1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- E X P _ C H 6 --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Checks; use Checks;
|
28 |
|
|
with Debug; use Debug;
|
29 |
|
|
with Einfo; use Einfo;
|
30 |
|
|
with Errout; use Errout;
|
31 |
|
|
with Elists; use Elists;
|
32 |
|
|
with Exp_Aggr; use Exp_Aggr;
|
33 |
|
|
with Exp_Atag; use Exp_Atag;
|
34 |
|
|
with Exp_Ch2; use Exp_Ch2;
|
35 |
|
|
with Exp_Ch3; use Exp_Ch3;
|
36 |
|
|
with Exp_Ch7; use Exp_Ch7;
|
37 |
|
|
with Exp_Ch9; use Exp_Ch9;
|
38 |
|
|
with Exp_Dbug; use Exp_Dbug;
|
39 |
|
|
with Exp_Disp; use Exp_Disp;
|
40 |
|
|
with Exp_Dist; use Exp_Dist;
|
41 |
|
|
with Exp_Intr; use Exp_Intr;
|
42 |
|
|
with Exp_Pakd; use Exp_Pakd;
|
43 |
|
|
with Exp_Tss; use Exp_Tss;
|
44 |
|
|
with Exp_Util; use Exp_Util;
|
45 |
|
|
with Exp_VFpt; use Exp_VFpt;
|
46 |
|
|
with Fname; use Fname;
|
47 |
|
|
with Freeze; use Freeze;
|
48 |
|
|
with Inline; use Inline;
|
49 |
|
|
with Lib; use Lib;
|
50 |
|
|
with Namet; use Namet;
|
51 |
|
|
with Nlists; use Nlists;
|
52 |
|
|
with Nmake; use Nmake;
|
53 |
|
|
with Opt; use Opt;
|
54 |
|
|
with Restrict; use Restrict;
|
55 |
|
|
with Rident; use Rident;
|
56 |
|
|
with Rtsfind; use Rtsfind;
|
57 |
|
|
with Sem; use Sem;
|
58 |
|
|
with Sem_Aux; use Sem_Aux;
|
59 |
|
|
with Sem_Ch6; use Sem_Ch6;
|
60 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
61 |
|
|
with Sem_Ch12; use Sem_Ch12;
|
62 |
|
|
with Sem_Ch13; use Sem_Ch13;
|
63 |
|
|
with Sem_Dim; use Sem_Dim;
|
64 |
|
|
with Sem_Disp; use Sem_Disp;
|
65 |
|
|
with Sem_Dist; use Sem_Dist;
|
66 |
|
|
with Sem_Eval; use Sem_Eval;
|
67 |
|
|
with Sem_Mech; use Sem_Mech;
|
68 |
|
|
with Sem_Res; use Sem_Res;
|
69 |
|
|
with Sem_SCIL; use Sem_SCIL;
|
70 |
|
|
with Sem_Util; use Sem_Util;
|
71 |
|
|
with Sinfo; use Sinfo;
|
72 |
|
|
with Snames; use Snames;
|
73 |
|
|
with Stand; use Stand;
|
74 |
|
|
with Targparm; use Targparm;
|
75 |
|
|
with Tbuild; use Tbuild;
|
76 |
|
|
with Uintp; use Uintp;
|
77 |
|
|
with Validsw; use Validsw;
|
78 |
|
|
|
79 |
|
|
package body Exp_Ch6 is
|
80 |
|
|
|
81 |
|
|
-----------------------
|
82 |
|
|
-- Local Subprograms --
|
83 |
|
|
-----------------------
|
84 |
|
|
|
85 |
|
|
procedure Add_Access_Actual_To_Build_In_Place_Call
|
86 |
|
|
(Function_Call : Node_Id;
|
87 |
|
|
Function_Id : Entity_Id;
|
88 |
|
|
Return_Object : Node_Id;
|
89 |
|
|
Is_Access : Boolean := False);
|
90 |
|
|
-- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
|
91 |
|
|
-- object name given by Return_Object and add the attribute to the end of
|
92 |
|
|
-- the actual parameter list associated with the build-in-place function
|
93 |
|
|
-- call denoted by Function_Call. However, if Is_Access is True, then
|
94 |
|
|
-- Return_Object is already an access expression, in which case it's passed
|
95 |
|
|
-- along directly to the build-in-place function. Finally, if Return_Object
|
96 |
|
|
-- is empty, then pass a null literal as the actual.
|
97 |
|
|
|
98 |
|
|
procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
99 |
|
|
(Function_Call : Node_Id;
|
100 |
|
|
Function_Id : Entity_Id;
|
101 |
|
|
Alloc_Form : BIP_Allocation_Form := Unspecified;
|
102 |
|
|
Alloc_Form_Exp : Node_Id := Empty;
|
103 |
|
|
Pool_Actual : Node_Id := Make_Null (No_Location));
|
104 |
|
|
-- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
|
105 |
|
|
-- function call that returns a caller-unknown-size result (BIP_Alloc_Form
|
106 |
|
|
-- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
|
107 |
|
|
-- otherwise pass a literal corresponding to the Alloc_Form parameter
|
108 |
|
|
-- (which must not be Unspecified in that case). Pool_Actual is the
|
109 |
|
|
-- parameter to pass to BIP_Storage_Pool.
|
110 |
|
|
|
111 |
|
|
procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
|
112 |
|
|
(Func_Call : Node_Id;
|
113 |
|
|
Func_Id : Entity_Id;
|
114 |
|
|
Ptr_Typ : Entity_Id := Empty;
|
115 |
|
|
Master_Exp : Node_Id := Empty);
|
116 |
|
|
-- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
|
117 |
|
|
-- finalization actions, add an actual parameter which is a pointer to the
|
118 |
|
|
-- finalization master of the caller. If Master_Exp is not Empty, then that
|
119 |
|
|
-- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
|
120 |
|
|
-- will result in an automatic "null" value for the actual.
|
121 |
|
|
|
122 |
|
|
procedure Add_Task_Actuals_To_Build_In_Place_Call
|
123 |
|
|
(Function_Call : Node_Id;
|
124 |
|
|
Function_Id : Entity_Id;
|
125 |
|
|
Master_Actual : Node_Id);
|
126 |
|
|
-- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
|
127 |
|
|
-- contains tasks, add two actual parameters: the master, and a pointer to
|
128 |
|
|
-- the caller's activation chain. Master_Actual is the actual parameter
|
129 |
|
|
-- expression to pass for the master. In most cases, this is the current
|
130 |
|
|
-- master (_master). The two exceptions are: If the function call is the
|
131 |
|
|
-- initialization expression for an allocator, we pass the master of the
|
132 |
|
|
-- access type. If the function call is the initialization expression for a
|
133 |
|
|
-- return object, we pass along the master passed in by the caller. The
|
134 |
|
|
-- activation chain to pass is always the local one. Note: Master_Actual
|
135 |
|
|
-- can be Empty, but only if there are no tasks.
|
136 |
|
|
|
137 |
|
|
procedure Check_Overriding_Operation (Subp : Entity_Id);
|
138 |
|
|
-- Subp is a dispatching operation. Check whether it may override an
|
139 |
|
|
-- inherited private operation, in which case its DT entry is that of
|
140 |
|
|
-- the hidden operation, not the one it may have received earlier.
|
141 |
|
|
-- This must be done before emitting the code to set the corresponding
|
142 |
|
|
-- DT to the address of the subprogram. The actual placement of Subp in
|
143 |
|
|
-- the proper place in the list of primitive operations is done in
|
144 |
|
|
-- Declare_Inherited_Private_Subprograms, which also has to deal with
|
145 |
|
|
-- implicit operations. This duplication is unavoidable for now???
|
146 |
|
|
|
147 |
|
|
procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
|
148 |
|
|
-- This procedure is called only if the subprogram body N, whose spec
|
149 |
|
|
-- has the given entity Spec, contains a parameterless recursive call.
|
150 |
|
|
-- It attempts to generate runtime code to detect if this a case of
|
151 |
|
|
-- infinite recursion.
|
152 |
|
|
--
|
153 |
|
|
-- The body is scanned to determine dependencies. If the only external
|
154 |
|
|
-- dependencies are on a small set of scalar variables, then the values
|
155 |
|
|
-- of these variables are captured on entry to the subprogram, and if
|
156 |
|
|
-- the values are not changed for the call, we know immediately that
|
157 |
|
|
-- we have an infinite recursion.
|
158 |
|
|
|
159 |
|
|
procedure Expand_Ctrl_Function_Call (N : Node_Id);
|
160 |
|
|
-- N is a function call which returns a controlled object. Transform the
|
161 |
|
|
-- call into a temporary which retrieves the returned object from the
|
162 |
|
|
-- secondary stack using 'reference.
|
163 |
|
|
|
164 |
|
|
procedure Expand_Inlined_Call
|
165 |
|
|
(N : Node_Id;
|
166 |
|
|
Subp : Entity_Id;
|
167 |
|
|
Orig_Subp : Entity_Id);
|
168 |
|
|
-- If called subprogram can be inlined by the front-end, retrieve the
|
169 |
|
|
-- analyzed body, replace formals with actuals and expand call in place.
|
170 |
|
|
-- Generate thunks for actuals that are expressions, and insert the
|
171 |
|
|
-- corresponding constant declarations before the call. If the original
|
172 |
|
|
-- call is to a derived operation, the return type is the one of the
|
173 |
|
|
-- derived operation, but the body is that of the original, so return
|
174 |
|
|
-- expressions in the body must be converted to the desired type (which
|
175 |
|
|
-- is simply not noted in the tree without inline expansion).
|
176 |
|
|
|
177 |
|
|
procedure Expand_Non_Function_Return (N : Node_Id);
|
178 |
|
|
-- Called by Expand_N_Simple_Return_Statement in case we're returning from
|
179 |
|
|
-- a procedure body, entry body, accept statement, or extended return
|
180 |
|
|
-- statement. Note that all non-function returns are simple return
|
181 |
|
|
-- statements.
|
182 |
|
|
|
183 |
|
|
function Expand_Protected_Object_Reference
|
184 |
|
|
(N : Node_Id;
|
185 |
|
|
Scop : Entity_Id) return Node_Id;
|
186 |
|
|
|
187 |
|
|
procedure Expand_Protected_Subprogram_Call
|
188 |
|
|
(N : Node_Id;
|
189 |
|
|
Subp : Entity_Id;
|
190 |
|
|
Scop : Entity_Id);
|
191 |
|
|
-- A call to a protected subprogram within the protected object may appear
|
192 |
|
|
-- as a regular call. The list of actuals must be expanded to contain a
|
193 |
|
|
-- reference to the object itself, and the call becomes a call to the
|
194 |
|
|
-- corresponding protected subprogram.
|
195 |
|
|
|
196 |
|
|
function Has_Unconstrained_Access_Discriminants
|
197 |
|
|
(Subtyp : Entity_Id) return Boolean;
|
198 |
|
|
-- Returns True if the given subtype is unconstrained and has one
|
199 |
|
|
-- or more access discriminants.
|
200 |
|
|
|
201 |
|
|
procedure Expand_Simple_Function_Return (N : Node_Id);
|
202 |
|
|
-- Expand simple return from function. In the case where we are returning
|
203 |
|
|
-- from a function body this is called by Expand_N_Simple_Return_Statement.
|
204 |
|
|
|
205 |
|
|
----------------------------------------------
|
206 |
|
|
-- Add_Access_Actual_To_Build_In_Place_Call --
|
207 |
|
|
----------------------------------------------
|
208 |
|
|
|
209 |
|
|
procedure Add_Access_Actual_To_Build_In_Place_Call
|
210 |
|
|
(Function_Call : Node_Id;
|
211 |
|
|
Function_Id : Entity_Id;
|
212 |
|
|
Return_Object : Node_Id;
|
213 |
|
|
Is_Access : Boolean := False)
|
214 |
|
|
is
|
215 |
|
|
Loc : constant Source_Ptr := Sloc (Function_Call);
|
216 |
|
|
Obj_Address : Node_Id;
|
217 |
|
|
Obj_Acc_Formal : Entity_Id;
|
218 |
|
|
|
219 |
|
|
begin
|
220 |
|
|
-- Locate the implicit access parameter in the called function
|
221 |
|
|
|
222 |
|
|
Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
|
223 |
|
|
|
224 |
|
|
-- If no return object is provided, then pass null
|
225 |
|
|
|
226 |
|
|
if not Present (Return_Object) then
|
227 |
|
|
Obj_Address := Make_Null (Loc);
|
228 |
|
|
Set_Parent (Obj_Address, Function_Call);
|
229 |
|
|
|
230 |
|
|
-- If Return_Object is already an expression of an access type, then use
|
231 |
|
|
-- it directly, since it must be an access value denoting the return
|
232 |
|
|
-- object, and couldn't possibly be the return object itself.
|
233 |
|
|
|
234 |
|
|
elsif Is_Access then
|
235 |
|
|
Obj_Address := Return_Object;
|
236 |
|
|
Set_Parent (Obj_Address, Function_Call);
|
237 |
|
|
|
238 |
|
|
-- Apply Unrestricted_Access to caller's return object
|
239 |
|
|
|
240 |
|
|
else
|
241 |
|
|
Obj_Address :=
|
242 |
|
|
Make_Attribute_Reference (Loc,
|
243 |
|
|
Prefix => Return_Object,
|
244 |
|
|
Attribute_Name => Name_Unrestricted_Access);
|
245 |
|
|
|
246 |
|
|
Set_Parent (Return_Object, Obj_Address);
|
247 |
|
|
Set_Parent (Obj_Address, Function_Call);
|
248 |
|
|
end if;
|
249 |
|
|
|
250 |
|
|
Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
|
251 |
|
|
|
252 |
|
|
-- Build the parameter association for the new actual and add it to the
|
253 |
|
|
-- end of the function's actuals.
|
254 |
|
|
|
255 |
|
|
Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
|
256 |
|
|
end Add_Access_Actual_To_Build_In_Place_Call;
|
257 |
|
|
|
258 |
|
|
------------------------------------------------------
|
259 |
|
|
-- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
|
260 |
|
|
------------------------------------------------------
|
261 |
|
|
|
262 |
|
|
procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
263 |
|
|
(Function_Call : Node_Id;
|
264 |
|
|
Function_Id : Entity_Id;
|
265 |
|
|
Alloc_Form : BIP_Allocation_Form := Unspecified;
|
266 |
|
|
Alloc_Form_Exp : Node_Id := Empty;
|
267 |
|
|
Pool_Actual : Node_Id := Make_Null (No_Location))
|
268 |
|
|
is
|
269 |
|
|
Loc : constant Source_Ptr := Sloc (Function_Call);
|
270 |
|
|
Alloc_Form_Actual : Node_Id;
|
271 |
|
|
Alloc_Form_Formal : Node_Id;
|
272 |
|
|
Pool_Formal : Node_Id;
|
273 |
|
|
|
274 |
|
|
begin
|
275 |
|
|
-- The allocation form generally doesn't need to be passed in the case
|
276 |
|
|
-- of a constrained result subtype, since normally the caller performs
|
277 |
|
|
-- the allocation in that case. However this formal is still needed in
|
278 |
|
|
-- the case where the function has a tagged result, because generally
|
279 |
|
|
-- such functions can be called in a dispatching context and such calls
|
280 |
|
|
-- must be handled like calls to class-wide functions.
|
281 |
|
|
|
282 |
|
|
if Is_Constrained (Underlying_Type (Etype (Function_Id)))
|
283 |
|
|
and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
|
284 |
|
|
then
|
285 |
|
|
return;
|
286 |
|
|
end if;
|
287 |
|
|
|
288 |
|
|
-- Locate the implicit allocation form parameter in the called function.
|
289 |
|
|
-- Maybe it would be better for each implicit formal of a build-in-place
|
290 |
|
|
-- function to have a flag or a Uint attribute to identify it. ???
|
291 |
|
|
|
292 |
|
|
Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
|
293 |
|
|
|
294 |
|
|
if Present (Alloc_Form_Exp) then
|
295 |
|
|
pragma Assert (Alloc_Form = Unspecified);
|
296 |
|
|
|
297 |
|
|
Alloc_Form_Actual := Alloc_Form_Exp;
|
298 |
|
|
|
299 |
|
|
else
|
300 |
|
|
pragma Assert (Alloc_Form /= Unspecified);
|
301 |
|
|
|
302 |
|
|
Alloc_Form_Actual :=
|
303 |
|
|
Make_Integer_Literal (Loc,
|
304 |
|
|
Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
|
305 |
|
|
end if;
|
306 |
|
|
|
307 |
|
|
Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
|
308 |
|
|
|
309 |
|
|
-- Build the parameter association for the new actual and add it to the
|
310 |
|
|
-- end of the function's actuals.
|
311 |
|
|
|
312 |
|
|
Add_Extra_Actual_To_Call
|
313 |
|
|
(Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
|
314 |
|
|
|
315 |
|
|
-- Pass the Storage_Pool parameter. This parameter is omitted on
|
316 |
|
|
-- .NET/JVM/ZFP as those targets do not support pools.
|
317 |
|
|
|
318 |
|
|
if VM_Target = No_VM
|
319 |
|
|
and then RTE_Available (RE_Root_Storage_Pool_Ptr)
|
320 |
|
|
then
|
321 |
|
|
Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
|
322 |
|
|
Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
|
323 |
|
|
Add_Extra_Actual_To_Call
|
324 |
|
|
(Function_Call, Pool_Formal, Pool_Actual);
|
325 |
|
|
end if;
|
326 |
|
|
end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
|
327 |
|
|
|
328 |
|
|
-----------------------------------------------------------
|
329 |
|
|
-- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
|
330 |
|
|
-----------------------------------------------------------
|
331 |
|
|
|
332 |
|
|
procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
|
333 |
|
|
(Func_Call : Node_Id;
|
334 |
|
|
Func_Id : Entity_Id;
|
335 |
|
|
Ptr_Typ : Entity_Id := Empty;
|
336 |
|
|
Master_Exp : Node_Id := Empty)
|
337 |
|
|
is
|
338 |
|
|
begin
|
339 |
|
|
if not Needs_BIP_Finalization_Master (Func_Id) then
|
340 |
|
|
return;
|
341 |
|
|
end if;
|
342 |
|
|
|
343 |
|
|
declare
|
344 |
|
|
Formal : constant Entity_Id :=
|
345 |
|
|
Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
|
346 |
|
|
Loc : constant Source_Ptr := Sloc (Func_Call);
|
347 |
|
|
|
348 |
|
|
Actual : Node_Id;
|
349 |
|
|
Desig_Typ : Entity_Id;
|
350 |
|
|
|
351 |
|
|
begin
|
352 |
|
|
-- If there is a finalization master actual, such as the implicit
|
353 |
|
|
-- finalization master of an enclosing build-in-place function,
|
354 |
|
|
-- then this must be added as an extra actual of the call.
|
355 |
|
|
|
356 |
|
|
if Present (Master_Exp) then
|
357 |
|
|
Actual := Master_Exp;
|
358 |
|
|
|
359 |
|
|
-- Case where the context does not require an actual master
|
360 |
|
|
|
361 |
|
|
elsif No (Ptr_Typ) then
|
362 |
|
|
Actual := Make_Null (Loc);
|
363 |
|
|
|
364 |
|
|
else
|
365 |
|
|
Desig_Typ := Directly_Designated_Type (Ptr_Typ);
|
366 |
|
|
|
367 |
|
|
-- Check for a library-level access type whose designated type has
|
368 |
|
|
-- supressed finalization. Such an access types lack a master.
|
369 |
|
|
-- Pass a null actual to the callee in order to signal a missing
|
370 |
|
|
-- master.
|
371 |
|
|
|
372 |
|
|
if Is_Library_Level_Entity (Ptr_Typ)
|
373 |
|
|
and then Finalize_Storage_Only (Desig_Typ)
|
374 |
|
|
then
|
375 |
|
|
Actual := Make_Null (Loc);
|
376 |
|
|
|
377 |
|
|
-- Types in need of finalization actions
|
378 |
|
|
|
379 |
|
|
elsif Needs_Finalization (Desig_Typ) then
|
380 |
|
|
|
381 |
|
|
-- The general mechanism of creating finalization masters for
|
382 |
|
|
-- anonymous access types is disabled by default, otherwise
|
383 |
|
|
-- finalization masters will pop all over the place. Such types
|
384 |
|
|
-- use context-specific masters.
|
385 |
|
|
|
386 |
|
|
if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
|
387 |
|
|
and then No (Finalization_Master (Ptr_Typ))
|
388 |
|
|
then
|
389 |
|
|
Build_Finalization_Master
|
390 |
|
|
(Typ => Ptr_Typ,
|
391 |
|
|
Ins_Node => Associated_Node_For_Itype (Ptr_Typ),
|
392 |
|
|
Encl_Scope => Scope (Ptr_Typ));
|
393 |
|
|
end if;
|
394 |
|
|
|
395 |
|
|
-- Access-to-controlled types should always have a master
|
396 |
|
|
|
397 |
|
|
pragma Assert (Present (Finalization_Master (Ptr_Typ)));
|
398 |
|
|
|
399 |
|
|
Actual :=
|
400 |
|
|
Make_Attribute_Reference (Loc,
|
401 |
|
|
Prefix =>
|
402 |
|
|
New_Reference_To (Finalization_Master (Ptr_Typ), Loc),
|
403 |
|
|
Attribute_Name => Name_Unrestricted_Access);
|
404 |
|
|
|
405 |
|
|
-- Tagged types
|
406 |
|
|
|
407 |
|
|
else
|
408 |
|
|
Actual := Make_Null (Loc);
|
409 |
|
|
end if;
|
410 |
|
|
end if;
|
411 |
|
|
|
412 |
|
|
Analyze_And_Resolve (Actual, Etype (Formal));
|
413 |
|
|
|
414 |
|
|
-- Build the parameter association for the new actual and add it to
|
415 |
|
|
-- the end of the function's actuals.
|
416 |
|
|
|
417 |
|
|
Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
|
418 |
|
|
end;
|
419 |
|
|
end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
|
420 |
|
|
|
421 |
|
|
------------------------------
|
422 |
|
|
-- Add_Extra_Actual_To_Call --
|
423 |
|
|
------------------------------
|
424 |
|
|
|
425 |
|
|
procedure Add_Extra_Actual_To_Call
|
426 |
|
|
(Subprogram_Call : Node_Id;
|
427 |
|
|
Extra_Formal : Entity_Id;
|
428 |
|
|
Extra_Actual : Node_Id)
|
429 |
|
|
is
|
430 |
|
|
Loc : constant Source_Ptr := Sloc (Subprogram_Call);
|
431 |
|
|
Param_Assoc : Node_Id;
|
432 |
|
|
|
433 |
|
|
begin
|
434 |
|
|
Param_Assoc :=
|
435 |
|
|
Make_Parameter_Association (Loc,
|
436 |
|
|
Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
|
437 |
|
|
Explicit_Actual_Parameter => Extra_Actual);
|
438 |
|
|
|
439 |
|
|
Set_Parent (Param_Assoc, Subprogram_Call);
|
440 |
|
|
Set_Parent (Extra_Actual, Param_Assoc);
|
441 |
|
|
|
442 |
|
|
if Present (Parameter_Associations (Subprogram_Call)) then
|
443 |
|
|
if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
|
444 |
|
|
N_Parameter_Association
|
445 |
|
|
then
|
446 |
|
|
|
447 |
|
|
-- Find last named actual, and append
|
448 |
|
|
|
449 |
|
|
declare
|
450 |
|
|
L : Node_Id;
|
451 |
|
|
begin
|
452 |
|
|
L := First_Actual (Subprogram_Call);
|
453 |
|
|
while Present (L) loop
|
454 |
|
|
if No (Next_Actual (L)) then
|
455 |
|
|
Set_Next_Named_Actual (Parent (L), Extra_Actual);
|
456 |
|
|
exit;
|
457 |
|
|
end if;
|
458 |
|
|
Next_Actual (L);
|
459 |
|
|
end loop;
|
460 |
|
|
end;
|
461 |
|
|
|
462 |
|
|
else
|
463 |
|
|
Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
|
464 |
|
|
end if;
|
465 |
|
|
|
466 |
|
|
Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
|
467 |
|
|
|
468 |
|
|
else
|
469 |
|
|
Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
|
470 |
|
|
Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
|
471 |
|
|
end if;
|
472 |
|
|
end Add_Extra_Actual_To_Call;
|
473 |
|
|
|
474 |
|
|
---------------------------------------------
|
475 |
|
|
-- Add_Task_Actuals_To_Build_In_Place_Call --
|
476 |
|
|
---------------------------------------------
|
477 |
|
|
|
478 |
|
|
procedure Add_Task_Actuals_To_Build_In_Place_Call
|
479 |
|
|
(Function_Call : Node_Id;
|
480 |
|
|
Function_Id : Entity_Id;
|
481 |
|
|
Master_Actual : Node_Id)
|
482 |
|
|
is
|
483 |
|
|
Loc : constant Source_Ptr := Sloc (Function_Call);
|
484 |
|
|
Result_Subt : constant Entity_Id :=
|
485 |
|
|
Available_View (Etype (Function_Id));
|
486 |
|
|
Actual : Node_Id;
|
487 |
|
|
Chain_Actual : Node_Id;
|
488 |
|
|
Chain_Formal : Node_Id;
|
489 |
|
|
Master_Formal : Node_Id;
|
490 |
|
|
|
491 |
|
|
begin
|
492 |
|
|
-- No such extra parameters are needed if there are no tasks
|
493 |
|
|
|
494 |
|
|
if not Has_Task (Result_Subt) then
|
495 |
|
|
return;
|
496 |
|
|
end if;
|
497 |
|
|
|
498 |
|
|
Actual := Master_Actual;
|
499 |
|
|
|
500 |
|
|
-- Use a dummy _master actual in case of No_Task_Hierarchy
|
501 |
|
|
|
502 |
|
|
if Restriction_Active (No_Task_Hierarchy) then
|
503 |
|
|
Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
|
504 |
|
|
|
505 |
|
|
-- In the case where we use the master associated with an access type,
|
506 |
|
|
-- the actual is an entity and requires an explicit reference.
|
507 |
|
|
|
508 |
|
|
elsif Nkind (Actual) = N_Defining_Identifier then
|
509 |
|
|
Actual := New_Reference_To (Actual, Loc);
|
510 |
|
|
end if;
|
511 |
|
|
|
512 |
|
|
-- Locate the implicit master parameter in the called function
|
513 |
|
|
|
514 |
|
|
Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
|
515 |
|
|
Analyze_And_Resolve (Actual, Etype (Master_Formal));
|
516 |
|
|
|
517 |
|
|
-- Build the parameter association for the new actual and add it to the
|
518 |
|
|
-- end of the function's actuals.
|
519 |
|
|
|
520 |
|
|
Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
|
521 |
|
|
|
522 |
|
|
-- Locate the implicit activation chain parameter in the called function
|
523 |
|
|
|
524 |
|
|
Chain_Formal :=
|
525 |
|
|
Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
|
526 |
|
|
|
527 |
|
|
-- Create the actual which is a pointer to the current activation chain
|
528 |
|
|
|
529 |
|
|
Chain_Actual :=
|
530 |
|
|
Make_Attribute_Reference (Loc,
|
531 |
|
|
Prefix => Make_Identifier (Loc, Name_uChain),
|
532 |
|
|
Attribute_Name => Name_Unrestricted_Access);
|
533 |
|
|
|
534 |
|
|
Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
|
535 |
|
|
|
536 |
|
|
-- Build the parameter association for the new actual and add it to the
|
537 |
|
|
-- end of the function's actuals.
|
538 |
|
|
|
539 |
|
|
Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
|
540 |
|
|
end Add_Task_Actuals_To_Build_In_Place_Call;
|
541 |
|
|
|
542 |
|
|
-----------------------
|
543 |
|
|
-- BIP_Formal_Suffix --
|
544 |
|
|
-----------------------
|
545 |
|
|
|
546 |
|
|
function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
|
547 |
|
|
begin
|
548 |
|
|
case Kind is
|
549 |
|
|
when BIP_Alloc_Form =>
|
550 |
|
|
return "BIPalloc";
|
551 |
|
|
when BIP_Storage_Pool =>
|
552 |
|
|
return "BIPstoragepool";
|
553 |
|
|
when BIP_Finalization_Master =>
|
554 |
|
|
return "BIPfinalizationmaster";
|
555 |
|
|
when BIP_Task_Master =>
|
556 |
|
|
return "BIPtaskmaster";
|
557 |
|
|
when BIP_Activation_Chain =>
|
558 |
|
|
return "BIPactivationchain";
|
559 |
|
|
when BIP_Object_Access =>
|
560 |
|
|
return "BIPaccess";
|
561 |
|
|
end case;
|
562 |
|
|
end BIP_Formal_Suffix;
|
563 |
|
|
|
564 |
|
|
---------------------------
|
565 |
|
|
-- Build_In_Place_Formal --
|
566 |
|
|
---------------------------
|
567 |
|
|
|
568 |
|
|
function Build_In_Place_Formal
|
569 |
|
|
(Func : Entity_Id;
|
570 |
|
|
Kind : BIP_Formal_Kind) return Entity_Id
|
571 |
|
|
is
|
572 |
|
|
Formal_Name : constant Name_Id :=
|
573 |
|
|
New_External_Name
|
574 |
|
|
(Chars (Func), BIP_Formal_Suffix (Kind));
|
575 |
|
|
Extra_Formal : Entity_Id := Extra_Formals (Func);
|
576 |
|
|
|
577 |
|
|
begin
|
578 |
|
|
-- Maybe it would be better for each implicit formal of a build-in-place
|
579 |
|
|
-- function to have a flag or a Uint attribute to identify it. ???
|
580 |
|
|
|
581 |
|
|
-- The return type in the function declaration may have been a limited
|
582 |
|
|
-- view, and the extra formals for the function were not generated at
|
583 |
|
|
-- that point. At the point of call the full view must be available and
|
584 |
|
|
-- the extra formals can be created.
|
585 |
|
|
|
586 |
|
|
if No (Extra_Formal) then
|
587 |
|
|
Create_Extra_Formals (Func);
|
588 |
|
|
Extra_Formal := Extra_Formals (Func);
|
589 |
|
|
end if;
|
590 |
|
|
|
591 |
|
|
loop
|
592 |
|
|
pragma Assert (Present (Extra_Formal));
|
593 |
|
|
exit when Chars (Extra_Formal) = Formal_Name;
|
594 |
|
|
|
595 |
|
|
Next_Formal_With_Extras (Extra_Formal);
|
596 |
|
|
end loop;
|
597 |
|
|
|
598 |
|
|
return Extra_Formal;
|
599 |
|
|
end Build_In_Place_Formal;
|
600 |
|
|
|
601 |
|
|
--------------------------------
|
602 |
|
|
-- Check_Overriding_Operation --
|
603 |
|
|
--------------------------------
|
604 |
|
|
|
605 |
|
|
procedure Check_Overriding_Operation (Subp : Entity_Id) is
|
606 |
|
|
Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
|
607 |
|
|
Op_List : constant Elist_Id := Primitive_Operations (Typ);
|
608 |
|
|
Op_Elmt : Elmt_Id;
|
609 |
|
|
Prim_Op : Entity_Id;
|
610 |
|
|
Par_Op : Entity_Id;
|
611 |
|
|
|
612 |
|
|
begin
|
613 |
|
|
if Is_Derived_Type (Typ)
|
614 |
|
|
and then not Is_Private_Type (Typ)
|
615 |
|
|
and then In_Open_Scopes (Scope (Etype (Typ)))
|
616 |
|
|
and then Is_Base_Type (Typ)
|
617 |
|
|
then
|
618 |
|
|
-- Subp overrides an inherited private operation if there is an
|
619 |
|
|
-- inherited operation with a different name than Subp (see
|
620 |
|
|
-- Derive_Subprogram) whose Alias is a hidden subprogram with the
|
621 |
|
|
-- same name as Subp.
|
622 |
|
|
|
623 |
|
|
Op_Elmt := First_Elmt (Op_List);
|
624 |
|
|
while Present (Op_Elmt) loop
|
625 |
|
|
Prim_Op := Node (Op_Elmt);
|
626 |
|
|
Par_Op := Alias (Prim_Op);
|
627 |
|
|
|
628 |
|
|
if Present (Par_Op)
|
629 |
|
|
and then not Comes_From_Source (Prim_Op)
|
630 |
|
|
and then Chars (Prim_Op) /= Chars (Par_Op)
|
631 |
|
|
and then Chars (Par_Op) = Chars (Subp)
|
632 |
|
|
and then Is_Hidden (Par_Op)
|
633 |
|
|
and then Type_Conformant (Prim_Op, Subp)
|
634 |
|
|
then
|
635 |
|
|
Set_DT_Position (Subp, DT_Position (Prim_Op));
|
636 |
|
|
end if;
|
637 |
|
|
|
638 |
|
|
Next_Elmt (Op_Elmt);
|
639 |
|
|
end loop;
|
640 |
|
|
end if;
|
641 |
|
|
end Check_Overriding_Operation;
|
642 |
|
|
|
643 |
|
|
-------------------------------
|
644 |
|
|
-- Detect_Infinite_Recursion --
|
645 |
|
|
-------------------------------
|
646 |
|
|
|
647 |
|
|
procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
|
648 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
649 |
|
|
|
650 |
|
|
Var_List : constant Elist_Id := New_Elmt_List;
|
651 |
|
|
-- List of globals referenced by body of procedure
|
652 |
|
|
|
653 |
|
|
Call_List : constant Elist_Id := New_Elmt_List;
|
654 |
|
|
-- List of recursive calls in body of procedure
|
655 |
|
|
|
656 |
|
|
Shad_List : constant Elist_Id := New_Elmt_List;
|
657 |
|
|
-- List of entity id's for entities created to capture the value of
|
658 |
|
|
-- referenced globals on entry to the procedure.
|
659 |
|
|
|
660 |
|
|
Scop : constant Uint := Scope_Depth (Spec);
|
661 |
|
|
-- This is used to record the scope depth of the current procedure, so
|
662 |
|
|
-- that we can identify global references.
|
663 |
|
|
|
664 |
|
|
Max_Vars : constant := 4;
|
665 |
|
|
-- Do not test more than four global variables
|
666 |
|
|
|
667 |
|
|
Count_Vars : Natural := 0;
|
668 |
|
|
-- Count variables found so far
|
669 |
|
|
|
670 |
|
|
Var : Entity_Id;
|
671 |
|
|
Elm : Elmt_Id;
|
672 |
|
|
Ent : Entity_Id;
|
673 |
|
|
Call : Elmt_Id;
|
674 |
|
|
Decl : Node_Id;
|
675 |
|
|
Test : Node_Id;
|
676 |
|
|
Elm1 : Elmt_Id;
|
677 |
|
|
Elm2 : Elmt_Id;
|
678 |
|
|
Last : Node_Id;
|
679 |
|
|
|
680 |
|
|
function Process (Nod : Node_Id) return Traverse_Result;
|
681 |
|
|
-- Function to traverse the subprogram body (using Traverse_Func)
|
682 |
|
|
|
683 |
|
|
-------------
|
684 |
|
|
-- Process --
|
685 |
|
|
-------------
|
686 |
|
|
|
687 |
|
|
function Process (Nod : Node_Id) return Traverse_Result is
|
688 |
|
|
begin
|
689 |
|
|
-- Procedure call
|
690 |
|
|
|
691 |
|
|
if Nkind (Nod) = N_Procedure_Call_Statement then
|
692 |
|
|
|
693 |
|
|
-- Case of one of the detected recursive calls
|
694 |
|
|
|
695 |
|
|
if Is_Entity_Name (Name (Nod))
|
696 |
|
|
and then Has_Recursive_Call (Entity (Name (Nod)))
|
697 |
|
|
and then Entity (Name (Nod)) = Spec
|
698 |
|
|
then
|
699 |
|
|
Append_Elmt (Nod, Call_List);
|
700 |
|
|
return Skip;
|
701 |
|
|
|
702 |
|
|
-- Any other procedure call may have side effects
|
703 |
|
|
|
704 |
|
|
else
|
705 |
|
|
return Abandon;
|
706 |
|
|
end if;
|
707 |
|
|
|
708 |
|
|
-- A call to a pure function can always be ignored
|
709 |
|
|
|
710 |
|
|
elsif Nkind (Nod) = N_Function_Call
|
711 |
|
|
and then Is_Entity_Name (Name (Nod))
|
712 |
|
|
and then Is_Pure (Entity (Name (Nod)))
|
713 |
|
|
then
|
714 |
|
|
return Skip;
|
715 |
|
|
|
716 |
|
|
-- Case of an identifier reference
|
717 |
|
|
|
718 |
|
|
elsif Nkind (Nod) = N_Identifier then
|
719 |
|
|
Ent := Entity (Nod);
|
720 |
|
|
|
721 |
|
|
-- If no entity, then ignore the reference
|
722 |
|
|
|
723 |
|
|
-- Not clear why this can happen. To investigate, remove this
|
724 |
|
|
-- test and look at the crash that occurs here in 3401-004 ???
|
725 |
|
|
|
726 |
|
|
if No (Ent) then
|
727 |
|
|
return Skip;
|
728 |
|
|
|
729 |
|
|
-- Ignore entities with no Scope, again not clear how this
|
730 |
|
|
-- can happen, to investigate, look at 4108-008 ???
|
731 |
|
|
|
732 |
|
|
elsif No (Scope (Ent)) then
|
733 |
|
|
return Skip;
|
734 |
|
|
|
735 |
|
|
-- Ignore the reference if not to a more global object
|
736 |
|
|
|
737 |
|
|
elsif Scope_Depth (Scope (Ent)) >= Scop then
|
738 |
|
|
return Skip;
|
739 |
|
|
|
740 |
|
|
-- References to types, exceptions and constants are always OK
|
741 |
|
|
|
742 |
|
|
elsif Is_Type (Ent)
|
743 |
|
|
or else Ekind (Ent) = E_Exception
|
744 |
|
|
or else Ekind (Ent) = E_Constant
|
745 |
|
|
then
|
746 |
|
|
return Skip;
|
747 |
|
|
|
748 |
|
|
-- If other than a non-volatile scalar variable, we have some
|
749 |
|
|
-- kind of global reference (e.g. to a function) that we cannot
|
750 |
|
|
-- deal with so we forget the attempt.
|
751 |
|
|
|
752 |
|
|
elsif Ekind (Ent) /= E_Variable
|
753 |
|
|
or else not Is_Scalar_Type (Etype (Ent))
|
754 |
|
|
or else Treat_As_Volatile (Ent)
|
755 |
|
|
then
|
756 |
|
|
return Abandon;
|
757 |
|
|
|
758 |
|
|
-- Otherwise we have a reference to a global scalar
|
759 |
|
|
|
760 |
|
|
else
|
761 |
|
|
-- Loop through global entities already detected
|
762 |
|
|
|
763 |
|
|
Elm := First_Elmt (Var_List);
|
764 |
|
|
loop
|
765 |
|
|
-- If not detected before, record this new global reference
|
766 |
|
|
|
767 |
|
|
if No (Elm) then
|
768 |
|
|
Count_Vars := Count_Vars + 1;
|
769 |
|
|
|
770 |
|
|
if Count_Vars <= Max_Vars then
|
771 |
|
|
Append_Elmt (Entity (Nod), Var_List);
|
772 |
|
|
else
|
773 |
|
|
return Abandon;
|
774 |
|
|
end if;
|
775 |
|
|
|
776 |
|
|
exit;
|
777 |
|
|
|
778 |
|
|
-- If recorded before, ignore
|
779 |
|
|
|
780 |
|
|
elsif Node (Elm) = Entity (Nod) then
|
781 |
|
|
return Skip;
|
782 |
|
|
|
783 |
|
|
-- Otherwise keep looking
|
784 |
|
|
|
785 |
|
|
else
|
786 |
|
|
Next_Elmt (Elm);
|
787 |
|
|
end if;
|
788 |
|
|
end loop;
|
789 |
|
|
|
790 |
|
|
return Skip;
|
791 |
|
|
end if;
|
792 |
|
|
|
793 |
|
|
-- For all other node kinds, recursively visit syntactic children
|
794 |
|
|
|
795 |
|
|
else
|
796 |
|
|
return OK;
|
797 |
|
|
end if;
|
798 |
|
|
end Process;
|
799 |
|
|
|
800 |
|
|
function Traverse_Body is new Traverse_Func (Process);
|
801 |
|
|
|
802 |
|
|
-- Start of processing for Detect_Infinite_Recursion
|
803 |
|
|
|
804 |
|
|
begin
|
805 |
|
|
-- Do not attempt detection in No_Implicit_Conditional mode, since we
|
806 |
|
|
-- won't be able to generate the code to handle the recursion in any
|
807 |
|
|
-- case.
|
808 |
|
|
|
809 |
|
|
if Restriction_Active (No_Implicit_Conditionals) then
|
810 |
|
|
return;
|
811 |
|
|
end if;
|
812 |
|
|
|
813 |
|
|
-- Otherwise do traversal and quit if we get abandon signal
|
814 |
|
|
|
815 |
|
|
if Traverse_Body (N) = Abandon then
|
816 |
|
|
return;
|
817 |
|
|
|
818 |
|
|
-- We must have a call, since Has_Recursive_Call was set. If not just
|
819 |
|
|
-- ignore (this is only an error check, so if we have a funny situation,
|
820 |
|
|
-- due to bugs or errors, we do not want to bomb!)
|
821 |
|
|
|
822 |
|
|
elsif Is_Empty_Elmt_List (Call_List) then
|
823 |
|
|
return;
|
824 |
|
|
end if;
|
825 |
|
|
|
826 |
|
|
-- Here is the case where we detect recursion at compile time
|
827 |
|
|
|
828 |
|
|
-- Push our current scope for analyzing the declarations and code that
|
829 |
|
|
-- we will insert for the checking.
|
830 |
|
|
|
831 |
|
|
Push_Scope (Spec);
|
832 |
|
|
|
833 |
|
|
-- This loop builds temporary variables for each of the referenced
|
834 |
|
|
-- globals, so that at the end of the loop the list Shad_List contains
|
835 |
|
|
-- these temporaries in one-to-one correspondence with the elements in
|
836 |
|
|
-- Var_List.
|
837 |
|
|
|
838 |
|
|
Last := Empty;
|
839 |
|
|
Elm := First_Elmt (Var_List);
|
840 |
|
|
while Present (Elm) loop
|
841 |
|
|
Var := Node (Elm);
|
842 |
|
|
Ent := Make_Temporary (Loc, 'S');
|
843 |
|
|
Append_Elmt (Ent, Shad_List);
|
844 |
|
|
|
845 |
|
|
-- Insert a declaration for this temporary at the start of the
|
846 |
|
|
-- declarations for the procedure. The temporaries are declared as
|
847 |
|
|
-- constant objects initialized to the current values of the
|
848 |
|
|
-- corresponding temporaries.
|
849 |
|
|
|
850 |
|
|
Decl :=
|
851 |
|
|
Make_Object_Declaration (Loc,
|
852 |
|
|
Defining_Identifier => Ent,
|
853 |
|
|
Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
|
854 |
|
|
Constant_Present => True,
|
855 |
|
|
Expression => New_Occurrence_Of (Var, Loc));
|
856 |
|
|
|
857 |
|
|
if No (Last) then
|
858 |
|
|
Prepend (Decl, Declarations (N));
|
859 |
|
|
else
|
860 |
|
|
Insert_After (Last, Decl);
|
861 |
|
|
end if;
|
862 |
|
|
|
863 |
|
|
Last := Decl;
|
864 |
|
|
Analyze (Decl);
|
865 |
|
|
Next_Elmt (Elm);
|
866 |
|
|
end loop;
|
867 |
|
|
|
868 |
|
|
-- Loop through calls
|
869 |
|
|
|
870 |
|
|
Call := First_Elmt (Call_List);
|
871 |
|
|
while Present (Call) loop
|
872 |
|
|
|
873 |
|
|
-- Build a predicate expression of the form
|
874 |
|
|
|
875 |
|
|
-- True
|
876 |
|
|
-- and then global1 = temp1
|
877 |
|
|
-- and then global2 = temp2
|
878 |
|
|
-- ...
|
879 |
|
|
|
880 |
|
|
-- This predicate determines if any of the global values
|
881 |
|
|
-- referenced by the procedure have changed since the
|
882 |
|
|
-- current call, if not an infinite recursion is assured.
|
883 |
|
|
|
884 |
|
|
Test := New_Occurrence_Of (Standard_True, Loc);
|
885 |
|
|
|
886 |
|
|
Elm1 := First_Elmt (Var_List);
|
887 |
|
|
Elm2 := First_Elmt (Shad_List);
|
888 |
|
|
while Present (Elm1) loop
|
889 |
|
|
Test :=
|
890 |
|
|
Make_And_Then (Loc,
|
891 |
|
|
Left_Opnd => Test,
|
892 |
|
|
Right_Opnd =>
|
893 |
|
|
Make_Op_Eq (Loc,
|
894 |
|
|
Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
|
895 |
|
|
Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
|
896 |
|
|
|
897 |
|
|
Next_Elmt (Elm1);
|
898 |
|
|
Next_Elmt (Elm2);
|
899 |
|
|
end loop;
|
900 |
|
|
|
901 |
|
|
-- Now we replace the call with the sequence
|
902 |
|
|
|
903 |
|
|
-- if no-changes (see above) then
|
904 |
|
|
-- raise Storage_Error;
|
905 |
|
|
-- else
|
906 |
|
|
-- original-call
|
907 |
|
|
-- end if;
|
908 |
|
|
|
909 |
|
|
Rewrite (Node (Call),
|
910 |
|
|
Make_If_Statement (Loc,
|
911 |
|
|
Condition => Test,
|
912 |
|
|
Then_Statements => New_List (
|
913 |
|
|
Make_Raise_Storage_Error (Loc,
|
914 |
|
|
Reason => SE_Infinite_Recursion)),
|
915 |
|
|
|
916 |
|
|
Else_Statements => New_List (
|
917 |
|
|
Relocate_Node (Node (Call)))));
|
918 |
|
|
|
919 |
|
|
Analyze (Node (Call));
|
920 |
|
|
|
921 |
|
|
Next_Elmt (Call);
|
922 |
|
|
end loop;
|
923 |
|
|
|
924 |
|
|
-- Remove temporary scope stack entry used for analysis
|
925 |
|
|
|
926 |
|
|
Pop_Scope;
|
927 |
|
|
end Detect_Infinite_Recursion;
|
928 |
|
|
|
929 |
|
|
--------------------
|
930 |
|
|
-- Expand_Actuals --
|
931 |
|
|
--------------------
|
932 |
|
|
|
933 |
|
|
procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id) is
|
934 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
935 |
|
|
Actual : Node_Id;
|
936 |
|
|
Formal : Entity_Id;
|
937 |
|
|
N_Node : Node_Id;
|
938 |
|
|
Post_Call : List_Id;
|
939 |
|
|
E_Formal : Entity_Id;
|
940 |
|
|
|
941 |
|
|
procedure Add_Call_By_Copy_Code;
|
942 |
|
|
-- For cases where the parameter must be passed by copy, this routine
|
943 |
|
|
-- generates a temporary variable into which the actual is copied and
|
944 |
|
|
-- then passes this as the parameter. For an OUT or IN OUT parameter,
|
945 |
|
|
-- an assignment is also generated to copy the result back. The call
|
946 |
|
|
-- also takes care of any constraint checks required for the type
|
947 |
|
|
-- conversion case (on both the way in and the way out).
|
948 |
|
|
|
949 |
|
|
procedure Add_Simple_Call_By_Copy_Code;
|
950 |
|
|
-- This is similar to the above, but is used in cases where we know
|
951 |
|
|
-- that all that is needed is to simply create a temporary and copy
|
952 |
|
|
-- the value in and out of the temporary.
|
953 |
|
|
|
954 |
|
|
procedure Check_Fortran_Logical;
|
955 |
|
|
-- A value of type Logical that is passed through a formal parameter
|
956 |
|
|
-- must be normalized because .TRUE. usually does not have the same
|
957 |
|
|
-- representation as True. We assume that .FALSE. = False = 0.
|
958 |
|
|
-- What about functions that return a logical type ???
|
959 |
|
|
|
960 |
|
|
function Is_Legal_Copy return Boolean;
|
961 |
|
|
-- Check that an actual can be copied before generating the temporary
|
962 |
|
|
-- to be used in the call. If the actual is of a by_reference type then
|
963 |
|
|
-- the program is illegal (this can only happen in the presence of
|
964 |
|
|
-- rep. clauses that force an incorrect alignment). If the formal is
|
965 |
|
|
-- a by_reference parameter imposed by a DEC pragma, emit a warning to
|
966 |
|
|
-- the effect that this might lead to unaligned arguments.
|
967 |
|
|
|
968 |
|
|
function Make_Var (Actual : Node_Id) return Entity_Id;
|
969 |
|
|
-- Returns an entity that refers to the given actual parameter,
|
970 |
|
|
-- Actual (not including any type conversion). If Actual is an
|
971 |
|
|
-- entity name, then this entity is returned unchanged, otherwise
|
972 |
|
|
-- a renaming is created to provide an entity for the actual.
|
973 |
|
|
|
974 |
|
|
procedure Reset_Packed_Prefix;
|
975 |
|
|
-- The expansion of a packed array component reference is delayed in
|
976 |
|
|
-- the context of a call. Now we need to complete the expansion, so we
|
977 |
|
|
-- unmark the analyzed bits in all prefixes.
|
978 |
|
|
|
979 |
|
|
---------------------------
|
980 |
|
|
-- Add_Call_By_Copy_Code --
|
981 |
|
|
---------------------------
|
982 |
|
|
|
983 |
|
|
procedure Add_Call_By_Copy_Code is
|
984 |
|
|
Expr : Node_Id;
|
985 |
|
|
Init : Node_Id;
|
986 |
|
|
Temp : Entity_Id;
|
987 |
|
|
Indic : Node_Id;
|
988 |
|
|
Var : Entity_Id;
|
989 |
|
|
F_Typ : constant Entity_Id := Etype (Formal);
|
990 |
|
|
V_Typ : Entity_Id;
|
991 |
|
|
Crep : Boolean;
|
992 |
|
|
|
993 |
|
|
begin
|
994 |
|
|
if not Is_Legal_Copy then
|
995 |
|
|
return;
|
996 |
|
|
end if;
|
997 |
|
|
|
998 |
|
|
Temp := Make_Temporary (Loc, 'T', Actual);
|
999 |
|
|
|
1000 |
|
|
-- Use formal type for temp, unless formal type is an unconstrained
|
1001 |
|
|
-- array, in which case we don't have to worry about bounds checks,
|
1002 |
|
|
-- and we use the actual type, since that has appropriate bounds.
|
1003 |
|
|
|
1004 |
|
|
if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
|
1005 |
|
|
Indic := New_Occurrence_Of (Etype (Actual), Loc);
|
1006 |
|
|
else
|
1007 |
|
|
Indic := New_Occurrence_Of (Etype (Formal), Loc);
|
1008 |
|
|
end if;
|
1009 |
|
|
|
1010 |
|
|
if Nkind (Actual) = N_Type_Conversion then
|
1011 |
|
|
V_Typ := Etype (Expression (Actual));
|
1012 |
|
|
|
1013 |
|
|
-- If the formal is an (in-)out parameter, capture the name
|
1014 |
|
|
-- of the variable in order to build the post-call assignment.
|
1015 |
|
|
|
1016 |
|
|
Var := Make_Var (Expression (Actual));
|
1017 |
|
|
|
1018 |
|
|
Crep := not Same_Representation
|
1019 |
|
|
(F_Typ, Etype (Expression (Actual)));
|
1020 |
|
|
|
1021 |
|
|
else
|
1022 |
|
|
V_Typ := Etype (Actual);
|
1023 |
|
|
Var := Make_Var (Actual);
|
1024 |
|
|
Crep := False;
|
1025 |
|
|
end if;
|
1026 |
|
|
|
1027 |
|
|
-- Setup initialization for case of in out parameter, or an out
|
1028 |
|
|
-- parameter where the formal is an unconstrained array (in the
|
1029 |
|
|
-- latter case, we have to pass in an object with bounds).
|
1030 |
|
|
|
1031 |
|
|
-- If this is an out parameter, the initial copy is wasteful, so as
|
1032 |
|
|
-- an optimization for the one-dimensional case we extract the
|
1033 |
|
|
-- bounds of the actual and build an uninitialized temporary of the
|
1034 |
|
|
-- right size.
|
1035 |
|
|
|
1036 |
|
|
if Ekind (Formal) = E_In_Out_Parameter
|
1037 |
|
|
or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
|
1038 |
|
|
then
|
1039 |
|
|
if Nkind (Actual) = N_Type_Conversion then
|
1040 |
|
|
if Conversion_OK (Actual) then
|
1041 |
|
|
Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
|
1042 |
|
|
else
|
1043 |
|
|
Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
|
1044 |
|
|
end if;
|
1045 |
|
|
|
1046 |
|
|
elsif Ekind (Formal) = E_Out_Parameter
|
1047 |
|
|
and then Is_Array_Type (F_Typ)
|
1048 |
|
|
and then Number_Dimensions (F_Typ) = 1
|
1049 |
|
|
and then not Has_Non_Null_Base_Init_Proc (F_Typ)
|
1050 |
|
|
then
|
1051 |
|
|
-- Actual is a one-dimensional array or slice, and the type
|
1052 |
|
|
-- requires no initialization. Create a temporary of the
|
1053 |
|
|
-- right size, but do not copy actual into it (optimization).
|
1054 |
|
|
|
1055 |
|
|
Init := Empty;
|
1056 |
|
|
Indic :=
|
1057 |
|
|
Make_Subtype_Indication (Loc,
|
1058 |
|
|
Subtype_Mark =>
|
1059 |
|
|
New_Occurrence_Of (F_Typ, Loc),
|
1060 |
|
|
Constraint =>
|
1061 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
1062 |
|
|
Constraints => New_List (
|
1063 |
|
|
Make_Range (Loc,
|
1064 |
|
|
Low_Bound =>
|
1065 |
|
|
Make_Attribute_Reference (Loc,
|
1066 |
|
|
Prefix => New_Occurrence_Of (Var, Loc),
|
1067 |
|
|
Attribute_Name => Name_First),
|
1068 |
|
|
High_Bound =>
|
1069 |
|
|
Make_Attribute_Reference (Loc,
|
1070 |
|
|
Prefix => New_Occurrence_Of (Var, Loc),
|
1071 |
|
|
Attribute_Name => Name_Last)))));
|
1072 |
|
|
|
1073 |
|
|
else
|
1074 |
|
|
Init := New_Occurrence_Of (Var, Loc);
|
1075 |
|
|
end if;
|
1076 |
|
|
|
1077 |
|
|
-- An initialization is created for packed conversions as
|
1078 |
|
|
-- actuals for out parameters to enable Make_Object_Declaration
|
1079 |
|
|
-- to determine the proper subtype for N_Node. Note that this
|
1080 |
|
|
-- is wasteful because the extra copying on the call side is
|
1081 |
|
|
-- not required for such out parameters. ???
|
1082 |
|
|
|
1083 |
|
|
elsif Ekind (Formal) = E_Out_Parameter
|
1084 |
|
|
and then Nkind (Actual) = N_Type_Conversion
|
1085 |
|
|
and then (Is_Bit_Packed_Array (F_Typ)
|
1086 |
|
|
or else
|
1087 |
|
|
Is_Bit_Packed_Array (Etype (Expression (Actual))))
|
1088 |
|
|
then
|
1089 |
|
|
if Conversion_OK (Actual) then
|
1090 |
|
|
Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
|
1091 |
|
|
else
|
1092 |
|
|
Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
|
1093 |
|
|
end if;
|
1094 |
|
|
|
1095 |
|
|
elsif Ekind (Formal) = E_In_Parameter then
|
1096 |
|
|
|
1097 |
|
|
-- Handle the case in which the actual is a type conversion
|
1098 |
|
|
|
1099 |
|
|
if Nkind (Actual) = N_Type_Conversion then
|
1100 |
|
|
if Conversion_OK (Actual) then
|
1101 |
|
|
Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
|
1102 |
|
|
else
|
1103 |
|
|
Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
|
1104 |
|
|
end if;
|
1105 |
|
|
else
|
1106 |
|
|
Init := New_Occurrence_Of (Var, Loc);
|
1107 |
|
|
end if;
|
1108 |
|
|
|
1109 |
|
|
else
|
1110 |
|
|
Init := Empty;
|
1111 |
|
|
end if;
|
1112 |
|
|
|
1113 |
|
|
N_Node :=
|
1114 |
|
|
Make_Object_Declaration (Loc,
|
1115 |
|
|
Defining_Identifier => Temp,
|
1116 |
|
|
Object_Definition => Indic,
|
1117 |
|
|
Expression => Init);
|
1118 |
|
|
Set_Assignment_OK (N_Node);
|
1119 |
|
|
Insert_Action (N, N_Node);
|
1120 |
|
|
|
1121 |
|
|
-- Now, normally the deal here is that we use the defining
|
1122 |
|
|
-- identifier created by that object declaration. There is
|
1123 |
|
|
-- one exception to this. In the change of representation case
|
1124 |
|
|
-- the above declaration will end up looking like:
|
1125 |
|
|
|
1126 |
|
|
-- temp : type := identifier;
|
1127 |
|
|
|
1128 |
|
|
-- And in this case we might as well use the identifier directly
|
1129 |
|
|
-- and eliminate the temporary. Note that the analysis of the
|
1130 |
|
|
-- declaration was not a waste of time in that case, since it is
|
1131 |
|
|
-- what generated the necessary change of representation code. If
|
1132 |
|
|
-- the change of representation introduced additional code, as in
|
1133 |
|
|
-- a fixed-integer conversion, the expression is not an identifier
|
1134 |
|
|
-- and must be kept.
