OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [g-altive.ads] - Blame information for rev 756

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                         G N A T . A L T I V E C                          --
6
--                                                                          --
7
--                                 S p e c                                  --
8
--                                                                          --
9
--          Copyright (C) 2004-2011, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
-------------------------
33
-- General description --
34
-------------------------
35
 
36
--  This is the root of a package hierarchy offering an Ada binding to the
37
--  PowerPC AltiVec extensions, a set of 128bit vector types together with a
38
--  set of subprograms operating on them. Relevant documents are:
39
 
40
--  o AltiVec Technology, Programming Interface Manual (1999-06)
41
--    to which we will refer as [PIM], describes the data types, the
42
--    functional interface and the ABI conventions.
43
 
44
--  o AltiVec Technology, Programming Environments Manual (2002-02)
45
--    to which we will refer as [PEM], describes the hardware architecture
46
--    and instruction set.
47
 
48
--  These documents, as well as a number of others of general interest on the
49
--  AltiVec technology, are available from the Motorola/AltiVec Web site at:
50
 
51
--  http://www.freescale.com/altivec
52
 
53
--  The binding interface is structured to allow alternate implementations:
54
--  for real AltiVec capable targets, and for other targets. In the latter
55
--  case, everything is emulated in software. The two versions are referred
56
--  to as:
57
 
58
--  o The Hard binding for AltiVec capable targets (with the appropriate
59
--    hardware support and corresponding instruction set)
60
 
61
--  o The Soft binding for other targets (with the low level primitives
62
--    emulated in software).
63
 
64
--  In addition, interfaces that are not strictly part of the base AltiVec API
65
--  are provided, such as vector conversions to and from array representations,
66
--  which are of interest for client applications (e.g. for vector
67
--  initialization purposes).
68
 
69
--  Only the soft binding is available today
70
 
71
-----------------------------------------
72
-- General package architecture survey --
73
-----------------------------------------
74
 
75
--  The various vector representations are all "containers" of elementary
76
--  values, the possible types of which are declared in this root package to
77
--  be generally accessible.
78
 
79
--  From the user standpoint, the binding materializes as a consistent
80
--  hierarchy of units:
81
 
82
--                             GNAT.Altivec
83
--                           (component types)
84
--                                   |
85
--          o----------------o----------------o-------------o
86
--          |                |                |             |
87
--    Vector_Types   Vector_Operations   Vector_Views   Conversions
88
 
89
--  The user can manipulate vectors through two families of types: Vector
90
--  types and View types.
91
 
92
--  Vector types are defined in the GNAT.Altivec.Vector_Types package
93
 
94
--  On these types, users can apply the Altivec operations defined in
95
--  GNAT.Altivec.Vector_Operations. Their layout is opaque and may vary across
96
--  configurations, for it is typically target-endianness dependant.
97
 
98
--  Vector_Types and Vector_Operations implement the core binding to the
99
--  AltiVec API, as described in [PIM-2.1 data types] and [PIM-4 AltiVec
100
--  operations and predicates].
101
 
102
--  View types are defined in the GNAT.Altivec.Vector_Views package
103
 
104
--  These types do not represent Altivec vectors per se, in the sense that the
105
--  Altivec_Operations are not available for them. They are intended to allow
106
--  Vector initializations as well as access to the Vector component values.
107
 
108
--  The GNAT.Altivec.Conversions package is provided to convert a View to the
109
--  corresponding Vector and vice-versa.
110
 
111
---------------------------
112
-- Underlying principles --
113
---------------------------
114
 
115
--  Internally, the binding relies on an abstraction of the Altivec API, a
116
--  rich set of functions around a core of low level primitives mapping to
117
--  AltiVec instructions. See for instance "vec_add" in [PIM-4.4 Generic and
118
--  Specific AltiVec operations], with no less than six result/arguments
119
--  combinations of byte vector types that map to "vaddubm".
120
 
121
--  The "soft" version is a software emulation of the low level primitives.
122
 
123
--  The "hard" version would map to real AltiVec instructions via GCC builtins
124
--  and inlining.
125
 
126
-------------------
127
-- Example usage --
128
-------------------
129
 
130
--  Here is a sample program declaring and initializing two vectors, 'add'ing
131
--  them and displaying the result components:
132
 
