OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [exp_aggr.adb] - Blame information for rev 714

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                             E X P _ A G G R                              --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17
-- for  more details.  You should have  received  a copy of the GNU General --
18
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19
-- http://www.gnu.org/licenses for a complete copy of the license.          --
20
--                                                                          --
21
-- GNAT was originally developed  by the GNAT team at  New York University. --
22
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23
--                                                                          --
24
------------------------------------------------------------------------------
25
 
26
with Atree;    use Atree;
27
with Checks;   use Checks;
28
with Debug;    use Debug;
29
with Einfo;    use Einfo;
30
with Elists;   use Elists;
31
with Errout;   use Errout;
32
with Expander; use Expander;
33
with Exp_Util; use Exp_Util;
34
with Exp_Ch3;  use Exp_Ch3;
35
with Exp_Ch6;  use Exp_Ch6;
36
with Exp_Ch7;  use Exp_Ch7;
37
with Exp_Ch9;  use Exp_Ch9;
38
with Exp_Disp; use Exp_Disp;
39
with Exp_Tss;  use Exp_Tss;
40
with Fname;    use Fname;
41
with Freeze;   use Freeze;
42
with Itypes;   use Itypes;
43
with Lib;      use Lib;
44
with Namet;    use Namet;
45
with Nmake;    use Nmake;
46
with Nlists;   use Nlists;
47
with Opt;      use Opt;
48
with Restrict; use Restrict;
49
with Rident;   use Rident;
50
with Rtsfind;  use Rtsfind;
51
with Ttypes;   use Ttypes;
52
with Sem;      use Sem;
53
with Sem_Aggr; use Sem_Aggr;
54
with Sem_Aux;  use Sem_Aux;
55
with Sem_Ch3;  use Sem_Ch3;
56
with Sem_Eval; use Sem_Eval;
57
with Sem_Res;  use Sem_Res;
58
with Sem_Util; use Sem_Util;
59
with Sinfo;    use Sinfo;
60
with Snames;   use Snames;
61
with Stand;    use Stand;
62
with Targparm; use Targparm;
63
with Tbuild;   use Tbuild;
64
with Uintp;    use Uintp;
65
 
66
package body Exp_Aggr is
67
 
68
   type Case_Bounds is record
69
     Choice_Lo   : Node_Id;
70
     Choice_Hi   : Node_Id;
71
     Choice_Node : Node_Id;
72
   end record;
73
 
74
   type Case_Table_Type is array (Nat range <>) of Case_Bounds;
75
   --  Table type used by Check_Case_Choices procedure
76
 
77
   function Has_Default_Init_Comps (N : Node_Id) return Boolean;
78
   --  N is an aggregate (record or array). Checks the presence of default
79
   --  initialization (<>) in any component (Ada 2005: AI-287).
80
 
81
   function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
82
   --  Returns true if N is an aggregate used to initialize the components
83
   --  of an statically allocated dispatch table.
84
 
85
   function Must_Slide
86
     (Obj_Type : Entity_Id;
87
      Typ      : Entity_Id) return Boolean;
88
   --  A static array aggregate in an object declaration can in most cases be
89
   --  expanded in place. The one exception is when the aggregate is given
90
   --  with component associations that specify different bounds from those of
91
   --  the type definition in the object declaration. In this pathological
92
   --  case the aggregate must slide, and we must introduce an intermediate
93
   --  temporary to hold it.
94
   --
95
   --  The same holds in an assignment to one-dimensional array of arrays,
96
   --  when a component may be given with bounds that differ from those of the
97
   --  component type.
98
 
99
   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
100
   --  Sort the Case Table using the Lower Bound of each Choice as the key.
101
   --  A simple insertion sort is used since the number of choices in a case
102
   --  statement of variant part will usually be small and probably in near
103
   --  sorted order.
104
 
105
   ------------------------------------------------------
106
   -- Local subprograms for Record Aggregate Expansion --
107
   ------------------------------------------------------
108
 
109
   function Build_Record_Aggr_Code
110
     (N   : Node_Id;
111
      Typ : Entity_Id;
112
      Lhs : Node_Id) return List_Id;
113
   --  N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
114
   --  aggregate. Target is an expression containing the location on which the
115
   --  component by component assignments will take place. Returns the list of
116
   --  assignments plus all other adjustments needed for tagged and controlled
117
   --  types.
118
 
119
   procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
120
   --  N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
121
   --  aggregate (which can only be a record type, this procedure is only used
122
   --  for record types). Transform the given aggregate into a sequence of
123
   --  assignments performed component by component.
124
 
125
   procedure Expand_Record_Aggregate
126
     (N           : Node_Id;
127
      Orig_Tag    : Node_Id := Empty;
128
      Parent_Expr : Node_Id := Empty);
129
   --  This is the top level procedure for record aggregate expansion.
130
   --  Expansion for record aggregates needs expand aggregates for tagged
131
   --  record types. Specifically Expand_Record_Aggregate adds the Tag
132
   --  field in front of the Component_Association list that was created
133
   --  during resolution by Resolve_Record_Aggregate.
134
   --
135
   --    N is the record aggregate node.
136
   --    Orig_Tag is the value of the Tag that has to be provided for this
137
   --      specific aggregate. It carries the tag corresponding to the type
138
   --      of the outermost aggregate during the recursive expansion
139
   --    Parent_Expr is the ancestor part of the original extension
140
   --      aggregate
141
 
142
   function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
143
   --  Return true if one of the component is of a discriminated type with
144
   --  defaults. An aggregate for a type with mutable components must be
145
   --  expanded into individual assignments.
146
 
147
   procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
148
   --  If the type of the aggregate is a type extension with renamed discrimi-
149
   --  nants, we must initialize the hidden discriminants of the parent.
150
   --  Otherwise, the target object must not be initialized. The discriminants
151
   --  are initialized by calling the initialization procedure for the type.
152
   --  This is incorrect if the initialization of other components has any
153
   --  side effects. We restrict this call to the case where the parent type
154
   --  has a variant part, because this is the only case where the hidden
155
   --  discriminants are accessed, namely when calling discriminant checking
156
   --  functions of the parent type, and when applying a stream attribute to
157
   --  an object of the derived type.
158
 
159
   -----------------------------------------------------
160
   -- Local Subprograms for Array Aggregate Expansion --
161
   -----------------------------------------------------
162
 
163
   function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
164
   --  Very large static aggregates present problems to the back-end, and are
165
   --  transformed into assignments and loops. This function verifies that the
166
   --  total number of components of an aggregate is acceptable for rewriting
167
   --  into a purely positional static form. Aggr_Size_OK must be called before
168
   --  calling Flatten.
169
   --
170
   --  This function also detects and warns about one-component aggregates that
171
   --  appear in a non-static context. Even if the component value is static,
172
   --  such an aggregate must be expanded into an assignment.
173
 
174
   function Backend_Processing_Possible (N : Node_Id) return Boolean;
175
   --  This function checks if array aggregate N can be processed directly
176
   --  by the backend. If this is the case True is returned.
177
 
178
   function Build_Array_Aggr_Code
179
     (N           : Node_Id;
180
      Ctype       : Entity_Id;
181
      Index       : Node_Id;
182
      Into        : Node_Id;
183
      Scalar_Comp : Boolean;
184
      Indexes     : List_Id := No_List) return List_Id;
185
   --  This recursive routine returns a list of statements containing the
186
   --  loops and assignments that are needed for the expansion of the array
187
   --  aggregate N.
188
   --
189
   --    N is the (sub-)aggregate node to be expanded into code. This node has
190
   --    been fully analyzed, and its Etype is properly set.
191
   --
192
   --    Index is the index node corresponding to the array sub-aggregate N
193
   --
194
   --    Into is the target expression into which we are copying the aggregate.
195
   --    Note that this node may not have been analyzed yet, and so the Etype
196
   --    field may not be set.
197
   --
198
   --    Scalar_Comp is True if the component type of the aggregate is scalar
199
   --
200
   --    Indexes is the current list of expressions used to index the object we
201
   --    are writing into.
202
 
203
   procedure Convert_Array_Aggr_In_Allocator
204
     (Decl   : Node_Id;
205
      Aggr   : Node_Id;
206
      Target : Node_Id);
207
   --  If the aggregate appears within an allocator and can be expanded in
208
   --  place, this routine generates the individual assignments to components
209
   --  of the designated object. This is an optimization over the general
210
   --  case, where a temporary is first created on the stack and then used to
211
   --  construct the allocated object on the heap.
212
 
213
   procedure Convert_To_Positional
214
     (N                    : Node_Id;
215
      Max_Others_Replicate : Nat     := 5;
216
      Handle_Bit_Packed    : Boolean := False);
217
   --  If possible, convert named notation to positional notation. This
218
   --  conversion is possible only in some static cases. If the conversion is
219
   --  possible, then N is rewritten with the analyzed converted aggregate.
220
   --  The parameter Max_Others_Replicate controls the maximum number of
221
   --  values corresponding to an others choice that will be converted to
222
   --  positional notation (the default of 5 is the normal limit, and reflects
223
   --  the fact that normally the loop is better than a lot of separate
224
   --  assignments). Note that this limit gets overridden in any case if
225
   --  either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
226
   --  set. The parameter Handle_Bit_Packed is usually set False (since we do
227
   --  not expect the back end to handle bit packed arrays, so the normal case
228
   --  of conversion is pointless), but in the special case of a call from
229
   --  Packed_Array_Aggregate_Handled, we set this parameter to True, since
230
   --  these are cases we handle in there.
231
 
232
   --  It would seem worthwhile to have a higher default value for Max_Others_
233
   --  replicate, but aggregates in the compiler make this impossible: the
234
   --  compiler bootstrap fails if Max_Others_Replicate is greater than 25.
235
   --  This is unexpected ???
236
 
237
   procedure Expand_Array_Aggregate (N : Node_Id);
238
   --  This is the top-level routine to perform array aggregate expansion.
239
   --  N is the N_Aggregate node to be expanded.
240
 
241
   function Late_Expansion
242
     (N      : Node_Id;
243
      Typ    : Entity_Id;
244
      Target : Node_Id) return List_Id;
245
   --  This routine implements top-down expansion of nested aggregates. In
246
   --  doing so, it avoids the generation of temporaries at each level. N is
247
   --  a nested record or array aggregate with the Expansion_Delayed flag.
248
   --  Typ is the expected type of the aggregate. Target is a (duplicatable)
249
   --  expression that will hold the result of the aggregate expansion.
250
 
251
   function Make_OK_Assignment_Statement
252
     (Sloc       : Source_Ptr;
253
      Name       : Node_Id;
254
      Expression : Node_Id) return Node_Id;
255
   --  This is like Make_Assignment_Statement, except that Assignment_OK
256
   --  is set in the left operand. All assignments built by this unit use
257
   --  this routine. This is needed to deal with assignments to initialized
258
   --  constants that are done in place.
259
 
260
   function Number_Of_Choices (N : Node_Id) return Nat;
261
   --  Returns the number of discrete choices (not including the others choice
262
   --  if present) contained in (sub-)aggregate N.
263
 
264
   function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
265
   --  Given an array aggregate, this function handles the case of a packed
266
   --  array aggregate with all constant values, where the aggregate can be
267
   --  evaluated at compile time. If this is possible, then N is rewritten
268
   --  to be its proper compile time value with all the components properly
269
   --  assembled. The expression is analyzed and resolved and True is returned.
270
   --  If this transformation is not possible, N is unchanged and False is
271
   --  returned.
272
 
273
   function Safe_Slice_Assignment (N : Node_Id) return Boolean;
274
   --  If a slice assignment has an aggregate with a single others_choice,
275
   --  the assignment can be done in place even if bounds are not static,
276
   --  by converting it into a loop over the discrete range of the slice.
277
 
278
   ------------------
279
   -- Aggr_Size_OK --
280
   ------------------
281
 
282
   function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
283
      Lo   : Node_Id;
284
      Hi   : Node_Id;
285
      Indx : Node_Id;
286
      Siz  : Int;
287
      Lov  : Uint;
288
      Hiv  : Uint;
289
 
290
      --  The following constant determines the maximum size of an array
291
      --  aggregate produced by converting named to positional notation (e.g.
292
      --  from others clauses). This avoids running away with attempts to
293
      --  convert huge aggregates, which hit memory limits in the backend.
294
 
295
      --  The normal limit is 5000, but we increase this limit to 2**24 (about
296
      --  16 million) if Restrictions (No_Elaboration_Code) or Restrictions
297
      --  (No_Implicit_Loops) is specified, since in either case, we are at
298
      --  risk of declaring the program illegal because of this limit.
299
 
300
      Max_Aggr_Size : constant Nat :=
301
                        5000 + (2 ** 24 - 5000) *
302
                          Boolean'Pos
303
                            (Restriction_Active (No_Elaboration_Code)
304
                              or else
305
                             Restriction_Active (No_Implicit_Loops));
306
 
307
      function Component_Count (T : Entity_Id) return Int;
308
      --  The limit is applied to the total number of components that the
309
      --  aggregate will have, which is the number of static expressions
310
      --  that will appear in the flattened array. This requires a recursive
311
      --  computation of the number of scalar components of the structure.
312
 
313
      ---------------------
314
      -- Component_Count --
315
      ---------------------
316
 
317
      function Component_Count (T : Entity_Id) return Int is
318
         Res  : Int := 0;
319
         Comp : Entity_Id;
320
 
321
      begin
322
         if Is_Scalar_Type (T) then
323
            return 1;
324
 
325
         elsif Is_Record_Type (T) then
326
            Comp := First_Component (T);
327
            while Present (Comp) loop
328
               Res := Res + Component_Count (Etype (Comp));
329
               Next_Component (Comp);
330
            end loop;
331
 
332
            return Res;
333
 
334
         elsif Is_Array_Type (T) then
335
            declare
336
               Lo : constant Node_Id :=
337
                      Type_Low_Bound (Etype (First_Index (T)));
338
               Hi : constant Node_Id :=
339
                      Type_High_Bound (Etype (First_Index (T)));
340
 
341
               Siz : constant Int := Component_Count (Component_Type (T));
342
 
343
            begin
344
               if not Compile_Time_Known_Value (Lo)
345
                 or else not Compile_Time_Known_Value (Hi)
346
               then
347
                  return 0;
348
               else
349
                  return
350
                    Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
351
               end if;
352
            end;
353
 
354
         else
355
            --  Can only be a null for an access type
356
 
357
            return 1;
358
         end if;
359
      end Component_Count;
360
 
361
   --  Start of processing for Aggr_Size_OK
362
 
363
   begin
364
      Siz  := Component_Count (Component_Type (Typ));
365
 
366
      Indx := First_Index (Typ);
367
      while Present (Indx) loop
368
         Lo  := Type_Low_Bound (Etype (Indx));
369
         Hi  := Type_High_Bound (Etype (Indx));
370
 
371
         --  Bounds need to be known at compile time
372
 
373
         if not Compile_Time_Known_Value (Lo)
374
           or else not Compile_Time_Known_Value (Hi)
375
         then
376
            return False;
377
         end if;
378
 
379
         Lov := Expr_Value (Lo);
380
         Hiv := Expr_Value (Hi);
381
 
382
         --  A flat array is always safe
383
 
384
         if Hiv < Lov then
385
            return True;
386
         end if;
387
 
388
         --  One-component aggregates are suspicious, and if the context type
389
         --  is an object declaration with non-static bounds it will trip gcc;
390
         --  such an aggregate must be expanded into a single assignment.
391
 
392
         if Hiv = Lov
393
           and then Nkind (Parent (N)) = N_Object_Declaration
394
         then
395
            declare
396
               Index_Type : constant Entity_Id :=
397
                              Etype
398
                                (First_Index
399
                                   (Etype (Defining_Identifier (Parent (N)))));
400
               Indx       : Node_Id;
401
 
402
            begin
403
               if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
404
                  or else not Compile_Time_Known_Value
405
                                (Type_High_Bound (Index_Type))
406
               then
407
                  if Present (Component_Associations (N)) then
408
                     Indx :=
409
                       First (Choices (First (Component_Associations (N))));
410
                     if Is_Entity_Name (Indx)
411
                       and then not Is_Type (Entity (Indx))
412
                     then
413
                        Error_Msg_N
414
                          ("single component aggregate in non-static context?",
415
                            Indx);
416
                        Error_Msg_N ("\maybe subtype name was meant?", Indx);
417
                     end if;
418
                  end if;
419
 
420
                  return False;
421
               end if;
422
            end;
423
         end if;
424
 
425
         declare
426
            Rng : constant Uint := Hiv - Lov + 1;
427
 
428
         begin
429
            --  Check if size is too large
430
 
431
            if not UI_Is_In_Int_Range (Rng) then
432
               return False;
433
            end if;
434
 
435
            Siz := Siz * UI_To_Int (Rng);
436
         end;
437
 
438
         if Siz <= 0
439
           or else Siz > Max_Aggr_Size
440
         then
441
            return False;
442
         end if;
443
 
444
         --  Bounds must be in integer range, for later array construction
445
 
446
         if not UI_Is_In_Int_Range (Lov)
447
             or else
448
            not UI_Is_In_Int_Range (Hiv)
449
         then
450
            return False;
451
         end if;
452
 
453
         Next_Index (Indx);
454
      end loop;
455
 
456
      return True;
457
   end Aggr_Size_OK;
458
 
459
   ---------------------------------
460
   -- Backend_Processing_Possible --
461
   ---------------------------------
462
 
463
   --  Backend processing by Gigi/gcc is possible only if all the following
464
   --  conditions are met:
465
 
466
   --    1. N is fully positional
467
 
468
   --    2. N is not a bit-packed array aggregate;
469
 
470
   --    3. The size of N's array type must be known at compile time. Note
471
   --       that this implies that the component size is also known
472
 
473
   --    4. The array type of N does not follow the Fortran layout convention
474
   --       or if it does it must be 1 dimensional.
475
 
476
   --    5. The array component type may not be tagged (which could necessitate
477
   --       reassignment of proper tags).
478
 
479
   --    6. The array component type must not have unaligned bit components
480
 
481
   --    7. None of the components of the aggregate may be bit unaligned
482
   --       components.
483
 
484
   --    8. There cannot be delayed components, since we do not know enough
485
   --       at this stage to know if back end processing is possible.
486
 
487
   --    9. There cannot be any discriminated record components, since the
488
   --       back end cannot handle this complex case.
489
 
490
   --   10. No controlled actions need to be generated for components
491
 
492
   --   11. For a VM back end, the array should have no aliased components
493
 
494
   function Backend_Processing_Possible (N : Node_Id) return Boolean is
495
      Typ : constant Entity_Id := Etype (N);
496
      --  Typ is the correct constrained array subtype of the aggregate
497
 
498
      function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
499
      --  This routine checks components of aggregate N, enforcing checks
500
      --  1, 7, 8, and 9. In the multi-dimensional case, these checks are
501
      --  performed on subaggregates. The Index value is the current index
502
      --  being checked in the multi-dimensional case.
503
 
504
      ---------------------
505
      -- Component_Check --
506
      ---------------------
507
 
508
      function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
509
         Expr : Node_Id;
510
 
511
      begin
512
         --  Checks 1: (no component associations)
513
 
514
         if Present (Component_Associations (N)) then
515
            return False;
516
         end if;
517
 
518
         --  Checks on components
519
 
520
         --  Recurse to check subaggregates, which may appear in qualified
521
         --  expressions. If delayed, the front-end will have to expand.
522
         --  If the component is a discriminated record, treat as non-static,
523
         --  as the back-end cannot handle this properly.
524
 
525
         Expr := First (Expressions (N));
526
         while Present (Expr) loop
527
 
528
            --  Checks 8: (no delayed components)
529
 
530
            if Is_Delayed_Aggregate (Expr) then
531
               return False;
532
            end if;
533
 
534
            --  Checks 9: (no discriminated records)
535
 
536
            if Present (Etype (Expr))
537
              and then Is_Record_Type (Etype (Expr))
538
              and then Has_Discriminants (Etype (Expr))
539
            then
540
               return False;
541
            end if;
542
 
543
            --  Checks 7. Component must not be bit aligned component
544
 
545
            if Possible_Bit_Aligned_Component (Expr) then
546
               return False;
547
            end if;
548
 
549
            --  Recursion to following indexes for multiple dimension case
550
 
551
            if Present (Next_Index (Index))
552
               and then not Component_Check (Expr, Next_Index (Index))
553
            then
554
               return False;
555
            end if;
556
 
557
            --  All checks for that component finished, on to next
558
 
559
            Next (Expr);
560
         end loop;
561
 
562
         return True;
563
      end Component_Check;
564
 
565
   --  Start of processing for Backend_Processing_Possible
566
 
567
   begin
568
      --  Checks 2 (array not bit packed) and 10 (no controlled actions)
569
 
570
      if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
571
         return False;
572
      end if;
573
 
574
      --  If component is limited, aggregate must be expanded because each
575
      --  component assignment must be built in place.
576
 
577
      if Is_Immutably_Limited_Type (Component_Type (Typ)) then
578
         return False;
579
      end if;
580
 
581
      --  Checks 4 (array must not be multi-dimensional Fortran case)
582
 
583
      if Convention (Typ) = Convention_Fortran
584
        and then Number_Dimensions (Typ) > 1
585
      then
586
         return False;
587
      end if;
588
 
589
      --  Checks 3 (size of array must be known at compile time)
590
 
591
      if not Size_Known_At_Compile_Time (Typ) then
592
         return False;
593
      end if;
594
 
595
      --  Checks on components
596
 
597
      if not Component_Check (N, First_Index (Typ)) then
598
         return False;
599
      end if;
600
 
601
      --  Checks 5 (if the component type is tagged, then we may need to do
602
      --    tag adjustments. Perhaps this should be refined to check for any
603
      --    component associations that actually need tag adjustment, similar
604
      --    to the test in Component_Not_OK_For_Backend for record aggregates
605
      --    with tagged components, but not clear whether it's worthwhile ???;
606
      --    in the case of the JVM, object tags are handled implicitly)
607
 
608
      if Is_Tagged_Type (Component_Type (Typ))
609
        and then Tagged_Type_Expansion
610
      then
611
         return False;
612
      end if;
613
 
614
      --  Checks 6 (component type must not have bit aligned components)
615
 
616
      if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
617
         return False;
618
      end if;
619
 
620
      --  Checks 11: Array aggregates with aliased components are currently
621
      --  not well supported by the VM backend; disable temporarily this
622
      --  backend processing until it is definitely supported.
623
 
624
      if VM_Target /= No_VM
625
        and then Has_Aliased_Components (Base_Type (Typ))
626
      then
627
         return False;
628
      end if;
629
 
630
      --  Backend processing is possible
631
 
632
      Set_Size_Known_At_Compile_Time (Etype (N), True);
633
      return True;
634
   end Backend_Processing_Possible;
635
 
636
   ---------------------------
637
   -- Build_Array_Aggr_Code --
638
   ---------------------------
639
 
640
   --  The code that we generate from a one dimensional aggregate is
641
 
642
   --  1. If the sub-aggregate contains discrete choices we
643
 
644
   --     (a) Sort the discrete choices
645
 
646
   --     (b) Otherwise for each discrete choice that specifies a range we
647
   --         emit a loop. If a range specifies a maximum of three values, or
648
   --         we are dealing with an expression we emit a sequence of
649
   --         assignments instead of a loop.
650
 
651
   --     (c) Generate the remaining loops to cover the others choice if any
652
 
653
   --  2. If the aggregate contains positional elements we
654
 
655
   --     (a) translate the positional elements in a series of assignments
656
 
657
   --     (b) Generate a final loop to cover the others choice if any.
658
   --         Note that this final loop has to be a while loop since the case
659
 
660
   --             L : Integer := Integer'Last;
661
   --             H : Integer := Integer'Last;
662
   --             A : array (L .. H) := (1, others =>0);
663
 
664
   --         cannot be handled by a for loop. Thus for the following
665
 
666
   --             array (L .. H) := (.. positional elements.., others =>E);
667
 
668
   --         we always generate something like:
669
 
670
   --             J : Index_Type := Index_Of_Last_Positional_Element;
671
   --             while J < H loop
672
   --                J := Index_Base'Succ (J)
673
   --                Tmp (J) := E;
674
   --             end loop;
675
 
676
   function Build_Array_Aggr_Code
677
     (N           : Node_Id;
678
      Ctype       : Entity_Id;
679
      Index       : Node_Id;
680
      Into        : Node_Id;
681
      Scalar_Comp : Boolean;
682
      Indexes     : List_Id := No_List) return List_Id
683
   is
684
      Loc          : constant Source_Ptr := Sloc (N);
685
      Index_Base   : constant Entity_Id  := Base_Type (Etype (Index));
686
      Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
687
      Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
688
 
689
      function Add (Val : Int; To : Node_Id) return Node_Id;
690
      --  Returns an expression where Val is added to expression To, unless
691
      --  To+Val is provably out of To's base type range. To must be an
692
      --  already analyzed expression.
693
 
694
      function Empty_Range (L, H : Node_Id) return Boolean;
695
      --  Returns True if the range defined by L .. H is certainly empty
696
 
697
      function Equal (L, H : Node_Id) return Boolean;
698
      --  Returns True if L = H for sure
699
 
700
      function Index_Base_Name return Node_Id;
701
      --  Returns a new reference to the index type name
702
 
703
      function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
704
      --  Ind must be a side-effect free expression. If the input aggregate
705
      --  N to Build_Loop contains no sub-aggregates, then this function
706
      --  returns the assignment statement:
707
      --
708
      --     Into (Indexes, Ind) := Expr;
709
      --
710
      --  Otherwise we call Build_Code recursively
711
      --
712
      --  Ada 2005 (AI-287): In case of default initialized component, Expr
713
      --  is empty and we generate a call to the corresponding IP subprogram.
714
 
715
      function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
716
      --  Nodes L and H must be side-effect free expressions.
717
      --  If the input aggregate N to Build_Loop contains no sub-aggregates,
718
      --  This routine returns the for loop statement
719
      --
720
      --     for J in Index_Base'(L) .. Index_Base'(H) loop
721
      --        Into (Indexes, J) := Expr;
722
      --     end loop;
723
      --
724
      --  Otherwise we call Build_Code recursively.
725
      --  As an optimization if the loop covers 3 or less scalar elements we
726
      --  generate a sequence of assignments.
727
 
728
      function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
729
      --  Nodes L and H must be side-effect free expressions.
730
      --  If the input aggregate N to Build_Loop contains no sub-aggregates,
731
      --  This routine returns the while loop statement
732
      --
733
      --     J : Index_Base := L;
734
      --     while J < H loop
735
      --        J := Index_Base'Succ (J);
736
      --        Into (Indexes, J) := Expr;
737
      --     end loop;
738
      --
739
      --  Otherwise we call Build_Code recursively
740
 
741
      function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
742
      function Local_Expr_Value               (E : Node_Id) return Uint;
743
      --  These two Local routines are used to replace the corresponding ones
744
      --  in sem_eval because while processing the bounds of an aggregate with
745
      --  discrete choices whose index type is an enumeration, we build static
746
      --  expressions not recognized by Compile_Time_Known_Value as such since
747
      --  they have not yet been analyzed and resolved. All the expressions in
748
      --  question are things like Index_Base_Name'Val (Const) which we can
749
      --  easily recognize as being constant.
750
 
751
      ---------
752
      -- Add --
753
      ---------
754
 
755
      function Add (Val : Int; To : Node_Id) return Node_Id is
756
         Expr_Pos : Node_Id;
757
         Expr     : Node_Id;
758
         To_Pos   : Node_Id;
759
         U_To     : Uint;
760
         U_Val    : constant Uint := UI_From_Int (Val);
761
 
762
      begin
763
         --  Note: do not try to optimize the case of Val = 0, because
764
         --  we need to build a new node with the proper Sloc value anyway.
765
 
766
         --  First test if we can do constant folding
767
 
768
         if Local_Compile_Time_Known_Value (To) then
769
            U_To := Local_Expr_Value (To) + Val;
770
 
771
            --  Determine if our constant is outside the range of the index.
772
            --  If so return an Empty node. This empty node will be caught
773
            --  by Empty_Range below.
774
 
775
            if Compile_Time_Known_Value (Index_Base_L)
776
              and then U_To < Expr_Value (Index_Base_L)
777
            then
778
               return Empty;
779
 
780
            elsif Compile_Time_Known_Value (Index_Base_H)
781
              and then U_To > Expr_Value (Index_Base_H)
782
            then
783
               return Empty;
784
            end if;
785
 
786
            Expr_Pos := Make_Integer_Literal (Loc, U_To);
787
            Set_Is_Static_Expression (Expr_Pos);
788
 
789
            if not Is_Enumeration_Type (Index_Base) then
790
               Expr := Expr_Pos;
791
 
792
            --  If we are dealing with enumeration return
793
            --     Index_Base'Val (Expr_Pos)
794
 
795
            else
796
               Expr :=
797
                 Make_Attribute_Reference
798
                   (Loc,
799
                    Prefix         => Index_Base_Name,
800
                    Attribute_Name => Name_Val,
801
                    Expressions    => New_List (Expr_Pos));
802
            end if;
803
 
