1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- E X P _ C H 4 --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Checks; use Checks;
|
28 |
|
|
with Debug; use Debug;
|
29 |
|
|
with Einfo; use Einfo;
|
30 |
|
|
with Elists; use Elists;
|
31 |
|
|
with Errout; use Errout;
|
32 |
|
|
with Exp_Aggr; use Exp_Aggr;
|
33 |
|
|
with Exp_Atag; use Exp_Atag;
|
34 |
|
|
with Exp_Ch2; use Exp_Ch2;
|
35 |
|
|
with Exp_Ch3; use Exp_Ch3;
|
36 |
|
|
with Exp_Ch6; use Exp_Ch6;
|
37 |
|
|
with Exp_Ch7; use Exp_Ch7;
|
38 |
|
|
with Exp_Ch9; use Exp_Ch9;
|
39 |
|
|
with Exp_Disp; use Exp_Disp;
|
40 |
|
|
with Exp_Fixd; use Exp_Fixd;
|
41 |
|
|
with Exp_Intr; use Exp_Intr;
|
42 |
|
|
with Exp_Pakd; use Exp_Pakd;
|
43 |
|
|
with Exp_Tss; use Exp_Tss;
|
44 |
|
|
with Exp_Util; use Exp_Util;
|
45 |
|
|
with Exp_VFpt; use Exp_VFpt;
|
46 |
|
|
with Freeze; use Freeze;
|
47 |
|
|
with Inline; use Inline;
|
48 |
|
|
with Lib; use Lib;
|
49 |
|
|
with Namet; use Namet;
|
50 |
|
|
with Nlists; use Nlists;
|
51 |
|
|
with Nmake; use Nmake;
|
52 |
|
|
with Opt; use Opt;
|
53 |
|
|
with Par_SCO; use Par_SCO;
|
54 |
|
|
with Restrict; use Restrict;
|
55 |
|
|
with Rident; use Rident;
|
56 |
|
|
with Rtsfind; use Rtsfind;
|
57 |
|
|
with Sem; use Sem;
|
58 |
|
|
with Sem_Aux; use Sem_Aux;
|
59 |
|
|
with Sem_Cat; use Sem_Cat;
|
60 |
|
|
with Sem_Ch3; use Sem_Ch3;
|
61 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
62 |
|
|
with Sem_Ch13; use Sem_Ch13;
|
63 |
|
|
with Sem_Eval; use Sem_Eval;
|
64 |
|
|
with Sem_Res; use Sem_Res;
|
65 |
|
|
with Sem_Type; use Sem_Type;
|
66 |
|
|
with Sem_Util; use Sem_Util;
|
67 |
|
|
with Sem_Warn; use Sem_Warn;
|
68 |
|
|
with Sinfo; use Sinfo;
|
69 |
|
|
with Snames; use Snames;
|
70 |
|
|
with Stand; use Stand;
|
71 |
|
|
with SCIL_LL; use SCIL_LL;
|
72 |
|
|
with Targparm; use Targparm;
|
73 |
|
|
with Tbuild; use Tbuild;
|
74 |
|
|
with Ttypes; use Ttypes;
|
75 |
|
|
with Uintp; use Uintp;
|
76 |
|
|
with Urealp; use Urealp;
|
77 |
|
|
with Validsw; use Validsw;
|
78 |
|
|
|
79 |
|
|
package body Exp_Ch4 is
|
80 |
|
|
|
81 |
|
|
-----------------------
|
82 |
|
|
-- Local Subprograms --
|
83 |
|
|
-----------------------
|
84 |
|
|
|
85 |
|
|
procedure Binary_Op_Validity_Checks (N : Node_Id);
|
86 |
|
|
pragma Inline (Binary_Op_Validity_Checks);
|
87 |
|
|
-- Performs validity checks for a binary operator
|
88 |
|
|
|
89 |
|
|
procedure Build_Boolean_Array_Proc_Call
|
90 |
|
|
(N : Node_Id;
|
91 |
|
|
Op1 : Node_Id;
|
92 |
|
|
Op2 : Node_Id);
|
93 |
|
|
-- If a boolean array assignment can be done in place, build call to
|
94 |
|
|
-- corresponding library procedure.
|
95 |
|
|
|
96 |
|
|
function Current_Anonymous_Master return Entity_Id;
|
97 |
|
|
-- Return the entity of the heterogeneous finalization master belonging to
|
98 |
|
|
-- the current unit (either function, package or procedure). This master
|
99 |
|
|
-- services all anonymous access-to-controlled types. If the current unit
|
100 |
|
|
-- does not have such master, create one.
|
101 |
|
|
|
102 |
|
|
procedure Displace_Allocator_Pointer (N : Node_Id);
|
103 |
|
|
-- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
|
104 |
|
|
-- Expand_Allocator_Expression. Allocating class-wide interface objects
|
105 |
|
|
-- this routine displaces the pointer to the allocated object to reference
|
106 |
|
|
-- the component referencing the corresponding secondary dispatch table.
|
107 |
|
|
|
108 |
|
|
procedure Expand_Allocator_Expression (N : Node_Id);
|
109 |
|
|
-- Subsidiary to Expand_N_Allocator, for the case when the expression
|
110 |
|
|
-- is a qualified expression or an aggregate.
|
111 |
|
|
|
112 |
|
|
procedure Expand_Array_Comparison (N : Node_Id);
|
113 |
|
|
-- This routine handles expansion of the comparison operators (N_Op_Lt,
|
114 |
|
|
-- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
|
115 |
|
|
-- code for these operators is similar, differing only in the details of
|
116 |
|
|
-- the actual comparison call that is made. Special processing (call a
|
117 |
|
|
-- run-time routine)
|
118 |
|
|
|
119 |
|
|
function Expand_Array_Equality
|
120 |
|
|
(Nod : Node_Id;
|
121 |
|
|
Lhs : Node_Id;
|
122 |
|
|
Rhs : Node_Id;
|
123 |
|
|
Bodies : List_Id;
|
124 |
|
|
Typ : Entity_Id) return Node_Id;
|
125 |
|
|
-- Expand an array equality into a call to a function implementing this
|
126 |
|
|
-- equality, and a call to it. Loc is the location for the generated nodes.
|
127 |
|
|
-- Lhs and Rhs are the array expressions to be compared. Bodies is a list
|
128 |
|
|
-- on which to attach bodies of local functions that are created in the
|
129 |
|
|
-- process. It is the responsibility of the caller to insert those bodies
|
130 |
|
|
-- at the right place. Nod provides the Sloc value for the generated code.
|
131 |
|
|
-- Normally the types used for the generated equality routine are taken
|
132 |
|
|
-- from Lhs and Rhs. However, in some situations of generated code, the
|
133 |
|
|
-- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
|
134 |
|
|
-- the type to be used for the formal parameters.
|
135 |
|
|
|
136 |
|
|
procedure Expand_Boolean_Operator (N : Node_Id);
|
137 |
|
|
-- Common expansion processing for Boolean operators (And, Or, Xor) for the
|
138 |
|
|
-- case of array type arguments.
|
139 |
|
|
|
140 |
|
|
procedure Expand_Short_Circuit_Operator (N : Node_Id);
|
141 |
|
|
-- Common expansion processing for short-circuit boolean operators
|
142 |
|
|
|
143 |
|
|
function Expand_Composite_Equality
|
144 |
|
|
(Nod : Node_Id;
|
145 |
|
|
Typ : Entity_Id;
|
146 |
|
|
Lhs : Node_Id;
|
147 |
|
|
Rhs : Node_Id;
|
148 |
|
|
Bodies : List_Id) return Node_Id;
|
149 |
|
|
-- Local recursive function used to expand equality for nested composite
|
150 |
|
|
-- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
|
151 |
|
|
-- to attach bodies of local functions that are created in the process.
|
152 |
|
|
-- This is the responsibility of the caller to insert those bodies at the
|
153 |
|
|
-- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
|
154 |
|
|
-- are the left and right sides for the comparison, and Typ is the type of
|
155 |
|
|
-- the arrays to compare.
|
156 |
|
|
|
157 |
|
|
procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
|
158 |
|
|
-- Routine to expand concatenation of a sequence of two or more operands
|
159 |
|
|
-- (in the list Operands) and replace node Cnode with the result of the
|
160 |
|
|
-- concatenation. The operands can be of any appropriate type, and can
|
161 |
|
|
-- include both arrays and singleton elements.
|
162 |
|
|
|
163 |
|
|
procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
|
164 |
|
|
-- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
|
165 |
|
|
-- fixed. We do not have such a type at runtime, so the purpose of this
|
166 |
|
|
-- routine is to find the real type by looking up the tree. We also
|
167 |
|
|
-- determine if the operation must be rounded.
|
168 |
|
|
|
169 |
|
|
function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
|
170 |
|
|
-- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
|
171 |
|
|
-- discriminants if it has a constrained nominal type, unless the object
|
172 |
|
|
-- is a component of an enclosing Unchecked_Union object that is subject
|
173 |
|
|
-- to a per-object constraint and the enclosing object lacks inferable
|
174 |
|
|
-- discriminants.
|
175 |
|
|
--
|
176 |
|
|
-- An expression of an Unchecked_Union type has inferable discriminants
|
177 |
|
|
-- if it is either a name of an object with inferable discriminants or a
|
178 |
|
|
-- qualified expression whose subtype mark denotes a constrained subtype.
|
179 |
|
|
|
180 |
|
|
procedure Insert_Dereference_Action (N : Node_Id);
|
181 |
|
|
-- N is an expression whose type is an access. When the type of the
|
182 |
|
|
-- associated storage pool is derived from Checked_Pool, generate a
|
183 |
|
|
-- call to the 'Dereference' primitive operation.
|
184 |
|
|
|
185 |
|
|
function Make_Array_Comparison_Op
|
186 |
|
|
(Typ : Entity_Id;
|
187 |
|
|
Nod : Node_Id) return Node_Id;
|
188 |
|
|
-- Comparisons between arrays are expanded in line. This function produces
|
189 |
|
|
-- the body of the implementation of (a > b), where a and b are one-
|
190 |
|
|
-- dimensional arrays of some discrete type. The original node is then
|
191 |
|
|
-- expanded into the appropriate call to this function. Nod provides the
|
192 |
|
|
-- Sloc value for the generated code.
|
193 |
|
|
|
194 |
|
|
function Make_Boolean_Array_Op
|
195 |
|
|
(Typ : Entity_Id;
|
196 |
|
|
N : Node_Id) return Node_Id;
|
197 |
|
|
-- Boolean operations on boolean arrays are expanded in line. This function
|
198 |
|
|
-- produce the body for the node N, which is (a and b), (a or b), or (a xor
|
199 |
|
|
-- b). It is used only the normal case and not the packed case. The type
|
200 |
|
|
-- involved, Typ, is the Boolean array type, and the logical operations in
|
201 |
|
|
-- the body are simple boolean operations. Note that Typ is always a
|
202 |
|
|
-- constrained type (the caller has ensured this by using
|
203 |
|
|
-- Convert_To_Actual_Subtype if necessary).
|
204 |
|
|
|
205 |
|
|
procedure Optimize_Length_Comparison (N : Node_Id);
|
206 |
|
|
-- Given an expression, if it is of the form X'Length op N (or the other
|
207 |
|
|
-- way round), where N is known at compile time to be 0 or 1, and X is a
|
208 |
|
|
-- simple entity, and op is a comparison operator, optimizes it into a
|
209 |
|
|
-- comparison of First and Last.
|
210 |
|
|
|
211 |
|
|
procedure Rewrite_Comparison (N : Node_Id);
|
212 |
|
|
-- If N is the node for a comparison whose outcome can be determined at
|
213 |
|
|
-- compile time, then the node N can be rewritten with True or False. If
|
214 |
|
|
-- the outcome cannot be determined at compile time, the call has no
|
215 |
|
|
-- effect. If N is a type conversion, then this processing is applied to
|
216 |
|
|
-- its expression. If N is neither comparison nor a type conversion, the
|
217 |
|
|
-- call has no effect.
|
218 |
|
|
|
219 |
|
|
procedure Tagged_Membership
|
220 |
|
|
(N : Node_Id;
|
221 |
|
|
SCIL_Node : out Node_Id;
|
222 |
|
|
Result : out Node_Id);
|
223 |
|
|
-- Construct the expression corresponding to the tagged membership test.
|
224 |
|
|
-- Deals with a second operand being (or not) a class-wide type.
|
225 |
|
|
|
226 |
|
|
function Safe_In_Place_Array_Op
|
227 |
|
|
(Lhs : Node_Id;
|
228 |
|
|
Op1 : Node_Id;
|
229 |
|
|
Op2 : Node_Id) return Boolean;
|
230 |
|
|
-- In the context of an assignment, where the right-hand side is a boolean
|
231 |
|
|
-- operation on arrays, check whether operation can be performed in place.
|
232 |
|
|
|
233 |
|
|
procedure Unary_Op_Validity_Checks (N : Node_Id);
|
234 |
|
|
pragma Inline (Unary_Op_Validity_Checks);
|
235 |
|
|
-- Performs validity checks for a unary operator
|
236 |
|
|
|
237 |
|
|
-------------------------------
|
238 |
|
|
-- Binary_Op_Validity_Checks --
|
239 |
|
|
-------------------------------
|
240 |
|
|
|
241 |
|
|
procedure Binary_Op_Validity_Checks (N : Node_Id) is
|
242 |
|
|
begin
|
243 |
|
|
if Validity_Checks_On and Validity_Check_Operands then
|
244 |
|
|
Ensure_Valid (Left_Opnd (N));
|
245 |
|
|
Ensure_Valid (Right_Opnd (N));
|
246 |
|
|
end if;
|
247 |
|
|
end Binary_Op_Validity_Checks;
|
248 |
|
|
|
249 |
|
|
------------------------------------
|
250 |
|
|
-- Build_Boolean_Array_Proc_Call --
|
251 |
|
|
------------------------------------
|
252 |
|
|
|
253 |
|
|
procedure Build_Boolean_Array_Proc_Call
|
254 |
|
|
(N : Node_Id;
|
255 |
|
|
Op1 : Node_Id;
|
256 |
|
|
Op2 : Node_Id)
|
257 |
|
|
is
|
258 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
259 |
|
|
Kind : constant Node_Kind := Nkind (Expression (N));
|
260 |
|
|
Target : constant Node_Id :=
|
261 |
|
|
Make_Attribute_Reference (Loc,
|
262 |
|
|
Prefix => Name (N),
|
263 |
|
|
Attribute_Name => Name_Address);
|
264 |
|
|
|
265 |
|
|
Arg1 : Node_Id := Op1;
|
266 |
|
|
Arg2 : Node_Id := Op2;
|
267 |
|
|
Call_Node : Node_Id;
|
268 |
|
|
Proc_Name : Entity_Id;
|
269 |
|
|
|
270 |
|
|
begin
|
271 |
|
|
if Kind = N_Op_Not then
|
272 |
|
|
if Nkind (Op1) in N_Binary_Op then
|
273 |
|
|
|
274 |
|
|
-- Use negated version of the binary operators
|
275 |
|
|
|
276 |
|
|
if Nkind (Op1) = N_Op_And then
|
277 |
|
|
Proc_Name := RTE (RE_Vector_Nand);
|
278 |
|
|
|
279 |
|
|
elsif Nkind (Op1) = N_Op_Or then
|
280 |
|
|
Proc_Name := RTE (RE_Vector_Nor);
|
281 |
|
|
|
282 |
|
|
else pragma Assert (Nkind (Op1) = N_Op_Xor);
|
283 |
|
|
Proc_Name := RTE (RE_Vector_Xor);
|
284 |
|
|
end if;
|
285 |
|
|
|
286 |
|
|
Call_Node :=
|
287 |
|
|
Make_Procedure_Call_Statement (Loc,
|
288 |
|
|
Name => New_Occurrence_Of (Proc_Name, Loc),
|
289 |
|
|
|
290 |
|
|
Parameter_Associations => New_List (
|
291 |
|
|
Target,
|
292 |
|
|
Make_Attribute_Reference (Loc,
|
293 |
|
|
Prefix => Left_Opnd (Op1),
|
294 |
|
|
Attribute_Name => Name_Address),
|
295 |
|
|
|
296 |
|
|
Make_Attribute_Reference (Loc,
|
297 |
|
|
Prefix => Right_Opnd (Op1),
|
298 |
|
|
Attribute_Name => Name_Address),
|
299 |
|
|
|
300 |
|
|
Make_Attribute_Reference (Loc,
|
301 |
|
|
Prefix => Left_Opnd (Op1),
|
302 |
|
|
Attribute_Name => Name_Length)));
|
303 |
|
|
|
304 |
|
|
else
|
305 |
|
|
Proc_Name := RTE (RE_Vector_Not);
|
306 |
|
|
|
307 |
|
|
Call_Node :=
|
308 |
|
|
Make_Procedure_Call_Statement (Loc,
|
309 |
|
|
Name => New_Occurrence_Of (Proc_Name, Loc),
|
310 |
|
|
Parameter_Associations => New_List (
|
311 |
|
|
Target,
|
312 |
|
|
|
313 |
|
|
Make_Attribute_Reference (Loc,
|
314 |
|
|
Prefix => Op1,
|
315 |
|
|
Attribute_Name => Name_Address),
|
316 |
|
|
|
317 |
|
|
Make_Attribute_Reference (Loc,
|
318 |
|
|
Prefix => Op1,
|
319 |
|
|
Attribute_Name => Name_Length)));
|
320 |
|
|
end if;
|
321 |
|
|
|
322 |
|
|
else
|
323 |
|
|
-- We use the following equivalences:
|
324 |
|
|
|
325 |
|
|
-- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
|
326 |
|
|
-- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
|
327 |
|
|
-- (not X) xor (not Y) = X xor Y
|
328 |
|
|
-- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
|
329 |
|
|
|
330 |
|
|
if Nkind (Op1) = N_Op_Not then
|
331 |
|
|
Arg1 := Right_Opnd (Op1);
|
332 |
|
|
Arg2 := Right_Opnd (Op2);
|
333 |
|
|
if Kind = N_Op_And then
|
334 |
|
|
Proc_Name := RTE (RE_Vector_Nor);
|
335 |
|
|
elsif Kind = N_Op_Or then
|
336 |
|
|
Proc_Name := RTE (RE_Vector_Nand);
|
337 |
|
|
else
|
338 |
|
|
Proc_Name := RTE (RE_Vector_Xor);
|
339 |
|
|
end if;
|
340 |
|
|
|
341 |
|
|
else
|
342 |
|
|
if Kind = N_Op_And then
|
343 |
|
|
Proc_Name := RTE (RE_Vector_And);
|
344 |
|
|
elsif Kind = N_Op_Or then
|
345 |
|
|
Proc_Name := RTE (RE_Vector_Or);
|
346 |
|
|
elsif Nkind (Op2) = N_Op_Not then
|
347 |
|
|
Proc_Name := RTE (RE_Vector_Nxor);
|
348 |
|
|
Arg2 := Right_Opnd (Op2);
|
349 |
|
|
else
|
350 |
|
|
Proc_Name := RTE (RE_Vector_Xor);
|
351 |
|
|
end if;
|
352 |
|
|
end if;
|
353 |
|
|
|
354 |
|
|
Call_Node :=
|
355 |
|
|
Make_Procedure_Call_Statement (Loc,
|
356 |
|
|
Name => New_Occurrence_Of (Proc_Name, Loc),
|
357 |
|
|
Parameter_Associations => New_List (
|
358 |
|
|
Target,
|
359 |
|
|
Make_Attribute_Reference (Loc,
|
360 |
|
|
Prefix => Arg1,
|
361 |
|
|
Attribute_Name => Name_Address),
|
362 |
|
|
Make_Attribute_Reference (Loc,
|
363 |
|
|
Prefix => Arg2,
|
364 |
|
|
Attribute_Name => Name_Address),
|
365 |
|
|
Make_Attribute_Reference (Loc,
|
366 |
|
|
Prefix => Arg1,
|
367 |
|
|
Attribute_Name => Name_Length)));
|
368 |
|
|
end if;
|
369 |
|
|
|
370 |
|
|
Rewrite (N, Call_Node);
|
371 |
|
|
Analyze (N);
|
372 |
|
|
|
373 |
|
|
exception
|
374 |
|
|
when RE_Not_Available =>
|
375 |
|
|
return;
|
376 |
|
|
end Build_Boolean_Array_Proc_Call;
|
377 |
|
|
|
378 |
|
|
------------------------------
|
379 |
|
|
-- Current_Anonymous_Master --
|
380 |
|
|
------------------------------
|
381 |
|
|
|
382 |
|
|
function Current_Anonymous_Master return Entity_Id is
|
383 |
|
|
Decls : List_Id;
|
384 |
|
|
Loc : Source_Ptr;
|
385 |
|
|
Subp_Body : Node_Id;
|
386 |
|
|
Unit_Decl : Node_Id;
|
387 |
|
|
Unit_Id : Entity_Id;
|
388 |
|
|
|
389 |
|
|
begin
|
390 |
|
|
Unit_Id := Cunit_Entity (Current_Sem_Unit);
|
391 |
|
|
|
392 |
|
|
-- Find the entity of the current unit
|
393 |
|
|
|
394 |
|
|
if Ekind (Unit_Id) = E_Subprogram_Body then
|
395 |
|
|
|
396 |
|
|
-- When processing subprogram bodies, the proper scope is always that
|
397 |
|
|
-- of the spec.
|
398 |
|
|
|
399 |
|
|
Subp_Body := Unit_Id;
|
400 |
|
|
while Present (Subp_Body)
|
401 |
|
|
and then Nkind (Subp_Body) /= N_Subprogram_Body
|
402 |
|
|
loop
|
403 |
|
|
Subp_Body := Parent (Subp_Body);
|
404 |
|
|
end loop;
|
405 |
|
|
|
406 |
|
|
Unit_Id := Corresponding_Spec (Subp_Body);
|
407 |
|
|
end if;
|
408 |
|
|
|
409 |
|
|
Loc := Sloc (Unit_Id);
|
410 |
|
|
Unit_Decl := Unit (Cunit (Current_Sem_Unit));
|
411 |
|
|
|
412 |
|
|
-- Find the declarations list of the current unit
|
413 |
|
|
|
414 |
|
|
if Nkind (Unit_Decl) = N_Package_Declaration then
|
415 |
|
|
Unit_Decl := Specification (Unit_Decl);
|
416 |
|
|
Decls := Visible_Declarations (Unit_Decl);
|
417 |
|
|
|
418 |
|
|
if No (Decls) then
|
419 |
|
|
Decls := New_List (Make_Null_Statement (Loc));
|
420 |
|
|
Set_Visible_Declarations (Unit_Decl, Decls);
|
421 |
|
|
|
422 |
|
|
elsif Is_Empty_List (Decls) then
|
423 |
|
|
Append_To (Decls, Make_Null_Statement (Loc));
|
424 |
|
|
end if;
|
425 |
|
|
|
426 |
|
|
else
|
427 |
|
|
Decls := Declarations (Unit_Decl);
|
428 |
|
|
|
429 |
|
|
if No (Decls) then
|
430 |
|
|
Decls := New_List (Make_Null_Statement (Loc));
|
431 |
|
|
Set_Declarations (Unit_Decl, Decls);
|
432 |
|
|
|
433 |
|
|
elsif Is_Empty_List (Decls) then
|
434 |
|
|
Append_To (Decls, Make_Null_Statement (Loc));
|
435 |
|
|
end if;
|
436 |
|
|
end if;
|
437 |
|
|
|
438 |
|
|
-- The current unit has an existing anonymous master, traverse its
|
439 |
|
|
-- declarations and locate the entity.
|
440 |
|
|
|
441 |
|
|
if Has_Anonymous_Master (Unit_Id) then
|
442 |
|
|
declare
|
443 |
|
|
Decl : Node_Id;
|
444 |
|
|
Fin_Mas_Id : Entity_Id;
|
445 |
|
|
|
446 |
|
|
begin
|
447 |
|
|
Decl := First (Decls);
|
448 |
|
|
while Present (Decl) loop
|
449 |
|
|
|
450 |
|
|
-- Look for the first variable in the declarations whole type
|
451 |
|
|
-- is Finalization_Master.
|
452 |
|
|
|
453 |
|
|
if Nkind (Decl) = N_Object_Declaration then
|
454 |
|
|
Fin_Mas_Id := Defining_Identifier (Decl);
|
455 |
|
|
|
456 |
|
|
if Ekind (Fin_Mas_Id) = E_Variable
|
457 |
|
|
and then Etype (Fin_Mas_Id) = RTE (RE_Finalization_Master)
|
458 |
|
|
then
|
459 |
|
|
return Fin_Mas_Id;
|
460 |
|
|
end if;
|
461 |
|
|
end if;
|
462 |
|
|
|
463 |
|
|
Next (Decl);
|
464 |
|
|
end loop;
|
465 |
|
|
|
466 |
|
|
-- The master was not found even though the unit was labeled as
|
467 |
|
|
-- having one.
|
468 |
|
|
|
469 |
|
|
raise Program_Error;
|
470 |
|
|
end;
|
471 |
|
|
|
472 |
|
|
-- Create a new anonymous master
|
473 |
|
|
|
474 |
|
|
else
|
475 |
|
|
declare
|
476 |
|
|
First_Decl : constant Node_Id := First (Decls);
|
477 |
|
|
Action : Node_Id;
|
478 |
|
|
Fin_Mas_Id : Entity_Id;
|
479 |
|
|
|
480 |
|
|
begin
|
481 |
|
|
-- Since the master and its associated initialization is inserted
|
482 |
|
|
-- at top level, use the scope of the unit when analyzing.
|
483 |
|
|
|
484 |
|
|
Push_Scope (Unit_Id);
|
485 |
|
|
|
486 |
|
|
-- Create the finalization master
|
487 |
|
|
|
488 |
|
|
Fin_Mas_Id :=
|
489 |
|
|
Make_Defining_Identifier (Loc,
|
490 |
|
|
Chars => New_External_Name (Chars (Unit_Id), "AM"));
|
491 |
|
|
|
492 |
|
|
-- Generate:
|
493 |
|
|
-- <Fin_Mas_Id> : Finalization_Master;
|
494 |
|
|
|
495 |
|
|
Action :=
|
496 |
|
|
Make_Object_Declaration (Loc,
|
497 |
|
|
Defining_Identifier => Fin_Mas_Id,
|
498 |
|
|
Object_Definition =>
|
499 |
|
|
New_Reference_To (RTE (RE_Finalization_Master), Loc));
|
500 |
|
|
|
501 |
|
|
Insert_Before_And_Analyze (First_Decl, Action);
|
502 |
|
|
|
503 |
|
|
-- Mark the unit to prevent the generation of multiple masters
|
504 |
|
|
|
505 |
|
|
Set_Has_Anonymous_Master (Unit_Id);
|
506 |
|
|
|
507 |
|
|
-- Do not set the base pool and mode of operation on .NET/JVM
|
508 |
|
|
-- since those targets do not support pools and all VM masters
|
509 |
|
|
-- are heterogeneous by default.
|
510 |
|
|
|
511 |
|
|
if VM_Target = No_VM then
|
512 |
|
|
|
513 |
|
|
-- Generate:
|
514 |
|
|
-- Set_Base_Pool
|
515 |
|
|
-- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
|
516 |
|
|
|
517 |
|
|
Action :=
|
518 |
|
|
Make_Procedure_Call_Statement (Loc,
|
519 |
|
|
Name =>
|
520 |
|
|
New_Reference_To (RTE (RE_Set_Base_Pool), Loc),
|
521 |
|
|
|
522 |
|
|
Parameter_Associations => New_List (
|
523 |
|
|
New_Reference_To (Fin_Mas_Id, Loc),
|
524 |
|
|
Make_Attribute_Reference (Loc,
|
525 |
|
|
Prefix =>
|
526 |
|
|
New_Reference_To (RTE (RE_Global_Pool_Object), Loc),
|
527 |
|
|
Attribute_Name => Name_Unrestricted_Access)));
|
528 |
|
|
|
529 |
|
|
Insert_Before_And_Analyze (First_Decl, Action);
|
530 |
|
|
|
531 |
|
|
-- Generate:
|
532 |
|
|
-- Set_Is_Heterogeneous (<Fin_Mas_Id>);
|
533 |
|
|
|
534 |
|
|
Action :=
|
535 |
|
|
Make_Procedure_Call_Statement (Loc,
|
536 |
|
|
Name =>
|
537 |
|
|
New_Reference_To (RTE (RE_Set_Is_Heterogeneous), Loc),
|
538 |
|
|
Parameter_Associations => New_List (
|
539 |
|
|
New_Reference_To (Fin_Mas_Id, Loc)));
|
540 |
|
|
|
541 |
|
|
Insert_Before_And_Analyze (First_Decl, Action);
|
542 |
|
|
end if;
|
543 |
|
|
|
544 |
|
|
-- Restore the original state of the scope stack
|
545 |
|
|
|
546 |
|
|
Pop_Scope;
|
547 |
|
|
|
548 |
|
|
return Fin_Mas_Id;
|
549 |
|
|
end;
|
550 |
|
|
end if;
|
551 |
|
|
end Current_Anonymous_Master;
|
552 |
|
|
|
553 |
|
|
--------------------------------
|
554 |
|
|
-- Displace_Allocator_Pointer --
|
555 |
|
|
--------------------------------
|
556 |
|
|
|
557 |
|
|
procedure Displace_Allocator_Pointer (N : Node_Id) is
|
558 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
559 |
|
|
Orig_Node : constant Node_Id := Original_Node (N);
|
560 |
|
|
Dtyp : Entity_Id;
|
561 |
|
|
Etyp : Entity_Id;
|
562 |
|
|
PtrT : Entity_Id;
|
563 |
|
|
|
564 |
|
|
begin
|
565 |
|
|
-- Do nothing in case of VM targets: the virtual machine will handle
|
566 |
|
|
-- interfaces directly.
|
567 |
|
|
|
568 |
|
|
if not Tagged_Type_Expansion then
|
569 |
|
|
return;
|
570 |
|
|
end if;
|
571 |
|
|
|
572 |
|
|
pragma Assert (Nkind (N) = N_Identifier
|
573 |
|
|
and then Nkind (Orig_Node) = N_Allocator);
|
574 |
|
|
|
575 |
|
|
PtrT := Etype (Orig_Node);
|
576 |
|
|
Dtyp := Available_View (Designated_Type (PtrT));
|
577 |
|
|
Etyp := Etype (Expression (Orig_Node));
|
578 |
|
|
|
579 |
|
|
if Is_Class_Wide_Type (Dtyp)
|
580 |
|
|
and then Is_Interface (Dtyp)
|
581 |
|
|
then
|
582 |
|
|
-- If the type of the allocator expression is not an interface type
|
583 |
|
|
-- we can generate code to reference the record component containing
|
584 |
|
|
-- the pointer to the secondary dispatch table.
|
585 |
|
|
|
586 |
|
|
if not Is_Interface (Etyp) then
|
587 |
|
|
declare
|
588 |
|
|
Saved_Typ : constant Entity_Id := Etype (Orig_Node);
|
589 |
|
|
|
590 |
|
|
begin
|
591 |
|
|
-- 1) Get access to the allocated object
|
592 |
|
|
|
593 |
|
|
Rewrite (N,
|
594 |
|
|
Make_Explicit_Dereference (Loc, Relocate_Node (N)));
|
595 |
|
|
Set_Etype (N, Etyp);
|
596 |
|
|
Set_Analyzed (N);
|
597 |
|
|
|
598 |
|
|
-- 2) Add the conversion to displace the pointer to reference
|
599 |
|
|
-- the secondary dispatch table.
|
600 |
|
|
|
601 |
|
|
Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
|
602 |
|
|
Analyze_And_Resolve (N, Dtyp);
|
603 |
|
|
|
604 |
|
|
-- 3) The 'access to the secondary dispatch table will be used
|
605 |
|
|
-- as the value returned by the allocator.
|
606 |
|
|
|
607 |
|
|
Rewrite (N,
|
608 |
|
|
Make_Attribute_Reference (Loc,
|
609 |
|
|
Prefix => Relocate_Node (N),
|
610 |
|
|
Attribute_Name => Name_Access));
|
611 |
|
|
Set_Etype (N, Saved_Typ);
|
612 |
|
|
Set_Analyzed (N);
|
613 |
|
|
end;
|
614 |
|
|
|
615 |
|
|
-- If the type of the allocator expression is an interface type we
|
616 |
|
|
-- generate a run-time call to displace "this" to reference the
|
617 |
|
|
-- component containing the pointer to the secondary dispatch table
|
618 |
|
|
-- or else raise Constraint_Error if the actual object does not
|
619 |
|
|
-- implement the target interface. This case corresponds with the
|
620 |
|
|
-- following example:
|
621 |
|
|
|
622 |
|
|
-- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
|
623 |
|
|
-- begin
|
624 |
|
|
-- return new Iface_2'Class'(Obj);
|
625 |
|
|
-- end Op;
|
626 |
|
|
|
627 |
|
|
else
|
628 |
|
|
Rewrite (N,
|
629 |
|
|
Unchecked_Convert_To (PtrT,
|
630 |
|
|
Make_Function_Call (Loc,
|
631 |
|
|
Name => New_Reference_To (RTE (RE_Displace), Loc),
|
632 |
|
|
Parameter_Associations => New_List (
|
633 |
|
|
Unchecked_Convert_To (RTE (RE_Address),
|
634 |
|
|
Relocate_Node (N)),
|
635 |
|
|
|
636 |
|
|
New_Occurrence_Of
|
637 |
|
|
(Elists.Node
|
638 |
|
|
(First_Elmt
|
639 |
|
|
(Access_Disp_Table (Etype (Base_Type (Dtyp))))),
|
640 |
|
|
Loc)))));
|
641 |
|
|
Analyze_And_Resolve (N, PtrT);
|
642 |
|
|
end if;
|
643 |
|
|
end if;
|
644 |
|
|
end Displace_Allocator_Pointer;
|
645 |
|
|
|
646 |
|
|
---------------------------------
|
647 |
|
|
-- Expand_Allocator_Expression --
|
648 |
|
|
---------------------------------
|
649 |
|
|
|
650 |
|
|
procedure Expand_Allocator_Expression (N : Node_Id) is
|
651 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
652 |
|
|
Exp : constant Node_Id := Expression (Expression (N));
|
653 |
|
|
PtrT : constant Entity_Id := Etype (N);
|
654 |
|
|
DesigT : constant Entity_Id := Designated_Type (PtrT);
|
655 |
|
|
|
656 |
|
|
procedure Apply_Accessibility_Check
|
657 |
|
|
(Ref : Node_Id;
|
658 |
|
|
Built_In_Place : Boolean := False);
|
659 |
|
|
-- Ada 2005 (AI-344): For an allocator with a class-wide designated
|
660 |
|
|
-- type, generate an accessibility check to verify that the level of the
|
661 |
|
|
-- type of the created object is not deeper than the level of the access
|
662 |
|
|
-- type. If the type of the qualified expression is class- wide, then
|
663 |
|
|
-- always generate the check (except in the case where it is known to be
|
664 |
|
|
-- unnecessary, see comment below). Otherwise, only generate the check
|
665 |
|
|
-- if the level of the qualified expression type is statically deeper
|
666 |
|
|
-- than the access type.
|
667 |
|
|
--
|
668 |
|
|
-- Although the static accessibility will generally have been performed
|
669 |
|
|
-- as a legality check, it won't have been done in cases where the
|
670 |
|
|
-- allocator appears in generic body, so a run-time check is needed in
|
671 |
|
|
-- general. One special case is when the access type is declared in the
|
672 |
|
|
-- same scope as the class-wide allocator, in which case the check can
|
673 |
|
|
-- never fail, so it need not be generated.
|
674 |
|
|
--
|
675 |
|
|
-- As an open issue, there seem to be cases where the static level
|
676 |
|
|
-- associated with the class-wide object's underlying type is not
|
677 |
|
|
-- sufficient to perform the proper accessibility check, such as for
|
678 |
|
|
-- allocators in nested subprograms or accept statements initialized by
|
679 |
|
|
-- class-wide formals when the actual originates outside at a deeper
|
680 |
|
|
-- static level. The nested subprogram case might require passing
|
681 |
|
|
-- accessibility levels along with class-wide parameters, and the task
|
682 |
|
|
-- case seems to be an actual gap in the language rules that needs to
|
683 |
|
|
-- be fixed by the ARG. ???
|
684 |
|
|
|
685 |
|
|
-------------------------------
|
686 |
|
|
-- Apply_Accessibility_Check --
|
687 |
|
|
-------------------------------
|
688 |
|
|
|
689 |
|
|
procedure Apply_Accessibility_Check
|
690 |
|
|
(Ref : Node_Id;
|
691 |
|
|
Built_In_Place : Boolean := False)
|
692 |
|
|
is
|
693 |
|
|
New_Node : Node_Id;
|
694 |
|
|
|
695 |
|
|
begin
|
696 |
|
|
if Ada_Version >= Ada_2005
|
697 |
|
|
and then Is_Class_Wide_Type (DesigT)
|
698 |
|
|
and then not Scope_Suppress (Accessibility_Check)
|
699 |
|
|
and then
|
700 |
|
|
(Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
|
701 |
|
|
or else
|
702 |
|
|
(Is_Class_Wide_Type (Etype (Exp))
|
703 |
|
|
and then Scope (PtrT) /= Current_Scope))
|
704 |
|
|
then
|
705 |
|
|
-- If the allocator was built in place Ref is already a reference
|
706 |
|
|
-- to the access object initialized to the result of the allocator
|
707 |
|
|
-- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). Otherwise
|
708 |
|
|
-- it is the entity associated with the object containing the
|
709 |
|
|
-- address of the allocated object.
|
710 |
|
|
|
711 |
|
|
if Built_In_Place then
|
712 |
|
|
New_Node := New_Copy (Ref);
|
713 |
|
|
else
|
714 |
|
|
New_Node := New_Reference_To (Ref, Loc);
|
715 |
|
|
end if;
|
716 |
|
|
|
717 |
|
|
New_Node :=
|
718 |
|
|
Make_Attribute_Reference (Loc,
|
719 |
|
|
Prefix => New_Node,
|
720 |
|
|
Attribute_Name => Name_Tag);
|
721 |
|
|
|
722 |
|
|
if Tagged_Type_Expansion then
|
723 |
|
|
New_Node := Build_Get_Access_Level (Loc, New_Node);
|
724 |
|
|
|
725 |
|
|
elsif VM_Target /= No_VM then
|
726 |
|
|
New_Node :=
|
727 |
|
|
Make_Function_Call (Loc,
|
728 |
|
|
Name => New_Reference_To (RTE (RE_Get_Access_Level), Loc),
|
729 |
|
|
Parameter_Associations => New_List (New_Node));
|
730 |
|
|
|
731 |
|
|
-- Cannot generate the runtime check
|
732 |
|
|
|
733 |
|
|
else
|
734 |
|
|
return;
|
735 |
|
|
end if;
|
736 |
|
|
|
737 |
|
|
Insert_Action (N,
|
738 |
|
|
Make_Raise_Program_Error (Loc,
|
739 |
|
|
Condition =>
|
740 |
|
|
Make_Op_Gt (Loc,
|
741 |
|
|
Left_Opnd => New_Node,
|
742 |
|
|
Right_Opnd =>
|
743 |
|
|
Make_Integer_Literal (Loc, Type_Access_Level (PtrT))),
|
744 |
|
|
Reason => PE_Accessibility_Check_Failed));
|
745 |
|
|
end if;
|
746 |
|
|
end Apply_Accessibility_Check;
|
747 |
|
|
|
748 |
|
|
-- Local variables
|
749 |
|
|
|
750 |
|
|
Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
|
751 |
|
|
Indic : constant Node_Id := Subtype_Mark (Expression (N));
|
752 |
|
|
T : constant Entity_Id := Entity (Indic);
|
753 |
|
|
Node : Node_Id;
|
754 |
|
|
Tag_Assign : Node_Id;
|
755 |
|
|
Temp : Entity_Id;
|
756 |
|
|
Temp_Decl : Node_Id;
|
757 |
|
|
|
758 |
|
|
TagT : Entity_Id := Empty;
|
759 |
|
|
-- Type used as source for tag assignment
|
760 |
|
|
|
761 |
|
|
TagR : Node_Id := Empty;
|
762 |
|
|
-- Target reference for tag assignment
|
763 |
|
|
|
764 |
|
|
-- Start of processing for Expand_Allocator_Expression
|
765 |
|
|
|
766 |
|
|
begin
|
767 |
|
|
-- In the case of an Ada 2012 allocator whose initial value comes from a
|
768 |
|
|
-- function call, pass "the accessibility level determined by the point
|
769 |
|
|
-- of call" (AI05-0234) to the function. Conceptually, this belongs in
|
770 |
|
|
-- Expand_Call but it couldn't be done there (because the Etype of the
|
771 |
|
|
-- allocator wasn't set then) so we generate the parameter here. See
|
772 |
|
|
-- the Boolean variable Defer in (a block within) Expand_Call.
|
773 |
|
|
|
774 |
|
|
if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
|
775 |
|
|
declare
|
776 |
|
|
Subp : Entity_Id;
|
777 |
|
|
|
778 |
|
|
begin
|
779 |
|
|
if Nkind (Name (Exp)) = N_Explicit_Dereference then
|
780 |
|
|
Subp := Designated_Type (Etype (Prefix (Name (Exp))));
|
781 |
|
|
else
|
782 |
|
|
Subp := Entity (Name (Exp));
|
783 |
|
|
end if;
|
784 |
|
|
|
785 |
|
|
Subp := Ultimate_Alias (Subp);
|
786 |
|
|
|
787 |
|
|
if Present (Extra_Accessibility_Of_Result (Subp)) then
|
788 |
|
|
Add_Extra_Actual_To_Call
|
789 |
|
|
(Subprogram_Call => Exp,
|
790 |
|
|
Extra_Formal => Extra_Accessibility_Of_Result (Subp),
|
791 |
|
|
Extra_Actual => Dynamic_Accessibility_Level (PtrT));
|
792 |
|
|
end if;
|
793 |
|
|
end;
|
794 |
|
|
end if;
|
795 |
|
|
|
796 |
|
|
-- Would be nice to comment the branches of this very long if ???
|
797 |
|
|
|
798 |
|
|
if Is_Tagged_Type (T) or else Needs_Finalization (T) then
|
799 |
|
|
if Is_CPP_Constructor_Call (Exp) then
|
800 |
|
|
|
801 |
|
|
-- Generate:
|
802 |
|
|
-- Pnnn : constant ptr_T := new (T);
|
803 |
|
|
-- Init (Pnnn.all,...);
|
804 |
|
|
|
805 |
|
|
-- Allocate the object without an expression
|
806 |
|
|
|
807 |
|
|
Node := Relocate_Node (N);
|
808 |
|
|
Set_Expression (Node, New_Reference_To (Etype (Exp), Loc));
|
809 |
|
|
|
810 |
|
|
-- Avoid its expansion to avoid generating a call to the default
|
811 |
|
|
-- C++ constructor.
|
812 |
|
|
|
813 |
|
|
Set_Analyzed (Node);
|
814 |
|
|
|
815 |
|
|
Temp := Make_Temporary (Loc, 'P', N);
|
816 |
|
|
|
817 |
|
|
Temp_Decl :=
|
818 |
|
|
Make_Object_Declaration (Loc,
|
819 |
|
|
Defining_Identifier => Temp,
|
820 |
|
|
Constant_Present => True,
|
821 |
|
|
Object_Definition => New_Reference_To (PtrT, Loc),
|
822 |
|
|
Expression => Node);
|
823 |
|
|
Insert_Action (N, Temp_Decl);
|
824 |
|
|
|
825 |
|
|
Apply_Accessibility_Check (Temp);
|
826 |
|
|
|
827 |
|
|
-- Locate the enclosing list and insert the C++ constructor call
|
828 |
|
|
|
829 |
|
|
declare
|
830 |
|
|
P : Node_Id;
|
831 |
|
|
|
832 |
|
|
begin
|
833 |
|
|
P := Parent (Node);
|
834 |
|
|
while not Is_List_Member (P) loop
|
835 |
|
|
P := Parent (P);
|
836 |
|
|
end loop;
|
837 |
|
|
|
838 |
|
|
Insert_List_After_And_Analyze (P,
|
839 |
|
|
Build_Initialization_Call (Loc,
|
840 |
|
|
Id_Ref =>
|
841 |
|
|
Make_Explicit_Dereference (Loc,
|
842 |
|
|
Prefix => New_Reference_To (Temp, Loc)),
|
843 |
|
|
Typ => Etype (Exp),
|
844 |
|
|
Constructor_Ref => Exp));
|
845 |
|
|
end;
|
846 |
|
|
|
847 |
|
|
Rewrite (N, New_Reference_To (Temp, Loc));
|
848 |
|
|
Analyze_And_Resolve (N, PtrT);
|
849 |
|
|
return;
|
850 |
|
|
end if;
|
851 |
|
|
|
852 |
|
|
-- Ada 2005 (AI-318-02): If the initialization expression is a call
|
853 |
|
|
-- to a build-in-place function, then access to the allocated object
|
854 |
|
|
-- must be passed to the function. Currently we limit such functions
|
855 |
|
|
-- to those with constrained limited result subtypes, but eventually
|
856 |
|
|
-- we plan to expand the allowed forms of functions that are treated
|
857 |
|
|
-- as build-in-place.
|
858 |
|
|
|
859 |
|
|
if Ada_Version >= Ada_2005
|
860 |
|
|
and then Is_Build_In_Place_Function_Call (Exp)
|
861 |
|
|
then
|
862 |
|
|
Make_Build_In_Place_Call_In_Allocator (N, Exp);
|
863 |
|
|
Apply_Accessibility_Check (N, Built_In_Place => True);
|
864 |
|
|
return;
|
865 |
|
|
end if;
|
866 |
|
|
|
867 |
|
|
-- Actions inserted before:
|
868 |
|
|
-- Temp : constant ptr_T := new T'(Expression);
|
869 |
|
|
-- Temp._tag = T'tag; -- when not class-wide
|
870 |
|
|
-- [Deep_]Adjust (Temp.all);
|
871 |
|
|
|
872 |
|
|
-- We analyze by hand the new internal allocator to avoid any
|
873 |
|
|
-- recursion and inappropriate call to Initialize
|
874 |
|
|
|
875 |
|
|
-- We don't want to remove side effects when the expression must be
|
876 |
|
|
-- built in place. In the case of a build-in-place function call,
|
877 |
|
|
-- that could lead to a duplication of the call, which was already
|
878 |
|
|
-- substituted for the allocator.
|
879 |
|
|
|
880 |
|
|
if not Aggr_In_Place then
|
881 |
|
|
Remove_Side_Effects (Exp);
|
882 |
|
|
end if;
|
883 |
|
|
|
884 |
|
|
Temp := Make_Temporary (Loc, 'P', N);
|
885 |
|
|
|
886 |
|
|
-- For a class wide allocation generate the following code:
|
887 |
|
|
|
888 |
|
|
-- type Equiv_Record is record ... end record;
|
889 |
|
|
-- implicit subtype CW is <Class_Wide_Subytpe>;
|
890 |
|
|
-- temp : PtrT := new CW'(CW!(expr));
|
891 |
|
|
|
892 |
|
|
if Is_Class_Wide_Type (T) then
|
893 |
|
|
Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
|
894 |
|
|
|
895 |
|
|
-- Ada 2005 (AI-251): If the expression is a class-wide interface
|
896 |
|
|
-- object we generate code to move up "this" to reference the
|
897 |
|
|
-- base of the object before allocating the new object.
|
898 |
|
|
|
899 |
|
|
-- Note that Exp'Address is recursively expanded into a call
|
900 |
|
|
-- to Base_Address (Exp.Tag)
|
901 |
|
|
|
902 |
|
|
if Is_Class_Wide_Type (Etype (Exp))
|
903 |
|
|
and then Is_Interface (Etype (Exp))
|
904 |
|
|
and then Tagged_Type_Expansion
|
905 |
|
|
then
|
906 |
|
|
Set_Expression
|
907 |
|
|
(Expression (N),
|
908 |
|
|
Unchecked_Convert_To (Entity (Indic),
|
909 |
|
|
Make_Explicit_Dereference (Loc,
|
910 |
|
|
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
|
911 |
|
|
Make_Attribute_Reference (Loc,
|
912 |
|
|
Prefix => Exp,
|
913 |
|
|
Attribute_Name => Name_Address)))));
|
914 |
|
|
else
|
915 |
|
|
Set_Expression
|
916 |
|
|
(Expression (N),
|
917 |
|
|
Unchecked_Convert_To (Entity (Indic), Exp));
|
918 |
|
|
end if;
|
919 |
|
|
|
920 |
|
|
Analyze_And_Resolve (Expression (N), Entity (Indic));
|
921 |
|
|
end if;
|
922 |
|
|
|
923 |
|
|
-- Processing for allocators returning non-interface types
|
924 |
|
|
|
925 |
|
|
if not Is_Interface (Directly_Designated_Type (PtrT)) then
|
926 |
|
|
if Aggr_In_Place then
|
927 |
|
|
Temp_Decl :=
|
928 |
|
|
Make_Object_Declaration (Loc,
|
929 |
|
|
Defining_Identifier => Temp,
|
930 |
|
|
Object_Definition => New_Reference_To (PtrT, Loc),
|
931 |
|
|
Expression =>
|
932 |
|
|
Make_Allocator (Loc,
|
933 |
|
|
Expression =>
|
934 |
|
|
New_Reference_To (Etype (Exp), Loc)));
|
935 |
|
|
|
936 |
|
|
-- Copy the Comes_From_Source flag for the allocator we just
|
937 |
|
|
-- built, since logically this allocator is a replacement of
|
938 |
|
|
-- the original allocator node. This is for proper handling of
|
939 |
|
|
-- restriction No_Implicit_Heap_Allocations.
|
940 |
|
|
|
941 |
|
|
Set_Comes_From_Source
|
942 |
|
|
(Expression (Temp_Decl), Comes_From_Source (N));
|
943 |
|
|
|
944 |
|
|
Set_No_Initialization (Expression (Temp_Decl));
|
945 |
|
|
Insert_Action (N, Temp_Decl);
|
946 |
|
|
|
947 |
|
|
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
|
948 |
|
|
Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
|
949 |
|
|
|
950 |
|
|
-- Attach the object to the associated finalization master.
|
951 |
|
|
-- This is done manually on .NET/JVM since those compilers do
|
952 |
|
|
-- no support pools and can't benefit from internally generated
|
953 |
|
|
-- Allocate / Deallocate procedures.
|
954 |
|
|
|
955 |
|
|
if VM_Target /= No_VM
|
956 |
|
|
and then Is_Controlled (DesigT)
|
957 |
|
|
and then Present (Finalization_Master (PtrT))
|
958 |
|
|
then
|
959 |
|
|
Insert_Action (N,
|
960 |
|
|
Make_Attach_Call (
|
961 |
|
|
Obj_Ref =>
|
962 |
|
|
New_Reference_To (Temp, Loc),
|
963 |
|
|
Ptr_Typ => PtrT));
|
964 |
|
|
end if;
|
965 |
|
|
|
966 |
|
|
else
|
967 |
|
|
Node := Relocate_Node (N);
|
968 |
|
|
Set_Analyzed (Node);
|
969 |
|
|
|
970 |
|
|
Temp_Decl :=
|
971 |
|
|
Make_Object_Declaration (Loc,
|
972 |
|
|
Defining_Identifier => Temp,
|
973 |
|
|
Constant_Present => True,
|
974 |
|
|
Object_Definition => New_Reference_To (PtrT, Loc),
|
975 |
|
|
Expression => Node);
|
976 |
|
|
|
977 |
|
|
Insert_Action (N, Temp_Decl);
|
978 |
|
|
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
|
979 |
|
|
|
980 |
|
|
-- Attach the object to the associated finalization master.
|
981 |
|
|
-- This is done manually on .NET/JVM since those compilers do
|
982 |
|
|
-- no support pools and can't benefit from internally generated
|
983 |
|
|
-- Allocate / Deallocate procedures.
|
984 |
|
|
|
985 |
|
|
if VM_Target /= No_VM
|
986 |
|
|
and then Is_Controlled (DesigT)
|
987 |
|
|
and then Present (Finalization_Master (PtrT))
|
988 |
|
|
then
|
989 |
|
|
Insert_Action (N,
|
990 |
|
|
Make_Attach_Call (
|
991 |
|
|
Obj_Ref =>
|
992 |
|
|
New_Reference_To (Temp, Loc),
|
993 |
|
|
Ptr_Typ => PtrT));
|
994 |
|
|
end if;
|
995 |
|
|
end if;
|
996 |
|
|
|
997 |
|
|
-- Ada 2005 (AI-251): Handle allocators whose designated type is an
|
998 |
|
|
-- interface type. In this case we use the type of the qualified
|
999 |
|
|
-- expression to allocate the object.
|
1000 |
|
|
|
1001 |
|
|
else
|
1002 |
|
|
declare
|
1003 |
|
|
Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
|
1004 |
|
|
New_Decl : Node_Id;
|
1005 |
|
|
|
1006 |
|
|
begin
|
1007 |
|
|
New_Decl :=
|
1008 |
|
|
Make_Full_Type_Declaration (Loc,
|
1009 |
|
|
Defining_Identifier => Def_Id,
|
1010 |
|
|
Type_Definition =>
|
1011 |
|
|
Make_Access_To_Object_Definition (Loc,
|
1012 |
|
|
All_Present => True,
|
1013 |
|
|
Null_Exclusion_Present => False,
|
1014 |
|
|
Constant_Present => False,
|
1015 |
|
|
Subtype_Indication =>
|
1016 |
|
|
New_Reference_To (Etype (Exp), Loc)));
|
1017 |
|
|
|
1018 |
|
|
Insert_Action (N, New_Decl);
|
1019 |
|
|
|
1020 |
|
|
-- Inherit the allocation-related attributes from the original
|
1021 |
|
|
-- access type.
|
1022 |
|
|
|
1023 |
|
|
Set_Finalization_Master (Def_Id, Finalization_Master (PtrT));
|
1024 |
|
|
|
1025 |
|
|
Set_Associated_Storage_Pool (Def_Id,
|
1026 |
|
|
Associated_Storage_Pool (PtrT));
|
1027 |
|
|
|
1028 |
|
|
-- Declare the object using the previous type declaration
|
1029 |
|
|
|
1030 |
|
|
if Aggr_In_Place then
|
1031 |
|
|
Temp_Decl :=
|
1032 |
|
|
Make_Object_Declaration (Loc,
|
1033 |
|
|
Defining_Identifier => Temp,
|
1034 |
|
|
Object_Definition => New_Reference_To (Def_Id, Loc),
|
1035 |
|
|
Expression =>
|
1036 |
|
|
Make_Allocator (Loc,
|
1037 |
|
|
New_Reference_To (Etype (Exp), Loc)));
|
1038 |
|
|
|
1039 |
|
|
-- Copy the Comes_From_Source flag for the allocator we just
|
1040 |
|
|
-- built, since logically this allocator is a replacement of
|
1041 |
|
|
-- the original allocator node. This is for proper handling
|
1042 |
|
|
-- of restriction No_Implicit_Heap_Allocations.
|
1043 |
|
|
|
1044 |
|
|
Set_Comes_From_Source
|
1045 |
|
|
(Expression (Temp_Decl), Comes_From_Source (N));
|
1046 |
|
|
|
1047 |
|
|
Set_No_Initialization (Expression (Temp_Decl));
|
1048 |
|
|
Insert_Action (N, Temp_Decl);
|
1049 |
|
|
|
1050 |
|
|
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
|
1051 |
|
|
Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
|
1052 |
|
|
|
1053 |
|
|
else
|
1054 |
|
|
Node := Relocate_Node (N);
|
1055 |
|
|
Set_Analyzed (Node);
|
1056 |
|
|
|
1057 |
|
|
Temp_Decl :=
|
1058 |
|
|
Make_Object_Declaration (Loc,
|
1059 |
|
|
Defining_Identifier => Temp,
|
1060 |
|
|
Constant_Present => True,
|
1061 |
|
|
Object_Definition => New_Reference_To (Def_Id, Loc),
|
1062 |
|
|
Expression => Node);
|
1063 |
|
|
|
1064 |
|
|
Insert_Action (N, Temp_Decl);
|
1065 |
|
|
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
|
1066 |
|
|
end if;
|
1067 |
|
|
|
1068 |
|
|
-- Generate an additional object containing the address of the
|
1069 |
|
|
-- returned object. The type of this second object declaration
|
1070 |
|
|
-- is the correct type required for the common processing that
|
1071 |
|
|
-- is still performed by this subprogram. The displacement of
|
1072 |
|
|
-- this pointer to reference the component associated with the
|
1073 |
|
|
-- interface type will be done at the end of common processing.
|
1074 |
|
|
|
1075 |
|
|
New_Decl :=
|
1076 |
|
|
Make_Object_Declaration (Loc,
|
1077 |
|
|
Defining_Identifier => Make_Temporary (Loc, 'P'),
|
1078 |
|
|
Object_Definition => New_Reference_To (PtrT, Loc),
|
1079 |
|
|
Expression =>
|
1080 |
|
|
Unchecked_Convert_To (PtrT,
|
1081 |
|
|
New_Reference_To (Temp, Loc)));
|
1082 |
|
|
|
1083 |
|
|
Insert_Action (N, New_Decl);
|
1084 |
|
|
|
1085 |
|
|
Temp_Decl := New_Decl;
|
1086 |
|
|
Temp := Defining_Identifier (New_Decl);
|
1087 |
|
|
end;
|
1088 |
|
|
end if;
|
1089 |
|
|
|
1090 |
|
|
Apply_Accessibility_Check (Temp);
|
1091 |
|
|
|
1092 |
|
|
-- Generate the tag assignment
|
1093 |
|
|
|
1094 |
|
|
-- Suppress the tag assignment when VM_Target because VM tags are
|
1095 |
|
|
-- represented implicitly in objects.
|
1096 |
|
|
|
1097 |
|
|
if not Tagged_Type_Expansion then
|
1098 |
|
|
null;
|
1099 |
|
|
|
1100 |
|
|
-- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
|
1101 |
|
|
-- interface objects because in this case the tag does not change.
|
1102 |
|
|
|
1103 |
|
|
elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
|
1104 |
|
|
pragma Assert (Is_Class_Wide_Type
|
1105 |
|
|
(Directly_Designated_Type (Etype (N))));
|
1106 |
|
|
null;
|
1107 |
|
|
|
1108 |
|
|
elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
|
1109 |
|
|
TagT := T;
|
1110 |
|
|
TagR := New_Reference_To (Temp, Loc);
|
1111 |
|
|
|
1112 |
|
|
elsif Is_Private_Type (T)
|
1113 |
|
|
and then Is_Tagged_Type (Underlying_Type (T))
|
1114 |
|
|
then
|
1115 |
|
|
TagT := Underlying_Type (T);
|
1116 |
|
|
TagR :=
|
1117 |
|
|
Unchecked_Convert_To (Underlying_Type (T),
|
1118 |
|
|
Make_Explicit_Dereference (Loc,
|
1119 |
|
|
Prefix => New_Reference_To (Temp, Loc)));
|
1120 |
|
|
end if;
|
1121 |
|
|
|
1122 |
|
|
if Present (TagT) then
|
1123 |
|
|
declare
|
1124 |
|
|
Full_T : constant Entity_Id := Underlying_Type (TagT);
|
1125 |
|
|
begin
|
1126 |
|
|
Tag_Assign :=
|
1127 |
|
|
Make_Assignment_Statement (Loc,
|
1128 |
|
|
Name =>
|
1129 |
|
|
Make_Selected_Component (Loc,
|
1130 |
|
|
Prefix => TagR,
|
1131 |
|
|
Selector_Name =>
|
1132 |
|
|
New_Reference_To (First_Tag_Component (Full_T), Loc)),
|
1133 |
|
|
Expression =>
|
1134 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
1135 |
|
|
New_Reference_To
|
1136 |
|
|
(Elists.Node
|
1137 |
|
|
(First_Elmt (Access_Disp_Table (Full_T))), Loc)));
|
1138 |
|
|
end;
|
1139 |
|
|
|
1140 |
|
|
-- The previous assignment has to be done in any case
|
1141 |
|
|
|
1142 |
|
|
Set_Assignment_OK (Name (Tag_Assign));
|
1143 |
|
|
Insert_Action (N, Tag_Assign);
|
1144 |
|
|
end if;
|
1145 |
|
|
|
1146 |
|
|
if Needs_Finalization (DesigT)
|
1147 |
|
|
and then Needs_Finalization (T)
|
1148 |
|
|
then
|
1149 |
|
|
-- Generate an Adjust call if the object will be moved. In Ada
|
1150 |
|
|
-- 2005, the object may be inherently limited, in which case
|
1151 |
|
|
-- there is no Adjust procedure, and the object is built in
|
1152 |
|
|
-- place. In Ada 95, the object can be limited but not
|
1153 |
|
|
-- inherently limited if this allocator came from a return
|
1154 |
|
|
-- statement (we're allocating the result on the secondary
|
1155 |
|
|
-- stack). In that case, the object will be moved, so we _do_
|
1156 |
|
|
-- want to Adjust.
|
1157 |
|
|
|
1158 |
|
|
if not Aggr_In_Place
|
1159 |
|
|
and then not Is_Immutably_Limited_Type (T)
|
1160 |
|
|
then
|
1161 |
|
|
Insert_Action (N,
|
1162 |
|
|
Make_Adjust_Call (
|
1163 |
|
|
Obj_Ref =>
|
1164 |
|
|
|
1165 |
|
|
-- An unchecked conversion is needed in the classwide
|
1166 |
|
|
-- case because the designated type can be an ancestor
|
1167 |
|
|
-- of the subtype mark of the allocator.
|
1168 |
|
|
|
1169 |
|
|
Unchecked_Convert_To (T,
|
1170 |
|
|
Make_Explicit_Dereference (Loc,
|
1171 |
|
|
Prefix => New_Reference_To (Temp, Loc))),
|
1172 |
|
|
Typ => T));
|
1173 |
|
|
end if;
|
1174 |
|
|
|
1175 |
|
|
-- Generate:
|
1176 |
|
|
-- Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
|
1177 |
|
|
|
1178 |
|
|
-- Do not generate this call in the following cases:
|
1179 |
|
|
|
1180 |
|
|
-- * .NET/JVM - these targets do not support address arithmetic
|
1181 |
|
|
-- and unchecked conversion, key elements of Finalize_Address.
|
1182 |
|
|
|
1183 |
|
|
-- * Alfa mode - the call is useless and results in unwanted
|
1184 |
|
|
-- expansion.
|
1185 |
|
|
|
1186 |
|
|
-- * CodePeer mode - TSS primitive Finalize_Address is not
|
1187 |
|
|
-- created in this mode.
|
1188 |
|
|
|
1189 |
|
|
if VM_Target = No_VM
|
1190 |
|
|
and then not Alfa_Mode
|
1191 |
|
|
and then not CodePeer_Mode
|
1192 |
|
|
and then Present (Finalization_Master (PtrT))
|
1193 |
|
|
and then Present (Temp_Decl)
|
1194 |
|
|
and then Nkind (Expression (Temp_Decl)) = N_Allocator
|
1195 |
|
|
then
|
1196 |
|
|
Insert_Action (N,
|
1197 |
|
|
Make_Set_Finalize_Address_Call
|
1198 |
|
|
(Loc => Loc,
|
1199 |
|
|
Typ => T,
|
1200 |
|
|
Ptr_Typ => PtrT));
|
1201 |
|
|
end if;
|
1202 |
|
|
end if;
|
1203 |
|
|
|
1204 |
|
|
Rewrite (N, New_Reference_To (Temp, Loc));
|
1205 |
|
|
Analyze_And_Resolve (N, PtrT);
|
1206 |
|
|
|
1207 |
|
|
-- Ada 2005 (AI-251): Displace the pointer to reference the record
|
1208 |
|
|
-- component containing the secondary dispatch table of the interface
|
1209 |
|
|
-- type.
|
1210 |
|
|
|
1211 |
|
|
if Is_Interface (Directly_Designated_Type (PtrT)) then
|
1212 |
|
|
Displace_Allocator_Pointer (N);
|
1213 |
|
|
end if;
|
1214 |
|
|
|
1215 |
|
|
elsif Aggr_In_Place then
|
1216 |
|
|
Temp := Make_Temporary (Loc, 'P', N);
|
1217 |
|
|
Temp_Decl :=
|
1218 |
|
|
Make_Object_Declaration (Loc,
|
1219 |
|
|
Defining_Identifier => Temp,
|
1220 |
|
|
Object_Definition => New_Reference_To (PtrT, Loc),
|
1221 |
|
|
Expression =>
|
1222 |
|
|
Make_Allocator (Loc,
|
1223 |
|
|
Expression => New_Reference_To (Etype (Exp), Loc)));
|
1224 |
|
|
|
1225 |
|
|
-- Copy the Comes_From_Source flag for the allocator we just built,
|
1226 |
|
|
-- since logically this allocator is a replacement of the original
|
1227 |
|
|
-- allocator node. This is for proper handling of restriction
|
1228 |
|
|
-- No_Implicit_Heap_Allocations.
|
1229 |
|
|
|
1230 |
|
|
Set_Comes_From_Source
|
1231 |
|
|
(Expression (Temp_Decl), Comes_From_Source (N));
|
1232 |
|
|
|
1233 |
|
|
Set_No_Initialization (Expression (Temp_Decl));
|
1234 |
|
|
Insert_Action (N, Temp_Decl);
|
1235 |
|
|
|
1236 |
|
|
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
|
1237 |
|
|
Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
|
1238 |
|
|
|
1239 |
|
|
-- Attach the object to the associated finalization master. Thisis
|
1240 |
|
|
-- done manually on .NET/JVM since those compilers do no support
|
1241 |
|
|
-- pools and cannot benefit from internally generated Allocate and
|
1242 |
|
|
-- Deallocate procedures.
|
1243 |
|
|
|
1244 |
|
|
if VM_Target /= No_VM
|
1245 |
|
|
and then Is_Controlled (DesigT)
|
1246 |
|
|
and then Present (Finalization_Master (PtrT))
|
1247 |
|
|
then
|
1248 |
|
|
Insert_Action (N,
|
1249 |
|
|
Make_Attach_Call
|
1250 |
|
|
(Obj_Ref => New_Reference_To (Temp, Loc),
|
1251 |
|
|
Ptr_Typ => PtrT));
|
1252 |
|
|
end if;
|
1253 |
|
|
|
1254 |
|
|
Rewrite (N, New_Reference_To (Temp, Loc));
|
1255 |
|
|
Analyze_And_Resolve (N, PtrT);
|
1256 |
|
|
|
1257 |
|
|
elsif Is_Access_Type (T)
|
1258 |
|
|
and then Can_Never_Be_Null (T)
|
1259 |
|
|
then
|
1260 |
|
|
Install_Null_Excluding_Check (Exp);
|
1261 |
|
|
|
1262 |
|
|
elsif Is_Access_Type (DesigT)
|
1263 |
|
|
and then Nkind (Exp) = N_Allocator
|
1264 |
|
|
and then Nkind (Expression (Exp)) /= N_Qualified_Expression
|
1265 |
|
|
then
|
1266 |
|
|
-- Apply constraint to designated subtype indication
|
1267 |
|
|
|
1268 |
|
|
Apply_Constraint_Check (Expression (Exp),
|
1269 |
|
|
Designated_Type (DesigT),
|
1270 |
|
|
No_Sliding => True);
|
1271 |
|
|
|
1272 |
|
|
if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
|
1273 |
|
|
|
1274 |
|
|
-- Propagate constraint_error to enclosing allocator
|
1275 |
|
|
|
1276 |
|
|
Rewrite (Exp, New_Copy (Expression (Exp)));
|
1277 |
|
|
end if;
|
1278 |
|
|
|
1279 |
|
|
else
|
1280 |
|
|
Build_Allocate_Deallocate_Proc (N, True);
|
1281 |
|
|
|
1282 |
|
|
-- If we have:
|
1283 |
|
|
-- type A is access T1;
|
1284 |
|
|
-- X : A := new T2'(...);
|
1285 |
|
|
-- T1 and T2 can be different subtypes, and we might need to check
|
1286 |
|
|
-- both constraints. First check against the type of the qualified
|
1287 |
|
|
-- expression.
|
1288 |
|
|
|
1289 |
|
|
Apply_Constraint_Check (Exp, T, No_Sliding => True);
|
1290 |
|
|
|
1291 |
|
|
if Do_Range_Check (Exp) then
|
1292 |
|
|
Set_Do_Range_Check (Exp, False);
|
1293 |
|
|
Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
|
1294 |
|
|
end if;
|
1295 |
|
|
|
1296 |
|
|
-- A check is also needed in cases where the designated subtype is
|
1297 |
|
|
-- constrained and differs from the subtype given in the qualified
|
1298 |
|
|
-- expression. Note that the check on the qualified expression does
|
1299 |
|
|
-- not allow sliding, but this check does (a relaxation from Ada 83).
|
1300 |
|
|
|
1301 |
|
|
if Is_Constrained (DesigT)
|
1302 |
|
|
and then not Subtypes_Statically_Match (T, DesigT)
|
1303 |
|
|
then
|
1304 |
|
|
Apply_Constraint_Check
|
1305 |
|
|
(Exp, DesigT, No_Sliding => False);
|
1306 |
|
|
|
1307 |
|
|
if Do_Range_Check (Exp) then
|
1308 |
|
|
Set_Do_Range_Check (Exp, False);
|
1309 |
|
|
Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
|
1310 |
|
|
end if;
|
1311 |
|
|
end if;
|
1312 |
|
|
|
1313 |
|
|
-- For an access to unconstrained packed array, GIGI needs to see an
|
1314 |
|
|
-- expression with a constrained subtype in order to compute the
|
1315 |
|
|
-- proper size for the allocator.
|
1316 |
|
|
|
1317 |
|
|
if Is_Array_Type (T)
|
1318 |
|
|
and then not Is_Constrained (T)
|
1319 |
|
|
and then Is_Packed (T)
|
1320 |
|
|
then
|
1321 |
|
|
declare
|
1322 |
|
|
ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
|
1323 |
|
|
Internal_Exp : constant Node_Id := Relocate_Node (Exp);
|
1324 |
|
|
begin
|
1325 |
|
|
Insert_Action (Exp,
|
1326 |
|
|
Make_Subtype_Declaration (Loc,
|
1327 |
|
|
Defining_Identifier => ConstrT,
|
1328 |
|
|
Subtype_Indication =>
|
1329 |
|
|
Make_Subtype_From_Expr (Internal_Exp, T)));
|
1330 |
|
|
Freeze_Itype (ConstrT, Exp);
|
1331 |
|
|
Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
|
1332 |
|
|
end;
|
1333 |
|
|
end if;
|
1334 |
|
|
|
1335 |
|
|
-- Ada 2005 (AI-318-02): If the initialization expression is a call
|
1336 |
|
|
-- to a build-in-place function, then access to the allocated object
|
1337 |
|
|
-- must be passed to the function. Currently we limit such functions
|
1338 |
|
|
-- to those with constrained limited result subtypes, but eventually
|
1339 |
|
|
-- we plan to expand the allowed forms of functions that are treated
|
1340 |
|
|
-- as build-in-place.
|
1341 |
|
|
|
1342 |
|
|
if Ada_Version >= Ada_2005
|
1343 |
|
|
and then Is_Build_In_Place_Function_Call (Exp)
|
1344 |
|
|
then
|
1345 |
|
|
Make_Build_In_Place_Call_In_Allocator (N, Exp);
|
1346 |
|
|
end if;
|
1347 |
|
|
end if;
|
1348 |
|
|
|
1349 |
|
|
exception
|
1350 |
|
|
when RE_Not_Available =>
|
1351 |
|
|
return;
|
1352 |
|
|
end Expand_Allocator_Expression;
|
1353 |
|
|
|
1354 |
|
|
-----------------------------
|
1355 |
|
|
-- Expand_Array_Comparison --
|
1356 |
|
|
-----------------------------
|
1357 |
|
|
|
1358 |
|
|
-- Expansion is only required in the case of array types. For the unpacked
|
1359 |
|
|
-- case, an appropriate runtime routine is called. For packed cases, and
|
1360 |
|
|
-- also in some other cases where a runtime routine cannot be called, the
|
1361 |
|
|
-- form of the expansion is:
|
1362 |
|
|
|
1363 |
|
|
-- [body for greater_nn; boolean_expression]
|
1364 |
|
|
|
1365 |
|
|
-- The body is built by Make_Array_Comparison_Op, and the form of the
|
1366 |
|
|
-- Boolean expression depends on the operator involved.
|
1367 |
|
|
|
1368 |
|
|
procedure Expand_Array_Comparison (N : Node_Id) is
|
1369 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1370 |
|
|
Op1 : Node_Id := Left_Opnd (N);
|
1371 |
|
|
Op2 : Node_Id := Right_Opnd (N);
|
1372 |
|
|
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
|
1373 |
|
|
Ctyp : constant Entity_Id := Component_Type (Typ1);
|
1374 |
|
|
|
1375 |
|
|
Expr : Node_Id;
|
1376 |
|
|
Func_Body : Node_Id;
|
1377 |
|
|
Func_Name : Entity_Id;
|
1378 |
|
|
|
1379 |
|
|
Comp : RE_Id;
|
1380 |
|
|
|
1381 |
|
|
Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
|
1382 |
|
|
-- True for byte addressable target
|
1383 |
|
|
|
1384 |
|
|
function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
|
1385 |
|
|
-- Returns True if the length of the given operand is known to be less
|
1386 |
|
|
-- than 4. Returns False if this length is known to be four or greater
|
1387 |
|
|
-- or is not known at compile time.
|
1388 |
|
|
|
1389 |
|
|
------------------------
|
1390 |
|
|
-- Length_Less_Than_4 --
|
1391 |
|
|
------------------------
|
1392 |
|
|
|
1393 |
|
|
function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
|
1394 |
|
|
Otyp : constant Entity_Id := Etype (Opnd);
|
1395 |
|
|
|
1396 |
|
|
begin
|
1397 |
|
|
if Ekind (Otyp) = E_String_Literal_Subtype then
|
1398 |
|
|
return String_Literal_Length (Otyp) < 4;
|
1399 |
|
|
|
1400 |
|
|
else
|
1401 |
|
|
declare
|
1402 |
|
|
Ityp : constant Entity_Id := Etype (First_Index (Otyp));
|
1403 |
|
|
Lo : constant Node_Id := Type_Low_Bound (Ityp);
|
1404 |
|
|
Hi : constant Node_Id := Type_High_Bound (Ityp);
|
1405 |
|
|
Lov : Uint;
|
1406 |
|
|
Hiv : Uint;
|
1407 |
|
|
|
1408 |
|
|
begin
|
1409 |
|
|
if Compile_Time_Known_Value (Lo) then
|
1410 |
|
|
Lov := Expr_Value (Lo);
|
1411 |
|
|
else
|
1412 |
|
|
return False;
|
1413 |
|
|
end if;
|
1414 |
|
|
|
1415 |
|
|
if Compile_Time_Known_Value (Hi) then
|
1416 |
|
|
Hiv := Expr_Value (Hi);
|
1417 |
|
|
else
|
1418 |
|
|
return False;
|
1419 |
|
|
end if;
|
1420 |
|
|
|
1421 |
|
|
return Hiv < Lov + 3;
|
1422 |
|
|
end;
|
1423 |
|
|
end if;
|
1424 |
|
|
end Length_Less_Than_4;
|
1425 |
|
|
|
1426 |
|
|
-- Start of processing for Expand_Array_Comparison
|
1427 |
|
|
|
1428 |
|
|
begin
|
1429 |
|
|
-- Deal first with unpacked case, where we can call a runtime routine
|
1430 |
|
|
-- except that we avoid this for targets for which are not addressable
|
1431 |
|
|
-- by bytes, and for the JVM/CIL, since they do not support direct
|
1432 |
|
|
-- addressing of array components.