|
1135 |
|
|
|
1136 |
|
|
if Crep
|
1137 |
|
|
and then Present (Expression (N_Node))
|
1138 |
|
|
and then Is_Entity_Name (Expression (N_Node))
|
1139 |
|
|
then
|
1140 |
|
|
Temp := Entity (Expression (N_Node));
|
1141 |
|
|
Rewrite (N_Node, Make_Null_Statement (Loc));
|
1142 |
|
|
end if;
|
1143 |
|
|
|
1144 |
|
|
-- For IN parameter, all we do is to replace the actual
|
1145 |
|
|
|
1146 |
|
|
if Ekind (Formal) = E_In_Parameter then
|
1147 |
|
|
Rewrite (Actual, New_Reference_To (Temp, Loc));
|
1148 |
|
|
Analyze (Actual);
|
1149 |
|
|
|
1150 |
|
|
-- Processing for OUT or IN OUT parameter
|
1151 |
|
|
|
1152 |
|
|
else
|
1153 |
|
|
-- Kill current value indications for the temporary variable we
|
1154 |
|
|
-- created, since we just passed it as an OUT parameter.
|
1155 |
|
|
|
1156 |
|
|
Kill_Current_Values (Temp);
|
1157 |
|
|
Set_Is_Known_Valid (Temp, False);
|
1158 |
|
|
|
1159 |
|
|
-- If type conversion, use reverse conversion on exit
|
1160 |
|
|
|
1161 |
|
|
if Nkind (Actual) = N_Type_Conversion then
|
1162 |
|
|
if Conversion_OK (Actual) then
|
1163 |
|
|
Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
|
1164 |
|
|
else
|
1165 |
|
|
Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
|
1166 |
|
|
end if;
|
1167 |
|
|
else
|
1168 |
|
|
Expr := New_Occurrence_Of (Temp, Loc);
|
1169 |
|
|
end if;
|
1170 |
|
|
|
1171 |
|
|
Rewrite (Actual, New_Reference_To (Temp, Loc));
|
1172 |
|
|
Analyze (Actual);
|
1173 |
|
|
|
1174 |
|
|
-- If the actual is a conversion of a packed reference, it may
|
1175 |
|
|
-- already have been expanded by Remove_Side_Effects, and the
|
1176 |
|
|
-- resulting variable is a temporary which does not designate
|
1177 |
|
|
-- the proper out-parameter, which may not be addressable. In
|
1178 |
|
|
-- that case, generate an assignment to the original expression
|
1179 |
|
|
-- (before expansion of the packed reference) so that the proper
|
1180 |
|
|
-- expansion of assignment to a packed component can take place.
|
1181 |
|
|
|
1182 |
|
|
declare
|
1183 |
|
|
Obj : Node_Id;
|
1184 |
|
|
Lhs : Node_Id;
|
1185 |
|
|
|
1186 |
|
|
begin
|
1187 |
|
|
if Is_Renaming_Of_Object (Var)
|
1188 |
|
|
and then Nkind (Renamed_Object (Var)) = N_Selected_Component
|
1189 |
|
|
and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
|
1190 |
|
|
and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
|
1191 |
|
|
= N_Indexed_Component
|
1192 |
|
|
and then
|
1193 |
|
|
Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
|
1194 |
|
|
then
|
1195 |
|
|
Obj := Renamed_Object (Var);
|
1196 |
|
|
Lhs :=
|
1197 |
|
|
Make_Selected_Component (Loc,
|
1198 |
|
|
Prefix =>
|
1199 |
|
|
New_Copy_Tree (Original_Node (Prefix (Obj))),
|
1200 |
|
|
Selector_Name => New_Copy (Selector_Name (Obj)));
|
1201 |
|
|
Reset_Analyzed_Flags (Lhs);
|
1202 |
|
|
|
1203 |
|
|
else
|
1204 |
|
|
Lhs := New_Occurrence_Of (Var, Loc);
|
1205 |
|
|
end if;
|
1206 |
|
|
|
1207 |
|
|
Set_Assignment_OK (Lhs);
|
1208 |
|
|
|
1209 |
|
|
if Is_Access_Type (E_Formal)
|
1210 |
|
|
and then Is_Entity_Name (Lhs)
|
1211 |
|
|
and then
|
1212 |
|
|
Present (Effective_Extra_Accessibility (Entity (Lhs)))
|
1213 |
|
|
then
|
1214 |
|
|
-- Copyback target is an Ada 2012 stand-alone object
|
1215 |
|
|
-- of an anonymous access type
|
1216 |
|
|
|
1217 |
|
|
pragma Assert (Ada_Version >= Ada_2012);
|
1218 |
|
|
|
1219 |
|
|
if Type_Access_Level (E_Formal) >
|
1220 |
|
|
Object_Access_Level (Lhs)
|
1221 |
|
|
then
|
1222 |
|
|
Append_To (Post_Call,
|
1223 |
|
|
Make_Raise_Program_Error (Loc,
|
1224 |
|
|
Reason => PE_Accessibility_Check_Failed));
|
1225 |
|
|
end if;
|
1226 |
|
|
|
1227 |
|
|
Append_To (Post_Call,
|
1228 |
|
|
Make_Assignment_Statement (Loc,
|
1229 |
|
|
Name => Lhs,
|
1230 |
|
|
Expression => Expr));
|
1231 |
|
|
|
1232 |
|
|
-- We would like to somehow suppress generation of the
|
1233 |
|
|
-- extra_accessibility assignment generated by the expansion
|
1234 |
|
|
-- of the above assignment statement. It's not a correctness
|
1235 |
|
|
-- issue because the following assignment renders it dead,
|
1236 |
|
|
-- but generating back-to-back assignments to the same
|
1237 |
|
|
-- target is undesirable. ???
|
1238 |
|
|
|
1239 |
|
|
Append_To (Post_Call,
|
1240 |
|
|
Make_Assignment_Statement (Loc,
|
1241 |
|
|
Name => New_Occurrence_Of (
|
1242 |
|
|
Effective_Extra_Accessibility (Entity (Lhs)), Loc),
|
1243 |
|
|
Expression => Make_Integer_Literal (Loc,
|
1244 |
|
|
Type_Access_Level (E_Formal))));
|
1245 |
|
|
|
1246 |
|
|
else
|
1247 |
|
|
Append_To (Post_Call,
|
1248 |
|
|
Make_Assignment_Statement (Loc,
|
1249 |
|
|
Name => Lhs,
|
1250 |
|
|
Expression => Expr));
|
1251 |
|
|
end if;
|
1252 |
|
|
end;
|
1253 |
|
|
end if;
|
1254 |
|
|
end Add_Call_By_Copy_Code;
|
1255 |
|
|
|
1256 |
|
|
----------------------------------
|
1257 |
|
|
-- Add_Simple_Call_By_Copy_Code --
|
1258 |
|
|
----------------------------------
|
1259 |
|
|
|
1260 |
|
|
procedure Add_Simple_Call_By_Copy_Code is
|
1261 |
|
|
Temp : Entity_Id;
|
1262 |
|
|
Decl : Node_Id;
|
1263 |
|
|
Incod : Node_Id;
|
1264 |
|
|
Outcod : Node_Id;
|
1265 |
|
|
Lhs : Node_Id;
|
1266 |
|
|
Rhs : Node_Id;
|
1267 |
|
|
Indic : Node_Id;
|
1268 |
|
|
F_Typ : constant Entity_Id := Etype (Formal);
|
1269 |
|
|
|
1270 |
|
|
begin
|
1271 |
|
|
if not Is_Legal_Copy then
|
1272 |
|
|
return;
|
1273 |
|
|
end if;
|
1274 |
|
|
|
1275 |
|
|
-- Use formal type for temp, unless formal type is an unconstrained
|
1276 |
|
|
-- array, in which case we don't have to worry about bounds checks,
|
1277 |
|
|
-- and we use the actual type, since that has appropriate bounds.
|
1278 |
|
|
|
1279 |
|
|
if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
|
1280 |
|
|
Indic := New_Occurrence_Of (Etype (Actual), Loc);
|
1281 |
|
|
else
|
1282 |
|
|
Indic := New_Occurrence_Of (Etype (Formal), Loc);
|
1283 |
|
|
end if;
|
1284 |
|
|
|
1285 |
|
|
-- Prepare to generate code
|
1286 |
|
|
|
1287 |
|
|
Reset_Packed_Prefix;
|
1288 |
|
|
|
1289 |
|
|
Temp := Make_Temporary (Loc, 'T', Actual);
|
1290 |
|
|
Incod := Relocate_Node (Actual);
|
1291 |
|
|
Outcod := New_Copy_Tree (Incod);
|
1292 |
|
|
|
1293 |
|
|
-- Generate declaration of temporary variable, initializing it
|
1294 |
|
|
-- with the input parameter unless we have an OUT formal or
|
1295 |
|
|
-- this is an initialization call.
|
1296 |
|
|
|
1297 |
|
|
-- If the formal is an out parameter with discriminants, the
|
1298 |
|
|
-- discriminants must be captured even if the rest of the object
|
1299 |
|
|
-- is in principle uninitialized, because the discriminants may
|
1300 |
|
|
-- be read by the called subprogram.
|
1301 |
|
|
|
1302 |
|
|
if Ekind (Formal) = E_Out_Parameter then
|
1303 |
|
|
Incod := Empty;
|
1304 |
|
|
|
1305 |
|
|
if Has_Discriminants (Etype (Formal)) then
|
1306 |
|
|
Indic := New_Occurrence_Of (Etype (Actual), Loc);
|
1307 |
|
|
end if;
|
1308 |
|
|
|
1309 |
|
|
elsif Inside_Init_Proc then
|
1310 |
|
|
|
1311 |
|
|
-- Could use a comment here to match comment below ???
|
1312 |
|
|
|
1313 |
|
|
if Nkind (Actual) /= N_Selected_Component
|
1314 |
|
|
or else
|
1315 |
|
|
not Has_Discriminant_Dependent_Constraint
|
1316 |
|
|
(Entity (Selector_Name (Actual)))
|
1317 |
|
|
then
|
1318 |
|
|
Incod := Empty;
|
1319 |
|
|
|
1320 |
|
|
-- Otherwise, keep the component in order to generate the proper
|
1321 |
|
|
-- actual subtype, that depends on enclosing discriminants.
|
1322 |
|
|
|
1323 |
|
|
else
|
1324 |
|
|
null;
|
1325 |
|
|
end if;
|
1326 |
|
|
end if;
|
1327 |
|
|
|
1328 |
|
|
Decl :=
|
1329 |
|
|
Make_Object_Declaration (Loc,
|
1330 |
|
|
Defining_Identifier => Temp,
|
1331 |
|
|
Object_Definition => Indic,
|
1332 |
|
|
Expression => Incod);
|
1333 |
|
|
|
1334 |
|
|
if Inside_Init_Proc
|
1335 |
|
|
and then No (Incod)
|
1336 |
|
|
then
|
1337 |
|
|
-- If the call is to initialize a component of a composite type,
|
1338 |
|
|
-- and the component does not depend on discriminants, use the
|
1339 |
|
|
-- actual type of the component. This is required in case the
|
1340 |
|
|
-- component is constrained, because in general the formal of the
|
1341 |
|
|
-- initialization procedure will be unconstrained. Note that if
|
1342 |
|
|
-- the component being initialized is constrained by an enclosing
|
1343 |
|
|
-- discriminant, the presence of the initialization in the
|
1344 |
|
|
-- declaration will generate an expression for the actual subtype.
|
1345 |
|
|
|
1346 |
|
|
Set_No_Initialization (Decl);
|
1347 |
|
|
Set_Object_Definition (Decl,
|
1348 |
|
|
New_Occurrence_Of (Etype (Actual), Loc));
|
1349 |
|
|
end if;
|
1350 |
|
|
|
1351 |
|
|
Insert_Action (N, Decl);
|
1352 |
|
|
|
1353 |
|
|
-- The actual is simply a reference to the temporary
|
1354 |
|
|
|
1355 |
|
|
Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
|
1356 |
|
|
|
1357 |
|
|
-- Generate copy out if OUT or IN OUT parameter
|
1358 |
|
|
|
1359 |
|
|
if Ekind (Formal) /= E_In_Parameter then
|
1360 |
|
|
Lhs := Outcod;
|
1361 |
|
|
Rhs := New_Occurrence_Of (Temp, Loc);
|
1362 |
|
|
|
1363 |
|
|
-- Deal with conversion
|
1364 |
|
|
|
1365 |
|
|
if Nkind (Lhs) = N_Type_Conversion then
|
1366 |
|
|
Lhs := Expression (Lhs);
|
1367 |
|
|
Rhs := Convert_To (Etype (Actual), Rhs);
|
1368 |
|
|
end if;
|
1369 |
|
|
|
1370 |
|
|
Append_To (Post_Call,
|
1371 |
|
|
Make_Assignment_Statement (Loc,
|
1372 |
|
|
Name => Lhs,
|
1373 |
|
|
Expression => Rhs));
|
1374 |
|
|
Set_Assignment_OK (Name (Last (Post_Call)));
|
1375 |
|
|
end if;
|
1376 |
|
|
end Add_Simple_Call_By_Copy_Code;
|
1377 |
|
|
|
1378 |
|
|
---------------------------
|
1379 |
|
|
-- Check_Fortran_Logical --
|
1380 |
|
|
---------------------------
|
1381 |
|
|
|
1382 |
|
|
procedure Check_Fortran_Logical is
|
1383 |
|
|
Logical : constant Entity_Id := Etype (Formal);
|
1384 |
|
|
Var : Entity_Id;
|
1385 |
|
|
|
1386 |
|
|
-- Note: this is very incomplete, e.g. it does not handle arrays
|
1387 |
|
|
-- of logical values. This is really not the right approach at all???)
|
1388 |
|
|
|
1389 |
|
|
begin
|
1390 |
|
|
if Convention (Subp) = Convention_Fortran
|
1391 |
|
|
and then Root_Type (Etype (Formal)) = Standard_Boolean
|
1392 |
|
|
and then Ekind (Formal) /= E_In_Parameter
|
1393 |
|
|
then
|
1394 |
|
|
Var := Make_Var (Actual);
|
1395 |
|
|
Append_To (Post_Call,
|
1396 |
|
|
Make_Assignment_Statement (Loc,
|
1397 |
|
|
Name => New_Occurrence_Of (Var, Loc),
|
1398 |
|
|
Expression =>
|
1399 |
|
|
Unchecked_Convert_To (
|
1400 |
|
|
Logical,
|
1401 |
|
|
Make_Op_Ne (Loc,
|
1402 |
|
|
Left_Opnd => New_Occurrence_Of (Var, Loc),
|
1403 |
|
|
Right_Opnd =>
|
1404 |
|
|
Unchecked_Convert_To (
|
1405 |
|
|
Logical,
|
1406 |
|
|
New_Occurrence_Of (Standard_False, Loc))))));
|
1407 |
|
|
end if;
|
1408 |
|
|
end Check_Fortran_Logical;
|
1409 |
|
|
|
1410 |
|
|
-------------------
|
1411 |
|
|
-- Is_Legal_Copy --
|
1412 |
|
|
-------------------
|
1413 |
|
|
|
1414 |
|
|
function Is_Legal_Copy return Boolean is
|
1415 |
|
|
begin
|
1416 |
|
|
-- An attempt to copy a value of such a type can only occur if
|
1417 |
|
|
-- representation clauses give the actual a misaligned address.
|
1418 |
|
|
|
1419 |
|
|
if Is_By_Reference_Type (Etype (Formal)) then
|
1420 |
|
|
|
1421 |
|
|
-- If the front-end does not perform full type layout, the actual
|
1422 |
|
|
-- may in fact be properly aligned but there is not enough front-
|
1423 |
|
|
-- end information to determine this. In that case gigi will emit
|
1424 |
|
|
-- an error if a copy is not legal, or generate the proper code.
|
1425 |
|
|
-- For other backends we report the error now.
|
1426 |
|
|
|
1427 |
|
|
-- Seems wrong to be issuing an error in the expander, since it
|
1428 |
|
|
-- will be missed in -gnatc mode ???
|
1429 |
|
|
|
1430 |
|
|
if Frontend_Layout_On_Target then
|
1431 |
|
|
Error_Msg_N
|
1432 |
|
|
("misaligned actual cannot be passed by reference", Actual);
|
1433 |
|
|
end if;
|
1434 |
|
|
|
1435 |
|
|
return False;
|
1436 |
|
|
|
1437 |
|
|
-- For users of Starlet, we assume that the specification of by-
|
1438 |
|
|
-- reference mechanism is mandatory. This may lead to unaligned
|
1439 |
|
|
-- objects but at least for DEC legacy code it is known to work.
|
1440 |
|
|
-- The warning will alert users of this code that a problem may
|
1441 |
|
|
-- be lurking.
|
1442 |
|
|
|
1443 |
|
|
elsif Mechanism (Formal) = By_Reference
|
1444 |
|
|
and then Is_Valued_Procedure (Scope (Formal))
|
1445 |
|
|
then
|
1446 |
|
|
Error_Msg_N
|
1447 |
|
|
("by_reference actual may be misaligned?", Actual);
|
1448 |
|
|
return False;
|
1449 |
|
|
|
1450 |
|
|
else
|
1451 |
|
|
return True;
|
1452 |
|
|
end if;
|
1453 |
|
|
end Is_Legal_Copy;
|
1454 |
|
|
|
1455 |
|
|
--------------
|
1456 |
|
|
-- Make_Var --
|
1457 |
|
|
--------------
|
1458 |
|
|
|
1459 |
|
|
function Make_Var (Actual : Node_Id) return Entity_Id is
|
1460 |
|
|
Var : Entity_Id;
|
1461 |
|
|
|
1462 |
|
|
begin
|
1463 |
|
|
if Is_Entity_Name (Actual) then
|
1464 |
|
|
return Entity (Actual);
|
1465 |
|
|
|
1466 |
|
|
else
|
1467 |
|
|
Var := Make_Temporary (Loc, 'T', Actual);
|
1468 |
|
|
|
1469 |
|
|
N_Node :=
|
1470 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
1471 |
|
|
Defining_Identifier => Var,
|
1472 |
|
|
Subtype_Mark =>
|
1473 |
|
|
New_Occurrence_Of (Etype (Actual), Loc),
|
1474 |
|
|
Name => Relocate_Node (Actual));
|
1475 |
|
|
|
1476 |
|
|
Insert_Action (N, N_Node);
|
1477 |
|
|
return Var;
|
1478 |
|
|
end if;
|
1479 |
|
|
end Make_Var;
|
1480 |
|
|
|
1481 |
|
|
-------------------------
|
1482 |
|
|
-- Reset_Packed_Prefix --
|
1483 |
|
|
-------------------------
|
1484 |
|
|
|
1485 |
|
|
procedure Reset_Packed_Prefix is
|
1486 |
|
|
Pfx : Node_Id := Actual;
|
1487 |
|
|
begin
|
1488 |
|
|
loop
|
1489 |
|
|
Set_Analyzed (Pfx, False);
|
1490 |
|
|
exit when
|
1491 |
|
|
not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
|
1492 |
|
|
Pfx := Prefix (Pfx);
|
1493 |
|
|
end loop;
|
1494 |
|
|
end Reset_Packed_Prefix;
|
1495 |
|
|
|
1496 |
|
|
-- Start of processing for Expand_Actuals
|
1497 |
|
|
|
1498 |
|
|
begin
|
1499 |
|
|
Post_Call := New_List;
|
1500 |
|
|
|
1501 |
|
|
Formal := First_Formal (Subp);
|
1502 |
|
|
Actual := First_Actual (N);
|
1503 |
|
|
while Present (Formal) loop
|
1504 |
|
|
E_Formal := Etype (Formal);
|
1505 |
|
|
|
1506 |
|
|
if Is_Scalar_Type (E_Formal)
|
1507 |
|
|
or else Nkind (Actual) = N_Slice
|
1508 |
|
|
then
|
1509 |
|
|
Check_Fortran_Logical;
|
1510 |
|
|
|
1511 |
|
|
-- RM 6.4.1 (11)
|
1512 |
|
|
|
1513 |
|
|
elsif Ekind (Formal) /= E_Out_Parameter then
|
1514 |
|
|
|
1515 |
|
|
-- The unusual case of the current instance of a protected type
|
1516 |
|
|
-- requires special handling. This can only occur in the context
|
1517 |
|
|
-- of a call within the body of a protected operation.
|
1518 |
|
|
|
1519 |
|
|
if Is_Entity_Name (Actual)
|
1520 |
|
|
and then Ekind (Entity (Actual)) = E_Protected_Type
|
1521 |
|
|
and then In_Open_Scopes (Entity (Actual))
|
1522 |
|
|
then
|
1523 |
|
|
if Scope (Subp) /= Entity (Actual) then
|
1524 |
|
|
Error_Msg_N ("operation outside protected type may not "
|
1525 |
|
|
& "call back its protected operations?", Actual);
|
1526 |
|
|
end if;
|
1527 |
|
|
|
1528 |
|
|
Rewrite (Actual,
|
1529 |
|
|
Expand_Protected_Object_Reference (N, Entity (Actual)));
|
1530 |
|
|
end if;
|
1531 |
|
|
|
1532 |
|
|
-- Ada 2005 (AI-318-02): If the actual parameter is a call to a
|
1533 |
|
|
-- build-in-place function, then a temporary return object needs
|
1534 |
|
|
-- to be created and access to it must be passed to the function.
|
1535 |
|
|
-- Currently we limit such functions to those with inherently
|
1536 |
|
|
-- limited result subtypes, but eventually we plan to expand the
|
1537 |
|
|
-- functions that are treated as build-in-place to include other
|
1538 |
|
|
-- composite result types.
|
1539 |
|
|
|
1540 |
|
|
if Is_Build_In_Place_Function_Call (Actual) then
|
1541 |
|
|
Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
|
1542 |
|
|
end if;
|
1543 |
|
|
|
1544 |
|
|
Apply_Constraint_Check (Actual, E_Formal);
|
1545 |
|
|
|
1546 |
|
|
-- Out parameter case. No constraint checks on access type
|
1547 |
|
|
-- RM 6.4.1 (13)
|
1548 |
|
|
|
1549 |
|
|
elsif Is_Access_Type (E_Formal) then
|
1550 |
|
|
null;
|
1551 |
|
|
|
1552 |
|
|
-- RM 6.4.1 (14)
|
1553 |
|
|
|
1554 |
|
|
elsif Has_Discriminants (Base_Type (E_Formal))
|
1555 |
|
|
or else Has_Non_Null_Base_Init_Proc (E_Formal)
|
1556 |
|
|
then
|
1557 |
|
|
Apply_Constraint_Check (Actual, E_Formal);
|
1558 |
|
|
|
1559 |
|
|
-- RM 6.4.1 (15)
|
1560 |
|
|
|
1561 |
|
|
else
|
1562 |
|
|
Apply_Constraint_Check (Actual, Base_Type (E_Formal));
|
1563 |
|
|
end if;
|
1564 |
|
|
|
1565 |
|
|
-- Processing for IN-OUT and OUT parameters
|
1566 |
|
|
|
1567 |
|
|
if Ekind (Formal) /= E_In_Parameter then
|
1568 |
|
|
|
1569 |
|
|
-- For type conversions of arrays, apply length/range checks
|
1570 |
|
|
|
1571 |
|
|
if Is_Array_Type (E_Formal)
|
1572 |
|
|
and then Nkind (Actual) = N_Type_Conversion
|
1573 |
|
|
then
|
1574 |
|
|
if Is_Constrained (E_Formal) then
|
1575 |
|
|
Apply_Length_Check (Expression (Actual), E_Formal);
|
1576 |
|
|
else
|
1577 |
|
|
Apply_Range_Check (Expression (Actual), E_Formal);
|
1578 |
|
|
end if;
|
1579 |
|
|
end if;
|
1580 |
|
|
|
1581 |
|
|
-- If argument is a type conversion for a type that is passed
|
1582 |
|
|
-- by copy, then we must pass the parameter by copy.
|
1583 |
|
|
|
1584 |
|
|
if Nkind (Actual) = N_Type_Conversion
|
1585 |
|
|
and then
|
1586 |
|
|
(Is_Numeric_Type (E_Formal)
|
1587 |
|
|
or else Is_Access_Type (E_Formal)
|
1588 |
|
|
or else Is_Enumeration_Type (E_Formal)
|
1589 |
|
|
or else Is_Bit_Packed_Array (Etype (Formal))
|
1590 |
|
|
or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
|
1591 |
|
|
|
1592 |
|
|
-- Also pass by copy if change of representation
|
1593 |
|
|
|
1594 |
|
|
or else not Same_Representation
|
1595 |
|
|
(Etype (Formal),
|
1596 |
|
|
Etype (Expression (Actual))))
|
1597 |
|
|
then
|
1598 |
|
|
Add_Call_By_Copy_Code;
|
1599 |
|
|
|
1600 |
|
|
-- References to components of bit packed arrays are expanded
|
1601 |
|
|
-- at this point, rather than at the point of analysis of the
|
1602 |
|
|
-- actuals, to handle the expansion of the assignment to
|
1603 |
|
|
-- [in] out parameters.
|
1604 |
|
|
|
1605 |
|
|
elsif Is_Ref_To_Bit_Packed_Array (Actual) then
|
1606 |
|
|
Add_Simple_Call_By_Copy_Code;
|
1607 |
|
|
|
1608 |
|
|
-- If a non-scalar actual is possibly bit-aligned, we need a copy
|
1609 |
|
|
-- because the back-end cannot cope with such objects. In other
|
1610 |
|
|
-- cases where alignment forces a copy, the back-end generates
|
1611 |
|
|
-- it properly. It should not be generated unconditionally in the
|
1612 |
|
|
-- front-end because it does not know precisely the alignment
|
1613 |
|
|
-- requirements of the target, and makes too conservative an
|
1614 |
|
|
-- estimate, leading to superfluous copies or spurious errors
|
1615 |
|
|
-- on by-reference parameters.
|
1616 |
|
|
|
1617 |
|
|
elsif Nkind (Actual) = N_Selected_Component
|
1618 |
|
|
and then
|
1619 |
|
|
Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
|
1620 |
|
|
and then not Represented_As_Scalar (Etype (Formal))
|
1621 |
|
|
then
|
1622 |
|
|
Add_Simple_Call_By_Copy_Code;
|
1623 |
|
|
|
1624 |
|
|
-- References to slices of bit packed arrays are expanded
|
1625 |
|
|
|
1626 |
|
|
elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
|
1627 |
|
|
Add_Call_By_Copy_Code;
|
1628 |
|
|
|
1629 |
|
|
-- References to possibly unaligned slices of arrays are expanded
|
1630 |
|
|
|
1631 |
|
|
elsif Is_Possibly_Unaligned_Slice (Actual) then
|
1632 |
|
|
Add_Call_By_Copy_Code;
|
1633 |
|
|
|
1634 |
|
|
-- Deal with access types where the actual subtype and the
|
1635 |
|
|
-- formal subtype are not the same, requiring a check.
|
1636 |
|
|
|
1637 |
|
|
-- It is necessary to exclude tagged types because of "downward
|
1638 |
|
|
-- conversion" errors.
|
1639 |
|
|
|
1640 |
|
|
elsif Is_Access_Type (E_Formal)
|
1641 |
|
|
and then not Same_Type (E_Formal, Etype (Actual))
|
1642 |
|
|
and then not Is_Tagged_Type (Designated_Type (E_Formal))
|
1643 |
|
|
then
|
1644 |
|
|
Add_Call_By_Copy_Code;
|
1645 |
|
|
|
1646 |
|
|
-- If the actual is not a scalar and is marked for volatile
|
1647 |
|
|
-- treatment, whereas the formal is not volatile, then pass
|
1648 |
|
|
-- by copy unless it is a by-reference type.
|
1649 |
|
|
|
1650 |
|
|
-- Note: we use Is_Volatile here rather than Treat_As_Volatile,
|
1651 |
|
|
-- because this is the enforcement of a language rule that applies
|
1652 |
|
|
-- only to "real" volatile variables, not e.g. to the address
|
1653 |
|
|
-- clause overlay case.
|
1654 |
|
|
|
1655 |
|
|
elsif Is_Entity_Name (Actual)
|
1656 |
|
|
and then Is_Volatile (Entity (Actual))
|
1657 |
|
|
and then not Is_By_Reference_Type (Etype (Actual))
|
1658 |
|
|
and then not Is_Scalar_Type (Etype (Entity (Actual)))
|
1659 |
|
|
and then not Is_Volatile (E_Formal)
|
1660 |
|
|
then
|
1661 |
|
|
Add_Call_By_Copy_Code;
|
1662 |
|
|
|
1663 |
|
|
elsif Nkind (Actual) = N_Indexed_Component
|
1664 |
|
|
and then Is_Entity_Name (Prefix (Actual))
|
1665 |
|
|
and then Has_Volatile_Components (Entity (Prefix (Actual)))
|
1666 |
|
|
then
|
1667 |
|
|
Add_Call_By_Copy_Code;
|
1668 |
|
|
|
1669 |
|
|
-- Add call-by-copy code for the case of scalar out parameters
|
1670 |
|
|
-- when it is not known at compile time that the subtype of the
|
1671 |
|
|
-- formal is a subrange of the subtype of the actual (or vice
|
1672 |
|
|
-- versa for in out parameters), in order to get range checks
|
1673 |
|
|
-- on such actuals. (Maybe this case should be handled earlier
|
1674 |
|
|
-- in the if statement???)
|
1675 |
|
|
|
1676 |
|
|
elsif Is_Scalar_Type (E_Formal)
|
1677 |
|
|
and then
|
1678 |
|
|
(not In_Subrange_Of (E_Formal, Etype (Actual))
|
1679 |
|
|
or else
|
1680 |
|
|
(Ekind (Formal) = E_In_Out_Parameter
|
1681 |
|
|
and then not In_Subrange_Of (Etype (Actual), E_Formal)))
|
1682 |
|
|
then
|
1683 |
|
|
-- Perhaps the setting back to False should be done within
|
1684 |
|
|
-- Add_Call_By_Copy_Code, since it could get set on other
|
1685 |
|
|
-- cases occurring above???
|
1686 |
|
|
|
1687 |
|
|
if Do_Range_Check (Actual) then
|
1688 |
|
|
Set_Do_Range_Check (Actual, False);
|
1689 |
|
|
end if;
|
1690 |
|
|
|
1691 |
|
|
Add_Call_By_Copy_Code;
|
1692 |
|
|
end if;
|
1693 |
|
|
|
1694 |
|
|
-- Processing for IN parameters
|
1695 |
|
|
|
1696 |
|
|
else
|
1697 |
|
|
-- For IN parameters is in the packed array case, we expand an
|
1698 |
|
|
-- indexed component (the circuit in Exp_Ch4 deliberately left
|
1699 |
|
|
-- indexed components appearing as actuals untouched, so that
|
1700 |
|
|
-- the special processing above for the OUT and IN OUT cases
|
1701 |
|
|
-- could be performed. We could make the test in Exp_Ch4 more
|
1702 |
|
|
-- complex and have it detect the parameter mode, but it is
|
1703 |
|
|
-- easier simply to handle all cases here.)
|
1704 |
|
|
|
1705 |
|
|
if Nkind (Actual) = N_Indexed_Component
|
1706 |
|
|
and then Is_Packed (Etype (Prefix (Actual)))
|
1707 |
|
|
then
|
1708 |
|
|
Reset_Packed_Prefix;
|
1709 |
|
|
Expand_Packed_Element_Reference (Actual);
|
1710 |
|
|
|
1711 |
|
|
-- If we have a reference to a bit packed array, we copy it, since
|
1712 |
|
|
-- the actual must be byte aligned.
|
1713 |
|
|
|
1714 |
|
|
-- Is this really necessary in all cases???
|
1715 |
|
|
|
1716 |
|
|
elsif Is_Ref_To_Bit_Packed_Array (Actual) then
|
1717 |
|
|
Add_Simple_Call_By_Copy_Code;
|
1718 |
|
|
|
1719 |
|
|
-- If a non-scalar actual is possibly unaligned, we need a copy
|
1720 |
|
|
|
1721 |
|
|
elsif Is_Possibly_Unaligned_Object (Actual)
|
1722 |
|
|
and then not Represented_As_Scalar (Etype (Formal))
|
1723 |
|
|
then
|
1724 |
|
|
Add_Simple_Call_By_Copy_Code;
|
1725 |
|
|
|
1726 |
|
|
-- Similarly, we have to expand slices of packed arrays here
|
1727 |
|
|
-- because the result must be byte aligned.
|
1728 |
|
|
|
1729 |
|
|
elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
|
1730 |
|
|
Add_Call_By_Copy_Code;
|
1731 |
|
|
|
1732 |
|
|
-- Only processing remaining is to pass by copy if this is a
|
1733 |
|
|
-- reference to a possibly unaligned slice, since the caller
|
1734 |
|
|
-- expects an appropriately aligned argument.
|
1735 |
|
|
|
1736 |
|
|
elsif Is_Possibly_Unaligned_Slice (Actual) then
|
1737 |
|
|
Add_Call_By_Copy_Code;
|
1738 |
|
|
|
1739 |
|
|
-- An unusual case: a current instance of an enclosing task can be
|
1740 |
|
|
-- an actual, and must be replaced by a reference to self.
|
1741 |
|
|
|
1742 |
|
|
elsif Is_Entity_Name (Actual)
|
1743 |
|
|
and then Is_Task_Type (Entity (Actual))
|
1744 |
|
|
then
|
1745 |
|
|
if In_Open_Scopes (Entity (Actual)) then
|
1746 |
|
|
Rewrite (Actual,
|
1747 |
|
|
(Make_Function_Call (Loc,
|
1748 |
|
|
Name => New_Reference_To (RTE (RE_Self), Loc))));
|
1749 |
|
|
Analyze (Actual);
|
1750 |
|
|
|
1751 |
|
|
-- A task type cannot otherwise appear as an actual
|
1752 |
|
|
|
1753 |
|
|
else
|
1754 |
|
|
raise Program_Error;
|
1755 |
|
|
end if;
|
1756 |
|
|
end if;
|
1757 |
|
|
end if;
|
1758 |
|
|
|
1759 |
|
|
Next_Formal (Formal);
|
1760 |
|
|
Next_Actual (Actual);
|
1761 |
|
|
end loop;
|
1762 |
|
|
|
1763 |
|
|
-- Find right place to put post call stuff if it is present
|
1764 |
|
|
|
1765 |
|
|
if not Is_Empty_List (Post_Call) then
|
1766 |
|
|
|
1767 |
|
|
-- Cases where the call is not a member of a statement list
|
1768 |
|
|
|
1769 |
|
|
if not Is_List_Member (N) then
|
1770 |
|
|
declare
|
1771 |
|
|
P : Node_Id := Parent (N);
|
1772 |
|
|
|
1773 |
|
|
begin
|
1774 |
|
|
-- In Ada 2012 the call may be a function call in an expression
|
1775 |
|
|
-- (since OUT and IN OUT parameters are now allowed for such
|
1776 |
|
|
-- calls. The write-back of (in)-out parameters is handled
|
1777 |
|
|
-- by the back-end, but the constraint checks generated when
|
1778 |
|
|
-- subtypes of formal and actual don't match must be inserted
|
1779 |
|
|
-- in the form of assignments, at the nearest point after the
|
1780 |
|
|
-- declaration or statement that contains the call.
|
1781 |
|
|
|
1782 |
|
|
if Ada_Version >= Ada_2012
|
1783 |
|
|
and then Nkind (N) = N_Function_Call
|
1784 |
|
|
then
|
1785 |
|
|
while Nkind (P) not in N_Declaration
|
1786 |
|
|
and then
|
1787 |
|
|
Nkind (P) not in N_Statement_Other_Than_Procedure_Call
|
1788 |
|
|
loop
|
1789 |
|
|
P := Parent (P);
|
1790 |
|
|
end loop;
|
1791 |
|
|
|
1792 |
|
|
Insert_Actions_After (P, Post_Call);
|
1793 |
|
|
|
1794 |
|
|
-- If not the special Ada 2012 case of a function call, then
|
1795 |
|
|
-- we must have the triggering statement of a triggering
|
1796 |
|
|
-- alternative or an entry call alternative, and we can add
|
1797 |
|
|
-- the post call stuff to the corresponding statement list.
|
1798 |
|
|
|
1799 |
|
|
else
|
1800 |
|
|
pragma Assert (Nkind_In (P, N_Triggering_Alternative,
|
1801 |
|
|
N_Entry_Call_Alternative));
|
1802 |
|
|
|
1803 |
|
|
if Is_Non_Empty_List (Statements (P)) then
|
1804 |
|
|
Insert_List_Before_And_Analyze
|
1805 |
|
|
(First (Statements (P)), Post_Call);
|
1806 |
|
|
else
|
1807 |
|
|
Set_Statements (P, Post_Call);
|
1808 |
|
|
end if;
|
1809 |
|
|
end if;
|
1810 |
|
|
|
1811 |
|
|
end;
|
1812 |
|
|
|
1813 |
|
|
-- Otherwise, normal case where N is in a statement sequence,
|
1814 |
|
|
-- just put the post-call stuff after the call statement.
|
1815 |
|
|
|
1816 |
|
|
else
|
1817 |
|
|
Insert_Actions_After (N, Post_Call);
|
1818 |
|
|
end if;
|
1819 |
|
|
end if;
|
1820 |
|
|
|
1821 |
|
|
-- The call node itself is re-analyzed in Expand_Call
|
1822 |
|
|
|
1823 |
|
|
end Expand_Actuals;
|
1824 |
|
|
|
1825 |
|
|
-----------------
|
1826 |
|
|
-- Expand_Call --
|
1827 |
|
|
-----------------
|
1828 |
|
|
|
1829 |
|
|
-- This procedure handles expansion of function calls and procedure call
|
1830 |
|
|
-- statements (i.e. it serves as the body for Expand_N_Function_Call and
|
1831 |
|
|
-- Expand_N_Procedure_Call_Statement). Processing for calls includes:
|
1832 |
|
|
|
1833 |
|
|
-- Replace call to Raise_Exception by Raise_Exception_Always if possible
|
1834 |
|
|
-- Provide values of actuals for all formals in Extra_Formals list
|
1835 |
|
|
-- Replace "call" to enumeration literal function by literal itself
|
1836 |
|
|
-- Rewrite call to predefined operator as operator
|
1837 |
|
|
-- Replace actuals to in-out parameters that are numeric conversions,
|
1838 |
|
|
-- with explicit assignment to temporaries before and after the call.
|
1839 |
|
|
-- Remove optional actuals if First_Optional_Parameter specified.
|
1840 |
|
|
|
1841 |
|
|
-- Note that the list of actuals has been filled with default expressions
|
1842 |
|
|
-- during semantic analysis of the call. Only the extra actuals required
|
1843 |
|
|
-- for the 'Constrained attribute and for accessibility checks are added
|
1844 |
|
|
-- at this point.
|
1845 |
|
|
|
1846 |
|
|
procedure Expand_Call (N : Node_Id) is
|
1847 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1848 |
|
|
Call_Node : Node_Id := N;
|
1849 |
|
|
Extra_Actuals : List_Id := No_List;
|
1850 |
|
|
Prev : Node_Id := Empty;
|
1851 |
|
|
|
1852 |
|
|
procedure Add_Actual_Parameter (Insert_Param : Node_Id);
|
1853 |
|
|
-- Adds one entry to the end of the actual parameter list. Used for
|
1854 |
|
|
-- default parameters and for extra actuals (for Extra_Formals). The
|
1855 |
|
|
-- argument is an N_Parameter_Association node.
|
1856 |
|
|
|
1857 |
|
|
procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
|
1858 |
|
|
-- Adds an extra actual to the list of extra actuals. Expr is the
|
1859 |
|
|
-- expression for the value of the actual, EF is the entity for the
|
1860 |
|
|
-- extra formal.
|
1861 |
|
|
|
1862 |
|
|
function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
|
1863 |
|
|
-- Within an instance, a type derived from a non-tagged formal derived
|
1864 |
|
|
-- type inherits from the original parent, not from the actual. The
|
1865 |
|
|
-- current derivation mechanism has the derived type inherit from the
|
1866 |
|
|
-- actual, which is only correct outside of the instance. If the
|
1867 |
|
|
-- subprogram is inherited, we test for this particular case through a
|
1868 |
|
|
-- convoluted tree traversal before setting the proper subprogram to be
|
1869 |
|
|
-- called.
|
1870 |
|
|
|
1871 |
|
|
function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
|
1872 |
|
|
-- Determine if Subp denotes a non-dispatching call to a Deep routine
|
1873 |
|
|
|
1874 |
|
|
function New_Value (From : Node_Id) return Node_Id;
|
1875 |
|
|
-- From is the original Expression. New_Value is equivalent to a call
|
1876 |
|
|
-- to Duplicate_Subexpr with an explicit dereference when From is an
|
1877 |
|
|
-- access parameter.
|
1878 |
|
|
|
1879 |
|
|
--------------------------
|
1880 |
|
|
-- Add_Actual_Parameter --
|
1881 |
|
|
--------------------------
|
1882 |
|
|
|
1883 |
|
|
procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
|
1884 |
|
|
Actual_Expr : constant Node_Id :=
|
1885 |
|
|
Explicit_Actual_Parameter (Insert_Param);
|
1886 |
|
|
|
1887 |
|
|
begin
|
1888 |
|
|
-- Case of insertion is first named actual
|
1889 |
|
|
|
1890 |
|
|
if No (Prev) or else
|
1891 |
|
|
Nkind (Parent (Prev)) /= N_Parameter_Association
|
1892 |
|
|
then
|
1893 |
|
|
Set_Next_Named_Actual
|
1894 |
|
|
(Insert_Param, First_Named_Actual (Call_Node));
|
1895 |
|
|
Set_First_Named_Actual (Call_Node, Actual_Expr);
|
1896 |
|
|
|
1897 |
|
|
if No (Prev) then
|
1898 |
|
|
if No (Parameter_Associations (Call_Node)) then
|
1899 |
|
|
Set_Parameter_Associations (Call_Node, New_List);
|
1900 |
|
|
end if;
|
1901 |
|
|
|
1902 |
|
|
Append (Insert_Param, Parameter_Associations (Call_Node));
|
1903 |
|
|
|
1904 |
|
|
else
|
1905 |
|
|
Insert_After (Prev, Insert_Param);
|
1906 |
|
|
end if;
|
1907 |
|
|
|
1908 |
|
|
-- Case of insertion is not first named actual
|
1909 |
|
|
|
1910 |
|
|
else
|
1911 |
|
|
Set_Next_Named_Actual
|
1912 |
|
|
(Insert_Param, Next_Named_Actual (Parent (Prev)));
|
1913 |
|
|
Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
|
1914 |
|
|
Append (Insert_Param, Parameter_Associations (Call_Node));
|
1915 |
|
|
end if;
|
1916 |
|
|
|
1917 |
|
|
Prev := Actual_Expr;
|
1918 |
|
|
end Add_Actual_Parameter;
|
1919 |
|
|
|
1920 |
|
|
----------------------
|
1921 |
|
|
-- Add_Extra_Actual --
|
1922 |
|
|
----------------------
|
1923 |
|
|
|
1924 |
|
|
procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
|
1925 |
|
|
Loc : constant Source_Ptr := Sloc (Expr);
|
1926 |
|
|
|
1927 |
|
|
begin
|
1928 |
|
|
if Extra_Actuals = No_List then
|
1929 |
|
|
Extra_Actuals := New_List;
|
1930 |
|
|
Set_Parent (Extra_Actuals, Call_Node);
|
1931 |
|
|
end if;
|
1932 |
|
|
|
1933 |
|
|
Append_To (Extra_Actuals,
|
1934 |
|
|
Make_Parameter_Association (Loc,
|
1935 |
|
|
Selector_Name => Make_Identifier (Loc, Chars (EF)),
|
1936 |
|
|
Explicit_Actual_Parameter => Expr));
|
1937 |
|
|
|
1938 |
|
|
Analyze_And_Resolve (Expr, Etype (EF));
|
1939 |
|
|
|
1940 |
|
|
if Nkind (Call_Node) = N_Function_Call then
|
1941 |
|
|
Set_Is_Accessibility_Actual (Parent (Expr));
|
1942 |
|
|
end if;
|
1943 |
|
|
end Add_Extra_Actual;
|
1944 |
|
|
|
1945 |
|
|
---------------------------
|
1946 |
|
|
-- Inherited_From_Formal --
|
1947 |
|
|
---------------------------
|
1948 |
|
|
|
1949 |
|
|
function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
|
1950 |
|
|
Par : Entity_Id;
|
1951 |
|
|
Gen_Par : Entity_Id;
|
1952 |
|
|
Gen_Prim : Elist_Id;
|
1953 |
|
|
Elmt : Elmt_Id;
|
1954 |
|
|
Indic : Node_Id;
|
1955 |
|
|
|
1956 |
|
|
begin
|
1957 |
|
|
-- If the operation is inherited, it is attached to the corresponding
|
1958 |
|
|
-- type derivation. If the parent in the derivation is a generic
|
1959 |
|
|
-- actual, it is a subtype of the actual, and we have to recover the
|
1960 |
|
|
-- original derived type declaration to find the proper parent.
|
1961 |
|
|
|
1962 |
|
|
if Nkind (Parent (S)) /= N_Full_Type_Declaration
|
1963 |
|
|
or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
|
1964 |
|
|
or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
|
1965 |
|
|
N_Derived_Type_Definition
|
1966 |
|
|
or else not In_Instance
|
1967 |
|
|
then
|
1968 |
|
|
return Empty;
|
1969 |
|
|
|
1970 |
|
|
else
|
1971 |
|
|
Indic :=
|
1972 |
|
|
Subtype_Indication
|
1973 |
|
|
(Type_Definition (Original_Node (Parent (S))));
|
1974 |
|
|
|
1975 |
|
|
if Nkind (Indic) = N_Subtype_Indication then
|
1976 |
|
|
Par := Entity (Subtype_Mark (Indic));
|
1977 |
|
|
else
|
1978 |
|
|
Par := Entity (Indic);
|
1979 |
|
|
end if;
|
1980 |
|
|
end if;
|
1981 |
|
|
|
1982 |
|
|
if not Is_Generic_Actual_Type (Par)
|
1983 |
|
|
or else Is_Tagged_Type (Par)
|
1984 |
|
|
or else Nkind (Parent (Par)) /= N_Subtype_Declaration
|
1985 |
|
|
or else not In_Open_Scopes (Scope (Par))
|
1986 |
|
|
then
|
1987 |
|
|
return Empty;
|
1988 |
|
|
else
|
1989 |
|
|
Gen_Par := Generic_Parent_Type (Parent (Par));
|
1990 |
|
|
end if;
|
1991 |
|
|
|
1992 |
|
|
-- If the actual has no generic parent type, the formal is not
|
1993 |
|
|
-- a formal derived type, so nothing to inherit.
|
1994 |
|
|
|
1995 |
|
|
if No (Gen_Par) then
|
1996 |
|
|
return Empty;
|
1997 |
|
|
end if;
|
1998 |
|
|
|
1999 |
|
|
-- If the generic parent type is still the generic type, this is a
|
2000 |
|
|
-- private formal, not a derived formal, and there are no operations
|
2001 |
|
|
-- inherited from the formal.
|
2002 |
|
|
|
2003 |
|
|
if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
|
2004 |
|
|
return Empty;
|
2005 |
|
|
end if;
|
2006 |
|
|
|
2007 |
|
|
Gen_Prim := Collect_Primitive_Operations (Gen_Par);
|
2008 |
|
|
|
2009 |
|
|
Elmt := First_Elmt (Gen_Prim);
|
2010 |
|
|
while Present (Elmt) loop
|
2011 |
|
|
if Chars (Node (Elmt)) = Chars (S) then
|
2012 |
|
|
declare
|
2013 |
|
|
F1 : Entity_Id;
|
2014 |
|
|
F2 : Entity_Id;
|
2015 |
|
|
|
2016 |
|
|
begin
|
2017 |
|
|
F1 := First_Formal (S);
|
2018 |
|
|
F2 := First_Formal (Node (Elmt));
|
2019 |
|
|
while Present (F1)
|
2020 |
|
|
and then Present (F2)
|
2021 |
|
|
loop
|
2022 |
|
|
if Etype (F1) = Etype (F2)
|
2023 |
|
|
or else Etype (F2) = Gen_Par
|
2024 |
|
|
then
|
2025 |
|
|
Next_Formal (F1);
|
2026 |
|
|
Next_Formal (F2);
|
2027 |
|
|
else
|
2028 |
|
|
Next_Elmt (Elmt);
|
2029 |
|
|
exit; -- not the right subprogram
|
2030 |
|
|
end if;
|
2031 |
|
|
|
2032 |
|
|
return Node (Elmt);
|
2033 |
|
|
end loop;
|
2034 |
|
|
end;
|
2035 |
|
|
|
2036 |
|
|
else
|
2037 |
|
|
Next_Elmt (Elmt);
|
2038 |
|
|
end if;
|
2039 |
|
|
end loop;
|
2040 |
|
|
|
2041 |
|
|
raise Program_Error;
|
2042 |
|
|
end Inherited_From_Formal;
|
2043 |
|
|
|
2044 |
|
|
-------------------------
|
2045 |
|
|
-- Is_Direct_Deep_Call --
|
2046 |
|
|
-------------------------
|
2047 |
|
|
|
2048 |
|
|
function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
|
2049 |
|
|
begin
|
2050 |
|
|
if Is_TSS (Subp, TSS_Deep_Adjust)
|
2051 |
|
|
or else Is_TSS (Subp, TSS_Deep_Finalize)
|
2052 |
|
|
or else Is_TSS (Subp, TSS_Deep_Initialize)
|
2053 |
|
|
then
|
2054 |
|
|
declare
|
2055 |
|
|
Actual : Node_Id;
|
2056 |
|
|
Formal : Node_Id;
|
2057 |
|
|
|
2058 |
|
|
begin
|
2059 |
|
|
Actual := First (Parameter_Associations (N));
|
2060 |
|
|
Formal := First_Formal (Subp);
|
2061 |
|
|
while Present (Actual)
|
2062 |
|
|
and then Present (Formal)
|
2063 |
|
|
loop
|
2064 |
|
|
if Nkind (Actual) = N_Identifier
|
2065 |
|
|
and then Is_Controlling_Actual (Actual)
|
2066 |
|
|
and then Etype (Actual) = Etype (Formal)
|
2067 |
|
|
then
|
2068 |
|
|
return True;
|
2069 |
|
|
end if;
|
2070 |
|
|
|
2071 |
|
|
Next (Actual);
|
2072 |
|
|
Next_Formal (Formal);
|
2073 |
|
|
end loop;
|
2074 |
|
|
end;
|
2075 |
|
|
end if;
|
2076 |
|
|
|
2077 |
|
|
return False;
|
2078 |
|
|
end Is_Direct_Deep_Call;
|
2079 |
|
|
|
2080 |
|
|
---------------
|
2081 |
|
|
-- New_Value --
|
2082 |
|
|
---------------
|
2083 |
|
|
|
2084 |
|
|
function New_Value (From : Node_Id) return Node_Id is
|
2085 |
|
|
Res : constant Node_Id := Duplicate_Subexpr (From);
|
2086 |
|
|
begin
|
2087 |
|
|
if Is_Access_Type (Etype (From)) then
|
2088 |
|
|
return
|
2089 |
|
|
Make_Explicit_Dereference (Sloc (From),
|
2090 |
|
|
Prefix => Res);
|
2091 |
|
|
else
|
2092 |
|
|
return Res;
|
2093 |
|
|
end if;
|
2094 |
|
|
end New_Value;
|
2095 |
|
|
|
2096 |
|
|
-- Local variables
|
2097 |
|
|
|
2098 |
|
|
Curr_S : constant Entity_Id := Current_Scope;
|
2099 |
|
|
Remote : constant Boolean := Is_Remote_Call (Call_Node);
|
2100 |
|
|
Actual : Node_Id;
|
2101 |
|
|
Formal : Entity_Id;
|
2102 |
|
|
Orig_Subp : Entity_Id := Empty;
|
2103 |
|
|
Param_Count : Natural := 0;
|
2104 |
|
|
Parent_Formal : Entity_Id;
|
2105 |
|
|
Parent_Subp : Entity_Id;
|
2106 |
|
|
Scop : Entity_Id;
|
2107 |
|
|
Subp : Entity_Id;
|
2108 |
|
|
|
2109 |
|
|
Prev_Orig : Node_Id;
|
2110 |
|
|
-- Original node for an actual, which may have been rewritten. If the
|
2111 |
|
|
-- actual is a function call that has been transformed from a selected
|
2112 |
|
|
-- component, the original node is unanalyzed. Otherwise, it carries
|
2113 |
|
|
-- semantic information used to generate additional actuals.
|
2114 |
|
|
|
2115 |
|
|
CW_Interface_Formals_Present : Boolean := False;
|
2116 |
|
|
|
2117 |
|
|
-- Start of processing for Expand_Call
|
2118 |
|
|
|
2119 |
|
|
begin
|
2120 |
|
|
-- Expand the procedure call if the first actual has a dimension and if
|
2121 |
|
|
-- the procedure is Put (Ada 2012).
|
2122 |
|
|
|
2123 |
|
|
if Ada_Version >= Ada_2012
|
2124 |
|
|
and then Nkind (Call_Node) = N_Procedure_Call_Statement
|
2125 |
|
|
and then Present (Parameter_Associations (Call_Node))
|
2126 |
|
|
then
|
2127 |
|
|
Expand_Put_Call_With_Dimension_Symbol (Call_Node);
|
2128 |
|
|
end if;
|
2129 |
|
|
|
2130 |
|
|
-- Remove the dimensions of every parameters in call
|
2131 |
|
|
|
2132 |
|
|
Remove_Dimension_In_Call (N);
|
2133 |
|
|
|
2134 |
|
|
-- Ignore if previous error
|
2135 |
|
|
|
2136 |
|
|
if Nkind (Call_Node) in N_Has_Etype
|
2137 |
|
|
and then Etype (Call_Node) = Any_Type
|
2138 |
|
|
then
|
2139 |
|
|
return;
|
2140 |
|
|
end if;
|
2141 |
|
|
|
2142 |
|
|
-- Call using access to subprogram with explicit dereference
|
2143 |
|
|
|
2144 |
|
|
if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
|
2145 |
|
|
Subp := Etype (Name (Call_Node));
|
2146 |
|
|
Parent_Subp := Empty;
|
2147 |
|
|
|
2148 |
|
|
-- Case of call to simple entry, where the Name is a selected component
|
2149 |
|
|
-- whose prefix is the task, and whose selector name is the entry name
|
2150 |
|
|
|
2151 |
|
|
elsif Nkind (Name (Call_Node)) = N_Selected_Component then
|
2152 |
|
|
Subp := Entity (Selector_Name (Name (Call_Node)));
|
2153 |
|
|
Parent_Subp := Empty;
|
2154 |
|
|
|
2155 |
|
|
-- Case of call to member of entry family, where Name is an indexed
|
2156 |
|
|
-- component, with the prefix being a selected component giving the
|
2157 |
|
|
-- task and entry family name, and the index being the entry index.
|
2158 |
|
|
|
2159 |
|
|
elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
|
2160 |
|
|
Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
|
2161 |
|
|
Parent_Subp := Empty;
|
2162 |
|
|
|
2163 |
|
|
-- Normal case
|
2164 |
|
|
|
2165 |
|
|
else
|
2166 |
|
|
Subp := Entity (Name (Call_Node));
|
2167 |
|
|
Parent_Subp := Alias (Subp);
|
2168 |
|
|
|
2169 |
|
|
-- Replace call to Raise_Exception by call to Raise_Exception_Always
|
2170 |
|
|
-- if we can tell that the first parameter cannot possibly be null.
|
2171 |
|
|
-- This improves efficiency by avoiding a run-time test.
|
2172 |
|
|
|
2173 |
|
|
-- We do not do this if Raise_Exception_Always does not exist, which
|
2174 |
|
|
-- can happen in configurable run time profiles which provide only a
|
2175 |
|
|
-- Raise_Exception.
|
2176 |
|
|
|
2177 |
|
|
if Is_RTE (Subp, RE_Raise_Exception)
|
2178 |
|
|
and then RTE_Available (RE_Raise_Exception_Always)
|
2179 |
|
|
then
|
2180 |
|
|
declare
|
2181 |
|
|
FA : constant Node_Id :=
|
2182 |
|
|
Original_Node (First_Actual (Call_Node));
|
2183 |
|
|
|
2184 |
|
|
begin
|
2185 |
|
|
-- The case we catch is where the first argument is obtained
|
2186 |
|
|
-- using the Identity attribute (which must always be
|
2187 |
|
|
-- non-null).
|
2188 |
|
|
|
2189 |
|
|
if Nkind (FA) = N_Attribute_Reference
|
2190 |
|
|
and then Attribute_Name (FA) = Name_Identity
|
2191 |
|
|
then
|
2192 |
|
|
Subp := RTE (RE_Raise_Exception_Always);
|
2193 |
|
|
Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
|
2194 |
|
|
end if;
|
2195 |
|
|
end;
|
2196 |
|
|
end if;
|
2197 |
|
|
|
2198 |
|
|
if Ekind (Subp) = E_Entry then
|
2199 |
|
|
Parent_Subp := Empty;
|
2200 |
|
|
end if;
|
2201 |
|
|
end if;
|
2202 |
|
|
|
2203 |
|
|
-- Detect the following code in System.Finalization_Masters only on
|
2204 |
|
|
-- .NET/JVM targets:
|
2205 |
|
|
--
|
2206 |
|
|
-- procedure Finalize (Master : in out Finalization_Master) is
|
2207 |
|
|
-- begin
|
2208 |
|
|
-- . . .
|
2209 |
|
|
-- begin
|
2210 |
|
|
-- Finalize (Curr_Ptr.all);
|
2211 |
|
|
--
|
2212 |
|
|
-- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
|
2213 |
|
|
-- cannot be named in library or user code, the compiler has to install
|
2214 |
|
|
-- a kludge and transform the call to Finalize into Deep_Finalize.
|
2215 |
|
|
|
2216 |
|
|
if VM_Target /= No_VM
|
2217 |
|
|
and then Chars (Subp) = Name_Finalize
|
2218 |
|
|
and then Ekind (Curr_S) = E_Block
|
2219 |
|
|
and then Ekind (Scope (Curr_S)) = E_Procedure
|
2220 |
|
|
and then Chars (Scope (Curr_S)) = Name_Finalize
|
2221 |
|
|
and then Etype (First_Formal (Scope (Curr_S))) =
|
2222 |
|
|
RTE (RE_Finalization_Master)
|
2223 |
|
|
then
|
2224 |
|
|
declare
|
2225 |
|
|
Deep_Fin : constant Entity_Id :=
|
2226 |
|
|
Find_Prim_Op (RTE (RE_Root_Controlled),
|
2227 |
|
|
TSS_Deep_Finalize);
|
2228 |
|
|
begin
|
2229 |
|
|
-- Since Root_Controlled is a tagged type, the compiler should
|
2230 |
|
|
-- always generate Deep_Finalize for it.
