1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- E X P _ A T T R --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Checks; use Checks;
|
28 |
|
|
with Einfo; use Einfo;
|
29 |
|
|
with Elists; use Elists;
|
30 |
|
|
with Exp_Atag; use Exp_Atag;
|
31 |
|
|
with Exp_Ch2; use Exp_Ch2;
|
32 |
|
|
with Exp_Ch3; use Exp_Ch3;
|
33 |
|
|
with Exp_Ch6; use Exp_Ch6;
|
34 |
|
|
with Exp_Ch9; use Exp_Ch9;
|
35 |
|
|
with Exp_Dist; use Exp_Dist;
|
36 |
|
|
with Exp_Imgv; use Exp_Imgv;
|
37 |
|
|
with Exp_Pakd; use Exp_Pakd;
|
38 |
|
|
with Exp_Strm; use Exp_Strm;
|
39 |
|
|
with Exp_Tss; use Exp_Tss;
|
40 |
|
|
with Exp_Util; use Exp_Util;
|
41 |
|
|
with Exp_VFpt; use Exp_VFpt;
|
42 |
|
|
with Fname; use Fname;
|
43 |
|
|
with Freeze; use Freeze;
|
44 |
|
|
with Gnatvsn; use Gnatvsn;
|
45 |
|
|
with Itypes; use Itypes;
|
46 |
|
|
with Lib; use Lib;
|
47 |
|
|
with Namet; use Namet;
|
48 |
|
|
with Nmake; use Nmake;
|
49 |
|
|
with Nlists; use Nlists;
|
50 |
|
|
with Opt; use Opt;
|
51 |
|
|
with Restrict; use Restrict;
|
52 |
|
|
with Rident; use Rident;
|
53 |
|
|
with Rtsfind; use Rtsfind;
|
54 |
|
|
with Sem; use Sem;
|
55 |
|
|
with Sem_Aux; use Sem_Aux;
|
56 |
|
|
with Sem_Ch6; use Sem_Ch6;
|
57 |
|
|
with Sem_Ch7; use Sem_Ch7;
|
58 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
59 |
|
|
with Sem_Eval; use Sem_Eval;
|
60 |
|
|
with Sem_Res; use Sem_Res;
|
61 |
|
|
with Sem_Util; use Sem_Util;
|
62 |
|
|
with Sinfo; use Sinfo;
|
63 |
|
|
with Snames; use Snames;
|
64 |
|
|
with Stand; use Stand;
|
65 |
|
|
with Stringt; use Stringt;
|
66 |
|
|
with Targparm; use Targparm;
|
67 |
|
|
with Tbuild; use Tbuild;
|
68 |
|
|
with Ttypes; use Ttypes;
|
69 |
|
|
with Uintp; use Uintp;
|
70 |
|
|
with Uname; use Uname;
|
71 |
|
|
with Validsw; use Validsw;
|
72 |
|
|
|
73 |
|
|
package body Exp_Attr is
|
74 |
|
|
|
75 |
|
|
-----------------------
|
76 |
|
|
-- Local Subprograms --
|
77 |
|
|
-----------------------
|
78 |
|
|
|
79 |
|
|
procedure Compile_Stream_Body_In_Scope
|
80 |
|
|
(N : Node_Id;
|
81 |
|
|
Decl : Node_Id;
|
82 |
|
|
Arr : Entity_Id;
|
83 |
|
|
Check : Boolean);
|
84 |
|
|
-- The body for a stream subprogram may be generated outside of the scope
|
85 |
|
|
-- of the type. If the type is fully private, it may depend on the full
|
86 |
|
|
-- view of other types (e.g. indexes) that are currently private as well.
|
87 |
|
|
-- We install the declarations of the package in which the type is declared
|
88 |
|
|
-- before compiling the body in what is its proper environment. The Check
|
89 |
|
|
-- parameter indicates if checks are to be suppressed for the stream body.
|
90 |
|
|
-- We suppress checks for array/record reads, since the rule is that these
|
91 |
|
|
-- are like assignments, out of range values due to uninitialized storage,
|
92 |
|
|
-- or other invalid values do NOT cause a Constraint_Error to be raised.
|
93 |
|
|
|
94 |
|
|
procedure Expand_Access_To_Protected_Op
|
95 |
|
|
(N : Node_Id;
|
96 |
|
|
Pref : Node_Id;
|
97 |
|
|
Typ : Entity_Id);
|
98 |
|
|
-- An attribute reference to a protected subprogram is transformed into
|
99 |
|
|
-- a pair of pointers: one to the object, and one to the operations.
|
100 |
|
|
-- This expansion is performed for 'Access and for 'Unrestricted_Access.
|
101 |
|
|
|
102 |
|
|
procedure Expand_Fpt_Attribute
|
103 |
|
|
(N : Node_Id;
|
104 |
|
|
Pkg : RE_Id;
|
105 |
|
|
Nam : Name_Id;
|
106 |
|
|
Args : List_Id);
|
107 |
|
|
-- This procedure expands a call to a floating-point attribute function.
|
108 |
|
|
-- N is the attribute reference node, and Args is a list of arguments to
|
109 |
|
|
-- be passed to the function call. Pkg identifies the package containing
|
110 |
|
|
-- the appropriate instantiation of System.Fat_Gen. Float arguments in Args
|
111 |
|
|
-- have already been converted to the floating-point type for which Pkg was
|
112 |
|
|
-- instantiated. The Nam argument is the relevant attribute processing
|
113 |
|
|
-- routine to be called. This is the same as the attribute name, except in
|
114 |
|
|
-- the Unaligned_Valid case.
|
115 |
|
|
|
116 |
|
|
procedure Expand_Fpt_Attribute_R (N : Node_Id);
|
117 |
|
|
-- This procedure expands a call to a floating-point attribute function
|
118 |
|
|
-- that takes a single floating-point argument. The function to be called
|
119 |
|
|
-- is always the same as the attribute name.
|
120 |
|
|
|
121 |
|
|
procedure Expand_Fpt_Attribute_RI (N : Node_Id);
|
122 |
|
|
-- This procedure expands a call to a floating-point attribute function
|
123 |
|
|
-- that takes one floating-point argument and one integer argument. The
|
124 |
|
|
-- function to be called is always the same as the attribute name.
|
125 |
|
|
|
126 |
|
|
procedure Expand_Fpt_Attribute_RR (N : Node_Id);
|
127 |
|
|
-- This procedure expands a call to a floating-point attribute function
|
128 |
|
|
-- that takes two floating-point arguments. The function to be called
|
129 |
|
|
-- is always the same as the attribute name.
|
130 |
|
|
|
131 |
|
|
procedure Expand_Pred_Succ (N : Node_Id);
|
132 |
|
|
-- Handles expansion of Pred or Succ attributes for case of non-real
|
133 |
|
|
-- operand with overflow checking required.
|
134 |
|
|
|
135 |
|
|
function Get_Index_Subtype (N : Node_Id) return Entity_Id;
|
136 |
|
|
-- Used for Last, Last, and Length, when the prefix is an array type.
|
137 |
|
|
-- Obtains the corresponding index subtype.
|
138 |
|
|
|
139 |
|
|
procedure Find_Fat_Info
|
140 |
|
|
(T : Entity_Id;
|
141 |
|
|
Fat_Type : out Entity_Id;
|
142 |
|
|
Fat_Pkg : out RE_Id);
|
143 |
|
|
-- Given a floating-point type T, identifies the package containing the
|
144 |
|
|
-- attributes for this type (returned in Fat_Pkg), and the corresponding
|
145 |
|
|
-- type for which this package was instantiated from Fat_Gen. Error if T
|
146 |
|
|
-- is not a floating-point type.
|
147 |
|
|
|
148 |
|
|
function Find_Stream_Subprogram
|
149 |
|
|
(Typ : Entity_Id;
|
150 |
|
|
Nam : TSS_Name_Type) return Entity_Id;
|
151 |
|
|
-- Returns the stream-oriented subprogram attribute for Typ. For tagged
|
152 |
|
|
-- types, the corresponding primitive operation is looked up, else the
|
153 |
|
|
-- appropriate TSS from the type itself, or from its closest ancestor
|
154 |
|
|
-- defining it, is returned. In both cases, inheritance of representation
|
155 |
|
|
-- aspects is thus taken into account.
|
156 |
|
|
|
157 |
|
|
function Full_Base (T : Entity_Id) return Entity_Id;
|
158 |
|
|
-- The stream functions need to examine the underlying representation of
|
159 |
|
|
-- composite types. In some cases T may be non-private but its base type
|
160 |
|
|
-- is, in which case the function returns the corresponding full view.
|
161 |
|
|
|
162 |
|
|
function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id;
|
163 |
|
|
-- Given a type, find a corresponding stream convert pragma that applies to
|
164 |
|
|
-- the implementation base type of this type (Typ). If found, return the
|
165 |
|
|
-- pragma node, otherwise return Empty if no pragma is found.
|
166 |
|
|
|
167 |
|
|
function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean;
|
168 |
|
|
-- Utility for array attributes, returns true on packed constrained
|
169 |
|
|
-- arrays, and on access to same.
|
170 |
|
|
|
171 |
|
|
function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean;
|
172 |
|
|
-- Returns true iff the given node refers to an attribute call that
|
173 |
|
|
-- can be expanded directly by the back end and does not need front end
|
174 |
|
|
-- expansion. Typically used for rounding and truncation attributes that
|
175 |
|
|
-- appear directly inside a conversion to integer.
|
176 |
|
|
|
177 |
|
|
----------------------------------
|
178 |
|
|
-- Compile_Stream_Body_In_Scope --
|
179 |
|
|
----------------------------------
|
180 |
|
|
|
181 |
|
|
procedure Compile_Stream_Body_In_Scope
|
182 |
|
|
(N : Node_Id;
|
183 |
|
|
Decl : Node_Id;
|
184 |
|
|
Arr : Entity_Id;
|
185 |
|
|
Check : Boolean)
|
186 |
|
|
is
|
187 |
|
|
Installed : Boolean := False;
|
188 |
|
|
Scop : constant Entity_Id := Scope (Arr);
|
189 |
|
|
Curr : constant Entity_Id := Current_Scope;
|
190 |
|
|
|
191 |
|
|
begin
|
192 |
|
|
if Is_Hidden (Arr)
|
193 |
|
|
and then not In_Open_Scopes (Scop)
|
194 |
|
|
and then Ekind (Scop) = E_Package
|
195 |
|
|
then
|
196 |
|
|
Push_Scope (Scop);
|
197 |
|
|
Install_Visible_Declarations (Scop);
|
198 |
|
|
Install_Private_Declarations (Scop);
|
199 |
|
|
Installed := True;
|
200 |
|
|
|
201 |
|
|
-- The entities in the package are now visible, but the generated
|
202 |
|
|
-- stream entity must appear in the current scope (usually an
|
203 |
|
|
-- enclosing stream function) so that itypes all have their proper
|
204 |
|
|
-- scopes.
|
205 |
|
|
|
206 |
|
|
Push_Scope (Curr);
|
207 |
|
|
end if;
|
208 |
|
|
|
209 |
|
|
if Check then
|
210 |
|
|
Insert_Action (N, Decl);
|
211 |
|
|
else
|
212 |
|
|
Insert_Action (N, Decl, Suppress => All_Checks);
|
213 |
|
|
end if;
|
214 |
|
|
|
215 |
|
|
if Installed then
|
216 |
|
|
|
217 |
|
|
-- Remove extra copy of current scope, and package itself
|
218 |
|
|
|
219 |
|
|
Pop_Scope;
|
220 |
|
|
End_Package_Scope (Scop);
|
221 |
|
|
end if;
|
222 |
|
|
end Compile_Stream_Body_In_Scope;
|
223 |
|
|
|
224 |
|
|
-----------------------------------
|
225 |
|
|
-- Expand_Access_To_Protected_Op --
|
226 |
|
|
-----------------------------------
|
227 |
|
|
|
228 |
|
|
procedure Expand_Access_To_Protected_Op
|
229 |
|
|
(N : Node_Id;
|
230 |
|
|
Pref : Node_Id;
|
231 |
|
|
Typ : Entity_Id)
|
232 |
|
|
is
|
233 |
|
|
-- The value of the attribute_reference is a record containing two
|
234 |
|
|
-- fields: an access to the protected object, and an access to the
|
235 |
|
|
-- subprogram itself. The prefix is a selected component.
|
236 |
|
|
|
237 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
238 |
|
|
Agg : Node_Id;
|
239 |
|
|
Btyp : constant Entity_Id := Base_Type (Typ);
|
240 |
|
|
Sub : Entity_Id;
|
241 |
|
|
Sub_Ref : Node_Id;
|
242 |
|
|
E_T : constant Entity_Id := Equivalent_Type (Btyp);
|
243 |
|
|
Acc : constant Entity_Id :=
|
244 |
|
|
Etype (Next_Component (First_Component (E_T)));
|
245 |
|
|
Obj_Ref : Node_Id;
|
246 |
|
|
Curr : Entity_Id;
|
247 |
|
|
|
248 |
|
|
function May_Be_External_Call return Boolean;
|
249 |
|
|
-- If the 'Access is to a local operation, but appears in a context
|
250 |
|
|
-- where it may lead to a call from outside the object, we must treat
|
251 |
|
|
-- this as an external call. Clearly we cannot tell without full
|
252 |
|
|
-- flow analysis, and a subsequent call that uses this 'Access may
|
253 |
|
|
-- lead to a bounded error (trying to seize locks twice, e.g.). For
|
254 |
|
|
-- now we treat 'Access as a potential external call if it is an actual
|
255 |
|
|
-- in a call to an outside subprogram.
|
256 |
|
|
|
257 |
|
|
--------------------------
|
258 |
|
|
-- May_Be_External_Call --
|
259 |
|
|
--------------------------
|
260 |
|
|
|
261 |
|
|
function May_Be_External_Call return Boolean is
|
262 |
|
|
Subp : Entity_Id;
|
263 |
|
|
Par : Node_Id := Parent (N);
|
264 |
|
|
|
265 |
|
|
begin
|
266 |
|
|
-- Account for the case where the Access attribute is part of a
|
267 |
|
|
-- named parameter association.
|
268 |
|
|
|
269 |
|
|
if Nkind (Par) = N_Parameter_Association then
|
270 |
|
|
Par := Parent (Par);
|
271 |
|
|
end if;
|
272 |
|
|
|
273 |
|
|
if Nkind_In (Par, N_Procedure_Call_Statement, N_Function_Call)
|
274 |
|
|
and then Is_Entity_Name (Name (Par))
|
275 |
|
|
then
|
276 |
|
|
Subp := Entity (Name (Par));
|
277 |
|
|
return not In_Open_Scopes (Scope (Subp));
|
278 |
|
|
else
|
279 |
|
|
return False;
|
280 |
|
|
end if;
|
281 |
|
|
end May_Be_External_Call;
|
282 |
|
|
|
283 |
|
|
-- Start of processing for Expand_Access_To_Protected_Op
|
284 |
|
|
|
285 |
|
|
begin
|
286 |
|
|
-- Within the body of the protected type, the prefix designates a local
|
287 |
|
|
-- operation, and the object is the first parameter of the corresponding
|
288 |
|
|
-- protected body of the current enclosing operation.
|
289 |
|
|
|
290 |
|
|
if Is_Entity_Name (Pref) then
|
291 |
|
|
if May_Be_External_Call then
|
292 |
|
|
Sub :=
|
293 |
|
|
New_Occurrence_Of (External_Subprogram (Entity (Pref)), Loc);
|
294 |
|
|
else
|
295 |
|
|
Sub :=
|
296 |
|
|
New_Occurrence_Of
|
297 |
|
|
(Protected_Body_Subprogram (Entity (Pref)), Loc);
|
298 |
|
|
end if;
|
299 |
|
|
|
300 |
|
|
-- Don't traverse the scopes when the attribute occurs within an init
|
301 |
|
|
-- proc, because we directly use the _init formal of the init proc in
|
302 |
|
|
-- that case.
|
303 |
|
|
|
304 |
|
|
Curr := Current_Scope;
|
305 |
|
|
if not Is_Init_Proc (Curr) then
|
306 |
|
|
pragma Assert (In_Open_Scopes (Scope (Entity (Pref))));
|
307 |
|
|
|
308 |
|
|
while Scope (Curr) /= Scope (Entity (Pref)) loop
|
309 |
|
|
Curr := Scope (Curr);
|
310 |
|
|
end loop;
|
311 |
|
|
end if;
|
312 |
|
|
|
313 |
|
|
-- In case of protected entries the first formal of its Protected_
|
314 |
|
|
-- Body_Subprogram is the address of the object.
|
315 |
|
|
|
316 |
|
|
if Ekind (Curr) = E_Entry then
|
317 |
|
|
Obj_Ref :=
|
318 |
|
|
New_Occurrence_Of
|
319 |
|
|
(First_Formal
|
320 |
|
|
(Protected_Body_Subprogram (Curr)), Loc);
|
321 |
|
|
|
322 |
|
|
-- If the current scope is an init proc, then use the address of the
|
323 |
|
|
-- _init formal as the object reference.
|
324 |
|
|
|
325 |
|
|
elsif Is_Init_Proc (Curr) then
|
326 |
|
|
Obj_Ref :=
|
327 |
|
|
Make_Attribute_Reference (Loc,
|
328 |
|
|
Prefix => New_Occurrence_Of (First_Formal (Curr), Loc),
|
329 |
|
|
Attribute_Name => Name_Address);
|
330 |
|
|
|
331 |
|
|
-- In case of protected subprograms the first formal of its
|
332 |
|
|
-- Protected_Body_Subprogram is the object and we get its address.
|
333 |
|
|
|
334 |
|
|
else
|
335 |
|
|
Obj_Ref :=
|
336 |
|
|
Make_Attribute_Reference (Loc,
|
337 |
|
|
Prefix =>
|
338 |
|
|
New_Occurrence_Of
|
339 |
|
|
(First_Formal
|
340 |
|
|
(Protected_Body_Subprogram (Curr)), Loc),
|
341 |
|
|
Attribute_Name => Name_Address);
|
342 |
|
|
end if;
|
343 |
|
|
|
344 |
|
|
-- Case where the prefix is not an entity name. Find the
|
345 |
|
|
-- version of the protected operation to be called from
|
346 |
|
|
-- outside the protected object.
|
347 |
|
|
|
348 |
|
|
else
|
349 |
|
|
Sub :=
|
350 |
|
|
New_Occurrence_Of
|
351 |
|
|
(External_Subprogram
|
352 |
|
|
(Entity (Selector_Name (Pref))), Loc);
|
353 |
|
|
|
354 |
|
|
Obj_Ref :=
|
355 |
|
|
Make_Attribute_Reference (Loc,
|
356 |
|
|
Prefix => Relocate_Node (Prefix (Pref)),
|
357 |
|
|
Attribute_Name => Name_Address);
|
358 |
|
|
end if;
|
359 |
|
|
|
360 |
|
|
Sub_Ref :=
|
361 |
|
|
Make_Attribute_Reference (Loc,
|
362 |
|
|
Prefix => Sub,
|
363 |
|
|
Attribute_Name => Name_Access);
|
364 |
|
|
|
365 |
|
|
-- We set the type of the access reference to the already generated
|
366 |
|
|
-- access_to_subprogram type, and declare the reference analyzed, to
|
367 |
|
|
-- prevent further expansion when the enclosing aggregate is analyzed.
|
368 |
|
|
|
369 |
|
|
Set_Etype (Sub_Ref, Acc);
|
370 |
|
|
Set_Analyzed (Sub_Ref);
|
371 |
|
|
|
372 |
|
|
Agg :=
|
373 |
|
|
Make_Aggregate (Loc,
|
374 |
|
|
Expressions => New_List (Obj_Ref, Sub_Ref));
|
375 |
|
|
|
376 |
|
|
-- Sub_Ref has been marked as analyzed, but we still need to make sure
|
377 |
|
|
-- Sub is correctly frozen.
|
378 |
|
|
|
379 |
|
|
Freeze_Before (N, Entity (Sub));
|
380 |
|
|
|
381 |
|
|
Rewrite (N, Agg);
|
382 |
|
|
Analyze_And_Resolve (N, E_T);
|
383 |
|
|
|
384 |
|
|
-- For subsequent analysis, the node must retain its type. The backend
|
385 |
|
|
-- will replace it with the equivalent type where needed.
|
386 |
|
|
|
387 |
|
|
Set_Etype (N, Typ);
|
388 |
|
|
end Expand_Access_To_Protected_Op;
|
389 |
|
|
|
390 |
|
|
--------------------------
|
391 |
|
|
-- Expand_Fpt_Attribute --
|
392 |
|
|
--------------------------
|
393 |
|
|
|
394 |
|
|
procedure Expand_Fpt_Attribute
|
395 |
|
|
(N : Node_Id;
|
396 |
|
|
Pkg : RE_Id;
|
397 |
|
|
Nam : Name_Id;
|
398 |
|
|
Args : List_Id)
|
399 |
|
|
is
|
400 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
401 |
|
|
Typ : constant Entity_Id := Etype (N);
|
402 |
|
|
Fnm : Node_Id;
|
403 |
|
|
|
404 |
|
|
begin
|
405 |
|
|
-- The function name is the selected component Attr_xxx.yyy where
|
406 |
|
|
-- Attr_xxx is the package name, and yyy is the argument Nam.
|
407 |
|
|
|
408 |
|
|
-- Note: it would be more usual to have separate RE entries for each
|
409 |
|
|
-- of the entities in the Fat packages, but first they have identical
|
410 |
|
|
-- names (so we would have to have lots of renaming declarations to
|
411 |
|
|
-- meet the normal RE rule of separate names for all runtime entities),
|
412 |
|
|
-- and second there would be an awful lot of them!
|
413 |
|
|
|
414 |
|
|
Fnm :=
|
415 |
|
|
Make_Selected_Component (Loc,
|
416 |
|
|
Prefix => New_Reference_To (RTE (Pkg), Loc),
|
417 |
|
|
Selector_Name => Make_Identifier (Loc, Nam));
|
418 |
|
|
|
419 |
|
|
-- The generated call is given the provided set of parameters, and then
|
420 |
|
|
-- wrapped in a conversion which converts the result to the target type
|
421 |
|
|
-- We use the base type as the target because a range check may be
|
422 |
|
|
-- required.
|
423 |
|
|
|
424 |
|
|
Rewrite (N,
|
425 |
|
|
Unchecked_Convert_To (Base_Type (Etype (N)),
|
426 |
|
|
Make_Function_Call (Loc,
|
427 |
|
|
Name => Fnm,
|
428 |
|
|
Parameter_Associations => Args)));
|
429 |
|
|
|
430 |
|
|
Analyze_And_Resolve (N, Typ);
|
431 |
|
|
end Expand_Fpt_Attribute;
|
432 |
|
|
|
433 |
|
|
----------------------------
|
434 |
|
|
-- Expand_Fpt_Attribute_R --
|
435 |
|
|
----------------------------
|
436 |
|
|
|
437 |
|
|
-- The single argument is converted to its root type to call the
|
438 |
|
|
-- appropriate runtime function, with the actual call being built
|
439 |
|
|
-- by Expand_Fpt_Attribute
|
440 |
|
|
|
441 |
|
|
procedure Expand_Fpt_Attribute_R (N : Node_Id) is
|
442 |
|
|
E1 : constant Node_Id := First (Expressions (N));
|
443 |
|
|
Ftp : Entity_Id;
|
444 |
|
|
Pkg : RE_Id;
|
445 |
|
|
begin
|
446 |
|
|
Find_Fat_Info (Etype (E1), Ftp, Pkg);
|
447 |
|
|
Expand_Fpt_Attribute
|
448 |
|
|
(N, Pkg, Attribute_Name (N),
|
449 |
|
|
New_List (Unchecked_Convert_To (Ftp, Relocate_Node (E1))));
|
450 |
|
|
end Expand_Fpt_Attribute_R;
|
451 |
|
|
|
452 |
|
|
-----------------------------
|
453 |
|
|
-- Expand_Fpt_Attribute_RI --
|
454 |
|
|
-----------------------------
|
455 |
|
|
|
456 |
|
|
-- The first argument is converted to its root type and the second
|
457 |
|
|
-- argument is converted to standard long long integer to call the
|
458 |
|
|
-- appropriate runtime function, with the actual call being built
|
459 |
|
|
-- by Expand_Fpt_Attribute
|
460 |
|
|
|
461 |
|
|
procedure Expand_Fpt_Attribute_RI (N : Node_Id) is
|
462 |
|
|
E1 : constant Node_Id := First (Expressions (N));
|
463 |
|
|
Ftp : Entity_Id;
|
464 |
|
|
Pkg : RE_Id;
|
465 |
|
|
E2 : constant Node_Id := Next (E1);
|
466 |
|
|
begin
|
467 |
|
|
Find_Fat_Info (Etype (E1), Ftp, Pkg);
|
468 |
|
|
Expand_Fpt_Attribute
|
469 |
|
|
(N, Pkg, Attribute_Name (N),
|
470 |
|
|
New_List (
|
471 |
|
|
Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
|
472 |
|
|
Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2))));
|
473 |
|
|
end Expand_Fpt_Attribute_RI;
|
474 |
|
|
|
475 |
|
|
-----------------------------
|
476 |
|
|
-- Expand_Fpt_Attribute_RR --
|
477 |
|
|
-----------------------------
|
478 |
|
|
|
479 |
|
|
-- The two arguments are converted to their root types to call the
|
480 |
|
|
-- appropriate runtime function, with the actual call being built
|
481 |
|
|
-- by Expand_Fpt_Attribute
|
482 |
|
|
|
483 |
|
|
procedure Expand_Fpt_Attribute_RR (N : Node_Id) is
|
484 |
|
|
E1 : constant Node_Id := First (Expressions (N));
|
485 |
|
|
Ftp : Entity_Id;
|
486 |
|
|
Pkg : RE_Id;
|
487 |
|
|
E2 : constant Node_Id := Next (E1);
|
488 |
|
|
begin
|
489 |
|
|
Find_Fat_Info (Etype (E1), Ftp, Pkg);
|
490 |
|
|
Expand_Fpt_Attribute
|
491 |
|
|
(N, Pkg, Attribute_Name (N),
|
492 |
|
|
New_List (
|
493 |
|
|
Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
|
494 |
|
|
Unchecked_Convert_To (Ftp, Relocate_Node (E2))));
|
495 |
|
|
end Expand_Fpt_Attribute_RR;
|
496 |
|
|
|
497 |
|
|
----------------------------------
|
498 |
|
|
-- Expand_N_Attribute_Reference --
|
499 |
|
|
----------------------------------
|
500 |
|
|
|
501 |
|
|
procedure Expand_N_Attribute_Reference (N : Node_Id) is
|
502 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
503 |
|
|
Typ : constant Entity_Id := Etype (N);
|
504 |
|
|
Btyp : constant Entity_Id := Base_Type (Typ);
|
505 |
|
|
Pref : constant Node_Id := Prefix (N);
|
506 |
|
|
Ptyp : constant Entity_Id := Etype (Pref);
|
507 |
|
|
Exprs : constant List_Id := Expressions (N);
|
508 |
|
|
Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
|
509 |
|
|
|
510 |
|
|
procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id);
|
511 |
|
|
-- Rewrites a stream attribute for Read, Write or Output with the
|
512 |
|
|
-- procedure call. Pname is the entity for the procedure to call.
|
513 |
|
|
|
514 |
|
|
------------------------------
|
515 |
|
|
-- Rewrite_Stream_Proc_Call --
|
516 |
|
|
------------------------------
|
517 |
|
|
|
518 |
|
|
procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id) is
|
519 |
|
|
Item : constant Node_Id := Next (First (Exprs));
|
520 |
|
|
Formal : constant Entity_Id := Next_Formal (First_Formal (Pname));
|
521 |
|
|
Formal_Typ : constant Entity_Id := Etype (Formal);
|
522 |
|
|
Is_Written : constant Boolean := (Ekind (Formal) /= E_In_Parameter);
|
523 |
|
|
|
524 |
|
|
begin
|
525 |
|
|
-- The expansion depends on Item, the second actual, which is
|
526 |
|
|
-- the object being streamed in or out.
|
527 |
|
|
|
528 |
|
|
-- If the item is a component of a packed array type, and
|
529 |
|
|
-- a conversion is needed on exit, we introduce a temporary to
|
530 |
|
|
-- hold the value, because otherwise the packed reference will
|
531 |
|
|
-- not be properly expanded.
|
532 |
|
|
|
533 |
|
|
if Nkind (Item) = N_Indexed_Component
|
534 |
|
|
and then Is_Packed (Base_Type (Etype (Prefix (Item))))
|
535 |
|
|
and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
|
536 |
|
|
and then Is_Written
|
537 |
|
|
then
|
538 |
|
|
declare
|
539 |
|
|
Temp : constant Entity_Id := Make_Temporary (Loc, 'V');
|
540 |
|
|
Decl : Node_Id;
|
541 |
|
|
Assn : Node_Id;
|
542 |
|
|
|
543 |
|
|
begin
|
544 |
|
|
Decl :=
|
545 |
|
|
Make_Object_Declaration (Loc,
|
546 |
|
|
Defining_Identifier => Temp,
|
547 |
|
|
Object_Definition =>
|
548 |
|
|
New_Occurrence_Of (Formal_Typ, Loc));
|
549 |
|
|
Set_Etype (Temp, Formal_Typ);
|
550 |
|
|
|
551 |
|
|
Assn :=
|
552 |
|
|
Make_Assignment_Statement (Loc,
|
553 |
|
|
Name => New_Copy_Tree (Item),
|
554 |
|
|
Expression =>
|
555 |
|
|
Unchecked_Convert_To
|
556 |
|
|
(Etype (Item), New_Occurrence_Of (Temp, Loc)));
|
557 |
|
|
|
558 |
|
|
Rewrite (Item, New_Occurrence_Of (Temp, Loc));
|
559 |
|
|
Insert_Actions (N,
|
560 |
|
|
New_List (
|
561 |
|
|
Decl,
|
562 |
|
|
Make_Procedure_Call_Statement (Loc,
|
563 |
|
|
Name => New_Occurrence_Of (Pname, Loc),
|
564 |
|
|
Parameter_Associations => Exprs),
|
565 |
|
|
Assn));
|
566 |
|
|
|
567 |
|
|
Rewrite (N, Make_Null_Statement (Loc));
|
568 |
|
|
return;
|
569 |
|
|
end;
|
570 |
|
|
end if;
|
571 |
|
|
|
572 |
|
|
-- For the class-wide dispatching cases, and for cases in which
|
573 |
|
|
-- the base type of the second argument matches the base type of
|
574 |
|
|
-- the corresponding formal parameter (that is to say the stream
|
575 |
|
|
-- operation is not inherited), we are all set, and can use the
|
576 |
|
|
-- argument unchanged.
|
577 |
|
|
|
578 |
|
|
-- For all other cases we do an unchecked conversion of the second
|
579 |
|
|
-- parameter to the type of the formal of the procedure we are
|
580 |
|
|
-- calling. This deals with the private type cases, and with going
|
581 |
|
|
-- to the root type as required in elementary type case.
|
582 |
|
|
|
583 |
|
|
if not Is_Class_Wide_Type (Entity (Pref))
|
584 |
|
|
and then not Is_Class_Wide_Type (Etype (Item))
|
585 |
|
|
and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
|
586 |
|
|
then
|
587 |
|
|
Rewrite (Item,
|
588 |
|
|
Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item)));
|
589 |
|
|
|
590 |
|
|
-- For untagged derived types set Assignment_OK, to prevent
|
591 |
|
|
-- copies from being created when the unchecked conversion
|
592 |
|
|
-- is expanded (which would happen in Remove_Side_Effects
|
593 |
|
|
-- if Expand_N_Unchecked_Conversion were allowed to call
|
594 |
|
|
-- Force_Evaluation). The copy could violate Ada semantics
|
595 |
|
|
-- in cases such as an actual that is an out parameter.
|
596 |
|
|
-- Note that this approach is also used in exp_ch7 for calls
|
597 |
|
|
-- to controlled type operations to prevent problems with
|
598 |
|
|
-- actuals wrapped in unchecked conversions.
|
599 |
|
|
|
600 |
|
|
if Is_Untagged_Derivation (Etype (Expression (Item))) then
|
601 |
|
|
Set_Assignment_OK (Item);
|
602 |
|
|
end if;
|
603 |
|
|
end if;
|
604 |
|
|
|
605 |
|
|
-- The stream operation to call maybe a renaming created by
|
606 |
|
|
-- an attribute definition clause, and may not be frozen yet.
|
607 |
|
|
-- Ensure that it has the necessary extra formals.
|
608 |
|
|
|
609 |
|
|
if not Is_Frozen (Pname) then
|
610 |
|
|
Create_Extra_Formals (Pname);
|
611 |
|
|
end if;
|
612 |
|
|
|
613 |
|
|
-- And now rewrite the call
|
614 |
|
|
|
615 |
|
|
Rewrite (N,
|
616 |
|
|
Make_Procedure_Call_Statement (Loc,
|
617 |
|
|
Name => New_Occurrence_Of (Pname, Loc),
|
618 |
|
|
Parameter_Associations => Exprs));
|
619 |
|
|
|
620 |
|
|
Analyze (N);
|
621 |
|
|
end Rewrite_Stream_Proc_Call;
|
622 |
|
|
|
623 |
|
|
-- Start of processing for Expand_N_Attribute_Reference
|
624 |
|
|
|
625 |
|
|
begin
|
626 |
|
|
-- Do required validity checking, if enabled. Do not apply check to
|
627 |
|
|
-- output parameters of an Asm instruction, since the value of this
|
628 |
|
|
-- is not set till after the attribute has been elaborated, and do
|
629 |
|
|
-- not apply the check to the arguments of a 'Read or 'Input attribute
|
630 |
|
|
-- reference since the scalar argument is an OUT scalar.
|
631 |
|
|
|
632 |
|
|
if Validity_Checks_On and then Validity_Check_Operands
|
633 |
|
|
and then Id /= Attribute_Asm_Output
|
634 |
|
|
and then Id /= Attribute_Read
|
635 |
|
|
and then Id /= Attribute_Input
|
636 |
|
|
then
|
637 |
|
|
declare
|
638 |
|
|
Expr : Node_Id;
|
639 |
|
|
begin
|
640 |
|
|
Expr := First (Expressions (N));
|
641 |
|
|
while Present (Expr) loop
|
642 |
|
|
Ensure_Valid (Expr);
|
643 |
|
|
Next (Expr);
|
644 |
|
|
end loop;
|
645 |
|
|
end;
|
646 |
|
|
end if;
|
647 |
|
|
|
648 |
|
|
-- Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in-
|
649 |
|
|
-- place function, then a temporary return object needs to be created
|
650 |
|
|
-- and access to it must be passed to the function. Currently we limit
|
651 |
|
|
-- such functions to those with inherently limited result subtypes, but
|
652 |
|
|
-- eventually we plan to expand the functions that are treated as
|
653 |
|
|
-- build-in-place to include other composite result types.
|
654 |
|
|
|
655 |
|
|
if Ada_Version >= Ada_2005
|
656 |
|
|
and then Is_Build_In_Place_Function_Call (Pref)
|
657 |
|
|
then
|
658 |
|
|
Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
|
659 |
|
|
end if;
|
660 |
|
|
|
661 |
|
|
-- If prefix is a protected type name, this is a reference to the
|
662 |
|
|
-- current instance of the type. For a component definition, nothing
|
663 |
|
|
-- to do (expansion will occur in the init proc). In other contexts,
|
664 |
|
|
-- rewrite into reference to current instance.
|
665 |
|
|
|
666 |
|
|
if Is_Protected_Self_Reference (Pref)
|
667 |
|
|
and then not
|
668 |
|
|
(Nkind_In (Parent (N), N_Index_Or_Discriminant_Constraint,
|
669 |
|
|
N_Discriminant_Association)
|
670 |
|
|
and then Nkind (Parent (Parent (Parent (Parent (N))))) =
|
671 |
|
|
N_Component_Definition)
|
672 |
|
|
then
|
673 |
|
|
Rewrite (Pref, Concurrent_Ref (Pref));
|
674 |
|
|
Analyze (Pref);
|
675 |
|
|
end if;
|
676 |
|
|
|
677 |
|
|
-- Remaining processing depends on specific attribute
|
678 |
|
|
|
679 |
|
|
case Id is
|
680 |
|
|
|
681 |
|
|
-- Attributes related to Ada 2012 iterators (placeholder ???)
|
682 |
|
|
|
683 |
|
|
when Attribute_Constant_Indexing => null;
|
684 |
|
|
when Attribute_Default_Iterator => null;
|
685 |
|
|
when Attribute_Implicit_Dereference => null;
|
686 |
|
|
when Attribute_Iterator_Element => null;
|
687 |
|
|
when Attribute_Variable_Indexing => null;
|
688 |
|
|
|
689 |
|
|
------------
|
690 |
|
|
-- Access --
|
691 |
|
|
------------
|
692 |
|
|
|
693 |
|
|
when Attribute_Access |
|
694 |
|
|
Attribute_Unchecked_Access |
|
695 |
|
|
Attribute_Unrestricted_Access =>
|
696 |
|
|
|
697 |
|
|
Access_Cases : declare
|
698 |
|
|
Ref_Object : constant Node_Id := Get_Referenced_Object (Pref);
|
699 |
|
|
Btyp_DDT : Entity_Id;
|
700 |
|
|
|
701 |
|
|
function Enclosing_Object (N : Node_Id) return Node_Id;
|
702 |
|
|
-- If N denotes a compound name (selected component, indexed
|
703 |
|
|
-- component, or slice), returns the name of the outermost such
|
704 |
|
|
-- enclosing object. Otherwise returns N. If the object is a
|
705 |
|
|
-- renaming, then the renamed object is returned.
|
706 |
|
|
|
707 |
|
|
----------------------
|
708 |
|
|
-- Enclosing_Object --
|
709 |
|
|
----------------------
|
710 |
|
|
|
711 |
|
|
function Enclosing_Object (N : Node_Id) return Node_Id is
|
712 |
|
|
Obj_Name : Node_Id;
|
713 |
|
|
|
714 |
|
|
begin
|
715 |
|
|
Obj_Name := N;
|
716 |
|
|
while Nkind_In (Obj_Name, N_Selected_Component,
|
717 |
|
|
N_Indexed_Component,
|
718 |
|
|
N_Slice)
|
719 |
|
|
loop
|
720 |
|
|
Obj_Name := Prefix (Obj_Name);
|
721 |
|
|
end loop;
|
722 |
|
|
|
723 |
|
|
return Get_Referenced_Object (Obj_Name);
|
724 |
|
|
end Enclosing_Object;
|
725 |
|
|
|
726 |
|
|
-- Local declarations
|
727 |
|
|
|
728 |
|
|
Enc_Object : constant Node_Id := Enclosing_Object (Ref_Object);
|
729 |
|
|
|
730 |
|
|
-- Start of processing for Access_Cases
|
731 |
|
|
|
732 |
|
|
begin
|
733 |
|
|
Btyp_DDT := Designated_Type (Btyp);
|
734 |
|
|
|
735 |
|
|
-- Handle designated types that come from the limited view
|
736 |
|
|
|
737 |
|
|
if Ekind (Btyp_DDT) = E_Incomplete_Type
|
738 |
|
|
and then From_With_Type (Btyp_DDT)
|
739 |
|
|
and then Present (Non_Limited_View (Btyp_DDT))
|
740 |
|
|
then
|
741 |
|
|
Btyp_DDT := Non_Limited_View (Btyp_DDT);
|
742 |
|
|
|
743 |
|
|
elsif Is_Class_Wide_Type (Btyp_DDT)
|
744 |
|
|
and then Ekind (Etype (Btyp_DDT)) = E_Incomplete_Type
|
745 |
|
|
and then From_With_Type (Etype (Btyp_DDT))
|
746 |
|
|
and then Present (Non_Limited_View (Etype (Btyp_DDT)))
|
747 |
|
|
and then Present (Class_Wide_Type
|
748 |
|
|
(Non_Limited_View (Etype (Btyp_DDT))))
|
749 |
|
|
then
|
750 |
|
|
Btyp_DDT :=
|
751 |
|
|
Class_Wide_Type (Non_Limited_View (Etype (Btyp_DDT)));
|
752 |
|
|
end if;
|
753 |
|
|
|
754 |
|
|
-- In order to improve the text of error messages, the designated
|
755 |
|
|
-- type of access-to-subprogram itypes is set by the semantics as
|
756 |
|
|
-- the associated subprogram entity (see sem_attr). Now we replace
|
757 |
|
|
-- such node with the proper E_Subprogram_Type itype.
|
758 |
|
|
|
759 |
|
|
if Id = Attribute_Unrestricted_Access
|
760 |
|
|
and then Is_Subprogram (Directly_Designated_Type (Typ))
|
761 |
|
|
then
|
762 |
|
|
-- The following conditions ensure that this special management
|
763 |
|
|
-- is done only for "Address!(Prim'Unrestricted_Access)" nodes.
|
764 |
|
|
-- At this stage other cases in which the designated type is
|
765 |
|
|
-- still a subprogram (instead of an E_Subprogram_Type) are
|
766 |
|
|
-- wrong because the semantics must have overridden the type of
|
767 |
|
|
-- the node with the type imposed by the context.
|
768 |
|
|
|
769 |
|
|
if Nkind (Parent (N)) = N_Unchecked_Type_Conversion
|
770 |
|
|
and then Etype (Parent (N)) = RTE (RE_Prim_Ptr)
|
771 |
|
|
then
|
772 |
|
|
Set_Etype (N, RTE (RE_Prim_Ptr));
|
773 |
|
|
|
774 |
|
|
else
|
775 |
|
|
declare
|
776 |
|
|
Subp : constant Entity_Id :=
|
777 |
|
|
Directly_Designated_Type (Typ);
|
778 |
|
|
Etyp : Entity_Id;
|
779 |
|
|
Extra : Entity_Id := Empty;
|
780 |
|
|
New_Formal : Entity_Id;
|
781 |
|
|
Old_Formal : Entity_Id := First_Formal (Subp);
|
782 |
|
|
Subp_Typ : Entity_Id;
|
783 |
|
|
|
784 |
|
|
begin
|
785 |
|
|
Subp_Typ := Create_Itype (E_Subprogram_Type, N);
|
786 |
|
|
Set_Etype (Subp_Typ, Etype (Subp));
|
787 |
|
|
Set_Returns_By_Ref (Subp_Typ, Returns_By_Ref (Subp));
|
788 |
|
|
|
789 |
|
|
if Present (Old_Formal) then
|
790 |
|
|
New_Formal := New_Copy (Old_Formal);
|
791 |
|
|
Set_First_Entity (Subp_Typ, New_Formal);
|
792 |
|
|
|
793 |
|
|
loop
|
794 |
|
|
Set_Scope (New_Formal, Subp_Typ);
|
795 |
|
|
Etyp := Etype (New_Formal);
|
796 |
|
|
|
797 |
|
|
-- Handle itypes. There is no need to duplicate
|
798 |
|
|
-- here the itypes associated with record types
|
799 |
|
|
-- (i.e the implicit full view of private types).