804
            return Expr;
805
         end if;
806
 
807
         --  If we are here no constant folding possible
808
 
809
         if not Is_Enumeration_Type (Index_Base) then
810
            Expr :=
811
              Make_Op_Add (Loc,
812
                           Left_Opnd  => Duplicate_Subexpr (To),
813
                           Right_Opnd => Make_Integer_Literal (Loc, U_Val));
814
 
815
         --  If we are dealing with enumeration return
816
         --    Index_Base'Val (Index_Base'Pos (To) + Val)
817
 
818
         else
819
            To_Pos :=
820
              Make_Attribute_Reference
821
                (Loc,
822
                 Prefix         => Index_Base_Name,
823
                 Attribute_Name => Name_Pos,
824
                 Expressions    => New_List (Duplicate_Subexpr (To)));
825
 
826
            Expr_Pos :=
827
              Make_Op_Add (Loc,
828
                           Left_Opnd  => To_Pos,
829
                           Right_Opnd => Make_Integer_Literal (Loc, U_Val));
830
 
831
            Expr :=
832
              Make_Attribute_Reference
833
                (Loc,
834
                 Prefix         => Index_Base_Name,
835
                 Attribute_Name => Name_Val,
836
                 Expressions    => New_List (Expr_Pos));
837
         end if;
838
 
839
         return Expr;
840
      end Add;
841
 
842
      -----------------
843
      -- Empty_Range --
844
      -----------------
845
 
846
      function Empty_Range (L, H : Node_Id) return Boolean is
847
         Is_Empty : Boolean := False;
848
         Low      : Node_Id;
849
         High     : Node_Id;
850
 
851
      begin
852
         --  First check if L or H were already detected as overflowing the
853
         --  index base range type by function Add above. If this is so Add
854
         --  returns the empty node.
855
 
856
         if No (L) or else No (H) then
857
            return True;
858
         end if;
859
 
860
         for J in 1 .. 3 loop
861
            case J is
862
 
863
               --  L > H    range is empty
864
 
865
               when 1 =>
866
                  Low  := L;
867
                  High := H;
868
 
869
               --  B_L > H  range must be empty
870
 
871
               when 2 =>
872
                  Low  := Index_Base_L;
873
                  High := H;
874
 
875
               --  L > B_H  range must be empty
876
 
877
               when 3 =>
878
                  Low  := L;
879
                  High := Index_Base_H;
880
            end case;
881
 
882
            if Local_Compile_Time_Known_Value (Low)
883
              and then Local_Compile_Time_Known_Value (High)
884
            then
885
               Is_Empty :=
886
                 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
887
            end if;
888
 
889
            exit when Is_Empty;
890
         end loop;
891
 
892
         return Is_Empty;
893
      end Empty_Range;
894
 
895
      -----------
896
      -- Equal --
897
      -----------
898
 
899
      function Equal (L, H : Node_Id) return Boolean is
900
      begin
901
         if L = H then
902
            return True;
903
 
904
         elsif Local_Compile_Time_Known_Value (L)
905
           and then Local_Compile_Time_Known_Value (H)
906
         then
907
            return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
908
         end if;
909
 
910
         return False;
911
      end Equal;
912
 
913
      ----------------
914
      -- Gen_Assign --
915
      ----------------
916
 
917
      function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
918
         L : constant List_Id := New_List;
919
         A : Node_Id;
920
 
921
         New_Indexes  : List_Id;
922
         Indexed_Comp : Node_Id;
923
         Expr_Q       : Node_Id;
924
         Comp_Type    : Entity_Id := Empty;
925
 
926
         function Add_Loop_Actions (Lis : List_Id) return List_Id;
927
         --  Collect insert_actions generated in the construction of a
928
         --  loop, and prepend them to the sequence of assignments to
929
         --  complete the eventual body of the loop.
930
 
931
         ----------------------
932
         -- Add_Loop_Actions --
933
         ----------------------
934
 
935
         function Add_Loop_Actions (Lis : List_Id) return List_Id is
936
            Res : List_Id;
937
 
938
         begin
939
            --  Ada 2005 (AI-287): Do nothing else in case of default
940
            --  initialized component.
941
 
942
            if No (Expr) then
943
               return Lis;
944
 
945
            elsif Nkind (Parent (Expr)) = N_Component_Association
946
              and then Present (Loop_Actions (Parent (Expr)))
947
            then
948
               Append_List (Lis, Loop_Actions (Parent (Expr)));
949
               Res := Loop_Actions (Parent (Expr));
950
               Set_Loop_Actions (Parent (Expr), No_List);
951
               return Res;
952
 
953
            else
954
               return Lis;
955
            end if;
956
         end Add_Loop_Actions;
957
 
958
      --  Start of processing for Gen_Assign
959
 
960
      begin
961
         if No (Indexes) then
962
            New_Indexes := New_List;
963
         else
964
            New_Indexes := New_Copy_List_Tree (Indexes);
965
         end if;
966
 
967
         Append_To (New_Indexes, Ind);
968
 
969
         if Present (Next_Index (Index)) then
970
            return
971
              Add_Loop_Actions (
972
                Build_Array_Aggr_Code
973
                  (N           => Expr,
974
                   Ctype       => Ctype,
975
                   Index       => Next_Index (Index),
976
                   Into        => Into,
977
                   Scalar_Comp => Scalar_Comp,
978
                   Indexes     => New_Indexes));
979
         end if;
980
 
981
         --  If we get here then we are at a bottom-level (sub-)aggregate
982
 
983
         Indexed_Comp :=
984
           Checks_Off
985
             (Make_Indexed_Component (Loc,
986
                Prefix      => New_Copy_Tree (Into),
987
                Expressions => New_Indexes));
988
 
989
         Set_Assignment_OK (Indexed_Comp);
990
 
991
         --  Ada 2005 (AI-287): In case of default initialized component, Expr
992
         --  is not present (and therefore we also initialize Expr_Q to empty).
993
 
994
         if No (Expr) then
995
            Expr_Q := Empty;
996
         elsif Nkind (Expr) = N_Qualified_Expression then
997
            Expr_Q := Expression (Expr);
998
         else
999
            Expr_Q := Expr;
1000
         end if;
1001
 
1002
         if Present (Etype (N))
1003
           and then Etype (N) /= Any_Composite
1004
         then
1005
            Comp_Type := Component_Type (Etype (N));
1006
            pragma Assert (Comp_Type = Ctype); --  AI-287
1007
 
1008
         elsif Present (Next (First (New_Indexes))) then
1009
 
1010
            --  Ada 2005 (AI-287): Do nothing in case of default initialized
1011
            --  component because we have received the component type in
1012
            --  the formal parameter Ctype.
1013
 
1014
            --  ??? Some assert pragmas have been added to check if this new
1015
            --      formal can be used to replace this code in all cases.
1016
 
1017
            if Present (Expr) then
1018
 
1019
               --  This is a multidimensional array. Recover the component
1020
               --  type from the outermost aggregate, because subaggregates
1021
               --  do not have an assigned type.
1022
 
1023
               declare
1024
                  P : Node_Id;
1025
 
1026
               begin
1027
                  P := Parent (Expr);
1028
                  while Present (P) loop
1029
                     if Nkind (P) = N_Aggregate
1030
                       and then Present (Etype (P))
1031
                     then
1032
                        Comp_Type := Component_Type (Etype (P));
1033
                        exit;
1034
 
1035
                     else
1036
                        P := Parent (P);
1037
                     end if;
1038
                  end loop;
1039
 
1040
                  pragma Assert (Comp_Type = Ctype); --  AI-287
1041
               end;
1042
            end if;
1043
         end if;
1044
 
1045
         --  Ada 2005 (AI-287): We only analyze the expression in case of non-
1046
         --  default initialized components (otherwise Expr_Q is not present).
1047
 
1048
         if Present (Expr_Q)
1049
           and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
1050
         then
1051
            --  At this stage the Expression may not have been analyzed yet
1052
            --  because the array aggregate code has not been updated to use
1053
            --  the Expansion_Delayed flag and avoid analysis altogether to
1054
            --  solve the same problem (see Resolve_Aggr_Expr). So let us do
1055
            --  the analysis of non-array aggregates now in order to get the
1056
            --  value of Expansion_Delayed flag for the inner aggregate ???
1057
 
1058
            if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
1059
               Analyze_And_Resolve (Expr_Q, Comp_Type);
1060
            end if;
1061
 
1062
            if Is_Delayed_Aggregate (Expr_Q) then
1063
 
1064
               --  This is either a subaggregate of a multidimensional array,
1065
               --  or a component of an array type whose component type is
1066
               --  also an array. In the latter case, the expression may have
1067
               --  component associations that provide different bounds from
1068
               --  those of the component type, and sliding must occur. Instead
1069
               --  of decomposing the current aggregate assignment, force the
1070
               --  re-analysis of the assignment, so that a temporary will be
1071
               --  generated in the usual fashion, and sliding will take place.
1072
 
1073
               if Nkind (Parent (N)) = N_Assignment_Statement
1074
                 and then Is_Array_Type (Comp_Type)
1075
                 and then Present (Component_Associations (Expr_Q))
1076
                 and then Must_Slide (Comp_Type, Etype (Expr_Q))
1077
               then
1078
                  Set_Expansion_Delayed (Expr_Q, False);
1079
                  Set_Analyzed (Expr_Q, False);
1080
 
1081
               else
1082
                  return
1083
                    Add_Loop_Actions (
1084
                      Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
1085
               end if;
1086
            end if;
1087
         end if;
1088
 
1089
         --  Ada 2005 (AI-287): In case of default initialized component, call
1090
         --  the initialization subprogram associated with the component type.
1091
         --  If the component type is an access type, add an explicit null
1092
         --  assignment, because for the back-end there is an initialization
1093
         --  present for the whole aggregate, and no default initialization
1094
         --  will take place.
1095
 
1096
         --  In addition, if the component type is controlled, we must call
1097
         --  its Initialize procedure explicitly, because there is no explicit
1098
         --  object creation that will invoke it otherwise.
1099
 
1100
         if No (Expr) then
1101
            if Present (Base_Init_Proc (Base_Type (Ctype)))
1102
              or else Has_Task (Base_Type (Ctype))
1103
            then
1104
               Append_List_To (L,
1105
                 Build_Initialization_Call (Loc,
1106
                   Id_Ref            => Indexed_Comp,
1107
                   Typ               => Ctype,
1108
                   With_Default_Init => True));
1109
 
1110
            elsif Is_Access_Type (Ctype) then
1111
               Append_To (L,
1112
                  Make_Assignment_Statement (Loc,
1113
                     Name => Indexed_Comp,
1114
                     Expression => Make_Null (Loc)));
1115
            end if;
1116
 
1117
            if Needs_Finalization (Ctype) then
1118
               Append_To (L,
1119
                 Make_Init_Call (
1120
                   Obj_Ref => New_Copy_Tree (Indexed_Comp),
1121
                   Typ     => Ctype));
1122
            end if;
1123
 
1124
         else
1125
            --  Now generate the assignment with no associated controlled
1126
            --  actions since the target of the assignment may not have been
1127
            --  initialized, it is not possible to Finalize it as expected by
1128
            --  normal controlled assignment. The rest of the controlled
1129
            --  actions are done manually with the proper finalization list
1130
            --  coming from the context.
1131
 
1132
            A :=
1133
              Make_OK_Assignment_Statement (Loc,
1134
                Name       => Indexed_Comp,
1135
                Expression => New_Copy_Tree (Expr));
1136
 
1137
            if Present (Comp_Type) and then Needs_Finalization (Comp_Type) then
1138
               Set_No_Ctrl_Actions (A);
1139
 
1140
               --  If this is an aggregate for an array of arrays, each
1141
               --  sub-aggregate will be expanded as well, and even with
1142
               --  No_Ctrl_Actions the assignments of inner components will
1143
               --  require attachment in their assignments to temporaries.
1144
               --  These temporaries must be finalized for each subaggregate,
1145
               --  to prevent multiple attachments of the same temporary
1146
               --  location to same finalization chain (and consequently
1147
               --  circular lists). To ensure that finalization takes place
1148
               --  for each subaggregate we wrap the assignment in a block.
1149
 
1150
               if Is_Array_Type (Comp_Type)
1151
                 and then Nkind (Expr) = N_Aggregate
1152
               then
1153
                  A :=
1154
                    Make_Block_Statement (Loc,
1155
                      Handled_Statement_Sequence =>
1156
                        Make_Handled_Sequence_Of_Statements (Loc,
1157
                           Statements => New_List (A)));
1158
               end if;
1159
            end if;
1160
 
1161
            Append_To (L, A);
1162
 
1163
            --  Adjust the tag if tagged (because of possible view
1164
            --  conversions), unless compiling for a VM where
1165
            --  tags are implicit.
1166
 
1167
            if Present (Comp_Type)
1168
              and then Is_Tagged_Type (Comp_Type)
1169
              and then Tagged_Type_Expansion
1170
            then
1171
               declare
1172
                  Full_Typ : constant Entity_Id := Underlying_Type (Comp_Type);
1173
 
1174
               begin
1175
                  A :=
1176
                    Make_OK_Assignment_Statement (Loc,
1177
                      Name =>
1178
                        Make_Selected_Component (Loc,
1179
                          Prefix =>  New_Copy_Tree (Indexed_Comp),
1180
                          Selector_Name =>
1181
                            New_Reference_To
1182
                              (First_Tag_Component (Full_Typ), Loc)),
1183
 
1184
                      Expression =>
1185
                        Unchecked_Convert_To (RTE (RE_Tag),
1186
                          New_Reference_To
1187
                            (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
1188
                             Loc)));
1189
 
1190
                  Append_To (L, A);
1191
               end;
1192
            end if;
1193
 
1194
            --  Adjust and attach the component to the proper final list, which
1195
            --  can be the controller of the outer record object or the final
1196
            --  list associated with the scope.
1197
 
1198
            --  If the component is itself an array of controlled types, whose
1199
            --  value is given by a sub-aggregate, then the attach calls have
1200
            --  been generated when individual subcomponent are assigned, and
1201
            --  must not be done again to prevent malformed finalization chains
1202
            --  (see comments above, concerning the creation of a block to hold
1203
            --  inner finalization actions).
1204
 
1205
            if Present (Comp_Type)
1206
              and then Needs_Finalization (Comp_Type)
1207
              and then not Is_Limited_Type (Comp_Type)
1208
              and then not
1209
                (Is_Array_Type (Comp_Type)
1210
                   and then Is_Controlled (Component_Type (Comp_Type))
1211
                   and then Nkind (Expr) = N_Aggregate)
1212
            then
1213
               Append_To (L,
1214
                 Make_Adjust_Call (
1215
                   Obj_Ref => New_Copy_Tree (Indexed_Comp),
1216
                   Typ     => Comp_Type));
1217
            end if;
1218
         end if;
1219
 
1220
         return Add_Loop_Actions (L);
1221
      end Gen_Assign;
1222
 
1223
      --------------
1224
      -- Gen_Loop --
1225
      --------------
1226
 
1227
      function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
1228
         L_J : Node_Id;
1229
 
1230
         L_L : Node_Id;
1231
         --  Index_Base'(L)
1232
 
1233
         L_H : Node_Id;
1234
         --  Index_Base'(H)
1235
 
1236
         L_Range : Node_Id;
1237
         --  Index_Base'(L) .. Index_Base'(H)
1238
 
1239
         L_Iteration_Scheme : Node_Id;
1240
         --  L_J in Index_Base'(L) .. Index_Base'(H)
1241
 
1242
         L_Body : List_Id;
1243
         --  The statements to execute in the loop
1244
 
1245
         S : constant List_Id := New_List;
1246
         --  List of statements
1247
 
1248
         Tcopy : Node_Id;
1249
         --  Copy of expression tree, used for checking purposes
1250
 
1251
      begin
1252
         --  If loop bounds define an empty range return the null statement
1253
 
1254
         if Empty_Range (L, H) then
1255
            Append_To (S, Make_Null_Statement (Loc));
1256
 
1257
            --  Ada 2005 (AI-287): Nothing else need to be done in case of
1258
            --  default initialized component.
1259
 
1260
            if No (Expr) then
1261
               null;
1262
 
1263
            else
1264
               --  The expression must be type-checked even though no component
1265
               --  of the aggregate will have this value. This is done only for
1266
               --  actual components of the array, not for subaggregates. Do
1267
               --  the check on a copy, because the expression may be shared
1268
               --  among several choices, some of which might be non-null.
1269
 
1270
               if Present (Etype (N))
1271
                 and then Is_Array_Type (Etype (N))
1272
                 and then No (Next_Index (Index))
1273
               then
1274
                  Expander_Mode_Save_And_Set (False);
1275
                  Tcopy := New_Copy_Tree (Expr);
1276
                  Set_Parent (Tcopy, N);
1277
                  Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1278
                  Expander_Mode_Restore;
1279
               end if;
1280
            end if;
1281
 
1282
            return S;
1283
 
1284
         --  If loop bounds are the same then generate an assignment
1285
 
1286
         elsif Equal (L, H) then
1287
            return Gen_Assign (New_Copy_Tree (L), Expr);
1288
 
1289
         --  If H - L <= 2 then generate a sequence of assignments when we are
1290
         --  processing the bottom most aggregate and it contains scalar
1291
         --  components.
1292
 
1293
         elsif No (Next_Index (Index))
1294
           and then Scalar_Comp
1295
           and then Local_Compile_Time_Known_Value (L)
1296
           and then Local_Compile_Time_Known_Value (H)
1297
           and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
1298
         then
1299
 
1300
            Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1301
            Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1302
 
1303
            if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1304
               Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1305
            end if;
1306
 
1307
            return S;
1308
         end if;
1309
 
1310
         --  Otherwise construct the loop, starting with the loop index L_J
1311
 
1312
         L_J := Make_Temporary (Loc, 'J', L);
1313
 
1314
         --  Construct "L .. H" in Index_Base. We use a qualified expression
1315
         --  for the bound to convert to the index base, but we don't need
1316
         --  to do that if we already have the base type at hand.
1317
 
1318
         if Etype (L) = Index_Base then
1319
            L_L := L;
1320
         else
1321
            L_L :=
1322
              Make_Qualified_Expression (Loc,
1323
                Subtype_Mark => Index_Base_Name,
1324
                Expression   => L);
1325
         end if;
1326
 
1327
         if Etype (H) = Index_Base then
1328
            L_H := H;
1329
         else
1330
            L_H :=
1331
              Make_Qualified_Expression (Loc,
1332
                Subtype_Mark => Index_Base_Name,
1333
                Expression   => H);
1334
         end if;
1335
 
1336
         L_Range :=
1337
           Make_Range (Loc,
1338
             Low_Bound => L_L,
1339
             High_Bound => L_H);
1340
 
1341
         --  Construct "for L_J in Index_Base range L .. H"
1342
 
1343
         L_Iteration_Scheme :=
1344
           Make_Iteration_Scheme
1345
             (Loc,
1346
              Loop_Parameter_Specification =>
1347
                Make_Loop_Parameter_Specification
1348
                  (Loc,
1349
                   Defining_Identifier         => L_J,
1350
                   Discrete_Subtype_Definition => L_Range));
1351
 
1352
         --  Construct the statements to execute in the loop body
1353
 
1354
         L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
1355
 
1356
         --  Construct the final loop
1357
 
1358
         Append_To (S, Make_Implicit_Loop_Statement
1359
                         (Node             => N,
1360
                          Identifier       => Empty,
1361
                          Iteration_Scheme => L_Iteration_Scheme,
1362
                          Statements       => L_Body));
1363
 
1364
         --  A small optimization: if the aggregate is initialized with a box
1365
         --  and the component type has no initialization procedure, remove the
1366
         --  useless empty loop.
1367
 
1368
         if Nkind (First (S)) = N_Loop_Statement
1369
           and then Is_Empty_List (Statements (First (S)))
1370
         then
1371
            return New_List (Make_Null_Statement (Loc));
1372
         else
1373
            return S;
1374
         end if;
1375
      end Gen_Loop;
1376
 
1377
      ---------------
1378
      -- Gen_While --
1379
      ---------------
1380
 
1381
      --  The code built is
1382
 
1383
      --     W_J : Index_Base := L;
1384
      --     while W_J < H loop
1385
      --        W_J := Index_Base'Succ (W);
1386
      --        L_Body;
1387
      --     end loop;
1388
 
1389
      function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
1390
         W_J : Node_Id;
1391
 
1392
         W_Decl : Node_Id;
1393
         --  W_J : Base_Type := L;
1394
 
1395
         W_Iteration_Scheme : Node_Id;
1396
         --  while W_J < H
1397
 
1398
         W_Index_Succ : Node_Id;
1399
         --  Index_Base'Succ (J)
1400
 
1401
         W_Increment : Node_Id;
1402
         --  W_J := Index_Base'Succ (W)
1403
 
1404
         W_Body : constant List_Id := New_List;
1405
         --  The statements to execute in the loop
1406
 
1407
         S : constant List_Id := New_List;
1408
         --  list of statement
1409
 
1410
      begin
1411
         --  If loop bounds define an empty range or are equal return null
1412
 
1413
         if Empty_Range (L, H) or else Equal (L, H) then
1414
            Append_To (S, Make_Null_Statement (Loc));
1415
            return S;
1416
         end if;
1417
 
1418
         --  Build the decl of W_J
1419
 
1420
         W_J    := Make_Temporary (Loc, 'J', L);
1421
         W_Decl :=
1422
           Make_Object_Declaration
1423
             (Loc,
1424
              Defining_Identifier => W_J,
1425
              Object_Definition   => Index_Base_Name,
1426
              Expression          => L);
1427
 
1428
         --  Theoretically we should do a New_Copy_Tree (L) here, but we know
1429
         --  that in this particular case L is a fresh Expr generated by
1430
         --  Add which we are the only ones to use.
1431
 
1432
         Append_To (S, W_Decl);
1433
 
1434
         --  Construct " while W_J < H"
1435
 
1436
         W_Iteration_Scheme :=
1437
           Make_Iteration_Scheme
1438
             (Loc,
1439
              Condition => Make_Op_Lt
1440
                             (Loc,
1441
                              Left_Opnd  => New_Reference_To (W_J, Loc),
1442
                              Right_Opnd => New_Copy_Tree (H)));
1443
 
1444
         --  Construct the statements to execute in the loop body
1445
 
1446
         W_Index_Succ :=
1447
           Make_Attribute_Reference
1448
             (Loc,
1449
              Prefix         => Index_Base_Name,
1450
              Attribute_Name => Name_Succ,
1451
              Expressions    => New_List (New_Reference_To (W_J, Loc)));
1452
 
1453
         W_Increment  :=
1454
           Make_OK_Assignment_Statement
1455
             (Loc,
1456
              Name       => New_Reference_To (W_J, Loc),
1457
              Expression => W_Index_Succ);
1458
 
1459
         Append_To (W_Body, W_Increment);
1460
         Append_List_To (W_Body,
1461
           Gen_Assign (New_Reference_To (W_J, Loc), Expr));
1462
 
1463
         --  Construct the final loop
1464
 
1465
         Append_To (S, Make_Implicit_Loop_Statement
1466
                         (Node             => N,
1467
                          Identifier       => Empty,
1468
                          Iteration_Scheme => W_Iteration_Scheme,
1469
                          Statements       => W_Body));
1470
 
1471
         return S;
1472
      end Gen_While;
1473
 
1474
      ---------------------
1475
      -- Index_Base_Name --
1476
      ---------------------
1477
 
1478
      function Index_Base_Name return Node_Id is
1479
      begin
1480
         return New_Reference_To (Index_Base, Sloc (N));
1481
      end Index_Base_Name;
1482
 
1483
      ------------------------------------
1484
      -- Local_Compile_Time_Known_Value --
1485
      ------------------------------------
1486
 
1487
      function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1488
      begin
1489
         return Compile_Time_Known_Value (E)
1490
           or else
1491
             (Nkind (E) = N_Attribute_Reference
1492
               and then Attribute_Name (E) = Name_Val
1493
               and then Compile_Time_Known_Value (First (Expressions (E))));
1494
      end Local_Compile_Time_Known_Value;
1495
 
1496
      ----------------------
1497
      -- Local_Expr_Value --
1498
      ----------------------
1499
 
1500
      function Local_Expr_Value (E : Node_Id) return Uint is
1501
      begin
1502
         if Compile_Time_Known_Value (E) then
1503
            return Expr_Value (E);
1504
         else
1505
            return Expr_Value (First (Expressions (E)));
1506
         end if;
1507
      end Local_Expr_Value;
1508
 
1509
      --  Build_Array_Aggr_Code Variables
1510
 
1511
      Assoc  : Node_Id;
1512
      Choice : Node_Id;
1513
      Expr   : Node_Id;
1514
      Typ    : Entity_Id;
1515
 
1516
      Others_Expr        : Node_Id := Empty;
1517
      Others_Box_Present : Boolean := False;
1518
 
1519
      Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1520
      Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1521
      --  The aggregate bounds of this specific sub-aggregate. Note that if
1522
      --  the code generated by Build_Array_Aggr_Code is executed then these
1523
      --  bounds are OK. Otherwise a Constraint_Error would have been raised.
1524
 
1525
      Aggr_Low  : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1526
      Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
1527
      --  After Duplicate_Subexpr these are side-effect free
1528
 
1529
      Low        : Node_Id;
1530
      High       : Node_Id;
1531
 
1532
      Nb_Choices : Nat := 0;
1533
      Table      : Case_Table_Type (1 .. Number_Of_Choices (N));
1534
      --  Used to sort all the different choice values
1535
 
1536
      Nb_Elements : Int;
1537
      --  Number of elements in the positional aggregate
1538
 
1539
      New_Code : constant List_Id := New_List;
1540
 
1541
   --  Start of processing for Build_Array_Aggr_Code
1542
 
1543
   begin
1544
      --  First before we start, a special case. if we have a bit packed
1545
      --  array represented as a modular type, then clear the value to
1546
      --  zero first, to ensure that unused bits are properly cleared.
1547
 
1548
      Typ := Etype (N);
1549
 
1550
      if Present (Typ)
1551
        and then Is_Bit_Packed_Array (Typ)
1552
        and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
1553
      then
1554
         Append_To (New_Code,
1555
           Make_Assignment_Statement (Loc,
1556
             Name => New_Copy_Tree (Into),
1557
             Expression =>
1558
               Unchecked_Convert_To (Typ,
1559
                 Make_Integer_Literal (Loc, Uint_0))));
1560
      end if;
1561
 
1562
      --  If the component type contains tasks, we need to build a Master
1563
      --  entity in the current scope, because it will be needed if build-
1564
      --  in-place functions are called in the expanded code.
1565
 
1566
      if Nkind (Parent (N)) = N_Object_Declaration
1567
        and then Has_Task (Typ)
1568
      then
1569
         Build_Master_Entity (Defining_Identifier (Parent (N)));
1570
      end if;
1571
 
1572
      --  STEP 1: Process component associations
1573
 
1574
      --  For those associations that may generate a loop, initialize
1575
      --  Loop_Actions to collect inserted actions that may be crated.
1576
 
1577
      --  Skip this if no component associations
1578
 
1579
      if No (Expressions (N)) then
1580
 
1581
         --  STEP 1 (a): Sort the discrete choices
1582
 
1583
         Assoc := First (Component_Associations (N));
1584
         while Present (Assoc) loop
1585
            Choice := First (Choices (Assoc));
1586
            while Present (Choice) loop
1587
               if Nkind (Choice) = N_Others_Choice then
1588
                  Set_Loop_Actions (Assoc, New_List);
1589
 
1590
                  if Box_Present (Assoc) then
1591
                     Others_Box_Present := True;
1592
                  else
1593
                     Others_Expr := Expression (Assoc);
1594
                  end if;
1595
                  exit;
1596
               end if;
1597
 
1598
               Get_Index_Bounds (Choice, Low, High);
1599
 
1600
               if Low /= High then
1601
                  Set_Loop_Actions (Assoc, New_List);
1602
               end if;
1603
 
1604
               Nb_Choices := Nb_Choices + 1;
1605
               if Box_Present (Assoc) then
1606
                  Table (Nb_Choices) := (Choice_Lo   => Low,
1607
                                         Choice_Hi   => High,
1608
                                         Choice_Node => Empty);
1609
               else
1610
                  Table (Nb_Choices) := (Choice_Lo   => Low,
1611
                                         Choice_Hi   => High,
1612
                                         Choice_Node => Expression (Assoc));
1613
               end if;
1614
               Next (Choice);
1615
            end loop;
1616
 
1617
            Next (Assoc);
1618
         end loop;
1619
 
1620
         --  If there is more than one set of choices these must be static
1621
         --  and we can therefore sort them. Remember that Nb_Choices does not
1622
         --  account for an others choice.
1623
 
1624
         if Nb_Choices > 1 then
1625
            Sort_Case_Table (Table);
1626
         end if;
1627
 
1628
         --  STEP 1 (b):  take care of the whole set of discrete choices
1629
 
1630
         for J in 1 .. Nb_Choices loop
1631
            Low  := Table (J).Choice_Lo;
1632
            High := Table (J).Choice_Hi;
1633
            Expr := Table (J).Choice_Node;
1634
            Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1635
         end loop;
1636
 
1637
         --  STEP 1 (c): generate the remaining loops to cover others choice
1638
         --  We don't need to generate loops over empty gaps, but if there is
1639
         --  a single empty range we must analyze the expression for semantics
1640
 
1641
         if Present (Others_Expr) or else Others_Box_Present then
1642
            declare
1643
               First : Boolean := True;
1644
 