|
1433 |
|
|
|
1434 |
|
|
if not Is_Bit_Packed_Array (Typ1)
|
1435 |
|
|
and then Byte_Addressable
|
1436 |
|
|
and then VM_Target = No_VM
|
1437 |
|
|
then
|
1438 |
|
|
-- The call we generate is:
|
1439 |
|
|
|
1440 |
|
|
-- Compare_Array_xn[_Unaligned]
|
1441 |
|
|
-- (left'address, right'address, left'length, right'length) <op> 0
|
1442 |
|
|
|
1443 |
|
|
-- x = U for unsigned, S for signed
|
1444 |
|
|
-- n = 8,16,32,64 for component size
|
1445 |
|
|
-- Add _Unaligned if length < 4 and component size is 8.
|
1446 |
|
|
-- <op> is the standard comparison operator
|
1447 |
|
|
|
1448 |
|
|
if Component_Size (Typ1) = 8 then
|
1449 |
|
|
if Length_Less_Than_4 (Op1)
|
1450 |
|
|
or else
|
1451 |
|
|
Length_Less_Than_4 (Op2)
|
1452 |
|
|
then
|
1453 |
|
|
if Is_Unsigned_Type (Ctyp) then
|
1454 |
|
|
Comp := RE_Compare_Array_U8_Unaligned;
|
1455 |
|
|
else
|
1456 |
|
|
Comp := RE_Compare_Array_S8_Unaligned;
|
1457 |
|
|
end if;
|
1458 |
|
|
|
1459 |
|
|
else
|
1460 |
|
|
if Is_Unsigned_Type (Ctyp) then
|
1461 |
|
|
Comp := RE_Compare_Array_U8;
|
1462 |
|
|
else
|
1463 |
|
|
Comp := RE_Compare_Array_S8;
|
1464 |
|
|
end if;
|
1465 |
|
|
end if;
|
1466 |
|
|
|
1467 |
|
|
elsif Component_Size (Typ1) = 16 then
|
1468 |
|
|
if Is_Unsigned_Type (Ctyp) then
|
1469 |
|
|
Comp := RE_Compare_Array_U16;
|
1470 |
|
|
else
|
1471 |
|
|
Comp := RE_Compare_Array_S16;
|
1472 |
|
|
end if;
|
1473 |
|
|
|
1474 |
|
|
elsif Component_Size (Typ1) = 32 then
|
1475 |
|
|
if Is_Unsigned_Type (Ctyp) then
|
1476 |
|
|
Comp := RE_Compare_Array_U32;
|
1477 |
|
|
else
|
1478 |
|
|
Comp := RE_Compare_Array_S32;
|
1479 |
|
|
end if;
|
1480 |
|
|
|
1481 |
|
|
else pragma Assert (Component_Size (Typ1) = 64);
|
1482 |
|
|
if Is_Unsigned_Type (Ctyp) then
|
1483 |
|
|
Comp := RE_Compare_Array_U64;
|
1484 |
|
|
else
|
1485 |
|
|
Comp := RE_Compare_Array_S64;
|
1486 |
|
|
end if;
|
1487 |
|
|
end if;
|
1488 |
|
|
|
1489 |
|
|
Remove_Side_Effects (Op1, Name_Req => True);
|
1490 |
|
|
Remove_Side_Effects (Op2, Name_Req => True);
|
1491 |
|
|
|
1492 |
|
|
Rewrite (Op1,
|
1493 |
|
|
Make_Function_Call (Sloc (Op1),
|
1494 |
|
|
Name => New_Occurrence_Of (RTE (Comp), Loc),
|
1495 |
|
|
|
1496 |
|
|
Parameter_Associations => New_List (
|
1497 |
|
|
Make_Attribute_Reference (Loc,
|
1498 |
|
|
Prefix => Relocate_Node (Op1),
|
1499 |
|
|
Attribute_Name => Name_Address),
|
1500 |
|
|
|
1501 |
|
|
Make_Attribute_Reference (Loc,
|
1502 |
|
|
Prefix => Relocate_Node (Op2),
|
1503 |
|
|
Attribute_Name => Name_Address),
|
1504 |
|
|
|
1505 |
|
|
Make_Attribute_Reference (Loc,
|
1506 |
|
|
Prefix => Relocate_Node (Op1),
|
1507 |
|
|
Attribute_Name => Name_Length),
|
1508 |
|
|
|
1509 |
|
|
Make_Attribute_Reference (Loc,
|
1510 |
|
|
Prefix => Relocate_Node (Op2),
|
1511 |
|
|
Attribute_Name => Name_Length))));
|
1512 |
|
|
|
1513 |
|
|
Rewrite (Op2,
|
1514 |
|
|
Make_Integer_Literal (Sloc (Op2),
|
1515 |
|
|
Intval => Uint_0));
|
1516 |
|
|
|
1517 |
|
|
Analyze_And_Resolve (Op1, Standard_Integer);
|
1518 |
|
|
Analyze_And_Resolve (Op2, Standard_Integer);
|
1519 |
|
|
return;
|
1520 |
|
|
end if;
|
1521 |
|
|
|
1522 |
|
|
-- Cases where we cannot make runtime call
|
1523 |
|
|
|
1524 |
|
|
-- For (a <= b) we convert to not (a > b)
|
1525 |
|
|
|
1526 |
|
|
if Chars (N) = Name_Op_Le then
|
1527 |
|
|
Rewrite (N,
|
1528 |
|
|
Make_Op_Not (Loc,
|
1529 |
|
|
Right_Opnd =>
|
1530 |
|
|
Make_Op_Gt (Loc,
|
1531 |
|
|
Left_Opnd => Op1,
|
1532 |
|
|
Right_Opnd => Op2)));
|
1533 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
1534 |
|
|
return;
|
1535 |
|
|
|
1536 |
|
|
-- For < the Boolean expression is
|
1537 |
|
|
-- greater__nn (op2, op1)
|
1538 |
|
|
|
1539 |
|
|
elsif Chars (N) = Name_Op_Lt then
|
1540 |
|
|
Func_Body := Make_Array_Comparison_Op (Typ1, N);
|
1541 |
|
|
|
1542 |
|
|
-- Switch operands
|
1543 |
|
|
|
1544 |
|
|
Op1 := Right_Opnd (N);
|
1545 |
|
|
Op2 := Left_Opnd (N);
|
1546 |
|
|
|
1547 |
|
|
-- For (a >= b) we convert to not (a < b)
|
1548 |
|
|
|
1549 |
|
|
elsif Chars (N) = Name_Op_Ge then
|
1550 |
|
|
Rewrite (N,
|
1551 |
|
|
Make_Op_Not (Loc,
|
1552 |
|
|
Right_Opnd =>
|
1553 |
|
|
Make_Op_Lt (Loc,
|
1554 |
|
|
Left_Opnd => Op1,
|
1555 |
|
|
Right_Opnd => Op2)));
|
1556 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
1557 |
|
|
return;
|
1558 |
|
|
|
1559 |
|
|
-- For > the Boolean expression is
|
1560 |
|
|
-- greater__nn (op1, op2)
|
1561 |
|
|
|
1562 |
|
|
else
|
1563 |
|
|
pragma Assert (Chars (N) = Name_Op_Gt);
|
1564 |
|
|
Func_Body := Make_Array_Comparison_Op (Typ1, N);
|
1565 |
|
|
end if;
|
1566 |
|
|
|
1567 |
|
|
Func_Name := Defining_Unit_Name (Specification (Func_Body));
|
1568 |
|
|
Expr :=
|
1569 |
|
|
Make_Function_Call (Loc,
|
1570 |
|
|
Name => New_Reference_To (Func_Name, Loc),
|
1571 |
|
|
Parameter_Associations => New_List (Op1, Op2));
|
1572 |
|
|
|
1573 |
|
|
Insert_Action (N, Func_Body);
|
1574 |
|
|
Rewrite (N, Expr);
|
1575 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
1576 |
|
|
|
1577 |
|
|
exception
|
1578 |
|
|
when RE_Not_Available =>
|
1579 |
|
|
return;
|
1580 |
|
|
end Expand_Array_Comparison;
|
1581 |
|
|
|
1582 |
|
|
---------------------------
|
1583 |
|
|
-- Expand_Array_Equality --
|
1584 |
|
|
---------------------------
|
1585 |
|
|
|
1586 |
|
|
-- Expand an equality function for multi-dimensional arrays. Here is an
|
1587 |
|
|
-- example of such a function for Nb_Dimension = 2
|
1588 |
|
|
|
1589 |
|
|
-- function Enn (A : atyp; B : btyp) return boolean is
|
1590 |
|
|
-- begin
|
1591 |
|
|
-- if (A'length (1) = 0 or else A'length (2) = 0)
|
1592 |
|
|
-- and then
|
1593 |
|
|
-- (B'length (1) = 0 or else B'length (2) = 0)
|
1594 |
|
|
-- then
|
1595 |
|
|
-- return True; -- RM 4.5.2(22)
|
1596 |
|
|
-- end if;
|
1597 |
|
|
|
1598 |
|
|
-- if A'length (1) /= B'length (1)
|
1599 |
|
|
-- or else
|
1600 |
|
|
-- A'length (2) /= B'length (2)
|
1601 |
|
|
-- then
|
1602 |
|
|
-- return False; -- RM 4.5.2(23)
|
1603 |
|
|
-- end if;
|
1604 |
|
|
|
1605 |
|
|
-- declare
|
1606 |
|
|
-- A1 : Index_T1 := A'first (1);
|
1607 |
|
|
-- B1 : Index_T1 := B'first (1);
|
1608 |
|
|
-- begin
|
1609 |
|
|
-- loop
|
1610 |
|
|
-- declare
|
1611 |
|
|
-- A2 : Index_T2 := A'first (2);
|
1612 |
|
|
-- B2 : Index_T2 := B'first (2);
|
1613 |
|
|
-- begin
|
1614 |
|
|
-- loop
|
1615 |
|
|
-- if A (A1, A2) /= B (B1, B2) then
|
1616 |
|
|
-- return False;
|
1617 |
|
|
-- end if;
|
1618 |
|
|
|
1619 |
|
|
-- exit when A2 = A'last (2);
|
1620 |
|
|
-- A2 := Index_T2'succ (A2);
|
1621 |
|
|
-- B2 := Index_T2'succ (B2);
|
1622 |
|
|
-- end loop;
|
1623 |
|
|
-- end;
|
1624 |
|
|
|
1625 |
|
|
-- exit when A1 = A'last (1);
|
1626 |
|
|
-- A1 := Index_T1'succ (A1);
|
1627 |
|
|
-- B1 := Index_T1'succ (B1);
|
1628 |
|
|
-- end loop;
|
1629 |
|
|
-- end;
|
1630 |
|
|
|
1631 |
|
|
-- return true;
|
1632 |
|
|
-- end Enn;
|
1633 |
|
|
|
1634 |
|
|
-- Note on the formal types used (atyp and btyp). If either of the arrays
|
1635 |
|
|
-- is of a private type, we use the underlying type, and do an unchecked
|
1636 |
|
|
-- conversion of the actual. If either of the arrays has a bound depending
|
1637 |
|
|
-- on a discriminant, then we use the base type since otherwise we have an
|
1638 |
|
|
-- escaped discriminant in the function.
|
1639 |
|
|
|
1640 |
|
|
-- If both arrays are constrained and have the same bounds, we can generate
|
1641 |
|
|
-- a loop with an explicit iteration scheme using a 'Range attribute over
|
1642 |
|
|
-- the first array.
|
1643 |
|
|
|
1644 |
|
|
function Expand_Array_Equality
|
1645 |
|
|
(Nod : Node_Id;
|
1646 |
|
|
Lhs : Node_Id;
|
1647 |
|
|
Rhs : Node_Id;
|
1648 |
|
|
Bodies : List_Id;
|
1649 |
|
|
Typ : Entity_Id) return Node_Id
|
1650 |
|
|
is
|
1651 |
|
|
Loc : constant Source_Ptr := Sloc (Nod);
|
1652 |
|
|
Decls : constant List_Id := New_List;
|
1653 |
|
|
Index_List1 : constant List_Id := New_List;
|
1654 |
|
|
Index_List2 : constant List_Id := New_List;
|
1655 |
|
|
|
1656 |
|
|
Actuals : List_Id;
|
1657 |
|
|
Formals : List_Id;
|
1658 |
|
|
Func_Name : Entity_Id;
|
1659 |
|
|
Func_Body : Node_Id;
|
1660 |
|
|
|
1661 |
|
|
A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
|
1662 |
|
|
B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
|
1663 |
|
|
|
1664 |
|
|
Ltyp : Entity_Id;
|
1665 |
|
|
Rtyp : Entity_Id;
|
1666 |
|
|
-- The parameter types to be used for the formals
|
1667 |
|
|
|
1668 |
|
|
function Arr_Attr
|
1669 |
|
|
(Arr : Entity_Id;
|
1670 |
|
|
Nam : Name_Id;
|
1671 |
|
|
Num : Int) return Node_Id;
|
1672 |
|
|
-- This builds the attribute reference Arr'Nam (Expr)
|
1673 |
|
|
|
1674 |
|
|
function Component_Equality (Typ : Entity_Id) return Node_Id;
|
1675 |
|
|
-- Create one statement to compare corresponding components, designated
|
1676 |
|
|
-- by a full set of indexes.
|
1677 |
|
|
|
1678 |
|
|
function Get_Arg_Type (N : Node_Id) return Entity_Id;
|
1679 |
|
|
-- Given one of the arguments, computes the appropriate type to be used
|
1680 |
|
|
-- for that argument in the corresponding function formal
|
1681 |
|
|
|
1682 |
|
|
function Handle_One_Dimension
|
1683 |
|
|
(N : Int;
|
1684 |
|
|
Index : Node_Id) return Node_Id;
|
1685 |
|
|
-- This procedure returns the following code
|
1686 |
|
|
--
|
1687 |
|
|
-- declare
|
1688 |
|
|
-- Bn : Index_T := B'First (N);
|
1689 |
|
|
-- begin
|
1690 |
|
|
-- loop
|
1691 |
|
|
-- xxx
|
1692 |
|
|
-- exit when An = A'Last (N);
|
1693 |
|
|
-- An := Index_T'Succ (An)
|
1694 |
|
|
-- Bn := Index_T'Succ (Bn)
|
1695 |
|
|
-- end loop;
|
1696 |
|
|
-- end;
|
1697 |
|
|
--
|
1698 |
|
|
-- If both indexes are constrained and identical, the procedure
|
1699 |
|
|
-- returns a simpler loop:
|
1700 |
|
|
--
|
1701 |
|
|
-- for An in A'Range (N) loop
|
1702 |
|
|
-- xxx
|
1703 |
|
|
-- end loop
|
1704 |
|
|
--
|
1705 |
|
|
-- N is the dimension for which we are generating a loop. Index is the
|
1706 |
|
|
-- N'th index node, whose Etype is Index_Type_n in the above code. The
|
1707 |
|
|
-- xxx statement is either the loop or declare for the next dimension
|
1708 |
|
|
-- or if this is the last dimension the comparison of corresponding
|
1709 |
|
|
-- components of the arrays.
|
1710 |
|
|
--
|
1711 |
|
|
-- The actual way the code works is to return the comparison of
|
1712 |
|
|
-- corresponding components for the N+1 call. That's neater!
|
1713 |
|
|
|
1714 |
|
|
function Test_Empty_Arrays return Node_Id;
|
1715 |
|
|
-- This function constructs the test for both arrays being empty
|
1716 |
|
|
-- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
|
1717 |
|
|
-- and then
|
1718 |
|
|
-- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
|
1719 |
|
|
|
1720 |
|
|
function Test_Lengths_Correspond return Node_Id;
|
1721 |
|
|
-- This function constructs the test for arrays having different lengths
|
1722 |
|
|
-- in at least one index position, in which case the resulting code is:
|
1723 |
|
|
|
1724 |
|
|
-- A'length (1) /= B'length (1)
|
1725 |
|
|
-- or else
|
1726 |
|
|
-- A'length (2) /= B'length (2)
|
1727 |
|
|
-- or else
|
1728 |
|
|
-- ...
|
1729 |
|
|
|
1730 |
|
|
--------------
|
1731 |
|
|
-- Arr_Attr --
|
1732 |
|
|
--------------
|
1733 |
|
|
|
1734 |
|
|
function Arr_Attr
|
1735 |
|
|
(Arr : Entity_Id;
|
1736 |
|
|
Nam : Name_Id;
|
1737 |
|
|
Num : Int) return Node_Id
|
1738 |
|
|
is
|
1739 |
|
|
begin
|
1740 |
|
|
return
|
1741 |
|
|
Make_Attribute_Reference (Loc,
|
1742 |
|
|
Attribute_Name => Nam,
|
1743 |
|
|
Prefix => New_Reference_To (Arr, Loc),
|
1744 |
|
|
Expressions => New_List (Make_Integer_Literal (Loc, Num)));
|
1745 |
|
|
end Arr_Attr;
|
1746 |
|
|
|
1747 |
|
|
------------------------
|
1748 |
|
|
-- Component_Equality --
|
1749 |
|
|
------------------------
|
1750 |
|
|
|
1751 |
|
|
function Component_Equality (Typ : Entity_Id) return Node_Id is
|
1752 |
|
|
Test : Node_Id;
|
1753 |
|
|
L, R : Node_Id;
|
1754 |
|
|
|
1755 |
|
|
begin
|
1756 |
|
|
-- if a(i1...) /= b(j1...) then return false; end if;
|
1757 |
|
|
|
1758 |
|
|
L :=
|
1759 |
|
|
Make_Indexed_Component (Loc,
|
1760 |
|
|
Prefix => Make_Identifier (Loc, Chars (A)),
|
1761 |
|
|
Expressions => Index_List1);
|
1762 |
|
|
|
1763 |
|
|
R :=
|
1764 |
|
|
Make_Indexed_Component (Loc,
|
1765 |
|
|
Prefix => Make_Identifier (Loc, Chars (B)),
|
1766 |
|
|
Expressions => Index_List2);
|
1767 |
|
|
|
1768 |
|
|
Test := Expand_Composite_Equality
|
1769 |
|
|
(Nod, Component_Type (Typ), L, R, Decls);
|
1770 |
|
|
|
1771 |
|
|
-- If some (sub)component is an unchecked_union, the whole operation
|
1772 |
|
|
-- will raise program error.
|
1773 |
|
|
|
1774 |
|
|
if Nkind (Test) = N_Raise_Program_Error then
|
1775 |
|
|
|
1776 |
|
|
-- This node is going to be inserted at a location where a
|
1777 |
|
|
-- statement is expected: clear its Etype so analysis will set
|
1778 |
|
|
-- it to the expected Standard_Void_Type.
|
1779 |
|
|
|
1780 |
|
|
Set_Etype (Test, Empty);
|
1781 |
|
|
return Test;
|
1782 |
|
|
|
1783 |
|
|
else
|
1784 |
|
|
return
|
1785 |
|
|
Make_Implicit_If_Statement (Nod,
|
1786 |
|
|
Condition => Make_Op_Not (Loc, Right_Opnd => Test),
|
1787 |
|
|
Then_Statements => New_List (
|
1788 |
|
|
Make_Simple_Return_Statement (Loc,
|
1789 |
|
|
Expression => New_Occurrence_Of (Standard_False, Loc))));
|
1790 |
|
|
end if;
|
1791 |
|
|
end Component_Equality;
|
1792 |
|
|
|
1793 |
|
|
------------------
|
1794 |
|
|
-- Get_Arg_Type --
|
1795 |
|
|
------------------
|
1796 |
|
|
|
1797 |
|
|
function Get_Arg_Type (N : Node_Id) return Entity_Id is
|
1798 |
|
|
T : Entity_Id;
|
1799 |
|
|
X : Node_Id;
|
1800 |
|
|
|
1801 |
|
|
begin
|
1802 |
|
|
T := Etype (N);
|
1803 |
|
|
|
1804 |
|
|
if No (T) then
|
1805 |
|
|
return Typ;
|
1806 |
|
|
|
1807 |
|
|
else
|
1808 |
|
|
T := Underlying_Type (T);
|
1809 |
|
|
|
1810 |
|
|
X := First_Index (T);
|
1811 |
|
|
while Present (X) loop
|
1812 |
|
|
if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
|
1813 |
|
|
or else
|
1814 |
|
|
Denotes_Discriminant (Type_High_Bound (Etype (X)))
|
1815 |
|
|
then
|
1816 |
|
|
T := Base_Type (T);
|
1817 |
|
|
exit;
|
1818 |
|
|
end if;
|
1819 |
|
|
|
1820 |
|
|
Next_Index (X);
|
1821 |
|
|
end loop;
|
1822 |
|
|
|
1823 |
|
|
return T;
|
1824 |
|
|
end if;
|
1825 |
|
|
end Get_Arg_Type;
|
1826 |
|
|
|
1827 |
|
|
--------------------------
|
1828 |
|
|
-- Handle_One_Dimension --
|
1829 |
|
|
---------------------------
|
1830 |
|
|
|
1831 |
|
|
function Handle_One_Dimension
|
1832 |
|
|
(N : Int;
|
1833 |
|
|
Index : Node_Id) return Node_Id
|
1834 |
|
|
is
|
1835 |
|
|
Need_Separate_Indexes : constant Boolean :=
|
1836 |
|
|
Ltyp /= Rtyp
|
1837 |
|
|
or else not Is_Constrained (Ltyp);
|
1838 |
|
|
-- If the index types are identical, and we are working with
|
1839 |
|
|
-- constrained types, then we can use the same index for both
|
1840 |
|
|
-- of the arrays.
|
1841 |
|
|
|
1842 |
|
|
An : constant Entity_Id := Make_Temporary (Loc, 'A');
|
1843 |
|
|
|
1844 |
|
|
Bn : Entity_Id;
|
1845 |
|
|
Index_T : Entity_Id;
|
1846 |
|
|
Stm_List : List_Id;
|
1847 |
|
|
Loop_Stm : Node_Id;
|
1848 |
|
|
|
1849 |
|
|
begin
|
1850 |
|
|
if N > Number_Dimensions (Ltyp) then
|
1851 |
|
|
return Component_Equality (Ltyp);
|
1852 |
|
|
end if;
|
1853 |
|
|
|
1854 |
|
|
-- Case where we generate a loop
|
1855 |
|
|
|
1856 |
|
|
Index_T := Base_Type (Etype (Index));
|
1857 |
|
|
|
1858 |
|
|
if Need_Separate_Indexes then
|
1859 |
|
|
Bn := Make_Temporary (Loc, 'B');
|
1860 |
|
|
else
|
1861 |
|
|
Bn := An;
|
1862 |
|
|
end if;
|
1863 |
|
|
|
1864 |
|
|
Append (New_Reference_To (An, Loc), Index_List1);
|
1865 |
|
|
Append (New_Reference_To (Bn, Loc), Index_List2);
|
1866 |
|
|
|
1867 |
|
|
Stm_List := New_List (
|
1868 |
|
|
Handle_One_Dimension (N + 1, Next_Index (Index)));
|
1869 |
|
|
|
1870 |
|
|
if Need_Separate_Indexes then
|
1871 |
|
|
|
1872 |
|
|
-- Generate guard for loop, followed by increments of indexes
|
1873 |
|
|
|
1874 |
|
|
Append_To (Stm_List,
|
1875 |
|
|
Make_Exit_Statement (Loc,
|
1876 |
|
|
Condition =>
|
1877 |
|
|
Make_Op_Eq (Loc,
|
1878 |
|
|
Left_Opnd => New_Reference_To (An, Loc),
|
1879 |
|
|
Right_Opnd => Arr_Attr (A, Name_Last, N))));
|
1880 |
|
|
|
1881 |
|
|
Append_To (Stm_List,
|
1882 |
|
|
Make_Assignment_Statement (Loc,
|
1883 |
|
|
Name => New_Reference_To (An, Loc),
|
1884 |
|
|
Expression =>
|
1885 |
|
|
Make_Attribute_Reference (Loc,
|
1886 |
|
|
Prefix => New_Reference_To (Index_T, Loc),
|
1887 |
|
|
Attribute_Name => Name_Succ,
|
1888 |
|
|
Expressions => New_List (New_Reference_To (An, Loc)))));
|
1889 |
|
|
|
1890 |
|
|
Append_To (Stm_List,
|
1891 |
|
|
Make_Assignment_Statement (Loc,
|
1892 |
|
|
Name => New_Reference_To (Bn, Loc),
|
1893 |
|
|
Expression =>
|
1894 |
|
|
Make_Attribute_Reference (Loc,
|
1895 |
|
|
Prefix => New_Reference_To (Index_T, Loc),
|
1896 |
|
|
Attribute_Name => Name_Succ,
|
1897 |
|
|
Expressions => New_List (New_Reference_To (Bn, Loc)))));
|
1898 |
|
|
end if;
|
1899 |
|
|
|
1900 |
|
|
-- If separate indexes, we need a declare block for An and Bn, and a
|
1901 |
|
|
-- loop without an iteration scheme.
|
1902 |
|
|
|
1903 |
|
|
if Need_Separate_Indexes then
|
1904 |
|
|
Loop_Stm :=
|
1905 |
|
|
Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
|
1906 |
|
|
|
1907 |
|
|
return
|
1908 |
|
|
Make_Block_Statement (Loc,
|
1909 |
|
|
Declarations => New_List (
|
1910 |
|
|
Make_Object_Declaration (Loc,
|
1911 |
|
|
Defining_Identifier => An,
|
1912 |
|
|
Object_Definition => New_Reference_To (Index_T, Loc),
|
1913 |
|
|
Expression => Arr_Attr (A, Name_First, N)),
|
1914 |
|
|
|
1915 |
|
|
Make_Object_Declaration (Loc,
|
1916 |
|
|
Defining_Identifier => Bn,
|
1917 |
|
|
Object_Definition => New_Reference_To (Index_T, Loc),
|
1918 |
|
|
Expression => Arr_Attr (B, Name_First, N))),
|
1919 |
|
|
|
1920 |
|
|
Handled_Statement_Sequence =>
|
1921 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
1922 |
|
|
Statements => New_List (Loop_Stm)));
|
1923 |
|
|
|
1924 |
|
|
-- If no separate indexes, return loop statement with explicit
|
1925 |
|
|
-- iteration scheme on its own
|
1926 |
|
|
|
1927 |
|
|
else
|
1928 |
|
|
Loop_Stm :=
|
1929 |
|
|
Make_Implicit_Loop_Statement (Nod,
|
1930 |
|
|
Statements => Stm_List,
|
1931 |
|
|
Iteration_Scheme =>
|
1932 |
|
|
Make_Iteration_Scheme (Loc,
|
1933 |
|
|
Loop_Parameter_Specification =>
|
1934 |
|
|
Make_Loop_Parameter_Specification (Loc,
|
1935 |
|
|
Defining_Identifier => An,
|
1936 |
|
|
Discrete_Subtype_Definition =>
|
1937 |
|
|
Arr_Attr (A, Name_Range, N))));
|
1938 |
|
|
return Loop_Stm;
|
1939 |
|
|
end if;
|
1940 |
|
|
end Handle_One_Dimension;
|
1941 |
|
|
|
1942 |
|
|
-----------------------
|
1943 |
|
|
-- Test_Empty_Arrays --
|
1944 |
|
|
-----------------------
|
1945 |
|
|
|
1946 |
|
|
function Test_Empty_Arrays return Node_Id is
|
1947 |
|
|
Alist : Node_Id;
|
1948 |
|
|
Blist : Node_Id;
|
1949 |
|
|
|
1950 |
|
|
Atest : Node_Id;
|
1951 |
|
|
Btest : Node_Id;
|
1952 |
|
|
|
1953 |
|
|
begin
|
1954 |
|
|
Alist := Empty;
|
1955 |
|
|
Blist := Empty;
|
1956 |
|
|
for J in 1 .. Number_Dimensions (Ltyp) loop
|
1957 |
|
|
Atest :=
|
1958 |
|
|
Make_Op_Eq (Loc,
|
1959 |
|
|
Left_Opnd => Arr_Attr (A, Name_Length, J),
|
1960 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 0));
|
1961 |
|
|
|
1962 |
|
|
Btest :=
|
1963 |
|
|
Make_Op_Eq (Loc,
|
1964 |
|
|
Left_Opnd => Arr_Attr (B, Name_Length, J),
|
1965 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 0));
|
1966 |
|
|
|
1967 |
|
|
if No (Alist) then
|
1968 |
|
|
Alist := Atest;
|
1969 |
|
|
Blist := Btest;
|
1970 |
|
|
|
1971 |
|
|
else
|
1972 |
|
|
Alist :=
|
1973 |
|
|
Make_Or_Else (Loc,
|
1974 |
|
|
Left_Opnd => Relocate_Node (Alist),
|
1975 |
|
|
Right_Opnd => Atest);
|
1976 |
|
|
|
1977 |
|
|
Blist :=
|
1978 |
|
|
Make_Or_Else (Loc,
|
1979 |
|
|
Left_Opnd => Relocate_Node (Blist),
|
1980 |
|
|
Right_Opnd => Btest);
|
1981 |
|
|
end if;
|
1982 |
|
|
end loop;
|
1983 |
|
|
|
1984 |
|
|
return
|
1985 |
|
|
Make_And_Then (Loc,
|
1986 |
|
|
Left_Opnd => Alist,
|
1987 |
|
|
Right_Opnd => Blist);
|
1988 |
|
|
end Test_Empty_Arrays;
|
1989 |
|
|
|
1990 |
|
|
-----------------------------
|
1991 |
|
|
-- Test_Lengths_Correspond --
|
1992 |
|
|
-----------------------------
|
1993 |
|
|
|
1994 |
|
|
function Test_Lengths_Correspond return Node_Id is
|
1995 |
|
|
Result : Node_Id;
|
1996 |
|
|
Rtest : Node_Id;
|
1997 |
|
|
|
1998 |
|
|
begin
|
1999 |
|
|
Result := Empty;
|
2000 |
|
|
for J in 1 .. Number_Dimensions (Ltyp) loop
|
2001 |
|
|
Rtest :=
|
2002 |
|
|
Make_Op_Ne (Loc,
|
2003 |
|
|
Left_Opnd => Arr_Attr (A, Name_Length, J),
|
2004 |
|
|
Right_Opnd => Arr_Attr (B, Name_Length, J));
|
2005 |
|
|
|
2006 |
|
|
if No (Result) then
|
2007 |
|
|
Result := Rtest;
|
2008 |
|
|
else
|
2009 |
|
|
Result :=
|
2010 |
|
|
Make_Or_Else (Loc,
|
2011 |
|
|
Left_Opnd => Relocate_Node (Result),
|
2012 |
|
|
Right_Opnd => Rtest);
|
2013 |
|
|
end if;
|
2014 |
|
|
end loop;
|
2015 |
|
|
|
2016 |
|
|
return Result;
|
2017 |
|
|
end Test_Lengths_Correspond;
|
2018 |
|
|
|
2019 |
|
|
-- Start of processing for Expand_Array_Equality
|
2020 |
|
|
|
2021 |
|
|
begin
|
2022 |
|
|
Ltyp := Get_Arg_Type (Lhs);
|
2023 |
|
|
Rtyp := Get_Arg_Type (Rhs);
|
2024 |
|
|
|
2025 |
|
|
-- For now, if the argument types are not the same, go to the base type,
|
2026 |
|
|
-- since the code assumes that the formals have the same type. This is
|
2027 |
|
|
-- fixable in future ???
|
2028 |
|
|
|
2029 |
|
|
if Ltyp /= Rtyp then
|
2030 |
|
|
Ltyp := Base_Type (Ltyp);
|
2031 |
|
|
Rtyp := Base_Type (Rtyp);
|
2032 |
|
|
pragma Assert (Ltyp = Rtyp);
|
2033 |
|
|
end if;
|
2034 |
|
|
|
2035 |
|
|
-- Build list of formals for function
|
2036 |
|
|
|
2037 |
|
|
Formals := New_List (
|
2038 |
|
|
Make_Parameter_Specification (Loc,
|
2039 |
|
|
Defining_Identifier => A,
|
2040 |
|
|
Parameter_Type => New_Reference_To (Ltyp, Loc)),
|
2041 |
|
|
|
2042 |
|
|
Make_Parameter_Specification (Loc,
|
2043 |
|
|
Defining_Identifier => B,
|
2044 |
|
|
Parameter_Type => New_Reference_To (Rtyp, Loc)));
|
2045 |
|
|
|
2046 |
|
|
Func_Name := Make_Temporary (Loc, 'E');
|
2047 |
|
|
|
2048 |
|
|
-- Build statement sequence for function
|
2049 |
|
|
|
2050 |
|
|
Func_Body :=
|
2051 |
|
|
Make_Subprogram_Body (Loc,
|
2052 |
|
|
Specification =>
|
2053 |
|
|
Make_Function_Specification (Loc,
|
2054 |
|
|
Defining_Unit_Name => Func_Name,
|
2055 |
|
|
Parameter_Specifications => Formals,
|
2056 |
|
|
Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
|
2057 |
|
|
|
2058 |
|
|
Declarations => Decls,
|
2059 |
|
|
|
2060 |
|
|
Handled_Statement_Sequence =>
|
2061 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
2062 |
|
|
Statements => New_List (
|
2063 |
|
|
|
2064 |
|
|
Make_Implicit_If_Statement (Nod,
|
2065 |
|
|
Condition => Test_Empty_Arrays,
|
2066 |
|
|
Then_Statements => New_List (
|
2067 |
|
|
Make_Simple_Return_Statement (Loc,
|
2068 |
|
|
Expression =>
|
2069 |
|
|
New_Occurrence_Of (Standard_True, Loc)))),
|
2070 |
|
|
|
2071 |
|
|
Make_Implicit_If_Statement (Nod,
|
2072 |
|
|
Condition => Test_Lengths_Correspond,
|
2073 |
|
|
Then_Statements => New_List (
|
2074 |
|
|
Make_Simple_Return_Statement (Loc,
|
2075 |
|
|
Expression =>
|
2076 |
|
|
New_Occurrence_Of (Standard_False, Loc)))),
|
2077 |
|
|
|
2078 |
|
|
Handle_One_Dimension (1, First_Index (Ltyp)),
|
2079 |
|
|
|
2080 |
|
|
Make_Simple_Return_Statement (Loc,
|
2081 |
|
|
Expression => New_Occurrence_Of (Standard_True, Loc)))));
|
2082 |
|
|
|
2083 |
|
|
Set_Has_Completion (Func_Name, True);
|
2084 |
|
|
Set_Is_Inlined (Func_Name);
|
2085 |
|
|
|
2086 |
|
|
-- If the array type is distinct from the type of the arguments, it
|
2087 |
|
|
-- is the full view of a private type. Apply an unchecked conversion
|
2088 |
|
|
-- to insure that analysis of the call succeeds.
|
2089 |
|
|
|
2090 |
|
|
declare
|
2091 |
|
|
L, R : Node_Id;
|
2092 |
|
|
|
2093 |
|
|
begin
|
2094 |
|
|
L := Lhs;
|
2095 |
|
|
R := Rhs;
|
2096 |
|
|
|
2097 |
|
|
if No (Etype (Lhs))
|
2098 |
|
|
or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
|
2099 |
|
|
then
|
2100 |
|
|
L := OK_Convert_To (Ltyp, Lhs);
|
2101 |
|
|
end if;
|
2102 |
|
|
|
2103 |
|
|
if No (Etype (Rhs))
|
2104 |
|
|
or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
|
2105 |
|
|
then
|
2106 |
|
|
R := OK_Convert_To (Rtyp, Rhs);
|
2107 |
|
|
end if;
|
2108 |
|
|
|
2109 |
|
|
Actuals := New_List (L, R);
|
2110 |
|
|
end;
|
2111 |
|
|
|
2112 |
|
|
Append_To (Bodies, Func_Body);
|
2113 |
|
|
|
2114 |
|
|
return
|
2115 |
|
|
Make_Function_Call (Loc,
|
2116 |
|
|
Name => New_Reference_To (Func_Name, Loc),
|
2117 |
|
|
Parameter_Associations => Actuals);
|
2118 |
|
|
end Expand_Array_Equality;
|
2119 |
|
|
|
2120 |
|
|
-----------------------------
|
2121 |
|
|
-- Expand_Boolean_Operator --
|
2122 |
|
|
-----------------------------
|
2123 |
|
|
|
2124 |
|
|
-- Note that we first get the actual subtypes of the operands, since we
|
2125 |
|
|
-- always want to deal with types that have bounds.
|
2126 |
|
|
|
2127 |
|
|
procedure Expand_Boolean_Operator (N : Node_Id) is
|
2128 |
|
|
Typ : constant Entity_Id := Etype (N);
|
2129 |
|
|
|
2130 |
|
|
begin
|
2131 |
|
|
-- Special case of bit packed array where both operands are known to be
|
2132 |
|
|
-- properly aligned. In this case we use an efficient run time routine
|
2133 |
|
|
-- to carry out the operation (see System.Bit_Ops).
|
2134 |
|
|
|
2135 |
|
|
if Is_Bit_Packed_Array (Typ)
|
2136 |
|
|
and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
|
2137 |
|
|
and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
|
2138 |
|
|
then
|
2139 |
|
|
Expand_Packed_Boolean_Operator (N);
|
2140 |
|
|
return;
|
2141 |
|
|
end if;
|
2142 |
|
|
|
2143 |
|
|
-- For the normal non-packed case, the general expansion is to build
|
2144 |
|
|
-- function for carrying out the comparison (use Make_Boolean_Array_Op)
|
2145 |
|
|
-- and then inserting it into the tree. The original operator node is
|
2146 |
|
|
-- then rewritten as a call to this function. We also use this in the
|
2147 |
|
|
-- packed case if either operand is a possibly unaligned object.
|
2148 |
|
|
|
2149 |
|
|
declare
|
2150 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2151 |
|
|
L : constant Node_Id := Relocate_Node (Left_Opnd (N));
|
2152 |
|
|
R : constant Node_Id := Relocate_Node (Right_Opnd (N));
|
2153 |
|
|
Func_Body : Node_Id;
|
2154 |
|
|
Func_Name : Entity_Id;
|
2155 |
|
|
|
2156 |
|
|
begin
|
2157 |
|
|
Convert_To_Actual_Subtype (L);
|
2158 |
|
|
Convert_To_Actual_Subtype (R);
|
2159 |
|
|
Ensure_Defined (Etype (L), N);
|
2160 |
|
|
Ensure_Defined (Etype (R), N);
|
2161 |
|
|
Apply_Length_Check (R, Etype (L));
|
2162 |
|
|
|
2163 |
|
|
if Nkind (N) = N_Op_Xor then
|
2164 |
|
|
Silly_Boolean_Array_Xor_Test (N, Etype (L));
|
2165 |
|
|
end if;
|
2166 |
|
|
|
2167 |
|
|
if Nkind (Parent (N)) = N_Assignment_Statement
|
2168 |
|
|
and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
|
2169 |
|
|
then
|
2170 |
|
|
Build_Boolean_Array_Proc_Call (Parent (N), L, R);
|
2171 |
|
|
|
2172 |
|
|
elsif Nkind (Parent (N)) = N_Op_Not
|
2173 |
|
|
and then Nkind (N) = N_Op_And
|
2174 |
|
|
and then
|
2175 |
|
|
Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
|
2176 |
|
|
then
|
2177 |
|
|
return;
|
2178 |
|
|
else
|
2179 |
|
|
|
2180 |
|
|
Func_Body := Make_Boolean_Array_Op (Etype (L), N);
|
2181 |
|
|
Func_Name := Defining_Unit_Name (Specification (Func_Body));
|
2182 |
|
|
Insert_Action (N, Func_Body);
|
2183 |
|
|
|
2184 |
|
|
-- Now rewrite the expression with a call
|
2185 |
|
|
|
2186 |
|
|
Rewrite (N,
|
2187 |
|
|
Make_Function_Call (Loc,
|
2188 |
|
|
Name => New_Reference_To (Func_Name, Loc),
|
2189 |
|
|
Parameter_Associations =>
|
2190 |
|
|
New_List (
|
2191 |
|
|
L,
|
2192 |
|
|
Make_Type_Conversion
|
2193 |
|
|
(Loc, New_Reference_To (Etype (L), Loc), R))));
|
2194 |
|
|
|
2195 |
|
|
Analyze_And_Resolve (N, Typ);
|
2196 |
|
|
end if;
|
2197 |
|
|
end;
|
2198 |
|
|
end Expand_Boolean_Operator;
|
2199 |
|
|
|
2200 |
|
|
-------------------------------
|
2201 |
|
|
-- Expand_Composite_Equality --
|
2202 |
|
|
-------------------------------
|
2203 |
|
|
|
2204 |
|
|
-- This function is only called for comparing internal fields of composite
|
2205 |
|
|
-- types when these fields are themselves composites. This is a special
|
2206 |
|
|
-- case because it is not possible to respect normal Ada visibility rules.
|
2207 |
|
|
|
2208 |
|
|
function Expand_Composite_Equality
|
2209 |
|
|
(Nod : Node_Id;
|
2210 |
|
|
Typ : Entity_Id;
|
2211 |
|
|
Lhs : Node_Id;
|
2212 |
|
|
Rhs : Node_Id;
|
2213 |
|
|
Bodies : List_Id) return Node_Id
|
2214 |
|
|
is
|
2215 |
|
|
Loc : constant Source_Ptr := Sloc (Nod);
|
2216 |
|
|
Full_Type : Entity_Id;
|
2217 |
|
|
Prim : Elmt_Id;
|
2218 |
|
|
Eq_Op : Entity_Id;
|
2219 |
|
|
|
2220 |
|
|
function Find_Primitive_Eq return Node_Id;
|
2221 |
|
|
-- AI05-0123: Locate primitive equality for type if it exists, and
|
2222 |
|
|
-- build the corresponding call. If operation is abstract, replace
|
2223 |
|
|
-- call with an explicit raise. Return Empty if there is no primitive.
|
2224 |
|
|
|
2225 |
|
|
-----------------------
|
2226 |
|
|
-- Find_Primitive_Eq --
|
2227 |
|
|
-----------------------
|
2228 |
|
|
|
2229 |
|
|
function Find_Primitive_Eq return Node_Id is
|
2230 |
|
|
Prim_E : Elmt_Id;
|
2231 |
|
|
Prim : Node_Id;
|
2232 |
|
|
|
2233 |
|
|
begin
|
2234 |
|
|
Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
|
2235 |
|
|
while Present (Prim_E) loop
|
2236 |
|
|
Prim := Node (Prim_E);
|
2237 |
|
|
|
2238 |
|
|
-- Locate primitive equality with the right signature
|
2239 |
|
|
|
2240 |
|
|
if Chars (Prim) = Name_Op_Eq
|
2241 |
|
|
and then Etype (First_Formal (Prim)) =
|
2242 |
|
|
Etype (Next_Formal (First_Formal (Prim)))
|
2243 |
|
|
and then Etype (Prim) = Standard_Boolean
|
2244 |
|
|
then
|
2245 |
|
|
if Is_Abstract_Subprogram (Prim) then
|
2246 |
|
|
return
|
2247 |
|
|
Make_Raise_Program_Error (Loc,
|
2248 |
|
|
Reason => PE_Explicit_Raise);
|
2249 |
|
|
|
2250 |
|
|
else
|
2251 |
|
|
return
|
2252 |
|
|
Make_Function_Call (Loc,
|
2253 |
|
|
Name => New_Reference_To (Prim, Loc),
|
2254 |
|
|
Parameter_Associations => New_List (Lhs, Rhs));
|
2255 |
|
|
end if;
|
2256 |
|
|
end if;
|
2257 |
|
|
|
2258 |
|
|
Next_Elmt (Prim_E);
|
2259 |
|
|
end loop;
|
2260 |
|
|
|
2261 |
|
|
-- If not found, predefined operation will be used
|
2262 |
|
|
|
2263 |
|
|
return Empty;
|
2264 |
|
|
end Find_Primitive_Eq;
|
2265 |
|
|
|
2266 |
|
|
-- Start of processing for Expand_Composite_Equality
|
2267 |
|
|
|
2268 |
|
|
begin
|
2269 |
|
|
if Is_Private_Type (Typ) then
|
2270 |
|
|
Full_Type := Underlying_Type (Typ);
|
2271 |
|
|
else
|
2272 |
|
|
Full_Type := Typ;
|
2273 |
|
|
end if;
|
2274 |
|
|
|
2275 |
|
|
-- Defense against malformed private types with no completion the error
|
2276 |
|
|
-- will be diagnosed later by check_completion
|
2277 |
|
|
|
2278 |
|
|
if No (Full_Type) then
|
2279 |
|
|
return New_Reference_To (Standard_False, Loc);
|
2280 |
|
|
end if;
|
2281 |
|
|
|
2282 |
|
|
Full_Type := Base_Type (Full_Type);
|
2283 |
|
|
|
2284 |
|
|
if Is_Array_Type (Full_Type) then
|
2285 |
|
|
|
2286 |
|
|
-- If the operand is an elementary type other than a floating-point
|
2287 |
|
|
-- type, then we can simply use the built-in block bitwise equality,
|
2288 |
|
|
-- since the predefined equality operators always apply and bitwise
|
2289 |
|
|
-- equality is fine for all these cases.
|
2290 |
|
|
|
2291 |
|
|
if Is_Elementary_Type (Component_Type (Full_Type))
|
2292 |
|
|
and then not Is_Floating_Point_Type (Component_Type (Full_Type))
|
2293 |
|
|
then
|
2294 |
|
|
return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
|
2295 |
|
|
|
2296 |
|
|
-- For composite component types, and floating-point types, use the
|
2297 |
|
|
-- expansion. This deals with tagged component types (where we use
|
2298 |
|
|
-- the applicable equality routine) and floating-point, (where we
|
2299 |
|
|
-- need to worry about negative zeroes), and also the case of any
|
2300 |
|
|
-- composite type recursively containing such fields.
|
2301 |
|
|
|
2302 |
|
|
else
|
2303 |
|
|
return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
|
2304 |
|
|
end if;
|
2305 |
|
|
|
2306 |
|
|
elsif Is_Tagged_Type (Full_Type) then
|
2307 |
|
|
|
2308 |
|
|
-- Call the primitive operation "=" of this type
|
2309 |
|
|
|
2310 |
|
|
if Is_Class_Wide_Type (Full_Type) then
|
2311 |
|
|
Full_Type := Root_Type (Full_Type);
|
2312 |
|
|
end if;
|
2313 |
|
|
|
2314 |
|
|
-- If this is derived from an untagged private type completed with a
|
2315 |
|
|
-- tagged type, it does not have a full view, so we use the primitive
|
2316 |
|
|
-- operations of the private type. This check should no longer be
|
2317 |
|
|
-- necessary when these types receive their full views ???
|
2318 |
|
|
|
2319 |
|
|
if Is_Private_Type (Typ)
|
2320 |
|
|
and then not Is_Tagged_Type (Typ)
|
2321 |
|
|
and then not Is_Controlled (Typ)
|
2322 |
|
|
and then Is_Derived_Type (Typ)
|
2323 |
|
|
and then No (Full_View (Typ))
|
2324 |
|
|
then
|
2325 |
|
|
Prim := First_Elmt (Collect_Primitive_Operations (Typ));
|
2326 |
|
|
else
|
2327 |
|
|
Prim := First_Elmt (Primitive_Operations (Full_Type));
|
2328 |
|
|
end if;
|
2329 |
|
|
|
2330 |
|
|
loop
|
2331 |
|
|
Eq_Op := Node (Prim);
|
2332 |
|
|
exit when Chars (Eq_Op) = Name_Op_Eq
|
2333 |
|
|
and then Etype (First_Formal (Eq_Op)) =
|
2334 |
|
|
Etype (Next_Formal (First_Formal (Eq_Op)))
|
2335 |
|
|
and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
|
2336 |
|
|
Next_Elmt (Prim);
|
2337 |
|
|
pragma Assert (Present (Prim));
|
2338 |
|
|
end loop;
|
2339 |
|
|
|
2340 |
|
|
Eq_Op := Node (Prim);
|
2341 |
|
|
|
2342 |
|
|
return
|
2343 |
|
|
Make_Function_Call (Loc,
|
2344 |
|
|
Name => New_Reference_To (Eq_Op, Loc),
|
2345 |
|
|
Parameter_Associations =>
|
2346 |
|
|
New_List
|
2347 |
|
|
(Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
|
2348 |
|
|
Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
|
2349 |
|
|
|
2350 |
|
|
elsif Is_Record_Type (Full_Type) then
|
2351 |
|
|
Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
|
2352 |
|
|
|
2353 |
|
|
if Present (Eq_Op) then
|
2354 |
|
|
if Etype (First_Formal (Eq_Op)) /= Full_Type then
|
2355 |
|
|
|
2356 |
|
|
-- Inherited equality from parent type. Convert the actuals to
|
2357 |
|
|
-- match signature of operation.
|
2358 |
|
|
|
2359 |
|
|
declare
|
2360 |
|
|
T : constant Entity_Id := Etype (First_Formal (Eq_Op));
|
2361 |
|
|
|
2362 |
|
|
begin
|
2363 |
|
|
return
|
2364 |
|
|
Make_Function_Call (Loc,
|
2365 |
|
|
Name => New_Reference_To (Eq_Op, Loc),
|
2366 |
|
|
Parameter_Associations => New_List (
|
2367 |
|
|
OK_Convert_To (T, Lhs),
|
2368 |
|
|
OK_Convert_To (T, Rhs)));
|
2369 |
|
|
end;
|
2370 |
|
|
|
2371 |
|
|
else
|
2372 |
|
|
-- Comparison between Unchecked_Union components
|
2373 |
|
|
|
2374 |
|
|
if Is_Unchecked_Union (Full_Type) then
|
2375 |
|
|
declare
|
2376 |
|
|
Lhs_Type : Node_Id := Full_Type;
|
2377 |
|
|
Rhs_Type : Node_Id := Full_Type;
|
2378 |
|
|
Lhs_Discr_Val : Node_Id;
|
2379 |
|
|
Rhs_Discr_Val : Node_Id;
|
2380 |
|
|
|
2381 |
|
|
begin
|
2382 |
|
|
-- Lhs subtype
|
2383 |
|
|
|
2384 |
|
|
if Nkind (Lhs) = N_Selected_Component then
|
2385 |
|
|
Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
|
2386 |
|
|
end if;
|
2387 |
|
|
|
2388 |
|
|
-- Rhs subtype
|
2389 |
|
|
|
2390 |
|
|
if Nkind (Rhs) = N_Selected_Component then
|
2391 |
|
|
Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
|
2392 |
|
|
end if;
|
2393 |
|
|
|
2394 |
|
|
-- Lhs of the composite equality
|
2395 |
|
|
|
2396 |
|
|
if Is_Constrained (Lhs_Type) then
|
2397 |
|
|
|
2398 |
|
|
-- Since the enclosing record type can never be an
|
2399 |
|
|
-- Unchecked_Union (this code is executed for records
|
2400 |
|
|
-- that do not have variants), we may reference its
|
2401 |
|
|
-- discriminant(s).
|
2402 |
|
|
|
2403 |
|
|
if Nkind (Lhs) = N_Selected_Component
|
2404 |
|
|
and then Has_Per_Object_Constraint (
|
2405 |
|
|
Entity (Selector_Name (Lhs)))
|
2406 |
|
|
then
|
2407 |
|
|
Lhs_Discr_Val :=
|
2408 |
|
|
Make_Selected_Component (Loc,
|
2409 |
|
|
Prefix => Prefix (Lhs),
|
2410 |
|
|
Selector_Name =>
|
2411 |
|
|
New_Copy
|
2412 |
|
|
(Get_Discriminant_Value
|
2413 |
|
|
(First_Discriminant (Lhs_Type),
|
2414 |
|
|
Lhs_Type,
|
2415 |
|
|
Stored_Constraint (Lhs_Type))));
|
2416 |
|
|
|
2417 |
|
|
else
|
2418 |
|
|
Lhs_Discr_Val :=
|
2419 |
|
|
New_Copy
|
2420 |
|
|
(Get_Discriminant_Value
|
2421 |
|
|
(First_Discriminant (Lhs_Type),
|
2422 |
|
|
Lhs_Type,
|
2423 |
|
|
Stored_Constraint (Lhs_Type)));
|
2424 |
|
|
|
2425 |
|
|
end if;
|
2426 |
|
|
else
|
2427 |
|
|
-- It is not possible to infer the discriminant since
|
2428 |
|
|
-- the subtype is not constrained.
|
2429 |
|
|
|
2430 |
|
|
return
|
2431 |
|
|
Make_Raise_Program_Error (Loc,
|
2432 |
|
|
Reason => PE_Unchecked_Union_Restriction);
|
2433 |
|
|
end if;
|
2434 |
|
|
|
2435 |
|
|
-- Rhs of the composite equality
|
2436 |
|
|
|
2437 |
|
|
if Is_Constrained (Rhs_Type) then
|
2438 |
|
|
if Nkind (Rhs) = N_Selected_Component
|
2439 |
|
|
and then Has_Per_Object_Constraint
|
2440 |
|
|
(Entity (Selector_Name (Rhs)))
|
2441 |
|
|
then
|
2442 |
|
|
Rhs_Discr_Val :=
|
2443 |
|
|
Make_Selected_Component (Loc,
|
2444 |
|
|
Prefix => Prefix (Rhs),
|
2445 |
|
|
Selector_Name =>
|
2446 |
|
|
New_Copy
|
2447 |
|
|
(Get_Discriminant_Value
|
2448 |
|
|
(First_Discriminant (Rhs_Type),
|
2449 |
|
|
Rhs_Type,
|
2450 |
|
|
Stored_Constraint (Rhs_Type))));
|
2451 |
|
|
|
2452 |
|
|
else
|
2453 |
|
|
Rhs_Discr_Val :=
|
2454 |
|
|
New_Copy
|
2455 |
|
|
(Get_Discriminant_Value
|
2456 |
|
|
(First_Discriminant (Rhs_Type),
|
2457 |
|
|
Rhs_Type,
|
2458 |
|
|
Stored_Constraint (Rhs_Type)));
|
2459 |
|
|
|
2460 |
|
|
end if;
|
2461 |
|
|
else
|
2462 |
|
|
return
|
2463 |
|
|
Make_Raise_Program_Error (Loc,
|
2464 |
|
|
Reason => PE_Unchecked_Union_Restriction);
|
2465 |
|
|
end if;
|
2466 |
|
|
|
2467 |
|
|
-- Call the TSS equality function with the inferred
|
2468 |
|
|
-- discriminant values.
|
2469 |
|
|
|
2470 |
|
|
return
|
2471 |
|
|
Make_Function_Call (Loc,
|
2472 |
|
|
Name => New_Reference_To (Eq_Op, Loc),
|
2473 |
|
|
Parameter_Associations => New_List (
|
2474 |
|
|
Lhs,
|
2475 |
|
|
Rhs,
|
2476 |
|
|
Lhs_Discr_Val,
|
2477 |
|
|
Rhs_Discr_Val));
|
2478 |
|
|
end;
|
2479 |
|
|
|
2480 |
|
|
else
|
2481 |
|
|
return
|
2482 |
|
|
Make_Function_Call (Loc,
|
2483 |
|
|
Name => New_Reference_To (Eq_Op, Loc),
|
2484 |
|
|
Parameter_Associations => New_List (Lhs, Rhs));
|
2485 |
|
|
end if;
|
2486 |
|
|
end if;
|
2487 |
|
|
|
2488 |
|
|
elsif Ada_Version >= Ada_2012 then
|
2489 |
|
|
|
2490 |
|
|
-- if no TSS has been created for the type, check whether there is
|
2491 |
|
|
-- a primitive equality declared for it.
|
2492 |
|
|
|
2493 |
|
|
declare
|
2494 |
|
|
Ada_2012_Op : constant Node_Id := Find_Primitive_Eq;
|
2495 |
|
|
|
2496 |
|
|
begin
|
2497 |
|
|
if Present (Ada_2012_Op) then
|
2498 |
|
|
return Ada_2012_Op;
|
2499 |
|
|
else
|
2500 |
|
|
|
2501 |
|
|
-- Use predefined equality if no user-defined primitive exists
|
2502 |
|
|
|
2503 |
|
|
return Make_Op_Eq (Loc, Lhs, Rhs);
|
2504 |
|
|
end if;
|
2505 |
|
|
end;
|
2506 |
|
|
|
2507 |
|
|
else
|
2508 |
|
|
return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
|
2509 |
|
|
end if;
|
2510 |
|
|
|
2511 |
|
|
else
|
2512 |
|
|
-- If not array or record type, it is predefined equality.
|
2513 |
|
|
|
2514 |
|
|
return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
|
2515 |
|
|
end if;
|
2516 |
|
|
end Expand_Composite_Equality;
|
2517 |
|
|
|
2518 |
|
|
------------------------
|
2519 |
|
|
-- Expand_Concatenate --
|
2520 |
|
|
------------------------
|
2521 |
|
|
|
2522 |
|
|
procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
|
2523 |
|
|
Loc : constant Source_Ptr := Sloc (Cnode);
|
2524 |
|
|
|
2525 |
|
|
Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
|
2526 |
|
|
-- Result type of concatenation
|
2527 |
|
|
|
2528 |
|
|
Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
|
2529 |
|
|
-- Component type. Elements of this component type can appear as one
|
2530 |
|
|
-- of the operands of concatenation as well as arrays.
|
2531 |
|
|
|
2532 |
|
|
Istyp : constant Entity_Id := Etype (First_Index (Atyp));
|
2533 |
|
|
-- Index subtype
|
2534 |
|
|
|
2535 |
|
|
Ityp : constant Entity_Id := Base_Type (Istyp);
|
2536 |
|
|
-- Index type. This is the base type of the index subtype, and is used
|
2537 |
|
|
-- for all computed bounds (which may be out of range of Istyp in the
|
2538 |
|
|
-- case of null ranges).
|
2539 |
|
|
|
2540 |
|
|
Artyp : Entity_Id;
|
2541 |
|
|
-- This is the type we use to do arithmetic to compute the bounds and
|
2542 |
|
|
-- lengths of operands. The choice of this type is a little subtle and
|
2543 |
|
|
-- is discussed in a separate section at the start of the body code.
|
2544 |
|
|
|
2545 |
|
|
Concatenation_Error : exception;
|
2546 |
|
|
-- Raised if concatenation is sure to raise a CE
|
2547 |
|
|
|
2548 |
|
|
Result_May_Be_Null : Boolean := True;
|
2549 |
|
|
-- Reset to False if at least one operand is encountered which is known
|
2550 |
|
|
-- at compile time to be non-null. Used for handling the special case
|
2551 |
|
|
-- of setting the high bound to the last operand high bound for a null
|
2552 |
|
|
-- result, thus ensuring a proper high bound in the super-flat case.
|
2553 |
|
|
|
2554 |
|
|
N : constant Nat := List_Length (Opnds);
|
2555 |
|
|
-- Number of concatenation operands including possibly null operands
|
2556 |
|
|
|
2557 |
|
|
NN : Nat := 0;
|
2558 |
|
|
-- Number of operands excluding any known to be null, except that the
|
2559 |
|
|
-- last operand is always retained, in case it provides the bounds for
|
2560 |
|
|
-- a null result.
|
2561 |
|
|
|
2562 |
|
|
Opnd : Node_Id;
|
2563 |
|
|
-- Current operand being processed in the loop through operands. After
|
2564 |
|
|
-- this loop is complete, always contains the last operand (which is not
|
2565 |
|
|
-- the same as Operands (NN), since null operands are skipped).
|
2566 |
|
|
|
2567 |
|
|
-- Arrays describing the operands, only the first NN entries of each
|
2568 |
|
|
-- array are set (NN < N when we exclude known null operands).
|
2569 |
|
|
|
2570 |
|
|
Is_Fixed_Length : array (1 .. N) of Boolean;
|
2571 |
|
|
-- True if length of corresponding operand known at compile time
|
2572 |
|
|
|
2573 |
|
|
Operands : array (1 .. N) of Node_Id;
|
2574 |
|
|
-- Set to the corresponding entry in the Opnds list (but note that null
|
2575 |
|
|
-- operands are excluded, so not all entries in the list are stored).
|
2576 |
|
|
|
2577 |
|
|
Fixed_Length : array (1 .. N) of Uint;
|
2578 |
|
|
-- Set to length of operand. Entries in this array are set only if the
|
2579 |
|
|
-- corresponding entry in Is_Fixed_Length is True.
|
2580 |
|
|
|
2581 |
|
|
Opnd_Low_Bound : array (1 .. N) of Node_Id;
|
2582 |
|
|
-- Set to lower bound of operand. Either an integer literal in the case
|
2583 |
|
|
-- where the bound is known at compile time, else actual lower bound.
|
2584 |
|
|
-- The operand low bound is of type Ityp.
|
2585 |
|
|
|
2586 |
|
|
Var_Length : array (1 .. N) of Entity_Id;
|
2587 |
|
|
-- Set to an entity of type Natural that contains the length of an
|
2588 |
|
|
-- operand whose length is not known at compile time. Entries in this
|
2589 |
|
|
-- array are set only if the corresponding entry in Is_Fixed_Length
|
2590 |
|
|
-- is False. The entity is of type Artyp.
|
2591 |
|
|
|
2592 |
|
|
Aggr_Length : array (0 .. N) of Node_Id;
|
2593 |
|
|
-- The J'th entry in an expression node that represents the total length
|
2594 |
|
|
-- of operands 1 through J. It is either an integer literal node, or a
|
2595 |
|
|
-- reference to a constant entity with the right value, so it is fine
|
2596 |
|
|
-- to just do a Copy_Node to get an appropriate copy. The extra zero'th
|
2597 |
|
|
-- entry always is set to zero. The length is of type Artyp.
|
2598 |
|
|
|
2599 |
|
|
Low_Bound : Node_Id;
|
2600 |
|
|
-- A tree node representing the low bound of the result (of type Ityp).
|
2601 |
|
|
-- This is either an integer literal node, or an identifier reference to
|
2602 |
|
|
-- a constant entity initialized to the appropriate value.
|
2603 |
|
|
|
2604 |
|
|
Last_Opnd_Low_Bound : Node_Id;
|
2605 |
|
|
-- A tree node representing the low bound of the last operand. This
|
2606 |
|
|
-- need only be set if the result could be null. It is used for the
|
2607 |
|
|
-- special case of setting the right low bound for a null result.
|
2608 |
|
|
-- This is of type Ityp.
|
2609 |
|
|
|
2610 |
|
|
Last_Opnd_High_Bound : Node_Id;
|
2611 |
|
|
-- A tree node representing the high bound of the last operand. This
|
2612 |
|
|
-- need only be set if the result could be null. It is used for the
|
2613 |
|
|
-- special case of setting the right high bound for a null result.
|
2614 |
|
|
-- This is of type Ityp.
|
2615 |
|
|
|
2616 |
|
|
High_Bound : Node_Id;
|
2617 |
|
|
-- A tree node representing the high bound of the result (of type Ityp)
|
2618 |
|
|
|
2619 |
|
|
Result : Node_Id;
|
2620 |
|
|
-- Result of the concatenation (of type Ityp)
|
2621 |
|
|
|
2622 |
|
|
Actions : constant List_Id := New_List;
|
2623 |
|
|
-- Collect actions to be inserted
|
2624 |
|
|
|
2625 |
|
|
Known_Non_Null_Operand_Seen : Boolean;
|
2626 |
|
|
-- Set True during generation of the assignments of operands into
|
2627 |
|
|
-- result once an operand known to be non-null has been seen.
|
2628 |
|
|
|
2629 |
|
|
function Make_Artyp_Literal (Val : Nat) return Node_Id;
|
2630 |
|
|
-- This function makes an N_Integer_Literal node that is returned in
|
2631 |
|
|
-- analyzed form with the type set to Artyp. Importantly this literal
|
2632 |
|
|
-- is not flagged as static, so that if we do computations with it that
|
2633 |
|
|
-- result in statically detected out of range conditions, we will not
|
2634 |
|
|
-- generate error messages but instead warning messages.
|
2635 |
|
|
|
2636 |
|
|
function To_Artyp (X : Node_Id) return Node_Id;
|
2637 |
|
|
-- Given a node of type Ityp, returns the corresponding value of type
|
2638 |
|
|
-- Artyp. For non-enumeration types, this is a plain integer conversion.
|
2639 |
|
|
-- For enum types, the Pos of the value is returned.
|
2640 |
|
|
|
2641 |
|
|
function To_Ityp (X : Node_Id) return Node_Id;
|
2642 |
|
|
-- The inverse function (uses Val in the case of enumeration types)
|
2643 |
|
|
|
2644 |
|
|
------------------------
|
2645 |
|
|
-- Make_Artyp_Literal --
|
2646 |
|
|
------------------------
|
2647 |
|
|
|
2648 |
|
|
function Make_Artyp_Literal (Val : Nat) return Node_Id is
|
2649 |
|
|
Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
|
2650 |
|
|
begin
|
2651 |
|
|
Set_Etype (Result, Artyp);
|
2652 |
|
|
Set_Analyzed (Result, True);
|
2653 |
|
|
Set_Is_Static_Expression (Result, False);
|
2654 |
|
|
return Result;
|
2655 |
|
|
end Make_Artyp_Literal;
|
2656 |
|
|
|
2657 |
|
|
--------------
|
2658 |
|
|
-- To_Artyp --
|
2659 |
|
|
--------------
|
2660 |
|
|
|
2661 |
|
|
function To_Artyp (X : Node_Id) return Node_Id is
|
2662 |
|
|
begin
|
2663 |
|
|
if Ityp = Base_Type (Artyp) then
|
2664 |
|
|
return X;
|
2665 |
|
|
|
2666 |
|
|
elsif Is_Enumeration_Type (Ityp) then
|
2667 |
|
|
return
|
2668 |
|
|
Make_Attribute_Reference (Loc,
|
2669 |
|
|
Prefix => New_Occurrence_Of (Ityp, Loc),
|
2670 |
|
|
Attribute_Name => Name_Pos,
|
2671 |
|
|
Expressions => New_List (X));
|
2672 |
|
|
|
2673 |
|
|
else
|
2674 |
|
|
return Convert_To (Artyp, X);
|
2675 |
|
|
end if;
|
2676 |
|
|
end To_Artyp;
|
2677 |
|
|
|
2678 |
|
|
-------------
|
2679 |
|
|
-- To_Ityp --
|
2680 |
|
|
-------------
|
2681 |
|
|
|
2682 |
|
|
function To_Ityp (X : Node_Id) return Node_Id is
|
2683 |
|
|
begin
|
2684 |
|
|
if Is_Enumeration_Type (Ityp) then
|
2685 |
|
|
return
|
2686 |
|
|
Make_Attribute_Reference (Loc,
|
2687 |
|
|
Prefix => New_Occurrence_Of (Ityp, Loc),
|
2688 |
|
|
Attribute_Name => Name_Val,
|
2689 |
|
|
Expressions => New_List (X));
|
2690 |
|
|
|
2691 |
|
|
-- Case where we will do a type conversion
|
2692 |
|
|
|
2693 |
|
|
else
|
2694 |
|
|
if Ityp = Base_Type (Artyp) then
|
2695 |
|
|
return X;
|
2696 |
|
|
else
|
2697 |
|
|
return Convert_To (Ityp, X);
|
2698 |
|
|
end if;
|
2699 |
|
|
end if;
|
2700 |
|
|
end To_Ityp;
|
2701 |
|
|
|
2702 |
|
|
-- Local Declarations
|
2703 |
|
|
|
2704 |
|
|
Opnd_Typ : Entity_Id;
|
2705 |
|
|
Ent : Entity_Id;
|
2706 |
|
|
Len : Uint;
|
2707 |
|
|
J : Nat;
|
2708 |
|
|
Clen : Node_Id;
|
2709 |
|
|
Set : Boolean;
|
2710 |
|
|
|
2711 |
|
|
-- Start of processing for Expand_Concatenate
|
2712 |
|
|
|
2713 |
|
|
begin
|
2714 |
|
|
-- Choose an appropriate computational type
|
2715 |
|
|
|
2716 |
|
|
-- We will be doing calculations of lengths and bounds in this routine
|
2717 |
|
|
-- and computing one from the other in some cases, e.g. getting the high
|
2718 |
|
|
-- bound by adding the length-1 to the low bound.
|
2719 |
|
|
|
2720 |
|
|
-- We can't just use the index type, or even its base type for this
|
2721 |
|
|
-- purpose for two reasons. First it might be an enumeration type which
|
2722 |
|
|
-- is not suitable for computations of any kind, and second it may
|
2723 |
|
|
-- simply not have enough range. For example if the index type is
|
2724 |
|
|
-- -128..+127 then lengths can be up to 256, which is out of range of
|
2725 |
|
|
-- the type.
|
2726 |
|
|
|
2727 |
|
|
-- For enumeration types, we can simply use Standard_Integer, this is
|
2728 |
|
|
-- sufficient since the actual number of enumeration literals cannot
|
2729 |
|
|
-- possibly exceed the range of integer (remember we will be doing the
|
2730 |
|
|
-- arithmetic with POS values, not representation values).
|
2731 |
|
|
|
2732 |
|
|
if Is_Enumeration_Type (Ityp) then
|
2733 |
|
|
Artyp := Standard_Integer;
|
2734 |
|
|
|
2735 |
|
|
-- If index type is Positive, we use the standard unsigned type, to give
|
2736 |
|
|
-- more room on the top of the range, obviating the need for an overflow
|
2737 |
|
|
-- check when creating the upper bound. This is needed to avoid junk
|
2738 |
|
|
-- overflow checks in the common case of String types.
|
2739 |
|
|
|
2740 |
|
|
-- ??? Disabled for now
|
2741 |
|
|
|
2742 |
|
|
-- elsif Istyp = Standard_Positive then
|
2743 |
|
|
-- Artyp := Standard_Unsigned;
|
2744 |
|
|
|
2745 |
|
|
-- For modular types, we use a 32-bit modular type for types whose size
|
2746 |
|
|
-- is in the range 1-31 bits. For 32-bit unsigned types, we use the
|
2747 |
|
|
-- identity type, and for larger unsigned types we use 64-bits.
|
2748 |
|
|
|
2749 |
|
|
elsif Is_Modular_Integer_Type (Ityp) then
|
2750 |
|
|
if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
|
2751 |
|
|
Artyp := Standard_Unsigned;
|
2752 |
|
|
elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
|
2753 |
|
|
Artyp := Ityp;
|
2754 |
|
|
else
|
2755 |
|
|
Artyp := RTE (RE_Long_Long_Unsigned);
|
2756 |
|
|
end if;
|
2757 |
|
|
|
2758 |
|
|
-- Similar treatment for signed types
|
2759 |
|
|
|
2760 |
|
|
else
|
2761 |
|
|
if RM_Size (Ityp) < RM_Size (Standard_Integer) then
|
2762 |
|
|
Artyp := Standard_Integer;
|
2763 |
|
|
elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
|
2764 |
|
|
Artyp := Ityp;
|
2765 |
|
|
else
|
2766 |
|
|
Artyp := Standard_Long_Long_Integer;
|
2767 |
|
|
end if;
|
2768 |
|
|
end if;
|
2769 |
|
|
|
2770 |
|
|
-- Supply dummy entry at start of length array
|
2771 |
|
|
|
2772 |
|
|
Aggr_Length (0) := Make_Artyp_Literal (0);
|
2773 |
|
|
|
2774 |
|
|
-- Go through operands setting up the above arrays
|
2775 |
|
|
|
2776 |
|
|
J := 1;
|
2777 |
|
|
while J <= N loop
|
2778 |
|
|
Opnd := Remove_Head (Opnds);
|
2779 |
|
|
Opnd_Typ := Etype (Opnd);
|
2780 |
|
|
|
2781 |
|
|
-- The parent got messed up when we put the operands in a list,
|
2782 |
|
|
-- so now put back the proper parent for the saved operand, that
|
2783 |
|
|
-- is to say the concatenation node, to make sure that each operand
|
2784 |
|
|
-- is seen as a subexpression, e.g. if actions must be inserted.
|
2785 |
|
|
|
2786 |
|
|
Set_Parent (Opnd, Cnode);
|
2787 |
|
|
|
2788 |
|
|
-- Set will be True when we have setup one entry in the array
|
2789 |
|
|
|
2790 |
|
|
Set := False;
|
2791 |
|
|
|
2792 |
|
|
-- Singleton element (or character literal) case
|
2793 |
|
|
|
2794 |
|
|
if Base_Type (Opnd_Typ) = Ctyp then
|
2795 |
|
|
NN := NN + 1;
|
2796 |
|
|
Operands (NN) := Opnd;
|
2797 |
|
|
Is_Fixed_Length (NN) := True;
|
2798 |
|
|
Fixed_Length (NN) := Uint_1;
|
2799 |
|
|
Result_May_Be_Null := False;
|
2800 |
|
|
|
2801 |
|
|
-- Set low bound of operand (no need to set Last_Opnd_High_Bound
|
2802 |
|
|
-- since we know that the result cannot be null).
|
2803 |
|
|
|
2804 |
|
|
Opnd_Low_Bound (NN) :=
|
2805 |
|
|
Make_Attribute_Reference (Loc,
|
2806 |
|
|
Prefix => New_Reference_To (Istyp, Loc),
|
2807 |
|
|
Attribute_Name => Name_First);
|
2808 |
|
|
|
2809 |
|
|
Set := True;
|
2810 |
|
|
|
2811 |
|
|
-- String literal case (can only occur for strings of course)
|
2812 |
|
|
|
2813 |
|
|
elsif Nkind (Opnd) = N_String_Literal then
|
2814 |
|
|
Len := String_Literal_Length (Opnd_Typ);
|
2815 |
|
|
|
2816 |
|
|
if Len /= 0 then
|
2817 |
|
|
Result_May_Be_Null := False;
|
2818 |
|
|
end if;
|
2819 |
|
|
|
2820 |
|
|
-- Capture last operand low and high bound if result could be null
|
2821 |
|
|
|
2822 |
|
|
if J = N and then Result_May_Be_Null then
|
2823 |
|
|
Last_Opnd_Low_Bound :=
|
2824 |
|
|
New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
|
2825 |
|
|
|
2826 |
|
|
Last_Opnd_High_Bound :=
|
2827 |
|
|
Make_Op_Subtract (Loc,
|
2828 |
|
|
Left_Opnd =>
|
2829 |
|
|
New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
|
2830 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1));
|
2831 |
|
|
end if;
|
2832 |
|
|
|
2833 |
|
|
-- Skip null string literal
|
2834 |
|
|
|
2835 |
|
|
if J < N and then Len = 0 then
|
2836 |
|
|
goto Continue;
|
2837 |
|
|
end if;
|
2838 |
|
|
|
2839 |
|
|
NN := NN + 1;
|
2840 |
|
|
Operands (NN) := Opnd;
|
2841 |
|
|
Is_Fixed_Length (NN) := True;
|
2842 |
|
|
|
2843 |
|
|
-- Set length and bounds
|
2844 |
|
|
|
2845 |
|
|
Fixed_Length (NN) := Len;
|
2846 |
|
|
|
2847 |
|
|
Opnd_Low_Bound (NN) :=
|
2848 |
|
|
New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
|
2849 |
|
|
|
2850 |
|
|
Set := True;
|
2851 |
|
|
|
2852 |
|
|
-- All other cases
|
2853 |
|
|
|
2854 |
|
|
else
|
2855 |
|
|
-- Check constrained case with known bounds
|
2856 |
|
|
|
2857 |
|
|
if Is_Constrained (Opnd_Typ) then
|
2858 |
|
|
declare
|
2859 |
|
|
Index : constant Node_Id := First_Index (Opnd_Typ);
|
2860 |
|
|
Indx_Typ : constant Entity_Id := Etype (Index);
|
2861 |
|
|
Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
|
2862 |
|
|
Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
|
2863 |
|
|
|
2864 |
|
|
begin
|
2865 |
|
|
-- Fixed length constrained array type with known at compile
|
2866 |
|
|
-- time bounds is last case of fixed length operand.