|
800 |
|
|
|
801 |
|
|
if Is_Itype (Etyp)
|
802 |
|
|
and then Ekind (Base_Type (Etyp)) /= E_Record_Type
|
803 |
|
|
then
|
804 |
|
|
Extra := New_Copy (Etyp);
|
805 |
|
|
Set_Parent (Extra, New_Formal);
|
806 |
|
|
Set_Etype (New_Formal, Extra);
|
807 |
|
|
Set_Scope (Extra, Subp_Typ);
|
808 |
|
|
end if;
|
809 |
|
|
|
810 |
|
|
Extra := New_Formal;
|
811 |
|
|
Next_Formal (Old_Formal);
|
812 |
|
|
exit when No (Old_Formal);
|
813 |
|
|
|
814 |
|
|
Set_Next_Entity (New_Formal,
|
815 |
|
|
New_Copy (Old_Formal));
|
816 |
|
|
Next_Entity (New_Formal);
|
817 |
|
|
end loop;
|
818 |
|
|
|
819 |
|
|
Set_Next_Entity (New_Formal, Empty);
|
820 |
|
|
Set_Last_Entity (Subp_Typ, Extra);
|
821 |
|
|
end if;
|
822 |
|
|
|
823 |
|
|
-- Now that the explicit formals have been duplicated,
|
824 |
|
|
-- any extra formals needed by the subprogram must be
|
825 |
|
|
-- created.
|
826 |
|
|
|
827 |
|
|
if Present (Extra) then
|
828 |
|
|
Set_Extra_Formal (Extra, Empty);
|
829 |
|
|
end if;
|
830 |
|
|
|
831 |
|
|
Create_Extra_Formals (Subp_Typ);
|
832 |
|
|
Set_Directly_Designated_Type (Typ, Subp_Typ);
|
833 |
|
|
end;
|
834 |
|
|
end if;
|
835 |
|
|
end if;
|
836 |
|
|
|
837 |
|
|
if Is_Access_Protected_Subprogram_Type (Btyp) then
|
838 |
|
|
Expand_Access_To_Protected_Op (N, Pref, Typ);
|
839 |
|
|
|
840 |
|
|
-- If prefix is a type name, this is a reference to the current
|
841 |
|
|
-- instance of the type, within its initialization procedure.
|
842 |
|
|
|
843 |
|
|
elsif Is_Entity_Name (Pref)
|
844 |
|
|
and then Is_Type (Entity (Pref))
|
845 |
|
|
then
|
846 |
|
|
declare
|
847 |
|
|
Par : Node_Id;
|
848 |
|
|
Formal : Entity_Id;
|
849 |
|
|
|
850 |
|
|
begin
|
851 |
|
|
-- If the current instance name denotes a task type, then
|
852 |
|
|
-- the access attribute is rewritten to be the name of the
|
853 |
|
|
-- "_task" parameter associated with the task type's task
|
854 |
|
|
-- procedure. An unchecked conversion is applied to ensure
|
855 |
|
|
-- a type match in cases of expander-generated calls (e.g.
|
856 |
|
|
-- init procs).
|
857 |
|
|
|
858 |
|
|
if Is_Task_Type (Entity (Pref)) then
|
859 |
|
|
Formal :=
|
860 |
|
|
First_Entity (Get_Task_Body_Procedure (Entity (Pref)));
|
861 |
|
|
while Present (Formal) loop
|
862 |
|
|
exit when Chars (Formal) = Name_uTask;
|
863 |
|
|
Next_Entity (Formal);
|
864 |
|
|
end loop;
|
865 |
|
|
|
866 |
|
|
pragma Assert (Present (Formal));
|
867 |
|
|
|
868 |
|
|
Rewrite (N,
|
869 |
|
|
Unchecked_Convert_To (Typ,
|
870 |
|
|
New_Occurrence_Of (Formal, Loc)));
|
871 |
|
|
Set_Etype (N, Typ);
|
872 |
|
|
|
873 |
|
|
-- The expression must appear in a default expression,
|
874 |
|
|
-- (which in the initialization procedure is the
|
875 |
|
|
-- right-hand side of an assignment), and not in a
|
876 |
|
|
-- discriminant constraint.
|
877 |
|
|
|
878 |
|
|
else
|
879 |
|
|
Par := Parent (N);
|
880 |
|
|
while Present (Par) loop
|
881 |
|
|
exit when Nkind (Par) = N_Assignment_Statement;
|
882 |
|
|
|
883 |
|
|
if Nkind (Par) = N_Component_Declaration then
|
884 |
|
|
return;
|
885 |
|
|
end if;
|
886 |
|
|
|
887 |
|
|
Par := Parent (Par);
|
888 |
|
|
end loop;
|
889 |
|
|
|
890 |
|
|
if Present (Par) then
|
891 |
|
|
Rewrite (N,
|
892 |
|
|
Make_Attribute_Reference (Loc,
|
893 |
|
|
Prefix => Make_Identifier (Loc, Name_uInit),
|
894 |
|
|
Attribute_Name => Attribute_Name (N)));
|
895 |
|
|
|
896 |
|
|
Analyze_And_Resolve (N, Typ);
|
897 |
|
|
end if;
|
898 |
|
|
end if;
|
899 |
|
|
end;
|
900 |
|
|
|
901 |
|
|
-- If the prefix of an Access attribute is a dereference of an
|
902 |
|
|
-- access parameter (or a renaming of such a dereference, or a
|
903 |
|
|
-- subcomponent of such a dereference) and the context is a
|
904 |
|
|
-- general access type (including the type of an object or
|
905 |
|
|
-- component with an access_definition, but not the anonymous
|
906 |
|
|
-- type of an access parameter or access discriminant), then
|
907 |
|
|
-- apply an accessibility check to the access parameter. We used
|
908 |
|
|
-- to rewrite the access parameter as a type conversion, but that
|
909 |
|
|
-- could only be done if the immediate prefix of the Access
|
910 |
|
|
-- attribute was the dereference, and didn't handle cases where
|
911 |
|
|
-- the attribute is applied to a subcomponent of the dereference,
|
912 |
|
|
-- since there's generally no available, appropriate access type
|
913 |
|
|
-- to convert to in that case. The attribute is passed as the
|
914 |
|
|
-- point to insert the check, because the access parameter may
|
915 |
|
|
-- come from a renaming, possibly in a different scope, and the
|
916 |
|
|
-- check must be associated with the attribute itself.
|
917 |
|
|
|
918 |
|
|
elsif Id = Attribute_Access
|
919 |
|
|
and then Nkind (Enc_Object) = N_Explicit_Dereference
|
920 |
|
|
and then Is_Entity_Name (Prefix (Enc_Object))
|
921 |
|
|
and then (Ekind (Btyp) = E_General_Access_Type
|
922 |
|
|
or else Is_Local_Anonymous_Access (Btyp))
|
923 |
|
|
and then Ekind (Entity (Prefix (Enc_Object))) in Formal_Kind
|
924 |
|
|
and then Ekind (Etype (Entity (Prefix (Enc_Object))))
|
925 |
|
|
= E_Anonymous_Access_Type
|
926 |
|
|
and then Present (Extra_Accessibility
|
927 |
|
|
(Entity (Prefix (Enc_Object))))
|
928 |
|
|
then
|
929 |
|
|
Apply_Accessibility_Check (Prefix (Enc_Object), Typ, N);
|
930 |
|
|
|
931 |
|
|
-- Ada 2005 (AI-251): If the designated type is an interface we
|
932 |
|
|
-- add an implicit conversion to force the displacement of the
|
933 |
|
|
-- pointer to reference the secondary dispatch table.
|
934 |
|
|
|
935 |
|
|
elsif Is_Interface (Btyp_DDT)
|
936 |
|
|
and then (Comes_From_Source (N)
|
937 |
|
|
or else Comes_From_Source (Ref_Object)
|
938 |
|
|
or else (Nkind (Ref_Object) in N_Has_Chars
|
939 |
|
|
and then Chars (Ref_Object) = Name_uInit))
|
940 |
|
|
then
|
941 |
|
|
if Nkind (Ref_Object) /= N_Explicit_Dereference then
|
942 |
|
|
|
943 |
|
|
-- No implicit conversion required if types match, or if
|
944 |
|
|
-- the prefix is the class_wide_type of the interface. In
|
945 |
|
|
-- either case passing an object of the interface type has
|
946 |
|
|
-- already set the pointer correctly.
|
947 |
|
|
|
948 |
|
|
if Btyp_DDT = Etype (Ref_Object)
|
949 |
|
|
or else (Is_Class_Wide_Type (Etype (Ref_Object))
|
950 |
|
|
and then
|
951 |
|
|
Class_Wide_Type (Btyp_DDT) = Etype (Ref_Object))
|
952 |
|
|
then
|
953 |
|
|
null;
|
954 |
|
|
|
955 |
|
|
else
|
956 |
|
|
Rewrite (Prefix (N),
|
957 |
|
|
Convert_To (Btyp_DDT,
|
958 |
|
|
New_Copy_Tree (Prefix (N))));
|
959 |
|
|
|
960 |
|
|
Analyze_And_Resolve (Prefix (N), Btyp_DDT);
|
961 |
|
|
end if;
|
962 |
|
|
|
963 |
|
|
-- When the object is an explicit dereference, convert the
|
964 |
|
|
-- dereference's prefix.
|
965 |
|
|
|
966 |
|
|
else
|
967 |
|
|
declare
|
968 |
|
|
Obj_DDT : constant Entity_Id :=
|
969 |
|
|
Base_Type
|
970 |
|
|
(Directly_Designated_Type
|
971 |
|
|
(Etype (Prefix (Ref_Object))));
|
972 |
|
|
begin
|
973 |
|
|
-- No implicit conversion required if designated types
|
974 |
|
|
-- match, or if we have an unrestricted access.
|
975 |
|
|
|
976 |
|
|
if Obj_DDT /= Btyp_DDT
|
977 |
|
|
and then Id /= Attribute_Unrestricted_Access
|
978 |
|
|
and then not (Is_Class_Wide_Type (Obj_DDT)
|
979 |
|
|
and then Etype (Obj_DDT) = Btyp_DDT)
|
980 |
|
|
then
|
981 |
|
|
Rewrite (N,
|
982 |
|
|
Convert_To (Typ,
|
983 |
|
|
New_Copy_Tree (Prefix (Ref_Object))));
|
984 |
|
|
Analyze_And_Resolve (N, Typ);
|
985 |
|
|
end if;
|
986 |
|
|
end;
|
987 |
|
|
end if;
|
988 |
|
|
end if;
|
989 |
|
|
end Access_Cases;
|
990 |
|
|
|
991 |
|
|
--------------
|
992 |
|
|
-- Adjacent --
|
993 |
|
|
--------------
|
994 |
|
|
|
995 |
|
|
-- Transforms 'Adjacent into a call to the floating-point attribute
|
996 |
|
|
-- function Adjacent in Fat_xxx (where xxx is the root type)
|
997 |
|
|
|
998 |
|
|
when Attribute_Adjacent =>
|
999 |
|
|
Expand_Fpt_Attribute_RR (N);
|
1000 |
|
|
|
1001 |
|
|
-------------
|
1002 |
|
|
-- Address --
|
1003 |
|
|
-------------
|
1004 |
|
|
|
1005 |
|
|
when Attribute_Address => Address : declare
|
1006 |
|
|
Task_Proc : Entity_Id;
|
1007 |
|
|
|
1008 |
|
|
begin
|
1009 |
|
|
-- If the prefix is a task or a task type, the useful address is that
|
1010 |
|
|
-- of the procedure for the task body, i.e. the actual program unit.
|
1011 |
|
|
-- We replace the original entity with that of the procedure.
|
1012 |
|
|
|
1013 |
|
|
if Is_Entity_Name (Pref)
|
1014 |
|
|
and then Is_Task_Type (Entity (Pref))
|
1015 |
|
|
then
|
1016 |
|
|
Task_Proc := Next_Entity (Root_Type (Ptyp));
|
1017 |
|
|
|
1018 |
|
|
while Present (Task_Proc) loop
|
1019 |
|
|
exit when Ekind (Task_Proc) = E_Procedure
|
1020 |
|
|
and then Etype (First_Formal (Task_Proc)) =
|
1021 |
|
|
Corresponding_Record_Type (Ptyp);
|
1022 |
|
|
Next_Entity (Task_Proc);
|
1023 |
|
|
end loop;
|
1024 |
|
|
|
1025 |
|
|
if Present (Task_Proc) then
|
1026 |
|
|
Set_Entity (Pref, Task_Proc);
|
1027 |
|
|
Set_Etype (Pref, Etype (Task_Proc));
|
1028 |
|
|
end if;
|
1029 |
|
|
|
1030 |
|
|
-- Similarly, the address of a protected operation is the address
|
1031 |
|
|
-- of the corresponding protected body, regardless of the protected
|
1032 |
|
|
-- object from which it is selected.
|
1033 |
|
|
|
1034 |
|
|
elsif Nkind (Pref) = N_Selected_Component
|
1035 |
|
|
and then Is_Subprogram (Entity (Selector_Name (Pref)))
|
1036 |
|
|
and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref))))
|
1037 |
|
|
then
|
1038 |
|
|
Rewrite (Pref,
|
1039 |
|
|
New_Occurrence_Of (
|
1040 |
|
|
External_Subprogram (Entity (Selector_Name (Pref))), Loc));
|
1041 |
|
|
|
1042 |
|
|
elsif Nkind (Pref) = N_Explicit_Dereference
|
1043 |
|
|
and then Ekind (Ptyp) = E_Subprogram_Type
|
1044 |
|
|
and then Convention (Ptyp) = Convention_Protected
|
1045 |
|
|
then
|
1046 |
|
|
-- The prefix is be a dereference of an access_to_protected_
|
1047 |
|
|
-- subprogram. The desired address is the second component of
|
1048 |
|
|
-- the record that represents the access.
|
1049 |
|
|
|
1050 |
|
|
declare
|
1051 |
|
|
Addr : constant Entity_Id := Etype (N);
|
1052 |
|
|
Ptr : constant Node_Id := Prefix (Pref);
|
1053 |
|
|
T : constant Entity_Id :=
|
1054 |
|
|
Equivalent_Type (Base_Type (Etype (Ptr)));
|
1055 |
|
|
|
1056 |
|
|
begin
|
1057 |
|
|
Rewrite (N,
|
1058 |
|
|
Unchecked_Convert_To (Addr,
|
1059 |
|
|
Make_Selected_Component (Loc,
|
1060 |
|
|
Prefix => Unchecked_Convert_To (T, Ptr),
|
1061 |
|
|
Selector_Name => New_Occurrence_Of (
|
1062 |
|
|
Next_Entity (First_Entity (T)), Loc))));
|
1063 |
|
|
|
1064 |
|
|
Analyze_And_Resolve (N, Addr);
|
1065 |
|
|
end;
|
1066 |
|
|
|
1067 |
|
|
-- Ada 2005 (AI-251): Class-wide interface objects are always
|
1068 |
|
|
-- "displaced" to reference the tag associated with the interface
|
1069 |
|
|
-- type. In order to obtain the real address of such objects we
|
1070 |
|
|
-- generate a call to a run-time subprogram that returns the base
|
1071 |
|
|
-- address of the object.
|
1072 |
|
|
|
1073 |
|
|
-- This processing is not needed in the VM case, where dispatching
|
1074 |
|
|
-- issues are taken care of by the virtual machine.
|
1075 |
|
|
|
1076 |
|
|
elsif Is_Class_Wide_Type (Ptyp)
|
1077 |
|
|
and then Is_Interface (Ptyp)
|
1078 |
|
|
and then Tagged_Type_Expansion
|
1079 |
|
|
and then not (Nkind (Pref) in N_Has_Entity
|
1080 |
|
|
and then Is_Subprogram (Entity (Pref)))
|
1081 |
|
|
then
|
1082 |
|
|
Rewrite (N,
|
1083 |
|
|
Make_Function_Call (Loc,
|
1084 |
|
|
Name => New_Reference_To (RTE (RE_Base_Address), Loc),
|
1085 |
|
|
Parameter_Associations => New_List (
|
1086 |
|
|
Relocate_Node (N))));
|
1087 |
|
|
Analyze (N);
|
1088 |
|
|
return;
|
1089 |
|
|
end if;
|
1090 |
|
|
|
1091 |
|
|
-- Deal with packed array reference, other cases are handled by
|
1092 |
|
|
-- the back end.
|
1093 |
|
|
|
1094 |
|
|
if Involves_Packed_Array_Reference (Pref) then
|
1095 |
|
|
Expand_Packed_Address_Reference (N);
|
1096 |
|
|
end if;
|
1097 |
|
|
end Address;
|
1098 |
|
|
|
1099 |
|
|
---------------
|
1100 |
|
|
-- Alignment --
|
1101 |
|
|
---------------
|
1102 |
|
|
|
1103 |
|
|
when Attribute_Alignment => Alignment : declare
|
1104 |
|
|
New_Node : Node_Id;
|
1105 |
|
|
|
1106 |
|
|
begin
|
1107 |
|
|
-- For class-wide types, X'Class'Alignment is transformed into a
|
1108 |
|
|
-- direct reference to the Alignment of the class type, so that the
|
1109 |
|
|
-- back end does not have to deal with the X'Class'Alignment
|
1110 |
|
|
-- reference.
|
1111 |
|
|
|
1112 |
|
|
if Is_Entity_Name (Pref)
|
1113 |
|
|
and then Is_Class_Wide_Type (Entity (Pref))
|
1114 |
|
|
then
|
1115 |
|
|
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
|
1116 |
|
|
return;
|
1117 |
|
|
|
1118 |
|
|
-- For x'Alignment applied to an object of a class wide type,
|
1119 |
|
|
-- transform X'Alignment into a call to the predefined primitive
|
1120 |
|
|
-- operation _Alignment applied to X.
|
1121 |
|
|
|
1122 |
|
|
elsif Is_Class_Wide_Type (Ptyp) then
|
1123 |
|
|
New_Node :=
|
1124 |
|
|
Make_Attribute_Reference (Loc,
|
1125 |
|
|
Prefix => Pref,
|
1126 |
|
|
Attribute_Name => Name_Tag);
|
1127 |
|
|
|
1128 |
|
|
if VM_Target = No_VM then
|
1129 |
|
|
New_Node := Build_Get_Alignment (Loc, New_Node);
|
1130 |
|
|
else
|
1131 |
|
|
New_Node :=
|
1132 |
|
|
Make_Function_Call (Loc,
|
1133 |
|
|
Name => New_Reference_To (RTE (RE_Get_Alignment), Loc),
|
1134 |
|
|
Parameter_Associations => New_List (New_Node));
|
1135 |
|
|
end if;
|
1136 |
|
|
|
1137 |
|
|
-- Case where the context is a specific integer type with which
|
1138 |
|
|
-- the original attribute was compatible. The function has a
|
1139 |
|
|
-- specific type as well, so to preserve the compatibility we
|
1140 |
|
|
-- must convert explicitly.
|
1141 |
|
|
|
1142 |
|
|
if Typ /= Standard_Integer then
|
1143 |
|
|
New_Node := Convert_To (Typ, New_Node);
|
1144 |
|
|
end if;
|
1145 |
|
|
|
1146 |
|
|
Rewrite (N, New_Node);
|
1147 |
|
|
Analyze_And_Resolve (N, Typ);
|
1148 |
|
|
return;
|
1149 |
|
|
|
1150 |
|
|
-- For all other cases, we just have to deal with the case of
|
1151 |
|
|
-- the fact that the result can be universal.
|
1152 |
|
|
|
1153 |
|
|
else
|
1154 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
1155 |
|
|
end if;
|
1156 |
|
|
end Alignment;
|
1157 |
|
|
|
1158 |
|
|
---------------
|
1159 |
|
|
-- AST_Entry --
|
1160 |
|
|
---------------
|
1161 |
|
|
|
1162 |
|
|
when Attribute_AST_Entry => AST_Entry : declare
|
1163 |
|
|
Ttyp : Entity_Id;
|
1164 |
|
|
T_Id : Node_Id;
|
1165 |
|
|
Eent : Entity_Id;
|
1166 |
|
|
|
1167 |
|
|
Entry_Ref : Node_Id;
|
1168 |
|
|
-- The reference to the entry or entry family
|
1169 |
|
|
|
1170 |
|
|
Index : Node_Id;
|
1171 |
|
|
-- The index expression for an entry family reference, or
|
1172 |
|
|
-- the Empty if Entry_Ref references a simple entry.
|
1173 |
|
|
|
1174 |
|
|
begin
|
1175 |
|
|
if Nkind (Pref) = N_Indexed_Component then
|
1176 |
|
|
Entry_Ref := Prefix (Pref);
|
1177 |
|
|
Index := First (Expressions (Pref));
|
1178 |
|
|
else
|
1179 |
|
|
Entry_Ref := Pref;
|
1180 |
|
|
Index := Empty;
|
1181 |
|
|
end if;
|
1182 |
|
|
|
1183 |
|
|
-- Get expression for Task_Id and the entry entity
|
1184 |
|
|
|
1185 |
|
|
if Nkind (Entry_Ref) = N_Selected_Component then
|
1186 |
|
|
T_Id :=
|
1187 |
|
|
Make_Attribute_Reference (Loc,
|
1188 |
|
|
Attribute_Name => Name_Identity,
|
1189 |
|
|
Prefix => Prefix (Entry_Ref));
|
1190 |
|
|
|
1191 |
|
|
Ttyp := Etype (Prefix (Entry_Ref));
|
1192 |
|
|
Eent := Entity (Selector_Name (Entry_Ref));
|
1193 |
|
|
|
1194 |
|
|
else
|
1195 |
|
|
T_Id :=
|
1196 |
|
|
Make_Function_Call (Loc,
|
1197 |
|
|
Name => New_Occurrence_Of (RTE (RE_Current_Task), Loc));
|
1198 |
|
|
|
1199 |
|
|
Eent := Entity (Entry_Ref);
|
1200 |
|
|
|
1201 |
|
|
-- We have to find the enclosing task to get the task type
|
1202 |
|
|
-- There must be one, since we already validated this earlier
|
1203 |
|
|
|
1204 |
|
|
Ttyp := Current_Scope;
|
1205 |
|
|
while not Is_Task_Type (Ttyp) loop
|
1206 |
|
|
Ttyp := Scope (Ttyp);
|
1207 |
|
|
end loop;
|
1208 |
|
|
end if;
|
1209 |
|
|
|
1210 |
|
|
-- Now rewrite the attribute with a call to Create_AST_Handler
|
1211 |
|
|
|
1212 |
|
|
Rewrite (N,
|
1213 |
|
|
Make_Function_Call (Loc,
|
1214 |
|
|
Name => New_Occurrence_Of (RTE (RE_Create_AST_Handler), Loc),
|
1215 |
|
|
Parameter_Associations => New_List (
|
1216 |
|
|
T_Id,
|
1217 |
|
|
Entry_Index_Expression (Loc, Eent, Index, Ttyp))));
|
1218 |
|
|
|
1219 |
|
|
Analyze_And_Resolve (N, RTE (RE_AST_Handler));
|
1220 |
|
|
end AST_Entry;
|
1221 |
|
|
|
1222 |
|
|
---------
|
1223 |
|
|
-- Bit --
|
1224 |
|
|
---------
|
1225 |
|
|
|
1226 |
|
|
-- We compute this if a packed array reference was present, otherwise we
|
1227 |
|
|
-- leave the computation up to the back end.
|
1228 |
|
|
|
1229 |
|
|
when Attribute_Bit =>
|
1230 |
|
|
if Involves_Packed_Array_Reference (Pref) then
|
1231 |
|
|
Expand_Packed_Bit_Reference (N);
|
1232 |
|
|
else
|
1233 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
1234 |
|
|
end if;
|
1235 |
|
|
|
1236 |
|
|
------------------
|
1237 |
|
|
-- Bit_Position --
|
1238 |
|
|
------------------
|
1239 |
|
|
|
1240 |
|
|
-- We compute this if a component clause was present, otherwise we leave
|
1241 |
|
|
-- the computation up to the back end, since we don't know what layout
|
1242 |
|
|
-- will be chosen.
|
1243 |
|
|
|
1244 |
|
|
-- Note that the attribute can apply to a naked record component
|
1245 |
|
|
-- in generated code (i.e. the prefix is an identifier that
|
1246 |
|
|
-- references the component or discriminant entity).
|
1247 |
|
|
|
1248 |
|
|
when Attribute_Bit_Position => Bit_Position : declare
|
1249 |
|
|
CE : Entity_Id;
|
1250 |
|
|
|
1251 |
|
|
begin
|
1252 |
|
|
if Nkind (Pref) = N_Identifier then
|
1253 |
|
|
CE := Entity (Pref);
|
1254 |
|
|
else
|
1255 |
|
|
CE := Entity (Selector_Name (Pref));
|
1256 |
|
|
end if;
|
1257 |
|
|
|
1258 |
|
|
if Known_Static_Component_Bit_Offset (CE) then
|
1259 |
|
|
Rewrite (N,
|
1260 |
|
|
Make_Integer_Literal (Loc,
|
1261 |
|
|
Intval => Component_Bit_Offset (CE)));
|
1262 |
|
|
Analyze_And_Resolve (N, Typ);
|
1263 |
|
|
|
1264 |
|
|
else
|
1265 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
1266 |
|
|
end if;
|
1267 |
|
|
end Bit_Position;
|
1268 |
|
|
|
1269 |
|
|
------------------
|
1270 |
|
|
-- Body_Version --
|
1271 |
|
|
------------------
|
1272 |
|
|
|
1273 |
|
|
-- A reference to P'Body_Version or P'Version is expanded to
|
1274 |
|
|
|
1275 |
|
|
-- Vnn : Unsigned;
|
1276 |
|
|
-- pragma Import (C, Vnn, "uuuuT");
|
1277 |
|
|
-- ...
|
1278 |
|
|
-- Get_Version_String (Vnn)
|
1279 |
|
|
|
1280 |
|
|
-- where uuuu is the unit name (dots replaced by double underscore)
|
1281 |
|
|
-- and T is B for the cases of Body_Version, or Version applied to a
|
1282 |
|
|
-- subprogram acting as its own spec, and S for Version applied to a
|
1283 |
|
|
-- subprogram spec or package. This sequence of code references the
|
1284 |
|
|
-- unsigned constant created in the main program by the binder.
|
1285 |
|
|
|
1286 |
|
|
-- A special exception occurs for Standard, where the string returned
|
1287 |
|
|
-- is a copy of the library string in gnatvsn.ads.
|
1288 |
|
|
|
1289 |
|
|
when Attribute_Body_Version | Attribute_Version => Version : declare
|
1290 |
|
|
E : constant Entity_Id := Make_Temporary (Loc, 'V');
|
1291 |
|
|
Pent : Entity_Id;
|
1292 |
|
|
S : String_Id;
|
1293 |
|
|
|
1294 |
|
|
begin
|
1295 |
|
|
-- If not library unit, get to containing library unit
|
1296 |
|
|
|
1297 |
|
|
Pent := Entity (Pref);
|
1298 |
|
|
while Pent /= Standard_Standard
|
1299 |
|
|
and then Scope (Pent) /= Standard_Standard
|
1300 |
|
|
and then not Is_Child_Unit (Pent)
|
1301 |
|
|
loop
|
1302 |
|
|
Pent := Scope (Pent);
|
1303 |
|
|
end loop;
|
1304 |
|
|
|
1305 |
|
|
-- Special case Standard and Standard.ASCII
|
1306 |
|
|
|
1307 |
|
|
if Pent = Standard_Standard or else Pent = Standard_ASCII then
|
1308 |
|
|
Rewrite (N,
|
1309 |
|
|
Make_String_Literal (Loc,
|
1310 |
|
|
Strval => Verbose_Library_Version));
|
1311 |
|
|
|
1312 |
|
|
-- All other cases
|
1313 |
|
|
|
1314 |
|
|
else
|
1315 |
|
|
-- Build required string constant
|
1316 |
|
|
|
1317 |
|
|
Get_Name_String (Get_Unit_Name (Pent));
|
1318 |
|
|
|
1319 |
|
|
Start_String;
|
1320 |
|
|
for J in 1 .. Name_Len - 2 loop
|
1321 |
|
|
if Name_Buffer (J) = '.' then
|
1322 |
|
|
Store_String_Chars ("__");
|
1323 |
|
|
else
|
1324 |
|
|
Store_String_Char (Get_Char_Code (Name_Buffer (J)));
|
1325 |
|
|
end if;
|
1326 |
|
|
end loop;
|
1327 |
|
|
|
1328 |
|
|
-- Case of subprogram acting as its own spec, always use body
|
1329 |
|
|
|
1330 |
|
|
if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification
|
1331 |
|
|
and then Nkind (Parent (Declaration_Node (Pent))) =
|
1332 |
|
|
N_Subprogram_Body
|
1333 |
|
|
and then Acts_As_Spec (Parent (Declaration_Node (Pent)))
|
1334 |
|
|
then
|
1335 |
|
|
Store_String_Chars ("B");
|
1336 |
|
|
|
1337 |
|
|
-- Case of no body present, always use spec
|
1338 |
|
|
|
1339 |
|
|
elsif not Unit_Requires_Body (Pent) then
|
1340 |
|
|
Store_String_Chars ("S");
|
1341 |
|
|
|
1342 |
|
|
-- Otherwise use B for Body_Version, S for spec
|
1343 |
|
|
|
1344 |
|
|
elsif Id = Attribute_Body_Version then
|
1345 |
|
|
Store_String_Chars ("B");
|
1346 |
|
|
else
|
1347 |
|
|
Store_String_Chars ("S");
|
1348 |
|
|
end if;
|
1349 |
|
|
|
1350 |
|
|
S := End_String;
|
1351 |
|
|
Lib.Version_Referenced (S);
|
1352 |
|
|
|
1353 |
|
|
-- Insert the object declaration
|
1354 |
|
|
|
1355 |
|
|
Insert_Actions (N, New_List (
|
1356 |
|
|
Make_Object_Declaration (Loc,
|
1357 |
|
|
Defining_Identifier => E,
|
1358 |
|
|
Object_Definition =>
|
1359 |
|
|
New_Occurrence_Of (RTE (RE_Unsigned), Loc))));
|
1360 |
|
|
|
1361 |
|
|
-- Set entity as imported with correct external name
|
1362 |
|
|
|
1363 |
|
|
Set_Is_Imported (E);
|
1364 |
|
|
Set_Interface_Name (E, Make_String_Literal (Loc, S));
|
1365 |
|
|
|
1366 |
|
|
-- Set entity as internal to ensure proper Sprint output of its
|
1367 |
|
|
-- implicit importation.
|
1368 |
|
|
|
1369 |
|
|
Set_Is_Internal (E);
|
1370 |
|
|
|
1371 |
|
|
-- And now rewrite original reference
|
1372 |
|
|
|
1373 |
|
|
Rewrite (N,
|
1374 |
|
|
Make_Function_Call (Loc,
|
1375 |
|
|
Name => New_Reference_To (RTE (RE_Get_Version_String), Loc),
|
1376 |
|
|
Parameter_Associations => New_List (
|
1377 |
|
|
New_Occurrence_Of (E, Loc))));
|
1378 |
|
|
end if;
|
1379 |
|
|
|
1380 |
|
|
Analyze_And_Resolve (N, RTE (RE_Version_String));
|
1381 |
|
|
end Version;
|
1382 |
|
|
|
1383 |
|
|
-------------
|
1384 |
|
|
-- Ceiling --
|
1385 |
|
|
-------------
|
1386 |
|
|
|
1387 |
|
|
-- Transforms 'Ceiling into a call to the floating-point attribute
|
1388 |
|
|
-- function Ceiling in Fat_xxx (where xxx is the root type)
|
1389 |
|
|
|
1390 |
|
|
when Attribute_Ceiling =>
|
1391 |
|
|
Expand_Fpt_Attribute_R (N);
|
1392 |
|
|
|
1393 |
|
|
--------------
|
1394 |
|
|
-- Callable --
|
1395 |
|
|
--------------
|
1396 |
|
|
|
1397 |
|
|
-- Transforms 'Callable attribute into a call to the Callable function
|
1398 |
|
|
|
1399 |
|
|
when Attribute_Callable => Callable :
|
1400 |
|
|
begin
|
1401 |
|
|
-- We have an object of a task interface class-wide type as a prefix
|
1402 |
|
|
-- to Callable. Generate:
|
1403 |
|
|
-- callable (Task_Id (Pref._disp_get_task_id));
|
1404 |
|
|
|
1405 |
|
|
if Ada_Version >= Ada_2005
|
1406 |
|
|
and then Ekind (Ptyp) = E_Class_Wide_Type
|
1407 |
|
|
and then Is_Interface (Ptyp)
|
1408 |
|
|
and then Is_Task_Interface (Ptyp)
|
1409 |
|
|
then
|
1410 |
|
|
Rewrite (N,
|
1411 |
|
|
Make_Function_Call (Loc,
|
1412 |
|
|
Name =>
|
1413 |
|
|
New_Reference_To (RTE (RE_Callable), Loc),
|
1414 |
|
|
Parameter_Associations => New_List (
|
1415 |
|
|
Make_Unchecked_Type_Conversion (Loc,
|
1416 |
|
|
Subtype_Mark =>
|
1417 |
|
|
New_Reference_To (RTE (RO_ST_Task_Id), Loc),
|
1418 |
|
|
Expression =>
|
1419 |
|
|
Make_Selected_Component (Loc,
|
1420 |
|
|
Prefix =>
|
1421 |
|
|
New_Copy_Tree (Pref),
|
1422 |
|
|
Selector_Name =>
|
1423 |
|
|
Make_Identifier (Loc, Name_uDisp_Get_Task_Id))))));
|
1424 |
|
|
|
1425 |
|
|
else
|
1426 |
|
|
Rewrite (N,
|
1427 |
|
|
Build_Call_With_Task (Pref, RTE (RE_Callable)));
|
1428 |
|
|
end if;
|
1429 |
|
|
|
1430 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
1431 |
|
|
end Callable;
|
1432 |
|
|
|
1433 |
|
|
------------
|
1434 |
|
|
-- Caller --
|
1435 |
|
|
------------
|
1436 |
|
|
|
1437 |
|
|
-- Transforms 'Caller attribute into a call to either the
|
1438 |
|
|
-- Task_Entry_Caller or the Protected_Entry_Caller function.
|
1439 |
|
|
|
1440 |
|
|
when Attribute_Caller => Caller : declare
|
1441 |
|
|
Id_Kind : constant Entity_Id := RTE (RO_AT_Task_Id);
|
1442 |
|
|
Ent : constant Entity_Id := Entity (Pref);
|
1443 |
|
|
Conctype : constant Entity_Id := Scope (Ent);
|
1444 |
|
|
Nest_Depth : Integer := 0;
|
1445 |
|
|
Name : Node_Id;
|
1446 |
|
|
S : Entity_Id;
|
1447 |
|
|
|
1448 |
|
|
begin
|
1449 |
|
|
-- Protected case
|
1450 |
|
|
|
1451 |
|
|
if Is_Protected_Type (Conctype) then
|
1452 |
|
|
case Corresponding_Runtime_Package (Conctype) is
|
1453 |
|
|
when System_Tasking_Protected_Objects_Entries =>
|
1454 |
|
|
Name :=
|
1455 |
|
|
New_Reference_To
|
1456 |
|
|
(RTE (RE_Protected_Entry_Caller), Loc);
|
1457 |
|
|
|
1458 |
|
|
when System_Tasking_Protected_Objects_Single_Entry =>
|
1459 |
|
|
Name :=
|
1460 |
|
|
New_Reference_To
|
1461 |
|
|
(RTE (RE_Protected_Single_Entry_Caller), Loc);
|
1462 |
|
|
|
1463 |
|
|
when others =>
|
1464 |
|
|
raise Program_Error;
|
1465 |
|
|
end case;
|
1466 |
|
|
|
1467 |
|
|
Rewrite (N,
|
1468 |
|
|
Unchecked_Convert_To (Id_Kind,
|
1469 |
|
|
Make_Function_Call (Loc,
|
1470 |
|
|
Name => Name,
|
1471 |
|
|
Parameter_Associations => New_List (
|
1472 |
|
|
New_Reference_To
|
1473 |
|
|
(Find_Protection_Object (Current_Scope), Loc)))));
|
1474 |
|
|
|
1475 |
|
|
-- Task case
|
1476 |
|
|
|
1477 |
|
|
else
|
1478 |
|
|
-- Determine the nesting depth of the E'Caller attribute, that
|
1479 |
|
|
-- is, how many accept statements are nested within the accept
|
1480 |
|
|
-- statement for E at the point of E'Caller. The runtime uses
|
1481 |
|
|
-- this depth to find the specified entry call.
|
1482 |
|
|
|
1483 |
|
|
for J in reverse 0 .. Scope_Stack.Last loop
|
1484 |
|
|
S := Scope_Stack.Table (J).Entity;
|
1485 |
|
|
|
1486 |
|
|
-- We should not reach the scope of the entry, as it should
|
1487 |
|
|
-- already have been checked in Sem_Attr that this attribute
|
1488 |
|
|
-- reference is within a matching accept statement.
|
1489 |
|
|
|
1490 |
|
|
pragma Assert (S /= Conctype);
|
1491 |
|
|
|
1492 |
|
|
if S = Ent then
|
1493 |
|
|
exit;
|
1494 |
|
|
|
1495 |
|
|
elsif Is_Entry (S) then
|
1496 |
|
|
Nest_Depth := Nest_Depth + 1;
|
1497 |
|
|
end if;
|
1498 |
|
|
end loop;
|
1499 |
|
|
|
1500 |
|
|
Rewrite (N,
|
1501 |
|
|
Unchecked_Convert_To (Id_Kind,
|
1502 |
|
|
Make_Function_Call (Loc,
|
1503 |
|
|
Name =>
|
1504 |
|
|
New_Reference_To (RTE (RE_Task_Entry_Caller), Loc),
|
1505 |
|
|
Parameter_Associations => New_List (
|
1506 |
|
|
Make_Integer_Literal (Loc,
|
1507 |
|
|
Intval => Int (Nest_Depth))))));
|
1508 |
|
|
end if;
|
1509 |
|
|
|
1510 |
|
|
Analyze_And_Resolve (N, Id_Kind);
|
1511 |
|
|
end Caller;
|
1512 |
|
|
|
1513 |
|
|
-------------
|
1514 |
|
|
-- Compose --
|
1515 |
|
|
-------------
|
1516 |
|
|
|
1517 |
|
|
-- Transforms 'Compose into a call to the floating-point attribute
|
1518 |
|
|
-- function Compose in Fat_xxx (where xxx is the root type)
|
1519 |
|
|
|
1520 |
|
|
-- Note: we strictly should have special code here to deal with the
|
1521 |
|
|
-- case of absurdly negative arguments (less than Integer'First)
|
1522 |
|
|
-- which will return a (signed) zero value, but it hardly seems
|
1523 |
|
|
-- worth the effort. Absurdly large positive arguments will raise
|
1524 |
|
|
-- constraint error which is fine.
|
1525 |
|
|
|
1526 |
|
|
when Attribute_Compose =>
|
1527 |
|
|
Expand_Fpt_Attribute_RI (N);
|
1528 |
|
|
|
1529 |
|
|
-----------------
|
1530 |
|
|
-- Constrained --
|
1531 |
|
|
-----------------
|
1532 |
|
|
|
1533 |
|
|
when Attribute_Constrained => Constrained : declare
|
1534 |
|
|
Formal_Ent : constant Entity_Id := Param_Entity (Pref);
|
1535 |
|
|
|
1536 |
|
|
function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean;
|
1537 |
|
|
-- Ada 2005 (AI-363): Returns True if the object name Obj denotes a
|
1538 |
|
|
-- view of an aliased object whose subtype is constrained.
|
1539 |
|
|
|
1540 |
|
|
---------------------------------
|
1541 |
|
|
-- Is_Constrained_Aliased_View --
|
1542 |
|
|
---------------------------------
|
1543 |
|
|
|
1544 |
|
|
function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean is
|
1545 |
|
|
E : Entity_Id;
|
1546 |
|
|
|
1547 |
|
|
begin
|
1548 |
|
|
if Is_Entity_Name (Obj) then
|
1549 |
|
|
E := Entity (Obj);
|
1550 |
|
|
|
1551 |
|
|
if Present (Renamed_Object (E)) then
|
1552 |
|
|
return Is_Constrained_Aliased_View (Renamed_Object (E));
|
1553 |
|
|
else
|
1554 |
|
|
return Is_Aliased (E) and then Is_Constrained (Etype (E));
|
1555 |
|
|
end if;
|
1556 |
|
|
|
1557 |
|
|
else
|
1558 |
|
|
return Is_Aliased_View (Obj)
|
1559 |
|
|
and then
|
1560 |
|
|
(Is_Constrained (Etype (Obj))
|
1561 |
|
|
or else
|
1562 |
|
|
(Nkind (Obj) = N_Explicit_Dereference
|
1563 |
|
|
and then
|
1564 |
|
|
not Effectively_Has_Constrained_Partial_View
|
1565 |
|
|
(Typ => Base_Type (Etype (Obj)),
|
1566 |
|
|
Scop => Current_Scope)));
|
1567 |
|
|
end if;
|
1568 |
|
|
end Is_Constrained_Aliased_View;
|
1569 |
|
|
|
1570 |
|
|
-- Start of processing for Constrained
|
1571 |
|
|
|
1572 |
|
|
begin
|
1573 |
|
|
-- Reference to a parameter where the value is passed as an extra
|
1574 |
|
|
-- actual, corresponding to the extra formal referenced by the
|
1575 |
|
|
-- Extra_Constrained field of the corresponding formal. If this
|
1576 |
|
|
-- is an entry in-parameter, it is replaced by a constant renaming
|
1577 |
|
|
-- for which Extra_Constrained is never created.