1645
            begin
1646
               for J in 0 .. Nb_Choices loop
1647
                  if J = 0 then
1648
                     Low := Aggr_Low;
1649
                  else
1650
                     Low := Add (1, To => Table (J).Choice_Hi);
1651
                  end if;
1652
 
1653
                  if J = Nb_Choices then
1654
                     High := Aggr_High;
1655
                  else
1656
                     High := Add (-1, To => Table (J + 1).Choice_Lo);
1657
                  end if;
1658
 
1659
                  --  If this is an expansion within an init proc, make
1660
                  --  sure that discriminant references are replaced by
1661
                  --  the corresponding discriminal.
1662
 
1663
                  if Inside_Init_Proc then
1664
                     if Is_Entity_Name (Low)
1665
                       and then Ekind (Entity (Low)) = E_Discriminant
1666
                     then
1667
                        Set_Entity (Low, Discriminal (Entity (Low)));
1668
                     end if;
1669
 
1670
                     if Is_Entity_Name (High)
1671
                       and then Ekind (Entity (High)) = E_Discriminant
1672
                     then
1673
                        Set_Entity (High, Discriminal (Entity (High)));
1674
                     end if;
1675
                  end if;
1676
 
1677
                  if First
1678
                    or else not Empty_Range (Low, High)
1679
                  then
1680
                     First := False;
1681
                     Append_List
1682
                       (Gen_Loop (Low, High, Others_Expr), To => New_Code);
1683
                  end if;
1684
               end loop;
1685
            end;
1686
         end if;
1687
 
1688
      --  STEP 2: Process positional components
1689
 
1690
      else
1691
         --  STEP 2 (a): Generate the assignments for each positional element
1692
         --  Note that here we have to use Aggr_L rather than Aggr_Low because
1693
         --  Aggr_L is analyzed and Add wants an analyzed expression.
1694
 
1695
         Expr        := First (Expressions (N));
1696
         Nb_Elements := -1;
1697
         while Present (Expr) loop
1698
            Nb_Elements := Nb_Elements + 1;
1699
            Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1700
                         To => New_Code);
1701
            Next (Expr);
1702
         end loop;
1703
 
1704
         --  STEP 2 (b): Generate final loop if an others choice is present
1705
         --  Here Nb_Elements gives the offset of the last positional element.
1706
 
1707
         if Present (Component_Associations (N)) then
1708
            Assoc := Last (Component_Associations (N));
1709
 
1710
            --  Ada 2005 (AI-287)
1711
 
1712
            if Box_Present (Assoc) then
1713
               Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1714
                                       Aggr_High,
1715
                                       Empty),
1716
                            To => New_Code);
1717
            else
1718
               Expr  := Expression (Assoc);
1719
 
1720
               Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1721
                                       Aggr_High,
1722
                                       Expr), --  AI-287
1723
                            To => New_Code);
1724
            end if;
1725
         end if;
1726
      end if;
1727
 
1728
      return New_Code;
1729
   end Build_Array_Aggr_Code;
1730
 
1731
   ----------------------------
1732
   -- Build_Record_Aggr_Code --
1733
   ----------------------------
1734
 
1735
   function Build_Record_Aggr_Code
1736
     (N   : Node_Id;
1737
      Typ : Entity_Id;
1738
      Lhs : Node_Id) return List_Id
1739
   is
1740
      Loc     : constant Source_Ptr := Sloc (N);
1741
      L       : constant List_Id    := New_List;
1742
      N_Typ   : constant Entity_Id  := Etype (N);
1743
 
1744
      Comp      : Node_Id;
1745
      Instr     : Node_Id;
1746
      Ref       : Node_Id;
1747
      Target    : Entity_Id;
1748
      Comp_Type : Entity_Id;
1749
      Selector  : Entity_Id;
1750
      Comp_Expr : Node_Id;
1751
      Expr_Q    : Node_Id;
1752
 
1753
      --  If this is an internal aggregate, the External_Final_List is an
1754
      --  expression for the controller record of the enclosing type.
1755
 
1756
      --  If the current aggregate has several controlled components, this
1757
      --  expression will appear in several calls to attach to the finali-
1758
      --  zation list, and it must not be shared.
1759
 
1760
      Ancestor_Is_Expression   : Boolean := False;
1761
      Ancestor_Is_Subtype_Mark : Boolean := False;
1762
 
1763
      Init_Typ : Entity_Id := Empty;
1764
 
1765
      Finalization_Done : Boolean := False;
1766
      --  True if Generate_Finalization_Actions has already been called; calls
1767
      --  after the first do nothing.
1768
 
1769
      function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
1770
      --  Returns the value that the given discriminant of an ancestor type
1771
      --  should receive (in the absence of a conflict with the value provided
1772
      --  by an ancestor part of an extension aggregate).
1773
 
1774
      procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
1775
      --  Check that each of the discriminant values defined by the ancestor
1776
      --  part of an extension aggregate match the corresponding values
1777
      --  provided by either an association of the aggregate or by the
1778
      --  constraint imposed by a parent type (RM95-4.3.2(8)).
1779
 
1780
      function Compatible_Int_Bounds
1781
        (Agg_Bounds : Node_Id;
1782
         Typ_Bounds : Node_Id) return Boolean;
1783
      --  Return true if Agg_Bounds are equal or within Typ_Bounds. It is
1784
      --  assumed that both bounds are integer ranges.
1785
 
1786
      procedure Generate_Finalization_Actions;
1787
      --  Deal with the various controlled type data structure initializations
1788
      --  (but only if it hasn't been done already).
1789
 
1790
      function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1791
      --  Returns the first discriminant association in the constraint
1792
      --  associated with T, if any, otherwise returns Empty.
1793
 
1794
      procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
1795
      --  If Typ is derived, and constrains discriminants of the parent type,
1796
      --  these discriminants are not components of the aggregate, and must be
1797
      --  initialized. The assignments are appended to List.
1798
 
1799
      function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
1800
      --  Check whether Bounds is a range node and its lower and higher bounds
1801
      --  are integers literals.
1802
 
1803
      ---------------------------------
1804
      -- Ancestor_Discriminant_Value --
1805
      ---------------------------------
1806
 
1807
      function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1808
         Assoc        : Node_Id;
1809
         Assoc_Elmt   : Elmt_Id;
1810
         Aggr_Comp    : Entity_Id;
1811
         Corresp_Disc : Entity_Id;
1812
         Current_Typ  : Entity_Id := Base_Type (Typ);
1813
         Parent_Typ   : Entity_Id;
1814
         Parent_Disc  : Entity_Id;
1815
         Save_Assoc   : Node_Id := Empty;
1816
 
1817
      begin
1818
         --  First check any discriminant associations to see if any of them
1819
         --  provide a value for the discriminant.
1820
 
1821
         if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1822
            Assoc := First (Component_Associations (N));
1823
            while Present (Assoc) loop
1824
               Aggr_Comp := Entity (First (Choices (Assoc)));
1825
 
1826
               if Ekind (Aggr_Comp) = E_Discriminant then
1827
                  Save_Assoc := Expression (Assoc);
1828
 
1829
                  Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1830
                  while Present (Corresp_Disc) loop
1831
 
1832
                     --  If found a corresponding discriminant then return the
1833
                     --  value given in the aggregate. (Note: this is not
1834
                     --  correct in the presence of side effects. ???)
1835
 
1836
                     if Disc = Corresp_Disc then
1837
                        return Duplicate_Subexpr (Expression (Assoc));
1838
                     end if;
1839
 
1840
                     Corresp_Disc :=
1841
                       Corresponding_Discriminant (Corresp_Disc);
1842
                  end loop;
1843
               end if;
1844
 
1845
               Next (Assoc);
1846
            end loop;
1847
         end if;
1848
 
1849
         --  No match found in aggregate, so chain up parent types to find
1850
         --  a constraint that defines the value of the discriminant.
1851
 
1852
         Parent_Typ := Etype (Current_Typ);
1853
         while Current_Typ /= Parent_Typ loop
1854
            if Has_Discriminants (Parent_Typ)
1855
              and then not Has_Unknown_Discriminants (Parent_Typ)
1856
            then
1857
               Parent_Disc := First_Discriminant (Parent_Typ);
1858
 
1859
               --  We either get the association from the subtype indication
1860
               --  of the type definition itself, or from the discriminant
1861
               --  constraint associated with the type entity (which is
1862
               --  preferable, but it's not always present ???)
1863
 
1864
               if Is_Empty_Elmt_List (
1865
                 Discriminant_Constraint (Current_Typ))
1866
               then
1867
                  Assoc := Get_Constraint_Association (Current_Typ);
1868
                  Assoc_Elmt := No_Elmt;
1869
               else
1870
                  Assoc_Elmt :=
1871
                    First_Elmt (Discriminant_Constraint (Current_Typ));
1872
                  Assoc := Node (Assoc_Elmt);
1873
               end if;
1874
 
1875
               --  Traverse the discriminants of the parent type looking
1876
               --  for one that corresponds.
1877
 
1878
               while Present (Parent_Disc) and then Present (Assoc) loop
1879
                  Corresp_Disc := Parent_Disc;
1880
                  while Present (Corresp_Disc)
1881
                    and then Disc /= Corresp_Disc
1882
                  loop
1883
                     Corresp_Disc :=
1884
                       Corresponding_Discriminant (Corresp_Disc);
1885
                  end loop;
1886
 
1887
                  if Disc = Corresp_Disc then
1888
                     if Nkind (Assoc) = N_Discriminant_Association then
1889
                        Assoc := Expression (Assoc);
1890
                     end if;
1891
 
1892
                     --  If the located association directly denotes a
1893
                     --  discriminant, then use the value of a saved
1894
                     --  association of the aggregate. This is a kludge to
1895
                     --  handle certain cases involving multiple discriminants
1896
                     --  mapped to a single discriminant of a descendant. It's
1897
                     --  not clear how to locate the appropriate discriminant
1898
                     --  value for such cases. ???
1899
 
1900
                     if Is_Entity_Name (Assoc)
1901
                       and then Ekind (Entity (Assoc)) = E_Discriminant
1902
                     then
1903
                        Assoc := Save_Assoc;
1904
                     end if;
1905
 
1906
                     return Duplicate_Subexpr (Assoc);
1907
                  end if;
1908
 
1909
                  Next_Discriminant (Parent_Disc);
1910
 
1911
                  if No (Assoc_Elmt) then
1912
                     Next (Assoc);
1913
                  else
1914
                     Next_Elmt (Assoc_Elmt);
1915
                     if Present (Assoc_Elmt) then
1916
                        Assoc := Node (Assoc_Elmt);
1917
                     else
1918
                        Assoc := Empty;
1919
                     end if;
1920
                  end if;
1921
               end loop;
1922
            end if;
1923
 
1924
            Current_Typ := Parent_Typ;
1925
            Parent_Typ := Etype (Current_Typ);
1926
         end loop;
1927
 
1928
         --  In some cases there's no ancestor value to locate (such as
1929
         --  when an ancestor part given by an expression defines the
1930
         --  discriminant value).
1931
 
1932
         return Empty;
1933
      end Ancestor_Discriminant_Value;
1934
 
1935
      ----------------------------------
1936
      -- Check_Ancestor_Discriminants --
1937
      ----------------------------------
1938
 
1939
      procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
1940
         Discr      : Entity_Id;
1941
         Disc_Value : Node_Id;
1942
         Cond       : Node_Id;
1943
 
1944
      begin
1945
         Discr := First_Discriminant (Base_Type (Anc_Typ));
1946
         while Present (Discr) loop
1947
            Disc_Value := Ancestor_Discriminant_Value (Discr);
1948
 
1949
            if Present (Disc_Value) then
1950
               Cond := Make_Op_Ne (Loc,
1951
                 Left_Opnd =>
1952
                   Make_Selected_Component (Loc,
1953
                     Prefix        => New_Copy_Tree (Target),
1954
                     Selector_Name => New_Occurrence_Of (Discr, Loc)),
1955
                 Right_Opnd => Disc_Value);
1956
 
1957
               Append_To (L,
1958
                 Make_Raise_Constraint_Error (Loc,
1959
                   Condition => Cond,
1960
                   Reason    => CE_Discriminant_Check_Failed));
1961
            end if;
1962
 
1963
            Next_Discriminant (Discr);
1964
         end loop;
1965
      end Check_Ancestor_Discriminants;
1966
 
1967
      ---------------------------
1968
      -- Compatible_Int_Bounds --
1969
      ---------------------------
1970
 
1971
      function Compatible_Int_Bounds
1972
        (Agg_Bounds : Node_Id;
1973
         Typ_Bounds : Node_Id) return Boolean
1974
      is
1975
         Agg_Lo : constant Uint := Intval (Low_Bound  (Agg_Bounds));
1976
         Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
1977
         Typ_Lo : constant Uint := Intval (Low_Bound  (Typ_Bounds));
1978
         Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
1979
      begin
1980
         return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
1981
      end Compatible_Int_Bounds;
1982
 
1983
      --------------------------------
1984
      -- Get_Constraint_Association --
1985
      --------------------------------
1986
 
1987
      function Get_Constraint_Association (T : Entity_Id) return Node_Id is
1988
         Indic : Node_Id;
1989
         Typ   : Entity_Id;
1990
 
1991
      begin
1992
         Typ := T;
1993
 
1994
         --  Handle private types in instances
1995
 
1996
         if In_Instance
1997
           and then Is_Private_Type (Typ)
1998
           and then Present (Full_View (Typ))
1999
         then
2000
            Typ := Full_View (Typ);
2001
         end if;
2002
 
2003
         Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
2004
 
2005
         --  ??? Also need to cover case of a type mark denoting a subtype
2006
         --  with constraint.
2007
 
2008
         if Nkind (Indic) = N_Subtype_Indication
2009
           and then Present (Constraint (Indic))
2010
         then
2011
            return First (Constraints (Constraint (Indic)));
2012
         end if;
2013
 
2014
         return Empty;
2015
      end Get_Constraint_Association;
2016
 
2017
      -------------------------------
2018
      -- Init_Hidden_Discriminants --
2019
      -------------------------------
2020
 
2021
      procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
2022
         Btype       : Entity_Id;
2023
         Parent_Type : Entity_Id;
2024
         Disc        : Entity_Id;
2025
         Discr_Val   : Elmt_Id;
2026
 
2027
      begin
2028
         Btype := Base_Type (Typ);
2029
         while Is_Derived_Type (Btype)
2030
           and then Present (Stored_Constraint (Btype))
2031
         loop
2032
            Parent_Type := Etype (Btype);
2033
 
2034
            Disc := First_Discriminant (Parent_Type);
2035
            Discr_Val := First_Elmt (Stored_Constraint (Base_Type (Typ)));
2036
            while Present (Discr_Val) loop
2037
 
2038
               --  Only those discriminants of the parent that are not
2039
               --  renamed by discriminants of the derived type need to
2040
               --  be added explicitly.
2041
 
2042
               if not Is_Entity_Name (Node (Discr_Val))
2043
                 or else Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
2044
               then
2045
                  Comp_Expr :=
2046
                    Make_Selected_Component (Loc,
2047
                      Prefix        => New_Copy_Tree (Target),
2048
                      Selector_Name => New_Occurrence_Of (Disc, Loc));
2049
 
2050
                  Instr :=
2051
                    Make_OK_Assignment_Statement (Loc,
2052
                      Name       => Comp_Expr,
2053
                      Expression => New_Copy_Tree (Node (Discr_Val)));
2054
 
2055
                  Set_No_Ctrl_Actions (Instr);
2056
                  Append_To (List, Instr);
2057
               end if;
2058
 
2059
               Next_Discriminant (Disc);
2060
               Next_Elmt (Discr_Val);
2061
            end loop;
2062
 
2063
            Btype := Base_Type (Parent_Type);
2064
         end loop;
2065
      end Init_Hidden_Discriminants;
2066
 
2067
      -------------------------
2068
      -- Is_Int_Range_Bounds --
2069
      -------------------------
2070
 
2071
      function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2072
      begin
2073
         return Nkind (Bounds) = N_Range
2074
           and then Nkind (Low_Bound  (Bounds)) = N_Integer_Literal
2075
           and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2076
      end Is_Int_Range_Bounds;
2077
 
2078
      -----------------------------------
2079
      -- Generate_Finalization_Actions --
2080
      -----------------------------------
2081
 
2082
      procedure Generate_Finalization_Actions is
2083
      begin
2084
         --  Do the work only the first time this is called
2085
 
2086
         if Finalization_Done then
2087
            return;
2088
         end if;
2089
 
2090
         Finalization_Done := True;
2091
 
2092
         --  Determine the external finalization list. It is either the
2093
         --  finalization list of the outer-scope or the one coming from
2094
         --  an outer aggregate. When the target is not a temporary, the
2095
         --  proper scope is the scope of the target rather than the
2096
         --  potentially transient current scope.
2097
 
2098
         if Is_Controlled (Typ)
2099
           and then Ancestor_Is_Subtype_Mark
2100
         then
2101
            Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2102
            Set_Assignment_OK (Ref);
2103
 
2104
            Append_To (L,
2105
              Make_Procedure_Call_Statement (Loc,
2106
                Name =>
2107
                  New_Reference_To
2108
                    (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2109
                Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2110
         end if;
2111
      end Generate_Finalization_Actions;
2112
 
2113
      function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2114
      --  If default expression of a component mentions a discriminant of the
2115
      --  type, it must be rewritten as the discriminant of the target object.
2116
 
2117
      function Replace_Type (Expr : Node_Id) return Traverse_Result;
2118
      --  If the aggregate contains a self-reference, traverse each expression
2119
      --  to replace a possible self-reference with a reference to the proper
2120
      --  component of the target of the assignment.
2121
 
2122
      --------------------------
2123
      -- Rewrite_Discriminant --
2124
      --------------------------
2125
 
2126
      function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2127
      begin
2128
         if Is_Entity_Name (Expr)
2129
           and then Present (Entity (Expr))
2130
           and then Ekind (Entity (Expr)) = E_In_Parameter
2131
           and then Present (Discriminal_Link (Entity (Expr)))
2132
           and then Scope (Discriminal_Link (Entity (Expr)))
2133
                      = Base_Type (Etype (N))
2134
         then
2135
            Rewrite (Expr,
2136
              Make_Selected_Component (Loc,
2137
                Prefix        => New_Copy_Tree (Lhs),
2138
                Selector_Name => Make_Identifier (Loc, Chars (Expr))));
2139
         end if;
2140
         return OK;
2141
      end Rewrite_Discriminant;
2142
 
2143
      ------------------
2144
      -- Replace_Type --
2145
      ------------------
2146
 
2147
      function Replace_Type (Expr : Node_Id) return Traverse_Result is
2148
      begin
2149
         --  Note regarding the Root_Type test below: Aggregate components for
2150
         --  self-referential types include attribute references to the current
2151
         --  instance, of the form: Typ'access, etc.. These references are
2152
         --  rewritten as references to the target of the aggregate: the
2153
         --  left-hand side of an assignment, the entity in a declaration,
2154
         --  or a temporary. Without this test, we would improperly extended
2155
         --  this rewriting to attribute references whose prefix was not the
2156
         --  type of the aggregate.
2157
 
2158
         if Nkind (Expr) = N_Attribute_Reference
2159
           and then Is_Entity_Name (Prefix (Expr))
2160
           and then Is_Type (Entity (Prefix (Expr)))
2161
           and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
2162
         then
2163
            if Is_Entity_Name (Lhs) then
2164
               Rewrite (Prefix (Expr),
2165
                 New_Occurrence_Of (Entity (Lhs), Loc));
2166
 
2167
            elsif Nkind (Lhs) = N_Selected_Component then
2168
               Rewrite (Expr,
2169
                 Make_Attribute_Reference (Loc,
2170
                   Attribute_Name => Name_Unrestricted_Access,
2171
                   Prefix         => New_Copy_Tree (Lhs)));
2172
               Set_Analyzed (Parent (Expr), False);
2173
 
2174
            else
2175
               Rewrite (Expr,
2176
                 Make_Attribute_Reference (Loc,
2177
                   Attribute_Name => Name_Unrestricted_Access,
2178
                   Prefix         => New_Copy_Tree (Lhs)));
2179
               Set_Analyzed (Parent (Expr), False);
2180
            end if;
2181
         end if;
2182
 
2183
         return OK;
2184
      end Replace_Type;
2185
 
2186
      procedure Replace_Self_Reference is
2187
        new Traverse_Proc (Replace_Type);
2188
 
2189
      procedure Replace_Discriminants is
2190
        new Traverse_Proc (Rewrite_Discriminant);
2191
 
2192
   --  Start of processing for Build_Record_Aggr_Code
2193
 
2194
   begin
2195
      if Has_Self_Reference (N) then
2196
         Replace_Self_Reference (N);
2197
      end if;
2198
 
2199
      --  If the target of the aggregate is class-wide, we must convert it
2200
      --  to the actual type of the aggregate, so that the proper components
2201
      --  are visible. We know already that the types are compatible.
2202
 
2203
      if Present (Etype (Lhs))
2204
        and then Is_Class_Wide_Type (Etype (Lhs))
2205
      then
2206
         Target := Unchecked_Convert_To (Typ, Lhs);
2207
      else
2208
         Target := Lhs;
2209
      end if;
2210
 
2211
      --  Deal with the ancestor part of extension aggregates or with the
2212
      --  discriminants of the root type.
2213
 
2214
      if Nkind (N) = N_Extension_Aggregate then
2215
         declare
2216
            Ancestor : constant Node_Id := Ancestor_Part (N);
2217
            Assign   : List_Id;
2218
 
2219
         begin
2220
            --  If the ancestor part is a subtype mark "T", we generate
2221
 
2222
            --     init-proc (T (tmp));  if T is constrained and
2223
            --     init-proc (S (tmp));  where S applies an appropriate
2224
            --                           constraint if T is unconstrained
2225
 
2226
            if Is_Entity_Name (Ancestor)
2227
              and then Is_Type (Entity (Ancestor))
2228
            then
2229
               Ancestor_Is_Subtype_Mark := True;
2230
 
2231
               if Is_Constrained (Entity (Ancestor)) then
2232
                  Init_Typ := Entity (Ancestor);
2233
 
2234
               --  For an ancestor part given by an unconstrained type mark,
2235
               --  create a subtype constrained by appropriate corresponding
2236
               --  discriminant values coming from either associations of the
2237
               --  aggregate or a constraint on a parent type. The subtype will
2238
               --  be used to generate the correct default value for the
2239
               --  ancestor part.
2240
 
2241
               elsif Has_Discriminants (Entity (Ancestor)) then
2242
                  declare
2243
                     Anc_Typ    : constant Entity_Id := Entity (Ancestor);
2244
                     Anc_Constr : constant List_Id   := New_List;
2245
                     Discrim    : Entity_Id;
2246
                     Disc_Value : Node_Id;
2247
                     New_Indic  : Node_Id;
2248
                     Subt_Decl  : Node_Id;
2249
 
2250
                  begin
2251
                     Discrim := First_Discriminant (Anc_Typ);
2252
                     while Present (Discrim) loop
2253
                        Disc_Value := Ancestor_Discriminant_Value (Discrim);
2254
                        Append_To (Anc_Constr, Disc_Value);
2255
                        Next_Discriminant (Discrim);
2256
                     end loop;
2257
 
2258
                     New_Indic :=
2259
                       Make_Subtype_Indication (Loc,
2260
                         Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2261
                         Constraint   =>
2262
                           Make_Index_Or_Discriminant_Constraint (Loc,
2263
                             Constraints => Anc_Constr));
2264
 
2265
                     Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2266
 
2267
                     Subt_Decl :=
2268
                       Make_Subtype_Declaration (Loc,
2269
                         Defining_Identifier => Init_Typ,
2270
                         Subtype_Indication  => New_Indic);
2271
 
2272
                     --  Itypes must be analyzed with checks off Declaration
2273
                     --  must have a parent for proper handling of subsidiary
2274
                     --  actions.
2275
 
2276
                     Set_Parent (Subt_Decl, N);
2277
                     Analyze (Subt_Decl, Suppress => All_Checks);
2278
                  end;
2279
               end if;
2280
 
2281
               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2282
               Set_Assignment_OK (Ref);
2283
 
2284
               if not Is_Interface (Init_Typ) then
2285
                  Append_List_To (L,
2286
                    Build_Initialization_Call (Loc,
2287
                      Id_Ref            => Ref,
2288
                      Typ               => Init_Typ,
2289
                      In_Init_Proc      => Within_Init_Proc,
2290
                      With_Default_Init => Has_Default_Init_Comps (N)
2291
                                             or else
2292
                                           Has_Task (Base_Type (Init_Typ))));
2293
 
2294
                  if Is_Constrained (Entity (Ancestor))
2295
                    and then Has_Discriminants (Entity (Ancestor))
2296
                  then
2297
                     Check_Ancestor_Discriminants (Entity (Ancestor));
2298
                  end if;
2299
               end if;
2300
 
2301
            --  Handle calls to C++ constructors
2302
 
2303
            elsif Is_CPP_Constructor_Call (Ancestor) then
2304
               Init_Typ := Etype (Ancestor);
2305
               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2306
               Set_Assignment_OK (Ref);
2307
 
2308
               Append_List_To (L,
2309
                 Build_Initialization_Call (Loc,
2310
                   Id_Ref            => Ref,
2311
                   Typ               => Init_Typ,
2312
                   In_Init_Proc      => Within_Init_Proc,
2313
                   With_Default_Init => Has_Default_Init_Comps (N),
2314
                   Constructor_Ref   => Ancestor));
2315
 
2316
            --  Ada 2005 (AI-287): If the ancestor part is an aggregate of
2317
            --  limited type, a recursive call expands the ancestor. Note that
2318
            --  in the limited case, the ancestor part must be either a
2319
            --  function call (possibly qualified, or wrapped in an unchecked
2320
            --  conversion) or aggregate (definitely qualified).
2321
            --  The ancestor part can also be a function call (that may be
2322
            --  transformed into an explicit dereference) or a qualification
2323
            --  of one such.
2324
 
2325
            elsif Is_Limited_Type (Etype (Ancestor))
2326
              and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
2327
                                                    N_Extension_Aggregate)
2328
            then
2329
               Ancestor_Is_Expression := True;
2330
 
2331
               --  Set up  finalization data for enclosing record, because
2332
               --  controlled subcomponents of the ancestor part will be
2333
               --  attached to it.
2334
 
2335
               Generate_Finalization_Actions;
2336
 
2337
               Append_List_To (L,
2338
                  Build_Record_Aggr_Code
2339
                    (N   => Unqualify (Ancestor),
2340
                     Typ => Etype (Unqualify (Ancestor)),
2341
                     Lhs => Target));
2342
 
2343
            --  If the ancestor part is an expression "E", we generate
2344
 
2345
            --     T (tmp) := E;
2346
 
2347
            --  In Ada 2005, this includes the case of a (possibly qualified)
2348
            --  limited function call. The assignment will turn into a
2349
            --  build-in-place function call (for further details, see
2350
            --  Make_Build_In_Place_Call_In_Assignment).
2351
 
2352
            else
2353
               Ancestor_Is_Expression := True;
2354
               Init_Typ := Etype (Ancestor);
2355
 
2356
               --  If the ancestor part is an aggregate, force its full
2357
               --  expansion, which was delayed.
2358
 
2359
               if Nkind_In (Unqualify (Ancestor), N_Aggregate,
2360
                                               N_Extension_Aggregate)
2361
               then
2362
                  Set_Analyzed (Ancestor, False);
2363
                  Set_Analyzed (Expression (Ancestor), False);
2364
               end if;
2365
 
2366
               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2367
               Set_Assignment_OK (Ref);
2368
 
2369
               --  Make the assignment without usual controlled actions since
2370
               --  we only want the post adjust but not the pre finalize here
2371
               --  Add manual adjust when necessary.
2372
 
2373
               Assign := New_List (
2374
                 Make_OK_Assignment_Statement (Loc,
2375
                   Name       => Ref,
2376
                   Expression => Ancestor));
2377
               Set_No_Ctrl_Actions (First (Assign));
2378
 
2379
               --  Assign the tag now to make sure that the dispatching call in
2380
               --  the subsequent deep_adjust works properly (unless VM_Target,
2381
               --  where tags are implicit).
2382
 
2383
               if Tagged_Type_Expansion then
2384
                  Instr :=
2385
                    Make_OK_Assignment_Statement (Loc,
2386
                      Name =>
2387
                        Make_Selected_Component (Loc,
2388
                          Prefix => New_Copy_Tree (Target),
2389
                          Selector_Name =>
2390
                            New_Reference_To
2391
                              (First_Tag_Component (Base_Type (Typ)), Loc)),
2392
 
2393
                      Expression =>
2394
                        Unchecked_Convert_To (RTE (RE_Tag),
2395
                          New_Reference_To
2396
                            (Node (First_Elmt
2397
                               (Access_Disp_Table (Base_Type (Typ)))),
2398
                             Loc)));
2399
 
2400
                  Set_Assignment_OK (Name (Instr));
2401
                  Append_To (Assign, Instr);
2402
 
2403
                  --  Ada 2005 (AI-251): If tagged type has progenitors we must
2404
                  --  also initialize tags of the secondary dispatch tables.
2405
 