|
2231 |
|
|
|
2232 |
|
|
pragma Assert (Present (Deep_Fin));
|
2233 |
|
|
|
2234 |
|
|
-- Generate:
|
2235 |
|
|
-- Deep_Finalize (Curr_Ptr.all);
|
2236 |
|
|
|
2237 |
|
|
Rewrite (N,
|
2238 |
|
|
Make_Procedure_Call_Statement (Loc,
|
2239 |
|
|
Name =>
|
2240 |
|
|
New_Reference_To (Deep_Fin, Loc),
|
2241 |
|
|
Parameter_Associations =>
|
2242 |
|
|
New_Copy_List_Tree (Parameter_Associations (N))));
|
2243 |
|
|
|
2244 |
|
|
Analyze (N);
|
2245 |
|
|
return;
|
2246 |
|
|
end;
|
2247 |
|
|
end if;
|
2248 |
|
|
|
2249 |
|
|
-- Ada 2005 (AI-345): We have a procedure call as a triggering
|
2250 |
|
|
-- alternative in an asynchronous select or as an entry call in
|
2251 |
|
|
-- a conditional or timed select. Check whether the procedure call
|
2252 |
|
|
-- is a renaming of an entry and rewrite it as an entry call.
|
2253 |
|
|
|
2254 |
|
|
if Ada_Version >= Ada_2005
|
2255 |
|
|
and then Nkind (Call_Node) = N_Procedure_Call_Statement
|
2256 |
|
|
and then
|
2257 |
|
|
((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
|
2258 |
|
|
and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
|
2259 |
|
|
or else
|
2260 |
|
|
(Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
|
2261 |
|
|
and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
|
2262 |
|
|
then
|
2263 |
|
|
declare
|
2264 |
|
|
Ren_Decl : Node_Id;
|
2265 |
|
|
Ren_Root : Entity_Id := Subp;
|
2266 |
|
|
|
2267 |
|
|
begin
|
2268 |
|
|
-- This may be a chain of renamings, find the root
|
2269 |
|
|
|
2270 |
|
|
if Present (Alias (Ren_Root)) then
|
2271 |
|
|
Ren_Root := Alias (Ren_Root);
|
2272 |
|
|
end if;
|
2273 |
|
|
|
2274 |
|
|
if Present (Original_Node (Parent (Parent (Ren_Root)))) then
|
2275 |
|
|
Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
|
2276 |
|
|
|
2277 |
|
|
if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
|
2278 |
|
|
Rewrite (Call_Node,
|
2279 |
|
|
Make_Entry_Call_Statement (Loc,
|
2280 |
|
|
Name =>
|
2281 |
|
|
New_Copy_Tree (Name (Ren_Decl)),
|
2282 |
|
|
Parameter_Associations =>
|
2283 |
|
|
New_Copy_List_Tree
|
2284 |
|
|
(Parameter_Associations (Call_Node))));
|
2285 |
|
|
|
2286 |
|
|
return;
|
2287 |
|
|
end if;
|
2288 |
|
|
end if;
|
2289 |
|
|
end;
|
2290 |
|
|
end if;
|
2291 |
|
|
|
2292 |
|
|
-- First step, compute extra actuals, corresponding to any Extra_Formals
|
2293 |
|
|
-- present. Note that we do not access Extra_Formals directly, instead
|
2294 |
|
|
-- we simply note the presence of the extra formals as we process the
|
2295 |
|
|
-- regular formals collecting corresponding actuals in Extra_Actuals.
|
2296 |
|
|
|
2297 |
|
|
-- We also generate any required range checks for actuals for in formals
|
2298 |
|
|
-- as we go through the loop, since this is a convenient place to do it.
|
2299 |
|
|
-- (Though it seems that this would be better done in Expand_Actuals???)
|
2300 |
|
|
|
2301 |
|
|
Formal := First_Formal (Subp);
|
2302 |
|
|
Actual := First_Actual (Call_Node);
|
2303 |
|
|
Param_Count := 1;
|
2304 |
|
|
while Present (Formal) loop
|
2305 |
|
|
|
2306 |
|
|
-- Generate range check if required
|
2307 |
|
|
|
2308 |
|
|
if Do_Range_Check (Actual)
|
2309 |
|
|
and then Ekind (Formal) = E_In_Parameter
|
2310 |
|
|
then
|
2311 |
|
|
Set_Do_Range_Check (Actual, False);
|
2312 |
|
|
Generate_Range_Check
|
2313 |
|
|
(Actual, Etype (Formal), CE_Range_Check_Failed);
|
2314 |
|
|
end if;
|
2315 |
|
|
|
2316 |
|
|
-- Prepare to examine current entry
|
2317 |
|
|
|
2318 |
|
|
Prev := Actual;
|
2319 |
|
|
Prev_Orig := Original_Node (Prev);
|
2320 |
|
|
|
2321 |
|
|
-- Ada 2005 (AI-251): Check if any formal is a class-wide interface
|
2322 |
|
|
-- to expand it in a further round.
|
2323 |
|
|
|
2324 |
|
|
CW_Interface_Formals_Present :=
|
2325 |
|
|
CW_Interface_Formals_Present
|
2326 |
|
|
or else
|
2327 |
|
|
(Ekind (Etype (Formal)) = E_Class_Wide_Type
|
2328 |
|
|
and then Is_Interface (Etype (Etype (Formal))))
|
2329 |
|
|
or else
|
2330 |
|
|
(Ekind (Etype (Formal)) = E_Anonymous_Access_Type
|
2331 |
|
|
and then Is_Interface (Directly_Designated_Type
|
2332 |
|
|
(Etype (Etype (Formal)))));
|
2333 |
|
|
|
2334 |
|
|
-- Create possible extra actual for constrained case. Usually, the
|
2335 |
|
|
-- extra actual is of the form actual'constrained, but since this
|
2336 |
|
|
-- attribute is only available for unconstrained records, TRUE is
|
2337 |
|
|
-- expanded if the type of the formal happens to be constrained (for
|
2338 |
|
|
-- instance when this procedure is inherited from an unconstrained
|
2339 |
|
|
-- record to a constrained one) or if the actual has no discriminant
|
2340 |
|
|
-- (its type is constrained). An exception to this is the case of a
|
2341 |
|
|
-- private type without discriminants. In this case we pass FALSE
|
2342 |
|
|
-- because the object has underlying discriminants with defaults.
|
2343 |
|
|
|
2344 |
|
|
if Present (Extra_Constrained (Formal)) then
|
2345 |
|
|
if Ekind (Etype (Prev)) in Private_Kind
|
2346 |
|
|
and then not Has_Discriminants (Base_Type (Etype (Prev)))
|
2347 |
|
|
then
|
2348 |
|
|
Add_Extra_Actual
|
2349 |
|
|
(New_Occurrence_Of (Standard_False, Loc),
|
2350 |
|
|
Extra_Constrained (Formal));
|
2351 |
|
|
|
2352 |
|
|
elsif Is_Constrained (Etype (Formal))
|
2353 |
|
|
or else not Has_Discriminants (Etype (Prev))
|
2354 |
|
|
then
|
2355 |
|
|
Add_Extra_Actual
|
2356 |
|
|
(New_Occurrence_Of (Standard_True, Loc),
|
2357 |
|
|
Extra_Constrained (Formal));
|
2358 |
|
|
|
2359 |
|
|
-- Do not produce extra actuals for Unchecked_Union parameters.
|
2360 |
|
|
-- Jump directly to the end of the loop.
|
2361 |
|
|
|
2362 |
|
|
elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
|
2363 |
|
|
goto Skip_Extra_Actual_Generation;
|
2364 |
|
|
|
2365 |
|
|
else
|
2366 |
|
|
-- If the actual is a type conversion, then the constrained
|
2367 |
|
|
-- test applies to the actual, not the target type.
|
2368 |
|
|
|
2369 |
|
|
declare
|
2370 |
|
|
Act_Prev : Node_Id;
|
2371 |
|
|
|
2372 |
|
|
begin
|
2373 |
|
|
-- Test for unchecked conversions as well, which can occur
|
2374 |
|
|
-- as out parameter actuals on calls to stream procedures.
|
2375 |
|
|
|
2376 |
|
|
Act_Prev := Prev;
|
2377 |
|
|
while Nkind_In (Act_Prev, N_Type_Conversion,
|
2378 |
|
|
N_Unchecked_Type_Conversion)
|
2379 |
|
|
loop
|
2380 |
|
|
Act_Prev := Expression (Act_Prev);
|
2381 |
|
|
end loop;
|
2382 |
|
|
|
2383 |
|
|
-- If the expression is a conversion of a dereference, this
|
2384 |
|
|
-- is internally generated code that manipulates addresses,
|
2385 |
|
|
-- e.g. when building interface tables. No check should
|
2386 |
|
|
-- occur in this case, and the discriminated object is not
|
2387 |
|
|
-- directly a hand.
|
2388 |
|
|
|
2389 |
|
|
if not Comes_From_Source (Actual)
|
2390 |
|
|
and then Nkind (Actual) = N_Unchecked_Type_Conversion
|
2391 |
|
|
and then Nkind (Act_Prev) = N_Explicit_Dereference
|
2392 |
|
|
then
|
2393 |
|
|
Add_Extra_Actual
|
2394 |
|
|
(New_Occurrence_Of (Standard_False, Loc),
|
2395 |
|
|
Extra_Constrained (Formal));
|
2396 |
|
|
|
2397 |
|
|
else
|
2398 |
|
|
Add_Extra_Actual
|
2399 |
|
|
(Make_Attribute_Reference (Sloc (Prev),
|
2400 |
|
|
Prefix =>
|
2401 |
|
|
Duplicate_Subexpr_No_Checks
|
2402 |
|
|
(Act_Prev, Name_Req => True),
|
2403 |
|
|
Attribute_Name => Name_Constrained),
|
2404 |
|
|
Extra_Constrained (Formal));
|
2405 |
|
|
end if;
|
2406 |
|
|
end;
|
2407 |
|
|
end if;
|
2408 |
|
|
end if;
|
2409 |
|
|
|
2410 |
|
|
-- Create possible extra actual for accessibility level
|
2411 |
|
|
|
2412 |
|
|
if Present (Extra_Accessibility (Formal)) then
|
2413 |
|
|
|
2414 |
|
|
-- Ada 2005 (AI-252): If the actual was rewritten as an Access
|
2415 |
|
|
-- attribute, then the original actual may be an aliased object
|
2416 |
|
|
-- occurring as the prefix in a call using "Object.Operation"
|
2417 |
|
|
-- notation. In that case we must pass the level of the object,
|
2418 |
|
|
-- so Prev_Orig is reset to Prev and the attribute will be
|
2419 |
|
|
-- processed by the code for Access attributes further below.
|
2420 |
|
|
|
2421 |
|
|
if Prev_Orig /= Prev
|
2422 |
|
|
and then Nkind (Prev) = N_Attribute_Reference
|
2423 |
|
|
and then
|
2424 |
|
|
Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
|
2425 |
|
|
and then Is_Aliased_View (Prev_Orig)
|
2426 |
|
|
then
|
2427 |
|
|
Prev_Orig := Prev;
|
2428 |
|
|
end if;
|
2429 |
|
|
|
2430 |
|
|
-- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
|
2431 |
|
|
-- accessibility levels.
|
2432 |
|
|
|
2433 |
|
|
if Ekind (Current_Scope) in Subprogram_Kind
|
2434 |
|
|
and then Is_Thunk (Current_Scope)
|
2435 |
|
|
then
|
2436 |
|
|
declare
|
2437 |
|
|
Parm_Ent : Entity_Id;
|
2438 |
|
|
|
2439 |
|
|
begin
|
2440 |
|
|
if Is_Controlling_Actual (Actual) then
|
2441 |
|
|
|
2442 |
|
|
-- Find the corresponding actual of the thunk
|
2443 |
|
|
|
2444 |
|
|
Parm_Ent := First_Entity (Current_Scope);
|
2445 |
|
|
for J in 2 .. Param_Count loop
|
2446 |
|
|
Next_Entity (Parm_Ent);
|
2447 |
|
|
end loop;
|
2448 |
|
|
|
2449 |
|
|
else pragma Assert (Is_Entity_Name (Actual));
|
2450 |
|
|
Parm_Ent := Entity (Actual);
|
2451 |
|
|
end if;
|
2452 |
|
|
|
2453 |
|
|
Add_Extra_Actual
|
2454 |
|
|
(New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
|
2455 |
|
|
Extra_Accessibility (Formal));
|
2456 |
|
|
end;
|
2457 |
|
|
|
2458 |
|
|
elsif Is_Entity_Name (Prev_Orig) then
|
2459 |
|
|
|
2460 |
|
|
-- When passing an access parameter, or a renaming of an access
|
2461 |
|
|
-- parameter, as the actual to another access parameter we need
|
2462 |
|
|
-- to pass along the actual's own access level parameter. This
|
2463 |
|
|
-- is done if we are within the scope of the formal access
|
2464 |
|
|
-- parameter (if this is an inlined body the extra formal is
|
2465 |
|
|
-- irrelevant).
|
2466 |
|
|
|
2467 |
|
|
if (Is_Formal (Entity (Prev_Orig))
|
2468 |
|
|
or else
|
2469 |
|
|
(Present (Renamed_Object (Entity (Prev_Orig)))
|
2470 |
|
|
and then
|
2471 |
|
|
Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
|
2472 |
|
|
and then
|
2473 |
|
|
Is_Formal
|
2474 |
|
|
(Entity (Renamed_Object (Entity (Prev_Orig))))))
|
2475 |
|
|
and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
|
2476 |
|
|
and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
|
2477 |
|
|
then
|
2478 |
|
|
declare
|
2479 |
|
|
Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
|
2480 |
|
|
|
2481 |
|
|
begin
|
2482 |
|
|
pragma Assert (Present (Parm_Ent));
|
2483 |
|
|
|
2484 |
|
|
if Present (Extra_Accessibility (Parm_Ent)) then
|
2485 |
|
|
Add_Extra_Actual
|
2486 |
|
|
(New_Occurrence_Of
|
2487 |
|
|
(Extra_Accessibility (Parm_Ent), Loc),
|
2488 |
|
|
Extra_Accessibility (Formal));
|
2489 |
|
|
|
2490 |
|
|
-- If the actual access parameter does not have an
|
2491 |
|
|
-- associated extra formal providing its scope level,
|
2492 |
|
|
-- then treat the actual as having library-level
|
2493 |
|
|
-- accessibility.
|
2494 |
|
|
|
2495 |
|
|
else
|
2496 |
|
|
Add_Extra_Actual
|
2497 |
|
|
(Make_Integer_Literal (Loc,
|
2498 |
|
|
Intval => Scope_Depth (Standard_Standard)),
|
2499 |
|
|
Extra_Accessibility (Formal));
|
2500 |
|
|
end if;
|
2501 |
|
|
end;
|
2502 |
|
|
|
2503 |
|
|
-- The actual is a normal access value, so just pass the level
|
2504 |
|
|
-- of the actual's access type.
|
2505 |
|
|
|
2506 |
|
|
else
|
2507 |
|
|
Add_Extra_Actual
|
2508 |
|
|
(Dynamic_Accessibility_Level (Prev_Orig),
|
2509 |
|
|
Extra_Accessibility (Formal));
|
2510 |
|
|
end if;
|
2511 |
|
|
|
2512 |
|
|
-- If the actual is an access discriminant, then pass the level
|
2513 |
|
|
-- of the enclosing object (RM05-3.10.2(12.4/2)).
|
2514 |
|
|
|
2515 |
|
|
elsif Nkind (Prev_Orig) = N_Selected_Component
|
2516 |
|
|
and then Ekind (Entity (Selector_Name (Prev_Orig))) =
|
2517 |
|
|
E_Discriminant
|
2518 |
|
|
and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
|
2519 |
|
|
E_Anonymous_Access_Type
|
2520 |
|
|
then
|
2521 |
|
|
Add_Extra_Actual
|
2522 |
|
|
(Make_Integer_Literal (Loc,
|
2523 |
|
|
Intval => Object_Access_Level (Prefix (Prev_Orig))),
|
2524 |
|
|
Extra_Accessibility (Formal));
|
2525 |
|
|
|
2526 |
|
|
-- All other cases
|
2527 |
|
|
|
2528 |
|
|
else
|
2529 |
|
|
case Nkind (Prev_Orig) is
|
2530 |
|
|
|
2531 |
|
|
when N_Attribute_Reference =>
|
2532 |
|
|
case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
|
2533 |
|
|
|
2534 |
|
|
-- For X'Access, pass on the level of the prefix X
|
2535 |
|
|
|
2536 |
|
|
when Attribute_Access =>
|
2537 |
|
|
|
2538 |
|
|
-- If this is an Access attribute applied to the
|
2539 |
|
|
-- the current instance object passed to a type
|
2540 |
|
|
-- initialization procedure, then use the level
|
2541 |
|
|
-- of the type itself. This is not really correct,
|
2542 |
|
|
-- as there should be an extra level parameter
|
2543 |
|
|
-- passed in with _init formals (only in the case
|
2544 |
|
|
-- where the type is immutably limited), but we
|
2545 |
|
|
-- don't have an easy way currently to create such
|
2546 |
|
|
-- an extra formal (init procs aren't ever frozen).
|
2547 |
|
|
-- For now we just use the level of the type,
|
2548 |
|
|
-- which may be too shallow, but that works better
|
2549 |
|
|
-- than passing Object_Access_Level of the type,
|
2550 |
|
|
-- which can be one level too deep in some cases.
|
2551 |
|
|
-- ???
|
2552 |
|
|
|
2553 |
|
|
if Is_Entity_Name (Prefix (Prev_Orig))
|
2554 |
|
|
and then Is_Type (Entity (Prefix (Prev_Orig)))
|
2555 |
|
|
then
|
2556 |
|
|
Add_Extra_Actual
|
2557 |
|
|
(Make_Integer_Literal (Loc,
|
2558 |
|
|
Intval =>
|
2559 |
|
|
Type_Access_Level
|
2560 |
|
|
(Entity (Prefix (Prev_Orig)))),
|
2561 |
|
|
Extra_Accessibility (Formal));
|
2562 |
|
|
|
2563 |
|
|
else
|
2564 |
|
|
Add_Extra_Actual
|
2565 |
|
|
(Make_Integer_Literal (Loc,
|
2566 |
|
|
Intval =>
|
2567 |
|
|
Object_Access_Level
|
2568 |
|
|
(Prefix (Prev_Orig))),
|
2569 |
|
|
Extra_Accessibility (Formal));
|
2570 |
|
|
end if;
|
2571 |
|
|
|
2572 |
|
|
-- Treat the unchecked attributes as library-level
|
2573 |
|
|
|
2574 |
|
|
when Attribute_Unchecked_Access |
|
2575 |
|
|
Attribute_Unrestricted_Access =>
|
2576 |
|
|
Add_Extra_Actual
|
2577 |
|
|
(Make_Integer_Literal (Loc,
|
2578 |
|
|
Intval => Scope_Depth (Standard_Standard)),
|
2579 |
|
|
Extra_Accessibility (Formal));
|
2580 |
|
|
|
2581 |
|
|
-- No other cases of attributes returning access
|
2582 |
|
|
-- values that can be passed to access parameters.
|
2583 |
|
|
|
2584 |
|
|
when others =>
|
2585 |
|
|
raise Program_Error;
|
2586 |
|
|
|
2587 |
|
|
end case;
|
2588 |
|
|
|
2589 |
|
|
-- For allocators we pass the level of the execution of the
|
2590 |
|
|
-- called subprogram, which is one greater than the current
|
2591 |
|
|
-- scope level.
|
2592 |
|
|
|
2593 |
|
|
when N_Allocator =>
|
2594 |
|
|
Add_Extra_Actual
|
2595 |
|
|
(Make_Integer_Literal (Loc,
|
2596 |
|
|
Intval => Scope_Depth (Current_Scope) + 1),
|
2597 |
|
|
Extra_Accessibility (Formal));
|
2598 |
|
|
|
2599 |
|
|
-- For most other cases we simply pass the level of the
|
2600 |
|
|
-- actual's access type. The type is retrieved from
|
2601 |
|
|
-- Prev rather than Prev_Orig, because in some cases
|
2602 |
|
|
-- Prev_Orig denotes an original expression that has
|
2603 |
|
|
-- not been analyzed.
|
2604 |
|
|
|
2605 |
|
|
when others =>
|
2606 |
|
|
Add_Extra_Actual
|
2607 |
|
|
(Dynamic_Accessibility_Level (Prev),
|
2608 |
|
|
Extra_Accessibility (Formal));
|
2609 |
|
|
end case;
|
2610 |
|
|
end if;
|
2611 |
|
|
end if;
|
2612 |
|
|
|
2613 |
|
|
-- Perform the check of 4.6(49) that prevents a null value from being
|
2614 |
|
|
-- passed as an actual to an access parameter. Note that the check
|
2615 |
|
|
-- is elided in the common cases of passing an access attribute or
|
2616 |
|
|
-- access parameter as an actual. Also, we currently don't enforce
|
2617 |
|
|
-- this check for expander-generated actuals and when -gnatdj is set.
|
2618 |
|
|
|
2619 |
|
|
if Ada_Version >= Ada_2005 then
|
2620 |
|
|
|
2621 |
|
|
-- Ada 2005 (AI-231): Check null-excluding access types. Note that
|
2622 |
|
|
-- the intent of 6.4.1(13) is that null-exclusion checks should
|
2623 |
|
|
-- not be done for 'out' parameters, even though it refers only
|
2624 |
|
|
-- to constraint checks, and a null_exclusion is not a constraint.
|
2625 |
|
|
-- Note that AI05-0196-1 corrects this mistake in the RM.
|
2626 |
|
|
|
2627 |
|
|
if Is_Access_Type (Etype (Formal))
|
2628 |
|
|
and then Can_Never_Be_Null (Etype (Formal))
|
2629 |
|
|
and then Ekind (Formal) /= E_Out_Parameter
|
2630 |
|
|
and then Nkind (Prev) /= N_Raise_Constraint_Error
|
2631 |
|
|
and then (Known_Null (Prev)
|
2632 |
|
|
or else not Can_Never_Be_Null (Etype (Prev)))
|
2633 |
|
|
then
|
2634 |
|
|
Install_Null_Excluding_Check (Prev);
|
2635 |
|
|
end if;
|
2636 |
|
|
|
2637 |
|
|
-- Ada_Version < Ada_2005
|
2638 |
|
|
|
2639 |
|
|
else
|
2640 |
|
|
if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
|
2641 |
|
|
or else Access_Checks_Suppressed (Subp)
|
2642 |
|
|
then
|
2643 |
|
|
null;
|
2644 |
|
|
|
2645 |
|
|
elsif Debug_Flag_J then
|
2646 |
|
|
null;
|
2647 |
|
|
|
2648 |
|
|
elsif not Comes_From_Source (Prev) then
|
2649 |
|
|
null;
|
2650 |
|
|
|
2651 |
|
|
elsif Is_Entity_Name (Prev)
|
2652 |
|
|
and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
|
2653 |
|
|
then
|
2654 |
|
|
null;
|
2655 |
|
|
|
2656 |
|
|
elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
|
2657 |
|
|
null;
|
2658 |
|
|
|
2659 |
|
|
-- Suppress null checks when passing to access parameters of Java
|
2660 |
|
|
-- and CIL subprograms. (Should this be done for other foreign
|
2661 |
|
|
-- conventions as well ???)
|
2662 |
|
|
|
2663 |
|
|
elsif Convention (Subp) = Convention_Java
|
2664 |
|
|
or else Convention (Subp) = Convention_CIL
|
2665 |
|
|
then
|
2666 |
|
|
null;
|
2667 |
|
|
|
2668 |
|
|
else
|
2669 |
|
|
Install_Null_Excluding_Check (Prev);
|
2670 |
|
|
end if;
|
2671 |
|
|
end if;
|
2672 |
|
|
|
2673 |
|
|
-- Perform appropriate validity checks on parameters that
|
2674 |
|
|
-- are entities.
|
2675 |
|
|
|
2676 |
|
|
if Validity_Checks_On then
|
2677 |
|
|
if (Ekind (Formal) = E_In_Parameter
|
2678 |
|
|
and then Validity_Check_In_Params)
|
2679 |
|
|
or else
|
2680 |
|
|
(Ekind (Formal) = E_In_Out_Parameter
|
2681 |
|
|
and then Validity_Check_In_Out_Params)
|
2682 |
|
|
then
|
2683 |
|
|
-- If the actual is an indexed component of a packed type (or
|
2684 |
|
|
-- is an indexed or selected component whose prefix recursively
|
2685 |
|
|
-- meets this condition), it has not been expanded yet. It will
|
2686 |
|
|
-- be copied in the validity code that follows, and has to be
|
2687 |
|
|
-- expanded appropriately, so reanalyze it.
|
2688 |
|
|
|
2689 |
|
|
-- What we do is just to unset analyzed bits on prefixes till
|
2690 |
|
|
-- we reach something that does not have a prefix.
|
2691 |
|
|
|
2692 |
|
|
declare
|
2693 |
|
|
Nod : Node_Id;
|
2694 |
|
|
|
2695 |
|
|
begin
|
2696 |
|
|
Nod := Actual;
|
2697 |
|
|
while Nkind_In (Nod, N_Indexed_Component,
|
2698 |
|
|
N_Selected_Component)
|
2699 |
|
|
loop
|
2700 |
|
|
Set_Analyzed (Nod, False);
|
2701 |
|
|
Nod := Prefix (Nod);
|
2702 |
|
|
end loop;
|
2703 |
|
|
end;
|
2704 |
|
|
|
2705 |
|
|
Ensure_Valid (Actual);
|
2706 |
|
|
end if;
|
2707 |
|
|
end if;
|
2708 |
|
|
|
2709 |
|
|
-- For Ada 2012, if a parameter is aliased, the actual must be a
|
2710 |
|
|
-- tagged type or an aliased view of an object.
|
2711 |
|
|
|
2712 |
|
|
if Is_Aliased (Formal)
|
2713 |
|
|
and then not Is_Aliased_View (Actual)
|
2714 |
|
|
and then not Is_Tagged_Type (Etype (Formal))
|
2715 |
|
|
then
|
2716 |
|
|
Error_Msg_NE
|
2717 |
|
|
("actual for aliased formal& must be aliased object",
|
2718 |
|
|
Actual, Formal);
|
2719 |
|
|
end if;
|
2720 |
|
|
|
2721 |
|
|
-- For IN OUT and OUT parameters, ensure that subscripts are valid
|
2722 |
|
|
-- since this is a left side reference. We only do this for calls
|
2723 |
|
|
-- from the source program since we assume that compiler generated
|
2724 |
|
|
-- calls explicitly generate any required checks. We also need it
|
2725 |
|
|
-- only if we are doing standard validity checks, since clearly it is
|
2726 |
|
|
-- not needed if validity checks are off, and in subscript validity
|
2727 |
|
|
-- checking mode, all indexed components are checked with a call
|
2728 |
|
|
-- directly from Expand_N_Indexed_Component.
|
2729 |
|
|
|
2730 |
|
|
if Comes_From_Source (Call_Node)
|
2731 |
|
|
and then Ekind (Formal) /= E_In_Parameter
|
2732 |
|
|
and then Validity_Checks_On
|
2733 |
|
|
and then Validity_Check_Default
|
2734 |
|
|
and then not Validity_Check_Subscripts
|
2735 |
|
|
then
|
2736 |
|
|
Check_Valid_Lvalue_Subscripts (Actual);
|
2737 |
|
|
end if;
|
2738 |
|
|
|
2739 |
|
|
-- Mark any scalar OUT parameter that is a simple variable as no
|
2740 |
|
|
-- longer known to be valid (unless the type is always valid). This
|
2741 |
|
|
-- reflects the fact that if an OUT parameter is never set in a
|
2742 |
|
|
-- procedure, then it can become invalid on the procedure return.
|
2743 |
|
|
|
2744 |
|
|
if Ekind (Formal) = E_Out_Parameter
|
2745 |
|
|
and then Is_Entity_Name (Actual)
|
2746 |
|
|
and then Ekind (Entity (Actual)) = E_Variable
|
2747 |
|
|
and then not Is_Known_Valid (Etype (Actual))
|
2748 |
|
|
then
|
2749 |
|
|
Set_Is_Known_Valid (Entity (Actual), False);
|
2750 |
|
|
end if;
|
2751 |
|
|
|
2752 |
|
|
-- For an OUT or IN OUT parameter, if the actual is an entity, then
|
2753 |
|
|
-- clear current values, since they can be clobbered. We are probably
|
2754 |
|
|
-- doing this in more places than we need to, but better safe than
|
2755 |
|
|
-- sorry when it comes to retaining bad current values!
|
2756 |
|
|
|
2757 |
|
|
if Ekind (Formal) /= E_In_Parameter
|
2758 |
|
|
and then Is_Entity_Name (Actual)
|
2759 |
|
|
and then Present (Entity (Actual))
|
2760 |
|
|
then
|
2761 |
|
|
declare
|
2762 |
|
|
Ent : constant Entity_Id := Entity (Actual);
|
2763 |
|
|
Sav : Node_Id;
|
2764 |
|
|
|
2765 |
|
|
begin
|
2766 |
|
|
-- For an OUT or IN OUT parameter that is an assignable entity,
|
2767 |
|
|
-- we do not want to clobber the Last_Assignment field, since
|
2768 |
|
|
-- if it is set, it was precisely because it is indeed an OUT
|
2769 |
|
|
-- or IN OUT parameter! We do reset the Is_Known_Valid flag
|
2770 |
|
|
-- since the subprogram could have returned in invalid value.
|
2771 |
|
|
|
2772 |
|
|
if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
|
2773 |
|
|
and then Is_Assignable (Ent)
|
2774 |
|
|
then
|
2775 |
|
|
Sav := Last_Assignment (Ent);
|
2776 |
|
|
Kill_Current_Values (Ent);
|
2777 |
|
|
Set_Last_Assignment (Ent, Sav);
|
2778 |
|
|
Set_Is_Known_Valid (Ent, False);
|
2779 |
|
|
|
2780 |
|
|
-- For all other cases, just kill the current values
|
2781 |
|
|
|
2782 |
|
|
else
|
2783 |
|
|
Kill_Current_Values (Ent);
|
2784 |
|
|
end if;
|
2785 |
|
|
end;
|
2786 |
|
|
end if;
|
2787 |
|
|
|
2788 |
|
|
-- If the formal is class wide and the actual is an aggregate, force
|
2789 |
|
|
-- evaluation so that the back end who does not know about class-wide
|
2790 |
|
|
-- type, does not generate a temporary of the wrong size.
|
2791 |
|
|
|
2792 |
|
|
if not Is_Class_Wide_Type (Etype (Formal)) then
|
2793 |
|
|
null;
|
2794 |
|
|
|
2795 |
|
|
elsif Nkind (Actual) = N_Aggregate
|
2796 |
|
|
or else (Nkind (Actual) = N_Qualified_Expression
|
2797 |
|
|
and then Nkind (Expression (Actual)) = N_Aggregate)
|
2798 |
|
|
then
|
2799 |
|
|
Force_Evaluation (Actual);
|
2800 |
|
|
end if;
|
2801 |
|
|
|
2802 |
|
|
-- In a remote call, if the formal is of a class-wide type, check
|
2803 |
|
|
-- that the actual meets the requirements described in E.4(18).
|
2804 |
|
|
|
2805 |
|
|
if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
|
2806 |
|
|
Insert_Action (Actual,
|
2807 |
|
|
Make_Transportable_Check (Loc,
|
2808 |
|
|
Duplicate_Subexpr_Move_Checks (Actual)));
|
2809 |
|
|
end if;
|
2810 |
|
|
|
2811 |
|
|
-- This label is required when skipping extra actual generation for
|
2812 |
|
|
-- Unchecked_Union parameters.
|
2813 |
|
|
|
2814 |
|
|
<<Skip_Extra_Actual_Generation>>
|
2815 |
|
|
|
2816 |
|
|
Param_Count := Param_Count + 1;
|
2817 |
|
|
Next_Actual (Actual);
|
2818 |
|
|
Next_Formal (Formal);
|
2819 |
|
|
end loop;
|
2820 |
|
|
|
2821 |
|
|
-- If we are calling an Ada 2012 function which needs to have the
|
2822 |
|
|
-- "accessibility level determined by the point of call" (AI05-0234)
|
2823 |
|
|
-- passed in to it, then pass it in.
|
2824 |
|
|
|
2825 |
|
|
if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
|
2826 |
|
|
and then
|
2827 |
|
|
Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
|
2828 |
|
|
then
|
2829 |
|
|
declare
|
2830 |
|
|
Ancestor : Node_Id := Parent (Call_Node);
|
2831 |
|
|
Level : Node_Id := Empty;
|
2832 |
|
|
Defer : Boolean := False;
|
2833 |
|
|
|
2834 |
|
|
begin
|
2835 |
|
|
-- Unimplemented: if Subp returns an anonymous access type, then
|
2836 |
|
|
|
2837 |
|
|
-- a) if the call is the operand of an explict conversion, then
|
2838 |
|
|
-- the target type of the conversion (a named access type)
|
2839 |
|
|
-- determines the accessibility level pass in;
|
2840 |
|
|
|
2841 |
|
|
-- b) if the call defines an access discriminant of an object
|
2842 |
|
|
-- (e.g., the discriminant of an object being created by an
|
2843 |
|
|
-- allocator, or the discriminant of a function result),
|
2844 |
|
|
-- then the accessibility level to pass in is that of the
|
2845 |
|
|
-- discriminated object being initialized).
|
2846 |
|
|
|
2847 |
|
|
-- ???
|
2848 |
|
|
|
2849 |
|
|
while Nkind (Ancestor) = N_Qualified_Expression
|
2850 |
|
|
loop
|
2851 |
|
|
Ancestor := Parent (Ancestor);
|
2852 |
|
|
end loop;
|
2853 |
|
|
|
2854 |
|
|
case Nkind (Ancestor) is
|
2855 |
|
|
when N_Allocator =>
|
2856 |
|
|
|
2857 |
|
|
-- At this point, we'd like to assign
|
2858 |
|
|
|
2859 |
|
|
-- Level := Dynamic_Accessibility_Level (Ancestor);
|
2860 |
|
|
|
2861 |
|
|
-- but Etype of Ancestor may not have been set yet,
|
2862 |
|
|
-- so that doesn't work.
|
2863 |
|
|
|
2864 |
|
|
-- Handle this later in Expand_Allocator_Expression.
|
2865 |
|
|
|
2866 |
|
|
Defer := True;
|
2867 |
|
|
|
2868 |
|
|
when N_Object_Declaration | N_Object_Renaming_Declaration =>
|
2869 |
|
|
declare
|
2870 |
|
|
Def_Id : constant Entity_Id :=
|
2871 |
|
|
Defining_Identifier (Ancestor);
|
2872 |
|
|
|
2873 |
|
|
begin
|
2874 |
|
|
if Is_Return_Object (Def_Id) then
|
2875 |
|
|
if Present (Extra_Accessibility_Of_Result
|
2876 |
|
|
(Return_Applies_To (Scope (Def_Id))))
|
2877 |
|
|
then
|
2878 |
|
|
-- Pass along value that was passed in if the
|
2879 |
|
|
-- routine we are returning from also has an
|
2880 |
|
|
-- Accessibility_Of_Result formal.
|
2881 |
|
|
|
2882 |
|
|
Level :=
|
2883 |
|
|
New_Occurrence_Of
|
2884 |
|
|
(Extra_Accessibility_Of_Result
|
2885 |
|
|
(Return_Applies_To (Scope (Def_Id))), Loc);
|
2886 |
|
|
end if;
|
2887 |
|
|
else
|
2888 |
|
|
Level :=
|
2889 |
|
|
Make_Integer_Literal (Loc,
|
2890 |
|
|
Intval => Object_Access_Level (Def_Id));
|
2891 |
|
|
end if;
|
2892 |
|
|
end;
|
2893 |
|
|
|
2894 |
|
|
when N_Simple_Return_Statement =>
|
2895 |
|
|
if Present (Extra_Accessibility_Of_Result
|
2896 |
|
|
(Return_Applies_To
|
2897 |
|
|
(Return_Statement_Entity (Ancestor))))
|
2898 |
|
|
then
|
2899 |
|
|
-- Pass along value that was passed in if the routine
|
2900 |
|
|
-- we are returning from also has an
|
2901 |
|
|
-- Accessibility_Of_Result formal.
|
2902 |
|
|
|
2903 |
|
|
Level :=
|
2904 |
|
|
New_Occurrence_Of
|
2905 |
|
|
(Extra_Accessibility_Of_Result
|
2906 |
|
|
(Return_Applies_To
|
2907 |
|
|
(Return_Statement_Entity (Ancestor))), Loc);
|
2908 |
|
|
end if;
|
2909 |
|
|
|
2910 |
|
|
when others =>
|
2911 |
|
|
null;
|
2912 |
|
|
end case;
|
2913 |
|
|
|
2914 |
|
|
if not Defer then
|
2915 |
|
|
if not Present (Level) then
|
2916 |
|
|
|
2917 |
|
|
-- The "innermost master that evaluates the function call".
|
2918 |
|
|
|
2919 |
|
|
-- ??? - Should we use Integer'Last here instead in order
|
2920 |
|
|
-- to deal with (some of) the problems associated with
|
2921 |
|
|
-- calls to subps whose enclosing scope is unknown (e.g.,
|
2922 |
|
|
-- Anon_Access_To_Subp_Param.all)?
|
2923 |
|
|
|
2924 |
|
|
Level := Make_Integer_Literal (Loc,
|
2925 |
|
|
Scope_Depth (Current_Scope) + 1);
|
2926 |
|
|
end if;
|
2927 |
|
|
|
2928 |
|
|
Add_Extra_Actual
|
2929 |
|
|
(Level,
|
2930 |
|
|
Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
|
2931 |
|
|
end if;
|
2932 |
|
|
end;
|
2933 |
|
|
end if;
|
2934 |
|
|
|
2935 |
|
|
-- If we are expanding a rhs of an assignment we need to check if tag
|
2936 |
|
|
-- propagation is needed. You might expect this processing to be in
|
2937 |
|
|
-- Analyze_Assignment but has to be done earlier (bottom-up) because the
|
2938 |
|
|
-- assignment might be transformed to a declaration for an unconstrained
|
2939 |
|
|
-- value if the expression is classwide.
|
2940 |
|
|
|
2941 |
|
|
if Nkind (Call_Node) = N_Function_Call
|
2942 |
|
|
and then Is_Tag_Indeterminate (Call_Node)
|
2943 |
|
|
and then Is_Entity_Name (Name (Call_Node))
|
2944 |
|
|
then
|
2945 |
|
|
declare
|
2946 |
|
|
Ass : Node_Id := Empty;
|
2947 |
|
|
|
2948 |
|
|
begin
|
2949 |
|
|
if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
|
2950 |
|
|
Ass := Parent (Call_Node);
|
2951 |
|
|
|
2952 |
|
|
elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
|
2953 |
|
|
and then Nkind (Parent (Parent (Call_Node))) =
|
2954 |
|
|
N_Assignment_Statement
|
2955 |
|
|
then
|
2956 |
|
|
Ass := Parent (Parent (Call_Node));
|
2957 |
|
|
|
2958 |
|
|
elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
|
2959 |
|
|
and then Nkind (Parent (Parent (Call_Node))) =
|
2960 |
|
|
N_Assignment_Statement
|
2961 |
|
|
then
|
2962 |
|
|
Ass := Parent (Parent (Call_Node));
|
2963 |
|
|
end if;
|
2964 |
|
|
|
2965 |
|
|
if Present (Ass)
|
2966 |
|
|
and then Is_Class_Wide_Type (Etype (Name (Ass)))
|
2967 |
|
|
then
|
2968 |
|
|
if Is_Access_Type (Etype (Call_Node)) then
|
2969 |
|
|
if Designated_Type (Etype (Call_Node)) /=
|
2970 |
|
|
Root_Type (Etype (Name (Ass)))
|
2971 |
|
|
then
|
2972 |
|
|
Error_Msg_NE
|
2973 |
|
|
("tag-indeterminate expression "
|
2974 |
|
|
& " must have designated type& (RM 5.2 (6))",
|
2975 |
|
|
Call_Node, Root_Type (Etype (Name (Ass))));
|
2976 |
|
|
else
|
2977 |
|
|
Propagate_Tag (Name (Ass), Call_Node);
|
2978 |
|
|
end if;
|
2979 |
|
|
|
2980 |
|
|
elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
|
2981 |
|
|
Error_Msg_NE
|
2982 |
|
|
("tag-indeterminate expression must have type&"
|
2983 |
|
|
& "(RM 5.2 (6))",
|
2984 |
|
|
Call_Node, Root_Type (Etype (Name (Ass))));
|
2985 |
|
|
|
2986 |
|
|
else
|
2987 |
|
|
Propagate_Tag (Name (Ass), Call_Node);
|
2988 |
|
|
end if;
|
2989 |
|
|
|
2990 |
|
|
-- The call will be rewritten as a dispatching call, and
|
2991 |
|
|
-- expanded as such.
|
2992 |
|
|
|
2993 |
|
|
return;
|
2994 |
|
|
end if;
|
2995 |
|
|
end;
|
2996 |
|
|
end if;
|
2997 |
|
|
|
2998 |
|
|
-- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
|
2999 |
|
|
-- it to point to the correct secondary virtual table
|
3000 |
|
|
|
3001 |
|
|
if Nkind_In (Call_Node, N_Function_Call, N_Procedure_Call_Statement)
|
3002 |
|
|
and then CW_Interface_Formals_Present
|
3003 |
|
|
then
|
3004 |
|
|
Expand_Interface_Actuals (Call_Node);
|
3005 |
|
|
end if;
|
3006 |
|
|
|
3007 |
|
|
-- Deals with Dispatch_Call if we still have a call, before expanding
|
3008 |
|
|
-- extra actuals since this will be done on the re-analysis of the
|
3009 |
|
|
-- dispatching call. Note that we do not try to shorten the actual list
|
3010 |
|
|
-- for a dispatching call, it would not make sense to do so. Expansion
|
3011 |
|
|
-- of dispatching calls is suppressed when VM_Target, because the VM
|
3012 |
|
|
-- back-ends directly handle the generation of dispatching calls and
|
3013 |
|
|
-- would have to undo any expansion to an indirect call.
|
3014 |
|
|
|
3015 |
|
|
if Nkind_In (Call_Node, N_Function_Call, N_Procedure_Call_Statement)
|
3016 |
|
|
and then Present (Controlling_Argument (Call_Node))
|
3017 |
|
|
then
|
3018 |
|
|
declare
|
3019 |
|
|
Call_Typ : constant Entity_Id := Etype (Call_Node);
|
3020 |
|
|
Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
|
3021 |
|
|
Eq_Prim_Op : Entity_Id := Empty;
|
3022 |
|
|
New_Call : Node_Id;
|
3023 |
|
|
Param : Node_Id;
|
3024 |
|
|
Prev_Call : Node_Id;
|
3025 |
|
|
|
3026 |
|
|
begin
|
3027 |
|
|
if not Is_Limited_Type (Typ) then
|
3028 |
|
|
Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
|
3029 |
|
|
end if;
|
3030 |
|
|
|
3031 |
|
|
if Tagged_Type_Expansion then
|
3032 |
|
|
Expand_Dispatching_Call (Call_Node);
|
3033 |
|
|
|
3034 |
|
|
-- The following return is worrisome. Is it really OK to skip
|
3035 |
|
|
-- all remaining processing in this procedure ???
|
3036 |
|
|
|
3037 |
|
|
return;
|
3038 |
|
|
|
3039 |
|
|
-- VM targets
|
3040 |
|
|
|
3041 |
|
|
else
|
3042 |
|
|
Apply_Tag_Checks (Call_Node);
|
3043 |
|
|
|
3044 |
|
|
-- If this is a dispatching "=", we must first compare the
|
3045 |
|
|
-- tags so we generate: x.tag = y.tag and then x = y
|
3046 |
|
|
|
3047 |
|
|
if Subp = Eq_Prim_Op then
|
3048 |
|
|
|
3049 |
|
|
-- Mark the node as analyzed to avoid reanalizing this
|
3050 |
|
|
-- dispatching call (which would cause a never-ending loop)
|
3051 |
|
|
|
3052 |
|
|
Prev_Call := Relocate_Node (Call_Node);
|
3053 |
|
|
Set_Analyzed (Prev_Call);
|
3054 |
|
|
|
3055 |
|
|
Param := First_Actual (Call_Node);
|
3056 |
|
|
New_Call :=
|
3057 |
|
|
Make_And_Then (Loc,
|
3058 |
|
|
Left_Opnd =>
|
3059 |
|
|
Make_Op_Eq (Loc,
|
3060 |
|
|
Left_Opnd =>
|
3061 |
|
|
Make_Selected_Component (Loc,
|
3062 |
|
|
Prefix => New_Value (Param),
|
3063 |
|
|
Selector_Name =>
|
3064 |
|
|
New_Reference_To (First_Tag_Component (Typ),
|
3065 |
|
|
Loc)),
|
3066 |
|
|
|
3067 |
|
|
Right_Opnd =>
|
3068 |
|
|
Make_Selected_Component (Loc,
|
3069 |
|
|
Prefix =>
|
3070 |
|
|
Unchecked_Convert_To (Typ,
|
3071 |
|
|
New_Value (Next_Actual (Param))),
|
3072 |
|
|
Selector_Name =>
|
3073 |
|
|
New_Reference_To
|
3074 |
|
|
(First_Tag_Component (Typ), Loc))),
|
3075 |
|
|
Right_Opnd => Prev_Call);
|
3076 |
|
|
|
3077 |
|
|
Rewrite (Call_Node, New_Call);
|
3078 |
|
|
|
3079 |
|
|
Analyze_And_Resolve
|
3080 |
|
|
(Call_Node, Call_Typ, Suppress => All_Checks);
|
3081 |
|
|
end if;
|
3082 |
|
|
|
3083 |
|
|
-- Expansion of a dispatching call results in an indirect call,
|
3084 |
|
|
-- which in turn causes current values to be killed (see
|
3085 |
|
|
-- Resolve_Call), so on VM targets we do the call here to
|
3086 |
|
|
-- ensure consistent warnings between VM and non-VM targets.
|
3087 |
|
|
|
3088 |
|
|
Kill_Current_Values;
|
3089 |
|
|
end if;
|
3090 |
|
|
|
3091 |
|
|
-- If this is a dispatching "=" then we must update the reference
|
3092 |
|
|
-- to the call node because we generated:
|
3093 |
|
|
-- x.tag = y.tag and then x = y
|
3094 |
|
|
|
3095 |
|
|
if Subp = Eq_Prim_Op then
|
3096 |
|
|
Call_Node := Right_Opnd (Call_Node);
|
3097 |
|
|
end if;
|
3098 |
|
|
end;
|
3099 |
|
|
end if;
|
3100 |
|
|
|
3101 |
|
|
-- Similarly, expand calls to RCI subprograms on which pragma
|
3102 |
|
|
-- All_Calls_Remote applies. The rewriting will be reanalyzed
|
3103 |
|
|
-- later. Do this only when the call comes from source since we
|
3104 |
|
|
-- do not want such a rewriting to occur in expanded code.
|
3105 |
|
|
|
3106 |
|
|
if Is_All_Remote_Call (Call_Node) then
|
3107 |
|
|
Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
|
3108 |
|
|
|
3109 |
|
|
-- Similarly, do not add extra actuals for an entry call whose entity
|
3110 |
|
|
-- is a protected procedure, or for an internal protected subprogram
|
3111 |
|
|
-- call, because it will be rewritten as a protected subprogram call
|
3112 |
|
|
-- and reanalyzed (see Expand_Protected_Subprogram_Call).
|
3113 |
|
|
|
3114 |
|
|
elsif Is_Protected_Type (Scope (Subp))
|
3115 |
|
|
and then (Ekind (Subp) = E_Procedure
|
3116 |
|
|
or else Ekind (Subp) = E_Function)
|
3117 |
|
|
then
|
3118 |
|
|
null;
|
3119 |
|
|
|
3120 |
|
|
-- During that loop we gathered the extra actuals (the ones that
|
3121 |
|
|
-- correspond to Extra_Formals), so now they can be appended.
|
3122 |
|
|
|
3123 |
|
|
else
|
3124 |
|
|
while Is_Non_Empty_List (Extra_Actuals) loop
|
3125 |
|
|
Add_Actual_Parameter (Remove_Head (Extra_Actuals));
|
3126 |
|
|
end loop;
|
3127 |
|
|
end if;
|
3128 |
|
|
|
3129 |
|
|
-- At this point we have all the actuals, so this is the point at which
|
3130 |
|
|
-- the various expansion activities for actuals is carried out.
|
3131 |
|
|
|
3132 |
|
|
Expand_Actuals (Call_Node, Subp);
|
3133 |
|
|
|
3134 |
|
|
-- If the subprogram is a renaming, or if it is inherited, replace it in
|
3135 |
|
|
-- the call with the name of the actual subprogram being called. If this
|
3136 |
|
|
-- is a dispatching call, the run-time decides what to call. The Alias
|
3137 |
|
|
-- attribute does not apply to entries.
|
3138 |
|
|
|
3139 |
|
|
if Nkind (Call_Node) /= N_Entry_Call_Statement
|
3140 |
|
|
and then No (Controlling_Argument (Call_Node))
|
3141 |
|
|
and then Present (Parent_Subp)
|
3142 |
|
|
and then not Is_Direct_Deep_Call (Subp)
|
3143 |
|
|
then
|
3144 |
|
|
if Present (Inherited_From_Formal (Subp)) then
|
3145 |
|
|
Parent_Subp := Inherited_From_Formal (Subp);
|
3146 |
|
|
else
|
3147 |
|
|
Parent_Subp := Ultimate_Alias (Parent_Subp);
|
3148 |
|
|
end if;
|
3149 |
|
|
|
3150 |
|
|
-- The below setting of Entity is suspect, see F109-018 discussion???
|
3151 |
|
|
|
3152 |
|
|
Set_Entity (Name (Call_Node), Parent_Subp);
|
3153 |
|
|
|
3154 |
|
|
if Is_Abstract_Subprogram (Parent_Subp)
|
3155 |
|
|
and then not In_Instance
|
3156 |
|
|
then
|
3157 |
|
|
Error_Msg_NE
|
3158 |
|
|
("cannot call abstract subprogram &!",
|
3159 |
|
|
Name (Call_Node), Parent_Subp);
|
3160 |
|
|
end if;
|
3161 |
|
|
|
3162 |
|
|
-- Inspect all formals of derived subprogram Subp. Compare parameter
|
3163 |
|
|
-- types with the parent subprogram and check whether an actual may
|
3164 |
|
|
-- need a type conversion to the corresponding formal of the parent
|
3165 |
|
|
-- subprogram.
|
3166 |
|
|
|
3167 |
|
|
-- Not clear whether intrinsic subprograms need such conversions. ???
|
3168 |
|
|
|
3169 |
|
|
if not Is_Intrinsic_Subprogram (Parent_Subp)
|
3170 |
|
|
or else Is_Generic_Instance (Parent_Subp)
|
3171 |
|
|
then
|
3172 |
|
|
declare
|
3173 |
|
|
procedure Convert (Act : Node_Id; Typ : Entity_Id);
|
3174 |
|
|
-- Rewrite node Act as a type conversion of Act to Typ. Analyze
|
3175 |
|
|
-- and resolve the newly generated construct.
|
3176 |
|
|
|
3177 |
|
|
-------------
|
3178 |
|
|
-- Convert --
|
3179 |
|
|
-------------
|
3180 |
|
|
|
3181 |
|
|
procedure Convert (Act : Node_Id; Typ : Entity_Id) is
|
3182 |
|
|
begin
|
3183 |
|
|
Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
|
3184 |
|
|
Analyze (Act);
|
3185 |
|
|
Resolve (Act, Typ);
|
3186 |
|
|
end Convert;
|
3187 |
|
|
|
3188 |
|
|
-- Local variables
|
3189 |
|
|
|
3190 |
|
|
Actual_Typ : Entity_Id;
|
3191 |
|
|
Formal_Typ : Entity_Id;
|
3192 |
|
|
Parent_Typ : Entity_Id;
|
3193 |
|
|
|
3194 |
|
|
begin
|
3195 |
|
|
Actual := First_Actual (Call_Node);
|
3196 |
|
|
Formal := First_Formal (Subp);
|
3197 |
|
|
Parent_Formal := First_Formal (Parent_Subp);
|
3198 |
|
|
while Present (Formal) loop
|
3199 |
|
|
Actual_Typ := Etype (Actual);
|
3200 |
|
|
Formal_Typ := Etype (Formal);
|
3201 |
|
|
Parent_Typ := Etype (Parent_Formal);
|
3202 |
|
|
|
3203 |
|
|
-- For an IN parameter of a scalar type, the parent formal
|
3204 |
|
|
-- type and derived formal type differ or the parent formal
|
3205 |
|
|
-- type and actual type do not match statically.
|
3206 |
|
|
|
3207 |
|
|
if Is_Scalar_Type (Formal_Typ)
|
3208 |
|
|
and then Ekind (Formal) = E_In_Parameter
|
3209 |
|
|
and then Formal_Typ /= Parent_Typ
|
3210 |
|
|
and then
|
3211 |
|
|
not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
|
3212 |
|
|
and then not Raises_Constraint_Error (Actual)
|
3213 |
|
|
then
|
3214 |
|
|
Convert (Actual, Parent_Typ);
|
3215 |
|
|
Enable_Range_Check (Actual);
|
3216 |
|
|
|
3217 |
|
|
-- If the actual has been marked as requiring a range
|
3218 |
|
|
-- check, then generate it here.
|
3219 |
|
|
|
3220 |
|
|
if Do_Range_Check (Actual) then
|
3221 |
|
|
Set_Do_Range_Check (Actual, False);
|
3222 |
|
|
Generate_Range_Check
|
3223 |
|
|
(Actual, Etype (Formal), CE_Range_Check_Failed);
|
3224 |
|
|
end if;
|
3225 |
|
|
|
3226 |
|
|
-- For access types, the parent formal type and actual type
|
3227 |
|
|
-- differ.
|
3228 |
|
|
|
3229 |
|
|
elsif Is_Access_Type (Formal_Typ)
|
3230 |
|
|
and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
|
3231 |
|
|
then
|
3232 |
|
|
if Ekind (Formal) /= E_In_Parameter then
|
3233 |
|
|
Convert (Actual, Parent_Typ);
|
3234 |
|
|
|
3235 |
|
|
elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
|
3236 |
|
|
and then Designated_Type (Parent_Typ) /=
|
3237 |
|
|
Designated_Type (Actual_Typ)
|
3238 |
|
|
and then not Is_Controlling_Formal (Formal)
|
3239 |
|
|
then
|
3240 |
|
|
-- This unchecked conversion is not necessary unless
|
3241 |
|
|
-- inlining is enabled, because in that case the type
|
3242 |
|
|
-- mismatch may become visible in the body about to be
|
3243 |
|
|
-- inlined.
|
3244 |
|
|
|
3245 |
|
|
Rewrite (Actual,
|
3246 |
|
|
Unchecked_Convert_To (Parent_Typ,
|
3247 |
|
|
Relocate_Node (Actual)));
|
3248 |
|
|
Analyze (Actual);
|
3249 |
|
|
Resolve (Actual, Parent_Typ);
|
3250 |
|
|
end if;
|
3251 |
|
|
|
3252 |
|
|
-- For array and record types, the parent formal type and
|
3253 |
|
|
-- derived formal type have different sizes or pragma Pack
|
3254 |
|
|
-- status.
|
3255 |
|
|
|
3256 |
|
|
elsif ((Is_Array_Type (Formal_Typ)
|
3257 |
|
|
and then Is_Array_Type (Parent_Typ))
|
3258 |
|
|
or else
|
3259 |
|
|
(Is_Record_Type (Formal_Typ)
|
3260 |
|
|
and then Is_Record_Type (Parent_Typ)))
|
3261 |
|
|
and then
|
3262 |
|
|
(Esize (Formal_Typ) /= Esize (Parent_Typ)
|
3263 |
|
|
or else Has_Pragma_Pack (Formal_Typ) /=
|
3264 |
|
|
Has_Pragma_Pack (Parent_Typ))
|
3265 |
|
|
then
|
3266 |
|
|
Convert (Actual, Parent_Typ);
|
3267 |
|
|
end if;
|
3268 |
|
|
|
3269 |
|
|
Next_Actual (Actual);
|
3270 |
|
|
Next_Formal (Formal);
|
3271 |
|
|
Next_Formal (Parent_Formal);
|
3272 |
|
|
end loop;
|
3273 |
|
|
end;
|
3274 |
|
|
end if;
|
3275 |
|
|
|
3276 |
|
|
Orig_Subp := Subp;
|
3277 |
|
|
Subp := Parent_Subp;
|
3278 |
|
|
end if;
|
3279 |
|
|
|
3280 |
|
|
-- Check for violation of No_Abort_Statements
|
3281 |
|
|
|
3282 |
|
|
if Restriction_Check_Required (No_Abort_Statements)
|
3283 |
|
|
and then Is_RTE (Subp, RE_Abort_Task)
|
3284 |
|
|
then
|
3285 |
|
|
Check_Restriction (No_Abort_Statements, Call_Node);
|
3286 |
|
|
|
3287 |
|
|
-- Check for violation of No_Dynamic_Attachment
|
3288 |
|
|
|
3289 |
|
|
elsif Restriction_Check_Required (No_Dynamic_Attachment)
|
3290 |
|
|
and then RTU_Loaded (Ada_Interrupts)
|
3291 |
|
|
and then (Is_RTE (Subp, RE_Is_Reserved) or else
|
3292 |
|
|
Is_RTE (Subp, RE_Is_Attached) or else
|
3293 |
|
|
Is_RTE (Subp, RE_Current_Handler) or else
|
3294 |
|
|
Is_RTE (Subp, RE_Attach_Handler) or else
|
3295 |
|
|
Is_RTE (Subp, RE_Exchange_Handler) or else
|
3296 |
|
|
Is_RTE (Subp, RE_Detach_Handler) or else
|
3297 |
|
|
Is_RTE (Subp, RE_Reference))
|
3298 |
|
|
then
|
3299 |
|
|
Check_Restriction (No_Dynamic_Attachment, Call_Node);
|
3300 |
|
|
end if;
|
3301 |
|
|
|
3302 |
|
|
-- Deal with case where call is an explicit dereference
|
3303 |
|
|
|
3304 |
|
|
if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
|
3305 |
|
|
|
3306 |
|
|
-- Handle case of access to protected subprogram type
|
3307 |
|
|
|
3308 |
|
|
if Is_Access_Protected_Subprogram_Type
|
3309 |
|
|
(Base_Type (Etype (Prefix (Name (Call_Node)))))
|
3310 |
|
|
then
|
3311 |
|
|
-- If this is a call through an access to protected operation, the
|
3312 |
|
|
-- prefix has the form (object'address, operation'access). Rewrite
|
3313 |
|
|
-- as a for other protected calls: the object is the 1st parameter
|
3314 |
|
|
-- of the list of actuals.