|
1578 |
|
|
|
1579 |
|
|
if Present (Formal_Ent)
|
1580 |
|
|
and then Ekind (Formal_Ent) /= E_Constant
|
1581 |
|
|
and then Present (Extra_Constrained (Formal_Ent))
|
1582 |
|
|
then
|
1583 |
|
|
Rewrite (N,
|
1584 |
|
|
New_Occurrence_Of
|
1585 |
|
|
(Extra_Constrained (Formal_Ent), Sloc (N)));
|
1586 |
|
|
|
1587 |
|
|
-- For variables with a Extra_Constrained field, we use the
|
1588 |
|
|
-- corresponding entity.
|
1589 |
|
|
|
1590 |
|
|
elsif Nkind (Pref) = N_Identifier
|
1591 |
|
|
and then Ekind (Entity (Pref)) = E_Variable
|
1592 |
|
|
and then Present (Extra_Constrained (Entity (Pref)))
|
1593 |
|
|
then
|
1594 |
|
|
Rewrite (N,
|
1595 |
|
|
New_Occurrence_Of
|
1596 |
|
|
(Extra_Constrained (Entity (Pref)), Sloc (N)));
|
1597 |
|
|
|
1598 |
|
|
-- For all other entity names, we can tell at compile time
|
1599 |
|
|
|
1600 |
|
|
elsif Is_Entity_Name (Pref) then
|
1601 |
|
|
declare
|
1602 |
|
|
Ent : constant Entity_Id := Entity (Pref);
|
1603 |
|
|
Res : Boolean;
|
1604 |
|
|
|
1605 |
|
|
begin
|
1606 |
|
|
-- (RM J.4) obsolescent cases
|
1607 |
|
|
|
1608 |
|
|
if Is_Type (Ent) then
|
1609 |
|
|
|
1610 |
|
|
-- Private type
|
1611 |
|
|
|
1612 |
|
|
if Is_Private_Type (Ent) then
|
1613 |
|
|
Res := not Has_Discriminants (Ent)
|
1614 |
|
|
or else Is_Constrained (Ent);
|
1615 |
|
|
|
1616 |
|
|
-- It not a private type, must be a generic actual type
|
1617 |
|
|
-- that corresponded to a private type. We know that this
|
1618 |
|
|
-- correspondence holds, since otherwise the reference
|
1619 |
|
|
-- within the generic template would have been illegal.
|
1620 |
|
|
|
1621 |
|
|
else
|
1622 |
|
|
if Is_Composite_Type (Underlying_Type (Ent)) then
|
1623 |
|
|
Res := Is_Constrained (Ent);
|
1624 |
|
|
else
|
1625 |
|
|
Res := True;
|
1626 |
|
|
end if;
|
1627 |
|
|
end if;
|
1628 |
|
|
|
1629 |
|
|
-- If the prefix is not a variable or is aliased, then
|
1630 |
|
|
-- definitely true; if it's a formal parameter without an
|
1631 |
|
|
-- associated extra formal, then treat it as constrained.
|
1632 |
|
|
|
1633 |
|
|
-- Ada 2005 (AI-363): An aliased prefix must be known to be
|
1634 |
|
|
-- constrained in order to set the attribute to True.
|
1635 |
|
|
|
1636 |
|
|
elsif not Is_Variable (Pref)
|
1637 |
|
|
or else Present (Formal_Ent)
|
1638 |
|
|
or else (Ada_Version < Ada_2005
|
1639 |
|
|
and then Is_Aliased_View (Pref))
|
1640 |
|
|
or else (Ada_Version >= Ada_2005
|
1641 |
|
|
and then Is_Constrained_Aliased_View (Pref))
|
1642 |
|
|
then
|
1643 |
|
|
Res := True;
|
1644 |
|
|
|
1645 |
|
|
-- Variable case, look at type to see if it is constrained.
|
1646 |
|
|
-- Note that the one case where this is not accurate (the
|
1647 |
|
|
-- procedure formal case), has been handled above.
|
1648 |
|
|
|
1649 |
|
|
-- We use the Underlying_Type here (and below) in case the
|
1650 |
|
|
-- type is private without discriminants, but the full type
|
1651 |
|
|
-- has discriminants. This case is illegal, but we generate it
|
1652 |
|
|
-- internally for passing to the Extra_Constrained parameter.
|
1653 |
|
|
|
1654 |
|
|
else
|
1655 |
|
|
-- In Ada 2012, test for case of a limited tagged type, in
|
1656 |
|
|
-- which case the attribute is always required to return
|
1657 |
|
|
-- True. The underlying type is tested, to make sure we also
|
1658 |
|
|
-- return True for cases where there is an unconstrained
|
1659 |
|
|
-- object with an untagged limited partial view which has
|
1660 |
|
|
-- defaulted discriminants (such objects always produce a
|
1661 |
|
|
-- False in earlier versions of Ada). (Ada 2012: AI05-0214)
|
1662 |
|
|
|
1663 |
|
|
Res := Is_Constrained (Underlying_Type (Etype (Ent)))
|
1664 |
|
|
or else
|
1665 |
|
|
(Ada_Version >= Ada_2012
|
1666 |
|
|
and then Is_Tagged_Type (Underlying_Type (Ptyp))
|
1667 |
|
|
and then Is_Limited_Type (Ptyp));
|
1668 |
|
|
end if;
|
1669 |
|
|
|
1670 |
|
|
Rewrite (N, New_Reference_To (Boolean_Literals (Res), Loc));
|
1671 |
|
|
end;
|
1672 |
|
|
|
1673 |
|
|
-- Prefix is not an entity name. These are also cases where we can
|
1674 |
|
|
-- always tell at compile time by looking at the form and type of the
|
1675 |
|
|
-- prefix. If an explicit dereference of an object with constrained
|
1676 |
|
|
-- partial view, this is unconstrained (Ada 2005: AI95-0363). If the
|
1677 |
|
|
-- underlying type is a limited tagged type, then Constrained is
|
1678 |
|
|
-- required to always return True (Ada 2012: AI05-0214).
|
1679 |
|
|
|
1680 |
|
|
else
|
1681 |
|
|
Rewrite (N,
|
1682 |
|
|
New_Reference_To (
|
1683 |
|
|
Boolean_Literals (
|
1684 |
|
|
not Is_Variable (Pref)
|
1685 |
|
|
or else
|
1686 |
|
|
(Nkind (Pref) = N_Explicit_Dereference
|
1687 |
|
|
and then
|
1688 |
|
|
not Effectively_Has_Constrained_Partial_View
|
1689 |
|
|
(Typ => Base_Type (Ptyp),
|
1690 |
|
|
Scop => Current_Scope))
|
1691 |
|
|
or else Is_Constrained (Underlying_Type (Ptyp))
|
1692 |
|
|
or else (Ada_Version >= Ada_2012
|
1693 |
|
|
and then Is_Tagged_Type (Underlying_Type (Ptyp))
|
1694 |
|
|
and then Is_Limited_Type (Ptyp))),
|
1695 |
|
|
Loc));
|
1696 |
|
|
end if;
|
1697 |
|
|
|
1698 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
1699 |
|
|
end Constrained;
|
1700 |
|
|
|
1701 |
|
|
---------------
|
1702 |
|
|
-- Copy_Sign --
|
1703 |
|
|
---------------
|
1704 |
|
|
|
1705 |
|
|
-- Transforms 'Copy_Sign into a call to the floating-point attribute
|
1706 |
|
|
-- function Copy_Sign in Fat_xxx (where xxx is the root type)
|
1707 |
|
|
|
1708 |
|
|
when Attribute_Copy_Sign =>
|
1709 |
|
|
Expand_Fpt_Attribute_RR (N);
|
1710 |
|
|
|
1711 |
|
|
-----------
|
1712 |
|
|
-- Count --
|
1713 |
|
|
-----------
|
1714 |
|
|
|
1715 |
|
|
-- Transforms 'Count attribute into a call to the Count function
|
1716 |
|
|
|
1717 |
|
|
when Attribute_Count => Count : declare
|
1718 |
|
|
Call : Node_Id;
|
1719 |
|
|
Conctyp : Entity_Id;
|
1720 |
|
|
Entnam : Node_Id;
|
1721 |
|
|
Entry_Id : Entity_Id;
|
1722 |
|
|
Index : Node_Id;
|
1723 |
|
|
Name : Node_Id;
|
1724 |
|
|
|
1725 |
|
|
begin
|
1726 |
|
|
-- If the prefix is a member of an entry family, retrieve both
|
1727 |
|
|
-- entry name and index. For a simple entry there is no index.
|
1728 |
|
|
|
1729 |
|
|
if Nkind (Pref) = N_Indexed_Component then
|
1730 |
|
|
Entnam := Prefix (Pref);
|
1731 |
|
|
Index := First (Expressions (Pref));
|
1732 |
|
|
else
|
1733 |
|
|
Entnam := Pref;
|
1734 |
|
|
Index := Empty;
|
1735 |
|
|
end if;
|
1736 |
|
|
|
1737 |
|
|
Entry_Id := Entity (Entnam);
|
1738 |
|
|
|
1739 |
|
|
-- Find the concurrent type in which this attribute is referenced
|
1740 |
|
|
-- (there had better be one).
|
1741 |
|
|
|
1742 |
|
|
Conctyp := Current_Scope;
|
1743 |
|
|
while not Is_Concurrent_Type (Conctyp) loop
|
1744 |
|
|
Conctyp := Scope (Conctyp);
|
1745 |
|
|
end loop;
|
1746 |
|
|
|
1747 |
|
|
-- Protected case
|
1748 |
|
|
|
1749 |
|
|
if Is_Protected_Type (Conctyp) then
|
1750 |
|
|
case Corresponding_Runtime_Package (Conctyp) is
|
1751 |
|
|
when System_Tasking_Protected_Objects_Entries =>
|
1752 |
|
|
Name := New_Reference_To (RTE (RE_Protected_Count), Loc);
|
1753 |
|
|
|
1754 |
|
|
Call :=
|
1755 |
|
|
Make_Function_Call (Loc,
|
1756 |
|
|
Name => Name,
|
1757 |
|
|
Parameter_Associations => New_List (
|
1758 |
|
|
New_Reference_To
|
1759 |
|
|
(Find_Protection_Object (Current_Scope), Loc),
|
1760 |
|
|
Entry_Index_Expression
|
1761 |
|
|
(Loc, Entry_Id, Index, Scope (Entry_Id))));
|
1762 |
|
|
|
1763 |
|
|
when System_Tasking_Protected_Objects_Single_Entry =>
|
1764 |
|
|
Name :=
|
1765 |
|
|
New_Reference_To (RTE (RE_Protected_Count_Entry), Loc);
|
1766 |
|
|
|
1767 |
|
|
Call :=
|
1768 |
|
|
Make_Function_Call (Loc,
|
1769 |
|
|
Name => Name,
|
1770 |
|
|
Parameter_Associations => New_List (
|
1771 |
|
|
New_Reference_To
|
1772 |
|
|
(Find_Protection_Object (Current_Scope), Loc)));
|
1773 |
|
|
|
1774 |
|
|
when others =>
|
1775 |
|
|
raise Program_Error;
|
1776 |
|
|
end case;
|
1777 |
|
|
|
1778 |
|
|
-- Task case
|
1779 |
|
|
|
1780 |
|
|
else
|
1781 |
|
|
Call :=
|
1782 |
|
|
Make_Function_Call (Loc,
|
1783 |
|
|
Name => New_Reference_To (RTE (RE_Task_Count), Loc),
|
1784 |
|
|
Parameter_Associations => New_List (
|
1785 |
|
|
Entry_Index_Expression (Loc,
|
1786 |
|
|
Entry_Id, Index, Scope (Entry_Id))));
|
1787 |
|
|
end if;
|
1788 |
|
|
|
1789 |
|
|
-- The call returns type Natural but the context is universal integer
|
1790 |
|
|
-- so any integer type is allowed. The attribute was already resolved
|
1791 |
|
|
-- so its Etype is the required result type. If the base type of the
|
1792 |
|
|
-- context type is other than Standard.Integer we put in a conversion
|
1793 |
|
|
-- to the required type. This can be a normal typed conversion since
|
1794 |
|
|
-- both input and output types of the conversion are integer types
|
1795 |
|
|
|
1796 |
|
|
if Base_Type (Typ) /= Base_Type (Standard_Integer) then
|
1797 |
|
|
Rewrite (N, Convert_To (Typ, Call));
|
1798 |
|
|
else
|
1799 |
|
|
Rewrite (N, Call);
|
1800 |
|
|
end if;
|
1801 |
|
|
|
1802 |
|
|
Analyze_And_Resolve (N, Typ);
|
1803 |
|
|
end Count;
|
1804 |
|
|
|
1805 |
|
|
---------------------
|
1806 |
|
|
-- Descriptor_Size --
|
1807 |
|
|
---------------------
|
1808 |
|
|
|
1809 |
|
|
when Attribute_Descriptor_Size =>
|
1810 |
|
|
|
1811 |
|
|
-- Attribute Descriptor_Size is handled by the back end when applied
|
1812 |
|
|
-- to an unconstrained array type.
|
1813 |
|
|
|
1814 |
|
|
if Is_Array_Type (Ptyp)
|
1815 |
|
|
and then not Is_Constrained (Ptyp)
|
1816 |
|
|
then
|
1817 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
1818 |
|
|
|
1819 |
|
|
-- For any other type, the descriptor size is 0 because there is no
|
1820 |
|
|
-- actual descriptor, but the result is not formally static.
|
1821 |
|
|
|
1822 |
|
|
else
|
1823 |
|
|
Rewrite (N, Make_Integer_Literal (Loc, 0));
|
1824 |
|
|
Analyze (N);
|
1825 |
|
|
Set_Is_Static_Expression (N, False);
|
1826 |
|
|
end if;
|
1827 |
|
|
|
1828 |
|
|
---------------
|
1829 |
|
|
-- Elab_Body --
|
1830 |
|
|
---------------
|
1831 |
|
|
|
1832 |
|
|
-- This processing is shared by Elab_Spec
|
1833 |
|
|
|
1834 |
|
|
-- What we do is to insert the following declarations
|
1835 |
|
|
|
1836 |
|
|
-- procedure tnn;
|
1837 |
|
|
-- pragma Import (C, enn, "name___elabb/s");
|
1838 |
|
|
|
1839 |
|
|
-- and then the Elab_Body/Spec attribute is replaced by a reference
|
1840 |
|
|
-- to this defining identifier.
|
1841 |
|
|
|
1842 |
|
|
when Attribute_Elab_Body |
|
1843 |
|
|
Attribute_Elab_Spec =>
|
1844 |
|
|
|
1845 |
|
|
-- Leave attribute unexpanded in CodePeer mode: the gnat2scil
|
1846 |
|
|
-- back-end knows how to handle these attributes directly.
|
1847 |
|
|
|
1848 |
|
|
if CodePeer_Mode then
|
1849 |
|
|
return;
|
1850 |
|
|
end if;
|
1851 |
|
|
|
1852 |
|
|
Elab_Body : declare
|
1853 |
|
|
Ent : constant Entity_Id := Make_Temporary (Loc, 'E');
|
1854 |
|
|
Str : String_Id;
|
1855 |
|
|
Lang : Node_Id;
|
1856 |
|
|
|
1857 |
|
|
procedure Make_Elab_String (Nod : Node_Id);
|
1858 |
|
|
-- Given Nod, an identifier, or a selected component, put the
|
1859 |
|
|
-- image into the current string literal, with double underline
|
1860 |
|
|
-- between components.
|
1861 |
|
|
|
1862 |
|
|
----------------------
|
1863 |
|
|
-- Make_Elab_String --
|
1864 |
|
|
----------------------
|
1865 |
|
|
|
1866 |
|
|
procedure Make_Elab_String (Nod : Node_Id) is
|
1867 |
|
|
begin
|
1868 |
|
|
if Nkind (Nod) = N_Selected_Component then
|
1869 |
|
|
Make_Elab_String (Prefix (Nod));
|
1870 |
|
|
|
1871 |
|
|
case VM_Target is
|
1872 |
|
|
when JVM_Target =>
|
1873 |
|
|
Store_String_Char ('$');
|
1874 |
|
|
when CLI_Target =>
|
1875 |
|
|
Store_String_Char ('.');
|
1876 |
|
|
when No_VM =>
|
1877 |
|
|
Store_String_Char ('_');
|
1878 |
|
|
Store_String_Char ('_');
|
1879 |
|
|
end case;
|
1880 |
|
|
|
1881 |
|
|
Get_Name_String (Chars (Selector_Name (Nod)));
|
1882 |
|
|
|
1883 |
|
|
else
|
1884 |
|
|
pragma Assert (Nkind (Nod) = N_Identifier);
|
1885 |
|
|
Get_Name_String (Chars (Nod));
|
1886 |
|
|
end if;
|
1887 |
|
|
|
1888 |
|
|
Store_String_Chars (Name_Buffer (1 .. Name_Len));
|
1889 |
|
|
end Make_Elab_String;
|
1890 |
|
|
|
1891 |
|
|
-- Start of processing for Elab_Body/Elab_Spec
|
1892 |
|
|
|
1893 |
|
|
begin
|
1894 |
|
|
-- First we need to prepare the string literal for the name of
|
1895 |
|
|
-- the elaboration routine to be referenced.
|
1896 |
|
|
|
1897 |
|
|
Start_String;
|
1898 |
|
|
Make_Elab_String (Pref);
|
1899 |
|
|
|
1900 |
|
|
if VM_Target = No_VM then
|
1901 |
|
|
Store_String_Chars ("___elab");
|
1902 |
|
|
Lang := Make_Identifier (Loc, Name_C);
|
1903 |
|
|
else
|
1904 |
|
|
Store_String_Chars ("._elab");
|
1905 |
|
|
Lang := Make_Identifier (Loc, Name_Ada);
|
1906 |
|
|
end if;
|
1907 |
|
|
|
1908 |
|
|
if Id = Attribute_Elab_Body then
|
1909 |
|
|
Store_String_Char ('b');
|
1910 |
|
|
else
|
1911 |
|
|
Store_String_Char ('s');
|
1912 |
|
|
end if;
|
1913 |
|
|
|
1914 |
|
|
Str := End_String;
|
1915 |
|
|
|
1916 |
|
|
Insert_Actions (N, New_List (
|
1917 |
|
|
Make_Subprogram_Declaration (Loc,
|
1918 |
|
|
Specification =>
|
1919 |
|
|
Make_Procedure_Specification (Loc,
|
1920 |
|
|
Defining_Unit_Name => Ent)),
|
1921 |
|
|
|
1922 |
|
|
Make_Pragma (Loc,
|
1923 |
|
|
Chars => Name_Import,
|
1924 |
|
|
Pragma_Argument_Associations => New_List (
|
1925 |
|
|
Make_Pragma_Argument_Association (Loc, Expression => Lang),
|
1926 |
|
|
|
1927 |
|
|
Make_Pragma_Argument_Association (Loc,
|
1928 |
|
|
Expression => Make_Identifier (Loc, Chars (Ent))),
|
1929 |
|
|
|
1930 |
|
|
Make_Pragma_Argument_Association (Loc,
|
1931 |
|
|
Expression => Make_String_Literal (Loc, Str))))));
|
1932 |
|
|
|
1933 |
|
|
Set_Entity (N, Ent);
|
1934 |
|
|
Rewrite (N, New_Occurrence_Of (Ent, Loc));
|
1935 |
|
|
end Elab_Body;
|
1936 |
|
|
|
1937 |
|
|
--------------------
|
1938 |
|
|
-- Elab_Subp_Body --
|
1939 |
|
|
--------------------
|
1940 |
|
|
|
1941 |
|
|
-- Always ignored. In CodePeer mode, gnat2scil knows how to handle
|
1942 |
|
|
-- this attribute directly, and if we are not in CodePeer mode it is
|
1943 |
|
|
-- entirely ignored ???
|
1944 |
|
|
|
1945 |
|
|
when Attribute_Elab_Subp_Body =>
|
1946 |
|
|
return;
|
1947 |
|
|
|
1948 |
|
|
----------------
|
1949 |
|
|
-- Elaborated --
|
1950 |
|
|
----------------
|
1951 |
|
|
|
1952 |
|
|
-- Elaborated is always True for preelaborated units, predefined units,
|
1953 |
|
|
-- pure units and units which have Elaborate_Body pragmas. These units
|
1954 |
|
|
-- have no elaboration entity.
|
1955 |
|
|
|
1956 |
|
|
-- Note: The Elaborated attribute is never passed to the back end
|
1957 |
|
|
|
1958 |
|
|
when Attribute_Elaborated => Elaborated : declare
|
1959 |
|
|
Ent : constant Entity_Id := Entity (Pref);
|
1960 |
|
|
|
1961 |
|
|
begin
|
1962 |
|
|
if Present (Elaboration_Entity (Ent)) then
|
1963 |
|
|
Rewrite (N,
|
1964 |
|
|
Make_Op_Ne (Loc,
|
1965 |
|
|
Left_Opnd =>
|
1966 |
|
|
New_Occurrence_Of (Elaboration_Entity (Ent), Loc),
|
1967 |
|
|
Right_Opnd =>
|
1968 |
|
|
Make_Integer_Literal (Loc, Uint_0)));
|
1969 |
|
|
Analyze_And_Resolve (N, Typ);
|
1970 |
|
|
else
|
1971 |
|
|
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
|
1972 |
|
|
end if;
|
1973 |
|
|
end Elaborated;
|
1974 |
|
|
|
1975 |
|
|
--------------
|
1976 |
|
|
-- Enum_Rep --
|
1977 |
|
|
--------------
|
1978 |
|
|
|
1979 |
|
|
when Attribute_Enum_Rep => Enum_Rep :
|
1980 |
|
|
begin
|
1981 |
|
|
-- X'Enum_Rep (Y) expands to
|
1982 |
|
|
|
1983 |
|
|
-- target-type (Y)
|
1984 |
|
|
|
1985 |
|
|
-- This is simply a direct conversion from the enumeration type to
|
1986 |
|
|
-- the target integer type, which is treated by the back end as a
|
1987 |
|
|
-- normal integer conversion, treating the enumeration type as an
|
1988 |
|
|
-- integer, which is exactly what we want! We set Conversion_OK to
|
1989 |
|
|
-- make sure that the analyzer does not complain about what otherwise
|
1990 |
|
|
-- might be an illegal conversion.
|
1991 |
|
|
|
1992 |
|
|
if Is_Non_Empty_List (Exprs) then
|
1993 |
|
|
Rewrite (N,
|
1994 |
|
|
OK_Convert_To (Typ, Relocate_Node (First (Exprs))));
|
1995 |
|
|
|
1996 |
|
|
-- X'Enum_Rep where X is an enumeration literal is replaced by
|
1997 |
|
|
-- the literal value.
|
1998 |
|
|
|
1999 |
|
|
elsif Ekind (Entity (Pref)) = E_Enumeration_Literal then
|
2000 |
|
|
Rewrite (N,
|
2001 |
|
|
Make_Integer_Literal (Loc, Enumeration_Rep (Entity (Pref))));
|
2002 |
|
|
|
2003 |
|
|
-- If this is a renaming of a literal, recover the representation
|
2004 |
|
|
-- of the original.
|
2005 |
|
|
|
2006 |
|
|
elsif Ekind (Entity (Pref)) = E_Constant
|
2007 |
|
|
and then Present (Renamed_Object (Entity (Pref)))
|
2008 |
|
|
and then
|
2009 |
|
|
Ekind (Entity (Renamed_Object (Entity (Pref))))
|
2010 |
|
|
= E_Enumeration_Literal
|
2011 |
|
|
then
|
2012 |
|
|
Rewrite (N,
|
2013 |
|
|
Make_Integer_Literal (Loc,
|
2014 |
|
|
Enumeration_Rep (Entity (Renamed_Object (Entity (Pref))))));
|
2015 |
|
|
|
2016 |
|
|
-- X'Enum_Rep where X is an object does a direct unchecked conversion
|
2017 |
|
|
-- of the object value, as described for the type case above.
|
2018 |
|
|
|
2019 |
|
|
else
|
2020 |
|
|
Rewrite (N,
|
2021 |
|
|
OK_Convert_To (Typ, Relocate_Node (Pref)));
|
2022 |
|
|
end if;
|
2023 |
|
|
|
2024 |
|
|
Set_Etype (N, Typ);
|
2025 |
|
|
Analyze_And_Resolve (N, Typ);
|
2026 |
|
|
end Enum_Rep;
|
2027 |
|
|
|
2028 |
|
|
--------------
|
2029 |
|
|
-- Enum_Val --
|
2030 |
|
|
--------------
|
2031 |
|
|
|
2032 |
|
|
when Attribute_Enum_Val => Enum_Val : declare
|
2033 |
|
|
Expr : Node_Id;
|
2034 |
|
|
Btyp : constant Entity_Id := Base_Type (Ptyp);
|
2035 |
|
|
|
2036 |
|
|
begin
|
2037 |
|
|
-- X'Enum_Val (Y) expands to
|
2038 |
|
|
|
2039 |
|
|
-- [constraint_error when _rep_to_pos (Y, False) = -1, msg]
|
2040 |
|
|
-- X!(Y);
|
2041 |
|
|
|
2042 |
|
|
Expr := Unchecked_Convert_To (Ptyp, First (Exprs));
|
2043 |
|
|
|
2044 |
|
|
Insert_Action (N,
|
2045 |
|
|
Make_Raise_Constraint_Error (Loc,
|
2046 |
|
|
Condition =>
|
2047 |
|
|
Make_Op_Eq (Loc,
|
2048 |
|
|
Left_Opnd =>
|
2049 |
|
|
Make_Function_Call (Loc,
|
2050 |
|
|
Name =>
|
2051 |
|
|
New_Reference_To (TSS (Btyp, TSS_Rep_To_Pos), Loc),
|
2052 |
|
|
Parameter_Associations => New_List (
|
2053 |
|
|
Relocate_Node (Duplicate_Subexpr (Expr)),
|
2054 |
|
|
New_Occurrence_Of (Standard_False, Loc))),
|
2055 |
|
|
|
2056 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, -1)),
|
2057 |
|
|
Reason => CE_Range_Check_Failed));
|
2058 |
|
|
|
2059 |
|
|
Rewrite (N, Expr);
|
2060 |
|
|
Analyze_And_Resolve (N, Ptyp);
|
2061 |
|
|
end Enum_Val;
|
2062 |
|
|
|
2063 |
|
|
--------------
|
2064 |
|
|
-- Exponent --
|
2065 |
|
|
--------------
|
2066 |
|
|
|
2067 |
|
|
-- Transforms 'Exponent into a call to the floating-point attribute
|
2068 |
|
|
-- function Exponent in Fat_xxx (where xxx is the root type)
|
2069 |
|
|
|
2070 |
|
|
when Attribute_Exponent =>
|
2071 |
|
|
Expand_Fpt_Attribute_R (N);
|
2072 |
|
|
|
2073 |
|
|
------------------
|
2074 |
|
|
-- External_Tag --
|
2075 |
|
|
------------------
|
2076 |
|
|
|
2077 |
|
|
-- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
|
2078 |
|
|
|
2079 |
|
|
when Attribute_External_Tag => External_Tag :
|
2080 |
|
|
begin
|
2081 |
|
|
Rewrite (N,
|
2082 |
|
|
Make_Function_Call (Loc,
|
2083 |
|
|
Name => New_Reference_To (RTE (RE_External_Tag), Loc),
|
2084 |
|
|
Parameter_Associations => New_List (
|
2085 |
|
|
Make_Attribute_Reference (Loc,
|
2086 |
|
|
Attribute_Name => Name_Tag,
|
2087 |
|
|
Prefix => Prefix (N)))));
|
2088 |
|
|
|
2089 |
|
|
Analyze_And_Resolve (N, Standard_String);
|
2090 |
|
|
end External_Tag;
|
2091 |
|
|
|
2092 |
|
|
-----------
|
2093 |
|
|
-- First --
|
2094 |
|
|
-----------
|
2095 |
|
|
|
2096 |
|
|
when Attribute_First =>
|
2097 |
|
|
|
2098 |
|
|
-- If the prefix type is a constrained packed array type which
|
2099 |
|
|
-- already has a Packed_Array_Type representation defined, then
|
2100 |
|
|
-- replace this attribute with a direct reference to 'First of the
|
2101 |
|
|
-- appropriate index subtype (since otherwise the back end will try
|
2102 |
|
|
-- to give us the value of 'First for this implementation type).
|
2103 |
|
|
|
2104 |
|
|
if Is_Constrained_Packed_Array (Ptyp) then
|
2105 |
|
|
Rewrite (N,
|
2106 |
|
|
Make_Attribute_Reference (Loc,
|
2107 |
|
|
Attribute_Name => Name_First,
|
2108 |
|
|
Prefix => New_Reference_To (Get_Index_Subtype (N), Loc)));
|
2109 |
|
|
Analyze_And_Resolve (N, Typ);
|
2110 |
|
|
|
2111 |
|
|
elsif Is_Access_Type (Ptyp) then
|
2112 |
|
|
Apply_Access_Check (N);
|
2113 |
|
|
end if;
|
2114 |
|
|
|
2115 |
|
|
---------------
|
2116 |
|
|
-- First_Bit --
|
2117 |
|
|
---------------
|
2118 |
|
|
|
2119 |
|
|
-- Compute this if component clause was present, otherwise we leave the
|
2120 |
|
|
-- computation to be completed in the back-end, since we don't know what
|
2121 |
|
|
-- layout will be chosen.
|
2122 |
|
|
|
2123 |
|
|
when Attribute_First_Bit => First_Bit_Attr : declare
|
2124 |
|
|
CE : constant Entity_Id := Entity (Selector_Name (Pref));
|
2125 |
|
|
|
2126 |
|
|
begin
|
2127 |
|
|
-- In Ada 2005 (or later) if we have the standard nondefault
|
2128 |
|
|
-- bit order, then we return the original value as given in
|
2129 |
|
|
-- the component clause (RM 2005 13.5.2(3/2)).
|
2130 |
|
|
|
2131 |
|
|
if Present (Component_Clause (CE))
|
2132 |
|
|
and then Ada_Version >= Ada_2005
|
2133 |
|
|
and then not Reverse_Bit_Order (Scope (CE))
|
2134 |
|
|
then
|
2135 |
|
|
Rewrite (N,
|
2136 |
|
|
Make_Integer_Literal (Loc,
|
2137 |
|
|
Intval => Expr_Value (First_Bit (Component_Clause (CE)))));
|
2138 |
|
|
Analyze_And_Resolve (N, Typ);
|
2139 |
|
|
|
2140 |
|
|
-- Otherwise (Ada 83/95 or Ada 2005 or later with reverse bit order),
|
2141 |
|
|
-- rewrite with normalized value if we know it statically.
|
2142 |
|
|
|
2143 |
|
|
elsif Known_Static_Component_Bit_Offset (CE) then
|
2144 |
|
|
Rewrite (N,
|
2145 |
|
|
Make_Integer_Literal (Loc,
|
2146 |
|
|
Component_Bit_Offset (CE) mod System_Storage_Unit));
|
2147 |
|
|
Analyze_And_Resolve (N, Typ);
|
2148 |
|
|
|
2149 |
|
|
-- Otherwise left to back end, just do universal integer checks
|
2150 |
|
|
|
2151 |
|
|
else
|
2152 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
2153 |
|
|
end if;
|
2154 |
|
|
end First_Bit_Attr;
|
2155 |
|
|
|
2156 |
|
|
-----------------
|
2157 |
|
|
-- Fixed_Value --
|
2158 |
|
|
-----------------
|
2159 |
|
|
|
2160 |
|
|
-- We transform:
|
2161 |
|
|
|
2162 |
|
|
-- fixtype'Fixed_Value (integer-value)
|
2163 |
|
|
|
2164 |
|
|
-- into
|
2165 |
|
|
|
2166 |
|
|
-- fixtype(integer-value)
|
2167 |
|
|
|
2168 |
|
|
-- We do all the required analysis of the conversion here, because we do
|
2169 |
|
|
-- not want this to go through the fixed-point conversion circuits. Note
|
2170 |
|
|
-- that the back end always treats fixed-point as equivalent to the
|
2171 |
|
|
-- corresponding integer type anyway.
|
2172 |
|
|
|
2173 |
|
|
when Attribute_Fixed_Value => Fixed_Value :
|
2174 |
|
|
begin
|
2175 |
|
|
Rewrite (N,
|
2176 |
|
|
Make_Type_Conversion (Loc,
|
2177 |
|
|
Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
|
2178 |
|
|
Expression => Relocate_Node (First (Exprs))));
|
2179 |
|
|
Set_Etype (N, Entity (Pref));
|
2180 |
|
|
Set_Analyzed (N);
|
2181 |
|
|
|
2182 |
|
|
-- Note: it might appear that a properly analyzed unchecked conversion
|
2183 |
|
|
-- would be just fine here, but that's not the case, since the full
|
2184 |
|
|
-- range checks performed by the following call are critical!
|
2185 |
|
|
|
2186 |
|
|
Apply_Type_Conversion_Checks (N);
|
2187 |
|
|
end Fixed_Value;
|
2188 |
|
|
|
2189 |
|
|
-----------
|
2190 |
|
|
-- Floor --
|
2191 |
|
|
-----------
|
2192 |
|
|
|
2193 |
|
|
-- Transforms 'Floor into a call to the floating-point attribute
|
2194 |
|
|
-- function Floor in Fat_xxx (where xxx is the root type)
|
2195 |
|
|
|
2196 |
|
|
when Attribute_Floor =>
|
2197 |
|
|
Expand_Fpt_Attribute_R (N);
|
2198 |
|
|
|
2199 |
|
|
----------
|
2200 |
|
|
-- Fore --
|
2201 |
|
|
----------
|
2202 |
|
|
|
2203 |
|
|
-- For the fixed-point type Typ:
|
2204 |
|
|
|
2205 |
|
|
-- Typ'Fore
|
2206 |
|
|
|
2207 |
|
|
-- expands into
|
2208 |
|
|
|
2209 |
|
|
-- Result_Type (System.Fore (Universal_Real (Type'First)),
|
2210 |
|
|
-- Universal_Real (Type'Last))
|
2211 |
|
|
|
2212 |
|
|
-- Note that we know that the type is a non-static subtype, or Fore
|
2213 |
|
|
-- would have itself been computed dynamically in Eval_Attribute.
|
2214 |
|
|
|
2215 |
|
|
when Attribute_Fore => Fore : begin
|
2216 |
|
|
Rewrite (N,
|
2217 |
|
|
Convert_To (Typ,
|
2218 |
|
|
Make_Function_Call (Loc,
|
2219 |
|
|
Name => New_Reference_To (RTE (RE_Fore), Loc),
|
2220 |
|
|
|
2221 |
|
|
Parameter_Associations => New_List (
|
2222 |
|
|
Convert_To (Universal_Real,
|
2223 |
|
|
Make_Attribute_Reference (Loc,
|
2224 |
|
|
Prefix => New_Reference_To (Ptyp, Loc),
|
2225 |
|
|
Attribute_Name => Name_First)),
|
2226 |
|
|
|
2227 |
|
|
Convert_To (Universal_Real,
|
2228 |
|
|
Make_Attribute_Reference (Loc,
|
2229 |
|
|
Prefix => New_Reference_To (Ptyp, Loc),
|
2230 |
|
|
Attribute_Name => Name_Last))))));
|
2231 |
|
|
|
2232 |
|
|
Analyze_And_Resolve (N, Typ);
|
2233 |
|
|
end Fore;
|
2234 |
|
|
|
2235 |
|
|
--------------
|
2236 |
|
|
-- Fraction --
|
2237 |
|
|
--------------
|
2238 |
|
|
|
2239 |
|
|
-- Transforms 'Fraction into a call to the floating-point attribute
|
2240 |
|
|
-- function Fraction in Fat_xxx (where xxx is the root type)
|
2241 |
|
|
|
2242 |
|
|
when Attribute_Fraction =>
|
2243 |
|
|
Expand_Fpt_Attribute_R (N);
|
2244 |
|
|
|
2245 |
|
|
--------------
|
2246 |
|
|
-- From_Any --
|
2247 |
|
|
--------------
|
2248 |
|
|
|
2249 |
|
|
when Attribute_From_Any => From_Any : declare
|
2250 |
|
|
P_Type : constant Entity_Id := Etype (Pref);
|
2251 |
|
|
Decls : constant List_Id := New_List;
|
2252 |
|
|
begin
|
2253 |
|
|
Rewrite (N,
|
2254 |
|
|
Build_From_Any_Call (P_Type,
|
2255 |
|
|
Relocate_Node (First (Exprs)),
|
2256 |
|
|
Decls));
|
2257 |
|
|
Insert_Actions (N, Decls);
|
2258 |
|
|
Analyze_And_Resolve (N, P_Type);
|
2259 |
|
|
end From_Any;
|
2260 |
|
|
|
2261 |
|
|
--------------
|
2262 |
|
|
-- Identity --
|
2263 |
|
|
--------------
|
2264 |
|
|
|
2265 |
|
|
-- For an exception returns a reference to the exception data:
|
2266 |
|
|
-- Exception_Id!(Prefix'Reference)
|
2267 |
|
|
|
2268 |
|
|
-- For a task it returns a reference to the _task_id component of
|
2269 |
|
|
-- corresponding record:
|
2270 |
|
|
|
2271 |
|
|
-- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
|
2272 |
|
|
|
2273 |
|
|
-- in Ada.Task_Identification
|
2274 |
|
|
|
2275 |
|
|
when Attribute_Identity => Identity : declare
|
2276 |
|
|
Id_Kind : Entity_Id;
|
2277 |
|
|
|
2278 |
|
|
begin
|
2279 |
|
|
if Ptyp = Standard_Exception_Type then
|
2280 |
|
|
Id_Kind := RTE (RE_Exception_Id);
|
2281 |
|
|
|
2282 |
|
|
if Present (Renamed_Object (Entity (Pref))) then
|
2283 |
|
|
Set_Entity (Pref, Renamed_Object (Entity (Pref)));
|
2284 |
|
|
end if;
|
2285 |
|
|
|
2286 |
|
|
Rewrite (N,
|
2287 |
|
|
Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref)));
|
2288 |
|
|
else
|
2289 |
|
|
Id_Kind := RTE (RO_AT_Task_Id);
|
2290 |
|
|
|
2291 |
|
|
-- If the prefix is a task interface, the Task_Id is obtained
|
2292 |
|
|
-- dynamically through a dispatching call, as for other task
|
2293 |
|
|
-- attributes applied to interfaces.
|
2294 |
|
|
|
2295 |
|
|
if Ada_Version >= Ada_2005
|
2296 |
|
|
and then Ekind (Ptyp) = E_Class_Wide_Type
|
2297 |
|
|
and then Is_Interface (Ptyp)
|
2298 |
|
|
and then Is_Task_Interface (Ptyp)
|
2299 |
|
|
then
|
2300 |
|
|
Rewrite (N,
|
2301 |
|
|
Unchecked_Convert_To (Id_Kind,
|
2302 |
|
|
Make_Selected_Component (Loc,
|
2303 |
|
|
Prefix =>
|
2304 |
|
|
New_Copy_Tree (Pref),
|
2305 |
|
|
Selector_Name =>
|
2306 |
|
|
Make_Identifier (Loc, Name_uDisp_Get_Task_Id))));
|
2307 |
|
|
|
2308 |
|
|
else
|
2309 |
|
|
Rewrite (N,
|
2310 |
|
|
Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref)));
|
2311 |
|
|
end if;
|
2312 |
|
|
end if;
|
2313 |
|
|
|
2314 |
|
|
Analyze_And_Resolve (N, Id_Kind);
|
2315 |
|
|
end Identity;
|
2316 |
|
|
|
2317 |
|
|
-----------
|
2318 |
|
|
-- Image --
|
2319 |
|
|
-----------
|
2320 |
|
|
|
2321 |
|
|
-- Image attribute is handled in separate unit Exp_Imgv
|
2322 |
|
|
|
2323 |
|
|
when Attribute_Image =>
|
2324 |
|
|
Exp_Imgv.Expand_Image_Attribute (N);
|
2325 |
|
|
|
2326 |
|
|
---------
|
2327 |
|
|
-- Img --
|
2328 |
|
|
---------
|
2329 |
|
|
|
2330 |
|
|
-- X'Img is expanded to typ'Image (X), where typ is the type of X
|
2331 |
|
|
|
2332 |
|
|
when Attribute_Img => Img :
|
2333 |
|
|
begin
|
2334 |
|
|
Rewrite (N,
|
2335 |
|
|
Make_Attribute_Reference (Loc,
|
2336 |
|
|
Prefix => New_Reference_To (Ptyp, Loc),
|
2337 |
|
|
Attribute_Name => Name_Image,
|
2338 |
|
|
Expressions => New_List (Relocate_Node (Pref))));
|
2339 |
|
|
|
2340 |
|
|
Analyze_And_Resolve (N, Standard_String);
|
2341 |
|
|
end Img;
|
2342 |
|
|
|
2343 |
|
|
-----------
|
2344 |
|
|
-- Input --
|
2345 |
|
|
-----------
|
2346 |
|
|
|
2347 |
|
|
when Attribute_Input => Input : declare
|
2348 |
|
|
P_Type : constant Entity_Id := Entity (Pref);
|
2349 |
|
|
B_Type : constant Entity_Id := Base_Type (P_Type);
|
2350 |
|
|
U_Type : constant Entity_Id := Underlying_Type (P_Type);
|
2351 |
|
|
Strm : constant Node_Id := First (Exprs);
|
2352 |
|
|
Fname : Entity_Id;
|
2353 |
|
|
Decl : Node_Id;
|
2354 |
|
|
Call : Node_Id;
|
2355 |
|
|
Prag : Node_Id;
|
2356 |
|
|
Arg2 : Node_Id;
|
2357 |
|
|
Rfunc : Node_Id;
|
2358 |
|
|
|
2359 |
|
|
Cntrl : Node_Id := Empty;
|
2360 |
|
|
-- Value for controlling argument in call. Always Empty except in
|
2361 |
|
|
-- the dispatching (class-wide type) case, where it is a reference
|
2362 |
|
|
-- to the dummy object initialized to the right internal tag.