133
--  with GNAT.Altivec.Vector_Types;      use GNAT.Altivec.Vector_Types;
134
--  with GNAT.Altivec.Vector_Operations; use GNAT.Altivec.Vector_Operations;
135
--  with GNAT.Altivec.Vector_Views;      use GNAT.Altivec.Vector_Views;
136
--  with GNAT.Altivec.Conversions;       use GNAT.Altivec.Conversions;
137
 
138
--  use GNAT.Altivec;
139
 
140
--  with Ada.Text_IO; use Ada.Text_IO;
141
 
142
--  procedure Sample is
143
--     Va : Vector_Unsigned_Int := To_Vector ((Values => (1, 2, 3, 4)));
144
--     Vb : Vector_Unsigned_Int := To_Vector ((Values => (1, 2, 3, 4)));
145
 
146
--     Vs : Vector_Unsigned_Int;
147
--     Vs_View : VUI_View;
148
--  begin
149
--     Vs := Vec_Add (Va, Vb);
150
--     Vs_View := To_View (Vs);
151
 
152
--     for I in Vs_View.Values'Range loop
153
--        Put_Line (Unsigned_Int'Image (Vs_View.Values (I)));
154
--     end loop;
155
--  end;
156
 
157
--  $ gnatmake sample.adb
158
--  [...]
159
--  $ ./sample
160
--  2
161
--  4
162
--  6
163
--  8
164
 
165
------------------------------------------------------------------------------
166
 
167
with System;
168
 
169
package GNAT.Altivec is
170
 
171
   --  Definitions of constants and vector/array component types common to all
172
   --  the versions of the binding.
173
 
174
   --  All the vector types are 128bits
175
 
176
   VECTOR_BIT : constant := 128;
177
 
178
   -------------------------------------------
179
   -- [PIM-2.3.1 Alignment of vector types] --
180
   -------------------------------------------
181
 
182
   --  "A defined data item of any vector data type in memory is always
183
   --  aligned on a 16-byte boundary. A pointer to any vector data type always
184
   --  points to a 16-byte boundary. The compiler is responsible for aligning
185
   --  vector data types on 16-byte boundaries."
186
 
187
   VECTOR_ALIGNMENT : constant := Natural'Min (16, Standard'Maximum_Alignment);
188
   --  This value is used to set the alignment of vector datatypes in both the
189
   --  hard and the soft binding implementations.
190
   --
191
   --  We want this value to never be greater than 16, because none of the
192
   --  binding implementations requires larger alignments and such a value
193
   --  would cause useless space to be allocated/wasted for vector objects.
194
   --  Furthermore, the alignment of 16 matches the hard binding leading to
195
   --  a more faithful emulation.
196
   --
197
   --  It needs to be exactly 16 for the hard binding, and the initializing
198
   --  expression is just right for this purpose since Maximum_Alignment is
199
   --  expected to be 16 for the real Altivec ABI.
200
   --
201
   --  The soft binding doesn't rely on strict 16byte alignment, and we want
202
   --  the value to be no greater than Standard'Maximum_Alignment in this case
203
   --  to ensure it is supported on every possible target.
204
 
205
   -------------------------------------------------------
206
   -- [PIM-2.1] Data Types - Interpretation of contents --
207
   -------------------------------------------------------
208
 
209
   ---------------------
210
   -- char components --
211
   ---------------------
212
 
213
   CHAR_BIT    : constant := 8;
214
   SCHAR_MIN   : constant := -2 ** (CHAR_BIT - 1);
215
   SCHAR_MAX   : constant := 2 ** (CHAR_BIT - 1) - 1;
216
   UCHAR_MAX   : constant := 2 ** CHAR_BIT - 1;
217
 
218
   type unsigned_char is mod UCHAR_MAX + 1;
219
   for unsigned_char'Size use CHAR_BIT;
220
 
221
   type signed_char is range SCHAR_MIN .. SCHAR_MAX;
222
   for signed_char'Size use CHAR_BIT;
223
 
224
   subtype bool_char is unsigned_char;
225
   --  ??? There is a difference here between what the Altivec Technology
226
   --  Programming Interface Manual says and what GCC says. In the manual,
227
   --  vector_bool_char is a vector_unsigned_char, while in altivec.h it
228
   --  is a vector_signed_char.
229
 