|
3315 |
|
|
|
3316 |
|
|
declare
|
3317 |
|
|
Call : Node_Id;
|
3318 |
|
|
Parm : List_Id;
|
3319 |
|
|
Nam : Node_Id;
|
3320 |
|
|
Obj : Node_Id;
|
3321 |
|
|
Ptr : constant Node_Id := Prefix (Name (Call_Node));
|
3322 |
|
|
|
3323 |
|
|
T : constant Entity_Id :=
|
3324 |
|
|
Equivalent_Type (Base_Type (Etype (Ptr)));
|
3325 |
|
|
|
3326 |
|
|
D_T : constant Entity_Id :=
|
3327 |
|
|
Designated_Type (Base_Type (Etype (Ptr)));
|
3328 |
|
|
|
3329 |
|
|
begin
|
3330 |
|
|
Obj :=
|
3331 |
|
|
Make_Selected_Component (Loc,
|
3332 |
|
|
Prefix => Unchecked_Convert_To (T, Ptr),
|
3333 |
|
|
Selector_Name =>
|
3334 |
|
|
New_Occurrence_Of (First_Entity (T), Loc));
|
3335 |
|
|
|
3336 |
|
|
Nam :=
|
3337 |
|
|
Make_Selected_Component (Loc,
|
3338 |
|
|
Prefix => Unchecked_Convert_To (T, Ptr),
|
3339 |
|
|
Selector_Name =>
|
3340 |
|
|
New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
|
3341 |
|
|
|
3342 |
|
|
Nam :=
|
3343 |
|
|
Make_Explicit_Dereference (Loc,
|
3344 |
|
|
Prefix => Nam);
|
3345 |
|
|
|
3346 |
|
|
if Present (Parameter_Associations (Call_Node)) then
|
3347 |
|
|
Parm := Parameter_Associations (Call_Node);
|
3348 |
|
|
else
|
3349 |
|
|
Parm := New_List;
|
3350 |
|
|
end if;
|
3351 |
|
|
|
3352 |
|
|
Prepend (Obj, Parm);
|
3353 |
|
|
|
3354 |
|
|
if Etype (D_T) = Standard_Void_Type then
|
3355 |
|
|
Call :=
|
3356 |
|
|
Make_Procedure_Call_Statement (Loc,
|
3357 |
|
|
Name => Nam,
|
3358 |
|
|
Parameter_Associations => Parm);
|
3359 |
|
|
else
|
3360 |
|
|
Call :=
|
3361 |
|
|
Make_Function_Call (Loc,
|
3362 |
|
|
Name => Nam,
|
3363 |
|
|
Parameter_Associations => Parm);
|
3364 |
|
|
end if;
|
3365 |
|
|
|
3366 |
|
|
Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
|
3367 |
|
|
Set_Etype (Call, Etype (D_T));
|
3368 |
|
|
|
3369 |
|
|
-- We do not re-analyze the call to avoid infinite recursion.
|
3370 |
|
|
-- We analyze separately the prefix and the object, and set
|
3371 |
|
|
-- the checks on the prefix that would otherwise be emitted
|
3372 |
|
|
-- when resolving a call.
|
3373 |
|
|
|
3374 |
|
|
Rewrite (Call_Node, Call);
|
3375 |
|
|
Analyze (Nam);
|
3376 |
|
|
Apply_Access_Check (Nam);
|
3377 |
|
|
Analyze (Obj);
|
3378 |
|
|
return;
|
3379 |
|
|
end;
|
3380 |
|
|
end if;
|
3381 |
|
|
end if;
|
3382 |
|
|
|
3383 |
|
|
-- If this is a call to an intrinsic subprogram, then perform the
|
3384 |
|
|
-- appropriate expansion to the corresponding tree node and we
|
3385 |
|
|
-- are all done (since after that the call is gone!)
|
3386 |
|
|
|
3387 |
|
|
-- In the case where the intrinsic is to be processed by the back end,
|
3388 |
|
|
-- the call to Expand_Intrinsic_Call will do nothing, which is fine,
|
3389 |
|
|
-- since the idea in this case is to pass the call unchanged. If the
|
3390 |
|
|
-- intrinsic is an inherited unchecked conversion, and the derived type
|
3391 |
|
|
-- is the target type of the conversion, we must retain it as the return
|
3392 |
|
|
-- type of the expression. Otherwise the expansion below, which uses the
|
3393 |
|
|
-- parent operation, will yield the wrong type.
|
3394 |
|
|
|
3395 |
|
|
if Is_Intrinsic_Subprogram (Subp) then
|
3396 |
|
|
Expand_Intrinsic_Call (Call_Node, Subp);
|
3397 |
|
|
|
3398 |
|
|
if Nkind (Call_Node) = N_Unchecked_Type_Conversion
|
3399 |
|
|
and then Parent_Subp /= Orig_Subp
|
3400 |
|
|
and then Etype (Parent_Subp) /= Etype (Orig_Subp)
|
3401 |
|
|
then
|
3402 |
|
|
Set_Etype (Call_Node, Etype (Orig_Subp));
|
3403 |
|
|
end if;
|
3404 |
|
|
|
3405 |
|
|
return;
|
3406 |
|
|
end if;
|
3407 |
|
|
|
3408 |
|
|
if Ekind_In (Subp, E_Function, E_Procedure) then
|
3409 |
|
|
|
3410 |
|
|
-- We perform two simple optimization on calls:
|
3411 |
|
|
|
3412 |
|
|
-- a) replace calls to null procedures unconditionally;
|
3413 |
|
|
|
3414 |
|
|
-- b) for To_Address, just do an unchecked conversion. Not only is
|
3415 |
|
|
-- this efficient, but it also avoids order of elaboration problems
|
3416 |
|
|
-- when address clauses are inlined (address expression elaborated
|
3417 |
|
|
-- at the wrong point).
|
3418 |
|
|
|
3419 |
|
|
-- We perform these optimization regardless of whether we are in the
|
3420 |
|
|
-- main unit or in a unit in the context of the main unit, to ensure
|
3421 |
|
|
-- that tree generated is the same in both cases, for Inspector use.
|
3422 |
|
|
|
3423 |
|
|
if Is_RTE (Subp, RE_To_Address) then
|
3424 |
|
|
Rewrite (Call_Node,
|
3425 |
|
|
Unchecked_Convert_To
|
3426 |
|
|
(RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
|
3427 |
|
|
return;
|
3428 |
|
|
|
3429 |
|
|
elsif Is_Null_Procedure (Subp) then
|
3430 |
|
|
Rewrite (Call_Node, Make_Null_Statement (Loc));
|
3431 |
|
|
return;
|
3432 |
|
|
end if;
|
3433 |
|
|
|
3434 |
|
|
if Is_Inlined (Subp) then
|
3435 |
|
|
|
3436 |
|
|
Inlined_Subprogram : declare
|
3437 |
|
|
Bod : Node_Id;
|
3438 |
|
|
Must_Inline : Boolean := False;
|
3439 |
|
|
Spec : constant Node_Id := Unit_Declaration_Node (Subp);
|
3440 |
|
|
Scop : constant Entity_Id := Scope (Subp);
|
3441 |
|
|
|
3442 |
|
|
function In_Unfrozen_Instance return Boolean;
|
3443 |
|
|
-- If the subprogram comes from an instance in the same unit,
|
3444 |
|
|
-- and the instance is not yet frozen, inlining might trigger
|
3445 |
|
|
-- order-of-elaboration problems in gigi.
|
3446 |
|
|
|
3447 |
|
|
--------------------------
|
3448 |
|
|
-- In_Unfrozen_Instance --
|
3449 |
|
|
--------------------------
|
3450 |
|
|
|
3451 |
|
|
function In_Unfrozen_Instance return Boolean is
|
3452 |
|
|
S : Entity_Id;
|
3453 |
|
|
|
3454 |
|
|
begin
|
3455 |
|
|
S := Scop;
|
3456 |
|
|
while Present (S)
|
3457 |
|
|
and then S /= Standard_Standard
|
3458 |
|
|
loop
|
3459 |
|
|
if Is_Generic_Instance (S)
|
3460 |
|
|
and then Present (Freeze_Node (S))
|
3461 |
|
|
and then not Analyzed (Freeze_Node (S))
|
3462 |
|
|
then
|
3463 |
|
|
return True;
|
3464 |
|
|
end if;
|
3465 |
|
|
|
3466 |
|
|
S := Scope (S);
|
3467 |
|
|
end loop;
|
3468 |
|
|
|
3469 |
|
|
return False;
|
3470 |
|
|
end In_Unfrozen_Instance;
|
3471 |
|
|
|
3472 |
|
|
-- Start of processing for Inlined_Subprogram
|
3473 |
|
|
|
3474 |
|
|
begin
|
3475 |
|
|
-- Verify that the body to inline has already been seen, and
|
3476 |
|
|
-- that if the body is in the current unit the inlining does
|
3477 |
|
|
-- not occur earlier. This avoids order-of-elaboration problems
|
3478 |
|
|
-- in the back end.
|
3479 |
|
|
|
3480 |
|
|
-- This should be documented in sinfo/einfo ???
|
3481 |
|
|
|
3482 |
|
|
if No (Spec)
|
3483 |
|
|
or else Nkind (Spec) /= N_Subprogram_Declaration
|
3484 |
|
|
or else No (Body_To_Inline (Spec))
|
3485 |
|
|
then
|
3486 |
|
|
Must_Inline := False;
|
3487 |
|
|
|
3488 |
|
|
-- If this an inherited function that returns a private type,
|
3489 |
|
|
-- do not inline if the full view is an unconstrained array,
|
3490 |
|
|
-- because such calls cannot be inlined.
|
3491 |
|
|
|
3492 |
|
|
elsif Present (Orig_Subp)
|
3493 |
|
|
and then Is_Array_Type (Etype (Orig_Subp))
|
3494 |
|
|
and then not Is_Constrained (Etype (Orig_Subp))
|
3495 |
|
|
then
|
3496 |
|
|
Must_Inline := False;
|
3497 |
|
|
|
3498 |
|
|
elsif In_Unfrozen_Instance then
|
3499 |
|
|
Must_Inline := False;
|
3500 |
|
|
|
3501 |
|
|
else
|
3502 |
|
|
Bod := Body_To_Inline (Spec);
|
3503 |
|
|
|
3504 |
|
|
if (In_Extended_Main_Code_Unit (Call_Node)
|
3505 |
|
|
or else In_Extended_Main_Code_Unit (Parent (Call_Node))
|
3506 |
|
|
or else Has_Pragma_Inline_Always (Subp))
|
3507 |
|
|
and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
|
3508 |
|
|
or else
|
3509 |
|
|
Earlier_In_Extended_Unit (Sloc (Bod), Loc))
|
3510 |
|
|
then
|
3511 |
|
|
Must_Inline := True;
|
3512 |
|
|
|
3513 |
|
|
-- If we are compiling a package body that is not the main
|
3514 |
|
|
-- unit, it must be for inlining/instantiation purposes,
|
3515 |
|
|
-- in which case we inline the call to insure that the same
|
3516 |
|
|
-- temporaries are generated when compiling the body by
|
3517 |
|
|
-- itself. Otherwise link errors can occur.
|
3518 |
|
|
|
3519 |
|
|
-- If the function being called is itself in the main unit,
|
3520 |
|
|
-- we cannot inline, because there is a risk of double
|
3521 |
|
|
-- elaboration and/or circularity: the inlining can make
|
3522 |
|
|
-- visible a private entity in the body of the main unit,
|
3523 |
|
|
-- that gigi will see before its sees its proper definition.
|
3524 |
|
|
|
3525 |
|
|
elsif not (In_Extended_Main_Code_Unit (Call_Node))
|
3526 |
|
|
and then In_Package_Body
|
3527 |
|
|
then
|
3528 |
|
|
Must_Inline := not In_Extended_Main_Source_Unit (Subp);
|
3529 |
|
|
end if;
|
3530 |
|
|
end if;
|
3531 |
|
|
|
3532 |
|
|
if Must_Inline then
|
3533 |
|
|
Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
|
3534 |
|
|
|
3535 |
|
|
else
|
3536 |
|
|
-- Let the back end handle it
|
3537 |
|
|
|
3538 |
|
|
Add_Inlined_Body (Subp);
|
3539 |
|
|
|
3540 |
|
|
if Front_End_Inlining
|
3541 |
|
|
and then Nkind (Spec) = N_Subprogram_Declaration
|
3542 |
|
|
and then (In_Extended_Main_Code_Unit (Call_Node))
|
3543 |
|
|
and then No (Body_To_Inline (Spec))
|
3544 |
|
|
and then not Has_Completion (Subp)
|
3545 |
|
|
and then In_Same_Extended_Unit (Sloc (Spec), Loc)
|
3546 |
|
|
then
|
3547 |
|
|
Cannot_Inline
|
3548 |
|
|
("cannot inline& (body not seen yet)?", Call_Node, Subp);
|
3549 |
|
|
end if;
|
3550 |
|
|
end if;
|
3551 |
|
|
end Inlined_Subprogram;
|
3552 |
|
|
end if;
|
3553 |
|
|
end if;
|
3554 |
|
|
|
3555 |
|
|
-- Check for protected subprogram. This is either an intra-object call,
|
3556 |
|
|
-- or a protected function call. Protected procedure calls are rewritten
|
3557 |
|
|
-- as entry calls and handled accordingly.
|
3558 |
|
|
|
3559 |
|
|
-- In Ada 2005, this may be an indirect call to an access parameter that
|
3560 |
|
|
-- is an access_to_subprogram. In that case the anonymous type has a
|
3561 |
|
|
-- scope that is a protected operation, but the call is a regular one.
|
3562 |
|
|
-- In either case do not expand call if subprogram is eliminated.
|
3563 |
|
|
|
3564 |
|
|
Scop := Scope (Subp);
|
3565 |
|
|
|
3566 |
|
|
if Nkind (Call_Node) /= N_Entry_Call_Statement
|
3567 |
|
|
and then Is_Protected_Type (Scop)
|
3568 |
|
|
and then Ekind (Subp) /= E_Subprogram_Type
|
3569 |
|
|
and then not Is_Eliminated (Subp)
|
3570 |
|
|
then
|
3571 |
|
|
-- If the call is an internal one, it is rewritten as a call to the
|
3572 |
|
|
-- corresponding unprotected subprogram.
|
3573 |
|
|
|
3574 |
|
|
Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
|
3575 |
|
|
end if;
|
3576 |
|
|
|
3577 |
|
|
-- Functions returning controlled objects need special attention. If
|
3578 |
|
|
-- the return type is limited, then the context is initialization and
|
3579 |
|
|
-- different processing applies. If the call is to a protected function,
|
3580 |
|
|
-- the expansion above will call Expand_Call recursively. Otherwise the
|
3581 |
|
|
-- function call is transformed into a temporary which obtains the
|
3582 |
|
|
-- result from the secondary stack.
|
3583 |
|
|
|
3584 |
|
|
if Needs_Finalization (Etype (Subp)) then
|
3585 |
|
|
if not Is_Immutably_Limited_Type (Etype (Subp))
|
3586 |
|
|
and then
|
3587 |
|
|
(No (First_Formal (Subp))
|
3588 |
|
|
or else
|
3589 |
|
|
not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
|
3590 |
|
|
then
|
3591 |
|
|
Expand_Ctrl_Function_Call (Call_Node);
|
3592 |
|
|
|
3593 |
|
|
-- Build-in-place function calls which appear in anonymous contexts
|
3594 |
|
|
-- need a transient scope to ensure the proper finalization of the
|
3595 |
|
|
-- intermediate result after its use.
|
3596 |
|
|
|
3597 |
|
|
elsif Is_Build_In_Place_Function_Call (Call_Node)
|
3598 |
|
|
and then Nkind_In (Parent (Call_Node), N_Attribute_Reference,
|
3599 |
|
|
N_Function_Call,
|
3600 |
|
|
N_Indexed_Component,
|
3601 |
|
|
N_Object_Renaming_Declaration,
|
3602 |
|
|
N_Procedure_Call_Statement,
|
3603 |
|
|
N_Selected_Component,
|
3604 |
|
|
N_Slice)
|
3605 |
|
|
then
|
3606 |
|
|
Establish_Transient_Scope (Call_Node, Sec_Stack => True);
|
3607 |
|
|
end if;
|
3608 |
|
|
end if;
|
3609 |
|
|
|
3610 |
|
|
-- Test for First_Optional_Parameter, and if so, truncate parameter list
|
3611 |
|
|
-- if there are optional parameters at the trailing end.
|
3612 |
|
|
-- Note: we never delete procedures for call via a pointer.
|
3613 |
|
|
|
3614 |
|
|
if (Ekind (Subp) = E_Procedure or else Ekind (Subp) = E_Function)
|
3615 |
|
|
and then Present (First_Optional_Parameter (Subp))
|
3616 |
|
|
then
|
3617 |
|
|
declare
|
3618 |
|
|
Last_Keep_Arg : Node_Id;
|
3619 |
|
|
|
3620 |
|
|
begin
|
3621 |
|
|
-- Last_Keep_Arg will hold the last actual that should be kept.
|
3622 |
|
|
-- If it remains empty at the end, it means that all parameters
|
3623 |
|
|
-- are optional.
|
3624 |
|
|
|
3625 |
|
|
Last_Keep_Arg := Empty;
|
3626 |
|
|
|
3627 |
|
|
-- Find first optional parameter, must be present since we checked
|
3628 |
|
|
-- the validity of the parameter before setting it.
|
3629 |
|
|
|
3630 |
|
|
Formal := First_Formal (Subp);
|
3631 |
|
|
Actual := First_Actual (Call_Node);
|
3632 |
|
|
while Formal /= First_Optional_Parameter (Subp) loop
|
3633 |
|
|
Last_Keep_Arg := Actual;
|
3634 |
|
|
Next_Formal (Formal);
|
3635 |
|
|
Next_Actual (Actual);
|
3636 |
|
|
end loop;
|
3637 |
|
|
|
3638 |
|
|
-- We have Formal and Actual pointing to the first potentially
|
3639 |
|
|
-- droppable argument. We can drop all the trailing arguments
|
3640 |
|
|
-- whose actual matches the default. Note that we know that all
|
3641 |
|
|
-- remaining formals have defaults, because we checked that this
|
3642 |
|
|
-- requirement was met before setting First_Optional_Parameter.
|
3643 |
|
|
|
3644 |
|
|
-- We use Fully_Conformant_Expressions to check for identity
|
3645 |
|
|
-- between formals and actuals, which may miss some cases, but
|
3646 |
|
|
-- on the other hand, this is only an optimization (if we fail
|
3647 |
|
|
-- to truncate a parameter it does not affect functionality).
|
3648 |
|
|
-- So if the default is 3 and the actual is 1+2, we consider
|
3649 |
|
|
-- them unequal, which hardly seems worrisome.
|
3650 |
|
|
|
3651 |
|
|
while Present (Formal) loop
|
3652 |
|
|
if not Fully_Conformant_Expressions
|
3653 |
|
|
(Actual, Default_Value (Formal))
|
3654 |
|
|
then
|
3655 |
|
|
Last_Keep_Arg := Actual;
|
3656 |
|
|
end if;
|
3657 |
|
|
|
3658 |
|
|
Next_Formal (Formal);
|
3659 |
|
|
Next_Actual (Actual);
|
3660 |
|
|
end loop;
|
3661 |
|
|
|
3662 |
|
|
-- If no arguments, delete entire list, this is the easy case
|
3663 |
|
|
|
3664 |
|
|
if No (Last_Keep_Arg) then
|
3665 |
|
|
Set_Parameter_Associations (Call_Node, No_List);
|
3666 |
|
|
Set_First_Named_Actual (Call_Node, Empty);
|
3667 |
|
|
|
3668 |
|
|
-- Case where at the last retained argument is positional. This
|
3669 |
|
|
-- is also an easy case, since the retained arguments are already
|
3670 |
|
|
-- in the right form, and we don't need to worry about the order
|
3671 |
|
|
-- of arguments that get eliminated.
|
3672 |
|
|
|
3673 |
|
|
elsif Is_List_Member (Last_Keep_Arg) then
|
3674 |
|
|
while Present (Next (Last_Keep_Arg)) loop
|
3675 |
|
|
Discard_Node (Remove_Next (Last_Keep_Arg));
|
3676 |
|
|
end loop;
|
3677 |
|
|
|
3678 |
|
|
Set_First_Named_Actual (Call_Node, Empty);
|
3679 |
|
|
|
3680 |
|
|
-- This is the annoying case where the last retained argument
|
3681 |
|
|
-- is a named parameter. Since the original arguments are not
|
3682 |
|
|
-- in declaration order, we may have to delete some fairly
|
3683 |
|
|
-- random collection of arguments.
|
3684 |
|
|
|
3685 |
|
|
else
|
3686 |
|
|
declare
|
3687 |
|
|
Temp : Node_Id;
|
3688 |
|
|
Passoc : Node_Id;
|
3689 |
|
|
|
3690 |
|
|
begin
|
3691 |
|
|
-- First step, remove all the named parameters from the
|
3692 |
|
|
-- list (they are still chained using First_Named_Actual
|
3693 |
|
|
-- and Next_Named_Actual, so we have not lost them!)
|
3694 |
|
|
|
3695 |
|
|
Temp := First (Parameter_Associations (Call_Node));
|
3696 |
|
|
|
3697 |
|
|
-- Case of all parameters named, remove them all
|
3698 |
|
|
|
3699 |
|
|
if Nkind (Temp) = N_Parameter_Association then
|
3700 |
|
|
-- Suppress warnings to avoid warning on possible
|
3701 |
|
|
-- infinite loop (because Call_Node is not modified).
|
3702 |
|
|
|
3703 |
|
|
pragma Warnings (Off);
|
3704 |
|
|
while Is_Non_Empty_List
|
3705 |
|
|
(Parameter_Associations (Call_Node))
|
3706 |
|
|
loop
|
3707 |
|
|
Temp :=
|
3708 |
|
|
Remove_Head (Parameter_Associations (Call_Node));
|
3709 |
|
|
end loop;
|
3710 |
|
|
pragma Warnings (On);
|
3711 |
|
|
|
3712 |
|
|
-- Case of mixed positional/named, remove named parameters
|
3713 |
|
|
|
3714 |
|
|
else
|
3715 |
|
|
while Nkind (Next (Temp)) /= N_Parameter_Association loop
|
3716 |
|
|
Next (Temp);
|
3717 |
|
|
end loop;
|
3718 |
|
|
|
3719 |
|
|
while Present (Next (Temp)) loop
|
3720 |
|
|
Remove (Next (Temp));
|
3721 |
|
|
end loop;
|
3722 |
|
|
end if;
|
3723 |
|
|
|
3724 |
|
|
-- Now we loop through the named parameters, till we get
|
3725 |
|
|
-- to the last one to be retained, adding them to the list.
|
3726 |
|
|
-- Note that the Next_Named_Actual list does not need to be
|
3727 |
|
|
-- touched since we are only reordering them on the actual
|
3728 |
|
|
-- parameter association list.
|
3729 |
|
|
|
3730 |
|
|
Passoc := Parent (First_Named_Actual (Call_Node));
|
3731 |
|
|
loop
|
3732 |
|
|
Temp := Relocate_Node (Passoc);
|
3733 |
|
|
Append_To
|
3734 |
|
|
(Parameter_Associations (Call_Node), Temp);
|
3735 |
|
|
exit when
|
3736 |
|
|
Last_Keep_Arg = Explicit_Actual_Parameter (Passoc);
|
3737 |
|
|
Passoc := Parent (Next_Named_Actual (Passoc));
|
3738 |
|
|
end loop;
|
3739 |
|
|
|
3740 |
|
|
Set_Next_Named_Actual (Temp, Empty);
|
3741 |
|
|
|
3742 |
|
|
loop
|
3743 |
|
|
Temp := Next_Named_Actual (Passoc);
|
3744 |
|
|
exit when No (Temp);
|
3745 |
|
|
Set_Next_Named_Actual
|
3746 |
|
|
(Passoc, Next_Named_Actual (Parent (Temp)));
|
3747 |
|
|
end loop;
|
3748 |
|
|
end;
|
3749 |
|
|
|
3750 |
|
|
end if;
|
3751 |
|
|
end;
|
3752 |
|
|
end if;
|
3753 |
|
|
end Expand_Call;
|
3754 |
|
|
|
3755 |
|
|
-------------------------------
|
3756 |
|
|
-- Expand_Ctrl_Function_Call --
|
3757 |
|
|
-------------------------------
|
3758 |
|
|
|
3759 |
|
|
procedure Expand_Ctrl_Function_Call (N : Node_Id) is
|
3760 |
|
|
begin
|
3761 |
|
|
-- Optimization, if the returned value (which is on the sec-stack) is
|
3762 |
|
|
-- returned again, no need to copy/readjust/finalize, we can just pass
|
3763 |
|
|
-- the value thru (see Expand_N_Simple_Return_Statement), and thus no
|
3764 |
|
|
-- attachment is needed
|
3765 |
|
|
|
3766 |
|
|
if Nkind (Parent (N)) = N_Simple_Return_Statement then
|
3767 |
|
|
return;
|
3768 |
|
|
end if;
|
3769 |
|
|
|
3770 |
|
|
-- Resolution is now finished, make sure we don't start analysis again
|
3771 |
|
|
-- because of the duplication.
|
3772 |
|
|
|
3773 |
|
|
Set_Analyzed (N);
|
3774 |
|
|
|
3775 |
|
|
-- A function which returns a controlled object uses the secondary
|
3776 |
|
|
-- stack. Rewrite the call into a temporary which obtains the result of
|
3777 |
|
|
-- the function using 'reference.
|
3778 |
|
|
|
3779 |
|
|
Remove_Side_Effects (N);
|
3780 |
|
|
end Expand_Ctrl_Function_Call;
|
3781 |
|
|
|
3782 |
|
|
--------------------------
|
3783 |
|
|
-- Expand_Inlined_Call --
|
3784 |
|
|
--------------------------
|
3785 |
|
|
|
3786 |
|
|
procedure Expand_Inlined_Call
|
3787 |
|
|
(N : Node_Id;
|
3788 |
|
|
Subp : Entity_Id;
|
3789 |
|
|
Orig_Subp : Entity_Id)
|
3790 |
|
|
is
|
3791 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3792 |
|
|
Is_Predef : constant Boolean :=
|
3793 |
|
|
Is_Predefined_File_Name
|
3794 |
|
|
(Unit_File_Name (Get_Source_Unit (Subp)));
|
3795 |
|
|
Orig_Bod : constant Node_Id :=
|
3796 |
|
|
Body_To_Inline (Unit_Declaration_Node (Subp));
|
3797 |
|
|
|
3798 |
|
|
Blk : Node_Id;
|
3799 |
|
|
Bod : Node_Id;
|
3800 |
|
|
Decl : Node_Id;
|
3801 |
|
|
Decls : constant List_Id := New_List;
|
3802 |
|
|
Exit_Lab : Entity_Id := Empty;
|
3803 |
|
|
F : Entity_Id;
|
3804 |
|
|
A : Node_Id;
|
3805 |
|
|
Lab_Decl : Node_Id;
|
3806 |
|
|
Lab_Id : Node_Id;
|
3807 |
|
|
New_A : Node_Id;
|
3808 |
|
|
Num_Ret : Int := 0;
|
3809 |
|
|
Ret_Type : Entity_Id;
|
3810 |
|
|
|
3811 |
|
|
Targ : Node_Id;
|
3812 |
|
|
-- The target of the call. If context is an assignment statement then
|
3813 |
|
|
-- this is the left-hand side of the assignment. else it is a temporary
|
3814 |
|
|
-- to which the return value is assigned prior to rewriting the call.
|
3815 |
|
|
|
3816 |
|
|
Targ1 : Node_Id;
|
3817 |
|
|
-- A separate target used when the return type is unconstrained
|
3818 |
|
|
|
3819 |
|
|
Temp : Entity_Id;
|
3820 |
|
|
Temp_Typ : Entity_Id;
|
3821 |
|
|
|
3822 |
|
|
Return_Object : Entity_Id := Empty;
|
3823 |
|
|
-- Entity in declaration in an extended_return_statement
|
3824 |
|
|
|
3825 |
|
|
Is_Unc : constant Boolean :=
|
3826 |
|
|
Is_Array_Type (Etype (Subp))
|
3827 |
|
|
and then not Is_Constrained (Etype (Subp));
|
3828 |
|
|
-- If the type returned by the function is unconstrained and the call
|
3829 |
|
|
-- can be inlined, special processing is required.
|
3830 |
|
|
|
3831 |
|
|
procedure Make_Exit_Label;
|
3832 |
|
|
-- Build declaration for exit label to be used in Return statements,
|
3833 |
|
|
-- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
|
3834 |
|
|
-- declaration). Does nothing if Exit_Lab already set.
|
3835 |
|
|
|
3836 |
|
|
function Process_Formals (N : Node_Id) return Traverse_Result;
|
3837 |
|
|
-- Replace occurrence of a formal with the corresponding actual, or the
|
3838 |
|
|
-- thunk generated for it.
|
3839 |
|
|
|
3840 |
|
|
function Process_Sloc (Nod : Node_Id) return Traverse_Result;
|
3841 |
|
|
-- If the call being expanded is that of an internal subprogram, set the
|
3842 |
|
|
-- sloc of the generated block to that of the call itself, so that the
|
3843 |
|
|
-- expansion is skipped by the "next" command in gdb.
|
3844 |
|
|
-- Same processing for a subprogram in a predefined file, e.g.
|
3845 |
|
|
-- Ada.Tags. If Debug_Generated_Code is true, suppress this change to
|
3846 |
|
|
-- simplify our own development.
|
3847 |
|
|
|
3848 |
|
|
procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
|
3849 |
|
|
-- If the function body is a single expression, replace call with
|
3850 |
|
|
-- expression, else insert block appropriately.
|
3851 |
|
|
|
3852 |
|
|
procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
|
3853 |
|
|
-- If procedure body has no local variables, inline body without
|
3854 |
|
|
-- creating block, otherwise rewrite call with block.
|
3855 |
|
|
|
3856 |
|
|
function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
|
3857 |
|
|
-- Determine whether a formal parameter is used only once in Orig_Bod
|
3858 |
|
|
|
3859 |
|
|
---------------------
|
3860 |
|
|
-- Make_Exit_Label --
|
3861 |
|
|
---------------------
|
3862 |
|
|
|
3863 |
|
|
procedure Make_Exit_Label is
|
3864 |
|
|
Lab_Ent : Entity_Id;
|
3865 |
|
|
begin
|
3866 |
|
|
if No (Exit_Lab) then
|
3867 |
|
|
Lab_Ent := Make_Temporary (Loc, 'L');
|
3868 |
|
|
Lab_Id := New_Reference_To (Lab_Ent, Loc);
|
3869 |
|
|
Exit_Lab := Make_Label (Loc, Lab_Id);
|
3870 |
|
|
Lab_Decl :=
|
3871 |
|
|
Make_Implicit_Label_Declaration (Loc,
|
3872 |
|
|
Defining_Identifier => Lab_Ent,
|
3873 |
|
|
Label_Construct => Exit_Lab);
|
3874 |
|
|
end if;
|
3875 |
|
|
end Make_Exit_Label;
|
3876 |
|
|
|
3877 |
|
|
---------------------
|
3878 |
|
|
-- Process_Formals --
|
3879 |
|
|
---------------------
|
3880 |
|
|
|
3881 |
|
|
function Process_Formals (N : Node_Id) return Traverse_Result is
|
3882 |
|
|
A : Entity_Id;
|
3883 |
|
|
E : Entity_Id;
|
3884 |
|
|
Ret : Node_Id;
|
3885 |
|
|
|
3886 |
|
|
begin
|
3887 |
|
|
if Is_Entity_Name (N)
|
3888 |
|
|
and then Present (Entity (N))
|
3889 |
|
|
then
|
3890 |
|
|
E := Entity (N);
|
3891 |
|
|
|
3892 |
|
|
if Is_Formal (E)
|
3893 |
|
|
and then Scope (E) = Subp
|
3894 |
|
|
then
|
3895 |
|
|
A := Renamed_Object (E);
|
3896 |
|
|
|
3897 |
|
|
-- Rewrite the occurrence of the formal into an occurrence of
|
3898 |
|
|
-- the actual. Also establish visibility on the proper view of
|
3899 |
|
|
-- the actual's subtype for the body's context (if the actual's
|
3900 |
|
|
-- subtype is private at the call point but its full view is
|
3901 |
|
|
-- visible to the body, then the inlined tree here must be
|
3902 |
|
|
-- analyzed with the full view).
|
3903 |
|
|
|
3904 |
|
|
if Is_Entity_Name (A) then
|
3905 |
|
|
Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
|
3906 |
|
|
Check_Private_View (N);
|
3907 |
|
|
|
3908 |
|
|
elsif Nkind (A) = N_Defining_Identifier then
|
3909 |
|
|
Rewrite (N, New_Occurrence_Of (A, Loc));
|
3910 |
|
|
Check_Private_View (N);
|
3911 |
|
|
|
3912 |
|
|
-- Numeric literal
|
3913 |
|
|
|
3914 |
|
|
else
|
3915 |
|
|
Rewrite (N, New_Copy (A));
|
3916 |
|
|
end if;
|
3917 |
|
|
end if;
|
3918 |
|
|
|
3919 |
|
|
return Skip;
|
3920 |
|
|
|
3921 |
|
|
elsif Is_Entity_Name (N)
|
3922 |
|
|
and then Present (Return_Object)
|
3923 |
|
|
and then Chars (N) = Chars (Return_Object)
|
3924 |
|
|
then
|
3925 |
|
|
-- Occurrence within an extended return statement. The return
|
3926 |
|
|
-- object is local to the body been inlined, and thus the generic
|
3927 |
|
|
-- copy is not analyzed yet, so we match by name, and replace it
|
3928 |
|
|
-- with target of call.
|
3929 |
|
|
|
3930 |
|
|
if Nkind (Targ) = N_Defining_Identifier then
|
3931 |
|
|
Rewrite (N, New_Occurrence_Of (Targ, Loc));
|
3932 |
|
|
else
|
3933 |
|
|
Rewrite (N, New_Copy_Tree (Targ));
|
3934 |
|
|
end if;
|
3935 |
|
|
|
3936 |
|
|
return Skip;
|
3937 |
|
|
|
3938 |
|
|
elsif Nkind (N) = N_Simple_Return_Statement then
|
3939 |
|
|
if No (Expression (N)) then
|
3940 |
|
|
Make_Exit_Label;
|
3941 |
|
|
Rewrite (N,
|
3942 |
|
|
Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
|
3943 |
|
|
|
3944 |
|
|
else
|
3945 |
|
|
if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
|
3946 |
|
|
and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
|
3947 |
|
|
then
|
3948 |
|
|
-- Function body is a single expression. No need for
|
3949 |
|
|
-- exit label.
|
3950 |
|
|
|
3951 |
|
|
null;
|
3952 |
|
|
|
3953 |
|
|
else
|
3954 |
|
|
Num_Ret := Num_Ret + 1;
|
3955 |
|
|
Make_Exit_Label;
|
3956 |
|
|
end if;
|
3957 |
|
|
|
3958 |
|
|
-- Because of the presence of private types, the views of the
|
3959 |
|
|
-- expression and the context may be different, so place an
|
3960 |
|
|
-- unchecked conversion to the context type to avoid spurious
|
3961 |
|
|
-- errors, e.g. when the expression is a numeric literal and
|
3962 |
|
|
-- the context is private. If the expression is an aggregate,
|
3963 |
|
|
-- use a qualified expression, because an aggregate is not a
|
3964 |
|
|
-- legal argument of a conversion.
|
3965 |
|
|
|
3966 |
|
|
if Nkind_In (Expression (N), N_Aggregate, N_Null) then
|
3967 |
|
|
Ret :=
|
3968 |
|
|
Make_Qualified_Expression (Sloc (N),
|
3969 |
|
|
Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
|
3970 |
|
|
Expression => Relocate_Node (Expression (N)));
|
3971 |
|
|
else
|
3972 |
|
|
Ret :=
|
3973 |
|
|
Unchecked_Convert_To
|
3974 |
|
|
(Ret_Type, Relocate_Node (Expression (N)));
|
3975 |
|
|
end if;
|
3976 |
|
|
|
3977 |
|
|
if Nkind (Targ) = N_Defining_Identifier then
|
3978 |
|
|
Rewrite (N,
|
3979 |
|
|
Make_Assignment_Statement (Loc,
|
3980 |
|
|
Name => New_Occurrence_Of (Targ, Loc),
|
3981 |
|
|
Expression => Ret));
|
3982 |
|
|
else
|
3983 |
|
|
Rewrite (N,
|
3984 |
|
|
Make_Assignment_Statement (Loc,
|
3985 |
|
|
Name => New_Copy (Targ),
|
3986 |
|
|
Expression => Ret));
|
3987 |
|
|
end if;
|
3988 |
|
|
|
3989 |
|
|
Set_Assignment_OK (Name (N));
|
3990 |
|
|
|
3991 |
|
|
if Present (Exit_Lab) then
|
3992 |
|
|
Insert_After (N,
|
3993 |
|
|
Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
|
3994 |
|
|
end if;
|
3995 |
|
|
end if;
|
3996 |
|
|
|
3997 |
|
|
return OK;
|
3998 |
|
|
|
3999 |
|
|
-- An extended return becomes a block whose first statement is the
|
4000 |
|
|
-- assignment of the initial expression of the return object to the
|
4001 |
|
|
-- target of the call itself.
|
4002 |
|
|
|
4003 |
|
|
elsif Nkind (N) = N_Extended_Return_Statement then
|
4004 |
|
|
declare
|
4005 |
|
|
Return_Decl : constant Entity_Id :=
|
4006 |
|
|
First (Return_Object_Declarations (N));
|
4007 |
|
|
Assign : Node_Id;
|
4008 |
|
|
|
4009 |
|
|
begin
|
4010 |
|
|
Return_Object := Defining_Identifier (Return_Decl);
|
4011 |
|
|
|
4012 |
|
|
if Present (Expression (Return_Decl)) then
|
4013 |
|
|
if Nkind (Targ) = N_Defining_Identifier then
|
4014 |
|
|
Assign :=
|
4015 |
|
|
Make_Assignment_Statement (Loc,
|
4016 |
|
|
Name => New_Occurrence_Of (Targ, Loc),
|
4017 |
|
|
Expression => Expression (Return_Decl));
|
4018 |
|
|
else
|
4019 |
|
|
Assign :=
|
4020 |
|
|
Make_Assignment_Statement (Loc,
|
4021 |
|
|
Name => New_Copy (Targ),
|
4022 |
|
|
Expression => Expression (Return_Decl));
|
4023 |
|
|
end if;
|
4024 |
|
|
|
4025 |
|
|
Set_Assignment_OK (Name (Assign));
|
4026 |
|
|
Prepend (Assign,
|
4027 |
|
|
Statements (Handled_Statement_Sequence (N)));
|
4028 |
|
|
end if;
|
4029 |
|
|
|
4030 |
|
|
Rewrite (N,
|
4031 |
|
|
Make_Block_Statement (Loc,
|
4032 |
|
|
Handled_Statement_Sequence =>
|
4033 |
|
|
Handled_Statement_Sequence (N)));
|
4034 |
|
|
|
4035 |
|
|
return OK;
|
4036 |
|
|
end;
|
4037 |
|
|
|
4038 |
|
|
-- Remove pragma Unreferenced since it may refer to formals that
|
4039 |
|
|
-- are not visible in the inlined body, and in any case we will
|
4040 |
|
|
-- not be posting warnings on the inlined body so it is unneeded.
|
4041 |
|
|
|
4042 |
|
|
elsif Nkind (N) = N_Pragma
|
4043 |
|
|
and then Pragma_Name (N) = Name_Unreferenced
|
4044 |
|
|
then
|
4045 |
|
|
Rewrite (N, Make_Null_Statement (Sloc (N)));
|
4046 |
|
|
return OK;
|
4047 |
|
|
|
4048 |
|
|
else
|
4049 |
|
|
return OK;
|
4050 |
|
|
end if;
|
4051 |
|
|
end Process_Formals;
|
4052 |
|
|
|
4053 |
|
|
procedure Replace_Formals is new Traverse_Proc (Process_Formals);
|
4054 |
|
|
|
4055 |
|
|
------------------
|
4056 |
|
|
-- Process_Sloc --
|
4057 |
|
|
------------------
|
4058 |
|
|
|
4059 |
|
|
function Process_Sloc (Nod : Node_Id) return Traverse_Result is
|
4060 |
|
|
begin
|
4061 |
|
|
if not Debug_Generated_Code then
|
4062 |
|
|
Set_Sloc (Nod, Sloc (N));
|
4063 |
|
|
Set_Comes_From_Source (Nod, False);
|
4064 |
|
|
end if;
|
4065 |
|
|
|
4066 |
|
|
return OK;
|
4067 |
|
|
end Process_Sloc;
|
4068 |
|
|
|
4069 |
|
|
procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
|
4070 |
|
|
|
4071 |
|
|
---------------------------
|
4072 |
|
|
-- Rewrite_Function_Call --
|
4073 |
|
|
---------------------------
|
4074 |
|
|
|
4075 |
|
|
procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
|
4076 |
|
|
HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
|
4077 |
|
|
Fst : constant Node_Id := First (Statements (HSS));
|
4078 |
|
|
|
4079 |
|
|
begin
|
4080 |
|
|
-- Optimize simple case: function body is a single return statement,
|
4081 |
|
|
-- which has been expanded into an assignment.
|
4082 |
|
|
|
4083 |
|
|
if Is_Empty_List (Declarations (Blk))
|
4084 |
|
|
and then Nkind (Fst) = N_Assignment_Statement
|
4085 |
|
|
and then No (Next (Fst))
|
4086 |
|
|
then
|
4087 |
|
|
-- The function call may have been rewritten as the temporary
|
4088 |
|
|
-- that holds the result of the call, in which case remove the
|
4089 |
|
|
-- now useless declaration.
|
4090 |
|
|
|
4091 |
|
|
if Nkind (N) = N_Identifier
|
4092 |
|
|
and then Nkind (Parent (Entity (N))) = N_Object_Declaration
|
4093 |
|
|
then
|
4094 |
|
|
Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
|
4095 |
|
|
end if;
|
4096 |
|
|
|
4097 |
|
|
Rewrite (N, Expression (Fst));
|
4098 |
|
|
|
4099 |
|
|
elsif Nkind (N) = N_Identifier
|
4100 |
|
|
and then Nkind (Parent (Entity (N))) = N_Object_Declaration
|
4101 |
|
|
then
|
4102 |
|
|
-- The block assigns the result of the call to the temporary
|
4103 |
|
|
|
4104 |
|
|
Insert_After (Parent (Entity (N)), Blk);
|
4105 |
|
|
|
4106 |
|
|
-- If the context is an assignment, and the left-hand side is free of
|
4107 |
|
|
-- side-effects, the replacement is also safe.
|
4108 |
|
|
-- Can this be generalized further???
|
4109 |
|
|
|
4110 |
|
|
elsif Nkind (Parent (N)) = N_Assignment_Statement
|
4111 |
|
|
and then
|
4112 |
|
|
(Is_Entity_Name (Name (Parent (N)))
|
4113 |
|
|
or else
|
4114 |
|
|
(Nkind (Name (Parent (N))) = N_Explicit_Dereference
|
4115 |
|
|
and then Is_Entity_Name (Prefix (Name (Parent (N)))))
|
4116 |
|
|
|
4117 |
|
|
or else
|
4118 |
|
|
(Nkind (Name (Parent (N))) = N_Selected_Component
|
4119 |
|
|
and then Is_Entity_Name (Prefix (Name (Parent (N))))))
|
4120 |
|
|
then
|
4121 |
|
|
-- Replace assignment with the block
|
4122 |
|
|
|
4123 |
|
|
declare
|
4124 |
|
|
Original_Assignment : constant Node_Id := Parent (N);
|
4125 |
|
|
|
4126 |
|
|
begin
|
4127 |
|
|
-- Preserve the original assignment node to keep the complete
|
4128 |
|
|
-- assignment subtree consistent enough for Analyze_Assignment
|
4129 |
|
|
-- to proceed (specifically, the original Lhs node must still
|
4130 |
|
|
-- have an assignment statement as its parent).
|
4131 |
|
|
|
4132 |
|
|
-- We cannot rely on Original_Node to go back from the block
|
4133 |
|
|
-- node to the assignment node, because the assignment might
|
4134 |
|
|
-- already be a rewrite substitution.
|
4135 |
|
|
|
4136 |
|
|
Discard_Node (Relocate_Node (Original_Assignment));
|
4137 |
|
|
Rewrite (Original_Assignment, Blk);
|
4138 |
|
|
end;
|
4139 |
|
|
|
4140 |
|
|
elsif Nkind (Parent (N)) = N_Object_Declaration then
|
4141 |
|
|
Set_Expression (Parent (N), Empty);
|
4142 |
|
|
Insert_After (Parent (N), Blk);
|
4143 |
|
|
|
4144 |
|
|
elsif Is_Unc then
|
4145 |
|
|
Insert_Before (Parent (N), Blk);
|
4146 |
|
|
end if;
|
4147 |
|
|
end Rewrite_Function_Call;
|
4148 |
|
|
|
4149 |
|
|
----------------------------
|
4150 |
|
|
-- Rewrite_Procedure_Call --
|
4151 |
|
|
----------------------------
|
4152 |
|
|
|
4153 |
|
|
procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
|
4154 |
|
|
HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
|
4155 |
|
|
|
4156 |
|
|
begin
|
4157 |
|
|
-- If there is a transient scope for N, this will be the scope of the
|
4158 |
|
|
-- actions for N, and the statements in Blk need to be within this
|
4159 |
|
|
-- scope. For example, they need to have visibility on the constant
|
4160 |
|
|
-- declarations created for the formals.
|
4161 |
|
|
|
4162 |
|
|
-- If N needs no transient scope, and if there are no declarations in
|
4163 |
|
|
-- the inlined body, we can do a little optimization and insert the
|
4164 |
|
|
-- statements for the body directly after N, and rewrite N to a
|
4165 |
|
|
-- null statement, instead of rewriting N into a full-blown block
|
4166 |
|
|
-- statement.
|
4167 |
|
|
|
4168 |
|
|
if not Scope_Is_Transient
|
4169 |
|
|
and then Is_Empty_List (Declarations (Blk))
|
4170 |
|
|
then
|
4171 |
|
|
Insert_List_After (N, Statements (HSS));
|
4172 |
|
|
Rewrite (N, Make_Null_Statement (Loc));
|
4173 |
|
|
else
|
4174 |
|
|
Rewrite (N, Blk);
|
4175 |
|
|
end if;
|
4176 |
|
|
end Rewrite_Procedure_Call;
|
4177 |
|
|
|
4178 |
|
|
-------------------------
|
4179 |
|
|
-- Formal_Is_Used_Once --
|
4180 |
|
|
-------------------------
|
4181 |
|
|
|
4182 |
|
|
function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
|
4183 |
|
|
Use_Counter : Int := 0;
|
4184 |
|
|
|
4185 |
|
|
function Count_Uses (N : Node_Id) return Traverse_Result;
|
4186 |
|
|
-- Traverse the tree and count the uses of the formal parameter.
|
4187 |
|
|
-- In this case, for optimization purposes, we do not need to
|
4188 |
|
|
-- continue the traversal once more than one use is encountered.
|
4189 |
|
|
|
4190 |
|
|
----------------
|
4191 |
|
|
-- Count_Uses --
|
4192 |
|
|
----------------
|
4193 |
|
|
|
4194 |
|
|
function Count_Uses (N : Node_Id) return Traverse_Result is
|
4195 |
|
|
begin
|
4196 |
|
|
-- The original node is an identifier
|
4197 |
|
|
|
4198 |
|
|
if Nkind (N) = N_Identifier
|
4199 |
|
|
and then Present (Entity (N))
|
4200 |
|
|
|
4201 |
|
|
-- Original node's entity points to the one in the copied body
|
4202 |
|
|
|
4203 |
|
|
and then Nkind (Entity (N)) = N_Identifier
|
4204 |
|
|
and then Present (Entity (Entity (N)))
|
4205 |
|
|
|
4206 |
|
|
-- The entity of the copied node is the formal parameter
|
4207 |
|
|
|
4208 |
|
|
and then Entity (Entity (N)) = Formal
|
4209 |
|
|
then
|
4210 |
|
|
Use_Counter := Use_Counter + 1;
|
4211 |
|
|
|
4212 |
|
|
if Use_Counter > 1 then
|
4213 |
|
|
|
4214 |
|
|
-- Denote more than one use and abandon the traversal
|
4215 |
|
|
|
4216 |
|
|
Use_Counter := 2;
|
4217 |
|
|
return Abandon;
|
4218 |
|
|
|
4219 |
|
|
end if;
|
4220 |
|
|
end if;
|
4221 |
|
|
|
4222 |
|
|
return OK;
|
4223 |
|
|
end Count_Uses;
|
4224 |
|
|
|
4225 |
|
|
procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
|
4226 |
|
|
|
4227 |
|
|
-- Start of processing for Formal_Is_Used_Once
|
4228 |
|
|
|
4229 |
|
|
begin
|
4230 |
|
|
Count_Formal_Uses (Orig_Bod);
|
4231 |
|
|
return Use_Counter = 1;
|
4232 |
|
|
end Formal_Is_Used_Once;
|
4233 |
|
|
|
4234 |
|
|
-- Start of processing for Expand_Inlined_Call
|
4235 |
|
|
|
4236 |
|
|
begin
|
4237 |
|
|
-- Check for an illegal attempt to inline a recursive procedure. If the
|
4238 |
|
|
-- subprogram has parameters this is detected when trying to supply a
|
4239 |
|
|
-- binding for parameters that already have one. For parameterless
|
4240 |
|
|
-- subprograms this must be done explicitly.
|
4241 |
|
|
|
4242 |
|
|
if In_Open_Scopes (Subp) then
|
4243 |
|
|
Error_Msg_N ("call to recursive subprogram cannot be inlined?", N);
|
4244 |
|
|
Set_Is_Inlined (Subp, False);
|
4245 |
|
|
return;
|
4246 |
|
|
end if;
|
4247 |
|
|
|
4248 |
|
|
if Nkind (Orig_Bod) = N_Defining_Identifier
|
4249 |
|
|
or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
|
4250 |
|
|
then
|
4251 |
|
|
-- Subprogram is renaming_as_body. Calls occurring after the renaming
|
4252 |
|
|
-- can be replaced with calls to the renamed entity directly, because
|
4253 |
|
|
-- the subprograms are subtype conformant. If the renamed subprogram
|
4254 |
|
|
-- is an inherited operation, we must redo the expansion because
|
4255 |
|
|
-- implicit conversions may be needed. Similarly, if the renamed
|
4256 |
|
|
-- entity is inlined, expand the call for further optimizations.
|
4257 |
|
|
|
4258 |
|
|
Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
|
4259 |
|
|
|
4260 |
|
|
if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
|
4261 |
|
|
Expand_Call (N);
|
4262 |
|
|
end if;
|
4263 |
|
|
|
4264 |
|
|
return;
|
4265 |
|
|
end if;
|
4266 |
|
|
|
4267 |
|
|
-- Use generic machinery to copy body of inlined subprogram, as if it
|
4268 |
|
|
-- were an instantiation, resetting source locations appropriately, so
|
4269 |
|
|
-- that nested inlined calls appear in the main unit.
|
4270 |
|
|
|
4271 |
|
|
Save_Env (Subp, Empty);
|
4272 |
|
|
Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
|
4273 |
|
|
|
4274 |
|
|
Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
|
4275 |
|
|
Blk :=
|
4276 |
|
|
Make_Block_Statement (Loc,
|
4277 |
|
|
Declarations => Declarations (Bod),
|
4278 |
|
|
Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
|
4279 |
|
|
|
4280 |
|
|
if No (Declarations (Bod)) then
|
4281 |
|
|
Set_Declarations (Blk, New_List);
|
4282 |
|
|
end if;
|
4283 |
|
|
|
4284 |
|
|
-- For the unconstrained case, capture the name of the local variable
|
4285 |
|
|
-- that holds the result. This must be the first declaration in the
|
4286 |
|
|
-- block, because its bounds cannot depend on local variables. Otherwise
|
4287 |
|
|
-- there is no way to declare the result outside of the block. Needless
|
4288 |
|
|
-- to say, in general the bounds will depend on the actuals in the call.
|
4289 |
|
|
|
4290 |
|
|
-- If the context is an assignment statement, as is the case for the
|
4291 |
|
|
-- expansion of an extended return, the left-hand side provides bounds
|
4292 |
|
|
-- even if the return type is unconstrained.
|
4293 |
|
|
|
4294 |
|
|
if Is_Unc then
|
4295 |
|
|
if Nkind (Parent (N)) /= N_Assignment_Statement then
|
4296 |
|
|
Targ1 := Defining_Identifier (First (Declarations (Blk)));
|
4297 |
|
|
else
|
4298 |
|
|
Targ1 := Name (Parent (N));
|
4299 |
|
|
end if;
|
4300 |
|
|
end if;
|
4301 |
|
|
|
4302 |
|
|
-- If this is a derived function, establish the proper return type
|
4303 |
|
|
|
4304 |
|
|
if Present (Orig_Subp) and then Orig_Subp /= Subp then
|
4305 |
|
|
Ret_Type := Etype (Orig_Subp);
|
4306 |
|
|
else
|
4307 |
|
|
Ret_Type := Etype (Subp);
|
4308 |
|
|
end if;
|
4309 |
|
|
|
4310 |
|
|
-- Create temporaries for the actuals that are expressions, or that
|
4311 |
|
|
-- are scalars and require copying to preserve semantics.
|
4312 |
|
|
|
4313 |
|
|
F := First_Formal (Subp);
|
4314 |
|
|
A := First_Actual (N);
|
4315 |
|
|
while Present (F) loop
|
4316 |
|
|
if Present (Renamed_Object (F)) then
|
4317 |
|
|
Error_Msg_N ("cannot inline call to recursive subprogram", N);
|
4318 |
|
|
return;
|
4319 |
|
|
end if;
|
4320 |
|
|
|
4321 |
|
|
-- If the argument may be a controlling argument in a call within
|
4322 |
|
|
-- the inlined body, we must preserve its classwide nature to insure
|
4323 |
|
|
-- that dynamic dispatching take place subsequently. If the formal
|
4324 |
|
|
-- has a constraint it must be preserved to retain the semantics of
|
4325 |
|
|
-- the body.
|
4326 |
|
|
|
4327 |
|
|
if Is_Class_Wide_Type (Etype (F))
|
4328 |
|
|
or else (Is_Access_Type (Etype (F))
|
4329 |
|
|
and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
|
4330 |
|
|
then
|
4331 |
|
|
Temp_Typ := Etype (F);
|
4332 |
|
|
|
4333 |
|
|
elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
|
4334 |
|
|
and then Etype (F) /= Base_Type (Etype (F))
|
4335 |
|
|
then
|
4336 |
|
|
Temp_Typ := Etype (F);
|
4337 |
|
|
else
|
4338 |
|
|
Temp_Typ := Etype (A);
|
4339 |
|
|
end if;
|
4340 |
|
|
|
4341 |
|
|
-- If the actual is a simple name or a literal, no need to
|
4342 |
|
|
-- create a temporary, object can be used directly.
|
4343 |
|
|
|
4344 |
|
|
-- If the actual is a literal and the formal has its address taken,
|
4345 |
|
|
-- we cannot pass the literal itself as an argument, so its value
|
4346 |
|
|
-- must be captured in a temporary.
|
4347 |
|
|
|
4348 |
|
|
if (Is_Entity_Name (A)
|
4349 |
|
|
and then
|
4350 |
|
|
(not Is_Scalar_Type (Etype (A))
|
4351 |
|
|
or else Ekind (Entity (A)) = E_Enumeration_Literal))
|
4352 |
|
|
|
4353 |
|
|
-- When the actual is an identifier and the corresponding formal
|
4354 |
|
|
-- is used only once in the original body, the formal can be
|
4355 |
|
|
-- substituted directly with the actual parameter.
|
4356 |
|
|
|
4357 |
|
|
or else (Nkind (A) = N_Identifier
|
4358 |
|
|
and then Formal_Is_Used_Once (F))
|
4359 |
|
|
|
4360 |
|
|
or else
|
4361 |
|
|
(Nkind_In (A, N_Real_Literal,
|
4362 |
|
|
N_Integer_Literal,
|
4363 |
|
|
N_Character_Literal)
|
4364 |
|
|
and then not Address_Taken (F))
|
4365 |
|
|
then
|
4366 |
|
|
if Etype (F) /= Etype (A) then
|
4367 |
|
|
Set_Renamed_Object
|
4368 |
|
|
(F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
|
4369 |
|
|
else
|
4370 |
|
|
Set_Renamed_Object (F, A);
|
4371 |
|
|
end if;
|
4372 |
|
|
|
4373 |
|
|
else
|
4374 |
|
|
Temp := Make_Temporary (Loc, 'C');
|
4375 |
|
|
|
4376 |
|
|
-- If the actual for an in/in-out parameter is a view conversion,
|
4377 |
|
|
-- make it into an unchecked conversion, given that an untagged
|
4378 |
|
|
-- type conversion is not a proper object for a renaming.