|
2363 |
|
|
|
2364 |
|
|
procedure Freeze_Stream_Subprogram (F : Entity_Id);
|
2365 |
|
|
-- The expansion of the attribute reference may generate a call to
|
2366 |
|
|
-- a user-defined stream subprogram that is frozen by the call. This
|
2367 |
|
|
-- can lead to access-before-elaboration problem if the reference
|
2368 |
|
|
-- appears in an object declaration and the subprogram body has not
|
2369 |
|
|
-- been seen. The freezing of the subprogram requires special code
|
2370 |
|
|
-- because it appears in an expanded context where expressions do
|
2371 |
|
|
-- not freeze their constituents.
|
2372 |
|
|
|
2373 |
|
|
------------------------------
|
2374 |
|
|
-- Freeze_Stream_Subprogram --
|
2375 |
|
|
------------------------------
|
2376 |
|
|
|
2377 |
|
|
procedure Freeze_Stream_Subprogram (F : Entity_Id) is
|
2378 |
|
|
Decl : constant Node_Id := Unit_Declaration_Node (F);
|
2379 |
|
|
Bod : Node_Id;
|
2380 |
|
|
|
2381 |
|
|
begin
|
2382 |
|
|
-- If this is user-defined subprogram, the corresponding
|
2383 |
|
|
-- stream function appears as a renaming-as-body, and the
|
2384 |
|
|
-- user subprogram must be retrieved by tree traversal.
|
2385 |
|
|
|
2386 |
|
|
if Present (Decl)
|
2387 |
|
|
and then Nkind (Decl) = N_Subprogram_Declaration
|
2388 |
|
|
and then Present (Corresponding_Body (Decl))
|
2389 |
|
|
then
|
2390 |
|
|
Bod := Corresponding_Body (Decl);
|
2391 |
|
|
|
2392 |
|
|
if Nkind (Unit_Declaration_Node (Bod)) =
|
2393 |
|
|
N_Subprogram_Renaming_Declaration
|
2394 |
|
|
then
|
2395 |
|
|
Set_Is_Frozen (Entity (Name (Unit_Declaration_Node (Bod))));
|
2396 |
|
|
end if;
|
2397 |
|
|
end if;
|
2398 |
|
|
end Freeze_Stream_Subprogram;
|
2399 |
|
|
|
2400 |
|
|
-- Start of processing for Input
|
2401 |
|
|
|
2402 |
|
|
begin
|
2403 |
|
|
-- If no underlying type, we have an error that will be diagnosed
|
2404 |
|
|
-- elsewhere, so here we just completely ignore the expansion.
|
2405 |
|
|
|
2406 |
|
|
if No (U_Type) then
|
2407 |
|
|
return;
|
2408 |
|
|
end if;
|
2409 |
|
|
|
2410 |
|
|
-- If there is a TSS for Input, just call it
|
2411 |
|
|
|
2412 |
|
|
Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input);
|
2413 |
|
|
|
2414 |
|
|
if Present (Fname) then
|
2415 |
|
|
null;
|
2416 |
|
|
|
2417 |
|
|
else
|
2418 |
|
|
-- If there is a Stream_Convert pragma, use it, we rewrite
|
2419 |
|
|
|
2420 |
|
|
-- sourcetyp'Input (stream)
|
2421 |
|
|
|
2422 |
|
|
-- as
|
2423 |
|
|
|
2424 |
|
|
-- sourcetyp (streamread (strmtyp'Input (stream)));
|
2425 |
|
|
|
2426 |
|
|
-- where streamread is the given Read function that converts an
|
2427 |
|
|
-- argument of type strmtyp to type sourcetyp or a type from which
|
2428 |
|
|
-- it is derived (extra conversion required for the derived case).
|
2429 |
|
|
|
2430 |
|
|
Prag := Get_Stream_Convert_Pragma (P_Type);
|
2431 |
|
|
|
2432 |
|
|
if Present (Prag) then
|
2433 |
|
|
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
|
2434 |
|
|
Rfunc := Entity (Expression (Arg2));
|
2435 |
|
|
|
2436 |
|
|
Rewrite (N,
|
2437 |
|
|
Convert_To (B_Type,
|
2438 |
|
|
Make_Function_Call (Loc,
|
2439 |
|
|
Name => New_Occurrence_Of (Rfunc, Loc),
|
2440 |
|
|
Parameter_Associations => New_List (
|
2441 |
|
|
Make_Attribute_Reference (Loc,
|
2442 |
|
|
Prefix =>
|
2443 |
|
|
New_Occurrence_Of
|
2444 |
|
|
(Etype (First_Formal (Rfunc)), Loc),
|
2445 |
|
|
Attribute_Name => Name_Input,
|
2446 |
|
|
Expressions => Exprs)))));
|
2447 |
|
|
|
2448 |
|
|
Analyze_And_Resolve (N, B_Type);
|
2449 |
|
|
return;
|
2450 |
|
|
|
2451 |
|
|
-- Elementary types
|
2452 |
|
|
|
2453 |
|
|
elsif Is_Elementary_Type (U_Type) then
|
2454 |
|
|
|
2455 |
|
|
-- A special case arises if we have a defined _Read routine,
|
2456 |
|
|
-- since in this case we are required to call this routine.
|
2457 |
|
|
|
2458 |
|
|
if Present (TSS (Base_Type (U_Type), TSS_Stream_Read)) then
|
2459 |
|
|
Build_Record_Or_Elementary_Input_Function
|
2460 |
|
|
(Loc, U_Type, Decl, Fname);
|
2461 |
|
|
Insert_Action (N, Decl);
|
2462 |
|
|
|
2463 |
|
|
-- For normal cases, we call the I_xxx routine directly
|
2464 |
|
|
|
2465 |
|
|
else
|
2466 |
|
|
Rewrite (N, Build_Elementary_Input_Call (N));
|
2467 |
|
|
Analyze_And_Resolve (N, P_Type);
|
2468 |
|
|
return;
|
2469 |
|
|
end if;
|
2470 |
|
|
|
2471 |
|
|
-- Array type case
|
2472 |
|
|
|
2473 |
|
|
elsif Is_Array_Type (U_Type) then
|
2474 |
|
|
Build_Array_Input_Function (Loc, U_Type, Decl, Fname);
|
2475 |
|
|
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
|
2476 |
|
|
|
2477 |
|
|
-- Dispatching case with class-wide type
|
2478 |
|
|
|
2479 |
|
|
elsif Is_Class_Wide_Type (P_Type) then
|
2480 |
|
|
|
2481 |
|
|
-- No need to do anything else compiling under restriction
|
2482 |
|
|
-- No_Dispatching_Calls. During the semantic analysis we
|
2483 |
|
|
-- already notified such violation.
|
2484 |
|
|
|
2485 |
|
|
if Restriction_Active (No_Dispatching_Calls) then
|
2486 |
|
|
return;
|
2487 |
|
|
end if;
|
2488 |
|
|
|
2489 |
|
|
declare
|
2490 |
|
|
Rtyp : constant Entity_Id := Root_Type (P_Type);
|
2491 |
|
|
Dnn : Entity_Id;
|
2492 |
|
|
Decl : Node_Id;
|
2493 |
|
|
Expr : Node_Id;
|
2494 |
|
|
|
2495 |
|
|
begin
|
2496 |
|
|
-- Read the internal tag (RM 13.13.2(34)) and use it to
|
2497 |
|
|
-- initialize a dummy tag object:
|
2498 |
|
|
|
2499 |
|
|
-- Dnn : Ada.Tags.Tag :=
|
2500 |
|
|
-- Descendant_Tag (String'Input (Strm), P_Type);
|
2501 |
|
|
|
2502 |
|
|
-- This dummy object is used only to provide a controlling
|
2503 |
|
|
-- argument for the eventual _Input call. Descendant_Tag is
|
2504 |
|
|
-- called rather than Internal_Tag to ensure that we have a
|
2505 |
|
|
-- tag for a type that is descended from the prefix type and
|
2506 |
|
|
-- declared at the same accessibility level (the exception
|
2507 |
|
|
-- Tag_Error will be raised otherwise). The level check is
|
2508 |
|
|
-- required for Ada 2005 because tagged types can be
|
2509 |
|
|
-- extended in nested scopes (AI-344).
|
2510 |
|
|
|
2511 |
|
|
Expr :=
|
2512 |
|
|
Make_Function_Call (Loc,
|
2513 |
|
|
Name =>
|
2514 |
|
|
New_Occurrence_Of (RTE (RE_Descendant_Tag), Loc),
|
2515 |
|
|
Parameter_Associations => New_List (
|
2516 |
|
|
Make_Attribute_Reference (Loc,
|
2517 |
|
|
Prefix => New_Occurrence_Of (Standard_String, Loc),
|
2518 |
|
|
Attribute_Name => Name_Input,
|
2519 |
|
|
Expressions => New_List (
|
2520 |
|
|
Relocate_Node (Duplicate_Subexpr (Strm)))),
|
2521 |
|
|
Make_Attribute_Reference (Loc,
|
2522 |
|
|
Prefix => New_Reference_To (P_Type, Loc),
|
2523 |
|
|
Attribute_Name => Name_Tag)));
|
2524 |
|
|
|
2525 |
|
|
Dnn := Make_Temporary (Loc, 'D', Expr);
|
2526 |
|
|
|
2527 |
|
|
Decl :=
|
2528 |
|
|
Make_Object_Declaration (Loc,
|
2529 |
|
|
Defining_Identifier => Dnn,
|
2530 |
|
|
Object_Definition =>
|
2531 |
|
|
New_Occurrence_Of (RTE (RE_Tag), Loc),
|
2532 |
|
|
Expression => Expr);
|
2533 |
|
|
|
2534 |
|
|
Insert_Action (N, Decl);
|
2535 |
|
|
|
2536 |
|
|
-- Now we need to get the entity for the call, and construct
|
2537 |
|
|
-- a function call node, where we preset a reference to Dnn
|
2538 |
|
|
-- as the controlling argument (doing an unchecked convert
|
2539 |
|
|
-- to the class-wide tagged type to make it look like a real
|
2540 |
|
|
-- tagged object).
|
2541 |
|
|
|
2542 |
|
|
Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input);
|
2543 |
|
|
Cntrl :=
|
2544 |
|
|
Unchecked_Convert_To (P_Type,
|
2545 |
|
|
New_Occurrence_Of (Dnn, Loc));
|
2546 |
|
|
Set_Etype (Cntrl, P_Type);
|
2547 |
|
|
Set_Parent (Cntrl, N);
|
2548 |
|
|
end;
|
2549 |
|
|
|
2550 |
|
|
-- For tagged types, use the primitive Input function
|
2551 |
|
|
|
2552 |
|
|
elsif Is_Tagged_Type (U_Type) then
|
2553 |
|
|
Fname := Find_Prim_Op (U_Type, TSS_Stream_Input);
|
2554 |
|
|
|
2555 |
|
|
-- All other record type cases, including protected records. The
|
2556 |
|
|
-- latter only arise for expander generated code for handling
|
2557 |
|
|
-- shared passive partition access.
|
2558 |
|
|
|
2559 |
|
|
else
|
2560 |
|
|
pragma Assert
|
2561 |
|
|
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
|
2562 |
|
|
|
2563 |
|
|
-- Ada 2005 (AI-216): Program_Error is raised executing default
|
2564 |
|
|
-- implementation of the Input attribute of an unchecked union
|
2565 |
|
|
-- type if the type lacks default discriminant values.
|
2566 |
|
|
|
2567 |
|
|
if Is_Unchecked_Union (Base_Type (U_Type))
|
2568 |
|
|
and then No (Discriminant_Constraint (U_Type))
|
2569 |
|
|
then
|
2570 |
|
|
Insert_Action (N,
|
2571 |
|
|
Make_Raise_Program_Error (Loc,
|
2572 |
|
|
Reason => PE_Unchecked_Union_Restriction));
|
2573 |
|
|
|
2574 |
|
|
return;
|
2575 |
|
|
end if;
|
2576 |
|
|
|
2577 |
|
|
-- Build the type's Input function, passing the subtype rather
|
2578 |
|
|
-- than its base type, because checks are needed in the case of
|
2579 |
|
|
-- constrained discriminants (see Ada 2012 AI05-0192).
|
2580 |
|
|
|
2581 |
|
|
Build_Record_Or_Elementary_Input_Function
|
2582 |
|
|
(Loc, U_Type, Decl, Fname);
|
2583 |
|
|
Insert_Action (N, Decl);
|
2584 |
|
|
|
2585 |
|
|
if Nkind (Parent (N)) = N_Object_Declaration
|
2586 |
|
|
and then Is_Record_Type (U_Type)
|
2587 |
|
|
then
|
2588 |
|
|
-- The stream function may contain calls to user-defined
|
2589 |
|
|
-- Read procedures for individual components.
|
2590 |
|
|
|
2591 |
|
|
declare
|
2592 |
|
|
Comp : Entity_Id;
|
2593 |
|
|
Func : Entity_Id;
|
2594 |
|
|
|
2595 |
|
|
begin
|
2596 |
|
|
Comp := First_Component (U_Type);
|
2597 |
|
|
while Present (Comp) loop
|
2598 |
|
|
Func :=
|
2599 |
|
|
Find_Stream_Subprogram
|
2600 |
|
|
(Etype (Comp), TSS_Stream_Read);
|
2601 |
|
|
|
2602 |
|
|
if Present (Func) then
|
2603 |
|
|
Freeze_Stream_Subprogram (Func);
|
2604 |
|
|
end if;
|
2605 |
|
|
|
2606 |
|
|
Next_Component (Comp);
|
2607 |
|
|
end loop;
|
2608 |
|
|
end;
|
2609 |
|
|
end if;
|
2610 |
|
|
end if;
|
2611 |
|
|
end if;
|
2612 |
|
|
|
2613 |
|
|
-- If we fall through, Fname is the function to be called. The result
|
2614 |
|
|
-- is obtained by calling the appropriate function, then converting
|
2615 |
|
|
-- the result. The conversion does a subtype check.
|
2616 |
|
|
|
2617 |
|
|
Call :=
|
2618 |
|
|
Make_Function_Call (Loc,
|
2619 |
|
|
Name => New_Occurrence_Of (Fname, Loc),
|
2620 |
|
|
Parameter_Associations => New_List (
|
2621 |
|
|
Relocate_Node (Strm)));
|
2622 |
|
|
|
2623 |
|
|
Set_Controlling_Argument (Call, Cntrl);
|
2624 |
|
|
Rewrite (N, Unchecked_Convert_To (P_Type, Call));
|
2625 |
|
|
Analyze_And_Resolve (N, P_Type);
|
2626 |
|
|
|
2627 |
|
|
if Nkind (Parent (N)) = N_Object_Declaration then
|
2628 |
|
|
Freeze_Stream_Subprogram (Fname);
|
2629 |
|
|
end if;
|
2630 |
|
|
end Input;
|
2631 |
|
|
|
2632 |
|
|
-------------------
|
2633 |
|
|
-- Integer_Value --
|
2634 |
|
|
-------------------
|
2635 |
|
|
|
2636 |
|
|
-- We transform
|
2637 |
|
|
|
2638 |
|
|
-- inttype'Fixed_Value (fixed-value)
|
2639 |
|
|
|
2640 |
|
|
-- into
|
2641 |
|
|
|
2642 |
|
|
-- inttype(integer-value))
|
2643 |
|
|
|
2644 |
|
|
-- we do all the required analysis of the conversion here, because we do
|
2645 |
|
|
-- not want this to go through the fixed-point conversion circuits. Note
|
2646 |
|
|
-- that the back end always treats fixed-point as equivalent to the
|
2647 |
|
|
-- corresponding integer type anyway.
|
2648 |
|
|
|
2649 |
|
|
when Attribute_Integer_Value => Integer_Value :
|
2650 |
|
|
begin
|
2651 |
|
|
Rewrite (N,
|
2652 |
|
|
Make_Type_Conversion (Loc,
|
2653 |
|
|
Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
|
2654 |
|
|
Expression => Relocate_Node (First (Exprs))));
|
2655 |
|
|
Set_Etype (N, Entity (Pref));
|
2656 |
|
|
Set_Analyzed (N);
|
2657 |
|
|
|
2658 |
|
|
-- Note: it might appear that a properly analyzed unchecked conversion
|
2659 |
|
|
-- would be just fine here, but that's not the case, since the full
|
2660 |
|
|
-- range checks performed by the following call are critical!
|
2661 |
|
|
|
2662 |
|
|
Apply_Type_Conversion_Checks (N);
|
2663 |
|
|
end Integer_Value;
|
2664 |
|
|
|
2665 |
|
|
-------------------
|
2666 |
|
|
-- Invalid_Value --
|
2667 |
|
|
-------------------
|
2668 |
|
|
|
2669 |
|
|
when Attribute_Invalid_Value =>
|
2670 |
|
|
Rewrite (N, Get_Simple_Init_Val (Ptyp, N));
|
2671 |
|
|
|
2672 |
|
|
----------
|
2673 |
|
|
-- Last --
|
2674 |
|
|
----------
|
2675 |
|
|
|
2676 |
|
|
when Attribute_Last =>
|
2677 |
|
|
|
2678 |
|
|
-- If the prefix type is a constrained packed array type which
|
2679 |
|
|
-- already has a Packed_Array_Type representation defined, then
|
2680 |
|
|
-- replace this attribute with a direct reference to 'Last of the
|
2681 |
|
|
-- appropriate index subtype (since otherwise the back end will try
|
2682 |
|
|
-- to give us the value of 'Last for this implementation type).
|
2683 |
|
|
|
2684 |
|
|
if Is_Constrained_Packed_Array (Ptyp) then
|
2685 |
|
|
Rewrite (N,
|
2686 |
|
|
Make_Attribute_Reference (Loc,
|
2687 |
|
|
Attribute_Name => Name_Last,
|
2688 |
|
|
Prefix => New_Reference_To (Get_Index_Subtype (N), Loc)));
|
2689 |
|
|
Analyze_And_Resolve (N, Typ);
|
2690 |
|
|
|
2691 |
|
|
elsif Is_Access_Type (Ptyp) then
|
2692 |
|
|
Apply_Access_Check (N);
|
2693 |
|
|
end if;
|
2694 |
|
|
|
2695 |
|
|
--------------
|
2696 |
|
|
-- Last_Bit --
|
2697 |
|
|
--------------
|
2698 |
|
|
|
2699 |
|
|
-- We compute this if a component clause was present, otherwise we leave
|
2700 |
|
|
-- the computation up to the back end, since we don't know what layout
|
2701 |
|
|
-- will be chosen.
|
2702 |
|
|
|
2703 |
|
|
when Attribute_Last_Bit => Last_Bit_Attr : declare
|
2704 |
|
|
CE : constant Entity_Id := Entity (Selector_Name (Pref));
|
2705 |
|
|
|
2706 |
|
|
begin
|
2707 |
|
|
-- In Ada 2005 (or later) if we have the standard nondefault
|
2708 |
|
|
-- bit order, then we return the original value as given in
|
2709 |
|
|
-- the component clause (RM 2005 13.5.2(4/2)).
|
2710 |
|
|
|
2711 |
|
|
if Present (Component_Clause (CE))
|
2712 |
|
|
and then Ada_Version >= Ada_2005
|
2713 |
|
|
and then not Reverse_Bit_Order (Scope (CE))
|
2714 |
|
|
then
|
2715 |
|
|
Rewrite (N,
|
2716 |
|
|
Make_Integer_Literal (Loc,
|
2717 |
|
|
Intval => Expr_Value (Last_Bit (Component_Clause (CE)))));
|
2718 |
|
|
Analyze_And_Resolve (N, Typ);
|
2719 |
|
|
|
2720 |
|
|
-- Otherwise (Ada 83/95 or Ada 2005 or later with reverse bit order),
|
2721 |
|
|
-- rewrite with normalized value if we know it statically.
|
2722 |
|
|
|
2723 |
|
|
elsif Known_Static_Component_Bit_Offset (CE)
|
2724 |
|
|
and then Known_Static_Esize (CE)
|
2725 |
|
|
then
|
2726 |
|
|
Rewrite (N,
|
2727 |
|
|
Make_Integer_Literal (Loc,
|
2728 |
|
|
Intval => (Component_Bit_Offset (CE) mod System_Storage_Unit)
|
2729 |
|
|
+ Esize (CE) - 1));
|
2730 |
|
|
Analyze_And_Resolve (N, Typ);
|
2731 |
|
|
|
2732 |
|
|
-- Otherwise leave to back end, just apply universal integer checks
|
2733 |
|
|
|
2734 |
|
|
else
|
2735 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
2736 |
|
|
end if;
|
2737 |
|
|
end Last_Bit_Attr;
|
2738 |
|
|
|
2739 |
|
|
------------------
|
2740 |
|
|
-- Leading_Part --
|
2741 |
|
|
------------------
|
2742 |
|
|
|
2743 |
|
|
-- Transforms 'Leading_Part into a call to the floating-point attribute
|
2744 |
|
|
-- function Leading_Part in Fat_xxx (where xxx is the root type)
|
2745 |
|
|
|
2746 |
|
|
-- Note: strictly, we should generate special case code to deal with
|
2747 |
|
|
-- absurdly large positive arguments (greater than Integer'Last), which
|
2748 |
|
|
-- result in returning the first argument unchanged, but it hardly seems
|
2749 |
|
|
-- worth the effort. We raise constraint error for absurdly negative
|
2750 |
|
|
-- arguments which is fine.
|
2751 |
|
|
|
2752 |
|
|
when Attribute_Leading_Part =>
|
2753 |
|
|
Expand_Fpt_Attribute_RI (N);
|
2754 |
|
|
|
2755 |
|
|
------------
|
2756 |
|
|
-- Length --
|
2757 |
|
|
------------
|
2758 |
|
|
|
2759 |
|
|
when Attribute_Length => declare
|
2760 |
|
|
Ityp : Entity_Id;
|
2761 |
|
|
Xnum : Uint;
|
2762 |
|
|
|
2763 |
|
|
begin
|
2764 |
|
|
-- Processing for packed array types
|
2765 |
|
|
|
2766 |
|
|
if Is_Array_Type (Ptyp) and then Is_Packed (Ptyp) then
|
2767 |
|
|
Ityp := Get_Index_Subtype (N);
|
2768 |
|
|
|
2769 |
|
|
-- If the index type, Ityp, is an enumeration type with holes,
|
2770 |
|
|
-- then we calculate X'Length explicitly using
|
2771 |
|
|
|
2772 |
|
|
-- Typ'Max
|
2773 |
|
|
-- (0, Ityp'Pos (X'Last (N)) -
|
2774 |
|
|
-- Ityp'Pos (X'First (N)) + 1);
|
2775 |
|
|
|
2776 |
|
|
-- Since the bounds in the template are the representation values
|
2777 |
|
|
-- and the back end would get the wrong value.
|
2778 |
|
|
|
2779 |
|
|
if Is_Enumeration_Type (Ityp)
|
2780 |
|
|
and then Present (Enum_Pos_To_Rep (Base_Type (Ityp)))
|
2781 |
|
|
then
|
2782 |
|
|
if No (Exprs) then
|
2783 |
|
|
Xnum := Uint_1;
|
2784 |
|
|
else
|
2785 |
|
|
Xnum := Expr_Value (First (Expressions (N)));
|
2786 |
|
|
end if;
|
2787 |
|
|
|
2788 |
|
|
Rewrite (N,
|
2789 |
|
|
Make_Attribute_Reference (Loc,
|
2790 |
|
|
Prefix => New_Occurrence_Of (Typ, Loc),
|
2791 |
|
|
Attribute_Name => Name_Max,
|
2792 |
|
|
Expressions => New_List
|
2793 |
|
|
(Make_Integer_Literal (Loc, 0),
|
2794 |
|
|
|
2795 |
|
|
Make_Op_Add (Loc,
|
2796 |
|
|
Left_Opnd =>
|
2797 |
|
|
Make_Op_Subtract (Loc,
|
2798 |
|
|
Left_Opnd =>
|
2799 |
|
|
Make_Attribute_Reference (Loc,
|
2800 |
|
|
Prefix => New_Occurrence_Of (Ityp, Loc),
|
2801 |
|
|
Attribute_Name => Name_Pos,
|
2802 |
|
|
|
2803 |
|
|
Expressions => New_List (
|
2804 |
|
|
Make_Attribute_Reference (Loc,
|
2805 |
|
|
Prefix => Duplicate_Subexpr (Pref),
|
2806 |
|
|
Attribute_Name => Name_Last,
|
2807 |
|
|
Expressions => New_List (
|
2808 |
|
|
Make_Integer_Literal (Loc, Xnum))))),
|
2809 |
|
|
|
2810 |
|
|
Right_Opnd =>
|
2811 |
|
|
Make_Attribute_Reference (Loc,
|
2812 |
|
|
Prefix => New_Occurrence_Of (Ityp, Loc),
|
2813 |
|
|
Attribute_Name => Name_Pos,
|
2814 |
|
|
|
2815 |
|
|
Expressions => New_List (
|
2816 |
|
|
Make_Attribute_Reference (Loc,
|
2817 |
|
|
Prefix =>
|
2818 |
|
|
Duplicate_Subexpr_No_Checks (Pref),
|
2819 |
|
|
Attribute_Name => Name_First,
|
2820 |
|
|
Expressions => New_List (
|
2821 |
|
|
Make_Integer_Literal (Loc, Xnum)))))),
|
2822 |
|
|
|
2823 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
|
2824 |
|
|
|
2825 |
|
|
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
|
2826 |
|
|
return;
|
2827 |
|
|
|
2828 |
|
|
-- If the prefix type is a constrained packed array type which
|
2829 |
|
|
-- already has a Packed_Array_Type representation defined, then
|
2830 |
|
|
-- replace this attribute with a direct reference to 'Range_Length
|
2831 |
|
|
-- of the appropriate index subtype (since otherwise the back end
|
2832 |
|
|
-- will try to give us the value of 'Length for this
|
2833 |
|
|
-- implementation type).
|
2834 |
|
|
|
2835 |
|
|
elsif Is_Constrained (Ptyp) then
|
2836 |
|
|
Rewrite (N,
|
2837 |
|
|
Make_Attribute_Reference (Loc,
|
2838 |
|
|
Attribute_Name => Name_Range_Length,
|
2839 |
|
|
Prefix => New_Reference_To (Ityp, Loc)));
|
2840 |
|
|
Analyze_And_Resolve (N, Typ);
|
2841 |
|
|
end if;
|
2842 |
|
|
|
2843 |
|
|
-- Access type case
|
2844 |
|
|
|
2845 |
|
|
elsif Is_Access_Type (Ptyp) then
|
2846 |
|
|
Apply_Access_Check (N);
|
2847 |
|
|
|
2848 |
|
|
-- If the designated type is a packed array type, then we convert
|
2849 |
|
|
-- the reference to:
|
2850 |
|
|
|
2851 |
|
|
-- typ'Max (0, 1 +
|
2852 |
|
|
-- xtyp'Pos (Pref'Last (Expr)) -
|
2853 |
|
|
-- xtyp'Pos (Pref'First (Expr)));
|
2854 |
|
|
|
2855 |
|
|
-- This is a bit complex, but it is the easiest thing to do that
|
2856 |
|
|
-- works in all cases including enum types with holes xtyp here
|
2857 |
|
|
-- is the appropriate index type.
|
2858 |
|
|
|
2859 |
|
|
declare
|
2860 |
|
|
Dtyp : constant Entity_Id := Designated_Type (Ptyp);
|
2861 |
|
|
Xtyp : Entity_Id;
|
2862 |
|
|
|
2863 |
|
|
begin
|
2864 |
|
|
if Is_Array_Type (Dtyp) and then Is_Packed (Dtyp) then
|
2865 |
|
|
Xtyp := Get_Index_Subtype (N);
|
2866 |
|
|
|
2867 |
|
|
Rewrite (N,
|
2868 |
|
|
Make_Attribute_Reference (Loc,
|
2869 |
|
|
Prefix => New_Occurrence_Of (Typ, Loc),
|
2870 |
|
|
Attribute_Name => Name_Max,
|
2871 |
|
|
Expressions => New_List (
|
2872 |
|
|
Make_Integer_Literal (Loc, 0),
|
2873 |
|
|
|
2874 |
|
|
Make_Op_Add (Loc,
|
2875 |
|
|
Make_Integer_Literal (Loc, 1),
|
2876 |
|
|
Make_Op_Subtract (Loc,
|
2877 |
|
|
Left_Opnd =>
|
2878 |
|
|
Make_Attribute_Reference (Loc,
|
2879 |
|
|
Prefix => New_Occurrence_Of (Xtyp, Loc),
|
2880 |
|
|
Attribute_Name => Name_Pos,
|
2881 |
|
|
Expressions => New_List (
|
2882 |
|
|
Make_Attribute_Reference (Loc,
|
2883 |
|
|
Prefix => Duplicate_Subexpr (Pref),
|
2884 |
|
|
Attribute_Name => Name_Last,
|
2885 |
|
|
Expressions =>
|
2886 |
|
|
New_Copy_List (Exprs)))),
|
2887 |
|
|
|
2888 |
|
|
Right_Opnd =>
|
2889 |
|
|
Make_Attribute_Reference (Loc,
|
2890 |
|
|
Prefix => New_Occurrence_Of (Xtyp, Loc),
|
2891 |
|
|
Attribute_Name => Name_Pos,
|
2892 |
|
|
Expressions => New_List (
|
2893 |
|
|
Make_Attribute_Reference (Loc,
|
2894 |
|
|
Prefix =>
|
2895 |
|
|
Duplicate_Subexpr_No_Checks (Pref),
|
2896 |
|
|
Attribute_Name => Name_First,
|
2897 |
|
|
Expressions =>
|
2898 |
|
|
New_Copy_List (Exprs)))))))));
|
2899 |
|
|
|
2900 |
|
|
Analyze_And_Resolve (N, Typ);
|
2901 |
|
|
end if;
|
2902 |
|
|
end;
|
2903 |
|
|
|
2904 |
|
|
-- Otherwise leave it to the back end
|
2905 |
|
|
|
2906 |
|
|
else
|
2907 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
2908 |
|
|
end if;
|
2909 |
|
|
end;
|
2910 |
|
|
|
2911 |
|
|
-------------
|
2912 |
|
|
-- Machine --
|
2913 |
|
|
-------------
|
2914 |
|
|
|
2915 |
|
|
-- Transforms 'Machine into a call to the floating-point attribute
|
2916 |
|
|
-- function Machine in Fat_xxx (where xxx is the root type)
|
2917 |
|
|
|
2918 |
|
|
when Attribute_Machine =>
|
2919 |
|
|
Expand_Fpt_Attribute_R (N);
|
2920 |
|
|
|
2921 |
|
|
----------------------
|
2922 |
|
|
-- Machine_Rounding --
|
2923 |
|
|
----------------------
|
2924 |
|
|
|
2925 |
|
|
-- Transforms 'Machine_Rounding into a call to the floating-point
|
2926 |
|
|
-- attribute function Machine_Rounding in Fat_xxx (where xxx is the root
|
2927 |
|
|
-- type). Expansion is avoided for cases the back end can handle
|
2928 |
|
|
-- directly.
|
2929 |
|
|
|
2930 |
|
|
when Attribute_Machine_Rounding =>
|
2931 |
|
|
if not Is_Inline_Floating_Point_Attribute (N) then
|
2932 |
|
|
Expand_Fpt_Attribute_R (N);
|
2933 |
|
|
end if;
|
2934 |
|
|
|
2935 |
|
|
------------------
|
2936 |
|
|
-- Machine_Size --
|
2937 |
|
|
------------------
|
2938 |
|
|
|
2939 |
|
|
-- Machine_Size is equivalent to Object_Size, so transform it into
|
2940 |
|
|
-- Object_Size and that way the back end never sees Machine_Size.
|
2941 |
|
|
|
2942 |
|
|
when Attribute_Machine_Size =>
|
2943 |
|
|
Rewrite (N,
|
2944 |
|
|
Make_Attribute_Reference (Loc,
|
2945 |
|
|
Prefix => Prefix (N),
|
2946 |
|
|
Attribute_Name => Name_Object_Size));
|
2947 |
|
|
|
2948 |
|
|
Analyze_And_Resolve (N, Typ);
|
2949 |
|
|
|
2950 |
|
|
--------------
|
2951 |
|
|
-- Mantissa --
|
2952 |
|
|
--------------
|
2953 |
|
|
|
2954 |
|
|
-- The only case that can get this far is the dynamic case of the old
|
2955 |
|
|
-- Ada 83 Mantissa attribute for the fixed-point case. For this case,
|
2956 |
|
|
-- we expand:
|
2957 |
|
|
|
2958 |
|
|
-- typ'Mantissa
|
2959 |
|
|
|
2960 |
|
|
-- into
|
2961 |
|
|
|
2962 |
|
|
-- ityp (System.Mantissa.Mantissa_Value
|
2963 |
|
|
-- (Integer'Integer_Value (typ'First),
|
2964 |
|
|
-- Integer'Integer_Value (typ'Last)));
|
2965 |
|
|
|
2966 |
|
|
when Attribute_Mantissa => Mantissa : begin
|
2967 |
|
|
Rewrite (N,
|
2968 |
|
|
Convert_To (Typ,
|
2969 |
|
|
Make_Function_Call (Loc,
|
2970 |
|
|
Name => New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc),
|
2971 |
|
|
|
2972 |
|
|
Parameter_Associations => New_List (
|
2973 |
|
|
|
2974 |
|
|
Make_Attribute_Reference (Loc,
|
2975 |
|
|
Prefix => New_Occurrence_Of (Standard_Integer, Loc),
|
2976 |
|
|
Attribute_Name => Name_Integer_Value,
|
2977 |
|
|
Expressions => New_List (
|
2978 |
|
|
|
2979 |
|
|
Make_Attribute_Reference (Loc,
|
2980 |
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
2981 |
|
|
Attribute_Name => Name_First))),
|
2982 |
|
|
|
2983 |
|
|
Make_Attribute_Reference (Loc,
|
2984 |
|
|
Prefix => New_Occurrence_Of (Standard_Integer, Loc),
|
2985 |
|
|
Attribute_Name => Name_Integer_Value,
|
2986 |
|
|
Expressions => New_List (
|
2987 |
|
|
|
2988 |
|
|
Make_Attribute_Reference (Loc,
|
2989 |
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
2990 |
|
|
Attribute_Name => Name_Last)))))));
|
2991 |
|
|
|
2992 |
|
|
Analyze_And_Resolve (N, Typ);
|
2993 |
|
|
end Mantissa;
|
2994 |
|
|
|
2995 |
|
|
----------------------------------
|
2996 |
|
|
-- Max_Size_In_Storage_Elements --
|
2997 |
|
|
----------------------------------
|
2998 |
|
|
|
2999 |
|
|
when Attribute_Max_Size_In_Storage_Elements =>
|
3000 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
3001 |
|
|
|
3002 |
|
|
-- Heap-allocated controlled objects contain two extra pointers which
|
3003 |
|
|
-- are not part of the actual type. Transform the attribute reference
|
3004 |
|
|
-- into a runtime expression to add the size of the hidden header.
|
3005 |
|
|
|
3006 |
|
|
-- Do not perform this expansion on .NET/JVM targets because the
|
3007 |
|
|
-- two pointers are already present in the type.
|
3008 |
|
|
|
3009 |
|
|
if VM_Target = No_VM
|
3010 |
|
|
and then Nkind (N) = N_Attribute_Reference
|
3011 |
|
|
and then Needs_Finalization (Ptyp)
|
3012 |
|
|
and then not Header_Size_Added (N)
|
3013 |
|
|
then
|
3014 |
|
|
Set_Header_Size_Added (N);
|
3015 |
|
|
|
3016 |
|
|
-- Generate:
|
3017 |
|
|
-- P'Max_Size_In_Storage_Elements +
|
3018 |
|
|
-- Universal_Integer
|
3019 |
|
|
-- (Header_Size_With_Padding (Ptyp'Alignment))
|
3020 |
|
|
|
3021 |
|
|
Rewrite (N,
|
3022 |
|
|
Make_Op_Add (Loc,
|
3023 |
|
|
Left_Opnd => Relocate_Node (N),
|
3024 |
|
|
Right_Opnd =>
|
3025 |
|
|
Convert_To (Universal_Integer,
|
3026 |
|
|
Make_Function_Call (Loc,
|
3027 |
|
|
Name =>
|
3028 |
|
|
New_Reference_To
|
3029 |
|
|
(RTE (RE_Header_Size_With_Padding), Loc),
|
3030 |
|
|
|
3031 |
|
|
Parameter_Associations => New_List (
|
3032 |
|
|
Make_Attribute_Reference (Loc,
|
3033 |
|
|
Prefix =>
|
3034 |
|
|
New_Reference_To (Ptyp, Loc),
|
3035 |
|
|
Attribute_Name => Name_Alignment))))));
|
3036 |
|
|
|
3037 |
|
|
Analyze (N);
|
3038 |
|
|
return;
|
3039 |
|
|
end if;
|
3040 |
|
|
|
3041 |
|
|
--------------------
|
3042 |
|
|
-- Mechanism_Code --
|
3043 |
|
|
--------------------
|
3044 |
|
|
|
3045 |
|
|
when Attribute_Mechanism_Code =>
|
3046 |
|
|
|
3047 |
|
|
-- We must replace the prefix in the renamed case
|
3048 |
|
|
|
3049 |
|
|
if Is_Entity_Name (Pref)
|
3050 |
|
|
and then Present (Alias (Entity (Pref)))
|
3051 |
|
|
then
|
3052 |
|
|
Set_Renamed_Subprogram (Pref, Alias (Entity (Pref)));
|
3053 |
|
|
end if;
|
3054 |
|
|
|
3055 |
|
|
---------
|
3056 |
|
|
-- Mod --
|
3057 |
|
|
---------
|
3058 |
|
|
|
3059 |
|
|
when Attribute_Mod => Mod_Case : declare
|
3060 |
|
|
Arg : constant Node_Id := Relocate_Node (First (Exprs));
|
3061 |
|
|
Hi : constant Node_Id := Type_High_Bound (Etype (Arg));
|
3062 |
|
|
Modv : constant Uint := Modulus (Btyp);
|
3063 |
|
|
|
3064 |
|
|
begin
|
3065 |
|
|
|
3066 |
|
|
-- This is not so simple. The issue is what type to use for the
|
3067 |
|
|
-- computation of the modular value.
|
3068 |
|
|
|
3069 |
|
|
-- The easy case is when the modulus value is within the bounds
|
3070 |
|
|
-- of the signed integer type of the argument. In this case we can
|
3071 |
|
|
-- just do the computation in that signed integer type, and then
|
3072 |
|
|
-- do an ordinary conversion to the target type.
|
3073 |
|
|
|
3074 |
|
|
if Modv <= Expr_Value (Hi) then
|
3075 |
|
|
Rewrite (N,
|
3076 |
|
|
Convert_To (Btyp,
|
3077 |
|
|
Make_Op_Mod (Loc,
|
3078 |
|
|
Left_Opnd => Arg,
|
3079 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, Modv))));
|
3080 |
|
|
|
3081 |
|
|
-- Here we know that the modulus is larger than type'Last of the
|
3082 |
|
|
-- integer type. There are two cases to consider:
|
3083 |
|
|
|
3084 |
|
|
-- a) The integer value is non-negative. In this case, it is
|
3085 |
|
|
-- returned as the result (since it is less than the modulus).
|
3086 |
|
|
|
3087 |
|
|
-- b) The integer value is negative. In this case, we know that the
|
3088 |
|
|
-- result is modulus + value, where the value might be as small as
|
3089 |
|
|
-- -modulus. The trouble is what type do we use to do the subtract.
|
3090 |
|
|
-- No type will do, since modulus can be as big as 2**64, and no
|
3091 |
|
|
-- integer type accommodates this value. Let's do bit of algebra
|
3092 |
|
|
|
3093 |
|
|
-- modulus + value
|
3094 |
|
|
-- = modulus - (-value)
|
3095 |
|
|
-- = (modulus - 1) - (-value - 1)
|
3096 |
|
|
|
3097 |
|
|
-- Now modulus - 1 is certainly in range of the modular type.
|
3098 |
|
|
-- -value is in the range 1 .. modulus, so -value -1 is in the
|
3099 |
|
|
-- range 0 .. modulus-1 which is in range of the modular type.
|
3100 |
|
|
-- Furthermore, (-value - 1) can be expressed as -(value + 1)
|
3101 |
|
|
-- which we can compute using the integer base type.
|
3102 |
|
|
|
3103 |
|
|
-- Once this is done we analyze the conditional expression without
|
3104 |
|
|
-- range checks, because we know everything is in range, and we
|
3105 |
|
|
-- want to prevent spurious warnings on either branch.
|
3106 |
|
|
|
3107 |
|
|
else
|
3108 |
|
|
Rewrite (N,
|
3109 |
|
|
Make_Conditional_Expression (Loc,
|
3110 |
|
|
Expressions => New_List (
|
3111 |
|
|
Make_Op_Ge (Loc,
|
3112 |
|
|
Left_Opnd => Duplicate_Subexpr (Arg),
|
3113 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 0)),
|
3114 |
|
|
|
3115 |
|
|
Convert_To (Btyp,
|
3116 |
|
|
Duplicate_Subexpr_No_Checks (Arg)),
|
3117 |
|
|
|
3118 |
|
|
Make_Op_Subtract (Loc,
|
3119 |
|
|
Left_Opnd =>
|
3120 |
|
|
Make_Integer_Literal (Loc,
|
3121 |
|
|
Intval => Modv - 1),
|
3122 |
|
|
Right_Opnd =>
|
3123 |
|
|
Convert_To (Btyp,
|
3124 |
|
|
Make_Op_Minus (Loc,
|
3125 |
|
|
Right_Opnd =>
|
3126 |
|
|
Make_Op_Add (Loc,
|
3127 |
|
|
Left_Opnd => Duplicate_Subexpr_No_Checks (Arg),
|
3128 |
|
|
Right_Opnd =>
|
3129 |
|
|
Make_Integer_Literal (Loc,
|
3130 |
|
|
Intval => 1))))))));
|
3131 |
|
|
|
3132 |
|
|
end if;
|
3133 |
|
|
|
3134 |
|
|
Analyze_And_Resolve (N, Btyp, Suppress => All_Checks);
|
3135 |
|
|
end Mod_Case;
|
3136 |
|
|
|
3137 |
|
|
-----------
|
3138 |
|
|
-- Model --
|
3139 |
|
|
-----------
|
3140 |
|
|
|
3141 |
|
|
-- Transforms 'Model into a call to the floating-point attribute
|
3142 |
|
|
-- function Model in Fat_xxx (where xxx is the root type)
|
3143 |
|
|
|
3144 |
|
|
when Attribute_Model =>
|
3145 |
|
|
Expand_Fpt_Attribute_R (N);
|
3146 |
|
|
|
3147 |
|
|
-----------------
|
3148 |
|
|
-- Object_Size --
|
3149 |
|
|
-----------------
|
3150 |
|
|
|
3151 |
|
|
-- The processing for Object_Size shares the processing for Size
|
3152 |
|
|
|
3153 |
|
|
---------
|
3154 |
|
|
-- Old --
|
3155 |
|
|
---------
|
3156 |
|
|
|
3157 |
|
|
when Attribute_Old => Old : declare
|
3158 |
|
|
Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', Pref);
|
3159 |
|
|
Subp : Node_Id;
|
3160 |
|
|
Asn_Stm : Node_Id;
|
3161 |
|
|
|
3162 |
|
|
begin
|
3163 |
|
|
-- Find the nearest subprogram body, ignoring _Preconditions
|
3164 |
|
|
|
3165 |
|
|
Subp := N;
|
3166 |
|
|
loop
|
3167 |
|
|
Subp := Parent (Subp);
|
3168 |
|
|
exit when Nkind (Subp) = N_Subprogram_Body
|
3169 |
|
|
and then Chars (Defining_Entity (Subp)) /= Name_uPostconditions;
|
3170 |
|
|
end loop;
|
3171 |
|
|
|
3172 |
|
|
-- Insert the initialized object declaration at the start of the
|
3173 |
|
|
-- subprogram's declarations.