2406
                  if Has_Interfaces (Base_Type (Typ)) then
2407
                     Init_Secondary_Tags
2408
                       (Typ        => Base_Type (Typ),
2409
                        Target     => Target,
2410
                        Stmts_List => Assign);
2411
                  end if;
2412
               end if;
2413
 
2414
               --  Call Adjust manually
2415
 
2416
               if Needs_Finalization (Etype (Ancestor))
2417
                 and then not Is_Limited_Type (Etype (Ancestor))
2418
               then
2419
                  Append_To (Assign,
2420
                    Make_Adjust_Call (
2421
                      Obj_Ref => New_Copy_Tree (Ref),
2422
                      Typ     => Etype (Ancestor)));
2423
               end if;
2424
 
2425
               Append_To (L,
2426
                 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
2427
 
2428
               if Has_Discriminants (Init_Typ) then
2429
                  Check_Ancestor_Discriminants (Init_Typ);
2430
               end if;
2431
            end if;
2432
         end;
2433
 
2434
         --  Generate assignments of hidden assignments. If the base type is an
2435
         --  unchecked union, the discriminants are unknown to the back-end and
2436
         --  absent from a value of the type, so assignments for them are not
2437
         --  emitted.
2438
 
2439
         if Has_Discriminants (Typ)
2440
           and then not Is_Unchecked_Union (Base_Type (Typ))
2441
         then
2442
            Init_Hidden_Discriminants (Typ, L);
2443
         end if;
2444
 
2445
      --  Normal case (not an extension aggregate)
2446
 
2447
      else
2448
         --  Generate the discriminant expressions, component by component.
2449
         --  If the base type is an unchecked union, the discriminants are
2450
         --  unknown to the back-end and absent from a value of the type, so
2451
         --  assignments for them are not emitted.
2452
 
2453
         if Has_Discriminants (Typ)
2454
           and then not Is_Unchecked_Union (Base_Type (Typ))
2455
         then
2456
            Init_Hidden_Discriminants (Typ, L);
2457
 
2458
            --  Generate discriminant init values for the visible discriminants
2459
 
2460
            declare
2461
               Discriminant : Entity_Id;
2462
               Discriminant_Value : Node_Id;
2463
 
2464
            begin
2465
               Discriminant := First_Stored_Discriminant (Typ);
2466
               while Present (Discriminant) loop
2467
                  Comp_Expr :=
2468
                    Make_Selected_Component (Loc,
2469
                      Prefix        => New_Copy_Tree (Target),
2470
                      Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2471
 
2472
                  Discriminant_Value :=
2473
                    Get_Discriminant_Value (
2474
                      Discriminant,
2475
                      N_Typ,
2476
                      Discriminant_Constraint (N_Typ));
2477
 
2478
                  Instr :=
2479
                    Make_OK_Assignment_Statement (Loc,
2480
                      Name       => Comp_Expr,
2481
                      Expression => New_Copy_Tree (Discriminant_Value));
2482
 
2483
                  Set_No_Ctrl_Actions (Instr);
2484
                  Append_To (L, Instr);
2485
 
2486
                  Next_Stored_Discriminant (Discriminant);
2487
               end loop;
2488
            end;
2489
         end if;
2490
      end if;
2491
 
2492
      --  For CPP types we generate an implicit call to the C++ default
2493
      --  constructor to ensure the proper initialization of the _Tag
2494
      --  component.
2495
 
2496
      if Is_CPP_Class (Root_Type (Typ))
2497
        and then CPP_Num_Prims (Typ) > 0
2498
      then
2499
         Invoke_Constructor : declare
2500
            CPP_Parent : constant Entity_Id :=
2501
                           Enclosing_CPP_Parent (Typ);
2502
 
2503
            procedure Invoke_IC_Proc (T : Entity_Id);
2504
            --  Recursive routine used to climb to parents. Required because
2505
            --  parents must be initialized before descendants to ensure
2506
            --  propagation of inherited C++ slots.
2507
 
2508
            --------------------
2509
            -- Invoke_IC_Proc --
2510
            --------------------
2511
 
2512
            procedure Invoke_IC_Proc (T : Entity_Id) is
2513
            begin
2514
               --  Avoid generating extra calls. Initialization required
2515
               --  only for types defined from the level of derivation of
2516
               --  type of the constructor and the type of the aggregate.
2517
 
2518
               if T = CPP_Parent then
2519
                  return;
2520
               end if;
2521
 
2522
               Invoke_IC_Proc (Etype (T));
2523
 
2524
               --  Generate call to the IC routine
2525
 
2526
               if Present (CPP_Init_Proc (T)) then
2527
                  Append_To (L,
2528
                    Make_Procedure_Call_Statement (Loc,
2529
                      New_Reference_To (CPP_Init_Proc (T), Loc)));
2530
               end if;
2531
            end Invoke_IC_Proc;
2532
 
2533
         --  Start of processing for Invoke_Constructor
2534
 
2535
         begin
2536
            --  Implicit invocation of the C++ constructor
2537
 
2538
            if Nkind (N) = N_Aggregate then
2539
               Append_To (L,
2540
                 Make_Procedure_Call_Statement (Loc,
2541
                   Name =>
2542
                     New_Reference_To
2543
                       (Base_Init_Proc (CPP_Parent), Loc),
2544
                   Parameter_Associations => New_List (
2545
                     Unchecked_Convert_To (CPP_Parent,
2546
                       New_Copy_Tree (Lhs)))));
2547
            end if;
2548
 
2549
            Invoke_IC_Proc (Typ);
2550
         end Invoke_Constructor;
2551
      end if;
2552
 
2553
      --  Generate the assignments, component by component
2554
 
2555
      --    tmp.comp1 := Expr1_From_Aggr;
2556
      --    tmp.comp2 := Expr2_From_Aggr;
2557
      --    ....
2558
 
2559
      Comp := First (Component_Associations (N));
2560
      while Present (Comp) loop
2561
         Selector := Entity (First (Choices (Comp)));
2562
 
2563
         --  C++ constructors
2564
 
2565
         if Is_CPP_Constructor_Call (Expression (Comp)) then
2566
            Append_List_To (L,
2567
              Build_Initialization_Call (Loc,
2568
                Id_Ref            => Make_Selected_Component (Loc,
2569
                                       Prefix        => New_Copy_Tree (Target),
2570
                                       Selector_Name =>
2571
                                         New_Occurrence_Of (Selector, Loc)),
2572
                Typ               => Etype (Selector),
2573
                Enclos_Type       => Typ,
2574
                With_Default_Init => True,
2575
                Constructor_Ref   => Expression (Comp)));
2576
 
2577
         --  Ada 2005 (AI-287): For each default-initialized component generate
2578
         --  a call to the corresponding IP subprogram if available.
2579
 
2580
         elsif Box_Present (Comp)
2581
           and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
2582
         then
2583
            if Ekind (Selector) /= E_Discriminant then
2584
               Generate_Finalization_Actions;
2585
            end if;
2586
 
2587
            --  Ada 2005 (AI-287): If the component type has tasks then
2588
            --  generate the activation chain and master entities (except
2589
            --  in case of an allocator because in that case these entities
2590
            --  are generated by Build_Task_Allocate_Block_With_Init_Stmts).
2591
 
2592
            declare
2593
               Ctype            : constant Entity_Id := Etype (Selector);
2594
               Inside_Allocator : Boolean            := False;
2595
               P                : Node_Id            := Parent (N);
2596
 
2597
            begin
2598
               if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
2599
                  while Present (P) loop
2600
                     if Nkind (P) = N_Allocator then
2601
                        Inside_Allocator := True;
2602
                        exit;
2603
                     end if;
2604
 
2605
                     P := Parent (P);
2606
                  end loop;
2607
 
2608
                  if not Inside_Init_Proc and not Inside_Allocator then
2609
                     Build_Activation_Chain_Entity (N);
2610
                  end if;
2611
               end if;
2612
            end;
2613
 
2614
            Append_List_To (L,
2615
              Build_Initialization_Call (Loc,
2616
                Id_Ref            => Make_Selected_Component (Loc,
2617
                                       Prefix        => New_Copy_Tree (Target),
2618
                                       Selector_Name =>
2619
                                         New_Occurrence_Of (Selector, Loc)),
2620
                Typ               => Etype (Selector),
2621
                Enclos_Type       => Typ,
2622
                With_Default_Init => True));
2623
 
2624
         --  Prepare for component assignment
2625
 
2626
         elsif Ekind (Selector) /= E_Discriminant
2627
           or else Nkind (N) = N_Extension_Aggregate
2628
         then
2629
            --  All the discriminants have now been assigned
2630
 
2631
            --  This is now a good moment to initialize and attach all the
2632
            --  controllers. Their position may depend on the discriminants.
2633
 
2634
            if Ekind (Selector) /= E_Discriminant then
2635
               Generate_Finalization_Actions;
2636
            end if;
2637
 
2638
            Comp_Type := Underlying_Type (Etype (Selector));
2639
            Comp_Expr :=
2640
              Make_Selected_Component (Loc,
2641
                Prefix        => New_Copy_Tree (Target),
2642
                Selector_Name => New_Occurrence_Of (Selector, Loc));
2643
 
2644
            if Nkind (Expression (Comp)) = N_Qualified_Expression then
2645
               Expr_Q := Expression (Expression (Comp));
2646
            else
2647
               Expr_Q := Expression (Comp);
2648
            end if;
2649
 
2650
            --  Now either create the assignment or generate the code for the
2651
            --  inner aggregate top-down.
2652
 
2653
            if Is_Delayed_Aggregate (Expr_Q) then
2654
 
2655
               --  We have the following case of aggregate nesting inside
2656
               --  an object declaration:
2657
 
2658
               --    type Arr_Typ is array (Integer range <>) of ...;
2659
 
2660
               --    type Rec_Typ (...) is record
2661
               --       Obj_Arr_Typ : Arr_Typ (A .. B);
2662
               --    end record;
2663
 
2664
               --    Obj_Rec_Typ : Rec_Typ := (...,
2665
               --      Obj_Arr_Typ => (X => (...), Y => (...)));
2666
 
2667
               --  The length of the ranges of the aggregate and Obj_Add_Typ
2668
               --  are equal (B - A = Y - X), but they do not coincide (X /=
2669
               --  A and B /= Y). This case requires array sliding which is
2670
               --  performed in the following manner:
2671
 
2672
               --    subtype Arr_Sub is Arr_Typ (X .. Y);
2673
               --    Temp : Arr_Sub;
2674
               --    Temp (X) := (...);
2675
               --    ...
2676
               --    Temp (Y) := (...);
2677
               --    Obj_Rec_Typ.Obj_Arr_Typ := Temp;
2678
 
2679
               if Ekind (Comp_Type) = E_Array_Subtype
2680
                 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
2681
                 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
2682
                 and then not
2683
                   Compatible_Int_Bounds
2684
                     (Agg_Bounds => Aggregate_Bounds (Expr_Q),
2685
                      Typ_Bounds => First_Index (Comp_Type))
2686
               then
2687
                  --  Create the array subtype with bounds equal to those of
2688
                  --  the corresponding aggregate.
2689
 
2690
                  declare
2691
                     SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
2692
 
2693
                     SubD : constant Node_Id :=
2694
                              Make_Subtype_Declaration (Loc,
2695
                                Defining_Identifier => SubE,
2696
                                Subtype_Indication  =>
2697
                                  Make_Subtype_Indication (Loc,
2698
                                    Subtype_Mark =>
2699
                                      New_Reference_To
2700
                                        (Etype (Comp_Type), Loc),
2701
                                    Constraint =>
2702
                                      Make_Index_Or_Discriminant_Constraint
2703
                                        (Loc,
2704
                                         Constraints => New_List (
2705
                                          New_Copy_Tree
2706
                                            (Aggregate_Bounds (Expr_Q))))));
2707
 
2708
                     --  Create a temporary array of the above subtype which
2709
                     --  will be used to capture the aggregate assignments.
2710
 
2711
                     TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
2712
 
2713
                     TmpD : constant Node_Id :=
2714
                              Make_Object_Declaration (Loc,
2715
                                Defining_Identifier => TmpE,
2716
                                Object_Definition   =>
2717
                                  New_Reference_To (SubE, Loc));
2718
 
2719
                  begin
2720
                     Set_No_Initialization (TmpD);
2721
                     Append_To (L, SubD);
2722
                     Append_To (L, TmpD);
2723
 
2724
                     --  Expand aggregate into assignments to the temp array
2725
 
2726
                     Append_List_To (L,
2727
                       Late_Expansion (Expr_Q, Comp_Type,
2728
                         New_Reference_To (TmpE, Loc)));
2729
 
2730
                     --  Slide
2731
 
2732
                     Append_To (L,
2733
                       Make_Assignment_Statement (Loc,
2734
                         Name       => New_Copy_Tree (Comp_Expr),
2735
                         Expression => New_Reference_To (TmpE, Loc)));
2736
                  end;
2737
 
2738
               --  Normal case (sliding not required)
2739
 
2740
               else
2741
                  Append_List_To (L,
2742
                    Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
2743
               end if;
2744
 
2745
            --  Expr_Q is not delayed aggregate
2746
 
2747
            else
2748
               if Has_Discriminants (Typ) then
2749
                  Replace_Discriminants (Expr_Q);
2750
               end if;
2751
 
2752
               Instr :=
2753
                 Make_OK_Assignment_Statement (Loc,
2754
                   Name       => Comp_Expr,
2755
                   Expression => Expr_Q);
2756
 
2757
               Set_No_Ctrl_Actions (Instr);
2758
               Append_To (L, Instr);
2759
 
2760
               --  Adjust the tag if tagged (because of possible view
2761
               --  conversions), unless compiling for a VM where tags are
2762
               --  implicit.
2763
 
2764
               --    tmp.comp._tag := comp_typ'tag;
2765
 
2766
               if Is_Tagged_Type (Comp_Type)
2767
                 and then Tagged_Type_Expansion
2768
               then
2769
                  Instr :=
2770
                    Make_OK_Assignment_Statement (Loc,
2771
                      Name =>
2772
                        Make_Selected_Component (Loc,
2773
                          Prefix =>  New_Copy_Tree (Comp_Expr),
2774
                          Selector_Name =>
2775
                            New_Reference_To
2776
                              (First_Tag_Component (Comp_Type), Loc)),
2777
 
2778
                      Expression =>
2779
                        Unchecked_Convert_To (RTE (RE_Tag),
2780
                          New_Reference_To
2781
                            (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
2782
                             Loc)));
2783
 
2784
                  Append_To (L, Instr);
2785
               end if;
2786
 
2787
               --  Generate:
2788
               --    Adjust (tmp.comp);
2789
 
2790
               if Needs_Finalization (Comp_Type)
2791
                 and then not Is_Limited_Type (Comp_Type)
2792
               then
2793
                  Append_To (L,
2794
                    Make_Adjust_Call (
2795
                      Obj_Ref => New_Copy_Tree (Comp_Expr),
2796
                      Typ     => Comp_Type));
2797
               end if;
2798
            end if;
2799
 
2800
         --  ???
2801
 
2802
         elsif Ekind (Selector) = E_Discriminant
2803
           and then Nkind (N) /= N_Extension_Aggregate
2804
           and then Nkind (Parent (N)) = N_Component_Association
2805
           and then Is_Constrained (Typ)
2806
         then
2807
            --  We must check that the discriminant value imposed by the
2808
            --  context is the same as the value given in the subaggregate,
2809
            --  because after the expansion into assignments there is no
2810
            --  record on which to perform a regular discriminant check.
2811
 
2812
            declare
2813
               D_Val : Elmt_Id;
2814
               Disc  : Entity_Id;
2815
 
2816
            begin
2817
               D_Val := First_Elmt (Discriminant_Constraint (Typ));
2818
               Disc  := First_Discriminant (Typ);
2819
               while Chars (Disc) /= Chars (Selector) loop
2820
                  Next_Discriminant (Disc);
2821
                  Next_Elmt (D_Val);
2822
               end loop;
2823
 
2824
               pragma Assert (Present (D_Val));
2825
 
2826
               --  This check cannot performed for components that are
2827
               --  constrained by a current instance, because this is not a
2828
               --  value that can be compared with the actual constraint.
2829
 
2830
               if Nkind (Node (D_Val)) /= N_Attribute_Reference
2831
                 or else not Is_Entity_Name (Prefix (Node (D_Val)))
2832
                 or else not Is_Type (Entity (Prefix (Node (D_Val))))
2833
               then
2834
                  Append_To (L,
2835
                  Make_Raise_Constraint_Error (Loc,
2836
                    Condition =>
2837
                      Make_Op_Ne (Loc,
2838
                        Left_Opnd => New_Copy_Tree (Node (D_Val)),
2839
                        Right_Opnd => Expression (Comp)),
2840
                      Reason => CE_Discriminant_Check_Failed));
2841
 
2842
               else
2843
                  --  Find self-reference in previous discriminant assignment,
2844
                  --  and replace with proper expression.
2845
 
2846
                  declare
2847
                     Ass : Node_Id;
2848
 
2849
                  begin
2850
                     Ass := First (L);
2851
                     while Present (Ass) loop
2852
                        if Nkind (Ass) = N_Assignment_Statement
2853
                          and then Nkind (Name (Ass)) = N_Selected_Component
2854
                          and then Chars (Selector_Name (Name (Ass))) =
2855
                             Chars (Disc)
2856
                        then
2857
                           Set_Expression
2858
                             (Ass, New_Copy_Tree (Expression (Comp)));
2859
                           exit;
2860
                        end if;
2861
                        Next (Ass);
2862
                     end loop;
2863
                  end;
2864
               end if;
2865
            end;
2866
         end if;
2867
 
2868
         Next (Comp);
2869
      end loop;
2870
 
2871
      --  If the type is tagged, the tag needs to be initialized (unless
2872
      --  compiling for the Java VM where tags are implicit). It is done
2873
      --  late in the initialization process because in some cases, we call
2874
      --  the init proc of an ancestor which will not leave out the right tag
2875
 
2876
      if Ancestor_Is_Expression then
2877
         null;
2878
 
2879
      --  For CPP types we generated a call to the C++ default constructor
2880
      --  before the components have been initialized to ensure the proper
2881
      --  initialization of the _Tag component (see above).
2882
 
2883
      elsif Is_CPP_Class (Typ) then
2884
         null;
2885
 
2886
      elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
2887
         Instr :=
2888
           Make_OK_Assignment_Statement (Loc,
2889
             Name =>
2890
               Make_Selected_Component (Loc,
2891
                 Prefix => New_Copy_Tree (Target),
2892
                 Selector_Name =>
2893
                   New_Reference_To
2894
                     (First_Tag_Component (Base_Type (Typ)), Loc)),
2895
 
2896
             Expression =>
2897
               Unchecked_Convert_To (RTE (RE_Tag),
2898
                 New_Reference_To
2899
                   (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
2900
                    Loc)));
2901
 
2902
         Append_To (L, Instr);
2903
 
2904
         --  Ada 2005 (AI-251): If the tagged type has been derived from
2905
         --  abstract interfaces we must also initialize the tags of the
2906
         --  secondary dispatch tables.
2907
 
2908
         if Has_Interfaces (Base_Type (Typ)) then
2909
            Init_Secondary_Tags
2910
              (Typ        => Base_Type (Typ),
2911
               Target     => Target,
2912
               Stmts_List => L);
2913
         end if;
2914
      end if;
2915
 
2916
      --  If the controllers have not been initialized yet (by lack of non-
2917
      --  discriminant components), let's do it now.
2918
 
2919
      Generate_Finalization_Actions;
2920
 
2921
      return L;
2922
   end Build_Record_Aggr_Code;
2923
 
2924
   -------------------------------
2925
   -- Convert_Aggr_In_Allocator --
2926
   -------------------------------
2927
 
2928
   procedure Convert_Aggr_In_Allocator
2929
     (Alloc :  Node_Id;
2930
      Decl  :  Node_Id;
2931
      Aggr  :  Node_Id)
2932
   is
2933
      Loc  : constant Source_Ptr := Sloc (Aggr);
2934
      Typ  : constant Entity_Id  := Etype (Aggr);
2935
      Temp : constant Entity_Id  := Defining_Identifier (Decl);
2936
 
2937
      Occ  : constant Node_Id :=
2938
               Unchecked_Convert_To (Typ,
2939
                 Make_Explicit_Dereference (Loc,
2940
                   New_Reference_To (Temp, Loc)));
2941
 
2942
   begin
2943
      if Is_Array_Type (Typ) then
2944
         Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
2945
 
2946
      elsif Has_Default_Init_Comps (Aggr) then
2947
         declare
2948
            L          : constant List_Id := New_List;
2949
            Init_Stmts : List_Id;
2950
 
2951
         begin
2952
            Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
2953
 
2954
            if Has_Task (Typ) then
2955
               Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
2956
               Insert_Actions (Alloc, L);
2957
            else
2958
               Insert_Actions (Alloc, Init_Stmts);
2959
            end if;
2960
         end;
2961
 
2962
      else
2963
         Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
2964
      end if;
2965
   end Convert_Aggr_In_Allocator;
2966
 
2967
   --------------------------------
2968
   -- Convert_Aggr_In_Assignment --
2969
   --------------------------------
2970
 
2971
   procedure Convert_Aggr_In_Assignment (N : Node_Id) is
2972
      Aggr : Node_Id            := Expression (N);
2973
      Typ  : constant Entity_Id := Etype (Aggr);
2974
      Occ  : constant Node_Id   := New_Copy_Tree (Name (N));
2975
 
2976
   begin
2977
      if Nkind (Aggr) = N_Qualified_Expression then
2978
         Aggr := Expression (Aggr);
2979
      end if;
2980
 
2981
      Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
2982
   end Convert_Aggr_In_Assignment;
2983
 
2984
   ---------------------------------
2985
   -- Convert_Aggr_In_Object_Decl --
2986
   ---------------------------------
2987
 
2988
   procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
2989
      Obj  : constant Entity_Id  := Defining_Identifier (N);
2990
      Aggr : Node_Id             := Expression (N);
2991
      Loc  : constant Source_Ptr := Sloc (Aggr);
2992
      Typ  : constant Entity_Id  := Etype (Aggr);
2993
      Occ  : constant Node_Id    := New_Occurrence_Of (Obj, Loc);
2994
 
2995
      function Discriminants_Ok return Boolean;
2996
      --  If the object type is constrained, the discriminants in the
2997
      --  aggregate must be checked against the discriminants of the subtype.
2998
      --  This cannot be done using Apply_Discriminant_Checks because after
2999
      --  expansion there is no aggregate left to check.
3000
 
3001
      ----------------------
3002
      -- Discriminants_Ok --
3003
      ----------------------
3004
 
3005
      function Discriminants_Ok return Boolean is
3006
         Cond  : Node_Id := Empty;
3007
         Check : Node_Id;
3008
         D     : Entity_Id;
3009
         Disc1 : Elmt_Id;
3010
         Disc2 : Elmt_Id;
3011
         Val1  : Node_Id;
3012
         Val2  : Node_Id;
3013
 
3014
      begin
3015
         D := First_Discriminant (Typ);
3016
         Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3017
         Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
3018
         while Present (Disc1) and then Present (Disc2) loop
3019
            Val1 := Node (Disc1);
3020
            Val2 := Node (Disc2);
3021
 
3022
            if not Is_OK_Static_Expression (Val1)
3023
              or else not Is_OK_Static_Expression (Val2)
3024
            then
3025
               Check := Make_Op_Ne (Loc,
3026
                 Left_Opnd  => Duplicate_Subexpr (Val1),
3027
                 Right_Opnd => Duplicate_Subexpr (Val2));
3028
 
3029
               if No (Cond) then
3030
                  Cond := Check;
3031
 
3032
               else
3033
                  Cond := Make_Or_Else (Loc,
3034
                    Left_Opnd => Cond,
3035
                    Right_Opnd => Check);
3036
               end if;
3037
 
3038
            elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3039
               Apply_Compile_Time_Constraint_Error (Aggr,
3040
                 Msg    => "incorrect value for discriminant&?",
3041
                 Reason => CE_Discriminant_Check_Failed,
3042
                 Ent    => D);
3043
               return False;
3044
            end if;
3045
 
3046
            Next_Discriminant (D);
3047
            Next_Elmt (Disc1);
3048
            Next_Elmt (Disc2);
3049
         end loop;
3050
 
3051
         --  If any discriminant constraint is non-static, emit a check
3052
 
3053
         if Present (Cond) then
3054
            Insert_Action (N,
3055
              Make_Raise_Constraint_Error (Loc,
3056
                Condition => Cond,
3057
                Reason => CE_Discriminant_Check_Failed));
3058
         end if;
3059
 
3060
         return True;
3061
      end Discriminants_Ok;
3062
 
3063
   --  Start of processing for Convert_Aggr_In_Object_Decl
3064
 
3065
   begin
3066
      Set_Assignment_OK (Occ);
3067
 
3068
      if Nkind (Aggr) = N_Qualified_Expression then
3069
         Aggr := Expression (Aggr);
3070
      end if;
3071
 
3072
      if Has_Discriminants (Typ)
3073
        and then Typ /= Etype (Obj)
3074
        and then Is_Constrained (Etype (Obj))
3075
        and then not Discriminants_Ok
3076
      then
3077
         return;
3078
      end if;
3079
 
3080
      --  If the context is an extended return statement, it has its own
3081
      --  finalization machinery (i.e. works like a transient scope) and
3082
      --  we do not want to create an additional one, because objects on
3083
      --  the finalization list of the return must be moved to the caller's
3084
      --  finalization list to complete the return.
3085
 
3086
      --  However, if the aggregate is limited, it is built in place, and the
3087
      --  controlled components are not assigned to intermediate temporaries
3088
      --  so there is no need for a transient scope in this case either.
3089
 
3090
      if Requires_Transient_Scope (Typ)
3091
        and then Ekind (Current_Scope) /= E_Return_Statement
3092
        and then not Is_Limited_Type (Typ)
3093
      then
3094
         Establish_Transient_Scope
3095
           (Aggr,
3096
            Sec_Stack =>
3097
              Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3098
      end if;
3099
 
3100
      Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3101
      Set_No_Initialization (N);
3102
      Initialize_Discriminants (N, Typ);
3103
   end Convert_Aggr_In_Object_Decl;
3104
 
3105
   -------------------------------------
3106
   -- Convert_Array_Aggr_In_Allocator --
3107
   -------------------------------------
3108
 
3109
   procedure Convert_Array_Aggr_In_Allocator
3110
     (Decl   : Node_Id;
3111
      Aggr   : Node_Id;
3112
      Target : Node_Id)
3113
   is
3114
      Aggr_Code : List_Id;
3115
      Typ       : constant Entity_Id := Etype (Aggr);
3116
      Ctyp      : constant Entity_Id := Component_Type (Typ);
3117
 
3118
   begin
3119
      --  The target is an explicit dereference of the allocated object.
3120
      --  Generate component assignments to it, as for an aggregate that
3121
      --  appears on the right-hand side of an assignment statement.
3122
 
3123
      Aggr_Code :=
3124
        Build_Array_Aggr_Code (Aggr,
3125
          Ctype       => Ctyp,
3126
          Index       => First_Index (Typ),
3127
          Into        => Target,
3128
          Scalar_Comp => Is_Scalar_Type (Ctyp));
3129
 
3130
      Insert_Actions_After (Decl, Aggr_Code);
3131
   end Convert_Array_Aggr_In_Allocator;
3132
 
3133
   ----------------------------
3134
   -- Convert_To_Assignments --
3135
   ----------------------------
3136
 
3137
   procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
3138
      Loc  : constant Source_Ptr := Sloc (N);
3139
      T    : Entity_Id;
3140
      Temp : Entity_Id;
3141
 
3142
      Instr       : Node_Id;
3143
      Target_Expr : Node_Id;
3144
      Parent_Kind : Node_Kind;
3145
      Unc_Decl    : Boolean := False;
3146
      Parent_Node : Node_Id;
3147
 
3148
   begin
3149
      pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
3150
      pragma Assert (Is_Record_Type (Typ));
3151
 
3152
      Parent_Node := Parent (N);
3153
      Parent_Kind := Nkind (Parent_Node);
3154
 
3155
      if Parent_Kind = N_Qualified_Expression then
3156
 
3157
         --  Check if we are in a unconstrained declaration because in this
3158
         --  case the current delayed expansion mechanism doesn't work when
3159
         --  the declared object size depend on the initializing expr.
3160
 
3161
         begin
3162
            Parent_Node := Parent (Parent_Node);
3163
            Parent_Kind := Nkind (Parent_Node);
3164
 
3165
            if Parent_Kind = N_Object_Declaration then
3166
               Unc_Decl :=
3167
                 not Is_Entity_Name (Object_Definition (Parent_Node))
3168
                   or else Has_Discriminants
3169
                             (Entity (Object_Definition (Parent_Node)))
3170
                   or else Is_Class_Wide_Type
3171
                             (Entity (Object_Definition (Parent_Node)));
3172
            end if;
3173
         end;
3174
      end if;
3175
 
3176
      --  Just set the Delay flag in the cases where the transformation will be
3177
      --  done top down from above.
3178
 
3179
      if False
3180
 
3181
         --  Internal aggregate (transformed when expanding the parent)
3182
 
3183
         or else Parent_Kind = N_Aggregate
3184
         or else Parent_Kind = N_Extension_Aggregate
3185
         or else Parent_Kind = N_Component_Association
3186
 