|
2867 |
|
|
|
2868 |
|
|
if Compile_Time_Known_Value (Lo)
|
2869 |
|
|
and then
|
2870 |
|
|
Compile_Time_Known_Value (Hi)
|
2871 |
|
|
then
|
2872 |
|
|
declare
|
2873 |
|
|
Loval : constant Uint := Expr_Value (Lo);
|
2874 |
|
|
Hival : constant Uint := Expr_Value (Hi);
|
2875 |
|
|
Len : constant Uint :=
|
2876 |
|
|
UI_Max (Hival - Loval + 1, Uint_0);
|
2877 |
|
|
|
2878 |
|
|
begin
|
2879 |
|
|
if Len > 0 then
|
2880 |
|
|
Result_May_Be_Null := False;
|
2881 |
|
|
end if;
|
2882 |
|
|
|
2883 |
|
|
-- Capture last operand bounds if result could be null
|
2884 |
|
|
|
2885 |
|
|
if J = N and then Result_May_Be_Null then
|
2886 |
|
|
Last_Opnd_Low_Bound :=
|
2887 |
|
|
Convert_To (Ityp,
|
2888 |
|
|
Make_Integer_Literal (Loc, Expr_Value (Lo)));
|
2889 |
|
|
|
2890 |
|
|
Last_Opnd_High_Bound :=
|
2891 |
|
|
Convert_To (Ityp,
|
2892 |
|
|
Make_Integer_Literal (Loc, Expr_Value (Hi)));
|
2893 |
|
|
end if;
|
2894 |
|
|
|
2895 |
|
|
-- Exclude null length case unless last operand
|
2896 |
|
|
|
2897 |
|
|
if J < N and then Len = 0 then
|
2898 |
|
|
goto Continue;
|
2899 |
|
|
end if;
|
2900 |
|
|
|
2901 |
|
|
NN := NN + 1;
|
2902 |
|
|
Operands (NN) := Opnd;
|
2903 |
|
|
Is_Fixed_Length (NN) := True;
|
2904 |
|
|
Fixed_Length (NN) := Len;
|
2905 |
|
|
|
2906 |
|
|
Opnd_Low_Bound (NN) :=
|
2907 |
|
|
To_Ityp
|
2908 |
|
|
(Make_Integer_Literal (Loc, Expr_Value (Lo)));
|
2909 |
|
|
Set := True;
|
2910 |
|
|
end;
|
2911 |
|
|
end if;
|
2912 |
|
|
end;
|
2913 |
|
|
end if;
|
2914 |
|
|
|
2915 |
|
|
-- All cases where the length is not known at compile time, or the
|
2916 |
|
|
-- special case of an operand which is known to be null but has a
|
2917 |
|
|
-- lower bound other than 1 or is other than a string type.
|
2918 |
|
|
|
2919 |
|
|
if not Set then
|
2920 |
|
|
NN := NN + 1;
|
2921 |
|
|
|
2922 |
|
|
-- Capture operand bounds
|
2923 |
|
|
|
2924 |
|
|
Opnd_Low_Bound (NN) :=
|
2925 |
|
|
Make_Attribute_Reference (Loc,
|
2926 |
|
|
Prefix =>
|
2927 |
|
|
Duplicate_Subexpr (Opnd, Name_Req => True),
|
2928 |
|
|
Attribute_Name => Name_First);
|
2929 |
|
|
|
2930 |
|
|
-- Capture last operand bounds if result could be null
|
2931 |
|
|
|
2932 |
|
|
if J = N and Result_May_Be_Null then
|
2933 |
|
|
Last_Opnd_Low_Bound :=
|
2934 |
|
|
Convert_To (Ityp,
|
2935 |
|
|
Make_Attribute_Reference (Loc,
|
2936 |
|
|
Prefix =>
|
2937 |
|
|
Duplicate_Subexpr (Opnd, Name_Req => True),
|
2938 |
|
|
Attribute_Name => Name_First));
|
2939 |
|
|
|
2940 |
|
|
Last_Opnd_High_Bound :=
|
2941 |
|
|
Convert_To (Ityp,
|
2942 |
|
|
Make_Attribute_Reference (Loc,
|
2943 |
|
|
Prefix =>
|
2944 |
|
|
Duplicate_Subexpr (Opnd, Name_Req => True),
|
2945 |
|
|
Attribute_Name => Name_Last));
|
2946 |
|
|
end if;
|
2947 |
|
|
|
2948 |
|
|
-- Capture length of operand in entity
|
2949 |
|
|
|
2950 |
|
|
Operands (NN) := Opnd;
|
2951 |
|
|
Is_Fixed_Length (NN) := False;
|
2952 |
|
|
|
2953 |
|
|
Var_Length (NN) := Make_Temporary (Loc, 'L');
|
2954 |
|
|
|
2955 |
|
|
Append_To (Actions,
|
2956 |
|
|
Make_Object_Declaration (Loc,
|
2957 |
|
|
Defining_Identifier => Var_Length (NN),
|
2958 |
|
|
Constant_Present => True,
|
2959 |
|
|
Object_Definition => New_Occurrence_Of (Artyp, Loc),
|
2960 |
|
|
Expression =>
|
2961 |
|
|
Make_Attribute_Reference (Loc,
|
2962 |
|
|
Prefix =>
|
2963 |
|
|
Duplicate_Subexpr (Opnd, Name_Req => True),
|
2964 |
|
|
Attribute_Name => Name_Length)));
|
2965 |
|
|
end if;
|
2966 |
|
|
end if;
|
2967 |
|
|
|
2968 |
|
|
-- Set next entry in aggregate length array
|
2969 |
|
|
|
2970 |
|
|
-- For first entry, make either integer literal for fixed length
|
2971 |
|
|
-- or a reference to the saved length for variable length.
|
2972 |
|
|
|
2973 |
|
|
if NN = 1 then
|
2974 |
|
|
if Is_Fixed_Length (1) then
|
2975 |
|
|
Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
|
2976 |
|
|
else
|
2977 |
|
|
Aggr_Length (1) := New_Reference_To (Var_Length (1), Loc);
|
2978 |
|
|
end if;
|
2979 |
|
|
|
2980 |
|
|
-- If entry is fixed length and only fixed lengths so far, make
|
2981 |
|
|
-- appropriate new integer literal adding new length.
|
2982 |
|
|
|
2983 |
|
|
elsif Is_Fixed_Length (NN)
|
2984 |
|
|
and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
|
2985 |
|
|
then
|
2986 |
|
|
Aggr_Length (NN) :=
|
2987 |
|
|
Make_Integer_Literal (Loc,
|
2988 |
|
|
Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
|
2989 |
|
|
|
2990 |
|
|
-- All other cases, construct an addition node for the length and
|
2991 |
|
|
-- create an entity initialized to this length.
|
2992 |
|
|
|
2993 |
|
|
else
|
2994 |
|
|
Ent := Make_Temporary (Loc, 'L');
|
2995 |
|
|
|
2996 |
|
|
if Is_Fixed_Length (NN) then
|
2997 |
|
|
Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
|
2998 |
|
|
else
|
2999 |
|
|
Clen := New_Reference_To (Var_Length (NN), Loc);
|
3000 |
|
|
end if;
|
3001 |
|
|
|
3002 |
|
|
Append_To (Actions,
|
3003 |
|
|
Make_Object_Declaration (Loc,
|
3004 |
|
|
Defining_Identifier => Ent,
|
3005 |
|
|
Constant_Present => True,
|
3006 |
|
|
Object_Definition => New_Occurrence_Of (Artyp, Loc),
|
3007 |
|
|
Expression =>
|
3008 |
|
|
Make_Op_Add (Loc,
|
3009 |
|
|
Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
|
3010 |
|
|
Right_Opnd => Clen)));
|
3011 |
|
|
|
3012 |
|
|
Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
|
3013 |
|
|
end if;
|
3014 |
|
|
|
3015 |
|
|
<<Continue>>
|
3016 |
|
|
J := J + 1;
|
3017 |
|
|
end loop;
|
3018 |
|
|
|
3019 |
|
|
-- If we have only skipped null operands, return the last operand
|
3020 |
|
|
|
3021 |
|
|
if NN = 0 then
|
3022 |
|
|
Result := Opnd;
|
3023 |
|
|
goto Done;
|
3024 |
|
|
end if;
|
3025 |
|
|
|
3026 |
|
|
-- If we have only one non-null operand, return it and we are done.
|
3027 |
|
|
-- There is one case in which this cannot be done, and that is when
|
3028 |
|
|
-- the sole operand is of the element type, in which case it must be
|
3029 |
|
|
-- converted to an array, and the easiest way of doing that is to go
|
3030 |
|
|
-- through the normal general circuit.
|
3031 |
|
|
|
3032 |
|
|
if NN = 1
|
3033 |
|
|
and then Base_Type (Etype (Operands (1))) /= Ctyp
|
3034 |
|
|
then
|
3035 |
|
|
Result := Operands (1);
|
3036 |
|
|
goto Done;
|
3037 |
|
|
end if;
|
3038 |
|
|
|
3039 |
|
|
-- Cases where we have a real concatenation
|
3040 |
|
|
|
3041 |
|
|
-- Next step is to find the low bound for the result array that we
|
3042 |
|
|
-- will allocate. The rules for this are in (RM 4.5.6(5-7)).
|
3043 |
|
|
|
3044 |
|
|
-- If the ultimate ancestor of the index subtype is a constrained array
|
3045 |
|
|
-- definition, then the lower bound is that of the index subtype as
|
3046 |
|
|
-- specified by (RM 4.5.3(6)).
|
3047 |
|
|
|
3048 |
|
|
-- The right test here is to go to the root type, and then the ultimate
|
3049 |
|
|
-- ancestor is the first subtype of this root type.
|
3050 |
|
|
|
3051 |
|
|
if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
|
3052 |
|
|
Low_Bound :=
|
3053 |
|
|
Make_Attribute_Reference (Loc,
|
3054 |
|
|
Prefix =>
|
3055 |
|
|
New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
|
3056 |
|
|
Attribute_Name => Name_First);
|
3057 |
|
|
|
3058 |
|
|
-- If the first operand in the list has known length we know that
|
3059 |
|
|
-- the lower bound of the result is the lower bound of this operand.
|
3060 |
|
|
|
3061 |
|
|
elsif Is_Fixed_Length (1) then
|
3062 |
|
|
Low_Bound := Opnd_Low_Bound (1);
|
3063 |
|
|
|
3064 |
|
|
-- OK, we don't know the lower bound, we have to build a horrible
|
3065 |
|
|
-- expression actions node of the form
|
3066 |
|
|
|
3067 |
|
|
-- if Cond1'Length /= 0 then
|
3068 |
|
|
-- Opnd1 low bound
|
3069 |
|
|
-- else
|
3070 |
|
|
-- if Opnd2'Length /= 0 then
|
3071 |
|
|
-- Opnd2 low bound
|
3072 |
|
|
-- else
|
3073 |
|
|
-- ...
|
3074 |
|
|
|
3075 |
|
|
-- The nesting ends either when we hit an operand whose length is known
|
3076 |
|
|
-- at compile time, or on reaching the last operand, whose low bound we
|
3077 |
|
|
-- take unconditionally whether or not it is null. It's easiest to do
|
3078 |
|
|
-- this with a recursive procedure:
|
3079 |
|
|
|
3080 |
|
|
else
|
3081 |
|
|
declare
|
3082 |
|
|
function Get_Known_Bound (J : Nat) return Node_Id;
|
3083 |
|
|
-- Returns the lower bound determined by operands J .. NN
|
3084 |
|
|
|
3085 |
|
|
---------------------
|
3086 |
|
|
-- Get_Known_Bound --
|
3087 |
|
|
---------------------
|
3088 |
|
|
|
3089 |
|
|
function Get_Known_Bound (J : Nat) return Node_Id is
|
3090 |
|
|
begin
|
3091 |
|
|
if Is_Fixed_Length (J) or else J = NN then
|
3092 |
|
|
return New_Copy (Opnd_Low_Bound (J));
|
3093 |
|
|
|
3094 |
|
|
else
|
3095 |
|
|
return
|
3096 |
|
|
Make_Conditional_Expression (Loc,
|
3097 |
|
|
Expressions => New_List (
|
3098 |
|
|
|
3099 |
|
|
Make_Op_Ne (Loc,
|
3100 |
|
|
Left_Opnd => New_Reference_To (Var_Length (J), Loc),
|
3101 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 0)),
|
3102 |
|
|
|
3103 |
|
|
New_Copy (Opnd_Low_Bound (J)),
|
3104 |
|
|
Get_Known_Bound (J + 1)));
|
3105 |
|
|
end if;
|
3106 |
|
|
end Get_Known_Bound;
|
3107 |
|
|
|
3108 |
|
|
begin
|
3109 |
|
|
Ent := Make_Temporary (Loc, 'L');
|
3110 |
|
|
|
3111 |
|
|
Append_To (Actions,
|
3112 |
|
|
Make_Object_Declaration (Loc,
|
3113 |
|
|
Defining_Identifier => Ent,
|
3114 |
|
|
Constant_Present => True,
|
3115 |
|
|
Object_Definition => New_Occurrence_Of (Ityp, Loc),
|
3116 |
|
|
Expression => Get_Known_Bound (1)));
|
3117 |
|
|
|
3118 |
|
|
Low_Bound := New_Reference_To (Ent, Loc);
|
3119 |
|
|
end;
|
3120 |
|
|
end if;
|
3121 |
|
|
|
3122 |
|
|
-- Now we can safely compute the upper bound, normally
|
3123 |
|
|
-- Low_Bound + Length - 1.
|
3124 |
|
|
|
3125 |
|
|
High_Bound :=
|
3126 |
|
|
To_Ityp (
|
3127 |
|
|
Make_Op_Add (Loc,
|
3128 |
|
|
Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
|
3129 |
|
|
Right_Opnd =>
|
3130 |
|
|
Make_Op_Subtract (Loc,
|
3131 |
|
|
Left_Opnd => New_Copy (Aggr_Length (NN)),
|
3132 |
|
|
Right_Opnd => Make_Artyp_Literal (1))));
|
3133 |
|
|
|
3134 |
|
|
-- Note that calculation of the high bound may cause overflow in some
|
3135 |
|
|
-- very weird cases, so in the general case we need an overflow check on
|
3136 |
|
|
-- the high bound. We can avoid this for the common case of string types
|
3137 |
|
|
-- and other types whose index is Positive, since we chose a wider range
|
3138 |
|
|
-- for the arithmetic type.
|
3139 |
|
|
|
3140 |
|
|
if Istyp /= Standard_Positive then
|
3141 |
|
|
Activate_Overflow_Check (High_Bound);
|
3142 |
|
|
end if;
|
3143 |
|
|
|
3144 |
|
|
-- Handle the exceptional case where the result is null, in which case
|
3145 |
|
|
-- case the bounds come from the last operand (so that we get the proper
|
3146 |
|
|
-- bounds if the last operand is super-flat).
|
3147 |
|
|
|
3148 |
|
|
if Result_May_Be_Null then
|
3149 |
|
|
Low_Bound :=
|
3150 |
|
|
Make_Conditional_Expression (Loc,
|
3151 |
|
|
Expressions => New_List (
|
3152 |
|
|
Make_Op_Eq (Loc,
|
3153 |
|
|
Left_Opnd => New_Copy (Aggr_Length (NN)),
|
3154 |
|
|
Right_Opnd => Make_Artyp_Literal (0)),
|
3155 |
|
|
Last_Opnd_Low_Bound,
|
3156 |
|
|
Low_Bound));
|
3157 |
|
|
|
3158 |
|
|
High_Bound :=
|
3159 |
|
|
Make_Conditional_Expression (Loc,
|
3160 |
|
|
Expressions => New_List (
|
3161 |
|
|
Make_Op_Eq (Loc,
|
3162 |
|
|
Left_Opnd => New_Copy (Aggr_Length (NN)),
|
3163 |
|
|
Right_Opnd => Make_Artyp_Literal (0)),
|
3164 |
|
|
Last_Opnd_High_Bound,
|
3165 |
|
|
High_Bound));
|
3166 |
|
|
end if;
|
3167 |
|
|
|
3168 |
|
|
-- Here is where we insert the saved up actions
|
3169 |
|
|
|
3170 |
|
|
Insert_Actions (Cnode, Actions, Suppress => All_Checks);
|
3171 |
|
|
|
3172 |
|
|
-- Now we construct an array object with appropriate bounds. We mark
|
3173 |
|
|
-- the target as internal to prevent useless initialization when
|
3174 |
|
|
-- Initialize_Scalars is enabled. Also since this is the actual result
|
3175 |
|
|
-- entity, we make sure we have debug information for the result.
|
3176 |
|
|
|
3177 |
|
|
Ent := Make_Temporary (Loc, 'S');
|
3178 |
|
|
Set_Is_Internal (Ent);
|
3179 |
|
|
Set_Needs_Debug_Info (Ent);
|
3180 |
|
|
|
3181 |
|
|
-- If the bound is statically known to be out of range, we do not want
|
3182 |
|
|
-- to abort, we want a warning and a runtime constraint error. Note that
|
3183 |
|
|
-- we have arranged that the result will not be treated as a static
|
3184 |
|
|
-- constant, so we won't get an illegality during this insertion.
|
3185 |
|
|
|
3186 |
|
|
Insert_Action (Cnode,
|
3187 |
|
|
Make_Object_Declaration (Loc,
|
3188 |
|
|
Defining_Identifier => Ent,
|
3189 |
|
|
Object_Definition =>
|
3190 |
|
|
Make_Subtype_Indication (Loc,
|
3191 |
|
|
Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
|
3192 |
|
|
Constraint =>
|
3193 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
3194 |
|
|
Constraints => New_List (
|
3195 |
|
|
Make_Range (Loc,
|
3196 |
|
|
Low_Bound => Low_Bound,
|
3197 |
|
|
High_Bound => High_Bound))))),
|
3198 |
|
|
Suppress => All_Checks);
|
3199 |
|
|
|
3200 |
|
|
-- If the result of the concatenation appears as the initializing
|
3201 |
|
|
-- expression of an object declaration, we can just rename the
|
3202 |
|
|
-- result, rather than copying it.
|
3203 |
|
|
|
3204 |
|
|
Set_OK_To_Rename (Ent);
|
3205 |
|
|
|
3206 |
|
|
-- Catch the static out of range case now
|
3207 |
|
|
|
3208 |
|
|
if Raises_Constraint_Error (High_Bound) then
|
3209 |
|
|
raise Concatenation_Error;
|
3210 |
|
|
end if;
|
3211 |
|
|
|
3212 |
|
|
-- Now we will generate the assignments to do the actual concatenation
|
3213 |
|
|
|
3214 |
|
|
-- There is one case in which we will not do this, namely when all the
|
3215 |
|
|
-- following conditions are met:
|
3216 |
|
|
|
3217 |
|
|
-- The result type is Standard.String
|
3218 |
|
|
|
3219 |
|
|
-- There are nine or fewer retained (non-null) operands
|
3220 |
|
|
|
3221 |
|
|
-- The optimization level is -O0
|
3222 |
|
|
|
3223 |
|
|
-- The corresponding System.Concat_n.Str_Concat_n routine is
|
3224 |
|
|
-- available in the run time.
|
3225 |
|
|
|
3226 |
|
|
-- The debug flag gnatd.c is not set
|
3227 |
|
|
|
3228 |
|
|
-- If all these conditions are met then we generate a call to the
|
3229 |
|
|
-- relevant concatenation routine. The purpose of this is to avoid
|
3230 |
|
|
-- undesirable code bloat at -O0.
|
3231 |
|
|
|
3232 |
|
|
if Atyp = Standard_String
|
3233 |
|
|
and then NN in 2 .. 9
|
3234 |
|
|
and then (Opt.Optimization_Level = 0 or else Debug_Flag_Dot_CC)
|
3235 |
|
|
and then not Debug_Flag_Dot_C
|
3236 |
|
|
then
|
3237 |
|
|
declare
|
3238 |
|
|
RR : constant array (Nat range 2 .. 9) of RE_Id :=
|
3239 |
|
|
(RE_Str_Concat_2,
|
3240 |
|
|
RE_Str_Concat_3,
|
3241 |
|
|
RE_Str_Concat_4,
|
3242 |
|
|
RE_Str_Concat_5,
|
3243 |
|
|
RE_Str_Concat_6,
|
3244 |
|
|
RE_Str_Concat_7,
|
3245 |
|
|
RE_Str_Concat_8,
|
3246 |
|
|
RE_Str_Concat_9);
|
3247 |
|
|
|
3248 |
|
|
begin
|
3249 |
|
|
if RTE_Available (RR (NN)) then
|
3250 |
|
|
declare
|
3251 |
|
|
Opnds : constant List_Id :=
|
3252 |
|
|
New_List (New_Occurrence_Of (Ent, Loc));
|
3253 |
|
|
|
3254 |
|
|
begin
|
3255 |
|
|
for J in 1 .. NN loop
|
3256 |
|
|
if Is_List_Member (Operands (J)) then
|
3257 |
|
|
Remove (Operands (J));
|
3258 |
|
|
end if;
|
3259 |
|
|
|
3260 |
|
|
if Base_Type (Etype (Operands (J))) = Ctyp then
|
3261 |
|
|
Append_To (Opnds,
|
3262 |
|
|
Make_Aggregate (Loc,
|
3263 |
|
|
Component_Associations => New_List (
|
3264 |
|
|
Make_Component_Association (Loc,
|
3265 |
|
|
Choices => New_List (
|
3266 |
|
|
Make_Integer_Literal (Loc, 1)),
|
3267 |
|
|
Expression => Operands (J)))));
|
3268 |
|
|
|
3269 |
|
|
else
|
3270 |
|
|
Append_To (Opnds, Operands (J));
|
3271 |
|
|
end if;
|
3272 |
|
|
end loop;
|
3273 |
|
|
|
3274 |
|
|
Insert_Action (Cnode,
|
3275 |
|
|
Make_Procedure_Call_Statement (Loc,
|
3276 |
|
|
Name => New_Reference_To (RTE (RR (NN)), Loc),
|
3277 |
|
|
Parameter_Associations => Opnds));
|
3278 |
|
|
|
3279 |
|
|
Result := New_Reference_To (Ent, Loc);
|
3280 |
|
|
goto Done;
|
3281 |
|
|
end;
|
3282 |
|
|
end if;
|
3283 |
|
|
end;
|
3284 |
|
|
end if;
|
3285 |
|
|
|
3286 |
|
|
-- Not special case so generate the assignments
|
3287 |
|
|
|
3288 |
|
|
Known_Non_Null_Operand_Seen := False;
|
3289 |
|
|
|
3290 |
|
|
for J in 1 .. NN loop
|
3291 |
|
|
declare
|
3292 |
|
|
Lo : constant Node_Id :=
|
3293 |
|
|
Make_Op_Add (Loc,
|
3294 |
|
|
Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
|
3295 |
|
|
Right_Opnd => Aggr_Length (J - 1));
|
3296 |
|
|
|
3297 |
|
|
Hi : constant Node_Id :=
|
3298 |
|
|
Make_Op_Add (Loc,
|
3299 |
|
|
Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
|
3300 |
|
|
Right_Opnd =>
|
3301 |
|
|
Make_Op_Subtract (Loc,
|
3302 |
|
|
Left_Opnd => Aggr_Length (J),
|
3303 |
|
|
Right_Opnd => Make_Artyp_Literal (1)));
|
3304 |
|
|
|
3305 |
|
|
begin
|
3306 |
|
|
-- Singleton case, simple assignment
|
3307 |
|
|
|
3308 |
|
|
if Base_Type (Etype (Operands (J))) = Ctyp then
|
3309 |
|
|
Known_Non_Null_Operand_Seen := True;
|
3310 |
|
|
Insert_Action (Cnode,
|
3311 |
|
|
Make_Assignment_Statement (Loc,
|
3312 |
|
|
Name =>
|
3313 |
|
|
Make_Indexed_Component (Loc,
|
3314 |
|
|
Prefix => New_Occurrence_Of (Ent, Loc),
|
3315 |
|
|
Expressions => New_List (To_Ityp (Lo))),
|
3316 |
|
|
Expression => Operands (J)),
|
3317 |
|
|
Suppress => All_Checks);
|
3318 |
|
|
|
3319 |
|
|
-- Array case, slice assignment, skipped when argument is fixed
|
3320 |
|
|
-- length and known to be null.
|
3321 |
|
|
|
3322 |
|
|
elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
|
3323 |
|
|
declare
|
3324 |
|
|
Assign : Node_Id :=
|
3325 |
|
|
Make_Assignment_Statement (Loc,
|
3326 |
|
|
Name =>
|
3327 |
|
|
Make_Slice (Loc,
|
3328 |
|
|
Prefix =>
|
3329 |
|
|
New_Occurrence_Of (Ent, Loc),
|
3330 |
|
|
Discrete_Range =>
|
3331 |
|
|
Make_Range (Loc,
|
3332 |
|
|
Low_Bound => To_Ityp (Lo),
|
3333 |
|
|
High_Bound => To_Ityp (Hi))),
|
3334 |
|
|
Expression => Operands (J));
|
3335 |
|
|
begin
|
3336 |
|
|
if Is_Fixed_Length (J) then
|
3337 |
|
|
Known_Non_Null_Operand_Seen := True;
|
3338 |
|
|
|
3339 |
|
|
elsif not Known_Non_Null_Operand_Seen then
|
3340 |
|
|
|
3341 |
|
|
-- Here if operand length is not statically known and no
|
3342 |
|
|
-- operand known to be non-null has been processed yet.
|
3343 |
|
|
-- If operand length is 0, we do not need to perform the
|
3344 |
|
|
-- assignment, and we must avoid the evaluation of the
|
3345 |
|
|
-- high bound of the slice, since it may underflow if the
|
3346 |
|
|
-- low bound is Ityp'First.
|
3347 |
|
|
|
3348 |
|
|
Assign :=
|
3349 |
|
|
Make_Implicit_If_Statement (Cnode,
|
3350 |
|
|
Condition =>
|
3351 |
|
|
Make_Op_Ne (Loc,
|
3352 |
|
|
Left_Opnd =>
|
3353 |
|
|
New_Occurrence_Of (Var_Length (J), Loc),
|
3354 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 0)),
|
3355 |
|
|
Then_Statements => New_List (Assign));
|
3356 |
|
|
end if;
|
3357 |
|
|
|
3358 |
|
|
Insert_Action (Cnode, Assign, Suppress => All_Checks);
|
3359 |
|
|
end;
|
3360 |
|
|
end if;
|
3361 |
|
|
end;
|
3362 |
|
|
end loop;
|
3363 |
|
|
|
3364 |
|
|
-- Finally we build the result, which is a reference to the array object
|
3365 |
|
|
|
3366 |
|
|
Result := New_Reference_To (Ent, Loc);
|
3367 |
|
|
|
3368 |
|
|
<<Done>>
|
3369 |
|
|
Rewrite (Cnode, Result);
|
3370 |
|
|
Analyze_And_Resolve (Cnode, Atyp);
|
3371 |
|
|
|
3372 |
|
|
exception
|
3373 |
|
|
when Concatenation_Error =>
|
3374 |
|
|
|
3375 |
|
|
-- Kill warning generated for the declaration of the static out of
|
3376 |
|
|
-- range high bound, and instead generate a Constraint_Error with
|
3377 |
|
|
-- an appropriate specific message.
|
3378 |
|
|
|
3379 |
|
|
Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
|
3380 |
|
|
Apply_Compile_Time_Constraint_Error
|
3381 |
|
|
(N => Cnode,
|
3382 |
|
|
Msg => "concatenation result upper bound out of range?",
|
3383 |
|
|
Reason => CE_Range_Check_Failed);
|
3384 |
|
|
-- Set_Etype (Cnode, Atyp);
|
3385 |
|
|
end Expand_Concatenate;
|
3386 |
|
|
|
3387 |
|
|
------------------------
|
3388 |
|
|
-- Expand_N_Allocator --
|
3389 |
|
|
------------------------
|
3390 |
|
|
|
3391 |
|
|
procedure Expand_N_Allocator (N : Node_Id) is
|
3392 |
|
|
PtrT : constant Entity_Id := Etype (N);
|
3393 |
|
|
Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
|
3394 |
|
|
Etyp : constant Entity_Id := Etype (Expression (N));
|
3395 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3396 |
|
|
Desig : Entity_Id;
|
3397 |
|
|
Nod : Node_Id;
|
3398 |
|
|
Pool : Entity_Id;
|
3399 |
|
|
Temp : Entity_Id;
|
3400 |
|
|
|
3401 |
|
|
procedure Rewrite_Coextension (N : Node_Id);
|
3402 |
|
|
-- Static coextensions have the same lifetime as the entity they
|
3403 |
|
|
-- constrain. Such occurrences can be rewritten as aliased objects
|
3404 |
|
|
-- and their unrestricted access used instead of the coextension.
|
3405 |
|
|
|
3406 |
|
|
function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
|
3407 |
|
|
-- Given a constrained array type E, returns a node representing the
|
3408 |
|
|
-- code to compute the size in storage elements for the given type.
|
3409 |
|
|
-- This is done without using the attribute (which malfunctions for
|
3410 |
|
|
-- large sizes ???)
|
3411 |
|
|
|
3412 |
|
|
-------------------------
|
3413 |
|
|
-- Rewrite_Coextension --
|
3414 |
|
|
-------------------------
|
3415 |
|
|
|
3416 |
|
|
procedure Rewrite_Coextension (N : Node_Id) is
|
3417 |
|
|
Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
|
3418 |
|
|
Temp_Decl : Node_Id;
|
3419 |
|
|
Insert_Nod : Node_Id;
|
3420 |
|
|
|
3421 |
|
|
begin
|
3422 |
|
|
-- Generate:
|
3423 |
|
|
-- Cnn : aliased Etyp;
|
3424 |
|
|
|
3425 |
|
|
Temp_Decl :=
|
3426 |
|
|
Make_Object_Declaration (Loc,
|
3427 |
|
|
Defining_Identifier => Temp_Id,
|
3428 |
|
|
Aliased_Present => True,
|
3429 |
|
|
Object_Definition => New_Occurrence_Of (Etyp, Loc));
|
3430 |
|
|
|
3431 |
|
|
if Nkind (Expression (N)) = N_Qualified_Expression then
|
3432 |
|
|
Set_Expression (Temp_Decl, Expression (Expression (N)));
|
3433 |
|
|
end if;
|
3434 |
|
|
|
3435 |
|
|
-- Find the proper insertion node for the declaration
|
3436 |
|
|
|
3437 |
|
|
Insert_Nod := Parent (N);
|
3438 |
|
|
while Present (Insert_Nod) loop
|
3439 |
|
|
exit when
|
3440 |
|
|
Nkind (Insert_Nod) in N_Statement_Other_Than_Procedure_Call
|
3441 |
|
|
or else Nkind (Insert_Nod) = N_Procedure_Call_Statement
|
3442 |
|
|
or else Nkind (Insert_Nod) in N_Declaration;
|
3443 |
|
|
|
3444 |
|
|
Insert_Nod := Parent (Insert_Nod);
|
3445 |
|
|
end loop;
|
3446 |
|
|
|
3447 |
|
|
Insert_Before (Insert_Nod, Temp_Decl);
|
3448 |
|
|
Analyze (Temp_Decl);
|
3449 |
|
|
|
3450 |
|
|
Rewrite (N,
|
3451 |
|
|
Make_Attribute_Reference (Loc,
|
3452 |
|
|
Prefix => New_Occurrence_Of (Temp_Id, Loc),
|
3453 |
|
|
Attribute_Name => Name_Unrestricted_Access));
|
3454 |
|
|
|
3455 |
|
|
Analyze_And_Resolve (N, PtrT);
|
3456 |
|
|
end Rewrite_Coextension;
|
3457 |
|
|
|
3458 |
|
|
------------------------------
|
3459 |
|
|
-- Size_In_Storage_Elements --
|
3460 |
|
|
------------------------------
|
3461 |
|
|
|
3462 |
|
|
function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
|
3463 |
|
|
begin
|
3464 |
|
|
-- Logically this just returns E'Max_Size_In_Storage_Elements.
|
3465 |
|
|
-- However, the reason for the existence of this function is
|
3466 |
|
|
-- to construct a test for sizes too large, which means near the
|
3467 |
|
|
-- 32-bit limit on a 32-bit machine, and precisely the trouble
|
3468 |
|
|
-- is that we get overflows when sizes are greater than 2**31.
|
3469 |
|
|
|
3470 |
|
|
-- So what we end up doing for array types is to use the expression:
|
3471 |
|
|
|
3472 |
|
|
-- number-of-elements * component_type'Max_Size_In_Storage_Elements
|
3473 |
|
|
|
3474 |
|
|
-- which avoids this problem. All this is a bit bogus, but it does
|
3475 |
|
|
-- mean we catch common cases of trying to allocate arrays that
|
3476 |
|
|
-- are too large, and which in the absence of a check results in
|
3477 |
|
|
-- undetected chaos ???
|
3478 |
|
|
|
3479 |
|
|
declare
|
3480 |
|
|
Len : Node_Id;
|
3481 |
|
|
Res : Node_Id;
|
3482 |
|
|
|
3483 |
|
|
begin
|
3484 |
|
|
for J in 1 .. Number_Dimensions (E) loop
|
3485 |
|
|
Len :=
|
3486 |
|
|
Make_Attribute_Reference (Loc,
|
3487 |
|
|
Prefix => New_Occurrence_Of (E, Loc),
|
3488 |
|
|
Attribute_Name => Name_Length,
|
3489 |
|
|
Expressions => New_List (Make_Integer_Literal (Loc, J)));
|
3490 |
|
|
|
3491 |
|
|
if J = 1 then
|
3492 |
|
|
Res := Len;
|
3493 |
|
|
|
3494 |
|
|
else
|
3495 |
|
|
Res :=
|
3496 |
|
|
Make_Op_Multiply (Loc,
|
3497 |
|
|
Left_Opnd => Res,
|
3498 |
|
|
Right_Opnd => Len);
|
3499 |
|
|
end if;
|
3500 |
|
|
end loop;
|
3501 |
|
|
|
3502 |
|
|
return
|
3503 |
|
|
Make_Op_Multiply (Loc,
|
3504 |
|
|
Left_Opnd => Len,
|
3505 |
|
|
Right_Opnd =>
|
3506 |
|
|
Make_Attribute_Reference (Loc,
|
3507 |
|
|
Prefix => New_Occurrence_Of (Component_Type (E), Loc),
|
3508 |
|
|
Attribute_Name => Name_Max_Size_In_Storage_Elements));
|
3509 |
|
|
end;
|
3510 |
|
|
end Size_In_Storage_Elements;
|
3511 |
|
|
|
3512 |
|
|
-- Start of processing for Expand_N_Allocator
|
3513 |
|
|
|
3514 |
|
|
begin
|
3515 |
|
|
-- RM E.2.3(22). We enforce that the expected type of an allocator
|
3516 |
|
|
-- shall not be a remote access-to-class-wide-limited-private type
|
3517 |
|
|
|
3518 |
|
|
-- Why is this being done at expansion time, seems clearly wrong ???
|
3519 |
|
|
|
3520 |
|
|
Validate_Remote_Access_To_Class_Wide_Type (N);
|
3521 |
|
|
|
3522 |
|
|
-- Processing for anonymous access-to-controlled types. These access
|
3523 |
|
|
-- types receive a special finalization master which appears in the
|
3524 |
|
|
-- declarations of the enclosing semantic unit. This expansion is done
|
3525 |
|
|
-- now to ensure that any additional types generated by this routine
|
3526 |
|
|
-- or Expand_Allocator_Expression inherit the proper type attributes.
|
3527 |
|
|
|
3528 |
|
|
if Ekind (PtrT) = E_Anonymous_Access_Type
|
3529 |
|
|
and then Needs_Finalization (Dtyp)
|
3530 |
|
|
then
|
3531 |
|
|
-- Anonymous access-to-controlled types allocate on the global pool.
|
3532 |
|
|
-- Do not set this attribute on .NET/JVM since those targets do not
|
3533 |
|
|
-- support pools.
|
3534 |
|
|
|
3535 |
|
|
if No (Associated_Storage_Pool (PtrT))
|
3536 |
|
|
and then VM_Target = No_VM
|
3537 |
|
|
then
|
3538 |
|
|
Set_Associated_Storage_Pool
|
3539 |
|
|
(PtrT, Get_Global_Pool_For_Access_Type (PtrT));
|
3540 |
|
|
end if;
|
3541 |
|
|
|
3542 |
|
|
-- The finalization master must be inserted and analyzed as part of
|
3543 |
|
|
-- the current semantic unit. This form of expansion is not carried
|
3544 |
|
|
-- out in Alfa mode because it is useless. Note that the master is
|
3545 |
|
|
-- updated when analysis changes current units.
|
3546 |
|
|
|
3547 |
|
|
if not Alfa_Mode then
|
3548 |
|
|
Set_Finalization_Master (PtrT, Current_Anonymous_Master);
|
3549 |
|
|
end if;
|
3550 |
|
|
end if;
|
3551 |
|
|
|
3552 |
|
|
-- Set the storage pool and find the appropriate version of Allocate to
|
3553 |
|
|
-- call. Do not overwrite the storage pool if it is already set, which
|
3554 |
|
|
-- can happen for build-in-place function returns (see
|
3555 |
|
|
-- Exp_Ch4.Expand_N_Extended_Return_Statement).
|
3556 |
|
|
|
3557 |
|
|
if No (Storage_Pool (N)) then
|
3558 |
|
|
Pool := Associated_Storage_Pool (Root_Type (PtrT));
|
3559 |
|
|
|
3560 |
|
|
if Present (Pool) then
|
3561 |
|
|
Set_Storage_Pool (N, Pool);
|
3562 |
|
|
|
3563 |
|
|
if Is_RTE (Pool, RE_SS_Pool) then
|
3564 |
|
|
if VM_Target = No_VM then
|
3565 |
|
|
Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
|
3566 |
|
|
end if;
|
3567 |
|
|
|
3568 |
|
|
-- In the case of an allocator for a simple storage pool, locate
|
3569 |
|
|
-- and save a reference to the pool type's Allocate routine.
|
3570 |
|
|
|
3571 |
|
|
elsif Present (Get_Rep_Pragma
|
3572 |
|
|
(Etype (Pool), Name_Simple_Storage_Pool_Type))
|
3573 |
|
|
then
|
3574 |
|
|
declare
|
3575 |
|
|
Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
|
3576 |
|
|
Alloc_Op : Entity_Id;
|
3577 |
|
|
begin
|
3578 |
|
|
Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
|
3579 |
|
|
while Present (Alloc_Op) loop
|
3580 |
|
|
if Scope (Alloc_Op) = Scope (Pool_Type)
|
3581 |
|
|
and then Present (First_Formal (Alloc_Op))
|
3582 |
|
|
and then Etype (First_Formal (Alloc_Op)) = Pool_Type
|
3583 |
|
|
then
|
3584 |
|
|
Set_Procedure_To_Call (N, Alloc_Op);
|
3585 |
|
|
exit;
|
3586 |
|
|
else
|
3587 |
|
|
Alloc_Op := Homonym (Alloc_Op);
|
3588 |
|
|
end if;
|
3589 |
|
|
end loop;
|
3590 |
|
|
end;
|
3591 |
|
|
|
3592 |
|
|
elsif Is_Class_Wide_Type (Etype (Pool)) then
|
3593 |
|
|
Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
|
3594 |
|
|
|
3595 |
|
|
else
|
3596 |
|
|
Set_Procedure_To_Call (N,
|
3597 |
|
|
Find_Prim_Op (Etype (Pool), Name_Allocate));
|
3598 |
|
|
end if;
|
3599 |
|
|
end if;
|
3600 |
|
|
end if;
|
3601 |
|
|
|
3602 |
|
|
-- Under certain circumstances we can replace an allocator by an access
|
3603 |
|
|
-- to statically allocated storage. The conditions, as noted in AARM
|
3604 |
|
|
-- 3.10 (10c) are as follows:
|
3605 |
|
|
|
3606 |
|
|
-- Size and initial value is known at compile time
|
3607 |
|
|
-- Access type is access-to-constant
|
3608 |
|
|
|
3609 |
|
|
-- The allocator is not part of a constraint on a record component,
|
3610 |
|
|
-- because in that case the inserted actions are delayed until the
|
3611 |
|
|
-- record declaration is fully analyzed, which is too late for the
|
3612 |
|
|
-- analysis of the rewritten allocator.
|
3613 |
|
|
|
3614 |
|
|
if Is_Access_Constant (PtrT)
|
3615 |
|
|
and then Nkind (Expression (N)) = N_Qualified_Expression
|
3616 |
|
|
and then Compile_Time_Known_Value (Expression (Expression (N)))
|
3617 |
|
|
and then Size_Known_At_Compile_Time
|
3618 |
|
|
(Etype (Expression (Expression (N))))
|
3619 |
|
|
and then not Is_Record_Type (Current_Scope)
|
3620 |
|
|
then
|
3621 |
|
|
-- Here we can do the optimization. For the allocator
|
3622 |
|
|
|
3623 |
|
|
-- new x'(y)
|
3624 |
|
|
|
3625 |
|
|
-- We insert an object declaration
|
3626 |
|
|
|
3627 |
|
|
-- Tnn : aliased x := y;
|
3628 |
|
|
|
3629 |
|
|
-- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
|
3630 |
|
|
-- marked as requiring static allocation.
|
3631 |
|
|
|
3632 |
|
|
Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
|
3633 |
|
|
Desig := Subtype_Mark (Expression (N));
|
3634 |
|
|
|
3635 |
|
|
-- If context is constrained, use constrained subtype directly,
|
3636 |
|
|
-- so that the constant is not labelled as having a nominally
|
3637 |
|
|
-- unconstrained subtype.
|
3638 |
|
|
|
3639 |
|
|
if Entity (Desig) = Base_Type (Dtyp) then
|
3640 |
|
|
Desig := New_Occurrence_Of (Dtyp, Loc);
|
3641 |
|
|
end if;
|
3642 |
|
|
|
3643 |
|
|
Insert_Action (N,
|
3644 |
|
|
Make_Object_Declaration (Loc,
|
3645 |
|
|
Defining_Identifier => Temp,
|
3646 |
|
|
Aliased_Present => True,
|
3647 |
|
|
Constant_Present => Is_Access_Constant (PtrT),
|
3648 |
|
|
Object_Definition => Desig,
|
3649 |
|
|
Expression => Expression (Expression (N))));
|
3650 |
|
|
|
3651 |
|
|
Rewrite (N,
|
3652 |
|
|
Make_Attribute_Reference (Loc,
|
3653 |
|
|
Prefix => New_Occurrence_Of (Temp, Loc),
|
3654 |
|
|
Attribute_Name => Name_Unrestricted_Access));
|
3655 |
|
|
|
3656 |
|
|
Analyze_And_Resolve (N, PtrT);
|
3657 |
|
|
|
3658 |
|
|
-- We set the variable as statically allocated, since we don't want
|
3659 |
|
|
-- it going on the stack of the current procedure!
|
3660 |
|
|
|
3661 |
|
|
Set_Is_Statically_Allocated (Temp);
|
3662 |
|
|
return;
|
3663 |
|
|
end if;
|
3664 |
|
|
|
3665 |
|
|
-- Same if the allocator is an access discriminant for a local object:
|
3666 |
|
|
-- instead of an allocator we create a local value and constrain the
|
3667 |
|
|
-- enclosing object with the corresponding access attribute.
|
3668 |
|
|
|
3669 |
|
|
if Is_Static_Coextension (N) then
|
3670 |
|
|
Rewrite_Coextension (N);
|
3671 |
|
|
return;
|
3672 |
|
|
end if;
|
3673 |
|
|
|
3674 |
|
|
-- Check for size too large, we do this because the back end misses
|
3675 |
|
|
-- proper checks here and can generate rubbish allocation calls when
|
3676 |
|
|
-- we are near the limit. We only do this for the 32-bit address case
|
3677 |
|
|
-- since that is from a practical point of view where we see a problem.
|
3678 |
|
|
|
3679 |
|
|
if System_Address_Size = 32
|
3680 |
|
|
and then not Storage_Checks_Suppressed (PtrT)
|
3681 |
|
|
and then not Storage_Checks_Suppressed (Dtyp)
|
3682 |
|
|
and then not Storage_Checks_Suppressed (Etyp)
|
3683 |
|
|
then
|
3684 |
|
|
-- The check we want to generate should look like
|
3685 |
|
|
|
3686 |
|
|
-- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
|
3687 |
|
|
-- raise Storage_Error;
|
3688 |
|
|
-- end if;
|
3689 |
|
|
|
3690 |
|
|
-- where 3.5 gigabytes is a constant large enough to accommodate any
|
3691 |
|
|
-- reasonable request for. But we can't do it this way because at
|
3692 |
|
|
-- least at the moment we don't compute this attribute right, and
|
3693 |
|
|
-- can silently give wrong results when the result gets large. Since
|
3694 |
|
|
-- this is all about large results, that's bad, so instead we only
|
3695 |
|
|
-- apply the check for constrained arrays, and manually compute the
|
3696 |
|
|
-- value of the attribute ???
|
3697 |
|
|
|
3698 |
|
|
if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
|
3699 |
|
|
Insert_Action (N,
|
3700 |
|
|
Make_Raise_Storage_Error (Loc,
|
3701 |
|
|
Condition =>
|
3702 |
|
|
Make_Op_Gt (Loc,
|
3703 |
|
|
Left_Opnd => Size_In_Storage_Elements (Etyp),
|
3704 |
|
|
Right_Opnd =>
|
3705 |
|
|
Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
|
3706 |
|
|
Reason => SE_Object_Too_Large));
|
3707 |
|
|
end if;
|
3708 |
|
|
end if;
|
3709 |
|
|
|
3710 |
|
|
-- Handle case of qualified expression (other than optimization above)
|
3711 |
|
|
-- First apply constraint checks, because the bounds or discriminants
|
3712 |
|
|
-- in the aggregate might not match the subtype mark in the allocator.
|
3713 |
|
|
|
3714 |
|
|
if Nkind (Expression (N)) = N_Qualified_Expression then
|
3715 |
|
|
Apply_Constraint_Check
|
3716 |
|
|
(Expression (Expression (N)), Etype (Expression (N)));
|
3717 |
|
|
|
3718 |
|
|
Expand_Allocator_Expression (N);
|
3719 |
|
|
return;
|
3720 |
|
|
end if;
|
3721 |
|
|
|
3722 |
|
|
-- If the allocator is for a type which requires initialization, and
|
3723 |
|
|
-- there is no initial value (i.e. operand is a subtype indication
|
3724 |
|
|
-- rather than a qualified expression), then we must generate a call to
|
3725 |
|
|
-- the initialization routine using an expressions action node:
|
3726 |
|
|
|
3727 |
|
|
-- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
|
3728 |
|
|
|
3729 |
|
|
-- Here ptr_T is the pointer type for the allocator, and T is the
|
3730 |
|
|
-- subtype of the allocator. A special case arises if the designated
|
3731 |
|
|
-- type of the access type is a task or contains tasks. In this case
|
3732 |
|
|
-- the call to Init (Temp.all ...) is replaced by code that ensures
|
3733 |
|
|
-- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
|
3734 |
|
|
-- for details). In addition, if the type T is a task T, then the
|
3735 |
|
|
-- first argument to Init must be converted to the task record type.
|
3736 |
|
|
|
3737 |
|
|
declare
|
3738 |
|
|
T : constant Entity_Id := Entity (Expression (N));
|
3739 |
|
|
Args : List_Id;
|
3740 |
|
|
Decls : List_Id;
|
3741 |
|
|
Decl : Node_Id;
|
3742 |
|
|
Discr : Elmt_Id;
|
3743 |
|
|
Init : Entity_Id;
|
3744 |
|
|
Init_Arg1 : Node_Id;
|
3745 |
|
|
Temp_Decl : Node_Id;
|
3746 |
|
|
Temp_Type : Entity_Id;
|
3747 |
|
|
|
3748 |
|
|
begin
|
3749 |
|
|
if No_Initialization (N) then
|
3750 |
|
|
|
3751 |
|
|
-- Even though this might be a simple allocation, create a custom
|
3752 |
|
|
-- Allocate if the context requires it. Since .NET/JVM compilers
|
3753 |
|
|
-- do not support pools, this step is skipped.
|
3754 |
|
|
|
3755 |
|
|
if VM_Target = No_VM
|
3756 |
|
|
and then Present (Finalization_Master (PtrT))
|
3757 |
|
|
then
|
3758 |
|
|
Build_Allocate_Deallocate_Proc
|
3759 |
|
|
(N => N,
|
3760 |
|
|
Is_Allocate => True);
|
3761 |
|
|
end if;
|
3762 |
|
|
|
3763 |
|
|
-- Case of no initialization procedure present
|
3764 |
|
|
|
3765 |
|
|
elsif not Has_Non_Null_Base_Init_Proc (T) then
|
3766 |
|
|
|
3767 |
|
|
-- Case of simple initialization required
|
3768 |
|
|
|
3769 |
|
|
if Needs_Simple_Initialization (T) then
|
3770 |
|
|
Check_Restriction (No_Default_Initialization, N);
|
3771 |
|
|
Rewrite (Expression (N),
|
3772 |
|
|
Make_Qualified_Expression (Loc,
|
3773 |
|
|
Subtype_Mark => New_Occurrence_Of (T, Loc),
|
3774 |
|
|
Expression => Get_Simple_Init_Val (T, N)));
|
3775 |
|
|
|
3776 |
|
|
Analyze_And_Resolve (Expression (Expression (N)), T);
|
3777 |
|
|
Analyze_And_Resolve (Expression (N), T);
|
3778 |
|
|
Set_Paren_Count (Expression (Expression (N)), 1);
|
3779 |
|
|
Expand_N_Allocator (N);
|
3780 |
|
|
|
3781 |
|
|
-- No initialization required
|
3782 |
|
|
|
3783 |
|
|
else
|
3784 |
|
|
null;
|
3785 |
|
|
end if;
|
3786 |
|
|
|
3787 |
|
|
-- Case of initialization procedure present, must be called
|
3788 |
|
|
|
3789 |
|
|
else
|
3790 |
|
|
Check_Restriction (No_Default_Initialization, N);
|
3791 |
|
|
|
3792 |
|
|
if not Restriction_Active (No_Default_Initialization) then
|
3793 |
|
|
Init := Base_Init_Proc (T);
|
3794 |
|
|
Nod := N;
|
3795 |
|
|
Temp := Make_Temporary (Loc, 'P');
|
3796 |
|
|
|
3797 |
|
|
-- Construct argument list for the initialization routine call
|
3798 |
|
|
|
3799 |
|
|
Init_Arg1 :=
|
3800 |
|
|
Make_Explicit_Dereference (Loc,
|
3801 |
|
|
Prefix =>
|
3802 |
|
|
New_Reference_To (Temp, Loc));
|
3803 |
|
|
|
3804 |
|
|
Set_Assignment_OK (Init_Arg1);
|
3805 |
|
|
Temp_Type := PtrT;
|
3806 |
|
|
|
3807 |
|
|
-- The initialization procedure expects a specific type. if the
|
3808 |
|
|
-- context is access to class wide, indicate that the object
|
3809 |
|
|
-- being allocated has the right specific type.
|
3810 |
|
|
|
3811 |
|
|
if Is_Class_Wide_Type (Dtyp) then
|
3812 |
|
|
Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
|
3813 |
|
|
end if;
|
3814 |
|
|
|
3815 |
|
|
-- If designated type is a concurrent type or if it is private
|
3816 |
|
|
-- type whose definition is a concurrent type, the first
|
3817 |
|
|
-- argument in the Init routine has to be unchecked conversion
|
3818 |
|
|
-- to the corresponding record type. If the designated type is
|
3819 |
|
|
-- a derived type, also convert the argument to its root type.
|
3820 |
|
|
|
3821 |
|
|
if Is_Concurrent_Type (T) then
|
3822 |
|
|
Init_Arg1 :=
|
3823 |
|
|
Unchecked_Convert_To (
|
3824 |
|
|
Corresponding_Record_Type (T), Init_Arg1);
|
3825 |
|
|
|
3826 |
|
|
elsif Is_Private_Type (T)
|
3827 |
|
|
and then Present (Full_View (T))
|
3828 |
|
|
and then Is_Concurrent_Type (Full_View (T))
|
3829 |
|
|
then
|
3830 |
|
|
Init_Arg1 :=
|
3831 |
|
|
Unchecked_Convert_To
|
3832 |
|
|
(Corresponding_Record_Type (Full_View (T)), Init_Arg1);
|
3833 |
|
|
|
3834 |
|
|
elsif Etype (First_Formal (Init)) /= Base_Type (T) then
|
3835 |
|
|
declare
|
3836 |
|
|
Ftyp : constant Entity_Id := Etype (First_Formal (Init));
|
3837 |
|
|
|
3838 |
|
|
begin
|
3839 |
|
|
Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
|
3840 |
|
|
Set_Etype (Init_Arg1, Ftyp);
|
3841 |
|
|
end;
|
3842 |
|
|
end if;
|
3843 |
|
|
|
3844 |
|
|
Args := New_List (Init_Arg1);
|
3845 |
|
|
|
3846 |
|
|
-- For the task case, pass the Master_Id of the access type as
|
3847 |
|
|
-- the value of the _Master parameter, and _Chain as the value
|
3848 |
|
|
-- of the _Chain parameter (_Chain will be defined as part of
|
3849 |
|
|
-- the generated code for the allocator).
|
3850 |
|
|
|
3851 |
|
|
-- In Ada 2005, the context may be a function that returns an
|
3852 |
|
|
-- anonymous access type. In that case the Master_Id has been
|
3853 |
|
|
-- created when expanding the function declaration.
|
3854 |
|
|
|
3855 |
|
|
if Has_Task (T) then
|
3856 |
|
|
if No (Master_Id (Base_Type (PtrT))) then
|
3857 |
|
|
|
3858 |
|
|
-- The designated type was an incomplete type, and the
|
3859 |
|
|
-- access type did not get expanded. Salvage it now.
|
3860 |
|
|
|
3861 |
|
|
if not Restriction_Active (No_Task_Hierarchy) then
|
3862 |
|
|
pragma Assert (Present (Parent (Base_Type (PtrT))));
|
3863 |
|
|
Expand_N_Full_Type_Declaration
|
3864 |
|
|
(Parent (Base_Type (PtrT)));
|
3865 |
|
|
end if;
|
3866 |
|
|
end if;
|
3867 |
|
|
|
3868 |
|
|
-- If the context of the allocator is a declaration or an
|
3869 |
|
|
-- assignment, we can generate a meaningful image for it,
|
3870 |
|
|
-- even though subsequent assignments might remove the
|
3871 |
|
|
-- connection between task and entity. We build this image
|
3872 |
|
|
-- when the left-hand side is a simple variable, a simple
|
3873 |
|
|
-- indexed assignment or a simple selected component.
|
3874 |
|
|
|
3875 |
|
|
if Nkind (Parent (N)) = N_Assignment_Statement then
|
3876 |
|
|
declare
|
3877 |
|
|
Nam : constant Node_Id := Name (Parent (N));
|
3878 |
|
|
|
3879 |
|
|
begin
|
3880 |
|
|
if Is_Entity_Name (Nam) then
|
3881 |
|
|
Decls :=
|
3882 |
|
|
Build_Task_Image_Decls
|
3883 |
|
|
(Loc,
|
3884 |
|
|
New_Occurrence_Of
|
3885 |
|
|
(Entity (Nam), Sloc (Nam)), T);
|
3886 |
|
|
|
3887 |
|
|
elsif Nkind_In (Nam, N_Indexed_Component,
|
3888 |
|
|
N_Selected_Component)
|
3889 |
|
|
and then Is_Entity_Name (Prefix (Nam))
|
3890 |
|
|
then
|
3891 |
|
|
Decls :=
|
3892 |
|
|
Build_Task_Image_Decls
|
3893 |
|
|
(Loc, Nam, Etype (Prefix (Nam)));
|
3894 |
|
|
else
|
3895 |
|
|
Decls := Build_Task_Image_Decls (Loc, T, T);
|
3896 |
|
|
end if;
|
3897 |
|
|
end;
|
3898 |
|
|
|
3899 |
|
|
elsif Nkind (Parent (N)) = N_Object_Declaration then
|
3900 |
|
|
Decls :=
|
3901 |
|
|
Build_Task_Image_Decls
|
3902 |
|
|
(Loc, Defining_Identifier (Parent (N)), T);
|
3903 |
|
|
|
3904 |
|
|
else
|
3905 |
|
|
Decls := Build_Task_Image_Decls (Loc, T, T);
|
3906 |
|
|
end if;
|
3907 |
|
|
|
3908 |
|
|
if Restriction_Active (No_Task_Hierarchy) then
|
3909 |
|
|
Append_To (Args,
|
3910 |
|
|
New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
|
3911 |
|
|
else
|
3912 |
|
|
Append_To (Args,
|
3913 |
|
|
New_Reference_To
|
3914 |
|
|
(Master_Id (Base_Type (Root_Type (PtrT))), Loc));
|
3915 |
|
|
end if;
|
3916 |
|
|
|
3917 |
|
|
Append_To (Args, Make_Identifier (Loc, Name_uChain));
|
3918 |
|
|
|
3919 |
|
|
Decl := Last (Decls);
|
3920 |
|
|
Append_To (Args,
|
3921 |
|
|
New_Occurrence_Of (Defining_Identifier (Decl), Loc));
|
3922 |
|
|
|
3923 |
|
|
-- Has_Task is false, Decls not used
|
3924 |
|
|
|
3925 |
|
|
else
|
3926 |
|
|
Decls := No_List;
|
3927 |
|
|
end if;
|
3928 |
|
|
|
3929 |
|
|
-- Add discriminants if discriminated type
|
3930 |
|
|
|
3931 |
|
|
declare
|
3932 |
|
|
Dis : Boolean := False;
|
3933 |
|
|
Typ : Entity_Id;
|
3934 |
|
|
|
3935 |
|
|
begin
|
3936 |
|
|
if Has_Discriminants (T) then
|
3937 |
|
|
Dis := True;
|
3938 |
|
|
Typ := T;
|
3939 |
|
|
|
3940 |
|
|
elsif Is_Private_Type (T)
|
3941 |
|
|
and then Present (Full_View (T))
|
3942 |
|
|
and then Has_Discriminants (Full_View (T))
|
3943 |
|
|
then
|
3944 |
|
|
Dis := True;
|
3945 |
|
|
Typ := Full_View (T);
|
3946 |
|
|
end if;
|
3947 |
|
|
|
3948 |
|
|
if Dis then
|
3949 |
|
|
|
3950 |
|
|
-- If the allocated object will be constrained by the
|
3951 |
|
|
-- default values for discriminants, then build a subtype
|
3952 |
|
|
-- with those defaults, and change the allocated subtype
|
3953 |
|
|
-- to that. Note that this happens in fewer cases in Ada
|
3954 |
|
|
-- 2005 (AI-363).
|
3955 |
|
|
|
3956 |
|
|
if not Is_Constrained (Typ)
|
3957 |
|
|
and then Present (Discriminant_Default_Value
|
3958 |
|
|
(First_Discriminant (Typ)))
|
3959 |
|
|
and then (Ada_Version < Ada_2005
|
3960 |
|
|
or else not
|
3961 |
|
|
Effectively_Has_Constrained_Partial_View
|
3962 |
|
|
(Typ => Typ,
|
3963 |
|
|
Scop => Current_Scope))
|
3964 |
|
|
then
|
3965 |
|
|
Typ := Build_Default_Subtype (Typ, N);
|
3966 |
|
|
Set_Expression (N, New_Reference_To (Typ, Loc));
|
3967 |
|
|
end if;
|
3968 |
|
|
|
3969 |
|
|
Discr := First_Elmt (Discriminant_Constraint (Typ));
|
3970 |
|
|
while Present (Discr) loop
|
3971 |
|
|
Nod := Node (Discr);
|
3972 |
|
|
Append (New_Copy_Tree (Node (Discr)), Args);
|
3973 |
|
|
|
3974 |
|
|
-- AI-416: when the discriminant constraint is an
|
3975 |
|
|
-- anonymous access type make sure an accessibility
|
3976 |
|
|
-- check is inserted if necessary (3.10.2(22.q/2))
|
3977 |
|
|
|
3978 |
|
|
if Ada_Version >= Ada_2005
|
3979 |
|
|
and then
|
3980 |
|
|
Ekind (Etype (Nod)) = E_Anonymous_Access_Type
|
3981 |
|
|
then
|
3982 |
|
|
Apply_Accessibility_Check
|
3983 |
|
|
(Nod, Typ, Insert_Node => Nod);
|
3984 |
|
|
end if;
|
3985 |
|
|
|
3986 |
|
|
Next_Elmt (Discr);
|
3987 |
|
|
end loop;
|
3988 |
|
|
end if;
|
3989 |
|
|
end;
|
3990 |
|
|
|
3991 |
|
|
-- We set the allocator as analyzed so that when we analyze the
|
3992 |
|
|
-- expression actions node, we do not get an unwanted recursive
|
3993 |
|
|
-- expansion of the allocator expression.
|
3994 |
|
|
|
3995 |
|
|
Set_Analyzed (N, True);
|
3996 |
|
|
Nod := Relocate_Node (N);
|
3997 |
|
|
|
3998 |
|
|
-- Here is the transformation:
|
3999 |
|
|
-- input: new Ctrl_Typ
|
4000 |
|
|
-- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
|
4001 |
|
|
-- Ctrl_TypIP (Temp.all, ...);
|
4002 |
|
|
-- [Deep_]Initialize (Temp.all);
|
4003 |
|
|
|
4004 |
|
|
-- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
|
4005 |
|
|
-- is the subtype of the allocator.
|
4006 |
|
|
|
4007 |
|
|
Temp_Decl :=
|
4008 |
|
|
Make_Object_Declaration (Loc,
|
4009 |
|
|
Defining_Identifier => Temp,
|
4010 |
|
|
Constant_Present => True,
|
4011 |
|
|
Object_Definition => New_Reference_To (Temp_Type, Loc),
|
4012 |
|
|
Expression => Nod);
|
4013 |
|
|
|
4014 |
|
|
Set_Assignment_OK (Temp_Decl);
|
4015 |
|
|
Insert_Action (N, Temp_Decl, Suppress => All_Checks);
|
4016 |
|
|
|
4017 |
|
|
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
|
4018 |
|
|
|
4019 |
|
|
-- If the designated type is a task type or contains tasks,
|
4020 |
|
|
-- create block to activate created tasks, and insert
|
4021 |
|
|
-- declaration for Task_Image variable ahead of call.
|
4022 |
|
|
|
4023 |
|
|
if Has_Task (T) then
|
4024 |
|
|
declare
|
4025 |
|
|
L : constant List_Id := New_List;
|
4026 |
|
|
Blk : Node_Id;
|
4027 |
|
|
begin
|
4028 |
|
|
Build_Task_Allocate_Block (L, Nod, Args);
|
4029 |
|
|
Blk := Last (L);
|
4030 |
|
|
Insert_List_Before (First (Declarations (Blk)), Decls);
|
4031 |
|
|
Insert_Actions (N, L);
|
4032 |
|
|
end;
|
4033 |
|
|
|
4034 |
|
|
else
|
4035 |
|
|
Insert_Action (N,
|
4036 |
|
|
Make_Procedure_Call_Statement (Loc,
|
4037 |
|
|
Name => New_Reference_To (Init, Loc),
|
4038 |
|
|
Parameter_Associations => Args));
|
4039 |
|
|
end if;
|
4040 |
|
|
|
4041 |
|
|
if Needs_Finalization (T) then
|
4042 |
|
|
|
4043 |
|
|
-- Generate:
|
4044 |
|
|
-- [Deep_]Initialize (Init_Arg1);
|
4045 |
|
|
|
4046 |
|
|
Insert_Action (N,
|
4047 |
|
|
Make_Init_Call
|
4048 |
|
|
(Obj_Ref => New_Copy_Tree (Init_Arg1),
|
4049 |
|
|
Typ => T));
|
4050 |
|
|
|
4051 |
|
|
if Present (Finalization_Master (PtrT)) then
|
4052 |
|
|
|
4053 |
|
|
-- Special processing for .NET/JVM, the allocated object
|
4054 |
|
|
-- is attached to the finalization master. Generate:
|
4055 |
|
|
|
4056 |
|
|
-- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
|
4057 |
|
|
|
4058 |
|
|
-- Types derived from [Limited_]Controlled are the only
|
4059 |
|
|
-- ones considered since they have fields Prev and Next.
|
4060 |
|
|
|
4061 |
|
|
if VM_Target /= No_VM then
|
4062 |
|
|
if Is_Controlled (T) then
|
4063 |
|
|
Insert_Action (N,
|
4064 |
|
|
Make_Attach_Call
|
4065 |
|
|
(Obj_Ref => New_Copy_Tree (Init_Arg1),
|
4066 |
|
|
Ptr_Typ => PtrT));
|
4067 |
|
|
end if;
|
4068 |
|
|
|
4069 |
|
|
-- Default case, generate:
|
4070 |
|
|
|
4071 |
|
|
-- Set_Finalize_Address
|
4072 |
|
|
-- (<PtrT>FM, <T>FD'Unrestricted_Access);
|
4073 |
|
|
|
4074 |
|
|
-- Do not generate this call in the following cases:
|
4075 |
|
|
--
|
4076 |
|
|
-- * Alfa mode - the call is useless and results in
|
4077 |
|
|
-- unwanted expansion.
|
4078 |
|
|
--
|
4079 |
|
|
-- * CodePeer mode - TSS primitive Finalize_Address is
|
4080 |
|
|
-- not created in this mode.
|
4081 |
|
|
|
4082 |
|
|
elsif not Alfa_Mode
|
4083 |
|
|
and then not CodePeer_Mode
|
4084 |
|
|
then
|
4085 |
|
|
Insert_Action (N,
|
4086 |
|
|
Make_Set_Finalize_Address_Call
|
4087 |
|
|
(Loc => Loc,
|
4088 |
|
|
Typ => T,
|
4089 |
|
|
Ptr_Typ => PtrT));
|
4090 |
|
|
end if;
|
4091 |
|
|
end if;
|
4092 |
|
|
end if;
|
4093 |
|
|
|
4094 |
|
|
Rewrite (N, New_Reference_To (Temp, Loc));
|
4095 |
|
|
Analyze_And_Resolve (N, PtrT);
|
4096 |
|
|
end if;
|
4097 |
|
|
end if;
|
4098 |
|
|
end;
|
4099 |
|
|
|
4100 |
|
|
-- Ada 2005 (AI-251): If the allocator is for a class-wide interface
|
4101 |
|
|
-- object that has been rewritten as a reference, we displace "this"
|
4102 |
|
|
-- to reference properly its secondary dispatch table.
|
4103 |
|
|
|
4104 |
|
|
if Nkind (N) = N_Identifier
|
4105 |
|
|
and then Is_Interface (Dtyp)
|
4106 |
|
|
then
|
4107 |
|
|
Displace_Allocator_Pointer (N);
|
4108 |
|
|
end if;
|
4109 |
|
|
|
4110 |
|
|
exception
|
4111 |
|
|
when RE_Not_Available =>
|
4112 |
|
|
return;
|
4113 |
|
|
end Expand_N_Allocator;
|
4114 |
|
|
|
4115 |
|
|
-----------------------
|
4116 |
|
|
-- Expand_N_And_Then --
|
4117 |
|
|
-----------------------
|
4118 |
|
|
|
4119 |
|
|
procedure Expand_N_And_Then (N : Node_Id)
|
4120 |
|
|
renames Expand_Short_Circuit_Operator;
|
4121 |
|
|
|
4122 |
|
|
------------------------------
|
4123 |
|
|
-- Expand_N_Case_Expression --
|
4124 |
|
|
------------------------------
|
4125 |
|
|
|
4126 |
|
|
procedure Expand_N_Case_Expression (N : Node_Id) is
|
4127 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
4128 |
|
|
Typ : constant Entity_Id := Etype (N);
|
4129 |
|
|
Cstmt : Node_Id;
|
4130 |
|
|
Tnn : Entity_Id;
|
4131 |
|
|
Pnn : Entity_Id;
|
4132 |
|
|
Actions : List_Id;
|
4133 |
|
|
Ttyp : Entity_Id;
|
4134 |
|
|
Alt : Node_Id;
|
4135 |
|
|
Fexp : Node_Id;
|
4136 |
|
|
|
4137 |
|
|
begin
|
4138 |
|
|
-- We expand
|
4139 |
|
|
|
4140 |
|
|
-- case X is when A => AX, when B => BX ...
|
4141 |
|
|
|
4142 |
|
|
-- to
|
4143 |
|
|
|
4144 |
|
|
-- do
|
4145 |
|
|
-- Tnn : typ;
|
4146 |
|
|
-- case X is
|
4147 |
|
|
-- when A =>
|
4148 |
|
|
-- Tnn := AX;
|
4149 |
|
|
-- when B =>
|
4150 |
|
|
-- Tnn := BX;
|
4151 |
|
|
-- ...
|
4152 |
|
|
-- end case;
|
4153 |
|
|
-- in Tnn end;
|
4154 |
|
|
|
4155 |
|
|
-- However, this expansion is wrong for limited types, and also
|
4156 |
|
|
-- wrong for unconstrained types (since the bounds may not be the
|
4157 |
|
|
-- same in all branches). Furthermore it involves an extra copy
|
4158 |
|
|
-- for large objects. So we take care of this by using the following
|
4159 |
|
|
-- modified expansion for non-scalar types:
|
4160 |
|
|
|
4161 |
|
|
-- do
|
4162 |
|
|
-- type Pnn is access all typ;
|
4163 |
|
|
-- Tnn : Pnn;
|
4164 |
|
|
-- case X is
|
4165 |
|
|
-- when A =>
|
4166 |
|
|
-- T := AX'Unrestricted_Access;
|
4167 |
|
|
-- when B =>
|
4168 |
|
|
-- T := BX'Unrestricted_Access;
|
4169 |
|
|
-- ...
|
4170 |
|
|
-- end case;
|
4171 |
|
|
-- in Tnn.all end;
|
4172 |
|
|
|
4173 |
|
|
Cstmt :=
|
4174 |
|
|
Make_Case_Statement (Loc,
|
4175 |
|
|
Expression => Expression (N),
|
4176 |
|
|
Alternatives => New_List);
|
4177 |
|
|
|
4178 |
|
|
Actions := New_List;
|
4179 |
|
|
|
4180 |
|
|
-- Scalar case
|
4181 |
|
|
|
4182 |
|
|
if Is_Scalar_Type (Typ) then
|
4183 |
|
|
Ttyp := Typ;
|
4184 |
|
|
|
4185 |
|
|
else
|
4186 |
|
|
Pnn := Make_Temporary (Loc, 'P');
|
4187 |
|
|
Append_To (Actions,
|
4188 |
|
|
Make_Full_Type_Declaration (Loc,
|
4189 |
|
|
Defining_Identifier => Pnn,
|
4190 |
|
|
Type_Definition =>
|
4191 |
|
|
Make_Access_To_Object_Definition (Loc,
|
4192 |
|
|
All_Present => True,
|
4193 |
|
|
Subtype_Indication =>
|
4194 |
|
|
New_Reference_To (Typ, Loc))));
|
4195 |
|
|
Ttyp := Pnn;
|
4196 |
|
|
end if;
|
4197 |
|
|
|
4198 |
|
|
Tnn := Make_Temporary (Loc, 'T');
|
4199 |
|
|
Append_To (Actions,
|
4200 |
|
|
Make_Object_Declaration (Loc,
|
4201 |
|
|
Defining_Identifier => Tnn,
|
4202 |
|
|
Object_Definition => New_Occurrence_Of (Ttyp, Loc)));
|
4203 |
|
|
|
4204 |
|
|
-- Now process the alternatives
|
4205 |
|
|
|
4206 |
|
|
Alt := First (Alternatives (N));
|
4207 |
|
|
while Present (Alt) loop
|
4208 |
|
|
declare
|
4209 |
|
|
Aexp : Node_Id := Expression (Alt);
|
4210 |
|
|
Aloc : constant Source_Ptr := Sloc (Aexp);
|
4211 |
|
|
Stats : List_Id;
|
4212 |
|
|
|
4213 |
|
|
begin
|
4214 |
|
|
-- As described above, take Unrestricted_Access for case of non-
|
4215 |
|
|
-- scalar types, to avoid big copies, and special cases.
|
4216 |
|
|
|
4217 |
|
|
if not Is_Scalar_Type (Typ) then
|
4218 |
|
|
Aexp :=
|
4219 |
|
|
Make_Attribute_Reference (Aloc,
|
4220 |
|
|
Prefix => Relocate_Node (Aexp),
|
4221 |
|
|
Attribute_Name => Name_Unrestricted_Access);
|
4222 |
|
|
end if;
|
4223 |
|
|
|
4224 |
|
|
Stats := New_List (
|
4225 |
|
|
Make_Assignment_Statement (Aloc,
|
4226 |
|
|
Name => New_Occurrence_Of (Tnn, Loc),
|
4227 |
|
|
Expression => Aexp));
|
4228 |
|
|
|
4229 |
|
|
-- Propagate declarations inserted in the node by Insert_Actions
|
4230 |
|
|
-- (for example, temporaries generated to remove side effects).
|
4231 |
|
|
-- These actions must remain attached to the alternative, given
|
4232 |
|
|
-- that they are generated by the corresponding expression.
|
4233 |
|
|
|
4234 |
|
|
if Present (Sinfo.Actions (Alt)) then
|
4235 |
|
|
Prepend_List (Sinfo.Actions (Alt), Stats);
|
4236 |
|
|
end if;
|
4237 |
|
|
|
4238 |
|
|
Append_To
|
4239 |
|
|
(Alternatives (Cstmt),
|
4240 |
|
|
Make_Case_Statement_Alternative (Sloc (Alt),
|
4241 |
|
|
Discrete_Choices => Discrete_Choices (Alt),
|
4242 |
|
|
Statements => Stats));
|
4243 |
|
|
end;
|
4244 |
|
|
|
4245 |
|
|
Next (Alt);
|
4246 |
|
|
end loop;
|
4247 |
|
|
|
4248 |
|
|
Append_To (Actions, Cstmt);
|
4249 |
|
|
|
4250 |
|
|
-- Construct and return final expression with actions
|
4251 |
|
|
|
4252 |
|
|
if Is_Scalar_Type (Typ) then
|
4253 |
|
|
Fexp := New_Occurrence_Of (Tnn, Loc);
|
4254 |
|
|
else
|
4255 |
|
|
Fexp :=
|
4256 |
|
|
Make_Explicit_Dereference (Loc,
|
4257 |
|
|
Prefix => New_Occurrence_Of (Tnn, Loc));
|
4258 |
|
|
end if;
|
4259 |
|
|
|
4260 |
|
|
Rewrite (N,
|
4261 |
|
|
Make_Expression_With_Actions (Loc,
|
4262 |
|
|
Expression => Fexp,
|
4263 |
|
|
Actions => Actions));
|
4264 |
|
|
|
4265 |
|
|
Analyze_And_Resolve (N, Typ);
|
4266 |
|
|
end Expand_N_Case_Expression;
|
4267 |
|
|
|
4268 |
|
|
-------------------------------------
|
4269 |
|
|
-- Expand_N_Conditional_Expression --
|
4270 |
|
|
-------------------------------------
|
4271 |
|
|
|
4272 |
|
|
-- Deal with limited types and expression actions
|
4273 |
|
|
|
4274 |
|
|
procedure Expand_N_Conditional_Expression (N : Node_Id) is
|
4275 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
4276 |
|
|
Cond : constant Node_Id := First (Expressions (N));
|
4277 |
|
|
Thenx : constant Node_Id := Next (Cond);
|
4278 |
|
|
Elsex : constant Node_Id := Next (Thenx);
|
4279 |
|
|
Typ : constant Entity_Id := Etype (N);
|
4280 |
|
|
|
4281 |
|
|
Cnn : Entity_Id;
|
4282 |
|
|
Decl : Node_Id;
|
4283 |
|
|
New_If : Node_Id;
|
4284 |
|
|
New_N : Node_Id;
|
4285 |
|
|
P_Decl : Node_Id;
|
4286 |
|
|
Expr : Node_Id;
|
4287 |
|
|
Actions : List_Id;
|
4288 |
|
|
|
4289 |
|
|
begin
|
4290 |
|
|
-- Fold at compile time if condition known. We have already folded
|
4291 |
|
|
-- static conditional expressions, but it is possible to fold any
|
4292 |
|
|
-- case in which the condition is known at compile time, even though
|
4293 |
|
|
-- the result is non-static.