|
3174 |
|
|
|
3175 |
|
|
Asn_Stm :=
|
3176 |
|
|
Make_Object_Declaration (Loc,
|
3177 |
|
|
Defining_Identifier => Tnn,
|
3178 |
|
|
Constant_Present => True,
|
3179 |
|
|
Object_Definition => New_Occurrence_Of (Etype (N), Loc),
|
3180 |
|
|
Expression => Pref);
|
3181 |
|
|
|
3182 |
|
|
-- Push the subprogram's scope, so that the object will be analyzed
|
3183 |
|
|
-- in that context (rather than the context of the Precondition
|
3184 |
|
|
-- subprogram) and will have its Scope set properly.
|
3185 |
|
|
|
3186 |
|
|
if Present (Corresponding_Spec (Subp)) then
|
3187 |
|
|
Push_Scope (Corresponding_Spec (Subp));
|
3188 |
|
|
else
|
3189 |
|
|
Push_Scope (Defining_Entity (Subp));
|
3190 |
|
|
end if;
|
3191 |
|
|
|
3192 |
|
|
if Is_Empty_List (Declarations (Subp)) then
|
3193 |
|
|
Set_Declarations (Subp, New_List (Asn_Stm));
|
3194 |
|
|
Analyze (Asn_Stm);
|
3195 |
|
|
else
|
3196 |
|
|
Insert_Action (First (Declarations (Subp)), Asn_Stm);
|
3197 |
|
|
end if;
|
3198 |
|
|
|
3199 |
|
|
Pop_Scope;
|
3200 |
|
|
|
3201 |
|
|
Rewrite (N, New_Occurrence_Of (Tnn, Loc));
|
3202 |
|
|
end Old;
|
3203 |
|
|
|
3204 |
|
|
----------------------
|
3205 |
|
|
-- Overlaps_Storage --
|
3206 |
|
|
----------------------
|
3207 |
|
|
|
3208 |
|
|
when Attribute_Overlaps_Storage => Overlaps_Storage : declare
|
3209 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3210 |
|
|
|
3211 |
|
|
X : constant Node_Id := Prefix (N);
|
3212 |
|
|
Y : constant Node_Id := First (Expressions (N));
|
3213 |
|
|
-- The argumens
|
3214 |
|
|
|
3215 |
|
|
X_Addr, Y_Addr : Node_Id;
|
3216 |
|
|
-- the expressions for their integer addresses
|
3217 |
|
|
|
3218 |
|
|
X_Size, Y_Size : Node_Id;
|
3219 |
|
|
-- the expressions for their sizes
|
3220 |
|
|
|
3221 |
|
|
Cond : Node_Id;
|
3222 |
|
|
|
3223 |
|
|
begin
|
3224 |
|
|
-- Attribute expands into:
|
3225 |
|
|
|
3226 |
|
|
-- if X'Address < Y'address then
|
3227 |
|
|
-- (X'address + X'Size - 1) >= Y'address
|
3228 |
|
|
-- else
|
3229 |
|
|
-- (Y'address + Y'size - 1) >= X'Address
|
3230 |
|
|
-- end if;
|
3231 |
|
|
|
3232 |
|
|
-- with the proper address operations. We convert addresses to
|
3233 |
|
|
-- integer addresses to use predefined arithmetic. The size is
|
3234 |
|
|
-- expressed in storage units.
|
3235 |
|
|
|
3236 |
|
|
X_Addr :=
|
3237 |
|
|
Unchecked_Convert_To (RTE (RE_Integer_Address),
|
3238 |
|
|
Make_Attribute_Reference (Loc,
|
3239 |
|
|
Attribute_Name => Name_Address,
|
3240 |
|
|
Prefix => New_Copy_Tree (X)));
|
3241 |
|
|
|
3242 |
|
|
Y_Addr :=
|
3243 |
|
|
Unchecked_Convert_To (RTE (RE_Integer_Address),
|
3244 |
|
|
Make_Attribute_Reference (Loc,
|
3245 |
|
|
Attribute_Name => Name_Address,
|
3246 |
|
|
Prefix => New_Copy_Tree (Y)));
|
3247 |
|
|
|
3248 |
|
|
X_Size :=
|
3249 |
|
|
Make_Op_Divide (Loc,
|
3250 |
|
|
Left_Opnd =>
|
3251 |
|
|
Make_Attribute_Reference (Loc,
|
3252 |
|
|
Attribute_Name => Name_Size,
|
3253 |
|
|
Prefix => New_Copy_Tree (X)),
|
3254 |
|
|
Right_Opnd =>
|
3255 |
|
|
Make_Integer_Literal (Loc, System_Storage_Unit));
|
3256 |
|
|
|
3257 |
|
|
Y_Size :=
|
3258 |
|
|
Make_Op_Divide (Loc,
|
3259 |
|
|
Left_Opnd =>
|
3260 |
|
|
Make_Attribute_Reference (Loc,
|
3261 |
|
|
Attribute_Name => Name_Size,
|
3262 |
|
|
Prefix => New_Copy_Tree (Y)),
|
3263 |
|
|
Right_Opnd =>
|
3264 |
|
|
Make_Integer_Literal (Loc, System_Storage_Unit));
|
3265 |
|
|
|
3266 |
|
|
Cond :=
|
3267 |
|
|
Make_Op_Le (Loc,
|
3268 |
|
|
Left_Opnd => X_Addr,
|
3269 |
|
|
Right_Opnd => Y_Addr);
|
3270 |
|
|
|
3271 |
|
|
Rewrite (N,
|
3272 |
|
|
Make_Conditional_Expression (Loc,
|
3273 |
|
|
New_List (
|
3274 |
|
|
Cond,
|
3275 |
|
|
|
3276 |
|
|
Make_Op_Ge (Loc,
|
3277 |
|
|
Left_Opnd =>
|
3278 |
|
|
Make_Op_Add (Loc,
|
3279 |
|
|
Left_Opnd => X_Addr,
|
3280 |
|
|
Right_Opnd =>
|
3281 |
|
|
Make_Op_Subtract (Loc,
|
3282 |
|
|
Left_Opnd => X_Size,
|
3283 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))),
|
3284 |
|
|
Right_Opnd => Y_Addr),
|
3285 |
|
|
|
3286 |
|
|
Make_Op_Ge (Loc,
|
3287 |
|
|
Make_Op_Add (Loc,
|
3288 |
|
|
Left_Opnd => Y_Addr,
|
3289 |
|
|
Right_Opnd =>
|
3290 |
|
|
Make_Op_Subtract (Loc,
|
3291 |
|
|
Left_Opnd => Y_Size,
|
3292 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))),
|
3293 |
|
|
Right_Opnd => X_Addr))));
|
3294 |
|
|
|
3295 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
3296 |
|
|
end Overlaps_Storage;
|
3297 |
|
|
|
3298 |
|
|
------------
|
3299 |
|
|
-- Output --
|
3300 |
|
|
------------
|
3301 |
|
|
|
3302 |
|
|
when Attribute_Output => Output : declare
|
3303 |
|
|
P_Type : constant Entity_Id := Entity (Pref);
|
3304 |
|
|
U_Type : constant Entity_Id := Underlying_Type (P_Type);
|
3305 |
|
|
Pname : Entity_Id;
|
3306 |
|
|
Decl : Node_Id;
|
3307 |
|
|
Prag : Node_Id;
|
3308 |
|
|
Arg3 : Node_Id;
|
3309 |
|
|
Wfunc : Node_Id;
|
3310 |
|
|
|
3311 |
|
|
begin
|
3312 |
|
|
-- If no underlying type, we have an error that will be diagnosed
|
3313 |
|
|
-- elsewhere, so here we just completely ignore the expansion.
|
3314 |
|
|
|
3315 |
|
|
if No (U_Type) then
|
3316 |
|
|
return;
|
3317 |
|
|
end if;
|
3318 |
|
|
|
3319 |
|
|
-- If TSS for Output is present, just call it
|
3320 |
|
|
|
3321 |
|
|
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Output);
|
3322 |
|
|
|
3323 |
|
|
if Present (Pname) then
|
3324 |
|
|
null;
|
3325 |
|
|
|
3326 |
|
|
else
|
3327 |
|
|
-- If there is a Stream_Convert pragma, use it, we rewrite
|
3328 |
|
|
|
3329 |
|
|
-- sourcetyp'Output (stream, Item)
|
3330 |
|
|
|
3331 |
|
|
-- as
|
3332 |
|
|
|
3333 |
|
|
-- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
|
3334 |
|
|
|
3335 |
|
|
-- where strmwrite is the given Write function that converts an
|
3336 |
|
|
-- argument of type sourcetyp or a type acctyp, from which it is
|
3337 |
|
|
-- derived to type strmtyp. The conversion to acttyp is required
|
3338 |
|
|
-- for the derived case.
|
3339 |
|
|
|
3340 |
|
|
Prag := Get_Stream_Convert_Pragma (P_Type);
|
3341 |
|
|
|
3342 |
|
|
if Present (Prag) then
|
3343 |
|
|
Arg3 :=
|
3344 |
|
|
Next (Next (First (Pragma_Argument_Associations (Prag))));
|
3345 |
|
|
Wfunc := Entity (Expression (Arg3));
|
3346 |
|
|
|
3347 |
|
|
Rewrite (N,
|
3348 |
|
|
Make_Attribute_Reference (Loc,
|
3349 |
|
|
Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
|
3350 |
|
|
Attribute_Name => Name_Output,
|
3351 |
|
|
Expressions => New_List (
|
3352 |
|
|
Relocate_Node (First (Exprs)),
|
3353 |
|
|
Make_Function_Call (Loc,
|
3354 |
|
|
Name => New_Occurrence_Of (Wfunc, Loc),
|
3355 |
|
|
Parameter_Associations => New_List (
|
3356 |
|
|
OK_Convert_To (Etype (First_Formal (Wfunc)),
|
3357 |
|
|
Relocate_Node (Next (First (Exprs)))))))));
|
3358 |
|
|
|
3359 |
|
|
Analyze (N);
|
3360 |
|
|
return;
|
3361 |
|
|
|
3362 |
|
|
-- For elementary types, we call the W_xxx routine directly.
|
3363 |
|
|
-- Note that the effect of Write and Output is identical for
|
3364 |
|
|
-- the case of an elementary type, since there are no
|
3365 |
|
|
-- discriminants or bounds.
|
3366 |
|
|
|
3367 |
|
|
elsif Is_Elementary_Type (U_Type) then
|
3368 |
|
|
|
3369 |
|
|
-- A special case arises if we have a defined _Write routine,
|
3370 |
|
|
-- since in this case we are required to call this routine.
|
3371 |
|
|
|
3372 |
|
|
if Present (TSS (Base_Type (U_Type), TSS_Stream_Write)) then
|
3373 |
|
|
Build_Record_Or_Elementary_Output_Procedure
|
3374 |
|
|
(Loc, U_Type, Decl, Pname);
|
3375 |
|
|
Insert_Action (N, Decl);
|
3376 |
|
|
|
3377 |
|
|
-- For normal cases, we call the W_xxx routine directly
|
3378 |
|
|
|
3379 |
|
|
else
|
3380 |
|
|
Rewrite (N, Build_Elementary_Write_Call (N));
|
3381 |
|
|
Analyze (N);
|
3382 |
|
|
return;
|
3383 |
|
|
end if;
|
3384 |
|
|
|
3385 |
|
|
-- Array type case
|
3386 |
|
|
|
3387 |
|
|
elsif Is_Array_Type (U_Type) then
|
3388 |
|
|
Build_Array_Output_Procedure (Loc, U_Type, Decl, Pname);
|
3389 |
|
|
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
|
3390 |
|
|
|
3391 |
|
|
-- Class-wide case, first output external tag, then dispatch
|
3392 |
|
|
-- to the appropriate primitive Output function (RM 13.13.2(31)).
|
3393 |
|
|
|
3394 |
|
|
elsif Is_Class_Wide_Type (P_Type) then
|
3395 |
|
|
|
3396 |
|
|
-- No need to do anything else compiling under restriction
|
3397 |
|
|
-- No_Dispatching_Calls. During the semantic analysis we
|
3398 |
|
|
-- already notified such violation.
|
3399 |
|
|
|
3400 |
|
|
if Restriction_Active (No_Dispatching_Calls) then
|
3401 |
|
|
return;
|
3402 |
|
|
end if;
|
3403 |
|
|
|
3404 |
|
|
Tag_Write : declare
|
3405 |
|
|
Strm : constant Node_Id := First (Exprs);
|
3406 |
|
|
Item : constant Node_Id := Next (Strm);
|
3407 |
|
|
|
3408 |
|
|
begin
|
3409 |
|
|
-- Ada 2005 (AI-344): Check that the accessibility level
|
3410 |
|
|
-- of the type of the output object is not deeper than
|
3411 |
|
|
-- that of the attribute's prefix type.
|
3412 |
|
|
|
3413 |
|
|
-- if Get_Access_Level (Item'Tag)
|
3414 |
|
|
-- /= Get_Access_Level (P_Type'Tag)
|
3415 |
|
|
-- then
|
3416 |
|
|
-- raise Tag_Error;
|
3417 |
|
|
-- end if;
|
3418 |
|
|
|
3419 |
|
|
-- String'Output (Strm, External_Tag (Item'Tag));
|
3420 |
|
|
|
3421 |
|
|
-- We cannot figure out a practical way to implement this
|
3422 |
|
|
-- accessibility check on virtual machines, so we omit it.
|
3423 |
|
|
|
3424 |
|
|
if Ada_Version >= Ada_2005
|
3425 |
|
|
and then Tagged_Type_Expansion
|
3426 |
|
|
then
|
3427 |
|
|
Insert_Action (N,
|
3428 |
|
|
Make_Implicit_If_Statement (N,
|
3429 |
|
|
Condition =>
|
3430 |
|
|
Make_Op_Ne (Loc,
|
3431 |
|
|
Left_Opnd =>
|
3432 |
|
|
Build_Get_Access_Level (Loc,
|
3433 |
|
|
Make_Attribute_Reference (Loc,
|
3434 |
|
|
Prefix =>
|
3435 |
|
|
Relocate_Node (
|
3436 |
|
|
Duplicate_Subexpr (Item,
|
3437 |
|
|
Name_Req => True)),
|
3438 |
|
|
Attribute_Name => Name_Tag)),
|
3439 |
|
|
|
3440 |
|
|
Right_Opnd =>
|
3441 |
|
|
Make_Integer_Literal (Loc,
|
3442 |
|
|
Type_Access_Level (P_Type))),
|
3443 |
|
|
|
3444 |
|
|
Then_Statements =>
|
3445 |
|
|
New_List (Make_Raise_Statement (Loc,
|
3446 |
|
|
New_Occurrence_Of (
|
3447 |
|
|
RTE (RE_Tag_Error), Loc)))));
|
3448 |
|
|
end if;
|
3449 |
|
|
|
3450 |
|
|
Insert_Action (N,
|
3451 |
|
|
Make_Attribute_Reference (Loc,
|
3452 |
|
|
Prefix => New_Occurrence_Of (Standard_String, Loc),
|
3453 |
|
|
Attribute_Name => Name_Output,
|
3454 |
|
|
Expressions => New_List (
|
3455 |
|
|
Relocate_Node (Duplicate_Subexpr (Strm)),
|
3456 |
|
|
Make_Function_Call (Loc,
|
3457 |
|
|
Name =>
|
3458 |
|
|
New_Occurrence_Of (RTE (RE_External_Tag), Loc),
|
3459 |
|
|
Parameter_Associations => New_List (
|
3460 |
|
|
Make_Attribute_Reference (Loc,
|
3461 |
|
|
Prefix =>
|
3462 |
|
|
Relocate_Node
|
3463 |
|
|
(Duplicate_Subexpr (Item, Name_Req => True)),
|
3464 |
|
|
Attribute_Name => Name_Tag))))));
|
3465 |
|
|
end Tag_Write;
|
3466 |
|
|
|
3467 |
|
|
Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
|
3468 |
|
|
|
3469 |
|
|
-- Tagged type case, use the primitive Output function
|
3470 |
|
|
|
3471 |
|
|
elsif Is_Tagged_Type (U_Type) then
|
3472 |
|
|
Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
|
3473 |
|
|
|
3474 |
|
|
-- All other record type cases, including protected records.
|
3475 |
|
|
-- The latter only arise for expander generated code for
|
3476 |
|
|
-- handling shared passive partition access.
|
3477 |
|
|
|
3478 |
|
|
else
|
3479 |
|
|
pragma Assert
|
3480 |
|
|
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
|
3481 |
|
|
|
3482 |
|
|
-- Ada 2005 (AI-216): Program_Error is raised when executing
|
3483 |
|
|
-- the default implementation of the Output attribute of an
|
3484 |
|
|
-- unchecked union type if the type lacks default discriminant
|
3485 |
|
|
-- values.
|
3486 |
|
|
|
3487 |
|
|
if Is_Unchecked_Union (Base_Type (U_Type))
|
3488 |
|
|
and then No (Discriminant_Constraint (U_Type))
|
3489 |
|
|
then
|
3490 |
|
|
Insert_Action (N,
|
3491 |
|
|
Make_Raise_Program_Error (Loc,
|
3492 |
|
|
Reason => PE_Unchecked_Union_Restriction));
|
3493 |
|
|
|
3494 |
|
|
return;
|
3495 |
|
|
end if;
|
3496 |
|
|
|
3497 |
|
|
Build_Record_Or_Elementary_Output_Procedure
|
3498 |
|
|
(Loc, Base_Type (U_Type), Decl, Pname);
|
3499 |
|
|
Insert_Action (N, Decl);
|
3500 |
|
|
end if;
|
3501 |
|
|
end if;
|
3502 |
|
|
|
3503 |
|
|
-- If we fall through, Pname is the name of the procedure to call
|
3504 |
|
|
|
3505 |
|
|
Rewrite_Stream_Proc_Call (Pname);
|
3506 |
|
|
end Output;
|
3507 |
|
|
|
3508 |
|
|
---------
|
3509 |
|
|
-- Pos --
|
3510 |
|
|
---------
|
3511 |
|
|
|
3512 |
|
|
-- For enumeration types with a standard representation, Pos is
|
3513 |
|
|
-- handled by the back end.
|
3514 |
|
|
|
3515 |
|
|
-- For enumeration types, with a non-standard representation we generate
|
3516 |
|
|
-- a call to the _Rep_To_Pos function created when the type was frozen.
|
3517 |
|
|
-- The call has the form
|
3518 |
|
|
|
3519 |
|
|
-- _rep_to_pos (expr, flag)
|
3520 |
|
|
|
3521 |
|
|
-- The parameter flag is True if range checks are enabled, causing
|
3522 |
|
|
-- Program_Error to be raised if the expression has an invalid
|
3523 |
|
|
-- representation, and False if range checks are suppressed.
|
3524 |
|
|
|
3525 |
|
|
-- For integer types, Pos is equivalent to a simple integer
|
3526 |
|
|
-- conversion and we rewrite it as such
|
3527 |
|
|
|
3528 |
|
|
when Attribute_Pos => Pos :
|
3529 |
|
|
declare
|
3530 |
|
|
Etyp : Entity_Id := Base_Type (Entity (Pref));
|
3531 |
|
|
|
3532 |
|
|
begin
|
3533 |
|
|
-- Deal with zero/non-zero boolean values
|
3534 |
|
|
|
3535 |
|
|
if Is_Boolean_Type (Etyp) then
|
3536 |
|
|
Adjust_Condition (First (Exprs));
|
3537 |
|
|
Etyp := Standard_Boolean;
|
3538 |
|
|
Set_Prefix (N, New_Occurrence_Of (Standard_Boolean, Loc));
|
3539 |
|
|
end if;
|
3540 |
|
|
|
3541 |
|
|
-- Case of enumeration type
|
3542 |
|
|
|
3543 |
|
|
if Is_Enumeration_Type (Etyp) then
|
3544 |
|
|
|
3545 |
|
|
-- Non-standard enumeration type (generate call)
|
3546 |
|
|
|
3547 |
|
|
if Present (Enum_Pos_To_Rep (Etyp)) then
|
3548 |
|
|
Append_To (Exprs, Rep_To_Pos_Flag (Etyp, Loc));
|
3549 |
|
|
Rewrite (N,
|
3550 |
|
|
Convert_To (Typ,
|
3551 |
|
|
Make_Function_Call (Loc,
|
3552 |
|
|
Name =>
|
3553 |
|
|
New_Reference_To (TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
3554 |
|
|
Parameter_Associations => Exprs)));
|
3555 |
|
|
|
3556 |
|
|
Analyze_And_Resolve (N, Typ);
|
3557 |
|
|
|
3558 |
|
|
-- Standard enumeration type (do universal integer check)
|
3559 |
|
|
|
3560 |
|
|
else
|
3561 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
3562 |
|
|
end if;
|
3563 |
|
|
|
3564 |
|
|
-- Deal with integer types (replace by conversion)
|
3565 |
|
|
|
3566 |
|
|
elsif Is_Integer_Type (Etyp) then
|
3567 |
|
|
Rewrite (N, Convert_To (Typ, First (Exprs)));
|
3568 |
|
|
Analyze_And_Resolve (N, Typ);
|
3569 |
|
|
end if;
|
3570 |
|
|
|
3571 |
|
|
end Pos;
|
3572 |
|
|
|
3573 |
|
|
--------------
|
3574 |
|
|
-- Position --
|
3575 |
|
|
--------------
|
3576 |
|
|
|
3577 |
|
|
-- We compute this if a component clause was present, otherwise we leave
|
3578 |
|
|
-- the computation up to the back end, since we don't know what layout
|
3579 |
|
|
-- will be chosen.
|
3580 |
|
|
|
3581 |
|
|
when Attribute_Position => Position_Attr :
|
3582 |
|
|
declare
|
3583 |
|
|
CE : constant Entity_Id := Entity (Selector_Name (Pref));
|
3584 |
|
|
|
3585 |
|
|
begin
|
3586 |
|
|
if Present (Component_Clause (CE)) then
|
3587 |
|
|
|
3588 |
|
|
-- In Ada 2005 (or later) if we have the standard nondefault
|
3589 |
|
|
-- bit order, then we return the original value as given in
|
3590 |
|
|
-- the component clause (RM 2005 13.5.2(2/2)).
|
3591 |
|
|
|
3592 |
|
|
if Ada_Version >= Ada_2005
|
3593 |
|
|
and then not Reverse_Bit_Order (Scope (CE))
|
3594 |
|
|
then
|
3595 |
|
|
Rewrite (N,
|
3596 |
|
|
Make_Integer_Literal (Loc,
|
3597 |
|
|
Intval => Expr_Value (Position (Component_Clause (CE)))));
|
3598 |
|
|
|
3599 |
|
|
-- Otherwise (Ada 83 or 95, or reverse bit order specified in
|
3600 |
|
|
-- later Ada version), return the normalized value.
|
3601 |
|
|
|
3602 |
|
|
else
|
3603 |
|
|
Rewrite (N,
|
3604 |
|
|
Make_Integer_Literal (Loc,
|
3605 |
|
|
Intval => Component_Bit_Offset (CE) / System_Storage_Unit));
|
3606 |
|
|
end if;
|
3607 |
|
|
|
3608 |
|
|
Analyze_And_Resolve (N, Typ);
|
3609 |
|
|
|
3610 |
|
|
-- If back end is doing things, just apply universal integer checks
|
3611 |
|
|
|
3612 |
|
|
else
|
3613 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
3614 |
|
|
end if;
|
3615 |
|
|
end Position_Attr;
|
3616 |
|
|
|
3617 |
|
|
----------
|
3618 |
|
|
-- Pred --
|
3619 |
|
|
----------
|
3620 |
|
|
|
3621 |
|
|
-- 1. Deal with enumeration types with holes
|
3622 |
|
|
-- 2. For floating-point, generate call to attribute function
|
3623 |
|
|
-- 3. For other cases, deal with constraint checking
|
3624 |
|
|
|
3625 |
|
|
when Attribute_Pred => Pred :
|
3626 |
|
|
declare
|
3627 |
|
|
Etyp : constant Entity_Id := Base_Type (Ptyp);
|
3628 |
|
|
|
3629 |
|
|
begin
|
3630 |
|
|
|
3631 |
|
|
-- For enumeration types with non-standard representations, we
|
3632 |
|
|
-- expand typ'Pred (x) into
|
3633 |
|
|
|
3634 |
|
|
-- Pos_To_Rep (Rep_To_Pos (x) - 1)
|
3635 |
|
|
|
3636 |
|
|
-- If the representation is contiguous, we compute instead
|
3637 |
|
|
-- Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
|
3638 |
|
|
-- The conversion function Enum_Pos_To_Rep is defined on the
|
3639 |
|
|
-- base type, not the subtype, so we have to use the base type
|
3640 |
|
|
-- explicitly for this and other enumeration attributes.
|
3641 |
|
|
|
3642 |
|
|
if Is_Enumeration_Type (Ptyp)
|
3643 |
|
|
and then Present (Enum_Pos_To_Rep (Etyp))
|
3644 |
|
|
then
|
3645 |
|
|
if Has_Contiguous_Rep (Etyp) then
|
3646 |
|
|
Rewrite (N,
|
3647 |
|
|
Unchecked_Convert_To (Ptyp,
|
3648 |
|
|
Make_Op_Add (Loc,
|
3649 |
|
|
Left_Opnd =>
|
3650 |
|
|
Make_Integer_Literal (Loc,
|
3651 |
|
|
Enumeration_Rep (First_Literal (Ptyp))),
|
3652 |
|
|
Right_Opnd =>
|
3653 |
|
|
Make_Function_Call (Loc,
|
3654 |
|
|
Name =>
|
3655 |
|
|
New_Reference_To
|
3656 |
|
|
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
3657 |
|
|
|
3658 |
|
|
Parameter_Associations =>
|
3659 |
|
|
New_List (
|
3660 |
|
|
Unchecked_Convert_To (Ptyp,
|
3661 |
|
|
Make_Op_Subtract (Loc,
|
3662 |
|
|
Left_Opnd =>
|
3663 |
|
|
Unchecked_Convert_To (Standard_Integer,
|
3664 |
|
|
Relocate_Node (First (Exprs))),
|
3665 |
|
|
Right_Opnd =>
|
3666 |
|
|
Make_Integer_Literal (Loc, 1))),
|
3667 |
|
|
Rep_To_Pos_Flag (Ptyp, Loc))))));
|
3668 |
|
|
|
3669 |
|
|
else
|
3670 |
|
|
-- Add Boolean parameter True, to request program errror if
|
3671 |
|
|
-- we have a bad representation on our hands. If checks are
|
3672 |
|
|
-- suppressed, then add False instead
|
3673 |
|
|
|
3674 |
|
|
Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
|
3675 |
|
|
Rewrite (N,
|
3676 |
|
|
Make_Indexed_Component (Loc,
|
3677 |
|
|
Prefix =>
|
3678 |
|
|
New_Reference_To
|
3679 |
|
|
(Enum_Pos_To_Rep (Etyp), Loc),
|
3680 |
|
|
Expressions => New_List (
|
3681 |
|
|
Make_Op_Subtract (Loc,
|
3682 |
|
|
Left_Opnd =>
|
3683 |
|
|
Make_Function_Call (Loc,
|
3684 |
|
|
Name =>
|
3685 |
|
|
New_Reference_To
|
3686 |
|
|
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
3687 |
|
|
Parameter_Associations => Exprs),
|
3688 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
|
3689 |
|
|
end if;
|
3690 |
|
|
|
3691 |
|
|
Analyze_And_Resolve (N, Typ);
|
3692 |
|
|
|
3693 |
|
|
-- For floating-point, we transform 'Pred into a call to the Pred
|
3694 |
|
|
-- floating-point attribute function in Fat_xxx (xxx is root type)
|
3695 |
|
|
|
3696 |
|
|
elsif Is_Floating_Point_Type (Ptyp) then
|
3697 |
|
|
Expand_Fpt_Attribute_R (N);
|
3698 |
|
|
Analyze_And_Resolve (N, Typ);
|
3699 |
|
|
|
3700 |
|
|
-- For modular types, nothing to do (no overflow, since wraps)
|
3701 |
|
|
|
3702 |
|
|
elsif Is_Modular_Integer_Type (Ptyp) then
|
3703 |
|
|
null;
|
3704 |
|
|
|
3705 |
|
|
-- For other types, if argument is marked as needing a range check or
|
3706 |
|
|
-- overflow checking is enabled, we must generate a check.
|
3707 |
|
|
|
3708 |
|
|
elsif not Overflow_Checks_Suppressed (Ptyp)
|
3709 |
|
|
or else Do_Range_Check (First (Exprs))
|
3710 |
|
|
then
|
3711 |
|
|
Set_Do_Range_Check (First (Exprs), False);
|
3712 |
|
|
Expand_Pred_Succ (N);
|
3713 |
|
|
end if;
|
3714 |
|
|
end Pred;
|
3715 |
|
|
|
3716 |
|
|
--------------
|
3717 |
|
|
-- Priority --
|
3718 |
|
|
--------------
|
3719 |
|
|
|
3720 |
|
|
-- Ada 2005 (AI-327): Dynamic ceiling priorities
|
3721 |
|
|
|
3722 |
|
|
-- We rewrite X'Priority as the following run-time call:
|
3723 |
|
|
|
3724 |
|
|
-- Get_Ceiling (X._Object)
|
3725 |
|
|
|
3726 |
|
|
-- Note that although X'Priority is notionally an object, it is quite
|
3727 |
|
|
-- deliberately not defined as an aliased object in the RM. This means
|
3728 |
|
|
-- that it works fine to rewrite it as a call, without having to worry
|
3729 |
|
|
-- about complications that would other arise from X'Priority'Access,
|
3730 |
|
|
-- which is illegal, because of the lack of aliasing.
|
3731 |
|
|
|
3732 |
|
|
when Attribute_Priority =>
|
3733 |
|
|
declare
|
3734 |
|
|
Call : Node_Id;
|
3735 |
|
|
Conctyp : Entity_Id;
|
3736 |
|
|
Object_Parm : Node_Id;
|
3737 |
|
|
Subprg : Entity_Id;
|
3738 |
|
|
RT_Subprg_Name : Node_Id;
|
3739 |
|
|
|
3740 |
|
|
begin
|
3741 |
|
|
-- Look for the enclosing concurrent type
|
3742 |
|
|
|
3743 |
|
|
Conctyp := Current_Scope;
|
3744 |
|
|
while not Is_Concurrent_Type (Conctyp) loop
|
3745 |
|
|
Conctyp := Scope (Conctyp);
|
3746 |
|
|
end loop;
|
3747 |
|
|
|
3748 |
|
|
pragma Assert (Is_Protected_Type (Conctyp));
|
3749 |
|
|
|
3750 |
|
|
-- Generate the actual of the call
|
3751 |
|
|
|
3752 |
|
|
Subprg := Current_Scope;
|
3753 |
|
|
while not Present (Protected_Body_Subprogram (Subprg)) loop
|
3754 |
|
|
Subprg := Scope (Subprg);
|
3755 |
|
|
end loop;
|
3756 |
|
|
|
3757 |
|
|
-- Use of 'Priority inside protected entries and barriers (in
|
3758 |
|
|
-- both cases the type of the first formal of their expanded
|
3759 |
|
|
-- subprogram is Address)
|
3760 |
|
|
|
3761 |
|
|
if Etype (First_Entity (Protected_Body_Subprogram (Subprg)))
|
3762 |
|
|
= RTE (RE_Address)
|
3763 |
|
|
then
|
3764 |
|
|
declare
|
3765 |
|
|
New_Itype : Entity_Id;
|
3766 |
|
|
|
3767 |
|
|
begin
|
3768 |
|
|
-- In the expansion of protected entries the type of the
|
3769 |
|
|
-- first formal of the Protected_Body_Subprogram is an
|
3770 |
|
|
-- Address. In order to reference the _object component
|
3771 |
|
|
-- we generate:
|
3772 |
|
|
|
3773 |
|
|
-- type T is access p__ptTV;
|
3774 |
|
|
-- freeze T []
|
3775 |
|
|
|
3776 |
|
|
New_Itype := Create_Itype (E_Access_Type, N);
|
3777 |
|
|
Set_Etype (New_Itype, New_Itype);
|
3778 |
|
|
Set_Directly_Designated_Type (New_Itype,
|
3779 |
|
|
Corresponding_Record_Type (Conctyp));
|
3780 |
|
|
Freeze_Itype (New_Itype, N);
|
3781 |
|
|
|
3782 |
|
|
-- Generate:
|
3783 |
|
|
-- T!(O)._object'unchecked_access
|
3784 |
|
|
|
3785 |
|
|
Object_Parm :=
|
3786 |
|
|
Make_Attribute_Reference (Loc,
|
3787 |
|
|
Prefix =>
|
3788 |
|
|
Make_Selected_Component (Loc,
|
3789 |
|
|
Prefix =>
|
3790 |
|
|
Unchecked_Convert_To (New_Itype,
|
3791 |
|
|
New_Reference_To
|
3792 |
|
|
(First_Entity
|
3793 |
|
|
(Protected_Body_Subprogram (Subprg)),
|
3794 |
|
|
Loc)),
|
3795 |
|
|
Selector_Name =>
|
3796 |
|
|
Make_Identifier (Loc, Name_uObject)),
|
3797 |
|
|
Attribute_Name => Name_Unchecked_Access);
|
3798 |
|
|
end;
|
3799 |
|
|
|
3800 |
|
|
-- Use of 'Priority inside a protected subprogram
|
3801 |
|
|
|
3802 |
|
|
else
|
3803 |
|
|
Object_Parm :=
|
3804 |
|
|
Make_Attribute_Reference (Loc,
|
3805 |
|
|
Prefix =>
|
3806 |
|
|
Make_Selected_Component (Loc,
|
3807 |
|
|
Prefix => New_Reference_To
|
3808 |
|
|
(First_Entity
|
3809 |
|
|
(Protected_Body_Subprogram (Subprg)),
|
3810 |
|
|
Loc),
|
3811 |
|
|
Selector_Name => Make_Identifier (Loc, Name_uObject)),
|
3812 |
|
|
Attribute_Name => Name_Unchecked_Access);
|
3813 |
|
|
end if;
|
3814 |
|
|
|
3815 |
|
|
-- Select the appropriate run-time subprogram
|
3816 |
|
|
|
3817 |
|
|
if Number_Entries (Conctyp) = 0 then
|
3818 |
|
|
RT_Subprg_Name :=
|
3819 |
|
|
New_Reference_To (RTE (RE_Get_Ceiling), Loc);
|
3820 |
|
|
else
|
3821 |
|
|
RT_Subprg_Name :=
|
3822 |
|
|
New_Reference_To (RTE (RO_PE_Get_Ceiling), Loc);
|
3823 |
|
|
end if;
|
3824 |
|
|
|
3825 |
|
|
Call :=
|
3826 |
|
|
Make_Function_Call (Loc,
|
3827 |
|
|
Name => RT_Subprg_Name,
|
3828 |
|
|
Parameter_Associations => New_List (Object_Parm));
|
3829 |
|
|
|
3830 |
|
|
Rewrite (N, Call);
|
3831 |
|
|
|
3832 |
|
|
-- Avoid the generation of extra checks on the pointer to the
|
3833 |
|
|
-- protected object.
|
3834 |
|
|
|
3835 |
|
|
Analyze_And_Resolve (N, Typ, Suppress => Access_Check);
|
3836 |
|
|
end;
|
3837 |
|
|
|
3838 |
|
|
------------------
|
3839 |
|
|
-- Range_Length --
|
3840 |
|
|
------------------
|
3841 |
|
|
|
3842 |
|
|
when Attribute_Range_Length => Range_Length : begin
|
3843 |
|
|
|
3844 |
|
|
-- The only special processing required is for the case where
|
3845 |
|
|
-- Range_Length is applied to an enumeration type with holes.
|
3846 |
|
|
-- In this case we transform
|
3847 |
|
|
|
3848 |
|
|
-- X'Range_Length
|
3849 |
|
|
|
3850 |
|
|
-- to
|
3851 |
|
|
|
3852 |
|
|
-- X'Pos (X'Last) - X'Pos (X'First) + 1
|
3853 |
|
|
|
3854 |
|
|
-- So that the result reflects the proper Pos values instead
|
3855 |
|
|
-- of the underlying representations.
|
3856 |
|
|
|
3857 |
|
|
if Is_Enumeration_Type (Ptyp)
|
3858 |
|
|
and then Has_Non_Standard_Rep (Ptyp)
|
3859 |
|
|
then
|
3860 |
|
|
Rewrite (N,
|
3861 |
|
|
Make_Op_Add (Loc,
|
3862 |
|
|
Left_Opnd =>
|
3863 |
|
|
Make_Op_Subtract (Loc,
|
3864 |
|
|
Left_Opnd =>
|
3865 |
|
|
Make_Attribute_Reference (Loc,
|
3866 |
|
|
Attribute_Name => Name_Pos,
|
3867 |
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
3868 |
|
|
Expressions => New_List (
|
3869 |
|
|
Make_Attribute_Reference (Loc,
|
3870 |
|
|
Attribute_Name => Name_Last,
|
3871 |
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc)))),
|
3872 |
|
|
|
3873 |
|
|
Right_Opnd =>
|
3874 |
|
|
Make_Attribute_Reference (Loc,
|
3875 |
|
|
Attribute_Name => Name_Pos,
|
3876 |
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
3877 |
|
|
Expressions => New_List (
|
3878 |
|
|
Make_Attribute_Reference (Loc,
|
3879 |
|
|
Attribute_Name => Name_First,
|
3880 |
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc))))),
|
3881 |
|
|
|
3882 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)));
|
3883 |
|
|
|
3884 |
|
|
Analyze_And_Resolve (N, Typ);
|
3885 |
|
|
|
3886 |
|
|
-- For all other cases, the attribute is handled by the back end, but
|
3887 |
|
|
-- we need to deal with the case of the range check on a universal
|
3888 |
|
|
-- integer.
|
3889 |
|
|
|
3890 |
|
|
else
|
3891 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
3892 |
|
|
end if;
|
3893 |
|
|
end Range_Length;
|
3894 |
|
|
|
3895 |
|
|
----------
|
3896 |
|
|
-- Read --
|
3897 |
|
|
----------
|
3898 |
|
|
|
3899 |
|
|
when Attribute_Read => Read : declare
|
3900 |
|
|
P_Type : constant Entity_Id := Entity (Pref);
|
3901 |
|
|
B_Type : constant Entity_Id := Base_Type (P_Type);
|
3902 |
|
|
U_Type : constant Entity_Id := Underlying_Type (P_Type);
|
3903 |
|
|
Pname : Entity_Id;
|
3904 |
|
|
Decl : Node_Id;
|
3905 |
|
|
Prag : Node_Id;
|
3906 |
|
|
Arg2 : Node_Id;
|
3907 |
|
|
Rfunc : Node_Id;
|
3908 |
|
|
Lhs : Node_Id;
|
3909 |
|
|
Rhs : Node_Id;
|
3910 |
|
|
|
3911 |
|
|
begin
|
3912 |
|
|
-- If no underlying type, we have an error that will be diagnosed
|
3913 |
|
|
-- elsewhere, so here we just completely ignore the expansion.
|
3914 |
|
|
|
3915 |
|
|
if No (U_Type) then
|
3916 |
|
|
return;
|
3917 |
|
|
end if;
|
3918 |
|
|
|
3919 |
|
|
-- The simple case, if there is a TSS for Read, just call it
|
3920 |
|
|
|
3921 |
|
|
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Read);
|
3922 |
|
|
|
3923 |
|
|
if Present (Pname) then
|
3924 |
|
|
null;
|
3925 |
|
|
|
3926 |
|
|
else
|
3927 |
|
|
-- If there is a Stream_Convert pragma, use it, we rewrite
|
3928 |
|
|
|
3929 |
|
|
-- sourcetyp'Read (stream, Item)
|
3930 |
|
|
|
3931 |
|
|
-- as
|
3932 |
|
|
|
3933 |
|
|
-- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
|
3934 |
|
|
|
3935 |
|
|
-- where strmread is the given Read function that converts an
|
3936 |
|
|
-- argument of type strmtyp to type sourcetyp or a type from which
|
3937 |
|
|
-- it is derived. The conversion to sourcetyp is required in the
|
3938 |
|
|
-- latter case.
|
3939 |
|
|
|
3940 |
|
|
-- A special case arises if Item is a type conversion in which
|
3941 |
|
|
-- case, we have to expand to:
|
3942 |
|
|
|
3943 |
|
|
-- Itemx := typex (strmread (strmtyp'Input (Stream)));
|
3944 |
|
|
|
3945 |
|
|
-- where Itemx is the expression of the type conversion (i.e.
|
3946 |
|
|
-- the actual object), and typex is the type of Itemx.