3187
         --  Allocator (see Convert_Aggr_In_Allocator)
3188
 
3189
         or else Parent_Kind = N_Allocator
3190
 
3191
         --  Object declaration (see Convert_Aggr_In_Object_Decl)
3192
 
3193
         or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
3194
 
3195
         --  Safe assignment (see Convert_Aggr_Assignments). So far only the
3196
         --  assignments in init procs are taken into account.
3197
 
3198
         or else (Parent_Kind = N_Assignment_Statement
3199
                   and then Inside_Init_Proc)
3200
 
3201
         --  (Ada 2005) An inherently limited type in a return statement,
3202
         --  which will be handled in a build-in-place fashion, and may be
3203
         --  rewritten as an extended return and have its own finalization
3204
         --  machinery. In the case of a simple return, the aggregate needs
3205
         --  to be delayed until the scope for the return statement has been
3206
         --  created, so that any finalization chain will be associated with
3207
         --  that scope. For extended returns, we delay expansion to avoid the
3208
         --  creation of an unwanted transient scope that could result in
3209
         --  premature finalization of the return object (which is built in
3210
         --  in place within the caller's scope).
3211
 
3212
         or else
3213
           (Is_Immutably_Limited_Type (Typ)
3214
             and then
3215
               (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
3216
                 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
3217
      then
3218
         Set_Expansion_Delayed (N);
3219
         return;
3220
      end if;
3221
 
3222
      if Requires_Transient_Scope (Typ) then
3223
         Establish_Transient_Scope
3224
           (N, Sec_Stack =>
3225
                 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3226
      end if;
3227
 
3228
      --  If the aggregate is non-limited, create a temporary. If it is limited
3229
      --  and the context is an assignment, this is a subaggregate for an
3230
      --  enclosing aggregate being expanded. It must be built in place, so use
3231
      --  the target of the current assignment.
3232
 
3233
      if Is_Limited_Type (Typ)
3234
        and then Nkind (Parent (N)) = N_Assignment_Statement
3235
      then
3236
         Target_Expr := New_Copy_Tree (Name (Parent (N)));
3237
         Insert_Actions (Parent (N),
3238
           Build_Record_Aggr_Code (N, Typ, Target_Expr));
3239
         Rewrite (Parent (N), Make_Null_Statement (Loc));
3240
 
3241
      else
3242
         Temp := Make_Temporary (Loc, 'A', N);
3243
 
3244
         --  If the type inherits unknown discriminants, use the view with
3245
         --  known discriminants if available.
3246
 
3247
         if Has_Unknown_Discriminants (Typ)
3248
            and then Present (Underlying_Record_View (Typ))
3249
         then
3250
            T := Underlying_Record_View (Typ);
3251
         else
3252
            T := Typ;
3253
         end if;
3254
 
3255
         Instr :=
3256
           Make_Object_Declaration (Loc,
3257
             Defining_Identifier => Temp,
3258
             Object_Definition   => New_Occurrence_Of (T, Loc));
3259
 
3260
         Set_No_Initialization (Instr);
3261
         Insert_Action (N, Instr);
3262
         Initialize_Discriminants (Instr, T);
3263
         Target_Expr := New_Occurrence_Of (Temp, Loc);
3264
         Insert_Actions (N, Build_Record_Aggr_Code (N, T, Target_Expr));
3265
         Rewrite (N, New_Occurrence_Of (Temp, Loc));
3266
         Analyze_And_Resolve (N, T);
3267
      end if;
3268
   end Convert_To_Assignments;
3269
 
3270
   ---------------------------
3271
   -- Convert_To_Positional --
3272
   ---------------------------
3273
 
3274
   procedure Convert_To_Positional
3275
     (N                    : Node_Id;
3276
      Max_Others_Replicate : Nat     := 5;
3277
      Handle_Bit_Packed    : Boolean := False)
3278
   is
3279
      Typ : constant Entity_Id := Etype (N);
3280
 
3281
      Static_Components : Boolean := True;
3282
 
3283
      procedure Check_Static_Components;
3284
      --  Check whether all components of the aggregate are compile-time known
3285
      --  values, and can be passed as is to the back-end without further
3286
      --  expansion.
3287
 
3288
      function Flatten
3289
        (N   : Node_Id;
3290
         Ix  : Node_Id;
3291
         Ixb : Node_Id) return Boolean;
3292
      --  Convert the aggregate into a purely positional form if possible. On
3293
      --  entry the bounds of all dimensions are known to be static, and the
3294
      --  total number of components is safe enough to expand.
3295
 
3296
      function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
3297
      --  Return True iff the array N is flat (which is not trivial in the case
3298
      --  of multidimensional aggregates).
3299
 
3300
      -----------------------------
3301
      -- Check_Static_Components --
3302
      -----------------------------
3303
 
3304
      procedure Check_Static_Components is
3305
         Expr : Node_Id;
3306
 
3307
      begin
3308
         Static_Components := True;
3309
 
3310
         if Nkind (N) = N_String_Literal then
3311
            null;
3312
 
3313
         elsif Present (Expressions (N)) then
3314
            Expr := First (Expressions (N));
3315
            while Present (Expr) loop
3316
               if Nkind (Expr) /= N_Aggregate
3317
                 or else not Compile_Time_Known_Aggregate (Expr)
3318
                 or else Expansion_Delayed (Expr)
3319
               then
3320
                  Static_Components := False;
3321
                  exit;
3322
               end if;
3323
 
3324
               Next (Expr);
3325
            end loop;
3326
         end if;
3327
 
3328
         if Nkind (N) = N_Aggregate
3329
           and then  Present (Component_Associations (N))
3330
         then
3331
            Expr := First (Component_Associations (N));
3332
            while Present (Expr) loop
3333
               if Nkind_In (Expression (Expr), N_Integer_Literal,
3334
                                               N_Real_Literal)
3335
               then
3336
                  null;
3337
 
3338
               elsif Is_Entity_Name (Expression (Expr))
3339
                 and then Present (Entity (Expression (Expr)))
3340
                 and then Ekind (Entity (Expression (Expr))) =
3341
                   E_Enumeration_Literal
3342
               then
3343
                  null;
3344
 
3345
               elsif Nkind (Expression (Expr)) /= N_Aggregate
3346
                 or else not Compile_Time_Known_Aggregate (Expression (Expr))
3347
                 or else Expansion_Delayed (Expression (Expr))
3348
               then
3349
                  Static_Components := False;
3350
                  exit;
3351
               end if;
3352
 
3353
               Next (Expr);
3354
            end loop;
3355
         end if;
3356
      end Check_Static_Components;
3357
 
3358
      -------------
3359
      -- Flatten --
3360
      -------------
3361
 
3362
      function Flatten
3363
        (N   : Node_Id;
3364
         Ix  : Node_Id;
3365
         Ixb : Node_Id) return Boolean
3366
      is
3367
         Loc : constant Source_Ptr := Sloc (N);
3368
         Blo : constant Node_Id    := Type_Low_Bound (Etype (Ixb));
3369
         Lo  : constant Node_Id    := Type_Low_Bound (Etype (Ix));
3370
         Hi  : constant Node_Id    := Type_High_Bound (Etype (Ix));
3371
         Lov : Uint;
3372
         Hiv : Uint;
3373
 
3374
         Others_Present : Boolean := False;
3375
 
3376
      begin
3377
         if Nkind (Original_Node (N)) = N_String_Literal then
3378
            return True;
3379
         end if;
3380
 
3381
         if not Compile_Time_Known_Value (Lo)
3382
           or else not Compile_Time_Known_Value (Hi)
3383
         then
3384
            return False;
3385
         end if;
3386
 
3387
         Lov := Expr_Value (Lo);
3388
         Hiv := Expr_Value (Hi);
3389
 
3390
         --  Check if there is an others choice
3391
 
3392
         if Present (Component_Associations (N)) then
3393
            declare
3394
               Assoc   : Node_Id;
3395
               Choice  : Node_Id;
3396
 
3397
            begin
3398
               Assoc := First (Component_Associations (N));
3399
               while Present (Assoc) loop
3400
 
3401
                  --  If this is a box association, flattening is in general
3402
                  --  not possible because at this point we cannot tell if the
3403
                  --  default is static or even exists.
3404
 
3405
                  if Box_Present (Assoc) then
3406
                     return False;
3407
                  end if;
3408
 
3409
                  Choice := First (Choices (Assoc));
3410
 
3411
                  while Present (Choice) loop
3412
                     if Nkind (Choice) = N_Others_Choice then
3413
                        Others_Present := True;
3414
                     end if;
3415
 
3416
                     Next (Choice);
3417
                  end loop;
3418
 
3419
                  Next (Assoc);
3420
               end loop;
3421
            end;
3422
         end if;
3423
 
3424
         --  If the low bound is not known at compile time and others is not
3425
         --  present we can proceed since the bounds can be obtained from the
3426
         --  aggregate.
3427
 
3428
         --  Note: This case is required in VM platforms since their backends
3429
         --  normalize array indexes in the range 0 .. N-1. Hence, if we do
3430
         --  not flat an array whose bounds cannot be obtained from the type
3431
         --  of the index the backend has no way to properly generate the code.
3432
         --  See ACATS c460010 for an example.
3433
 
3434
         if Hiv < Lov
3435
           or else (not Compile_Time_Known_Value (Blo)
3436
                     and then Others_Present)
3437
         then
3438
            return False;
3439
         end if;
3440
 
3441
         --  Determine if set of alternatives is suitable for conversion and
3442
         --  build an array containing the values in sequence.
3443
 
3444
         declare
3445
            Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
3446
                     of Node_Id := (others => Empty);
3447
            --  The values in the aggregate sorted appropriately
3448
 
3449
            Vlist : List_Id;
3450
            --  Same data as Vals in list form
3451
 
3452
            Rep_Count : Nat;
3453
            --  Used to validate Max_Others_Replicate limit
3454
 
3455
            Elmt         : Node_Id;
3456
            Num          : Int := UI_To_Int (Lov);
3457
            Choice_Index : Int;
3458
            Choice       : Node_Id;
3459
            Lo, Hi       : Node_Id;
3460
 
3461
         begin
3462
            if Present (Expressions (N)) then
3463
               Elmt := First (Expressions (N));
3464
               while Present (Elmt) loop
3465
                  if Nkind (Elmt) = N_Aggregate
3466
                    and then Present (Next_Index (Ix))
3467
                    and then
3468
                      not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
3469
                  then
3470
                     return False;
3471
                  end if;
3472
 
3473
                  Vals (Num) := Relocate_Node (Elmt);
3474
                  Num := Num + 1;
3475
 
3476
                  Next (Elmt);
3477
               end loop;
3478
            end if;
3479
 
3480
            if No (Component_Associations (N)) then
3481
               return True;
3482
            end if;
3483
 
3484
            Elmt := First (Component_Associations (N));
3485
 
3486
            if Nkind (Expression (Elmt)) = N_Aggregate then
3487
               if Present (Next_Index (Ix))
3488
                 and then
3489
                   not Flatten
3490
                        (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
3491
               then
3492
                  return False;
3493
               end if;
3494
            end if;
3495
 
3496
            Component_Loop : while Present (Elmt) loop
3497
               Choice := First (Choices (Elmt));
3498
               Choice_Loop : while Present (Choice) loop
3499
 
3500
                  --  If we have an others choice, fill in the missing elements
3501
                  --  subject to the limit established by Max_Others_Replicate.
3502
 
3503
                  if Nkind (Choice) = N_Others_Choice then
3504
                     Rep_Count := 0;
3505
 
3506
                     for J in Vals'Range loop
3507
                        if No (Vals (J)) then
3508
                           Vals (J) := New_Copy_Tree (Expression (Elmt));
3509
                           Rep_Count := Rep_Count + 1;
3510
 
3511
                           --  Check for maximum others replication. Note that
3512
                           --  we skip this test if either of the restrictions
3513
                           --  No_Elaboration_Code or No_Implicit_Loops is
3514
                           --  active, if this is a preelaborable unit or a
3515
                           --  predefined unit. This ensures that predefined
3516
                           --  units get the same level of constant folding in
3517
                           --  Ada 95 and Ada 2005, where their categorization
3518
                           --  has changed.
3519
 
3520
                           declare
3521
                              P : constant Entity_Id :=
3522
                                    Cunit_Entity (Current_Sem_Unit);
3523
 
3524
                           begin
3525
                              --  Check if duplication OK and if so continue
3526
                              --  processing.
3527
 
3528
                              if Restriction_Active (No_Elaboration_Code)
3529
                                or else Restriction_Active (No_Implicit_Loops)
3530
                                or else Is_Preelaborated (P)
3531
                                or else (Ekind (P) = E_Package_Body
3532
                                          and then
3533
                                            Is_Preelaborated (Spec_Entity (P)))
3534
                                or else
3535
                                  Is_Predefined_File_Name
3536
                                    (Unit_File_Name (Get_Source_Unit (P)))
3537
                              then
3538
                                 null;
3539
 
3540
                              --  If duplication not OK, then we return False
3541
                              --  if the replication count is too high
3542
 
3543
                              elsif Rep_Count > Max_Others_Replicate then
3544
                                 return False;
3545
 
3546
                              --  Continue on if duplication not OK, but the
3547
                              --  replication count is not excessive.
3548
 
3549
                              else
3550
                                 null;
3551
                              end if;
3552
                           end;
3553
                        end if;
3554
                     end loop;
3555
 
3556
                     exit Component_Loop;
3557
 
3558
                  --  Case of a subtype mark, identifier or expanded name
3559
 
3560
                  elsif Is_Entity_Name (Choice)
3561
                    and then Is_Type (Entity (Choice))
3562
                  then
3563
                     Lo := Type_Low_Bound  (Etype (Choice));
3564
                     Hi := Type_High_Bound (Etype (Choice));
3565
 
3566
                  --  Case of subtype indication
3567
 
3568
                  elsif Nkind (Choice) = N_Subtype_Indication then
3569
                     Lo := Low_Bound  (Range_Expression (Constraint (Choice)));
3570
                     Hi := High_Bound (Range_Expression (Constraint (Choice)));
3571
 
3572
                  --  Case of a range
3573
 
3574
                  elsif Nkind (Choice) = N_Range then
3575
                     Lo := Low_Bound (Choice);
3576
                     Hi := High_Bound (Choice);
3577
 
3578
                  --  Normal subexpression case
3579
 
3580
                  else pragma Assert (Nkind (Choice) in N_Subexpr);
3581
                     if not Compile_Time_Known_Value (Choice) then
3582
                        return False;
3583
 
3584
                     else
3585
                        Choice_Index := UI_To_Int (Expr_Value (Choice));
3586
                        if Choice_Index in Vals'Range then
3587
                           Vals (Choice_Index) :=
3588
                             New_Copy_Tree (Expression (Elmt));
3589
                           goto Continue;
3590
 
3591
                        else
3592
                           --  Choice is statically out-of-range, will be
3593
                           --  rewritten to raise Constraint_Error.
3594
 
3595
                           return False;
3596
                        end if;
3597
                     end if;
3598
                  end if;
3599
 
3600
                  --  Range cases merge with Lo,Hi set
3601
 
3602
                  if not Compile_Time_Known_Value (Lo)
3603
                       or else
3604
                     not Compile_Time_Known_Value (Hi)
3605
                  then
3606
                     return False;
3607
                  else
3608
                     for J in UI_To_Int (Expr_Value (Lo)) ..
3609
                              UI_To_Int (Expr_Value (Hi))
3610
                     loop
3611
                        Vals (J) := New_Copy_Tree (Expression (Elmt));
3612
                     end loop;
3613
                  end if;
3614
 
3615
               <<Continue>>
3616
                  Next (Choice);
3617
               end loop Choice_Loop;
3618
 
3619
               Next (Elmt);
3620
            end loop Component_Loop;
3621
 
3622
            --  If we get here the conversion is possible
3623
 
3624
            Vlist := New_List;
3625
            for J in Vals'Range loop
3626
               Append (Vals (J), Vlist);
3627
            end loop;
3628
 
3629
            Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
3630
            Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
3631
            return True;
3632
         end;
3633
      end Flatten;
3634
 
3635
      -------------
3636
      -- Is_Flat --
3637
      -------------
3638
 
3639
      function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
3640
         Elmt : Node_Id;
3641
 
3642
      begin
3643
         if Dims = 0 then
3644
            return True;
3645
 
3646
         elsif Nkind (N) = N_Aggregate then
3647
            if Present (Component_Associations (N)) then
3648
               return False;
3649
 
3650
            else
3651
               Elmt := First (Expressions (N));
3652
               while Present (Elmt) loop
3653
                  if not Is_Flat (Elmt, Dims - 1) then
3654
                     return False;
3655
                  end if;
3656
 
3657
                  Next (Elmt);
3658
               end loop;
3659
 
3660
               return True;
3661
            end if;
3662
         else
3663
            return True;
3664
         end if;
3665
      end Is_Flat;
3666
 
3667
   --  Start of processing for Convert_To_Positional
3668
 
3669
   begin
3670
      --  Ada 2005 (AI-287): Do not convert in case of default initialized
3671
      --  components because in this case will need to call the corresponding
3672
      --  IP procedure.
3673
 
3674
      if Has_Default_Init_Comps (N) then
3675
         return;
3676
      end if;
3677
 
3678
      if Is_Flat (N, Number_Dimensions (Typ)) then
3679
         return;
3680
      end if;
3681
 
3682
      if Is_Bit_Packed_Array (Typ)
3683
        and then not Handle_Bit_Packed
3684
      then
3685
         return;
3686
      end if;
3687
 
3688
      --  Do not convert to positional if controlled components are involved
3689
      --  since these require special processing
3690
 
3691
      if Has_Controlled_Component (Typ) then
3692
         return;
3693
      end if;
3694
 
3695
      Check_Static_Components;
3696
 
3697
      --  If the size is known, or all the components are static, try to
3698
      --  build a fully positional aggregate.
3699
 
3700
      --  The size of the type  may not be known for an aggregate with
3701
      --  discriminated array components, but if the components are static
3702
      --  it is still possible to verify statically that the length is
3703
      --  compatible with the upper bound of the type, and therefore it is
3704
      --  worth flattening such aggregates as well.
3705
 
3706
      --  For now the back-end expands these aggregates into individual
3707
      --  assignments to the target anyway, but it is conceivable that
3708
      --  it will eventually be able to treat such aggregates statically???
3709
 
3710
      if Aggr_Size_OK (N, Typ)
3711
        and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
3712
      then
3713
         if Static_Components then
3714
            Set_Compile_Time_Known_Aggregate (N);
3715
            Set_Expansion_Delayed (N, False);
3716
         end if;
3717
 
3718
         Analyze_And_Resolve (N, Typ);
3719
      end if;
3720
   end Convert_To_Positional;
3721
 
3722
   ----------------------------
3723
   -- Expand_Array_Aggregate --
3724
   ----------------------------
3725
 
3726
   --  Array aggregate expansion proceeds as follows:
3727
 
3728
   --  1. If requested we generate code to perform all the array aggregate
3729
   --     bound checks, specifically
3730
 
3731
   --         (a) Check that the index range defined by aggregate bounds is
3732
   --             compatible with corresponding index subtype.
3733
 
3734
   --         (b) If an others choice is present check that no aggregate
3735
   --             index is outside the bounds of the index constraint.
3736
 
3737
   --         (c) For multidimensional arrays make sure that all subaggregates
3738
   --             corresponding to the same dimension have the same bounds.
3739
 
3740
   --  2. Check for packed array aggregate which can be converted to a
3741
   --     constant so that the aggregate disappeares completely.
3742
 
3743
   --  3. Check case of nested aggregate. Generally nested aggregates are
3744
   --     handled during the processing of the parent aggregate.
3745
 
3746
   --  4. Check if the aggregate can be statically processed. If this is the
3747
   --     case pass it as is to Gigi. Note that a necessary condition for
3748
   --     static processing is that the aggregate be fully positional.
3749
 
3750
   --  5. If in place aggregate expansion is possible (i.e. no need to create
3751
   --     a temporary) then mark the aggregate as such and return. Otherwise
3752
   --     create a new temporary and generate the appropriate initialization
3753
   --     code.
3754
 
3755
   procedure Expand_Array_Aggregate (N : Node_Id) is
3756
      Loc : constant Source_Ptr := Sloc (N);
3757
 
3758
      Typ  : constant Entity_Id := Etype (N);
3759
      Ctyp : constant Entity_Id := Component_Type (Typ);
3760
      --  Typ is the correct constrained array subtype of the aggregate
3761
      --  Ctyp is the corresponding component type.
3762
 
3763
      Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
3764
      --  Number of aggregate index dimensions
3765
 
3766
      Aggr_Low  : array (1 .. Aggr_Dimension) of Node_Id;
3767
      Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
3768
      --  Low and High bounds of the constraint for each aggregate index
3769
 
3770
      Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
3771
      --  The type of each index
3772
 
3773
      Maybe_In_Place_OK : Boolean;
3774
      --  If the type is neither controlled nor packed and the aggregate
3775
      --  is the expression in an assignment, assignment in place may be
3776
      --  possible, provided other conditions are met on the LHS.
3777
 
3778
      Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
3779
                         (others => False);
3780
      --  If Others_Present (J) is True, then there is an others choice
3781
      --  in one of the sub-aggregates of N at dimension J.
3782
 
3783
      procedure Build_Constrained_Type (Positional : Boolean);
3784
      --  If the subtype is not static or unconstrained, build a constrained
3785
      --  type using the computable sizes of the aggregate and its sub-
3786
      --  aggregates.
3787
 
3788
      procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
3789
      --  Checks that the bounds of Aggr_Bounds are within the bounds defined
3790
      --  by Index_Bounds.
3791
 
3792
      procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
3793
      --  Checks that in a multi-dimensional array aggregate all subaggregates
3794
      --  corresponding to the same dimension have the same bounds.
3795
      --  Sub_Aggr is an array sub-aggregate. Dim is the dimension
3796
      --  corresponding to the sub-aggregate.
3797
 
3798
      procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
3799
      --  Computes the values of array Others_Present. Sub_Aggr is the
3800
      --  array sub-aggregate we start the computation from. Dim is the
3801
      --  dimension corresponding to the sub-aggregate.
3802
 
3803
      function In_Place_Assign_OK return Boolean;
3804
      --  Simple predicate to determine whether an aggregate assignment can
3805
      --  be done in place, because none of the new values can depend on the
3806
      --  components of the target of the assignment.
3807
 
3808
      procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
3809
      --  Checks that if an others choice is present in any sub-aggregate no
3810
      --  aggregate index is outside the bounds of the index constraint.
3811
      --  Sub_Aggr is an array sub-aggregate. Dim is the dimension
3812
      --  corresponding to the sub-aggregate.
3813
 
3814
      function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
3815
      --  In addition to Maybe_In_Place_OK, in order for an aggregate to be
3816
      --  built directly into the target of the assignment it must be free
3817
      --  of side-effects.
3818
 
3819
      ----------------------------
3820
      -- Build_Constrained_Type --
3821
      ----------------------------
3822
 
3823
      procedure Build_Constrained_Type (Positional : Boolean) is
3824
         Loc      : constant Source_Ptr := Sloc (N);
3825
         Agg_Type : constant Entity_Id  := Make_Temporary (Loc, 'A');
3826
         Comp     : Node_Id;
3827
         Decl     : Node_Id;
3828
         Typ      : constant Entity_Id := Etype (N);
3829
         Indexes  : constant List_Id   := New_List;
3830
         Num      : Int;
3831
         Sub_Agg  : Node_Id;
3832
 
3833
      begin
3834
         --  If the aggregate is purely positional, all its subaggregates
3835
         --  have the same size. We collect the dimensions from the first
3836
         --  subaggregate at each level.
3837
 
3838
         if Positional then
3839
            Sub_Agg := N;
3840
 
3841
            for D in 1 .. Number_Dimensions (Typ) loop
3842
               Sub_Agg := First (Expressions (Sub_Agg));
3843
 
3844
               Comp := Sub_Agg;
3845
               Num := 0;
3846
               while Present (Comp) loop
3847
                  Num := Num + 1;
3848
                  Next (Comp);
3849
               end loop;
3850
 
3851
               Append_To (Indexes,
3852
                 Make_Range (Loc,
3853
                   Low_Bound =>  Make_Integer_Literal (Loc, 1),
3854
                   High_Bound => Make_Integer_Literal (Loc, Num)));
3855
            end loop;
3856
 
3857
         else
3858
            --  We know the aggregate type is unconstrained and the aggregate
3859
            --  is not processable by the back end, therefore not necessarily
3860
            --  positional. Retrieve each dimension bounds (computed earlier).
3861
 
3862
            for D in 1 .. Number_Dimensions (Typ) loop
3863
               Append (
3864
                 Make_Range (Loc,
3865
                    Low_Bound  => Aggr_Low  (D),
3866
                    High_Bound => Aggr_High (D)),
3867
                 Indexes);
3868
            end loop;
3869
         end if;
3870
 
3871
         Decl :=
3872
           Make_Full_Type_Declaration (Loc,
3873
               Defining_Identifier => Agg_Type,
3874
               Type_Definition =>
3875
                 Make_Constrained_Array_Definition (Loc,
3876
                   Discrete_Subtype_Definitions => Indexes,
3877
                   Component_Definition         =>
3878
                     Make_Component_Definition (Loc,
3879
                       Aliased_Present    => False,
3880
                       Subtype_Indication =>
3881
                         New_Occurrence_Of (Component_Type (Typ), Loc))));
3882
 
3883
         Insert_Action (N, Decl);
3884
         Analyze (Decl);
3885
         Set_Etype (N, Agg_Type);
3886
         Set_Is_Itype (Agg_Type);
3887
         Freeze_Itype (Agg_Type, N);
3888
      end Build_Constrained_Type;
3889
 
3890
      ------------------
3891
      -- Check_Bounds --
3892
      ------------------
3893
 
3894
      procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
3895
         Aggr_Lo : Node_Id;
3896
         Aggr_Hi : Node_Id;
3897
 
3898
         Ind_Lo  : Node_Id;
3899
         Ind_Hi  : Node_Id;
3900
 
3901
         Cond    : Node_Id := Empty;
3902
 
3903
      begin
3904
         Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
3905
         Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
3906
 
3907
         --  Generate the following test:
3908
         --
3909
         --    [constraint_error when
3910
         --      Aggr_Lo <= Aggr_Hi and then
3911
         --        (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
3912
 
3913
         --  As an optimization try to see if some tests are trivially vacuous
3914
         --  because we are comparing an expression against itself.
3915
 
3916
         if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
3917
            Cond := Empty;
3918
 
3919
         elsif Aggr_Hi = Ind_Hi then
3920
            Cond :=
3921
              Make_Op_Lt (Loc,
3922
                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3923
                Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
3924
 
3925
         elsif Aggr_Lo = Ind_Lo then
3926
            Cond :=
3927
              Make_Op_Gt (Loc,
3928
                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
3929
                Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
3930
 
3931
         else
3932
            Cond :=
3933
              Make_Or_Else (Loc,
3934
                Left_Opnd =>
3935
                  Make_Op_Lt (Loc,
3936
                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3937
                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
3938
 
3939
                Right_Opnd =>
3940
                  Make_Op_Gt (Loc,
3941
                    Left_Opnd  => Duplicate_Subexpr (Aggr_Hi),
3942
                    Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
3943
         end if;
3944
 
3945
         if Present (Cond) then
3946
            Cond :=
3947
              Make_And_Then (Loc,
3948
                Left_Opnd =>
3949
                  Make_Op_Le (Loc,
3950
                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3951
                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
3952
 
3953
                Right_Opnd => Cond);
3954
 
3955
            Set_Analyzed (Left_Opnd  (Left_Opnd (Cond)), False);
3956
            Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
3957
            Insert_Action (N,
3958
              Make_Raise_Constraint_Error (Loc,
3959
                Condition => Cond,
3960
                Reason    => CE_Length_Check_Failed));
3961
         end if;
3962
      end Check_Bounds;
3963
 
3964
      ----------------------------
3965
      -- Check_Same_Aggr_Bounds --
3966
      ----------------------------
3967
 
3968
      procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
3969
         Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
3970
         Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
3971
         --  The bounds of this specific sub-aggregate
3972
 
3973
         Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
3974
         Aggr_Hi : constant Node_Id := Aggr_High (Dim);
3975
         --  The bounds of the aggregate for this dimension
3976
 
3977
         Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3978
         --  The index type for this dimension.xxx
3979
 
3980
         Cond  : Node_Id := Empty;
3981
         Assoc : Node_Id;
3982
         Expr  : Node_Id;
3983
 
3984
      begin
3985
         --  If index checks are on generate the test
3986
 
3987
         --    [constraint_error when
3988
         --      Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
3989
 
3990
         --  As an optimization try to see if some tests are trivially vacuos
3991
         --  because we are comparing an expression against itself. Also for
3992
         --  the first dimension the test is trivially vacuous because there
3993
         --  is just one aggregate for dimension 1.
3994
 
3995
         if Index_Checks_Suppressed (Ind_Typ) then
3996
            Cond := Empty;
3997
 
3998
         elsif Dim = 1
3999
           or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
4000
         then
4001
            Cond := Empty;
4002
 
4003
         elsif Aggr_Hi = Sub_Hi then
4004
            Cond :=
4005
              Make_Op_Ne (Loc,
4006
                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4007
                Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
4008
 