|
4379 |
|
|
|
4380 |
|
|
-- In-out conversions that involve real conversions have already
|
4381 |
|
|
-- been transformed in Expand_Actuals.
|
4382 |
|
|
|
4383 |
|
|
if Nkind (A) = N_Type_Conversion
|
4384 |
|
|
and then Ekind (F) /= E_In_Parameter
|
4385 |
|
|
then
|
4386 |
|
|
New_A :=
|
4387 |
|
|
Make_Unchecked_Type_Conversion (Loc,
|
4388 |
|
|
Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
|
4389 |
|
|
Expression => Relocate_Node (Expression (A)));
|
4390 |
|
|
|
4391 |
|
|
elsif Etype (F) /= Etype (A) then
|
4392 |
|
|
New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
|
4393 |
|
|
Temp_Typ := Etype (F);
|
4394 |
|
|
|
4395 |
|
|
else
|
4396 |
|
|
New_A := Relocate_Node (A);
|
4397 |
|
|
end if;
|
4398 |
|
|
|
4399 |
|
|
Set_Sloc (New_A, Sloc (N));
|
4400 |
|
|
|
4401 |
|
|
-- If the actual has a by-reference type, it cannot be copied, so
|
4402 |
|
|
-- its value is captured in a renaming declaration. Otherwise
|
4403 |
|
|
-- declare a local constant initialized with the actual.
|
4404 |
|
|
|
4405 |
|
|
-- We also use a renaming declaration for expressions of an array
|
4406 |
|
|
-- type that is not bit-packed, both for efficiency reasons and to
|
4407 |
|
|
-- respect the semantics of the call: in most cases the original
|
4408 |
|
|
-- call will pass the parameter by reference, and thus the inlined
|
4409 |
|
|
-- code will have the same semantics.
|
4410 |
|
|
|
4411 |
|
|
if Ekind (F) = E_In_Parameter
|
4412 |
|
|
and then not Is_By_Reference_Type (Etype (A))
|
4413 |
|
|
and then
|
4414 |
|
|
(not Is_Array_Type (Etype (A))
|
4415 |
|
|
or else not Is_Object_Reference (A)
|
4416 |
|
|
or else Is_Bit_Packed_Array (Etype (A)))
|
4417 |
|
|
then
|
4418 |
|
|
Decl :=
|
4419 |
|
|
Make_Object_Declaration (Loc,
|
4420 |
|
|
Defining_Identifier => Temp,
|
4421 |
|
|
Constant_Present => True,
|
4422 |
|
|
Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
|
4423 |
|
|
Expression => New_A);
|
4424 |
|
|
else
|
4425 |
|
|
Decl :=
|
4426 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
4427 |
|
|
Defining_Identifier => Temp,
|
4428 |
|
|
Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
|
4429 |
|
|
Name => New_A);
|
4430 |
|
|
end if;
|
4431 |
|
|
|
4432 |
|
|
Append (Decl, Decls);
|
4433 |
|
|
Set_Renamed_Object (F, Temp);
|
4434 |
|
|
end if;
|
4435 |
|
|
|
4436 |
|
|
Next_Formal (F);
|
4437 |
|
|
Next_Actual (A);
|
4438 |
|
|
end loop;
|
4439 |
|
|
|
4440 |
|
|
-- Establish target of function call. If context is not assignment or
|
4441 |
|
|
-- declaration, create a temporary as a target. The declaration for the
|
4442 |
|
|
-- temporary may be subsequently optimized away if the body is a single
|
4443 |
|
|
-- expression, or if the left-hand side of the assignment is simple
|
4444 |
|
|
-- enough, i.e. an entity or an explicit dereference of one.
|
4445 |
|
|
|
4446 |
|
|
if Ekind (Subp) = E_Function then
|
4447 |
|
|
if Nkind (Parent (N)) = N_Assignment_Statement
|
4448 |
|
|
and then Is_Entity_Name (Name (Parent (N)))
|
4449 |
|
|
then
|
4450 |
|
|
Targ := Name (Parent (N));
|
4451 |
|
|
|
4452 |
|
|
elsif Nkind (Parent (N)) = N_Assignment_Statement
|
4453 |
|
|
and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
|
4454 |
|
|
and then Is_Entity_Name (Prefix (Name (Parent (N))))
|
4455 |
|
|
then
|
4456 |
|
|
Targ := Name (Parent (N));
|
4457 |
|
|
|
4458 |
|
|
elsif Nkind (Parent (N)) = N_Assignment_Statement
|
4459 |
|
|
and then Nkind (Name (Parent (N))) = N_Selected_Component
|
4460 |
|
|
and then Is_Entity_Name (Prefix (Name (Parent (N))))
|
4461 |
|
|
then
|
4462 |
|
|
Targ := New_Copy_Tree (Name (Parent (N)));
|
4463 |
|
|
|
4464 |
|
|
elsif Nkind (Parent (N)) = N_Object_Declaration
|
4465 |
|
|
and then Is_Limited_Type (Etype (Subp))
|
4466 |
|
|
then
|
4467 |
|
|
Targ := Defining_Identifier (Parent (N));
|
4468 |
|
|
|
4469 |
|
|
else
|
4470 |
|
|
-- Replace call with temporary and create its declaration
|
4471 |
|
|
|
4472 |
|
|
Temp := Make_Temporary (Loc, 'C');
|
4473 |
|
|
Set_Is_Internal (Temp);
|
4474 |
|
|
|
4475 |
|
|
-- For the unconstrained case, the generated temporary has the
|
4476 |
|
|
-- same constrained declaration as the result variable. It may
|
4477 |
|
|
-- eventually be possible to remove that temporary and use the
|
4478 |
|
|
-- result variable directly.
|
4479 |
|
|
|
4480 |
|
|
if Is_Unc
|
4481 |
|
|
and then Nkind (Parent (N)) /= N_Assignment_Statement
|
4482 |
|
|
then
|
4483 |
|
|
Decl :=
|
4484 |
|
|
Make_Object_Declaration (Loc,
|
4485 |
|
|
Defining_Identifier => Temp,
|
4486 |
|
|
Object_Definition =>
|
4487 |
|
|
New_Copy_Tree (Object_Definition (Parent (Targ1))));
|
4488 |
|
|
|
4489 |
|
|
Replace_Formals (Decl);
|
4490 |
|
|
|
4491 |
|
|
else
|
4492 |
|
|
Decl :=
|
4493 |
|
|
Make_Object_Declaration (Loc,
|
4494 |
|
|
Defining_Identifier => Temp,
|
4495 |
|
|
Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
|
4496 |
|
|
|
4497 |
|
|
Set_Etype (Temp, Ret_Type);
|
4498 |
|
|
end if;
|
4499 |
|
|
|
4500 |
|
|
Set_No_Initialization (Decl);
|
4501 |
|
|
Append (Decl, Decls);
|
4502 |
|
|
Rewrite (N, New_Occurrence_Of (Temp, Loc));
|
4503 |
|
|
Targ := Temp;
|
4504 |
|
|
end if;
|
4505 |
|
|
end if;
|
4506 |
|
|
|
4507 |
|
|
Insert_Actions (N, Decls);
|
4508 |
|
|
|
4509 |
|
|
-- Traverse the tree and replace formals with actuals or their thunks.
|
4510 |
|
|
-- Attach block to tree before analysis and rewriting.
|
4511 |
|
|
|
4512 |
|
|
Replace_Formals (Blk);
|
4513 |
|
|
Set_Parent (Blk, N);
|
4514 |
|
|
|
4515 |
|
|
if not Comes_From_Source (Subp) or else Is_Predef then
|
4516 |
|
|
Reset_Slocs (Blk);
|
4517 |
|
|
end if;
|
4518 |
|
|
|
4519 |
|
|
if Present (Exit_Lab) then
|
4520 |
|
|
|
4521 |
|
|
-- If the body was a single expression, the single return statement
|
4522 |
|
|
-- and the corresponding label are useless.
|
4523 |
|
|
|
4524 |
|
|
if Num_Ret = 1
|
4525 |
|
|
and then
|
4526 |
|
|
Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
|
4527 |
|
|
N_Goto_Statement
|
4528 |
|
|
then
|
4529 |
|
|
Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
|
4530 |
|
|
else
|
4531 |
|
|
Append (Lab_Decl, (Declarations (Blk)));
|
4532 |
|
|
Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
|
4533 |
|
|
end if;
|
4534 |
|
|
end if;
|
4535 |
|
|
|
4536 |
|
|
-- Analyze Blk with In_Inlined_Body set, to avoid spurious errors on
|
4537 |
|
|
-- conflicting private views that Gigi would ignore. If this is a
|
4538 |
|
|
-- predefined unit, analyze with checks off, as is done in the non-
|
4539 |
|
|
-- inlined run-time units.
|
4540 |
|
|
|
4541 |
|
|
declare
|
4542 |
|
|
I_Flag : constant Boolean := In_Inlined_Body;
|
4543 |
|
|
|
4544 |
|
|
begin
|
4545 |
|
|
In_Inlined_Body := True;
|
4546 |
|
|
|
4547 |
|
|
if Is_Predef then
|
4548 |
|
|
declare
|
4549 |
|
|
Style : constant Boolean := Style_Check;
|
4550 |
|
|
begin
|
4551 |
|
|
Style_Check := False;
|
4552 |
|
|
Analyze (Blk, Suppress => All_Checks);
|
4553 |
|
|
Style_Check := Style;
|
4554 |
|
|
end;
|
4555 |
|
|
|
4556 |
|
|
else
|
4557 |
|
|
Analyze (Blk);
|
4558 |
|
|
end if;
|
4559 |
|
|
|
4560 |
|
|
In_Inlined_Body := I_Flag;
|
4561 |
|
|
end;
|
4562 |
|
|
|
4563 |
|
|
if Ekind (Subp) = E_Procedure then
|
4564 |
|
|
Rewrite_Procedure_Call (N, Blk);
|
4565 |
|
|
|
4566 |
|
|
else
|
4567 |
|
|
Rewrite_Function_Call (N, Blk);
|
4568 |
|
|
|
4569 |
|
|
-- For the unconstrained case, the replacement of the call has been
|
4570 |
|
|
-- made prior to the complete analysis of the generated declarations.
|
4571 |
|
|
-- Propagate the proper type now.
|
4572 |
|
|
|
4573 |
|
|
if Is_Unc then
|
4574 |
|
|
if Nkind (N) = N_Identifier then
|
4575 |
|
|
Set_Etype (N, Etype (Entity (N)));
|
4576 |
|
|
else
|
4577 |
|
|
Set_Etype (N, Etype (Targ1));
|
4578 |
|
|
end if;
|
4579 |
|
|
end if;
|
4580 |
|
|
end if;
|
4581 |
|
|
|
4582 |
|
|
Restore_Env;
|
4583 |
|
|
|
4584 |
|
|
-- Cleanup mapping between formals and actuals for other expansions
|
4585 |
|
|
|
4586 |
|
|
F := First_Formal (Subp);
|
4587 |
|
|
while Present (F) loop
|
4588 |
|
|
Set_Renamed_Object (F, Empty);
|
4589 |
|
|
Next_Formal (F);
|
4590 |
|
|
end loop;
|
4591 |
|
|
end Expand_Inlined_Call;
|
4592 |
|
|
|
4593 |
|
|
----------------------------------------
|
4594 |
|
|
-- Expand_N_Extended_Return_Statement --
|
4595 |
|
|
----------------------------------------
|
4596 |
|
|
|
4597 |
|
|
-- If there is a Handled_Statement_Sequence, we rewrite this:
|
4598 |
|
|
|
4599 |
|
|
-- return Result : T := <expression> do
|
4600 |
|
|
-- <handled_seq_of_stms>
|
4601 |
|
|
-- end return;
|
4602 |
|
|
|
4603 |
|
|
-- to be:
|
4604 |
|
|
|
4605 |
|
|
-- declare
|
4606 |
|
|
-- Result : T := <expression>;
|
4607 |
|
|
-- begin
|
4608 |
|
|
-- <handled_seq_of_stms>
|
4609 |
|
|
-- return Result;
|
4610 |
|
|
-- end;
|
4611 |
|
|
|
4612 |
|
|
-- Otherwise (no Handled_Statement_Sequence), we rewrite this:
|
4613 |
|
|
|
4614 |
|
|
-- return Result : T := <expression>;
|
4615 |
|
|
|
4616 |
|
|
-- to be:
|
4617 |
|
|
|
4618 |
|
|
-- return <expression>;
|
4619 |
|
|
|
4620 |
|
|
-- unless it's build-in-place or there's no <expression>, in which case
|
4621 |
|
|
-- we generate:
|
4622 |
|
|
|
4623 |
|
|
-- declare
|
4624 |
|
|
-- Result : T := <expression>;
|
4625 |
|
|
-- begin
|
4626 |
|
|
-- return Result;
|
4627 |
|
|
-- end;
|
4628 |
|
|
|
4629 |
|
|
-- Note that this case could have been written by the user as an extended
|
4630 |
|
|
-- return statement, or could have been transformed to this from a simple
|
4631 |
|
|
-- return statement.
|
4632 |
|
|
|
4633 |
|
|
-- That is, we need to have a reified return object if there are statements
|
4634 |
|
|
-- (which might refer to it) or if we're doing build-in-place (so we can
|
4635 |
|
|
-- set its address to the final resting place or if there is no expression
|
4636 |
|
|
-- (in which case default initial values might need to be set).
|
4637 |
|
|
|
4638 |
|
|
procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
|
4639 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
4640 |
|
|
|
4641 |
|
|
Par_Func : constant Entity_Id :=
|
4642 |
|
|
Return_Applies_To (Return_Statement_Entity (N));
|
4643 |
|
|
Result_Subt : constant Entity_Id := Etype (Par_Func);
|
4644 |
|
|
Ret_Obj_Id : constant Entity_Id :=
|
4645 |
|
|
First_Entity (Return_Statement_Entity (N));
|
4646 |
|
|
Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
|
4647 |
|
|
|
4648 |
|
|
Is_Build_In_Place : constant Boolean :=
|
4649 |
|
|
Is_Build_In_Place_Function (Par_Func);
|
4650 |
|
|
|
4651 |
|
|
Exp : Node_Id;
|
4652 |
|
|
HSS : Node_Id;
|
4653 |
|
|
Result : Node_Id;
|
4654 |
|
|
Return_Stmt : Node_Id;
|
4655 |
|
|
Stmts : List_Id;
|
4656 |
|
|
|
4657 |
|
|
function Build_Heap_Allocator
|
4658 |
|
|
(Temp_Id : Entity_Id;
|
4659 |
|
|
Temp_Typ : Entity_Id;
|
4660 |
|
|
Func_Id : Entity_Id;
|
4661 |
|
|
Ret_Typ : Entity_Id;
|
4662 |
|
|
Alloc_Expr : Node_Id) return Node_Id;
|
4663 |
|
|
-- Create the statements necessary to allocate a return object on the
|
4664 |
|
|
-- caller's master. The master is available through implicit parameter
|
4665 |
|
|
-- BIPfinalizationmaster.
|
4666 |
|
|
--
|
4667 |
|
|
-- if BIPfinalizationmaster /= null then
|
4668 |
|
|
-- declare
|
4669 |
|
|
-- type Ptr_Typ is access Ret_Typ;
|
4670 |
|
|
-- for Ptr_Typ'Storage_Pool use
|
4671 |
|
|
-- Base_Pool (BIPfinalizationmaster.all).all;
|
4672 |
|
|
-- Local : Ptr_Typ;
|
4673 |
|
|
--
|
4674 |
|
|
-- begin
|
4675 |
|
|
-- procedure Allocate (...) is
|
4676 |
|
|
-- begin
|
4677 |
|
|
-- System.Storage_Pools.Subpools.Allocate_Any (...);
|
4678 |
|
|
-- end Allocate;
|
4679 |
|
|
--
|
4680 |
|
|
-- Local := <Alloc_Expr>;
|
4681 |
|
|
-- Temp_Id := Temp_Typ (Local);
|
4682 |
|
|
-- end;
|
4683 |
|
|
-- end if;
|
4684 |
|
|
--
|
4685 |
|
|
-- Temp_Id is the temporary which is used to reference the internally
|
4686 |
|
|
-- created object in all allocation forms. Temp_Typ is the type of the
|
4687 |
|
|
-- temporary. Func_Id is the enclosing function. Ret_Typ is the return
|
4688 |
|
|
-- type of Func_Id. Alloc_Expr is the actual allocator.
|
4689 |
|
|
|
4690 |
|
|
function Move_Activation_Chain return Node_Id;
|
4691 |
|
|
-- Construct a call to System.Tasking.Stages.Move_Activation_Chain
|
4692 |
|
|
-- with parameters:
|
4693 |
|
|
-- From current activation chain
|
4694 |
|
|
-- To activation chain passed in by the caller
|
4695 |
|
|
-- New_Master master passed in by the caller
|
4696 |
|
|
|
4697 |
|
|
--------------------------
|
4698 |
|
|
-- Build_Heap_Allocator --
|
4699 |
|
|
--------------------------
|
4700 |
|
|
|
4701 |
|
|
function Build_Heap_Allocator
|
4702 |
|
|
(Temp_Id : Entity_Id;
|
4703 |
|
|
Temp_Typ : Entity_Id;
|
4704 |
|
|
Func_Id : Entity_Id;
|
4705 |
|
|
Ret_Typ : Entity_Id;
|
4706 |
|
|
Alloc_Expr : Node_Id) return Node_Id
|
4707 |
|
|
is
|
4708 |
|
|
begin
|
4709 |
|
|
pragma Assert (Is_Build_In_Place_Function (Func_Id));
|
4710 |
|
|
|
4711 |
|
|
-- Processing for build-in-place object allocation. This is disabled
|
4712 |
|
|
-- on .NET/JVM because the targets do not support pools.
|
4713 |
|
|
|
4714 |
|
|
if VM_Target = No_VM
|
4715 |
|
|
and then Needs_Finalization (Ret_Typ)
|
4716 |
|
|
then
|
4717 |
|
|
declare
|
4718 |
|
|
Decls : constant List_Id := New_List;
|
4719 |
|
|
Fin_Mas_Id : constant Entity_Id :=
|
4720 |
|
|
Build_In_Place_Formal
|
4721 |
|
|
(Func_Id, BIP_Finalization_Master);
|
4722 |
|
|
Stmts : constant List_Id := New_List;
|
4723 |
|
|
Desig_Typ : Entity_Id;
|
4724 |
|
|
Local_Id : Entity_Id;
|
4725 |
|
|
Pool_Id : Entity_Id;
|
4726 |
|
|
Ptr_Typ : Entity_Id;
|
4727 |
|
|
|
4728 |
|
|
begin
|
4729 |
|
|
-- Generate:
|
4730 |
|
|
-- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
|
4731 |
|
|
|
4732 |
|
|
Pool_Id := Make_Temporary (Loc, 'P');
|
4733 |
|
|
|
4734 |
|
|
Append_To (Decls,
|
4735 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
4736 |
|
|
Defining_Identifier => Pool_Id,
|
4737 |
|
|
Subtype_Mark =>
|
4738 |
|
|
New_Reference_To (RTE (RE_Root_Storage_Pool), Loc),
|
4739 |
|
|
Name =>
|
4740 |
|
|
Make_Explicit_Dereference (Loc,
|
4741 |
|
|
Prefix =>
|
4742 |
|
|
Make_Function_Call (Loc,
|
4743 |
|
|
Name =>
|
4744 |
|
|
New_Reference_To (RTE (RE_Base_Pool), Loc),
|
4745 |
|
|
Parameter_Associations => New_List (
|
4746 |
|
|
Make_Explicit_Dereference (Loc,
|
4747 |
|
|
Prefix =>
|
4748 |
|
|
New_Reference_To (Fin_Mas_Id, Loc)))))));
|
4749 |
|
|
|
4750 |
|
|
-- Create an access type which uses the storage pool of the
|
4751 |
|
|
-- caller's master. This additional type is necessary because
|
4752 |
|
|
-- the finalization master cannot be associated with the type
|
4753 |
|
|
-- of the temporary. Otherwise the secondary stack allocation
|
4754 |
|
|
-- will fail.
|
4755 |
|
|
|
4756 |
|
|
Desig_Typ := Ret_Typ;
|
4757 |
|
|
|
4758 |
|
|
-- Ensure that the build-in-place machinery uses a fat pointer
|
4759 |
|
|
-- when allocating an unconstrained array on the heap. In this
|
4760 |
|
|
-- case the result object type is a constrained array type even
|
4761 |
|
|
-- though the function type is unconstrained.
|
4762 |
|
|
|
4763 |
|
|
if Ekind (Desig_Typ) = E_Array_Subtype then
|
4764 |
|
|
Desig_Typ := Base_Type (Desig_Typ);
|
4765 |
|
|
end if;
|
4766 |
|
|
|
4767 |
|
|
-- Generate:
|
4768 |
|
|
-- type Ptr_Typ is access Desig_Typ;
|
4769 |
|
|
|
4770 |
|
|
Ptr_Typ := Make_Temporary (Loc, 'P');
|
4771 |
|
|
|
4772 |
|
|
Append_To (Decls,
|
4773 |
|
|
Make_Full_Type_Declaration (Loc,
|
4774 |
|
|
Defining_Identifier => Ptr_Typ,
|
4775 |
|
|
Type_Definition =>
|
4776 |
|
|
Make_Access_To_Object_Definition (Loc,
|
4777 |
|
|
Subtype_Indication =>
|
4778 |
|
|
New_Reference_To (Desig_Typ, Loc))));
|
4779 |
|
|
|
4780 |
|
|
-- Perform minor decoration in order to set the master and the
|
4781 |
|
|
-- storage pool attributes.
|
4782 |
|
|
|
4783 |
|
|
Set_Ekind (Ptr_Typ, E_Access_Type);
|
4784 |
|
|
Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
|
4785 |
|
|
Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
|
4786 |
|
|
|
4787 |
|
|
-- Create the temporary, generate:
|
4788 |
|
|
-- Local_Id : Ptr_Typ;
|
4789 |
|
|
|
4790 |
|
|
Local_Id := Make_Temporary (Loc, 'T');
|
4791 |
|
|
|
4792 |
|
|
Append_To (Decls,
|
4793 |
|
|
Make_Object_Declaration (Loc,
|
4794 |
|
|
Defining_Identifier => Local_Id,
|
4795 |
|
|
Object_Definition =>
|
4796 |
|
|
New_Reference_To (Ptr_Typ, Loc)));
|
4797 |
|
|
|
4798 |
|
|
-- Allocate the object, generate:
|
4799 |
|
|
-- Local_Id := <Alloc_Expr>;
|
4800 |
|
|
|
4801 |
|
|
Append_To (Stmts,
|
4802 |
|
|
Make_Assignment_Statement (Loc,
|
4803 |
|
|
Name => New_Reference_To (Local_Id, Loc),
|
4804 |
|
|
Expression => Alloc_Expr));
|
4805 |
|
|
|
4806 |
|
|
-- Generate:
|
4807 |
|
|
-- Temp_Id := Temp_Typ (Local_Id);
|
4808 |
|
|
|
4809 |
|
|
Append_To (Stmts,
|
4810 |
|
|
Make_Assignment_Statement (Loc,
|
4811 |
|
|
Name => New_Reference_To (Temp_Id, Loc),
|
4812 |
|
|
Expression =>
|
4813 |
|
|
Unchecked_Convert_To (Temp_Typ,
|
4814 |
|
|
New_Reference_To (Local_Id, Loc))));
|
4815 |
|
|
|
4816 |
|
|
-- Wrap the allocation in a block. This is further conditioned
|
4817 |
|
|
-- by checking the caller finalization master at runtime. A
|
4818 |
|
|
-- null value indicates a non-existent master, most likely due
|
4819 |
|
|
-- to a Finalize_Storage_Only allocation.
|
4820 |
|
|
|
4821 |
|
|
-- Generate:
|
4822 |
|
|
-- if BIPfinalizationmaster /= null then
|
4823 |
|
|
-- declare
|
4824 |
|
|
-- <Decls>
|
4825 |
|
|
-- begin
|
4826 |
|
|
-- <Stmts>
|
4827 |
|
|
-- end;
|
4828 |
|
|
-- end if;
|
4829 |
|
|
|
4830 |
|
|
return
|
4831 |
|
|
Make_If_Statement (Loc,
|
4832 |
|
|
Condition =>
|
4833 |
|
|
Make_Op_Ne (Loc,
|
4834 |
|
|
Left_Opnd => New_Reference_To (Fin_Mas_Id, Loc),
|
4835 |
|
|
Right_Opnd => Make_Null (Loc)),
|
4836 |
|
|
|
4837 |
|
|
Then_Statements => New_List (
|
4838 |
|
|
Make_Block_Statement (Loc,
|
4839 |
|
|
Declarations => Decls,
|
4840 |
|
|
Handled_Statement_Sequence =>
|
4841 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
4842 |
|
|
Statements => Stmts))));
|
4843 |
|
|
end;
|
4844 |
|
|
|
4845 |
|
|
-- For all other cases, generate:
|
4846 |
|
|
-- Temp_Id := <Alloc_Expr>;
|
4847 |
|
|
|
4848 |
|
|
else
|
4849 |
|
|
return
|
4850 |
|
|
Make_Assignment_Statement (Loc,
|
4851 |
|
|
Name => New_Reference_To (Temp_Id, Loc),
|
4852 |
|
|
Expression => Alloc_Expr);
|
4853 |
|
|
end if;
|
4854 |
|
|
end Build_Heap_Allocator;
|
4855 |
|
|
|
4856 |
|
|
---------------------------
|
4857 |
|
|
-- Move_Activation_Chain --
|
4858 |
|
|
---------------------------
|
4859 |
|
|
|
4860 |
|
|
function Move_Activation_Chain return Node_Id is
|
4861 |
|
|
begin
|
4862 |
|
|
return
|
4863 |
|
|
Make_Procedure_Call_Statement (Loc,
|
4864 |
|
|
Name =>
|
4865 |
|
|
New_Reference_To (RTE (RE_Move_Activation_Chain), Loc),
|
4866 |
|
|
|
4867 |
|
|
Parameter_Associations => New_List (
|
4868 |
|
|
|
4869 |
|
|
-- Source chain
|
4870 |
|
|
|
4871 |
|
|
Make_Attribute_Reference (Loc,
|
4872 |
|
|
Prefix => Make_Identifier (Loc, Name_uChain),
|
4873 |
|
|
Attribute_Name => Name_Unrestricted_Access),
|
4874 |
|
|
|
4875 |
|
|
-- Destination chain
|
4876 |
|
|
|
4877 |
|
|
New_Reference_To
|
4878 |
|
|
(Build_In_Place_Formal (Par_Func, BIP_Activation_Chain), Loc),
|
4879 |
|
|
|
4880 |
|
|
-- New master
|
4881 |
|
|
|
4882 |
|
|
New_Reference_To
|
4883 |
|
|
(Build_In_Place_Formal (Par_Func, BIP_Task_Master), Loc)));
|
4884 |
|
|
end Move_Activation_Chain;
|
4885 |
|
|
|
4886 |
|
|
-- Start of processing for Expand_N_Extended_Return_Statement
|
4887 |
|
|
|
4888 |
|
|
begin
|
4889 |
|
|
if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
|
4890 |
|
|
Exp := Expression (Ret_Obj_Decl);
|
4891 |
|
|
else
|
4892 |
|
|
Exp := Empty;
|
4893 |
|
|
end if;
|
4894 |
|
|
|
4895 |
|
|
HSS := Handled_Statement_Sequence (N);
|
4896 |
|
|
|
4897 |
|
|
-- If the returned object needs finalization actions, the function must
|
4898 |
|
|
-- perform the appropriate cleanup should it fail to return. The state
|
4899 |
|
|
-- of the function itself is tracked through a flag which is coupled
|
4900 |
|
|
-- with the scope finalizer. There is one flag per each return object
|
4901 |
|
|
-- in case of multiple returns.
|
4902 |
|
|
|
4903 |
|
|
if Is_Build_In_Place
|
4904 |
|
|
and then Needs_Finalization (Etype (Ret_Obj_Id))
|
4905 |
|
|
then
|
4906 |
|
|
declare
|
4907 |
|
|
Flag_Decl : Node_Id;
|
4908 |
|
|
Flag_Id : Entity_Id;
|
4909 |
|
|
Func_Bod : Node_Id;
|
4910 |
|
|
|
4911 |
|
|
begin
|
4912 |
|
|
-- Recover the function body
|
4913 |
|
|
|
4914 |
|
|
Func_Bod := Unit_Declaration_Node (Par_Func);
|
4915 |
|
|
|
4916 |
|
|
if Nkind (Func_Bod) = N_Subprogram_Declaration then
|
4917 |
|
|
Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
|
4918 |
|
|
end if;
|
4919 |
|
|
|
4920 |
|
|
-- Create a flag to track the function state
|
4921 |
|
|
|
4922 |
|
|
Flag_Id := Make_Temporary (Loc, 'F');
|
4923 |
|
|
Set_Return_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
|
4924 |
|
|
|
4925 |
|
|
-- Insert the flag at the beginning of the function declarations,
|
4926 |
|
|
-- generate:
|
4927 |
|
|
-- Fnn : Boolean := False;
|
4928 |
|
|
|
4929 |
|
|
Flag_Decl :=
|
4930 |
|
|
Make_Object_Declaration (Loc,
|
4931 |
|
|
Defining_Identifier => Flag_Id,
|
4932 |
|
|
Object_Definition =>
|
4933 |
|
|
New_Reference_To (Standard_Boolean, Loc),
|
4934 |
|
|
Expression => New_Reference_To (Standard_False, Loc));
|
4935 |
|
|
|
4936 |
|
|
Prepend_To (Declarations (Func_Bod), Flag_Decl);
|
4937 |
|
|
Analyze (Flag_Decl);
|
4938 |
|
|
end;
|
4939 |
|
|
end if;
|
4940 |
|
|
|
4941 |
|
|
-- Build a simple_return_statement that returns the return object when
|
4942 |
|
|
-- there is a statement sequence, or no expression, or the result will
|
4943 |
|
|
-- be built in place. Note however that we currently do this for all
|
4944 |
|
|
-- composite cases, even though nonlimited composite results are not yet
|
4945 |
|
|
-- built in place (though we plan to do so eventually).
|
4946 |
|
|
|
4947 |
|
|
if Present (HSS)
|
4948 |
|
|
or else Is_Composite_Type (Result_Subt)
|
4949 |
|
|
or else No (Exp)
|
4950 |
|
|
then
|
4951 |
|
|
if No (HSS) then
|
4952 |
|
|
Stmts := New_List;
|
4953 |
|
|
|
4954 |
|
|
-- If the extended return has a handled statement sequence, then wrap
|
4955 |
|
|
-- it in a block and use the block as the first statement.
|
4956 |
|
|
|
4957 |
|
|
else
|
4958 |
|
|
Stmts := New_List (
|
4959 |
|
|
Make_Block_Statement (Loc,
|
4960 |
|
|
Declarations => New_List,
|
4961 |
|
|
Handled_Statement_Sequence => HSS));
|
4962 |
|
|
end if;
|
4963 |
|
|
|
4964 |
|
|
-- If the result type contains tasks, we call Move_Activation_Chain.
|
4965 |
|
|
-- Later, the cleanup code will call Complete_Master, which will
|
4966 |
|
|
-- terminate any unactivated tasks belonging to the return statement
|
4967 |
|
|
-- master. But Move_Activation_Chain updates their master to be that
|
4968 |
|
|
-- of the caller, so they will not be terminated unless the return
|
4969 |
|
|
-- statement completes unsuccessfully due to exception, abort, goto,
|
4970 |
|
|
-- or exit. As a formality, we test whether the function requires the
|
4971 |
|
|
-- result to be built in place, though that's necessarily true for
|
4972 |
|
|
-- the case of result types with task parts.
|
4973 |
|
|
|
4974 |
|
|
if Is_Build_In_Place
|
4975 |
|
|
and then Has_Task (Result_Subt)
|
4976 |
|
|
then
|
4977 |
|
|
-- The return expression is an aggregate for a complex type which
|
4978 |
|
|
-- contains tasks. This particular case is left unexpanded since
|
4979 |
|
|
-- the regular expansion would insert all temporaries and
|
4980 |
|
|
-- initialization code in the wrong block.
|
4981 |
|
|
|
4982 |
|
|
if Nkind (Exp) = N_Aggregate then
|
4983 |
|
|
Expand_N_Aggregate (Exp);
|
4984 |
|
|
end if;
|
4985 |
|
|
|
4986 |
|
|
-- Do not move the activation chain if the return object does not
|
4987 |
|
|
-- contain tasks.
|
4988 |
|
|
|
4989 |
|
|
if Has_Task (Etype (Ret_Obj_Id)) then
|
4990 |
|
|
Append_To (Stmts, Move_Activation_Chain);
|
4991 |
|
|
end if;
|
4992 |
|
|
end if;
|
4993 |
|
|
|
4994 |
|
|
-- Update the state of the function right before the object is
|
4995 |
|
|
-- returned.
|
4996 |
|
|
|
4997 |
|
|
if Is_Build_In_Place
|
4998 |
|
|
and then Needs_Finalization (Etype (Ret_Obj_Id))
|
4999 |
|
|
then
|
5000 |
|
|
declare
|
5001 |
|
|
Flag_Id : constant Entity_Id :=
|
5002 |
|
|
Return_Flag_Or_Transient_Decl (Ret_Obj_Id);
|
5003 |
|
|
|
5004 |
|
|
begin
|
5005 |
|
|
-- Generate:
|
5006 |
|
|
-- Fnn := True;
|
5007 |
|
|
|
5008 |
|
|
Append_To (Stmts,
|
5009 |
|
|
Make_Assignment_Statement (Loc,
|
5010 |
|
|
Name => New_Reference_To (Flag_Id, Loc),
|
5011 |
|
|
Expression => New_Reference_To (Standard_True, Loc)));
|
5012 |
|
|
end;
|
5013 |
|
|
end if;
|
5014 |
|
|
|
5015 |
|
|
-- Build a simple_return_statement that returns the return object
|
5016 |
|
|
|
5017 |
|
|
Return_Stmt :=
|
5018 |
|
|
Make_Simple_Return_Statement (Loc,
|
5019 |
|
|
Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
|
5020 |
|
|
Append_To (Stmts, Return_Stmt);
|
5021 |
|
|
|
5022 |
|
|
HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
|
5023 |
|
|
end if;
|
5024 |
|
|
|
5025 |
|
|
-- Case where we build a return statement block
|
5026 |
|
|
|
5027 |
|
|
if Present (HSS) then
|
5028 |
|
|
Result :=
|
5029 |
|
|
Make_Block_Statement (Loc,
|
5030 |
|
|
Declarations => Return_Object_Declarations (N),
|
5031 |
|
|
Handled_Statement_Sequence => HSS);
|
5032 |
|
|
|
5033 |
|
|
-- We set the entity of the new block statement to be that of the
|
5034 |
|
|
-- return statement. This is necessary so that various fields, such
|
5035 |
|
|
-- as Finalization_Chain_Entity carry over from the return statement
|
5036 |
|
|
-- to the block. Note that this block is unusual, in that its entity
|
5037 |
|
|
-- is an E_Return_Statement rather than an E_Block.
|
5038 |
|
|
|
5039 |
|
|
Set_Identifier
|
5040 |
|
|
(Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
|
5041 |
|
|
|
5042 |
|
|
-- If the object decl was already rewritten as a renaming, then we
|
5043 |
|
|
-- don't want to do the object allocation and transformation of of
|
5044 |
|
|
-- the return object declaration to a renaming. This case occurs
|
5045 |
|
|
-- when the return object is initialized by a call to another
|
5046 |
|
|
-- build-in-place function, and that function is responsible for
|
5047 |
|
|
-- the allocation of the return object.
|
5048 |
|
|
|
5049 |
|
|
if Is_Build_In_Place
|
5050 |
|
|
and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
|
5051 |
|
|
then
|
5052 |
|
|
pragma Assert
|
5053 |
|
|
(Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
|
5054 |
|
|
and then Is_Build_In_Place_Function_Call
|
5055 |
|
|
(Expression (Original_Node (Ret_Obj_Decl))));
|
5056 |
|
|
|
5057 |
|
|
-- Return the build-in-place result by reference
|
5058 |
|
|
|
5059 |
|
|
Set_By_Ref (Return_Stmt);
|
5060 |
|
|
|
5061 |
|
|
elsif Is_Build_In_Place then
|
5062 |
|
|
|
5063 |
|
|
-- Locate the implicit access parameter associated with the
|
5064 |
|
|
-- caller-supplied return object and convert the return
|
5065 |
|
|
-- statement's return object declaration to a renaming of a
|
5066 |
|
|
-- dereference of the access parameter. If the return object's
|
5067 |
|
|
-- declaration includes an expression that has not already been
|
5068 |
|
|
-- expanded as separate assignments, then add an assignment
|
5069 |
|
|
-- statement to ensure the return object gets initialized.
|
5070 |
|
|
|
5071 |
|
|
-- declare
|
5072 |
|
|
-- Result : T [:= <expression>];
|
5073 |
|
|
-- begin
|
5074 |
|
|
-- ...
|
5075 |
|
|
|
5076 |
|
|
-- is converted to
|
5077 |
|
|
|
5078 |
|
|
-- declare
|
5079 |
|
|
-- Result : T renames FuncRA.all;
|
5080 |
|
|
-- [Result := <expression;]
|
5081 |
|
|
-- begin
|
5082 |
|
|
-- ...
|
5083 |
|
|
|
5084 |
|
|
declare
|
5085 |
|
|
Return_Obj_Id : constant Entity_Id :=
|
5086 |
|
|
Defining_Identifier (Ret_Obj_Decl);
|
5087 |
|
|
Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
|
5088 |
|
|
Return_Obj_Expr : constant Node_Id :=
|
5089 |
|
|
Expression (Ret_Obj_Decl);
|
5090 |
|
|
Constr_Result : constant Boolean :=
|
5091 |
|
|
Is_Constrained (Result_Subt);
|
5092 |
|
|
Obj_Alloc_Formal : Entity_Id;
|
5093 |
|
|
Object_Access : Entity_Id;
|
5094 |
|
|
Obj_Acc_Deref : Node_Id;
|
5095 |
|
|
Init_Assignment : Node_Id := Empty;
|
5096 |
|
|
|
5097 |
|
|
begin
|
5098 |
|
|
-- Build-in-place results must be returned by reference
|
5099 |
|
|
|
5100 |
|
|
Set_By_Ref (Return_Stmt);
|
5101 |
|
|
|
5102 |
|
|
-- Retrieve the implicit access parameter passed by the caller
|
5103 |
|
|
|
5104 |
|
|
Object_Access :=
|
5105 |
|
|
Build_In_Place_Formal (Par_Func, BIP_Object_Access);
|
5106 |
|
|
|
5107 |
|
|
-- If the return object's declaration includes an expression
|
5108 |
|
|
-- and the declaration isn't marked as No_Initialization, then
|
5109 |
|
|
-- we need to generate an assignment to the object and insert
|
5110 |
|
|
-- it after the declaration before rewriting it as a renaming
|
5111 |
|
|
-- (otherwise we'll lose the initialization). The case where
|
5112 |
|
|
-- the result type is an interface (or class-wide interface)
|
5113 |
|
|
-- is also excluded because the context of the function call
|
5114 |
|
|
-- must be unconstrained, so the initialization will always
|
5115 |
|
|
-- be done as part of an allocator evaluation (storage pool
|
5116 |
|
|
-- or secondary stack), never to a constrained target object
|
5117 |
|
|
-- passed in by the caller. Besides the assignment being
|
5118 |
|
|
-- unneeded in this case, it avoids problems with trying to
|
5119 |
|
|
-- generate a dispatching assignment when the return expression
|
5120 |
|
|
-- is a nonlimited descendant of a limited interface (the
|
5121 |
|
|
-- interface has no assignment operation).
|
5122 |
|
|
|
5123 |
|
|
if Present (Return_Obj_Expr)
|
5124 |
|
|
and then not No_Initialization (Ret_Obj_Decl)
|
5125 |
|
|
and then not Is_Interface (Return_Obj_Typ)
|
5126 |
|
|
then
|
5127 |
|
|
Init_Assignment :=
|
5128 |
|
|
Make_Assignment_Statement (Loc,
|
5129 |
|
|
Name => New_Reference_To (Return_Obj_Id, Loc),
|
5130 |
|
|
Expression => Relocate_Node (Return_Obj_Expr));
|
5131 |
|
|
|
5132 |
|
|
Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
|
5133 |
|
|
Set_Assignment_OK (Name (Init_Assignment));
|
5134 |
|
|
Set_No_Ctrl_Actions (Init_Assignment);
|
5135 |
|
|
|
5136 |
|
|
Set_Parent (Name (Init_Assignment), Init_Assignment);
|
5137 |
|
|
Set_Parent (Expression (Init_Assignment), Init_Assignment);
|
5138 |
|
|
|
5139 |
|
|
Set_Expression (Ret_Obj_Decl, Empty);
|
5140 |
|
|
|
5141 |
|
|
if Is_Class_Wide_Type (Etype (Return_Obj_Id))
|
5142 |
|
|
and then not Is_Class_Wide_Type
|
5143 |
|
|
(Etype (Expression (Init_Assignment)))
|
5144 |
|
|
then
|
5145 |
|
|
Rewrite (Expression (Init_Assignment),
|
5146 |
|
|
Make_Type_Conversion (Loc,
|
5147 |
|
|
Subtype_Mark =>
|
5148 |
|
|
New_Occurrence_Of (Etype (Return_Obj_Id), Loc),
|
5149 |
|
|
Expression =>
|
5150 |
|
|
Relocate_Node (Expression (Init_Assignment))));
|
5151 |
|
|
end if;
|
5152 |
|
|
|
5153 |
|
|
-- In the case of functions where the calling context can
|
5154 |
|
|
-- determine the form of allocation needed, initialization
|
5155 |
|
|
-- is done with each part of the if statement that handles
|
5156 |
|
|
-- the different forms of allocation (this is true for
|
5157 |
|
|
-- unconstrained and tagged result subtypes).
|
5158 |
|
|
|
5159 |
|
|
if Constr_Result
|
5160 |
|
|
and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
|
5161 |
|
|
then
|
5162 |
|
|
Insert_After (Ret_Obj_Decl, Init_Assignment);
|
5163 |
|
|
end if;
|
5164 |
|
|
end if;
|
5165 |
|
|
|
5166 |
|
|
-- When the function's subtype is unconstrained, a run-time
|
5167 |
|
|
-- test is needed to determine the form of allocation to use
|
5168 |
|
|
-- for the return object. The function has an implicit formal
|
5169 |
|
|
-- parameter indicating this. If the BIP_Alloc_Form formal has
|
5170 |
|
|
-- the value one, then the caller has passed access to an
|
5171 |
|
|
-- existing object for use as the return object. If the value
|
5172 |
|
|
-- is two, then the return object must be allocated on the
|
5173 |
|
|
-- secondary stack. Otherwise, the object must be allocated in
|
5174 |
|
|
-- a storage pool (currently only supported for the global
|
5175 |
|
|
-- heap, user-defined storage pools TBD ???). We generate an
|
5176 |
|
|
-- if statement to test the implicit allocation formal and
|
5177 |
|
|
-- initialize a local access value appropriately, creating
|
5178 |
|
|
-- allocators in the secondary stack and global heap cases.
|
5179 |
|
|
-- The special formal also exists and must be tested when the
|
5180 |
|
|
-- function has a tagged result, even when the result subtype
|
5181 |
|
|
-- is constrained, because in general such functions can be
|
5182 |
|
|
-- called in dispatching contexts and must be handled similarly
|
5183 |
|
|
-- to functions with a class-wide result.
|
5184 |
|
|
|
5185 |
|
|
if not Constr_Result
|
5186 |
|
|
or else Is_Tagged_Type (Underlying_Type (Result_Subt))
|
5187 |
|
|
then
|
5188 |
|
|
Obj_Alloc_Formal :=
|
5189 |
|
|
Build_In_Place_Formal (Par_Func, BIP_Alloc_Form);
|
5190 |
|
|
|
5191 |
|
|
declare
|
5192 |
|
|
Pool_Id : constant Entity_Id :=
|
5193 |
|
|
Make_Temporary (Loc, 'P');
|
5194 |
|
|
Alloc_Obj_Id : Entity_Id;
|
5195 |
|
|
Alloc_Obj_Decl : Node_Id;
|
5196 |
|
|
Alloc_If_Stmt : Node_Id;
|
5197 |
|
|
Heap_Allocator : Node_Id;
|
5198 |
|
|
Pool_Decl : Node_Id;
|
5199 |
|
|
Pool_Allocator : Node_Id;
|
5200 |
|
|
Ptr_Type_Decl : Node_Id;
|
5201 |
|
|
Ref_Type : Entity_Id;
|
5202 |
|
|
SS_Allocator : Node_Id;
|
5203 |
|
|
|
5204 |
|
|
begin
|
5205 |
|
|
-- Reuse the itype created for the function's implicit
|
5206 |
|
|
-- access formal. This avoids the need to create a new
|
5207 |
|
|
-- access type here, plus it allows assigning the access
|
5208 |
|
|
-- formal directly without applying a conversion.
|
5209 |
|
|
|
5210 |
|
|
-- Ref_Type := Etype (Object_Access);
|
5211 |
|
|
|
5212 |
|
|
-- Create an access type designating the function's
|
5213 |
|
|
-- result subtype.
|
5214 |
|
|
|
5215 |
|
|
Ref_Type := Make_Temporary (Loc, 'A');
|
5216 |
|
|
|
5217 |
|
|
Ptr_Type_Decl :=
|
5218 |
|
|
Make_Full_Type_Declaration (Loc,
|
5219 |
|
|
Defining_Identifier => Ref_Type,
|
5220 |
|
|
Type_Definition =>
|
5221 |
|
|
Make_Access_To_Object_Definition (Loc,
|
5222 |
|
|
All_Present => True,
|
5223 |
|
|
Subtype_Indication =>
|
5224 |
|
|
New_Reference_To (Return_Obj_Typ, Loc)));
|
5225 |
|
|
|
5226 |
|
|
Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
|
5227 |
|
|
|
5228 |
|
|
-- Create an access object that will be initialized to an
|
5229 |
|
|
-- access value denoting the return object, either coming
|
5230 |
|
|
-- from an implicit access value passed in by the caller
|
5231 |
|
|
-- or from the result of an allocator.
|
5232 |
|
|
|
5233 |
|
|
Alloc_Obj_Id := Make_Temporary (Loc, 'R');
|
5234 |
|
|
Set_Etype (Alloc_Obj_Id, Ref_Type);
|
5235 |
|
|
|
5236 |
|
|
Alloc_Obj_Decl :=
|
5237 |
|
|
Make_Object_Declaration (Loc,
|
5238 |
|
|
Defining_Identifier => Alloc_Obj_Id,
|
5239 |
|
|
Object_Definition =>
|
5240 |
|
|
New_Reference_To (Ref_Type, Loc));
|
5241 |
|
|
|
5242 |
|
|
Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
|
5243 |
|
|
|
5244 |
|
|
-- Create allocators for both the secondary stack and
|
5245 |
|
|
-- global heap. If there's an initialization expression,
|
5246 |
|
|
-- then create these as initialized allocators.
|
5247 |
|
|
|
5248 |
|
|
if Present (Return_Obj_Expr)
|
5249 |
|
|
and then not No_Initialization (Ret_Obj_Decl)
|
5250 |
|
|
then
|
5251 |
|
|
-- Always use the type of the expression for the
|
5252 |
|
|
-- qualified expression, rather than the result type.
|
5253 |
|
|
-- In general we cannot always use the result type
|
5254 |
|
|
-- for the allocator, because the expression might be
|
5255 |
|
|
-- of a specific type, such as in the case of an
|
5256 |
|
|
-- aggregate or even a nonlimited object when the
|
5257 |
|
|
-- result type is a limited class-wide interface type.
|
5258 |
|
|
|
5259 |
|
|
Heap_Allocator :=
|
5260 |
|
|
Make_Allocator (Loc,
|
5261 |
|
|
Expression =>
|
5262 |
|
|
Make_Qualified_Expression (Loc,
|
5263 |
|
|
Subtype_Mark =>
|
5264 |
|
|
New_Reference_To
|
5265 |
|
|
(Etype (Return_Obj_Expr), Loc),
|
5266 |
|
|
Expression =>
|
5267 |
|
|
New_Copy_Tree (Return_Obj_Expr)));
|
5268 |
|
|
|
5269 |
|
|
else
|
5270 |
|
|
-- If the function returns a class-wide type we cannot
|
5271 |
|
|
-- use the return type for the allocator. Instead we
|
5272 |
|
|
-- use the type of the expression, which must be an
|
5273 |
|
|
-- aggregate of a definite type.
|
5274 |
|
|
|
5275 |
|
|
if Is_Class_Wide_Type (Return_Obj_Typ) then
|
5276 |
|
|
Heap_Allocator :=
|
5277 |
|
|
Make_Allocator (Loc,
|
5278 |
|
|
Expression =>
|
5279 |
|
|
New_Reference_To
|
5280 |
|
|
(Etype (Return_Obj_Expr), Loc));
|
5281 |
|
|
else
|
5282 |
|
|
Heap_Allocator :=
|
5283 |
|
|
Make_Allocator (Loc,
|
5284 |
|
|
Expression =>
|
5285 |
|
|
New_Reference_To (Return_Obj_Typ, Loc));
|
5286 |
|
|
end if;
|
5287 |
|
|
|
5288 |
|
|
-- If the object requires default initialization then
|
5289 |
|
|
-- that will happen later following the elaboration of
|
5290 |
|
|
-- the object renaming. If we don't turn it off here
|
5291 |
|
|
-- then the object will be default initialized twice.
|
5292 |
|
|
|
5293 |
|
|
Set_No_Initialization (Heap_Allocator);
|
5294 |
|
|
end if;
|
5295 |
|
|
|
5296 |
|
|
-- The Pool_Allocator is just like the Heap_Allocator,
|
5297 |
|
|
-- except we set Storage_Pool and Procedure_To_Call so
|
5298 |
|
|
-- it will use the user-defined storage pool.
|
5299 |
|
|
|
5300 |
|
|
Pool_Allocator := New_Copy_Tree (Heap_Allocator);
|
5301 |
|
|
|
5302 |
|
|
-- Do not generate the renaming of the build-in-place
|
5303 |
|
|
-- pool parameter on .NET/JVM/ZFP because the parameter
|
5304 |
|
|
-- is not created in the first place.
|
5305 |
|
|
|
5306 |
|
|
if VM_Target = No_VM
|
5307 |
|
|
and then RTE_Available (RE_Root_Storage_Pool_Ptr)
|
5308 |
|
|
then
|
5309 |
|
|
Pool_Decl :=
|
5310 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
5311 |
|
|
Defining_Identifier => Pool_Id,
|
5312 |
|
|
Subtype_Mark =>
|
5313 |
|
|
New_Reference_To
|
5314 |
|
|
(RTE (RE_Root_Storage_Pool), Loc),
|
5315 |
|
|
Name =>
|
5316 |
|
|
Make_Explicit_Dereference (Loc,
|
5317 |
|
|
New_Reference_To
|
5318 |
|
|
(Build_In_Place_Formal
|
5319 |
|
|
(Par_Func, BIP_Storage_Pool), Loc)));
|
5320 |
|
|
Set_Storage_Pool (Pool_Allocator, Pool_Id);
|
5321 |
|
|
Set_Procedure_To_Call
|
5322 |
|
|
(Pool_Allocator, RTE (RE_Allocate_Any));
|
5323 |
|
|
else
|
5324 |
|
|
Pool_Decl := Make_Null_Statement (Loc);
|
5325 |
|
|
end if;
|
5326 |
|
|
|
5327 |
|
|
-- If the No_Allocators restriction is active, then only
|
5328 |
|
|
-- an allocator for secondary stack allocation is needed.
|
5329 |
|
|
-- It's OK for such allocators to have Comes_From_Source
|
5330 |
|
|
-- set to False, because gigi knows not to flag them as
|
5331 |
|
|
-- being a violation of No_Implicit_Heap_Allocations.
|
5332 |
|
|
|
5333 |
|
|
if Restriction_Active (No_Allocators) then
|
5334 |
|
|
SS_Allocator := Heap_Allocator;
|
5335 |
|
|
Heap_Allocator := Make_Null (Loc);
|
5336 |
|
|
Pool_Allocator := Make_Null (Loc);
|
5337 |
|
|
|
5338 |
|
|
-- Otherwise the heap and pool allocators may be needed,
|
5339 |
|
|
-- so we make another allocator for secondary stack
|
5340 |
|
|
-- allocation.
|
5341 |
|
|
|
5342 |
|
|
else
|
5343 |
|
|
SS_Allocator := New_Copy_Tree (Heap_Allocator);
|
5344 |
|
|
|
5345 |
|
|
-- The heap and pool allocators are marked as
|
5346 |
|
|
-- Comes_From_Source since they correspond to an
|
5347 |
|
|
-- explicit user-written allocator (that is, it will
|
5348 |
|
|
-- only be executed on behalf of callers that call the
|
5349 |
|
|
-- function as initialization for such an allocator).
|
5350 |
|
|
-- Prevents errors when No_Implicit_Heap_Allocations
|
5351 |
|
|
-- is in force.
|
5352 |
|
|
|
5353 |
|
|
Set_Comes_From_Source (Heap_Allocator, True);
|
5354 |
|
|
Set_Comes_From_Source (Pool_Allocator, True);
|
5355 |
|
|
end if;
|
5356 |
|
|
|
5357 |
|
|
-- The allocator is returned on the secondary stack. We
|
5358 |
|
|
-- don't do this on VM targets, since the SS is not used.
|
5359 |
|
|
|
5360 |
|
|
if VM_Target = No_VM then
|
5361 |
|
|
Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
|
5362 |
|
|
Set_Procedure_To_Call
|
5363 |
|
|
(SS_Allocator, RTE (RE_SS_Allocate));
|
5364 |
|
|
|
5365 |
|
|
-- The allocator is returned on the secondary stack,
|
5366 |
|
|
-- so indicate that the function return, as well as
|
5367 |
|
|
-- the block that encloses the allocator, must not
|
5368 |
|
|
-- release it. The flags must be set now because
|
5369 |
|
|
-- the decision to use the secondary stack is done
|
5370 |
|
|
-- very late in the course of expanding the return
|
5371 |
|
|
-- statement, past the point where these flags are
|
5372 |
|
|
-- normally set.
|
5373 |
|
|
|
5374 |
|
|
Set_Sec_Stack_Needed_For_Return (Par_Func);
|
5375 |
|
|
Set_Sec_Stack_Needed_For_Return
|
5376 |
|
|
(Return_Statement_Entity (N));
|
5377 |
|
|
Set_Uses_Sec_Stack (Par_Func);
|
5378 |
|
|
Set_Uses_Sec_Stack (Return_Statement_Entity (N));
|
5379 |
|
|
end if;
|
5380 |
|
|
|
5381 |
|
|
-- Create an if statement to test the BIP_Alloc_Form
|
5382 |
|
|
-- formal and initialize the access object to either the
|
5383 |
|
|
-- BIP_Object_Access formal (BIP_Alloc_Form =
|
5384 |
|
|
-- Caller_Allocation), the result of allocating the
|
5385 |
|
|
-- object in the secondary stack (BIP_Alloc_Form =
|
5386 |
|
|
-- Secondary_Stack), or else an allocator to create the
|
5387 |
|
|
-- return object in the heap or user-defined pool
|
5388 |
|
|
-- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
|
5389 |
|
|
|
5390 |
|
|
-- ??? An unchecked type conversion must be made in the
|
5391 |
|
|
-- case of assigning the access object formal to the
|
5392 |
|
|
-- local access object, because a normal conversion would
|
5393 |
|
|
-- be illegal in some cases (such as converting access-
|
5394 |
|
|
-- to-unconstrained to access-to-constrained), but the
|
5395 |
|
|
-- the unchecked conversion will presumably fail to work
|
5396 |
|
|
-- right in just such cases. It's not clear at all how to
|
5397 |
|
|
-- handle this. ???