|
3947 |
|
|
|
3948 |
|
|
Prag := Get_Stream_Convert_Pragma (P_Type);
|
3949 |
|
|
|
3950 |
|
|
if Present (Prag) then
|
3951 |
|
|
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
|
3952 |
|
|
Rfunc := Entity (Expression (Arg2));
|
3953 |
|
|
Lhs := Relocate_Node (Next (First (Exprs)));
|
3954 |
|
|
Rhs :=
|
3955 |
|
|
OK_Convert_To (B_Type,
|
3956 |
|
|
Make_Function_Call (Loc,
|
3957 |
|
|
Name => New_Occurrence_Of (Rfunc, Loc),
|
3958 |
|
|
Parameter_Associations => New_List (
|
3959 |
|
|
Make_Attribute_Reference (Loc,
|
3960 |
|
|
Prefix =>
|
3961 |
|
|
New_Occurrence_Of
|
3962 |
|
|
(Etype (First_Formal (Rfunc)), Loc),
|
3963 |
|
|
Attribute_Name => Name_Input,
|
3964 |
|
|
Expressions => New_List (
|
3965 |
|
|
Relocate_Node (First (Exprs)))))));
|
3966 |
|
|
|
3967 |
|
|
if Nkind (Lhs) = N_Type_Conversion then
|
3968 |
|
|
Lhs := Expression (Lhs);
|
3969 |
|
|
Rhs := Convert_To (Etype (Lhs), Rhs);
|
3970 |
|
|
end if;
|
3971 |
|
|
|
3972 |
|
|
Rewrite (N,
|
3973 |
|
|
Make_Assignment_Statement (Loc,
|
3974 |
|
|
Name => Lhs,
|
3975 |
|
|
Expression => Rhs));
|
3976 |
|
|
Set_Assignment_OK (Lhs);
|
3977 |
|
|
Analyze (N);
|
3978 |
|
|
return;
|
3979 |
|
|
|
3980 |
|
|
-- For elementary types, we call the I_xxx routine using the first
|
3981 |
|
|
-- parameter and then assign the result into the second parameter.
|
3982 |
|
|
-- We set Assignment_OK to deal with the conversion case.
|
3983 |
|
|
|
3984 |
|
|
elsif Is_Elementary_Type (U_Type) then
|
3985 |
|
|
declare
|
3986 |
|
|
Lhs : Node_Id;
|
3987 |
|
|
Rhs : Node_Id;
|
3988 |
|
|
|
3989 |
|
|
begin
|
3990 |
|
|
Lhs := Relocate_Node (Next (First (Exprs)));
|
3991 |
|
|
Rhs := Build_Elementary_Input_Call (N);
|
3992 |
|
|
|
3993 |
|
|
if Nkind (Lhs) = N_Type_Conversion then
|
3994 |
|
|
Lhs := Expression (Lhs);
|
3995 |
|
|
Rhs := Convert_To (Etype (Lhs), Rhs);
|
3996 |
|
|
end if;
|
3997 |
|
|
|
3998 |
|
|
Set_Assignment_OK (Lhs);
|
3999 |
|
|
|
4000 |
|
|
Rewrite (N,
|
4001 |
|
|
Make_Assignment_Statement (Loc,
|
4002 |
|
|
Name => Lhs,
|
4003 |
|
|
Expression => Rhs));
|
4004 |
|
|
|
4005 |
|
|
Analyze (N);
|
4006 |
|
|
return;
|
4007 |
|
|
end;
|
4008 |
|
|
|
4009 |
|
|
-- Array type case
|
4010 |
|
|
|
4011 |
|
|
elsif Is_Array_Type (U_Type) then
|
4012 |
|
|
Build_Array_Read_Procedure (N, U_Type, Decl, Pname);
|
4013 |
|
|
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
|
4014 |
|
|
|
4015 |
|
|
-- Tagged type case, use the primitive Read function. Note that
|
4016 |
|
|
-- this will dispatch in the class-wide case which is what we want
|
4017 |
|
|
|
4018 |
|
|
elsif Is_Tagged_Type (U_Type) then
|
4019 |
|
|
Pname := Find_Prim_Op (U_Type, TSS_Stream_Read);
|
4020 |
|
|
|
4021 |
|
|
-- All other record type cases, including protected records. The
|
4022 |
|
|
-- latter only arise for expander generated code for handling
|
4023 |
|
|
-- shared passive partition access.
|
4024 |
|
|
|
4025 |
|
|
else
|
4026 |
|
|
pragma Assert
|
4027 |
|
|
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
|
4028 |
|
|
|
4029 |
|
|
-- Ada 2005 (AI-216): Program_Error is raised when executing
|
4030 |
|
|
-- the default implementation of the Read attribute of an
|
4031 |
|
|
-- Unchecked_Union type.
|
4032 |
|
|
|
4033 |
|
|
if Is_Unchecked_Union (Base_Type (U_Type)) then
|
4034 |
|
|
Insert_Action (N,
|
4035 |
|
|
Make_Raise_Program_Error (Loc,
|
4036 |
|
|
Reason => PE_Unchecked_Union_Restriction));
|
4037 |
|
|
end if;
|
4038 |
|
|
|
4039 |
|
|
if Has_Discriminants (U_Type)
|
4040 |
|
|
and then Present
|
4041 |
|
|
(Discriminant_Default_Value (First_Discriminant (U_Type)))
|
4042 |
|
|
then
|
4043 |
|
|
Build_Mutable_Record_Read_Procedure
|
4044 |
|
|
(Loc, Full_Base (U_Type), Decl, Pname);
|
4045 |
|
|
else
|
4046 |
|
|
Build_Record_Read_Procedure
|
4047 |
|
|
(Loc, Full_Base (U_Type), Decl, Pname);
|
4048 |
|
|
end if;
|
4049 |
|
|
|
4050 |
|
|
-- Suppress checks, uninitialized or otherwise invalid
|
4051 |
|
|
-- data does not cause constraint errors to be raised for
|
4052 |
|
|
-- a complete record read.
|
4053 |
|
|
|
4054 |
|
|
Insert_Action (N, Decl, All_Checks);
|
4055 |
|
|
end if;
|
4056 |
|
|
end if;
|
4057 |
|
|
|
4058 |
|
|
Rewrite_Stream_Proc_Call (Pname);
|
4059 |
|
|
end Read;
|
4060 |
|
|
|
4061 |
|
|
---------
|
4062 |
|
|
-- Ref --
|
4063 |
|
|
---------
|
4064 |
|
|
|
4065 |
|
|
-- Ref is identical to To_Address, see To_Address for processing
|
4066 |
|
|
|
4067 |
|
|
---------------
|
4068 |
|
|
-- Remainder --
|
4069 |
|
|
---------------
|
4070 |
|
|
|
4071 |
|
|
-- Transforms 'Remainder into a call to the floating-point attribute
|
4072 |
|
|
-- function Remainder in Fat_xxx (where xxx is the root type)
|
4073 |
|
|
|
4074 |
|
|
when Attribute_Remainder =>
|
4075 |
|
|
Expand_Fpt_Attribute_RR (N);
|
4076 |
|
|
|
4077 |
|
|
------------
|
4078 |
|
|
-- Result --
|
4079 |
|
|
------------
|
4080 |
|
|
|
4081 |
|
|
-- Transform 'Result into reference to _Result formal. At the point
|
4082 |
|
|
-- where a legal 'Result attribute is expanded, we know that we are in
|
4083 |
|
|
-- the context of a _Postcondition function with a _Result parameter.
|
4084 |
|
|
|
4085 |
|
|
when Attribute_Result =>
|
4086 |
|
|
Rewrite (N, Make_Identifier (Loc, Chars => Name_uResult));
|
4087 |
|
|
Analyze_And_Resolve (N, Typ);
|
4088 |
|
|
|
4089 |
|
|
-----------
|
4090 |
|
|
-- Round --
|
4091 |
|
|
-----------
|
4092 |
|
|
|
4093 |
|
|
-- The handling of the Round attribute is quite delicate. The processing
|
4094 |
|
|
-- in Sem_Attr introduced a conversion to universal real, reflecting the
|
4095 |
|
|
-- semantics of Round, but we do not want anything to do with universal
|
4096 |
|
|
-- real at runtime, since this corresponds to using floating-point
|
4097 |
|
|
-- arithmetic.
|
4098 |
|
|
|
4099 |
|
|
-- What we have now is that the Etype of the Round attribute correctly
|
4100 |
|
|
-- indicates the final result type. The operand of the Round is the
|
4101 |
|
|
-- conversion to universal real, described above, and the operand of
|
4102 |
|
|
-- this conversion is the actual operand of Round, which may be the
|
4103 |
|
|
-- special case of a fixed point multiplication or division (Etype =
|
4104 |
|
|
-- universal fixed)
|
4105 |
|
|
|
4106 |
|
|
-- The exapander will expand first the operand of the conversion, then
|
4107 |
|
|
-- the conversion, and finally the round attribute itself, since we
|
4108 |
|
|
-- always work inside out. But we cannot simply process naively in this
|
4109 |
|
|
-- order. In the semantic world where universal fixed and real really
|
4110 |
|
|
-- exist and have infinite precision, there is no problem, but in the
|
4111 |
|
|
-- implementation world, where universal real is a floating-point type,
|
4112 |
|
|
-- we would get the wrong result.
|
4113 |
|
|
|
4114 |
|
|
-- So the approach is as follows. First, when expanding a multiply or
|
4115 |
|
|
-- divide whose type is universal fixed, we do nothing at all, instead
|
4116 |
|
|
-- deferring the operation till later.
|
4117 |
|
|
|
4118 |
|
|
-- The actual processing is done in Expand_N_Type_Conversion which
|
4119 |
|
|
-- handles the special case of Round by looking at its parent to see if
|
4120 |
|
|
-- it is a Round attribute, and if it is, handling the conversion (or
|
4121 |
|
|
-- its fixed multiply/divide child) in an appropriate manner.
|
4122 |
|
|
|
4123 |
|
|
-- This means that by the time we get to expanding the Round attribute
|
4124 |
|
|
-- itself, the Round is nothing more than a type conversion (and will
|
4125 |
|
|
-- often be a null type conversion), so we just replace it with the
|
4126 |
|
|
-- appropriate conversion operation.
|
4127 |
|
|
|
4128 |
|
|
when Attribute_Round =>
|
4129 |
|
|
Rewrite (N,
|
4130 |
|
|
Convert_To (Etype (N), Relocate_Node (First (Exprs))));
|
4131 |
|
|
Analyze_And_Resolve (N);
|
4132 |
|
|
|
4133 |
|
|
--------------
|
4134 |
|
|
-- Rounding --
|
4135 |
|
|
--------------
|
4136 |
|
|
|
4137 |
|
|
-- Transforms 'Rounding into a call to the floating-point attribute
|
4138 |
|
|
-- function Rounding in Fat_xxx (where xxx is the root type)
|
4139 |
|
|
|
4140 |
|
|
when Attribute_Rounding =>
|
4141 |
|
|
Expand_Fpt_Attribute_R (N);
|
4142 |
|
|
|
4143 |
|
|
------------------
|
4144 |
|
|
-- Same_Storage --
|
4145 |
|
|
------------------
|
4146 |
|
|
|
4147 |
|
|
when Attribute_Same_Storage => Same_Storage : declare
|
4148 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
4149 |
|
|
|
4150 |
|
|
X : constant Node_Id := Prefix (N);
|
4151 |
|
|
Y : constant Node_Id := First (Expressions (N));
|
4152 |
|
|
-- The arguments
|
4153 |
|
|
|
4154 |
|
|
X_Addr, Y_Addr : Node_Id;
|
4155 |
|
|
-- Rhe expressions for their addresses
|
4156 |
|
|
|
4157 |
|
|
X_Size, Y_Size : Node_Id;
|
4158 |
|
|
-- Rhe expressions for their sizes
|
4159 |
|
|
|
4160 |
|
|
begin
|
4161 |
|
|
-- The attribute is expanded as:
|
4162 |
|
|
|
4163 |
|
|
-- (X'address = Y'address)
|
4164 |
|
|
-- and then (X'Size = Y'Size)
|
4165 |
|
|
|
4166 |
|
|
-- If both arguments have the same Etype the second conjunct can be
|
4167 |
|
|
-- omitted.
|
4168 |
|
|
|
4169 |
|
|
X_Addr :=
|
4170 |
|
|
Make_Attribute_Reference (Loc,
|
4171 |
|
|
Attribute_Name => Name_Address,
|
4172 |
|
|
Prefix => New_Copy_Tree (X));
|
4173 |
|
|
|
4174 |
|
|
Y_Addr :=
|
4175 |
|
|
Make_Attribute_Reference (Loc,
|
4176 |
|
|
Attribute_Name => Name_Address,
|
4177 |
|
|
Prefix => New_Copy_Tree (Y));
|
4178 |
|
|
|
4179 |
|
|
X_Size :=
|
4180 |
|
|
Make_Attribute_Reference (Loc,
|
4181 |
|
|
Attribute_Name => Name_Size,
|
4182 |
|
|
Prefix => New_Copy_Tree (X));
|
4183 |
|
|
|
4184 |
|
|
Y_Size :=
|
4185 |
|
|
Make_Attribute_Reference (Loc,
|
4186 |
|
|
Attribute_Name => Name_Size,
|
4187 |
|
|
Prefix => New_Copy_Tree (Y));
|
4188 |
|
|
|
4189 |
|
|
if Etype (X) = Etype (Y) then
|
4190 |
|
|
Rewrite (N,
|
4191 |
|
|
(Make_Op_Eq (Loc,
|
4192 |
|
|
Left_Opnd => X_Addr,
|
4193 |
|
|
Right_Opnd => Y_Addr)));
|
4194 |
|
|
else
|
4195 |
|
|
Rewrite (N,
|
4196 |
|
|
Make_Op_And (Loc,
|
4197 |
|
|
Left_Opnd =>
|
4198 |
|
|
Make_Op_Eq (Loc,
|
4199 |
|
|
Left_Opnd => X_Addr,
|
4200 |
|
|
Right_Opnd => Y_Addr),
|
4201 |
|
|
Right_Opnd =>
|
4202 |
|
|
Make_Op_Eq (Loc,
|
4203 |
|
|
Left_Opnd => X_Size,
|
4204 |
|
|
Right_Opnd => Y_Size)));
|
4205 |
|
|
end if;
|
4206 |
|
|
|
4207 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
4208 |
|
|
end Same_Storage;
|
4209 |
|
|
|
4210 |
|
|
-------------
|
4211 |
|
|
-- Scaling --
|
4212 |
|
|
-------------
|
4213 |
|
|
|
4214 |
|
|
-- Transforms 'Scaling into a call to the floating-point attribute
|
4215 |
|
|
-- function Scaling in Fat_xxx (where xxx is the root type)
|
4216 |
|
|
|
4217 |
|
|
when Attribute_Scaling =>
|
4218 |
|
|
Expand_Fpt_Attribute_RI (N);
|
4219 |
|
|
|
4220 |
|
|
-------------------------
|
4221 |
|
|
-- Simple_Storage_Pool --
|
4222 |
|
|
-------------------------
|
4223 |
|
|
|
4224 |
|
|
when Attribute_Simple_Storage_Pool =>
|
4225 |
|
|
Rewrite (N,
|
4226 |
|
|
Make_Type_Conversion (Loc,
|
4227 |
|
|
Subtype_Mark => New_Reference_To (Etype (N), Loc),
|
4228 |
|
|
Expression => New_Reference_To (Entity (N), Loc)));
|
4229 |
|
|
Analyze_And_Resolve (N, Typ);
|
4230 |
|
|
|
4231 |
|
|
----------
|
4232 |
|
|
-- Size --
|
4233 |
|
|
----------
|
4234 |
|
|
|
4235 |
|
|
when Attribute_Size |
|
4236 |
|
|
Attribute_Object_Size |
|
4237 |
|
|
Attribute_Value_Size |
|
4238 |
|
|
Attribute_VADS_Size => Size :
|
4239 |
|
|
|
4240 |
|
|
declare
|
4241 |
|
|
Siz : Uint;
|
4242 |
|
|
New_Node : Node_Id;
|
4243 |
|
|
|
4244 |
|
|
begin
|
4245 |
|
|
-- Processing for VADS_Size case. Note that this processing removes
|
4246 |
|
|
-- all traces of VADS_Size from the tree, and completes all required
|
4247 |
|
|
-- processing for VADS_Size by translating the attribute reference
|
4248 |
|
|
-- to an appropriate Size or Object_Size reference.
|
4249 |
|
|
|
4250 |
|
|
if Id = Attribute_VADS_Size
|
4251 |
|
|
or else (Use_VADS_Size and then Id = Attribute_Size)
|
4252 |
|
|
then
|
4253 |
|
|
-- If the size is specified, then we simply use the specified
|
4254 |
|
|
-- size. This applies to both types and objects. The size of an
|
4255 |
|
|
-- object can be specified in the following ways:
|
4256 |
|
|
|
4257 |
|
|
-- An explicit size object is given for an object
|
4258 |
|
|
-- A component size is specified for an indexed component
|
4259 |
|
|
-- A component clause is specified for a selected component
|
4260 |
|
|
-- The object is a component of a packed composite object
|
4261 |
|
|
|
4262 |
|
|
-- If the size is specified, then VADS_Size of an object
|
4263 |
|
|
|
4264 |
|
|
if (Is_Entity_Name (Pref)
|
4265 |
|
|
and then Present (Size_Clause (Entity (Pref))))
|
4266 |
|
|
or else
|
4267 |
|
|
(Nkind (Pref) = N_Component_Clause
|
4268 |
|
|
and then (Present (Component_Clause
|
4269 |
|
|
(Entity (Selector_Name (Pref))))
|
4270 |
|
|
or else Is_Packed (Etype (Prefix (Pref)))))
|
4271 |
|
|
or else
|
4272 |
|
|
(Nkind (Pref) = N_Indexed_Component
|
4273 |
|
|
and then (Component_Size (Etype (Prefix (Pref))) /= 0
|
4274 |
|
|
or else Is_Packed (Etype (Prefix (Pref)))))
|
4275 |
|
|
then
|
4276 |
|
|
Set_Attribute_Name (N, Name_Size);
|
4277 |
|
|
|
4278 |
|
|
-- Otherwise if we have an object rather than a type, then the
|
4279 |
|
|
-- VADS_Size attribute applies to the type of the object, rather
|
4280 |
|
|
-- than the object itself. This is one of the respects in which
|
4281 |
|
|
-- VADS_Size differs from Size.
|
4282 |
|
|
|
4283 |
|
|
else
|
4284 |
|
|
if (not Is_Entity_Name (Pref)
|
4285 |
|
|
or else not Is_Type (Entity (Pref)))
|
4286 |
|
|
and then (Is_Scalar_Type (Ptyp) or else Is_Constrained (Ptyp))
|
4287 |
|
|
then
|
4288 |
|
|
Rewrite (Pref, New_Occurrence_Of (Ptyp, Loc));
|
4289 |
|
|
end if;
|
4290 |
|
|
|
4291 |
|
|
-- For a scalar type for which no size was explicitly given,
|
4292 |
|
|
-- VADS_Size means Object_Size. This is the other respect in
|
4293 |
|
|
-- which VADS_Size differs from Size.
|
4294 |
|
|
|
4295 |
|
|
if Is_Scalar_Type (Ptyp) and then No (Size_Clause (Ptyp)) then
|
4296 |
|
|
Set_Attribute_Name (N, Name_Object_Size);
|
4297 |
|
|
|
4298 |
|
|
-- In all other cases, Size and VADS_Size are the sane
|
4299 |
|
|
|
4300 |
|
|
else
|
4301 |
|
|
Set_Attribute_Name (N, Name_Size);
|
4302 |
|
|
end if;
|
4303 |
|
|
end if;
|
4304 |
|
|
end if;
|
4305 |
|
|
|
4306 |
|
|
-- For class-wide types, X'Class'Size is transformed into a direct
|
4307 |
|
|
-- reference to the Size of the class type, so that the back end does
|
4308 |
|
|
-- not have to deal with the X'Class'Size reference.
|
4309 |
|
|
|
4310 |
|
|
if Is_Entity_Name (Pref)
|
4311 |
|
|
and then Is_Class_Wide_Type (Entity (Pref))
|
4312 |
|
|
then
|
4313 |
|
|
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
|
4314 |
|
|
return;
|
4315 |
|
|
|
4316 |
|
|
-- For X'Size applied to an object of a class-wide type, transform
|
4317 |
|
|
-- X'Size into a call to the primitive operation _Size applied to X.
|
4318 |
|
|
|
4319 |
|
|
elsif Is_Class_Wide_Type (Ptyp)
|
4320 |
|
|
or else (Id = Attribute_Size
|
4321 |
|
|
and then Is_Tagged_Type (Ptyp)
|
4322 |
|
|
and then Has_Unknown_Discriminants (Ptyp))
|
4323 |
|
|
then
|
4324 |
|
|
-- No need to do anything else compiling under restriction
|
4325 |
|
|
-- No_Dispatching_Calls. During the semantic analysis we
|
4326 |
|
|
-- already notified such violation.
|
4327 |
|
|
|
4328 |
|
|
if Restriction_Active (No_Dispatching_Calls) then
|
4329 |
|
|
return;
|
4330 |
|
|
end if;
|
4331 |
|
|
|
4332 |
|
|
New_Node :=
|
4333 |
|
|
Make_Function_Call (Loc,
|
4334 |
|
|
Name => New_Reference_To
|
4335 |
|
|
(Find_Prim_Op (Ptyp, Name_uSize), Loc),
|
4336 |
|
|
Parameter_Associations => New_List (Pref));
|
4337 |
|
|
|
4338 |
|
|
if Typ /= Standard_Long_Long_Integer then
|
4339 |
|
|
|
4340 |
|
|
-- The context is a specific integer type with which the
|
4341 |
|
|
-- original attribute was compatible. The function has a
|
4342 |
|
|
-- specific type as well, so to preserve the compatibility
|
4343 |
|
|
-- we must convert explicitly.
|
4344 |
|
|
|
4345 |
|
|
New_Node := Convert_To (Typ, New_Node);
|
4346 |
|
|
end if;
|
4347 |
|
|
|
4348 |
|
|
Rewrite (N, New_Node);
|
4349 |
|
|
Analyze_And_Resolve (N, Typ);
|
4350 |
|
|
return;
|
4351 |
|
|
|
4352 |
|
|
-- Case of known RM_Size of a type
|
4353 |
|
|
|
4354 |
|
|
elsif (Id = Attribute_Size or else Id = Attribute_Value_Size)
|
4355 |
|
|
and then Is_Entity_Name (Pref)
|
4356 |
|
|
and then Is_Type (Entity (Pref))
|
4357 |
|
|
and then Known_Static_RM_Size (Entity (Pref))
|
4358 |
|
|
then
|
4359 |
|
|
Siz := RM_Size (Entity (Pref));
|
4360 |
|
|
|
4361 |
|
|
-- Case of known Esize of a type
|
4362 |
|
|
|
4363 |
|
|
elsif Id = Attribute_Object_Size
|
4364 |
|
|
and then Is_Entity_Name (Pref)
|
4365 |
|
|
and then Is_Type (Entity (Pref))
|
4366 |
|
|
and then Known_Static_Esize (Entity (Pref))
|
4367 |
|
|
then
|
4368 |
|
|
Siz := Esize (Entity (Pref));
|
4369 |
|
|
|
4370 |
|
|
-- Case of known size of object
|
4371 |
|
|
|
4372 |
|
|
elsif Id = Attribute_Size
|
4373 |
|
|
and then Is_Entity_Name (Pref)
|
4374 |
|
|
and then Is_Object (Entity (Pref))
|
4375 |
|
|
and then Known_Esize (Entity (Pref))
|
4376 |
|
|
and then Known_Static_Esize (Entity (Pref))
|
4377 |
|
|
then
|
4378 |
|
|
Siz := Esize (Entity (Pref));
|
4379 |
|
|
|
4380 |
|
|
-- For an array component, we can do Size in the front end
|
4381 |
|
|
-- if the component_size of the array is set.
|
4382 |
|
|
|
4383 |
|
|
elsif Nkind (Pref) = N_Indexed_Component then
|
4384 |
|
|
Siz := Component_Size (Etype (Prefix (Pref)));
|
4385 |
|
|
|
4386 |
|
|
-- For a record component, we can do Size in the front end if there
|
4387 |
|
|
-- is a component clause, or if the record is packed and the
|
4388 |
|
|
-- component's size is known at compile time.
|
4389 |
|
|
|
4390 |
|
|
elsif Nkind (Pref) = N_Selected_Component then
|
4391 |
|
|
declare
|
4392 |
|
|
Rec : constant Entity_Id := Etype (Prefix (Pref));
|
4393 |
|
|
Comp : constant Entity_Id := Entity (Selector_Name (Pref));
|
4394 |
|
|
|
4395 |
|
|
begin
|
4396 |
|
|
if Present (Component_Clause (Comp)) then
|
4397 |
|
|
Siz := Esize (Comp);
|
4398 |
|
|
|
4399 |
|
|
elsif Is_Packed (Rec) then
|
4400 |
|
|
Siz := RM_Size (Ptyp);
|
4401 |
|
|
|
4402 |
|
|
else
|
4403 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
4404 |
|
|
return;
|
4405 |
|
|
end if;
|
4406 |
|
|
end;
|
4407 |
|
|
|
4408 |
|
|
-- All other cases are handled by the back end
|
4409 |
|
|
|
4410 |
|
|
else
|
4411 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
4412 |
|
|
|
4413 |
|
|
-- If Size is applied to a formal parameter that is of a packed
|
4414 |
|
|
-- array subtype, then apply Size to the actual subtype.
|
4415 |
|
|
|
4416 |
|
|
if Is_Entity_Name (Pref)
|
4417 |
|
|
and then Is_Formal (Entity (Pref))
|
4418 |
|
|
and then Is_Array_Type (Ptyp)
|
4419 |
|
|
and then Is_Packed (Ptyp)
|
4420 |
|
|
then
|
4421 |
|
|
Rewrite (N,
|
4422 |
|
|
Make_Attribute_Reference (Loc,
|
4423 |
|
|
Prefix =>
|
4424 |
|
|
New_Occurrence_Of (Get_Actual_Subtype (Pref), Loc),
|
4425 |
|
|
Attribute_Name => Name_Size));
|
4426 |
|
|
Analyze_And_Resolve (N, Typ);
|
4427 |
|
|
end if;
|
4428 |
|
|
|
4429 |
|
|
-- If Size applies to a dereference of an access to unconstrained
|
4430 |
|
|
-- packed array, the back end needs to see its unconstrained
|
4431 |
|
|
-- nominal type, but also a hint to the actual constrained type.
|
4432 |
|
|
|
4433 |
|
|
if Nkind (Pref) = N_Explicit_Dereference
|
4434 |
|
|
and then Is_Array_Type (Ptyp)
|
4435 |
|
|
and then not Is_Constrained (Ptyp)
|
4436 |
|
|
and then Is_Packed (Ptyp)
|
4437 |
|
|
then
|
4438 |
|
|
Set_Actual_Designated_Subtype (Pref,
|
4439 |
|
|
Get_Actual_Subtype (Pref));
|
4440 |
|
|
end if;
|
4441 |
|
|
|
4442 |
|
|
return;
|
4443 |
|
|
end if;
|
4444 |
|
|
|
4445 |
|
|
-- Common processing for record and array component case
|
4446 |
|
|
|
4447 |
|
|
if Siz /= No_Uint and then Siz /= 0 then
|
4448 |
|
|
declare
|
4449 |
|
|
CS : constant Boolean := Comes_From_Source (N);
|
4450 |
|
|
|
4451 |
|
|
begin
|
4452 |
|
|
Rewrite (N, Make_Integer_Literal (Loc, Siz));
|
4453 |
|
|
|
4454 |
|
|
-- This integer literal is not a static expression. We do not
|
4455 |
|
|
-- call Analyze_And_Resolve here, because this would activate
|
4456 |
|
|
-- the circuit for deciding that a static value was out of
|
4457 |
|
|
-- range, and we don't want that.
|
4458 |
|
|
|
4459 |
|
|
-- So just manually set the type, mark the expression as non-
|
4460 |
|
|
-- static, and then ensure that the result is checked properly
|
4461 |
|
|
-- if the attribute comes from source (if it was internally
|
4462 |
|
|
-- generated, we never need a constraint check).
|
4463 |
|
|
|
4464 |
|
|
Set_Etype (N, Typ);
|
4465 |
|
|
Set_Is_Static_Expression (N, False);
|
4466 |
|
|
|
4467 |
|
|
if CS then
|
4468 |
|
|
Apply_Constraint_Check (N, Typ);
|
4469 |
|
|
end if;
|
4470 |
|
|
end;
|
4471 |
|
|
end if;
|
4472 |
|
|
end Size;
|
4473 |
|
|
|
4474 |
|
|
------------------
|
4475 |
|
|
-- Storage_Pool --
|
4476 |
|
|
------------------
|
4477 |
|
|
|
4478 |
|
|
when Attribute_Storage_Pool =>
|
4479 |
|
|
Rewrite (N,
|
4480 |
|
|
Make_Type_Conversion (Loc,
|
4481 |
|
|
Subtype_Mark => New_Reference_To (Etype (N), Loc),
|
4482 |
|
|
Expression => New_Reference_To (Entity (N), Loc)));
|
4483 |
|
|
Analyze_And_Resolve (N, Typ);
|
4484 |
|
|
|
4485 |
|
|
------------------
|
4486 |
|
|
-- Storage_Size --
|
4487 |
|
|
------------------
|
4488 |
|
|
|
4489 |
|
|
when Attribute_Storage_Size => Storage_Size : declare
|
4490 |
|
|
Alloc_Op : Entity_Id := Empty;
|
4491 |
|
|
|
4492 |
|
|
begin
|
4493 |
|
|
|
4494 |
|
|
-- Access type case, always go to the root type
|
4495 |
|
|
|
4496 |
|
|
-- The case of access types results in a value of zero for the case
|
4497 |
|
|
-- where no storage size attribute clause has been given. If a
|
4498 |
|
|
-- storage size has been given, then the attribute is converted
|
4499 |
|
|
-- to a reference to the variable used to hold this value.
|
4500 |
|
|
|
4501 |
|
|
if Is_Access_Type (Ptyp) then
|
4502 |
|
|
if Present (Storage_Size_Variable (Root_Type (Ptyp))) then
|
4503 |
|
|
Rewrite (N,
|
4504 |
|
|
Make_Attribute_Reference (Loc,
|
4505 |
|
|
Prefix => New_Reference_To (Typ, Loc),
|
4506 |
|
|
Attribute_Name => Name_Max,
|
4507 |
|
|
Expressions => New_List (
|
4508 |
|
|
Make_Integer_Literal (Loc, 0),
|
4509 |
|
|
Convert_To (Typ,
|
4510 |
|
|
New_Reference_To
|
4511 |
|
|
(Storage_Size_Variable (Root_Type (Ptyp)), Loc)))));
|
4512 |
|
|
|
4513 |
|
|
elsif Present (Associated_Storage_Pool (Root_Type (Ptyp))) then
|
4514 |
|
|
|
4515 |
|
|
-- If the access type is associated with a simple storage pool
|
4516 |
|
|
-- object, then attempt to locate the optional Storage_Size
|
4517 |
|
|
-- function of the simple storage pool type. If not found,
|
4518 |
|
|
-- then the result will default to zero.
|
4519 |
|
|
|
4520 |
|
|
if Present (Get_Rep_Pragma (Root_Type (Ptyp),
|
4521 |
|
|
Name_Simple_Storage_Pool_Type))
|
4522 |
|
|
then
|
4523 |
|
|
declare
|
4524 |
|
|
Pool_Type : constant Entity_Id :=
|
4525 |
|
|
Base_Type (Etype (Entity (N)));
|
4526 |
|
|
|
4527 |
|
|
begin
|
4528 |
|
|
Alloc_Op := Get_Name_Entity_Id (Name_Storage_Size);
|
4529 |
|
|
while Present (Alloc_Op) loop
|
4530 |
|
|
if Scope (Alloc_Op) = Scope (Pool_Type)
|
4531 |
|
|
and then Present (First_Formal (Alloc_Op))
|
4532 |
|
|
and then Etype (First_Formal (Alloc_Op)) = Pool_Type
|
4533 |
|
|
then
|
4534 |
|
|
exit;
|
4535 |
|
|
end if;
|
4536 |
|
|
|
4537 |
|
|
Alloc_Op := Homonym (Alloc_Op);
|
4538 |
|
|
end loop;
|
4539 |
|
|
end;
|
4540 |
|
|
|
4541 |
|
|
-- In the normal Storage_Pool case, retrieve the primitive
|
4542 |
|
|
-- function associated with the pool type.
|
4543 |
|
|
|
4544 |
|
|
else
|
4545 |
|
|
Alloc_Op :=
|
4546 |
|
|
Find_Prim_Op
|
4547 |
|
|
(Etype (Associated_Storage_Pool (Root_Type (Ptyp))),
|
4548 |
|
|
Attribute_Name (N));
|
4549 |
|
|
end if;
|
4550 |
|
|
|
4551 |
|
|
-- If Storage_Size wasn't found (can only occur in the simple
|
4552 |
|
|
-- storage pool case), then simply use zero for the result.
|
4553 |
|
|
|
4554 |
|
|
if not Present (Alloc_Op) then
|
4555 |
|
|
Rewrite (N, Make_Integer_Literal (Loc, 0));
|
4556 |
|
|
|
4557 |
|
|
-- Otherwise, rewrite the allocator as a call to pool type's
|
4558 |
|
|
-- Storage_Size function.
|
4559 |
|
|
|
4560 |
|
|
else
|
4561 |
|
|
Rewrite (N,
|
4562 |
|
|
OK_Convert_To (Typ,
|
4563 |
|
|
Make_Function_Call (Loc,
|
4564 |
|
|
Name =>
|
4565 |
|
|
New_Reference_To (Alloc_Op, Loc),
|
4566 |
|
|
|
4567 |
|
|
Parameter_Associations => New_List (
|
4568 |
|
|
New_Reference_To
|
4569 |
|
|
(Associated_Storage_Pool
|
4570 |
|
|
(Root_Type (Ptyp)), Loc)))));
|
4571 |
|
|
end if;
|
4572 |
|
|
|
4573 |
|
|
else
|
4574 |
|
|
Rewrite (N, Make_Integer_Literal (Loc, 0));
|
4575 |
|
|
end if;
|
4576 |
|
|
|
4577 |
|
|
Analyze_And_Resolve (N, Typ);
|
4578 |
|
|
|
4579 |
|
|
-- For tasks, we retrieve the size directly from the TCB. The
|
4580 |
|
|
-- size may depend on a discriminant of the type, and therefore
|
4581 |
|
|
-- can be a per-object expression, so type-level information is
|
4582 |
|
|
-- not sufficient in general. There are four cases to consider:
|
4583 |
|
|
|
4584 |
|
|
-- a) If the attribute appears within a task body, the designated
|
4585 |
|
|
-- TCB is obtained by a call to Self.
|
4586 |
|
|
|
4587 |
|
|
-- b) If the prefix of the attribute is the name of a task object,
|
4588 |
|
|
-- the designated TCB is the one stored in the corresponding record.
|
4589 |
|
|
|
4590 |
|
|
-- c) If the prefix is a task type, the size is obtained from the
|
4591 |
|
|
-- size variable created for each task type
|
4592 |
|
|
|
4593 |
|
|
-- d) If no storage_size was specified for the type , there is no
|
4594 |
|
|
-- size variable, and the value is a system-specific default.
|
4595 |
|
|
|
4596 |
|
|
else
|
4597 |
|
|
if In_Open_Scopes (Ptyp) then
|
4598 |
|
|
|
4599 |
|
|
-- Storage_Size (Self)
|
4600 |
|
|
|
4601 |
|
|
Rewrite (N,
|
4602 |
|
|
Convert_To (Typ,
|
4603 |
|
|
Make_Function_Call (Loc,
|
4604 |
|
|
Name =>
|
4605 |
|
|
New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
|
4606 |
|
|
Parameter_Associations =>
|
4607 |
|
|
New_List (
|
4608 |
|
|
Make_Function_Call (Loc,
|
4609 |
|
|
Name =>
|
4610 |
|
|
New_Reference_To (RTE (RE_Self), Loc))))));
|
4611 |
|
|
|
4612 |
|
|
elsif not Is_Entity_Name (Pref)
|
4613 |
|
|
or else not Is_Type (Entity (Pref))
|
4614 |
|
|
then
|
4615 |
|
|
-- Storage_Size (Rec (Obj).Size)
|
4616 |
|
|
|
4617 |
|
|
Rewrite (N,
|
4618 |
|
|
Convert_To (Typ,
|
4619 |
|
|
Make_Function_Call (Loc,
|
4620 |
|
|
Name =>
|
4621 |
|
|
New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
|
4622 |
|
|
Parameter_Associations =>
|
4623 |
|
|
New_List (
|
4624 |
|
|
Make_Selected_Component (Loc,
|
4625 |
|
|
Prefix =>
|
4626 |
|
|
Unchecked_Convert_To (
|
4627 |
|
|
Corresponding_Record_Type (Ptyp),
|
4628 |
|
|
New_Copy_Tree (Pref)),
|
4629 |
|
|
Selector_Name =>
|
4630 |
|
|
Make_Identifier (Loc, Name_uTask_Id))))));
|
4631 |
|
|
|
4632 |
|
|
elsif Present (Storage_Size_Variable (Ptyp)) then
|
4633 |
|
|
|
4634 |
|
|
-- Static storage size pragma given for type: retrieve value
|
4635 |
|
|
-- from its allocated storage variable.
|
4636 |
|
|
|
4637 |
|
|
Rewrite (N,
|
4638 |
|
|
Convert_To (Typ,
|
4639 |
|
|
Make_Function_Call (Loc,
|
4640 |
|
|
Name => New_Occurrence_Of (
|
4641 |
|
|
RTE (RE_Adjust_Storage_Size), Loc),
|
4642 |
|
|
Parameter_Associations =>
|
4643 |
|
|
New_List (
|
4644 |
|
|
New_Reference_To (
|
4645 |
|
|
Storage_Size_Variable (Ptyp), Loc)))));
|
4646 |
|
|
else
|
4647 |
|
|
-- Get system default
|
4648 |
|
|
|
4649 |
|
|
Rewrite (N,
|
4650 |
|
|
Convert_To (Typ,
|
4651 |
|
|
Make_Function_Call (Loc,
|
4652 |
|
|
Name =>
|
4653 |
|
|
New_Occurrence_Of (
|
4654 |
|
|
RTE (RE_Default_Stack_Size), Loc))));
|
4655 |
|
|
end if;
|
4656 |
|
|
|
4657 |
|
|
Analyze_And_Resolve (N, Typ);
|
4658 |
|
|
end if;
|
4659 |
|
|
end Storage_Size;
|
4660 |
|
|
|
4661 |
|
|
-----------------
|
4662 |
|
|
-- Stream_Size --
|
4663 |
|
|
-----------------
|
4664 |
|
|
|
4665 |
|
|
when Attribute_Stream_Size =>
|
4666 |
|
|
Rewrite (N,
|
4667 |
|
|
Make_Integer_Literal (Loc, Intval => Get_Stream_Size (Ptyp)));
|
4668 |
|
|
Analyze_And_Resolve (N, Typ);
|
4669 |
|
|
|
4670 |
|
|
----------
|
4671 |
|
|
-- Succ --
|
4672 |
|
|
----------
|
4673 |
|
|
|
4674 |
|
|
-- 1. Deal with enumeration types with holes
|
4675 |
|
|
-- 2. For floating-point, generate call to attribute function
|
4676 |
|
|
-- 3. For other cases, deal with constraint checking
|
4677 |
|
|
|
4678 |
|
|
when Attribute_Succ => Succ : declare
|
4679 |
|
|
Etyp : constant Entity_Id := Base_Type (Ptyp);
|
4680 |
|
|
|
4681 |
|
|
begin
|
4682 |
|
|
|
4683 |
|
|
-- For enumeration types with non-standard representations, we
|
4684 |
|
|
-- expand typ'Succ (x) into
|
4685 |
|
|
|
4686 |
|
|
-- Pos_To_Rep (Rep_To_Pos (x) + 1)
|
4687 |
|
|
|
4688 |
|
|
-- If the representation is contiguous, we compute instead
|
4689 |
|
|
-- Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
|
4690 |
|
|
|
4691 |
|
|
if Is_Enumeration_Type (Ptyp)
|
4692 |
|
|
and then Present (Enum_Pos_To_Rep (Etyp))
|
4693 |
|
|
then
|
4694 |
|
|
if Has_Contiguous_Rep (Etyp) then
|
4695 |
|
|
Rewrite (N,
|
4696 |
|
|
Unchecked_Convert_To (Ptyp,
|
4697 |
|
|
Make_Op_Add (Loc,
|
4698 |
|
|
Left_Opnd =>
|
4699 |
|
|
Make_Integer_Literal (Loc,
|
4700 |
|
|
Enumeration_Rep (First_Literal (Ptyp))),
|
4701 |
|
|
Right_Opnd =>
|
4702 |
|
|
Make_Function_Call (Loc,
|
4703 |
|
|
Name =>
|
4704 |
|
|
New_Reference_To
|
4705 |
|
|
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
4706 |
|
|
|
4707 |
|
|
Parameter_Associations =>
|
4708 |
|
|
New_List (
|
4709 |
|
|
Unchecked_Convert_To (Ptyp,
|
4710 |
|
|
Make_Op_Add (Loc,
|
4711 |
|
|
Left_Opnd =>
|
4712 |
|
|
Unchecked_Convert_To (Standard_Integer,
|
4713 |
|
|
Relocate_Node (First (Exprs))),
|
4714 |
|
|
Right_Opnd =>
|
4715 |
|
|
Make_Integer_Literal (Loc, 1))),
|
4716 |
|
|
Rep_To_Pos_Flag (Ptyp, Loc))))));
|
4717 |
|
|
else
|
4718 |
|
|
-- Add Boolean parameter True, to request program errror if
|
4719 |
|
|
-- we have a bad representation on our hands. Add False if
|
4720 |
|
|
-- checks are suppressed.