4009
         elsif Aggr_Lo = Sub_Lo then
4010
            Cond :=
4011
              Make_Op_Ne (Loc,
4012
                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4013
                Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
4014
 
4015
         else
4016
            Cond :=
4017
              Make_Or_Else (Loc,
4018
                Left_Opnd =>
4019
                  Make_Op_Ne (Loc,
4020
                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4021
                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
4022
 
4023
                Right_Opnd =>
4024
                  Make_Op_Ne (Loc,
4025
                    Left_Opnd  => Duplicate_Subexpr (Aggr_Hi),
4026
                    Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
4027
         end if;
4028
 
4029
         if Present (Cond) then
4030
            Insert_Action (N,
4031
              Make_Raise_Constraint_Error (Loc,
4032
                Condition => Cond,
4033
                Reason    => CE_Length_Check_Failed));
4034
         end if;
4035
 
4036
         --  Now look inside the sub-aggregate to see if there is more work
4037
 
4038
         if Dim < Aggr_Dimension then
4039
 
4040
            --  Process positional components
4041
 
4042
            if Present (Expressions (Sub_Aggr)) then
4043
               Expr := First (Expressions (Sub_Aggr));
4044
               while Present (Expr) loop
4045
                  Check_Same_Aggr_Bounds (Expr, Dim + 1);
4046
                  Next (Expr);
4047
               end loop;
4048
            end if;
4049
 
4050
            --  Process component associations
4051
 
4052
            if Present (Component_Associations (Sub_Aggr)) then
4053
               Assoc := First (Component_Associations (Sub_Aggr));
4054
               while Present (Assoc) loop
4055
                  Expr := Expression (Assoc);
4056
                  Check_Same_Aggr_Bounds (Expr, Dim + 1);
4057
                  Next (Assoc);
4058
               end loop;
4059
            end if;
4060
         end if;
4061
      end Check_Same_Aggr_Bounds;
4062
 
4063
      ----------------------------
4064
      -- Compute_Others_Present --
4065
      ----------------------------
4066
 
4067
      procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
4068
         Assoc : Node_Id;
4069
         Expr  : Node_Id;
4070
 
4071
      begin
4072
         if Present (Component_Associations (Sub_Aggr)) then
4073
            Assoc := Last (Component_Associations (Sub_Aggr));
4074
 
4075
            if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4076
               Others_Present (Dim) := True;
4077
            end if;
4078
         end if;
4079
 
4080
         --  Now look inside the sub-aggregate to see if there is more work
4081
 
4082
         if Dim < Aggr_Dimension then
4083
 
4084
            --  Process positional components
4085
 
4086
            if Present (Expressions (Sub_Aggr)) then
4087
               Expr := First (Expressions (Sub_Aggr));
4088
               while Present (Expr) loop
4089
                  Compute_Others_Present (Expr, Dim + 1);
4090
                  Next (Expr);
4091
               end loop;
4092
            end if;
4093
 
4094
            --  Process component associations
4095
 
4096
            if Present (Component_Associations (Sub_Aggr)) then
4097
               Assoc := First (Component_Associations (Sub_Aggr));
4098
               while Present (Assoc) loop
4099
                  Expr := Expression (Assoc);
4100
                  Compute_Others_Present (Expr, Dim + 1);
4101
                  Next (Assoc);
4102
               end loop;
4103
            end if;
4104
         end if;
4105
      end Compute_Others_Present;
4106
 
4107
      ------------------------
4108
      -- In_Place_Assign_OK --
4109
      ------------------------
4110
 
4111
      function In_Place_Assign_OK return Boolean is
4112
         Aggr_In : Node_Id;
4113
         Aggr_Lo : Node_Id;
4114
         Aggr_Hi : Node_Id;
4115
         Obj_In  : Node_Id;
4116
         Obj_Lo  : Node_Id;
4117
         Obj_Hi  : Node_Id;
4118
 
4119
         function Safe_Aggregate (Aggr : Node_Id) return Boolean;
4120
         --  Check recursively that each component of a (sub)aggregate does
4121
         --  not depend on the variable being assigned to.
4122
 
4123
         function Safe_Component (Expr : Node_Id) return Boolean;
4124
         --  Verify that an expression cannot depend on the variable being
4125
         --  assigned to. Room for improvement here (but less than before).
4126
 
4127
         --------------------
4128
         -- Safe_Aggregate --
4129
         --------------------
4130
 
4131
         function Safe_Aggregate (Aggr : Node_Id) return Boolean is
4132
            Expr : Node_Id;
4133
 
4134
         begin
4135
            if Present (Expressions (Aggr)) then
4136
               Expr := First (Expressions (Aggr));
4137
               while Present (Expr) loop
4138
                  if Nkind (Expr) = N_Aggregate then
4139
                     if not Safe_Aggregate (Expr) then
4140
                        return False;
4141
                     end if;
4142
 
4143
                  elsif not Safe_Component (Expr) then
4144
                     return False;
4145
                  end if;
4146
 
4147
                  Next (Expr);
4148
               end loop;
4149
            end if;
4150
 
4151
            if Present (Component_Associations (Aggr)) then
4152
               Expr := First (Component_Associations (Aggr));
4153
               while Present (Expr) loop
4154
                  if Nkind (Expression (Expr)) = N_Aggregate then
4155
                     if not Safe_Aggregate (Expression (Expr)) then
4156
                        return False;
4157
                     end if;
4158
 
4159
                  --  If association has a box, no way to determine yet
4160
                  --  whether default can be assigned in place.
4161
 
4162
                  elsif Box_Present (Expr) then
4163
                     return False;
4164
 
4165
                  elsif not Safe_Component (Expression (Expr)) then
4166
                     return False;
4167
                  end if;
4168
 
4169
                  Next (Expr);
4170
               end loop;
4171
            end if;
4172
 
4173
            return True;
4174
         end Safe_Aggregate;
4175
 
4176
         --------------------
4177
         -- Safe_Component --
4178
         --------------------
4179
 
4180
         function Safe_Component (Expr : Node_Id) return Boolean is
4181
            Comp : Node_Id := Expr;
4182
 
4183
            function Check_Component (Comp : Node_Id) return Boolean;
4184
            --  Do the recursive traversal, after copy
4185
 
4186
            ---------------------
4187
            -- Check_Component --
4188
            ---------------------
4189
 
4190
            function Check_Component (Comp : Node_Id) return Boolean is
4191
            begin
4192
               if Is_Overloaded (Comp) then
4193
                  return False;
4194
               end if;
4195
 
4196
               return Compile_Time_Known_Value (Comp)
4197
 
4198
                 or else (Is_Entity_Name (Comp)
4199
                           and then  Present (Entity (Comp))
4200
                           and then No (Renamed_Object (Entity (Comp))))
4201
 
4202
                 or else (Nkind (Comp) = N_Attribute_Reference
4203
                           and then Check_Component (Prefix (Comp)))
4204
 
4205
                 or else (Nkind (Comp) in N_Binary_Op
4206
                           and then Check_Component (Left_Opnd  (Comp))
4207
                           and then Check_Component (Right_Opnd (Comp)))
4208
 
4209
                 or else (Nkind (Comp) in N_Unary_Op
4210
                           and then Check_Component (Right_Opnd (Comp)))
4211
 
4212
                 or else (Nkind (Comp) = N_Selected_Component
4213
                           and then Check_Component (Prefix (Comp)))
4214
 
4215
                 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
4216
                           and then Check_Component (Expression (Comp)));
4217
            end Check_Component;
4218
 
4219
         --  Start of processing for Safe_Component
4220
 
4221
         begin
4222
            --  If the component appears in an association that may
4223
            --  correspond to more than one element, it is not analyzed
4224
            --  before the expansion into assignments, to avoid side effects.
4225
            --  We analyze, but do not resolve the copy, to obtain sufficient
4226
            --  entity information for the checks that follow. If component is
4227
            --  overloaded we assume an unsafe function call.
4228
 
4229
            if not Analyzed (Comp) then
4230
               if Is_Overloaded (Expr) then
4231
                  return False;
4232
 
4233
               elsif Nkind (Expr) = N_Aggregate
4234
                  and then not Is_Others_Aggregate (Expr)
4235
               then
4236
                  return False;
4237
 
4238
               elsif Nkind (Expr) = N_Allocator then
4239
 
4240
                  --  For now, too complex to analyze
4241
 
4242
                  return False;
4243
               end if;
4244
 
4245
               Comp := New_Copy_Tree (Expr);
4246
               Set_Parent (Comp, Parent (Expr));
4247
               Analyze (Comp);
4248
            end if;
4249
 
4250
            if Nkind (Comp) = N_Aggregate then
4251
               return Safe_Aggregate (Comp);
4252
            else
4253
               return Check_Component (Comp);
4254
            end if;
4255
         end Safe_Component;
4256
 
4257
      --  Start of processing for In_Place_Assign_OK
4258
 
4259
      begin
4260
         if Present (Component_Associations (N)) then
4261
 
4262
            --  On assignment, sliding can take place, so we cannot do the
4263
            --  assignment in place unless the bounds of the aggregate are
4264
            --  statically equal to those of the target.
4265
 
4266
            --  If the aggregate is given by an others choice, the bounds
4267
            --  are derived from the left-hand side, and the assignment is
4268
            --  safe if the expression is.
4269
 
4270
            if Is_Others_Aggregate (N) then
4271
               return
4272
                 Safe_Component
4273
                  (Expression (First (Component_Associations (N))));
4274
            end if;
4275
 
4276
            Aggr_In := First_Index (Etype (N));
4277
 
4278
            if Nkind (Parent (N)) = N_Assignment_Statement then
4279
               Obj_In  := First_Index (Etype (Name (Parent (N))));
4280
 
4281
            else
4282
               --  Context is an allocator. Check bounds of aggregate
4283
               --  against given type in qualified expression.
4284
 
4285
               pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
4286
               Obj_In :=
4287
                 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
4288
            end if;
4289
 
4290
            while Present (Aggr_In) loop
4291
               Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
4292
               Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
4293
 
4294
               if not Compile_Time_Known_Value (Aggr_Lo)
4295
                 or else not Compile_Time_Known_Value (Aggr_Hi)
4296
                 or else not Compile_Time_Known_Value (Obj_Lo)
4297
                 or else not Compile_Time_Known_Value (Obj_Hi)
4298
                 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
4299
                 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
4300
               then
4301
                  return False;
4302
               end if;
4303
 
4304
               Next_Index (Aggr_In);
4305
               Next_Index (Obj_In);
4306
            end loop;
4307
         end if;
4308
 
4309
         --  Now check the component values themselves
4310
 
4311
         return Safe_Aggregate (N);
4312
      end In_Place_Assign_OK;
4313
 
4314
      ------------------
4315
      -- Others_Check --
4316
      ------------------
4317
 
4318
      procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
4319
         Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4320
         Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4321
         --  The bounds of the aggregate for this dimension
4322
 
4323
         Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4324
         --  The index type for this dimension
4325
 
4326
         Need_To_Check : Boolean := False;
4327
 
4328
         Choices_Lo : Node_Id := Empty;
4329
         Choices_Hi : Node_Id := Empty;
4330
         --  The lowest and highest discrete choices for a named sub-aggregate
4331
 
4332
         Nb_Choices : Int := -1;
4333
         --  The number of discrete non-others choices in this sub-aggregate
4334
 
4335
         Nb_Elements : Uint := Uint_0;
4336
         --  The number of elements in a positional aggregate
4337
 
4338
         Cond : Node_Id := Empty;
4339
 
4340
         Assoc  : Node_Id;
4341
         Choice : Node_Id;
4342
         Expr   : Node_Id;
4343
 
4344
      begin
4345
         --  Check if we have an others choice. If we do make sure that this
4346
         --  sub-aggregate contains at least one element in addition to the
4347
         --  others choice.
4348
 
4349
         if Range_Checks_Suppressed (Ind_Typ) then
4350
            Need_To_Check := False;
4351
 
4352
         elsif Present (Expressions (Sub_Aggr))
4353
           and then Present (Component_Associations (Sub_Aggr))
4354
         then
4355
            Need_To_Check := True;
4356
 
4357
         elsif Present (Component_Associations (Sub_Aggr)) then
4358
            Assoc := Last (Component_Associations (Sub_Aggr));
4359
 
4360
            if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
4361
               Need_To_Check := False;
4362
 
4363
            else
4364
               --  Count the number of discrete choices. Start with -1 because
4365
               --  the others choice does not count.
4366
 
4367
               Nb_Choices := -1;
4368
               Assoc := First (Component_Associations (Sub_Aggr));
4369
               while Present (Assoc) loop
4370
                  Choice := First (Choices (Assoc));
4371
                  while Present (Choice) loop
4372
                     Nb_Choices := Nb_Choices + 1;
4373
                     Next (Choice);
4374
                  end loop;
4375
 
4376
                  Next (Assoc);
4377
               end loop;
4378
 
4379
               --  If there is only an others choice nothing to do
4380
 
4381
               Need_To_Check := (Nb_Choices > 0);
4382
            end if;
4383
 
4384
         else
4385
            Need_To_Check := False;
4386
         end if;
4387
 
4388
         --  If we are dealing with a positional sub-aggregate with an others
4389
         --  choice then compute the number or positional elements.
4390
 
4391
         if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
4392
            Expr := First (Expressions (Sub_Aggr));
4393
            Nb_Elements := Uint_0;
4394
            while Present (Expr) loop
4395
               Nb_Elements := Nb_Elements + 1;
4396
               Next (Expr);
4397
            end loop;
4398
 
4399
         --  If the aggregate contains discrete choices and an others choice
4400
         --  compute the smallest and largest discrete choice values.
4401
 
4402
         elsif Need_To_Check then
4403
            Compute_Choices_Lo_And_Choices_Hi : declare
4404
 
4405
               Table : Case_Table_Type (1 .. Nb_Choices);
4406
               --  Used to sort all the different choice values
4407
 
4408
               J    : Pos := 1;
4409
               Low  : Node_Id;
4410
               High : Node_Id;
4411
 
4412
            begin
4413
               Assoc := First (Component_Associations (Sub_Aggr));
4414
               while Present (Assoc) loop
4415
                  Choice := First (Choices (Assoc));
4416
                  while Present (Choice) loop
4417
                     if Nkind (Choice) = N_Others_Choice then
4418
                        exit;
4419
                     end if;
4420
 
4421
                     Get_Index_Bounds (Choice, Low, High);
4422
                     Table (J).Choice_Lo := Low;
4423
                     Table (J).Choice_Hi := High;
4424
 
4425
                     J := J + 1;
4426
                     Next (Choice);
4427
                  end loop;
4428
 
4429
                  Next (Assoc);
4430
               end loop;
4431
 
4432
               --  Sort the discrete choices
4433
 
4434
               Sort_Case_Table (Table);
4435
 
4436
               Choices_Lo := Table (1).Choice_Lo;
4437
               Choices_Hi := Table (Nb_Choices).Choice_Hi;
4438
            end Compute_Choices_Lo_And_Choices_Hi;
4439
         end if;
4440
 
4441
         --  If no others choice in this sub-aggregate, or the aggregate
4442
         --  comprises only an others choice, nothing to do.
4443
 
4444
         if not Need_To_Check then
4445
            Cond := Empty;
4446
 
4447
         --  If we are dealing with an aggregate containing an others choice
4448
         --  and positional components, we generate the following test:
4449
 
4450
         --    if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
4451
         --            Ind_Typ'Pos (Aggr_Hi)
4452
         --    then
4453
         --       raise Constraint_Error;
4454
         --    end if;
4455
 
4456
         elsif Nb_Elements > Uint_0 then
4457
            Cond :=
4458
              Make_Op_Gt (Loc,
4459
                Left_Opnd  =>
4460
                  Make_Op_Add (Loc,
4461
                    Left_Opnd  =>
4462
                      Make_Attribute_Reference (Loc,
4463
                        Prefix         => New_Reference_To (Ind_Typ, Loc),
4464
                        Attribute_Name => Name_Pos,
4465
                        Expressions    =>
4466
                          New_List
4467
                            (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
4468
                    Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
4469
 
4470
                Right_Opnd =>
4471
                  Make_Attribute_Reference (Loc,
4472
                    Prefix         => New_Reference_To (Ind_Typ, Loc),
4473
                    Attribute_Name => Name_Pos,
4474
                    Expressions    => New_List (
4475
                      Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
4476
 
4477
         --  If we are dealing with an aggregate containing an others choice
4478
         --  and discrete choices we generate the following test:
4479
 
4480
         --    [constraint_error when
4481
         --      Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
4482
 
4483
         else
4484
            Cond :=
4485
              Make_Or_Else (Loc,
4486
                Left_Opnd =>
4487
                  Make_Op_Lt (Loc,
4488
                    Left_Opnd  =>
4489
                      Duplicate_Subexpr_Move_Checks (Choices_Lo),
4490
                    Right_Opnd =>
4491
                      Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
4492
 
4493
                Right_Opnd =>
4494
                  Make_Op_Gt (Loc,
4495
                    Left_Opnd  =>
4496
                      Duplicate_Subexpr (Choices_Hi),
4497
                    Right_Opnd =>
4498
                      Duplicate_Subexpr (Aggr_Hi)));
4499
         end if;
4500
 
4501
         if Present (Cond) then
4502
            Insert_Action (N,
4503
              Make_Raise_Constraint_Error (Loc,
4504
                Condition => Cond,
4505
                Reason    => CE_Length_Check_Failed));
4506
            --  Questionable reason code, shouldn't that be a
4507
            --  CE_Range_Check_Failed ???
4508
         end if;
4509
 
4510
         --  Now look inside the sub-aggregate to see if there is more work
4511
 
4512
         if Dim < Aggr_Dimension then
4513
 
4514
            --  Process positional components
4515
 
4516
            if Present (Expressions (Sub_Aggr)) then
4517
               Expr := First (Expressions (Sub_Aggr));
4518
               while Present (Expr) loop
4519
                  Others_Check (Expr, Dim + 1);
4520
                  Next (Expr);
4521
               end loop;
4522
            end if;
4523
 
4524
            --  Process component associations
4525
 
4526
            if Present (Component_Associations (Sub_Aggr)) then
4527
               Assoc := First (Component_Associations (Sub_Aggr));
4528
               while Present (Assoc) loop
4529
                  Expr := Expression (Assoc);
4530
                  Others_Check (Expr, Dim + 1);
4531
                  Next (Assoc);
4532
               end loop;
4533
            end if;
4534
         end if;
4535
      end Others_Check;
4536
 
4537
      -------------------------
4538
      -- Safe_Left_Hand_Side --
4539
      -------------------------
4540
 
4541
      function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
4542
         function Is_Safe_Index (Indx : Node_Id) return Boolean;
4543
         --  If the left-hand side includes an indexed component, check that
4544
         --  the indexes are free of side-effect.
4545
 
4546
         -------------------
4547
         -- Is_Safe_Index --
4548
         -------------------
4549
 
4550
         function Is_Safe_Index (Indx : Node_Id) return Boolean is
4551
         begin
4552
            if Is_Entity_Name (Indx) then
4553
               return True;
4554
 
4555
            elsif Nkind (Indx) = N_Integer_Literal then
4556
               return True;
4557
 
4558
            elsif Nkind (Indx) = N_Function_Call
4559
              and then Is_Entity_Name (Name (Indx))
4560
              and then
4561
                Has_Pragma_Pure_Function (Entity (Name (Indx)))
4562
            then
4563
               return True;
4564
 
4565
            elsif Nkind (Indx) = N_Type_Conversion
4566
              and then Is_Safe_Index (Expression (Indx))
4567
            then
4568
               return True;
4569
 
4570
            else
4571
               return False;
4572
            end if;
4573
         end Is_Safe_Index;
4574
 
4575
      --  Start of processing for Safe_Left_Hand_Side
4576
 
4577
      begin
4578
         if Is_Entity_Name (N) then
4579
            return True;
4580
 
4581
         elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
4582
           and then Safe_Left_Hand_Side (Prefix (N))
4583
         then
4584
            return True;
4585
 
4586
         elsif Nkind (N) = N_Indexed_Component
4587
           and then Safe_Left_Hand_Side (Prefix (N))
4588
           and then
4589
             Is_Safe_Index (First (Expressions (N)))
4590
         then
4591
            return True;
4592
 
4593
         elsif Nkind (N) = N_Unchecked_Type_Conversion then
4594
            return Safe_Left_Hand_Side (Expression (N));
4595
 
4596
         else
4597
            return False;
4598
         end if;
4599
      end Safe_Left_Hand_Side;
4600
 
4601
      --  Local variables
4602
 
4603
      Tmp : Entity_Id;
4604
      --  Holds the temporary aggregate value
4605
 
4606
      Tmp_Decl : Node_Id;
4607
      --  Holds the declaration of Tmp
4608
 
4609
      Aggr_Code   : List_Id;
4610
      Parent_Node : Node_Id;
4611
      Parent_Kind : Node_Kind;
4612
 
4613
   --  Start of processing for Expand_Array_Aggregate
4614
 
4615
   begin
4616
      --  Do not touch the special aggregates of attributes used for Asm calls
4617
 
4618
      if Is_RTE (Ctyp, RE_Asm_Input_Operand)
4619
        or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
4620
      then
4621
         return;
4622
 
4623
      --  Do not expand an aggregate for an array type which contains tasks if
4624
      --  the aggregate is associated with an unexpanded return statement of a
4625
      --  build-in-place function. The aggregate is expanded when the related
4626
      --  return statement (rewritten into an extended return) is processed.
4627
      --  This delay ensures that any temporaries and initialization code
4628
      --  generated for the aggregate appear in the proper return block and
4629
      --  use the correct _chain and _master.
4630
 
4631
      elsif Has_Task (Base_Type (Etype (N)))
4632
        and then Nkind (Parent (N)) = N_Simple_Return_Statement
4633
        and then Is_Build_In_Place_Function
4634
                   (Return_Applies_To (Return_Statement_Entity (Parent (N))))
4635
      then
4636
         return;
4637
      end if;
4638
 
4639
      --  If the semantic analyzer has determined that aggregate N will raise
4640
      --  Constraint_Error at run time, then the aggregate node has been
4641
      --  replaced with an N_Raise_Constraint_Error node and we should
4642
      --  never get here.
4643
 
4644
      pragma Assert (not Raises_Constraint_Error (N));
4645
 
4646
      --  STEP 1a
4647
 
4648
      --  Check that the index range defined by aggregate bounds is
4649
      --  compatible with corresponding index subtype.
4650
 
4651
      Index_Compatibility_Check : declare
4652
         Aggr_Index_Range : Node_Id := First_Index (Typ);
4653
         --  The current aggregate index range
4654
 
4655
         Index_Constraint : Node_Id := First_Index (Etype (Typ));
4656
         --  The corresponding index constraint against which we have to
4657
         --  check the above aggregate index range.
4658
 
4659
      begin
4660
         Compute_Others_Present (N, 1);
4661
 
4662
         for J in 1 .. Aggr_Dimension loop
4663
            --  There is no need to emit a check if an others choice is
4664
            --  present for this array aggregate dimension since in this
4665
            --  case one of N's sub-aggregates has taken its bounds from the
4666
            --  context and these bounds must have been checked already. In
4667
            --  addition all sub-aggregates corresponding to the same
4668
            --  dimension must all have the same bounds (checked in (c) below).
4669
 
4670
            if not Range_Checks_Suppressed (Etype (Index_Constraint))
4671
              and then not Others_Present (J)
4672
            then
4673
               --  We don't use Checks.Apply_Range_Check here because it emits
4674
               --  a spurious check. Namely it checks that the range defined by
4675
               --  the aggregate bounds is non empty. But we know this already
4676
               --  if we get here.
4677
 
4678
               Check_Bounds (Aggr_Index_Range, Index_Constraint);
4679
            end if;
4680
 
4681
            --  Save the low and high bounds of the aggregate index as well as
4682
            --  the index type for later use in checks (b) and (c) below.
4683
 
4684
            Aggr_Low  (J) := Low_Bound (Aggr_Index_Range);
4685
            Aggr_High (J) := High_Bound (Aggr_Index_Range);
4686
 
4687
            Aggr_Index_Typ (J) := Etype (Index_Constraint);
4688
 
4689
            Next_Index (Aggr_Index_Range);
4690
            Next_Index (Index_Constraint);
4691
         end loop;
4692
      end Index_Compatibility_Check;
4693
 
4694
      --  STEP 1b
4695
 
4696
      --  If an others choice is present check that no aggregate index is
4697
      --  outside the bounds of the index constraint.
4698
 
4699
      Others_Check (N, 1);
4700
 
4701
      --  STEP 1c
4702
 
4703
      --  For multidimensional arrays make sure that all subaggregates
4704
      --  corresponding to the same dimension have the same bounds.
4705
 
4706
      if Aggr_Dimension > 1 then
4707
         Check_Same_Aggr_Bounds (N, 1);
4708
      end if;
4709
 
4710
      --  STEP 2
4711
 
4712
      --  Here we test for is packed array aggregate that we can handle at
4713
      --  compile time. If so, return with transformation done. Note that we do
4714
      --  this even if the aggregate is nested, because once we have done this
4715
      --  processing, there is no more nested aggregate!
4716
 
4717
      if Packed_Array_Aggregate_Handled (N) then
4718
         return;
4719
      end if;
4720
 
4721
      --  At this point we try to convert to positional form
4722
 
4723
      if Ekind (Current_Scope) = E_Package
4724
        and then Static_Elaboration_Desired (Current_Scope)
4725
      then
4726
         Convert_To_Positional (N, Max_Others_Replicate => 100);
4727
      else
4728
         Convert_To_Positional (N);
4729
      end if;
4730
 
4731
      --  if the result is no longer an aggregate (e.g. it may be a string
4732
      --  literal, or a temporary which has the needed value), then we are
4733
      --  done, since there is no longer a nested aggregate.
4734
 
4735
      if Nkind (N) /= N_Aggregate then
4736
         return;
4737
 
4738
      --  We are also done if the result is an analyzed aggregate
4739
      --  This case could use more comments ???
4740
 
4741
      elsif Analyzed (N)
4742
        and then N /= Original_Node (N)
4743
      then
4744
         return;
4745
      end if;
4746
 
4747
      --  If all aggregate components are compile-time known and the aggregate
4748
      --  has been flattened, nothing left to do. The same occurs if the
4749
      --  aggregate is used to initialize the components of an statically
4750
      --  allocated dispatch table.
4751
 
4752
      if Compile_Time_Known_Aggregate (N)
4753
        or else Is_Static_Dispatch_Table_Aggregate (N)
4754
      then
4755
         Set_Expansion_Delayed (N, False);
4756
         return;
4757
      end if;
4758
 
4759
      --  Now see if back end processing is possible
4760
 
4761
      if Backend_Processing_Possible (N) then
4762
 
4763
         --  If the aggregate is static but the constraints are not, build
4764
         --  a static subtype for the aggregate, so that Gigi can place it
4765
         --  in static memory. Perform an unchecked_conversion to the non-
4766
         --  static type imposed by the context.
4767
 
4768
         declare
4769
            Itype      : constant Entity_Id := Etype (N);
4770
            Index      : Node_Id;
4771
            Needs_Type : Boolean := False;
4772
 
4773
         begin
4774
            Index := First_Index (Itype);
4775
            while Present (Index) loop
4776
               if not Is_Static_Subtype (Etype (Index)) then
4777
                  Needs_Type := True;
4778
                  exit;
4779
               else
4780
                  Next_Index (Index);
4781
               end if;
4782
            end loop;
4783
 
4784
            if Needs_Type then
4785
               Build_Constrained_Type (Positional => True);
4786
               Rewrite (N, Unchecked_Convert_To (Itype, N));
4787
               Analyze (N);
4788
            end if;
4789
         end;
4790
 
4791
         return;
4792
      end if;
4793
 
4794
      --  STEP 3
4795
 
4796
      --  Delay expansion for nested aggregates: it will be taken care of
4797
      --  when the parent aggregate is expanded.
4798
 
4799
      Parent_Node := Parent (N);
4800
      Parent_Kind := Nkind (Parent_Node);
4801
 
4802
      if Parent_Kind = N_Qualified_Expression then
4803
         Parent_Node := Parent (Parent_Node);
4804
         Parent_Kind := Nkind (Parent_Node);
4805
      end if;
4806
 
4807
      if Parent_Kind = N_Aggregate
4808
        or else Parent_Kind = N_Extension_Aggregate
4809
        or else Parent_Kind = N_Component_Association
4810
        or else (Parent_Kind = N_Object_Declaration
4811
                  and then Needs_Finalization (Typ))
4812
        or else (Parent_Kind = N_Assignment_Statement
4813
                  and then Inside_Init_Proc)
4814
      then
4815
         if Static_Array_Aggregate (N)
4816
           or else Compile_Time_Known_Aggregate (N)
4817
         then
4818
            Set_Expansion_Delayed (N, False);
4819
            return;
4820
         else
4821
            Set_Expansion_Delayed (N);
4822
            return;
4823
         end if;
4824
      end if;
4825
 
4826
      --  STEP 4
4827
 
4828
      --  Look if in place aggregate expansion is possible
4829
 
4830
      --  For object declarations we build the aggregate in place, unless
4831
      --  the array is bit-packed or the component is controlled.
4832
 