|
4294 |
|
|
|
4295 |
|
|
-- Note that we don't do the fold of such cases in Sem_Elab because
|
4296 |
|
|
-- it can cause infinite loops with the expander adding a conditional
|
4297 |
|
|
-- expression, and Sem_Elab circuitry removing it repeatedly.
|
4298 |
|
|
|
4299 |
|
|
if Compile_Time_Known_Value (Cond) then
|
4300 |
|
|
if Is_True (Expr_Value (Cond)) then
|
4301 |
|
|
Expr := Thenx;
|
4302 |
|
|
Actions := Then_Actions (N);
|
4303 |
|
|
else
|
4304 |
|
|
Expr := Elsex;
|
4305 |
|
|
Actions := Else_Actions (N);
|
4306 |
|
|
end if;
|
4307 |
|
|
|
4308 |
|
|
Remove (Expr);
|
4309 |
|
|
|
4310 |
|
|
if Present (Actions) then
|
4311 |
|
|
|
4312 |
|
|
-- If we are not allowed to use Expression_With_Actions, just skip
|
4313 |
|
|
-- the optimization, it is not critical for correctness.
|
4314 |
|
|
|
4315 |
|
|
if not Use_Expression_With_Actions then
|
4316 |
|
|
goto Skip_Optimization;
|
4317 |
|
|
end if;
|
4318 |
|
|
|
4319 |
|
|
Rewrite (N,
|
4320 |
|
|
Make_Expression_With_Actions (Loc,
|
4321 |
|
|
Expression => Relocate_Node (Expr),
|
4322 |
|
|
Actions => Actions));
|
4323 |
|
|
Analyze_And_Resolve (N, Typ);
|
4324 |
|
|
|
4325 |
|
|
else
|
4326 |
|
|
Rewrite (N, Relocate_Node (Expr));
|
4327 |
|
|
end if;
|
4328 |
|
|
|
4329 |
|
|
-- Note that the result is never static (legitimate cases of static
|
4330 |
|
|
-- conditional expressions were folded in Sem_Eval).
|
4331 |
|
|
|
4332 |
|
|
Set_Is_Static_Expression (N, False);
|
4333 |
|
|
return;
|
4334 |
|
|
end if;
|
4335 |
|
|
|
4336 |
|
|
<<Skip_Optimization>>
|
4337 |
|
|
|
4338 |
|
|
-- If the type is limited or unconstrained, we expand as follows to
|
4339 |
|
|
-- avoid any possibility of improper copies.
|
4340 |
|
|
|
4341 |
|
|
-- Note: it may be possible to avoid this special processing if the
|
4342 |
|
|
-- back end uses its own mechanisms for handling by-reference types ???
|
4343 |
|
|
|
4344 |
|
|
-- type Ptr is access all Typ;
|
4345 |
|
|
-- Cnn : Ptr;
|
4346 |
|
|
-- if cond then
|
4347 |
|
|
-- <<then actions>>
|
4348 |
|
|
-- Cnn := then-expr'Unrestricted_Access;
|
4349 |
|
|
-- else
|
4350 |
|
|
-- <<else actions>>
|
4351 |
|
|
-- Cnn := else-expr'Unrestricted_Access;
|
4352 |
|
|
-- end if;
|
4353 |
|
|
|
4354 |
|
|
-- and replace the conditional expression by a reference to Cnn.all.
|
4355 |
|
|
|
4356 |
|
|
-- This special case can be skipped if the back end handles limited
|
4357 |
|
|
-- types properly and ensures that no incorrect copies are made.
|
4358 |
|
|
|
4359 |
|
|
if Is_By_Reference_Type (Typ)
|
4360 |
|
|
and then not Back_End_Handles_Limited_Types
|
4361 |
|
|
then
|
4362 |
|
|
Cnn := Make_Temporary (Loc, 'C', N);
|
4363 |
|
|
|
4364 |
|
|
P_Decl :=
|
4365 |
|
|
Make_Full_Type_Declaration (Loc,
|
4366 |
|
|
Defining_Identifier =>
|
4367 |
|
|
Make_Temporary (Loc, 'A'),
|
4368 |
|
|
Type_Definition =>
|
4369 |
|
|
Make_Access_To_Object_Definition (Loc,
|
4370 |
|
|
All_Present => True,
|
4371 |
|
|
Subtype_Indication => New_Reference_To (Typ, Loc)));
|
4372 |
|
|
|
4373 |
|
|
Insert_Action (N, P_Decl);
|
4374 |
|
|
|
4375 |
|
|
Decl :=
|
4376 |
|
|
Make_Object_Declaration (Loc,
|
4377 |
|
|
Defining_Identifier => Cnn,
|
4378 |
|
|
Object_Definition =>
|
4379 |
|
|
New_Occurrence_Of (Defining_Identifier (P_Decl), Loc));
|
4380 |
|
|
|
4381 |
|
|
New_If :=
|
4382 |
|
|
Make_Implicit_If_Statement (N,
|
4383 |
|
|
Condition => Relocate_Node (Cond),
|
4384 |
|
|
|
4385 |
|
|
Then_Statements => New_List (
|
4386 |
|
|
Make_Assignment_Statement (Sloc (Thenx),
|
4387 |
|
|
Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
|
4388 |
|
|
Expression =>
|
4389 |
|
|
Make_Attribute_Reference (Loc,
|
4390 |
|
|
Attribute_Name => Name_Unrestricted_Access,
|
4391 |
|
|
Prefix => Relocate_Node (Thenx)))),
|
4392 |
|
|
|
4393 |
|
|
Else_Statements => New_List (
|
4394 |
|
|
Make_Assignment_Statement (Sloc (Elsex),
|
4395 |
|
|
Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
|
4396 |
|
|
Expression =>
|
4397 |
|
|
Make_Attribute_Reference (Loc,
|
4398 |
|
|
Attribute_Name => Name_Unrestricted_Access,
|
4399 |
|
|
Prefix => Relocate_Node (Elsex)))));
|
4400 |
|
|
|
4401 |
|
|
New_N :=
|
4402 |
|
|
Make_Explicit_Dereference (Loc,
|
4403 |
|
|
Prefix => New_Occurrence_Of (Cnn, Loc));
|
4404 |
|
|
|
4405 |
|
|
-- For other types, we only need to expand if there are other actions
|
4406 |
|
|
-- associated with either branch.
|
4407 |
|
|
|
4408 |
|
|
elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
|
4409 |
|
|
|
4410 |
|
|
-- We have two approaches to handling this. If we are allowed to use
|
4411 |
|
|
-- N_Expression_With_Actions, then we can just wrap the actions into
|
4412 |
|
|
-- the appropriate expression.
|
4413 |
|
|
|
4414 |
|
|
if Use_Expression_With_Actions then
|
4415 |
|
|
if Present (Then_Actions (N)) then
|
4416 |
|
|
Rewrite (Thenx,
|
4417 |
|
|
Make_Expression_With_Actions (Sloc (Thenx),
|
4418 |
|
|
Actions => Then_Actions (N),
|
4419 |
|
|
Expression => Relocate_Node (Thenx)));
|
4420 |
|
|
Set_Then_Actions (N, No_List);
|
4421 |
|
|
Analyze_And_Resolve (Thenx, Typ);
|
4422 |
|
|
end if;
|
4423 |
|
|
|
4424 |
|
|
if Present (Else_Actions (N)) then
|
4425 |
|
|
Rewrite (Elsex,
|
4426 |
|
|
Make_Expression_With_Actions (Sloc (Elsex),
|
4427 |
|
|
Actions => Else_Actions (N),
|
4428 |
|
|
Expression => Relocate_Node (Elsex)));
|
4429 |
|
|
Set_Else_Actions (N, No_List);
|
4430 |
|
|
Analyze_And_Resolve (Elsex, Typ);
|
4431 |
|
|
end if;
|
4432 |
|
|
|
4433 |
|
|
return;
|
4434 |
|
|
|
4435 |
|
|
-- if we can't use N_Expression_With_Actions nodes, then we insert
|
4436 |
|
|
-- the following sequence of actions (using Insert_Actions):
|
4437 |
|
|
|
4438 |
|
|
-- Cnn : typ;
|
4439 |
|
|
-- if cond then
|
4440 |
|
|
-- <<then actions>>
|
4441 |
|
|
-- Cnn := then-expr;
|
4442 |
|
|
-- else
|
4443 |
|
|
-- <<else actions>>
|
4444 |
|
|
-- Cnn := else-expr
|
4445 |
|
|
-- end if;
|
4446 |
|
|
|
4447 |
|
|
-- and replace the conditional expression by a reference to Cnn
|
4448 |
|
|
|
4449 |
|
|
else
|
4450 |
|
|
Cnn := Make_Temporary (Loc, 'C', N);
|
4451 |
|
|
|
4452 |
|
|
Decl :=
|
4453 |
|
|
Make_Object_Declaration (Loc,
|
4454 |
|
|
Defining_Identifier => Cnn,
|
4455 |
|
|
Object_Definition => New_Occurrence_Of (Typ, Loc));
|
4456 |
|
|
|
4457 |
|
|
New_If :=
|
4458 |
|
|
Make_Implicit_If_Statement (N,
|
4459 |
|
|
Condition => Relocate_Node (Cond),
|
4460 |
|
|
|
4461 |
|
|
Then_Statements => New_List (
|
4462 |
|
|
Make_Assignment_Statement (Sloc (Thenx),
|
4463 |
|
|
Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
|
4464 |
|
|
Expression => Relocate_Node (Thenx))),
|
4465 |
|
|
|
4466 |
|
|
Else_Statements => New_List (
|
4467 |
|
|
Make_Assignment_Statement (Sloc (Elsex),
|
4468 |
|
|
Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
|
4469 |
|
|
Expression => Relocate_Node (Elsex))));
|
4470 |
|
|
|
4471 |
|
|
Set_Assignment_OK (Name (First (Then_Statements (New_If))));
|
4472 |
|
|
Set_Assignment_OK (Name (First (Else_Statements (New_If))));
|
4473 |
|
|
|
4474 |
|
|
New_N := New_Occurrence_Of (Cnn, Loc);
|
4475 |
|
|
end if;
|
4476 |
|
|
|
4477 |
|
|
-- If no actions then no expansion needed, gigi will handle it using
|
4478 |
|
|
-- the same approach as a C conditional expression.
|
4479 |
|
|
|
4480 |
|
|
else
|
4481 |
|
|
return;
|
4482 |
|
|
end if;
|
4483 |
|
|
|
4484 |
|
|
-- Fall through here for either the limited expansion, or the case of
|
4485 |
|
|
-- inserting actions for non-limited types. In both these cases, we must
|
4486 |
|
|
-- move the SLOC of the parent If statement to the newly created one and
|
4487 |
|
|
-- change it to the SLOC of the expression which, after expansion, will
|
4488 |
|
|
-- correspond to what is being evaluated.
|
4489 |
|
|
|
4490 |
|
|
if Present (Parent (N))
|
4491 |
|
|
and then Nkind (Parent (N)) = N_If_Statement
|
4492 |
|
|
then
|
4493 |
|
|
Set_Sloc (New_If, Sloc (Parent (N)));
|
4494 |
|
|
Set_Sloc (Parent (N), Loc);
|
4495 |
|
|
end if;
|
4496 |
|
|
|
4497 |
|
|
-- Make sure Then_Actions and Else_Actions are appropriately moved
|
4498 |
|
|
-- to the new if statement.
|
4499 |
|
|
|
4500 |
|
|
if Present (Then_Actions (N)) then
|
4501 |
|
|
Insert_List_Before
|
4502 |
|
|
(First (Then_Statements (New_If)), Then_Actions (N));
|
4503 |
|
|
end if;
|
4504 |
|
|
|
4505 |
|
|
if Present (Else_Actions (N)) then
|
4506 |
|
|
Insert_List_Before
|
4507 |
|
|
(First (Else_Statements (New_If)), Else_Actions (N));
|
4508 |
|
|
end if;
|
4509 |
|
|
|
4510 |
|
|
Insert_Action (N, Decl);
|
4511 |
|
|
Insert_Action (N, New_If);
|
4512 |
|
|
Rewrite (N, New_N);
|
4513 |
|
|
Analyze_And_Resolve (N, Typ);
|
4514 |
|
|
end Expand_N_Conditional_Expression;
|
4515 |
|
|
|
4516 |
|
|
-----------------------------------
|
4517 |
|
|
-- Expand_N_Explicit_Dereference --
|
4518 |
|
|
-----------------------------------
|
4519 |
|
|
|
4520 |
|
|
procedure Expand_N_Explicit_Dereference (N : Node_Id) is
|
4521 |
|
|
begin
|
4522 |
|
|
-- Insert explicit dereference call for the checked storage pool case
|
4523 |
|
|
|
4524 |
|
|
Insert_Dereference_Action (Prefix (N));
|
4525 |
|
|
|
4526 |
|
|
-- If the type is an Atomic type for which Atomic_Sync is enabled, then
|
4527 |
|
|
-- we set the atomic sync flag.
|
4528 |
|
|
|
4529 |
|
|
if Is_Atomic (Etype (N))
|
4530 |
|
|
and then not Atomic_Synchronization_Disabled (Etype (N))
|
4531 |
|
|
then
|
4532 |
|
|
Activate_Atomic_Synchronization (N);
|
4533 |
|
|
end if;
|
4534 |
|
|
end Expand_N_Explicit_Dereference;
|
4535 |
|
|
|
4536 |
|
|
--------------------------------------
|
4537 |
|
|
-- Expand_N_Expression_With_Actions --
|
4538 |
|
|
--------------------------------------
|
4539 |
|
|
|
4540 |
|
|
procedure Expand_N_Expression_With_Actions (N : Node_Id) is
|
4541 |
|
|
|
4542 |
|
|
procedure Process_Transient_Object (Decl : Node_Id);
|
4543 |
|
|
-- Given the declaration of a controlled transient declared inside the
|
4544 |
|
|
-- Actions list of an Expression_With_Actions, generate all necessary
|
4545 |
|
|
-- types and hooks in order to properly finalize the transient. This
|
4546 |
|
|
-- mechanism works in conjunction with Build_Finalizer.
|
4547 |
|
|
|
4548 |
|
|
------------------------------
|
4549 |
|
|
-- Process_Transient_Object --
|
4550 |
|
|
------------------------------
|
4551 |
|
|
|
4552 |
|
|
procedure Process_Transient_Object (Decl : Node_Id) is
|
4553 |
|
|
|
4554 |
|
|
function Find_Insertion_Node return Node_Id;
|
4555 |
|
|
-- Complex conditions in if statements may be converted into nested
|
4556 |
|
|
-- EWAs. In this case, any generated code must be inserted before the
|
4557 |
|
|
-- if statement to ensure proper visibility of the hook objects. This
|
4558 |
|
|
-- routine returns the top most short circuit operator or the parent
|
4559 |
|
|
-- of the EWA if no nesting was detected.
|
4560 |
|
|
|
4561 |
|
|
-------------------------
|
4562 |
|
|
-- Find_Insertion_Node --
|
4563 |
|
|
-------------------------
|
4564 |
|
|
|
4565 |
|
|
function Find_Insertion_Node return Node_Id is
|
4566 |
|
|
Par : Node_Id;
|
4567 |
|
|
|
4568 |
|
|
begin
|
4569 |
|
|
-- Climb up the branches of a complex condition
|
4570 |
|
|
|
4571 |
|
|
Par := N;
|
4572 |
|
|
while Nkind_In (Parent (Par), N_And_Then, N_Op_Not, N_Or_Else) loop
|
4573 |
|
|
Par := Parent (Par);
|
4574 |
|
|
end loop;
|
4575 |
|
|
|
4576 |
|
|
return Par;
|
4577 |
|
|
end Find_Insertion_Node;
|
4578 |
|
|
|
4579 |
|
|
-- Local variables
|
4580 |
|
|
|
4581 |
|
|
Ins_Node : constant Node_Id := Find_Insertion_Node;
|
4582 |
|
|
Loc : constant Source_Ptr := Sloc (Decl);
|
4583 |
|
|
Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
|
4584 |
|
|
Obj_Typ : constant Entity_Id := Etype (Obj_Id);
|
4585 |
|
|
Desig_Typ : Entity_Id;
|
4586 |
|
|
Expr : Node_Id;
|
4587 |
|
|
Ptr_Decl : Node_Id;
|
4588 |
|
|
Ptr_Id : Entity_Id;
|
4589 |
|
|
Temp_Decl : Node_Id;
|
4590 |
|
|
Temp_Id : Node_Id;
|
4591 |
|
|
|
4592 |
|
|
-- Start of processing for Process_Transient_Object
|
4593 |
|
|
|
4594 |
|
|
begin
|
4595 |
|
|
-- Step 1: Create the access type which provides a reference to the
|
4596 |
|
|
-- transient object.
|
4597 |
|
|
|
4598 |
|
|
if Is_Access_Type (Obj_Typ) then
|
4599 |
|
|
Desig_Typ := Directly_Designated_Type (Obj_Typ);
|
4600 |
|
|
else
|
4601 |
|
|
Desig_Typ := Obj_Typ;
|
4602 |
|
|
end if;
|
4603 |
|
|
|
4604 |
|
|
-- Generate:
|
4605 |
|
|
-- Ann : access [all] <Desig_Typ>;
|
4606 |
|
|
|
4607 |
|
|
Ptr_Id := Make_Temporary (Loc, 'A');
|
4608 |
|
|
|
4609 |
|
|
Ptr_Decl :=
|
4610 |
|
|
Make_Full_Type_Declaration (Loc,
|
4611 |
|
|
Defining_Identifier => Ptr_Id,
|
4612 |
|
|
Type_Definition =>
|
4613 |
|
|
Make_Access_To_Object_Definition (Loc,
|
4614 |
|
|
All_Present =>
|
4615 |
|
|
Ekind (Obj_Typ) = E_General_Access_Type,
|
4616 |
|
|
Subtype_Indication => New_Reference_To (Desig_Typ, Loc)));
|
4617 |
|
|
|
4618 |
|
|
Insert_Action (Ins_Node, Ptr_Decl);
|
4619 |
|
|
Analyze (Ptr_Decl);
|
4620 |
|
|
|
4621 |
|
|
-- Step 2: Create a temporary which acts as a hook to the transient
|
4622 |
|
|
-- object. Generate:
|
4623 |
|
|
|
4624 |
|
|
-- Temp : Ptr_Id := null;
|
4625 |
|
|
|
4626 |
|
|
Temp_Id := Make_Temporary (Loc, 'T');
|
4627 |
|
|
|
4628 |
|
|
Temp_Decl :=
|
4629 |
|
|
Make_Object_Declaration (Loc,
|
4630 |
|
|
Defining_Identifier => Temp_Id,
|
4631 |
|
|
Object_Definition => New_Reference_To (Ptr_Id, Loc));
|
4632 |
|
|
|
4633 |
|
|
Insert_Action (Ins_Node, Temp_Decl);
|
4634 |
|
|
Analyze (Temp_Decl);
|
4635 |
|
|
|
4636 |
|
|
-- Mark this temporary as created for the purposes of exporting the
|
4637 |
|
|
-- transient declaration out of the Actions list. This signals the
|
4638 |
|
|
-- machinery in Build_Finalizer to recognize this special case.
|
4639 |
|
|
|
4640 |
|
|
Set_Return_Flag_Or_Transient_Decl (Temp_Id, Decl);
|
4641 |
|
|
|
4642 |
|
|
-- Step 3: Hook the transient object to the temporary
|
4643 |
|
|
|
4644 |
|
|
if Is_Access_Type (Obj_Typ) then
|
4645 |
|
|
Expr := Convert_To (Ptr_Id, New_Reference_To (Obj_Id, Loc));
|
4646 |
|
|
else
|
4647 |
|
|
Expr :=
|
4648 |
|
|
Make_Attribute_Reference (Loc,
|
4649 |
|
|
Prefix => New_Reference_To (Obj_Id, Loc),
|
4650 |
|
|
Attribute_Name => Name_Unrestricted_Access);
|
4651 |
|
|
end if;
|
4652 |
|
|
|
4653 |
|
|
-- Generate:
|
4654 |
|
|
-- Temp := Ptr_Id (Obj_Id);
|
4655 |
|
|
-- <or>
|
4656 |
|
|
-- Temp := Obj_Id'Unrestricted_Access;
|
4657 |
|
|
|
4658 |
|
|
Insert_After_And_Analyze (Decl,
|
4659 |
|
|
Make_Assignment_Statement (Loc,
|
4660 |
|
|
Name => New_Reference_To (Temp_Id, Loc),
|
4661 |
|
|
Expression => Expr));
|
4662 |
|
|
end Process_Transient_Object;
|
4663 |
|
|
|
4664 |
|
|
-- Local variables
|
4665 |
|
|
|
4666 |
|
|
Decl : Node_Id;
|
4667 |
|
|
|
4668 |
|
|
-- Start of processing for Expand_N_Expression_With_Actions
|
4669 |
|
|
|
4670 |
|
|
begin
|
4671 |
|
|
Decl := First (Actions (N));
|
4672 |
|
|
while Present (Decl) loop
|
4673 |
|
|
if Nkind (Decl) = N_Object_Declaration
|
4674 |
|
|
and then Is_Finalizable_Transient (Decl, N)
|
4675 |
|
|
then
|
4676 |
|
|
Process_Transient_Object (Decl);
|
4677 |
|
|
end if;
|
4678 |
|
|
|
4679 |
|
|
Next (Decl);
|
4680 |
|
|
end loop;
|
4681 |
|
|
end Expand_N_Expression_With_Actions;
|
4682 |
|
|
|
4683 |
|
|
-----------------
|
4684 |
|
|
-- Expand_N_In --
|
4685 |
|
|
-----------------
|
4686 |
|
|
|
4687 |
|
|
procedure Expand_N_In (N : Node_Id) is
|
4688 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
4689 |
|
|
Restyp : constant Entity_Id := Etype (N);
|
4690 |
|
|
Lop : constant Node_Id := Left_Opnd (N);
|
4691 |
|
|
Rop : constant Node_Id := Right_Opnd (N);
|
4692 |
|
|
Static : constant Boolean := Is_OK_Static_Expression (N);
|
4693 |
|
|
|
4694 |
|
|
Ltyp : Entity_Id;
|
4695 |
|
|
Rtyp : Entity_Id;
|
4696 |
|
|
|
4697 |
|
|
procedure Substitute_Valid_Check;
|
4698 |
|
|
-- Replaces node N by Lop'Valid. This is done when we have an explicit
|
4699 |
|
|
-- test for the left operand being in range of its subtype.
|
4700 |
|
|
|
4701 |
|
|
----------------------------
|
4702 |
|
|
-- Substitute_Valid_Check --
|
4703 |
|
|
----------------------------
|
4704 |
|
|
|
4705 |
|
|
procedure Substitute_Valid_Check is
|
4706 |
|
|
begin
|
4707 |
|
|
Rewrite (N,
|
4708 |
|
|
Make_Attribute_Reference (Loc,
|
4709 |
|
|
Prefix => Relocate_Node (Lop),
|
4710 |
|
|
Attribute_Name => Name_Valid));
|
4711 |
|
|
|
4712 |
|
|
Analyze_And_Resolve (N, Restyp);
|
4713 |
|
|
|
4714 |
|
|
Error_Msg_N ("?explicit membership test may be optimized away", N);
|
4715 |
|
|
Error_Msg_N -- CODEFIX
|
4716 |
|
|
("\?use ''Valid attribute instead", N);
|
4717 |
|
|
return;
|
4718 |
|
|
end Substitute_Valid_Check;
|
4719 |
|
|
|
4720 |
|
|
-- Start of processing for Expand_N_In
|
4721 |
|
|
|
4722 |
|
|
begin
|
4723 |
|
|
-- If set membership case, expand with separate procedure
|
4724 |
|
|
|
4725 |
|
|
if Present (Alternatives (N)) then
|
4726 |
|
|
Expand_Set_Membership (N);
|
4727 |
|
|
return;
|
4728 |
|
|
end if;
|
4729 |
|
|
|
4730 |
|
|
-- Not set membership, proceed with expansion
|
4731 |
|
|
|
4732 |
|
|
Ltyp := Etype (Left_Opnd (N));
|
4733 |
|
|
Rtyp := Etype (Right_Opnd (N));
|
4734 |
|
|
|
4735 |
|
|
-- Check case of explicit test for an expression in range of its
|
4736 |
|
|
-- subtype. This is suspicious usage and we replace it with a 'Valid
|
4737 |
|
|
-- test and give a warning. For floating point types however, this is a
|
4738 |
|
|
-- standard way to check for finite numbers, and using 'Valid would
|
4739 |
|
|
-- typically be a pessimization. Also skip this test for predicated
|
4740 |
|
|
-- types, since it is perfectly reasonable to check if a value meets
|
4741 |
|
|
-- its predicate.
|
4742 |
|
|
|
4743 |
|
|
if Is_Scalar_Type (Ltyp)
|
4744 |
|
|
and then not Is_Floating_Point_Type (Ltyp)
|
4745 |
|
|
and then Nkind (Rop) in N_Has_Entity
|
4746 |
|
|
and then Ltyp = Entity (Rop)
|
4747 |
|
|
and then Comes_From_Source (N)
|
4748 |
|
|
and then VM_Target = No_VM
|
4749 |
|
|
and then not (Is_Discrete_Type (Ltyp)
|
4750 |
|
|
and then Present (Predicate_Function (Ltyp)))
|
4751 |
|
|
then
|
4752 |
|
|
Substitute_Valid_Check;
|
4753 |
|
|
return;
|
4754 |
|
|
end if;
|
4755 |
|
|
|
4756 |
|
|
-- Do validity check on operands
|
4757 |
|
|
|
4758 |
|
|
if Validity_Checks_On and Validity_Check_Operands then
|
4759 |
|
|
Ensure_Valid (Left_Opnd (N));
|
4760 |
|
|
Validity_Check_Range (Right_Opnd (N));
|
4761 |
|
|
end if;
|
4762 |
|
|
|
4763 |
|
|
-- Case of explicit range
|
4764 |
|
|
|
4765 |
|
|
if Nkind (Rop) = N_Range then
|
4766 |
|
|
declare
|
4767 |
|
|
Lo : constant Node_Id := Low_Bound (Rop);
|
4768 |
|
|
Hi : constant Node_Id := High_Bound (Rop);
|
4769 |
|
|
|
4770 |
|
|
Lo_Orig : constant Node_Id := Original_Node (Lo);
|
4771 |
|
|
Hi_Orig : constant Node_Id := Original_Node (Hi);
|
4772 |
|
|
|
4773 |
|
|
Lcheck : Compare_Result;
|
4774 |
|
|
Ucheck : Compare_Result;
|
4775 |
|
|
|
4776 |
|
|
Warn1 : constant Boolean :=
|
4777 |
|
|
Constant_Condition_Warnings
|
4778 |
|
|
and then Comes_From_Source (N)
|
4779 |
|
|
and then not In_Instance;
|
4780 |
|
|
-- This must be true for any of the optimization warnings, we
|
4781 |
|
|
-- clearly want to give them only for source with the flag on. We
|
4782 |
|
|
-- also skip these warnings in an instance since it may be the
|
4783 |
|
|
-- case that different instantiations have different ranges.
|
4784 |
|
|
|
4785 |
|
|
Warn2 : constant Boolean :=
|
4786 |
|
|
Warn1
|
4787 |
|
|
and then Nkind (Original_Node (Rop)) = N_Range
|
4788 |
|
|
and then Is_Integer_Type (Etype (Lo));
|
4789 |
|
|
-- For the case where only one bound warning is elided, we also
|
4790 |
|
|
-- insist on an explicit range and an integer type. The reason is
|
4791 |
|
|
-- that the use of enumeration ranges including an end point is
|
4792 |
|
|
-- common, as is the use of a subtype name, one of whose bounds is
|
4793 |
|
|
-- the same as the type of the expression.
|
4794 |
|
|
|
4795 |
|
|
begin
|
4796 |
|
|
-- If test is explicit x'First .. x'Last, replace by valid check
|
4797 |
|
|
|
4798 |
|
|
-- Could use some individual comments for this complex test ???
|
4799 |
|
|
|
4800 |
|
|
if Is_Scalar_Type (Ltyp)
|
4801 |
|
|
and then Nkind (Lo_Orig) = N_Attribute_Reference
|
4802 |
|
|
and then Attribute_Name (Lo_Orig) = Name_First
|
4803 |
|
|
and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
|
4804 |
|
|
and then Entity (Prefix (Lo_Orig)) = Ltyp
|
4805 |
|
|
and then Nkind (Hi_Orig) = N_Attribute_Reference
|
4806 |
|
|
and then Attribute_Name (Hi_Orig) = Name_Last
|
4807 |
|
|
and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
|
4808 |
|
|
and then Entity (Prefix (Hi_Orig)) = Ltyp
|
4809 |
|
|
and then Comes_From_Source (N)
|
4810 |
|
|
and then VM_Target = No_VM
|
4811 |
|
|
then
|
4812 |
|
|
Substitute_Valid_Check;
|
4813 |
|
|
goto Leave;
|
4814 |
|
|
end if;
|
4815 |
|
|
|
4816 |
|
|
-- If bounds of type are known at compile time, and the end points
|
4817 |
|
|
-- are known at compile time and identical, this is another case
|
4818 |
|
|
-- for substituting a valid test. We only do this for discrete
|
4819 |
|
|
-- types, since it won't arise in practice for float types.
|
4820 |
|
|
|
4821 |
|
|
if Comes_From_Source (N)
|
4822 |
|
|
and then Is_Discrete_Type (Ltyp)
|
4823 |
|
|
and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
|
4824 |
|
|
and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
|
4825 |
|
|
and then Compile_Time_Known_Value (Lo)
|
4826 |
|
|
and then Compile_Time_Known_Value (Hi)
|
4827 |
|
|
and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
|
4828 |
|
|
and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
|
4829 |
|
|
|
4830 |
|
|
-- Kill warnings in instances, since they may be cases where we
|
4831 |
|
|
-- have a test in the generic that makes sense with some types
|
4832 |
|
|
-- and not with other types.
|
4833 |
|
|
|
4834 |
|
|
and then not In_Instance
|
4835 |
|
|
then
|
4836 |
|
|
Substitute_Valid_Check;
|
4837 |
|
|
goto Leave;
|
4838 |
|
|
end if;
|
4839 |
|
|
|
4840 |
|
|
-- If we have an explicit range, do a bit of optimization based on
|
4841 |
|
|
-- range analysis (we may be able to kill one or both checks).
|
4842 |
|
|
|
4843 |
|
|
Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
|
4844 |
|
|
Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
|
4845 |
|
|
|
4846 |
|
|
-- If either check is known to fail, replace result by False since
|
4847 |
|
|
-- the other check does not matter. Preserve the static flag for
|
4848 |
|
|
-- legality checks, because we are constant-folding beyond RM 4.9.
|
4849 |
|
|
|
4850 |
|
|
if Lcheck = LT or else Ucheck = GT then
|
4851 |
|
|
if Warn1 then
|
4852 |
|
|
Error_Msg_N ("?range test optimized away", N);
|
4853 |
|
|
Error_Msg_N ("\?value is known to be out of range", N);
|
4854 |
|
|
end if;
|
4855 |
|
|
|
4856 |
|
|
Rewrite (N, New_Reference_To (Standard_False, Loc));
|
4857 |
|
|
Analyze_And_Resolve (N, Restyp);
|
4858 |
|
|
Set_Is_Static_Expression (N, Static);
|
4859 |
|
|
goto Leave;
|
4860 |
|
|
|
4861 |
|
|
-- If both checks are known to succeed, replace result by True,
|
4862 |
|
|
-- since we know we are in range.
|
4863 |
|
|
|
4864 |
|
|
elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
|
4865 |
|
|
if Warn1 then
|
4866 |
|
|
Error_Msg_N ("?range test optimized away", N);
|
4867 |
|
|
Error_Msg_N ("\?value is known to be in range", N);
|
4868 |
|
|
end if;
|
4869 |
|
|
|
4870 |
|
|
Rewrite (N, New_Reference_To (Standard_True, Loc));
|
4871 |
|
|
Analyze_And_Resolve (N, Restyp);
|
4872 |
|
|
Set_Is_Static_Expression (N, Static);
|
4873 |
|
|
goto Leave;
|
4874 |
|
|
|
4875 |
|
|
-- If lower bound check succeeds and upper bound check is not
|
4876 |
|
|
-- known to succeed or fail, then replace the range check with
|
4877 |
|
|
-- a comparison against the upper bound.
|
4878 |
|
|
|
4879 |
|
|
elsif Lcheck in Compare_GE then
|
4880 |
|
|
if Warn2 and then not In_Instance then
|
4881 |
|
|
Error_Msg_N ("?lower bound test optimized away", Lo);
|
4882 |
|
|
Error_Msg_N ("\?value is known to be in range", Lo);
|
4883 |
|
|
end if;
|
4884 |
|
|
|
4885 |
|
|
Rewrite (N,
|
4886 |
|
|
Make_Op_Le (Loc,
|
4887 |
|
|
Left_Opnd => Lop,
|
4888 |
|
|
Right_Opnd => High_Bound (Rop)));
|
4889 |
|
|
Analyze_And_Resolve (N, Restyp);
|
4890 |
|
|
goto Leave;
|
4891 |
|
|
|
4892 |
|
|
-- If upper bound check succeeds and lower bound check is not
|
4893 |
|
|
-- known to succeed or fail, then replace the range check with
|
4894 |
|
|
-- a comparison against the lower bound.
|
4895 |
|
|
|
4896 |
|
|
elsif Ucheck in Compare_LE then
|
4897 |
|
|
if Warn2 and then not In_Instance then
|
4898 |
|
|
Error_Msg_N ("?upper bound test optimized away", Hi);
|
4899 |
|
|
Error_Msg_N ("\?value is known to be in range", Hi);
|
4900 |
|
|
end if;
|
4901 |
|
|
|
4902 |
|
|
Rewrite (N,
|
4903 |
|
|
Make_Op_Ge (Loc,
|
4904 |
|
|
Left_Opnd => Lop,
|
4905 |
|
|
Right_Opnd => Low_Bound (Rop)));
|
4906 |
|
|
Analyze_And_Resolve (N, Restyp);
|
4907 |
|
|
goto Leave;
|
4908 |
|
|
end if;
|
4909 |
|
|
|
4910 |
|
|
-- We couldn't optimize away the range check, but there is one
|
4911 |
|
|
-- more issue. If we are checking constant conditionals, then we
|
4912 |
|
|
-- see if we can determine the outcome assuming everything is
|
4913 |
|
|
-- valid, and if so give an appropriate warning.
|
4914 |
|
|
|
4915 |
|
|
if Warn1 and then not Assume_No_Invalid_Values then
|
4916 |
|
|
Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
|
4917 |
|
|
Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
|
4918 |
|
|
|
4919 |
|
|
-- Result is out of range for valid value
|
4920 |
|
|
|
4921 |
|
|
if Lcheck = LT or else Ucheck = GT then
|
4922 |
|
|
Error_Msg_N
|
4923 |
|
|
("?value can only be in range if it is invalid", N);
|
4924 |
|
|
|
4925 |
|
|
-- Result is in range for valid value
|
4926 |
|
|
|
4927 |
|
|
elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
|
4928 |
|
|
Error_Msg_N
|
4929 |
|
|
("?value can only be out of range if it is invalid", N);
|
4930 |
|
|
|
4931 |
|
|
-- Lower bound check succeeds if value is valid
|
4932 |
|
|
|
4933 |
|
|
elsif Warn2 and then Lcheck in Compare_GE then
|
4934 |
|
|
Error_Msg_N
|
4935 |
|
|
("?lower bound check only fails if it is invalid", Lo);
|
4936 |
|
|
|
4937 |
|
|
-- Upper bound check succeeds if value is valid
|
4938 |
|
|
|
4939 |
|
|
elsif Warn2 and then Ucheck in Compare_LE then
|
4940 |
|
|
Error_Msg_N
|
4941 |
|
|
("?upper bound check only fails for invalid values", Hi);
|
4942 |
|
|
end if;
|
4943 |
|
|
end if;
|
4944 |
|
|
end;
|
4945 |
|
|
|
4946 |
|
|
-- For all other cases of an explicit range, nothing to be done
|
4947 |
|
|
|
4948 |
|
|
goto Leave;
|
4949 |
|
|
|
4950 |
|
|
-- Here right operand is a subtype mark
|
4951 |
|
|
|
4952 |
|
|
else
|
4953 |
|
|
declare
|
4954 |
|
|
Typ : Entity_Id := Etype (Rop);
|
4955 |
|
|
Is_Acc : constant Boolean := Is_Access_Type (Typ);
|
4956 |
|
|
Cond : Node_Id := Empty;
|
4957 |
|
|
New_N : Node_Id;
|
4958 |
|
|
Obj : Node_Id := Lop;
|
4959 |
|
|
SCIL_Node : Node_Id;
|
4960 |
|
|
|
4961 |
|
|
begin
|
4962 |
|
|
Remove_Side_Effects (Obj);
|
4963 |
|
|
|
4964 |
|
|
-- For tagged type, do tagged membership operation
|
4965 |
|
|
|
4966 |
|
|
if Is_Tagged_Type (Typ) then
|
4967 |
|
|
|
4968 |
|
|
-- No expansion will be performed when VM_Target, as the VM
|
4969 |
|
|
-- back-ends will handle the membership tests directly (tags
|
4970 |
|
|
-- are not explicitly represented in Java objects, so the
|
4971 |
|
|
-- normal tagged membership expansion is not what we want).
|
4972 |
|
|
|
4973 |
|
|
if Tagged_Type_Expansion then
|
4974 |
|
|
Tagged_Membership (N, SCIL_Node, New_N);
|
4975 |
|
|
Rewrite (N, New_N);
|
4976 |
|
|
Analyze_And_Resolve (N, Restyp);
|
4977 |
|
|
|
4978 |
|
|
-- Update decoration of relocated node referenced by the
|
4979 |
|
|
-- SCIL node.
|
4980 |
|
|
|
4981 |
|
|
if Generate_SCIL and then Present (SCIL_Node) then
|
4982 |
|
|
Set_SCIL_Node (N, SCIL_Node);
|
4983 |
|
|
end if;
|
4984 |
|
|
end if;
|
4985 |
|
|
|
4986 |
|
|
goto Leave;
|
4987 |
|
|
|
4988 |
|
|
-- If type is scalar type, rewrite as x in t'First .. t'Last.
|
4989 |
|
|
-- This reason we do this is that the bounds may have the wrong
|
4990 |
|
|
-- type if they come from the original type definition. Also this
|
4991 |
|
|
-- way we get all the processing above for an explicit range.
|
4992 |
|
|
|
4993 |
|
|
-- Don't do this for predicated types, since in this case we
|
4994 |
|
|
-- want to check the predicate!
|
4995 |
|
|
|
4996 |
|
|
elsif Is_Scalar_Type (Typ) then
|
4997 |
|
|
if No (Predicate_Function (Typ)) then
|
4998 |
|
|
Rewrite (Rop,
|
4999 |
|
|
Make_Range (Loc,
|
5000 |
|
|
Low_Bound =>
|
5001 |
|
|
Make_Attribute_Reference (Loc,
|
5002 |
|
|
Attribute_Name => Name_First,
|
5003 |
|
|
Prefix => New_Reference_To (Typ, Loc)),
|
5004 |
|
|
|
5005 |
|
|
High_Bound =>
|
5006 |
|
|
Make_Attribute_Reference (Loc,
|
5007 |
|
|
Attribute_Name => Name_Last,
|
5008 |
|
|
Prefix => New_Reference_To (Typ, Loc))));
|
5009 |
|
|
Analyze_And_Resolve (N, Restyp);
|
5010 |
|
|
end if;
|
5011 |
|
|
|
5012 |
|
|
goto Leave;
|
5013 |
|
|
|
5014 |
|
|
-- Ada 2005 (AI-216): Program_Error is raised when evaluating
|
5015 |
|
|
-- a membership test if the subtype mark denotes a constrained
|
5016 |
|
|
-- Unchecked_Union subtype and the expression lacks inferable
|
5017 |
|
|
-- discriminants.
|
5018 |
|
|
|
5019 |
|
|
elsif Is_Unchecked_Union (Base_Type (Typ))
|
5020 |
|
|
and then Is_Constrained (Typ)
|
5021 |
|
|
and then not Has_Inferable_Discriminants (Lop)
|
5022 |
|
|
then
|
5023 |
|
|
Insert_Action (N,
|
5024 |
|
|
Make_Raise_Program_Error (Loc,
|
5025 |
|
|
Reason => PE_Unchecked_Union_Restriction));
|
5026 |
|
|
|
5027 |
|
|
-- Prevent Gigi from generating incorrect code by rewriting the
|
5028 |
|
|
-- test as False.
|
5029 |
|
|
|
5030 |
|
|
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
|
5031 |
|
|
goto Leave;
|
5032 |
|
|
end if;
|
5033 |
|
|
|
5034 |
|
|
-- Here we have a non-scalar type
|
5035 |
|
|
|
5036 |
|
|
if Is_Acc then
|
5037 |
|
|
Typ := Designated_Type (Typ);
|
5038 |
|
|
end if;
|
5039 |
|
|
|
5040 |
|
|
if not Is_Constrained (Typ) then
|
5041 |
|
|
Rewrite (N, New_Reference_To (Standard_True, Loc));
|
5042 |
|
|
Analyze_And_Resolve (N, Restyp);
|
5043 |
|
|
|
5044 |
|
|
-- For the constrained array case, we have to check the subscripts
|
5045 |
|
|
-- for an exact match if the lengths are non-zero (the lengths
|
5046 |
|
|
-- must match in any case).
|
5047 |
|
|
|
5048 |
|
|
elsif Is_Array_Type (Typ) then
|
5049 |
|
|
Check_Subscripts : declare
|
5050 |
|
|
function Build_Attribute_Reference
|
5051 |
|
|
(E : Node_Id;
|
5052 |
|
|
Nam : Name_Id;
|
5053 |
|
|
Dim : Nat) return Node_Id;
|
5054 |
|
|
-- Build attribute reference E'Nam (Dim)
|
5055 |
|
|
|
5056 |
|
|
-------------------------------
|
5057 |
|
|
-- Build_Attribute_Reference --
|
5058 |
|
|
-------------------------------
|
5059 |
|
|
|
5060 |
|
|
function Build_Attribute_Reference
|
5061 |
|
|
(E : Node_Id;
|
5062 |
|
|
Nam : Name_Id;
|
5063 |
|
|
Dim : Nat) return Node_Id
|
5064 |
|
|
is
|
5065 |
|
|
begin
|
5066 |
|
|
return
|
5067 |
|
|
Make_Attribute_Reference (Loc,
|
5068 |
|
|
Prefix => E,
|
5069 |
|
|
Attribute_Name => Nam,
|
5070 |
|
|
Expressions => New_List (
|
5071 |
|
|
Make_Integer_Literal (Loc, Dim)));
|
5072 |
|
|
end Build_Attribute_Reference;
|
5073 |
|
|
|
5074 |
|
|
-- Start of processing for Check_Subscripts
|
5075 |
|
|
|
5076 |
|
|
begin
|
5077 |
|
|
for J in 1 .. Number_Dimensions (Typ) loop
|
5078 |
|
|
Evolve_And_Then (Cond,
|
5079 |
|
|
Make_Op_Eq (Loc,
|
5080 |
|
|
Left_Opnd =>
|
5081 |
|
|
Build_Attribute_Reference
|
5082 |
|
|
(Duplicate_Subexpr_No_Checks (Obj),
|
5083 |
|
|
Name_First, J),
|
5084 |
|
|
Right_Opnd =>
|
5085 |
|
|
Build_Attribute_Reference
|
5086 |
|
|
(New_Occurrence_Of (Typ, Loc), Name_First, J)));
|
5087 |
|
|
|
5088 |
|
|
Evolve_And_Then (Cond,
|
5089 |
|
|
Make_Op_Eq (Loc,
|
5090 |
|
|
Left_Opnd =>
|
5091 |
|
|
Build_Attribute_Reference
|
5092 |
|
|
(Duplicate_Subexpr_No_Checks (Obj),
|
5093 |
|
|
Name_Last, J),
|
5094 |
|
|
Right_Opnd =>
|
5095 |
|
|
Build_Attribute_Reference
|
5096 |
|
|
(New_Occurrence_Of (Typ, Loc), Name_Last, J)));
|
5097 |
|
|
end loop;
|
5098 |
|
|
|
5099 |
|
|
if Is_Acc then
|
5100 |
|
|
Cond :=
|
5101 |
|
|
Make_Or_Else (Loc,
|
5102 |
|
|
Left_Opnd =>
|
5103 |
|
|
Make_Op_Eq (Loc,
|
5104 |
|
|
Left_Opnd => Obj,
|
5105 |
|
|
Right_Opnd => Make_Null (Loc)),
|
5106 |
|
|
Right_Opnd => Cond);
|
5107 |
|
|
end if;
|
5108 |
|
|
|
5109 |
|
|
Rewrite (N, Cond);
|
5110 |
|
|
Analyze_And_Resolve (N, Restyp);
|
5111 |
|
|
end Check_Subscripts;
|
5112 |
|
|
|
5113 |
|
|
-- These are the cases where constraint checks may be required,
|
5114 |
|
|
-- e.g. records with possible discriminants
|
5115 |
|
|
|
5116 |
|
|
else
|
5117 |
|
|
-- Expand the test into a series of discriminant comparisons.
|
5118 |
|
|
-- The expression that is built is the negation of the one that
|
5119 |
|
|
-- is used for checking discriminant constraints.
|
5120 |
|
|
|
5121 |
|
|
Obj := Relocate_Node (Left_Opnd (N));
|
5122 |
|
|
|
5123 |
|
|
if Has_Discriminants (Typ) then
|
5124 |
|
|
Cond := Make_Op_Not (Loc,
|
5125 |
|
|
Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
|
5126 |
|
|
|
5127 |
|
|
if Is_Acc then
|
5128 |
|
|
Cond := Make_Or_Else (Loc,
|
5129 |
|
|
Left_Opnd =>
|
5130 |
|
|
Make_Op_Eq (Loc,
|
5131 |
|
|
Left_Opnd => Obj,
|
5132 |
|
|
Right_Opnd => Make_Null (Loc)),
|
5133 |
|
|
Right_Opnd => Cond);
|
5134 |
|
|
end if;
|
5135 |
|
|
|
5136 |
|
|
else
|
5137 |
|
|
Cond := New_Occurrence_Of (Standard_True, Loc);
|
5138 |
|
|
end if;
|
5139 |
|
|
|
5140 |
|
|
Rewrite (N, Cond);
|
5141 |
|
|
Analyze_And_Resolve (N, Restyp);
|
5142 |
|
|
end if;
|
5143 |
|
|
|
5144 |
|
|
-- Ada 2012 (AI05-0149): Handle membership tests applied to an
|
5145 |
|
|
-- expression of an anonymous access type. This can involve an
|
5146 |
|
|
-- accessibility test and a tagged type membership test in the
|
5147 |
|
|
-- case of tagged designated types.
|
5148 |
|
|
|
5149 |
|
|
if Ada_Version >= Ada_2012
|
5150 |
|
|
and then Is_Acc
|
5151 |
|
|
and then Ekind (Ltyp) = E_Anonymous_Access_Type
|
5152 |
|
|
then
|
5153 |
|
|
declare
|
5154 |
|
|
Expr_Entity : Entity_Id := Empty;
|
5155 |
|
|
New_N : Node_Id;
|
5156 |
|
|
Param_Level : Node_Id;
|
5157 |
|
|
Type_Level : Node_Id;
|
5158 |
|
|
|
5159 |
|
|
begin
|
5160 |
|
|
if Is_Entity_Name (Lop) then
|
5161 |
|
|
Expr_Entity := Param_Entity (Lop);
|
5162 |
|
|
|
5163 |
|
|
if not Present (Expr_Entity) then
|
5164 |
|
|
Expr_Entity := Entity (Lop);
|
5165 |
|
|
end if;
|
5166 |
|
|
end if;
|
5167 |
|
|
|
5168 |
|
|
-- If a conversion of the anonymous access value to the
|
5169 |
|
|
-- tested type would be illegal, then the result is False.
|
5170 |
|
|
|
5171 |
|
|
if not Valid_Conversion
|
5172 |
|
|
(Lop, Rtyp, Lop, Report_Errs => False)
|
5173 |
|
|
then
|
5174 |
|
|
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
|
5175 |
|
|
Analyze_And_Resolve (N, Restyp);
|
5176 |
|
|
|
5177 |
|
|
-- Apply an accessibility check if the access object has an
|
5178 |
|
|
-- associated access level and when the level of the type is
|
5179 |
|
|
-- less deep than the level of the access parameter. This
|
5180 |
|
|
-- only occur for access parameters and stand-alone objects
|
5181 |
|
|
-- of an anonymous access type.
|
5182 |
|
|
|
5183 |
|
|
else
|
5184 |
|
|
if Present (Expr_Entity)
|
5185 |
|
|
and then
|
5186 |
|
|
Present
|
5187 |
|
|
(Effective_Extra_Accessibility (Expr_Entity))
|
5188 |
|
|
and then UI_Gt (Object_Access_Level (Lop),
|
5189 |
|
|
Type_Access_Level (Rtyp))
|
5190 |
|
|
then
|
5191 |
|
|
Param_Level :=
|
5192 |
|
|
New_Occurrence_Of
|
5193 |
|
|
(Effective_Extra_Accessibility (Expr_Entity), Loc);
|
5194 |
|
|
|
5195 |
|
|
Type_Level :=
|
5196 |
|
|
Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
|
5197 |
|
|
|
5198 |
|
|
-- Return True only if the accessibility level of the
|
5199 |
|
|
-- expression entity is not deeper than the level of
|
5200 |
|
|
-- the tested access type.
|
5201 |
|
|
|
5202 |
|
|
Rewrite (N,
|
5203 |
|
|
Make_And_Then (Loc,
|
5204 |
|
|
Left_Opnd => Relocate_Node (N),
|
5205 |
|
|
Right_Opnd => Make_Op_Le (Loc,
|
5206 |
|
|
Left_Opnd => Param_Level,
|
5207 |
|
|
Right_Opnd => Type_Level)));
|
5208 |
|
|
|
5209 |
|
|
Analyze_And_Resolve (N);
|
5210 |
|
|
end if;
|
5211 |
|
|
|
5212 |
|
|
-- If the designated type is tagged, do tagged membership
|
5213 |
|
|
-- operation.
|
5214 |
|
|
|
5215 |
|
|
-- *** NOTE: we have to check not null before doing the
|
5216 |
|
|
-- tagged membership test (but maybe that can be done
|
5217 |
|
|
-- inside Tagged_Membership?).
|
5218 |
|
|
|
5219 |
|
|
if Is_Tagged_Type (Typ) then
|
5220 |
|
|
Rewrite (N,
|
5221 |
|
|
Make_And_Then (Loc,
|
5222 |
|
|
Left_Opnd => Relocate_Node (N),
|
5223 |
|
|
Right_Opnd =>
|
5224 |
|
|
Make_Op_Ne (Loc,
|
5225 |
|
|
Left_Opnd => Obj,
|
5226 |
|
|
Right_Opnd => Make_Null (Loc))));
|
5227 |
|
|
|
5228 |
|
|
-- No expansion will be performed when VM_Target, as
|
5229 |
|
|
-- the VM back-ends will handle the membership tests
|
5230 |
|
|
-- directly (tags are not explicitly represented in
|
5231 |
|
|
-- Java objects, so the normal tagged membership
|
5232 |
|
|
-- expansion is not what we want).
|
5233 |
|
|
|
5234 |
|
|
if Tagged_Type_Expansion then
|
5235 |
|
|
|
5236 |
|
|
-- Note that we have to pass Original_Node, because
|
5237 |
|
|
-- the membership test might already have been
|
5238 |
|
|
-- rewritten by earlier parts of membership test.
|
5239 |
|
|
|
5240 |
|
|
Tagged_Membership
|
5241 |
|
|
(Original_Node (N), SCIL_Node, New_N);
|
5242 |
|
|
|
5243 |
|
|
-- Update decoration of relocated node referenced
|
5244 |
|
|
-- by the SCIL node.
|
5245 |
|
|
|
5246 |
|
|
if Generate_SCIL and then Present (SCIL_Node) then
|
5247 |
|
|
Set_SCIL_Node (New_N, SCIL_Node);
|
5248 |
|
|
end if;
|
5249 |
|
|
|
5250 |
|
|
Rewrite (N,
|
5251 |
|
|
Make_And_Then (Loc,
|
5252 |
|
|
Left_Opnd => Relocate_Node (N),
|
5253 |
|
|
Right_Opnd => New_N));
|
5254 |
|
|
|
5255 |
|
|
Analyze_And_Resolve (N, Restyp);
|
5256 |
|
|
end if;
|
5257 |
|
|
end if;
|
5258 |
|
|
end if;
|
5259 |
|
|
end;
|
5260 |
|
|
end if;
|
5261 |
|
|
end;
|
5262 |
|
|
end if;
|
5263 |
|
|
|
5264 |
|
|
-- At this point, we have done the processing required for the basic
|
5265 |
|
|
-- membership test, but not yet dealt with the predicate.
|
5266 |
|
|
|
5267 |
|
|
<<Leave>>
|
5268 |
|
|
|
5269 |
|
|
-- If a predicate is present, then we do the predicate test, but we
|
5270 |
|
|
-- most certainly want to omit this if we are within the predicate
|
5271 |
|
|
-- function itself, since otherwise we have an infinite recursion!
|
5272 |
|
|
|
5273 |
|
|
declare
|
5274 |
|
|
PFunc : constant Entity_Id := Predicate_Function (Rtyp);
|
5275 |
|
|
|
5276 |
|
|
begin
|
5277 |
|
|
if Present (PFunc)
|
5278 |
|
|
and then Current_Scope /= PFunc
|
5279 |
|
|
then
|
5280 |
|
|
Rewrite (N,
|
5281 |
|
|
Make_And_Then (Loc,
|
5282 |
|
|
Left_Opnd => Relocate_Node (N),
|
5283 |
|
|
Right_Opnd => Make_Predicate_Call (Rtyp, Lop)));
|
5284 |
|
|
|
5285 |
|
|
-- Analyze new expression, mark left operand as analyzed to
|
5286 |
|
|
-- avoid infinite recursion adding predicate calls. Similarly,
|
5287 |
|
|
-- suppress further range checks on the call.
|
5288 |
|
|
|
5289 |
|
|
Set_Analyzed (Left_Opnd (N));
|
5290 |
|
|
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
|
5291 |
|
|
|
5292 |
|
|
-- All done, skip attempt at compile time determination of result
|
5293 |
|
|
|
5294 |
|
|
return;
|
5295 |
|
|
end if;
|
5296 |
|
|
end;
|
5297 |
|
|
end Expand_N_In;
|
5298 |
|
|
|
5299 |
|
|
--------------------------------
|
5300 |
|
|
-- Expand_N_Indexed_Component --
|
5301 |
|
|
--------------------------------
|
5302 |
|
|
|
5303 |
|
|
procedure Expand_N_Indexed_Component (N : Node_Id) is
|
5304 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5305 |
|
|
Typ : constant Entity_Id := Etype (N);
|
5306 |
|
|
P : constant Node_Id := Prefix (N);
|
5307 |
|
|
T : constant Entity_Id := Etype (P);
|
5308 |
|
|
Atp : Entity_Id;
|
5309 |
|
|
|
5310 |
|
|
begin
|
5311 |
|
|
-- A special optimization, if we have an indexed component that is
|
5312 |
|
|
-- selecting from a slice, then we can eliminate the slice, since, for
|
5313 |
|
|
-- example, x (i .. j)(k) is identical to x(k). The only difference is
|
5314 |
|
|
-- the range check required by the slice. The range check for the slice
|
5315 |
|
|
-- itself has already been generated. The range check for the
|
5316 |
|
|
-- subscripting operation is ensured by converting the subject to
|
5317 |
|
|
-- the subtype of the slice.
|
5318 |
|
|
|
5319 |
|
|
-- This optimization not only generates better code, avoiding slice
|
5320 |
|
|
-- messing especially in the packed case, but more importantly bypasses
|
5321 |
|
|
-- some problems in handling this peculiar case, for example, the issue
|
5322 |
|
|
-- of dealing specially with object renamings.
|
5323 |
|
|
|
5324 |
|
|
if Nkind (P) = N_Slice then
|
5325 |
|
|
Rewrite (N,
|
5326 |
|
|
Make_Indexed_Component (Loc,
|
5327 |
|
|
Prefix => Prefix (P),
|
5328 |
|
|
Expressions => New_List (
|
5329 |
|
|
Convert_To
|
5330 |
|
|
(Etype (First_Index (Etype (P))),
|
5331 |
|
|
First (Expressions (N))))));
|
5332 |
|
|
Analyze_And_Resolve (N, Typ);
|
5333 |
|
|
return;
|
5334 |
|
|
end if;
|
5335 |
|
|
|
5336 |
|
|
-- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
|
5337 |
|
|
-- function, then additional actuals must be passed.
|
5338 |
|
|
|
5339 |
|
|
if Ada_Version >= Ada_2005
|
5340 |
|
|
and then Is_Build_In_Place_Function_Call (P)
|
5341 |
|
|
then
|
5342 |
|
|
Make_Build_In_Place_Call_In_Anonymous_Context (P);
|
5343 |
|
|
end if;
|
5344 |
|
|
|
5345 |
|
|
-- If the prefix is an access type, then we unconditionally rewrite if
|
5346 |
|
|
-- as an explicit dereference. This simplifies processing for several
|
5347 |
|
|
-- cases, including packed array cases and certain cases in which checks
|
5348 |
|
|
-- must be generated. We used to try to do this only when it was
|
5349 |
|
|
-- necessary, but it cleans up the code to do it all the time.
|
5350 |
|
|
|
5351 |
|
|
if Is_Access_Type (T) then
|
5352 |
|
|
Insert_Explicit_Dereference (P);
|
5353 |
|
|
Analyze_And_Resolve (P, Designated_Type (T));
|
5354 |
|
|
Atp := Designated_Type (T);
|
5355 |
|
|
else
|
5356 |
|
|
Atp := T;
|
5357 |
|
|
end if;
|
5358 |
|
|
|
5359 |
|
|
-- Generate index and validity checks
|
5360 |
|
|
|
5361 |
|
|
Generate_Index_Checks (N);
|
5362 |
|
|
|
5363 |
|
|
if Validity_Checks_On and then Validity_Check_Subscripts then
|
5364 |
|
|
Apply_Subscript_Validity_Checks (N);
|
5365 |
|
|
end if;
|
5366 |
|
|
|
5367 |
|
|
-- If selecting from an array with atomic components, and atomic sync
|
5368 |
|
|
-- is not suppressed for this array type, set atomic sync flag.
|
5369 |
|
|
|
5370 |
|
|
if (Has_Atomic_Components (Atp)
|
5371 |
|
|
and then not Atomic_Synchronization_Disabled (Atp))
|
5372 |
|
|
or else (Is_Atomic (Typ)
|
5373 |
|
|
and then not Atomic_Synchronization_Disabled (Typ))
|
5374 |
|
|
then
|
5375 |
|
|
Activate_Atomic_Synchronization (N);
|
5376 |
|
|
end if;
|
5377 |
|
|
|
5378 |
|
|
-- All done for the non-packed case
|
5379 |
|
|
|
5380 |
|
|
if not Is_Packed (Etype (Prefix (N))) then
|
5381 |
|
|
return;
|
5382 |
|
|
end if;
|
5383 |
|
|
|
5384 |
|
|
-- For packed arrays that are not bit-packed (i.e. the case of an array
|
5385 |
|
|
-- with one or more index types with a non-contiguous enumeration type),
|
5386 |
|
|
-- we can always use the normal packed element get circuit.
|
5387 |
|
|
|
5388 |
|
|
if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
|
5389 |
|
|
Expand_Packed_Element_Reference (N);
|
5390 |
|
|
return;
|
5391 |
|
|
end if;
|
5392 |
|
|
|
5393 |
|
|
-- For a reference to a component of a bit packed array, we have to
|
5394 |
|
|
-- convert it to a reference to the corresponding Packed_Array_Type.
|
5395 |
|
|
-- We only want to do this for simple references, and not for:
|
5396 |
|
|
|
5397 |
|
|
-- Left side of assignment, or prefix of left side of assignment, or
|
5398 |
|
|
-- prefix of the prefix, to handle packed arrays of packed arrays,
|
5399 |
|
|
-- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
|
5400 |
|
|
|
5401 |
|
|
-- Renaming objects in renaming associations
|
5402 |
|
|
-- This case is handled when a use of the renamed variable occurs
|
5403 |
|
|
|
5404 |
|
|
-- Actual parameters for a procedure call
|
5405 |
|
|
-- This case is handled in Exp_Ch6.Expand_Actuals
|
5406 |
|
|
|
5407 |
|
|
-- The second expression in a 'Read attribute reference
|
5408 |
|
|
|
5409 |
|
|
-- The prefix of an address or bit or size attribute reference
|
5410 |
|
|
|
5411 |
|
|
-- The following circuit detects these exceptions
|
5412 |
|
|
|
5413 |
|
|
declare
|
5414 |
|
|
Child : Node_Id := N;
|
5415 |
|
|
Parnt : Node_Id := Parent (N);
|
5416 |
|
|
|
5417 |
|
|
begin
|
5418 |
|
|
loop
|
5419 |
|
|
if Nkind (Parnt) = N_Unchecked_Expression then
|
5420 |
|
|
null;
|
5421 |
|
|
|
5422 |
|
|
elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
|
5423 |
|
|
N_Procedure_Call_Statement)
|
5424 |
|
|
or else (Nkind (Parnt) = N_Parameter_Association
|
5425 |
|
|
and then
|
5426 |
|
|
Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
|
5427 |
|
|
then
|
5428 |
|
|
return;
|
5429 |
|
|
|
5430 |
|
|
elsif Nkind (Parnt) = N_Attribute_Reference
|
5431 |
|
|
and then (Attribute_Name (Parnt) = Name_Address
|
5432 |
|
|
or else
|
5433 |
|
|
Attribute_Name (Parnt) = Name_Bit
|
5434 |
|
|
or else
|
5435 |
|
|
Attribute_Name (Parnt) = Name_Size)
|
5436 |
|
|
and then Prefix (Parnt) = Child
|
5437 |
|
|
then
|
5438 |
|
|
return;
|
5439 |
|
|
|
5440 |
|
|
elsif Nkind (Parnt) = N_Assignment_Statement
|
5441 |
|
|
and then Name (Parnt) = Child
|
5442 |
|
|
then
|
5443 |
|
|
return;
|
5444 |
|
|
|
5445 |
|
|
-- If the expression is an index of an indexed component, it must
|
5446 |
|
|
-- be expanded regardless of context.
|
5447 |
|
|
|
5448 |
|
|
elsif Nkind (Parnt) = N_Indexed_Component
|
5449 |
|
|
and then Child /= Prefix (Parnt)
|
5450 |
|
|
then
|
5451 |
|
|
Expand_Packed_Element_Reference (N);
|
5452 |
|
|
return;
|
5453 |
|
|
|
5454 |
|
|
elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
|
5455 |
|
|
and then Name (Parent (Parnt)) = Parnt
|
5456 |
|
|
then
|
5457 |
|
|
return;
|
5458 |
|
|
|
5459 |
|
|
elsif Nkind (Parnt) = N_Attribute_Reference
|
5460 |
|
|
and then Attribute_Name (Parnt) = Name_Read
|
5461 |
|
|
and then Next (First (Expressions (Parnt))) = Child
|
5462 |
|
|
then
|
5463 |
|
|
return;
|
5464 |
|
|
|
5465 |
|
|
elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
|
5466 |
|
|
and then Prefix (Parnt) = Child
|
5467 |
|
|
then
|
5468 |
|
|
null;
|
5469 |
|
|
|
5470 |
|
|
else
|
5471 |
|
|
Expand_Packed_Element_Reference (N);
|
5472 |
|
|
return;
|
5473 |
|
|
end if;
|
5474 |
|
|
|
5475 |
|
|
-- Keep looking up tree for unchecked expression, or if we are the
|
5476 |
|
|
-- prefix of a possible assignment left side.
|
5477 |
|
|
|
5478 |
|
|
Child := Parnt;
|
5479 |
|
|
Parnt := Parent (Child);
|
5480 |
|
|
end loop;
|
5481 |
|
|
end;
|
5482 |
|
|
end Expand_N_Indexed_Component;
|
5483 |
|
|
|
5484 |
|
|
---------------------
|
5485 |
|
|
-- Expand_N_Not_In --
|
5486 |
|
|
---------------------
|
5487 |
|
|
|
5488 |
|
|
-- Replace a not in b by not (a in b) so that the expansions for (a in b)
|
5489 |
|
|
-- can be done. This avoids needing to duplicate this expansion code.
|
5490 |
|
|
|
5491 |
|
|
procedure Expand_N_Not_In (N : Node_Id) is
|
5492 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5493 |
|
|
Typ : constant Entity_Id := Etype (N);
|
5494 |
|
|
Cfs : constant Boolean := Comes_From_Source (N);
|
5495 |
|
|
|
5496 |
|
|
begin
|
5497 |
|
|
Rewrite (N,
|
5498 |
|
|
Make_Op_Not (Loc,
|
5499 |
|
|
Right_Opnd =>
|
5500 |
|
|
Make_In (Loc,
|
5501 |
|
|
Left_Opnd => Left_Opnd (N),
|
5502 |
|
|
Right_Opnd => Right_Opnd (N))));
|
5503 |
|
|
|
5504 |
|
|
-- If this is a set membership, preserve list of alternatives
|
5505 |
|
|
|
5506 |
|
|
Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
|
5507 |
|
|
|
5508 |
|
|
-- We want this to appear as coming from source if original does (see
|
5509 |
|
|
-- transformations in Expand_N_In).
|
5510 |
|
|
|
5511 |
|
|
Set_Comes_From_Source (N, Cfs);
|
5512 |
|
|
Set_Comes_From_Source (Right_Opnd (N), Cfs);
|
5513 |
|
|
|
5514 |
|
|
-- Now analyze transformed node
|
5515 |
|
|
|
5516 |
|
|
Analyze_And_Resolve (N, Typ);
|
5517 |
|
|
end Expand_N_Not_In;
|
5518 |
|
|
|
5519 |
|
|
-------------------
|
5520 |
|
|
-- Expand_N_Null --
|
5521 |
|
|
-------------------
|
5522 |
|
|
|
5523 |
|
|
-- The only replacement required is for the case of a null of a type that
|
5524 |
|
|
-- is an access to protected subprogram, or a subtype thereof. We represent
|
5525 |
|
|
-- such access values as a record, and so we must replace the occurrence of
|
5526 |
|
|
-- null by the equivalent record (with a null address and a null pointer in
|
5527 |
|
|
-- it), so that the backend creates the proper value.
|
5528 |
|
|
|
5529 |
|
|
procedure Expand_N_Null (N : Node_Id) is
|
5530 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5531 |
|
|
Typ : constant Entity_Id := Base_Type (Etype (N));
|
5532 |
|
|
Agg : Node_Id;
|
5533 |
|
|
|
5534 |
|
|
begin
|
5535 |
|
|
if Is_Access_Protected_Subprogram_Type (Typ) then
|
5536 |
|
|
Agg :=
|
5537 |
|
|
Make_Aggregate (Loc,
|
5538 |
|
|
Expressions => New_List (
|
5539 |
|
|
New_Occurrence_Of (RTE (RE_Null_Address), Loc),
|
5540 |
|
|
Make_Null (Loc)));
|
5541 |
|
|
|
5542 |
|
|
Rewrite (N, Agg);
|
5543 |
|
|
Analyze_And_Resolve (N, Equivalent_Type (Typ));
|
5544 |
|
|
|
5545 |
|
|
-- For subsequent semantic analysis, the node must retain its type.
|
5546 |
|
|
-- Gigi in any case replaces this type by the corresponding record
|
5547 |
|
|
-- type before processing the node.
|
5548 |
|
|
|
5549 |
|
|
Set_Etype (N, Typ);
|
5550 |
|
|
end if;
|
5551 |
|
|
|
5552 |
|
|
exception
|
5553 |
|
|
when RE_Not_Available =>
|
5554 |
|
|
return;
|
5555 |
|
|
end Expand_N_Null;
|
5556 |
|
|
|
5557 |
|
|
---------------------
|
5558 |
|
|
-- Expand_N_Op_Abs --
|
5559 |
|
|
---------------------
|
5560 |
|
|
|
5561 |
|
|
procedure Expand_N_Op_Abs (N : Node_Id) is
|
5562 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5563 |
|
|
Expr : constant Node_Id := Right_Opnd (N);
|
5564 |
|
|
|
5565 |
|
|
begin
|
5566 |
|
|
Unary_Op_Validity_Checks (N);
|
5567 |
|
|
|
5568 |
|
|
-- Deal with software overflow checking
|
5569 |
|
|
|
5570 |
|
|
if not Backend_Overflow_Checks_On_Target
|
5571 |
|
|
and then Is_Signed_Integer_Type (Etype (N))
|
5572 |
|
|
and then Do_Overflow_Check (N)
|
5573 |
|
|
then
|
5574 |
|
|
-- The only case to worry about is when the argument is equal to the
|
5575 |
|
|
-- largest negative number, so what we do is to insert the check:
|
5576 |
|
|
|
5577 |
|
|
-- [constraint_error when Expr = typ'Base'First]
|
5578 |
|
|
|
5579 |
|
|
-- with the usual Duplicate_Subexpr use coding for expr
|
5580 |
|
|
|
5581 |
|
|
Insert_Action (N,
|
5582 |
|
|
Make_Raise_Constraint_Error (Loc,
|
5583 |
|
|
Condition =>
|
5584 |
|
|
Make_Op_Eq (Loc,
|
5585 |
|
|
Left_Opnd => Duplicate_Subexpr (Expr),
|
5586 |
|
|
Right_Opnd =>
|
5587 |
|
|
Make_Attribute_Reference (Loc,
|
5588 |
|
|
Prefix =>
|
5589 |
|
|
New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
|
5590 |
|
|
Attribute_Name => Name_First)),
|
5591 |
|
|
Reason => CE_Overflow_Check_Failed));
|
5592 |
|
|
end if;
|
5593 |
|
|
|
5594 |
|
|
-- Vax floating-point types case
|
5595 |
|
|
|
5596 |
|
|
if Vax_Float (Etype (N)) then
|
5597 |
|
|
Expand_Vax_Arith (N);
|
5598 |
|
|
end if;
|
5599 |
|
|
end Expand_N_Op_Abs;
|
5600 |
|
|
|
5601 |
|
|
---------------------
|
5602 |
|
|
-- Expand_N_Op_Add --
|
5603 |
|
|
---------------------
|
5604 |
|
|
|
5605 |
|
|
procedure Expand_N_Op_Add (N : Node_Id) is
|
5606 |
|
|
Typ : constant Entity_Id := Etype (N);
|
5607 |
|
|
|
5608 |
|
|
begin
|
5609 |
|
|
Binary_Op_Validity_Checks (N);
|
5610 |
|
|
|
5611 |
|
|
-- N + 0 = 0 + N = N for integer types
|
5612 |
|
|
|
5613 |
|
|
if Is_Integer_Type (Typ) then
|
5614 |
|
|
if Compile_Time_Known_Value (Right_Opnd (N))
|
5615 |
|
|
and then Expr_Value (Right_Opnd (N)) = Uint_0
|
5616 |
|
|
then
|
5617 |
|
|
Rewrite (N, Left_Opnd (N));
|
5618 |
|
|
return;
|
5619 |
|
|
|
5620 |
|
|
elsif Compile_Time_Known_Value (Left_Opnd (N))
|
5621 |
|
|
and then Expr_Value (Left_Opnd (N)) = Uint_0
|
5622 |
|
|
then
|
5623 |
|
|
Rewrite (N, Right_Opnd (N));
|
5624 |
|
|
return;
|
5625 |
|
|
end if;
|
5626 |
|
|
end if;
|
5627 |
|
|
|
5628 |
|
|
-- Arithmetic overflow checks for signed integer/fixed point types
|
5629 |
|
|
|
5630 |
|
|
if Is_Signed_Integer_Type (Typ)
|
5631 |
|
|
or else Is_Fixed_Point_Type (Typ)
|
5632 |
|
|
then
|
5633 |
|
|
Apply_Arithmetic_Overflow_Check (N);
|
5634 |
|
|
return;
|
5635 |
|
|
|
5636 |
|
|
-- Vax floating-point types case
|
5637 |
|
|
|
5638 |
|
|
elsif Vax_Float (Typ) then
|
5639 |
|
|
Expand_Vax_Arith (N);
|
5640 |
|
|
end if;
|
5641 |
|
|
end Expand_N_Op_Add;
|
5642 |
|
|
|
5643 |
|
|
---------------------
|
5644 |
|
|
-- Expand_N_Op_And --
|
5645 |
|
|
---------------------
|
5646 |
|
|
|
5647 |
|
|
procedure Expand_N_Op_And (N : Node_Id) is
|
5648 |
|
|
Typ : constant Entity_Id := Etype (N);
|
5649 |
|
|
|
5650 |
|
|
begin
|
5651 |
|
|
Binary_Op_Validity_Checks (N);
|
5652 |
|
|
|
5653 |
|
|
if Is_Array_Type (Etype (N)) then
|
5654 |
|
|
Expand_Boolean_Operator (N);
|
5655 |
|
|
|
5656 |
|
|
elsif Is_Boolean_Type (Etype (N)) then
|
5657 |
|
|
Adjust_Condition (Left_Opnd (N));
|
5658 |
|
|
Adjust_Condition (Right_Opnd (N));
|
5659 |
|
|
Set_Etype (N, Standard_Boolean);
|
5660 |
|
|
Adjust_Result_Type (N, Typ);
|
5661 |
|
|
|
5662 |
|
|
elsif Is_Intrinsic_Subprogram (Entity (N)) then
|
5663 |
|
|
Expand_Intrinsic_Call (N, Entity (N));
|
5664 |
|
|
|
5665 |
|
|
end if;
|
5666 |
|
|
end Expand_N_Op_And;
|
5667 |
|
|
|
5668 |
|
|
------------------------
|
5669 |
|
|
-- Expand_N_Op_Concat --
|
5670 |
|
|
------------------------
|
5671 |
|
|
|
5672 |
|
|
procedure Expand_N_Op_Concat (N : Node_Id) is
|
5673 |
|
|
Opnds : List_Id;
|
5674 |
|
|
-- List of operands to be concatenated
|
5675 |
|
|
|
5676 |
|
|
Cnode : Node_Id;
|
5677 |
|
|
-- Node which is to be replaced by the result of concatenating the nodes
|
5678 |
|
|
-- in the list Opnds.
|
5679 |
|
|
|
5680 |
|
|
begin
|
5681 |
|
|
-- Ensure validity of both operands
|
5682 |
|
|
|
5683 |
|
|
Binary_Op_Validity_Checks (N);
|
5684 |
|
|
|
5685 |
|
|
-- If we are the left operand of a concatenation higher up the tree,
|
5686 |
|
|
-- then do nothing for now, since we want to deal with a series of
|
5687 |
|
|
-- concatenations as a unit.
|
5688 |
|
|
|
5689 |
|
|
if Nkind (Parent (N)) = N_Op_Concat
|
5690 |
|
|
and then N = Left_Opnd (Parent (N))
|
5691 |
|
|
then
|
5692 |
|
|
return;
|
5693 |
|
|
end if;
|
5694 |
|
|
|
5695 |
|
|
-- We get here with a concatenation whose left operand may be a
|
5696 |
|
|
-- concatenation itself with a consistent type. We need to process
|
5697 |
|
|
-- these concatenation operands from left to right, which means
|
5698 |
|
|
-- from the deepest node in the tree to the highest node.