230
   bool_char_True  : constant bool_char := bool_char'Last;
231
   bool_char_False : constant bool_char := 0;
232
 
233
   ----------------------
234
   -- short components --
235
   ----------------------
236
 
237
   SHORT_BIT   : constant := 16;
238
   SSHORT_MIN  : constant := -2 ** (SHORT_BIT - 1);
239
   SSHORT_MAX  : constant := 2 ** (SHORT_BIT - 1) - 1;
240
   USHORT_MAX  : constant := 2 ** SHORT_BIT - 1;
241
 
242
   type unsigned_short is mod USHORT_MAX + 1;
243
   for unsigned_short'Size use SHORT_BIT;
244
 
245
   subtype unsigned_short_int is unsigned_short;
246
 
247
   type signed_short is range SSHORT_MIN .. SSHORT_MAX;
248
   for signed_short'Size use SHORT_BIT;
249
 
250
   subtype signed_short_int is signed_short;
251
 
252
   subtype bool_short is unsigned_short;
253
   --  ??? See bool_char
254
 
255
   bool_short_True  : constant bool_short := bool_short'Last;
256
   bool_short_False : constant bool_short := 0;
257
 
258
   subtype bool_short_int is bool_short;
259
 
260
   --------------------
261
   -- int components --
262
   --------------------
263
 
264
   INT_BIT     : constant := 32;
265
   SINT_MIN    : constant := -2 ** (INT_BIT - 1);
266
   SINT_MAX    : constant := 2 ** (INT_BIT - 1) - 1;
267
   UINT_MAX    : constant := 2 ** INT_BIT - 1;
268
 
269
   type unsigned_int is mod UINT_MAX + 1;
270
   for unsigned_int'Size use INT_BIT;
271
 
272
   type signed_int is range SINT_MIN .. SINT_MAX;
273
   for signed_int'Size use INT_BIT;
274
 
275
   subtype bool_int is unsigned_int;
276
   --  ??? See bool_char
277
 
278
   bool_int_True  : constant bool_int := bool_int'Last;
279
   bool_int_False : constant bool_int := 0;
280
 
281
   ----------------------
282
   -- float components --
283
   ----------------------
284
 
285
   FLOAT_BIT   : constant := 32;
286
   FLOAT_DIGIT : constant := 6;
287
   FLOAT_MIN   : constant := -16#0.FFFF_FF#E+32;
288
   FLOAT_MAX   : constant := 16#0.FFFF_FF#E+32;
289
 
290
   type C_float is digits FLOAT_DIGIT range FLOAT_MIN .. FLOAT_MAX;
291
   for C_float'Size use FLOAT_BIT;
292
   --  Altivec operations always use the standard native floating-point
293
   --  support of the target. Note that this means that there may be
294
   --  minor differences in results between targets when the floating-
295
   --  point implementations are slightly different, as would happen
296
   --  with normal non-Altivec floating-point operations. In particular
297
   --  the Altivec simulations may yield slightly different results
298
   --  from those obtained on a true hardware Altivec target if the
299
   --  floating-point implementation is not 100% compatible.
300
 
301
   ----------------------
302
   -- pixel components --
303
   ----------------------
304
 
305
   subtype pixel is unsigned_short;
306
 
307
   -----------------------------------------------------------
308
   -- Subtypes for variants found in the GCC implementation --
309
   -----------------------------------------------------------
310
 
311
   subtype c_int is signed_int;
312
   subtype c_short is c_int;
313
 
314
   LONG_BIT  : constant := 32;
315
   --  Some of the GCC builtins are built with "long" arguments and
316
   --  expect SImode to come in.
317
 
318
   SLONG_MIN : constant := -2 ** (LONG_BIT - 1);
319
   SLONG_MAX : constant :=  2 ** (LONG_BIT - 1) - 1;
320
   ULONG_MAX : constant :=  2 ** LONG_BIT - 1;
321
 
322
   type signed_long   is range SLONG_MIN .. SLONG_MAX;
323
   type unsigned_long is mod ULONG_MAX + 1;
324
 