|
5398 |
|
|
|
5399 |
|
|
Alloc_If_Stmt :=
|
5400 |
|
|
Make_If_Statement (Loc,
|
5401 |
|
|
Condition =>
|
5402 |
|
|
Make_Op_Eq (Loc,
|
5403 |
|
|
Left_Opnd =>
|
5404 |
|
|
New_Reference_To (Obj_Alloc_Formal, Loc),
|
5405 |
|
|
Right_Opnd =>
|
5406 |
|
|
Make_Integer_Literal (Loc,
|
5407 |
|
|
UI_From_Int (BIP_Allocation_Form'Pos
|
5408 |
|
|
(Caller_Allocation)))),
|
5409 |
|
|
|
5410 |
|
|
Then_Statements => New_List (
|
5411 |
|
|
Make_Assignment_Statement (Loc,
|
5412 |
|
|
Name =>
|
5413 |
|
|
New_Reference_To (Alloc_Obj_Id, Loc),
|
5414 |
|
|
Expression =>
|
5415 |
|
|
Make_Unchecked_Type_Conversion (Loc,
|
5416 |
|
|
Subtype_Mark =>
|
5417 |
|
|
New_Reference_To (Ref_Type, Loc),
|
5418 |
|
|
Expression =>
|
5419 |
|
|
New_Reference_To (Object_Access, Loc)))),
|
5420 |
|
|
|
5421 |
|
|
Elsif_Parts => New_List (
|
5422 |
|
|
Make_Elsif_Part (Loc,
|
5423 |
|
|
Condition =>
|
5424 |
|
|
Make_Op_Eq (Loc,
|
5425 |
|
|
Left_Opnd =>
|
5426 |
|
|
New_Reference_To (Obj_Alloc_Formal, Loc),
|
5427 |
|
|
Right_Opnd =>
|
5428 |
|
|
Make_Integer_Literal (Loc,
|
5429 |
|
|
UI_From_Int (BIP_Allocation_Form'Pos
|
5430 |
|
|
(Secondary_Stack)))),
|
5431 |
|
|
|
5432 |
|
|
Then_Statements => New_List (
|
5433 |
|
|
Make_Assignment_Statement (Loc,
|
5434 |
|
|
Name =>
|
5435 |
|
|
New_Reference_To (Alloc_Obj_Id, Loc),
|
5436 |
|
|
Expression => SS_Allocator))),
|
5437 |
|
|
|
5438 |
|
|
Make_Elsif_Part (Loc,
|
5439 |
|
|
Condition =>
|
5440 |
|
|
Make_Op_Eq (Loc,
|
5441 |
|
|
Left_Opnd =>
|
5442 |
|
|
New_Reference_To (Obj_Alloc_Formal, Loc),
|
5443 |
|
|
Right_Opnd =>
|
5444 |
|
|
Make_Integer_Literal (Loc,
|
5445 |
|
|
UI_From_Int (BIP_Allocation_Form'Pos
|
5446 |
|
|
(Global_Heap)))),
|
5447 |
|
|
|
5448 |
|
|
Then_Statements => New_List (
|
5449 |
|
|
Build_Heap_Allocator
|
5450 |
|
|
(Temp_Id => Alloc_Obj_Id,
|
5451 |
|
|
Temp_Typ => Ref_Type,
|
5452 |
|
|
Func_Id => Par_Func,
|
5453 |
|
|
Ret_Typ => Return_Obj_Typ,
|
5454 |
|
|
Alloc_Expr => Heap_Allocator)))),
|
5455 |
|
|
|
5456 |
|
|
Else_Statements => New_List (
|
5457 |
|
|
Pool_Decl,
|
5458 |
|
|
Build_Heap_Allocator
|
5459 |
|
|
(Temp_Id => Alloc_Obj_Id,
|
5460 |
|
|
Temp_Typ => Ref_Type,
|
5461 |
|
|
Func_Id => Par_Func,
|
5462 |
|
|
Ret_Typ => Return_Obj_Typ,
|
5463 |
|
|
Alloc_Expr => Pool_Allocator)));
|
5464 |
|
|
|
5465 |
|
|
-- If a separate initialization assignment was created
|
5466 |
|
|
-- earlier, append that following the assignment of the
|
5467 |
|
|
-- implicit access formal to the access object, to ensure
|
5468 |
|
|
-- that the return object is initialized in that case. In
|
5469 |
|
|
-- this situation, the target of the assignment must be
|
5470 |
|
|
-- rewritten to denote a dereference of the access to the
|
5471 |
|
|
-- return object passed in by the caller.
|
5472 |
|
|
|
5473 |
|
|
if Present (Init_Assignment) then
|
5474 |
|
|
Rewrite (Name (Init_Assignment),
|
5475 |
|
|
Make_Explicit_Dereference (Loc,
|
5476 |
|
|
Prefix => New_Reference_To (Alloc_Obj_Id, Loc)));
|
5477 |
|
|
|
5478 |
|
|
Set_Etype
|
5479 |
|
|
(Name (Init_Assignment), Etype (Return_Obj_Id));
|
5480 |
|
|
|
5481 |
|
|
Append_To
|
5482 |
|
|
(Then_Statements (Alloc_If_Stmt), Init_Assignment);
|
5483 |
|
|
end if;
|
5484 |
|
|
|
5485 |
|
|
Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
|
5486 |
|
|
|
5487 |
|
|
-- Remember the local access object for use in the
|
5488 |
|
|
-- dereference of the renaming created below.
|
5489 |
|
|
|
5490 |
|
|
Object_Access := Alloc_Obj_Id;
|
5491 |
|
|
end;
|
5492 |
|
|
end if;
|
5493 |
|
|
|
5494 |
|
|
-- Replace the return object declaration with a renaming of a
|
5495 |
|
|
-- dereference of the access value designating the return
|
5496 |
|
|
-- object.
|
5497 |
|
|
|
5498 |
|
|
Obj_Acc_Deref :=
|
5499 |
|
|
Make_Explicit_Dereference (Loc,
|
5500 |
|
|
Prefix => New_Reference_To (Object_Access, Loc));
|
5501 |
|
|
|
5502 |
|
|
Rewrite (Ret_Obj_Decl,
|
5503 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
5504 |
|
|
Defining_Identifier => Return_Obj_Id,
|
5505 |
|
|
Access_Definition => Empty,
|
5506 |
|
|
Subtype_Mark =>
|
5507 |
|
|
New_Occurrence_Of (Return_Obj_Typ, Loc),
|
5508 |
|
|
Name => Obj_Acc_Deref));
|
5509 |
|
|
|
5510 |
|
|
Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
|
5511 |
|
|
end;
|
5512 |
|
|
end if;
|
5513 |
|
|
|
5514 |
|
|
-- Case where we do not build a block
|
5515 |
|
|
|
5516 |
|
|
else
|
5517 |
|
|
-- We're about to drop Return_Object_Declarations on the floor, so
|
5518 |
|
|
-- we need to insert it, in case it got expanded into useful code.
|
5519 |
|
|
-- Remove side effects from expression, which may be duplicated in
|
5520 |
|
|
-- subsequent checks (see Expand_Simple_Function_Return).
|
5521 |
|
|
|
5522 |
|
|
Insert_List_Before (N, Return_Object_Declarations (N));
|
5523 |
|
|
Remove_Side_Effects (Exp);
|
5524 |
|
|
|
5525 |
|
|
-- Build simple_return_statement that returns the expression directly
|
5526 |
|
|
|
5527 |
|
|
Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
|
5528 |
|
|
Result := Return_Stmt;
|
5529 |
|
|
end if;
|
5530 |
|
|
|
5531 |
|
|
-- Set the flag to prevent infinite recursion
|
5532 |
|
|
|
5533 |
|
|
Set_Comes_From_Extended_Return_Statement (Return_Stmt);
|
5534 |
|
|
|
5535 |
|
|
Rewrite (N, Result);
|
5536 |
|
|
Analyze (N);
|
5537 |
|
|
end Expand_N_Extended_Return_Statement;
|
5538 |
|
|
|
5539 |
|
|
----------------------------
|
5540 |
|
|
-- Expand_N_Function_Call --
|
5541 |
|
|
----------------------------
|
5542 |
|
|
|
5543 |
|
|
procedure Expand_N_Function_Call (N : Node_Id) is
|
5544 |
|
|
begin
|
5545 |
|
|
Expand_Call (N);
|
5546 |
|
|
|
5547 |
|
|
-- If the return value of a foreign compiled function is VAX Float, then
|
5548 |
|
|
-- expand the return (adjusts the location of the return value on
|
5549 |
|
|
-- Alpha/VMS, no-op everywhere else).
|
5550 |
|
|
-- Comes_From_Source intercepts recursive expansion.
|
5551 |
|
|
|
5552 |
|
|
if Vax_Float (Etype (N))
|
5553 |
|
|
and then Nkind (N) = N_Function_Call
|
5554 |
|
|
and then Present (Name (N))
|
5555 |
|
|
and then Present (Entity (Name (N)))
|
5556 |
|
|
and then Has_Foreign_Convention (Entity (Name (N)))
|
5557 |
|
|
and then Comes_From_Source (Parent (N))
|
5558 |
|
|
then
|
5559 |
|
|
Expand_Vax_Foreign_Return (N);
|
5560 |
|
|
end if;
|
5561 |
|
|
end Expand_N_Function_Call;
|
5562 |
|
|
|
5563 |
|
|
---------------------------------------
|
5564 |
|
|
-- Expand_N_Procedure_Call_Statement --
|
5565 |
|
|
---------------------------------------
|
5566 |
|
|
|
5567 |
|
|
procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
|
5568 |
|
|
begin
|
5569 |
|
|
Expand_Call (N);
|
5570 |
|
|
end Expand_N_Procedure_Call_Statement;
|
5571 |
|
|
|
5572 |
|
|
--------------------------------------
|
5573 |
|
|
-- Expand_N_Simple_Return_Statement --
|
5574 |
|
|
--------------------------------------
|
5575 |
|
|
|
5576 |
|
|
procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
|
5577 |
|
|
begin
|
5578 |
|
|
-- Defend against previous errors (i.e. the return statement calls a
|
5579 |
|
|
-- function that is not available in configurable runtime).
|
5580 |
|
|
|
5581 |
|
|
if Present (Expression (N))
|
5582 |
|
|
and then Nkind (Expression (N)) = N_Empty
|
5583 |
|
|
then
|
5584 |
|
|
return;
|
5585 |
|
|
end if;
|
5586 |
|
|
|
5587 |
|
|
-- Distinguish the function and non-function cases:
|
5588 |
|
|
|
5589 |
|
|
case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
|
5590 |
|
|
|
5591 |
|
|
when E_Function |
|
5592 |
|
|
E_Generic_Function =>
|
5593 |
|
|
Expand_Simple_Function_Return (N);
|
5594 |
|
|
|
5595 |
|
|
when E_Procedure |
|
5596 |
|
|
E_Generic_Procedure |
|
5597 |
|
|
E_Entry |
|
5598 |
|
|
E_Entry_Family |
|
5599 |
|
|
E_Return_Statement =>
|
5600 |
|
|
Expand_Non_Function_Return (N);
|
5601 |
|
|
|
5602 |
|
|
when others =>
|
5603 |
|
|
raise Program_Error;
|
5604 |
|
|
end case;
|
5605 |
|
|
|
5606 |
|
|
exception
|
5607 |
|
|
when RE_Not_Available =>
|
5608 |
|
|
return;
|
5609 |
|
|
end Expand_N_Simple_Return_Statement;
|
5610 |
|
|
|
5611 |
|
|
------------------------------
|
5612 |
|
|
-- Expand_N_Subprogram_Body --
|
5613 |
|
|
------------------------------
|
5614 |
|
|
|
5615 |
|
|
-- Add poll call if ATC polling is enabled, unless the body will be inlined
|
5616 |
|
|
-- by the back-end.
|
5617 |
|
|
|
5618 |
|
|
-- Add dummy push/pop label nodes at start and end to clear any local
|
5619 |
|
|
-- exception indications if local-exception-to-goto optimization is active.
|
5620 |
|
|
|
5621 |
|
|
-- Add return statement if last statement in body is not a return statement
|
5622 |
|
|
-- (this makes things easier on Gigi which does not want to have to handle
|
5623 |
|
|
-- a missing return).
|
5624 |
|
|
|
5625 |
|
|
-- Add call to Activate_Tasks if body is a task activator
|
5626 |
|
|
|
5627 |
|
|
-- Deal with possible detection of infinite recursion
|
5628 |
|
|
|
5629 |
|
|
-- Eliminate body completely if convention stubbed
|
5630 |
|
|
|
5631 |
|
|
-- Encode entity names within body, since we will not need to reference
|
5632 |
|
|
-- these entities any longer in the front end.
|
5633 |
|
|
|
5634 |
|
|
-- Initialize scalar out parameters if Initialize/Normalize_Scalars
|
5635 |
|
|
|
5636 |
|
|
-- Reset Pure indication if any parameter has root type System.Address
|
5637 |
|
|
-- or has any parameters of limited types, where limited means that the
|
5638 |
|
|
-- run-time view is limited (i.e. the full type is limited).
|
5639 |
|
|
|
5640 |
|
|
-- Wrap thread body
|
5641 |
|
|
|
5642 |
|
|
procedure Expand_N_Subprogram_Body (N : Node_Id) is
|
5643 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5644 |
|
|
H : constant Node_Id := Handled_Statement_Sequence (N);
|
5645 |
|
|
Body_Id : Entity_Id;
|
5646 |
|
|
Except_H : Node_Id;
|
5647 |
|
|
L : List_Id;
|
5648 |
|
|
Spec_Id : Entity_Id;
|
5649 |
|
|
|
5650 |
|
|
procedure Add_Return (S : List_Id);
|
5651 |
|
|
-- Append a return statement to the statement sequence S if the last
|
5652 |
|
|
-- statement is not already a return or a goto statement. Note that
|
5653 |
|
|
-- the latter test is not critical, it does not matter if we add a few
|
5654 |
|
|
-- extra returns, since they get eliminated anyway later on.
|
5655 |
|
|
|
5656 |
|
|
----------------
|
5657 |
|
|
-- Add_Return --
|
5658 |
|
|
----------------
|
5659 |
|
|
|
5660 |
|
|
procedure Add_Return (S : List_Id) is
|
5661 |
|
|
Last_Stm : Node_Id;
|
5662 |
|
|
Loc : Source_Ptr;
|
5663 |
|
|
|
5664 |
|
|
begin
|
5665 |
|
|
-- Get last statement, ignoring any Pop_xxx_Label nodes, which are
|
5666 |
|
|
-- not relevant in this context since they are not executable.
|
5667 |
|
|
|
5668 |
|
|
Last_Stm := Last (S);
|
5669 |
|
|
while Nkind (Last_Stm) in N_Pop_xxx_Label loop
|
5670 |
|
|
Prev (Last_Stm);
|
5671 |
|
|
end loop;
|
5672 |
|
|
|
5673 |
|
|
-- Now insert return unless last statement is a transfer
|
5674 |
|
|
|
5675 |
|
|
if not Is_Transfer (Last_Stm) then
|
5676 |
|
|
|
5677 |
|
|
-- The source location for the return is the end label of the
|
5678 |
|
|
-- procedure if present. Otherwise use the sloc of the last
|
5679 |
|
|
-- statement in the list. If the list comes from a generated
|
5680 |
|
|
-- exception handler and we are not debugging generated code,
|
5681 |
|
|
-- all the statements within the handler are made invisible
|
5682 |
|
|
-- to the debugger.
|
5683 |
|
|
|
5684 |
|
|
if Nkind (Parent (S)) = N_Exception_Handler
|
5685 |
|
|
and then not Comes_From_Source (Parent (S))
|
5686 |
|
|
then
|
5687 |
|
|
Loc := Sloc (Last_Stm);
|
5688 |
|
|
elsif Present (End_Label (H)) then
|
5689 |
|
|
Loc := Sloc (End_Label (H));
|
5690 |
|
|
else
|
5691 |
|
|
Loc := Sloc (Last_Stm);
|
5692 |
|
|
end if;
|
5693 |
|
|
|
5694 |
|
|
declare
|
5695 |
|
|
Rtn : constant Node_Id := Make_Simple_Return_Statement (Loc);
|
5696 |
|
|
|
5697 |
|
|
begin
|
5698 |
|
|
-- Append return statement, and set analyzed manually. We can't
|
5699 |
|
|
-- call Analyze on this return since the scope is wrong.
|
5700 |
|
|
|
5701 |
|
|
-- Note: it almost works to push the scope and then do the
|
5702 |
|
|
-- Analyze call, but something goes wrong in some weird cases
|
5703 |
|
|
-- and it is not worth worrying about ???
|
5704 |
|
|
|
5705 |
|
|
Append_To (S, Rtn);
|
5706 |
|
|
Set_Analyzed (Rtn);
|
5707 |
|
|
|
5708 |
|
|
-- Call _Postconditions procedure if appropriate. We need to
|
5709 |
|
|
-- do this explicitly because we did not analyze the generated
|
5710 |
|
|
-- return statement above, so the call did not get inserted.
|
5711 |
|
|
|
5712 |
|
|
if Ekind (Spec_Id) = E_Procedure
|
5713 |
|
|
and then Has_Postconditions (Spec_Id)
|
5714 |
|
|
then
|
5715 |
|
|
pragma Assert (Present (Postcondition_Proc (Spec_Id)));
|
5716 |
|
|
Insert_Action (Rtn,
|
5717 |
|
|
Make_Procedure_Call_Statement (Loc,
|
5718 |
|
|
Name =>
|
5719 |
|
|
New_Reference_To (Postcondition_Proc (Spec_Id), Loc)));
|
5720 |
|
|
end if;
|
5721 |
|
|
end;
|
5722 |
|
|
end if;
|
5723 |
|
|
end Add_Return;
|
5724 |
|
|
|
5725 |
|
|
-- Start of processing for Expand_N_Subprogram_Body
|
5726 |
|
|
|
5727 |
|
|
begin
|
5728 |
|
|
-- Set L to either the list of declarations if present, or to the list
|
5729 |
|
|
-- of statements if no declarations are present. This is used to insert
|
5730 |
|
|
-- new stuff at the start.
|
5731 |
|
|
|
5732 |
|
|
if Is_Non_Empty_List (Declarations (N)) then
|
5733 |
|
|
L := Declarations (N);
|
5734 |
|
|
else
|
5735 |
|
|
L := Statements (H);
|
5736 |
|
|
end if;
|
5737 |
|
|
|
5738 |
|
|
-- If local-exception-to-goto optimization active, insert dummy push
|
5739 |
|
|
-- statements at start, and dummy pop statements at end, but inhibit
|
5740 |
|
|
-- this if we have No_Exception_Handlers, since they are useless and
|
5741 |
|
|
-- intefere with analysis, e.g. by codepeer.
|
5742 |
|
|
|
5743 |
|
|
if (Debug_Flag_Dot_G
|
5744 |
|
|
or else Restriction_Active (No_Exception_Propagation))
|
5745 |
|
|
and then not Restriction_Active (No_Exception_Handlers)
|
5746 |
|
|
and then not CodePeer_Mode
|
5747 |
|
|
and then Is_Non_Empty_List (L)
|
5748 |
|
|
then
|
5749 |
|
|
declare
|
5750 |
|
|
FS : constant Node_Id := First (L);
|
5751 |
|
|
FL : constant Source_Ptr := Sloc (FS);
|
5752 |
|
|
LS : Node_Id;
|
5753 |
|
|
LL : Source_Ptr;
|
5754 |
|
|
|
5755 |
|
|
begin
|
5756 |
|
|
-- LS points to either last statement, if statements are present
|
5757 |
|
|
-- or to the last declaration if there are no statements present.
|
5758 |
|
|
-- It is the node after which the pop's are generated.
|
5759 |
|
|
|
5760 |
|
|
if Is_Non_Empty_List (Statements (H)) then
|
5761 |
|
|
LS := Last (Statements (H));
|
5762 |
|
|
else
|
5763 |
|
|
LS := Last (L);
|
5764 |
|
|
end if;
|
5765 |
|
|
|
5766 |
|
|
LL := Sloc (LS);
|
5767 |
|
|
|
5768 |
|
|
Insert_List_Before_And_Analyze (FS, New_List (
|
5769 |
|
|
Make_Push_Constraint_Error_Label (FL),
|
5770 |
|
|
Make_Push_Program_Error_Label (FL),
|
5771 |
|
|
Make_Push_Storage_Error_Label (FL)));
|
5772 |
|
|
|
5773 |
|
|
Insert_List_After_And_Analyze (LS, New_List (
|
5774 |
|
|
Make_Pop_Constraint_Error_Label (LL),
|
5775 |
|
|
Make_Pop_Program_Error_Label (LL),
|
5776 |
|
|
Make_Pop_Storage_Error_Label (LL)));
|
5777 |
|
|
end;
|
5778 |
|
|
end if;
|
5779 |
|
|
|
5780 |
|
|
-- Find entity for subprogram
|
5781 |
|
|
|
5782 |
|
|
Body_Id := Defining_Entity (N);
|
5783 |
|
|
|
5784 |
|
|
if Present (Corresponding_Spec (N)) then
|
5785 |
|
|
Spec_Id := Corresponding_Spec (N);
|
5786 |
|
|
else
|
5787 |
|
|
Spec_Id := Body_Id;
|
5788 |
|
|
end if;
|
5789 |
|
|
|
5790 |
|
|
-- Need poll on entry to subprogram if polling enabled. We only do this
|
5791 |
|
|
-- for non-empty subprograms, since it does not seem necessary to poll
|
5792 |
|
|
-- for a dummy null subprogram.
|
5793 |
|
|
|
5794 |
|
|
if Is_Non_Empty_List (L) then
|
5795 |
|
|
|
5796 |
|
|
-- Do not add a polling call if the subprogram is to be inlined by
|
5797 |
|
|
-- the back-end, to avoid repeated calls with multiple inlinings.
|
5798 |
|
|
|
5799 |
|
|
if Is_Inlined (Spec_Id)
|
5800 |
|
|
and then Front_End_Inlining
|
5801 |
|
|
and then Optimization_Level > 1
|
5802 |
|
|
then
|
5803 |
|
|
null;
|
5804 |
|
|
else
|
5805 |
|
|
Generate_Poll_Call (First (L));
|
5806 |
|
|
end if;
|
5807 |
|
|
end if;
|
5808 |
|
|
|
5809 |
|
|
-- If this is a Pure function which has any parameters whose root type
|
5810 |
|
|
-- is System.Address, reset the Pure indication, since it will likely
|
5811 |
|
|
-- cause incorrect code to be generated as the parameter is probably
|
5812 |
|
|
-- a pointer, and the fact that the same pointer is passed does not mean
|
5813 |
|
|
-- that the same value is being referenced.
|
5814 |
|
|
|
5815 |
|
|
-- Note that if the programmer gave an explicit Pure_Function pragma,
|
5816 |
|
|
-- then we believe the programmer, and leave the subprogram Pure.
|
5817 |
|
|
|
5818 |
|
|
-- This code should probably be at the freeze point, so that it happens
|
5819 |
|
|
-- even on a -gnatc (or more importantly -gnatt) compile, so that the
|
5820 |
|
|
-- semantic tree has Is_Pure set properly ???
|
5821 |
|
|
|
5822 |
|
|
if Is_Pure (Spec_Id)
|
5823 |
|
|
and then Is_Subprogram (Spec_Id)
|
5824 |
|
|
and then not Has_Pragma_Pure_Function (Spec_Id)
|
5825 |
|
|
then
|
5826 |
|
|
declare
|
5827 |
|
|
F : Entity_Id;
|
5828 |
|
|
|
5829 |
|
|
begin
|
5830 |
|
|
F := First_Formal (Spec_Id);
|
5831 |
|
|
while Present (F) loop
|
5832 |
|
|
if Is_Descendent_Of_Address (Etype (F))
|
5833 |
|
|
|
5834 |
|
|
-- Note that this test is being made in the body of the
|
5835 |
|
|
-- subprogram, not the spec, so we are testing the full
|
5836 |
|
|
-- type for being limited here, as required.
|
5837 |
|
|
|
5838 |
|
|
or else Is_Limited_Type (Etype (F))
|
5839 |
|
|
then
|
5840 |
|
|
Set_Is_Pure (Spec_Id, False);
|
5841 |
|
|
|
5842 |
|
|
if Spec_Id /= Body_Id then
|
5843 |
|
|
Set_Is_Pure (Body_Id, False);
|
5844 |
|
|
end if;
|
5845 |
|
|
|
5846 |
|
|
exit;
|
5847 |
|
|
end if;
|
5848 |
|
|
|
5849 |
|
|
Next_Formal (F);
|
5850 |
|
|
end loop;
|
5851 |
|
|
end;
|
5852 |
|
|
end if;
|
5853 |
|
|
|
5854 |
|
|
-- Initialize any scalar OUT args if Initialize/Normalize_Scalars
|
5855 |
|
|
|
5856 |
|
|
if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
|
5857 |
|
|
declare
|
5858 |
|
|
F : Entity_Id;
|
5859 |
|
|
|
5860 |
|
|
begin
|
5861 |
|
|
-- Loop through formals
|
5862 |
|
|
|
5863 |
|
|
F := First_Formal (Spec_Id);
|
5864 |
|
|
while Present (F) loop
|
5865 |
|
|
if Is_Scalar_Type (Etype (F))
|
5866 |
|
|
and then Ekind (F) = E_Out_Parameter
|
5867 |
|
|
then
|
5868 |
|
|
Check_Restriction (No_Default_Initialization, F);
|
5869 |
|
|
|
5870 |
|
|
-- Insert the initialization. We turn off validity checks
|
5871 |
|
|
-- for this assignment, since we do not want any check on
|
5872 |
|
|
-- the initial value itself (which may well be invalid).
|
5873 |
|
|
|
5874 |
|
|
Insert_Before_And_Analyze (First (L),
|
5875 |
|
|
Make_Assignment_Statement (Loc,
|
5876 |
|
|
Name => New_Occurrence_Of (F, Loc),
|
5877 |
|
|
Expression => Get_Simple_Init_Val (Etype (F), N)),
|
5878 |
|
|
Suppress => Validity_Check);
|
5879 |
|
|
end if;
|
5880 |
|
|
|
5881 |
|
|
Next_Formal (F);
|
5882 |
|
|
end loop;
|
5883 |
|
|
end;
|
5884 |
|
|
end if;
|
5885 |
|
|
|
5886 |
|
|
-- Clear out statement list for stubbed procedure
|
5887 |
|
|
|
5888 |
|
|
if Present (Corresponding_Spec (N)) then
|
5889 |
|
|
Set_Elaboration_Flag (N, Spec_Id);
|
5890 |
|
|
|
5891 |
|
|
if Convention (Spec_Id) = Convention_Stubbed
|
5892 |
|
|
or else Is_Eliminated (Spec_Id)
|
5893 |
|
|
then
|
5894 |
|
|
Set_Declarations (N, Empty_List);
|
5895 |
|
|
Set_Handled_Statement_Sequence (N,
|
5896 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
5897 |
|
|
Statements => New_List (Make_Null_Statement (Loc))));
|
5898 |
|
|
return;
|
5899 |
|
|
end if;
|
5900 |
|
|
end if;
|
5901 |
|
|
|
5902 |
|
|
-- Create a set of discriminals for the next protected subprogram body
|
5903 |
|
|
|
5904 |
|
|
if Is_List_Member (N)
|
5905 |
|
|
and then Present (Parent (List_Containing (N)))
|
5906 |
|
|
and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
|
5907 |
|
|
and then Present (Next_Protected_Operation (N))
|
5908 |
|
|
then
|
5909 |
|
|
Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
|
5910 |
|
|
end if;
|
5911 |
|
|
|
5912 |
|
|
-- Returns_By_Ref flag is normally set when the subprogram is frozen but
|
5913 |
|
|
-- subprograms with no specs are not frozen.
|
5914 |
|
|
|
5915 |
|
|
declare
|
5916 |
|
|
Typ : constant Entity_Id := Etype (Spec_Id);
|
5917 |
|
|
Utyp : constant Entity_Id := Underlying_Type (Typ);
|
5918 |
|
|
|
5919 |
|
|
begin
|
5920 |
|
|
if not Acts_As_Spec (N)
|
5921 |
|
|
and then Nkind (Parent (Parent (Spec_Id))) /=
|
5922 |
|
|
N_Subprogram_Body_Stub
|
5923 |
|
|
then
|
5924 |
|
|
null;
|
5925 |
|
|
|
5926 |
|
|
elsif Is_Immutably_Limited_Type (Typ) then
|
5927 |
|
|
Set_Returns_By_Ref (Spec_Id);
|
5928 |
|
|
|
5929 |
|
|
elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
|
5930 |
|
|
Set_Returns_By_Ref (Spec_Id);
|
5931 |
|
|
end if;
|
5932 |
|
|
end;
|
5933 |
|
|
|
5934 |
|
|
-- For a procedure, we add a return for all possible syntactic ends of
|
5935 |
|
|
-- the subprogram.
|
5936 |
|
|
|
5937 |
|
|
if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
|
5938 |
|
|
Add_Return (Statements (H));
|
5939 |
|
|
|
5940 |
|
|
if Present (Exception_Handlers (H)) then
|
5941 |
|
|
Except_H := First_Non_Pragma (Exception_Handlers (H));
|
5942 |
|
|
while Present (Except_H) loop
|
5943 |
|
|
Add_Return (Statements (Except_H));
|
5944 |
|
|
Next_Non_Pragma (Except_H);
|
5945 |
|
|
end loop;
|
5946 |
|
|
end if;
|
5947 |
|
|
|
5948 |
|
|
-- For a function, we must deal with the case where there is at least
|
5949 |
|
|
-- one missing return. What we do is to wrap the entire body of the
|
5950 |
|
|
-- function in a block:
|
5951 |
|
|
|
5952 |
|
|
-- begin
|
5953 |
|
|
-- ...
|
5954 |
|
|
-- end;
|
5955 |
|
|
|
5956 |
|
|
-- becomes
|
5957 |
|
|
|
5958 |
|
|
-- begin
|
5959 |
|
|
-- begin
|
5960 |
|
|
-- ...
|
5961 |
|
|
-- end;
|
5962 |
|
|
|
5963 |
|
|
-- raise Program_Error;
|
5964 |
|
|
-- end;
|
5965 |
|
|
|
5966 |
|
|
-- This approach is necessary because the raise must be signalled to the
|
5967 |
|
|
-- caller, not handled by any local handler (RM 6.4(11)).
|
5968 |
|
|
|
5969 |
|
|
-- Note: we do not need to analyze the constructed sequence here, since
|
5970 |
|
|
-- it has no handler, and an attempt to analyze the handled statement
|
5971 |
|
|
-- sequence twice is risky in various ways (e.g. the issue of expanding
|
5972 |
|
|
-- cleanup actions twice).
|
5973 |
|
|
|
5974 |
|
|
elsif Has_Missing_Return (Spec_Id) then
|
5975 |
|
|
declare
|
5976 |
|
|
Hloc : constant Source_Ptr := Sloc (H);
|
5977 |
|
|
Blok : constant Node_Id :=
|
5978 |
|
|
Make_Block_Statement (Hloc,
|
5979 |
|
|
Handled_Statement_Sequence => H);
|
5980 |
|
|
Rais : constant Node_Id :=
|
5981 |
|
|
Make_Raise_Program_Error (Hloc,
|
5982 |
|
|
Reason => PE_Missing_Return);
|
5983 |
|
|
|
5984 |
|
|
begin
|
5985 |
|
|
Set_Handled_Statement_Sequence (N,
|
5986 |
|
|
Make_Handled_Sequence_Of_Statements (Hloc,
|
5987 |
|
|
Statements => New_List (Blok, Rais)));
|
5988 |
|
|
|
5989 |
|
|
Push_Scope (Spec_Id);
|
5990 |
|
|
Analyze (Blok);
|
5991 |
|
|
Analyze (Rais);
|
5992 |
|
|
Pop_Scope;
|
5993 |
|
|
end;
|
5994 |
|
|
end if;
|
5995 |
|
|
|
5996 |
|
|
-- If subprogram contains a parameterless recursive call, then we may
|
5997 |
|
|
-- have an infinite recursion, so see if we can generate code to check
|
5998 |
|
|
-- for this possibility if storage checks are not suppressed.
|
5999 |
|
|
|
6000 |
|
|
if Ekind (Spec_Id) = E_Procedure
|
6001 |
|
|
and then Has_Recursive_Call (Spec_Id)
|
6002 |
|
|
and then not Storage_Checks_Suppressed (Spec_Id)
|
6003 |
|
|
then
|
6004 |
|
|
Detect_Infinite_Recursion (N, Spec_Id);
|
6005 |
|
|
end if;
|
6006 |
|
|
|
6007 |
|
|
-- Set to encode entity names in package body before gigi is called
|
6008 |
|
|
|
6009 |
|
|
Qualify_Entity_Names (N);
|
6010 |
|
|
end Expand_N_Subprogram_Body;
|
6011 |
|
|
|
6012 |
|
|
-----------------------------------
|
6013 |
|
|
-- Expand_N_Subprogram_Body_Stub --
|
6014 |
|
|
-----------------------------------
|
6015 |
|
|
|
6016 |
|
|
procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
|
6017 |
|
|
begin
|
6018 |
|
|
if Present (Corresponding_Body (N)) then
|
6019 |
|
|
Expand_N_Subprogram_Body (
|
6020 |
|
|
Unit_Declaration_Node (Corresponding_Body (N)));
|
6021 |
|
|
end if;
|
6022 |
|
|
end Expand_N_Subprogram_Body_Stub;
|
6023 |
|
|
|
6024 |
|
|
-------------------------------------
|
6025 |
|
|
-- Expand_N_Subprogram_Declaration --
|
6026 |
|
|
-------------------------------------
|
6027 |
|
|
|
6028 |
|
|
-- If the declaration appears within a protected body, it is a private
|
6029 |
|
|
-- operation of the protected type. We must create the corresponding
|
6030 |
|
|
-- protected subprogram an associated formals. For a normal protected
|
6031 |
|
|
-- operation, this is done when expanding the protected type declaration.
|
6032 |
|
|
|
6033 |
|
|
-- If the declaration is for a null procedure, emit null body
|
6034 |
|
|
|
6035 |
|
|
procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
|
6036 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6037 |
|
|
Subp : constant Entity_Id := Defining_Entity (N);
|
6038 |
|
|
Scop : constant Entity_Id := Scope (Subp);
|
6039 |
|
|
Prot_Decl : Node_Id;
|
6040 |
|
|
Prot_Bod : Node_Id;
|
6041 |
|
|
Prot_Id : Entity_Id;
|
6042 |
|
|
|
6043 |
|
|
begin
|
6044 |
|
|
-- In SPARK, subprogram declarations are only allowed in package
|
6045 |
|
|
-- specifications.
|
6046 |
|
|
|
6047 |
|
|
if Nkind (Parent (N)) /= N_Package_Specification then
|
6048 |
|
|
if Nkind (Parent (N)) = N_Compilation_Unit then
|
6049 |
|
|
Check_SPARK_Restriction
|
6050 |
|
|
("subprogram declaration is not a library item", N);
|
6051 |
|
|
|
6052 |
|
|
elsif Present (Next (N))
|
6053 |
|
|
and then Nkind (Next (N)) = N_Pragma
|
6054 |
|
|
and then Get_Pragma_Id (Pragma_Name (Next (N))) = Pragma_Import
|
6055 |
|
|
then
|
6056 |
|
|
-- In SPARK, subprogram declarations are also permitted in
|
6057 |
|
|
-- declarative parts when immediately followed by a corresponding
|
6058 |
|
|
-- pragma Import. We only check here that there is some pragma
|
6059 |
|
|
-- Import.
|
6060 |
|
|
|
6061 |
|
|
null;
|
6062 |
|
|
else
|
6063 |
|
|
Check_SPARK_Restriction
|
6064 |
|
|
("subprogram declaration is not allowed here", N);
|
6065 |
|
|
end if;
|
6066 |
|
|
end if;
|
6067 |
|
|
|
6068 |
|
|
-- Deal with case of protected subprogram. Do not generate protected
|
6069 |
|
|
-- operation if operation is flagged as eliminated.
|
6070 |
|
|
|
6071 |
|
|
if Is_List_Member (N)
|
6072 |
|
|
and then Present (Parent (List_Containing (N)))
|
6073 |
|
|
and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
|
6074 |
|
|
and then Is_Protected_Type (Scop)
|
6075 |
|
|
then
|
6076 |
|
|
if No (Protected_Body_Subprogram (Subp))
|
6077 |
|
|
and then not Is_Eliminated (Subp)
|
6078 |
|
|
then
|
6079 |
|
|
Prot_Decl :=
|
6080 |
|
|
Make_Subprogram_Declaration (Loc,
|
6081 |
|
|
Specification =>
|
6082 |
|
|
Build_Protected_Sub_Specification
|
6083 |
|
|
(N, Scop, Unprotected_Mode));
|
6084 |
|
|
|
6085 |
|
|
-- The protected subprogram is declared outside of the protected
|
6086 |
|
|
-- body. Given that the body has frozen all entities so far, we
|
6087 |
|
|
-- analyze the subprogram and perform freezing actions explicitly.
|
6088 |
|
|
-- including the generation of an explicit freeze node, to ensure
|
6089 |
|
|
-- that gigi has the proper order of elaboration.
|
6090 |
|
|
-- If the body is a subunit, the insertion point is before the
|
6091 |
|
|
-- stub in the parent.
|
6092 |
|
|
|
6093 |
|
|
Prot_Bod := Parent (List_Containing (N));
|
6094 |
|
|
|
6095 |
|
|
if Nkind (Parent (Prot_Bod)) = N_Subunit then
|
6096 |
|
|
Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
|
6097 |
|
|
end if;
|
6098 |
|
|
|
6099 |
|
|
Insert_Before (Prot_Bod, Prot_Decl);
|
6100 |
|
|
Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
|
6101 |
|
|
Set_Has_Delayed_Freeze (Prot_Id);
|
6102 |
|
|
|
6103 |
|
|
Push_Scope (Scope (Scop));
|
6104 |
|
|
Analyze (Prot_Decl);
|
6105 |
|
|
Freeze_Before (N, Prot_Id);
|
6106 |
|
|
Set_Protected_Body_Subprogram (Subp, Prot_Id);
|
6107 |
|
|
|
6108 |
|
|
-- Create protected operation as well. Even though the operation
|
6109 |
|
|
-- is only accessible within the body, it is possible to make it
|
6110 |
|
|
-- available outside of the protected object by using 'Access to
|
6111 |
|
|
-- provide a callback, so build protected version in all cases.
|
6112 |
|
|
|
6113 |
|
|
Prot_Decl :=
|
6114 |
|
|
Make_Subprogram_Declaration (Loc,
|
6115 |
|
|
Specification =>
|
6116 |
|
|
Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
|
6117 |
|
|
Insert_Before (Prot_Bod, Prot_Decl);
|
6118 |
|
|
Analyze (Prot_Decl);
|
6119 |
|
|
|
6120 |
|
|
Pop_Scope;
|
6121 |
|
|
end if;
|
6122 |
|
|
|
6123 |
|
|
-- Ada 2005 (AI-348): Generate body for a null procedure. In most
|
6124 |
|
|
-- cases this is superfluous because calls to it will be automatically
|
6125 |
|
|
-- inlined, but we definitely need the body if preconditions for the
|
6126 |
|
|
-- procedure are present.
|
6127 |
|
|
|
6128 |
|
|
elsif Nkind (Specification (N)) = N_Procedure_Specification
|
6129 |
|
|
and then Null_Present (Specification (N))
|
6130 |
|
|
then
|
6131 |
|
|
declare
|
6132 |
|
|
Bod : constant Node_Id := Body_To_Inline (N);
|
6133 |
|
|
|
6134 |
|
|
begin
|
6135 |
|
|
Set_Has_Completion (Subp, False);
|
6136 |
|
|
Append_Freeze_Action (Subp, Bod);
|
6137 |
|
|
|
6138 |
|
|
-- The body now contains raise statements, so calls to it will
|
6139 |
|
|
-- not be inlined.
|
6140 |
|
|
|
6141 |
|
|
Set_Is_Inlined (Subp, False);
|
6142 |
|
|
end;
|
6143 |
|
|
end if;
|
6144 |
|
|
end Expand_N_Subprogram_Declaration;
|
6145 |
|
|
|
6146 |
|
|
--------------------------------
|
6147 |
|
|
-- Expand_Non_Function_Return --
|
6148 |
|
|
--------------------------------
|
6149 |
|
|
|
6150 |
|
|
procedure Expand_Non_Function_Return (N : Node_Id) is
|
6151 |
|
|
pragma Assert (No (Expression (N)));
|
6152 |
|
|
|
6153 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6154 |
|
|
Scope_Id : Entity_Id :=
|
6155 |
|
|
Return_Applies_To (Return_Statement_Entity (N));
|
6156 |
|
|
Kind : constant Entity_Kind := Ekind (Scope_Id);
|
6157 |
|
|
Call : Node_Id;
|
6158 |
|
|
Acc_Stat : Node_Id;
|
6159 |
|
|
Goto_Stat : Node_Id;
|
6160 |
|
|
Lab_Node : Node_Id;
|
6161 |
|
|
|
6162 |
|
|
begin
|
6163 |
|
|
-- Call _Postconditions procedure if procedure with active
|
6164 |
|
|
-- postconditions. Here, we use the Postcondition_Proc attribute,
|
6165 |
|
|
-- which is needed for implicitly-generated returns. Functions
|
6166 |
|
|
-- never have implicitly-generated returns, and there's no
|
6167 |
|
|
-- room for Postcondition_Proc in E_Function, so we look up the
|
6168 |
|
|
-- identifier Name_uPostconditions for function returns (see
|
6169 |
|
|
-- Expand_Simple_Function_Return).
|
6170 |
|
|
|
6171 |
|
|
if Ekind (Scope_Id) = E_Procedure
|
6172 |
|
|
and then Has_Postconditions (Scope_Id)
|
6173 |
|
|
then
|
6174 |
|
|
pragma Assert (Present (Postcondition_Proc (Scope_Id)));
|
6175 |
|
|
Insert_Action (N,
|
6176 |
|
|
Make_Procedure_Call_Statement (Loc,
|
6177 |
|
|
Name => New_Reference_To (Postcondition_Proc (Scope_Id), Loc)));
|
6178 |
|
|
end if;
|
6179 |
|
|
|
6180 |
|
|
-- If it is a return from a procedure do no extra steps
|
6181 |
|
|
|
6182 |
|
|
if Kind = E_Procedure or else Kind = E_Generic_Procedure then
|
6183 |
|
|
return;
|
6184 |
|
|
|
6185 |
|
|
-- If it is a nested return within an extended one, replace it with a
|
6186 |
|
|
-- return of the previously declared return object.
|
6187 |
|
|
|
6188 |
|
|
elsif Kind = E_Return_Statement then
|
6189 |
|
|
Rewrite (N,
|
6190 |
|
|
Make_Simple_Return_Statement (Loc,
|
6191 |
|
|
Expression =>
|
6192 |
|
|
New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
|
6193 |
|
|
Set_Comes_From_Extended_Return_Statement (N);
|
6194 |
|
|
Set_Return_Statement_Entity (N, Scope_Id);
|
6195 |
|
|
Expand_Simple_Function_Return (N);
|
6196 |
|
|
return;
|
6197 |
|
|
end if;
|
6198 |
|
|
|
6199 |
|
|
pragma Assert (Is_Entry (Scope_Id));
|
6200 |
|
|
|
6201 |
|
|
-- Look at the enclosing block to see whether the return is from an
|
6202 |
|
|
-- accept statement or an entry body.
|
6203 |
|
|
|
6204 |
|
|
for J in reverse 0 .. Scope_Stack.Last loop
|
6205 |
|
|
Scope_Id := Scope_Stack.Table (J).Entity;
|
6206 |
|
|
exit when Is_Concurrent_Type (Scope_Id);
|
6207 |
|
|
end loop;
|
6208 |
|
|
|
6209 |
|
|
-- If it is a return from accept statement it is expanded as call to
|
6210 |
|
|
-- RTS Complete_Rendezvous and a goto to the end of the accept body.
|
6211 |
|
|
|
6212 |
|
|
-- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
|
6213 |
|
|
-- Expand_N_Accept_Alternative in exp_ch9.adb)
|
6214 |
|
|
|
6215 |
|
|
if Is_Task_Type (Scope_Id) then
|
6216 |
|
|
|
6217 |
|
|
Call :=
|
6218 |
|
|
Make_Procedure_Call_Statement (Loc,
|
6219 |
|
|
Name => New_Reference_To (RTE (RE_Complete_Rendezvous), Loc));
|
6220 |
|
|
Insert_Before (N, Call);
|
6221 |
|
|
-- why not insert actions here???
|
6222 |
|
|
Analyze (Call);
|
6223 |
|
|
|
6224 |
|
|
Acc_Stat := Parent (N);
|
6225 |
|
|
while Nkind (Acc_Stat) /= N_Accept_Statement loop
|
6226 |
|
|
Acc_Stat := Parent (Acc_Stat);
|
6227 |
|
|
end loop;
|
6228 |
|
|
|
6229 |
|
|
Lab_Node := Last (Statements
|
6230 |
|
|
(Handled_Statement_Sequence (Acc_Stat)));
|
6231 |
|
|
|
6232 |
|
|
Goto_Stat := Make_Goto_Statement (Loc,
|
6233 |
|
|
Name => New_Occurrence_Of
|
6234 |
|
|
(Entity (Identifier (Lab_Node)), Loc));
|
6235 |
|
|
|
6236 |
|
|
Set_Analyzed (Goto_Stat);
|
6237 |
|
|
|
6238 |
|
|
Rewrite (N, Goto_Stat);
|
6239 |
|
|
Analyze (N);
|
6240 |
|
|
|
6241 |
|
|
-- If it is a return from an entry body, put a Complete_Entry_Body call
|
6242 |
|
|
-- in front of the return.
|
6243 |
|
|
|
6244 |
|
|
elsif Is_Protected_Type (Scope_Id) then
|
6245 |
|
|
Call :=
|
6246 |
|
|
Make_Procedure_Call_Statement (Loc,
|
6247 |
|
|
Name =>
|
6248 |
|
|
New_Reference_To (RTE (RE_Complete_Entry_Body), Loc),
|
6249 |
|
|
Parameter_Associations => New_List (
|
6250 |
|
|
Make_Attribute_Reference (Loc,
|
6251 |
|
|
Prefix =>
|
6252 |
|
|
New_Reference_To
|
6253 |
|
|
(Find_Protection_Object (Current_Scope), Loc),
|
6254 |
|
|
Attribute_Name => Name_Unchecked_Access)));
|
6255 |
|
|
|
6256 |
|
|
Insert_Before (N, Call);
|
6257 |
|
|
Analyze (Call);
|
6258 |
|
|
end if;
|
6259 |
|
|
end Expand_Non_Function_Return;
|
6260 |
|
|
|
6261 |
|
|
---------------------------------------
|
6262 |
|
|
-- Expand_Protected_Object_Reference --
|
6263 |
|
|
---------------------------------------
|
6264 |
|
|
|
6265 |
|
|
function Expand_Protected_Object_Reference
|
6266 |
|
|
(N : Node_Id;
|
6267 |
|
|
Scop : Entity_Id) return Node_Id
|
6268 |
|
|
is
|
6269 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6270 |
|
|
Corr : Entity_Id;
|
6271 |
|
|
Rec : Node_Id;
|
6272 |
|
|
Param : Entity_Id;
|
6273 |
|
|
Proc : Entity_Id;
|
6274 |
|
|
|
6275 |
|
|
begin
|
6276 |
|
|
Rec := Make_Identifier (Loc, Name_uObject);
|
6277 |
|
|
Set_Etype (Rec, Corresponding_Record_Type (Scop));
|
6278 |
|
|
|
6279 |
|
|
-- Find enclosing protected operation, and retrieve its first parameter,
|
6280 |
|
|
-- which denotes the enclosing protected object. If the enclosing
|
6281 |
|
|
-- operation is an entry, we are immediately within the protected body,
|
6282 |
|
|
-- and we can retrieve the object from the service entries procedure. A
|
6283 |
|
|
-- barrier function has the same signature as an entry. A barrier
|
6284 |
|
|
-- function is compiled within the protected object, but unlike
|
6285 |
|
|
-- protected operations its never needs locks, so that its protected
|
6286 |
|
|
-- body subprogram points to itself.
|
6287 |
|
|
|
6288 |
|
|
Proc := Current_Scope;
|
6289 |
|
|
while Present (Proc)
|
6290 |
|
|
and then Scope (Proc) /= Scop
|
6291 |
|
|
loop
|
6292 |
|
|
Proc := Scope (Proc);
|
6293 |
|
|
end loop;
|
6294 |
|
|
|
6295 |
|
|
Corr := Protected_Body_Subprogram (Proc);
|
6296 |
|
|
|
6297 |
|
|
if No (Corr) then
|
6298 |
|
|
|
6299 |
|
|
-- Previous error left expansion incomplete.
|
6300 |
|
|
-- Nothing to do on this call.
|
6301 |
|
|
|
6302 |
|
|
return Empty;
|
6303 |
|
|
end if;
|
6304 |
|
|
|
6305 |
|
|
Param :=
|
6306 |
|
|
Defining_Identifier
|
6307 |
|
|
(First (Parameter_Specifications (Parent (Corr))));
|
6308 |
|
|
|
6309 |
|
|
if Is_Subprogram (Proc)
|
6310 |
|
|
and then Proc /= Corr
|
6311 |
|
|
then
|
6312 |
|
|
-- Protected function or procedure
|
6313 |
|
|
|
6314 |
|
|
Set_Entity (Rec, Param);
|
6315 |
|
|
|
6316 |
|
|
-- Rec is a reference to an entity which will not be in scope when
|
6317 |
|
|
-- the call is reanalyzed, and needs no further analysis.
|
6318 |
|
|
|
6319 |
|
|
Set_Analyzed (Rec);
|
6320 |
|
|
|
6321 |
|
|
else
|
6322 |
|
|
-- Entry or barrier function for entry body. The first parameter of
|
6323 |
|
|
-- the entry body procedure is pointer to the object. We create a
|
6324 |
|
|
-- local variable of the proper type, duplicating what is done to
|
6325 |
|
|
-- define _object later on.
|
6326 |
|
|
|
6327 |
|
|
declare
|
6328 |
|
|
Decls : List_Id;
|
6329 |
|
|
Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
|
6330 |
|
|
|
6331 |
|
|
begin
|
6332 |
|
|
Decls := New_List (
|
6333 |
|
|
Make_Full_Type_Declaration (Loc,
|
6334 |
|
|
Defining_Identifier => Obj_Ptr,
|
6335 |
|
|
Type_Definition =>
|
6336 |
|
|
Make_Access_To_Object_Definition (Loc,
|
6337 |
|
|
Subtype_Indication =>
|
6338 |
|
|
New_Reference_To
|
6339 |
|
|
(Corresponding_Record_Type (Scop), Loc))));
|
6340 |
|
|
|
6341 |
|
|
Insert_Actions (N, Decls);
|
6342 |
|
|
Freeze_Before (N, Obj_Ptr);
|
6343 |
|
|
|
6344 |
|
|
Rec :=
|
6345 |
|
|
Make_Explicit_Dereference (Loc,
|
6346 |
|
|
Prefix =>
|
6347 |
|
|
Unchecked_Convert_To (Obj_Ptr,
|
6348 |
|
|
New_Occurrence_Of (Param, Loc)));
|
6349 |
|
|
|
6350 |
|
|
-- Analyze new actual. Other actuals in calls are already analyzed
|
6351 |
|
|
-- and the list of actuals is not reanalyzed after rewriting.
|
6352 |
|
|
|
6353 |
|
|
Set_Parent (Rec, N);
|
6354 |
|
|
Analyze (Rec);
|
6355 |
|
|
end;
|
6356 |
|
|
end if;
|
6357 |
|
|
|
6358 |
|
|
return Rec;
|
6359 |
|
|
end Expand_Protected_Object_Reference;
|
6360 |
|
|
|
6361 |
|
|
--------------------------------------
|
6362 |
|
|
-- Expand_Protected_Subprogram_Call --
|
6363 |
|
|
--------------------------------------
|
6364 |
|
|
|
6365 |
|
|
procedure Expand_Protected_Subprogram_Call
|
6366 |
|
|
(N : Node_Id;
|
6367 |
|
|
Subp : Entity_Id;
|
6368 |
|
|
Scop : Entity_Id)
|
6369 |
|
|
is
|
6370 |
|
|
Rec : Node_Id;
|
6371 |
|
|
|
6372 |
|
|
begin
|
6373 |
|
|
-- If the protected object is not an enclosing scope, this is an inter-
|
6374 |
|
|
-- object function call. Inter-object procedure calls are expanded by
|
6375 |
|
|
-- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
|
6376 |
|
|
-- subprogram being called is in the protected body being compiled, and
|
6377 |
|
|
-- if the protected object in the call is statically the enclosing type.
|
6378 |
|
|
-- The object may be an component of some other data structure, in which
|
6379 |
|
|
-- case this must be handled as an inter-object call.
|
6380 |
|
|
|
6381 |
|
|
if not In_Open_Scopes (Scop)
|
6382 |
|
|
or else not Is_Entity_Name (Name (N))
|
6383 |
|
|
then
|
6384 |
|
|
if Nkind (Name (N)) = N_Selected_Component then
|
6385 |
|
|
Rec := Prefix (Name (N));
|
6386 |
|
|
|
6387 |
|
|
else
|
6388 |
|
|
pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
|
6389 |
|
|
Rec := Prefix (Prefix (Name (N)));
|
6390 |
|
|
end if;
|
6391 |
|
|
|
6392 |
|
|
Build_Protected_Subprogram_Call (N,
|
6393 |
|
|
Name => New_Occurrence_Of (Subp, Sloc (N)),
|
6394 |
|
|
Rec => Convert_Concurrent (Rec, Etype (Rec)),
|
6395 |
|
|
External => True);
|
6396 |
|
|
|
6397 |
|
|
else
|
6398 |
|
|
Rec := Expand_Protected_Object_Reference (N, Scop);
|
6399 |
|
|
|
6400 |
|
|
if No (Rec) then
|
6401 |
|
|
return;
|
6402 |
|
|
end if;
|
6403 |
|
|
|
6404 |
|
|
Build_Protected_Subprogram_Call (N,
|
6405 |
|
|
Name => Name (N),
|
6406 |
|
|
Rec => Rec,
|
6407 |
|
|
External => False);
|
6408 |
|
|
|
6409 |
|
|
end if;
|
6410 |
|
|
|
6411 |
|
|
-- If it is a function call it can appear in elaboration code and
|
6412 |
|
|
-- the called entity must be frozen here.
|
6413 |
|
|
|
6414 |
|
|
if Ekind (Subp) = E_Function then
|
6415 |
|
|
Freeze_Expression (Name (N));
|
6416 |
|
|
end if;
|
6417 |
|
|
|
6418 |
|
|
-- Analyze and resolve the new call. The actuals have already been
|
6419 |
|
|
-- resolved, but expansion of a function call will add extra actuals
|
6420 |
|
|
-- if needed. Analysis of a procedure call already includes resolution.
|
6421 |
|
|
|
6422 |
|
|
Analyze (N);
|
6423 |
|
|
|
6424 |
|
|
if Ekind (Subp) = E_Function then
|
6425 |
|
|
Resolve (N, Etype (Subp));
|
6426 |
|
|
end if;
|
6427 |
|
|
end Expand_Protected_Subprogram_Call;
|
6428 |
|
|
|
6429 |
|
|
--------------------------------------------
|
6430 |
|
|
-- Has_Unconstrained_Access_Discriminants --
|
6431 |
|
|
--------------------------------------------
|
6432 |
|
|
|
6433 |
|
|
function Has_Unconstrained_Access_Discriminants
|
6434 |
|
|
(Subtyp : Entity_Id) return Boolean
|
6435 |
|
|
is
|
6436 |
|
|
Discr : Entity_Id;
|
6437 |
|
|
|
6438 |
|
|
begin
|
6439 |
|
|
if Has_Discriminants (Subtyp)
|
6440 |
|
|
and then not Is_Constrained (Subtyp)
|
6441 |
|
|
then
|
6442 |
|
|
Discr := First_Discriminant (Subtyp);
|
6443 |
|
|
while Present (Discr) loop
|
6444 |
|
|
if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
|
6445 |
|
|
return True;
|
6446 |
|
|
end if;
|
6447 |
|
|
|
6448 |
|
|
Next_Discriminant (Discr);
|
6449 |
|
|
end loop;
|
6450 |
|
|
end if;
|
6451 |
|
|
|
6452 |
|
|
return False;
|
6453 |
|
|
end Has_Unconstrained_Access_Discriminants;
|
6454 |
|
|
|
6455 |
|
|
-----------------------------------
|
6456 |
|
|
-- Expand_Simple_Function_Return --
|
6457 |
|
|
-----------------------------------
|
6458 |
|
|
|
6459 |
|
|
-- The "simple" comes from the syntax rule simple_return_statement. The
|
6460 |
|
|
-- semantics are not at all simple!
|
6461 |
|
|
|
6462 |
|
|
procedure Expand_Simple_Function_Return (N : Node_Id) is
|
6463 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6464 |
|
|
|
6465 |
|
|
Scope_Id : constant Entity_Id :=
|
6466 |
|
|
Return_Applies_To (Return_Statement_Entity (N));
|
6467 |
|
|
-- The function we are returning from
|
6468 |
|
|
|
6469 |
|
|
R_Type : constant Entity_Id := Etype (Scope_Id);
|
6470 |
|
|
-- The result type of the function
|
6471 |
|
|
|
6472 |
|
|
Utyp : constant Entity_Id := Underlying_Type (R_Type);
|
6473 |
|
|
|
6474 |
|
|
Exp : constant Node_Id := Expression (N);
|
6475 |
|
|
pragma Assert (Present (Exp));
|
6476 |
|
|
|
6477 |
|
|
Exptyp : constant Entity_Id := Etype (Exp);
|
6478 |
|
|
-- The type of the expression (not necessarily the same as R_Type)
|
6479 |
|
|
|
6480 |
|
|
Subtype_Ind : Node_Id;
|
6481 |
|
|
-- If the result type of the function is class-wide and the expression
|
6482 |
|
|
-- has a specific type, then we use the expression's type as the type of
|
6483 |
|
|
-- the return object. In cases where the expression is an aggregate that
|
6484 |
|
|
-- is built in place, this avoids the need for an expensive conversion
|
6485 |
|
|
-- of the return object to the specific type on assignments to the
|
6486 |
|
|
-- individual components.
|
6487 |
|
|
|
6488 |
|
|
begin
|
6489 |
|
|
if Is_Class_Wide_Type (R_Type)
|
6490 |
|
|
and then not Is_Class_Wide_Type (Etype (Exp))
|
6491 |
|
|
then
|
6492 |
|
|
Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
|
6493 |
|
|
else
|
6494 |
|
|
Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
|
6495 |
|
|
end if;
|
6496 |
|
|
|
6497 |
|
|
-- For the case of a simple return that does not come from an extended
|
6498 |
|
|
-- return, in the case of Ada 2005 where we are returning a limited
|
6499 |
|
|
-- type, we rewrite "return <expression>;" to be:
|
6500 |
|
|
|
6501 |
|
|
-- return _anon_ : <return_subtype> := <expression>
|
6502 |
|
|
|
6503 |
|
|
-- The expansion produced by Expand_N_Extended_Return_Statement will
|
6504 |
|
|
-- contain simple return statements (for example, a block containing
|
6505 |
|
|
-- simple return of the return object), which brings us back here with
|
6506 |
|
|
-- Comes_From_Extended_Return_Statement set. The reason for the barrier
|
6507 |
|
|
-- checking for a simple return that does not come from an extended
|
6508 |
|
|
-- return is to avoid this infinite recursion.