|
5699 |
|
|
|
5700 |
|
|
Cnode := N;
|
5701 |
|
|
while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
|
5702 |
|
|
Cnode := Left_Opnd (Cnode);
|
5703 |
|
|
end loop;
|
5704 |
|
|
|
5705 |
|
|
-- Now Cnode is the deepest concatenation, and its parents are the
|
5706 |
|
|
-- concatenation nodes above, so now we process bottom up, doing the
|
5707 |
|
|
-- operations. We gather a string that is as long as possible up to five
|
5708 |
|
|
-- operands.
|
5709 |
|
|
|
5710 |
|
|
-- The outer loop runs more than once if more than one concatenation
|
5711 |
|
|
-- type is involved.
|
5712 |
|
|
|
5713 |
|
|
Outer : loop
|
5714 |
|
|
Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
|
5715 |
|
|
Set_Parent (Opnds, N);
|
5716 |
|
|
|
5717 |
|
|
-- The inner loop gathers concatenation operands
|
5718 |
|
|
|
5719 |
|
|
Inner : while Cnode /= N
|
5720 |
|
|
and then Base_Type (Etype (Cnode)) =
|
5721 |
|
|
Base_Type (Etype (Parent (Cnode)))
|
5722 |
|
|
loop
|
5723 |
|
|
Cnode := Parent (Cnode);
|
5724 |
|
|
Append (Right_Opnd (Cnode), Opnds);
|
5725 |
|
|
end loop Inner;
|
5726 |
|
|
|
5727 |
|
|
Expand_Concatenate (Cnode, Opnds);
|
5728 |
|
|
|
5729 |
|
|
exit Outer when Cnode = N;
|
5730 |
|
|
Cnode := Parent (Cnode);
|
5731 |
|
|
end loop Outer;
|
5732 |
|
|
end Expand_N_Op_Concat;
|
5733 |
|
|
|
5734 |
|
|
------------------------
|
5735 |
|
|
-- Expand_N_Op_Divide --
|
5736 |
|
|
------------------------
|
5737 |
|
|
|
5738 |
|
|
procedure Expand_N_Op_Divide (N : Node_Id) is
|
5739 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5740 |
|
|
Lopnd : constant Node_Id := Left_Opnd (N);
|
5741 |
|
|
Ropnd : constant Node_Id := Right_Opnd (N);
|
5742 |
|
|
Ltyp : constant Entity_Id := Etype (Lopnd);
|
5743 |
|
|
Rtyp : constant Entity_Id := Etype (Ropnd);
|
5744 |
|
|
Typ : Entity_Id := Etype (N);
|
5745 |
|
|
Rknow : constant Boolean := Is_Integer_Type (Typ)
|
5746 |
|
|
and then
|
5747 |
|
|
Compile_Time_Known_Value (Ropnd);
|
5748 |
|
|
Rval : Uint;
|
5749 |
|
|
|
5750 |
|
|
begin
|
5751 |
|
|
Binary_Op_Validity_Checks (N);
|
5752 |
|
|
|
5753 |
|
|
if Rknow then
|
5754 |
|
|
Rval := Expr_Value (Ropnd);
|
5755 |
|
|
end if;
|
5756 |
|
|
|
5757 |
|
|
-- N / 1 = N for integer types
|
5758 |
|
|
|
5759 |
|
|
if Rknow and then Rval = Uint_1 then
|
5760 |
|
|
Rewrite (N, Lopnd);
|
5761 |
|
|
return;
|
5762 |
|
|
end if;
|
5763 |
|
|
|
5764 |
|
|
-- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
|
5765 |
|
|
-- Is_Power_Of_2_For_Shift is set means that we know that our left
|
5766 |
|
|
-- operand is an unsigned integer, as required for this to work.
|
5767 |
|
|
|
5768 |
|
|
if Nkind (Ropnd) = N_Op_Expon
|
5769 |
|
|
and then Is_Power_Of_2_For_Shift (Ropnd)
|
5770 |
|
|
|
5771 |
|
|
-- We cannot do this transformation in configurable run time mode if we
|
5772 |
|
|
-- have 64-bit integers and long shifts are not available.
|
5773 |
|
|
|
5774 |
|
|
and then
|
5775 |
|
|
(Esize (Ltyp) <= 32
|
5776 |
|
|
or else Support_Long_Shifts_On_Target)
|
5777 |
|
|
then
|
5778 |
|
|
Rewrite (N,
|
5779 |
|
|
Make_Op_Shift_Right (Loc,
|
5780 |
|
|
Left_Opnd => Lopnd,
|
5781 |
|
|
Right_Opnd =>
|
5782 |
|
|
Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
|
5783 |
|
|
Analyze_And_Resolve (N, Typ);
|
5784 |
|
|
return;
|
5785 |
|
|
end if;
|
5786 |
|
|
|
5787 |
|
|
-- Do required fixup of universal fixed operation
|
5788 |
|
|
|
5789 |
|
|
if Typ = Universal_Fixed then
|
5790 |
|
|
Fixup_Universal_Fixed_Operation (N);
|
5791 |
|
|
Typ := Etype (N);
|
5792 |
|
|
end if;
|
5793 |
|
|
|
5794 |
|
|
-- Divisions with fixed-point results
|
5795 |
|
|
|
5796 |
|
|
if Is_Fixed_Point_Type (Typ) then
|
5797 |
|
|
|
5798 |
|
|
-- No special processing if Treat_Fixed_As_Integer is set, since
|
5799 |
|
|
-- from a semantic point of view such operations are simply integer
|
5800 |
|
|
-- operations and will be treated that way.
|
5801 |
|
|
|
5802 |
|
|
if not Treat_Fixed_As_Integer (N) then
|
5803 |
|
|
if Is_Integer_Type (Rtyp) then
|
5804 |
|
|
Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
|
5805 |
|
|
else
|
5806 |
|
|
Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
|
5807 |
|
|
end if;
|
5808 |
|
|
end if;
|
5809 |
|
|
|
5810 |
|
|
-- Other cases of division of fixed-point operands. Again we exclude the
|
5811 |
|
|
-- case where Treat_Fixed_As_Integer is set.
|
5812 |
|
|
|
5813 |
|
|
elsif (Is_Fixed_Point_Type (Ltyp) or else
|
5814 |
|
|
Is_Fixed_Point_Type (Rtyp))
|
5815 |
|
|
and then not Treat_Fixed_As_Integer (N)
|
5816 |
|
|
then
|
5817 |
|
|
if Is_Integer_Type (Typ) then
|
5818 |
|
|
Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
|
5819 |
|
|
else
|
5820 |
|
|
pragma Assert (Is_Floating_Point_Type (Typ));
|
5821 |
|
|
Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
|
5822 |
|
|
end if;
|
5823 |
|
|
|
5824 |
|
|
-- Mixed-mode operations can appear in a non-static universal context,
|
5825 |
|
|
-- in which case the integer argument must be converted explicitly.
|
5826 |
|
|
|
5827 |
|
|
elsif Typ = Universal_Real
|
5828 |
|
|
and then Is_Integer_Type (Rtyp)
|
5829 |
|
|
then
|
5830 |
|
|
Rewrite (Ropnd,
|
5831 |
|
|
Convert_To (Universal_Real, Relocate_Node (Ropnd)));
|
5832 |
|
|
|
5833 |
|
|
Analyze_And_Resolve (Ropnd, Universal_Real);
|
5834 |
|
|
|
5835 |
|
|
elsif Typ = Universal_Real
|
5836 |
|
|
and then Is_Integer_Type (Ltyp)
|
5837 |
|
|
then
|
5838 |
|
|
Rewrite (Lopnd,
|
5839 |
|
|
Convert_To (Universal_Real, Relocate_Node (Lopnd)));
|
5840 |
|
|
|
5841 |
|
|
Analyze_And_Resolve (Lopnd, Universal_Real);
|
5842 |
|
|
|
5843 |
|
|
-- Non-fixed point cases, do integer zero divide and overflow checks
|
5844 |
|
|
|
5845 |
|
|
elsif Is_Integer_Type (Typ) then
|
5846 |
|
|
Apply_Divide_Check (N);
|
5847 |
|
|
|
5848 |
|
|
-- Deal with Vax_Float
|
5849 |
|
|
|
5850 |
|
|
elsif Vax_Float (Typ) then
|
5851 |
|
|
Expand_Vax_Arith (N);
|
5852 |
|
|
return;
|
5853 |
|
|
end if;
|
5854 |
|
|
end Expand_N_Op_Divide;
|
5855 |
|
|
|
5856 |
|
|
--------------------
|
5857 |
|
|
-- Expand_N_Op_Eq --
|
5858 |
|
|
--------------------
|
5859 |
|
|
|
5860 |
|
|
procedure Expand_N_Op_Eq (N : Node_Id) is
|
5861 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5862 |
|
|
Typ : constant Entity_Id := Etype (N);
|
5863 |
|
|
Lhs : constant Node_Id := Left_Opnd (N);
|
5864 |
|
|
Rhs : constant Node_Id := Right_Opnd (N);
|
5865 |
|
|
Bodies : constant List_Id := New_List;
|
5866 |
|
|
A_Typ : constant Entity_Id := Etype (Lhs);
|
5867 |
|
|
|
5868 |
|
|
Typl : Entity_Id := A_Typ;
|
5869 |
|
|
Op_Name : Entity_Id;
|
5870 |
|
|
Prim : Elmt_Id;
|
5871 |
|
|
|
5872 |
|
|
procedure Build_Equality_Call (Eq : Entity_Id);
|
5873 |
|
|
-- If a constructed equality exists for the type or for its parent,
|
5874 |
|
|
-- build and analyze call, adding conversions if the operation is
|
5875 |
|
|
-- inherited.
|
5876 |
|
|
|
5877 |
|
|
function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
|
5878 |
|
|
-- Determines whether a type has a subcomponent of an unconstrained
|
5879 |
|
|
-- Unchecked_Union subtype. Typ is a record type.
|
5880 |
|
|
|
5881 |
|
|
-------------------------
|
5882 |
|
|
-- Build_Equality_Call --
|
5883 |
|
|
-------------------------
|
5884 |
|
|
|
5885 |
|
|
procedure Build_Equality_Call (Eq : Entity_Id) is
|
5886 |
|
|
Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
|
5887 |
|
|
L_Exp : Node_Id := Relocate_Node (Lhs);
|
5888 |
|
|
R_Exp : Node_Id := Relocate_Node (Rhs);
|
5889 |
|
|
|
5890 |
|
|
begin
|
5891 |
|
|
if Base_Type (Op_Type) /= Base_Type (A_Typ)
|
5892 |
|
|
and then not Is_Class_Wide_Type (A_Typ)
|
5893 |
|
|
then
|
5894 |
|
|
L_Exp := OK_Convert_To (Op_Type, L_Exp);
|
5895 |
|
|
R_Exp := OK_Convert_To (Op_Type, R_Exp);
|
5896 |
|
|
end if;
|
5897 |
|
|
|
5898 |
|
|
-- If we have an Unchecked_Union, we need to add the inferred
|
5899 |
|
|
-- discriminant values as actuals in the function call. At this
|
5900 |
|
|
-- point, the expansion has determined that both operands have
|
5901 |
|
|
-- inferable discriminants.
|
5902 |
|
|
|
5903 |
|
|
if Is_Unchecked_Union (Op_Type) then
|
5904 |
|
|
declare
|
5905 |
|
|
Lhs_Type : constant Node_Id := Etype (L_Exp);
|
5906 |
|
|
Rhs_Type : constant Node_Id := Etype (R_Exp);
|
5907 |
|
|
Lhs_Discr_Val : Node_Id;
|
5908 |
|
|
Rhs_Discr_Val : Node_Id;
|
5909 |
|
|
|
5910 |
|
|
begin
|
5911 |
|
|
-- Per-object constrained selected components require special
|
5912 |
|
|
-- attention. If the enclosing scope of the component is an
|
5913 |
|
|
-- Unchecked_Union, we cannot reference its discriminants
|
5914 |
|
|
-- directly. This is why we use the two extra parameters of
|
5915 |
|
|
-- the equality function of the enclosing Unchecked_Union.
|
5916 |
|
|
|
5917 |
|
|
-- type UU_Type (Discr : Integer := 0) is
|
5918 |
|
|
-- . . .
|
5919 |
|
|
-- end record;
|
5920 |
|
|
-- pragma Unchecked_Union (UU_Type);
|
5921 |
|
|
|
5922 |
|
|
-- 1. Unchecked_Union enclosing record:
|
5923 |
|
|
|
5924 |
|
|
-- type Enclosing_UU_Type (Discr : Integer := 0) is record
|
5925 |
|
|
-- . . .
|
5926 |
|
|
-- Comp : UU_Type (Discr);
|
5927 |
|
|
-- . . .
|
5928 |
|
|
-- end Enclosing_UU_Type;
|
5929 |
|
|
-- pragma Unchecked_Union (Enclosing_UU_Type);
|
5930 |
|
|
|
5931 |
|
|
-- Obj1 : Enclosing_UU_Type;
|
5932 |
|
|
-- Obj2 : Enclosing_UU_Type (1);
|
5933 |
|
|
|
5934 |
|
|
-- [. . .] Obj1 = Obj2 [. . .]
|
5935 |
|
|
|
5936 |
|
|
-- Generated code:
|
5937 |
|
|
|
5938 |
|
|
-- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
|
5939 |
|
|
|
5940 |
|
|
-- A and B are the formal parameters of the equality function
|
5941 |
|
|
-- of Enclosing_UU_Type. The function always has two extra
|
5942 |
|
|
-- formals to capture the inferred discriminant values.
|
5943 |
|
|
|
5944 |
|
|
-- 2. Non-Unchecked_Union enclosing record:
|
5945 |
|
|
|
5946 |
|
|
-- type
|
5947 |
|
|
-- Enclosing_Non_UU_Type (Discr : Integer := 0)
|
5948 |
|
|
-- is record
|
5949 |
|
|
-- . . .
|
5950 |
|
|
-- Comp : UU_Type (Discr);
|
5951 |
|
|
-- . . .
|
5952 |
|
|
-- end Enclosing_Non_UU_Type;
|
5953 |
|
|
|
5954 |
|
|
-- Obj1 : Enclosing_Non_UU_Type;
|
5955 |
|
|
-- Obj2 : Enclosing_Non_UU_Type (1);
|
5956 |
|
|
|
5957 |
|
|
-- ... Obj1 = Obj2 ...
|
5958 |
|
|
|
5959 |
|
|
-- Generated code:
|
5960 |
|
|
|
5961 |
|
|
-- if not (uu_typeEQ (obj1.comp, obj2.comp,
|
5962 |
|
|
-- obj1.discr, obj2.discr)) then
|
5963 |
|
|
|
5964 |
|
|
-- In this case we can directly reference the discriminants of
|
5965 |
|
|
-- the enclosing record.
|
5966 |
|
|
|
5967 |
|
|
-- Lhs of equality
|
5968 |
|
|
|
5969 |
|
|
if Nkind (Lhs) = N_Selected_Component
|
5970 |
|
|
and then Has_Per_Object_Constraint
|
5971 |
|
|
(Entity (Selector_Name (Lhs)))
|
5972 |
|
|
then
|
5973 |
|
|
-- Enclosing record is an Unchecked_Union, use formal A
|
5974 |
|
|
|
5975 |
|
|
if Is_Unchecked_Union
|
5976 |
|
|
(Scope (Entity (Selector_Name (Lhs))))
|
5977 |
|
|
then
|
5978 |
|
|
Lhs_Discr_Val := Make_Identifier (Loc, Name_A);
|
5979 |
|
|
|
5980 |
|
|
-- Enclosing record is of a non-Unchecked_Union type, it is
|
5981 |
|
|
-- possible to reference the discriminant.
|
5982 |
|
|
|
5983 |
|
|
else
|
5984 |
|
|
Lhs_Discr_Val :=
|
5985 |
|
|
Make_Selected_Component (Loc,
|
5986 |
|
|
Prefix => Prefix (Lhs),
|
5987 |
|
|
Selector_Name =>
|
5988 |
|
|
New_Copy
|
5989 |
|
|
(Get_Discriminant_Value
|
5990 |
|
|
(First_Discriminant (Lhs_Type),
|
5991 |
|
|
Lhs_Type,
|
5992 |
|
|
Stored_Constraint (Lhs_Type))));
|
5993 |
|
|
end if;
|
5994 |
|
|
|
5995 |
|
|
-- Comment needed here ???
|
5996 |
|
|
|
5997 |
|
|
else
|
5998 |
|
|
-- Infer the discriminant value
|
5999 |
|
|
|
6000 |
|
|
Lhs_Discr_Val :=
|
6001 |
|
|
New_Copy
|
6002 |
|
|
(Get_Discriminant_Value
|
6003 |
|
|
(First_Discriminant (Lhs_Type),
|
6004 |
|
|
Lhs_Type,
|
6005 |
|
|
Stored_Constraint (Lhs_Type)));
|
6006 |
|
|
end if;
|
6007 |
|
|
|
6008 |
|
|
-- Rhs of equality
|
6009 |
|
|
|
6010 |
|
|
if Nkind (Rhs) = N_Selected_Component
|
6011 |
|
|
and then Has_Per_Object_Constraint
|
6012 |
|
|
(Entity (Selector_Name (Rhs)))
|
6013 |
|
|
then
|
6014 |
|
|
if Is_Unchecked_Union
|
6015 |
|
|
(Scope (Entity (Selector_Name (Rhs))))
|
6016 |
|
|
then
|
6017 |
|
|
Rhs_Discr_Val := Make_Identifier (Loc, Name_B);
|
6018 |
|
|
|
6019 |
|
|
else
|
6020 |
|
|
Rhs_Discr_Val :=
|
6021 |
|
|
Make_Selected_Component (Loc,
|
6022 |
|
|
Prefix => Prefix (Rhs),
|
6023 |
|
|
Selector_Name =>
|
6024 |
|
|
New_Copy (Get_Discriminant_Value (
|
6025 |
|
|
First_Discriminant (Rhs_Type),
|
6026 |
|
|
Rhs_Type,
|
6027 |
|
|
Stored_Constraint (Rhs_Type))));
|
6028 |
|
|
|
6029 |
|
|
end if;
|
6030 |
|
|
else
|
6031 |
|
|
Rhs_Discr_Val :=
|
6032 |
|
|
New_Copy (Get_Discriminant_Value (
|
6033 |
|
|
First_Discriminant (Rhs_Type),
|
6034 |
|
|
Rhs_Type,
|
6035 |
|
|
Stored_Constraint (Rhs_Type)));
|
6036 |
|
|
|
6037 |
|
|
end if;
|
6038 |
|
|
|
6039 |
|
|
Rewrite (N,
|
6040 |
|
|
Make_Function_Call (Loc,
|
6041 |
|
|
Name => New_Reference_To (Eq, Loc),
|
6042 |
|
|
Parameter_Associations => New_List (
|
6043 |
|
|
L_Exp,
|
6044 |
|
|
R_Exp,
|
6045 |
|
|
Lhs_Discr_Val,
|
6046 |
|
|
Rhs_Discr_Val)));
|
6047 |
|
|
end;
|
6048 |
|
|
|
6049 |
|
|
-- Normal case, not an unchecked union
|
6050 |
|
|
|
6051 |
|
|
else
|
6052 |
|
|
Rewrite (N,
|
6053 |
|
|
Make_Function_Call (Loc,
|
6054 |
|
|
Name => New_Reference_To (Eq, Loc),
|
6055 |
|
|
Parameter_Associations => New_List (L_Exp, R_Exp)));
|
6056 |
|
|
end if;
|
6057 |
|
|
|
6058 |
|
|
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
|
6059 |
|
|
end Build_Equality_Call;
|
6060 |
|
|
|
6061 |
|
|
------------------------------------
|
6062 |
|
|
-- Has_Unconstrained_UU_Component --
|
6063 |
|
|
------------------------------------
|
6064 |
|
|
|
6065 |
|
|
function Has_Unconstrained_UU_Component
|
6066 |
|
|
(Typ : Node_Id) return Boolean
|
6067 |
|
|
is
|
6068 |
|
|
Tdef : constant Node_Id :=
|
6069 |
|
|
Type_Definition (Declaration_Node (Base_Type (Typ)));
|
6070 |
|
|
Clist : Node_Id;
|
6071 |
|
|
Vpart : Node_Id;
|
6072 |
|
|
|
6073 |
|
|
function Component_Is_Unconstrained_UU
|
6074 |
|
|
(Comp : Node_Id) return Boolean;
|
6075 |
|
|
-- Determines whether the subtype of the component is an
|
6076 |
|
|
-- unconstrained Unchecked_Union.
|
6077 |
|
|
|
6078 |
|
|
function Variant_Is_Unconstrained_UU
|
6079 |
|
|
(Variant : Node_Id) return Boolean;
|
6080 |
|
|
-- Determines whether a component of the variant has an unconstrained
|
6081 |
|
|
-- Unchecked_Union subtype.
|
6082 |
|
|
|
6083 |
|
|
-----------------------------------
|
6084 |
|
|
-- Component_Is_Unconstrained_UU --
|
6085 |
|
|
-----------------------------------
|
6086 |
|
|
|
6087 |
|
|
function Component_Is_Unconstrained_UU
|
6088 |
|
|
(Comp : Node_Id) return Boolean
|
6089 |
|
|
is
|
6090 |
|
|
begin
|
6091 |
|
|
if Nkind (Comp) /= N_Component_Declaration then
|
6092 |
|
|
return False;
|
6093 |
|
|
end if;
|
6094 |
|
|
|
6095 |
|
|
declare
|
6096 |
|
|
Sindic : constant Node_Id :=
|
6097 |
|
|
Subtype_Indication (Component_Definition (Comp));
|
6098 |
|
|
|
6099 |
|
|
begin
|
6100 |
|
|
-- Unconstrained nominal type. In the case of a constraint
|
6101 |
|
|
-- present, the node kind would have been N_Subtype_Indication.
|
6102 |
|
|
|
6103 |
|
|
if Nkind (Sindic) = N_Identifier then
|
6104 |
|
|
return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
|
6105 |
|
|
end if;
|
6106 |
|
|
|
6107 |
|
|
return False;
|
6108 |
|
|
end;
|
6109 |
|
|
end Component_Is_Unconstrained_UU;
|
6110 |
|
|
|
6111 |
|
|
---------------------------------
|
6112 |
|
|
-- Variant_Is_Unconstrained_UU --
|
6113 |
|
|
---------------------------------
|
6114 |
|
|
|
6115 |
|
|
function Variant_Is_Unconstrained_UU
|
6116 |
|
|
(Variant : Node_Id) return Boolean
|
6117 |
|
|
is
|
6118 |
|
|
Clist : constant Node_Id := Component_List (Variant);
|
6119 |
|
|
|
6120 |
|
|
begin
|
6121 |
|
|
if Is_Empty_List (Component_Items (Clist)) then
|
6122 |
|
|
return False;
|
6123 |
|
|
end if;
|
6124 |
|
|
|
6125 |
|
|
-- We only need to test one component
|
6126 |
|
|
|
6127 |
|
|
declare
|
6128 |
|
|
Comp : Node_Id := First (Component_Items (Clist));
|
6129 |
|
|
|
6130 |
|
|
begin
|
6131 |
|
|
while Present (Comp) loop
|
6132 |
|
|
if Component_Is_Unconstrained_UU (Comp) then
|
6133 |
|
|
return True;
|
6134 |
|
|
end if;
|
6135 |
|
|
|
6136 |
|
|
Next (Comp);
|
6137 |
|
|
end loop;
|
6138 |
|
|
end;
|
6139 |
|
|
|
6140 |
|
|
-- None of the components withing the variant were of
|
6141 |
|
|
-- unconstrained Unchecked_Union type.
|
6142 |
|
|
|
6143 |
|
|
return False;
|
6144 |
|
|
end Variant_Is_Unconstrained_UU;
|
6145 |
|
|
|
6146 |
|
|
-- Start of processing for Has_Unconstrained_UU_Component
|
6147 |
|
|
|
6148 |
|
|
begin
|
6149 |
|
|
if Null_Present (Tdef) then
|
6150 |
|
|
return False;
|
6151 |
|
|
end if;
|
6152 |
|
|
|
6153 |
|
|
Clist := Component_List (Tdef);
|
6154 |
|
|
Vpart := Variant_Part (Clist);
|
6155 |
|
|
|
6156 |
|
|
-- Inspect available components
|
6157 |
|
|
|
6158 |
|
|
if Present (Component_Items (Clist)) then
|
6159 |
|
|
declare
|
6160 |
|
|
Comp : Node_Id := First (Component_Items (Clist));
|
6161 |
|
|
|
6162 |
|
|
begin
|
6163 |
|
|
while Present (Comp) loop
|
6164 |
|
|
|
6165 |
|
|
-- One component is sufficient
|
6166 |
|
|
|
6167 |
|
|
if Component_Is_Unconstrained_UU (Comp) then
|
6168 |
|
|
return True;
|
6169 |
|
|
end if;
|
6170 |
|
|
|
6171 |
|
|
Next (Comp);
|
6172 |
|
|
end loop;
|
6173 |
|
|
end;
|
6174 |
|
|
end if;
|
6175 |
|
|
|
6176 |
|
|
-- Inspect available components withing variants
|
6177 |
|
|
|
6178 |
|
|
if Present (Vpart) then
|
6179 |
|
|
declare
|
6180 |
|
|
Variant : Node_Id := First (Variants (Vpart));
|
6181 |
|
|
|
6182 |
|
|
begin
|
6183 |
|
|
while Present (Variant) loop
|
6184 |
|
|
|
6185 |
|
|
-- One component within a variant is sufficient
|
6186 |
|
|
|
6187 |
|
|
if Variant_Is_Unconstrained_UU (Variant) then
|
6188 |
|
|
return True;
|
6189 |
|
|
end if;
|
6190 |
|
|
|
6191 |
|
|
Next (Variant);
|
6192 |
|
|
end loop;
|
6193 |
|
|
end;
|
6194 |
|
|
end if;
|
6195 |
|
|
|
6196 |
|
|
-- Neither the available components, nor the components inside the
|
6197 |
|
|
-- variant parts were of an unconstrained Unchecked_Union subtype.
|
6198 |
|
|
|
6199 |
|
|
return False;
|
6200 |
|
|
end Has_Unconstrained_UU_Component;
|
6201 |
|
|
|
6202 |
|
|
-- Start of processing for Expand_N_Op_Eq
|
6203 |
|
|
|
6204 |
|
|
begin
|
6205 |
|
|
Binary_Op_Validity_Checks (N);
|
6206 |
|
|
|
6207 |
|
|
if Ekind (Typl) = E_Private_Type then
|
6208 |
|
|
Typl := Underlying_Type (Typl);
|
6209 |
|
|
elsif Ekind (Typl) = E_Private_Subtype then
|
6210 |
|
|
Typl := Underlying_Type (Base_Type (Typl));
|
6211 |
|
|
else
|
6212 |
|
|
null;
|
6213 |
|
|
end if;
|
6214 |
|
|
|
6215 |
|
|
-- It may happen in error situations that the underlying type is not
|
6216 |
|
|
-- set. The error will be detected later, here we just defend the
|
6217 |
|
|
-- expander code.
|
6218 |
|
|
|
6219 |
|
|
if No (Typl) then
|
6220 |
|
|
return;
|
6221 |
|
|
end if;
|
6222 |
|
|
|
6223 |
|
|
Typl := Base_Type (Typl);
|
6224 |
|
|
|
6225 |
|
|
-- Boolean types (requiring handling of non-standard case)
|
6226 |
|
|
|
6227 |
|
|
if Is_Boolean_Type (Typl) then
|
6228 |
|
|
Adjust_Condition (Left_Opnd (N));
|
6229 |
|
|
Adjust_Condition (Right_Opnd (N));
|
6230 |
|
|
Set_Etype (N, Standard_Boolean);
|
6231 |
|
|
Adjust_Result_Type (N, Typ);
|
6232 |
|
|
|
6233 |
|
|
-- Array types
|
6234 |
|
|
|
6235 |
|
|
elsif Is_Array_Type (Typl) then
|
6236 |
|
|
|
6237 |
|
|
-- If we are doing full validity checking, and it is possible for the
|
6238 |
|
|
-- array elements to be invalid then expand out array comparisons to
|
6239 |
|
|
-- make sure that we check the array elements.
|
6240 |
|
|
|
6241 |
|
|
if Validity_Check_Operands
|
6242 |
|
|
and then not Is_Known_Valid (Component_Type (Typl))
|
6243 |
|
|
then
|
6244 |
|
|
declare
|
6245 |
|
|
Save_Force_Validity_Checks : constant Boolean :=
|
6246 |
|
|
Force_Validity_Checks;
|
6247 |
|
|
begin
|
6248 |
|
|
Force_Validity_Checks := True;
|
6249 |
|
|
Rewrite (N,
|
6250 |
|
|
Expand_Array_Equality
|
6251 |
|
|
(N,
|
6252 |
|
|
Relocate_Node (Lhs),
|
6253 |
|
|
Relocate_Node (Rhs),
|
6254 |
|
|
Bodies,
|
6255 |
|
|
Typl));
|
6256 |
|
|
Insert_Actions (N, Bodies);
|
6257 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
6258 |
|
|
Force_Validity_Checks := Save_Force_Validity_Checks;
|
6259 |
|
|
end;
|
6260 |
|
|
|
6261 |
|
|
-- Packed case where both operands are known aligned
|
6262 |
|
|
|
6263 |
|
|
elsif Is_Bit_Packed_Array (Typl)
|
6264 |
|
|
and then not Is_Possibly_Unaligned_Object (Lhs)
|
6265 |
|
|
and then not Is_Possibly_Unaligned_Object (Rhs)
|
6266 |
|
|
then
|
6267 |
|
|
Expand_Packed_Eq (N);
|
6268 |
|
|
|
6269 |
|
|
-- Where the component type is elementary we can use a block bit
|
6270 |
|
|
-- comparison (if supported on the target) exception in the case
|
6271 |
|
|
-- of floating-point (negative zero issues require element by
|
6272 |
|
|
-- element comparison), and atomic types (where we must be sure
|
6273 |
|
|
-- to load elements independently) and possibly unaligned arrays.
|
6274 |
|
|
|
6275 |
|
|
elsif Is_Elementary_Type (Component_Type (Typl))
|
6276 |
|
|
and then not Is_Floating_Point_Type (Component_Type (Typl))
|
6277 |
|
|
and then not Is_Atomic (Component_Type (Typl))
|
6278 |
|
|
and then not Is_Possibly_Unaligned_Object (Lhs)
|
6279 |
|
|
and then not Is_Possibly_Unaligned_Object (Rhs)
|
6280 |
|
|
and then Support_Composite_Compare_On_Target
|
6281 |
|
|
then
|
6282 |
|
|
null;
|
6283 |
|
|
|
6284 |
|
|
-- For composite and floating-point cases, expand equality loop to
|
6285 |
|
|
-- make sure of using proper comparisons for tagged types, and
|
6286 |
|
|
-- correctly handling the floating-point case.
|
6287 |
|
|
|
6288 |
|
|
else
|
6289 |
|
|
Rewrite (N,
|
6290 |
|
|
Expand_Array_Equality
|
6291 |
|
|
(N,
|
6292 |
|
|
Relocate_Node (Lhs),
|
6293 |
|
|
Relocate_Node (Rhs),
|
6294 |
|
|
Bodies,
|
6295 |
|
|
Typl));
|
6296 |
|
|
Insert_Actions (N, Bodies, Suppress => All_Checks);
|
6297 |
|
|
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
|
6298 |
|
|
end if;
|
6299 |
|
|
|
6300 |
|
|
-- Record Types
|
6301 |
|
|
|
6302 |
|
|
elsif Is_Record_Type (Typl) then
|
6303 |
|
|
|
6304 |
|
|
-- For tagged types, use the primitive "="
|
6305 |
|
|
|
6306 |
|
|
if Is_Tagged_Type (Typl) then
|
6307 |
|
|
|
6308 |
|
|
-- No need to do anything else compiling under restriction
|
6309 |
|
|
-- No_Dispatching_Calls. During the semantic analysis we
|
6310 |
|
|
-- already notified such violation.
|
6311 |
|
|
|
6312 |
|
|
if Restriction_Active (No_Dispatching_Calls) then
|
6313 |
|
|
return;
|
6314 |
|
|
end if;
|
6315 |
|
|
|
6316 |
|
|
-- If this is derived from an untagged private type completed with
|
6317 |
|
|
-- a tagged type, it does not have a full view, so we use the
|
6318 |
|
|
-- primitive operations of the private type. This check should no
|
6319 |
|
|
-- longer be necessary when these types get their full views???
|
6320 |
|
|
|
6321 |
|
|
if Is_Private_Type (A_Typ)
|
6322 |
|
|
and then not Is_Tagged_Type (A_Typ)
|
6323 |
|
|
and then Is_Derived_Type (A_Typ)
|
6324 |
|
|
and then No (Full_View (A_Typ))
|
6325 |
|
|
then
|
6326 |
|
|
-- Search for equality operation, checking that the operands
|
6327 |
|
|
-- have the same type. Note that we must find a matching entry,
|
6328 |
|
|
-- or something is very wrong!
|
6329 |
|
|
|
6330 |
|
|
Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
|
6331 |
|
|
|
6332 |
|
|
while Present (Prim) loop
|
6333 |
|
|
exit when Chars (Node (Prim)) = Name_Op_Eq
|
6334 |
|
|
and then Etype (First_Formal (Node (Prim))) =
|
6335 |
|
|
Etype (Next_Formal (First_Formal (Node (Prim))))
|
6336 |
|
|
and then
|
6337 |
|
|
Base_Type (Etype (Node (Prim))) = Standard_Boolean;
|
6338 |
|
|
|
6339 |
|
|
Next_Elmt (Prim);
|
6340 |
|
|
end loop;
|
6341 |
|
|
|
6342 |
|
|
pragma Assert (Present (Prim));
|
6343 |
|
|
Op_Name := Node (Prim);
|
6344 |
|
|
|
6345 |
|
|
-- Find the type's predefined equality or an overriding
|
6346 |
|
|
-- user- defined equality. The reason for not simply calling
|
6347 |
|
|
-- Find_Prim_Op here is that there may be a user-defined
|
6348 |
|
|
-- overloaded equality op that precedes the equality that we want,
|
6349 |
|
|
-- so we have to explicitly search (e.g., there could be an
|
6350 |
|
|
-- equality with two different parameter types).
|
6351 |
|
|
|
6352 |
|
|
else
|
6353 |
|
|
if Is_Class_Wide_Type (Typl) then
|
6354 |
|
|
Typl := Root_Type (Typl);
|
6355 |
|
|
end if;
|
6356 |
|
|
|
6357 |
|
|
Prim := First_Elmt (Primitive_Operations (Typl));
|
6358 |
|
|
while Present (Prim) loop
|
6359 |
|
|
exit when Chars (Node (Prim)) = Name_Op_Eq
|
6360 |
|
|
and then Etype (First_Formal (Node (Prim))) =
|
6361 |
|
|
Etype (Next_Formal (First_Formal (Node (Prim))))
|
6362 |
|
|
and then
|
6363 |
|
|
Base_Type (Etype (Node (Prim))) = Standard_Boolean;
|
6364 |
|
|
|
6365 |
|
|
Next_Elmt (Prim);
|
6366 |
|
|
end loop;
|
6367 |
|
|
|
6368 |
|
|
pragma Assert (Present (Prim));
|
6369 |
|
|
Op_Name := Node (Prim);
|
6370 |
|
|
end if;
|
6371 |
|
|
|
6372 |
|
|
Build_Equality_Call (Op_Name);
|
6373 |
|
|
|
6374 |
|
|
-- Ada 2005 (AI-216): Program_Error is raised when evaluating the
|
6375 |
|
|
-- predefined equality operator for a type which has a subcomponent
|
6376 |
|
|
-- of an Unchecked_Union type whose nominal subtype is unconstrained.
|
6377 |
|
|
|
6378 |
|
|
elsif Has_Unconstrained_UU_Component (Typl) then
|
6379 |
|
|
Insert_Action (N,
|
6380 |
|
|
Make_Raise_Program_Error (Loc,
|
6381 |
|
|
Reason => PE_Unchecked_Union_Restriction));
|
6382 |
|
|
|
6383 |
|
|
-- Prevent Gigi from generating incorrect code by rewriting the
|
6384 |
|
|
-- equality as a standard False.
|
6385 |
|
|
|
6386 |
|
|
Rewrite (N,
|
6387 |
|
|
New_Occurrence_Of (Standard_False, Loc));
|
6388 |
|
|
|
6389 |
|
|
elsif Is_Unchecked_Union (Typl) then
|
6390 |
|
|
|
6391 |
|
|
-- If we can infer the discriminants of the operands, we make a
|
6392 |
|
|
-- call to the TSS equality function.
|
6393 |
|
|
|
6394 |
|
|
if Has_Inferable_Discriminants (Lhs)
|
6395 |
|
|
and then
|
6396 |
|
|
Has_Inferable_Discriminants (Rhs)
|
6397 |
|
|
then
|
6398 |
|
|
Build_Equality_Call
|
6399 |
|
|
(TSS (Root_Type (Typl), TSS_Composite_Equality));
|
6400 |
|
|
|
6401 |
|
|
else
|
6402 |
|
|
-- Ada 2005 (AI-216): Program_Error is raised when evaluating
|
6403 |
|
|
-- the predefined equality operator for an Unchecked_Union type
|
6404 |
|
|
-- if either of the operands lack inferable discriminants.
|
6405 |
|
|
|
6406 |
|
|
Insert_Action (N,
|
6407 |
|
|
Make_Raise_Program_Error (Loc,
|
6408 |
|
|
Reason => PE_Unchecked_Union_Restriction));
|
6409 |
|
|
|
6410 |
|
|
-- Prevent Gigi from generating incorrect code by rewriting
|
6411 |
|
|
-- the equality as a standard False.
|
6412 |
|
|
|
6413 |
|
|
Rewrite (N,
|
6414 |
|
|
New_Occurrence_Of (Standard_False, Loc));
|
6415 |
|
|
|
6416 |
|
|
end if;
|
6417 |
|
|
|
6418 |
|
|
-- If a type support function is present (for complex cases), use it
|
6419 |
|
|
|
6420 |
|
|
elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
|
6421 |
|
|
Build_Equality_Call
|
6422 |
|
|
(TSS (Root_Type (Typl), TSS_Composite_Equality));
|
6423 |
|
|
|
6424 |
|
|
-- Otherwise expand the component by component equality. Note that
|
6425 |
|
|
-- we never use block-bit comparisons for records, because of the
|
6426 |
|
|
-- problems with gaps. The backend will often be able to recombine
|
6427 |
|
|
-- the separate comparisons that we generate here.
|
6428 |
|
|
|
6429 |
|
|
else
|
6430 |
|
|
Remove_Side_Effects (Lhs);
|
6431 |
|
|
Remove_Side_Effects (Rhs);
|
6432 |
|
|
Rewrite (N,
|
6433 |
|
|
Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
|
6434 |
|
|
|
6435 |
|
|
Insert_Actions (N, Bodies, Suppress => All_Checks);
|
6436 |
|
|
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
|
6437 |
|
|
end if;
|
6438 |
|
|
end if;
|
6439 |
|
|
|
6440 |
|
|
-- Test if result is known at compile time
|
6441 |
|
|
|
6442 |
|
|
Rewrite_Comparison (N);
|
6443 |
|
|
|
6444 |
|
|
-- If we still have comparison for Vax_Float, process it
|
6445 |
|
|
|
6446 |
|
|
if Vax_Float (Typl) and then Nkind (N) in N_Op_Compare then
|
6447 |
|
|
Expand_Vax_Comparison (N);
|
6448 |
|
|
return;
|
6449 |
|
|
end if;
|
6450 |
|
|
|
6451 |
|
|
Optimize_Length_Comparison (N);
|
6452 |
|
|
end Expand_N_Op_Eq;
|
6453 |
|
|
|
6454 |
|
|
-----------------------
|
6455 |
|
|
-- Expand_N_Op_Expon --
|
6456 |
|
|
-----------------------
|
6457 |
|
|
|
6458 |
|
|
procedure Expand_N_Op_Expon (N : Node_Id) is
|
6459 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6460 |
|
|
Typ : constant Entity_Id := Etype (N);
|
6461 |
|
|
Rtyp : constant Entity_Id := Root_Type (Typ);
|
6462 |
|
|
Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
|
6463 |
|
|
Bastyp : constant Node_Id := Etype (Base);
|
6464 |
|
|
Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
|
6465 |
|
|
Exptyp : constant Entity_Id := Etype (Exp);
|
6466 |
|
|
Ovflo : constant Boolean := Do_Overflow_Check (N);
|
6467 |
|
|
Expv : Uint;
|
6468 |
|
|
Xnode : Node_Id;
|
6469 |
|
|
Temp : Node_Id;
|
6470 |
|
|
Rent : RE_Id;
|
6471 |
|
|
Ent : Entity_Id;
|
6472 |
|
|
Etyp : Entity_Id;
|
6473 |
|
|
|
6474 |
|
|
begin
|
6475 |
|
|
Binary_Op_Validity_Checks (N);
|
6476 |
|
|
|
6477 |
|
|
-- CodePeer and GNATprove want to see the unexpanded N_Op_Expon node
|
6478 |
|
|
|
6479 |
|
|
if CodePeer_Mode or Alfa_Mode then
|
6480 |
|
|
return;
|
6481 |
|
|
end if;
|
6482 |
|
|
|
6483 |
|
|
-- If either operand is of a private type, then we have the use of an
|
6484 |
|
|
-- intrinsic operator, and we get rid of the privateness, by using root
|
6485 |
|
|
-- types of underlying types for the actual operation. Otherwise the
|
6486 |
|
|
-- private types will cause trouble if we expand multiplications or
|
6487 |
|
|
-- shifts etc. We also do this transformation if the result type is
|
6488 |
|
|
-- different from the base type.
|
6489 |
|
|
|
6490 |
|
|
if Is_Private_Type (Etype (Base))
|
6491 |
|
|
or else Is_Private_Type (Typ)
|
6492 |
|
|
or else Is_Private_Type (Exptyp)
|
6493 |
|
|
or else Rtyp /= Root_Type (Bastyp)
|
6494 |
|
|
then
|
6495 |
|
|
declare
|
6496 |
|
|
Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
|
6497 |
|
|
Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
|
6498 |
|
|
|
6499 |
|
|
begin
|
6500 |
|
|
Rewrite (N,
|
6501 |
|
|
Unchecked_Convert_To (Typ,
|
6502 |
|
|
Make_Op_Expon (Loc,
|
6503 |
|
|
Left_Opnd => Unchecked_Convert_To (Bt, Base),
|
6504 |
|
|
Right_Opnd => Unchecked_Convert_To (Et, Exp))));
|
6505 |
|
|
Analyze_And_Resolve (N, Typ);
|
6506 |
|
|
return;
|
6507 |
|
|
end;
|
6508 |
|
|
end if;
|
6509 |
|
|
|
6510 |
|
|
-- Test for case of known right argument
|
6511 |
|
|
|
6512 |
|
|
if Compile_Time_Known_Value (Exp) then
|
6513 |
|
|
Expv := Expr_Value (Exp);
|
6514 |
|
|
|
6515 |
|
|
-- We only fold small non-negative exponents. You might think we
|
6516 |
|
|
-- could fold small negative exponents for the real case, but we
|
6517 |
|
|
-- can't because we are required to raise Constraint_Error for
|
6518 |
|
|
-- the case of 0.0 ** (negative) even if Machine_Overflows = False.
|
6519 |
|
|
-- See ACVC test C4A012B.
|
6520 |
|
|
|
6521 |
|
|
if Expv >= 0 and then Expv <= 4 then
|
6522 |
|
|
|
6523 |
|
|
-- X ** 0 = 1 (or 1.0)
|
6524 |
|
|
|
6525 |
|
|
if Expv = 0 then
|
6526 |
|
|
|
6527 |
|
|
-- Call Remove_Side_Effects to ensure that any side effects
|
6528 |
|
|
-- in the ignored left operand (in particular function calls
|
6529 |
|
|
-- to user defined functions) are properly executed.
|
6530 |
|
|
|
6531 |
|
|
Remove_Side_Effects (Base);
|
6532 |
|
|
|
6533 |
|
|
if Ekind (Typ) in Integer_Kind then
|
6534 |
|
|
Xnode := Make_Integer_Literal (Loc, Intval => 1);
|
6535 |
|
|
else
|
6536 |
|
|
Xnode := Make_Real_Literal (Loc, Ureal_1);
|
6537 |
|
|
end if;
|
6538 |
|
|
|
6539 |
|
|
-- X ** 1 = X
|
6540 |
|
|
|
6541 |
|
|
elsif Expv = 1 then
|
6542 |
|
|
Xnode := Base;
|
6543 |
|
|
|
6544 |
|
|
-- X ** 2 = X * X
|
6545 |
|
|
|
6546 |
|
|
elsif Expv = 2 then
|
6547 |
|
|
Xnode :=
|
6548 |
|
|
Make_Op_Multiply (Loc,
|
6549 |
|
|
Left_Opnd => Duplicate_Subexpr (Base),
|
6550 |
|
|
Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
|
6551 |
|
|
|
6552 |
|
|
-- X ** 3 = X * X * X
|
6553 |
|
|
|
6554 |
|
|
elsif Expv = 3 then
|
6555 |
|
|
Xnode :=
|
6556 |
|
|
Make_Op_Multiply (Loc,
|
6557 |
|
|
Left_Opnd =>
|
6558 |
|
|
Make_Op_Multiply (Loc,
|
6559 |
|
|
Left_Opnd => Duplicate_Subexpr (Base),
|
6560 |
|
|
Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
|
6561 |
|
|
Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
|
6562 |
|
|
|
6563 |
|
|
-- X ** 4 ->
|
6564 |
|
|
-- En : constant base'type := base * base;
|
6565 |
|
|
-- ...
|
6566 |
|
|
-- En * En
|
6567 |
|
|
|
6568 |
|
|
else -- Expv = 4
|
6569 |
|
|
Temp := Make_Temporary (Loc, 'E', Base);
|
6570 |
|
|
|
6571 |
|
|
Insert_Actions (N, New_List (
|
6572 |
|
|
Make_Object_Declaration (Loc,
|
6573 |
|
|
Defining_Identifier => Temp,
|
6574 |
|
|
Constant_Present => True,
|
6575 |
|
|
Object_Definition => New_Reference_To (Typ, Loc),
|
6576 |
|
|
Expression =>
|
6577 |
|
|
Make_Op_Multiply (Loc,
|
6578 |
|
|
Left_Opnd => Duplicate_Subexpr (Base),
|
6579 |
|
|
Right_Opnd => Duplicate_Subexpr_No_Checks (Base)))));
|
6580 |
|
|
|
6581 |
|
|
Xnode :=
|
6582 |
|
|
Make_Op_Multiply (Loc,
|
6583 |
|
|
Left_Opnd => New_Reference_To (Temp, Loc),
|
6584 |
|
|
Right_Opnd => New_Reference_To (Temp, Loc));
|
6585 |
|
|
end if;
|
6586 |
|
|
|
6587 |
|
|
Rewrite (N, Xnode);
|
6588 |
|
|
Analyze_And_Resolve (N, Typ);
|
6589 |
|
|
return;
|
6590 |
|
|
end if;
|
6591 |
|
|
end if;
|
6592 |
|
|
|
6593 |
|
|
-- Case of (2 ** expression) appearing as an argument of an integer
|
6594 |
|
|
-- multiplication, or as the right argument of a division of a non-
|
6595 |
|
|
-- negative integer. In such cases we leave the node untouched, setting
|
6596 |
|
|
-- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
|
6597 |
|
|
-- of the higher level node converts it into a shift.
|
6598 |
|
|
|
6599 |
|
|
-- Another case is 2 ** N in any other context. We simply convert
|
6600 |
|
|
-- this to 1 * 2 ** N, and then the above transformation applies.
|
6601 |
|
|
|
6602 |
|
|
-- Note: this transformation is not applicable for a modular type with
|
6603 |
|
|
-- a non-binary modulus in the multiplication case, since we get a wrong
|
6604 |
|
|
-- result if the shift causes an overflow before the modular reduction.
|
6605 |
|
|
|
6606 |
|
|
if Nkind (Base) = N_Integer_Literal
|
6607 |
|
|
and then Intval (Base) = 2
|
6608 |
|
|
and then Is_Integer_Type (Root_Type (Exptyp))
|
6609 |
|
|
and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
|
6610 |
|
|
and then Is_Unsigned_Type (Exptyp)
|
6611 |
|
|
and then not Ovflo
|
6612 |
|
|
then
|
6613 |
|
|
-- First the multiply and divide cases
|
6614 |
|
|
|
6615 |
|
|
if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
|
6616 |
|
|
declare
|
6617 |
|
|
P : constant Node_Id := Parent (N);
|
6618 |
|
|
L : constant Node_Id := Left_Opnd (P);
|
6619 |
|
|
R : constant Node_Id := Right_Opnd (P);
|
6620 |
|
|
|
6621 |
|
|
begin
|
6622 |
|
|
if (Nkind (P) = N_Op_Multiply
|
6623 |
|
|
and then not Non_Binary_Modulus (Typ)
|
6624 |
|
|
and then
|
6625 |
|
|
((Is_Integer_Type (Etype (L)) and then R = N)
|
6626 |
|
|
or else
|
6627 |
|
|
(Is_Integer_Type (Etype (R)) and then L = N))
|
6628 |
|
|
and then not Do_Overflow_Check (P))
|
6629 |
|
|
or else
|
6630 |
|
|
(Nkind (P) = N_Op_Divide
|
6631 |
|
|
and then Is_Integer_Type (Etype (L))
|
6632 |
|
|
and then Is_Unsigned_Type (Etype (L))
|
6633 |
|
|
and then R = N
|
6634 |
|
|
and then not Do_Overflow_Check (P))
|
6635 |
|
|
then
|
6636 |
|
|
Set_Is_Power_Of_2_For_Shift (N);
|
6637 |
|
|
return;
|
6638 |
|
|
end if;
|
6639 |
|
|
end;
|
6640 |
|
|
|
6641 |
|
|
-- Now the other cases
|
6642 |
|
|
|
6643 |
|
|
elsif not Non_Binary_Modulus (Typ) then
|
6644 |
|
|
Rewrite (N,
|
6645 |
|
|
Make_Op_Multiply (Loc,
|
6646 |
|
|
Left_Opnd => Make_Integer_Literal (Loc, 1),
|
6647 |
|
|
Right_Opnd => Relocate_Node (N)));
|
6648 |
|
|
Analyze_And_Resolve (N, Typ);
|
6649 |
|
|
return;
|
6650 |
|
|
end if;
|
6651 |
|
|
end if;
|
6652 |
|
|
|
6653 |
|
|
-- Fall through if exponentiation must be done using a runtime routine
|
6654 |
|
|
|
6655 |
|
|
-- First deal with modular case
|
6656 |
|
|
|
6657 |
|
|
if Is_Modular_Integer_Type (Rtyp) then
|
6658 |
|
|
|
6659 |
|
|
-- Non-binary case, we call the special exponentiation routine for
|
6660 |
|
|
-- the non-binary case, converting the argument to Long_Long_Integer
|
6661 |
|
|
-- and passing the modulus value. Then the result is converted back
|
6662 |
|
|
-- to the base type.
|
6663 |
|
|
|
6664 |
|
|
if Non_Binary_Modulus (Rtyp) then
|
6665 |
|
|
Rewrite (N,
|
6666 |
|
|
Convert_To (Typ,
|
6667 |
|
|
Make_Function_Call (Loc,
|
6668 |
|
|
Name => New_Reference_To (RTE (RE_Exp_Modular), Loc),
|
6669 |
|
|
Parameter_Associations => New_List (
|
6670 |
|
|
Convert_To (Standard_Integer, Base),
|
6671 |
|
|
Make_Integer_Literal (Loc, Modulus (Rtyp)),
|
6672 |
|
|
Exp))));
|
6673 |
|
|
|
6674 |
|
|
-- Binary case, in this case, we call one of two routines, either the
|
6675 |
|
|
-- unsigned integer case, or the unsigned long long integer case,
|
6676 |
|
|
-- with a final "and" operation to do the required mod.
|
6677 |
|
|
|
6678 |
|
|
else
|
6679 |
|
|
if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
|
6680 |
|
|
Ent := RTE (RE_Exp_Unsigned);
|
6681 |
|
|
else
|
6682 |
|
|
Ent := RTE (RE_Exp_Long_Long_Unsigned);
|
6683 |
|
|
end if;
|
6684 |
|
|
|
6685 |
|
|
Rewrite (N,
|
6686 |
|
|
Convert_To (Typ,
|
6687 |
|
|
Make_Op_And (Loc,
|
6688 |
|
|
Left_Opnd =>
|
6689 |
|
|
Make_Function_Call (Loc,
|
6690 |
|
|
Name => New_Reference_To (Ent, Loc),
|
6691 |
|
|
Parameter_Associations => New_List (
|
6692 |
|
|
Convert_To (Etype (First_Formal (Ent)), Base),
|
6693 |
|
|
Exp)),
|
6694 |
|
|
Right_Opnd =>
|
6695 |
|
|
Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
|
6696 |
|
|
|
6697 |
|
|
end if;
|
6698 |
|
|
|
6699 |
|
|
-- Common exit point for modular type case
|
6700 |
|
|
|
6701 |
|
|
Analyze_And_Resolve (N, Typ);
|
6702 |
|
|
return;
|
6703 |
|
|
|
6704 |
|
|
-- Signed integer cases, done using either Integer or Long_Long_Integer.
|
6705 |
|
|
-- It is not worth having routines for Short_[Short_]Integer, since for
|
6706 |
|
|
-- most machines it would not help, and it would generate more code that
|
6707 |
|
|
-- might need certification when a certified run time is required.
|
6708 |
|
|
|
6709 |
|
|
-- In the integer cases, we have two routines, one for when overflow
|
6710 |
|
|
-- checks are required, and one when they are not required, since there
|
6711 |
|
|
-- is a real gain in omitting checks on many machines.
|
6712 |
|
|
|
6713 |
|
|
elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
|
6714 |
|
|
or else (Rtyp = Base_Type (Standard_Long_Integer)
|
6715 |
|
|
and then
|
6716 |
|
|
Esize (Standard_Long_Integer) > Esize (Standard_Integer))
|
6717 |
|
|
or else (Rtyp = Universal_Integer)
|
6718 |
|
|
then
|
6719 |
|
|
Etyp := Standard_Long_Long_Integer;
|
6720 |
|
|
|
6721 |
|
|
if Ovflo then
|
6722 |
|
|
Rent := RE_Exp_Long_Long_Integer;
|
6723 |
|
|
else
|
6724 |
|
|
Rent := RE_Exn_Long_Long_Integer;
|
6725 |
|
|
end if;
|
6726 |
|
|
|
6727 |
|
|
elsif Is_Signed_Integer_Type (Rtyp) then
|
6728 |
|
|
Etyp := Standard_Integer;
|
6729 |
|
|
|
6730 |
|
|
if Ovflo then
|
6731 |
|
|
Rent := RE_Exp_Integer;
|
6732 |
|
|
else
|
6733 |
|
|
Rent := RE_Exn_Integer;
|
6734 |
|
|
end if;
|
6735 |
|
|
|
6736 |
|
|
-- Floating-point cases, always done using Long_Long_Float. We do not
|
6737 |
|
|
-- need separate routines for the overflow case here, since in the case
|
6738 |
|
|
-- of floating-point, we generate infinities anyway as a rule (either
|
6739 |
|
|
-- that or we automatically trap overflow), and if there is an infinity
|
6740 |
|
|
-- generated and a range check is required, the check will fail anyway.
|
6741 |
|
|
|
6742 |
|
|
else
|
6743 |
|
|
pragma Assert (Is_Floating_Point_Type (Rtyp));
|
6744 |
|
|
Etyp := Standard_Long_Long_Float;
|
6745 |
|
|
Rent := RE_Exn_Long_Long_Float;
|
6746 |
|
|
end if;
|
6747 |
|
|
|
6748 |
|
|
-- Common processing for integer cases and floating-point cases.
|
6749 |
|
|
-- If we are in the right type, we can call runtime routine directly
|
6750 |
|
|
|
6751 |
|
|
if Typ = Etyp
|
6752 |
|
|
and then Rtyp /= Universal_Integer
|
6753 |
|
|
and then Rtyp /= Universal_Real
|
6754 |
|
|
then
|
6755 |
|
|
Rewrite (N,
|
6756 |
|
|
Make_Function_Call (Loc,
|
6757 |
|
|
Name => New_Reference_To (RTE (Rent), Loc),
|
6758 |
|
|
Parameter_Associations => New_List (Base, Exp)));
|
6759 |
|
|
|
6760 |
|
|
-- Otherwise we have to introduce conversions (conversions are also
|
6761 |
|
|
-- required in the universal cases, since the runtime routine is
|
6762 |
|
|
-- typed using one of the standard types).
|
6763 |
|
|
|
6764 |
|
|
else
|
6765 |
|
|
Rewrite (N,
|
6766 |
|
|
Convert_To (Typ,
|
6767 |
|
|
Make_Function_Call (Loc,
|
6768 |
|
|
Name => New_Reference_To (RTE (Rent), Loc),
|
6769 |
|
|
Parameter_Associations => New_List (
|
6770 |
|
|
Convert_To (Etyp, Base),
|
6771 |
|
|
Exp))));
|
6772 |
|
|
end if;
|
6773 |
|
|
|
6774 |
|
|
Analyze_And_Resolve (N, Typ);
|
6775 |
|
|
return;
|
6776 |
|
|
|
6777 |
|
|
exception
|
6778 |
|
|
when RE_Not_Available =>
|
6779 |
|
|
return;
|
6780 |
|
|
end Expand_N_Op_Expon;
|
6781 |
|
|
|
6782 |
|
|
--------------------
|
6783 |
|
|
-- Expand_N_Op_Ge --
|
6784 |
|
|
--------------------
|
6785 |
|
|
|
6786 |
|
|
procedure Expand_N_Op_Ge (N : Node_Id) is
|
6787 |
|
|
Typ : constant Entity_Id := Etype (N);
|
6788 |
|
|
Op1 : constant Node_Id := Left_Opnd (N);
|
6789 |
|
|
Op2 : constant Node_Id := Right_Opnd (N);
|
6790 |
|
|
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
|
6791 |
|
|
|
6792 |
|
|
begin
|
6793 |
|
|
Binary_Op_Validity_Checks (N);
|
6794 |
|
|
|
6795 |
|
|
if Is_Array_Type (Typ1) then
|
6796 |
|
|
Expand_Array_Comparison (N);
|
6797 |
|
|
return;
|
6798 |
|
|
end if;
|
6799 |
|
|
|
6800 |
|
|
if Is_Boolean_Type (Typ1) then
|
6801 |
|
|
Adjust_Condition (Op1);
|
6802 |
|
|
Adjust_Condition (Op2);
|
6803 |
|
|
Set_Etype (N, Standard_Boolean);
|
6804 |
|
|
Adjust_Result_Type (N, Typ);
|
6805 |
|
|
end if;
|
6806 |
|
|
|
6807 |
|
|
Rewrite_Comparison (N);
|
6808 |
|
|
|
6809 |
|
|
-- If we still have comparison, and Vax_Float type, process it
|
6810 |
|
|
|
6811 |
|
|
if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
|
6812 |
|
|
Expand_Vax_Comparison (N);
|
6813 |
|
|
return;
|
6814 |
|
|
end if;
|
6815 |
|
|
|
6816 |
|
|
Optimize_Length_Comparison (N);
|
6817 |
|
|
end Expand_N_Op_Ge;
|
6818 |
|
|
|
6819 |
|
|
--------------------
|
6820 |
|
|
-- Expand_N_Op_Gt --
|
6821 |
|
|
--------------------
|
6822 |
|
|
|
6823 |
|
|
procedure Expand_N_Op_Gt (N : Node_Id) is
|
6824 |
|
|
Typ : constant Entity_Id := Etype (N);
|
6825 |
|
|
Op1 : constant Node_Id := Left_Opnd (N);
|
6826 |
|
|
Op2 : constant Node_Id := Right_Opnd (N);
|
6827 |
|
|
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
|
6828 |
|
|
|
6829 |
|
|
begin
|
6830 |
|
|
Binary_Op_Validity_Checks (N);
|
6831 |
|
|
|
6832 |
|
|
if Is_Array_Type (Typ1) then
|
6833 |
|
|
Expand_Array_Comparison (N);
|
6834 |
|
|
return;
|
6835 |
|
|
end if;
|
6836 |
|
|
|
6837 |
|
|
if Is_Boolean_Type (Typ1) then
|
6838 |
|
|
Adjust_Condition (Op1);
|
6839 |
|
|
Adjust_Condition (Op2);
|
6840 |
|
|
Set_Etype (N, Standard_Boolean);
|
6841 |
|
|
Adjust_Result_Type (N, Typ);
|
6842 |
|
|
end if;
|
6843 |
|
|
|
6844 |
|
|
Rewrite_Comparison (N);
|
6845 |
|
|
|
6846 |
|
|
-- If we still have comparison, and Vax_Float type, process it
|
6847 |
|
|
|
6848 |
|
|
if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
|
6849 |
|
|
Expand_Vax_Comparison (N);
|
6850 |
|
|
return;
|
6851 |
|
|
end if;
|
6852 |
|
|
|
6853 |
|
|
Optimize_Length_Comparison (N);
|
6854 |
|
|
end Expand_N_Op_Gt;
|
6855 |
|
|
|
6856 |
|
|
--------------------
|
6857 |
|
|
-- Expand_N_Op_Le --
|
6858 |
|
|
--------------------
|
6859 |
|
|
|
6860 |
|
|
procedure Expand_N_Op_Le (N : Node_Id) is
|
6861 |
|
|
Typ : constant Entity_Id := Etype (N);
|
6862 |
|
|
Op1 : constant Node_Id := Left_Opnd (N);
|
6863 |
|
|
Op2 : constant Node_Id := Right_Opnd (N);
|
6864 |
|
|
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
|
6865 |
|
|
|
6866 |
|
|
begin
|
6867 |
|
|
Binary_Op_Validity_Checks (N);
|
6868 |
|
|
|
6869 |
|
|
if Is_Array_Type (Typ1) then
|
6870 |
|
|
Expand_Array_Comparison (N);
|
6871 |
|
|
return;
|
6872 |
|
|
end if;
|
6873 |
|
|
|
6874 |
|
|
if Is_Boolean_Type (Typ1) then
|
6875 |
|
|
Adjust_Condition (Op1);
|
6876 |
|
|
Adjust_Condition (Op2);
|
6877 |
|
|
Set_Etype (N, Standard_Boolean);
|
6878 |
|
|
Adjust_Result_Type (N, Typ);
|
6879 |
|
|
end if;
|
6880 |
|
|
|
6881 |
|
|
Rewrite_Comparison (N);
|
6882 |
|
|
|
6883 |
|
|
-- If we still have comparison, and Vax_Float type, process it
|
6884 |
|
|
|
6885 |
|
|
if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
|
6886 |
|
|
Expand_Vax_Comparison (N);
|
6887 |
|
|
return;
|
6888 |
|
|
end if;
|
6889 |
|
|
|
6890 |
|
|
Optimize_Length_Comparison (N);
|
6891 |
|
|
end Expand_N_Op_Le;
|
6892 |
|
|
|
6893 |
|
|
--------------------
|
6894 |
|
|
-- Expand_N_Op_Lt --
|
6895 |
|
|
--------------------
|
6896 |
|
|
|
6897 |
|
|
procedure Expand_N_Op_Lt (N : Node_Id) is
|
6898 |
|
|
Typ : constant Entity_Id := Etype (N);
|
6899 |
|
|
Op1 : constant Node_Id := Left_Opnd (N);
|
6900 |
|
|
Op2 : constant Node_Id := Right_Opnd (N);
|
6901 |
|
|
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
|
6902 |
|
|
|
6903 |
|
|
begin
|
6904 |
|
|
Binary_Op_Validity_Checks (N);
|
6905 |
|
|
|
6906 |
|
|
if Is_Array_Type (Typ1) then
|
6907 |
|
|
Expand_Array_Comparison (N);
|
6908 |
|
|
return;
|
6909 |
|
|
end if;
|
6910 |
|
|
|
6911 |
|
|
if Is_Boolean_Type (Typ1) then
|
6912 |
|
|
Adjust_Condition (Op1);
|
6913 |
|
|
Adjust_Condition (Op2);
|
6914 |
|
|
Set_Etype (N, Standard_Boolean);
|
6915 |
|
|
Adjust_Result_Type (N, Typ);
|
6916 |
|
|
end if;
|
6917 |
|
|
|
6918 |
|
|
Rewrite_Comparison (N);
|
6919 |
|
|
|
6920 |
|
|
-- If we still have comparison, and Vax_Float type, process it
|
6921 |
|
|
|
6922 |
|
|
if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
|
6923 |
|
|
Expand_Vax_Comparison (N);
|
6924 |
|
|
return;
|
6925 |
|
|
end if;
|
6926 |
|
|
|
6927 |
|
|
Optimize_Length_Comparison (N);
|
6928 |
|
|
end Expand_N_Op_Lt;
|
6929 |
|
|
|
6930 |
|
|
-----------------------
|
6931 |
|
|
-- Expand_N_Op_Minus --
|
6932 |
|
|
-----------------------
|
6933 |
|
|
|
6934 |
|
|
procedure Expand_N_Op_Minus (N : Node_Id) is
|
6935 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6936 |
|
|
Typ : constant Entity_Id := Etype (N);
|
6937 |
|
|
|
6938 |
|
|
begin
|
6939 |
|
|
Unary_Op_Validity_Checks (N);
|
6940 |
|
|
|
6941 |
|
|
if not Backend_Overflow_Checks_On_Target
|
6942 |
|
|
and then Is_Signed_Integer_Type (Etype (N))
|
6943 |
|
|
and then Do_Overflow_Check (N)
|
6944 |
|
|
then
|
6945 |
|
|
-- Software overflow checking expands -expr into (0 - expr)
|
6946 |
|
|
|
6947 |
|
|
Rewrite (N,
|
6948 |
|
|
Make_Op_Subtract (Loc,
|
6949 |
|
|
Left_Opnd => Make_Integer_Literal (Loc, 0),
|
6950 |
|
|
Right_Opnd => Right_Opnd (N)));
|
6951 |
|
|
|
6952 |
|
|
Analyze_And_Resolve (N, Typ);
|
6953 |
|
|
|
6954 |
|
|
-- Vax floating-point types case
|
6955 |
|
|
|
6956 |
|
|
elsif Vax_Float (Etype (N)) then
|
6957 |
|
|
Expand_Vax_Arith (N);
|
6958 |
|
|
end if;
|
6959 |
|
|
end Expand_N_Op_Minus;
|
6960 |
|
|
|
6961 |
|
|
---------------------
|
6962 |
|
|
-- Expand_N_Op_Mod --
|
6963 |
|
|
---------------------
|
6964 |
|
|
|
6965 |
|
|
procedure Expand_N_Op_Mod (N : Node_Id) is
|
6966 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6967 |
|
|
Typ : constant Entity_Id := Etype (N);
|
6968 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
6969 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
6970 |
|
|
DOC : constant Boolean := Do_Overflow_Check (N);
|
6971 |
|
|
DDC : constant Boolean := Do_Division_Check (N);
|
6972 |
|
|
|
6973 |
|
|
LLB : Uint;
|
6974 |
|
|
Llo : Uint;
|
6975 |
|
|
Lhi : Uint;
|
6976 |
|
|
LOK : Boolean;
|
6977 |
|
|
Rlo : Uint;
|
6978 |
|
|
Rhi : Uint;
|
6979 |
|
|
ROK : Boolean;
|
6980 |
|
|
|
6981 |
|
|
pragma Warnings (Off, Lhi);
|
6982 |
|
|
|
6983 |
|
|
begin
|
6984 |
|
|
Binary_Op_Validity_Checks (N);
|
6985 |
|
|
|
6986 |
|
|
Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
|
6987 |
|
|
Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
|
6988 |
|
|
|
6989 |
|
|
-- Convert mod to rem if operands are known non-negative. We do this
|
6990 |
|
|
-- since it is quite likely that this will improve the quality of code,
|
6991 |
|
|
-- (the operation now corresponds to the hardware remainder), and it
|
6992 |
|
|
-- does not seem likely that it could be harmful.
|
6993 |
|
|
|
6994 |
|
|
if LOK and then Llo >= 0
|
6995 |
|
|
and then
|
6996 |
|
|
ROK and then Rlo >= 0
|
6997 |
|
|
then
|
6998 |
|
|
Rewrite (N,
|
6999 |
|
|
Make_Op_Rem (Sloc (N),
|
7000 |
|
|
Left_Opnd => Left_Opnd (N),
|
7001 |
|
|
Right_Opnd => Right_Opnd (N)));
|
7002 |
|
|
|
7003 |
|
|
-- Instead of reanalyzing the node we do the analysis manually. This
|
7004 |
|
|
-- avoids anomalies when the replacement is done in an instance and
|
7005 |
|
|
-- is epsilon more efficient.
|
7006 |
|
|
|
7007 |
|
|
Set_Entity (N, Standard_Entity (S_Op_Rem));
|
7008 |
|
|
Set_Etype (N, Typ);
|
7009 |
|
|
Set_Do_Overflow_Check (N, DOC);
|
7010 |
|
|
Set_Do_Division_Check (N, DDC);
|
7011 |
|
|
Expand_N_Op_Rem (N);
|
7012 |
|
|
Set_Analyzed (N);
|
7013 |
|
|
|
7014 |
|
|
-- Otherwise, normal mod processing
|
7015 |
|
|
|
7016 |
|
|
else
|
7017 |
|
|
if Is_Integer_Type (Etype (N)) then
|
7018 |
|
|
Apply_Divide_Check (N);
|
7019 |
|
|
end if;
|
7020 |
|
|
|
7021 |
|
|
-- Apply optimization x mod 1 = 0. We don't really need that with
|
7022 |
|
|
-- gcc, but it is useful with other back ends (e.g. AAMP), and is
|
7023 |
|
|
-- certainly harmless.
|
7024 |
|
|
|
7025 |
|
|
if Is_Integer_Type (Etype (N))
|
7026 |
|
|
and then Compile_Time_Known_Value (Right)
|
7027 |
|
|
and then Expr_Value (Right) = Uint_1
|
7028 |
|
|
then
|
7029 |
|
|
-- Call Remove_Side_Effects to ensure that any side effects in
|
7030 |
|
|
-- the ignored left operand (in particular function calls to
|
7031 |
|
|
-- user defined functions) are properly executed.
|
7032 |
|
|
|
7033 |
|
|
Remove_Side_Effects (Left);
|
7034 |
|
|
|
7035 |
|
|
Rewrite (N, Make_Integer_Literal (Loc, 0));
|
7036 |
|
|
Analyze_And_Resolve (N, Typ);
|
7037 |
|
|
return;
|
7038 |
|
|
end if;
|
7039 |
|
|
|
7040 |
|
|
-- Deal with annoying case of largest negative number remainder
|
7041 |
|
|
-- minus one. Gigi does not handle this case correctly, because
|
7042 |
|
|
-- it generates a divide instruction which may trap in this case.
|
7043 |
|
|
|
7044 |
|
|
-- In fact the check is quite easy, if the right operand is -1, then
|
7045 |
|
|
-- the mod value is always 0, and we can just ignore the left operand
|
7046 |
|
|
-- completely in this case.
|
7047 |
|
|
|
7048 |
|
|
-- The operand type may be private (e.g. in the expansion of an
|
7049 |
|
|
-- intrinsic operation) so we must use the underlying type to get the
|
7050 |
|
|
-- bounds, and convert the literals explicitly.
|
7051 |
|
|
|
7052 |
|
|
LLB :=
|
7053 |
|
|
Expr_Value
|
7054 |
|
|
(Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
|
7055 |
|
|
|
7056 |
|
|
if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
|
7057 |
|
|
and then
|
7058 |
|
|
((not LOK) or else (Llo = LLB))
|
7059 |
|
|
then
|
7060 |
|
|
Rewrite (N,
|
7061 |
|
|
Make_Conditional_Expression (Loc,
|
7062 |
|
|
Expressions => New_List (
|
7063 |
|
|
Make_Op_Eq (Loc,
|
7064 |
|
|
Left_Opnd => Duplicate_Subexpr (Right),
|
7065 |
|
|
Right_Opnd =>
|
7066 |
|
|
Unchecked_Convert_To (Typ,
|
7067 |
|
|
Make_Integer_Literal (Loc, -1))),
|
7068 |
|
|
Unchecked_Convert_To (Typ,
|
7069 |
|
|
Make_Integer_Literal (Loc, Uint_0)),
|
7070 |
|
|
Relocate_Node (N))));
|
7071 |
|
|
|
7072 |
|
|
Set_Analyzed (Next (Next (First (Expressions (N)))));
|
7073 |
|
|
Analyze_And_Resolve (N, Typ);
|
7074 |
|
|
end if;
|
7075 |
|
|
end if;
|
7076 |
|
|
end Expand_N_Op_Mod;
|
7077 |
|
|
|
7078 |
|
|
--------------------------
|
7079 |
|
|
-- Expand_N_Op_Multiply --
|
7080 |
|
|
--------------------------
|
7081 |
|
|
|
7082 |
|
|
procedure Expand_N_Op_Multiply (N : Node_Id) is
|
7083 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
7084 |
|
|
Lop : constant Node_Id := Left_Opnd (N);
|
7085 |
|
|
Rop : constant Node_Id := Right_Opnd (N);
|
7086 |
|
|
|
7087 |
|
|
Lp2 : constant Boolean :=
|
7088 |
|
|
Nkind (Lop) = N_Op_Expon
|
7089 |
|
|
and then Is_Power_Of_2_For_Shift (Lop);
|
7090 |
|
|
|
7091 |
|
|
Rp2 : constant Boolean :=
|
7092 |
|
|
Nkind (Rop) = N_Op_Expon
|
7093 |
|
|
and then Is_Power_Of_2_For_Shift (Rop);
|
7094 |
|
|
|
7095 |
|
|
Ltyp : constant Entity_Id := Etype (Lop);
|
7096 |
|
|
Rtyp : constant Entity_Id := Etype (Rop);
|
7097 |
|
|
Typ : Entity_Id := Etype (N);
|
7098 |
|
|
|
7099 |
|
|
begin
|
7100 |
|
|
Binary_Op_Validity_Checks (N);
|
7101 |
|
|
|
7102 |
|
|
-- Special optimizations for integer types
|
7103 |
|
|
|
7104 |
|
|
if Is_Integer_Type (Typ) then
|
7105 |
|
|
|
7106 |
|
|
-- N * 0 = 0 for integer types
|
7107 |
|
|
|
7108 |
|
|
if Compile_Time_Known_Value (Rop)
|
7109 |
|
|
and then Expr_Value (Rop) = Uint_0
|
7110 |
|
|
then
|
7111 |
|
|
-- Call Remove_Side_Effects to ensure that any side effects in
|
7112 |
|
|
-- the ignored left operand (in particular function calls to
|
7113 |
|
|
-- user defined functions) are properly executed.
|
7114 |
|
|
|
7115 |
|
|
Remove_Side_Effects (Lop);
|
7116 |
|
|
|
7117 |
|
|
Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
|
7118 |
|
|
Analyze_And_Resolve (N, Typ);
|
7119 |
|
|
return;
|
7120 |
|
|
end if;
|
7121 |
|
|
|
7122 |
|
|
-- Similar handling for 0 * N = 0
|
7123 |
|
|
|
7124 |
|
|
if Compile_Time_Known_Value (Lop)
|
7125 |
|
|
and then Expr_Value (Lop) = Uint_0
|
7126 |
|
|
then
|
7127 |
|
|
Remove_Side_Effects (Rop);
|
7128 |
|
|
Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
|
7129 |
|
|
Analyze_And_Resolve (N, Typ);
|
7130 |
|
|
return;
|
7131 |
|
|
end if;
|
7132 |
|
|
|
7133 |
|
|
-- N * 1 = 1 * N = N for integer types
|
7134 |
|
|
|
7135 |
|
|
-- This optimisation is not done if we are going to
|
7136 |
|
|
-- rewrite the product 1 * 2 ** N to a shift.