4833
      --  For assignments we do the assignment in place if all the component
4834
      --  associations have compile-time known values. For other cases we
4835
      --  create a temporary. The analysis for safety of on-line assignment
4836
      --  is delicate, i.e. we don't know how to do it fully yet ???
4837
 
4838
      --  For allocators we assign to the designated object in place if the
4839
      --  aggregate meets the same conditions as other in-place assignments.
4840
      --  In this case the aggregate may not come from source but was created
4841
      --  for default initialization, e.g. with Initialize_Scalars.
4842
 
4843
      if Requires_Transient_Scope (Typ) then
4844
         Establish_Transient_Scope
4845
           (N, Sec_Stack => Has_Controlled_Component (Typ));
4846
      end if;
4847
 
4848
      if Has_Default_Init_Comps (N) then
4849
         Maybe_In_Place_OK := False;
4850
 
4851
      elsif Is_Bit_Packed_Array (Typ)
4852
        or else Has_Controlled_Component (Typ)
4853
      then
4854
         Maybe_In_Place_OK := False;
4855
 
4856
      else
4857
         Maybe_In_Place_OK :=
4858
          (Nkind (Parent (N)) = N_Assignment_Statement
4859
            and then Comes_From_Source (N)
4860
            and then In_Place_Assign_OK)
4861
 
4862
          or else
4863
            (Nkind (Parent (Parent (N))) = N_Allocator
4864
              and then In_Place_Assign_OK);
4865
      end if;
4866
 
4867
      --  If this is an array of tasks, it will be expanded into build-in-place
4868
      --  assignments. Build an activation chain for the tasks now.
4869
 
4870
      if Has_Task (Etype (N)) then
4871
         Build_Activation_Chain_Entity (N);
4872
      end if;
4873
 
4874
      --  Should document these individual tests ???
4875
 
4876
      if not Has_Default_Init_Comps (N)
4877
         and then Comes_From_Source (Parent (N))
4878
         and then Nkind (Parent (N)) = N_Object_Declaration
4879
         and then not
4880
           Must_Slide (Etype (Defining_Identifier (Parent (N))), Typ)
4881
         and then N = Expression (Parent (N))
4882
         and then not Is_Bit_Packed_Array (Typ)
4883
         and then not Has_Controlled_Component (Typ)
4884
 
4885
      --  If the aggregate is the expression in an object declaration, it
4886
      --  cannot be expanded in place. Lookahead in the current declarative
4887
      --  part to find an address clause for the object being declared. If
4888
      --  one is present, we cannot build in place. Unclear comment???
4889
 
4890
         and then not Has_Following_Address_Clause (Parent (N))
4891
      then
4892
         Tmp := Defining_Identifier (Parent (N));
4893
         Set_No_Initialization (Parent (N));
4894
         Set_Expression (Parent (N), Empty);
4895
 
4896
         --  Set the type of the entity, for use in the analysis of the
4897
         --  subsequent indexed assignments. If the nominal type is not
4898
         --  constrained, build a subtype from the known bounds of the
4899
         --  aggregate. If the declaration has a subtype mark, use it,
4900
         --  otherwise use the itype of the aggregate.
4901
 
4902
         if not Is_Constrained (Typ) then
4903
            Build_Constrained_Type (Positional => False);
4904
         elsif Is_Entity_Name (Object_Definition (Parent (N)))
4905
           and then Is_Constrained (Entity (Object_Definition (Parent (N))))
4906
         then
4907
            Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
4908
         else
4909
            Set_Size_Known_At_Compile_Time (Typ, False);
4910
            Set_Etype (Tmp, Typ);
4911
         end if;
4912
 
4913
      elsif Maybe_In_Place_OK
4914
        and then Nkind (Parent (N)) = N_Qualified_Expression
4915
        and then Nkind (Parent (Parent (N))) = N_Allocator
4916
      then
4917
         Set_Expansion_Delayed (N);
4918
         return;
4919
 
4920
      --  In the remaining cases the aggregate is the RHS of an assignment
4921
 
4922
      elsif Maybe_In_Place_OK
4923
        and then Safe_Left_Hand_Side (Name (Parent (N)))
4924
      then
4925
         Tmp := Name (Parent (N));
4926
 
4927
         if Etype (Tmp) /= Etype (N) then
4928
            Apply_Length_Check (N, Etype (Tmp));
4929
 
4930
            if Nkind (N) = N_Raise_Constraint_Error then
4931
 
4932
               --  Static error, nothing further to expand
4933
 
4934
               return;
4935
            end if;
4936
         end if;
4937
 
4938
      elsif Maybe_In_Place_OK
4939
        and then Nkind (Name (Parent (N))) = N_Slice
4940
        and then Safe_Slice_Assignment (N)
4941
      then
4942
         --  Safe_Slice_Assignment rewrites assignment as a loop
4943
 
4944
         return;
4945
 
4946
      --  Step 5
4947
 
4948
      --  In place aggregate expansion is not possible
4949
 
4950
      else
4951
         Maybe_In_Place_OK := False;
4952
         Tmp := Make_Temporary (Loc, 'A', N);
4953
         Tmp_Decl :=
4954
           Make_Object_Declaration
4955
             (Loc,
4956
              Defining_Identifier => Tmp,
4957
              Object_Definition   => New_Occurrence_Of (Typ, Loc));
4958
         Set_No_Initialization (Tmp_Decl, True);
4959
 
4960
         --  If we are within a loop, the temporary will be pushed on the
4961
         --  stack at each iteration. If the aggregate is the expression for an
4962
         --  allocator, it will be immediately copied to the heap and can
4963
         --  be reclaimed at once. We create a transient scope around the
4964
         --  aggregate for this purpose.
4965
 
4966
         if Ekind (Current_Scope) = E_Loop
4967
           and then Nkind (Parent (Parent (N))) = N_Allocator
4968
         then
4969
            Establish_Transient_Scope (N, False);
4970
         end if;
4971
 
4972
         Insert_Action (N, Tmp_Decl);
4973
      end if;
4974
 
4975
      --  Construct and insert the aggregate code. We can safely suppress index
4976
      --  checks because this code is guaranteed not to raise CE on index
4977
      --  checks. However we should *not* suppress all checks.
4978
 
4979
      declare
4980
         Target : Node_Id;
4981
 
4982
      begin
4983
         if Nkind (Tmp) = N_Defining_Identifier then
4984
            Target := New_Reference_To (Tmp, Loc);
4985
 
4986
         else
4987
 
4988
            if Has_Default_Init_Comps (N) then
4989
 
4990
               --  Ada 2005 (AI-287): This case has not been analyzed???
4991
 
4992
               raise Program_Error;
4993
            end if;
4994
 
4995
            --  Name in assignment is explicit dereference
4996
 
4997
            Target := New_Copy (Tmp);
4998
         end if;
4999
 
5000
         Aggr_Code :=
5001
           Build_Array_Aggr_Code (N,
5002
             Ctype       => Ctyp,
5003
             Index       => First_Index (Typ),
5004
             Into        => Target,
5005
             Scalar_Comp => Is_Scalar_Type (Ctyp));
5006
      end;
5007
 
5008
      if Comes_From_Source (Tmp) then
5009
         Insert_Actions_After (Parent (N), Aggr_Code);
5010
 
5011
      else
5012
         Insert_Actions (N, Aggr_Code);
5013
      end if;
5014
 
5015
      --  If the aggregate has been assigned in place, remove the original
5016
      --  assignment.
5017
 
5018
      if Nkind (Parent (N)) = N_Assignment_Statement
5019
        and then Maybe_In_Place_OK
5020
      then
5021
         Rewrite (Parent (N), Make_Null_Statement (Loc));
5022
 
5023
      elsif Nkind (Parent (N)) /= N_Object_Declaration
5024
        or else Tmp /= Defining_Identifier (Parent (N))
5025
      then
5026
         Rewrite (N, New_Occurrence_Of (Tmp, Loc));
5027
         Analyze_And_Resolve (N, Typ);
5028
      end if;
5029
   end Expand_Array_Aggregate;
5030
 
5031
   ------------------------
5032
   -- Expand_N_Aggregate --
5033
   ------------------------
5034
 
5035
   procedure Expand_N_Aggregate (N : Node_Id) is
5036
   begin
5037
      if Is_Record_Type (Etype (N)) then
5038
         Expand_Record_Aggregate (N);
5039
      else
5040
         Expand_Array_Aggregate (N);
5041
      end if;
5042
   exception
5043
      when RE_Not_Available =>
5044
         return;
5045
   end Expand_N_Aggregate;
5046
 
5047
   ----------------------------------
5048
   -- Expand_N_Extension_Aggregate --
5049
   ----------------------------------
5050
 
5051
   --  If the ancestor part is an expression, add a component association for
5052
   --  the parent field. If the type of the ancestor part is not the direct
5053
   --  parent of the expected type,  build recursively the needed ancestors.
5054
   --  If the ancestor part is a subtype_mark, replace aggregate with a decla-
5055
   --  ration for a temporary of the expected type, followed by individual
5056
   --  assignments to the given components.
5057
 
5058
   procedure Expand_N_Extension_Aggregate (N : Node_Id) is
5059
      Loc : constant Source_Ptr := Sloc  (N);
5060
      A   : constant Node_Id    := Ancestor_Part (N);
5061
      Typ : constant Entity_Id  := Etype (N);
5062
 
5063
   begin
5064
      --  If the ancestor is a subtype mark, an init proc must be called
5065
      --  on the resulting object which thus has to be materialized in
5066
      --  the front-end
5067
 
5068
      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
5069
         Convert_To_Assignments (N, Typ);
5070
 
5071
      --  The extension aggregate is transformed into a record aggregate
5072
      --  of the following form (c1 and c2 are inherited components)
5073
 
5074
      --   (Exp with c3 => a, c4 => b)
5075
      --      ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
5076
 
5077
      else
5078
         Set_Etype (N, Typ);
5079
 
5080
         if Tagged_Type_Expansion then
5081
            Expand_Record_Aggregate (N,
5082
              Orig_Tag    =>
5083
                New_Occurrence_Of
5084
                  (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
5085
              Parent_Expr => A);
5086
 
5087
         --  No tag is needed in the case of a VM
5088
 
5089
         else
5090
            Expand_Record_Aggregate (N, Parent_Expr => A);
5091
         end if;
5092
      end if;
5093
 
5094
   exception
5095
      when RE_Not_Available =>
5096
         return;
5097
   end Expand_N_Extension_Aggregate;
5098
 
5099
   -----------------------------
5100
   -- Expand_Record_Aggregate --
5101
   -----------------------------
5102
 
5103
   procedure Expand_Record_Aggregate
5104
     (N           : Node_Id;
5105
      Orig_Tag    : Node_Id := Empty;
5106
      Parent_Expr : Node_Id := Empty)
5107
   is
5108
      Loc      : constant Source_Ptr := Sloc  (N);
5109
      Comps    : constant List_Id    := Component_Associations (N);
5110
      Typ      : constant Entity_Id  := Etype (N);
5111
      Base_Typ : constant Entity_Id  := Base_Type (Typ);
5112
 
5113
      Static_Components : Boolean := True;
5114
      --  Flag to indicate whether all components are compile-time known,
5115
      --  and the aggregate can be constructed statically and handled by
5116
      --  the back-end.
5117
 
5118
      function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
5119
      --  Returns true if N is an expression of composite type which can be
5120
      --  fully evaluated at compile time without raising constraint error.
5121
      --  Such expressions can be passed as is to Gigi without any expansion.
5122
      --
5123
      --  This returns true for N_Aggregate with Compile_Time_Known_Aggregate
5124
      --  set and constants whose expression is such an aggregate, recursively.
5125
 
5126
      function Component_Not_OK_For_Backend return Boolean;
5127
      --  Check for presence of component which makes it impossible for the
5128
      --  backend to process the aggregate, thus requiring the use of a series
5129
      --  of assignment statements. Cases checked for are a nested aggregate
5130
      --  needing Late_Expansion, the presence of a tagged component which may
5131
      --  need tag adjustment, and a bit unaligned component reference.
5132
      --
5133
      --  We also force expansion into assignments if a component is of a
5134
      --  mutable type (including a private type with discriminants) because
5135
      --  in that case the size of the component to be copied may be smaller
5136
      --  than the side of the target, and there is no simple way for gigi
5137
      --  to compute the size of the object to be copied.
5138
      --
5139
      --  NOTE: This is part of the ongoing work to define precisely the
5140
      --  interface between front-end and back-end handling of aggregates.
5141
      --  In general it is desirable to pass aggregates as they are to gigi,
5142
      --  in order to minimize elaboration code. This is one case where the
5143
      --  semantics of Ada complicate the analysis and lead to anomalies in
5144
      --  the gcc back-end if the aggregate is not expanded into assignments.
5145
 
5146
      function Has_Visible_Private_Ancestor (Id : E) return Boolean;
5147
      --  If any ancestor of the current type is private, the aggregate
5148
      --  cannot be built in place. We canot rely on Has_Private_Ancestor,
5149
      --  because it will not be set when type and its parent are in the
5150
      --  same scope, and the parent component needs expansion.
5151
 
5152
      function Top_Level_Aggregate (N : Node_Id) return Node_Id;
5153
      --  For nested aggregates return the ultimate enclosing aggregate; for
5154
      --  non-nested aggregates return N.
5155
 
5156
      ----------------------------------------
5157
      -- Compile_Time_Known_Composite_Value --
5158
      ----------------------------------------
5159
 
5160
      function Compile_Time_Known_Composite_Value
5161
        (N : Node_Id) return Boolean
5162
      is
5163
      begin
5164
         --  If we have an entity name, then see if it is the name of a
5165
         --  constant and if so, test the corresponding constant value.
5166
 
5167
         if Is_Entity_Name (N) then
5168
            declare
5169
               E : constant Entity_Id := Entity (N);
5170
               V : Node_Id;
5171
            begin
5172
               if Ekind (E) /= E_Constant then
5173
                  return False;
5174
               else
5175
                  V := Constant_Value (E);
5176
                  return Present (V)
5177
                    and then Compile_Time_Known_Composite_Value (V);
5178
               end if;
5179
            end;
5180
 
5181
         --  We have a value, see if it is compile time known
5182
 
5183
         else
5184
            if Nkind (N) = N_Aggregate then
5185
               return Compile_Time_Known_Aggregate (N);
5186
            end if;
5187
 
5188
            --  All other types of values are not known at compile time
5189
 
5190
            return False;
5191
         end if;
5192
 
5193
      end Compile_Time_Known_Composite_Value;
5194
 
5195
      ----------------------------------
5196
      -- Component_Not_OK_For_Backend --
5197
      ----------------------------------
5198
 
5199
      function Component_Not_OK_For_Backend return Boolean is
5200
         C      : Node_Id;
5201
         Expr_Q : Node_Id;
5202
 
5203
      begin
5204
         if No (Comps) then
5205
            return False;
5206
         end if;
5207
 
5208
         C := First (Comps);
5209
         while Present (C) loop
5210
 
5211
            --  If the component has box initialization, expansion is needed
5212
            --  and component is not ready for backend.
5213
 
5214
            if Box_Present (C) then
5215
               return True;
5216
            end if;
5217
 
5218
            if Nkind (Expression (C)) = N_Qualified_Expression then
5219
               Expr_Q := Expression (Expression (C));
5220
            else
5221
               Expr_Q := Expression (C);
5222
            end if;
5223
 
5224
            --  Return true if the aggregate has any associations for tagged
5225
            --  components that may require tag adjustment.
5226
 
5227
            --  These are cases where the source expression may have a tag that
5228
            --  could differ from the component tag (e.g., can occur for type
5229
            --  conversions and formal parameters). (Tag adjustment not needed
5230
            --  if VM_Target because object tags are implicit in the machine.)
5231
 
5232
            if Is_Tagged_Type (Etype (Expr_Q))
5233
              and then (Nkind (Expr_Q) = N_Type_Conversion
5234
                         or else (Is_Entity_Name (Expr_Q)
5235
                                    and then
5236
                                      Ekind (Entity (Expr_Q)) in Formal_Kind))
5237
              and then Tagged_Type_Expansion
5238
            then
5239
               Static_Components := False;
5240
               return True;
5241
 
5242
            elsif Is_Delayed_Aggregate (Expr_Q) then
5243
               Static_Components := False;
5244
               return True;
5245
 
5246
            elsif Possible_Bit_Aligned_Component (Expr_Q) then
5247
               Static_Components := False;
5248
               return True;
5249
            end if;
5250
 
5251
            if Is_Elementary_Type (Etype (Expr_Q)) then
5252
               if not Compile_Time_Known_Value (Expr_Q) then
5253
                  Static_Components := False;
5254
               end if;
5255
 
5256
            elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
5257
               Static_Components := False;
5258
 
5259
               if Is_Private_Type (Etype (Expr_Q))
5260
                 and then Has_Discriminants (Etype (Expr_Q))
5261
               then
5262
                  return True;
5263
               end if;
5264
            end if;
5265
 
5266
            Next (C);
5267
         end loop;
5268
 
5269
         return False;
5270
      end Component_Not_OK_For_Backend;
5271
 
5272
      -----------------------------------
5273
      --  Has_Visible_Private_Ancestor --
5274
      -----------------------------------
5275
 
5276
      function Has_Visible_Private_Ancestor (Id : E) return Boolean is
5277
         R  : constant Entity_Id := Root_Type (Id);
5278
         T1 : Entity_Id := Id;
5279
 
5280
      begin
5281
         loop
5282
            if Is_Private_Type (T1) then
5283
               return True;
5284
 
5285
            elsif T1 = R then
5286
               return False;
5287
 
5288
            else
5289
               T1 := Etype (T1);
5290
            end if;
5291
         end loop;
5292
      end Has_Visible_Private_Ancestor;
5293
 
5294
      -------------------------
5295
      -- Top_Level_Aggregate --
5296
      -------------------------
5297
 
5298
      function Top_Level_Aggregate (N : Node_Id) return Node_Id is
5299
         Aggr : Node_Id;
5300
 
5301
      begin
5302
         Aggr := N;
5303
         while Present (Parent (Aggr))
5304
           and then Nkind_In (Parent (Aggr), N_Component_Association,
5305
                                             N_Aggregate)
5306
         loop
5307
            Aggr := Parent (Aggr);
5308
         end loop;
5309
 
5310
         return Aggr;
5311
      end Top_Level_Aggregate;
5312
 
5313
      --  Local variables
5314
 
5315
      Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
5316
      Tag_Value      : Node_Id;
5317
      Comp           : Entity_Id;
5318
      New_Comp       : Node_Id;
5319
 
5320
   --  Start of processing for Expand_Record_Aggregate
5321
 
5322
   begin
5323
      --  If the aggregate is to be assigned to an atomic variable, we
5324
      --  have to prevent a piecemeal assignment even if the aggregate
5325
      --  is to be expanded. We create a temporary for the aggregate, and
5326
      --  assign the temporary instead, so that the back end can generate
5327
      --  an atomic move for it.
5328
 
5329
      if Is_Atomic (Typ)
5330
        and then Comes_From_Source (Parent (N))
5331
        and then Is_Atomic_Aggregate (N, Typ)
5332
      then
5333
         return;
5334
 
5335
      --  No special management required for aggregates used to initialize
5336
      --  statically allocated dispatch tables
5337
 
5338
      elsif Is_Static_Dispatch_Table_Aggregate (N) then
5339
         return;
5340
      end if;
5341
 
5342
      --  Ada 2005 (AI-318-2): We need to convert to assignments if components
5343
      --  are build-in-place function calls. The assignments will each turn
5344
      --  into a build-in-place function call. If components are all static,
5345
      --  we can pass the aggregate to the backend regardless of limitedness.
5346
 
5347
      --  Extension aggregates, aggregates in extended return statements, and
5348
      --  aggregates for C++ imported types must be expanded.
5349
 
5350
      if Ada_Version >= Ada_2005 and then Is_Immutably_Limited_Type (Typ) then
5351
         if not Nkind_In (Parent (N), N_Object_Declaration,
5352
                                      N_Component_Association)
5353
         then
5354
            Convert_To_Assignments (N, Typ);
5355
 
5356
         elsif Nkind (N) = N_Extension_Aggregate
5357
           or else Convention (Typ) = Convention_CPP
5358
         then
5359
            Convert_To_Assignments (N, Typ);
5360
 
5361
         elsif not Size_Known_At_Compile_Time (Typ)
5362
           or else Component_Not_OK_For_Backend
5363
           or else not Static_Components
5364
         then
5365
            Convert_To_Assignments (N, Typ);
5366
 
5367
         else
5368
            Set_Compile_Time_Known_Aggregate (N);
5369
            Set_Expansion_Delayed (N, False);
5370
         end if;
5371
 
5372
      --  Gigi doesn't properly handle temporaries of variable size so we
5373
      --  generate it in the front-end
5374
 
5375
      elsif not Size_Known_At_Compile_Time (Typ)
5376
        and then Tagged_Type_Expansion
5377
      then
5378
         Convert_To_Assignments (N, Typ);
5379
 
5380
      --  Temporaries for controlled aggregates need to be attached to a final
5381
      --  chain in order to be properly finalized, so it has to be created in
5382
      --  the front-end
5383
 
5384
      elsif Is_Controlled (Typ)
5385
        or else Has_Controlled_Component (Base_Type (Typ))
5386
      then
5387
         Convert_To_Assignments (N, Typ);
5388
 
5389
         --  Ada 2005 (AI-287): In case of default initialized components we
5390
         --  convert the aggregate into assignments.
5391
 
5392
      elsif Has_Default_Init_Comps (N) then
5393
         Convert_To_Assignments (N, Typ);
5394
 
5395
      --  Check components
5396
 
5397
      elsif Component_Not_OK_For_Backend then
5398
         Convert_To_Assignments (N, Typ);
5399
 
5400
      --  If an ancestor is private, some components are not inherited and we
5401
      --  cannot expand into a record aggregate.
5402
 
5403
      elsif Has_Visible_Private_Ancestor (Typ) then
5404
         Convert_To_Assignments (N, Typ);
5405
 
5406
      --  ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
5407
      --  is not able to handle the aggregate for Late_Request.
5408
 
5409
      elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
5410
         Convert_To_Assignments (N, Typ);
5411
 
5412
      --  If the tagged types covers interface types we need to initialize all
5413
      --  hidden components containing pointers to secondary dispatch tables.
5414
 
5415
      elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
5416
         Convert_To_Assignments (N, Typ);
5417
 
5418
      --  If some components are mutable, the size of the aggregate component
5419
      --  may be distinct from the default size of the type component, so
5420
      --  we need to expand to insure that the back-end copies the proper
5421
      --  size of the data. However, if the aggregate is the initial value of
5422
      --  a constant, the target is immutable and might be built statically
5423
      --  if components are appropriate.
5424
 
5425
      elsif Has_Mutable_Components (Typ)
5426
        and then
5427
          (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
5428
            or else not Constant_Present (Parent (Top_Level_Aggr))
5429
            or else not Static_Components)
5430
      then
5431
         Convert_To_Assignments (N, Typ);
5432
 
5433
      --  If the type involved has any non-bit aligned components, then we are
5434
      --  not sure that the back end can handle this case correctly.
5435
 
5436
      elsif Type_May_Have_Bit_Aligned_Components (Typ) then
5437
         Convert_To_Assignments (N, Typ);
5438
 
5439
      --  In all other cases, build a proper aggregate handlable by gigi
5440
 
5441
      else
5442
         if Nkind (N) = N_Aggregate then
5443
 
5444
            --  If the aggregate is static and can be handled by the back-end,
5445
            --  nothing left to do.
5446
 
5447
            if Static_Components then
5448
               Set_Compile_Time_Known_Aggregate (N);
5449
               Set_Expansion_Delayed (N, False);
5450
            end if;
5451
         end if;
5452
 
5453
         --  If no discriminants, nothing special to do
5454
 
5455
         if not Has_Discriminants (Typ) then
5456
            null;
5457
 
5458
         --  Case of discriminants present
5459
 
5460
         elsif Is_Derived_Type (Typ) then
5461
 
5462
            --  For untagged types, non-stored discriminants are replaced
5463
            --  with stored discriminants, which are the ones that gigi uses
5464
            --  to describe the type and its components.
5465
 
5466
            Generate_Aggregate_For_Derived_Type : declare
5467
               Constraints  : constant List_Id := New_List;
5468
               First_Comp   : Node_Id;
5469
               Discriminant : Entity_Id;
5470
               Decl         : Node_Id;
5471
               Num_Disc     : Int := 0;
5472
               Num_Gird     : Int := 0;
5473
 
5474
               procedure Prepend_Stored_Values (T : Entity_Id);
5475
               --  Scan the list of stored discriminants of the type, and add
5476
               --  their values to the aggregate being built.
5477
 
5478
               ---------------------------
5479
               -- Prepend_Stored_Values --
5480
               ---------------------------
5481
 
5482
               procedure Prepend_Stored_Values (T : Entity_Id) is
5483
               begin
5484
                  Discriminant := First_Stored_Discriminant (T);
5485
                  while Present (Discriminant) loop
5486
                     New_Comp :=
5487
                       Make_Component_Association (Loc,
5488
                         Choices    =>
5489
                           New_List (New_Occurrence_Of (Discriminant, Loc)),
5490
 
5491
                         Expression =>
5492
                           New_Copy_Tree (
5493
                             Get_Discriminant_Value (
5494
                                 Discriminant,
5495
                                 Typ,
5496
                                 Discriminant_Constraint (Typ))));
5497
 
5498
                     if No (First_Comp) then
5499
                        Prepend_To (Component_Associations (N), New_Comp);
5500
                     else
5501
                        Insert_After (First_Comp, New_Comp);
5502
                     end if;
5503
 
5504
                     First_Comp := New_Comp;
5505
                     Next_Stored_Discriminant (Discriminant);
5506
                  end loop;
5507
               end Prepend_Stored_Values;
5508
 
5509
            --  Start of processing for Generate_Aggregate_For_Derived_Type
5510
 
5511
            begin
5512
               --  Remove the associations for the discriminant of derived type
5513
 
5514
               First_Comp := First (Component_Associations (N));
5515
               while Present (First_Comp) loop
5516
                  Comp := First_Comp;
5517
                  Next (First_Comp);
5518
 
5519
                  if Ekind (Entity
5520
                             (First (Choices (Comp)))) = E_Discriminant
5521
                  then
5522
                     Remove (Comp);
5523
                     Num_Disc := Num_Disc + 1;
5524
                  end if;
5525
               end loop;
5526
 
5527
               --  Insert stored discriminant associations in the correct
5528
               --  order. If there are more stored discriminants than new
5529
               --  discriminants, there is at least one new discriminant that
5530
               --  constrains more than one of the stored discriminants. In
5531
               --  this case we need to construct a proper subtype of the
5532
               --  parent type, in order to supply values to all the
5533
               --  components. Otherwise there is one-one correspondence
5534
               --  between the constraints and the stored discriminants.
5535
 
5536
               First_Comp := Empty;
5537
 
5538
               Discriminant := First_Stored_Discriminant (Base_Type (Typ));
5539
               while Present (Discriminant) loop
5540
                  Num_Gird := Num_Gird + 1;
5541
                  Next_Stored_Discriminant (Discriminant);
5542
               end loop;
5543
 
5544
               --  Case of more stored discriminants than new discriminants
5545
 
5546
               if Num_Gird > Num_Disc then
5547
 
5548
                  --  Create a proper subtype of the parent type, which is the
5549
                  --  proper implementation type for the aggregate, and convert
5550
                  --  it to the intended target type.
5551
 
5552
                  Discriminant := First_Stored_Discriminant (Base_Type (Typ));
5553
                  while Present (Discriminant) loop
5554
                     New_Comp :=
5555
                       New_Copy_Tree (
5556
                         Get_Discriminant_Value (
5557
                             Discriminant,
5558
                             Typ,
5559
                             Discriminant_Constraint (Typ)));
5560
                     Append (New_Comp, Constraints);
5561
                     Next_Stored_Discriminant (Discriminant);
5562
                  end loop;
5563
 
5564
                  Decl :=
5565
                    Make_Subtype_Declaration (Loc,
5566
                      Defining_Identifier => Make_Temporary (Loc, 'T'),
5567
                      Subtype_Indication =>
5568
                        Make_Subtype_Indication (Loc,
5569
                          Subtype_Mark =>
5570
                            New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
5571
                          Constraint =>
5572
                            Make_Index_Or_Discriminant_Constraint
5573
                              (Loc, Constraints)));
5574
 
5575
                  Insert_Action (N, Decl);
5576
                  Prepend_Stored_Values (Base_Type (Typ));
5577
 
5578
                  Set_Etype (N, Defining_Identifier (Decl));
5579
                  Set_Analyzed (N);
5580
 
5581
                  Rewrite (N, Unchecked_Convert_To (Typ, N));
5582
                  Analyze (N);
5583
 
5584
               --  Case where we do not have fewer new discriminants than
5585
               --  stored discriminants, so in this case we can simply use the
5586
               --  stored discriminants of the subtype.
5587
 
5588
               else
5589
                  Prepend_Stored_Values (Typ);
5590
               end if;
5591
            end Generate_Aggregate_For_Derived_Type;
5592
         end if;
5593
 
5594
         if Is_Tagged_Type (Typ) then
5595
 
5596
            --  In the tagged case, _parent and _tag component must be created
5597
 