|
4721 |
|
|
|
4722 |
|
|
Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
|
4723 |
|
|
Rewrite (N,
|
4724 |
|
|
Make_Indexed_Component (Loc,
|
4725 |
|
|
Prefix =>
|
4726 |
|
|
New_Reference_To
|
4727 |
|
|
(Enum_Pos_To_Rep (Etyp), Loc),
|
4728 |
|
|
Expressions => New_List (
|
4729 |
|
|
Make_Op_Add (Loc,
|
4730 |
|
|
Left_Opnd =>
|
4731 |
|
|
Make_Function_Call (Loc,
|
4732 |
|
|
Name =>
|
4733 |
|
|
New_Reference_To
|
4734 |
|
|
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
4735 |
|
|
Parameter_Associations => Exprs),
|
4736 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
|
4737 |
|
|
end if;
|
4738 |
|
|
|
4739 |
|
|
Analyze_And_Resolve (N, Typ);
|
4740 |
|
|
|
4741 |
|
|
-- For floating-point, we transform 'Succ into a call to the Succ
|
4742 |
|
|
-- floating-point attribute function in Fat_xxx (xxx is root type)
|
4743 |
|
|
|
4744 |
|
|
elsif Is_Floating_Point_Type (Ptyp) then
|
4745 |
|
|
Expand_Fpt_Attribute_R (N);
|
4746 |
|
|
Analyze_And_Resolve (N, Typ);
|
4747 |
|
|
|
4748 |
|
|
-- For modular types, nothing to do (no overflow, since wraps)
|
4749 |
|
|
|
4750 |
|
|
elsif Is_Modular_Integer_Type (Ptyp) then
|
4751 |
|
|
null;
|
4752 |
|
|
|
4753 |
|
|
-- For other types, if argument is marked as needing a range check or
|
4754 |
|
|
-- overflow checking is enabled, we must generate a check.
|
4755 |
|
|
|
4756 |
|
|
elsif not Overflow_Checks_Suppressed (Ptyp)
|
4757 |
|
|
or else Do_Range_Check (First (Exprs))
|
4758 |
|
|
then
|
4759 |
|
|
Set_Do_Range_Check (First (Exprs), False);
|
4760 |
|
|
Expand_Pred_Succ (N);
|
4761 |
|
|
end if;
|
4762 |
|
|
end Succ;
|
4763 |
|
|
|
4764 |
|
|
---------
|
4765 |
|
|
-- Tag --
|
4766 |
|
|
---------
|
4767 |
|
|
|
4768 |
|
|
-- Transforms X'Tag into a direct reference to the tag of X
|
4769 |
|
|
|
4770 |
|
|
when Attribute_Tag => Tag : declare
|
4771 |
|
|
Ttyp : Entity_Id;
|
4772 |
|
|
Prefix_Is_Type : Boolean;
|
4773 |
|
|
|
4774 |
|
|
begin
|
4775 |
|
|
if Is_Entity_Name (Pref) and then Is_Type (Entity (Pref)) then
|
4776 |
|
|
Ttyp := Entity (Pref);
|
4777 |
|
|
Prefix_Is_Type := True;
|
4778 |
|
|
else
|
4779 |
|
|
Ttyp := Ptyp;
|
4780 |
|
|
Prefix_Is_Type := False;
|
4781 |
|
|
end if;
|
4782 |
|
|
|
4783 |
|
|
if Is_Class_Wide_Type (Ttyp) then
|
4784 |
|
|
Ttyp := Root_Type (Ttyp);
|
4785 |
|
|
end if;
|
4786 |
|
|
|
4787 |
|
|
Ttyp := Underlying_Type (Ttyp);
|
4788 |
|
|
|
4789 |
|
|
-- Ada 2005: The type may be a synchronized tagged type, in which
|
4790 |
|
|
-- case the tag information is stored in the corresponding record.
|
4791 |
|
|
|
4792 |
|
|
if Is_Concurrent_Type (Ttyp) then
|
4793 |
|
|
Ttyp := Corresponding_Record_Type (Ttyp);
|
4794 |
|
|
end if;
|
4795 |
|
|
|
4796 |
|
|
if Prefix_Is_Type then
|
4797 |
|
|
|
4798 |
|
|
-- For VMs we leave the type attribute unexpanded because
|
4799 |
|
|
-- there's not a dispatching table to reference.
|
4800 |
|
|
|
4801 |
|
|
if Tagged_Type_Expansion then
|
4802 |
|
|
Rewrite (N,
|
4803 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
4804 |
|
|
New_Reference_To
|
4805 |
|
|
(Node (First_Elmt (Access_Disp_Table (Ttyp))), Loc)));
|
4806 |
|
|
Analyze_And_Resolve (N, RTE (RE_Tag));
|
4807 |
|
|
end if;
|
4808 |
|
|
|
4809 |
|
|
-- Ada 2005 (AI-251): The use of 'Tag in the sources always
|
4810 |
|
|
-- references the primary tag of the actual object. If 'Tag is
|
4811 |
|
|
-- applied to class-wide interface objects we generate code that
|
4812 |
|
|
-- displaces "this" to reference the base of the object.
|
4813 |
|
|
|
4814 |
|
|
elsif Comes_From_Source (N)
|
4815 |
|
|
and then Is_Class_Wide_Type (Etype (Prefix (N)))
|
4816 |
|
|
and then Is_Interface (Etype (Prefix (N)))
|
4817 |
|
|
then
|
4818 |
|
|
-- Generate:
|
4819 |
|
|
-- (To_Tag_Ptr (Prefix'Address)).all
|
4820 |
|
|
|
4821 |
|
|
-- Note that Prefix'Address is recursively expanded into a call
|
4822 |
|
|
-- to Base_Address (Obj.Tag)
|
4823 |
|
|
|
4824 |
|
|
-- Not needed for VM targets, since all handled by the VM
|
4825 |
|
|
|
4826 |
|
|
if Tagged_Type_Expansion then
|
4827 |
|
|
Rewrite (N,
|
4828 |
|
|
Make_Explicit_Dereference (Loc,
|
4829 |
|
|
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
|
4830 |
|
|
Make_Attribute_Reference (Loc,
|
4831 |
|
|
Prefix => Relocate_Node (Pref),
|
4832 |
|
|
Attribute_Name => Name_Address))));
|
4833 |
|
|
Analyze_And_Resolve (N, RTE (RE_Tag));
|
4834 |
|
|
end if;
|
4835 |
|
|
|
4836 |
|
|
else
|
4837 |
|
|
Rewrite (N,
|
4838 |
|
|
Make_Selected_Component (Loc,
|
4839 |
|
|
Prefix => Relocate_Node (Pref),
|
4840 |
|
|
Selector_Name =>
|
4841 |
|
|
New_Reference_To (First_Tag_Component (Ttyp), Loc)));
|
4842 |
|
|
Analyze_And_Resolve (N, RTE (RE_Tag));
|
4843 |
|
|
end if;
|
4844 |
|
|
end Tag;
|
4845 |
|
|
|
4846 |
|
|
----------------
|
4847 |
|
|
-- Terminated --
|
4848 |
|
|
----------------
|
4849 |
|
|
|
4850 |
|
|
-- Transforms 'Terminated attribute into a call to Terminated function
|
4851 |
|
|
|
4852 |
|
|
when Attribute_Terminated => Terminated :
|
4853 |
|
|
begin
|
4854 |
|
|
-- The prefix of Terminated is of a task interface class-wide type.
|
4855 |
|
|
-- Generate:
|
4856 |
|
|
-- terminated (Task_Id (Pref._disp_get_task_id));
|
4857 |
|
|
|
4858 |
|
|
if Ada_Version >= Ada_2005
|
4859 |
|
|
and then Ekind (Ptyp) = E_Class_Wide_Type
|
4860 |
|
|
and then Is_Interface (Ptyp)
|
4861 |
|
|
and then Is_Task_Interface (Ptyp)
|
4862 |
|
|
then
|
4863 |
|
|
Rewrite (N,
|
4864 |
|
|
Make_Function_Call (Loc,
|
4865 |
|
|
Name =>
|
4866 |
|
|
New_Reference_To (RTE (RE_Terminated), Loc),
|
4867 |
|
|
Parameter_Associations => New_List (
|
4868 |
|
|
Make_Unchecked_Type_Conversion (Loc,
|
4869 |
|
|
Subtype_Mark =>
|
4870 |
|
|
New_Reference_To (RTE (RO_ST_Task_Id), Loc),
|
4871 |
|
|
Expression =>
|
4872 |
|
|
Make_Selected_Component (Loc,
|
4873 |
|
|
Prefix =>
|
4874 |
|
|
New_Copy_Tree (Pref),
|
4875 |
|
|
Selector_Name =>
|
4876 |
|
|
Make_Identifier (Loc, Name_uDisp_Get_Task_Id))))));
|
4877 |
|
|
|
4878 |
|
|
elsif Restricted_Profile then
|
4879 |
|
|
Rewrite (N,
|
4880 |
|
|
Build_Call_With_Task (Pref, RTE (RE_Restricted_Terminated)));
|
4881 |
|
|
|
4882 |
|
|
else
|
4883 |
|
|
Rewrite (N,
|
4884 |
|
|
Build_Call_With_Task (Pref, RTE (RE_Terminated)));
|
4885 |
|
|
end if;
|
4886 |
|
|
|
4887 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
4888 |
|
|
end Terminated;
|
4889 |
|
|
|
4890 |
|
|
----------------
|
4891 |
|
|
-- To_Address --
|
4892 |
|
|
----------------
|
4893 |
|
|
|
4894 |
|
|
-- Transforms System'To_Address (X) and System.Address'Ref (X) into
|
4895 |
|
|
-- unchecked conversion from (integral) type of X to type address.
|
4896 |
|
|
|
4897 |
|
|
when Attribute_To_Address | Attribute_Ref =>
|
4898 |
|
|
Rewrite (N,
|
4899 |
|
|
Unchecked_Convert_To (RTE (RE_Address),
|
4900 |
|
|
Relocate_Node (First (Exprs))));
|
4901 |
|
|
Analyze_And_Resolve (N, RTE (RE_Address));
|
4902 |
|
|
|
4903 |
|
|
------------
|
4904 |
|
|
-- To_Any --
|
4905 |
|
|
------------
|
4906 |
|
|
|
4907 |
|
|
when Attribute_To_Any => To_Any : declare
|
4908 |
|
|
P_Type : constant Entity_Id := Etype (Pref);
|
4909 |
|
|
Decls : constant List_Id := New_List;
|
4910 |
|
|
begin
|
4911 |
|
|
Rewrite (N,
|
4912 |
|
|
Build_To_Any_Call
|
4913 |
|
|
(Convert_To (P_Type,
|
4914 |
|
|
Relocate_Node (First (Exprs))), Decls));
|
4915 |
|
|
Insert_Actions (N, Decls);
|
4916 |
|
|
Analyze_And_Resolve (N, RTE (RE_Any));
|
4917 |
|
|
end To_Any;
|
4918 |
|
|
|
4919 |
|
|
----------------
|
4920 |
|
|
-- Truncation --
|
4921 |
|
|
----------------
|
4922 |
|
|
|
4923 |
|
|
-- Transforms 'Truncation into a call to the floating-point attribute
|
4924 |
|
|
-- function Truncation in Fat_xxx (where xxx is the root type).
|
4925 |
|
|
-- Expansion is avoided for cases the back end can handle directly.
|
4926 |
|
|
|
4927 |
|
|
when Attribute_Truncation =>
|
4928 |
|
|
if not Is_Inline_Floating_Point_Attribute (N) then
|
4929 |
|
|
Expand_Fpt_Attribute_R (N);
|
4930 |
|
|
end if;
|
4931 |
|
|
|
4932 |
|
|
--------------
|
4933 |
|
|
-- TypeCode --
|
4934 |
|
|
--------------
|
4935 |
|
|
|
4936 |
|
|
when Attribute_TypeCode => TypeCode : declare
|
4937 |
|
|
P_Type : constant Entity_Id := Etype (Pref);
|
4938 |
|
|
Decls : constant List_Id := New_List;
|
4939 |
|
|
begin
|
4940 |
|
|
Rewrite (N, Build_TypeCode_Call (Loc, P_Type, Decls));
|
4941 |
|
|
Insert_Actions (N, Decls);
|
4942 |
|
|
Analyze_And_Resolve (N, RTE (RE_TypeCode));
|
4943 |
|
|
end TypeCode;
|
4944 |
|
|
|
4945 |
|
|
-----------------------
|
4946 |
|
|
-- Unbiased_Rounding --
|
4947 |
|
|
-----------------------
|
4948 |
|
|
|
4949 |
|
|
-- Transforms 'Unbiased_Rounding into a call to the floating-point
|
4950 |
|
|
-- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
|
4951 |
|
|
-- root type). Expansion is avoided for cases the back end can handle
|
4952 |
|
|
-- directly.
|
4953 |
|
|
|
4954 |
|
|
when Attribute_Unbiased_Rounding =>
|
4955 |
|
|
if not Is_Inline_Floating_Point_Attribute (N) then
|
4956 |
|
|
Expand_Fpt_Attribute_R (N);
|
4957 |
|
|
end if;
|
4958 |
|
|
|
4959 |
|
|
-----------------
|
4960 |
|
|
-- UET_Address --
|
4961 |
|
|
-----------------
|
4962 |
|
|
|
4963 |
|
|
when Attribute_UET_Address => UET_Address : declare
|
4964 |
|
|
Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
|
4965 |
|
|
|
4966 |
|
|
begin
|
4967 |
|
|
Insert_Action (N,
|
4968 |
|
|
Make_Object_Declaration (Loc,
|
4969 |
|
|
Defining_Identifier => Ent,
|
4970 |
|
|
Aliased_Present => True,
|
4971 |
|
|
Object_Definition =>
|
4972 |
|
|
New_Occurrence_Of (RTE (RE_Address), Loc)));
|
4973 |
|
|
|
4974 |
|
|
-- Construct name __gnat_xxx__SDP, where xxx is the unit name
|
4975 |
|
|
-- in normal external form.
|
4976 |
|
|
|
4977 |
|
|
Get_External_Unit_Name_String (Get_Unit_Name (Pref));
|
4978 |
|
|
Name_Buffer (1 + 7 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
|
4979 |
|
|
Name_Len := Name_Len + 7;
|
4980 |
|
|
Name_Buffer (1 .. 7) := "__gnat_";
|
4981 |
|
|
Name_Buffer (Name_Len + 1 .. Name_Len + 5) := "__SDP";
|
4982 |
|
|
Name_Len := Name_Len + 5;
|
4983 |
|
|
|
4984 |
|
|
Set_Is_Imported (Ent);
|
4985 |
|
|
Set_Interface_Name (Ent,
|
4986 |
|
|
Make_String_Literal (Loc,
|
4987 |
|
|
Strval => String_From_Name_Buffer));
|
4988 |
|
|
|
4989 |
|
|
-- Set entity as internal to ensure proper Sprint output of its
|
4990 |
|
|
-- implicit importation.
|
4991 |
|
|
|
4992 |
|
|
Set_Is_Internal (Ent);
|
4993 |
|
|
|
4994 |
|
|
Rewrite (N,
|
4995 |
|
|
Make_Attribute_Reference (Loc,
|
4996 |
|
|
Prefix => New_Occurrence_Of (Ent, Loc),
|
4997 |
|
|
Attribute_Name => Name_Address));
|
4998 |
|
|
|
4999 |
|
|
Analyze_And_Resolve (N, Typ);
|
5000 |
|
|
end UET_Address;
|
5001 |
|
|
|
5002 |
|
|
---------------
|
5003 |
|
|
-- VADS_Size --
|
5004 |
|
|
---------------
|
5005 |
|
|
|
5006 |
|
|
-- The processing for VADS_Size is shared with Size
|
5007 |
|
|
|
5008 |
|
|
---------
|
5009 |
|
|
-- Val --
|
5010 |
|
|
---------
|
5011 |
|
|
|
5012 |
|
|
-- For enumeration types with a standard representation, and for all
|
5013 |
|
|
-- other types, Val is handled by the back end. For enumeration types
|
5014 |
|
|
-- with a non-standard representation we use the _Pos_To_Rep array that
|
5015 |
|
|
-- was created when the type was frozen.
|
5016 |
|
|
|
5017 |
|
|
when Attribute_Val => Val : declare
|
5018 |
|
|
Etyp : constant Entity_Id := Base_Type (Entity (Pref));
|
5019 |
|
|
|
5020 |
|
|
begin
|
5021 |
|
|
if Is_Enumeration_Type (Etyp)
|
5022 |
|
|
and then Present (Enum_Pos_To_Rep (Etyp))
|
5023 |
|
|
then
|
5024 |
|
|
if Has_Contiguous_Rep (Etyp) then
|
5025 |
|
|
declare
|
5026 |
|
|
Rep_Node : constant Node_Id :=
|
5027 |
|
|
Unchecked_Convert_To (Etyp,
|
5028 |
|
|
Make_Op_Add (Loc,
|
5029 |
|
|
Left_Opnd =>
|
5030 |
|
|
Make_Integer_Literal (Loc,
|
5031 |
|
|
Enumeration_Rep (First_Literal (Etyp))),
|
5032 |
|
|
Right_Opnd =>
|
5033 |
|
|
(Convert_To (Standard_Integer,
|
5034 |
|
|
Relocate_Node (First (Exprs))))));
|
5035 |
|
|
|
5036 |
|
|
begin
|
5037 |
|
|
Rewrite (N,
|
5038 |
|
|
Unchecked_Convert_To (Etyp,
|
5039 |
|
|
Make_Op_Add (Loc,
|
5040 |
|
|
Left_Opnd =>
|
5041 |
|
|
Make_Integer_Literal (Loc,
|
5042 |
|
|
Enumeration_Rep (First_Literal (Etyp))),
|
5043 |
|
|
Right_Opnd =>
|
5044 |
|
|
Make_Function_Call (Loc,
|
5045 |
|
|
Name =>
|
5046 |
|
|
New_Reference_To
|
5047 |
|
|
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
|
5048 |
|
|
Parameter_Associations => New_List (
|
5049 |
|
|
Rep_Node,
|
5050 |
|
|
Rep_To_Pos_Flag (Etyp, Loc))))));
|
5051 |
|
|
end;
|
5052 |
|
|
|
5053 |
|
|
else
|
5054 |
|
|
Rewrite (N,
|
5055 |
|
|
Make_Indexed_Component (Loc,
|
5056 |
|
|
Prefix => New_Reference_To (Enum_Pos_To_Rep (Etyp), Loc),
|
5057 |
|
|
Expressions => New_List (
|
5058 |
|
|
Convert_To (Standard_Integer,
|
5059 |
|
|
Relocate_Node (First (Exprs))))));
|
5060 |
|
|
end if;
|
5061 |
|
|
|
5062 |
|
|
Analyze_And_Resolve (N, Typ);
|
5063 |
|
|
|
5064 |
|
|
-- If the argument is marked as requiring a range check then generate
|
5065 |
|
|
-- it here.
|
5066 |
|
|
|
5067 |
|
|
elsif Do_Range_Check (First (Exprs)) then
|
5068 |
|
|
Set_Do_Range_Check (First (Exprs), False);
|
5069 |
|
|
Generate_Range_Check (First (Exprs), Etyp, CE_Range_Check_Failed);
|
5070 |
|
|
end if;
|
5071 |
|
|
end Val;
|
5072 |
|
|
|
5073 |
|
|
-----------
|
5074 |
|
|
-- Valid --
|
5075 |
|
|
-----------
|
5076 |
|
|
|
5077 |
|
|
-- The code for valid is dependent on the particular types involved.
|
5078 |
|
|
-- See separate sections below for the generated code in each case.
|
5079 |
|
|
|
5080 |
|
|
when Attribute_Valid => Valid : declare
|
5081 |
|
|
Btyp : Entity_Id := Base_Type (Ptyp);
|
5082 |
|
|
Tst : Node_Id;
|
5083 |
|
|
|
5084 |
|
|
Save_Validity_Checks_On : constant Boolean := Validity_Checks_On;
|
5085 |
|
|
-- Save the validity checking mode. We always turn off validity
|
5086 |
|
|
-- checking during process of 'Valid since this is one place
|
5087 |
|
|
-- where we do not want the implicit validity checks to intefere
|
5088 |
|
|
-- with the explicit validity check that the programmer is doing.
|
5089 |
|
|
|
5090 |
|
|
function Make_Range_Test return Node_Id;
|
5091 |
|
|
-- Build the code for a range test of the form
|
5092 |
|
|
-- Btyp!(Pref) in Btyp!(Ptyp'First) .. Btyp!(Ptyp'Last)
|
5093 |
|
|
|
5094 |
|
|
---------------------
|
5095 |
|
|
-- Make_Range_Test --
|
5096 |
|
|
---------------------
|
5097 |
|
|
|
5098 |
|
|
function Make_Range_Test return Node_Id is
|
5099 |
|
|
Temp : constant Node_Id := Duplicate_Subexpr (Pref);
|
5100 |
|
|
|
5101 |
|
|
begin
|
5102 |
|
|
-- The value whose validity is being checked has been captured in
|
5103 |
|
|
-- an object declaration. We certainly don't want this object to
|
5104 |
|
|
-- appear valid because the declaration initializes it!
|
5105 |
|
|
|
5106 |
|
|
if Is_Entity_Name (Temp) then
|
5107 |
|
|
Set_Is_Known_Valid (Entity (Temp), False);
|
5108 |
|
|
end if;
|
5109 |
|
|
|
5110 |
|
|
return
|
5111 |
|
|
Make_In (Loc,
|
5112 |
|
|
Left_Opnd =>
|
5113 |
|
|
Unchecked_Convert_To (Btyp, Temp),
|
5114 |
|
|
Right_Opnd =>
|
5115 |
|
|
Make_Range (Loc,
|
5116 |
|
|
Low_Bound =>
|
5117 |
|
|
Unchecked_Convert_To (Btyp,
|
5118 |
|
|
Make_Attribute_Reference (Loc,
|
5119 |
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
5120 |
|
|
Attribute_Name => Name_First)),
|
5121 |
|
|
High_Bound =>
|
5122 |
|
|
Unchecked_Convert_To (Btyp,
|
5123 |
|
|
Make_Attribute_Reference (Loc,
|
5124 |
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
5125 |
|
|
Attribute_Name => Name_Last))));
|
5126 |
|
|
end Make_Range_Test;
|
5127 |
|
|
|
5128 |
|
|
-- Start of processing for Attribute_Valid
|
5129 |
|
|
|
5130 |
|
|
begin
|
5131 |
|
|
-- Do not expand sourced code 'Valid reference in CodePeer mode,
|
5132 |
|
|
-- will be handled by the back-end directly.
|
5133 |
|
|
|
5134 |
|
|
if CodePeer_Mode and then Comes_From_Source (N) then
|
5135 |
|
|
return;
|
5136 |
|
|
end if;
|
5137 |
|
|
|
5138 |
|
|
-- Turn off validity checks. We do not want any implicit validity
|
5139 |
|
|
-- checks to intefere with the explicit check from the attribute
|
5140 |
|
|
|
5141 |
|
|
Validity_Checks_On := False;
|
5142 |
|
|
|
5143 |
|
|
-- Floating-point case. This case is handled by the Valid attribute
|
5144 |
|
|
-- code in the floating-point attribute run-time library.
|
5145 |
|
|
|
5146 |
|
|
if Is_Floating_Point_Type (Ptyp) then
|
5147 |
|
|
declare
|
5148 |
|
|
Pkg : RE_Id;
|
5149 |
|
|
Ftp : Entity_Id;
|
5150 |
|
|
|
5151 |
|
|
begin
|
5152 |
|
|
|
5153 |
|
|
case Float_Rep (Btyp) is
|
5154 |
|
|
|
5155 |
|
|
-- For vax fpt types, call appropriate routine in special
|
5156 |
|
|
-- vax floating point unit. No need to worry about loads in
|
5157 |
|
|
-- this case, since these types have no signalling NaN's.
|
5158 |
|
|
|
5159 |
|
|
when VAX_Native => Expand_Vax_Valid (N);
|
5160 |
|
|
|
5161 |
|
|
-- The AAMP back end handles Valid for floating-point types
|
5162 |
|
|
|
5163 |
|
|
when AAMP =>
|
5164 |
|
|
Analyze_And_Resolve (Pref, Ptyp);
|
5165 |
|
|
Set_Etype (N, Standard_Boolean);
|
5166 |
|
|
Set_Analyzed (N);
|
5167 |
|
|
|
5168 |
|
|
when IEEE_Binary =>
|
5169 |
|
|
Find_Fat_Info (Ptyp, Ftp, Pkg);
|
5170 |
|
|
|
5171 |
|
|
-- If the floating-point object might be unaligned, we
|
5172 |
|
|
-- need to call the special routine Unaligned_Valid,
|
5173 |
|
|
-- which makes the needed copy, being careful not to
|
5174 |
|
|
-- load the value into any floating-point register.
|
5175 |
|
|
-- The argument in this case is obj'Address (see
|
5176 |
|
|
-- Unaligned_Valid routine in Fat_Gen).
|
5177 |
|
|
|
5178 |
|
|
if Is_Possibly_Unaligned_Object (Pref) then
|
5179 |
|
|
Expand_Fpt_Attribute
|
5180 |
|
|
(N, Pkg, Name_Unaligned_Valid,
|
5181 |
|
|
New_List (
|
5182 |
|
|
Make_Attribute_Reference (Loc,
|
5183 |
|
|
Prefix => Relocate_Node (Pref),
|
5184 |
|
|
Attribute_Name => Name_Address)));
|
5185 |
|
|
|
5186 |
|
|
-- In the normal case where we are sure the object is
|
5187 |
|
|
-- aligned, we generate a call to Valid, and the argument
|
5188 |
|
|
-- in this case is obj'Unrestricted_Access (after
|
5189 |
|
|
-- converting obj to the right floating-point type).
|
5190 |
|
|
|
5191 |
|
|
else
|
5192 |
|
|
Expand_Fpt_Attribute
|
5193 |
|
|
(N, Pkg, Name_Valid,
|
5194 |
|
|
New_List (
|
5195 |
|
|
Make_Attribute_Reference (Loc,
|
5196 |
|
|
Prefix => Unchecked_Convert_To (Ftp, Pref),
|
5197 |
|
|
Attribute_Name => Name_Unrestricted_Access)));
|
5198 |
|
|
end if;
|
5199 |
|
|
end case;
|
5200 |
|
|
|
5201 |
|
|
-- One more task, we still need a range check. Required
|
5202 |
|
|
-- only if we have a constraint, since the Valid routine
|
5203 |
|
|
-- catches infinities properly (infinities are never valid).
|
5204 |
|
|
|
5205 |
|
|
-- The way we do the range check is simply to create the
|
5206 |
|
|
-- expression: Valid (N) and then Base_Type(Pref) in Typ.
|
5207 |
|
|
|
5208 |
|
|
if not Subtypes_Statically_Match (Ptyp, Btyp) then
|
5209 |
|
|
Rewrite (N,
|
5210 |
|
|
Make_And_Then (Loc,
|
5211 |
|
|
Left_Opnd => Relocate_Node (N),
|
5212 |
|
|
Right_Opnd =>
|
5213 |
|
|
Make_In (Loc,
|
5214 |
|
|
Left_Opnd => Convert_To (Btyp, Pref),
|
5215 |
|
|
Right_Opnd => New_Occurrence_Of (Ptyp, Loc))));
|
5216 |
|
|
end if;
|
5217 |
|
|
end;
|
5218 |
|
|
|
5219 |
|
|
-- Enumeration type with holes
|
5220 |
|
|
|
5221 |
|
|
-- For enumeration types with holes, the Pos value constructed by
|
5222 |
|
|
-- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
|
5223 |
|
|
-- second argument of False returns minus one for an invalid value,
|
5224 |
|
|
-- and the non-negative pos value for a valid value, so the
|
5225 |
|
|
-- expansion of X'Valid is simply:
|
5226 |
|
|
|
5227 |
|
|
-- type(X)'Pos (X) >= 0
|
5228 |
|
|
|
5229 |
|
|
-- We can't quite generate it that way because of the requirement
|
5230 |
|
|
-- for the non-standard second argument of False in the resulting
|
5231 |
|
|
-- rep_to_pos call, so we have to explicitly create:
|
5232 |
|
|
|
5233 |
|
|
-- _rep_to_pos (X, False) >= 0
|
5234 |
|
|
|
5235 |
|
|
-- If we have an enumeration subtype, we also check that the
|
5236 |
|
|
-- value is in range:
|
5237 |
|
|
|
5238 |
|
|
-- _rep_to_pos (X, False) >= 0
|
5239 |
|
|
-- and then
|
5240 |
|
|
-- (X >= type(X)'First and then type(X)'Last <= X)
|
5241 |
|
|
|
5242 |
|
|
elsif Is_Enumeration_Type (Ptyp)
|
5243 |
|
|
and then Present (Enum_Pos_To_Rep (Base_Type (Ptyp)))
|
5244 |
|
|
then
|
5245 |
|
|
Tst :=
|
5246 |
|
|
Make_Op_Ge (Loc,
|
5247 |
|
|
Left_Opnd =>
|
5248 |
|
|
Make_Function_Call (Loc,
|
5249 |
|
|
Name =>
|
5250 |
|
|
New_Reference_To
|
5251 |
|
|
(TSS (Base_Type (Ptyp), TSS_Rep_To_Pos), Loc),
|
5252 |
|
|
Parameter_Associations => New_List (
|
5253 |
|
|
Pref,
|
5254 |
|
|
New_Occurrence_Of (Standard_False, Loc))),
|
5255 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 0));
|
5256 |
|
|
|
5257 |
|
|
if Ptyp /= Btyp
|
5258 |
|
|
and then
|
5259 |
|
|
(Type_Low_Bound (Ptyp) /= Type_Low_Bound (Btyp)
|
5260 |
|
|
or else
|
5261 |
|
|
Type_High_Bound (Ptyp) /= Type_High_Bound (Btyp))
|
5262 |
|
|
then
|
5263 |
|
|
-- The call to Make_Range_Test will create declarations
|
5264 |
|
|
-- that need a proper insertion point, but Pref is now
|
5265 |
|
|
-- attached to a node with no ancestor. Attach to tree
|
5266 |
|
|
-- even if it is to be rewritten below.
|
5267 |
|
|
|
5268 |
|
|
Set_Parent (Tst, Parent (N));
|
5269 |
|
|
|
5270 |
|
|
Tst :=
|
5271 |
|
|
Make_And_Then (Loc,
|
5272 |
|
|
Left_Opnd => Make_Range_Test,
|
5273 |
|
|
Right_Opnd => Tst);
|
5274 |
|
|
end if;
|
5275 |
|
|
|
5276 |
|
|
Rewrite (N, Tst);
|
5277 |
|
|
|
5278 |
|
|
-- Fortran convention booleans
|
5279 |
|
|
|
5280 |
|
|
-- For the very special case of Fortran convention booleans, the
|
5281 |
|
|
-- value is always valid, since it is an integer with the semantics
|
5282 |
|
|
-- that non-zero is true, and any value is permissible.
|
5283 |
|
|
|
5284 |
|
|
elsif Is_Boolean_Type (Ptyp)
|
5285 |
|
|
and then Convention (Ptyp) = Convention_Fortran
|
5286 |
|
|
then
|
5287 |
|
|
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
|
5288 |
|
|
|
5289 |
|
|
-- For biased representations, we will be doing an unchecked
|
5290 |
|
|
-- conversion without unbiasing the result. That means that the range
|
5291 |
|
|
-- test has to take this into account, and the proper form of the
|
5292 |
|
|
-- test is:
|
5293 |
|
|
|
5294 |
|
|
-- Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
|
5295 |
|
|
|
5296 |
|
|
elsif Has_Biased_Representation (Ptyp) then
|
5297 |
|
|
Btyp := RTE (RE_Unsigned_32);
|
5298 |
|
|
Rewrite (N,
|
5299 |
|
|
Make_Op_Lt (Loc,
|
5300 |
|
|
Left_Opnd =>
|
5301 |
|
|
Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)),
|
5302 |
|
|
Right_Opnd =>
|
5303 |
|
|
Unchecked_Convert_To (Btyp,
|
5304 |
|
|
Make_Attribute_Reference (Loc,
|
5305 |
|
|
Prefix => New_Occurrence_Of (Ptyp, Loc),
|
5306 |
|
|
Attribute_Name => Name_Range_Length))));
|
5307 |
|
|
|
5308 |
|
|
-- For all other scalar types, what we want logically is a
|
5309 |
|
|
-- range test:
|
5310 |
|
|
|
5311 |
|
|
-- X in type(X)'First .. type(X)'Last
|
5312 |
|
|
|
5313 |
|
|
-- But that's precisely what won't work because of possible
|
5314 |
|
|
-- unwanted optimization (and indeed the basic motivation for
|
5315 |
|
|
-- the Valid attribute is exactly that this test does not work!)
|
5316 |
|
|
-- What will work is:
|
5317 |
|
|
|
5318 |
|
|
-- Btyp!(X) >= Btyp!(type(X)'First)
|
5319 |
|
|
-- and then
|
5320 |
|
|
-- Btyp!(X) <= Btyp!(type(X)'Last)
|
5321 |
|
|
|
5322 |
|
|
-- where Btyp is an integer type large enough to cover the full
|
5323 |
|
|
-- range of possible stored values (i.e. it is chosen on the basis
|
5324 |
|
|
-- of the size of the type, not the range of the values). We write
|
5325 |
|
|
-- this as two tests, rather than a range check, so that static
|
5326 |
|
|
-- evaluation will easily remove either or both of the checks if
|
5327 |
|
|
-- they can be -statically determined to be true (this happens
|
5328 |
|
|
-- when the type of X is static and the range extends to the full
|
5329 |
|
|
-- range of stored values).
|
5330 |
|
|
|
5331 |
|
|
-- Unsigned types. Note: it is safe to consider only whether the
|
5332 |
|
|
-- subtype is unsigned, since we will in that case be doing all
|
5333 |
|
|
-- unsigned comparisons based on the subtype range. Since we use the
|
5334 |
|
|
-- actual subtype object size, this is appropriate.
|
5335 |
|
|
|
5336 |
|
|
-- For example, if we have
|
5337 |
|
|
|
5338 |
|
|
-- subtype x is integer range 1 .. 200;
|
5339 |
|
|
-- for x'Object_Size use 8;
|
5340 |
|
|
|
5341 |
|
|
-- Now the base type is signed, but objects of this type are bits
|
5342 |
|
|
-- unsigned, and doing an unsigned test of the range 1 to 200 is
|
5343 |
|
|
-- correct, even though a value greater than 127 looks signed to a
|
5344 |
|
|
-- signed comparison.
|
5345 |
|
|
|
5346 |
|
|
elsif Is_Unsigned_Type (Ptyp) then
|
5347 |
|
|
if Esize (Ptyp) <= 32 then
|
5348 |
|
|
Btyp := RTE (RE_Unsigned_32);
|
5349 |
|
|
else
|
5350 |
|
|
Btyp := RTE (RE_Unsigned_64);
|
5351 |
|
|
end if;
|
5352 |
|
|
|
5353 |
|
|
Rewrite (N, Make_Range_Test);
|
5354 |
|
|
|
5355 |
|
|
-- Signed types
|
5356 |
|
|
|
5357 |
|
|
else
|
5358 |
|
|
if Esize (Ptyp) <= Esize (Standard_Integer) then
|
5359 |
|
|
Btyp := Standard_Integer;
|
5360 |
|
|
else
|
5361 |
|
|
Btyp := Universal_Integer;
|
5362 |
|
|
end if;
|
5363 |
|
|
|
5364 |
|
|
Rewrite (N, Make_Range_Test);
|
5365 |
|
|
end if;
|
5366 |
|
|
|
5367 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
5368 |
|
|
Validity_Checks_On := Save_Validity_Checks_On;
|
5369 |
|
|
end Valid;
|
5370 |
|
|
|
5371 |
|
|
-----------
|
5372 |
|
|
-- Value --
|
5373 |
|
|
-----------
|
5374 |
|
|
|
5375 |
|
|
-- Value attribute is handled in separate unit Exp_Imgv
|
5376 |
|
|
|
5377 |
|
|
when Attribute_Value =>
|
5378 |
|
|
Exp_Imgv.Expand_Value_Attribute (N);
|
5379 |
|
|
|
5380 |
|
|
-----------------
|
5381 |
|
|
-- Value_Size --
|
5382 |
|
|
-----------------
|
5383 |
|
|
|
5384 |
|
|
-- The processing for Value_Size shares the processing for Size
|
5385 |
|
|
|
5386 |
|
|
-------------
|
5387 |
|
|
-- Version --
|
5388 |
|
|
-------------
|
5389 |
|
|
|
5390 |
|
|
-- The processing for Version shares the processing for Body_Version
|
5391 |
|
|
|
5392 |
|
|
----------------
|
5393 |
|
|
-- Wide_Image --
|
5394 |
|
|
----------------
|
5395 |
|
|
|
5396 |
|
|
-- Wide_Image attribute is handled in separate unit Exp_Imgv
|
5397 |
|
|
|
5398 |
|
|
when Attribute_Wide_Image =>
|
5399 |
|
|
Exp_Imgv.Expand_Wide_Image_Attribute (N);
|
5400 |
|
|
|
5401 |
|
|
---------------------
|
5402 |
|
|
-- Wide_Wide_Image --
|
5403 |
|
|
---------------------
|
5404 |
|
|
|
5405 |
|
|
-- Wide_Wide_Image attribute is handled in separate unit Exp_Imgv
|
5406 |
|
|
|
5407 |
|
|
when Attribute_Wide_Wide_Image =>
|
5408 |
|
|
Exp_Imgv.Expand_Wide_Wide_Image_Attribute (N);
|
5409 |
|
|
|
5410 |
|
|
----------------
|
5411 |
|
|
-- Wide_Value --
|
5412 |
|
|
----------------
|
5413 |
|
|
|
5414 |
|
|
-- We expand typ'Wide_Value (X) into
|
5415 |
|
|
|
5416 |
|
|
-- typ'Value
|
5417 |
|
|
-- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
|
5418 |
|
|
|
5419 |
|
|
-- Wide_String_To_String is a runtime function that converts its wide
|
5420 |
|
|
-- string argument to String, converting any non-translatable characters
|
5421 |
|
|
-- into appropriate escape sequences. This preserves the required
|
5422 |
|
|
-- semantics of Wide_Value in all cases, and results in a very simple
|
5423 |
|
|
-- implementation approach.
|
5424 |
|
|
|
5425 |
|
|
-- Note: for this approach to be fully standard compliant for the cases
|
5426 |
|
|
-- where typ is Wide_Character and Wide_Wide_Character, the encoding
|
5427 |
|
|
-- method must cover the entire character range (e.g. UTF-8). But that
|
5428 |
|
|
-- is a reasonable requirement when dealing with encoded character
|
5429 |
|
|
-- sequences. Presumably if one of the restrictive encoding mechanisms
|
5430 |
|
|
-- is in use such as Shift-JIS, then characters that cannot be
|
5431 |
|
|
-- represented using this encoding will not appear in any case.
|
5432 |
|
|
|
5433 |
|
|
when Attribute_Wide_Value => Wide_Value :
|
5434 |
|
|
begin
|
5435 |
|
|
Rewrite (N,
|
5436 |
|
|
Make_Attribute_Reference (Loc,
|
5437 |
|
|
Prefix => Pref,
|
5438 |
|
|
Attribute_Name => Name_Value,
|
5439 |
|
|
|
5440 |
|
|
Expressions => New_List (
|
5441 |
|
|
Make_Function_Call (Loc,
|
5442 |
|
|
Name =>
|
5443 |
|
|
New_Reference_To (RTE (RE_Wide_String_To_String), Loc),
|
5444 |
|
|
|
5445 |
|
|
Parameter_Associations => New_List (
|
5446 |
|
|
Relocate_Node (First (Exprs)),
|
5447 |
|
|
Make_Integer_Literal (Loc,
|
5448 |
|
|
Intval => Int (Wide_Character_Encoding_Method)))))));
|
5449 |
|
|
|
5450 |
|
|
Analyze_And_Resolve (N, Typ);
|
5451 |
|
|
end Wide_Value;
|
5452 |
|
|
|
5453 |
|
|
---------------------
|
5454 |
|
|
-- Wide_Wide_Value --
|
5455 |
|
|
---------------------
|
5456 |
|
|
|
5457 |
|
|
-- We expand typ'Wide_Value_Value (X) into
|
5458 |
|
|
|
5459 |
|
|
-- typ'Value
|
5460 |
|
|
-- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
|
5461 |
|
|
|
5462 |
|
|
-- Wide_Wide_String_To_String is a runtime function that converts its
|
5463 |
|
|
-- wide string argument to String, converting any non-translatable
|
5464 |
|
|
-- characters into appropriate escape sequences. This preserves the
|
5465 |
|
|
-- required semantics of Wide_Wide_Value in all cases, and results in a
|
5466 |
|
|
-- very simple implementation approach.
|
5467 |
|
|
|
5468 |
|
|
-- It's not quite right where typ = Wide_Wide_Character, because the
|
5469 |
|
|
-- encoding method may not cover the whole character type ???