325
   subtype c_long is signed_long;
326
 
327
   subtype c_ptr is System.Address;
328
 
329
   ---------------------------------------------------------
330
   -- Access types, for the sake of some argument passing --
331
   ---------------------------------------------------------
332
 
333
   type signed_char_ptr    is access all signed_char;
334
   type unsigned_char_ptr  is access all unsigned_char;
335
 
336
   type short_ptr          is access all c_short;
337
   type signed_short_ptr   is access all signed_short;
338
   type unsigned_short_ptr is access all unsigned_short;
339
 
340
   type int_ptr            is access all c_int;
341
   type signed_int_ptr     is access all signed_int;
342
   type unsigned_int_ptr   is access all unsigned_int;
343
 
344
   type long_ptr           is access all c_long;
345
   type signed_long_ptr    is access all signed_long;
346
   type unsigned_long_ptr  is access all unsigned_long;
347
 
348
   type float_ptr          is access all Float;
349
 
350
   --
351
 
352
   type const_signed_char_ptr    is access constant signed_char;
353
   type const_unsigned_char_ptr  is access constant unsigned_char;
354
 
355
   type const_short_ptr          is access constant c_short;
356
   type const_signed_short_ptr   is access constant signed_short;
357
   type const_unsigned_short_ptr is access constant unsigned_short;
358
 
359
   type const_int_ptr            is access constant c_int;
360
   type const_signed_int_ptr     is access constant signed_int;
361
   type const_unsigned_int_ptr   is access constant unsigned_int;
362
 
363
   type const_long_ptr           is access constant c_long;
364
   type const_signed_long_ptr    is access constant signed_long;
365
   type const_unsigned_long_ptr  is access constant unsigned_long;
366
 
367
   type const_float_ptr          is access constant Float;
368
 
369
   --  Access to const volatile arguments need specialized types
370
 
371
   type volatile_float is new Float;
372
   pragma Volatile (volatile_float);
373
 
374
   type volatile_signed_char is new signed_char;
375
   pragma Volatile (volatile_signed_char);
376
 
377
   type volatile_unsigned_char is new unsigned_char;
378
   pragma Volatile (volatile_unsigned_char);
379
 
380
   type volatile_signed_short is new signed_short;
381
   pragma Volatile (volatile_signed_short);
382
 
383
   type volatile_unsigned_short is new unsigned_short;
384
   pragma Volatile (volatile_unsigned_short);
385
 
386
   type volatile_signed_int is new signed_int;
387
   pragma Volatile (volatile_signed_int);
388
 
389
   type volatile_unsigned_int is new unsigned_int;
390
   pragma Volatile (volatile_unsigned_int);
391
 
392
   type volatile_signed_long is new signed_long;
393
   pragma Volatile (volatile_signed_long);
394
 
395
   type volatile_unsigned_long is new unsigned_long;
396
   pragma Volatile (volatile_unsigned_long);
397
 
398
   type constv_char_ptr           is access constant volatile_signed_char;
399
   type constv_signed_char_ptr    is access constant volatile_signed_char;
400
   type constv_unsigned_char_ptr  is access constant volatile_unsigned_char;
401
 
402
   type constv_short_ptr          is access constant volatile_signed_short;
403
   type constv_signed_short_ptr   is access constant volatile_signed_short;
404
   type constv_unsigned_short_ptr is access constant volatile_unsigned_short;
405
 
406
   type constv_int_ptr            is access constant volatile_signed_int;
407
   type constv_signed_int_ptr     is access constant volatile_signed_int;
408
   type constv_unsigned_int_ptr   is access constant volatile_unsigned_int;
409
 
410
   type constv_long_ptr           is access constant volatile_signed_long;
411
   type constv_signed_long_ptr    is access constant volatile_signed_long;
412
   type constv_unsigned_long_ptr  is access constant volatile_unsigned_long;
413
 
414
   type constv_float_ptr  is access constant volatile_float;
415
 
416
private
417
 
418
   -----------------------
419
   -- Various constants --
420
   -----------------------
421
 
422
   CR6_EQ     : constant := 0;
423
   CR6_EQ_REV : constant := 1;
424
   CR6_LT     : constant := 2;
425
   CR6_LT_REV : constant := 3;
426
 
427
end GNAT.Altivec;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.