |
|
|
|
| 6312 |
|
|
begin
|
| 6313 |
|
|
K := L;
|
| 6314 |
|
|
while K /= U loop
|
| 6315 |
|
|
T := Case_Table (K + 1);
|
| 6316 |
|
|
|
| 6317 |
|
|
J := K + 1;
|
| 6318 |
|
|
while J /= L
|
| 6319 |
|
|
and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
|
| 6320 |
|
|
Expr_Value (T.Choice_Lo)
|
| 6321 |
|
|
loop
|
| 6322 |
|
|
Case_Table (J) := Case_Table (J - 1);
|
| 6323 |
|
|
J := J - 1;
|
| 6324 |
|
|
end loop;
|
| 6325 |
|
|
|
| 6326 |
|
|
Case_Table (J) := T;
|
| 6327 |
|
|
K := K + 1;
|
| 6328 |
|
|
end loop;
|
| 6329 |
|
|
end Sort_Case_Table;
|
| 6330 |
|
|
|
| 6331 |
|
|
----------------------------
|
| 6332 |
|
|
-- Static_Array_Aggregate --
|
| 6333 |
|
|
----------------------------
|
| 6334 |
|
|
|
| 6335 |
|
|
function Static_Array_Aggregate (N : Node_Id) return Boolean is
|
| 6336 |
|
|
Bounds : constant Node_Id := Aggregate_Bounds (N);
|
| 6337 |
|
|
|
| 6338 |
|
|
Typ : constant Entity_Id := Etype (N);
|
| 6339 |
|
|
Comp_Type : constant Entity_Id := Component_Type (Typ);
|
| 6340 |
|
|
Agg : Node_Id;
|
| 6341 |
|
|
Expr : Node_Id;
|
| 6342 |
|
|
Lo : Node_Id;
|
| 6343 |
|
|
Hi : Node_Id;
|
| 6344 |
|
|
|
| 6345 |
|
|
begin
|
| 6346 |
|
|
if Is_Tagged_Type (Typ)
|
| 6347 |
|
|
or else Is_Controlled (Typ)
|
| 6348 |
|
|
or else Is_Packed (Typ)
|
| 6349 |
|
|
then
|
| 6350 |
|
|
return False;
|
| 6351 |
|
|
end if;
|
| 6352 |
|
|
|
| 6353 |
|
|
if Present (Bounds)
|
| 6354 |
|
|
and then Nkind (Bounds) = N_Range
|
| 6355 |
|
|
and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
|
| 6356 |
|
|
and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
|
| 6357 |
|
|
then
|
| 6358 |
|
|
Lo := Low_Bound (Bounds);
|
| 6359 |
|
|
Hi := High_Bound (Bounds);
|
| 6360 |
|
|
|
| 6361 |
|
|
if No (Component_Associations (N)) then
|
| 6362 |
|
|
|
| 6363 |
|
|
-- Verify that all components are static integers
|
| 6364 |
|
|
|
| 6365 |
|
|
Expr := First (Expressions (N));
|
| 6366 |
|
|
while Present (Expr) loop
|
| 6367 |
|
|
if Nkind (Expr) /= N_Integer_Literal then
|
| 6368 |
|
|
return False;
|
| 6369 |
|
|
end if;
|
| 6370 |
|
|
|
| 6371 |
|
|
Next (Expr);
|
| 6372 |
|
|
end loop;
|
| 6373 |
|
|
|
| 6374 |
|
|
return True;
|
| 6375 |
|
|
|
| 6376 |
|
|
else
|
| 6377 |
|
|
-- We allow only a single named association, either a static
|
| 6378 |
|
|
-- range or an others_clause, with a static expression.
|
| 6379 |
|
|
|
| 6380 |
|
|
Expr := First (Component_Associations (N));
|
| 6381 |
|
|
|
| 6382 |
|
|
if Present (Expressions (N)) then
|
| 6383 |
|
|
return False;
|
| 6384 |
|
|
|
| 6385 |
|
|
elsif Present (Next (Expr)) then
|
| 6386 |
|
|
return False;
|
| 6387 |
|
|
|
| 6388 |
|
|
elsif Present (Next (First (Choices (Expr)))) then
|
| 6389 |
|
|
return False;
|
| 6390 |
|
|
|
| 6391 |
|
|
else
|
| 6392 |
|
|
-- The aggregate is static if all components are literals,
|
| 6393 |
|
|
-- or else all its components are static aggregates for the
|
| 6394 |
|
|
-- component type. We also limit the size of a static aggregate
|
| 6395 |
|
|
-- to prevent runaway static expressions.
|
| 6396 |
|
|
|
| 6397 |
|
|
if Is_Array_Type (Comp_Type)
|
| 6398 |
|
|
or else Is_Record_Type (Comp_Type)
|
| 6399 |
|
|
then
|
| 6400 |
|
|
if Nkind (Expression (Expr)) /= N_Aggregate
|
| 6401 |
|
|
or else
|
| 6402 |
|
|
not Compile_Time_Known_Aggregate (Expression (Expr))
|
| 6403 |
|
|
then
|
| 6404 |
|
|
return False;
|
| 6405 |
|
|
end if;
|
| 6406 |
|
|
|
| 6407 |
|
|
elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
|
| 6408 |
|
|
return False;
|
| 6409 |
|
|
end if;
|
| 6410 |
|
|
|
| 6411 |
|
|
if not Aggr_Size_OK (N, Typ) then
|
| 6412 |
|
|
return False;
|
| 6413 |
|
|
end if;
|
| 6414 |
|
|
|
| 6415 |
|
|
-- Create a positional aggregate with the right number of
|
| 6416 |
|
|
-- copies of the expression.
|
| 6417 |
|
|
|
| 6418 |
|
|
Agg := Make_Aggregate (Sloc (N), New_List, No_List);
|
| 6419 |
|
|
|
| 6420 |
|
|
for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
|
| 6421 |
|
|
loop
|
| 6422 |
|
|
Append_To
|
| 6423 |
|
|
(Expressions (Agg), New_Copy (Expression (Expr)));
|
| 6424 |
|
|
|
| 6425 |
|
|
-- The copied expression must be analyzed and resolved.
|
| 6426 |
|
|
-- Besides setting the type, this ensures that static
|
| 6427 |
|
|
-- expressions are appropriately marked as such.
|
| 6428 |
|
|
|
| 6429 |
|
|
Analyze_And_Resolve
|
| 6430 |
|
|
(Last (Expressions (Agg)), Component_Type (Typ));
|
| 6431 |
|
|
end loop;
|
| 6432 |
|
|
|
| 6433 |
|
|
Set_Aggregate_Bounds (Agg, Bounds);
|
| 6434 |
|
|
Set_Etype (Agg, Typ);
|
| 6435 |
|
|
Set_Analyzed (Agg);
|
| 6436 |
|
|
Rewrite (N, Agg);
|
| 6437 |
|
|
Set_Compile_Time_Known_Aggregate (N);
|
| 6438 |
|
|
|
| 6439 |
|
|
return True;
|
| 6440 |
|
|
end if;
|
| 6441 |
|
|
end if;
|
| 6442 |
|
|
|
| 6443 |
|
|
else
|
| 6444 |
|
|
return False;
|
| 6445 |
|
|
end if;
|
| 6446 |
|
|
end Static_Array_Aggregate;
|
| 6447 |
|
|
|
| 6448 |
|
|
end Exp_Aggr;
|