|
7137 |
|
|
|
7138 |
|
|
if Compile_Time_Known_Value (Rop)
|
7139 |
|
|
and then Expr_Value (Rop) = Uint_1
|
7140 |
|
|
and then not Lp2
|
7141 |
|
|
then
|
7142 |
|
|
Rewrite (N, Lop);
|
7143 |
|
|
return;
|
7144 |
|
|
|
7145 |
|
|
elsif Compile_Time_Known_Value (Lop)
|
7146 |
|
|
and then Expr_Value (Lop) = Uint_1
|
7147 |
|
|
and then not Rp2
|
7148 |
|
|
then
|
7149 |
|
|
Rewrite (N, Rop);
|
7150 |
|
|
return;
|
7151 |
|
|
end if;
|
7152 |
|
|
end if;
|
7153 |
|
|
|
7154 |
|
|
-- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
|
7155 |
|
|
-- Is_Power_Of_2_For_Shift is set means that we know that our left
|
7156 |
|
|
-- operand is an integer, as required for this to work.
|
7157 |
|
|
|
7158 |
|
|
if Rp2 then
|
7159 |
|
|
if Lp2 then
|
7160 |
|
|
|
7161 |
|
|
-- Convert 2 ** A * 2 ** B into 2 ** (A + B)
|
7162 |
|
|
|
7163 |
|
|
Rewrite (N,
|
7164 |
|
|
Make_Op_Expon (Loc,
|
7165 |
|
|
Left_Opnd => Make_Integer_Literal (Loc, 2),
|
7166 |
|
|
Right_Opnd =>
|
7167 |
|
|
Make_Op_Add (Loc,
|
7168 |
|
|
Left_Opnd => Right_Opnd (Lop),
|
7169 |
|
|
Right_Opnd => Right_Opnd (Rop))));
|
7170 |
|
|
Analyze_And_Resolve (N, Typ);
|
7171 |
|
|
return;
|
7172 |
|
|
|
7173 |
|
|
else
|
7174 |
|
|
Rewrite (N,
|
7175 |
|
|
Make_Op_Shift_Left (Loc,
|
7176 |
|
|
Left_Opnd => Lop,
|
7177 |
|
|
Right_Opnd =>
|
7178 |
|
|
Convert_To (Standard_Natural, Right_Opnd (Rop))));
|
7179 |
|
|
Analyze_And_Resolve (N, Typ);
|
7180 |
|
|
return;
|
7181 |
|
|
end if;
|
7182 |
|
|
|
7183 |
|
|
-- Same processing for the operands the other way round
|
7184 |
|
|
|
7185 |
|
|
elsif Lp2 then
|
7186 |
|
|
Rewrite (N,
|
7187 |
|
|
Make_Op_Shift_Left (Loc,
|
7188 |
|
|
Left_Opnd => Rop,
|
7189 |
|
|
Right_Opnd =>
|
7190 |
|
|
Convert_To (Standard_Natural, Right_Opnd (Lop))));
|
7191 |
|
|
Analyze_And_Resolve (N, Typ);
|
7192 |
|
|
return;
|
7193 |
|
|
end if;
|
7194 |
|
|
|
7195 |
|
|
-- Do required fixup of universal fixed operation
|
7196 |
|
|
|
7197 |
|
|
if Typ = Universal_Fixed then
|
7198 |
|
|
Fixup_Universal_Fixed_Operation (N);
|
7199 |
|
|
Typ := Etype (N);
|
7200 |
|
|
end if;
|
7201 |
|
|
|
7202 |
|
|
-- Multiplications with fixed-point results
|
7203 |
|
|
|
7204 |
|
|
if Is_Fixed_Point_Type (Typ) then
|
7205 |
|
|
|
7206 |
|
|
-- No special processing if Treat_Fixed_As_Integer is set, since from
|
7207 |
|
|
-- a semantic point of view such operations are simply integer
|
7208 |
|
|
-- operations and will be treated that way.
|
7209 |
|
|
|
7210 |
|
|
if not Treat_Fixed_As_Integer (N) then
|
7211 |
|
|
|
7212 |
|
|
-- Case of fixed * integer => fixed
|
7213 |
|
|
|
7214 |
|
|
if Is_Integer_Type (Rtyp) then
|
7215 |
|
|
Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
|
7216 |
|
|
|
7217 |
|
|
-- Case of integer * fixed => fixed
|
7218 |
|
|
|
7219 |
|
|
elsif Is_Integer_Type (Ltyp) then
|
7220 |
|
|
Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
|
7221 |
|
|
|
7222 |
|
|
-- Case of fixed * fixed => fixed
|
7223 |
|
|
|
7224 |
|
|
else
|
7225 |
|
|
Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
|
7226 |
|
|
end if;
|
7227 |
|
|
end if;
|
7228 |
|
|
|
7229 |
|
|
-- Other cases of multiplication of fixed-point operands. Again we
|
7230 |
|
|
-- exclude the cases where Treat_Fixed_As_Integer flag is set.
|
7231 |
|
|
|
7232 |
|
|
elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
|
7233 |
|
|
and then not Treat_Fixed_As_Integer (N)
|
7234 |
|
|
then
|
7235 |
|
|
if Is_Integer_Type (Typ) then
|
7236 |
|
|
Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
|
7237 |
|
|
else
|
7238 |
|
|
pragma Assert (Is_Floating_Point_Type (Typ));
|
7239 |
|
|
Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
|
7240 |
|
|
end if;
|
7241 |
|
|
|
7242 |
|
|
-- Mixed-mode operations can appear in a non-static universal context,
|
7243 |
|
|
-- in which case the integer argument must be converted explicitly.
|
7244 |
|
|
|
7245 |
|
|
elsif Typ = Universal_Real
|
7246 |
|
|
and then Is_Integer_Type (Rtyp)
|
7247 |
|
|
then
|
7248 |
|
|
Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
|
7249 |
|
|
|
7250 |
|
|
Analyze_And_Resolve (Rop, Universal_Real);
|
7251 |
|
|
|
7252 |
|
|
elsif Typ = Universal_Real
|
7253 |
|
|
and then Is_Integer_Type (Ltyp)
|
7254 |
|
|
then
|
7255 |
|
|
Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
|
7256 |
|
|
|
7257 |
|
|
Analyze_And_Resolve (Lop, Universal_Real);
|
7258 |
|
|
|
7259 |
|
|
-- Non-fixed point cases, check software overflow checking required
|
7260 |
|
|
|
7261 |
|
|
elsif Is_Signed_Integer_Type (Etype (N)) then
|
7262 |
|
|
Apply_Arithmetic_Overflow_Check (N);
|
7263 |
|
|
|
7264 |
|
|
-- Deal with VAX float case
|
7265 |
|
|
|
7266 |
|
|
elsif Vax_Float (Typ) then
|
7267 |
|
|
Expand_Vax_Arith (N);
|
7268 |
|
|
return;
|
7269 |
|
|
end if;
|
7270 |
|
|
end Expand_N_Op_Multiply;
|
7271 |
|
|
|
7272 |
|
|
--------------------
|
7273 |
|
|
-- Expand_N_Op_Ne --
|
7274 |
|
|
--------------------
|
7275 |
|
|
|
7276 |
|
|
procedure Expand_N_Op_Ne (N : Node_Id) is
|
7277 |
|
|
Typ : constant Entity_Id := Etype (Left_Opnd (N));
|
7278 |
|
|
|
7279 |
|
|
begin
|
7280 |
|
|
-- Case of elementary type with standard operator
|
7281 |
|
|
|
7282 |
|
|
if Is_Elementary_Type (Typ)
|
7283 |
|
|
and then Sloc (Entity (N)) = Standard_Location
|
7284 |
|
|
then
|
7285 |
|
|
Binary_Op_Validity_Checks (N);
|
7286 |
|
|
|
7287 |
|
|
-- Boolean types (requiring handling of non-standard case)
|
7288 |
|
|
|
7289 |
|
|
if Is_Boolean_Type (Typ) then
|
7290 |
|
|
Adjust_Condition (Left_Opnd (N));
|
7291 |
|
|
Adjust_Condition (Right_Opnd (N));
|
7292 |
|
|
Set_Etype (N, Standard_Boolean);
|
7293 |
|
|
Adjust_Result_Type (N, Typ);
|
7294 |
|
|
end if;
|
7295 |
|
|
|
7296 |
|
|
Rewrite_Comparison (N);
|
7297 |
|
|
|
7298 |
|
|
-- If we still have comparison for Vax_Float, process it
|
7299 |
|
|
|
7300 |
|
|
if Vax_Float (Typ) and then Nkind (N) in N_Op_Compare then
|
7301 |
|
|
Expand_Vax_Comparison (N);
|
7302 |
|
|
return;
|
7303 |
|
|
end if;
|
7304 |
|
|
|
7305 |
|
|
-- For all cases other than elementary types, we rewrite node as the
|
7306 |
|
|
-- negation of an equality operation, and reanalyze. The equality to be
|
7307 |
|
|
-- used is defined in the same scope and has the same signature. This
|
7308 |
|
|
-- signature must be set explicitly since in an instance it may not have
|
7309 |
|
|
-- the same visibility as in the generic unit. This avoids duplicating
|
7310 |
|
|
-- or factoring the complex code for record/array equality tests etc.
|
7311 |
|
|
|
7312 |
|
|
else
|
7313 |
|
|
declare
|
7314 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
7315 |
|
|
Neg : Node_Id;
|
7316 |
|
|
Ne : constant Entity_Id := Entity (N);
|
7317 |
|
|
|
7318 |
|
|
begin
|
7319 |
|
|
Binary_Op_Validity_Checks (N);
|
7320 |
|
|
|
7321 |
|
|
Neg :=
|
7322 |
|
|
Make_Op_Not (Loc,
|
7323 |
|
|
Right_Opnd =>
|
7324 |
|
|
Make_Op_Eq (Loc,
|
7325 |
|
|
Left_Opnd => Left_Opnd (N),
|
7326 |
|
|
Right_Opnd => Right_Opnd (N)));
|
7327 |
|
|
Set_Paren_Count (Right_Opnd (Neg), 1);
|
7328 |
|
|
|
7329 |
|
|
if Scope (Ne) /= Standard_Standard then
|
7330 |
|
|
Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
|
7331 |
|
|
end if;
|
7332 |
|
|
|
7333 |
|
|
-- For navigation purposes, we want to treat the inequality as an
|
7334 |
|
|
-- implicit reference to the corresponding equality. Preserve the
|
7335 |
|
|
-- Comes_From_ source flag to generate proper Xref entries.
|
7336 |
|
|
|
7337 |
|
|
Preserve_Comes_From_Source (Neg, N);
|
7338 |
|
|
Preserve_Comes_From_Source (Right_Opnd (Neg), N);
|
7339 |
|
|
Rewrite (N, Neg);
|
7340 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
7341 |
|
|
end;
|
7342 |
|
|
end if;
|
7343 |
|
|
|
7344 |
|
|
Optimize_Length_Comparison (N);
|
7345 |
|
|
end Expand_N_Op_Ne;
|
7346 |
|
|
|
7347 |
|
|
---------------------
|
7348 |
|
|
-- Expand_N_Op_Not --
|
7349 |
|
|
---------------------
|
7350 |
|
|
|
7351 |
|
|
-- If the argument is other than a Boolean array type, there is no special
|
7352 |
|
|
-- expansion required, except for VMS operations on signed integers.
|
7353 |
|
|
|
7354 |
|
|
-- For the packed case, we call the special routine in Exp_Pakd, except
|
7355 |
|
|
-- that if the component size is greater than one, we use the standard
|
7356 |
|
|
-- routine generating a gruesome loop (it is so peculiar to have packed
|
7357 |
|
|
-- arrays with non-standard Boolean representations anyway, so it does not
|
7358 |
|
|
-- matter that we do not handle this case efficiently).
|
7359 |
|
|
|
7360 |
|
|
-- For the unpacked case (and for the special packed case where we have non
|
7361 |
|
|
-- standard Booleans, as discussed above), we generate and insert into the
|
7362 |
|
|
-- tree the following function definition:
|
7363 |
|
|
|
7364 |
|
|
-- function Nnnn (A : arr) is
|
7365 |
|
|
-- B : arr;
|
7366 |
|
|
-- begin
|
7367 |
|
|
-- for J in a'range loop
|
7368 |
|
|
-- B (J) := not A (J);
|
7369 |
|
|
-- end loop;
|
7370 |
|
|
-- return B;
|
7371 |
|
|
-- end Nnnn;
|
7372 |
|
|
|
7373 |
|
|
-- Here arr is the actual subtype of the parameter (and hence always
|
7374 |
|
|
-- constrained). Then we replace the not with a call to this function.
|
7375 |
|
|
|
7376 |
|
|
procedure Expand_N_Op_Not (N : Node_Id) is
|
7377 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
7378 |
|
|
Typ : constant Entity_Id := Etype (N);
|
7379 |
|
|
Opnd : Node_Id;
|
7380 |
|
|
Arr : Entity_Id;
|
7381 |
|
|
A : Entity_Id;
|
7382 |
|
|
B : Entity_Id;
|
7383 |
|
|
J : Entity_Id;
|
7384 |
|
|
A_J : Node_Id;
|
7385 |
|
|
B_J : Node_Id;
|
7386 |
|
|
|
7387 |
|
|
Func_Name : Entity_Id;
|
7388 |
|
|
Loop_Statement : Node_Id;
|
7389 |
|
|
|
7390 |
|
|
begin
|
7391 |
|
|
Unary_Op_Validity_Checks (N);
|
7392 |
|
|
|
7393 |
|
|
-- For boolean operand, deal with non-standard booleans
|
7394 |
|
|
|
7395 |
|
|
if Is_Boolean_Type (Typ) then
|
7396 |
|
|
Adjust_Condition (Right_Opnd (N));
|
7397 |
|
|
Set_Etype (N, Standard_Boolean);
|
7398 |
|
|
Adjust_Result_Type (N, Typ);
|
7399 |
|
|
return;
|
7400 |
|
|
end if;
|
7401 |
|
|
|
7402 |
|
|
-- For the VMS "not" on signed integer types, use conversion to and from
|
7403 |
|
|
-- a predefined modular type.
|
7404 |
|
|
|
7405 |
|
|
if Is_VMS_Operator (Entity (N)) then
|
7406 |
|
|
declare
|
7407 |
|
|
Rtyp : Entity_Id;
|
7408 |
|
|
Utyp : Entity_Id;
|
7409 |
|
|
|
7410 |
|
|
begin
|
7411 |
|
|
-- If this is a derived type, retrieve original VMS type so that
|
7412 |
|
|
-- the proper sized type is used for intermediate values.
|
7413 |
|
|
|
7414 |
|
|
if Is_Derived_Type (Typ) then
|
7415 |
|
|
Rtyp := First_Subtype (Etype (Typ));
|
7416 |
|
|
else
|
7417 |
|
|
Rtyp := Typ;
|
7418 |
|
|
end if;
|
7419 |
|
|
|
7420 |
|
|
-- The proper unsigned type must have a size compatible with the
|
7421 |
|
|
-- operand, to prevent misalignment.
|
7422 |
|
|
|
7423 |
|
|
if RM_Size (Rtyp) <= 8 then
|
7424 |
|
|
Utyp := RTE (RE_Unsigned_8);
|
7425 |
|
|
|
7426 |
|
|
elsif RM_Size (Rtyp) <= 16 then
|
7427 |
|
|
Utyp := RTE (RE_Unsigned_16);
|
7428 |
|
|
|
7429 |
|
|
elsif RM_Size (Rtyp) = RM_Size (Standard_Unsigned) then
|
7430 |
|
|
Utyp := RTE (RE_Unsigned_32);
|
7431 |
|
|
|
7432 |
|
|
else
|
7433 |
|
|
Utyp := RTE (RE_Long_Long_Unsigned);
|
7434 |
|
|
end if;
|
7435 |
|
|
|
7436 |
|
|
Rewrite (N,
|
7437 |
|
|
Unchecked_Convert_To (Typ,
|
7438 |
|
|
Make_Op_Not (Loc,
|
7439 |
|
|
Unchecked_Convert_To (Utyp, Right_Opnd (N)))));
|
7440 |
|
|
Analyze_And_Resolve (N, Typ);
|
7441 |
|
|
return;
|
7442 |
|
|
end;
|
7443 |
|
|
end if;
|
7444 |
|
|
|
7445 |
|
|
-- Only array types need any other processing
|
7446 |
|
|
|
7447 |
|
|
if not Is_Array_Type (Typ) then
|
7448 |
|
|
return;
|
7449 |
|
|
end if;
|
7450 |
|
|
|
7451 |
|
|
-- Case of array operand. If bit packed with a component size of 1,
|
7452 |
|
|
-- handle it in Exp_Pakd if the operand is known to be aligned.
|
7453 |
|
|
|
7454 |
|
|
if Is_Bit_Packed_Array (Typ)
|
7455 |
|
|
and then Component_Size (Typ) = 1
|
7456 |
|
|
and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
|
7457 |
|
|
then
|
7458 |
|
|
Expand_Packed_Not (N);
|
7459 |
|
|
return;
|
7460 |
|
|
end if;
|
7461 |
|
|
|
7462 |
|
|
-- Case of array operand which is not bit-packed. If the context is
|
7463 |
|
|
-- a safe assignment, call in-place operation, If context is a larger
|
7464 |
|
|
-- boolean expression in the context of a safe assignment, expansion is
|
7465 |
|
|
-- done by enclosing operation.
|
7466 |
|
|
|
7467 |
|
|
Opnd := Relocate_Node (Right_Opnd (N));
|
7468 |
|
|
Convert_To_Actual_Subtype (Opnd);
|
7469 |
|
|
Arr := Etype (Opnd);
|
7470 |
|
|
Ensure_Defined (Arr, N);
|
7471 |
|
|
Silly_Boolean_Array_Not_Test (N, Arr);
|
7472 |
|
|
|
7473 |
|
|
if Nkind (Parent (N)) = N_Assignment_Statement then
|
7474 |
|
|
if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
|
7475 |
|
|
Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
|
7476 |
|
|
return;
|
7477 |
|
|
|
7478 |
|
|
-- Special case the negation of a binary operation
|
7479 |
|
|
|
7480 |
|
|
elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
|
7481 |
|
|
and then Safe_In_Place_Array_Op
|
7482 |
|
|
(Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
|
7483 |
|
|
then
|
7484 |
|
|
Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
|
7485 |
|
|
return;
|
7486 |
|
|
end if;
|
7487 |
|
|
|
7488 |
|
|
elsif Nkind (Parent (N)) in N_Binary_Op
|
7489 |
|
|
and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
|
7490 |
|
|
then
|
7491 |
|
|
declare
|
7492 |
|
|
Op1 : constant Node_Id := Left_Opnd (Parent (N));
|
7493 |
|
|
Op2 : constant Node_Id := Right_Opnd (Parent (N));
|
7494 |
|
|
Lhs : constant Node_Id := Name (Parent (Parent (N)));
|
7495 |
|
|
|
7496 |
|
|
begin
|
7497 |
|
|
if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
|
7498 |
|
|
|
7499 |
|
|
-- (not A) op (not B) can be reduced to a single call
|
7500 |
|
|
|
7501 |
|
|
if N = Op1 and then Nkind (Op2) = N_Op_Not then
|
7502 |
|
|
return;
|
7503 |
|
|
|
7504 |
|
|
elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
|
7505 |
|
|
return;
|
7506 |
|
|
|
7507 |
|
|
-- A xor (not B) can also be special-cased
|
7508 |
|
|
|
7509 |
|
|
elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
|
7510 |
|
|
return;
|
7511 |
|
|
end if;
|
7512 |
|
|
end if;
|
7513 |
|
|
end;
|
7514 |
|
|
end if;
|
7515 |
|
|
|
7516 |
|
|
A := Make_Defining_Identifier (Loc, Name_uA);
|
7517 |
|
|
B := Make_Defining_Identifier (Loc, Name_uB);
|
7518 |
|
|
J := Make_Defining_Identifier (Loc, Name_uJ);
|
7519 |
|
|
|
7520 |
|
|
A_J :=
|
7521 |
|
|
Make_Indexed_Component (Loc,
|
7522 |
|
|
Prefix => New_Reference_To (A, Loc),
|
7523 |
|
|
Expressions => New_List (New_Reference_To (J, Loc)));
|
7524 |
|
|
|
7525 |
|
|
B_J :=
|
7526 |
|
|
Make_Indexed_Component (Loc,
|
7527 |
|
|
Prefix => New_Reference_To (B, Loc),
|
7528 |
|
|
Expressions => New_List (New_Reference_To (J, Loc)));
|
7529 |
|
|
|
7530 |
|
|
Loop_Statement :=
|
7531 |
|
|
Make_Implicit_Loop_Statement (N,
|
7532 |
|
|
Identifier => Empty,
|
7533 |
|
|
|
7534 |
|
|
Iteration_Scheme =>
|
7535 |
|
|
Make_Iteration_Scheme (Loc,
|
7536 |
|
|
Loop_Parameter_Specification =>
|
7537 |
|
|
Make_Loop_Parameter_Specification (Loc,
|
7538 |
|
|
Defining_Identifier => J,
|
7539 |
|
|
Discrete_Subtype_Definition =>
|
7540 |
|
|
Make_Attribute_Reference (Loc,
|
7541 |
|
|
Prefix => Make_Identifier (Loc, Chars (A)),
|
7542 |
|
|
Attribute_Name => Name_Range))),
|
7543 |
|
|
|
7544 |
|
|
Statements => New_List (
|
7545 |
|
|
Make_Assignment_Statement (Loc,
|
7546 |
|
|
Name => B_J,
|
7547 |
|
|
Expression => Make_Op_Not (Loc, A_J))));
|
7548 |
|
|
|
7549 |
|
|
Func_Name := Make_Temporary (Loc, 'N');
|
7550 |
|
|
Set_Is_Inlined (Func_Name);
|
7551 |
|
|
|
7552 |
|
|
Insert_Action (N,
|
7553 |
|
|
Make_Subprogram_Body (Loc,
|
7554 |
|
|
Specification =>
|
7555 |
|
|
Make_Function_Specification (Loc,
|
7556 |
|
|
Defining_Unit_Name => Func_Name,
|
7557 |
|
|
Parameter_Specifications => New_List (
|
7558 |
|
|
Make_Parameter_Specification (Loc,
|
7559 |
|
|
Defining_Identifier => A,
|
7560 |
|
|
Parameter_Type => New_Reference_To (Typ, Loc))),
|
7561 |
|
|
Result_Definition => New_Reference_To (Typ, Loc)),
|
7562 |
|
|
|
7563 |
|
|
Declarations => New_List (
|
7564 |
|
|
Make_Object_Declaration (Loc,
|
7565 |
|
|
Defining_Identifier => B,
|
7566 |
|
|
Object_Definition => New_Reference_To (Arr, Loc))),
|
7567 |
|
|
|
7568 |
|
|
Handled_Statement_Sequence =>
|
7569 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
7570 |
|
|
Statements => New_List (
|
7571 |
|
|
Loop_Statement,
|
7572 |
|
|
Make_Simple_Return_Statement (Loc,
|
7573 |
|
|
Expression => Make_Identifier (Loc, Chars (B)))))));
|
7574 |
|
|
|
7575 |
|
|
Rewrite (N,
|
7576 |
|
|
Make_Function_Call (Loc,
|
7577 |
|
|
Name => New_Reference_To (Func_Name, Loc),
|
7578 |
|
|
Parameter_Associations => New_List (Opnd)));
|
7579 |
|
|
|
7580 |
|
|
Analyze_And_Resolve (N, Typ);
|
7581 |
|
|
end Expand_N_Op_Not;
|
7582 |
|
|
|
7583 |
|
|
--------------------
|
7584 |
|
|
-- Expand_N_Op_Or --
|
7585 |
|
|
--------------------
|
7586 |
|
|
|
7587 |
|
|
procedure Expand_N_Op_Or (N : Node_Id) is
|
7588 |
|
|
Typ : constant Entity_Id := Etype (N);
|
7589 |
|
|
|
7590 |
|
|
begin
|
7591 |
|
|
Binary_Op_Validity_Checks (N);
|
7592 |
|
|
|
7593 |
|
|
if Is_Array_Type (Etype (N)) then
|
7594 |
|
|
Expand_Boolean_Operator (N);
|
7595 |
|
|
|
7596 |
|
|
elsif Is_Boolean_Type (Etype (N)) then
|
7597 |
|
|
Adjust_Condition (Left_Opnd (N));
|
7598 |
|
|
Adjust_Condition (Right_Opnd (N));
|
7599 |
|
|
Set_Etype (N, Standard_Boolean);
|
7600 |
|
|
Adjust_Result_Type (N, Typ);
|
7601 |
|
|
|
7602 |
|
|
elsif Is_Intrinsic_Subprogram (Entity (N)) then
|
7603 |
|
|
Expand_Intrinsic_Call (N, Entity (N));
|
7604 |
|
|
|
7605 |
|
|
end if;
|
7606 |
|
|
end Expand_N_Op_Or;
|
7607 |
|
|
|
7608 |
|
|
----------------------
|
7609 |
|
|
-- Expand_N_Op_Plus --
|
7610 |
|
|
----------------------
|
7611 |
|
|
|
7612 |
|
|
procedure Expand_N_Op_Plus (N : Node_Id) is
|
7613 |
|
|
begin
|
7614 |
|
|
Unary_Op_Validity_Checks (N);
|
7615 |
|
|
end Expand_N_Op_Plus;
|
7616 |
|
|
|
7617 |
|
|
---------------------
|
7618 |
|
|
-- Expand_N_Op_Rem --
|
7619 |
|
|
---------------------
|
7620 |
|
|
|
7621 |
|
|
procedure Expand_N_Op_Rem (N : Node_Id) is
|
7622 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
7623 |
|
|
Typ : constant Entity_Id := Etype (N);
|
7624 |
|
|
|
7625 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
7626 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
7627 |
|
|
|
7628 |
|
|
Lo : Uint;
|
7629 |
|
|
Hi : Uint;
|
7630 |
|
|
OK : Boolean;
|
7631 |
|
|
|
7632 |
|
|
Lneg : Boolean;
|
7633 |
|
|
Rneg : Boolean;
|
7634 |
|
|
-- Set if corresponding operand can be negative
|
7635 |
|
|
|
7636 |
|
|
pragma Unreferenced (Hi);
|
7637 |
|
|
|
7638 |
|
|
begin
|
7639 |
|
|
Binary_Op_Validity_Checks (N);
|
7640 |
|
|
|
7641 |
|
|
if Is_Integer_Type (Etype (N)) then
|
7642 |
|
|
Apply_Divide_Check (N);
|
7643 |
|
|
end if;
|
7644 |
|
|
|
7645 |
|
|
-- Apply optimization x rem 1 = 0. We don't really need that with gcc,
|
7646 |
|
|
-- but it is useful with other back ends (e.g. AAMP), and is certainly
|
7647 |
|
|
-- harmless.
|
7648 |
|
|
|
7649 |
|
|
if Is_Integer_Type (Etype (N))
|
7650 |
|
|
and then Compile_Time_Known_Value (Right)
|
7651 |
|
|
and then Expr_Value (Right) = Uint_1
|
7652 |
|
|
then
|
7653 |
|
|
-- Call Remove_Side_Effects to ensure that any side effects in the
|
7654 |
|
|
-- ignored left operand (in particular function calls to user defined
|
7655 |
|
|
-- functions) are properly executed.
|
7656 |
|
|
|
7657 |
|
|
Remove_Side_Effects (Left);
|
7658 |
|
|
|
7659 |
|
|
Rewrite (N, Make_Integer_Literal (Loc, 0));
|
7660 |
|
|
Analyze_And_Resolve (N, Typ);
|
7661 |
|
|
return;
|
7662 |
|
|
end if;
|
7663 |
|
|
|
7664 |
|
|
-- Deal with annoying case of largest negative number remainder minus
|
7665 |
|
|
-- one. Gigi does not handle this case correctly, because it generates
|
7666 |
|
|
-- a divide instruction which may trap in this case.
|
7667 |
|
|
|
7668 |
|
|
-- In fact the check is quite easy, if the right operand is -1, then
|
7669 |
|
|
-- the remainder is always 0, and we can just ignore the left operand
|
7670 |
|
|
-- completely in this case.
|
7671 |
|
|
|
7672 |
|
|
Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
|
7673 |
|
|
Lneg := (not OK) or else Lo < 0;
|
7674 |
|
|
|
7675 |
|
|
Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
|
7676 |
|
|
Rneg := (not OK) or else Lo < 0;
|
7677 |
|
|
|
7678 |
|
|
-- We won't mess with trying to find out if the left operand can really
|
7679 |
|
|
-- be the largest negative number (that's a pain in the case of private
|
7680 |
|
|
-- types and this is really marginal). We will just assume that we need
|
7681 |
|
|
-- the test if the left operand can be negative at all.
|
7682 |
|
|
|
7683 |
|
|
if Lneg and Rneg then
|
7684 |
|
|
Rewrite (N,
|
7685 |
|
|
Make_Conditional_Expression (Loc,
|
7686 |
|
|
Expressions => New_List (
|
7687 |
|
|
Make_Op_Eq (Loc,
|
7688 |
|
|
Left_Opnd => Duplicate_Subexpr (Right),
|
7689 |
|
|
Right_Opnd =>
|
7690 |
|
|
Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
|
7691 |
|
|
|
7692 |
|
|
Unchecked_Convert_To (Typ,
|
7693 |
|
|
Make_Integer_Literal (Loc, Uint_0)),
|
7694 |
|
|
|
7695 |
|
|
Relocate_Node (N))));
|
7696 |
|
|
|
7697 |
|
|
Set_Analyzed (Next (Next (First (Expressions (N)))));
|
7698 |
|
|
Analyze_And_Resolve (N, Typ);
|
7699 |
|
|
end if;
|
7700 |
|
|
end Expand_N_Op_Rem;
|
7701 |
|
|
|
7702 |
|
|
-----------------------------
|
7703 |
|
|
-- Expand_N_Op_Rotate_Left --
|
7704 |
|
|
-----------------------------
|
7705 |
|
|
|
7706 |
|
|
procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
|
7707 |
|
|
begin
|
7708 |
|
|
Binary_Op_Validity_Checks (N);
|
7709 |
|
|
end Expand_N_Op_Rotate_Left;
|
7710 |
|
|
|
7711 |
|
|
------------------------------
|
7712 |
|
|
-- Expand_N_Op_Rotate_Right --
|
7713 |
|
|
------------------------------
|
7714 |
|
|
|
7715 |
|
|
procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
|
7716 |
|
|
begin
|
7717 |
|
|
Binary_Op_Validity_Checks (N);
|
7718 |
|
|
end Expand_N_Op_Rotate_Right;
|
7719 |
|
|
|
7720 |
|
|
----------------------------
|
7721 |
|
|
-- Expand_N_Op_Shift_Left --
|
7722 |
|
|
----------------------------
|
7723 |
|
|
|
7724 |
|
|
procedure Expand_N_Op_Shift_Left (N : Node_Id) is
|
7725 |
|
|
begin
|
7726 |
|
|
Binary_Op_Validity_Checks (N);
|
7727 |
|
|
end Expand_N_Op_Shift_Left;
|
7728 |
|
|
|
7729 |
|
|
-----------------------------
|
7730 |
|
|
-- Expand_N_Op_Shift_Right --
|
7731 |
|
|
-----------------------------
|
7732 |
|
|
|
7733 |
|
|
procedure Expand_N_Op_Shift_Right (N : Node_Id) is
|
7734 |
|
|
begin
|
7735 |
|
|
Binary_Op_Validity_Checks (N);
|
7736 |
|
|
end Expand_N_Op_Shift_Right;
|
7737 |
|
|
|
7738 |
|
|
----------------------------------------
|
7739 |
|
|
-- Expand_N_Op_Shift_Right_Arithmetic --
|
7740 |
|
|
----------------------------------------
|
7741 |
|
|
|
7742 |
|
|
procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
|
7743 |
|
|
begin
|
7744 |
|
|
Binary_Op_Validity_Checks (N);
|
7745 |
|
|
end Expand_N_Op_Shift_Right_Arithmetic;
|
7746 |
|
|
|
7747 |
|
|
--------------------------
|
7748 |
|
|
-- Expand_N_Op_Subtract --
|
7749 |
|
|
--------------------------
|
7750 |
|
|
|
7751 |
|
|
procedure Expand_N_Op_Subtract (N : Node_Id) is
|
7752 |
|
|
Typ : constant Entity_Id := Etype (N);
|
7753 |
|
|
|
7754 |
|
|
begin
|
7755 |
|
|
Binary_Op_Validity_Checks (N);
|
7756 |
|
|
|
7757 |
|
|
-- N - 0 = N for integer types
|
7758 |
|
|
|
7759 |
|
|
if Is_Integer_Type (Typ)
|
7760 |
|
|
and then Compile_Time_Known_Value (Right_Opnd (N))
|
7761 |
|
|
and then Expr_Value (Right_Opnd (N)) = 0
|
7762 |
|
|
then
|
7763 |
|
|
Rewrite (N, Left_Opnd (N));
|
7764 |
|
|
return;
|
7765 |
|
|
end if;
|
7766 |
|
|
|
7767 |
|
|
-- Arithmetic overflow checks for signed integer/fixed point types
|
7768 |
|
|
|
7769 |
|
|
if Is_Signed_Integer_Type (Typ)
|
7770 |
|
|
or else
|
7771 |
|
|
Is_Fixed_Point_Type (Typ)
|
7772 |
|
|
then
|
7773 |
|
|
Apply_Arithmetic_Overflow_Check (N);
|
7774 |
|
|
|
7775 |
|
|
-- VAX floating-point types case
|
7776 |
|
|
|
7777 |
|
|
elsif Vax_Float (Typ) then
|
7778 |
|
|
Expand_Vax_Arith (N);
|
7779 |
|
|
end if;
|
7780 |
|
|
end Expand_N_Op_Subtract;
|
7781 |
|
|
|
7782 |
|
|
---------------------
|
7783 |
|
|
-- Expand_N_Op_Xor --
|
7784 |
|
|
---------------------
|
7785 |
|
|
|
7786 |
|
|
procedure Expand_N_Op_Xor (N : Node_Id) is
|
7787 |
|
|
Typ : constant Entity_Id := Etype (N);
|
7788 |
|
|
|
7789 |
|
|
begin
|
7790 |
|
|
Binary_Op_Validity_Checks (N);
|
7791 |
|
|
|
7792 |
|
|
if Is_Array_Type (Etype (N)) then
|
7793 |
|
|
Expand_Boolean_Operator (N);
|
7794 |
|
|
|
7795 |
|
|
elsif Is_Boolean_Type (Etype (N)) then
|
7796 |
|
|
Adjust_Condition (Left_Opnd (N));
|
7797 |
|
|
Adjust_Condition (Right_Opnd (N));
|
7798 |
|
|
Set_Etype (N, Standard_Boolean);
|
7799 |
|
|
Adjust_Result_Type (N, Typ);
|
7800 |
|
|
|
7801 |
|
|
elsif Is_Intrinsic_Subprogram (Entity (N)) then
|
7802 |
|
|
Expand_Intrinsic_Call (N, Entity (N));
|
7803 |
|
|
|
7804 |
|
|
end if;
|
7805 |
|
|
end Expand_N_Op_Xor;
|
7806 |
|
|
|
7807 |
|
|
----------------------
|
7808 |
|
|
-- Expand_N_Or_Else --
|
7809 |
|
|
----------------------
|
7810 |
|
|
|
7811 |
|
|
procedure Expand_N_Or_Else (N : Node_Id)
|
7812 |
|
|
renames Expand_Short_Circuit_Operator;
|
7813 |
|
|
|
7814 |
|
|
-----------------------------------
|
7815 |
|
|
-- Expand_N_Qualified_Expression --
|
7816 |
|
|
-----------------------------------
|
7817 |
|
|
|
7818 |
|
|
procedure Expand_N_Qualified_Expression (N : Node_Id) is
|
7819 |
|
|
Operand : constant Node_Id := Expression (N);
|
7820 |
|
|
Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
|
7821 |
|
|
|
7822 |
|
|
begin
|
7823 |
|
|
-- Do validity check if validity checking operands
|
7824 |
|
|
|
7825 |
|
|
if Validity_Checks_On
|
7826 |
|
|
and then Validity_Check_Operands
|
7827 |
|
|
then
|
7828 |
|
|
Ensure_Valid (Operand);
|
7829 |
|
|
end if;
|
7830 |
|
|
|
7831 |
|
|
-- Apply possible constraint check
|
7832 |
|
|
|
7833 |
|
|
Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
|
7834 |
|
|
|
7835 |
|
|
if Do_Range_Check (Operand) then
|
7836 |
|
|
Set_Do_Range_Check (Operand, False);
|
7837 |
|
|
Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
|
7838 |
|
|
end if;
|
7839 |
|
|
end Expand_N_Qualified_Expression;
|
7840 |
|
|
|
7841 |
|
|
------------------------------------
|
7842 |
|
|
-- Expand_N_Quantified_Expression --
|
7843 |
|
|
------------------------------------
|
7844 |
|
|
|
7845 |
|
|
-- We expand:
|
7846 |
|
|
|
7847 |
|
|
-- for all X in range => Cond
|
7848 |
|
|
|
7849 |
|
|
-- into:
|
7850 |
|
|
|
7851 |
|
|
-- T := True;
|
7852 |
|
|
-- for X in range loop
|
7853 |
|
|
-- if not Cond then
|
7854 |
|
|
-- T := False;
|
7855 |
|
|
-- exit;
|
7856 |
|
|
-- end if;
|
7857 |
|
|
-- end loop;
|
7858 |
|
|
|
7859 |
|
|
-- Conversely, an existentially quantified expression:
|
7860 |
|
|
|
7861 |
|
|
-- for some X in range => Cond
|
7862 |
|
|
|
7863 |
|
|
-- becomes:
|
7864 |
|
|
|
7865 |
|
|
-- T := False;
|
7866 |
|
|
-- for X in range loop
|
7867 |
|
|
-- if Cond then
|
7868 |
|
|
-- T := True;
|
7869 |
|
|
-- exit;
|
7870 |
|
|
-- end if;
|
7871 |
|
|
-- end loop;
|
7872 |
|
|
|
7873 |
|
|
-- In both cases, the iteration may be over a container in which case it is
|
7874 |
|
|
-- given by an iterator specification, not a loop parameter specification.
|
7875 |
|
|
|
7876 |
|
|
procedure Expand_N_Quantified_Expression (N : Node_Id) is
|
7877 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
7878 |
|
|
Is_Universal : constant Boolean := All_Present (N);
|
7879 |
|
|
Actions : constant List_Id := New_List;
|
7880 |
|
|
Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
|
7881 |
|
|
Cond : Node_Id;
|
7882 |
|
|
Decl : Node_Id;
|
7883 |
|
|
I_Scheme : Node_Id;
|
7884 |
|
|
Test : Node_Id;
|
7885 |
|
|
|
7886 |
|
|
begin
|
7887 |
|
|
Decl :=
|
7888 |
|
|
Make_Object_Declaration (Loc,
|
7889 |
|
|
Defining_Identifier => Tnn,
|
7890 |
|
|
Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
|
7891 |
|
|
Expression =>
|
7892 |
|
|
New_Occurrence_Of (Boolean_Literals (Is_Universal), Loc));
|
7893 |
|
|
Append_To (Actions, Decl);
|
7894 |
|
|
|
7895 |
|
|
Cond := Relocate_Node (Condition (N));
|
7896 |
|
|
|
7897 |
|
|
-- Reset flag analyzed in the condition to force its analysis. Required
|
7898 |
|
|
-- since the previous analysis was done with expansion disabled (see
|
7899 |
|
|
-- Resolve_Quantified_Expression) and hence checks were not inserted
|
7900 |
|
|
-- and record comparisons have not been expanded.
|
7901 |
|
|
|
7902 |
|
|
Reset_Analyzed_Flags (Cond);
|
7903 |
|
|
|
7904 |
|
|
if Is_Universal then
|
7905 |
|
|
Cond := Make_Op_Not (Loc, Cond);
|
7906 |
|
|
end if;
|
7907 |
|
|
|
7908 |
|
|
Test :=
|
7909 |
|
|
Make_Implicit_If_Statement (N,
|
7910 |
|
|
Condition => Cond,
|
7911 |
|
|
Then_Statements => New_List (
|
7912 |
|
|
Make_Assignment_Statement (Loc,
|
7913 |
|
|
Name => New_Occurrence_Of (Tnn, Loc),
|
7914 |
|
|
Expression =>
|
7915 |
|
|
New_Occurrence_Of (Boolean_Literals (not Is_Universal), Loc)),
|
7916 |
|
|
Make_Exit_Statement (Loc)));
|
7917 |
|
|
|
7918 |
|
|
if Present (Loop_Parameter_Specification (N)) then
|
7919 |
|
|
I_Scheme :=
|
7920 |
|
|
Make_Iteration_Scheme (Loc,
|
7921 |
|
|
Loop_Parameter_Specification =>
|
7922 |
|
|
Loop_Parameter_Specification (N));
|
7923 |
|
|
else
|
7924 |
|
|
I_Scheme :=
|
7925 |
|
|
Make_Iteration_Scheme (Loc,
|
7926 |
|
|
Iterator_Specification => Iterator_Specification (N));
|
7927 |
|
|
end if;
|
7928 |
|
|
|
7929 |
|
|
Append_To (Actions,
|
7930 |
|
|
Make_Loop_Statement (Loc,
|
7931 |
|
|
Iteration_Scheme => I_Scheme,
|
7932 |
|
|
Statements => New_List (Test),
|
7933 |
|
|
End_Label => Empty));
|
7934 |
|
|
|
7935 |
|
|
Rewrite (N,
|
7936 |
|
|
Make_Expression_With_Actions (Loc,
|
7937 |
|
|
Expression => New_Occurrence_Of (Tnn, Loc),
|
7938 |
|
|
Actions => Actions));
|
7939 |
|
|
|
7940 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
7941 |
|
|
end Expand_N_Quantified_Expression;
|
7942 |
|
|
|
7943 |
|
|
---------------------------------
|
7944 |
|
|
-- Expand_N_Selected_Component --
|
7945 |
|
|
---------------------------------
|
7946 |
|
|
|
7947 |
|
|
procedure Expand_N_Selected_Component (N : Node_Id) is
|
7948 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
7949 |
|
|
Par : constant Node_Id := Parent (N);
|
7950 |
|
|
P : constant Node_Id := Prefix (N);
|
7951 |
|
|
Ptyp : Entity_Id := Underlying_Type (Etype (P));
|
7952 |
|
|
Disc : Entity_Id;
|
7953 |
|
|
New_N : Node_Id;
|
7954 |
|
|
Dcon : Elmt_Id;
|
7955 |
|
|
Dval : Node_Id;
|
7956 |
|
|
|
7957 |
|
|
function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
|
7958 |
|
|
-- Gigi needs a temporary for prefixes that depend on a discriminant,
|
7959 |
|
|
-- unless the context of an assignment can provide size information.
|
7960 |
|
|
-- Don't we have a general routine that does this???
|
7961 |
|
|
|
7962 |
|
|
function Is_Subtype_Declaration return Boolean;
|
7963 |
|
|
-- The replacement of a discriminant reference by its value is required
|
7964 |
|
|
-- if this is part of the initialization of an temporary generated by a
|
7965 |
|
|
-- change of representation. This shows up as the construction of a
|
7966 |
|
|
-- discriminant constraint for a subtype declared at the same point as
|
7967 |
|
|
-- the entity in the prefix of the selected component. We recognize this
|
7968 |
|
|
-- case when the context of the reference is:
|
7969 |
|
|
-- subtype ST is T(Obj.D);
|
7970 |
|
|
-- where the entity for Obj comes from source, and ST has the same sloc.
|
7971 |
|
|
|
7972 |
|
|
-----------------------
|
7973 |
|
|
-- In_Left_Hand_Side --
|
7974 |
|
|
-----------------------
|
7975 |
|
|
|
7976 |
|
|
function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
|
7977 |
|
|
begin
|
7978 |
|
|
return (Nkind (Parent (Comp)) = N_Assignment_Statement
|
7979 |
|
|
and then Comp = Name (Parent (Comp)))
|
7980 |
|
|
or else (Present (Parent (Comp))
|
7981 |
|
|
and then Nkind (Parent (Comp)) in N_Subexpr
|
7982 |
|
|
and then In_Left_Hand_Side (Parent (Comp)));
|
7983 |
|
|
end In_Left_Hand_Side;
|
7984 |
|
|
|
7985 |
|
|
-----------------------------
|
7986 |
|
|
-- Is_Subtype_Declaration --
|
7987 |
|
|
-----------------------------
|
7988 |
|
|
|
7989 |
|
|
function Is_Subtype_Declaration return Boolean is
|
7990 |
|
|
Par : constant Node_Id := Parent (N);
|
7991 |
|
|
begin
|
7992 |
|
|
return
|
7993 |
|
|
Nkind (Par) = N_Index_Or_Discriminant_Constraint
|
7994 |
|
|
and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
|
7995 |
|
|
and then Comes_From_Source (Entity (Prefix (N)))
|
7996 |
|
|
and then Sloc (Par) = Sloc (Entity (Prefix (N)));
|
7997 |
|
|
end Is_Subtype_Declaration;
|
7998 |
|
|
|
7999 |
|
|
-- Start of processing for Expand_N_Selected_Component
|
8000 |
|
|
|
8001 |
|
|
begin
|
8002 |
|
|
-- Insert explicit dereference if required
|
8003 |
|
|
|
8004 |
|
|
if Is_Access_Type (Ptyp) then
|
8005 |
|
|
|
8006 |
|
|
-- First set prefix type to proper access type, in case it currently
|
8007 |
|
|
-- has a private (non-access) view of this type.
|
8008 |
|
|
|
8009 |
|
|
Set_Etype (P, Ptyp);
|
8010 |
|
|
|
8011 |
|
|
Insert_Explicit_Dereference (P);
|
8012 |
|
|
Analyze_And_Resolve (P, Designated_Type (Ptyp));
|
8013 |
|
|
|
8014 |
|
|
if Ekind (Etype (P)) = E_Private_Subtype
|
8015 |
|
|
and then Is_For_Access_Subtype (Etype (P))
|
8016 |
|
|
then
|
8017 |
|
|
Set_Etype (P, Base_Type (Etype (P)));
|
8018 |
|
|
end if;
|
8019 |
|
|
|
8020 |
|
|
Ptyp := Etype (P);
|
8021 |
|
|
end if;
|
8022 |
|
|
|
8023 |
|
|
-- Deal with discriminant check required
|
8024 |
|
|
|
8025 |
|
|
if Do_Discriminant_Check (N) then
|
8026 |
|
|
|
8027 |
|
|
-- Present the discriminant checking function to the backend, so that
|
8028 |
|
|
-- it can inline the call to the function.
|
8029 |
|
|
|
8030 |
|
|
Add_Inlined_Body
|
8031 |
|
|
(Discriminant_Checking_Func
|
8032 |
|
|
(Original_Record_Component (Entity (Selector_Name (N)))));
|
8033 |
|
|
|
8034 |
|
|
-- Now reset the flag and generate the call
|
8035 |
|
|
|
8036 |
|
|
Set_Do_Discriminant_Check (N, False);
|
8037 |
|
|
Generate_Discriminant_Check (N);
|
8038 |
|
|
end if;
|
8039 |
|
|
|
8040 |
|
|
-- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
|
8041 |
|
|
-- function, then additional actuals must be passed.
|
8042 |
|
|
|
8043 |
|
|
if Ada_Version >= Ada_2005
|
8044 |
|
|
and then Is_Build_In_Place_Function_Call (P)
|
8045 |
|
|
then
|
8046 |
|
|
Make_Build_In_Place_Call_In_Anonymous_Context (P);
|
8047 |
|
|
end if;
|
8048 |
|
|
|
8049 |
|
|
-- Gigi cannot handle unchecked conversions that are the prefix of a
|
8050 |
|
|
-- selected component with discriminants. This must be checked during
|
8051 |
|
|
-- expansion, because during analysis the type of the selector is not
|
8052 |
|
|
-- known at the point the prefix is analyzed. If the conversion is the
|
8053 |
|
|
-- target of an assignment, then we cannot force the evaluation.
|
8054 |
|
|
|
8055 |
|
|
if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
|
8056 |
|
|
and then Has_Discriminants (Etype (N))
|
8057 |
|
|
and then not In_Left_Hand_Side (N)
|
8058 |
|
|
then
|
8059 |
|
|
Force_Evaluation (Prefix (N));
|
8060 |
|
|
end if;
|
8061 |
|
|
|
8062 |
|
|
-- Remaining processing applies only if selector is a discriminant
|
8063 |
|
|
|
8064 |
|
|
if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
|
8065 |
|
|
|
8066 |
|
|
-- If the selector is a discriminant of a constrained record type,
|
8067 |
|
|
-- we may be able to rewrite the expression with the actual value
|
8068 |
|
|
-- of the discriminant, a useful optimization in some cases.
|
8069 |
|
|
|
8070 |
|
|
if Is_Record_Type (Ptyp)
|
8071 |
|
|
and then Has_Discriminants (Ptyp)
|
8072 |
|
|
and then Is_Constrained (Ptyp)
|
8073 |
|
|
then
|
8074 |
|
|
-- Do this optimization for discrete types only, and not for
|
8075 |
|
|
-- access types (access discriminants get us into trouble!)
|
8076 |
|
|
|
8077 |
|
|
if not Is_Discrete_Type (Etype (N)) then
|
8078 |
|
|
null;
|
8079 |
|
|
|
8080 |
|
|
-- Don't do this on the left hand of an assignment statement.
|
8081 |
|
|
-- Normally one would think that references like this would not
|
8082 |
|
|
-- occur, but they do in generated code, and mean that we really
|
8083 |
|
|
-- do want to assign the discriminant!
|
8084 |
|
|
|
8085 |
|
|
elsif Nkind (Par) = N_Assignment_Statement
|
8086 |
|
|
and then Name (Par) = N
|
8087 |
|
|
then
|
8088 |
|
|
null;
|
8089 |
|
|
|
8090 |
|
|
-- Don't do this optimization for the prefix of an attribute or
|
8091 |
|
|
-- the name of an object renaming declaration since these are
|
8092 |
|
|
-- contexts where we do not want the value anyway.
|
8093 |
|
|
|
8094 |
|
|
elsif (Nkind (Par) = N_Attribute_Reference
|
8095 |
|
|
and then Prefix (Par) = N)
|
8096 |
|
|
or else Is_Renamed_Object (N)
|
8097 |
|
|
then
|
8098 |
|
|
null;
|
8099 |
|
|
|
8100 |
|
|
-- Don't do this optimization if we are within the code for a
|
8101 |
|
|
-- discriminant check, since the whole point of such a check may
|
8102 |
|
|
-- be to verify the condition on which the code below depends!
|
8103 |
|
|
|
8104 |
|
|
elsif Is_In_Discriminant_Check (N) then
|
8105 |
|
|
null;
|
8106 |
|
|
|
8107 |
|
|
-- Green light to see if we can do the optimization. There is
|
8108 |
|
|
-- still one condition that inhibits the optimization below but
|
8109 |
|
|
-- now is the time to check the particular discriminant.
|
8110 |
|
|
|
8111 |
|
|
else
|
8112 |
|
|
-- Loop through discriminants to find the matching discriminant
|
8113 |
|
|
-- constraint to see if we can copy it.
|
8114 |
|
|
|
8115 |
|
|
Disc := First_Discriminant (Ptyp);
|
8116 |
|
|
Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
|
8117 |
|
|
Discr_Loop : while Present (Dcon) loop
|
8118 |
|
|
Dval := Node (Dcon);
|
8119 |
|
|
|
8120 |
|
|
-- Check if this is the matching discriminant and if the
|
8121 |
|
|
-- discriminant value is simple enough to make sense to
|
8122 |
|
|
-- copy. We don't want to copy complex expressions, and
|
8123 |
|
|
-- indeed to do so can cause trouble (before we put in
|
8124 |
|
|
-- this guard, a discriminant expression containing an
|
8125 |
|
|
-- AND THEN was copied, causing problems for coverage
|
8126 |
|
|
-- analysis tools).
|
8127 |
|
|
|
8128 |
|
|
-- However, if the reference is part of the initialization
|
8129 |
|
|
-- code generated for an object declaration, we must use
|
8130 |
|
|
-- the discriminant value from the subtype constraint,
|
8131 |
|
|
-- because the selected component may be a reference to the
|
8132 |
|
|
-- object being initialized, whose discriminant is not yet
|
8133 |
|
|
-- set. This only happens in complex cases involving changes
|
8134 |
|
|
-- or representation.
|
8135 |
|
|
|
8136 |
|
|
if Disc = Entity (Selector_Name (N))
|
8137 |
|
|
and then (Is_Entity_Name (Dval)
|
8138 |
|
|
or else Compile_Time_Known_Value (Dval)
|
8139 |
|
|
or else Is_Subtype_Declaration)
|
8140 |
|
|
then
|
8141 |
|
|
-- Here we have the matching discriminant. Check for
|
8142 |
|
|
-- the case of a discriminant of a component that is
|
8143 |
|
|
-- constrained by an outer discriminant, which cannot
|
8144 |
|
|
-- be optimized away.
|
8145 |
|
|
|
8146 |
|
|
if Denotes_Discriminant
|
8147 |
|
|
(Dval, Check_Concurrent => True)
|
8148 |
|
|
then
|
8149 |
|
|
exit Discr_Loop;
|
8150 |
|
|
|
8151 |
|
|
elsif Nkind (Original_Node (Dval)) = N_Selected_Component
|
8152 |
|
|
and then
|
8153 |
|
|
Denotes_Discriminant
|
8154 |
|
|
(Selector_Name (Original_Node (Dval)), True)
|
8155 |
|
|
then
|
8156 |
|
|
exit Discr_Loop;
|
8157 |
|
|
|
8158 |
|
|
-- Do not retrieve value if constraint is not static. It
|
8159 |
|
|
-- is generally not useful, and the constraint may be a
|
8160 |
|
|
-- rewritten outer discriminant in which case it is in
|
8161 |
|
|
-- fact incorrect.
|
8162 |
|
|
|
8163 |
|
|
elsif Is_Entity_Name (Dval)
|
8164 |
|
|
and then Nkind (Parent (Entity (Dval))) =
|
8165 |
|
|
N_Object_Declaration
|
8166 |
|
|
and then Present (Expression (Parent (Entity (Dval))))
|
8167 |
|
|
and then
|
8168 |
|
|
not Is_Static_Expression
|
8169 |
|
|
(Expression (Parent (Entity (Dval))))
|
8170 |
|
|
then
|
8171 |
|
|
exit Discr_Loop;
|
8172 |
|
|
|
8173 |
|
|
-- In the context of a case statement, the expression may
|
8174 |
|
|
-- have the base type of the discriminant, and we need to
|
8175 |
|
|
-- preserve the constraint to avoid spurious errors on
|
8176 |
|
|
-- missing cases.
|
8177 |
|
|
|
8178 |
|
|
elsif Nkind (Parent (N)) = N_Case_Statement
|
8179 |
|
|
and then Etype (Dval) /= Etype (Disc)
|
8180 |
|
|
then
|
8181 |
|
|
Rewrite (N,
|
8182 |
|
|
Make_Qualified_Expression (Loc,
|
8183 |
|
|
Subtype_Mark =>
|
8184 |
|
|
New_Occurrence_Of (Etype (Disc), Loc),
|
8185 |
|
|
Expression =>
|
8186 |
|
|
New_Copy_Tree (Dval)));
|
8187 |
|
|
Analyze_And_Resolve (N, Etype (Disc));
|
8188 |
|
|
|
8189 |
|
|
-- In case that comes out as a static expression,
|
8190 |
|
|
-- reset it (a selected component is never static).
|
8191 |
|
|
|
8192 |
|
|
Set_Is_Static_Expression (N, False);
|
8193 |
|
|
return;
|
8194 |
|
|
|
8195 |
|
|
-- Otherwise we can just copy the constraint, but the
|
8196 |
|
|
-- result is certainly not static! In some cases the
|
8197 |
|
|
-- discriminant constraint has been analyzed in the
|
8198 |
|
|
-- context of the original subtype indication, but for
|
8199 |
|
|
-- itypes the constraint might not have been analyzed
|
8200 |
|
|
-- yet, and this must be done now.
|
8201 |
|
|
|
8202 |
|
|
else
|
8203 |
|
|
Rewrite (N, New_Copy_Tree (Dval));
|
8204 |
|
|
Analyze_And_Resolve (N);
|
8205 |
|
|
Set_Is_Static_Expression (N, False);
|
8206 |
|
|
return;
|
8207 |
|
|
end if;
|
8208 |
|
|
end if;
|
8209 |
|
|
|
8210 |
|
|
Next_Elmt (Dcon);
|
8211 |
|
|
Next_Discriminant (Disc);
|
8212 |
|
|
end loop Discr_Loop;
|
8213 |
|
|
|
8214 |
|
|
-- Note: the above loop should always find a matching
|
8215 |
|
|
-- discriminant, but if it does not, we just missed an
|
8216 |
|
|
-- optimization due to some glitch (perhaps a previous
|
8217 |
|
|
-- error), so ignore.
|
8218 |
|
|
|
8219 |
|
|
end if;
|
8220 |
|
|
end if;
|
8221 |
|
|
|
8222 |
|
|
-- The only remaining processing is in the case of a discriminant of
|
8223 |
|
|
-- a concurrent object, where we rewrite the prefix to denote the
|
8224 |
|
|
-- corresponding record type. If the type is derived and has renamed
|
8225 |
|
|
-- discriminants, use corresponding discriminant, which is the one
|
8226 |
|
|
-- that appears in the corresponding record.
|
8227 |
|
|
|
8228 |
|
|
if not Is_Concurrent_Type (Ptyp) then
|
8229 |
|
|
return;
|
8230 |
|
|
end if;
|
8231 |
|
|
|
8232 |
|
|
Disc := Entity (Selector_Name (N));
|
8233 |
|
|
|
8234 |
|
|
if Is_Derived_Type (Ptyp)
|
8235 |
|
|
and then Present (Corresponding_Discriminant (Disc))
|
8236 |
|
|
then
|
8237 |
|
|
Disc := Corresponding_Discriminant (Disc);
|
8238 |
|
|
end if;
|
8239 |
|
|
|
8240 |
|
|
New_N :=
|
8241 |
|
|
Make_Selected_Component (Loc,
|
8242 |
|
|
Prefix =>
|
8243 |
|
|
Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
|
8244 |
|
|
New_Copy_Tree (P)),
|
8245 |
|
|
Selector_Name => Make_Identifier (Loc, Chars (Disc)));
|
8246 |
|
|
|
8247 |
|
|
Rewrite (N, New_N);
|
8248 |
|
|
Analyze (N);
|
8249 |
|
|
end if;
|
8250 |
|
|
|
8251 |
|
|
-- Set Atomic_Sync_Required if necessary for atomic component
|
8252 |
|
|
|
8253 |
|
|
if Nkind (N) = N_Selected_Component then
|
8254 |
|
|
declare
|
8255 |
|
|
E : constant Entity_Id := Entity (Selector_Name (N));
|
8256 |
|
|
Set : Boolean;
|
8257 |
|
|
|
8258 |
|
|
begin
|
8259 |
|
|
-- If component is atomic, but type is not, setting depends on
|
8260 |
|
|
-- disable/enable state for the component.
|
8261 |
|
|
|
8262 |
|
|
if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
|
8263 |
|
|
Set := not Atomic_Synchronization_Disabled (E);
|
8264 |
|
|
|
8265 |
|
|
-- If component is not atomic, but its type is atomic, setting
|
8266 |
|
|
-- depends on disable/enable state for the type.
|
8267 |
|
|
|
8268 |
|
|
elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
|
8269 |
|
|
Set := not Atomic_Synchronization_Disabled (Etype (E));
|
8270 |
|
|
|
8271 |
|
|
-- If both component and type are atomic, we disable if either
|
8272 |
|
|
-- component or its type have sync disabled.
|
8273 |
|
|
|
8274 |
|
|
elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
|
8275 |
|
|
Set := (not Atomic_Synchronization_Disabled (E))
|
8276 |
|
|
and then
|
8277 |
|
|
(not Atomic_Synchronization_Disabled (Etype (E)));
|
8278 |
|
|
|
8279 |
|
|
else
|
8280 |
|
|
Set := False;
|
8281 |
|
|
end if;
|
8282 |
|
|
|
8283 |
|
|
-- Set flag if required
|
8284 |
|
|
|
8285 |
|
|
if Set then
|
8286 |
|
|
Activate_Atomic_Synchronization (N);
|
8287 |
|
|
end if;
|
8288 |
|
|
end;
|
8289 |
|
|
end if;
|
8290 |
|
|
end Expand_N_Selected_Component;
|
8291 |
|
|
|
8292 |
|
|
--------------------
|
8293 |
|
|
-- Expand_N_Slice --
|
8294 |
|
|
--------------------
|
8295 |
|
|
|
8296 |
|
|
procedure Expand_N_Slice (N : Node_Id) is
|
8297 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
8298 |
|
|
Typ : constant Entity_Id := Etype (N);
|
8299 |
|
|
Pfx : constant Node_Id := Prefix (N);
|
8300 |
|
|
Ptp : Entity_Id := Etype (Pfx);
|
8301 |
|
|
|
8302 |
|
|
function Is_Procedure_Actual (N : Node_Id) return Boolean;
|
8303 |
|
|
-- Check whether the argument is an actual for a procedure call, in
|
8304 |
|
|
-- which case the expansion of a bit-packed slice is deferred until the
|
8305 |
|
|
-- call itself is expanded. The reason this is required is that we might
|
8306 |
|
|
-- have an IN OUT or OUT parameter, and the copy out is essential, and
|
8307 |
|
|
-- that copy out would be missed if we created a temporary here in
|
8308 |
|
|
-- Expand_N_Slice. Note that we don't bother to test specifically for an
|
8309 |
|
|
-- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
|
8310 |
|
|
-- is harmless to defer expansion in the IN case, since the call
|
8311 |
|
|
-- processing will still generate the appropriate copy in operation,
|
8312 |
|
|
-- which will take care of the slice.
|
8313 |
|
|
|
8314 |
|
|
procedure Make_Temporary_For_Slice;
|
8315 |
|
|
-- Create a named variable for the value of the slice, in cases where
|
8316 |
|
|
-- the back-end cannot handle it properly, e.g. when packed types or
|
8317 |
|
|
-- unaligned slices are involved.
|
8318 |
|
|
|
8319 |
|
|
-------------------------
|
8320 |
|
|
-- Is_Procedure_Actual --
|
8321 |
|
|
-------------------------
|
8322 |
|
|
|
8323 |
|
|
function Is_Procedure_Actual (N : Node_Id) return Boolean is
|
8324 |
|
|
Par : Node_Id := Parent (N);
|
8325 |
|
|
|
8326 |
|
|
begin
|
8327 |
|
|
loop
|
8328 |
|
|
-- If our parent is a procedure call we can return
|
8329 |
|
|
|
8330 |
|
|
if Nkind (Par) = N_Procedure_Call_Statement then
|
8331 |
|
|
return True;
|
8332 |
|
|
|
8333 |
|
|
-- If our parent is a type conversion, keep climbing the tree,
|
8334 |
|
|
-- since a type conversion can be a procedure actual. Also keep
|
8335 |
|
|
-- climbing if parameter association or a qualified expression,
|
8336 |
|
|
-- since these are additional cases that do can appear on
|
8337 |
|
|
-- procedure actuals.
|
8338 |
|
|
|
8339 |
|
|
elsif Nkind_In (Par, N_Type_Conversion,
|
8340 |
|
|
N_Parameter_Association,
|
8341 |
|
|
N_Qualified_Expression)
|
8342 |
|
|
then
|
8343 |
|
|
Par := Parent (Par);
|
8344 |
|
|
|
8345 |
|
|
-- Any other case is not what we are looking for
|
8346 |
|
|
|
8347 |
|
|
else
|
8348 |
|
|
return False;
|
8349 |
|
|
end if;
|
8350 |
|
|
end loop;
|
8351 |
|
|
end Is_Procedure_Actual;
|
8352 |
|
|
|
8353 |
|
|
------------------------------
|
8354 |
|
|
-- Make_Temporary_For_Slice --
|
8355 |
|
|
------------------------------
|
8356 |
|
|
|
8357 |
|
|
procedure Make_Temporary_For_Slice is
|
8358 |
|
|
Decl : Node_Id;
|
8359 |
|
|
Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
|
8360 |
|
|
|
8361 |
|
|
begin
|
8362 |
|
|
Decl :=
|
8363 |
|
|
Make_Object_Declaration (Loc,
|
8364 |
|
|
Defining_Identifier => Ent,
|
8365 |
|
|
Object_Definition => New_Occurrence_Of (Typ, Loc));
|
8366 |
|
|
|
8367 |
|
|
Set_No_Initialization (Decl);
|
8368 |
|
|
|
8369 |
|
|
Insert_Actions (N, New_List (
|
8370 |
|
|
Decl,
|
8371 |
|
|
Make_Assignment_Statement (Loc,
|
8372 |
|
|
Name => New_Occurrence_Of (Ent, Loc),
|
8373 |
|
|
Expression => Relocate_Node (N))));
|
8374 |
|
|
|
8375 |
|
|
Rewrite (N, New_Occurrence_Of (Ent, Loc));
|
8376 |
|
|
Analyze_And_Resolve (N, Typ);
|
8377 |
|
|
end Make_Temporary_For_Slice;
|
8378 |
|
|
|
8379 |
|
|
-- Start of processing for Expand_N_Slice
|
8380 |
|
|
|
8381 |
|
|
begin
|
8382 |
|
|
-- Special handling for access types
|
8383 |
|
|
|
8384 |
|
|
if Is_Access_Type (Ptp) then
|
8385 |
|
|
|
8386 |
|
|
Ptp := Designated_Type (Ptp);
|
8387 |
|
|
|
8388 |
|
|
Rewrite (Pfx,
|
8389 |
|
|
Make_Explicit_Dereference (Sloc (N),
|
8390 |
|
|
Prefix => Relocate_Node (Pfx)));
|
8391 |
|
|
|
8392 |
|
|
Analyze_And_Resolve (Pfx, Ptp);
|
8393 |
|
|
end if;
|
8394 |
|
|
|
8395 |
|
|
-- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
|
8396 |
|
|
-- function, then additional actuals must be passed.
|
8397 |
|
|
|
8398 |
|
|
if Ada_Version >= Ada_2005
|
8399 |
|
|
and then Is_Build_In_Place_Function_Call (Pfx)
|
8400 |
|
|
then
|
8401 |
|
|
Make_Build_In_Place_Call_In_Anonymous_Context (Pfx);
|
8402 |
|
|
end if;
|
8403 |
|
|
|
8404 |
|
|
-- The remaining case to be handled is packed slices. We can leave
|
8405 |
|
|
-- packed slices as they are in the following situations:
|
8406 |
|
|
|
8407 |
|
|
-- 1. Right or left side of an assignment (we can handle this
|
8408 |
|
|
-- situation correctly in the assignment statement expansion).
|
8409 |
|
|
|
8410 |
|
|
-- 2. Prefix of indexed component (the slide is optimized away in this
|
8411 |
|
|
-- case, see the start of Expand_N_Slice.)
|
8412 |
|
|
|
8413 |
|
|
-- 3. Object renaming declaration, since we want the name of the
|
8414 |
|
|
-- slice, not the value.
|
8415 |
|
|
|
8416 |
|
|
-- 4. Argument to procedure call, since copy-in/copy-out handling may
|
8417 |
|
|
-- be required, and this is handled in the expansion of call
|
8418 |
|
|
-- itself.
|
8419 |
|
|
|
8420 |
|
|
-- 5. Prefix of an address attribute (this is an error which is caught
|
8421 |
|
|
-- elsewhere, and the expansion would interfere with generating the
|
8422 |
|
|
-- error message).
|
8423 |
|
|
|
8424 |
|
|
if not Is_Packed (Typ) then
|
8425 |
|
|
|
8426 |
|
|
-- Apply transformation for actuals of a function call, where
|
8427 |
|
|
-- Expand_Actuals is not used.
|
8428 |
|
|
|
8429 |
|
|
if Nkind (Parent (N)) = N_Function_Call
|
8430 |
|
|
and then Is_Possibly_Unaligned_Slice (N)
|
8431 |
|
|
then
|
8432 |
|
|
Make_Temporary_For_Slice;
|
8433 |
|
|
end if;
|
8434 |
|
|
|
8435 |
|
|
elsif Nkind (Parent (N)) = N_Assignment_Statement
|
8436 |
|
|
or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
|
8437 |
|
|
and then Parent (N) = Name (Parent (Parent (N))))
|
8438 |
|
|
then
|
8439 |
|
|
return;
|
8440 |
|
|
|
8441 |
|
|
elsif Nkind (Parent (N)) = N_Indexed_Component
|
8442 |
|
|
or else Is_Renamed_Object (N)
|
8443 |
|
|
or else Is_Procedure_Actual (N)
|
8444 |
|
|
then
|
8445 |
|
|
return;
|
8446 |
|
|
|
8447 |
|
|
elsif Nkind (Parent (N)) = N_Attribute_Reference
|
8448 |
|
|
and then Attribute_Name (Parent (N)) = Name_Address
|
8449 |
|
|
then
|
8450 |
|
|
return;
|
8451 |
|
|
|
8452 |
|
|
else
|
8453 |
|
|
Make_Temporary_For_Slice;
|
8454 |
|
|
end if;
|
8455 |
|
|
end Expand_N_Slice;
|
8456 |
|
|
|
8457 |
|
|
------------------------------
|
8458 |
|
|
-- Expand_N_Type_Conversion --
|
8459 |
|
|
------------------------------
|
8460 |
|
|
|
8461 |
|
|
procedure Expand_N_Type_Conversion (N : Node_Id) is
|
8462 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
8463 |
|
|
Operand : constant Node_Id := Expression (N);
|
8464 |
|
|
Target_Type : constant Entity_Id := Etype (N);
|
8465 |
|
|
Operand_Type : Entity_Id := Etype (Operand);
|
8466 |
|
|
|
8467 |
|
|
procedure Handle_Changed_Representation;
|
8468 |
|
|
-- This is called in the case of record and array type conversions to
|
8469 |
|
|
-- see if there is a change of representation to be handled. Change of
|
8470 |
|
|
-- representation is actually handled at the assignment statement level,
|
8471 |
|
|
-- and what this procedure does is rewrite node N conversion as an
|
8472 |
|
|
-- assignment to temporary. If there is no change of representation,
|
8473 |
|
|
-- then the conversion node is unchanged.
|
8474 |
|
|
|
8475 |
|
|
procedure Raise_Accessibility_Error;
|
8476 |
|
|
-- Called when we know that an accessibility check will fail. Rewrites
|
8477 |
|
|
-- node N to an appropriate raise statement and outputs warning msgs.
|
8478 |
|
|
-- The Etype of the raise node is set to Target_Type.
|
8479 |
|
|
|
8480 |
|
|
procedure Real_Range_Check;
|
8481 |
|
|
-- Handles generation of range check for real target value
|
8482 |
|
|
|
8483 |
|
|
function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
|
8484 |
|
|
-- True iff Present (Effective_Extra_Accessibility (Id)) successfully
|
8485 |
|
|
-- evaluates to True.
|
8486 |
|
|
|
8487 |
|
|
-----------------------------------
|
8488 |
|
|
-- Handle_Changed_Representation --
|
8489 |
|
|
-----------------------------------
|
8490 |
|
|
|
8491 |
|
|
procedure Handle_Changed_Representation is
|
8492 |
|
|
Temp : Entity_Id;
|
8493 |
|
|
Decl : Node_Id;
|
8494 |
|
|
Odef : Node_Id;
|
8495 |
|
|
Disc : Node_Id;
|
8496 |
|
|
N_Ix : Node_Id;
|
8497 |
|
|
Cons : List_Id;
|
8498 |
|
|
|
8499 |
|
|
begin
|
8500 |
|
|
-- Nothing else to do if no change of representation
|
8501 |
|
|
|
8502 |
|
|
if Same_Representation (Operand_Type, Target_Type) then
|
8503 |
|
|
return;
|
8504 |
|
|
|
8505 |
|
|
-- The real change of representation work is done by the assignment
|
8506 |
|
|
-- statement processing. So if this type conversion is appearing as
|
8507 |
|
|
-- the expression of an assignment statement, nothing needs to be
|
8508 |
|
|
-- done to the conversion.
|
8509 |
|
|
|
8510 |
|
|
elsif Nkind (Parent (N)) = N_Assignment_Statement then
|
8511 |
|
|
return;
|
8512 |
|
|
|
8513 |
|
|
-- Otherwise we need to generate a temporary variable, and do the
|
8514 |
|
|
-- change of representation assignment into that temporary variable.
|
8515 |
|
|
-- The conversion is then replaced by a reference to this variable.
|
8516 |
|
|
|
8517 |
|
|
else
|
8518 |
|
|
Cons := No_List;
|
8519 |
|
|
|
8520 |
|
|
-- If type is unconstrained we have to add a constraint, copied
|
8521 |
|
|
-- from the actual value of the left hand side.
|
8522 |
|
|
|
8523 |
|
|
if not Is_Constrained (Target_Type) then
|
8524 |
|
|
if Has_Discriminants (Operand_Type) then
|
8525 |
|
|
Disc := First_Discriminant (Operand_Type);
|
8526 |
|
|
|
8527 |
|
|
if Disc /= First_Stored_Discriminant (Operand_Type) then
|
8528 |
|
|
Disc := First_Stored_Discriminant (Operand_Type);
|
8529 |
|
|
end if;
|
8530 |
|
|
|
8531 |
|
|
Cons := New_List;
|
8532 |
|
|
while Present (Disc) loop
|
8533 |
|
|
Append_To (Cons,
|
8534 |
|
|
Make_Selected_Component (Loc,
|
8535 |
|
|
Prefix =>
|
8536 |
|
|
Duplicate_Subexpr_Move_Checks (Operand),
|
8537 |
|
|
Selector_Name =>
|
8538 |
|
|
Make_Identifier (Loc, Chars (Disc))));
|
8539 |
|
|
Next_Discriminant (Disc);
|
8540 |
|
|
end loop;
|
8541 |
|
|
|
8542 |
|
|
elsif Is_Array_Type (Operand_Type) then
|
8543 |
|
|
N_Ix := First_Index (Target_Type);
|
8544 |
|
|
Cons := New_List;
|
8545 |
|
|
|
8546 |
|
|
for J in 1 .. Number_Dimensions (Operand_Type) loop
|
8547 |
|
|
|
8548 |
|
|
-- We convert the bounds explicitly. We use an unchecked
|
8549 |
|
|
-- conversion because bounds checks are done elsewhere.