|
6509 |
|
|
|
6510 |
|
|
-- The reason for this design is that for Ada 2005 limited returns, we
|
6511 |
|
|
-- need to reify the return object, so we can build it "in place", and
|
6512 |
|
|
-- we need a block statement to hang finalization and tasking stuff.
|
6513 |
|
|
|
6514 |
|
|
-- ??? In order to avoid disruption, we avoid translating to extended
|
6515 |
|
|
-- return except in the cases where we really need to (Ada 2005 for
|
6516 |
|
|
-- inherently limited). We might prefer to do this translation in all
|
6517 |
|
|
-- cases (except perhaps for the case of Ada 95 inherently limited),
|
6518 |
|
|
-- in order to fully exercise the Expand_N_Extended_Return_Statement
|
6519 |
|
|
-- code. This would also allow us to do the build-in-place optimization
|
6520 |
|
|
-- for efficiency even in cases where it is semantically not required.
|
6521 |
|
|
|
6522 |
|
|
-- As before, we check the type of the return expression rather than the
|
6523 |
|
|
-- return type of the function, because the latter may be a limited
|
6524 |
|
|
-- class-wide interface type, which is not a limited type, even though
|
6525 |
|
|
-- the type of the expression may be.
|
6526 |
|
|
|
6527 |
|
|
if not Comes_From_Extended_Return_Statement (N)
|
6528 |
|
|
and then Is_Immutably_Limited_Type (Etype (Expression (N)))
|
6529 |
|
|
and then Ada_Version >= Ada_2005
|
6530 |
|
|
and then not Debug_Flag_Dot_L
|
6531 |
|
|
then
|
6532 |
|
|
declare
|
6533 |
|
|
Return_Object_Entity : constant Entity_Id :=
|
6534 |
|
|
Make_Temporary (Loc, 'R', Exp);
|
6535 |
|
|
Obj_Decl : constant Node_Id :=
|
6536 |
|
|
Make_Object_Declaration (Loc,
|
6537 |
|
|
Defining_Identifier => Return_Object_Entity,
|
6538 |
|
|
Object_Definition => Subtype_Ind,
|
6539 |
|
|
Expression => Exp);
|
6540 |
|
|
|
6541 |
|
|
Ext : constant Node_Id := Make_Extended_Return_Statement (Loc,
|
6542 |
|
|
Return_Object_Declarations => New_List (Obj_Decl));
|
6543 |
|
|
-- Do not perform this high-level optimization if the result type
|
6544 |
|
|
-- is an interface because the "this" pointer must be displaced.
|
6545 |
|
|
|
6546 |
|
|
begin
|
6547 |
|
|
Rewrite (N, Ext);
|
6548 |
|
|
Analyze (N);
|
6549 |
|
|
return;
|
6550 |
|
|
end;
|
6551 |
|
|
end if;
|
6552 |
|
|
|
6553 |
|
|
-- Here we have a simple return statement that is part of the expansion
|
6554 |
|
|
-- of an extended return statement (either written by the user, or
|
6555 |
|
|
-- generated by the above code).
|
6556 |
|
|
|
6557 |
|
|
-- Always normalize C/Fortran boolean result. This is not always needed,
|
6558 |
|
|
-- but it seems a good idea to minimize the passing around of non-
|
6559 |
|
|
-- normalized values, and in any case this handles the processing of
|
6560 |
|
|
-- barrier functions for protected types, which turn the condition into
|
6561 |
|
|
-- a return statement.
|
6562 |
|
|
|
6563 |
|
|
if Is_Boolean_Type (Exptyp)
|
6564 |
|
|
and then Nonzero_Is_True (Exptyp)
|
6565 |
|
|
then
|
6566 |
|
|
Adjust_Condition (Exp);
|
6567 |
|
|
Adjust_Result_Type (Exp, Exptyp);
|
6568 |
|
|
end if;
|
6569 |
|
|
|
6570 |
|
|
-- Do validity check if enabled for returns
|
6571 |
|
|
|
6572 |
|
|
if Validity_Checks_On
|
6573 |
|
|
and then Validity_Check_Returns
|
6574 |
|
|
then
|
6575 |
|
|
Ensure_Valid (Exp);
|
6576 |
|
|
end if;
|
6577 |
|
|
|
6578 |
|
|
-- Check the result expression of a scalar function against the subtype
|
6579 |
|
|
-- of the function by inserting a conversion. This conversion must
|
6580 |
|
|
-- eventually be performed for other classes of types, but for now it's
|
6581 |
|
|
-- only done for scalars.
|
6582 |
|
|
-- ???
|
6583 |
|
|
|
6584 |
|
|
if Is_Scalar_Type (Exptyp) then
|
6585 |
|
|
Rewrite (Exp, Convert_To (R_Type, Exp));
|
6586 |
|
|
|
6587 |
|
|
-- The expression is resolved to ensure that the conversion gets
|
6588 |
|
|
-- expanded to generate a possible constraint check.
|
6589 |
|
|
|
6590 |
|
|
Analyze_And_Resolve (Exp, R_Type);
|
6591 |
|
|
end if;
|
6592 |
|
|
|
6593 |
|
|
-- Deal with returning variable length objects and controlled types
|
6594 |
|
|
|
6595 |
|
|
-- Nothing to do if we are returning by reference, or this is not a
|
6596 |
|
|
-- type that requires special processing (indicated by the fact that
|
6597 |
|
|
-- it requires a cleanup scope for the secondary stack case).
|
6598 |
|
|
|
6599 |
|
|
if Is_Immutably_Limited_Type (Exptyp)
|
6600 |
|
|
or else Is_Limited_Interface (Exptyp)
|
6601 |
|
|
then
|
6602 |
|
|
null;
|
6603 |
|
|
|
6604 |
|
|
elsif not Requires_Transient_Scope (R_Type) then
|
6605 |
|
|
|
6606 |
|
|
-- Mutable records with no variable length components are not
|
6607 |
|
|
-- returned on the sec-stack, so we need to make sure that the
|
6608 |
|
|
-- backend will only copy back the size of the actual value, and not
|
6609 |
|
|
-- the maximum size. We create an actual subtype for this purpose.
|
6610 |
|
|
|
6611 |
|
|
declare
|
6612 |
|
|
Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
|
6613 |
|
|
Decl : Node_Id;
|
6614 |
|
|
Ent : Entity_Id;
|
6615 |
|
|
begin
|
6616 |
|
|
if Has_Discriminants (Ubt)
|
6617 |
|
|
and then not Is_Constrained (Ubt)
|
6618 |
|
|
and then not Has_Unchecked_Union (Ubt)
|
6619 |
|
|
then
|
6620 |
|
|
Decl := Build_Actual_Subtype (Ubt, Exp);
|
6621 |
|
|
Ent := Defining_Identifier (Decl);
|
6622 |
|
|
Insert_Action (Exp, Decl);
|
6623 |
|
|
Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
|
6624 |
|
|
Analyze_And_Resolve (Exp);
|
6625 |
|
|
end if;
|
6626 |
|
|
end;
|
6627 |
|
|
|
6628 |
|
|
-- Here if secondary stack is used
|
6629 |
|
|
|
6630 |
|
|
else
|
6631 |
|
|
-- Make sure that no surrounding block will reclaim the secondary
|
6632 |
|
|
-- stack on which we are going to put the result. Not only may this
|
6633 |
|
|
-- introduce secondary stack leaks but worse, if the reclamation is
|
6634 |
|
|
-- done too early, then the result we are returning may get
|
6635 |
|
|
-- clobbered.
|
6636 |
|
|
|
6637 |
|
|
declare
|
6638 |
|
|
S : Entity_Id;
|
6639 |
|
|
begin
|
6640 |
|
|
S := Current_Scope;
|
6641 |
|
|
while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
|
6642 |
|
|
Set_Sec_Stack_Needed_For_Return (S, True);
|
6643 |
|
|
S := Enclosing_Dynamic_Scope (S);
|
6644 |
|
|
end loop;
|
6645 |
|
|
end;
|
6646 |
|
|
|
6647 |
|
|
-- Optimize the case where the result is a function call. In this
|
6648 |
|
|
-- case either the result is already on the secondary stack, or is
|
6649 |
|
|
-- already being returned with the stack pointer depressed and no
|
6650 |
|
|
-- further processing is required except to set the By_Ref flag
|
6651 |
|
|
-- to ensure that gigi does not attempt an extra unnecessary copy.
|
6652 |
|
|
-- (actually not just unnecessary but harmfully wrong in the case
|
6653 |
|
|
-- of a controlled type, where gigi does not know how to do a copy).
|
6654 |
|
|
-- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
|
6655 |
|
|
-- for array types if the constrained status of the target type is
|
6656 |
|
|
-- different from that of the expression.
|
6657 |
|
|
|
6658 |
|
|
if Requires_Transient_Scope (Exptyp)
|
6659 |
|
|
and then
|
6660 |
|
|
(not Is_Array_Type (Exptyp)
|
6661 |
|
|
or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
|
6662 |
|
|
or else CW_Or_Has_Controlled_Part (Utyp))
|
6663 |
|
|
and then Nkind (Exp) = N_Function_Call
|
6664 |
|
|
then
|
6665 |
|
|
Set_By_Ref (N);
|
6666 |
|
|
|
6667 |
|
|
-- Remove side effects from the expression now so that other parts
|
6668 |
|
|
-- of the expander do not have to reanalyze this node without this
|
6669 |
|
|
-- optimization
|
6670 |
|
|
|
6671 |
|
|
Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
|
6672 |
|
|
|
6673 |
|
|
-- For controlled types, do the allocation on the secondary stack
|
6674 |
|
|
-- manually in order to call adjust at the right time:
|
6675 |
|
|
|
6676 |
|
|
-- type Anon1 is access R_Type;
|
6677 |
|
|
-- for Anon1'Storage_pool use ss_pool;
|
6678 |
|
|
-- Anon2 : anon1 := new R_Type'(expr);
|
6679 |
|
|
-- return Anon2.all;
|
6680 |
|
|
|
6681 |
|
|
-- We do the same for classwide types that are not potentially
|
6682 |
|
|
-- controlled (by the virtue of restriction No_Finalization) because
|
6683 |
|
|
-- gigi is not able to properly allocate class-wide types.
|
6684 |
|
|
|
6685 |
|
|
elsif CW_Or_Has_Controlled_Part (Utyp) then
|
6686 |
|
|
declare
|
6687 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6688 |
|
|
Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
|
6689 |
|
|
Alloc_Node : Node_Id;
|
6690 |
|
|
Temp : Entity_Id;
|
6691 |
|
|
|
6692 |
|
|
begin
|
6693 |
|
|
Set_Ekind (Acc_Typ, E_Access_Type);
|
6694 |
|
|
|
6695 |
|
|
Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
|
6696 |
|
|
|
6697 |
|
|
-- This is an allocator for the secondary stack, and it's fine
|
6698 |
|
|
-- to have Comes_From_Source set False on it, as gigi knows not
|
6699 |
|
|
-- to flag it as a violation of No_Implicit_Heap_Allocations.
|
6700 |
|
|
|
6701 |
|
|
Alloc_Node :=
|
6702 |
|
|
Make_Allocator (Loc,
|
6703 |
|
|
Expression =>
|
6704 |
|
|
Make_Qualified_Expression (Loc,
|
6705 |
|
|
Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
|
6706 |
|
|
Expression => Relocate_Node (Exp)));
|
6707 |
|
|
|
6708 |
|
|
-- We do not want discriminant checks on the declaration,
|
6709 |
|
|
-- given that it gets its value from the allocator.
|
6710 |
|
|
|
6711 |
|
|
Set_No_Initialization (Alloc_Node);
|
6712 |
|
|
|
6713 |
|
|
Temp := Make_Temporary (Loc, 'R', Alloc_Node);
|
6714 |
|
|
|
6715 |
|
|
Insert_List_Before_And_Analyze (N, New_List (
|
6716 |
|
|
Make_Full_Type_Declaration (Loc,
|
6717 |
|
|
Defining_Identifier => Acc_Typ,
|
6718 |
|
|
Type_Definition =>
|
6719 |
|
|
Make_Access_To_Object_Definition (Loc,
|
6720 |
|
|
Subtype_Indication => Subtype_Ind)),
|
6721 |
|
|
|
6722 |
|
|
Make_Object_Declaration (Loc,
|
6723 |
|
|
Defining_Identifier => Temp,
|
6724 |
|
|
Object_Definition => New_Reference_To (Acc_Typ, Loc),
|
6725 |
|
|
Expression => Alloc_Node)));
|
6726 |
|
|
|
6727 |
|
|
Rewrite (Exp,
|
6728 |
|
|
Make_Explicit_Dereference (Loc,
|
6729 |
|
|
Prefix => New_Reference_To (Temp, Loc)));
|
6730 |
|
|
|
6731 |
|
|
-- Ada 2005 (AI-251): If the type of the returned object is
|
6732 |
|
|
-- an interface then add an implicit type conversion to force
|
6733 |
|
|
-- displacement of the "this" pointer.
|
6734 |
|
|
|
6735 |
|
|
if Is_Interface (R_Type) then
|
6736 |
|
|
Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
|
6737 |
|
|
end if;
|
6738 |
|
|
|
6739 |
|
|
Analyze_And_Resolve (Exp, R_Type);
|
6740 |
|
|
end;
|
6741 |
|
|
|
6742 |
|
|
-- Otherwise use the gigi mechanism to allocate result on the
|
6743 |
|
|
-- secondary stack.
|
6744 |
|
|
|
6745 |
|
|
else
|
6746 |
|
|
Check_Restriction (No_Secondary_Stack, N);
|
6747 |
|
|
Set_Storage_Pool (N, RTE (RE_SS_Pool));
|
6748 |
|
|
|
6749 |
|
|
-- If we are generating code for the VM do not use
|
6750 |
|
|
-- SS_Allocate since everything is heap-allocated anyway.
|
6751 |
|
|
|
6752 |
|
|
if VM_Target = No_VM then
|
6753 |
|
|
Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
|
6754 |
|
|
end if;
|
6755 |
|
|
end if;
|
6756 |
|
|
end if;
|
6757 |
|
|
|
6758 |
|
|
-- Implement the rules of 6.5(8-10), which require a tag check in
|
6759 |
|
|
-- the case of a limited tagged return type, and tag reassignment for
|
6760 |
|
|
-- nonlimited tagged results. These actions are needed when the return
|
6761 |
|
|
-- type is a specific tagged type and the result expression is a
|
6762 |
|
|
-- conversion or a formal parameter, because in that case the tag of
|
6763 |
|
|
-- the expression might differ from the tag of the specific result type.
|
6764 |
|
|
|
6765 |
|
|
if Is_Tagged_Type (Utyp)
|
6766 |
|
|
and then not Is_Class_Wide_Type (Utyp)
|
6767 |
|
|
and then (Nkind_In (Exp, N_Type_Conversion,
|
6768 |
|
|
N_Unchecked_Type_Conversion)
|
6769 |
|
|
or else (Is_Entity_Name (Exp)
|
6770 |
|
|
and then Ekind (Entity (Exp)) in Formal_Kind))
|
6771 |
|
|
then
|
6772 |
|
|
-- When the return type is limited, perform a check that the tag of
|
6773 |
|
|
-- the result is the same as the tag of the return type.
|
6774 |
|
|
|
6775 |
|
|
if Is_Limited_Type (R_Type) then
|
6776 |
|
|
Insert_Action (Exp,
|
6777 |
|
|
Make_Raise_Constraint_Error (Loc,
|
6778 |
|
|
Condition =>
|
6779 |
|
|
Make_Op_Ne (Loc,
|
6780 |
|
|
Left_Opnd =>
|
6781 |
|
|
Make_Selected_Component (Loc,
|
6782 |
|
|
Prefix => Duplicate_Subexpr (Exp),
|
6783 |
|
|
Selector_Name => Make_Identifier (Loc, Name_uTag)),
|
6784 |
|
|
Right_Opnd =>
|
6785 |
|
|
Make_Attribute_Reference (Loc,
|
6786 |
|
|
Prefix =>
|
6787 |
|
|
New_Occurrence_Of (Base_Type (Utyp), Loc),
|
6788 |
|
|
Attribute_Name => Name_Tag)),
|
6789 |
|
|
Reason => CE_Tag_Check_Failed));
|
6790 |
|
|
|
6791 |
|
|
-- If the result type is a specific nonlimited tagged type, then we
|
6792 |
|
|
-- have to ensure that the tag of the result is that of the result
|
6793 |
|
|
-- type. This is handled by making a copy of the expression in
|
6794 |
|
|
-- the case where it might have a different tag, namely when the
|
6795 |
|
|
-- expression is a conversion or a formal parameter. We create a new
|
6796 |
|
|
-- object of the result type and initialize it from the expression,
|
6797 |
|
|
-- which will implicitly force the tag to be set appropriately.
|
6798 |
|
|
|
6799 |
|
|
else
|
6800 |
|
|
declare
|
6801 |
|
|
ExpR : constant Node_Id := Relocate_Node (Exp);
|
6802 |
|
|
Result_Id : constant Entity_Id :=
|
6803 |
|
|
Make_Temporary (Loc, 'R', ExpR);
|
6804 |
|
|
Result_Exp : constant Node_Id :=
|
6805 |
|
|
New_Reference_To (Result_Id, Loc);
|
6806 |
|
|
Result_Obj : constant Node_Id :=
|
6807 |
|
|
Make_Object_Declaration (Loc,
|
6808 |
|
|
Defining_Identifier => Result_Id,
|
6809 |
|
|
Object_Definition =>
|
6810 |
|
|
New_Reference_To (R_Type, Loc),
|
6811 |
|
|
Constant_Present => True,
|
6812 |
|
|
Expression => ExpR);
|
6813 |
|
|
|
6814 |
|
|
begin
|
6815 |
|
|
Set_Assignment_OK (Result_Obj);
|
6816 |
|
|
Insert_Action (Exp, Result_Obj);
|
6817 |
|
|
|
6818 |
|
|
Rewrite (Exp, Result_Exp);
|
6819 |
|
|
Analyze_And_Resolve (Exp, R_Type);
|
6820 |
|
|
end;
|
6821 |
|
|
end if;
|
6822 |
|
|
|
6823 |
|
|
-- Ada 2005 (AI-344): If the result type is class-wide, then insert
|
6824 |
|
|
-- a check that the level of the return expression's underlying type
|
6825 |
|
|
-- is not deeper than the level of the master enclosing the function.
|
6826 |
|
|
-- Always generate the check when the type of the return expression
|
6827 |
|
|
-- is class-wide, when it's a type conversion, or when it's a formal
|
6828 |
|
|
-- parameter. Otherwise, suppress the check in the case where the
|
6829 |
|
|
-- return expression has a specific type whose level is known not to
|
6830 |
|
|
-- be statically deeper than the function's result type.
|
6831 |
|
|
|
6832 |
|
|
-- Note: accessibility check is skipped in the VM case, since there
|
6833 |
|
|
-- does not seem to be any practical way to implement this check.
|
6834 |
|
|
|
6835 |
|
|
elsif Ada_Version >= Ada_2005
|
6836 |
|
|
and then Tagged_Type_Expansion
|
6837 |
|
|
and then Is_Class_Wide_Type (R_Type)
|
6838 |
|
|
and then not Scope_Suppress (Accessibility_Check)
|
6839 |
|
|
and then
|
6840 |
|
|
(Is_Class_Wide_Type (Etype (Exp))
|
6841 |
|
|
or else Nkind_In (Exp, N_Type_Conversion,
|
6842 |
|
|
N_Unchecked_Type_Conversion)
|
6843 |
|
|
or else (Is_Entity_Name (Exp)
|
6844 |
|
|
and then Ekind (Entity (Exp)) in Formal_Kind)
|
6845 |
|
|
or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
|
6846 |
|
|
Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
|
6847 |
|
|
then
|
6848 |
|
|
declare
|
6849 |
|
|
Tag_Node : Node_Id;
|
6850 |
|
|
|
6851 |
|
|
begin
|
6852 |
|
|
-- Ada 2005 (AI-251): In class-wide interface objects we displace
|
6853 |
|
|
-- "this" to reference the base of the object. This is required to
|
6854 |
|
|
-- get access to the TSD of the object.
|
6855 |
|
|
|
6856 |
|
|
if Is_Class_Wide_Type (Etype (Exp))
|
6857 |
|
|
and then Is_Interface (Etype (Exp))
|
6858 |
|
|
and then Nkind (Exp) = N_Explicit_Dereference
|
6859 |
|
|
then
|
6860 |
|
|
Tag_Node :=
|
6861 |
|
|
Make_Explicit_Dereference (Loc,
|
6862 |
|
|
Prefix =>
|
6863 |
|
|
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
|
6864 |
|
|
Make_Function_Call (Loc,
|
6865 |
|
|
Name =>
|
6866 |
|
|
New_Reference_To (RTE (RE_Base_Address), Loc),
|
6867 |
|
|
Parameter_Associations => New_List (
|
6868 |
|
|
Unchecked_Convert_To (RTE (RE_Address),
|
6869 |
|
|
Duplicate_Subexpr (Prefix (Exp)))))));
|
6870 |
|
|
else
|
6871 |
|
|
Tag_Node :=
|
6872 |
|
|
Make_Attribute_Reference (Loc,
|
6873 |
|
|
Prefix => Duplicate_Subexpr (Exp),
|
6874 |
|
|
Attribute_Name => Name_Tag);
|
6875 |
|
|
end if;
|
6876 |
|
|
|
6877 |
|
|
Insert_Action (Exp,
|
6878 |
|
|
Make_Raise_Program_Error (Loc,
|
6879 |
|
|
Condition =>
|
6880 |
|
|
Make_Op_Gt (Loc,
|
6881 |
|
|
Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
|
6882 |
|
|
Right_Opnd =>
|
6883 |
|
|
Make_Integer_Literal (Loc,
|
6884 |
|
|
Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
|
6885 |
|
|
Reason => PE_Accessibility_Check_Failed));
|
6886 |
|
|
end;
|
6887 |
|
|
|
6888 |
|
|
-- AI05-0073: If function has a controlling access result, check that
|
6889 |
|
|
-- the tag of the return value, if it is not null, matches designated
|
6890 |
|
|
-- type of return type.
|
6891 |
|
|
-- The return expression is referenced twice in the code below, so
|
6892 |
|
|
-- it must be made free of side effects. Given that different compilers
|
6893 |
|
|
-- may evaluate these parameters in different order, both occurrences
|
6894 |
|
|
-- perform a copy.
|
6895 |
|
|
|
6896 |
|
|
elsif Ekind (R_Type) = E_Anonymous_Access_Type
|
6897 |
|
|
and then Has_Controlling_Result (Scope_Id)
|
6898 |
|
|
then
|
6899 |
|
|
Insert_Action (N,
|
6900 |
|
|
Make_Raise_Constraint_Error (Loc,
|
6901 |
|
|
Condition =>
|
6902 |
|
|
Make_And_Then (Loc,
|
6903 |
|
|
Left_Opnd =>
|
6904 |
|
|
Make_Op_Ne (Loc,
|
6905 |
|
|
Left_Opnd => Duplicate_Subexpr (Exp),
|
6906 |
|
|
Right_Opnd => Make_Null (Loc)),
|
6907 |
|
|
|
6908 |
|
|
Right_Opnd => Make_Op_Ne (Loc,
|
6909 |
|
|
Left_Opnd =>
|
6910 |
|
|
Make_Selected_Component (Loc,
|
6911 |
|
|
Prefix => Duplicate_Subexpr (Exp),
|
6912 |
|
|
Selector_Name => Make_Identifier (Loc, Name_uTag)),
|
6913 |
|
|
|
6914 |
|
|
Right_Opnd =>
|
6915 |
|
|
Make_Attribute_Reference (Loc,
|
6916 |
|
|
Prefix =>
|
6917 |
|
|
New_Occurrence_Of (Designated_Type (R_Type), Loc),
|
6918 |
|
|
Attribute_Name => Name_Tag))),
|
6919 |
|
|
|
6920 |
|
|
Reason => CE_Tag_Check_Failed),
|
6921 |
|
|
Suppress => All_Checks);
|
6922 |
|
|
end if;
|
6923 |
|
|
|
6924 |
|
|
-- AI05-0234: RM 6.5(21/3). Check access discriminants to
|
6925 |
|
|
-- ensure that the function result does not outlive an
|
6926 |
|
|
-- object designated by one of it discriminants.
|
6927 |
|
|
|
6928 |
|
|
if Present (Extra_Accessibility_Of_Result (Scope_Id))
|
6929 |
|
|
and then Has_Unconstrained_Access_Discriminants (R_Type)
|
6930 |
|
|
then
|
6931 |
|
|
declare
|
6932 |
|
|
Discrim_Source : Node_Id;
|
6933 |
|
|
|
6934 |
|
|
procedure Check_Against_Result_Level (Level : Node_Id);
|
6935 |
|
|
-- Check the given accessibility level against the level
|
6936 |
|
|
-- determined by the point of call. (AI05-0234).
|
6937 |
|
|
|
6938 |
|
|
--------------------------------
|
6939 |
|
|
-- Check_Against_Result_Level --
|
6940 |
|
|
--------------------------------
|
6941 |
|
|
|
6942 |
|
|
procedure Check_Against_Result_Level (Level : Node_Id) is
|
6943 |
|
|
begin
|
6944 |
|
|
Insert_Action (N,
|
6945 |
|
|
Make_Raise_Program_Error (Loc,
|
6946 |
|
|
Condition =>
|
6947 |
|
|
Make_Op_Gt (Loc,
|
6948 |
|
|
Left_Opnd => Level,
|
6949 |
|
|
Right_Opnd =>
|
6950 |
|
|
New_Occurrence_Of
|
6951 |
|
|
(Extra_Accessibility_Of_Result (Scope_Id), Loc)),
|
6952 |
|
|
Reason => PE_Accessibility_Check_Failed));
|
6953 |
|
|
end Check_Against_Result_Level;
|
6954 |
|
|
|
6955 |
|
|
begin
|
6956 |
|
|
Discrim_Source := Exp;
|
6957 |
|
|
while Nkind (Discrim_Source) = N_Qualified_Expression loop
|
6958 |
|
|
Discrim_Source := Expression (Discrim_Source);
|
6959 |
|
|
end loop;
|
6960 |
|
|
|
6961 |
|
|
if Nkind (Discrim_Source) = N_Identifier
|
6962 |
|
|
and then Is_Return_Object (Entity (Discrim_Source))
|
6963 |
|
|
then
|
6964 |
|
|
Discrim_Source := Entity (Discrim_Source);
|
6965 |
|
|
|
6966 |
|
|
if Is_Constrained (Etype (Discrim_Source)) then
|
6967 |
|
|
Discrim_Source := Etype (Discrim_Source);
|
6968 |
|
|
else
|
6969 |
|
|
Discrim_Source := Expression (Parent (Discrim_Source));
|
6970 |
|
|
end if;
|
6971 |
|
|
|
6972 |
|
|
elsif Nkind (Discrim_Source) = N_Identifier
|
6973 |
|
|
and then Nkind_In (Original_Node (Discrim_Source),
|
6974 |
|
|
N_Aggregate, N_Extension_Aggregate)
|
6975 |
|
|
then
|
6976 |
|
|
Discrim_Source := Original_Node (Discrim_Source);
|
6977 |
|
|
|
6978 |
|
|
elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
|
6979 |
|
|
Nkind (Original_Node (Discrim_Source)) = N_Function_Call
|
6980 |
|
|
then
|
6981 |
|
|
Discrim_Source := Original_Node (Discrim_Source);
|
6982 |
|
|
end if;
|
6983 |
|
|
|
6984 |
|
|
while Nkind_In (Discrim_Source, N_Qualified_Expression,
|
6985 |
|
|
N_Type_Conversion,
|
6986 |
|
|
N_Unchecked_Type_Conversion)
|
6987 |
|
|
loop
|
6988 |
|
|
Discrim_Source := Expression (Discrim_Source);
|
6989 |
|
|
end loop;
|
6990 |
|
|
|
6991 |
|
|
case Nkind (Discrim_Source) is
|
6992 |
|
|
when N_Defining_Identifier =>
|
6993 |
|
|
|
6994 |
|
|
pragma Assert (Is_Composite_Type (Discrim_Source)
|
6995 |
|
|
and then Has_Discriminants (Discrim_Source)
|
6996 |
|
|
and then Is_Constrained (Discrim_Source));
|
6997 |
|
|
|
6998 |
|
|
declare
|
6999 |
|
|
Discrim : Entity_Id :=
|
7000 |
|
|
First_Discriminant (Base_Type (R_Type));
|
7001 |
|
|
Disc_Elmt : Elmt_Id :=
|
7002 |
|
|
First_Elmt (Discriminant_Constraint
|
7003 |
|
|
(Discrim_Source));
|
7004 |
|
|
begin
|
7005 |
|
|
loop
|
7006 |
|
|
if Ekind (Etype (Discrim)) =
|
7007 |
|
|
E_Anonymous_Access_Type
|
7008 |
|
|
then
|
7009 |
|
|
Check_Against_Result_Level
|
7010 |
|
|
(Dynamic_Accessibility_Level (Node (Disc_Elmt)));
|
7011 |
|
|
end if;
|
7012 |
|
|
|
7013 |
|
|
Next_Elmt (Disc_Elmt);
|
7014 |
|
|
Next_Discriminant (Discrim);
|
7015 |
|
|
exit when not Present (Discrim);
|
7016 |
|
|
end loop;
|
7017 |
|
|
end;
|
7018 |
|
|
|
7019 |
|
|
when N_Aggregate | N_Extension_Aggregate =>
|
7020 |
|
|
|
7021 |
|
|
-- Unimplemented: extension aggregate case where discrims
|
7022 |
|
|
-- come from ancestor part, not extension part.
|
7023 |
|
|
|
7024 |
|
|
declare
|
7025 |
|
|
Discrim : Entity_Id :=
|
7026 |
|
|
First_Discriminant (Base_Type (R_Type));
|
7027 |
|
|
|
7028 |
|
|
Disc_Exp : Node_Id := Empty;
|
7029 |
|
|
|
7030 |
|
|
Positionals_Exhausted
|
7031 |
|
|
: Boolean := not Present (Expressions
|
7032 |
|
|
(Discrim_Source));
|
7033 |
|
|
|
7034 |
|
|
function Associated_Expr
|
7035 |
|
|
(Comp_Id : Entity_Id;
|
7036 |
|
|
Associations : List_Id) return Node_Id;
|
7037 |
|
|
|
7038 |
|
|
-- Given a component and a component associations list,
|
7039 |
|
|
-- locate the expression for that component; returns
|
7040 |
|
|
-- Empty if no such expression is found.
|
7041 |
|
|
|
7042 |
|
|
---------------------
|
7043 |
|
|
-- Associated_Expr --
|
7044 |
|
|
---------------------
|
7045 |
|
|
|
7046 |
|
|
function Associated_Expr
|
7047 |
|
|
(Comp_Id : Entity_Id;
|
7048 |
|
|
Associations : List_Id) return Node_Id
|
7049 |
|
|
is
|
7050 |
|
|
Assoc : Node_Id;
|
7051 |
|
|
Choice : Node_Id;
|
7052 |
|
|
|
7053 |
|
|
begin
|
7054 |
|
|
-- Simple linear search seems ok here
|
7055 |
|
|
|
7056 |
|
|
Assoc := First (Associations);
|
7057 |
|
|
while Present (Assoc) loop
|
7058 |
|
|
Choice := First (Choices (Assoc));
|
7059 |
|
|
while Present (Choice) loop
|
7060 |
|
|
if (Nkind (Choice) = N_Identifier
|
7061 |
|
|
and then Chars (Choice) = Chars (Comp_Id))
|
7062 |
|
|
or else (Nkind (Choice) = N_Others_Choice)
|
7063 |
|
|
then
|
7064 |
|
|
return Expression (Assoc);
|
7065 |
|
|
end if;
|
7066 |
|
|
|
7067 |
|
|
Next (Choice);
|
7068 |
|
|
end loop;
|
7069 |
|
|
|
7070 |
|
|
Next (Assoc);
|
7071 |
|
|
end loop;
|
7072 |
|
|
|
7073 |
|
|
return Empty;
|
7074 |
|
|
end Associated_Expr;
|
7075 |
|
|
|
7076 |
|
|
-- Start of processing for Expand_Simple_Function_Return
|
7077 |
|
|
|
7078 |
|
|
begin
|
7079 |
|
|
if not Positionals_Exhausted then
|
7080 |
|
|
Disc_Exp := First (Expressions (Discrim_Source));
|
7081 |
|
|
end if;
|
7082 |
|
|
|
7083 |
|
|
loop
|
7084 |
|
|
if Positionals_Exhausted then
|
7085 |
|
|
Disc_Exp :=
|
7086 |
|
|
Associated_Expr
|
7087 |
|
|
(Discrim,
|
7088 |
|
|
Component_Associations (Discrim_Source));
|
7089 |
|
|
end if;
|
7090 |
|
|
|
7091 |
|
|
if Ekind (Etype (Discrim)) =
|
7092 |
|
|
E_Anonymous_Access_Type
|
7093 |
|
|
then
|
7094 |
|
|
Check_Against_Result_Level
|
7095 |
|
|
(Dynamic_Accessibility_Level (Disc_Exp));
|
7096 |
|
|
end if;
|
7097 |
|
|
|
7098 |
|
|
Next_Discriminant (Discrim);
|
7099 |
|
|
exit when not Present (Discrim);
|
7100 |
|
|
|
7101 |
|
|
if not Positionals_Exhausted then
|
7102 |
|
|
Next (Disc_Exp);
|
7103 |
|
|
Positionals_Exhausted := not Present (Disc_Exp);
|
7104 |
|
|
end if;
|
7105 |
|
|
end loop;
|
7106 |
|
|
end;
|
7107 |
|
|
|
7108 |
|
|
when N_Function_Call =>
|
7109 |
|
|
|
7110 |
|
|
-- No check needed (check performed by callee)
|
7111 |
|
|
|
7112 |
|
|
null;
|
7113 |
|
|
|
7114 |
|
|
when others =>
|
7115 |
|
|
|
7116 |
|
|
declare
|
7117 |
|
|
Level : constant Node_Id :=
|
7118 |
|
|
Make_Integer_Literal (Loc,
|
7119 |
|
|
Object_Access_Level (Discrim_Source));
|
7120 |
|
|
|
7121 |
|
|
begin
|
7122 |
|
|
-- Unimplemented: check for name prefix that includes
|
7123 |
|
|
-- a dereference of an access value with a dynamic
|
7124 |
|
|
-- accessibility level (e.g., an access param or a
|
7125 |
|
|
-- saooaaat) and use dynamic level in that case. For
|
7126 |
|
|
-- example:
|
7127 |
|
|
-- return Access_Param.all(Some_Index).Some_Component;
|
7128 |
|
|
-- ???
|
7129 |
|
|
|
7130 |
|
|
Set_Etype (Level, Standard_Natural);
|
7131 |
|
|
Check_Against_Result_Level (Level);
|
7132 |
|
|
end;
|
7133 |
|
|
|
7134 |
|
|
end case;
|
7135 |
|
|
end;
|
7136 |
|
|
end if;
|
7137 |
|
|
|
7138 |
|
|
-- If we are returning an object that may not be bit-aligned, then copy
|
7139 |
|
|
-- the value into a temporary first. This copy may need to expand to a
|
7140 |
|
|
-- loop of component operations.
|
7141 |
|
|
|
7142 |
|
|
if Is_Possibly_Unaligned_Slice (Exp)
|
7143 |
|
|
or else Is_Possibly_Unaligned_Object (Exp)
|
7144 |
|
|
then
|
7145 |
|
|
declare
|
7146 |
|
|
ExpR : constant Node_Id := Relocate_Node (Exp);
|
7147 |
|
|
Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
|
7148 |
|
|
begin
|
7149 |
|
|
Insert_Action (Exp,
|
7150 |
|
|
Make_Object_Declaration (Loc,
|
7151 |
|
|
Defining_Identifier => Tnn,
|
7152 |
|
|
Constant_Present => True,
|
7153 |
|
|
Object_Definition => New_Occurrence_Of (R_Type, Loc),
|
7154 |
|
|
Expression => ExpR),
|
7155 |
|
|
Suppress => All_Checks);
|
7156 |
|
|
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
|
7157 |
|
|
end;
|
7158 |
|
|
end if;
|
7159 |
|
|
|
7160 |
|
|
-- Generate call to postcondition checks if they are present
|
7161 |
|
|
|
7162 |
|
|
if Ekind (Scope_Id) = E_Function
|
7163 |
|
|
and then Has_Postconditions (Scope_Id)
|
7164 |
|
|
then
|
7165 |
|
|
-- We are going to reference the returned value twice in this case,
|
7166 |
|
|
-- once in the call to _Postconditions, and once in the actual return
|
7167 |
|
|
-- statement, but we can't have side effects happening twice, and in
|
7168 |
|
|
-- any case for efficiency we don't want to do the computation twice.
|
7169 |
|
|
|
7170 |
|
|
-- If the returned expression is an entity name, we don't need to
|
7171 |
|
|
-- worry since it is efficient and safe to reference it twice, that's
|
7172 |
|
|
-- also true for literals other than string literals, and for the
|
7173 |
|
|
-- case of X.all where X is an entity name.
|
7174 |
|
|
|
7175 |
|
|
if Is_Entity_Name (Exp)
|
7176 |
|
|
or else Nkind_In (Exp, N_Character_Literal,
|
7177 |
|
|
N_Integer_Literal,
|
7178 |
|
|
N_Real_Literal)
|
7179 |
|
|
or else (Nkind (Exp) = N_Explicit_Dereference
|
7180 |
|
|
and then Is_Entity_Name (Prefix (Exp)))
|
7181 |
|
|
then
|
7182 |
|
|
null;
|
7183 |
|
|
|
7184 |
|
|
-- Otherwise we are going to need a temporary to capture the value
|
7185 |
|
|
|
7186 |
|
|
else
|
7187 |
|
|
declare
|
7188 |
|
|
ExpR : constant Node_Id := Relocate_Node (Exp);
|
7189 |
|
|
Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
|
7190 |
|
|
|
7191 |
|
|
begin
|
7192 |
|
|
-- For a complex expression of an elementary type, capture
|
7193 |
|
|
-- value in the temporary and use it as the reference.
|
7194 |
|
|
|
7195 |
|
|
if Is_Elementary_Type (R_Type) then
|
7196 |
|
|
Insert_Action (Exp,
|
7197 |
|
|
Make_Object_Declaration (Loc,
|
7198 |
|
|
Defining_Identifier => Tnn,
|
7199 |
|
|
Constant_Present => True,
|
7200 |
|
|
Object_Definition => New_Occurrence_Of (R_Type, Loc),
|
7201 |
|
|
Expression => ExpR),
|
7202 |
|
|
Suppress => All_Checks);
|
7203 |
|
|
|
7204 |
|
|
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
|
7205 |
|
|
|
7206 |
|
|
-- If we have something we can rename, generate a renaming of
|
7207 |
|
|
-- the object and replace the expression with a reference
|
7208 |
|
|
|
7209 |
|
|
elsif Is_Object_Reference (Exp) then
|
7210 |
|
|
Insert_Action (Exp,
|
7211 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
7212 |
|
|
Defining_Identifier => Tnn,
|
7213 |
|
|
Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
|
7214 |
|
|
Name => ExpR),
|
7215 |
|
|
Suppress => All_Checks);
|
7216 |
|
|
|
7217 |
|
|
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
|
7218 |
|
|
|
7219 |
|
|
-- Otherwise we have something like a string literal or an
|
7220 |
|
|
-- aggregate. We could copy the value, but that would be
|
7221 |
|
|
-- inefficient. Instead we make a reference to the value and
|
7222 |
|
|
-- capture this reference with a renaming, the expression is
|
7223 |
|
|
-- then replaced by a dereference of this renaming.
|
7224 |
|
|
|
7225 |
|
|
else
|
7226 |
|
|
-- For now, copy the value, since the code below does not
|
7227 |
|
|
-- seem to work correctly ???
|
7228 |
|
|
|
7229 |
|
|
Insert_Action (Exp,
|
7230 |
|
|
Make_Object_Declaration (Loc,
|
7231 |
|
|
Defining_Identifier => Tnn,
|
7232 |
|
|
Constant_Present => True,
|
7233 |
|
|
Object_Definition => New_Occurrence_Of (R_Type, Loc),
|
7234 |
|
|
Expression => Relocate_Node (Exp)),
|
7235 |
|
|
Suppress => All_Checks);
|
7236 |
|
|
|
7237 |
|
|
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
|
7238 |
|
|
|
7239 |
|
|
-- Insert_Action (Exp,
|
7240 |
|
|
-- Make_Object_Renaming_Declaration (Loc,
|
7241 |
|
|
-- Defining_Identifier => Tnn,
|
7242 |
|
|
-- Access_Definition =>
|
7243 |
|
|
-- Make_Access_Definition (Loc,
|
7244 |
|
|
-- All_Present => True,
|
7245 |
|
|
-- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
|
7246 |
|
|
-- Name =>
|
7247 |
|
|
-- Make_Reference (Loc,
|
7248 |
|
|
-- Prefix => Relocate_Node (Exp))),
|
7249 |
|
|
-- Suppress => All_Checks);
|
7250 |
|
|
|
7251 |
|
|
-- Rewrite (Exp,
|
7252 |
|
|
-- Make_Explicit_Dereference (Loc,
|
7253 |
|
|
-- Prefix => New_Occurrence_Of (Tnn, Loc)));
|
7254 |
|
|
end if;
|
7255 |
|
|
end;
|
7256 |
|
|
end if;
|
7257 |
|
|
|
7258 |
|
|
-- Generate call to _postconditions
|
7259 |
|
|
|
7260 |
|
|
Insert_Action (Exp,
|
7261 |
|
|
Make_Procedure_Call_Statement (Loc,
|
7262 |
|
|
Name => Make_Identifier (Loc, Name_uPostconditions),
|
7263 |
|
|
Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
|
7264 |
|
|
end if;
|
7265 |
|
|
|
7266 |
|
|
-- Ada 2005 (AI-251): If this return statement corresponds with an
|
7267 |
|
|
-- simple return statement associated with an extended return statement
|
7268 |
|
|
-- and the type of the returned object is an interface then generate an
|
7269 |
|
|
-- implicit conversion to force displacement of the "this" pointer.
|
7270 |
|
|
|
7271 |
|
|
if Ada_Version >= Ada_2005
|
7272 |
|
|
and then Comes_From_Extended_Return_Statement (N)
|
7273 |
|
|
and then Nkind (Expression (N)) = N_Identifier
|
7274 |
|
|
and then Is_Interface (Utyp)
|
7275 |
|
|
and then Utyp /= Underlying_Type (Exptyp)
|
7276 |
|
|
then
|
7277 |
|
|
Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
|
7278 |
|
|
Analyze_And_Resolve (Exp);
|
7279 |
|
|
end if;
|
7280 |
|
|
end Expand_Simple_Function_Return;
|
7281 |
|
|
|
7282 |
|
|
--------------------------------
|
7283 |
|
|
-- Is_Build_In_Place_Function --
|
7284 |
|
|
--------------------------------
|
7285 |
|
|
|
7286 |
|
|
function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
|
7287 |
|
|
begin
|
7288 |
|
|
-- This function is called from Expand_Subtype_From_Expr during
|
7289 |
|
|
-- semantic analysis, even when expansion is off. In those cases
|
7290 |
|
|
-- the build_in_place expansion will not take place.
|
7291 |
|
|
|
7292 |
|
|
if not Expander_Active then
|
7293 |
|
|
return False;
|
7294 |
|
|
end if;
|
7295 |
|
|
|
7296 |
|
|
-- For now we test whether E denotes a function or access-to-function
|
7297 |
|
|
-- type whose result subtype is inherently limited. Later this test may
|
7298 |
|
|
-- be revised to allow composite nonlimited types. Functions with a
|
7299 |
|
|
-- foreign convention or whose result type has a foreign convention
|
7300 |
|
|
-- never qualify.
|
7301 |
|
|
|
7302 |
|
|
if Ekind_In (E, E_Function, E_Generic_Function)
|
7303 |
|
|
or else (Ekind (E) = E_Subprogram_Type
|
7304 |
|
|
and then Etype (E) /= Standard_Void_Type)
|
7305 |
|
|
then
|
7306 |
|
|
-- Note: If you have Convention (C) on an inherently limited type,
|
7307 |
|
|
-- you're on your own. That is, the C code will have to be carefully
|
7308 |
|
|
-- written to know about the Ada conventions.
|
7309 |
|
|
|
7310 |
|
|
if Has_Foreign_Convention (E)
|
7311 |
|
|
or else Has_Foreign_Convention (Etype (E))
|
7312 |
|
|
then
|
7313 |
|
|
return False;
|
7314 |
|
|
|
7315 |
|
|
-- In Ada 2005 all functions with an inherently limited return type
|
7316 |
|
|
-- must be handled using a build-in-place profile, including the case
|
7317 |
|
|
-- of a function with a limited interface result, where the function
|
7318 |
|
|
-- may return objects of nonlimited descendants.
|
7319 |
|
|
|
7320 |
|
|
else
|
7321 |
|
|
return Is_Immutably_Limited_Type (Etype (E))
|
7322 |
|
|
and then Ada_Version >= Ada_2005
|
7323 |
|
|
and then not Debug_Flag_Dot_L;
|
7324 |
|
|
end if;
|
7325 |
|
|
|
7326 |
|
|
else
|
7327 |
|
|
return False;
|
7328 |
|
|
end if;
|
7329 |
|
|
end Is_Build_In_Place_Function;
|
7330 |
|
|
|
7331 |
|
|
-------------------------------------
|
7332 |
|
|
-- Is_Build_In_Place_Function_Call --
|
7333 |
|
|
-------------------------------------
|
7334 |
|
|
|
7335 |
|
|
function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
|
7336 |
|
|
Exp_Node : Node_Id := N;
|
7337 |
|
|
Function_Id : Entity_Id;
|
7338 |
|
|
|
7339 |
|
|
begin
|
7340 |
|
|
-- Return False when the expander is inactive, since awareness of
|
7341 |
|
|
-- build-in-place treatment is only relevant during expansion. Note that
|
7342 |
|
|
-- Is_Build_In_Place_Function, which is called as part of this function,
|
7343 |
|
|
-- is also conditioned this way, but we need to check here as well to
|
7344 |
|
|
-- avoid blowing up on processing protected calls when expansion is
|
7345 |
|
|
-- disabled (such as with -gnatc) since those would trip over the raise
|
7346 |
|
|
-- of Program_Error below.
|
7347 |
|
|
|
7348 |
|
|
if not Expander_Active then
|
7349 |
|
|
return False;
|
7350 |
|
|
end if;
|
7351 |
|
|
|
7352 |
|
|
-- Step past qualification or unchecked conversion (the latter can occur
|
7353 |
|
|
-- in cases of calls to 'Input).
|
7354 |
|
|
|
7355 |
|
|
if Nkind_In (Exp_Node, N_Qualified_Expression,
|
7356 |
|
|
N_Unchecked_Type_Conversion)
|
7357 |
|
|
then
|
7358 |
|
|
Exp_Node := Expression (N);
|
7359 |
|
|
end if;
|
7360 |
|
|
|
7361 |
|
|
if Nkind (Exp_Node) /= N_Function_Call then
|
7362 |
|
|
return False;
|
7363 |
|
|
|
7364 |
|
|
else
|
7365 |
|
|
-- In Alfa mode, build-in-place calls are not expanded, so that we
|
7366 |
|
|
-- may end up with a call that is neither resolved to an entity, nor
|
7367 |
|
|
-- an indirect call.
|
7368 |
|
|
|
7369 |
|
|
if Alfa_Mode then
|
7370 |
|
|
return False;
|
7371 |
|
|
|
7372 |
|
|
elsif Is_Entity_Name (Name (Exp_Node)) then
|
7373 |
|
|
Function_Id := Entity (Name (Exp_Node));
|
7374 |
|
|
|
7375 |
|
|
-- In the case of an explicitly dereferenced call, use the subprogram
|
7376 |
|
|
-- type generated for the dereference.
|
7377 |
|
|
|
7378 |
|
|
elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
|
7379 |
|
|
Function_Id := Etype (Name (Exp_Node));
|
7380 |
|
|
|
7381 |
|
|
else
|
7382 |
|
|
raise Program_Error;
|
7383 |
|
|
end if;
|
7384 |
|
|
|
7385 |
|
|
return Is_Build_In_Place_Function (Function_Id);
|
7386 |
|
|
end if;
|
7387 |
|
|
end Is_Build_In_Place_Function_Call;
|
7388 |
|
|
|
7389 |
|
|
-----------------------
|
7390 |
|
|
-- Freeze_Subprogram --
|
7391 |
|
|
-----------------------
|
7392 |
|
|
|
7393 |
|
|
procedure Freeze_Subprogram (N : Node_Id) is
|
7394 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
7395 |
|
|
|
7396 |
|
|
procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
|
7397 |
|
|
-- (Ada 2005): Register a predefined primitive in all the secondary
|
7398 |
|
|
-- dispatch tables of its primitive type.
|
7399 |
|
|
|
7400 |
|
|
----------------------------------
|
7401 |
|
|
-- Register_Predefined_DT_Entry --
|
7402 |
|
|
----------------------------------
|
7403 |
|
|
|
7404 |
|
|
procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
|
7405 |
|
|
Iface_DT_Ptr : Elmt_Id;
|
7406 |
|
|
Tagged_Typ : Entity_Id;
|
7407 |
|
|
Thunk_Id : Entity_Id;
|
7408 |
|
|
Thunk_Code : Node_Id;
|
7409 |
|
|
|
7410 |
|
|
begin
|
7411 |
|
|
Tagged_Typ := Find_Dispatching_Type (Prim);
|
7412 |
|
|
|
7413 |
|
|
if No (Access_Disp_Table (Tagged_Typ))
|
7414 |
|
|
or else not Has_Interfaces (Tagged_Typ)
|
7415 |
|
|
or else not RTE_Available (RE_Interface_Tag)
|
7416 |
|
|
or else Restriction_Active (No_Dispatching_Calls)
|
7417 |
|
|
then
|
7418 |
|
|
return;
|
7419 |
|
|
end if;
|
7420 |
|
|
|
7421 |
|
|
-- Skip the first two access-to-dispatch-table pointers since they
|
7422 |
|
|
-- leads to the primary dispatch table (predefined DT and user
|
7423 |
|
|
-- defined DT). We are only concerned with the secondary dispatch
|
7424 |
|
|
-- table pointers. Note that the access-to- dispatch-table pointer
|
7425 |
|
|
-- corresponds to the first implemented interface retrieved below.
|
7426 |
|
|
|
7427 |
|
|
Iface_DT_Ptr :=
|
7428 |
|
|
Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
|
7429 |
|
|
|
7430 |
|
|
while Present (Iface_DT_Ptr)
|
7431 |
|
|
and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
|
7432 |
|
|
loop
|
7433 |
|
|
pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
|
7434 |
|
|
Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
|
7435 |
|
|
|
7436 |
|
|
if Present (Thunk_Code) then
|
7437 |
|
|
Insert_Actions_After (N, New_List (
|
7438 |
|
|
Thunk_Code,
|
7439 |
|
|
|
7440 |
|
|
Build_Set_Predefined_Prim_Op_Address (Loc,
|
7441 |
|
|
Tag_Node =>
|
7442 |
|
|
New_Reference_To (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
|
7443 |
|
|
Position => DT_Position (Prim),
|
7444 |
|
|
Address_Node =>
|
7445 |
|
|
Unchecked_Convert_To (RTE (RE_Prim_Ptr),
|
7446 |
|
|
Make_Attribute_Reference (Loc,
|
7447 |
|
|
Prefix => New_Reference_To (Thunk_Id, Loc),
|
7448 |
|
|
Attribute_Name => Name_Unrestricted_Access))),
|
7449 |
|
|
|
7450 |
|
|
Build_Set_Predefined_Prim_Op_Address (Loc,
|
7451 |
|
|
Tag_Node =>
|
7452 |
|
|
New_Reference_To
|
7453 |
|
|
(Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
|
7454 |
|
|
Loc),
|
7455 |
|
|
Position => DT_Position (Prim),
|
7456 |
|
|
Address_Node =>
|
7457 |
|
|
Unchecked_Convert_To (RTE (RE_Prim_Ptr),
|
7458 |
|
|
Make_Attribute_Reference (Loc,
|
7459 |
|
|
Prefix => New_Reference_To (Prim, Loc),
|
7460 |
|
|
Attribute_Name => Name_Unrestricted_Access)))));
|
7461 |
|
|
end if;
|
7462 |
|
|
|
7463 |
|
|
-- Skip the tag of the predefined primitives dispatch table
|
7464 |
|
|
|
7465 |
|
|
Next_Elmt (Iface_DT_Ptr);
|
7466 |
|
|
pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
|
7467 |
|
|
|
7468 |
|
|
-- Skip tag of the no-thunks dispatch table
|
7469 |
|
|
|
7470 |
|
|
Next_Elmt (Iface_DT_Ptr);
|
7471 |
|
|
pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
|
7472 |
|
|
|
7473 |
|
|
-- Skip tag of predefined primitives no-thunks dispatch table
|
7474 |
|
|
|
7475 |
|
|
Next_Elmt (Iface_DT_Ptr);
|
7476 |
|
|
pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
|
7477 |
|
|
|
7478 |
|
|
Next_Elmt (Iface_DT_Ptr);
|
7479 |
|
|
end loop;
|
7480 |
|
|
end Register_Predefined_DT_Entry;
|
7481 |
|
|
|
7482 |
|
|
-- Local variables
|
7483 |
|
|
|
7484 |
|
|
Subp : constant Entity_Id := Entity (N);
|
7485 |
|
|
|
7486 |
|
|
-- Start of processing for Freeze_Subprogram
|
7487 |
|
|
|
7488 |
|
|
begin
|
7489 |
|
|
-- We suppress the initialization of the dispatch table entry when
|
7490 |
|
|
-- VM_Target because the dispatching mechanism is handled internally
|
7491 |
|
|
-- by the VM.
|
7492 |
|
|
|
7493 |
|
|
if Is_Dispatching_Operation (Subp)
|
7494 |
|
|
and then not Is_Abstract_Subprogram (Subp)
|
7495 |
|
|
and then Present (DTC_Entity (Subp))
|
7496 |
|
|
and then Present (Scope (DTC_Entity (Subp)))
|
7497 |
|
|
and then Tagged_Type_Expansion
|
7498 |
|
|
and then not Restriction_Active (No_Dispatching_Calls)
|
7499 |
|
|
and then RTE_Available (RE_Tag)
|
7500 |
|
|
then
|
7501 |
|
|
declare
|
7502 |
|
|
Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
|
7503 |
|
|
|
7504 |
|
|
begin
|
7505 |
|
|
-- Handle private overridden primitives
|
7506 |
|
|
|
7507 |
|
|
if not Is_CPP_Class (Typ) then
|
7508 |
|
|
Check_Overriding_Operation (Subp);
|
7509 |
|
|
end if;
|
7510 |
|
|
|
7511 |
|
|
-- We assume that imported CPP primitives correspond with objects
|
7512 |
|
|
-- whose constructor is in the CPP side; therefore we don't need
|
7513 |
|
|
-- to generate code to register them in the dispatch table.
|
7514 |
|
|
|
7515 |
|
|
if Is_CPP_Class (Typ) then
|
7516 |
|
|
null;
|
7517 |
|
|
|
7518 |
|
|
-- Handle CPP primitives found in derivations of CPP_Class types.
|
7519 |
|
|
-- These primitives must have been inherited from some parent, and
|
7520 |
|
|
-- there is no need to register them in the dispatch table because
|
7521 |
|
|
-- Build_Inherit_Prims takes care of the initialization of these
|
7522 |
|
|
-- slots.
|
7523 |
|
|
|
7524 |
|
|
elsif Is_Imported (Subp)
|
7525 |
|
|
and then (Convention (Subp) = Convention_CPP
|
7526 |
|
|
or else Convention (Subp) = Convention_C)
|
7527 |
|
|
then
|
7528 |
|
|
null;
|
7529 |
|
|
|
7530 |
|
|
-- Generate code to register the primitive in non statically
|
7531 |
|
|
-- allocated dispatch tables
|
7532 |
|
|
|
7533 |
|
|
elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
|
7534 |
|
|
|
7535 |
|
|
-- When a primitive is frozen, enter its name in its dispatch
|
7536 |
|
|
-- table slot.
|
7537 |
|
|
|
7538 |
|
|
if not Is_Interface (Typ)
|
7539 |
|
|
or else Present (Interface_Alias (Subp))
|
7540 |
|
|
then
|
7541 |
|
|
if Is_Predefined_Dispatching_Operation (Subp) then
|
7542 |
|
|
Register_Predefined_DT_Entry (Subp);
|
7543 |
|
|
end if;
|
7544 |
|
|
|
7545 |
|
|
Insert_Actions_After (N,
|
7546 |
|
|
Register_Primitive (Loc, Prim => Subp));
|
7547 |
|
|
end if;
|
7548 |
|
|
end if;
|
7549 |
|
|
end;
|
7550 |
|
|
end if;
|
7551 |
|
|
|
7552 |
|
|
-- Mark functions that return by reference. Note that it cannot be part
|
7553 |
|
|
-- of the normal semantic analysis of the spec since the underlying
|
7554 |
|
|
-- returned type may not be known yet (for private types).