5598
            --  Reset Null_Present unconditionally. Tagged records always have
5599
            --  at least one field (the tag or the parent).
5600
 
5601
            Set_Null_Record_Present (N, False);
5602
 
5603
            --  When the current aggregate comes from the expansion of an
5604
            --  extension aggregate, the parent expr is replaced by an
5605
            --  aggregate formed by selected components of this expr.
5606
 
5607
            if Present (Parent_Expr)
5608
              and then Is_Empty_List (Comps)
5609
            then
5610
               Comp := First_Component_Or_Discriminant (Typ);
5611
               while Present (Comp) loop
5612
 
5613
                  --  Skip all expander-generated components
5614
 
5615
                  if
5616
                    not Comes_From_Source (Original_Record_Component (Comp))
5617
                  then
5618
                     null;
5619
 
5620
                  else
5621
                     New_Comp :=
5622
                       Make_Selected_Component (Loc,
5623
                         Prefix =>
5624
                           Unchecked_Convert_To (Typ,
5625
                             Duplicate_Subexpr (Parent_Expr, True)),
5626
 
5627
                         Selector_Name => New_Occurrence_Of (Comp, Loc));
5628
 
5629
                     Append_To (Comps,
5630
                       Make_Component_Association (Loc,
5631
                         Choices    =>
5632
                           New_List (New_Occurrence_Of (Comp, Loc)),
5633
                         Expression =>
5634
                           New_Comp));
5635
 
5636
                     Analyze_And_Resolve (New_Comp, Etype (Comp));
5637
                  end if;
5638
 
5639
                  Next_Component_Or_Discriminant (Comp);
5640
               end loop;
5641
            end if;
5642
 
5643
            --  Compute the value for the Tag now, if the type is a root it
5644
            --  will be included in the aggregate right away, otherwise it will
5645
            --  be propagated to the parent aggregate.
5646
 
5647
            if Present (Orig_Tag) then
5648
               Tag_Value := Orig_Tag;
5649
            elsif not Tagged_Type_Expansion then
5650
               Tag_Value := Empty;
5651
            else
5652
               Tag_Value :=
5653
                 New_Occurrence_Of
5654
                   (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
5655
            end if;
5656
 
5657
            --  For a derived type, an aggregate for the parent is formed with
5658
            --  all the inherited components.
5659
 
5660
            if Is_Derived_Type (Typ) then
5661
 
5662
               declare
5663
                  First_Comp   : Node_Id;
5664
                  Parent_Comps : List_Id;
5665
                  Parent_Aggr  : Node_Id;
5666
                  Parent_Name  : Node_Id;
5667
 
5668
               begin
5669
                  --  Remove the inherited component association from the
5670
                  --  aggregate and store them in the parent aggregate
5671
 
5672
                  First_Comp := First (Component_Associations (N));
5673
                  Parent_Comps := New_List;
5674
                  while Present (First_Comp)
5675
                    and then Scope (Original_Record_Component (
5676
                            Entity (First (Choices (First_Comp))))) /= Base_Typ
5677
                  loop
5678
                     Comp := First_Comp;
5679
                     Next (First_Comp);
5680
                     Remove (Comp);
5681
                     Append (Comp, Parent_Comps);
5682
                  end loop;
5683
 
5684
                  Parent_Aggr := Make_Aggregate (Loc,
5685
                    Component_Associations => Parent_Comps);
5686
                  Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
5687
 
5688
                  --  Find the _parent component
5689
 
5690
                  Comp := First_Component (Typ);
5691
                  while Chars (Comp) /= Name_uParent loop
5692
                     Comp := Next_Component (Comp);
5693
                  end loop;
5694
 
5695
                  Parent_Name := New_Occurrence_Of (Comp, Loc);
5696
 
5697
                  --  Insert the parent aggregate
5698
 
5699
                  Prepend_To (Component_Associations (N),
5700
                    Make_Component_Association (Loc,
5701
                      Choices    => New_List (Parent_Name),
5702
                      Expression => Parent_Aggr));
5703
 
5704
                  --  Expand recursively the parent propagating the right Tag
5705
 
5706
                  Expand_Record_Aggregate
5707
                    (Parent_Aggr, Tag_Value, Parent_Expr);
5708
 
5709
                  --  The ancestor part may be a nested aggregate that has
5710
                  --  delayed expansion: recheck now.
5711
 
5712
                  if Component_Not_OK_For_Backend then
5713
                     Convert_To_Assignments (N, Typ);
5714
                  end if;
5715
               end;
5716
 
5717
            --  For a root type, the tag component is added (unless compiling
5718
            --  for the VMs, where tags are implicit).
5719
 
5720
            elsif Tagged_Type_Expansion then
5721
               declare
5722
                  Tag_Name  : constant Node_Id :=
5723
                                New_Occurrence_Of
5724
                                  (First_Tag_Component (Typ), Loc);
5725
                  Typ_Tag   : constant Entity_Id := RTE (RE_Tag);
5726
                  Conv_Node : constant Node_Id :=
5727
                                Unchecked_Convert_To (Typ_Tag, Tag_Value);
5728
 
5729
               begin
5730
                  Set_Etype (Conv_Node, Typ_Tag);
5731
                  Prepend_To (Component_Associations (N),
5732
                    Make_Component_Association (Loc,
5733
                      Choices    => New_List (Tag_Name),
5734
                      Expression => Conv_Node));
5735
               end;
5736
            end if;
5737
         end if;
5738
      end if;
5739
 
5740
   end Expand_Record_Aggregate;
5741
 
5742
   ----------------------------
5743
   -- Has_Default_Init_Comps --
5744
   ----------------------------
5745
 
5746
   function Has_Default_Init_Comps (N : Node_Id) return Boolean is
5747
      Comps : constant List_Id := Component_Associations (N);
5748
      C     : Node_Id;
5749
      Expr  : Node_Id;
5750
   begin
5751
      pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
5752
 
5753
      if No (Comps) then
5754
         return False;
5755
      end if;
5756
 
5757
      if Has_Self_Reference (N) then
5758
         return True;
5759
      end if;
5760
 
5761
      --  Check if any direct component has default initialized components
5762
 
5763
      C := First (Comps);
5764
      while Present (C) loop
5765
         if Box_Present (C) then
5766
            return True;
5767
         end if;
5768
 
5769
         Next (C);
5770
      end loop;
5771
 
5772
      --  Recursive call in case of aggregate expression
5773
 
5774
      C := First (Comps);
5775
      while Present (C) loop
5776
         Expr := Expression (C);
5777
 
5778
         if Present (Expr)
5779
           and then
5780
             Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
5781
           and then Has_Default_Init_Comps (Expr)
5782
         then
5783
            return True;
5784
         end if;
5785
 
5786
         Next (C);
5787
      end loop;
5788
 
5789
      return False;
5790
   end Has_Default_Init_Comps;
5791
 
5792
   --------------------------
5793
   -- Is_Delayed_Aggregate --
5794
   --------------------------
5795
 
5796
   function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
5797
      Node : Node_Id   := N;
5798
      Kind : Node_Kind := Nkind (Node);
5799
 
5800
   begin
5801
      if Kind = N_Qualified_Expression then
5802
         Node := Expression (Node);
5803
         Kind := Nkind (Node);
5804
      end if;
5805
 
5806
      if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
5807
         return False;
5808
      else
5809
         return Expansion_Delayed (Node);
5810
      end if;
5811
   end Is_Delayed_Aggregate;
5812
 
5813
   ----------------------------------------
5814
   -- Is_Static_Dispatch_Table_Aggregate --
5815
   ----------------------------------------
5816
 
5817
   function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
5818
      Typ : constant Entity_Id := Base_Type (Etype (N));
5819
 
5820
   begin
5821
      return Static_Dispatch_Tables
5822
        and then Tagged_Type_Expansion
5823
        and then RTU_Loaded (Ada_Tags)
5824
 
5825
         --  Avoid circularity when rebuilding the compiler
5826
 
5827
        and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
5828
        and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
5829
                    or else
5830
                  Typ = RTE (RE_Address_Array)
5831
                    or else
5832
                  Typ = RTE (RE_Type_Specific_Data)
5833
                    or else
5834
                  Typ = RTE (RE_Tag_Table)
5835
                    or else
5836
                  (RTE_Available (RE_Interface_Data)
5837
                     and then Typ = RTE (RE_Interface_Data))
5838
                    or else
5839
                  (RTE_Available (RE_Interfaces_Array)
5840
                     and then Typ = RTE (RE_Interfaces_Array))
5841
                    or else
5842
                  (RTE_Available (RE_Interface_Data_Element)
5843
                     and then Typ = RTE (RE_Interface_Data_Element)));
5844
   end Is_Static_Dispatch_Table_Aggregate;
5845
 
5846
   --------------------
5847
   -- Late_Expansion --
5848
   --------------------
5849
 
5850
   function Late_Expansion
5851
     (N      : Node_Id;
5852
      Typ    : Entity_Id;
5853
      Target : Node_Id) return List_Id
5854
   is
5855
   begin
5856
      if Is_Record_Type (Etype (N)) then
5857
         return Build_Record_Aggr_Code (N, Typ, Target);
5858
 
5859
      else pragma Assert (Is_Array_Type (Etype (N)));
5860
         return
5861
           Build_Array_Aggr_Code
5862
             (N           => N,
5863
              Ctype       => Component_Type (Etype (N)),
5864
              Index       => First_Index (Typ),
5865
              Into        => Target,
5866
              Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
5867
              Indexes     => No_List);
5868
      end if;
5869
   end Late_Expansion;
5870
 
5871
   ----------------------------------
5872
   -- Make_OK_Assignment_Statement --
5873
   ----------------------------------
5874
 
5875
   function Make_OK_Assignment_Statement
5876
     (Sloc       : Source_Ptr;
5877
      Name       : Node_Id;
5878
      Expression : Node_Id) return Node_Id
5879
   is
5880
   begin
5881
      Set_Assignment_OK (Name);
5882
 
5883
      return Make_Assignment_Statement (Sloc, Name, Expression);
5884
   end Make_OK_Assignment_Statement;
5885
 
5886
   -----------------------
5887
   -- Number_Of_Choices --
5888
   -----------------------
5889
 
5890
   function Number_Of_Choices (N : Node_Id) return Nat is
5891
      Assoc  : Node_Id;
5892
      Choice : Node_Id;
5893
 
5894
      Nb_Choices : Nat := 0;
5895
 
5896
   begin
5897
      if Present (Expressions (N)) then
5898
         return 0;
5899
      end if;
5900
 
5901
      Assoc := First (Component_Associations (N));
5902
      while Present (Assoc) loop
5903
         Choice := First (Choices (Assoc));
5904
         while Present (Choice) loop
5905
            if Nkind (Choice) /= N_Others_Choice then
5906
               Nb_Choices := Nb_Choices + 1;
5907
            end if;
5908
 
5909
            Next (Choice);
5910
         end loop;
5911
 
5912
         Next (Assoc);
5913
      end loop;
5914
 
5915
      return Nb_Choices;
5916
   end Number_Of_Choices;
5917
 
5918
   ------------------------------------
5919
   -- Packed_Array_Aggregate_Handled --
5920
   ------------------------------------
5921
 
5922
   --  The current version of this procedure will handle at compile time
5923
   --  any array aggregate that meets these conditions:
5924
 
5925
   --    One dimensional, bit packed
5926
   --    Underlying packed type is modular type
5927
   --    Bounds are within 32-bit Int range
5928
   --    All bounds and values are static
5929
 
5930
   function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
5931
      Loc  : constant Source_Ptr := Sloc (N);
5932
      Typ  : constant Entity_Id  := Etype (N);
5933
      Ctyp : constant Entity_Id  := Component_Type (Typ);
5934
 
5935
      Not_Handled : exception;
5936
      --  Exception raised if this aggregate cannot be handled
5937
 
5938
   begin
5939
      --  For now, handle only one dimensional bit packed arrays
5940
 
5941
      if not Is_Bit_Packed_Array (Typ)
5942
        or else Number_Dimensions (Typ) > 1
5943
        or else not Is_Modular_Integer_Type (Packed_Array_Type (Typ))
5944
      then
5945
         return False;
5946
      end if;
5947
 
5948
      if not Is_Scalar_Type (Component_Type (Typ))
5949
        and then Has_Non_Standard_Rep (Component_Type (Typ))
5950
      then
5951
         return False;
5952
      end if;
5953
 
5954
      declare
5955
         Csiz  : constant Nat := UI_To_Int (Component_Size (Typ));
5956
 
5957
         Lo : Node_Id;
5958
         Hi : Node_Id;
5959
         --  Bounds of index type
5960
 
5961
         Lob : Uint;
5962
         Hib : Uint;
5963
         --  Values of bounds if compile time known
5964
 
5965
         function Get_Component_Val (N : Node_Id) return Uint;
5966
         --  Given a expression value N of the component type Ctyp, returns a
5967
         --  value of Csiz (component size) bits representing this value. If
5968
         --  the value is non-static or any other reason exists why the value
5969
         --  cannot be returned, then Not_Handled is raised.
5970
 
5971
         -----------------------
5972
         -- Get_Component_Val --
5973
         -----------------------
5974
 
5975
         function Get_Component_Val (N : Node_Id) return Uint is
5976
            Val  : Uint;
5977
 
5978
         begin
5979
            --  We have to analyze the expression here before doing any further
5980
            --  processing here. The analysis of such expressions is deferred
5981
            --  till expansion to prevent some problems of premature analysis.
5982
 
5983
            Analyze_And_Resolve (N, Ctyp);
5984
 
5985
            --  Must have a compile time value. String literals have to be
5986
            --  converted into temporaries as well, because they cannot easily
5987
            --  be converted into their bit representation.
5988
 
5989
            if not Compile_Time_Known_Value (N)
5990
              or else Nkind (N) = N_String_Literal
5991
            then
5992
               raise Not_Handled;
5993
            end if;
5994
 
5995
            Val := Expr_Rep_Value (N);
5996
 
5997
            --  Adjust for bias, and strip proper number of bits
5998
 
5999
            if Has_Biased_Representation (Ctyp) then
6000
               Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
6001
            end if;
6002
 
6003
            return Val mod Uint_2 ** Csiz;
6004
         end Get_Component_Val;
6005
 
6006
      --  Here we know we have a one dimensional bit packed array
6007
 
6008
      begin
6009
         Get_Index_Bounds (First_Index (Typ), Lo, Hi);
6010
 
6011
         --  Cannot do anything if bounds are dynamic
6012
 
6013
         if not Compile_Time_Known_Value (Lo)
6014
              or else
6015
            not Compile_Time_Known_Value (Hi)
6016
         then
6017
            return False;
6018
         end if;
6019
 
6020
         --  Or are silly out of range of int bounds
6021
 
6022
         Lob := Expr_Value (Lo);
6023
         Hib := Expr_Value (Hi);
6024
 
6025
         if not UI_Is_In_Int_Range (Lob)
6026
              or else
6027
            not UI_Is_In_Int_Range (Hib)
6028
         then
6029
            return False;
6030
         end if;
6031
 
6032
         --  At this stage we have a suitable aggregate for handling at compile
6033
         --  time (the only remaining checks are that the values of expressions
6034
         --  in the aggregate are compile time known (check is performed by
6035
         --  Get_Component_Val), and that any subtypes or ranges are statically
6036
         --  known.
6037
 
6038
         --  If the aggregate is not fully positional at this stage, then
6039
         --  convert it to positional form. Either this will fail, in which
6040
         --  case we can do nothing, or it will succeed, in which case we have
6041
         --  succeeded in handling the aggregate, or it will stay an aggregate,
6042
         --  in which case we have failed to handle this case.
6043
 
6044
         if Present (Component_Associations (N)) then
6045
            Convert_To_Positional
6046
              (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6047
            return Nkind (N) /= N_Aggregate;
6048
         end if;
6049
 
6050
         --  Otherwise we are all positional, so convert to proper value
6051
 
6052
         declare
6053
            Lov : constant Int := UI_To_Int (Lob);
6054
            Hiv : constant Int := UI_To_Int (Hib);
6055
 
6056
            Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
6057
            --  The length of the array (number of elements)
6058
 
6059
            Aggregate_Val : Uint;
6060
            --  Value of aggregate. The value is set in the low order bits of
6061
            --  this value. For the little-endian case, the values are stored
6062
            --  from low-order to high-order and for the big-endian case the
6063
            --  values are stored from high-order to low-order. Note that gigi
6064
            --  will take care of the conversions to left justify the value in
6065
            --  the big endian case (because of left justified modular type
6066
            --  processing), so we do not have to worry about that here.
6067
 
6068
            Lit : Node_Id;
6069
            --  Integer literal for resulting constructed value
6070
 
6071
            Shift : Nat;
6072
            --  Shift count from low order for next value
6073
 
6074
            Incr : Int;
6075
            --  Shift increment for loop
6076
 
6077
            Expr : Node_Id;
6078
            --  Next expression from positional parameters of aggregate
6079
 
6080
         begin
6081
            --  For little endian, we fill up the low order bits of the target
6082
            --  value. For big endian we fill up the high order bits of the
6083
            --  target value (which is a left justified modular value).
6084
 
6085
            if Bytes_Big_Endian xor Debug_Flag_8 then
6086
               Shift := Csiz * (Len - 1);
6087
               Incr  := -Csiz;
6088
            else
6089
               Shift := 0;
6090
               Incr  := +Csiz;
6091
            end if;
6092
 
6093
            --  Loop to set the values
6094
 
6095
            if Len = 0 then
6096
               Aggregate_Val := Uint_0;
6097
            else
6098
               Expr := First (Expressions (N));
6099
               Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
6100
 
6101
               for J in 2 .. Len loop
6102
                  Shift := Shift + Incr;
6103
                  Next (Expr);
6104
                  Aggregate_Val :=
6105
                    Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
6106
               end loop;
6107
            end if;
6108
 
6109
            --  Now we can rewrite with the proper value
6110
 
6111
            Lit :=
6112
              Make_Integer_Literal (Loc,
6113
                Intval => Aggregate_Val);
6114
            Set_Print_In_Hex (Lit);
6115
 
6116
            --  Construct the expression using this literal. Note that it is
6117
            --  important to qualify the literal with its proper modular type
6118
            --  since universal integer does not have the required range and
6119
            --  also this is a left justified modular type, which is important
6120
            --  in the big-endian case.
6121
 
6122
            Rewrite (N,
6123
              Unchecked_Convert_To (Typ,
6124
                Make_Qualified_Expression (Loc,
6125
                  Subtype_Mark =>
6126
                    New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
6127
                  Expression   => Lit)));
6128
 
6129
            Analyze_And_Resolve (N, Typ);
6130
            return True;
6131
         end;
6132
      end;
6133
 
6134
   exception
6135
      when Not_Handled =>
6136
         return False;
6137
   end Packed_Array_Aggregate_Handled;
6138
 
6139
   ----------------------------
6140
   -- Has_Mutable_Components --
6141
   ----------------------------
6142
 
6143
   function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
6144
      Comp : Entity_Id;
6145
 
6146
   begin
6147
      Comp := First_Component (Typ);
6148
      while Present (Comp) loop
6149
         if Is_Record_Type (Etype (Comp))
6150
           and then Has_Discriminants (Etype (Comp))
6151
           and then not Is_Constrained (Etype (Comp))
6152
         then
6153
            return True;
6154
         end if;
6155
 
6156
         Next_Component (Comp);
6157
      end loop;
6158
 
6159
      return False;
6160
   end Has_Mutable_Components;
6161
 
6162
   ------------------------------
6163
   -- Initialize_Discriminants --
6164
   ------------------------------
6165
 
6166
   procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
6167
      Loc  : constant Source_Ptr := Sloc (N);
6168
      Bas  : constant Entity_Id  := Base_Type (Typ);
6169
      Par  : constant Entity_Id  := Etype (Bas);
6170
      Decl : constant Node_Id    := Parent (Par);
6171
      Ref  : Node_Id;
6172
 
6173
   begin
6174
      if Is_Tagged_Type (Bas)
6175
        and then Is_Derived_Type (Bas)
6176
        and then Has_Discriminants (Par)
6177
        and then Has_Discriminants (Bas)
6178
        and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
6179
        and then Nkind (Decl) = N_Full_Type_Declaration
6180
        and then Nkind (Type_Definition (Decl)) = N_Record_Definition
6181
        and then Present
6182
          (Variant_Part (Component_List (Type_Definition (Decl))))
6183
        and then Nkind (N) /= N_Extension_Aggregate
6184
      then
6185
 
6186
         --   Call init proc to set discriminants.
6187
         --   There should eventually be a special procedure for this ???
6188
 
6189
         Ref := New_Reference_To (Defining_Identifier (N), Loc);
6190
         Insert_Actions_After (N,
6191
           Build_Initialization_Call (Sloc (N), Ref, Typ));
6192
      end if;
6193
   end Initialize_Discriminants;
6194
 
6195
   ----------------
6196
   -- Must_Slide --
6197
   ----------------
6198
 
6199
   function Must_Slide
6200
     (Obj_Type : Entity_Id;
6201
      Typ      : Entity_Id) return Boolean
6202
   is
6203
      L1, L2, H1, H2 : Node_Id;
6204
   begin
6205
      --  No sliding if the type of the object is not established yet, if it is
6206
      --  an unconstrained type whose actual subtype comes from the aggregate,
6207
      --  or if the two types are identical.
6208
 
6209
      if not Is_Array_Type (Obj_Type) then
6210
         return False;
6211
 
6212
      elsif not Is_Constrained (Obj_Type) then
6213
         return False;
6214
 
6215
      elsif Typ = Obj_Type then
6216
         return False;
6217
 
6218
      else
6219
         --  Sliding can only occur along the first dimension
6220
 
6221
         Get_Index_Bounds (First_Index (Typ), L1, H1);
6222
         Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
6223
 
6224
         if not Is_Static_Expression (L1)
6225
           or else not Is_Static_Expression (L2)
6226
           or else not Is_Static_Expression (H1)
6227
           or else not Is_Static_Expression (H2)
6228
         then
6229
            return False;
6230
         else
6231
            return Expr_Value (L1) /= Expr_Value (L2)
6232
              or else Expr_Value (H1) /= Expr_Value (H2);
6233
         end if;
6234
      end if;
6235
   end Must_Slide;
6236
 
6237
   ---------------------------
6238
   -- Safe_Slice_Assignment --
6239
   ---------------------------
6240
 
6241
   function Safe_Slice_Assignment (N : Node_Id) return Boolean is
6242
      Loc        : constant Source_Ptr := Sloc (Parent (N));
6243
      Pref       : constant Node_Id    := Prefix (Name (Parent (N)));
6244
      Range_Node : constant Node_Id    := Discrete_Range (Name (Parent (N)));
6245
      Expr       : Node_Id;
6246
      L_J        : Entity_Id;
6247
      L_Iter     : Node_Id;
6248
      L_Body     : Node_Id;
6249
      Stat       : Node_Id;
6250
 
6251
   begin
6252
      --  Generate: for J in Range loop Pref (J) := Expr; end loop;
6253
 
6254
      if Comes_From_Source (N)
6255
        and then No (Expressions (N))
6256
        and then Nkind (First (Choices (First (Component_Associations (N)))))
6257
                   = N_Others_Choice
6258
      then
6259
         Expr := Expression (First (Component_Associations (N)));
6260
         L_J := Make_Temporary (Loc, 'J');
6261
 
6262
         L_Iter :=
6263
           Make_Iteration_Scheme (Loc,
6264
             Loop_Parameter_Specification =>
6265
               Make_Loop_Parameter_Specification
6266
                 (Loc,
6267
                  Defining_Identifier         => L_J,
6268
                  Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
6269
 
6270
         L_Body :=
6271
           Make_Assignment_Statement (Loc,
6272
              Name =>
6273
                Make_Indexed_Component (Loc,
6274
                  Prefix      => Relocate_Node (Pref),
6275
                  Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
6276
               Expression => Relocate_Node (Expr));
6277
 
6278
         --  Construct the final loop
6279
 
6280
         Stat :=
6281
           Make_Implicit_Loop_Statement
6282
             (Node             => Parent (N),
6283
              Identifier       => Empty,
6284
              Iteration_Scheme => L_Iter,
6285
              Statements       => New_List (L_Body));
6286
 
6287
         --  Set type of aggregate to be type of lhs in assignment,
6288
         --  to suppress redundant length checks.
6289
 
6290
         Set_Etype (N, Etype (Name (Parent (N))));
6291
 
6292
         Rewrite (Parent (N), Stat);
6293
         Analyze (Parent (N));
6294
         return True;
6295
 
6296
      else
6297
         return False;
6298
      end if;
6299
   end Safe_Slice_Assignment;
6300
 
6301
   ---------------------
6302
   -- Sort_Case_Table --
6303
   ---------------------
6304
 
6305
   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
6306
      L : constant Int := Case_Table'First;
6307
      U : constant Int := Case_Table'Last;
6308
      K : Int;
6309
      J : Int;
6310
      T : Case_Bounds;
6311
 
6312
   begin
6313
      K := L;
6314
      while K /= U loop
6315
         T := Case_Table (K + 1);
6316
 
6317
         J := K + 1;
6318
         while J /= L
6319
           and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
6320
                    Expr_Value (T.Choice_Lo)
6321
         loop
6322
            Case_Table (J) := Case_Table (J - 1);
6323
            J := J - 1;
6324
         end loop;
6325
 
6326
         Case_Table (J) := T;
6327
         K := K + 1;
6328
      end loop;
6329
   end Sort_Case_Table;
6330
 
6331
   ----------------------------
6332
   -- Static_Array_Aggregate --
6333
   ----------------------------
6334
 
6335
   function Static_Array_Aggregate (N : Node_Id) return Boolean is
6336
      Bounds : constant Node_Id := Aggregate_Bounds (N);
6337
 
6338
      Typ       : constant Entity_Id := Etype (N);
6339
      Comp_Type : constant Entity_Id := Component_Type (Typ);
6340
      Agg       : Node_Id;
6341
      Expr      : Node_Id;
6342
      Lo        : Node_Id;
6343
      Hi        : Node_Id;
6344
 
6345
   begin
6346
      if Is_Tagged_Type (Typ)
6347
        or else Is_Controlled (Typ)
6348
        or else Is_Packed (Typ)
6349
      then
6350
         return False;
6351
      end if;
6352
 
6353
      if Present (Bounds)
6354
        and then Nkind (Bounds) = N_Range
6355
        and then Nkind (Low_Bound  (Bounds)) = N_Integer_Literal
6356
        and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
6357
      then
6358
         Lo := Low_Bound  (Bounds);
6359
         Hi := High_Bound (Bounds);
6360
 
6361
         if No (Component_Associations (N)) then
6362
 
6363
            --  Verify that all components are static integers
6364
 
6365
            Expr := First (Expressions (N));
6366
            while Present (Expr) loop
6367
               if Nkind (Expr) /= N_Integer_Literal then
6368
                  return False;
6369
               end if;
6370
 
6371
               Next (Expr);
6372
            end loop;
6373
 
6374
            return True;
6375
 
6376
         else
6377
            --  We allow only a single named association, either a static
6378
            --  range or an others_clause, with a static expression.
6379
 
6380
            Expr := First (Component_Associations (N));
6381
 
6382
            if Present (Expressions (N)) then
6383
               return False;
6384
 
6385
            elsif Present (Next (Expr)) then
6386
               return False;
6387
 
6388
            elsif Present (Next (First (Choices (Expr)))) then
6389
               return False;
6390
 
6391
            else
6392
               --  The aggregate is static if all components are literals,
6393
               --  or else all its components are static aggregates for the
6394
               --  component type. We also limit the size of a static aggregate
6395
               --  to prevent runaway static expressions.
6396
 
6397
               if Is_Array_Type (Comp_Type)
6398
                 or else Is_Record_Type (Comp_Type)
6399
               then
6400
                  if Nkind (Expression (Expr)) /= N_Aggregate
6401
                    or else
6402
                      not Compile_Time_Known_Aggregate (Expression (Expr))
6403
                  then
6404
                     return False;
6405
                  end if;
6406
 
6407
               elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
6408
                  return False;
6409
               end if;
6410
 
6411
               if not Aggr_Size_OK (N, Typ) then
6412
                  return False;
6413
               end if;
6414
 
6415
               --  Create a positional aggregate with the right number of
6416
               --  copies of the expression.
6417
 
6418
               Agg := Make_Aggregate (Sloc (N), New_List, No_List);
6419
 
6420
               for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
6421
               loop
6422
                  Append_To
6423
                    (Expressions (Agg), New_Copy (Expression (Expr)));
6424
 
6425
                  --  The copied expression must be analyzed and resolved.
6426
                  --  Besides setting the type, this ensures that static
6427
                  --  expressions are appropriately marked as such.
6428
 
6429
                  Analyze_And_Resolve
6430
                    (Last (Expressions (Agg)), Component_Type (Typ));
6431
               end loop;
6432
 
6433
               Set_Aggregate_Bounds (Agg, Bounds);
6434
               Set_Etype (Agg, Typ);
6435
               Set_Analyzed (Agg);
6436
               Rewrite (N, Agg);
6437
               Set_Compile_Time_Known_Aggregate (N);
6438
 
6439
               return True;
6440
            end if;
6441
         end if;
6442
 
6443
      else
6444
         return False;
6445
      end if;
6446
   end Static_Array_Aggregate;
6447
 
6448
end Exp_Aggr;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.