|
8550 |
|
|
|
8551 |
|
|
Append_To (Cons,
|
8552 |
|
|
Make_Range (Loc,
|
8553 |
|
|
Low_Bound =>
|
8554 |
|
|
Unchecked_Convert_To (Etype (N_Ix),
|
8555 |
|
|
Make_Attribute_Reference (Loc,
|
8556 |
|
|
Prefix =>
|
8557 |
|
|
Duplicate_Subexpr_No_Checks
|
8558 |
|
|
(Operand, Name_Req => True),
|
8559 |
|
|
Attribute_Name => Name_First,
|
8560 |
|
|
Expressions => New_List (
|
8561 |
|
|
Make_Integer_Literal (Loc, J)))),
|
8562 |
|
|
|
8563 |
|
|
High_Bound =>
|
8564 |
|
|
Unchecked_Convert_To (Etype (N_Ix),
|
8565 |
|
|
Make_Attribute_Reference (Loc,
|
8566 |
|
|
Prefix =>
|
8567 |
|
|
Duplicate_Subexpr_No_Checks
|
8568 |
|
|
(Operand, Name_Req => True),
|
8569 |
|
|
Attribute_Name => Name_Last,
|
8570 |
|
|
Expressions => New_List (
|
8571 |
|
|
Make_Integer_Literal (Loc, J))))));
|
8572 |
|
|
|
8573 |
|
|
Next_Index (N_Ix);
|
8574 |
|
|
end loop;
|
8575 |
|
|
end if;
|
8576 |
|
|
end if;
|
8577 |
|
|
|
8578 |
|
|
Odef := New_Occurrence_Of (Target_Type, Loc);
|
8579 |
|
|
|
8580 |
|
|
if Present (Cons) then
|
8581 |
|
|
Odef :=
|
8582 |
|
|
Make_Subtype_Indication (Loc,
|
8583 |
|
|
Subtype_Mark => Odef,
|
8584 |
|
|
Constraint =>
|
8585 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
8586 |
|
|
Constraints => Cons));
|
8587 |
|
|
end if;
|
8588 |
|
|
|
8589 |
|
|
Temp := Make_Temporary (Loc, 'C');
|
8590 |
|
|
Decl :=
|
8591 |
|
|
Make_Object_Declaration (Loc,
|
8592 |
|
|
Defining_Identifier => Temp,
|
8593 |
|
|
Object_Definition => Odef);
|
8594 |
|
|
|
8595 |
|
|
Set_No_Initialization (Decl, True);
|
8596 |
|
|
|
8597 |
|
|
-- Insert required actions. It is essential to suppress checks
|
8598 |
|
|
-- since we have suppressed default initialization, which means
|
8599 |
|
|
-- that the variable we create may have no discriminants.
|
8600 |
|
|
|
8601 |
|
|
Insert_Actions (N,
|
8602 |
|
|
New_List (
|
8603 |
|
|
Decl,
|
8604 |
|
|
Make_Assignment_Statement (Loc,
|
8605 |
|
|
Name => New_Occurrence_Of (Temp, Loc),
|
8606 |
|
|
Expression => Relocate_Node (N))),
|
8607 |
|
|
Suppress => All_Checks);
|
8608 |
|
|
|
8609 |
|
|
Rewrite (N, New_Occurrence_Of (Temp, Loc));
|
8610 |
|
|
return;
|
8611 |
|
|
end if;
|
8612 |
|
|
end Handle_Changed_Representation;
|
8613 |
|
|
|
8614 |
|
|
-------------------------------
|
8615 |
|
|
-- Raise_Accessibility_Error --
|
8616 |
|
|
-------------------------------
|
8617 |
|
|
|
8618 |
|
|
procedure Raise_Accessibility_Error is
|
8619 |
|
|
begin
|
8620 |
|
|
Rewrite (N,
|
8621 |
|
|
Make_Raise_Program_Error (Sloc (N),
|
8622 |
|
|
Reason => PE_Accessibility_Check_Failed));
|
8623 |
|
|
Set_Etype (N, Target_Type);
|
8624 |
|
|
|
8625 |
|
|
Error_Msg_N ("?accessibility check failure", N);
|
8626 |
|
|
Error_Msg_NE
|
8627 |
|
|
("\?& will be raised at run time", N, Standard_Program_Error);
|
8628 |
|
|
end Raise_Accessibility_Error;
|
8629 |
|
|
|
8630 |
|
|
----------------------
|
8631 |
|
|
-- Real_Range_Check --
|
8632 |
|
|
----------------------
|
8633 |
|
|
|
8634 |
|
|
-- Case of conversions to floating-point or fixed-point. If range checks
|
8635 |
|
|
-- are enabled and the target type has a range constraint, we convert:
|
8636 |
|
|
|
8637 |
|
|
-- typ (x)
|
8638 |
|
|
|
8639 |
|
|
-- to
|
8640 |
|
|
|
8641 |
|
|
-- Tnn : typ'Base := typ'Base (x);
|
8642 |
|
|
-- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
|
8643 |
|
|
-- Tnn
|
8644 |
|
|
|
8645 |
|
|
-- This is necessary when there is a conversion of integer to float or
|
8646 |
|
|
-- to fixed-point to ensure that the correct checks are made. It is not
|
8647 |
|
|
-- necessary for float to float where it is enough to simply set the
|
8648 |
|
|
-- Do_Range_Check flag.
|
8649 |
|
|
|
8650 |
|
|
procedure Real_Range_Check is
|
8651 |
|
|
Btyp : constant Entity_Id := Base_Type (Target_Type);
|
8652 |
|
|
Lo : constant Node_Id := Type_Low_Bound (Target_Type);
|
8653 |
|
|
Hi : constant Node_Id := Type_High_Bound (Target_Type);
|
8654 |
|
|
Xtyp : constant Entity_Id := Etype (Operand);
|
8655 |
|
|
Conv : Node_Id;
|
8656 |
|
|
Tnn : Entity_Id;
|
8657 |
|
|
|
8658 |
|
|
begin
|
8659 |
|
|
-- Nothing to do if conversion was rewritten
|
8660 |
|
|
|
8661 |
|
|
if Nkind (N) /= N_Type_Conversion then
|
8662 |
|
|
return;
|
8663 |
|
|
end if;
|
8664 |
|
|
|
8665 |
|
|
-- Nothing to do if range checks suppressed, or target has the same
|
8666 |
|
|
-- range as the base type (or is the base type).
|
8667 |
|
|
|
8668 |
|
|
if Range_Checks_Suppressed (Target_Type)
|
8669 |
|
|
or else (Lo = Type_Low_Bound (Btyp)
|
8670 |
|
|
and then
|
8671 |
|
|
Hi = Type_High_Bound (Btyp))
|
8672 |
|
|
then
|
8673 |
|
|
return;
|
8674 |
|
|
end if;
|
8675 |
|
|
|
8676 |
|
|
-- Nothing to do if expression is an entity on which checks have been
|
8677 |
|
|
-- suppressed.
|
8678 |
|
|
|
8679 |
|
|
if Is_Entity_Name (Operand)
|
8680 |
|
|
and then Range_Checks_Suppressed (Entity (Operand))
|
8681 |
|
|
then
|
8682 |
|
|
return;
|
8683 |
|
|
end if;
|
8684 |
|
|
|
8685 |
|
|
-- Nothing to do if bounds are all static and we can tell that the
|
8686 |
|
|
-- expression is within the bounds of the target. Note that if the
|
8687 |
|
|
-- operand is of an unconstrained floating-point type, then we do
|
8688 |
|
|
-- not trust it to be in range (might be infinite)
|
8689 |
|
|
|
8690 |
|
|
declare
|
8691 |
|
|
S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
|
8692 |
|
|
S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
|
8693 |
|
|
|
8694 |
|
|
begin
|
8695 |
|
|
if (not Is_Floating_Point_Type (Xtyp)
|
8696 |
|
|
or else Is_Constrained (Xtyp))
|
8697 |
|
|
and then Compile_Time_Known_Value (S_Lo)
|
8698 |
|
|
and then Compile_Time_Known_Value (S_Hi)
|
8699 |
|
|
and then Compile_Time_Known_Value (Hi)
|
8700 |
|
|
and then Compile_Time_Known_Value (Lo)
|
8701 |
|
|
then
|
8702 |
|
|
declare
|
8703 |
|
|
D_Lov : constant Ureal := Expr_Value_R (Lo);
|
8704 |
|
|
D_Hiv : constant Ureal := Expr_Value_R (Hi);
|
8705 |
|
|
S_Lov : Ureal;
|
8706 |
|
|
S_Hiv : Ureal;
|
8707 |
|
|
|
8708 |
|
|
begin
|
8709 |
|
|
if Is_Real_Type (Xtyp) then
|
8710 |
|
|
S_Lov := Expr_Value_R (S_Lo);
|
8711 |
|
|
S_Hiv := Expr_Value_R (S_Hi);
|
8712 |
|
|
else
|
8713 |
|
|
S_Lov := UR_From_Uint (Expr_Value (S_Lo));
|
8714 |
|
|
S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
|
8715 |
|
|
end if;
|
8716 |
|
|
|
8717 |
|
|
if D_Hiv > D_Lov
|
8718 |
|
|
and then S_Lov >= D_Lov
|
8719 |
|
|
and then S_Hiv <= D_Hiv
|
8720 |
|
|
then
|
8721 |
|
|
Set_Do_Range_Check (Operand, False);
|
8722 |
|
|
return;
|
8723 |
|
|
end if;
|
8724 |
|
|
end;
|
8725 |
|
|
end if;
|
8726 |
|
|
end;
|
8727 |
|
|
|
8728 |
|
|
-- For float to float conversions, we are done
|
8729 |
|
|
|
8730 |
|
|
if Is_Floating_Point_Type (Xtyp)
|
8731 |
|
|
and then
|
8732 |
|
|
Is_Floating_Point_Type (Btyp)
|
8733 |
|
|
then
|
8734 |
|
|
return;
|
8735 |
|
|
end if;
|
8736 |
|
|
|
8737 |
|
|
-- Otherwise rewrite the conversion as described above
|
8738 |
|
|
|
8739 |
|
|
Conv := Relocate_Node (N);
|
8740 |
|
|
Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
|
8741 |
|
|
Set_Etype (Conv, Btyp);
|
8742 |
|
|
|
8743 |
|
|
-- Enable overflow except for case of integer to float conversions,
|
8744 |
|
|
-- where it is never required, since we can never have overflow in
|
8745 |
|
|
-- this case.
|
8746 |
|
|
|
8747 |
|
|
if not Is_Integer_Type (Etype (Operand)) then
|
8748 |
|
|
Enable_Overflow_Check (Conv);
|
8749 |
|
|
end if;
|
8750 |
|
|
|
8751 |
|
|
Tnn := Make_Temporary (Loc, 'T', Conv);
|
8752 |
|
|
|
8753 |
|
|
Insert_Actions (N, New_List (
|
8754 |
|
|
Make_Object_Declaration (Loc,
|
8755 |
|
|
Defining_Identifier => Tnn,
|
8756 |
|
|
Object_Definition => New_Occurrence_Of (Btyp, Loc),
|
8757 |
|
|
Constant_Present => True,
|
8758 |
|
|
Expression => Conv),
|
8759 |
|
|
|
8760 |
|
|
Make_Raise_Constraint_Error (Loc,
|
8761 |
|
|
Condition =>
|
8762 |
|
|
Make_Or_Else (Loc,
|
8763 |
|
|
Left_Opnd =>
|
8764 |
|
|
Make_Op_Lt (Loc,
|
8765 |
|
|
Left_Opnd => New_Occurrence_Of (Tnn, Loc),
|
8766 |
|
|
Right_Opnd =>
|
8767 |
|
|
Make_Attribute_Reference (Loc,
|
8768 |
|
|
Attribute_Name => Name_First,
|
8769 |
|
|
Prefix =>
|
8770 |
|
|
New_Occurrence_Of (Target_Type, Loc))),
|
8771 |
|
|
|
8772 |
|
|
Right_Opnd =>
|
8773 |
|
|
Make_Op_Gt (Loc,
|
8774 |
|
|
Left_Opnd => New_Occurrence_Of (Tnn, Loc),
|
8775 |
|
|
Right_Opnd =>
|
8776 |
|
|
Make_Attribute_Reference (Loc,
|
8777 |
|
|
Attribute_Name => Name_Last,
|
8778 |
|
|
Prefix =>
|
8779 |
|
|
New_Occurrence_Of (Target_Type, Loc)))),
|
8780 |
|
|
Reason => CE_Range_Check_Failed)));
|
8781 |
|
|
|
8782 |
|
|
Rewrite (N, New_Occurrence_Of (Tnn, Loc));
|
8783 |
|
|
Analyze_And_Resolve (N, Btyp);
|
8784 |
|
|
end Real_Range_Check;
|
8785 |
|
|
|
8786 |
|
|
-----------------------------
|
8787 |
|
|
-- Has_Extra_Accessibility --
|
8788 |
|
|
-----------------------------
|
8789 |
|
|
|
8790 |
|
|
-- Returns true for a formal of an anonymous access type or for
|
8791 |
|
|
-- an Ada 2012-style stand-alone object of an anonymous access type.
|
8792 |
|
|
|
8793 |
|
|
function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
|
8794 |
|
|
begin
|
8795 |
|
|
if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
|
8796 |
|
|
return Present (Effective_Extra_Accessibility (Id));
|
8797 |
|
|
else
|
8798 |
|
|
return False;
|
8799 |
|
|
end if;
|
8800 |
|
|
end Has_Extra_Accessibility;
|
8801 |
|
|
|
8802 |
|
|
-- Start of processing for Expand_N_Type_Conversion
|
8803 |
|
|
|
8804 |
|
|
begin
|
8805 |
|
|
-- Nothing at all to do if conversion is to the identical type so remove
|
8806 |
|
|
-- the conversion completely, it is useless, except that it may carry
|
8807 |
|
|
-- an Assignment_OK attribute, which must be propagated to the operand.
|
8808 |
|
|
|
8809 |
|
|
if Operand_Type = Target_Type then
|
8810 |
|
|
if Assignment_OK (N) then
|
8811 |
|
|
Set_Assignment_OK (Operand);
|
8812 |
|
|
end if;
|
8813 |
|
|
|
8814 |
|
|
Rewrite (N, Relocate_Node (Operand));
|
8815 |
|
|
goto Done;
|
8816 |
|
|
end if;
|
8817 |
|
|
|
8818 |
|
|
-- Nothing to do if this is the second argument of read. This is a
|
8819 |
|
|
-- "backwards" conversion that will be handled by the specialized code
|
8820 |
|
|
-- in attribute processing.
|
8821 |
|
|
|
8822 |
|
|
if Nkind (Parent (N)) = N_Attribute_Reference
|
8823 |
|
|
and then Attribute_Name (Parent (N)) = Name_Read
|
8824 |
|
|
and then Next (First (Expressions (Parent (N)))) = N
|
8825 |
|
|
then
|
8826 |
|
|
goto Done;
|
8827 |
|
|
end if;
|
8828 |
|
|
|
8829 |
|
|
-- Check for case of converting to a type that has an invariant
|
8830 |
|
|
-- associated with it. This required an invariant check. We convert
|
8831 |
|
|
|
8832 |
|
|
-- typ (expr)
|
8833 |
|
|
|
8834 |
|
|
-- into
|
8835 |
|
|
|
8836 |
|
|
-- do invariant_check (typ (expr)) in typ (expr);
|
8837 |
|
|
|
8838 |
|
|
-- using Duplicate_Subexpr to avoid multiple side effects
|
8839 |
|
|
|
8840 |
|
|
-- Note: the Comes_From_Source check, and then the resetting of this
|
8841 |
|
|
-- flag prevents what would otherwise be an infinite recursion.
|
8842 |
|
|
|
8843 |
|
|
if Has_Invariants (Target_Type)
|
8844 |
|
|
and then Present (Invariant_Procedure (Target_Type))
|
8845 |
|
|
and then Comes_From_Source (N)
|
8846 |
|
|
then
|
8847 |
|
|
Set_Comes_From_Source (N, False);
|
8848 |
|
|
Rewrite (N,
|
8849 |
|
|
Make_Expression_With_Actions (Loc,
|
8850 |
|
|
Actions => New_List (
|
8851 |
|
|
Make_Invariant_Call (Duplicate_Subexpr (N))),
|
8852 |
|
|
Expression => Duplicate_Subexpr_No_Checks (N)));
|
8853 |
|
|
Analyze_And_Resolve (N, Target_Type);
|
8854 |
|
|
goto Done;
|
8855 |
|
|
end if;
|
8856 |
|
|
|
8857 |
|
|
-- Here if we may need to expand conversion
|
8858 |
|
|
|
8859 |
|
|
-- If the operand of the type conversion is an arithmetic operation on
|
8860 |
|
|
-- signed integers, and the based type of the signed integer type in
|
8861 |
|
|
-- question is smaller than Standard.Integer, we promote both of the
|
8862 |
|
|
-- operands to type Integer.
|
8863 |
|
|
|
8864 |
|
|
-- For example, if we have
|
8865 |
|
|
|
8866 |
|
|
-- target-type (opnd1 + opnd2)
|
8867 |
|
|
|
8868 |
|
|
-- and opnd1 and opnd2 are of type short integer, then we rewrite
|
8869 |
|
|
-- this as:
|
8870 |
|
|
|
8871 |
|
|
-- target-type (integer(opnd1) + integer(opnd2))
|
8872 |
|
|
|
8873 |
|
|
-- We do this because we are always allowed to compute in a larger type
|
8874 |
|
|
-- if we do the right thing with the result, and in this case we are
|
8875 |
|
|
-- going to do a conversion which will do an appropriate check to make
|
8876 |
|
|
-- sure that things are in range of the target type in any case. This
|
8877 |
|
|
-- avoids some unnecessary intermediate overflows.
|
8878 |
|
|
|
8879 |
|
|
-- We might consider a similar transformation in the case where the
|
8880 |
|
|
-- target is a real type or a 64-bit integer type, and the operand
|
8881 |
|
|
-- is an arithmetic operation using a 32-bit integer type. However,
|
8882 |
|
|
-- we do not bother with this case, because it could cause significant
|
8883 |
|
|
-- inefficiencies on 32-bit machines. On a 64-bit machine it would be
|
8884 |
|
|
-- much cheaper, but we don't want different behavior on 32-bit and
|
8885 |
|
|
-- 64-bit machines. Note that the exclusion of the 64-bit case also
|
8886 |
|
|
-- handles the configurable run-time cases where 64-bit arithmetic
|
8887 |
|
|
-- may simply be unavailable.
|
8888 |
|
|
|
8889 |
|
|
-- Note: this circuit is partially redundant with respect to the circuit
|
8890 |
|
|
-- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
|
8891 |
|
|
-- the processing here. Also we still need the Checks circuit, since we
|
8892 |
|
|
-- have to be sure not to generate junk overflow checks in the first
|
8893 |
|
|
-- place, since it would be trick to remove them here!
|
8894 |
|
|
|
8895 |
|
|
if Integer_Promotion_Possible (N) then
|
8896 |
|
|
|
8897 |
|
|
-- All conditions met, go ahead with transformation
|
8898 |
|
|
|
8899 |
|
|
declare
|
8900 |
|
|
Opnd : Node_Id;
|
8901 |
|
|
L, R : Node_Id;
|
8902 |
|
|
|
8903 |
|
|
begin
|
8904 |
|
|
R :=
|
8905 |
|
|
Make_Type_Conversion (Loc,
|
8906 |
|
|
Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
|
8907 |
|
|
Expression => Relocate_Node (Right_Opnd (Operand)));
|
8908 |
|
|
|
8909 |
|
|
Opnd := New_Op_Node (Nkind (Operand), Loc);
|
8910 |
|
|
Set_Right_Opnd (Opnd, R);
|
8911 |
|
|
|
8912 |
|
|
if Nkind (Operand) in N_Binary_Op then
|
8913 |
|
|
L :=
|
8914 |
|
|
Make_Type_Conversion (Loc,
|
8915 |
|
|
Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
|
8916 |
|
|
Expression => Relocate_Node (Left_Opnd (Operand)));
|
8917 |
|
|
|
8918 |
|
|
Set_Left_Opnd (Opnd, L);
|
8919 |
|
|
end if;
|
8920 |
|
|
|
8921 |
|
|
Rewrite (N,
|
8922 |
|
|
Make_Type_Conversion (Loc,
|
8923 |
|
|
Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
|
8924 |
|
|
Expression => Opnd));
|
8925 |
|
|
|
8926 |
|
|
Analyze_And_Resolve (N, Target_Type);
|
8927 |
|
|
goto Done;
|
8928 |
|
|
end;
|
8929 |
|
|
end if;
|
8930 |
|
|
|
8931 |
|
|
-- Do validity check if validity checking operands
|
8932 |
|
|
|
8933 |
|
|
if Validity_Checks_On
|
8934 |
|
|
and then Validity_Check_Operands
|
8935 |
|
|
then
|
8936 |
|
|
Ensure_Valid (Operand);
|
8937 |
|
|
end if;
|
8938 |
|
|
|
8939 |
|
|
-- Special case of converting from non-standard boolean type
|
8940 |
|
|
|
8941 |
|
|
if Is_Boolean_Type (Operand_Type)
|
8942 |
|
|
and then (Nonzero_Is_True (Operand_Type))
|
8943 |
|
|
then
|
8944 |
|
|
Adjust_Condition (Operand);
|
8945 |
|
|
Set_Etype (Operand, Standard_Boolean);
|
8946 |
|
|
Operand_Type := Standard_Boolean;
|
8947 |
|
|
end if;
|
8948 |
|
|
|
8949 |
|
|
-- Case of converting to an access type
|
8950 |
|
|
|
8951 |
|
|
if Is_Access_Type (Target_Type) then
|
8952 |
|
|
|
8953 |
|
|
-- Apply an accessibility check when the conversion operand is an
|
8954 |
|
|
-- access parameter (or a renaming thereof), unless conversion was
|
8955 |
|
|
-- expanded from an Unchecked_ or Unrestricted_Access attribute.
|
8956 |
|
|
-- Note that other checks may still need to be applied below (such
|
8957 |
|
|
-- as tagged type checks).
|
8958 |
|
|
|
8959 |
|
|
if Is_Entity_Name (Operand)
|
8960 |
|
|
and then Has_Extra_Accessibility (Entity (Operand))
|
8961 |
|
|
and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
|
8962 |
|
|
and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
|
8963 |
|
|
or else Attribute_Name (Original_Node (N)) = Name_Access)
|
8964 |
|
|
then
|
8965 |
|
|
Apply_Accessibility_Check
|
8966 |
|
|
(Operand, Target_Type, Insert_Node => Operand);
|
8967 |
|
|
|
8968 |
|
|
-- If the level of the operand type is statically deeper than the
|
8969 |
|
|
-- level of the target type, then force Program_Error. Note that this
|
8970 |
|
|
-- can only occur for cases where the attribute is within the body of
|
8971 |
|
|
-- an instantiation (otherwise the conversion will already have been
|
8972 |
|
|
-- rejected as illegal). Note: warnings are issued by the analyzer
|
8973 |
|
|
-- for the instance cases.
|
8974 |
|
|
|
8975 |
|
|
elsif In_Instance_Body
|
8976 |
|
|
and then Type_Access_Level (Operand_Type) >
|
8977 |
|
|
Type_Access_Level (Target_Type)
|
8978 |
|
|
then
|
8979 |
|
|
Raise_Accessibility_Error;
|
8980 |
|
|
|
8981 |
|
|
-- When the operand is a selected access discriminant the check needs
|
8982 |
|
|
-- to be made against the level of the object denoted by the prefix
|
8983 |
|
|
-- of the selected name. Force Program_Error for this case as well
|
8984 |
|
|
-- (this accessibility violation can only happen if within the body
|
8985 |
|
|
-- of an instantiation).
|
8986 |
|
|
|
8987 |
|
|
elsif In_Instance_Body
|
8988 |
|
|
and then Ekind (Operand_Type) = E_Anonymous_Access_Type
|
8989 |
|
|
and then Nkind (Operand) = N_Selected_Component
|
8990 |
|
|
and then Object_Access_Level (Operand) >
|
8991 |
|
|
Type_Access_Level (Target_Type)
|
8992 |
|
|
then
|
8993 |
|
|
Raise_Accessibility_Error;
|
8994 |
|
|
goto Done;
|
8995 |
|
|
end if;
|
8996 |
|
|
end if;
|
8997 |
|
|
|
8998 |
|
|
-- Case of conversions of tagged types and access to tagged types
|
8999 |
|
|
|
9000 |
|
|
-- When needed, that is to say when the expression is class-wide, Add
|
9001 |
|
|
-- runtime a tag check for (strict) downward conversion by using the
|
9002 |
|
|
-- membership test, generating:
|
9003 |
|
|
|
9004 |
|
|
-- [constraint_error when Operand not in Target_Type'Class]
|
9005 |
|
|
|
9006 |
|
|
-- or in the access type case
|
9007 |
|
|
|
9008 |
|
|
-- [constraint_error
|
9009 |
|
|
-- when Operand /= null
|
9010 |
|
|
-- and then Operand.all not in
|
9011 |
|
|
-- Designated_Type (Target_Type)'Class]
|
9012 |
|
|
|
9013 |
|
|
if (Is_Access_Type (Target_Type)
|
9014 |
|
|
and then Is_Tagged_Type (Designated_Type (Target_Type)))
|
9015 |
|
|
or else Is_Tagged_Type (Target_Type)
|
9016 |
|
|
then
|
9017 |
|
|
-- Do not do any expansion in the access type case if the parent is a
|
9018 |
|
|
-- renaming, since this is an error situation which will be caught by
|
9019 |
|
|
-- Sem_Ch8, and the expansion can interfere with this error check.
|
9020 |
|
|
|
9021 |
|
|
if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
|
9022 |
|
|
goto Done;
|
9023 |
|
|
end if;
|
9024 |
|
|
|
9025 |
|
|
-- Otherwise, proceed with processing tagged conversion
|
9026 |
|
|
|
9027 |
|
|
Tagged_Conversion : declare
|
9028 |
|
|
Actual_Op_Typ : Entity_Id;
|
9029 |
|
|
Actual_Targ_Typ : Entity_Id;
|
9030 |
|
|
Make_Conversion : Boolean := False;
|
9031 |
|
|
Root_Op_Typ : Entity_Id;
|
9032 |
|
|
|
9033 |
|
|
procedure Make_Tag_Check (Targ_Typ : Entity_Id);
|
9034 |
|
|
-- Create a membership check to test whether Operand is a member
|
9035 |
|
|
-- of Targ_Typ. If the original Target_Type is an access, include
|
9036 |
|
|
-- a test for null value. The check is inserted at N.
|
9037 |
|
|
|
9038 |
|
|
--------------------
|
9039 |
|
|
-- Make_Tag_Check --
|
9040 |
|
|
--------------------
|
9041 |
|
|
|
9042 |
|
|
procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
|
9043 |
|
|
Cond : Node_Id;
|
9044 |
|
|
|
9045 |
|
|
begin
|
9046 |
|
|
-- Generate:
|
9047 |
|
|
-- [Constraint_Error
|
9048 |
|
|
-- when Operand /= null
|
9049 |
|
|
-- and then Operand.all not in Targ_Typ]
|
9050 |
|
|
|
9051 |
|
|
if Is_Access_Type (Target_Type) then
|
9052 |
|
|
Cond :=
|
9053 |
|
|
Make_And_Then (Loc,
|
9054 |
|
|
Left_Opnd =>
|
9055 |
|
|
Make_Op_Ne (Loc,
|
9056 |
|
|
Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
|
9057 |
|
|
Right_Opnd => Make_Null (Loc)),
|
9058 |
|
|
|
9059 |
|
|
Right_Opnd =>
|
9060 |
|
|
Make_Not_In (Loc,
|
9061 |
|
|
Left_Opnd =>
|
9062 |
|
|
Make_Explicit_Dereference (Loc,
|
9063 |
|
|
Prefix => Duplicate_Subexpr_No_Checks (Operand)),
|
9064 |
|
|
Right_Opnd => New_Reference_To (Targ_Typ, Loc)));
|
9065 |
|
|
|
9066 |
|
|
-- Generate:
|
9067 |
|
|
-- [Constraint_Error when Operand not in Targ_Typ]
|
9068 |
|
|
|
9069 |
|
|
else
|
9070 |
|
|
Cond :=
|
9071 |
|
|
Make_Not_In (Loc,
|
9072 |
|
|
Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
|
9073 |
|
|
Right_Opnd => New_Reference_To (Targ_Typ, Loc));
|
9074 |
|
|
end if;
|
9075 |
|
|
|
9076 |
|
|
Insert_Action (N,
|
9077 |
|
|
Make_Raise_Constraint_Error (Loc,
|
9078 |
|
|
Condition => Cond,
|
9079 |
|
|
Reason => CE_Tag_Check_Failed));
|
9080 |
|
|
end Make_Tag_Check;
|
9081 |
|
|
|
9082 |
|
|
-- Start of processing for Tagged_Conversion
|
9083 |
|
|
|
9084 |
|
|
begin
|
9085 |
|
|
-- Handle entities from the limited view
|
9086 |
|
|
|
9087 |
|
|
if Is_Access_Type (Operand_Type) then
|
9088 |
|
|
Actual_Op_Typ :=
|
9089 |
|
|
Available_View (Designated_Type (Operand_Type));
|
9090 |
|
|
else
|
9091 |
|
|
Actual_Op_Typ := Operand_Type;
|
9092 |
|
|
end if;
|
9093 |
|
|
|
9094 |
|
|
if Is_Access_Type (Target_Type) then
|
9095 |
|
|
Actual_Targ_Typ :=
|
9096 |
|
|
Available_View (Designated_Type (Target_Type));
|
9097 |
|
|
else
|
9098 |
|
|
Actual_Targ_Typ := Target_Type;
|
9099 |
|
|
end if;
|
9100 |
|
|
|
9101 |
|
|
Root_Op_Typ := Root_Type (Actual_Op_Typ);
|
9102 |
|
|
|
9103 |
|
|
-- Ada 2005 (AI-251): Handle interface type conversion
|
9104 |
|
|
|
9105 |
|
|
if Is_Interface (Actual_Op_Typ) then
|
9106 |
|
|
Expand_Interface_Conversion (N, Is_Static => False);
|
9107 |
|
|
goto Done;
|
9108 |
|
|
end if;
|
9109 |
|
|
|
9110 |
|
|
if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
|
9111 |
|
|
|
9112 |
|
|
-- Create a runtime tag check for a downward class-wide type
|
9113 |
|
|
-- conversion.
|
9114 |
|
|
|
9115 |
|
|
if Is_Class_Wide_Type (Actual_Op_Typ)
|
9116 |
|
|
and then Actual_Op_Typ /= Actual_Targ_Typ
|
9117 |
|
|
and then Root_Op_Typ /= Actual_Targ_Typ
|
9118 |
|
|
and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
|
9119 |
|
|
Use_Full_View => True)
|
9120 |
|
|
then
|
9121 |
|
|
Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
|
9122 |
|
|
Make_Conversion := True;
|
9123 |
|
|
end if;
|
9124 |
|
|
|
9125 |
|
|
-- AI05-0073: If the result subtype of the function is defined
|
9126 |
|
|
-- by an access_definition designating a specific tagged type
|
9127 |
|
|
-- T, a check is made that the result value is null or the tag
|
9128 |
|
|
-- of the object designated by the result value identifies T.
|
9129 |
|
|
-- Constraint_Error is raised if this check fails.
|
9130 |
|
|
|
9131 |
|
|
if Nkind (Parent (N)) = Sinfo.N_Return_Statement then
|
9132 |
|
|
declare
|
9133 |
|
|
Func : Entity_Id;
|
9134 |
|
|
Func_Typ : Entity_Id;
|
9135 |
|
|
|
9136 |
|
|
begin
|
9137 |
|
|
-- Climb scope stack looking for the enclosing function
|
9138 |
|
|
|
9139 |
|
|
Func := Current_Scope;
|
9140 |
|
|
while Present (Func)
|
9141 |
|
|
and then Ekind (Func) /= E_Function
|
9142 |
|
|
loop
|
9143 |
|
|
Func := Scope (Func);
|
9144 |
|
|
end loop;
|
9145 |
|
|
|
9146 |
|
|
-- The function's return subtype must be defined using
|
9147 |
|
|
-- an access definition.
|
9148 |
|
|
|
9149 |
|
|
if Nkind (Result_Definition (Parent (Func))) =
|
9150 |
|
|
N_Access_Definition
|
9151 |
|
|
then
|
9152 |
|
|
Func_Typ := Directly_Designated_Type (Etype (Func));
|
9153 |
|
|
|
9154 |
|
|
-- The return subtype denotes a specific tagged type,
|
9155 |
|
|
-- in other words, a non class-wide type.
|
9156 |
|
|
|
9157 |
|
|
if Is_Tagged_Type (Func_Typ)
|
9158 |
|
|
and then not Is_Class_Wide_Type (Func_Typ)
|
9159 |
|
|
then
|
9160 |
|
|
Make_Tag_Check (Actual_Targ_Typ);
|
9161 |
|
|
Make_Conversion := True;
|
9162 |
|
|
end if;
|
9163 |
|
|
end if;
|
9164 |
|
|
end;
|
9165 |
|
|
end if;
|
9166 |
|
|
|
9167 |
|
|
-- We have generated a tag check for either a class-wide type
|
9168 |
|
|
-- conversion or for AI05-0073.
|
9169 |
|
|
|
9170 |
|
|
if Make_Conversion then
|
9171 |
|
|
declare
|
9172 |
|
|
Conv : Node_Id;
|
9173 |
|
|
begin
|
9174 |
|
|
Conv :=
|
9175 |
|
|
Make_Unchecked_Type_Conversion (Loc,
|
9176 |
|
|
Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
|
9177 |
|
|
Expression => Relocate_Node (Expression (N)));
|
9178 |
|
|
Rewrite (N, Conv);
|
9179 |
|
|
Analyze_And_Resolve (N, Target_Type);
|
9180 |
|
|
end;
|
9181 |
|
|
end if;
|
9182 |
|
|
end if;
|
9183 |
|
|
end Tagged_Conversion;
|
9184 |
|
|
|
9185 |
|
|
-- Case of other access type conversions
|
9186 |
|
|
|
9187 |
|
|
elsif Is_Access_Type (Target_Type) then
|
9188 |
|
|
Apply_Constraint_Check (Operand, Target_Type);
|
9189 |
|
|
|
9190 |
|
|
-- Case of conversions from a fixed-point type
|
9191 |
|
|
|
9192 |
|
|
-- These conversions require special expansion and processing, found in
|
9193 |
|
|
-- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
|
9194 |
|
|
-- since from a semantic point of view, these are simple integer
|
9195 |
|
|
-- conversions, which do not need further processing.
|
9196 |
|
|
|
9197 |
|
|
elsif Is_Fixed_Point_Type (Operand_Type)
|
9198 |
|
|
and then not Conversion_OK (N)
|
9199 |
|
|
then
|
9200 |
|
|
-- We should never see universal fixed at this case, since the
|
9201 |
|
|
-- expansion of the constituent divide or multiply should have
|
9202 |
|
|
-- eliminated the explicit mention of universal fixed.
|
9203 |
|
|
|
9204 |
|
|
pragma Assert (Operand_Type /= Universal_Fixed);
|
9205 |
|
|
|
9206 |
|
|
-- Check for special case of the conversion to universal real that
|
9207 |
|
|
-- occurs as a result of the use of a round attribute. In this case,
|
9208 |
|
|
-- the real type for the conversion is taken from the target type of
|
9209 |
|
|
-- the Round attribute and the result must be marked as rounded.
|
9210 |
|
|
|
9211 |
|
|
if Target_Type = Universal_Real
|
9212 |
|
|
and then Nkind (Parent (N)) = N_Attribute_Reference
|
9213 |
|
|
and then Attribute_Name (Parent (N)) = Name_Round
|
9214 |
|
|
then
|
9215 |
|
|
Set_Rounded_Result (N);
|
9216 |
|
|
Set_Etype (N, Etype (Parent (N)));
|
9217 |
|
|
end if;
|
9218 |
|
|
|
9219 |
|
|
-- Otherwise do correct fixed-conversion, but skip these if the
|
9220 |
|
|
-- Conversion_OK flag is set, because from a semantic point of view
|
9221 |
|
|
-- these are simple integer conversions needing no further processing
|
9222 |
|
|
-- (the backend will simply treat them as integers).
|
9223 |
|
|
|
9224 |
|
|
if not Conversion_OK (N) then
|
9225 |
|
|
if Is_Fixed_Point_Type (Etype (N)) then
|
9226 |
|
|
Expand_Convert_Fixed_To_Fixed (N);
|
9227 |
|
|
Real_Range_Check;
|
9228 |
|
|
|
9229 |
|
|
elsif Is_Integer_Type (Etype (N)) then
|
9230 |
|
|
Expand_Convert_Fixed_To_Integer (N);
|
9231 |
|
|
|
9232 |
|
|
else
|
9233 |
|
|
pragma Assert (Is_Floating_Point_Type (Etype (N)));
|
9234 |
|
|
Expand_Convert_Fixed_To_Float (N);
|
9235 |
|
|
Real_Range_Check;
|
9236 |
|
|
end if;
|
9237 |
|
|
end if;
|
9238 |
|
|
|
9239 |
|
|
-- Case of conversions to a fixed-point type
|
9240 |
|
|
|
9241 |
|
|
-- These conversions require special expansion and processing, found in
|
9242 |
|
|
-- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
|
9243 |
|
|
-- since from a semantic point of view, these are simple integer
|
9244 |
|
|
-- conversions, which do not need further processing.
|
9245 |
|
|
|
9246 |
|
|
elsif Is_Fixed_Point_Type (Target_Type)
|
9247 |
|
|
and then not Conversion_OK (N)
|
9248 |
|
|
then
|
9249 |
|
|
if Is_Integer_Type (Operand_Type) then
|
9250 |
|
|
Expand_Convert_Integer_To_Fixed (N);
|
9251 |
|
|
Real_Range_Check;
|
9252 |
|
|
else
|
9253 |
|
|
pragma Assert (Is_Floating_Point_Type (Operand_Type));
|
9254 |
|
|
Expand_Convert_Float_To_Fixed (N);
|
9255 |
|
|
Real_Range_Check;
|
9256 |
|
|
end if;
|
9257 |
|
|
|
9258 |
|
|
-- Case of float-to-integer conversions
|
9259 |
|
|
|
9260 |
|
|
-- We also handle float-to-fixed conversions with Conversion_OK set
|
9261 |
|
|
-- since semantically the fixed-point target is treated as though it
|
9262 |
|
|
-- were an integer in such cases.
|
9263 |
|
|
|
9264 |
|
|
elsif Is_Floating_Point_Type (Operand_Type)
|
9265 |
|
|
and then
|
9266 |
|
|
(Is_Integer_Type (Target_Type)
|
9267 |
|
|
or else
|
9268 |
|
|
(Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
|
9269 |
|
|
then
|
9270 |
|
|
-- One more check here, gcc is still not able to do conversions of
|
9271 |
|
|
-- this type with proper overflow checking, and so gigi is doing an
|
9272 |
|
|
-- approximation of what is required by doing floating-point compares
|
9273 |
|
|
-- with the end-point. But that can lose precision in some cases, and
|
9274 |
|
|
-- give a wrong result. Converting the operand to Universal_Real is
|
9275 |
|
|
-- helpful, but still does not catch all cases with 64-bit integers
|
9276 |
|
|
-- on targets with only 64-bit floats.
|
9277 |
|
|
|
9278 |
|
|
-- The above comment seems obsoleted by Apply_Float_Conversion_Check
|
9279 |
|
|
-- Can this code be removed ???
|
9280 |
|
|
|
9281 |
|
|
if Do_Range_Check (Operand) then
|
9282 |
|
|
Rewrite (Operand,
|
9283 |
|
|
Make_Type_Conversion (Loc,
|
9284 |
|
|
Subtype_Mark =>
|
9285 |
|
|
New_Occurrence_Of (Universal_Real, Loc),
|
9286 |
|
|
Expression =>
|
9287 |
|
|
Relocate_Node (Operand)));
|
9288 |
|
|
|
9289 |
|
|
Set_Etype (Operand, Universal_Real);
|
9290 |
|
|
Enable_Range_Check (Operand);
|
9291 |
|
|
Set_Do_Range_Check (Expression (Operand), False);
|
9292 |
|
|
end if;
|
9293 |
|
|
|
9294 |
|
|
-- Case of array conversions
|
9295 |
|
|
|
9296 |
|
|
-- Expansion of array conversions, add required length/range checks but
|
9297 |
|
|
-- only do this if there is no change of representation. For handling of
|
9298 |
|
|
-- this case, see Handle_Changed_Representation.
|
9299 |
|
|
|
9300 |
|
|
elsif Is_Array_Type (Target_Type) then
|
9301 |
|
|
if Is_Constrained (Target_Type) then
|
9302 |
|
|
Apply_Length_Check (Operand, Target_Type);
|
9303 |
|
|
else
|
9304 |
|
|
Apply_Range_Check (Operand, Target_Type);
|
9305 |
|
|
end if;
|
9306 |
|
|
|
9307 |
|
|
Handle_Changed_Representation;
|
9308 |
|
|
|
9309 |
|
|
-- Case of conversions of discriminated types
|
9310 |
|
|
|
9311 |
|
|
-- Add required discriminant checks if target is constrained. Again this
|
9312 |
|
|
-- change is skipped if we have a change of representation.
|
9313 |
|
|
|
9314 |
|
|
elsif Has_Discriminants (Target_Type)
|
9315 |
|
|
and then Is_Constrained (Target_Type)
|
9316 |
|
|
then
|
9317 |
|
|
Apply_Discriminant_Check (Operand, Target_Type);
|
9318 |
|
|
Handle_Changed_Representation;
|
9319 |
|
|
|
9320 |
|
|
-- Case of all other record conversions. The only processing required
|
9321 |
|
|
-- is to check for a change of representation requiring the special
|
9322 |
|
|
-- assignment processing.
|
9323 |
|
|
|
9324 |
|
|
elsif Is_Record_Type (Target_Type) then
|
9325 |
|
|
|
9326 |
|
|
-- Ada 2005 (AI-216): Program_Error is raised when converting from
|
9327 |
|
|
-- a derived Unchecked_Union type to an unconstrained type that is
|
9328 |
|
|
-- not Unchecked_Union if the operand lacks inferable discriminants.
|
9329 |
|
|
|
9330 |
|
|
if Is_Derived_Type (Operand_Type)
|
9331 |
|
|
and then Is_Unchecked_Union (Base_Type (Operand_Type))
|
9332 |
|
|
and then not Is_Constrained (Target_Type)
|
9333 |
|
|
and then not Is_Unchecked_Union (Base_Type (Target_Type))
|
9334 |
|
|
and then not Has_Inferable_Discriminants (Operand)
|
9335 |
|
|
then
|
9336 |
|
|
-- To prevent Gigi from generating illegal code, we generate a
|
9337 |
|
|
-- Program_Error node, but we give it the target type of the
|
9338 |
|
|
-- conversion.
|
9339 |
|
|
|
9340 |
|
|
declare
|
9341 |
|
|
PE : constant Node_Id := Make_Raise_Program_Error (Loc,
|
9342 |
|
|
Reason => PE_Unchecked_Union_Restriction);
|
9343 |
|
|
|
9344 |
|
|
begin
|
9345 |
|
|
Set_Etype (PE, Target_Type);
|
9346 |
|
|
Rewrite (N, PE);
|
9347 |
|
|
|
9348 |
|
|
end;
|
9349 |
|
|
else
|
9350 |
|
|
Handle_Changed_Representation;
|
9351 |
|
|
end if;
|
9352 |
|
|
|
9353 |
|
|
-- Case of conversions of enumeration types
|
9354 |
|
|
|
9355 |
|
|
elsif Is_Enumeration_Type (Target_Type) then
|
9356 |
|
|
|
9357 |
|
|
-- Special processing is required if there is a change of
|
9358 |
|
|
-- representation (from enumeration representation clauses).
|
9359 |
|
|
|
9360 |
|
|
if not Same_Representation (Target_Type, Operand_Type) then
|
9361 |
|
|
|
9362 |
|
|
-- Convert: x(y) to x'val (ytyp'val (y))
|
9363 |
|
|
|
9364 |
|
|
Rewrite (N,
|
9365 |
|
|
Make_Attribute_Reference (Loc,
|
9366 |
|
|
Prefix => New_Occurrence_Of (Target_Type, Loc),
|
9367 |
|
|
Attribute_Name => Name_Val,
|
9368 |
|
|
Expressions => New_List (
|
9369 |
|
|
Make_Attribute_Reference (Loc,
|
9370 |
|
|
Prefix => New_Occurrence_Of (Operand_Type, Loc),
|
9371 |
|
|
Attribute_Name => Name_Pos,
|
9372 |
|
|
Expressions => New_List (Operand)))));
|
9373 |
|
|
|
9374 |
|
|
Analyze_And_Resolve (N, Target_Type);
|
9375 |
|
|
end if;
|
9376 |
|
|
|
9377 |
|
|
-- Case of conversions to floating-point
|
9378 |
|
|
|
9379 |
|
|
elsif Is_Floating_Point_Type (Target_Type) then
|
9380 |
|
|
Real_Range_Check;
|
9381 |
|
|
end if;
|
9382 |
|
|
|
9383 |
|
|
-- At this stage, either the conversion node has been transformed into
|
9384 |
|
|
-- some other equivalent expression, or left as a conversion that can be
|
9385 |
|
|
-- handled by Gigi, in the following cases:
|
9386 |
|
|
|
9387 |
|
|
-- Conversions with no change of representation or type
|
9388 |
|
|
|
9389 |
|
|
-- Numeric conversions involving integer, floating- and fixed-point
|
9390 |
|
|
-- values. Fixed-point values are allowed only if Conversion_OK is
|
9391 |
|
|
-- set, i.e. if the fixed-point values are to be treated as integers.
|
9392 |
|
|
|
9393 |
|
|
-- No other conversions should be passed to Gigi
|
9394 |
|
|
|
9395 |
|
|
-- Check: are these rules stated in sinfo??? if so, why restate here???
|
9396 |
|
|
|
9397 |
|
|
-- The only remaining step is to generate a range check if we still have
|
9398 |
|
|
-- a type conversion at this stage and Do_Range_Check is set. For now we
|
9399 |
|
|
-- do this only for conversions of discrete types.
|
9400 |
|
|
|
9401 |
|
|
if Nkind (N) = N_Type_Conversion
|
9402 |
|
|
and then Is_Discrete_Type (Etype (N))
|
9403 |
|
|
then
|
9404 |
|
|
declare
|
9405 |
|
|
Expr : constant Node_Id := Expression (N);
|
9406 |
|
|
Ftyp : Entity_Id;
|
9407 |
|
|
Ityp : Entity_Id;
|
9408 |
|
|
|
9409 |
|
|
begin
|
9410 |
|
|
if Do_Range_Check (Expr)
|
9411 |
|
|
and then Is_Discrete_Type (Etype (Expr))
|
9412 |
|
|
then
|
9413 |
|
|
Set_Do_Range_Check (Expr, False);
|
9414 |
|
|
|
9415 |
|
|
-- Before we do a range check, we have to deal with treating a
|
9416 |
|
|
-- fixed-point operand as an integer. The way we do this is
|
9417 |
|
|
-- simply to do an unchecked conversion to an appropriate
|
9418 |
|
|
-- integer type large enough to hold the result.
|
9419 |
|
|
|
9420 |
|
|
-- This code is not active yet, because we are only dealing
|
9421 |
|
|
-- with discrete types so far ???
|
9422 |
|
|
|
9423 |
|
|
if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
|
9424 |
|
|
and then Treat_Fixed_As_Integer (Expr)
|
9425 |
|
|
then
|
9426 |
|
|
Ftyp := Base_Type (Etype (Expr));
|
9427 |
|
|
|
9428 |
|
|
if Esize (Ftyp) >= Esize (Standard_Integer) then
|
9429 |
|
|
Ityp := Standard_Long_Long_Integer;
|
9430 |
|
|
else
|
9431 |
|
|
Ityp := Standard_Integer;
|
9432 |
|
|
end if;
|
9433 |
|
|
|
9434 |
|
|
Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
|
9435 |
|
|
end if;
|
9436 |
|
|
|
9437 |
|
|
-- Reset overflow flag, since the range check will include
|
9438 |
|
|
-- dealing with possible overflow, and generate the check. If
|
9439 |
|
|
-- Address is either a source type or target type, suppress
|
9440 |
|
|
-- range check to avoid typing anomalies when it is a visible
|
9441 |
|
|
-- integer type.
|
9442 |
|
|
|
9443 |
|
|
Set_Do_Overflow_Check (N, False);
|
9444 |
|
|
if not Is_Descendent_Of_Address (Etype (Expr))
|
9445 |
|
|
and then not Is_Descendent_Of_Address (Target_Type)
|
9446 |
|
|
then
|
9447 |
|
|
Generate_Range_Check
|
9448 |
|
|
(Expr, Target_Type, CE_Range_Check_Failed);
|
9449 |
|
|
end if;
|
9450 |
|
|
end if;
|
9451 |
|
|
end;
|
9452 |
|
|
end if;
|
9453 |
|
|
|
9454 |
|
|
-- Final step, if the result is a type conversion involving Vax_Float
|
9455 |
|
|
-- types, then it is subject for further special processing.
|
9456 |
|
|
|
9457 |
|
|
if Nkind (N) = N_Type_Conversion
|
9458 |
|
|
and then (Vax_Float (Operand_Type) or else Vax_Float (Target_Type))
|
9459 |
|
|
then
|
9460 |
|
|
Expand_Vax_Conversion (N);
|
9461 |
|
|
goto Done;
|
9462 |
|
|
end if;
|
9463 |
|
|
|
9464 |
|
|
-- Here at end of processing
|
9465 |
|
|
|
9466 |
|
|
<<Done>>
|
9467 |
|
|
-- Apply predicate check if required. Note that we can't just call
|
9468 |
|
|
-- Apply_Predicate_Check here, because the type looks right after
|
9469 |
|
|
-- the conversion and it would omit the check. The Comes_From_Source
|
9470 |
|
|
-- guard is necessary to prevent infinite recursions when we generate
|
9471 |
|
|
-- internal conversions for the purpose of checking predicates.
|
9472 |
|
|
|
9473 |
|
|
if Present (Predicate_Function (Target_Type))
|
9474 |
|
|
and then Target_Type /= Operand_Type
|
9475 |
|
|
and then Comes_From_Source (N)
|
9476 |
|
|
then
|
9477 |
|
|
declare
|
9478 |
|
|
New_Expr : constant Node_Id := Duplicate_Subexpr (N);
|
9479 |
|
|
|
9480 |
|
|
begin
|
9481 |
|
|
-- Avoid infinite recursion on the subsequent expansion of
|
9482 |
|
|
-- of the copy of the original type conversion.
|
9483 |
|
|
|
9484 |
|
|
Set_Comes_From_Source (New_Expr, False);
|
9485 |
|
|
Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
|
9486 |
|
|
end;
|
9487 |
|
|
end if;
|
9488 |
|
|
end Expand_N_Type_Conversion;
|
9489 |
|
|
|
9490 |
|
|
-----------------------------------
|
9491 |
|
|
-- Expand_N_Unchecked_Expression --
|
9492 |
|
|
-----------------------------------
|
9493 |
|
|
|
9494 |
|
|
-- Remove the unchecked expression node from the tree. Its job was simply
|
9495 |
|
|
-- to make sure that its constituent expression was handled with checks
|
9496 |
|
|
-- off, and now that that is done, we can remove it from the tree, and
|
9497 |
|
|
-- indeed must, since Gigi does not expect to see these nodes.
|
9498 |
|
|
|
9499 |
|
|
procedure Expand_N_Unchecked_Expression (N : Node_Id) is
|
9500 |
|
|
Exp : constant Node_Id := Expression (N);
|
9501 |
|
|
begin
|
9502 |
|
|
Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
|
9503 |
|
|
Rewrite (N, Exp);
|
9504 |
|
|
end Expand_N_Unchecked_Expression;
|
9505 |
|
|
|
9506 |
|
|
----------------------------------------
|
9507 |
|
|
-- Expand_N_Unchecked_Type_Conversion --
|
9508 |
|
|
----------------------------------------
|
9509 |
|
|
|
9510 |
|
|
-- If this cannot be handled by Gigi and we haven't already made a
|
9511 |
|
|
-- temporary for it, do it now.
|
9512 |
|
|
|
9513 |
|
|
procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
|
9514 |
|
|
Target_Type : constant Entity_Id := Etype (N);
|
9515 |
|
|
Operand : constant Node_Id := Expression (N);
|
9516 |
|
|
Operand_Type : constant Entity_Id := Etype (Operand);
|
9517 |
|
|
|
9518 |
|
|
begin
|
9519 |
|
|
-- Nothing at all to do if conversion is to the identical type so remove
|
9520 |
|
|
-- the conversion completely, it is useless, except that it may carry
|
9521 |
|
|
-- an Assignment_OK indication which must be propagated to the operand.
|
9522 |
|
|
|
9523 |
|
|
if Operand_Type = Target_Type then
|
9524 |
|
|
|
9525 |
|
|
-- Code duplicates Expand_N_Unchecked_Expression above, factor???
|
9526 |
|
|
|
9527 |
|
|
if Assignment_OK (N) then
|
9528 |
|
|
Set_Assignment_OK (Operand);
|
9529 |
|
|
end if;
|
9530 |
|
|
|
9531 |
|
|
Rewrite (N, Relocate_Node (Operand));
|
9532 |
|
|
return;
|
9533 |
|
|
end if;
|
9534 |
|
|
|
9535 |
|
|
-- If we have a conversion of a compile time known value to a target
|
9536 |
|
|
-- type and the value is in range of the target type, then we can simply
|
9537 |
|
|
-- replace the construct by an integer literal of the correct type. We
|
9538 |
|
|
-- only apply this to integer types being converted. Possibly it may
|
9539 |
|
|
-- apply in other cases, but it is too much trouble to worry about.
|
9540 |
|
|
|
9541 |
|
|
-- Note that we do not do this transformation if the Kill_Range_Check
|
9542 |
|
|
-- flag is set, since then the value may be outside the expected range.
|
9543 |
|
|
-- This happens in the Normalize_Scalars case.
|
9544 |
|
|
|
9545 |
|
|
-- We also skip this if either the target or operand type is biased
|
9546 |
|
|
-- because in this case, the unchecked conversion is supposed to
|
9547 |
|
|
-- preserve the bit pattern, not the integer value.
|
9548 |
|
|
|
9549 |
|
|
if Is_Integer_Type (Target_Type)
|
9550 |
|
|
and then not Has_Biased_Representation (Target_Type)
|
9551 |
|
|
and then Is_Integer_Type (Operand_Type)
|
9552 |
|
|
and then not Has_Biased_Representation (Operand_Type)
|
9553 |
|
|
and then Compile_Time_Known_Value (Operand)
|
9554 |
|
|
and then not Kill_Range_Check (N)
|
9555 |
|
|
then
|
9556 |
|
|
declare
|
9557 |
|
|
Val : constant Uint := Expr_Value (Operand);
|
9558 |
|
|
|
9559 |
|
|
begin
|
9560 |
|
|
if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
|
9561 |
|
|
and then
|
9562 |
|
|
Compile_Time_Known_Value (Type_High_Bound (Target_Type))
|
9563 |
|
|
and then
|
9564 |
|
|
Val >= Expr_Value (Type_Low_Bound (Target_Type))
|
9565 |
|
|
and then
|
9566 |
|
|
Val <= Expr_Value (Type_High_Bound (Target_Type))
|
9567 |
|
|
then
|
9568 |
|
|
Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
|
9569 |
|
|
|
9570 |
|
|
-- If Address is the target type, just set the type to avoid a
|
9571 |
|
|
-- spurious type error on the literal when Address is a visible
|
9572 |
|
|
-- integer type.
|
9573 |
|
|
|
9574 |
|
|
if Is_Descendent_Of_Address (Target_Type) then
|
9575 |
|
|
Set_Etype (N, Target_Type);
|
9576 |
|
|
else
|
9577 |
|
|
Analyze_And_Resolve (N, Target_Type);
|
9578 |
|
|
end if;
|
9579 |
|
|
|
9580 |
|
|
return;
|
9581 |
|
|
end if;
|
9582 |
|
|
end;
|
9583 |
|
|
end if;
|
9584 |
|
|
|
9585 |
|
|
-- Nothing to do if conversion is safe
|
9586 |
|
|
|
9587 |
|
|
if Safe_Unchecked_Type_Conversion (N) then
|
9588 |
|
|
return;
|
9589 |
|
|
end if;
|
9590 |
|
|
|
9591 |
|
|
-- Otherwise force evaluation unless Assignment_OK flag is set (this
|
9592 |
|
|
-- flag indicates ??? -- more comments needed here)
|
9593 |
|
|
|
9594 |
|
|
if Assignment_OK (N) then
|
9595 |
|
|
null;
|
9596 |
|
|
else
|
9597 |
|
|
Force_Evaluation (N);
|
9598 |
|
|
end if;
|
9599 |
|
|
end Expand_N_Unchecked_Type_Conversion;
|
9600 |
|
|
|
9601 |
|
|
----------------------------
|
9602 |
|
|
-- Expand_Record_Equality --
|
9603 |
|
|
----------------------------
|
9604 |
|
|
|
9605 |
|
|
-- For non-variant records, Equality is expanded when needed into:
|
9606 |
|
|
|
9607 |
|
|
-- and then Lhs.Discr1 = Rhs.Discr1
|
9608 |
|
|
-- and then ...
|
9609 |
|
|
-- and then Lhs.Discrn = Rhs.Discrn
|
9610 |
|
|
-- and then Lhs.Cmp1 = Rhs.Cmp1
|
9611 |
|
|
-- and then ...
|
9612 |
|
|
-- and then Lhs.Cmpn = Rhs.Cmpn
|
9613 |
|
|
|
9614 |
|
|
-- The expression is folded by the back-end for adjacent fields. This
|
9615 |
|
|
-- function is called for tagged record in only one occasion: for imple-
|
9616 |
|
|
-- menting predefined primitive equality (see Predefined_Primitives_Bodies)
|
9617 |
|
|
-- otherwise the primitive "=" is used directly.
|
9618 |
|
|
|
9619 |
|
|
function Expand_Record_Equality
|
9620 |
|
|
(Nod : Node_Id;
|
9621 |
|
|
Typ : Entity_Id;
|
9622 |
|
|
Lhs : Node_Id;
|
9623 |
|
|
Rhs : Node_Id;
|
9624 |
|
|
Bodies : List_Id) return Node_Id
|
9625 |
|
|
is
|
9626 |
|
|
Loc : constant Source_Ptr := Sloc (Nod);
|
9627 |
|
|
|
9628 |
|
|
Result : Node_Id;
|
9629 |
|
|
C : Entity_Id;
|
9630 |
|
|
|
9631 |
|
|
First_Time : Boolean := True;
|
9632 |
|
|
|
9633 |
|
|
function Suitable_Element (C : Entity_Id) return Entity_Id;
|
9634 |
|
|
-- Return the first field to compare beginning with C, skipping the
|
9635 |
|
|
-- inherited components.
|
9636 |
|
|
|
9637 |
|
|
----------------------
|
9638 |
|
|
-- Suitable_Element --
|
9639 |
|
|
----------------------
|
9640 |
|
|
|
9641 |
|
|
function Suitable_Element (C : Entity_Id) return Entity_Id is
|
9642 |
|
|
begin
|
9643 |
|
|
if No (C) then
|
9644 |
|
|
return Empty;
|
9645 |
|
|
|
9646 |
|
|
elsif Ekind (C) /= E_Discriminant
|
9647 |
|
|
and then Ekind (C) /= E_Component
|
9648 |
|
|
then
|
9649 |
|
|
return Suitable_Element (Next_Entity (C));
|
9650 |
|
|
|
9651 |
|
|
elsif Is_Tagged_Type (Typ)
|
9652 |
|
|
and then C /= Original_Record_Component (C)
|
9653 |
|
|
then
|
9654 |
|
|
return Suitable_Element (Next_Entity (C));
|
9655 |
|
|
|
9656 |
|
|
elsif Chars (C) = Name_uTag then
|
9657 |
|
|
return Suitable_Element (Next_Entity (C));
|
9658 |
|
|
|
9659 |
|
|
-- The .NET/JVM version of type Root_Controlled contains two fields
|
9660 |
|
|
-- which should not be considered part of the object. To achieve
|
9661 |
|
|
-- proper equiality between two controlled objects on .NET/JVM, skip
|
9662 |
|
|
-- field _parent whenever it is of type Root_Controlled.
|
9663 |
|
|
|
9664 |
|
|
elsif Chars (C) = Name_uParent
|
9665 |
|
|
and then VM_Target /= No_VM
|
9666 |
|
|
and then Etype (C) = RTE (RE_Root_Controlled)
|
9667 |
|
|
then
|
9668 |
|
|
return Suitable_Element (Next_Entity (C));
|
9669 |
|
|
|
9670 |
|
|
elsif Is_Interface (Etype (C)) then
|
9671 |
|
|
return Suitable_Element (Next_Entity (C));
|
9672 |
|
|
|
9673 |
|
|
else
|
9674 |
|
|
return C;
|
9675 |
|
|
end if;
|
9676 |
|
|
end Suitable_Element;
|
9677 |
|
|
|
9678 |
|
|
-- Start of processing for Expand_Record_Equality
|
9679 |
|
|
|
9680 |
|
|
begin
|
9681 |
|
|
-- Generates the following code: (assuming that Typ has one Discr and
|
9682 |
|
|
-- component C2 is also a record)
|
9683 |
|
|
|
9684 |
|
|
-- True
|
9685 |
|
|
-- and then Lhs.Discr1 = Rhs.Discr1
|
9686 |
|
|
-- and then Lhs.C1 = Rhs.C1
|
9687 |
|
|
-- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
|
9688 |
|
|
-- and then ...
|
9689 |
|
|
-- and then Lhs.Cmpn = Rhs.Cmpn
|
9690 |
|
|
|
9691 |
|
|
Result := New_Reference_To (Standard_True, Loc);
|
9692 |
|
|
C := Suitable_Element (First_Entity (Typ));
|
9693 |
|
|
while Present (C) loop
|
9694 |
|
|
declare
|
9695 |
|
|
New_Lhs : Node_Id;
|
9696 |
|
|
New_Rhs : Node_Id;
|
9697 |
|
|
Check : Node_Id;
|
9698 |
|
|
|
9699 |
|
|
begin
|
9700 |
|
|
if First_Time then
|
9701 |
|
|
First_Time := False;
|
9702 |
|
|
New_Lhs := Lhs;
|
9703 |
|
|
New_Rhs := Rhs;
|
9704 |
|
|
else
|
9705 |
|
|
New_Lhs := New_Copy_Tree (Lhs);
|
9706 |
|
|
New_Rhs := New_Copy_Tree (Rhs);
|
9707 |
|
|
end if;
|
9708 |
|
|
|
9709 |
|
|
Check :=
|
9710 |
|
|
Expand_Composite_Equality (Nod, Etype (C),
|
9711 |
|
|
Lhs =>
|
9712 |
|
|
Make_Selected_Component (Loc,
|
9713 |
|
|
Prefix => New_Lhs,
|
9714 |
|
|
Selector_Name => New_Reference_To (C, Loc)),
|
9715 |
|
|
Rhs =>
|
9716 |
|
|
Make_Selected_Component (Loc,
|
9717 |
|
|
Prefix => New_Rhs,
|
9718 |
|
|
Selector_Name => New_Reference_To (C, Loc)),
|
9719 |
|
|
Bodies => Bodies);
|
9720 |
|
|
|
9721 |
|
|
-- If some (sub)component is an unchecked_union, the whole
|
9722 |
|
|
-- operation will raise program error.
|
9723 |
|
|
|
9724 |
|
|
if Nkind (Check) = N_Raise_Program_Error then
|
9725 |
|
|
Result := Check;
|
9726 |
|
|
Set_Etype (Result, Standard_Boolean);
|
9727 |
|
|
exit;
|
9728 |
|
|
else
|
9729 |
|
|
Result :=
|
9730 |
|
|
Make_And_Then (Loc,
|
9731 |
|
|
Left_Opnd => Result,
|
9732 |
|
|
Right_Opnd => Check);
|
9733 |
|
|
end if;
|
9734 |
|
|
end;
|
9735 |
|
|
|
9736 |
|
|
C := Suitable_Element (Next_Entity (C));
|
9737 |
|
|
end loop;
|
9738 |
|
|
|
9739 |
|
|
return Result;
|
9740 |
|
|
end Expand_Record_Equality;
|
9741 |
|
|
|
9742 |
|
|
---------------------------
|
9743 |
|
|
-- Expand_Set_Membership --
|
9744 |
|
|
---------------------------
|
9745 |
|
|
|
9746 |
|
|
procedure Expand_Set_Membership (N : Node_Id) is
|
9747 |
|
|
Lop : constant Node_Id := Left_Opnd (N);
|
9748 |
|
|
Alt : Node_Id;
|
9749 |
|
|
Res : Node_Id;
|
9750 |
|
|
|
9751 |
|
|
function Make_Cond (Alt : Node_Id) return Node_Id;
|
9752 |
|
|
-- If the alternative is a subtype mark, create a simple membership
|
9753 |
|
|
-- test. Otherwise create an equality test for it.
|
9754 |
|
|
|
9755 |
|
|
---------------
|
9756 |
|
|
-- Make_Cond --
|
9757 |
|
|
---------------
|
9758 |
|
|
|
9759 |
|
|
function Make_Cond (Alt : Node_Id) return Node_Id is
|
9760 |
|
|
Cond : Node_Id;
|
9761 |
|
|
L : constant Node_Id := New_Copy (Lop);
|
9762 |
|
|
R : constant Node_Id := Relocate_Node (Alt);
|
9763 |
|
|
|
9764 |
|
|
begin
|
9765 |
|
|
if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
|
9766 |
|
|
or else Nkind (Alt) = N_Range
|
9767 |
|
|
then
|
9768 |
|
|
Cond :=
|
9769 |
|
|
Make_In (Sloc (Alt),
|
9770 |
|
|
Left_Opnd => L,
|
9771 |
|
|
Right_Opnd => R);
|
9772 |
|
|
else
|
9773 |
|
|
Cond :=
|
9774 |
|
|
Make_Op_Eq (Sloc (Alt),
|
9775 |
|
|
Left_Opnd => L,
|
9776 |
|
|
Right_Opnd => R);
|
9777 |
|
|
end if;
|
9778 |
|
|
|
9779 |
|
|
return Cond;
|
9780 |
|
|
end Make_Cond;
|
9781 |
|
|
|
9782 |
|
|
-- Start of processing for Expand_Set_Membership
|
9783 |
|
|
|
9784 |
|
|
begin
|
9785 |
|
|
Remove_Side_Effects (Lop);
|
9786 |
|
|
|
9787 |
|
|
Alt := Last (Alternatives (N));
|
9788 |
|
|
Res := Make_Cond (Alt);
|
9789 |
|
|
|
9790 |
|
|
Prev (Alt);
|
9791 |
|
|
while Present (Alt) loop
|
9792 |
|
|
Res :=
|
9793 |
|
|
Make_Or_Else (Sloc (Alt),
|
9794 |
|
|
Left_Opnd => Make_Cond (Alt),
|
9795 |
|
|
Right_Opnd => Res);
|
9796 |
|
|
Prev (Alt);
|
9797 |
|
|
end loop;
|
9798 |
|
|
|
9799 |
|
|
Rewrite (N, Res);
|
9800 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
9801 |
|
|
end Expand_Set_Membership;
|
9802 |
|
|
|
9803 |
|
|
-----------------------------------
|
9804 |
|
|
-- Expand_Short_Circuit_Operator --
|
9805 |
|
|
-----------------------------------
|
9806 |
|
|
|
9807 |
|
|
-- Deal with special expansion if actions are present for the right operand
|
9808 |
|
|
-- and deal with optimizing case of arguments being True or False. We also
|
9809 |
|
|
-- deal with the special case of non-standard boolean values.
|
9810 |
|
|
|
9811 |
|
|
procedure Expand_Short_Circuit_Operator (N : Node_Id) is
|
9812 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
9813 |
|
|
Typ : constant Entity_Id := Etype (N);
|
9814 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
9815 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
9816 |
|
|
LocR : constant Source_Ptr := Sloc (Right);
|
9817 |
|
|
Actlist : List_Id;
|
9818 |
|
|
|
9819 |
|
|
Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
|
9820 |
|
|
Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
|
9821 |
|
|
-- If Left = Shortcut_Value then Right need not be evaluated
|
9822 |
|
|
|
9823 |
|
|
function Make_Test_Expr (Opnd : Node_Id) return Node_Id;
|
9824 |
|
|
-- For Opnd a boolean expression, return a Boolean expression equivalent
|
9825 |
|
|
-- to Opnd /= Shortcut_Value.
|
9826 |
|
|
|
9827 |
|
|
--------------------
|
9828 |
|
|
-- Make_Test_Expr --
|
9829 |
|
|
--------------------
|
9830 |
|
|
|
9831 |
|
|
function Make_Test_Expr (Opnd : Node_Id) return Node_Id is
|
9832 |
|
|
begin
|
9833 |
|
|
if Shortcut_Value then
|
9834 |
|
|
return Make_Op_Not (Sloc (Opnd), Opnd);
|
9835 |
|
|
else
|
9836 |
|
|
return Opnd;
|
9837 |
|
|
end if;
|
9838 |
|
|
end Make_Test_Expr;
|
9839 |
|
|
|
9840 |
|
|
Op_Var : Entity_Id;
|
9841 |
|
|
-- Entity for a temporary variable holding the value of the operator,
|
9842 |
|
|
-- used for expansion in the case where actions are present.
|
9843 |
|
|
|
9844 |
|
|
-- Start of processing for Expand_Short_Circuit_Operator
|
9845 |
|
|
|
9846 |
|
|
begin
|
9847 |
|
|
-- Deal with non-standard booleans
|
9848 |
|
|
|
9849 |
|
|
if Is_Boolean_Type (Typ) then
|
9850 |
|
|
Adjust_Condition (Left);
|
9851 |
|
|
Adjust_Condition (Right);
|
9852 |
|
|
Set_Etype (N, Standard_Boolean);
|
9853 |
|
|
end if;
|
9854 |
|
|
|
9855 |
|
|
-- Check for cases where left argument is known to be True or False
|
9856 |
|
|
|
9857 |
|
|
if Compile_Time_Known_Value (Left) then
|
9858 |
|
|
|
9859 |
|
|
-- Mark SCO for left condition as compile time known
|
9860 |
|
|
|
9861 |
|
|
if Generate_SCO and then Comes_From_Source (Left) then
|
9862 |
|
|
Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
|
9863 |
|
|
end if;
|
9864 |
|
|
|
9865 |
|
|
-- Rewrite True AND THEN Right / False OR ELSE Right to Right.
|
9866 |
|
|
-- Any actions associated with Right will be executed unconditionally
|
9867 |
|
|
-- and can thus be inserted into the tree unconditionally.
|
9868 |
|
|
|
9869 |
|
|
if Expr_Value_E (Left) /= Shortcut_Ent then
|
9870 |
|
|
if Present (Actions (N)) then
|
9871 |
|
|
Insert_Actions (N, Actions (N));
|
9872 |
|
|
end if;
|
9873 |
|
|
|
9874 |
|
|
Rewrite (N, Right);
|
9875 |
|
|
|
9876 |
|
|
-- Rewrite False AND THEN Right / True OR ELSE Right to Left.
|
9877 |
|
|
-- In this case we can forget the actions associated with Right,
|
9878 |
|
|
-- since they will never be executed.
|
9879 |
|
|
|
9880 |
|
|
else
|
9881 |
|
|
Kill_Dead_Code (Right);
|
9882 |
|
|
Kill_Dead_Code (Actions (N));
|
9883 |
|
|
Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
|
9884 |
|
|
end if;
|
9885 |
|
|
|
9886 |
|
|
Adjust_Result_Type (N, Typ);
|
9887 |
|
|
return;
|
9888 |
|
|
end if;
|
9889 |
|
|
|
9890 |
|
|
-- If Actions are present for the right operand, we have to do some
|
9891 |
|
|
-- special processing. We can't just let these actions filter back into
|
9892 |
|
|
-- code preceding the short circuit (which is what would have happened
|
9893 |
|
|
-- if we had not trapped them in the short-circuit form), since they
|
9894 |
|
|
-- must only be executed if the right operand of the short circuit is
|
9895 |
|
|
-- executed and not otherwise.
|
9896 |
|
|
|
9897 |
|
|
-- the temporary variable C.
|
9898 |
|
|
|
9899 |
|
|
if Present (Actions (N)) then
|
9900 |
|
|
Actlist := Actions (N);
|
9901 |
|
|
|
9902 |
|
|
-- The old approach is to expand:
|
9903 |
|
|
|
9904 |
|
|
-- left AND THEN right
|
9905 |
|
|
|
9906 |
|
|
-- into
|
9907 |
|
|
|
9908 |
|
|
-- C : Boolean := False;
|
9909 |
|
|
-- IF left THEN
|
9910 |
|
|
-- Actions;
|
9911 |
|
|
-- IF right THEN
|
9912 |
|
|
-- C := True;
|
9913 |
|
|
-- END IF;
|
9914 |
|
|
-- END IF;
|
9915 |
|
|
|
9916 |
|
|
-- and finally rewrite the operator into a reference to C. Similarly
|
9917 |
|
|
-- for left OR ELSE right, with negated values. Note that this
|
9918 |
|
|
-- rewrite causes some difficulties for coverage analysis because
|
9919 |
|
|
-- of the introduction of the new variable C, which obscures the
|
9920 |
|
|
-- structure of the test.
|
9921 |
|
|
|
9922 |
|
|
-- We use this "old approach" if use of N_Expression_With_Actions
|
9923 |
|
|
-- is False (see description in Opt of when this is or is not set).
|
9924 |
|
|
|
9925 |
|
|
if not Use_Expression_With_Actions then
|
9926 |
|
|
Op_Var := Make_Temporary (Loc, 'C', Related_Node => N);
|
9927 |
|
|
|
9928 |
|
|
Insert_Action (N,
|
9929 |
|
|
Make_Object_Declaration (Loc,
|
9930 |
|
|
Defining_Identifier =>
|
9931 |
|
|
Op_Var,
|
9932 |
|
|
Object_Definition =>
|
9933 |
|
|
New_Occurrence_Of (Standard_Boolean, Loc),
|
9934 |
|
|
Expression =>
|
9935 |
|
|
New_Occurrence_Of (Shortcut_Ent, Loc)));
|
9936 |
|
|
|
9937 |
|
|
Append_To (Actlist,
|
9938 |
|
|
Make_Implicit_If_Statement (Right,
|
9939 |
|
|
Condition => Make_Test_Expr (Right),
|
9940 |
|
|
Then_Statements => New_List (
|
9941 |
|
|
Make_Assignment_Statement (LocR,
|
9942 |
|
|
Name => New_Occurrence_Of (Op_Var, LocR),
|
9943 |
|
|
Expression =>
|
9944 |
|
|
New_Occurrence_Of
|
9945 |
|
|
(Boolean_Literals (not Shortcut_Value), LocR)))));
|
9946 |
|
|
|
9947 |
|
|
Insert_Action (N,
|
9948 |
|
|
Make_Implicit_If_Statement (Left,
|
9949 |
|
|
Condition => Make_Test_Expr (Left),
|
9950 |
|
|
Then_Statements => Actlist));
|
9951 |
|
|
|
9952 |
|
|
Rewrite (N, New_Occurrence_Of (Op_Var, Loc));
|
9953 |
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
9954 |
|
|
|
9955 |
|
|
-- The new approach, activated for now by the use of debug flag
|
9956 |
|
|
-- -gnatd.X is to use the new Expression_With_Actions node for the
|
9957 |
|
|
-- right operand of the short-circuit form. This should solve the
|
9958 |
|
|
-- traceability problems for coverage analysis.
|
9959 |
|
|
|
9960 |
|
|
else
|
9961 |
|
|
Rewrite (Right,
|
9962 |
|
|
Make_Expression_With_Actions (LocR,
|
9963 |
|
|
Expression => Relocate_Node (Right),
|
9964 |
|
|
Actions => Actlist));
|
9965 |
|
|
Set_Actions (N, No_List);
|
9966 |
|
|
Analyze_And_Resolve (Right, Standard_Boolean);
|
9967 |
|
|
end if;
|
9968 |
|
|
|
9969 |
|
|
Adjust_Result_Type (N, Typ);
|
9970 |
|
|
return;
|
9971 |
|
|
end if;
|
9972 |
|
|
|
9973 |
|
|
-- No actions present, check for cases of right argument True/False
|
9974 |
|
|
|
9975 |
|
|
if Compile_Time_Known_Value (Right) then
|
9976 |
|
|
|
9977 |
|
|
-- Mark SCO for left condition as compile time known
|
9978 |
|
|
|
9979 |
|
|
if Generate_SCO and then Comes_From_Source (Right) then
|
9980 |
|
|
Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
|
9981 |
|
|
end if;
|
9982 |
|
|
|
9983 |
|
|
-- Change (Left and then True), (Left or else False) to Left.