|
5470 |
|
|
|
5471 |
|
|
when Attribute_Wide_Wide_Value => Wide_Wide_Value :
|
5472 |
|
|
begin
|
5473 |
|
|
Rewrite (N,
|
5474 |
|
|
Make_Attribute_Reference (Loc,
|
5475 |
|
|
Prefix => Pref,
|
5476 |
|
|
Attribute_Name => Name_Value,
|
5477 |
|
|
|
5478 |
|
|
Expressions => New_List (
|
5479 |
|
|
Make_Function_Call (Loc,
|
5480 |
|
|
Name =>
|
5481 |
|
|
New_Reference_To (RTE (RE_Wide_Wide_String_To_String), Loc),
|
5482 |
|
|
|
5483 |
|
|
Parameter_Associations => New_List (
|
5484 |
|
|
Relocate_Node (First (Exprs)),
|
5485 |
|
|
Make_Integer_Literal (Loc,
|
5486 |
|
|
Intval => Int (Wide_Character_Encoding_Method)))))));
|
5487 |
|
|
|
5488 |
|
|
Analyze_And_Resolve (N, Typ);
|
5489 |
|
|
end Wide_Wide_Value;
|
5490 |
|
|
|
5491 |
|
|
---------------------
|
5492 |
|
|
-- Wide_Wide_Width --
|
5493 |
|
|
---------------------
|
5494 |
|
|
|
5495 |
|
|
-- Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
|
5496 |
|
|
|
5497 |
|
|
when Attribute_Wide_Wide_Width =>
|
5498 |
|
|
Exp_Imgv.Expand_Width_Attribute (N, Wide_Wide);
|
5499 |
|
|
|
5500 |
|
|
----------------
|
5501 |
|
|
-- Wide_Width --
|
5502 |
|
|
----------------
|
5503 |
|
|
|
5504 |
|
|
-- Wide_Width attribute is handled in separate unit Exp_Imgv
|
5505 |
|
|
|
5506 |
|
|
when Attribute_Wide_Width =>
|
5507 |
|
|
Exp_Imgv.Expand_Width_Attribute (N, Wide);
|
5508 |
|
|
|
5509 |
|
|
-----------
|
5510 |
|
|
-- Width --
|
5511 |
|
|
-----------
|
5512 |
|
|
|
5513 |
|
|
-- Width attribute is handled in separate unit Exp_Imgv
|
5514 |
|
|
|
5515 |
|
|
when Attribute_Width =>
|
5516 |
|
|
Exp_Imgv.Expand_Width_Attribute (N, Normal);
|
5517 |
|
|
|
5518 |
|
|
-----------
|
5519 |
|
|
-- Write --
|
5520 |
|
|
-----------
|
5521 |
|
|
|
5522 |
|
|
when Attribute_Write => Write : declare
|
5523 |
|
|
P_Type : constant Entity_Id := Entity (Pref);
|
5524 |
|
|
U_Type : constant Entity_Id := Underlying_Type (P_Type);
|
5525 |
|
|
Pname : Entity_Id;
|
5526 |
|
|
Decl : Node_Id;
|
5527 |
|
|
Prag : Node_Id;
|
5528 |
|
|
Arg3 : Node_Id;
|
5529 |
|
|
Wfunc : Node_Id;
|
5530 |
|
|
|
5531 |
|
|
begin
|
5532 |
|
|
-- If no underlying type, we have an error that will be diagnosed
|
5533 |
|
|
-- elsewhere, so here we just completely ignore the expansion.
|
5534 |
|
|
|
5535 |
|
|
if No (U_Type) then
|
5536 |
|
|
return;
|
5537 |
|
|
end if;
|
5538 |
|
|
|
5539 |
|
|
-- The simple case, if there is a TSS for Write, just call it
|
5540 |
|
|
|
5541 |
|
|
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Write);
|
5542 |
|
|
|
5543 |
|
|
if Present (Pname) then
|
5544 |
|
|
null;
|
5545 |
|
|
|
5546 |
|
|
else
|
5547 |
|
|
-- If there is a Stream_Convert pragma, use it, we rewrite
|
5548 |
|
|
|
5549 |
|
|
-- sourcetyp'Output (stream, Item)
|
5550 |
|
|
|
5551 |
|
|
-- as
|
5552 |
|
|
|
5553 |
|
|
-- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
|
5554 |
|
|
|
5555 |
|
|
-- where strmwrite is the given Write function that converts an
|
5556 |
|
|
-- argument of type sourcetyp or a type acctyp, from which it is
|
5557 |
|
|
-- derived to type strmtyp. The conversion to acttyp is required
|
5558 |
|
|
-- for the derived case.
|
5559 |
|
|
|
5560 |
|
|
Prag := Get_Stream_Convert_Pragma (P_Type);
|
5561 |
|
|
|
5562 |
|
|
if Present (Prag) then
|
5563 |
|
|
Arg3 :=
|
5564 |
|
|
Next (Next (First (Pragma_Argument_Associations (Prag))));
|
5565 |
|
|
Wfunc := Entity (Expression (Arg3));
|
5566 |
|
|
|
5567 |
|
|
Rewrite (N,
|
5568 |
|
|
Make_Attribute_Reference (Loc,
|
5569 |
|
|
Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
|
5570 |
|
|
Attribute_Name => Name_Output,
|
5571 |
|
|
Expressions => New_List (
|
5572 |
|
|
Relocate_Node (First (Exprs)),
|
5573 |
|
|
Make_Function_Call (Loc,
|
5574 |
|
|
Name => New_Occurrence_Of (Wfunc, Loc),
|
5575 |
|
|
Parameter_Associations => New_List (
|
5576 |
|
|
OK_Convert_To (Etype (First_Formal (Wfunc)),
|
5577 |
|
|
Relocate_Node (Next (First (Exprs)))))))));
|
5578 |
|
|
|
5579 |
|
|
Analyze (N);
|
5580 |
|
|
return;
|
5581 |
|
|
|
5582 |
|
|
-- For elementary types, we call the W_xxx routine directly
|
5583 |
|
|
|
5584 |
|
|
elsif Is_Elementary_Type (U_Type) then
|
5585 |
|
|
Rewrite (N, Build_Elementary_Write_Call (N));
|
5586 |
|
|
Analyze (N);
|
5587 |
|
|
return;
|
5588 |
|
|
|
5589 |
|
|
-- Array type case
|
5590 |
|
|
|
5591 |
|
|
elsif Is_Array_Type (U_Type) then
|
5592 |
|
|
Build_Array_Write_Procedure (N, U_Type, Decl, Pname);
|
5593 |
|
|
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
|
5594 |
|
|
|
5595 |
|
|
-- Tagged type case, use the primitive Write function. Note that
|
5596 |
|
|
-- this will dispatch in the class-wide case which is what we want
|
5597 |
|
|
|
5598 |
|
|
elsif Is_Tagged_Type (U_Type) then
|
5599 |
|
|
Pname := Find_Prim_Op (U_Type, TSS_Stream_Write);
|
5600 |
|
|
|
5601 |
|
|
-- All other record type cases, including protected records.
|
5602 |
|
|
-- The latter only arise for expander generated code for
|
5603 |
|
|
-- handling shared passive partition access.
|
5604 |
|
|
|
5605 |
|
|
else
|
5606 |
|
|
pragma Assert
|
5607 |
|
|
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
|
5608 |
|
|
|
5609 |
|
|
-- Ada 2005 (AI-216): Program_Error is raised when executing
|
5610 |
|
|
-- the default implementation of the Write attribute of an
|
5611 |
|
|
-- Unchecked_Union type. However, if the 'Write reference is
|
5612 |
|
|
-- within the generated Output stream procedure, Write outputs
|
5613 |
|
|
-- the components, and the default values of the discriminant
|
5614 |
|
|
-- are streamed by the Output procedure itself.
|
5615 |
|
|
|
5616 |
|
|
if Is_Unchecked_Union (Base_Type (U_Type))
|
5617 |
|
|
and not Is_TSS (Current_Scope, TSS_Stream_Output)
|
5618 |
|
|
then
|
5619 |
|
|
Insert_Action (N,
|
5620 |
|
|
Make_Raise_Program_Error (Loc,
|
5621 |
|
|
Reason => PE_Unchecked_Union_Restriction));
|
5622 |
|
|
end if;
|
5623 |
|
|
|
5624 |
|
|
if Has_Discriminants (U_Type)
|
5625 |
|
|
and then Present
|
5626 |
|
|
(Discriminant_Default_Value (First_Discriminant (U_Type)))
|
5627 |
|
|
then
|
5628 |
|
|
Build_Mutable_Record_Write_Procedure
|
5629 |
|
|
(Loc, Full_Base (U_Type), Decl, Pname);
|
5630 |
|
|
else
|
5631 |
|
|
Build_Record_Write_Procedure
|
5632 |
|
|
(Loc, Full_Base (U_Type), Decl, Pname);
|
5633 |
|
|
end if;
|
5634 |
|
|
|
5635 |
|
|
Insert_Action (N, Decl);
|
5636 |
|
|
end if;
|
5637 |
|
|
end if;
|
5638 |
|
|
|
5639 |
|
|
-- If we fall through, Pname is the procedure to be called
|
5640 |
|
|
|
5641 |
|
|
Rewrite_Stream_Proc_Call (Pname);
|
5642 |
|
|
end Write;
|
5643 |
|
|
|
5644 |
|
|
-- Component_Size is handled by the back end, unless the component size
|
5645 |
|
|
-- is known at compile time, which is always true in the packed array
|
5646 |
|
|
-- case. It is important that the packed array case is handled in the
|
5647 |
|
|
-- front end (see Eval_Attribute) since the back end would otherwise get
|
5648 |
|
|
-- confused by the equivalent packed array type.
|
5649 |
|
|
|
5650 |
|
|
when Attribute_Component_Size =>
|
5651 |
|
|
null;
|
5652 |
|
|
|
5653 |
|
|
-- The following attributes are handled by the back end (except that
|
5654 |
|
|
-- static cases have already been evaluated during semantic processing,
|
5655 |
|
|
-- but in any case the back end should not count on this). The one bit
|
5656 |
|
|
-- of special processing required is that these attributes typically
|
5657 |
|
|
-- generate conditionals in the code, so we need to check the relevant
|
5658 |
|
|
-- restriction.
|
5659 |
|
|
|
5660 |
|
|
when Attribute_Max |
|
5661 |
|
|
Attribute_Min =>
|
5662 |
|
|
Check_Restriction (No_Implicit_Conditionals, N);
|
5663 |
|
|
|
5664 |
|
|
-- The following attributes are handled by the back end (except that
|
5665 |
|
|
-- static cases have already been evaluated during semantic processing,
|
5666 |
|
|
-- but in any case the back end should not count on this).
|
5667 |
|
|
|
5668 |
|
|
-- The back end also handles the non-class-wide cases of Size
|
5669 |
|
|
|
5670 |
|
|
when Attribute_Bit_Order |
|
5671 |
|
|
Attribute_Code_Address |
|
5672 |
|
|
Attribute_Definite |
|
5673 |
|
|
Attribute_Null_Parameter |
|
5674 |
|
|
Attribute_Passed_By_Reference |
|
5675 |
|
|
Attribute_Pool_Address =>
|
5676 |
|
|
null;
|
5677 |
|
|
|
5678 |
|
|
-- The following attributes are also handled by the back end, but return
|
5679 |
|
|
-- a universal integer result, so may need a conversion for checking
|
5680 |
|
|
-- that the result is in range.
|
5681 |
|
|
|
5682 |
|
|
when Attribute_Aft |
|
5683 |
|
|
Attribute_Max_Alignment_For_Allocation =>
|
5684 |
|
|
Apply_Universal_Integer_Attribute_Checks (N);
|
5685 |
|
|
|
5686 |
|
|
-- The following attributes should not appear at this stage, since they
|
5687 |
|
|
-- have already been handled by the analyzer (and properly rewritten
|
5688 |
|
|
-- with corresponding values or entities to represent the right values)
|
5689 |
|
|
|
5690 |
|
|
when Attribute_Abort_Signal |
|
5691 |
|
|
Attribute_Address_Size |
|
5692 |
|
|
Attribute_Base |
|
5693 |
|
|
Attribute_Class |
|
5694 |
|
|
Attribute_Compiler_Version |
|
5695 |
|
|
Attribute_Default_Bit_Order |
|
5696 |
|
|
Attribute_Delta |
|
5697 |
|
|
Attribute_Denorm |
|
5698 |
|
|
Attribute_Digits |
|
5699 |
|
|
Attribute_Emax |
|
5700 |
|
|
Attribute_Enabled |
|
5701 |
|
|
Attribute_Epsilon |
|
5702 |
|
|
Attribute_Fast_Math |
|
5703 |
|
|
Attribute_Has_Access_Values |
|
5704 |
|
|
Attribute_Has_Discriminants |
|
5705 |
|
|
Attribute_Has_Tagged_Values |
|
5706 |
|
|
Attribute_Large |
|
5707 |
|
|
Attribute_Machine_Emax |
|
5708 |
|
|
Attribute_Machine_Emin |
|
5709 |
|
|
Attribute_Machine_Mantissa |
|
5710 |
|
|
Attribute_Machine_Overflows |
|
5711 |
|
|
Attribute_Machine_Radix |
|
5712 |
|
|
Attribute_Machine_Rounds |
|
5713 |
|
|
Attribute_Maximum_Alignment |
|
5714 |
|
|
Attribute_Model_Emin |
|
5715 |
|
|
Attribute_Model_Epsilon |
|
5716 |
|
|
Attribute_Model_Mantissa |
|
5717 |
|
|
Attribute_Model_Small |
|
5718 |
|
|
Attribute_Modulus |
|
5719 |
|
|
Attribute_Partition_ID |
|
5720 |
|
|
Attribute_Range |
|
5721 |
|
|
Attribute_Safe_Emax |
|
5722 |
|
|
Attribute_Safe_First |
|
5723 |
|
|
Attribute_Safe_Large |
|
5724 |
|
|
Attribute_Safe_Last |
|
5725 |
|
|
Attribute_Safe_Small |
|
5726 |
|
|
Attribute_Scale |
|
5727 |
|
|
Attribute_Signed_Zeros |
|
5728 |
|
|
Attribute_Small |
|
5729 |
|
|
Attribute_Storage_Unit |
|
5730 |
|
|
Attribute_Stub_Type |
|
5731 |
|
|
Attribute_System_Allocator_Alignment |
|
5732 |
|
|
Attribute_Target_Name |
|
5733 |
|
|
Attribute_Type_Class |
|
5734 |
|
|
Attribute_Type_Key |
|
5735 |
|
|
Attribute_Unconstrained_Array |
|
5736 |
|
|
Attribute_Universal_Literal_String |
|
5737 |
|
|
Attribute_Wchar_T_Size |
|
5738 |
|
|
Attribute_Word_Size =>
|
5739 |
|
|
raise Program_Error;
|
5740 |
|
|
|
5741 |
|
|
-- The Asm_Input and Asm_Output attributes are not expanded at this
|
5742 |
|
|
-- stage, but will be eliminated in the expansion of the Asm call, see
|
5743 |
|
|
-- Exp_Intr for details. So the back end will never see these either.
|
5744 |
|
|
|
5745 |
|
|
when Attribute_Asm_Input |
|
5746 |
|
|
Attribute_Asm_Output =>
|
5747 |
|
|
null;
|
5748 |
|
|
end case;
|
5749 |
|
|
|
5750 |
|
|
exception
|
5751 |
|
|
when RE_Not_Available =>
|
5752 |
|
|
return;
|
5753 |
|
|
end Expand_N_Attribute_Reference;
|
5754 |
|
|
|
5755 |
|
|
----------------------
|
5756 |
|
|
-- Expand_Pred_Succ --
|
5757 |
|
|
----------------------
|
5758 |
|
|
|
5759 |
|
|
-- For typ'Pred (exp), we generate the check
|
5760 |
|
|
|
5761 |
|
|
-- [constraint_error when exp = typ'Base'First]
|
5762 |
|
|
|
5763 |
|
|
-- Similarly, for typ'Succ (exp), we generate the check
|
5764 |
|
|
|
5765 |
|
|
-- [constraint_error when exp = typ'Base'Last]
|
5766 |
|
|
|
5767 |
|
|
-- These checks are not generated for modular types, since the proper
|
5768 |
|
|
-- semantics for Succ and Pred on modular types is to wrap, not raise CE.
|
5769 |
|
|
-- We also suppress these checks if we are the right side of an assignment
|
5770 |
|
|
-- statement or the expression of an object declaration, where the flag
|
5771 |
|
|
-- Suppress_Assignment_Checks is set for the assignment/declaration.
|
5772 |
|
|
|
5773 |
|
|
procedure Expand_Pred_Succ (N : Node_Id) is
|
5774 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5775 |
|
|
P : constant Node_Id := Parent (N);
|
5776 |
|
|
Cnam : Name_Id;
|
5777 |
|
|
|
5778 |
|
|
begin
|
5779 |
|
|
if Attribute_Name (N) = Name_Pred then
|
5780 |
|
|
Cnam := Name_First;
|
5781 |
|
|
else
|
5782 |
|
|
Cnam := Name_Last;
|
5783 |
|
|
end if;
|
5784 |
|
|
|
5785 |
|
|
if not Nkind_In (P, N_Assignment_Statement, N_Object_Declaration)
|
5786 |
|
|
or else not Suppress_Assignment_Checks (P)
|
5787 |
|
|
then
|
5788 |
|
|
Insert_Action (N,
|
5789 |
|
|
Make_Raise_Constraint_Error (Loc,
|
5790 |
|
|
Condition =>
|
5791 |
|
|
Make_Op_Eq (Loc,
|
5792 |
|
|
Left_Opnd =>
|
5793 |
|
|
Duplicate_Subexpr_Move_Checks (First (Expressions (N))),
|
5794 |
|
|
Right_Opnd =>
|
5795 |
|
|
Make_Attribute_Reference (Loc,
|
5796 |
|
|
Prefix =>
|
5797 |
|
|
New_Reference_To (Base_Type (Etype (Prefix (N))), Loc),
|
5798 |
|
|
Attribute_Name => Cnam)),
|
5799 |
|
|
Reason => CE_Overflow_Check_Failed));
|
5800 |
|
|
end if;
|
5801 |
|
|
end Expand_Pred_Succ;
|
5802 |
|
|
|
5803 |
|
|
-------------------
|
5804 |
|
|
-- Find_Fat_Info --
|
5805 |
|
|
-------------------
|
5806 |
|
|
|
5807 |
|
|
procedure Find_Fat_Info
|
5808 |
|
|
(T : Entity_Id;
|
5809 |
|
|
Fat_Type : out Entity_Id;
|
5810 |
|
|
Fat_Pkg : out RE_Id)
|
5811 |
|
|
is
|
5812 |
|
|
Btyp : constant Entity_Id := Base_Type (T);
|
5813 |
|
|
Rtyp : constant Entity_Id := Root_Type (T);
|
5814 |
|
|
Digs : constant Nat := UI_To_Int (Digits_Value (Btyp));
|
5815 |
|
|
|
5816 |
|
|
begin
|
5817 |
|
|
-- If the base type is VAX float, then get appropriate VAX float type
|
5818 |
|
|
|
5819 |
|
|
if Vax_Float (Btyp) then
|
5820 |
|
|
case Digs is
|
5821 |
|
|
when 6 =>
|
5822 |
|
|
Fat_Type := RTE (RE_Fat_VAX_F);
|
5823 |
|
|
Fat_Pkg := RE_Attr_VAX_F_Float;
|
5824 |
|
|
|
5825 |
|
|
when 9 =>
|
5826 |
|
|
Fat_Type := RTE (RE_Fat_VAX_D);
|
5827 |
|
|
Fat_Pkg := RE_Attr_VAX_D_Float;
|
5828 |
|
|
|
5829 |
|
|
when 15 =>
|
5830 |
|
|
Fat_Type := RTE (RE_Fat_VAX_G);
|
5831 |
|
|
Fat_Pkg := RE_Attr_VAX_G_Float;
|
5832 |
|
|
|
5833 |
|
|
when others =>
|
5834 |
|
|
raise Program_Error;
|
5835 |
|
|
end case;
|
5836 |
|
|
|
5837 |
|
|
-- If root type is VAX float, this is the case where the library has
|
5838 |
|
|
-- been recompiled in VAX float mode, and we have an IEEE float type.
|
5839 |
|
|
-- This is when we use the special IEEE Fat packages.
|
5840 |
|
|
|
5841 |
|
|
elsif Vax_Float (Rtyp) then
|
5842 |
|
|
case Digs is
|
5843 |
|
|
when 6 =>
|
5844 |
|
|
Fat_Type := RTE (RE_Fat_IEEE_Short);
|
5845 |
|
|
Fat_Pkg := RE_Attr_IEEE_Short;
|
5846 |
|
|
|
5847 |
|
|
when 15 =>
|
5848 |
|
|
Fat_Type := RTE (RE_Fat_IEEE_Long);
|
5849 |
|
|
Fat_Pkg := RE_Attr_IEEE_Long;
|
5850 |
|
|
|
5851 |
|
|
when others =>
|
5852 |
|
|
raise Program_Error;
|
5853 |
|
|
end case;
|
5854 |
|
|
|
5855 |
|
|
-- If neither the base type nor the root type is VAX_Native then VAX
|
5856 |
|
|
-- float is out of the picture, and we can just use the root type.
|
5857 |
|
|
|
5858 |
|
|
else
|
5859 |
|
|
Fat_Type := Rtyp;
|
5860 |
|
|
|
5861 |
|
|
if Fat_Type = Standard_Short_Float then
|
5862 |
|
|
Fat_Pkg := RE_Attr_Short_Float;
|
5863 |
|
|
|
5864 |
|
|
elsif Fat_Type = Standard_Float then
|
5865 |
|
|
Fat_Pkg := RE_Attr_Float;
|
5866 |
|
|
|
5867 |
|
|
elsif Fat_Type = Standard_Long_Float then
|
5868 |
|
|
Fat_Pkg := RE_Attr_Long_Float;
|
5869 |
|
|
|
5870 |
|
|
elsif Fat_Type = Standard_Long_Long_Float then
|
5871 |
|
|
Fat_Pkg := RE_Attr_Long_Long_Float;
|
5872 |
|
|
|
5873 |
|
|
-- Universal real (which is its own root type) is treated as being
|
5874 |
|
|
-- equivalent to Standard.Long_Long_Float, since it is defined to
|
5875 |
|
|
-- have the same precision as the longest Float type.
|
5876 |
|
|
|
5877 |
|
|
elsif Fat_Type = Universal_Real then
|
5878 |
|
|
Fat_Type := Standard_Long_Long_Float;
|
5879 |
|
|
Fat_Pkg := RE_Attr_Long_Long_Float;
|
5880 |
|
|
|
5881 |
|
|
else
|
5882 |
|
|
raise Program_Error;
|
5883 |
|
|
end if;
|
5884 |
|
|
end if;
|
5885 |
|
|
end Find_Fat_Info;
|
5886 |
|
|
|
5887 |
|
|
----------------------------
|
5888 |
|
|
-- Find_Stream_Subprogram --
|
5889 |
|
|
----------------------------
|
5890 |
|
|
|
5891 |
|
|
function Find_Stream_Subprogram
|
5892 |
|
|
(Typ : Entity_Id;
|
5893 |
|
|
Nam : TSS_Name_Type) return Entity_Id
|
5894 |
|
|
is
|
5895 |
|
|
Base_Typ : constant Entity_Id := Base_Type (Typ);
|
5896 |
|
|
Ent : constant Entity_Id := TSS (Typ, Nam);
|
5897 |
|
|
|
5898 |
|
|
function Is_Available (Entity : RE_Id) return Boolean;
|
5899 |
|
|
pragma Inline (Is_Available);
|
5900 |
|
|
-- Function to check whether the specified run-time call is available
|
5901 |
|
|
-- in the run time used. In the case of a configurable run time, it
|
5902 |
|
|
-- is normal that some subprograms are not there.
|
5903 |
|
|
|
5904 |
|
|
-- I don't understand this routine at all, why is this not just a
|
5905 |
|
|
-- call to RTE_Available? And if for some reason we need a different
|
5906 |
|
|
-- routine with different semantics, why is not in Rtsfind ???
|
5907 |
|
|
|
5908 |
|
|
------------------
|
5909 |
|
|
-- Is_Available --
|
5910 |
|
|
------------------
|
5911 |
|
|
|
5912 |
|
|
function Is_Available (Entity : RE_Id) return Boolean is
|
5913 |
|
|
begin
|
5914 |
|
|
-- Assume that the unit will always be available when using a
|
5915 |
|
|
-- "normal" (not configurable) run time.
|
5916 |
|
|
|
5917 |
|
|
return not Configurable_Run_Time_Mode
|
5918 |
|
|
or else RTE_Available (Entity);
|
5919 |
|
|
end Is_Available;
|
5920 |
|
|
|
5921 |
|
|
-- Start of processing for Find_Stream_Subprogram
|
5922 |
|
|
|
5923 |
|
|
begin
|
5924 |
|
|
if Present (Ent) then
|
5925 |
|
|
return Ent;
|
5926 |
|
|
end if;
|
5927 |
|
|
|
5928 |
|
|
-- Stream attributes for strings are expanded into library calls. The
|
5929 |
|
|
-- following checks are disabled when the run-time is not available or
|
5930 |
|
|
-- when compiling predefined types due to bootstrap issues. As a result,
|
5931 |
|
|
-- the compiler will generate in-place stream routines for string types
|
5932 |
|
|
-- that appear in GNAT's library, but will generate calls via rtsfind
|
5933 |
|
|
-- to library routines for user code.
|
5934 |
|
|
|
5935 |
|
|
-- ??? For now, disable this code for JVM, since this generates a
|
5936 |
|
|
-- VerifyError exception at run time on e.g. c330001.
|
5937 |
|
|
|
5938 |
|
|
-- This is disabled for AAMP, to avoid creating dependences on files not
|
5939 |
|
|
-- supported in the AAMP library (such as s-fileio.adb).
|
5940 |
|
|
|
5941 |
|
|
-- Note: In the case of using a configurable run time, it is very likely
|
5942 |
|
|
-- that stream routines for string types are not present (they require
|
5943 |
|
|
-- file system support). In this case, the specific stream routines for
|
5944 |
|
|
-- strings are not used, relying on the regular stream mechanism
|
5945 |
|
|
-- instead. That is why we include the test Is_Available when dealing
|
5946 |
|
|
-- with these cases.
|
5947 |
|
|
|
5948 |
|
|
if VM_Target /= JVM_Target
|
5949 |
|
|
and then not AAMP_On_Target
|
5950 |
|
|
and then
|
5951 |
|
|
not Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
|
5952 |
|
|
then
|
5953 |
|
|
-- String as defined in package Ada
|
5954 |
|
|
|
5955 |
|
|
if Base_Typ = Standard_String then
|
5956 |
|
|
if Restriction_Active (No_Stream_Optimizations) then
|
5957 |
|
|
if Nam = TSS_Stream_Input
|
5958 |
|
|
and then Is_Available (RE_String_Input)
|
5959 |
|
|
then
|
5960 |
|
|
return RTE (RE_String_Input);
|
5961 |
|
|
|
5962 |
|
|
elsif Nam = TSS_Stream_Output
|
5963 |
|
|
and then Is_Available (RE_String_Output)
|
5964 |
|
|
then
|
5965 |
|
|
return RTE (RE_String_Output);
|
5966 |
|
|
|
5967 |
|
|
elsif Nam = TSS_Stream_Read
|
5968 |
|
|
and then Is_Available (RE_String_Read)
|
5969 |
|
|
then
|
5970 |
|
|
return RTE (RE_String_Read);
|
5971 |
|
|
|
5972 |
|
|
elsif Nam = TSS_Stream_Write
|
5973 |
|
|
and then Is_Available (RE_String_Write)
|
5974 |
|
|
then
|
5975 |
|
|
return RTE (RE_String_Write);
|
5976 |
|
|
|
5977 |
|
|
elsif Nam /= TSS_Stream_Input and then
|
5978 |
|
|
Nam /= TSS_Stream_Output and then
|
5979 |
|
|
Nam /= TSS_Stream_Read and then
|
5980 |
|
|
Nam /= TSS_Stream_Write
|
5981 |
|
|
then
|
5982 |
|
|
raise Program_Error;
|
5983 |
|
|
end if;
|
5984 |
|
|
|
5985 |
|
|
else
|
5986 |
|
|
if Nam = TSS_Stream_Input
|
5987 |
|
|
and then Is_Available (RE_String_Input_Blk_IO)
|
5988 |
|
|
then
|
5989 |
|
|
return RTE (RE_String_Input_Blk_IO);
|
5990 |
|
|
|
5991 |
|
|
elsif Nam = TSS_Stream_Output
|
5992 |
|
|
and then Is_Available (RE_String_Output_Blk_IO)
|
5993 |
|
|
then
|
5994 |
|
|
return RTE (RE_String_Output_Blk_IO);
|
5995 |
|
|
|
5996 |
|
|
elsif Nam = TSS_Stream_Read
|
5997 |
|
|
and then Is_Available (RE_String_Read_Blk_IO)
|
5998 |
|
|
then
|
5999 |
|
|
return RTE (RE_String_Read_Blk_IO);
|
6000 |
|
|
|
6001 |
|
|
elsif Nam = TSS_Stream_Write
|
6002 |
|
|
and then Is_Available (RE_String_Write_Blk_IO)
|
6003 |
|
|
then
|
6004 |
|
|
return RTE (RE_String_Write_Blk_IO);
|
6005 |
|
|
|
6006 |
|
|
elsif Nam /= TSS_Stream_Input and then
|
6007 |
|
|
Nam /= TSS_Stream_Output and then
|
6008 |
|
|
Nam /= TSS_Stream_Read and then
|
6009 |
|
|
Nam /= TSS_Stream_Write
|
6010 |
|
|
then
|
6011 |
|
|
raise Program_Error;
|
6012 |
|
|
end if;
|
6013 |
|
|
end if;
|
6014 |
|
|
|
6015 |
|
|
-- Wide_String as defined in package Ada
|
6016 |
|
|
|
6017 |
|
|
elsif Base_Typ = Standard_Wide_String then
|
6018 |
|
|
if Restriction_Active (No_Stream_Optimizations) then
|
6019 |
|
|
if Nam = TSS_Stream_Input
|
6020 |
|
|
and then Is_Available (RE_Wide_String_Input)
|
6021 |
|
|
then
|
6022 |
|
|
return RTE (RE_Wide_String_Input);
|
6023 |
|
|
|
6024 |
|
|
elsif Nam = TSS_Stream_Output
|
6025 |
|
|
and then Is_Available (RE_Wide_String_Output)
|
6026 |
|
|
then
|
6027 |
|
|
return RTE (RE_Wide_String_Output);
|
6028 |
|
|
|
6029 |
|
|
elsif Nam = TSS_Stream_Read
|
6030 |
|
|
and then Is_Available (RE_Wide_String_Read)
|
6031 |
|
|
then
|
6032 |
|
|
return RTE (RE_Wide_String_Read);
|
6033 |
|
|
|
6034 |
|
|
elsif Nam = TSS_Stream_Write
|
6035 |
|
|
and then Is_Available (RE_Wide_String_Write)
|
6036 |
|
|
then
|
6037 |
|
|
return RTE (RE_Wide_String_Write);
|
6038 |
|
|
|
6039 |
|
|
elsif Nam /= TSS_Stream_Input and then
|
6040 |
|
|
Nam /= TSS_Stream_Output and then
|
6041 |
|
|
Nam /= TSS_Stream_Read and then
|
6042 |
|
|
Nam /= TSS_Stream_Write
|
6043 |
|
|
then
|
6044 |
|
|
raise Program_Error;
|
6045 |
|
|
end if;
|
6046 |
|
|
|
6047 |
|
|
else
|
6048 |
|
|
if Nam = TSS_Stream_Input
|
6049 |
|
|
and then Is_Available (RE_Wide_String_Input_Blk_IO)
|
6050 |
|
|
then
|
6051 |
|
|
return RTE (RE_Wide_String_Input_Blk_IO);
|
6052 |
|
|
|
6053 |
|
|
elsif Nam = TSS_Stream_Output
|
6054 |
|
|
and then Is_Available (RE_Wide_String_Output_Blk_IO)
|
6055 |
|
|
then
|
6056 |
|
|
return RTE (RE_Wide_String_Output_Blk_IO);
|
6057 |
|
|
|
6058 |
|
|
elsif Nam = TSS_Stream_Read
|
6059 |
|
|
and then Is_Available (RE_Wide_String_Read_Blk_IO)
|
6060 |
|
|
then
|
6061 |
|
|
return RTE (RE_Wide_String_Read_Blk_IO);
|
6062 |
|
|
|
6063 |
|
|
elsif Nam = TSS_Stream_Write
|
6064 |
|
|
and then Is_Available (RE_Wide_String_Write_Blk_IO)
|
6065 |
|
|
then
|
6066 |
|
|
return RTE (RE_Wide_String_Write_Blk_IO);
|
6067 |
|
|
|
6068 |
|
|
elsif Nam /= TSS_Stream_Input and then
|
6069 |
|
|
Nam /= TSS_Stream_Output and then
|
6070 |
|
|
Nam /= TSS_Stream_Read and then
|
6071 |
|
|
Nam /= TSS_Stream_Write
|
6072 |
|
|
then
|
6073 |
|
|
raise Program_Error;
|
6074 |
|
|
end if;
|
6075 |
|
|
end if;
|
6076 |
|
|
|
6077 |
|
|
-- Wide_Wide_String as defined in package Ada
|
6078 |
|
|
|
6079 |
|
|
elsif Base_Typ = Standard_Wide_Wide_String then
|
6080 |
|
|
if Restriction_Active (No_Stream_Optimizations) then
|
6081 |
|
|
if Nam = TSS_Stream_Input
|
6082 |
|
|
and then Is_Available (RE_Wide_Wide_String_Input)
|
6083 |
|
|
then
|
6084 |
|
|
return RTE (RE_Wide_Wide_String_Input);
|
6085 |
|
|
|
6086 |
|
|
elsif Nam = TSS_Stream_Output
|
6087 |
|
|
and then Is_Available (RE_Wide_Wide_String_Output)
|
6088 |
|
|
then
|
6089 |
|
|
return RTE (RE_Wide_Wide_String_Output);
|
6090 |
|
|
|
6091 |
|
|
elsif Nam = TSS_Stream_Read
|
6092 |
|
|
and then Is_Available (RE_Wide_Wide_String_Read)
|
6093 |
|
|
then
|
6094 |
|
|
return RTE (RE_Wide_Wide_String_Read);
|
6095 |
|
|
|
6096 |
|
|
elsif Nam = TSS_Stream_Write
|
6097 |
|
|
and then Is_Available (RE_Wide_Wide_String_Write)
|
6098 |
|
|
then
|
6099 |
|
|
return RTE (RE_Wide_Wide_String_Write);
|
6100 |
|
|
|
6101 |
|
|
elsif Nam /= TSS_Stream_Input and then
|
6102 |
|
|
Nam /= TSS_Stream_Output and then
|
6103 |
|
|
Nam /= TSS_Stream_Read and then
|
6104 |
|
|
Nam /= TSS_Stream_Write
|
6105 |
|
|
then
|
6106 |
|
|
raise Program_Error;
|
6107 |
|
|
end if;
|
6108 |
|
|
|
6109 |
|
|
else
|
6110 |
|
|
if Nam = TSS_Stream_Input
|
6111 |
|
|
and then Is_Available (RE_Wide_Wide_String_Input_Blk_IO)
|
6112 |
|
|
then
|
6113 |
|
|
return RTE (RE_Wide_Wide_String_Input_Blk_IO);
|
6114 |
|
|
|
6115 |
|
|
elsif Nam = TSS_Stream_Output
|
6116 |
|
|
and then Is_Available (RE_Wide_Wide_String_Output_Blk_IO)
|
6117 |
|
|
then
|
6118 |
|
|
return RTE (RE_Wide_Wide_String_Output_Blk_IO);
|
6119 |
|
|
|
6120 |
|
|
elsif Nam = TSS_Stream_Read
|
6121 |
|
|
and then Is_Available (RE_Wide_Wide_String_Read_Blk_IO)
|
6122 |
|
|
then
|
6123 |
|
|
return RTE (RE_Wide_Wide_String_Read_Blk_IO);
|
6124 |
|
|
|
6125 |
|
|
elsif Nam = TSS_Stream_Write
|
6126 |
|
|
and then Is_Available (RE_Wide_Wide_String_Write_Blk_IO)
|
6127 |
|
|
then
|
6128 |
|
|
return RTE (RE_Wide_Wide_String_Write_Blk_IO);
|
6129 |
|
|
|
6130 |
|
|
elsif Nam /= TSS_Stream_Input and then
|
6131 |
|
|
Nam /= TSS_Stream_Output and then
|
6132 |
|
|
Nam /= TSS_Stream_Read and then
|
6133 |
|
|
Nam /= TSS_Stream_Write
|
6134 |
|
|
then
|
6135 |
|
|
raise Program_Error;
|
6136 |
|
|
end if;
|
6137 |
|
|
end if;
|
6138 |
|
|
end if;
|
6139 |
|
|
end if;
|
6140 |
|
|
|
6141 |
|
|
if Is_Tagged_Type (Typ)
|
6142 |
|
|
and then Is_Derived_Type (Typ)
|
6143 |
|
|
then
|
6144 |
|
|
return Find_Prim_Op (Typ, Nam);
|
6145 |
|
|
else
|
6146 |
|
|
return Find_Inherited_TSS (Typ, Nam);
|
6147 |
|
|
end if;
|
6148 |
|
|
end Find_Stream_Subprogram;
|
6149 |
|
|
|
6150 |
|
|
---------------
|
6151 |
|
|
-- Full_Base --
|
6152 |
|
|
---------------
|
6153 |
|
|
|
6154 |
|
|
function Full_Base (T : Entity_Id) return Entity_Id is
|
6155 |
|
|
BT : Entity_Id;
|
6156 |
|
|
|
6157 |
|
|
begin
|
6158 |
|
|
BT := Base_Type (T);
|
6159 |
|
|
|
6160 |
|
|
if Is_Private_Type (BT)
|
6161 |
|
|
and then Present (Full_View (BT))
|
6162 |
|
|
then
|
6163 |
|
|
BT := Full_View (BT);
|
6164 |
|
|
end if;
|
6165 |
|
|
|
6166 |
|
|
return BT;
|
6167 |
|
|
end Full_Base;
|
6168 |
|
|
|
6169 |
|
|
-----------------------
|
6170 |
|
|
-- Get_Index_Subtype --
|
6171 |
|
|
-----------------------
|
6172 |
|
|
|
6173 |
|
|
function Get_Index_Subtype (N : Node_Id) return Node_Id is
|
6174 |
|
|
P_Type : Entity_Id := Etype (Prefix (N));
|
6175 |
|
|
Indx : Node_Id;
|
6176 |
|
|
J : Int;
|
6177 |
|
|
|
6178 |
|
|
begin
|
6179 |
|
|
if Is_Access_Type (P_Type) then
|
6180 |
|
|
P_Type := Designated_Type (P_Type);
|
6181 |
|
|
end if;
|
6182 |
|
|
|
6183 |
|
|
if No (Expressions (N)) then
|
6184 |
|
|
J := 1;
|
6185 |
|
|
else
|
6186 |
|
|
J := UI_To_Int (Expr_Value (First (Expressions (N))));
|
6187 |
|
|
end if;
|
6188 |
|
|
|
6189 |
|
|
Indx := First_Index (P_Type);
|
6190 |
|
|
while J > 1 loop
|
6191 |
|
|
Next_Index (Indx);
|
6192 |
|
|
J := J - 1;
|
6193 |
|
|
end loop;
|
6194 |
|
|
|
6195 |
|
|
return Etype (Indx);
|
6196 |
|
|
end Get_Index_Subtype;
|
6197 |
|
|
|
6198 |
|
|
-------------------------------
|
6199 |
|
|
-- Get_Stream_Convert_Pragma --
|
6200 |
|
|
-------------------------------
|
6201 |
|
|
|
6202 |
|
|
function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id is
|
6203 |
|
|
Typ : Entity_Id;
|
6204 |
|
|
N : Node_Id;
|
6205 |
|
|
|
6206 |
|
|
begin
|
6207 |
|
|
-- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
|
6208 |
|
|
-- that a stream convert pragma for a tagged type is not inherited from
|
6209 |
|
|
-- its parent. Probably what is wrong here is that it is basically
|
6210 |
|
|
-- incorrect to consider a stream convert pragma to be a representation
|
6211 |
|
|
-- pragma at all ???
|
6212 |
|
|
|
6213 |
|
|
N := First_Rep_Item (Implementation_Base_Type (T));
|
6214 |
|
|
while Present (N) loop
|
6215 |
|
|
if Nkind (N) = N_Pragma
|
6216 |
|
|
and then Pragma_Name (N) = Name_Stream_Convert
|
6217 |
|
|
then
|
6218 |
|
|
-- For tagged types this pragma is not inherited, so we
|
6219 |
|
|
-- must verify that it is defined for the given type and
|
6220 |
|
|
-- not an ancestor.
|
6221 |
|
|
|
6222 |
|
|
Typ :=
|
6223 |
|
|
Entity (Expression (First (Pragma_Argument_Associations (N))));
|
6224 |
|
|
|
6225 |
|
|
if not Is_Tagged_Type (T)
|
6226 |
|
|
or else T = Typ
|
6227 |
|
|
or else (Is_Private_Type (Typ) and then T = Full_View (Typ))
|
6228 |
|
|
then
|
6229 |
|
|
return N;
|
6230 |
|
|
end if;
|
6231 |
|
|
end if;
|
6232 |
|
|
|
6233 |
|
|
Next_Rep_Item (N);
|
6234 |
|
|
end loop;
|
6235 |
|
|
|
6236 |
|
|
return Empty;
|
6237 |
|
|
end Get_Stream_Convert_Pragma;
|
6238 |
|
|
|
6239 |
|
|
---------------------------------
|
6240 |
|
|
-- Is_Constrained_Packed_Array --
|
6241 |
|
|
---------------------------------
|
6242 |
|
|
|
6243 |
|
|
function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean is
|
6244 |
|
|
Arr : Entity_Id := Typ;
|
6245 |
|
|
|
6246 |
|
|
begin
|
6247 |
|
|
if Is_Access_Type (Arr) then
|
6248 |
|
|
Arr := Designated_Type (Arr);
|
6249 |
|
|
end if;
|
6250 |
|
|
|
6251 |
|
|
return Is_Array_Type (Arr)
|
6252 |
|
|
and then Is_Constrained (Arr)
|
6253 |
|
|
and then Present (Packed_Array_Type (Arr));
|
6254 |
|
|
end Is_Constrained_Packed_Array;
|
6255 |
|
|
|
6256 |
|
|
----------------------------------------
|
6257 |
|
|
-- Is_Inline_Floating_Point_Attribute --
|
6258 |
|
|
----------------------------------------
|
6259 |
|
|
|
6260 |
|
|
function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean is
|
6261 |
|
|
Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
|
6262 |
|
|
|
6263 |
|
|
begin
|
6264 |
|
|
if Nkind (Parent (N)) /= N_Type_Conversion
|
6265 |
|
|
or else not Is_Integer_Type (Etype (Parent (N)))
|
6266 |
|
|
then
|
6267 |
|
|
return False;
|
6268 |
|
|
end if;
|
6269 |
|
|
|
6270 |
|
|
-- Should also support 'Machine_Rounding and 'Unbiased_Rounding, but
|
6271 |
|
|
-- required back end support has not been implemented yet ???
|
6272 |
|
|
|
6273 |
|
|
return Id = Attribute_Truncation;
|
6274 |
|
|
end Is_Inline_Floating_Point_Attribute;
|
6275 |
|
|
|
6276 |
|
|
end Exp_Attr;
|