|
7555 |
|
|
|
7556 |
|
|
declare
|
7557 |
|
|
Typ : constant Entity_Id := Etype (Subp);
|
7558 |
|
|
Utyp : constant Entity_Id := Underlying_Type (Typ);
|
7559 |
|
|
begin
|
7560 |
|
|
if Is_Immutably_Limited_Type (Typ) then
|
7561 |
|
|
Set_Returns_By_Ref (Subp);
|
7562 |
|
|
elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
|
7563 |
|
|
Set_Returns_By_Ref (Subp);
|
7564 |
|
|
end if;
|
7565 |
|
|
end;
|
7566 |
|
|
end Freeze_Subprogram;
|
7567 |
|
|
|
7568 |
|
|
-----------------------
|
7569 |
|
|
-- Is_Null_Procedure --
|
7570 |
|
|
-----------------------
|
7571 |
|
|
|
7572 |
|
|
function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
|
7573 |
|
|
Decl : constant Node_Id := Unit_Declaration_Node (Subp);
|
7574 |
|
|
|
7575 |
|
|
begin
|
7576 |
|
|
if Ekind (Subp) /= E_Procedure then
|
7577 |
|
|
return False;
|
7578 |
|
|
|
7579 |
|
|
-- Check if this is a declared null procedure
|
7580 |
|
|
|
7581 |
|
|
elsif Nkind (Decl) = N_Subprogram_Declaration then
|
7582 |
|
|
if not Null_Present (Specification (Decl)) then
|
7583 |
|
|
return False;
|
7584 |
|
|
|
7585 |
|
|
elsif No (Body_To_Inline (Decl)) then
|
7586 |
|
|
return False;
|
7587 |
|
|
|
7588 |
|
|
-- Check if the body contains only a null statement, followed by
|
7589 |
|
|
-- the return statement added during expansion.
|
7590 |
|
|
|
7591 |
|
|
else
|
7592 |
|
|
declare
|
7593 |
|
|
Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
|
7594 |
|
|
|
7595 |
|
|
Stat : Node_Id;
|
7596 |
|
|
Stat2 : Node_Id;
|
7597 |
|
|
|
7598 |
|
|
begin
|
7599 |
|
|
if Nkind (Orig_Bod) /= N_Subprogram_Body then
|
7600 |
|
|
return False;
|
7601 |
|
|
else
|
7602 |
|
|
-- We must skip SCIL nodes because they are currently
|
7603 |
|
|
-- implemented as special N_Null_Statement nodes.
|
7604 |
|
|
|
7605 |
|
|
Stat :=
|
7606 |
|
|
First_Non_SCIL_Node
|
7607 |
|
|
(Statements (Handled_Statement_Sequence (Orig_Bod)));
|
7608 |
|
|
Stat2 := Next_Non_SCIL_Node (Stat);
|
7609 |
|
|
|
7610 |
|
|
return
|
7611 |
|
|
Is_Empty_List (Declarations (Orig_Bod))
|
7612 |
|
|
and then Nkind (Stat) = N_Null_Statement
|
7613 |
|
|
and then
|
7614 |
|
|
(No (Stat2)
|
7615 |
|
|
or else
|
7616 |
|
|
(Nkind (Stat2) = N_Simple_Return_Statement
|
7617 |
|
|
and then No (Next (Stat2))));
|
7618 |
|
|
end if;
|
7619 |
|
|
end;
|
7620 |
|
|
end if;
|
7621 |
|
|
|
7622 |
|
|
else
|
7623 |
|
|
return False;
|
7624 |
|
|
end if;
|
7625 |
|
|
end Is_Null_Procedure;
|
7626 |
|
|
|
7627 |
|
|
-------------------------------------------
|
7628 |
|
|
-- Make_Build_In_Place_Call_In_Allocator --
|
7629 |
|
|
-------------------------------------------
|
7630 |
|
|
|
7631 |
|
|
procedure Make_Build_In_Place_Call_In_Allocator
|
7632 |
|
|
(Allocator : Node_Id;
|
7633 |
|
|
Function_Call : Node_Id)
|
7634 |
|
|
is
|
7635 |
|
|
Acc_Type : constant Entity_Id := Etype (Allocator);
|
7636 |
|
|
Loc : Source_Ptr;
|
7637 |
|
|
Func_Call : Node_Id := Function_Call;
|
7638 |
|
|
Function_Id : Entity_Id;
|
7639 |
|
|
Result_Subt : Entity_Id;
|
7640 |
|
|
New_Allocator : Node_Id;
|
7641 |
|
|
Return_Obj_Access : Entity_Id;
|
7642 |
|
|
|
7643 |
|
|
begin
|
7644 |
|
|
-- Step past qualification or unchecked conversion (the latter can occur
|
7645 |
|
|
-- in cases of calls to 'Input).
|
7646 |
|
|
|
7647 |
|
|
if Nkind_In (Func_Call,
|
7648 |
|
|
N_Qualified_Expression,
|
7649 |
|
|
N_Unchecked_Type_Conversion)
|
7650 |
|
|
then
|
7651 |
|
|
Func_Call := Expression (Func_Call);
|
7652 |
|
|
end if;
|
7653 |
|
|
|
7654 |
|
|
-- If the call has already been processed to add build-in-place actuals
|
7655 |
|
|
-- then return. This should not normally occur in an allocator context,
|
7656 |
|
|
-- but we add the protection as a defensive measure.
|
7657 |
|
|
|
7658 |
|
|
if Is_Expanded_Build_In_Place_Call (Func_Call) then
|
7659 |
|
|
return;
|
7660 |
|
|
end if;
|
7661 |
|
|
|
7662 |
|
|
-- Mark the call as processed as a build-in-place call
|
7663 |
|
|
|
7664 |
|
|
Set_Is_Expanded_Build_In_Place_Call (Func_Call);
|
7665 |
|
|
|
7666 |
|
|
Loc := Sloc (Function_Call);
|
7667 |
|
|
|
7668 |
|
|
if Is_Entity_Name (Name (Func_Call)) then
|
7669 |
|
|
Function_Id := Entity (Name (Func_Call));
|
7670 |
|
|
|
7671 |
|
|
elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
|
7672 |
|
|
Function_Id := Etype (Name (Func_Call));
|
7673 |
|
|
|
7674 |
|
|
else
|
7675 |
|
|
raise Program_Error;
|
7676 |
|
|
end if;
|
7677 |
|
|
|
7678 |
|
|
Result_Subt := Available_View (Etype (Function_Id));
|
7679 |
|
|
|
7680 |
|
|
-- Check whether return type includes tasks. This may not have been done
|
7681 |
|
|
-- previously, if the type was a limited view.
|
7682 |
|
|
|
7683 |
|
|
if Has_Task (Result_Subt) then
|
7684 |
|
|
Build_Activation_Chain_Entity (Allocator);
|
7685 |
|
|
end if;
|
7686 |
|
|
|
7687 |
|
|
-- When the result subtype is constrained, the return object must be
|
7688 |
|
|
-- allocated on the caller side, and access to it is passed to the
|
7689 |
|
|
-- function.
|
7690 |
|
|
|
7691 |
|
|
-- Here and in related routines, we must examine the full view of the
|
7692 |
|
|
-- type, because the view at the point of call may differ from that
|
7693 |
|
|
-- that in the function body, and the expansion mechanism depends on
|
7694 |
|
|
-- the characteristics of the full view.
|
7695 |
|
|
|
7696 |
|
|
if Is_Constrained (Underlying_Type (Result_Subt)) then
|
7697 |
|
|
|
7698 |
|
|
-- Replace the initialized allocator of form "new T'(Func (...))"
|
7699 |
|
|
-- with an uninitialized allocator of form "new T", where T is the
|
7700 |
|
|
-- result subtype of the called function. The call to the function
|
7701 |
|
|
-- is handled separately further below.
|
7702 |
|
|
|
7703 |
|
|
New_Allocator :=
|
7704 |
|
|
Make_Allocator (Loc,
|
7705 |
|
|
Expression => New_Reference_To (Result_Subt, Loc));
|
7706 |
|
|
Set_No_Initialization (New_Allocator);
|
7707 |
|
|
|
7708 |
|
|
-- Copy attributes to new allocator. Note that the new allocator
|
7709 |
|
|
-- logically comes from source if the original one did, so copy the
|
7710 |
|
|
-- relevant flag. This ensures proper treatment of the restriction
|
7711 |
|
|
-- No_Implicit_Heap_Allocations in this case.
|
7712 |
|
|
|
7713 |
|
|
Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
|
7714 |
|
|
Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
|
7715 |
|
|
Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
|
7716 |
|
|
|
7717 |
|
|
Rewrite (Allocator, New_Allocator);
|
7718 |
|
|
|
7719 |
|
|
-- Create a new access object and initialize it to the result of the
|
7720 |
|
|
-- new uninitialized allocator. Note: we do not use Allocator as the
|
7721 |
|
|
-- Related_Node of Return_Obj_Access in call to Make_Temporary below
|
7722 |
|
|
-- as this would create a sort of infinite "recursion".
|
7723 |
|
|
|
7724 |
|
|
Return_Obj_Access := Make_Temporary (Loc, 'R');
|
7725 |
|
|
Set_Etype (Return_Obj_Access, Acc_Type);
|
7726 |
|
|
|
7727 |
|
|
Insert_Action (Allocator,
|
7728 |
|
|
Make_Object_Declaration (Loc,
|
7729 |
|
|
Defining_Identifier => Return_Obj_Access,
|
7730 |
|
|
Object_Definition => New_Reference_To (Acc_Type, Loc),
|
7731 |
|
|
Expression => Relocate_Node (Allocator)));
|
7732 |
|
|
|
7733 |
|
|
-- When the function has a controlling result, an allocation-form
|
7734 |
|
|
-- parameter must be passed indicating that the caller is allocating
|
7735 |
|
|
-- the result object. This is needed because such a function can be
|
7736 |
|
|
-- called as a dispatching operation and must be treated similarly
|
7737 |
|
|
-- to functions with unconstrained result subtypes.
|
7738 |
|
|
|
7739 |
|
|
Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
7740 |
|
|
(Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
|
7741 |
|
|
|
7742 |
|
|
Add_Finalization_Master_Actual_To_Build_In_Place_Call
|
7743 |
|
|
(Func_Call, Function_Id, Acc_Type);
|
7744 |
|
|
|
7745 |
|
|
Add_Task_Actuals_To_Build_In_Place_Call
|
7746 |
|
|
(Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
|
7747 |
|
|
|
7748 |
|
|
-- Add an implicit actual to the function call that provides access
|
7749 |
|
|
-- to the allocated object. An unchecked conversion to the (specific)
|
7750 |
|
|
-- result subtype of the function is inserted to handle cases where
|
7751 |
|
|
-- the access type of the allocator has a class-wide designated type.
|
7752 |
|
|
|
7753 |
|
|
Add_Access_Actual_To_Build_In_Place_Call
|
7754 |
|
|
(Func_Call,
|
7755 |
|
|
Function_Id,
|
7756 |
|
|
Make_Unchecked_Type_Conversion (Loc,
|
7757 |
|
|
Subtype_Mark => New_Reference_To (Result_Subt, Loc),
|
7758 |
|
|
Expression =>
|
7759 |
|
|
Make_Explicit_Dereference (Loc,
|
7760 |
|
|
Prefix => New_Reference_To (Return_Obj_Access, Loc))));
|
7761 |
|
|
|
7762 |
|
|
-- When the result subtype is unconstrained, the function itself must
|
7763 |
|
|
-- perform the allocation of the return object, so we pass parameters
|
7764 |
|
|
-- indicating that. We don't yet handle the case where the allocation
|
7765 |
|
|
-- must be done in a user-defined storage pool, which will require
|
7766 |
|
|
-- passing another actual or two to provide allocation/deallocation
|
7767 |
|
|
-- operations. ???
|
7768 |
|
|
|
7769 |
|
|
else
|
7770 |
|
|
-- Case of a user-defined storage pool. Pass an allocation parameter
|
7771 |
|
|
-- indicating that the function should allocate its result in the
|
7772 |
|
|
-- pool, and pass the pool. Use 'Unrestricted_Access because the
|
7773 |
|
|
-- pool may not be aliased.
|
7774 |
|
|
|
7775 |
|
|
if VM_Target = No_VM
|
7776 |
|
|
and then Present (Associated_Storage_Pool (Acc_Type))
|
7777 |
|
|
then
|
7778 |
|
|
Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
7779 |
|
|
(Func_Call, Function_Id, Alloc_Form => User_Storage_Pool,
|
7780 |
|
|
Pool_Actual =>
|
7781 |
|
|
Make_Attribute_Reference (Loc,
|
7782 |
|
|
Prefix =>
|
7783 |
|
|
New_Reference_To
|
7784 |
|
|
(Associated_Storage_Pool (Acc_Type), Loc),
|
7785 |
|
|
Attribute_Name => Name_Unrestricted_Access));
|
7786 |
|
|
|
7787 |
|
|
-- No user-defined pool; pass an allocation parameter indicating that
|
7788 |
|
|
-- the function should allocate its result on the heap.
|
7789 |
|
|
|
7790 |
|
|
else
|
7791 |
|
|
Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
7792 |
|
|
(Func_Call, Function_Id, Alloc_Form => Global_Heap);
|
7793 |
|
|
end if;
|
7794 |
|
|
|
7795 |
|
|
Add_Finalization_Master_Actual_To_Build_In_Place_Call
|
7796 |
|
|
(Func_Call, Function_Id, Acc_Type);
|
7797 |
|
|
|
7798 |
|
|
Add_Task_Actuals_To_Build_In_Place_Call
|
7799 |
|
|
(Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
|
7800 |
|
|
|
7801 |
|
|
-- The caller does not provide the return object in this case, so we
|
7802 |
|
|
-- have to pass null for the object access actual.
|
7803 |
|
|
|
7804 |
|
|
Add_Access_Actual_To_Build_In_Place_Call
|
7805 |
|
|
(Func_Call, Function_Id, Return_Object => Empty);
|
7806 |
|
|
end if;
|
7807 |
|
|
|
7808 |
|
|
-- If the build-in-place function call returns a controlled object,
|
7809 |
|
|
-- the finalization master will require a reference to routine
|
7810 |
|
|
-- Finalize_Address of the designated type. Setting this attribute
|
7811 |
|
|
-- is done in the same manner to expansion of allocators.
|
7812 |
|
|
|
7813 |
|
|
if Needs_Finalization (Result_Subt) then
|
7814 |
|
|
|
7815 |
|
|
-- Controlled types with supressed finalization do not need to
|
7816 |
|
|
-- associate the address of their Finalize_Address primitives with
|
7817 |
|
|
-- a master since they do not need a master to begin with.
|
7818 |
|
|
|
7819 |
|
|
if Is_Library_Level_Entity (Acc_Type)
|
7820 |
|
|
and then Finalize_Storage_Only (Result_Subt)
|
7821 |
|
|
then
|
7822 |
|
|
null;
|
7823 |
|
|
|
7824 |
|
|
-- Do not generate the call to Set_Finalize_Address in Alfa mode
|
7825 |
|
|
-- because it is not necessary and results in unwanted expansion.
|
7826 |
|
|
-- This expansion is also not carried out in CodePeer mode because
|
7827 |
|
|
-- Finalize_Address is never built.
|
7828 |
|
|
|
7829 |
|
|
elsif not Alfa_Mode
|
7830 |
|
|
and then not CodePeer_Mode
|
7831 |
|
|
then
|
7832 |
|
|
Insert_Action (Allocator,
|
7833 |
|
|
Make_Set_Finalize_Address_Call (Loc,
|
7834 |
|
|
Typ => Etype (Function_Id),
|
7835 |
|
|
Ptr_Typ => Acc_Type));
|
7836 |
|
|
end if;
|
7837 |
|
|
end if;
|
7838 |
|
|
|
7839 |
|
|
-- Finally, replace the allocator node with a reference to the result
|
7840 |
|
|
-- of the function call itself (which will effectively be an access
|
7841 |
|
|
-- to the object created by the allocator).
|
7842 |
|
|
|
7843 |
|
|
Rewrite (Allocator, Make_Reference (Loc, Relocate_Node (Function_Call)));
|
7844 |
|
|
|
7845 |
|
|
-- Ada 2005 (AI-251): If the type of the allocator is an interface then
|
7846 |
|
|
-- generate an implicit conversion to force displacement of the "this"
|
7847 |
|
|
-- pointer.
|
7848 |
|
|
|
7849 |
|
|
if Is_Interface (Designated_Type (Acc_Type)) then
|
7850 |
|
|
Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
|
7851 |
|
|
end if;
|
7852 |
|
|
|
7853 |
|
|
Analyze_And_Resolve (Allocator, Acc_Type);
|
7854 |
|
|
end Make_Build_In_Place_Call_In_Allocator;
|
7855 |
|
|
|
7856 |
|
|
---------------------------------------------------
|
7857 |
|
|
-- Make_Build_In_Place_Call_In_Anonymous_Context --
|
7858 |
|
|
---------------------------------------------------
|
7859 |
|
|
|
7860 |
|
|
procedure Make_Build_In_Place_Call_In_Anonymous_Context
|
7861 |
|
|
(Function_Call : Node_Id)
|
7862 |
|
|
is
|
7863 |
|
|
Loc : Source_Ptr;
|
7864 |
|
|
Func_Call : Node_Id := Function_Call;
|
7865 |
|
|
Function_Id : Entity_Id;
|
7866 |
|
|
Result_Subt : Entity_Id;
|
7867 |
|
|
Return_Obj_Id : Entity_Id;
|
7868 |
|
|
Return_Obj_Decl : Entity_Id;
|
7869 |
|
|
|
7870 |
|
|
begin
|
7871 |
|
|
-- Step past qualification or unchecked conversion (the latter can occur
|
7872 |
|
|
-- in cases of calls to 'Input).
|
7873 |
|
|
|
7874 |
|
|
if Nkind_In (Func_Call, N_Qualified_Expression,
|
7875 |
|
|
N_Unchecked_Type_Conversion)
|
7876 |
|
|
then
|
7877 |
|
|
Func_Call := Expression (Func_Call);
|
7878 |
|
|
end if;
|
7879 |
|
|
|
7880 |
|
|
-- If the call has already been processed to add build-in-place actuals
|
7881 |
|
|
-- then return. One place this can occur is for calls to build-in-place
|
7882 |
|
|
-- functions that occur within a call to a protected operation, where
|
7883 |
|
|
-- due to rewriting and expansion of the protected call there can be
|
7884 |
|
|
-- more than one call to Expand_Actuals for the same set of actuals.
|
7885 |
|
|
|
7886 |
|
|
if Is_Expanded_Build_In_Place_Call (Func_Call) then
|
7887 |
|
|
return;
|
7888 |
|
|
end if;
|
7889 |
|
|
|
7890 |
|
|
-- Mark the call as processed as a build-in-place call
|
7891 |
|
|
|
7892 |
|
|
Set_Is_Expanded_Build_In_Place_Call (Func_Call);
|
7893 |
|
|
|
7894 |
|
|
Loc := Sloc (Function_Call);
|
7895 |
|
|
|
7896 |
|
|
if Is_Entity_Name (Name (Func_Call)) then
|
7897 |
|
|
Function_Id := Entity (Name (Func_Call));
|
7898 |
|
|
|
7899 |
|
|
elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
|
7900 |
|
|
Function_Id := Etype (Name (Func_Call));
|
7901 |
|
|
|
7902 |
|
|
else
|
7903 |
|
|
raise Program_Error;
|
7904 |
|
|
end if;
|
7905 |
|
|
|
7906 |
|
|
Result_Subt := Etype (Function_Id);
|
7907 |
|
|
|
7908 |
|
|
-- If the build-in-place function returns a controlled object, then the
|
7909 |
|
|
-- object needs to be finalized immediately after the context. Since
|
7910 |
|
|
-- this case produces a transient scope, the servicing finalizer needs
|
7911 |
|
|
-- to name the returned object. Create a temporary which is initialized
|
7912 |
|
|
-- with the function call:
|
7913 |
|
|
--
|
7914 |
|
|
-- Temp_Id : Func_Type := BIP_Func_Call;
|
7915 |
|
|
--
|
7916 |
|
|
-- The initialization expression of the temporary will be rewritten by
|
7917 |
|
|
-- the expander using the appropriate mechanism in Make_Build_In_Place_
|
7918 |
|
|
-- Call_In_Object_Declaration.
|
7919 |
|
|
|
7920 |
|
|
if Needs_Finalization (Result_Subt) then
|
7921 |
|
|
declare
|
7922 |
|
|
Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
|
7923 |
|
|
Temp_Decl : Node_Id;
|
7924 |
|
|
|
7925 |
|
|
begin
|
7926 |
|
|
-- Reset the guard on the function call since the following does
|
7927 |
|
|
-- not perform actual call expansion.
|
7928 |
|
|
|
7929 |
|
|
Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
|
7930 |
|
|
|
7931 |
|
|
Temp_Decl :=
|
7932 |
|
|
Make_Object_Declaration (Loc,
|
7933 |
|
|
Defining_Identifier => Temp_Id,
|
7934 |
|
|
Object_Definition =>
|
7935 |
|
|
New_Reference_To (Result_Subt, Loc),
|
7936 |
|
|
Expression =>
|
7937 |
|
|
New_Copy_Tree (Function_Call));
|
7938 |
|
|
|
7939 |
|
|
Insert_Action (Function_Call, Temp_Decl);
|
7940 |
|
|
|
7941 |
|
|
Rewrite (Function_Call, New_Reference_To (Temp_Id, Loc));
|
7942 |
|
|
Analyze (Function_Call);
|
7943 |
|
|
end;
|
7944 |
|
|
|
7945 |
|
|
-- When the result subtype is constrained, an object of the subtype is
|
7946 |
|
|
-- declared and an access value designating it is passed as an actual.
|
7947 |
|
|
|
7948 |
|
|
elsif Is_Constrained (Underlying_Type (Result_Subt)) then
|
7949 |
|
|
|
7950 |
|
|
-- Create a temporary object to hold the function result
|
7951 |
|
|
|
7952 |
|
|
Return_Obj_Id := Make_Temporary (Loc, 'R');
|
7953 |
|
|
Set_Etype (Return_Obj_Id, Result_Subt);
|
7954 |
|
|
|
7955 |
|
|
Return_Obj_Decl :=
|
7956 |
|
|
Make_Object_Declaration (Loc,
|
7957 |
|
|
Defining_Identifier => Return_Obj_Id,
|
7958 |
|
|
Aliased_Present => True,
|
7959 |
|
|
Object_Definition => New_Reference_To (Result_Subt, Loc));
|
7960 |
|
|
|
7961 |
|
|
Set_No_Initialization (Return_Obj_Decl);
|
7962 |
|
|
|
7963 |
|
|
Insert_Action (Func_Call, Return_Obj_Decl);
|
7964 |
|
|
|
7965 |
|
|
-- When the function has a controlling result, an allocation-form
|
7966 |
|
|
-- parameter must be passed indicating that the caller is allocating
|
7967 |
|
|
-- the result object. This is needed because such a function can be
|
7968 |
|
|
-- called as a dispatching operation and must be treated similarly
|
7969 |
|
|
-- to functions with unconstrained result subtypes.
|
7970 |
|
|
|
7971 |
|
|
Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
7972 |
|
|
(Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
|
7973 |
|
|
|
7974 |
|
|
Add_Finalization_Master_Actual_To_Build_In_Place_Call
|
7975 |
|
|
(Func_Call, Function_Id);
|
7976 |
|
|
|
7977 |
|
|
Add_Task_Actuals_To_Build_In_Place_Call
|
7978 |
|
|
(Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
|
7979 |
|
|
|
7980 |
|
|
-- Add an implicit actual to the function call that provides access
|
7981 |
|
|
-- to the caller's return object.
|
7982 |
|
|
|
7983 |
|
|
Add_Access_Actual_To_Build_In_Place_Call
|
7984 |
|
|
(Func_Call, Function_Id, New_Reference_To (Return_Obj_Id, Loc));
|
7985 |
|
|
|
7986 |
|
|
-- When the result subtype is unconstrained, the function must allocate
|
7987 |
|
|
-- the return object in the secondary stack, so appropriate implicit
|
7988 |
|
|
-- parameters are added to the call to indicate that. A transient
|
7989 |
|
|
-- scope is established to ensure eventual cleanup of the result.
|
7990 |
|
|
|
7991 |
|
|
else
|
7992 |
|
|
-- Pass an allocation parameter indicating that the function should
|
7993 |
|
|
-- allocate its result on the secondary stack.
|
7994 |
|
|
|
7995 |
|
|
Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
7996 |
|
|
(Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
|
7997 |
|
|
|
7998 |
|
|
Add_Finalization_Master_Actual_To_Build_In_Place_Call
|
7999 |
|
|
(Func_Call, Function_Id);
|
8000 |
|
|
|
8001 |
|
|
Add_Task_Actuals_To_Build_In_Place_Call
|
8002 |
|
|
(Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
|
8003 |
|
|
|
8004 |
|
|
-- Pass a null value to the function since no return object is
|
8005 |
|
|
-- available on the caller side.
|
8006 |
|
|
|
8007 |
|
|
Add_Access_Actual_To_Build_In_Place_Call
|
8008 |
|
|
(Func_Call, Function_Id, Empty);
|
8009 |
|
|
end if;
|
8010 |
|
|
end Make_Build_In_Place_Call_In_Anonymous_Context;
|
8011 |
|
|
|
8012 |
|
|
--------------------------------------------
|
8013 |
|
|
-- Make_Build_In_Place_Call_In_Assignment --
|
8014 |
|
|
--------------------------------------------
|
8015 |
|
|
|
8016 |
|
|
procedure Make_Build_In_Place_Call_In_Assignment
|
8017 |
|
|
(Assign : Node_Id;
|
8018 |
|
|
Function_Call : Node_Id)
|
8019 |
|
|
is
|
8020 |
|
|
Lhs : constant Node_Id := Name (Assign);
|
8021 |
|
|
Func_Call : Node_Id := Function_Call;
|
8022 |
|
|
Func_Id : Entity_Id;
|
8023 |
|
|
Loc : Source_Ptr;
|
8024 |
|
|
Obj_Decl : Node_Id;
|
8025 |
|
|
Obj_Id : Entity_Id;
|
8026 |
|
|
Ptr_Typ : Entity_Id;
|
8027 |
|
|
Ptr_Typ_Decl : Node_Id;
|
8028 |
|
|
New_Expr : Node_Id;
|
8029 |
|
|
Result_Subt : Entity_Id;
|
8030 |
|
|
Target : Node_Id;
|
8031 |
|
|
|
8032 |
|
|
begin
|
8033 |
|
|
-- Step past qualification or unchecked conversion (the latter can occur
|
8034 |
|
|
-- in cases of calls to 'Input).
|
8035 |
|
|
|
8036 |
|
|
if Nkind_In (Func_Call, N_Qualified_Expression,
|
8037 |
|
|
N_Unchecked_Type_Conversion)
|
8038 |
|
|
then
|
8039 |
|
|
Func_Call := Expression (Func_Call);
|
8040 |
|
|
end if;
|
8041 |
|
|
|
8042 |
|
|
-- If the call has already been processed to add build-in-place actuals
|
8043 |
|
|
-- then return. This should not normally occur in an assignment context,
|
8044 |
|
|
-- but we add the protection as a defensive measure.
|
8045 |
|
|
|
8046 |
|
|
if Is_Expanded_Build_In_Place_Call (Func_Call) then
|
8047 |
|
|
return;
|
8048 |
|
|
end if;
|
8049 |
|
|
|
8050 |
|
|
-- Mark the call as processed as a build-in-place call
|
8051 |
|
|
|
8052 |
|
|
Set_Is_Expanded_Build_In_Place_Call (Func_Call);
|
8053 |
|
|
|
8054 |
|
|
Loc := Sloc (Function_Call);
|
8055 |
|
|
|
8056 |
|
|
if Is_Entity_Name (Name (Func_Call)) then
|
8057 |
|
|
Func_Id := Entity (Name (Func_Call));
|
8058 |
|
|
|
8059 |
|
|
elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
|
8060 |
|
|
Func_Id := Etype (Name (Func_Call));
|
8061 |
|
|
|
8062 |
|
|
else
|
8063 |
|
|
raise Program_Error;
|
8064 |
|
|
end if;
|
8065 |
|
|
|
8066 |
|
|
Result_Subt := Etype (Func_Id);
|
8067 |
|
|
|
8068 |
|
|
-- When the result subtype is unconstrained, an additional actual must
|
8069 |
|
|
-- be passed to indicate that the caller is providing the return object.
|
8070 |
|
|
-- This parameter must also be passed when the called function has a
|
8071 |
|
|
-- controlling result, because dispatching calls to the function needs
|
8072 |
|
|
-- to be treated effectively the same as calls to class-wide functions.
|
8073 |
|
|
|
8074 |
|
|
Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
8075 |
|
|
(Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
|
8076 |
|
|
|
8077 |
|
|
Add_Finalization_Master_Actual_To_Build_In_Place_Call
|
8078 |
|
|
(Func_Call, Func_Id);
|
8079 |
|
|
|
8080 |
|
|
Add_Task_Actuals_To_Build_In_Place_Call
|
8081 |
|
|
(Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
|
8082 |
|
|
|
8083 |
|
|
-- Add an implicit actual to the function call that provides access to
|
8084 |
|
|
-- the caller's return object.
|
8085 |
|
|
|
8086 |
|
|
Add_Access_Actual_To_Build_In_Place_Call
|
8087 |
|
|
(Func_Call,
|
8088 |
|
|
Func_Id,
|
8089 |
|
|
Make_Unchecked_Type_Conversion (Loc,
|
8090 |
|
|
Subtype_Mark => New_Reference_To (Result_Subt, Loc),
|
8091 |
|
|
Expression => Relocate_Node (Lhs)));
|
8092 |
|
|
|
8093 |
|
|
-- Create an access type designating the function's result subtype
|
8094 |
|
|
|
8095 |
|
|
Ptr_Typ := Make_Temporary (Loc, 'A');
|
8096 |
|
|
|
8097 |
|
|
Ptr_Typ_Decl :=
|
8098 |
|
|
Make_Full_Type_Declaration (Loc,
|
8099 |
|
|
Defining_Identifier => Ptr_Typ,
|
8100 |
|
|
Type_Definition =>
|
8101 |
|
|
Make_Access_To_Object_Definition (Loc,
|
8102 |
|
|
All_Present => True,
|
8103 |
|
|
Subtype_Indication =>
|
8104 |
|
|
New_Reference_To (Result_Subt, Loc)));
|
8105 |
|
|
Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
|
8106 |
|
|
|
8107 |
|
|
-- Finally, create an access object initialized to a reference to the
|
8108 |
|
|
-- function call. We know this access value is non-null, so mark the
|
8109 |
|
|
-- entity accordingly to suppress junk access checks.
|
8110 |
|
|
|
8111 |
|
|
New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
|
8112 |
|
|
|
8113 |
|
|
Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
|
8114 |
|
|
Set_Etype (Obj_Id, Ptr_Typ);
|
8115 |
|
|
Set_Is_Known_Non_Null (Obj_Id);
|
8116 |
|
|
|
8117 |
|
|
Obj_Decl :=
|
8118 |
|
|
Make_Object_Declaration (Loc,
|
8119 |
|
|
Defining_Identifier => Obj_Id,
|
8120 |
|
|
Object_Definition => New_Reference_To (Ptr_Typ, Loc),
|
8121 |
|
|
Expression => New_Expr);
|
8122 |
|
|
Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
|
8123 |
|
|
|
8124 |
|
|
Rewrite (Assign, Make_Null_Statement (Loc));
|
8125 |
|
|
|
8126 |
|
|
-- Retrieve the target of the assignment
|
8127 |
|
|
|
8128 |
|
|
if Nkind (Lhs) = N_Selected_Component then
|
8129 |
|
|
Target := Selector_Name (Lhs);
|
8130 |
|
|
elsif Nkind (Lhs) = N_Type_Conversion then
|
8131 |
|
|
Target := Expression (Lhs);
|
8132 |
|
|
else
|
8133 |
|
|
Target := Lhs;
|
8134 |
|
|
end if;
|
8135 |
|
|
|
8136 |
|
|
-- If we are assigning to a return object or this is an expression of
|
8137 |
|
|
-- an extension aggregate, the target should either be an identifier
|
8138 |
|
|
-- or a simple expression. All other cases imply a different scenario.
|
8139 |
|
|
|
8140 |
|
|
if Nkind (Target) in N_Has_Entity then
|
8141 |
|
|
Target := Entity (Target);
|
8142 |
|
|
else
|
8143 |
|
|
return;
|
8144 |
|
|
end if;
|
8145 |
|
|
end Make_Build_In_Place_Call_In_Assignment;
|
8146 |
|
|
|
8147 |
|
|
----------------------------------------------------
|
8148 |
|
|
-- Make_Build_In_Place_Call_In_Object_Declaration --
|
8149 |
|
|
----------------------------------------------------
|
8150 |
|
|
|
8151 |
|
|
procedure Make_Build_In_Place_Call_In_Object_Declaration
|
8152 |
|
|
(Object_Decl : Node_Id;
|
8153 |
|
|
Function_Call : Node_Id)
|
8154 |
|
|
is
|
8155 |
|
|
Loc : Source_Ptr;
|
8156 |
|
|
Obj_Def_Id : constant Entity_Id :=
|
8157 |
|
|
Defining_Identifier (Object_Decl);
|
8158 |
|
|
Enclosing_Func : constant Entity_Id :=
|
8159 |
|
|
Enclosing_Subprogram (Obj_Def_Id);
|
8160 |
|
|
Call_Deref : Node_Id;
|
8161 |
|
|
Caller_Object : Node_Id;
|
8162 |
|
|
Def_Id : Entity_Id;
|
8163 |
|
|
Fmaster_Actual : Node_Id := Empty;
|
8164 |
|
|
Func_Call : Node_Id := Function_Call;
|
8165 |
|
|
Function_Id : Entity_Id;
|
8166 |
|
|
Pool_Actual : Node_Id;
|
8167 |
|
|
Ptr_Typ_Decl : Node_Id;
|
8168 |
|
|
Pass_Caller_Acc : Boolean := False;
|
8169 |
|
|
New_Expr : Node_Id;
|
8170 |
|
|
Ref_Type : Entity_Id;
|
8171 |
|
|
Result_Subt : Entity_Id;
|
8172 |
|
|
|
8173 |
|
|
begin
|
8174 |
|
|
-- Step past qualification or unchecked conversion (the latter can occur
|
8175 |
|
|
-- in cases of calls to 'Input).
|
8176 |
|
|
|
8177 |
|
|
if Nkind_In (Func_Call, N_Qualified_Expression,
|
8178 |
|
|
N_Unchecked_Type_Conversion)
|
8179 |
|
|
then
|
8180 |
|
|
Func_Call := Expression (Func_Call);
|
8181 |
|
|
end if;
|
8182 |
|
|
|
8183 |
|
|
-- If the call has already been processed to add build-in-place actuals
|
8184 |
|
|
-- then return. This should not normally occur in an object declaration,
|
8185 |
|
|
-- but we add the protection as a defensive measure.
|
8186 |
|
|
|
8187 |
|
|
if Is_Expanded_Build_In_Place_Call (Func_Call) then
|
8188 |
|
|
return;
|
8189 |
|
|
end if;
|
8190 |
|
|
|
8191 |
|
|
-- Mark the call as processed as a build-in-place call
|
8192 |
|
|
|
8193 |
|
|
Set_Is_Expanded_Build_In_Place_Call (Func_Call);
|
8194 |
|
|
|
8195 |
|
|
Loc := Sloc (Function_Call);
|
8196 |
|
|
|
8197 |
|
|
if Is_Entity_Name (Name (Func_Call)) then
|
8198 |
|
|
Function_Id := Entity (Name (Func_Call));
|
8199 |
|
|
|
8200 |
|
|
elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
|
8201 |
|
|
Function_Id := Etype (Name (Func_Call));
|
8202 |
|
|
|
8203 |
|
|
else
|
8204 |
|
|
raise Program_Error;
|
8205 |
|
|
end if;
|
8206 |
|
|
|
8207 |
|
|
Result_Subt := Etype (Function_Id);
|
8208 |
|
|
|
8209 |
|
|
-- If the the object is a return object of an enclosing build-in-place
|
8210 |
|
|
-- function, then the implicit build-in-place parameters of the
|
8211 |
|
|
-- enclosing function are simply passed along to the called function.
|
8212 |
|
|
-- (Unfortunately, this won't cover the case of extension aggregates
|
8213 |
|
|
-- where the ancestor part is a build-in-place unconstrained function
|
8214 |
|
|
-- call that should be passed along the caller's parameters. Currently
|
8215 |
|
|
-- those get mishandled by reassigning the result of the call to the
|
8216 |
|
|
-- aggregate return object, when the call result should really be
|
8217 |
|
|
-- directly built in place in the aggregate and not in a temporary. ???)
|
8218 |
|
|
|
8219 |
|
|
if Is_Return_Object (Defining_Identifier (Object_Decl)) then
|
8220 |
|
|
Pass_Caller_Acc := True;
|
8221 |
|
|
|
8222 |
|
|
-- When the enclosing function has a BIP_Alloc_Form formal then we
|
8223 |
|
|
-- pass it along to the callee (such as when the enclosing function
|
8224 |
|
|
-- has an unconstrained or tagged result type).
|
8225 |
|
|
|
8226 |
|
|
if Needs_BIP_Alloc_Form (Enclosing_Func) then
|
8227 |
|
|
if VM_Target = No_VM and then
|
8228 |
|
|
RTE_Available (RE_Root_Storage_Pool_Ptr)
|
8229 |
|
|
then
|
8230 |
|
|
Pool_Actual :=
|
8231 |
|
|
New_Reference_To (Build_In_Place_Formal
|
8232 |
|
|
(Enclosing_Func, BIP_Storage_Pool), Loc);
|
8233 |
|
|
|
8234 |
|
|
-- The build-in-place pool formal is not built on .NET/JVM
|
8235 |
|
|
|
8236 |
|
|
else
|
8237 |
|
|
Pool_Actual := Empty;
|
8238 |
|
|
end if;
|
8239 |
|
|
|
8240 |
|
|
Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
8241 |
|
|
(Func_Call,
|
8242 |
|
|
Function_Id,
|
8243 |
|
|
Alloc_Form_Exp =>
|
8244 |
|
|
New_Reference_To
|
8245 |
|
|
(Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
|
8246 |
|
|
Loc),
|
8247 |
|
|
Pool_Actual => Pool_Actual);
|
8248 |
|
|
|
8249 |
|
|
-- Otherwise, if enclosing function has a constrained result subtype,
|
8250 |
|
|
-- then caller allocation will be used.
|
8251 |
|
|
|
8252 |
|
|
else
|
8253 |
|
|
Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
8254 |
|
|
(Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
|
8255 |
|
|
end if;
|
8256 |
|
|
|
8257 |
|
|
if Needs_BIP_Finalization_Master (Enclosing_Func) then
|
8258 |
|
|
Fmaster_Actual :=
|
8259 |
|
|
New_Reference_To
|
8260 |
|
|
(Build_In_Place_Formal
|
8261 |
|
|
(Enclosing_Func, BIP_Finalization_Master), Loc);
|
8262 |
|
|
end if;
|
8263 |
|
|
|
8264 |
|
|
-- Retrieve the BIPacc formal from the enclosing function and convert
|
8265 |
|
|
-- it to the access type of the callee's BIP_Object_Access formal.
|
8266 |
|
|
|
8267 |
|
|
Caller_Object :=
|
8268 |
|
|
Make_Unchecked_Type_Conversion (Loc,
|
8269 |
|
|
Subtype_Mark =>
|
8270 |
|
|
New_Reference_To
|
8271 |
|
|
(Etype
|
8272 |
|
|
(Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
|
8273 |
|
|
Loc),
|
8274 |
|
|
Expression =>
|
8275 |
|
|
New_Reference_To
|
8276 |
|
|
(Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
|
8277 |
|
|
Loc));
|
8278 |
|
|
|
8279 |
|
|
-- In the constrained case, add an implicit actual to the function call
|
8280 |
|
|
-- that provides access to the declared object. An unchecked conversion
|
8281 |
|
|
-- to the (specific) result type of the function is inserted to handle
|
8282 |
|
|
-- the case where the object is declared with a class-wide type.
|
8283 |
|
|
|
8284 |
|
|
elsif Is_Constrained (Underlying_Type (Result_Subt)) then
|
8285 |
|
|
Caller_Object :=
|
8286 |
|
|
Make_Unchecked_Type_Conversion (Loc,
|
8287 |
|
|
Subtype_Mark => New_Reference_To (Result_Subt, Loc),
|
8288 |
|
|
Expression => New_Reference_To (Obj_Def_Id, Loc));
|
8289 |
|
|
|
8290 |
|
|
-- When the function has a controlling result, an allocation-form
|
8291 |
|
|
-- parameter must be passed indicating that the caller is allocating
|
8292 |
|
|
-- the result object. This is needed because such a function can be
|
8293 |
|
|
-- called as a dispatching operation and must be treated similarly
|
8294 |
|
|
-- to functions with unconstrained result subtypes.
|
8295 |
|
|
|
8296 |
|
|
Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
8297 |
|
|
(Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
|
8298 |
|
|
|
8299 |
|
|
-- In other unconstrained cases, pass an indication to do the allocation
|
8300 |
|
|
-- on the secondary stack and set Caller_Object to Empty so that a null
|
8301 |
|
|
-- value will be passed for the caller's object address. A transient
|
8302 |
|
|
-- scope is established to ensure eventual cleanup of the result.
|
8303 |
|
|
|
8304 |
|
|
else
|
8305 |
|
|
Add_Unconstrained_Actuals_To_Build_In_Place_Call
|
8306 |
|
|
(Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
|
8307 |
|
|
Caller_Object := Empty;
|
8308 |
|
|
|
8309 |
|
|
Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
|
8310 |
|
|
end if;
|
8311 |
|
|
|
8312 |
|
|
-- Pass along any finalization master actual, which is needed in the
|
8313 |
|
|
-- case where the called function initializes a return object of an
|
8314 |
|
|
-- enclosing build-in-place function.
|
8315 |
|
|
|
8316 |
|
|
Add_Finalization_Master_Actual_To_Build_In_Place_Call
|
8317 |
|
|
(Func_Call => Func_Call,
|
8318 |
|
|
Func_Id => Function_Id,
|
8319 |
|
|
Master_Exp => Fmaster_Actual);
|
8320 |
|
|
|
8321 |
|
|
if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
|
8322 |
|
|
and then Has_Task (Result_Subt)
|
8323 |
|
|
then
|
8324 |
|
|
-- Here we're passing along the master that was passed in to this
|
8325 |
|
|
-- function.
|
8326 |
|
|
|
8327 |
|
|
Add_Task_Actuals_To_Build_In_Place_Call
|
8328 |
|
|
(Func_Call, Function_Id,
|
8329 |
|
|
Master_Actual =>
|
8330 |
|
|
New_Reference_To (Build_In_Place_Formal
|
8331 |
|
|
(Enclosing_Func, BIP_Task_Master), Loc));
|
8332 |
|
|
|
8333 |
|
|
else
|
8334 |
|
|
Add_Task_Actuals_To_Build_In_Place_Call
|
8335 |
|
|
(Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
|
8336 |
|
|
end if;
|
8337 |
|
|
|
8338 |
|
|
Add_Access_Actual_To_Build_In_Place_Call
|
8339 |
|
|
(Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
|
8340 |
|
|
|
8341 |
|
|
-- Create an access type designating the function's result subtype. We
|
8342 |
|
|
-- use the type of the original expression because it may be a call to
|
8343 |
|
|
-- an inherited operation, which the expansion has replaced with the
|
8344 |
|
|
-- parent operation that yields the parent type.
|
8345 |
|
|
|
8346 |
|
|
Ref_Type := Make_Temporary (Loc, 'A');
|
8347 |
|
|
|
8348 |
|
|
Ptr_Typ_Decl :=
|
8349 |
|
|
Make_Full_Type_Declaration (Loc,
|
8350 |
|
|
Defining_Identifier => Ref_Type,
|
8351 |
|
|
Type_Definition =>
|
8352 |
|
|
Make_Access_To_Object_Definition (Loc,
|
8353 |
|
|
All_Present => True,
|
8354 |
|
|
Subtype_Indication =>
|
8355 |
|
|
New_Reference_To (Etype (Function_Call), Loc)));
|
8356 |
|
|
|
8357 |
|
|
-- The access type and its accompanying object must be inserted after
|
8358 |
|
|
-- the object declaration in the constrained case, so that the function
|
8359 |
|
|
-- call can be passed access to the object. In the unconstrained case,
|
8360 |
|
|
-- or if the object declaration is for a return object, the access type
|
8361 |
|
|
-- and object must be inserted before the object, since the object
|
8362 |
|
|
-- declaration is rewritten to be a renaming of a dereference of the
|
8363 |
|
|
-- access object.
|
8364 |
|
|
|
8365 |
|
|
if Is_Constrained (Underlying_Type (Result_Subt))
|
8366 |
|
|
and then not Is_Return_Object (Defining_Identifier (Object_Decl))
|
8367 |
|
|
then
|
8368 |
|
|
Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
|
8369 |
|
|
else
|
8370 |
|
|
Insert_Action (Object_Decl, Ptr_Typ_Decl);
|
8371 |
|
|
end if;
|
8372 |
|
|
|
8373 |
|
|
-- Finally, create an access object initialized to a reference to the
|
8374 |
|
|
-- function call. We know this access value cannot be null, so mark the
|
8375 |
|
|
-- entity accordingly to suppress the access check.
|
8376 |
|
|
|
8377 |
|
|
New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
|
8378 |
|
|
|
8379 |
|
|
Def_Id := Make_Temporary (Loc, 'R', New_Expr);
|
8380 |
|
|
Set_Etype (Def_Id, Ref_Type);
|
8381 |
|
|
Set_Is_Known_Non_Null (Def_Id);
|
8382 |
|
|
|
8383 |
|
|
Insert_After_And_Analyze (Ptr_Typ_Decl,
|
8384 |
|
|
Make_Object_Declaration (Loc,
|
8385 |
|
|
Defining_Identifier => Def_Id,
|
8386 |
|
|
Object_Definition => New_Reference_To (Ref_Type, Loc),
|
8387 |
|
|
Expression => New_Expr));
|
8388 |
|
|
|
8389 |
|
|
-- If the result subtype of the called function is constrained and
|
8390 |
|
|
-- is not itself the return expression of an enclosing BIP function,
|
8391 |
|
|
-- then mark the object as having no initialization.
|
8392 |
|
|
|
8393 |
|
|
if Is_Constrained (Underlying_Type (Result_Subt))
|
8394 |
|
|
and then not Is_Return_Object (Defining_Identifier (Object_Decl))
|
8395 |
|
|
then
|
8396 |
|
|
Set_Expression (Object_Decl, Empty);
|
8397 |
|
|
Set_No_Initialization (Object_Decl);
|
8398 |
|
|
|
8399 |
|
|
-- In case of an unconstrained result subtype, or if the call is the
|
8400 |
|
|
-- return expression of an enclosing BIP function, rewrite the object
|
8401 |
|
|
-- declaration as an object renaming where the renamed object is a
|
8402 |
|
|
-- dereference of <function_Call>'reference:
|
8403 |
|
|
--
|
8404 |
|
|
-- Obj : Subt renames <function_call>'Ref.all;
|
8405 |
|
|
|
8406 |
|
|
else
|
8407 |
|
|
Call_Deref :=
|
8408 |
|
|
Make_Explicit_Dereference (Loc,
|
8409 |
|
|
Prefix => New_Reference_To (Def_Id, Loc));
|
8410 |
|
|
|
8411 |
|
|
Loc := Sloc (Object_Decl);
|
8412 |
|
|
Rewrite (Object_Decl,
|
8413 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
8414 |
|
|
Defining_Identifier => Make_Temporary (Loc, 'D'),
|
8415 |
|
|
Access_Definition => Empty,
|
8416 |
|
|
Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
|
8417 |
|
|
Name => Call_Deref));
|
8418 |
|
|
|
8419 |
|
|
Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
|
8420 |
|
|
|
8421 |
|
|
Analyze (Object_Decl);
|
8422 |
|
|
|
8423 |
|
|
-- Replace the internal identifier of the renaming declaration's
|
8424 |
|
|
-- entity with identifier of the original object entity. We also have
|
8425 |
|
|
-- to exchange the entities containing their defining identifiers to
|
8426 |
|
|
-- ensure the correct replacement of the object declaration by the
|
8427 |
|
|
-- object renaming declaration to avoid homograph conflicts (since
|
8428 |
|
|
-- the object declaration's defining identifier was already entered
|
8429 |
|
|
-- in current scope). The Next_Entity links of the two entities also
|
8430 |
|
|
-- have to be swapped since the entities are part of the return
|
8431 |
|
|
-- scope's entity list and the list structure would otherwise be
|
8432 |
|
|
-- corrupted. Finally, the homonym chain must be preserved as well.
|
8433 |
|
|
|
8434 |
|
|
declare
|
8435 |
|
|
Renaming_Def_Id : constant Entity_Id :=
|
8436 |
|
|
Defining_Identifier (Object_Decl);
|
8437 |
|
|
Next_Entity_Temp : constant Entity_Id :=
|
8438 |
|
|
Next_Entity (Renaming_Def_Id);
|
8439 |
|
|
begin
|
8440 |
|
|
Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
|
8441 |
|
|
|
8442 |
|
|
-- Swap next entity links in preparation for exchanging entities
|
8443 |
|
|
|
8444 |
|
|
Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
|
8445 |
|
|
Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
|
8446 |
|
|
Set_Homonym (Renaming_Def_Id, Homonym (Obj_Def_Id));
|
8447 |
|
|
|
8448 |
|
|
Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
|
8449 |
|
|
|
8450 |
|
|
-- Preserve source indication of original declaration, so that
|
8451 |
|
|
-- xref information is properly generated for the right entity.
|
8452 |
|
|
|
8453 |
|
|
Preserve_Comes_From_Source
|
8454 |
|
|
(Object_Decl, Original_Node (Object_Decl));
|
8455 |
|
|
|
8456 |
|
|
Preserve_Comes_From_Source
|
8457 |
|
|
(Obj_Def_Id, Original_Node (Object_Decl));
|
8458 |
|
|
|
8459 |
|
|
Set_Comes_From_Source (Renaming_Def_Id, False);
|
8460 |
|
|
end;
|
8461 |
|
|
end if;
|
8462 |
|
|
|
8463 |
|
|
-- If the object entity has a class-wide Etype, then we need to change
|
8464 |
|
|
-- it to the result subtype of the function call, because otherwise the
|
8465 |
|
|
-- object will be class-wide without an explicit initialization and
|
8466 |
|
|
-- won't be allocated properly by the back end. It seems unclean to make
|
8467 |
|
|
-- such a revision to the type at this point, and we should try to
|
8468 |
|
|
-- improve this treatment when build-in-place functions with class-wide
|
8469 |
|
|
-- results are implemented. ???
|
8470 |
|
|
|
8471 |
|
|
if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
|
8472 |
|
|
Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
|
8473 |
|
|
end if;
|
8474 |
|
|
end Make_Build_In_Place_Call_In_Object_Declaration;
|
8475 |
|
|
|
8476 |
|
|
-----------------------------------
|
8477 |
|
|
-- Needs_BIP_Finalization_Master --
|
8478 |
|
|
-----------------------------------
|
8479 |
|
|
|
8480 |
|
|
function Needs_BIP_Finalization_Master
|
8481 |
|
|
(Func_Id : Entity_Id) return Boolean
|
8482 |
|
|
is
|
8483 |
|
|
pragma Assert (Is_Build_In_Place_Function (Func_Id));
|
8484 |
|
|
Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
|
8485 |
|
|
begin
|
8486 |
|
|
return
|
8487 |
|
|
not Restriction_Active (No_Finalization)
|
8488 |
|
|
and then Needs_Finalization (Func_Typ);
|
8489 |
|
|
end Needs_BIP_Finalization_Master;
|
8490 |
|
|
|
8491 |
|
|
--------------------------
|
8492 |
|
|
-- Needs_BIP_Alloc_Form --
|
8493 |
|
|
--------------------------
|
8494 |
|
|
|
8495 |
|
|
function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
|
8496 |
|
|
pragma Assert (Is_Build_In_Place_Function (Func_Id));
|
8497 |
|
|
Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
|
8498 |
|
|
begin
|
8499 |
|
|
return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
|
8500 |
|
|
end Needs_BIP_Alloc_Form;
|
8501 |
|
|
|
8502 |
|
|
--------------------------------------
|
8503 |
|
|
-- Needs_Result_Accessibility_Level --
|
8504 |
|
|
--------------------------------------
|
8505 |
|
|
|
8506 |
|
|
function Needs_Result_Accessibility_Level
|
8507 |
|
|
(Func_Id : Entity_Id) return Boolean
|
8508 |
|
|
is
|
8509 |
|
|
Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
|
8510 |
|
|
|
8511 |
|
|
function Has_Unconstrained_Access_Discriminant_Component
|
8512 |
|
|
(Comp_Typ : Entity_Id) return Boolean;
|
8513 |
|
|
-- Returns True if any component of the type has an unconstrained access
|
8514 |
|
|
-- discriminant.
|
8515 |
|
|
|
8516 |
|
|
-----------------------------------------------------
|
8517 |
|
|
-- Has_Unconstrained_Access_Discriminant_Component --
|
8518 |
|
|
-----------------------------------------------------
|
8519 |
|
|
|
8520 |
|
|
function Has_Unconstrained_Access_Discriminant_Component
|
8521 |
|
|
(Comp_Typ : Entity_Id) return Boolean
|
8522 |
|
|
is
|
8523 |
|
|
begin
|
8524 |
|
|
if not Is_Limited_Type (Comp_Typ) then
|
8525 |
|
|
return False;
|
8526 |
|
|
|
8527 |
|
|
-- Only limited types can have access discriminants with
|
8528 |
|
|
-- defaults.
|
8529 |
|
|
|
8530 |
|
|
elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
|
8531 |
|
|
return True;
|
8532 |
|
|
|
8533 |
|
|
elsif Is_Array_Type (Comp_Typ) then
|
8534 |
|
|
return Has_Unconstrained_Access_Discriminant_Component
|
8535 |
|
|
(Underlying_Type (Component_Type (Comp_Typ)));
|
8536 |
|
|
|
8537 |
|
|
elsif Is_Record_Type (Comp_Typ) then
|
8538 |
|
|
declare
|
8539 |
|
|
Comp : Entity_Id;
|
8540 |
|
|
|
8541 |
|
|
begin
|
8542 |
|
|
Comp := First_Component (Comp_Typ);
|
8543 |
|
|
while Present (Comp) loop
|
8544 |
|
|
if Has_Unconstrained_Access_Discriminant_Component
|
8545 |
|
|
(Underlying_Type (Etype (Comp)))
|
8546 |
|
|
then
|
8547 |
|
|
return True;
|
8548 |
|
|
end if;
|
8549 |
|
|
|
8550 |
|
|
Next_Component (Comp);
|
8551 |
|
|
end loop;
|
8552 |
|
|
end;
|
8553 |
|
|
end if;
|
8554 |
|
|
|
8555 |
|
|
return False;
|
8556 |
|
|
end Has_Unconstrained_Access_Discriminant_Component;
|
8557 |
|
|
|
8558 |
|
|
Feature_Disabled : constant Boolean := True;
|
8559 |
|
|
-- Temporary
|
8560 |
|
|
|
8561 |
|
|
-- Start of processing for Needs_Result_Accessibility_Level
|
8562 |
|
|
|
8563 |
|
|
begin
|
8564 |
|
|
-- False if completion unavailable (how does this happen???)
|
8565 |
|
|
|
8566 |
|
|
if not Present (Func_Typ) then
|
8567 |
|
|
return False;
|
8568 |
|
|
|
8569 |
|
|
elsif Feature_Disabled then
|
8570 |
|
|
return False;
|
8571 |
|
|
|
8572 |
|
|
-- False if not a function, also handle enum-lit renames case
|
8573 |
|
|
|
8574 |
|
|
elsif Func_Typ = Standard_Void_Type
|
8575 |
|
|
or else Is_Scalar_Type (Func_Typ)
|
8576 |
|
|
then
|
8577 |
|
|
return False;
|
8578 |
|
|
|
8579 |
|
|
-- Handle a corner case, a cross-dialect subp renaming. For example,
|
8580 |
|
|
-- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
|
8581 |
|
|
-- an Ada 2005 (or earlier) unit references predefined run-time units.
|
8582 |
|
|
|
8583 |
|
|
elsif Present (Alias (Func_Id)) then
|
8584 |
|
|
|
8585 |
|
|
-- Unimplemented: a cross-dialect subp renaming which does not set
|
8586 |
|
|
-- the Alias attribute (e.g., a rename of a dereference of an access
|
8587 |
|
|
-- to subprogram value). ???
|
8588 |
|
|
|
8589 |
|
|
return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
|
8590 |
|
|
|
8591 |
|
|
-- Remaining cases require Ada 2012 mode
|
8592 |
|
|
|
8593 |
|
|
elsif Ada_Version < Ada_2012 then
|
8594 |
|
|
return False;
|
8595 |
|
|
|
8596 |
|
|
elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
|
8597 |
|
|
or else Is_Tagged_Type (Func_Typ)
|
8598 |
|
|
then
|
8599 |
|
|
-- In the case of, say, a null tagged record result type, the need
|
8600 |
|
|
-- for this extra parameter might not be obvious. This function
|
8601 |
|
|
-- returns True for all tagged types for compatibility reasons.
|
8602 |
|
|
-- A function with, say, a tagged null controlling result type might
|
8603 |
|
|
-- be overridden by a primitive of an extension having an access
|
8604 |
|
|
-- discriminant and the overrider and overridden must have compatible
|
8605 |
|
|
-- calling conventions (including implicitly declared parameters).
|
8606 |
|
|
-- Similarly, values of one access-to-subprogram type might designate
|
8607 |
|
|
-- both a primitive subprogram of a given type and a function
|
8608 |
|
|
-- which is, for example, not a primitive subprogram of any type.
|
8609 |
|
|
-- Again, this requires calling convention compatibility.
|
8610 |
|
|
-- It might be possible to solve these issues by introducing
|
8611 |
|
|
-- wrappers, but that is not the approach that was chosen.
|
8612 |
|
|
|
8613 |
|
|
return True;
|
8614 |
|
|
|
8615 |
|
|
elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
|
8616 |
|
|
return True;
|
8617 |
|
|
|
8618 |
|
|
elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
|
8619 |
|
|
return True;
|
8620 |
|
|
|
8621 |
|
|
-- False for all other cases
|
8622 |
|
|
|
8623 |
|
|
else
|
8624 |
|
|
return False;
|
8625 |
|
|
end if;
|
8626 |
|
|
end Needs_Result_Accessibility_Level;
|
8627 |
|
|
|
8628 |
|
|
end Exp_Ch6;
|