|
9984 |
|
|
-- Note that we know there are no actions associated with the right
|
9985 |
|
|
-- operand, since we just checked for this case above.
|
9986 |
|
|
|
9987 |
|
|
if Expr_Value_E (Right) /= Shortcut_Ent then
|
9988 |
|
|
Rewrite (N, Left);
|
9989 |
|
|
|
9990 |
|
|
-- Change (Left and then False), (Left or else True) to Right,
|
9991 |
|
|
-- making sure to preserve any side effects associated with the Left
|
9992 |
|
|
-- operand.
|
9993 |
|
|
|
9994 |
|
|
else
|
9995 |
|
|
Remove_Side_Effects (Left);
|
9996 |
|
|
Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
|
9997 |
|
|
end if;
|
9998 |
|
|
end if;
|
9999 |
|
|
|
10000 |
|
|
Adjust_Result_Type (N, Typ);
|
10001 |
|
|
end Expand_Short_Circuit_Operator;
|
10002 |
|
|
|
10003 |
|
|
-------------------------------------
|
10004 |
|
|
-- Fixup_Universal_Fixed_Operation --
|
10005 |
|
|
-------------------------------------
|
10006 |
|
|
|
10007 |
|
|
procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
|
10008 |
|
|
Conv : constant Node_Id := Parent (N);
|
10009 |
|
|
|
10010 |
|
|
begin
|
10011 |
|
|
-- We must have a type conversion immediately above us
|
10012 |
|
|
|
10013 |
|
|
pragma Assert (Nkind (Conv) = N_Type_Conversion);
|
10014 |
|
|
|
10015 |
|
|
-- Normally the type conversion gives our target type. The exception
|
10016 |
|
|
-- occurs in the case of the Round attribute, where the conversion
|
10017 |
|
|
-- will be to universal real, and our real type comes from the Round
|
10018 |
|
|
-- attribute (as well as an indication that we must round the result)
|
10019 |
|
|
|
10020 |
|
|
if Nkind (Parent (Conv)) = N_Attribute_Reference
|
10021 |
|
|
and then Attribute_Name (Parent (Conv)) = Name_Round
|
10022 |
|
|
then
|
10023 |
|
|
Set_Etype (N, Etype (Parent (Conv)));
|
10024 |
|
|
Set_Rounded_Result (N);
|
10025 |
|
|
|
10026 |
|
|
-- Normal case where type comes from conversion above us
|
10027 |
|
|
|
10028 |
|
|
else
|
10029 |
|
|
Set_Etype (N, Etype (Conv));
|
10030 |
|
|
end if;
|
10031 |
|
|
end Fixup_Universal_Fixed_Operation;
|
10032 |
|
|
|
10033 |
|
|
---------------------------------
|
10034 |
|
|
-- Has_Inferable_Discriminants --
|
10035 |
|
|
---------------------------------
|
10036 |
|
|
|
10037 |
|
|
function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
|
10038 |
|
|
|
10039 |
|
|
function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
|
10040 |
|
|
-- Determines whether the left-most prefix of a selected component is a
|
10041 |
|
|
-- formal parameter in a subprogram. Assumes N is a selected component.
|
10042 |
|
|
|
10043 |
|
|
--------------------------------
|
10044 |
|
|
-- Prefix_Is_Formal_Parameter --
|
10045 |
|
|
--------------------------------
|
10046 |
|
|
|
10047 |
|
|
function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
|
10048 |
|
|
Sel_Comp : Node_Id := N;
|
10049 |
|
|
|
10050 |
|
|
begin
|
10051 |
|
|
-- Move to the left-most prefix by climbing up the tree
|
10052 |
|
|
|
10053 |
|
|
while Present (Parent (Sel_Comp))
|
10054 |
|
|
and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
|
10055 |
|
|
loop
|
10056 |
|
|
Sel_Comp := Parent (Sel_Comp);
|
10057 |
|
|
end loop;
|
10058 |
|
|
|
10059 |
|
|
return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
|
10060 |
|
|
end Prefix_Is_Formal_Parameter;
|
10061 |
|
|
|
10062 |
|
|
-- Start of processing for Has_Inferable_Discriminants
|
10063 |
|
|
|
10064 |
|
|
begin
|
10065 |
|
|
-- For identifiers and indexed components, it is sufficient to have a
|
10066 |
|
|
-- constrained Unchecked_Union nominal subtype.
|
10067 |
|
|
|
10068 |
|
|
if Nkind_In (N, N_Identifier, N_Indexed_Component) then
|
10069 |
|
|
return Is_Unchecked_Union (Base_Type (Etype (N)))
|
10070 |
|
|
and then
|
10071 |
|
|
Is_Constrained (Etype (N));
|
10072 |
|
|
|
10073 |
|
|
-- For selected components, the subtype of the selector must be a
|
10074 |
|
|
-- constrained Unchecked_Union. If the component is subject to a
|
10075 |
|
|
-- per-object constraint, then the enclosing object must have inferable
|
10076 |
|
|
-- discriminants.
|
10077 |
|
|
|
10078 |
|
|
elsif Nkind (N) = N_Selected_Component then
|
10079 |
|
|
if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
|
10080 |
|
|
|
10081 |
|
|
-- A small hack. If we have a per-object constrained selected
|
10082 |
|
|
-- component of a formal parameter, return True since we do not
|
10083 |
|
|
-- know the actual parameter association yet.
|
10084 |
|
|
|
10085 |
|
|
if Prefix_Is_Formal_Parameter (N) then
|
10086 |
|
|
return True;
|
10087 |
|
|
end if;
|
10088 |
|
|
|
10089 |
|
|
-- Otherwise, check the enclosing object and the selector
|
10090 |
|
|
|
10091 |
|
|
return Has_Inferable_Discriminants (Prefix (N))
|
10092 |
|
|
and then
|
10093 |
|
|
Has_Inferable_Discriminants (Selector_Name (N));
|
10094 |
|
|
end if;
|
10095 |
|
|
|
10096 |
|
|
-- The call to Has_Inferable_Discriminants will determine whether
|
10097 |
|
|
-- the selector has a constrained Unchecked_Union nominal type.
|
10098 |
|
|
|
10099 |
|
|
return Has_Inferable_Discriminants (Selector_Name (N));
|
10100 |
|
|
|
10101 |
|
|
-- A qualified expression has inferable discriminants if its subtype
|
10102 |
|
|
-- mark is a constrained Unchecked_Union subtype.
|
10103 |
|
|
|
10104 |
|
|
elsif Nkind (N) = N_Qualified_Expression then
|
10105 |
|
|
return Is_Unchecked_Union (Subtype_Mark (N))
|
10106 |
|
|
and then
|
10107 |
|
|
Is_Constrained (Subtype_Mark (N));
|
10108 |
|
|
|
10109 |
|
|
end if;
|
10110 |
|
|
|
10111 |
|
|
return False;
|
10112 |
|
|
end Has_Inferable_Discriminants;
|
10113 |
|
|
|
10114 |
|
|
-------------------------------
|
10115 |
|
|
-- Insert_Dereference_Action --
|
10116 |
|
|
-------------------------------
|
10117 |
|
|
|
10118 |
|
|
procedure Insert_Dereference_Action (N : Node_Id) is
|
10119 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
10120 |
|
|
Typ : constant Entity_Id := Etype (N);
|
10121 |
|
|
Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
|
10122 |
|
|
Pnod : constant Node_Id := Parent (N);
|
10123 |
|
|
|
10124 |
|
|
function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
|
10125 |
|
|
-- Return true if type of P is derived from Checked_Pool;
|
10126 |
|
|
|
10127 |
|
|
-----------------------------
|
10128 |
|
|
-- Is_Checked_Storage_Pool --
|
10129 |
|
|
-----------------------------
|
10130 |
|
|
|
10131 |
|
|
function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
|
10132 |
|
|
T : Entity_Id;
|
10133 |
|
|
|
10134 |
|
|
begin
|
10135 |
|
|
if No (P) then
|
10136 |
|
|
return False;
|
10137 |
|
|
end if;
|
10138 |
|
|
|
10139 |
|
|
T := Etype (P);
|
10140 |
|
|
while T /= Etype (T) loop
|
10141 |
|
|
if Is_RTE (T, RE_Checked_Pool) then
|
10142 |
|
|
return True;
|
10143 |
|
|
else
|
10144 |
|
|
T := Etype (T);
|
10145 |
|
|
end if;
|
10146 |
|
|
end loop;
|
10147 |
|
|
|
10148 |
|
|
return False;
|
10149 |
|
|
end Is_Checked_Storage_Pool;
|
10150 |
|
|
|
10151 |
|
|
-- Start of processing for Insert_Dereference_Action
|
10152 |
|
|
|
10153 |
|
|
begin
|
10154 |
|
|
pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
|
10155 |
|
|
|
10156 |
|
|
if not (Is_Checked_Storage_Pool (Pool)
|
10157 |
|
|
and then Comes_From_Source (Original_Node (Pnod)))
|
10158 |
|
|
then
|
10159 |
|
|
return;
|
10160 |
|
|
end if;
|
10161 |
|
|
|
10162 |
|
|
Insert_Action (N,
|
10163 |
|
|
Make_Procedure_Call_Statement (Loc,
|
10164 |
|
|
Name => New_Reference_To (
|
10165 |
|
|
Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
|
10166 |
|
|
|
10167 |
|
|
Parameter_Associations => New_List (
|
10168 |
|
|
|
10169 |
|
|
-- Pool
|
10170 |
|
|
|
10171 |
|
|
New_Reference_To (Pool, Loc),
|
10172 |
|
|
|
10173 |
|
|
-- Storage_Address. We use the attribute Pool_Address, which uses
|
10174 |
|
|
-- the pointer itself to find the address of the object, and which
|
10175 |
|
|
-- handles unconstrained arrays properly by computing the address
|
10176 |
|
|
-- of the template. i.e. the correct address of the corresponding
|
10177 |
|
|
-- allocation.
|
10178 |
|
|
|
10179 |
|
|
Make_Attribute_Reference (Loc,
|
10180 |
|
|
Prefix => Duplicate_Subexpr_Move_Checks (N),
|
10181 |
|
|
Attribute_Name => Name_Pool_Address),
|
10182 |
|
|
|
10183 |
|
|
-- Size_In_Storage_Elements
|
10184 |
|
|
|
10185 |
|
|
Make_Op_Divide (Loc,
|
10186 |
|
|
Left_Opnd =>
|
10187 |
|
|
Make_Attribute_Reference (Loc,
|
10188 |
|
|
Prefix =>
|
10189 |
|
|
Make_Explicit_Dereference (Loc,
|
10190 |
|
|
Duplicate_Subexpr_Move_Checks (N)),
|
10191 |
|
|
Attribute_Name => Name_Size),
|
10192 |
|
|
Right_Opnd =>
|
10193 |
|
|
Make_Integer_Literal (Loc, System_Storage_Unit)),
|
10194 |
|
|
|
10195 |
|
|
-- Alignment
|
10196 |
|
|
|
10197 |
|
|
Make_Attribute_Reference (Loc,
|
10198 |
|
|
Prefix =>
|
10199 |
|
|
Make_Explicit_Dereference (Loc,
|
10200 |
|
|
Duplicate_Subexpr_Move_Checks (N)),
|
10201 |
|
|
Attribute_Name => Name_Alignment))));
|
10202 |
|
|
|
10203 |
|
|
exception
|
10204 |
|
|
when RE_Not_Available =>
|
10205 |
|
|
return;
|
10206 |
|
|
end Insert_Dereference_Action;
|
10207 |
|
|
|
10208 |
|
|
--------------------------------
|
10209 |
|
|
-- Integer_Promotion_Possible --
|
10210 |
|
|
--------------------------------
|
10211 |
|
|
|
10212 |
|
|
function Integer_Promotion_Possible (N : Node_Id) return Boolean is
|
10213 |
|
|
Operand : constant Node_Id := Expression (N);
|
10214 |
|
|
Operand_Type : constant Entity_Id := Etype (Operand);
|
10215 |
|
|
Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
|
10216 |
|
|
|
10217 |
|
|
begin
|
10218 |
|
|
pragma Assert (Nkind (N) = N_Type_Conversion);
|
10219 |
|
|
|
10220 |
|
|
return
|
10221 |
|
|
|
10222 |
|
|
-- We only do the transformation for source constructs. We assume
|
10223 |
|
|
-- that the expander knows what it is doing when it generates code.
|
10224 |
|
|
|
10225 |
|
|
Comes_From_Source (N)
|
10226 |
|
|
|
10227 |
|
|
-- If the operand type is Short_Integer or Short_Short_Integer,
|
10228 |
|
|
-- then we will promote to Integer, which is available on all
|
10229 |
|
|
-- targets, and is sufficient to ensure no intermediate overflow.
|
10230 |
|
|
-- Furthermore it is likely to be as efficient or more efficient
|
10231 |
|
|
-- than using the smaller type for the computation so we do this
|
10232 |
|
|
-- unconditionally.
|
10233 |
|
|
|
10234 |
|
|
and then
|
10235 |
|
|
(Root_Operand_Type = Base_Type (Standard_Short_Integer)
|
10236 |
|
|
or else
|
10237 |
|
|
Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
|
10238 |
|
|
|
10239 |
|
|
-- Test for interesting operation, which includes addition,
|
10240 |
|
|
-- division, exponentiation, multiplication, subtraction, absolute
|
10241 |
|
|
-- value and unary negation. Unary "+" is omitted since it is a
|
10242 |
|
|
-- no-op and thus can't overflow.
|
10243 |
|
|
|
10244 |
|
|
and then Nkind_In (Operand, N_Op_Abs,
|
10245 |
|
|
N_Op_Add,
|
10246 |
|
|
N_Op_Divide,
|
10247 |
|
|
N_Op_Expon,
|
10248 |
|
|
N_Op_Minus,
|
10249 |
|
|
N_Op_Multiply,
|
10250 |
|
|
N_Op_Subtract);
|
10251 |
|
|
end Integer_Promotion_Possible;
|
10252 |
|
|
|
10253 |
|
|
------------------------------
|
10254 |
|
|
-- Make_Array_Comparison_Op --
|
10255 |
|
|
------------------------------
|
10256 |
|
|
|
10257 |
|
|
-- This is a hand-coded expansion of the following generic function:
|
10258 |
|
|
|
10259 |
|
|
-- generic
|
10260 |
|
|
-- type elem is (<>);
|
10261 |
|
|
-- type index is (<>);
|
10262 |
|
|
-- type a is array (index range <>) of elem;
|
10263 |
|
|
|
10264 |
|
|
-- function Gnnn (X : a; Y: a) return boolean is
|
10265 |
|
|
-- J : index := Y'first;
|
10266 |
|
|
|
10267 |
|
|
-- begin
|
10268 |
|
|
-- if X'length = 0 then
|
10269 |
|
|
-- return false;
|
10270 |
|
|
|
10271 |
|
|
-- elsif Y'length = 0 then
|
10272 |
|
|
-- return true;
|
10273 |
|
|
|
10274 |
|
|
-- else
|
10275 |
|
|
-- for I in X'range loop
|
10276 |
|
|
-- if X (I) = Y (J) then
|
10277 |
|
|
-- if J = Y'last then
|
10278 |
|
|
-- exit;
|
10279 |
|
|
-- else
|
10280 |
|
|
-- J := index'succ (J);
|
10281 |
|
|
-- end if;
|
10282 |
|
|
|
10283 |
|
|
-- else
|
10284 |
|
|
-- return X (I) > Y (J);
|
10285 |
|
|
-- end if;
|
10286 |
|
|
-- end loop;
|
10287 |
|
|
|
10288 |
|
|
-- return X'length > Y'length;
|
10289 |
|
|
-- end if;
|
10290 |
|
|
-- end Gnnn;
|
10291 |
|
|
|
10292 |
|
|
-- Note that since we are essentially doing this expansion by hand, we
|
10293 |
|
|
-- do not need to generate an actual or formal generic part, just the
|
10294 |
|
|
-- instantiated function itself.
|
10295 |
|
|
|
10296 |
|
|
function Make_Array_Comparison_Op
|
10297 |
|
|
(Typ : Entity_Id;
|
10298 |
|
|
Nod : Node_Id) return Node_Id
|
10299 |
|
|
is
|
10300 |
|
|
Loc : constant Source_Ptr := Sloc (Nod);
|
10301 |
|
|
|
10302 |
|
|
X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
|
10303 |
|
|
Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
|
10304 |
|
|
I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
|
10305 |
|
|
J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
|
10306 |
|
|
|
10307 |
|
|
Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
|
10308 |
|
|
|
10309 |
|
|
Loop_Statement : Node_Id;
|
10310 |
|
|
Loop_Body : Node_Id;
|
10311 |
|
|
If_Stat : Node_Id;
|
10312 |
|
|
Inner_If : Node_Id;
|
10313 |
|
|
Final_Expr : Node_Id;
|
10314 |
|
|
Func_Body : Node_Id;
|
10315 |
|
|
Func_Name : Entity_Id;
|
10316 |
|
|
Formals : List_Id;
|
10317 |
|
|
Length1 : Node_Id;
|
10318 |
|
|
Length2 : Node_Id;
|
10319 |
|
|
|
10320 |
|
|
begin
|
10321 |
|
|
-- if J = Y'last then
|
10322 |
|
|
-- exit;
|
10323 |
|
|
-- else
|
10324 |
|
|
-- J := index'succ (J);
|
10325 |
|
|
-- end if;
|
10326 |
|
|
|
10327 |
|
|
Inner_If :=
|
10328 |
|
|
Make_Implicit_If_Statement (Nod,
|
10329 |
|
|
Condition =>
|
10330 |
|
|
Make_Op_Eq (Loc,
|
10331 |
|
|
Left_Opnd => New_Reference_To (J, Loc),
|
10332 |
|
|
Right_Opnd =>
|
10333 |
|
|
Make_Attribute_Reference (Loc,
|
10334 |
|
|
Prefix => New_Reference_To (Y, Loc),
|
10335 |
|
|
Attribute_Name => Name_Last)),
|
10336 |
|
|
|
10337 |
|
|
Then_Statements => New_List (
|
10338 |
|
|
Make_Exit_Statement (Loc)),
|
10339 |
|
|
|
10340 |
|
|
Else_Statements =>
|
10341 |
|
|
New_List (
|
10342 |
|
|
Make_Assignment_Statement (Loc,
|
10343 |
|
|
Name => New_Reference_To (J, Loc),
|
10344 |
|
|
Expression =>
|
10345 |
|
|
Make_Attribute_Reference (Loc,
|
10346 |
|
|
Prefix => New_Reference_To (Index, Loc),
|
10347 |
|
|
Attribute_Name => Name_Succ,
|
10348 |
|
|
Expressions => New_List (New_Reference_To (J, Loc))))));
|
10349 |
|
|
|
10350 |
|
|
-- if X (I) = Y (J) then
|
10351 |
|
|
-- if ... end if;
|
10352 |
|
|
-- else
|
10353 |
|
|
-- return X (I) > Y (J);
|
10354 |
|
|
-- end if;
|
10355 |
|
|
|
10356 |
|
|
Loop_Body :=
|
10357 |
|
|
Make_Implicit_If_Statement (Nod,
|
10358 |
|
|
Condition =>
|
10359 |
|
|
Make_Op_Eq (Loc,
|
10360 |
|
|
Left_Opnd =>
|
10361 |
|
|
Make_Indexed_Component (Loc,
|
10362 |
|
|
Prefix => New_Reference_To (X, Loc),
|
10363 |
|
|
Expressions => New_List (New_Reference_To (I, Loc))),
|
10364 |
|
|
|
10365 |
|
|
Right_Opnd =>
|
10366 |
|
|
Make_Indexed_Component (Loc,
|
10367 |
|
|
Prefix => New_Reference_To (Y, Loc),
|
10368 |
|
|
Expressions => New_List (New_Reference_To (J, Loc)))),
|
10369 |
|
|
|
10370 |
|
|
Then_Statements => New_List (Inner_If),
|
10371 |
|
|
|
10372 |
|
|
Else_Statements => New_List (
|
10373 |
|
|
Make_Simple_Return_Statement (Loc,
|
10374 |
|
|
Expression =>
|
10375 |
|
|
Make_Op_Gt (Loc,
|
10376 |
|
|
Left_Opnd =>
|
10377 |
|
|
Make_Indexed_Component (Loc,
|
10378 |
|
|
Prefix => New_Reference_To (X, Loc),
|
10379 |
|
|
Expressions => New_List (New_Reference_To (I, Loc))),
|
10380 |
|
|
|
10381 |
|
|
Right_Opnd =>
|
10382 |
|
|
Make_Indexed_Component (Loc,
|
10383 |
|
|
Prefix => New_Reference_To (Y, Loc),
|
10384 |
|
|
Expressions => New_List (
|
10385 |
|
|
New_Reference_To (J, Loc)))))));
|
10386 |
|
|
|
10387 |
|
|
-- for I in X'range loop
|
10388 |
|
|
-- if ... end if;
|
10389 |
|
|
-- end loop;
|
10390 |
|
|
|
10391 |
|
|
Loop_Statement :=
|
10392 |
|
|
Make_Implicit_Loop_Statement (Nod,
|
10393 |
|
|
Identifier => Empty,
|
10394 |
|
|
|
10395 |
|
|
Iteration_Scheme =>
|
10396 |
|
|
Make_Iteration_Scheme (Loc,
|
10397 |
|
|
Loop_Parameter_Specification =>
|
10398 |
|
|
Make_Loop_Parameter_Specification (Loc,
|
10399 |
|
|
Defining_Identifier => I,
|
10400 |
|
|
Discrete_Subtype_Definition =>
|
10401 |
|
|
Make_Attribute_Reference (Loc,
|
10402 |
|
|
Prefix => New_Reference_To (X, Loc),
|
10403 |
|
|
Attribute_Name => Name_Range))),
|
10404 |
|
|
|
10405 |
|
|
Statements => New_List (Loop_Body));
|
10406 |
|
|
|
10407 |
|
|
-- if X'length = 0 then
|
10408 |
|
|
-- return false;
|
10409 |
|
|
-- elsif Y'length = 0 then
|
10410 |
|
|
-- return true;
|
10411 |
|
|
-- else
|
10412 |
|
|
-- for ... loop ... end loop;
|
10413 |
|
|
-- return X'length > Y'length;
|
10414 |
|
|
-- end if;
|
10415 |
|
|
|
10416 |
|
|
Length1 :=
|
10417 |
|
|
Make_Attribute_Reference (Loc,
|
10418 |
|
|
Prefix => New_Reference_To (X, Loc),
|
10419 |
|
|
Attribute_Name => Name_Length);
|
10420 |
|
|
|
10421 |
|
|
Length2 :=
|
10422 |
|
|
Make_Attribute_Reference (Loc,
|
10423 |
|
|
Prefix => New_Reference_To (Y, Loc),
|
10424 |
|
|
Attribute_Name => Name_Length);
|
10425 |
|
|
|
10426 |
|
|
Final_Expr :=
|
10427 |
|
|
Make_Op_Gt (Loc,
|
10428 |
|
|
Left_Opnd => Length1,
|
10429 |
|
|
Right_Opnd => Length2);
|
10430 |
|
|
|
10431 |
|
|
If_Stat :=
|
10432 |
|
|
Make_Implicit_If_Statement (Nod,
|
10433 |
|
|
Condition =>
|
10434 |
|
|
Make_Op_Eq (Loc,
|
10435 |
|
|
Left_Opnd =>
|
10436 |
|
|
Make_Attribute_Reference (Loc,
|
10437 |
|
|
Prefix => New_Reference_To (X, Loc),
|
10438 |
|
|
Attribute_Name => Name_Length),
|
10439 |
|
|
Right_Opnd =>
|
10440 |
|
|
Make_Integer_Literal (Loc, 0)),
|
10441 |
|
|
|
10442 |
|
|
Then_Statements =>
|
10443 |
|
|
New_List (
|
10444 |
|
|
Make_Simple_Return_Statement (Loc,
|
10445 |
|
|
Expression => New_Reference_To (Standard_False, Loc))),
|
10446 |
|
|
|
10447 |
|
|
Elsif_Parts => New_List (
|
10448 |
|
|
Make_Elsif_Part (Loc,
|
10449 |
|
|
Condition =>
|
10450 |
|
|
Make_Op_Eq (Loc,
|
10451 |
|
|
Left_Opnd =>
|
10452 |
|
|
Make_Attribute_Reference (Loc,
|
10453 |
|
|
Prefix => New_Reference_To (Y, Loc),
|
10454 |
|
|
Attribute_Name => Name_Length),
|
10455 |
|
|
Right_Opnd =>
|
10456 |
|
|
Make_Integer_Literal (Loc, 0)),
|
10457 |
|
|
|
10458 |
|
|
Then_Statements =>
|
10459 |
|
|
New_List (
|
10460 |
|
|
Make_Simple_Return_Statement (Loc,
|
10461 |
|
|
Expression => New_Reference_To (Standard_True, Loc))))),
|
10462 |
|
|
|
10463 |
|
|
Else_Statements => New_List (
|
10464 |
|
|
Loop_Statement,
|
10465 |
|
|
Make_Simple_Return_Statement (Loc,
|
10466 |
|
|
Expression => Final_Expr)));
|
10467 |
|
|
|
10468 |
|
|
-- (X : a; Y: a)
|
10469 |
|
|
|
10470 |
|
|
Formals := New_List (
|
10471 |
|
|
Make_Parameter_Specification (Loc,
|
10472 |
|
|
Defining_Identifier => X,
|
10473 |
|
|
Parameter_Type => New_Reference_To (Typ, Loc)),
|
10474 |
|
|
|
10475 |
|
|
Make_Parameter_Specification (Loc,
|
10476 |
|
|
Defining_Identifier => Y,
|
10477 |
|
|
Parameter_Type => New_Reference_To (Typ, Loc)));
|
10478 |
|
|
|
10479 |
|
|
-- function Gnnn (...) return boolean is
|
10480 |
|
|
-- J : index := Y'first;
|
10481 |
|
|
-- begin
|
10482 |
|
|
-- if ... end if;
|
10483 |
|
|
-- end Gnnn;
|
10484 |
|
|
|
10485 |
|
|
Func_Name := Make_Temporary (Loc, 'G');
|
10486 |
|
|
|
10487 |
|
|
Func_Body :=
|
10488 |
|
|
Make_Subprogram_Body (Loc,
|
10489 |
|
|
Specification =>
|
10490 |
|
|
Make_Function_Specification (Loc,
|
10491 |
|
|
Defining_Unit_Name => Func_Name,
|
10492 |
|
|
Parameter_Specifications => Formals,
|
10493 |
|
|
Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
|
10494 |
|
|
|
10495 |
|
|
Declarations => New_List (
|
10496 |
|
|
Make_Object_Declaration (Loc,
|
10497 |
|
|
Defining_Identifier => J,
|
10498 |
|
|
Object_Definition => New_Reference_To (Index, Loc),
|
10499 |
|
|
Expression =>
|
10500 |
|
|
Make_Attribute_Reference (Loc,
|
10501 |
|
|
Prefix => New_Reference_To (Y, Loc),
|
10502 |
|
|
Attribute_Name => Name_First))),
|
10503 |
|
|
|
10504 |
|
|
Handled_Statement_Sequence =>
|
10505 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
10506 |
|
|
Statements => New_List (If_Stat)));
|
10507 |
|
|
|
10508 |
|
|
return Func_Body;
|
10509 |
|
|
end Make_Array_Comparison_Op;
|
10510 |
|
|
|
10511 |
|
|
---------------------------
|
10512 |
|
|
-- Make_Boolean_Array_Op --
|
10513 |
|
|
---------------------------
|
10514 |
|
|
|
10515 |
|
|
-- For logical operations on boolean arrays, expand in line the following,
|
10516 |
|
|
-- replacing 'and' with 'or' or 'xor' where needed:
|
10517 |
|
|
|
10518 |
|
|
-- function Annn (A : typ; B: typ) return typ is
|
10519 |
|
|
-- C : typ;
|
10520 |
|
|
-- begin
|
10521 |
|
|
-- for J in A'range loop
|
10522 |
|
|
-- C (J) := A (J) op B (J);
|
10523 |
|
|
-- end loop;
|
10524 |
|
|
-- return C;
|
10525 |
|
|
-- end Annn;
|
10526 |
|
|
|
10527 |
|
|
-- Here typ is the boolean array type
|
10528 |
|
|
|
10529 |
|
|
function Make_Boolean_Array_Op
|
10530 |
|
|
(Typ : Entity_Id;
|
10531 |
|
|
N : Node_Id) return Node_Id
|
10532 |
|
|
is
|
10533 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
10534 |
|
|
|
10535 |
|
|
A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
|
10536 |
|
|
B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
|
10537 |
|
|
C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
|
10538 |
|
|
J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
|
10539 |
|
|
|
10540 |
|
|
A_J : Node_Id;
|
10541 |
|
|
B_J : Node_Id;
|
10542 |
|
|
C_J : Node_Id;
|
10543 |
|
|
Op : Node_Id;
|
10544 |
|
|
|
10545 |
|
|
Formals : List_Id;
|
10546 |
|
|
Func_Name : Entity_Id;
|
10547 |
|
|
Func_Body : Node_Id;
|
10548 |
|
|
Loop_Statement : Node_Id;
|
10549 |
|
|
|
10550 |
|
|
begin
|
10551 |
|
|
A_J :=
|
10552 |
|
|
Make_Indexed_Component (Loc,
|
10553 |
|
|
Prefix => New_Reference_To (A, Loc),
|
10554 |
|
|
Expressions => New_List (New_Reference_To (J, Loc)));
|
10555 |
|
|
|
10556 |
|
|
B_J :=
|
10557 |
|
|
Make_Indexed_Component (Loc,
|
10558 |
|
|
Prefix => New_Reference_To (B, Loc),
|
10559 |
|
|
Expressions => New_List (New_Reference_To (J, Loc)));
|
10560 |
|
|
|
10561 |
|
|
C_J :=
|
10562 |
|
|
Make_Indexed_Component (Loc,
|
10563 |
|
|
Prefix => New_Reference_To (C, Loc),
|
10564 |
|
|
Expressions => New_List (New_Reference_To (J, Loc)));
|
10565 |
|
|
|
10566 |
|
|
if Nkind (N) = N_Op_And then
|
10567 |
|
|
Op :=
|
10568 |
|
|
Make_Op_And (Loc,
|
10569 |
|
|
Left_Opnd => A_J,
|
10570 |
|
|
Right_Opnd => B_J);
|
10571 |
|
|
|
10572 |
|
|
elsif Nkind (N) = N_Op_Or then
|
10573 |
|
|
Op :=
|
10574 |
|
|
Make_Op_Or (Loc,
|
10575 |
|
|
Left_Opnd => A_J,
|
10576 |
|
|
Right_Opnd => B_J);
|
10577 |
|
|
|
10578 |
|
|
else
|
10579 |
|
|
Op :=
|
10580 |
|
|
Make_Op_Xor (Loc,
|
10581 |
|
|
Left_Opnd => A_J,
|
10582 |
|
|
Right_Opnd => B_J);
|
10583 |
|
|
end if;
|
10584 |
|
|
|
10585 |
|
|
Loop_Statement :=
|
10586 |
|
|
Make_Implicit_Loop_Statement (N,
|
10587 |
|
|
Identifier => Empty,
|
10588 |
|
|
|
10589 |
|
|
Iteration_Scheme =>
|
10590 |
|
|
Make_Iteration_Scheme (Loc,
|
10591 |
|
|
Loop_Parameter_Specification =>
|
10592 |
|
|
Make_Loop_Parameter_Specification (Loc,
|
10593 |
|
|
Defining_Identifier => J,
|
10594 |
|
|
Discrete_Subtype_Definition =>
|
10595 |
|
|
Make_Attribute_Reference (Loc,
|
10596 |
|
|
Prefix => New_Reference_To (A, Loc),
|
10597 |
|
|
Attribute_Name => Name_Range))),
|
10598 |
|
|
|
10599 |
|
|
Statements => New_List (
|
10600 |
|
|
Make_Assignment_Statement (Loc,
|
10601 |
|
|
Name => C_J,
|
10602 |
|
|
Expression => Op)));
|
10603 |
|
|
|
10604 |
|
|
Formals := New_List (
|
10605 |
|
|
Make_Parameter_Specification (Loc,
|
10606 |
|
|
Defining_Identifier => A,
|
10607 |
|
|
Parameter_Type => New_Reference_To (Typ, Loc)),
|
10608 |
|
|
|
10609 |
|
|
Make_Parameter_Specification (Loc,
|
10610 |
|
|
Defining_Identifier => B,
|
10611 |
|
|
Parameter_Type => New_Reference_To (Typ, Loc)));
|
10612 |
|
|
|
10613 |
|
|
Func_Name := Make_Temporary (Loc, 'A');
|
10614 |
|
|
Set_Is_Inlined (Func_Name);
|
10615 |
|
|
|
10616 |
|
|
Func_Body :=
|
10617 |
|
|
Make_Subprogram_Body (Loc,
|
10618 |
|
|
Specification =>
|
10619 |
|
|
Make_Function_Specification (Loc,
|
10620 |
|
|
Defining_Unit_Name => Func_Name,
|
10621 |
|
|
Parameter_Specifications => Formals,
|
10622 |
|
|
Result_Definition => New_Reference_To (Typ, Loc)),
|
10623 |
|
|
|
10624 |
|
|
Declarations => New_List (
|
10625 |
|
|
Make_Object_Declaration (Loc,
|
10626 |
|
|
Defining_Identifier => C,
|
10627 |
|
|
Object_Definition => New_Reference_To (Typ, Loc))),
|
10628 |
|
|
|
10629 |
|
|
Handled_Statement_Sequence =>
|
10630 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
10631 |
|
|
Statements => New_List (
|
10632 |
|
|
Loop_Statement,
|
10633 |
|
|
Make_Simple_Return_Statement (Loc,
|
10634 |
|
|
Expression => New_Reference_To (C, Loc)))));
|
10635 |
|
|
|
10636 |
|
|
return Func_Body;
|
10637 |
|
|
end Make_Boolean_Array_Op;
|
10638 |
|
|
|
10639 |
|
|
--------------------------------
|
10640 |
|
|
-- Optimize_Length_Comparison --
|
10641 |
|
|
--------------------------------
|
10642 |
|
|
|
10643 |
|
|
procedure Optimize_Length_Comparison (N : Node_Id) is
|
10644 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
10645 |
|
|
Typ : constant Entity_Id := Etype (N);
|
10646 |
|
|
Result : Node_Id;
|
10647 |
|
|
|
10648 |
|
|
Left : Node_Id;
|
10649 |
|
|
Right : Node_Id;
|
10650 |
|
|
-- First and Last attribute reference nodes, which end up as left and
|
10651 |
|
|
-- right operands of the optimized result.
|
10652 |
|
|
|
10653 |
|
|
Is_Zero : Boolean;
|
10654 |
|
|
-- True for comparison operand of zero
|
10655 |
|
|
|
10656 |
|
|
Comp : Node_Id;
|
10657 |
|
|
-- Comparison operand, set only if Is_Zero is false
|
10658 |
|
|
|
10659 |
|
|
Ent : Entity_Id;
|
10660 |
|
|
-- Entity whose length is being compared
|
10661 |
|
|
|
10662 |
|
|
Index : Node_Id;
|
10663 |
|
|
-- Integer_Literal node for length attribute expression, or Empty
|
10664 |
|
|
-- if there is no such expression present.
|
10665 |
|
|
|
10666 |
|
|
Ityp : Entity_Id;
|
10667 |
|
|
-- Type of array index to which 'Length is applied
|
10668 |
|
|
|
10669 |
|
|
Op : Node_Kind := Nkind (N);
|
10670 |
|
|
-- Kind of comparison operator, gets flipped if operands backwards
|
10671 |
|
|
|
10672 |
|
|
function Is_Optimizable (N : Node_Id) return Boolean;
|
10673 |
|
|
-- Tests N to see if it is an optimizable comparison value (defined as
|
10674 |
|
|
-- constant zero or one, or something else where the value is known to
|
10675 |
|
|
-- be positive and in the range of 32-bits, and where the corresponding
|
10676 |
|
|
-- Length value is also known to be 32-bits. If result is true, sets
|
10677 |
|
|
-- Is_Zero, Ityp, and Comp accordingly.
|
10678 |
|
|
|
10679 |
|
|
function Is_Entity_Length (N : Node_Id) return Boolean;
|
10680 |
|
|
-- Tests if N is a length attribute applied to a simple entity. If so,
|
10681 |
|
|
-- returns True, and sets Ent to the entity, and Index to the integer
|
10682 |
|
|
-- literal provided as an attribute expression, or to Empty if none.
|
10683 |
|
|
-- Also returns True if the expression is a generated type conversion
|
10684 |
|
|
-- whose expression is of the desired form. This latter case arises
|
10685 |
|
|
-- when Apply_Universal_Integer_Attribute_Check installs a conversion
|
10686 |
|
|
-- to check for being in range, which is not needed in this context.
|
10687 |
|
|
-- Returns False if neither condition holds.
|
10688 |
|
|
|
10689 |
|
|
function Prepare_64 (N : Node_Id) return Node_Id;
|
10690 |
|
|
-- Given a discrete expression, returns a Long_Long_Integer typed
|
10691 |
|
|
-- expression representing the underlying value of the expression.
|
10692 |
|
|
-- This is done with an unchecked conversion to the result type. We
|
10693 |
|
|
-- use unchecked conversion to handle the enumeration type case.
|
10694 |
|
|
|
10695 |
|
|
----------------------
|
10696 |
|
|
-- Is_Entity_Length --
|
10697 |
|
|
----------------------
|
10698 |
|
|
|
10699 |
|
|
function Is_Entity_Length (N : Node_Id) return Boolean is
|
10700 |
|
|
begin
|
10701 |
|
|
if Nkind (N) = N_Attribute_Reference
|
10702 |
|
|
and then Attribute_Name (N) = Name_Length
|
10703 |
|
|
and then Is_Entity_Name (Prefix (N))
|
10704 |
|
|
then
|
10705 |
|
|
Ent := Entity (Prefix (N));
|
10706 |
|
|
|
10707 |
|
|
if Present (Expressions (N)) then
|
10708 |
|
|
Index := First (Expressions (N));
|
10709 |
|
|
else
|
10710 |
|
|
Index := Empty;
|
10711 |
|
|
end if;
|
10712 |
|
|
|
10713 |
|
|
return True;
|
10714 |
|
|
|
10715 |
|
|
elsif Nkind (N) = N_Type_Conversion
|
10716 |
|
|
and then not Comes_From_Source (N)
|
10717 |
|
|
then
|
10718 |
|
|
return Is_Entity_Length (Expression (N));
|
10719 |
|
|
|
10720 |
|
|
else
|
10721 |
|
|
return False;
|
10722 |
|
|
end if;
|
10723 |
|
|
end Is_Entity_Length;
|
10724 |
|
|
|
10725 |
|
|
--------------------
|
10726 |
|
|
-- Is_Optimizable --
|
10727 |
|
|
--------------------
|
10728 |
|
|
|
10729 |
|
|
function Is_Optimizable (N : Node_Id) return Boolean is
|
10730 |
|
|
Val : Uint;
|
10731 |
|
|
OK : Boolean;
|
10732 |
|
|
Lo : Uint;
|
10733 |
|
|
Hi : Uint;
|
10734 |
|
|
Indx : Node_Id;
|
10735 |
|
|
|
10736 |
|
|
begin
|
10737 |
|
|
if Compile_Time_Known_Value (N) then
|
10738 |
|
|
Val := Expr_Value (N);
|
10739 |
|
|
|
10740 |
|
|
if Val = Uint_0 then
|
10741 |
|
|
Is_Zero := True;
|
10742 |
|
|
Comp := Empty;
|
10743 |
|
|
return True;
|
10744 |
|
|
|
10745 |
|
|
elsif Val = Uint_1 then
|
10746 |
|
|
Is_Zero := False;
|
10747 |
|
|
Comp := Empty;
|
10748 |
|
|
return True;
|
10749 |
|
|
end if;
|
10750 |
|
|
end if;
|
10751 |
|
|
|
10752 |
|
|
-- Here we have to make sure of being within 32-bits
|
10753 |
|
|
|
10754 |
|
|
Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
|
10755 |
|
|
|
10756 |
|
|
if not OK
|
10757 |
|
|
or else Lo < Uint_1
|
10758 |
|
|
or else Hi > UI_From_Int (Int'Last)
|
10759 |
|
|
then
|
10760 |
|
|
return False;
|
10761 |
|
|
end if;
|
10762 |
|
|
|
10763 |
|
|
-- Comparison value was within range, so now we must check the index
|
10764 |
|
|
-- value to make sure it is also within 32-bits.
|
10765 |
|
|
|
10766 |
|
|
Indx := First_Index (Etype (Ent));
|
10767 |
|
|
|
10768 |
|
|
if Present (Index) then
|
10769 |
|
|
for J in 2 .. UI_To_Int (Intval (Index)) loop
|
10770 |
|
|
Next_Index (Indx);
|
10771 |
|
|
end loop;
|
10772 |
|
|
end if;
|
10773 |
|
|
|
10774 |
|
|
Ityp := Etype (Indx);
|
10775 |
|
|
|
10776 |
|
|
if Esize (Ityp) > 32 then
|
10777 |
|
|
return False;
|
10778 |
|
|
end if;
|
10779 |
|
|
|
10780 |
|
|
Is_Zero := False;
|
10781 |
|
|
Comp := N;
|
10782 |
|
|
return True;
|
10783 |
|
|
end Is_Optimizable;
|
10784 |
|
|
|
10785 |
|
|
----------------
|
10786 |
|
|
-- Prepare_64 --
|
10787 |
|
|
----------------
|
10788 |
|
|
|
10789 |
|
|
function Prepare_64 (N : Node_Id) return Node_Id is
|
10790 |
|
|
begin
|
10791 |
|
|
return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
|
10792 |
|
|
end Prepare_64;
|
10793 |
|
|
|
10794 |
|
|
-- Start of processing for Optimize_Length_Comparison
|
10795 |
|
|
|
10796 |
|
|
begin
|
10797 |
|
|
-- Nothing to do if not a comparison
|
10798 |
|
|
|
10799 |
|
|
if Op not in N_Op_Compare then
|
10800 |
|
|
return;
|
10801 |
|
|
end if;
|
10802 |
|
|
|
10803 |
|
|
-- Nothing to do if special -gnatd.P debug flag set
|
10804 |
|
|
|
10805 |
|
|
if Debug_Flag_Dot_PP then
|
10806 |
|
|
return;
|
10807 |
|
|
end if;
|
10808 |
|
|
|
10809 |
|
|
-- Ent'Length op 0/1
|
10810 |
|
|
|
10811 |
|
|
if Is_Entity_Length (Left_Opnd (N))
|
10812 |
|
|
and then Is_Optimizable (Right_Opnd (N))
|
10813 |
|
|
then
|
10814 |
|
|
null;
|
10815 |
|
|
|
10816 |
|
|
-- 0/1 op Ent'Length
|
10817 |
|
|
|
10818 |
|
|
elsif Is_Entity_Length (Right_Opnd (N))
|
10819 |
|
|
and then Is_Optimizable (Left_Opnd (N))
|
10820 |
|
|
then
|
10821 |
|
|
-- Flip comparison to opposite sense
|
10822 |
|
|
|
10823 |
|
|
case Op is
|
10824 |
|
|
when N_Op_Lt => Op := N_Op_Gt;
|
10825 |
|
|
when N_Op_Le => Op := N_Op_Ge;
|
10826 |
|
|
when N_Op_Gt => Op := N_Op_Lt;
|
10827 |
|
|
when N_Op_Ge => Op := N_Op_Le;
|
10828 |
|
|
when others => null;
|
10829 |
|
|
end case;
|
10830 |
|
|
|
10831 |
|
|
-- Else optimization not possible
|
10832 |
|
|
|
10833 |
|
|
else
|
10834 |
|
|
return;
|
10835 |
|
|
end if;
|
10836 |
|
|
|
10837 |
|
|
-- Fall through if we will do the optimization
|
10838 |
|
|
|
10839 |
|
|
-- Cases to handle:
|
10840 |
|
|
|
10841 |
|
|
-- X'Length = 0 => X'First > X'Last
|
10842 |
|
|
-- X'Length = 1 => X'First = X'Last
|
10843 |
|
|
-- X'Length = n => X'First + (n - 1) = X'Last
|
10844 |
|
|
|
10845 |
|
|
-- X'Length /= 0 => X'First <= X'Last
|
10846 |
|
|
-- X'Length /= 1 => X'First /= X'Last
|
10847 |
|
|
-- X'Length /= n => X'First + (n - 1) /= X'Last
|
10848 |
|
|
|
10849 |
|
|
-- X'Length >= 0 => always true, warn
|
10850 |
|
|
-- X'Length >= 1 => X'First <= X'Last
|
10851 |
|
|
-- X'Length >= n => X'First + (n - 1) <= X'Last
|
10852 |
|
|
|
10853 |
|
|
-- X'Length > 0 => X'First <= X'Last
|
10854 |
|
|
-- X'Length > 1 => X'First < X'Last
|
10855 |
|
|
-- X'Length > n => X'First + (n - 1) < X'Last
|
10856 |
|
|
|
10857 |
|
|
-- X'Length <= 0 => X'First > X'Last (warn, could be =)
|
10858 |
|
|
-- X'Length <= 1 => X'First >= X'Last
|
10859 |
|
|
-- X'Length <= n => X'First + (n - 1) >= X'Last
|
10860 |
|
|
|
10861 |
|
|
-- X'Length < 0 => always false (warn)
|
10862 |
|
|
-- X'Length < 1 => X'First > X'Last
|
10863 |
|
|
-- X'Length < n => X'First + (n - 1) > X'Last
|
10864 |
|
|
|
10865 |
|
|
-- Note: for the cases of n (not constant 0,1), we require that the
|
10866 |
|
|
-- corresponding index type be integer or shorter (i.e. not 64-bit),
|
10867 |
|
|
-- and the same for the comparison value. Then we do the comparison
|
10868 |
|
|
-- using 64-bit arithmetic (actually long long integer), so that we
|
10869 |
|
|
-- cannot have overflow intefering with the result.
|
10870 |
|
|
|
10871 |
|
|
-- First deal with warning cases
|
10872 |
|
|
|
10873 |
|
|
if Is_Zero then
|
10874 |
|
|
case Op is
|
10875 |
|
|
|
10876 |
|
|
-- X'Length >= 0
|
10877 |
|
|
|
10878 |
|
|
when N_Op_Ge =>
|
10879 |
|
|
Rewrite (N,
|
10880 |
|
|
Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
|
10881 |
|
|
Analyze_And_Resolve (N, Typ);
|
10882 |
|
|
Warn_On_Known_Condition (N);
|
10883 |
|
|
return;
|
10884 |
|
|
|
10885 |
|
|
-- X'Length < 0
|
10886 |
|
|
|
10887 |
|
|
when N_Op_Lt =>
|
10888 |
|
|
Rewrite (N,
|
10889 |
|
|
Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
|
10890 |
|
|
Analyze_And_Resolve (N, Typ);
|
10891 |
|
|
Warn_On_Known_Condition (N);
|
10892 |
|
|
return;
|
10893 |
|
|
|
10894 |
|
|
when N_Op_Le =>
|
10895 |
|
|
if Constant_Condition_Warnings
|
10896 |
|
|
and then Comes_From_Source (Original_Node (N))
|
10897 |
|
|
then
|
10898 |
|
|
Error_Msg_N ("could replace by ""'=""?", N);
|
10899 |
|
|
end if;
|
10900 |
|
|
|
10901 |
|
|
Op := N_Op_Eq;
|
10902 |
|
|
|
10903 |
|
|
when others =>
|
10904 |
|
|
null;
|
10905 |
|
|
end case;
|
10906 |
|
|
end if;
|
10907 |
|
|
|
10908 |
|
|
-- Build the First reference we will use
|
10909 |
|
|
|
10910 |
|
|
Left :=
|
10911 |
|
|
Make_Attribute_Reference (Loc,
|
10912 |
|
|
Prefix => New_Occurrence_Of (Ent, Loc),
|
10913 |
|
|
Attribute_Name => Name_First);
|
10914 |
|
|
|
10915 |
|
|
if Present (Index) then
|
10916 |
|
|
Set_Expressions (Left, New_List (New_Copy (Index)));
|
10917 |
|
|
end if;
|
10918 |
|
|
|
10919 |
|
|
-- If general value case, then do the addition of (n - 1), and
|
10920 |
|
|
-- also add the needed conversions to type Long_Long_Integer.
|
10921 |
|
|
|
10922 |
|
|
if Present (Comp) then
|
10923 |
|
|
Left :=
|
10924 |
|
|
Make_Op_Add (Loc,
|
10925 |
|
|
Left_Opnd => Prepare_64 (Left),
|
10926 |
|
|
Right_Opnd =>
|
10927 |
|
|
Make_Op_Subtract (Loc,
|
10928 |
|
|
Left_Opnd => Prepare_64 (Comp),
|
10929 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)));
|
10930 |
|
|
end if;
|
10931 |
|
|
|
10932 |
|
|
-- Build the Last reference we will use
|
10933 |
|
|
|
10934 |
|
|
Right :=
|
10935 |
|
|
Make_Attribute_Reference (Loc,
|
10936 |
|
|
Prefix => New_Occurrence_Of (Ent, Loc),
|
10937 |
|
|
Attribute_Name => Name_Last);
|
10938 |
|
|
|
10939 |
|
|
if Present (Index) then
|
10940 |
|
|
Set_Expressions (Right, New_List (New_Copy (Index)));
|
10941 |
|
|
end if;
|
10942 |
|
|
|
10943 |
|
|
-- If general operand, convert Last reference to Long_Long_Integer
|
10944 |
|
|
|
10945 |
|
|
if Present (Comp) then
|
10946 |
|
|
Right := Prepare_64 (Right);
|
10947 |
|
|
end if;
|
10948 |
|
|
|
10949 |
|
|
-- Check for cases to optimize
|
10950 |
|
|
|
10951 |
|
|
-- X'Length = 0 => X'First > X'Last
|
10952 |
|
|
-- X'Length < 1 => X'First > X'Last
|
10953 |
|
|
-- X'Length < n => X'First + (n - 1) > X'Last
|
10954 |
|
|
|
10955 |
|
|
if (Is_Zero and then Op = N_Op_Eq)
|
10956 |
|
|
or else (not Is_Zero and then Op = N_Op_Lt)
|
10957 |
|
|
then
|
10958 |
|
|
Result :=
|
10959 |
|
|
Make_Op_Gt (Loc,
|
10960 |
|
|
Left_Opnd => Left,
|
10961 |
|
|
Right_Opnd => Right);
|
10962 |
|
|
|
10963 |
|
|
-- X'Length = 1 => X'First = X'Last
|
10964 |
|
|
-- X'Length = n => X'First + (n - 1) = X'Last
|
10965 |
|
|
|
10966 |
|
|
elsif not Is_Zero and then Op = N_Op_Eq then
|
10967 |
|
|
Result :=
|
10968 |
|
|
Make_Op_Eq (Loc,
|
10969 |
|
|
Left_Opnd => Left,
|
10970 |
|
|
Right_Opnd => Right);
|
10971 |
|
|
|
10972 |
|
|
-- X'Length /= 0 => X'First <= X'Last
|
10973 |
|
|
-- X'Length > 0 => X'First <= X'Last
|
10974 |
|
|
|
10975 |
|
|
elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
|
10976 |
|
|
Result :=
|
10977 |
|
|
Make_Op_Le (Loc,
|
10978 |
|
|
Left_Opnd => Left,
|
10979 |
|
|
Right_Opnd => Right);
|
10980 |
|
|
|
10981 |
|
|
-- X'Length /= 1 => X'First /= X'Last
|
10982 |
|
|
-- X'Length /= n => X'First + (n - 1) /= X'Last
|
10983 |
|
|
|
10984 |
|
|
elsif not Is_Zero and then Op = N_Op_Ne then
|
10985 |
|
|
Result :=
|
10986 |
|
|
Make_Op_Ne (Loc,
|
10987 |
|
|
Left_Opnd => Left,
|
10988 |
|
|
Right_Opnd => Right);
|
10989 |
|
|
|
10990 |
|
|
-- X'Length >= 1 => X'First <= X'Last
|
10991 |
|
|
-- X'Length >= n => X'First + (n - 1) <= X'Last
|
10992 |
|
|
|
10993 |
|
|
elsif not Is_Zero and then Op = N_Op_Ge then
|
10994 |
|
|
Result :=
|
10995 |
|
|
Make_Op_Le (Loc,
|
10996 |
|
|
Left_Opnd => Left,
|
10997 |
|
|
Right_Opnd => Right);
|
10998 |
|
|
|
10999 |
|
|
-- X'Length > 1 => X'First < X'Last
|
11000 |
|
|
-- X'Length > n => X'First + (n = 1) < X'Last
|
11001 |
|
|
|
11002 |
|
|
elsif not Is_Zero and then Op = N_Op_Gt then
|
11003 |
|
|
Result :=
|
11004 |
|
|
Make_Op_Lt (Loc,
|
11005 |
|
|
Left_Opnd => Left,
|
11006 |
|
|
Right_Opnd => Right);
|
11007 |
|
|
|
11008 |
|
|
-- X'Length <= 1 => X'First >= X'Last
|
11009 |
|
|
-- X'Length <= n => X'First + (n - 1) >= X'Last
|
11010 |
|
|
|
11011 |
|
|
elsif not Is_Zero and then Op = N_Op_Le then
|
11012 |
|
|
Result :=
|
11013 |
|
|
Make_Op_Ge (Loc,
|
11014 |
|
|
Left_Opnd => Left,
|
11015 |
|
|
Right_Opnd => Right);
|
11016 |
|
|
|
11017 |
|
|
-- Should not happen at this stage
|
11018 |
|
|
|
11019 |
|
|
else
|
11020 |
|
|
raise Program_Error;
|
11021 |
|
|
end if;
|
11022 |
|
|
|
11023 |
|
|
-- Rewrite and finish up
|
11024 |
|
|
|
11025 |
|
|
Rewrite (N, Result);
|
11026 |
|
|
Analyze_And_Resolve (N, Typ);
|
11027 |
|
|
return;
|
11028 |
|
|
end Optimize_Length_Comparison;
|
11029 |
|
|
|
11030 |
|
|
------------------------
|
11031 |
|
|
-- Rewrite_Comparison --
|
11032 |
|
|
------------------------
|
11033 |
|
|
|
11034 |
|
|
procedure Rewrite_Comparison (N : Node_Id) is
|
11035 |
|
|
Warning_Generated : Boolean := False;
|
11036 |
|
|
-- Set to True if first pass with Assume_Valid generates a warning in
|
11037 |
|
|
-- which case we skip the second pass to avoid warning overloaded.
|
11038 |
|
|
|
11039 |
|
|
Result : Node_Id;
|
11040 |
|
|
-- Set to Standard_True or Standard_False
|
11041 |
|
|
|
11042 |
|
|
begin
|
11043 |
|
|
if Nkind (N) = N_Type_Conversion then
|
11044 |
|
|
Rewrite_Comparison (Expression (N));
|
11045 |
|
|
return;
|
11046 |
|
|
|
11047 |
|
|
elsif Nkind (N) not in N_Op_Compare then
|
11048 |
|
|
return;
|
11049 |
|
|
end if;
|
11050 |
|
|
|
11051 |
|
|
-- Now start looking at the comparison in detail. We potentially go
|
11052 |
|
|
-- through this loop twice. The first time, Assume_Valid is set False
|
11053 |
|
|
-- in the call to Compile_Time_Compare. If this call results in a
|
11054 |
|
|
-- clear result of always True or Always False, that's decisive and
|
11055 |
|
|
-- we are done. Otherwise we repeat the processing with Assume_Valid
|
11056 |
|
|
-- set to True to generate additional warnings. We can skip that step
|
11057 |
|
|
-- if Constant_Condition_Warnings is False.
|
11058 |
|
|
|
11059 |
|
|
for AV in False .. True loop
|
11060 |
|
|
declare
|
11061 |
|
|
Typ : constant Entity_Id := Etype (N);
|
11062 |
|
|
Op1 : constant Node_Id := Left_Opnd (N);
|
11063 |
|
|
Op2 : constant Node_Id := Right_Opnd (N);
|
11064 |
|
|
|
11065 |
|
|
Res : constant Compare_Result :=
|
11066 |
|
|
Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
|
11067 |
|
|
-- Res indicates if compare outcome can be compile time determined
|
11068 |
|
|
|
11069 |
|
|
True_Result : Boolean;
|
11070 |
|
|
False_Result : Boolean;
|
11071 |
|
|
|
11072 |
|
|
begin
|
11073 |
|
|
case N_Op_Compare (Nkind (N)) is
|
11074 |
|
|
when N_Op_Eq =>
|
11075 |
|
|
True_Result := Res = EQ;
|
11076 |
|
|
False_Result := Res = LT or else Res = GT or else Res = NE;
|
11077 |
|
|
|
11078 |
|
|
when N_Op_Ge =>
|
11079 |
|
|
True_Result := Res in Compare_GE;
|
11080 |
|
|
False_Result := Res = LT;
|
11081 |
|
|
|
11082 |
|
|
if Res = LE
|
11083 |
|
|
and then Constant_Condition_Warnings
|
11084 |
|
|
and then Comes_From_Source (Original_Node (N))
|
11085 |
|
|
and then Nkind (Original_Node (N)) = N_Op_Ge
|
11086 |
|
|
and then not In_Instance
|
11087 |
|
|
and then Is_Integer_Type (Etype (Left_Opnd (N)))
|
11088 |
|
|
and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
|
11089 |
|
|
then
|
11090 |
|
|
Error_Msg_N
|
11091 |
|
|
("can never be greater than, could replace by ""'=""?", N);
|
11092 |
|
|
Warning_Generated := True;
|
11093 |
|
|
end if;
|
11094 |
|
|
|
11095 |
|
|
when N_Op_Gt =>
|
11096 |
|
|
True_Result := Res = GT;
|
11097 |
|
|
False_Result := Res in Compare_LE;
|
11098 |
|
|
|
11099 |
|
|
when N_Op_Lt =>
|
11100 |
|
|
True_Result := Res = LT;
|
11101 |
|
|
False_Result := Res in Compare_GE;
|
11102 |
|
|
|
11103 |
|
|
when N_Op_Le =>
|
11104 |
|
|
True_Result := Res in Compare_LE;
|
11105 |
|
|
False_Result := Res = GT;
|
11106 |
|
|
|
11107 |
|
|
if Res = GE
|
11108 |
|
|
and then Constant_Condition_Warnings
|
11109 |
|
|
and then Comes_From_Source (Original_Node (N))
|
11110 |
|
|
and then Nkind (Original_Node (N)) = N_Op_Le
|
11111 |
|
|
and then not In_Instance
|
11112 |
|
|
and then Is_Integer_Type (Etype (Left_Opnd (N)))
|
11113 |
|
|
and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
|
11114 |
|
|
then
|
11115 |
|
|
Error_Msg_N
|
11116 |
|
|
("can never be less than, could replace by ""'=""?", N);
|
11117 |
|
|
Warning_Generated := True;
|
11118 |
|
|
end if;
|
11119 |
|
|
|
11120 |
|
|
when N_Op_Ne =>
|
11121 |
|
|
True_Result := Res = NE or else Res = GT or else Res = LT;
|
11122 |
|
|
False_Result := Res = EQ;
|
11123 |
|
|
end case;
|
11124 |
|
|
|
11125 |
|
|
-- If this is the first iteration, then we actually convert the
|
11126 |
|
|
-- comparison into True or False, if the result is certain.
|
11127 |
|
|
|
11128 |
|
|
if AV = False then
|
11129 |
|
|
if True_Result or False_Result then
|
11130 |
|
|
if True_Result then
|
11131 |
|
|
Result := Standard_True;
|
11132 |
|
|
else
|
11133 |
|
|
Result := Standard_False;
|
11134 |
|
|
end if;
|
11135 |
|
|
|
11136 |
|
|
Rewrite (N,
|
11137 |
|
|
Convert_To (Typ,
|
11138 |
|
|
New_Occurrence_Of (Result, Sloc (N))));
|
11139 |
|
|
Analyze_And_Resolve (N, Typ);
|
11140 |
|
|
Warn_On_Known_Condition (N);
|
11141 |
|
|
return;
|
11142 |
|
|
end if;
|
11143 |
|
|
|
11144 |
|
|
-- If this is the second iteration (AV = True), and the original
|
11145 |
|
|
-- node comes from source and we are not in an instance, then give
|
11146 |
|
|
-- a warning if we know result would be True or False. Note: we
|
11147 |
|
|
-- know Constant_Condition_Warnings is set if we get here.
|
11148 |
|
|
|
11149 |
|
|
elsif Comes_From_Source (Original_Node (N))
|
11150 |
|
|
and then not In_Instance
|
11151 |
|
|
then
|
11152 |
|
|
if True_Result then
|
11153 |
|
|
Error_Msg_N
|
11154 |
|
|
("condition can only be False if invalid values present?",
|
11155 |
|
|
N);
|
11156 |
|
|
elsif False_Result then
|
11157 |
|
|
Error_Msg_N
|
11158 |
|
|
("condition can only be True if invalid values present?",
|
11159 |
|
|
N);
|
11160 |
|
|
end if;
|
11161 |
|
|
end if;
|
11162 |
|
|
end;
|
11163 |
|
|
|
11164 |
|
|
-- Skip second iteration if not warning on constant conditions or
|
11165 |
|
|
-- if the first iteration already generated a warning of some kind or
|
11166 |
|
|
-- if we are in any case assuming all values are valid (so that the
|
11167 |
|
|
-- first iteration took care of the valid case).
|
11168 |
|
|
|
11169 |
|
|
exit when not Constant_Condition_Warnings;
|
11170 |
|
|
exit when Warning_Generated;
|
11171 |
|
|
exit when Assume_No_Invalid_Values;
|
11172 |
|
|
end loop;
|
11173 |
|
|
end Rewrite_Comparison;
|
11174 |
|
|
|
11175 |
|
|
----------------------------
|
11176 |
|
|
-- Safe_In_Place_Array_Op --
|
11177 |
|
|
----------------------------
|
11178 |
|
|
|
11179 |
|
|
function Safe_In_Place_Array_Op
|
11180 |
|
|
(Lhs : Node_Id;
|
11181 |
|
|
Op1 : Node_Id;
|
11182 |
|
|
Op2 : Node_Id) return Boolean
|
11183 |
|
|
is
|
11184 |
|
|
Target : Entity_Id;
|
11185 |
|
|
|
11186 |
|
|
function Is_Safe_Operand (Op : Node_Id) return Boolean;
|
11187 |
|
|
-- Operand is safe if it cannot overlap part of the target of the
|
11188 |
|
|
-- operation. If the operand and the target are identical, the operand
|
11189 |
|
|
-- is safe. The operand can be empty in the case of negation.
|
11190 |
|
|
|
11191 |
|
|
function Is_Unaliased (N : Node_Id) return Boolean;
|
11192 |
|
|
-- Check that N is a stand-alone entity
|
11193 |
|
|
|
11194 |
|
|
------------------
|
11195 |
|
|
-- Is_Unaliased --
|
11196 |
|
|
------------------
|
11197 |
|
|
|
11198 |
|
|
function Is_Unaliased (N : Node_Id) return Boolean is
|
11199 |
|
|
begin
|
11200 |
|
|
return
|
11201 |
|
|
Is_Entity_Name (N)
|
11202 |
|
|
and then No (Address_Clause (Entity (N)))
|
11203 |
|
|
and then No (Renamed_Object (Entity (N)));
|
11204 |
|
|
end Is_Unaliased;
|
11205 |
|
|
|
11206 |
|
|
---------------------
|
11207 |
|
|
-- Is_Safe_Operand --
|
11208 |
|
|
---------------------
|
11209 |
|
|
|
11210 |
|
|
function Is_Safe_Operand (Op : Node_Id) return Boolean is
|
11211 |
|
|
begin
|
11212 |
|
|
if No (Op) then
|
11213 |
|
|
return True;
|
11214 |
|
|
|
11215 |
|
|
elsif Is_Entity_Name (Op) then
|
11216 |
|
|
return Is_Unaliased (Op);
|
11217 |
|
|
|
11218 |
|
|
elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
|
11219 |
|
|
return Is_Unaliased (Prefix (Op));
|
11220 |
|
|
|
11221 |
|
|
elsif Nkind (Op) = N_Slice then
|
11222 |
|
|
return
|
11223 |
|
|
Is_Unaliased (Prefix (Op))
|
11224 |
|
|
and then Entity (Prefix (Op)) /= Target;
|
11225 |
|
|
|
11226 |
|
|
elsif Nkind (Op) = N_Op_Not then
|
11227 |
|
|
return Is_Safe_Operand (Right_Opnd (Op));
|
11228 |
|
|
|
11229 |
|
|
else
|
11230 |
|
|
return False;
|
11231 |
|
|
end if;
|
11232 |
|
|
end Is_Safe_Operand;
|
11233 |
|
|
|
11234 |
|
|
-- Start of processing for Is_Safe_In_Place_Array_Op
|
11235 |
|
|
|
11236 |
|
|
begin
|
11237 |
|
|
-- Skip this processing if the component size is different from system
|
11238 |
|
|
-- storage unit (since at least for NOT this would cause problems).
|
11239 |
|
|
|
11240 |
|
|
if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
|
11241 |
|
|
return False;
|
11242 |
|
|
|
11243 |
|
|
-- Cannot do in place stuff on VM_Target since cannot pass addresses
|
11244 |
|
|
|
11245 |
|
|
elsif VM_Target /= No_VM then
|
11246 |
|
|
return False;
|
11247 |
|
|
|
11248 |
|
|
-- Cannot do in place stuff if non-standard Boolean representation
|
11249 |
|
|
|
11250 |
|
|
elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
|
11251 |
|
|
return False;
|
11252 |
|
|
|
11253 |
|
|
elsif not Is_Unaliased (Lhs) then
|
11254 |
|
|
return False;
|
11255 |
|
|
|
11256 |
|
|
else
|
11257 |
|
|
Target := Entity (Lhs);
|
11258 |
|
|
return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
|
11259 |
|
|
end if;
|
11260 |
|
|
end Safe_In_Place_Array_Op;
|
11261 |
|
|
|
11262 |
|
|
-----------------------
|
11263 |
|
|
-- Tagged_Membership --
|
11264 |
|
|
-----------------------
|
11265 |
|
|
|
11266 |
|
|
-- There are two different cases to consider depending on whether the right
|
11267 |
|
|
-- operand is a class-wide type or not. If not we just compare the actual
|
11268 |
|
|
-- tag of the left expr to the target type tag:
|
11269 |
|
|
--
|
11270 |
|
|
-- Left_Expr.Tag = Right_Type'Tag;
|
11271 |
|
|
--
|
11272 |
|
|
-- If it is a class-wide type we use the RT function CW_Membership which is
|
11273 |
|
|
-- usually implemented by looking in the ancestor tables contained in the
|
11274 |
|
|
-- dispatch table pointed by Left_Expr.Tag for Typ'Tag
|
11275 |
|
|
|
11276 |
|
|
-- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
|
11277 |
|
|
-- function IW_Membership which is usually implemented by looking in the
|
11278 |
|
|
-- table of abstract interface types plus the ancestor table contained in
|
11279 |
|
|
-- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
|
11280 |
|
|
|
11281 |
|
|
procedure Tagged_Membership
|
11282 |
|
|
(N : Node_Id;
|
11283 |
|
|
SCIL_Node : out Node_Id;
|
11284 |
|
|
Result : out Node_Id)
|
11285 |
|
|
is
|
11286 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
11287 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
11288 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
11289 |
|
|
|
11290 |
|
|
Full_R_Typ : Entity_Id;
|
11291 |
|
|
Left_Type : Entity_Id;
|
11292 |
|
|
New_Node : Node_Id;
|
11293 |
|
|
Right_Type : Entity_Id;
|
11294 |
|
|
Obj_Tag : Node_Id;
|
11295 |
|
|
|
11296 |
|
|
begin
|
11297 |
|
|
SCIL_Node := Empty;
|
11298 |
|
|
|
11299 |
|
|
-- Handle entities from the limited view
|
11300 |
|
|
|
11301 |
|
|
Left_Type := Available_View (Etype (Left));
|
11302 |
|
|
Right_Type := Available_View (Etype (Right));
|
11303 |
|
|
|
11304 |
|
|
-- In the case where the type is an access type, the test is applied
|
11305 |
|
|
-- using the designated types (needed in Ada 2012 for implicit anonymous
|
11306 |
|
|
-- access conversions, for AI05-0149).
|
11307 |
|
|
|
11308 |
|
|
if Is_Access_Type (Right_Type) then
|
11309 |
|
|
Left_Type := Designated_Type (Left_Type);
|
11310 |
|
|
Right_Type := Designated_Type (Right_Type);
|
11311 |
|
|
end if;
|
11312 |
|
|
|
11313 |
|
|
if Is_Class_Wide_Type (Left_Type) then
|
11314 |
|
|
Left_Type := Root_Type (Left_Type);
|
11315 |
|
|
end if;
|
11316 |
|
|
|
11317 |
|
|
if Is_Class_Wide_Type (Right_Type) then
|
11318 |
|
|
Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
|
11319 |
|
|
else
|
11320 |
|
|
Full_R_Typ := Underlying_Type (Right_Type);
|
11321 |
|
|
end if;
|
11322 |
|
|
|
11323 |
|
|
Obj_Tag :=
|
11324 |
|
|
Make_Selected_Component (Loc,
|
11325 |
|
|
Prefix => Relocate_Node (Left),
|
11326 |
|
|
Selector_Name =>
|
11327 |
|
|
New_Reference_To (First_Tag_Component (Left_Type), Loc));
|
11328 |
|
|
|
11329 |
|
|
if Is_Class_Wide_Type (Right_Type) then
|
11330 |
|
|
|
11331 |
|
|
-- No need to issue a run-time check if we statically know that the
|
11332 |
|
|
-- result of this membership test is always true. For example,
|
11333 |
|
|
-- considering the following declarations:
|
11334 |
|
|
|
11335 |
|
|
-- type Iface is interface;
|
11336 |
|
|
-- type T is tagged null record;
|
11337 |
|
|
-- type DT is new T and Iface with null record;
|
11338 |
|
|
|
11339 |
|
|
-- Obj1 : T;
|
11340 |
|
|
-- Obj2 : DT;
|
11341 |
|
|
|
11342 |
|
|
-- These membership tests are always true:
|
11343 |
|
|
|
11344 |
|
|
-- Obj1 in T'Class
|
11345 |
|
|
-- Obj2 in T'Class;
|
11346 |
|
|
-- Obj2 in Iface'Class;
|
11347 |
|
|
|
11348 |
|
|
-- We do not need to handle cases where the membership is illegal.
|
11349 |
|
|
-- For example:
|
11350 |
|
|
|
11351 |
|
|
-- Obj1 in DT'Class; -- Compile time error
|
11352 |
|
|
-- Obj1 in Iface'Class; -- Compile time error
|
11353 |
|
|
|
11354 |
|
|
if not Is_Class_Wide_Type (Left_Type)
|
11355 |
|
|
and then (Is_Ancestor (Etype (Right_Type), Left_Type,
|
11356 |
|
|
Use_Full_View => True)
|
11357 |
|
|
or else (Is_Interface (Etype (Right_Type))
|
11358 |
|
|
and then Interface_Present_In_Ancestor
|
11359 |
|
|
(Typ => Left_Type,
|
11360 |
|
|
Iface => Etype (Right_Type))))
|
11361 |
|
|
then
|
11362 |
|
|
Result := New_Reference_To (Standard_True, Loc);
|
11363 |
|
|
return;
|
11364 |
|
|
end if;
|
11365 |
|
|
|
11366 |
|
|
-- Ada 2005 (AI-251): Class-wide applied to interfaces
|
11367 |
|
|
|
11368 |
|
|
if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
|
11369 |
|
|
|
11370 |
|
|
-- Support to: "Iface_CW_Typ in Typ'Class"
|
11371 |
|
|
|
11372 |
|
|
or else Is_Interface (Left_Type)
|
11373 |
|
|
then
|
11374 |
|
|
-- Issue error if IW_Membership operation not available in a
|
11375 |
|
|
-- configurable run time setting.
|
11376 |
|
|
|
11377 |
|
|
if not RTE_Available (RE_IW_Membership) then
|
11378 |
|
|
Error_Msg_CRT
|
11379 |
|
|
("dynamic membership test on interface types", N);
|
11380 |
|
|
Result := Empty;
|
11381 |
|
|
return;
|
11382 |
|
|
end if;
|
11383 |
|
|
|
11384 |
|
|
Result :=
|
11385 |
|
|
Make_Function_Call (Loc,
|
11386 |
|
|
Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
|
11387 |
|
|
Parameter_Associations => New_List (
|
11388 |
|
|
Make_Attribute_Reference (Loc,
|
11389 |
|
|
Prefix => Obj_Tag,
|
11390 |
|
|
Attribute_Name => Name_Address),
|
11391 |
|
|
New_Reference_To (
|
11392 |
|
|
Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
|
11393 |
|
|
Loc)));
|
11394 |
|
|
|
11395 |
|
|
-- Ada 95: Normal case
|
11396 |
|
|
|
11397 |
|
|
else
|
11398 |
|
|
Build_CW_Membership (Loc,
|
11399 |
|
|
Obj_Tag_Node => Obj_Tag,
|
11400 |
|
|
Typ_Tag_Node =>
|
11401 |
|
|
New_Reference_To (
|
11402 |
|
|
Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
|
11403 |
|
|
Related_Nod => N,
|
11404 |
|
|
New_Node => New_Node);
|
11405 |
|
|
|
11406 |
|
|
-- Generate the SCIL node for this class-wide membership test.
|
11407 |
|
|
-- Done here because the previous call to Build_CW_Membership
|
11408 |
|
|
-- relocates Obj_Tag.
|
11409 |
|
|
|
11410 |
|
|
if Generate_SCIL then
|
11411 |
|
|
SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
|
11412 |
|
|
Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
|
11413 |
|
|
Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
|
11414 |
|
|
end if;
|
11415 |
|
|
|
11416 |
|
|
Result := New_Node;
|
11417 |
|
|
end if;
|
11418 |
|
|
|
11419 |
|
|
-- Right_Type is not a class-wide type
|
11420 |
|
|
|
11421 |
|
|
else
|
11422 |
|
|
-- No need to check the tag of the object if Right_Typ is abstract
|
11423 |
|
|
|
11424 |
|
|
if Is_Abstract_Type (Right_Type) then
|
11425 |
|
|
Result := New_Reference_To (Standard_False, Loc);
|
11426 |
|
|
|
11427 |
|
|
else
|
11428 |
|
|
Result :=
|
11429 |
|
|
Make_Op_Eq (Loc,
|
11430 |
|
|
Left_Opnd => Obj_Tag,
|
11431 |
|
|
Right_Opnd =>
|
11432 |
|
|
New_Reference_To
|
11433 |
|
|
(Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
|
11434 |
|
|
end if;
|
11435 |
|
|
end if;
|
11436 |
|
|
end Tagged_Membership;
|
11437 |
|
|
|
11438 |
|
|
------------------------------
|
11439 |
|
|
-- Unary_Op_Validity_Checks --
|
11440 |
|
|
------------------------------
|
11441 |
|
|
|
11442 |
|
|
procedure Unary_Op_Validity_Checks (N : Node_Id) is
|
11443 |
|
|
begin
|
11444 |
|
|
if Validity_Checks_On and Validity_Check_Operands then
|
11445 |
|
|
Ensure_Valid (Right_Opnd (N));
|
11446 |
|
|
end if;
|
11447 |
|
|
end Unary_Op_Validity_Checks;
|
11448 |
|
|
|
11449 |
|
|
end Exp_Ch4;
|