| 1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
| 2 |
|
|
-- --
|
| 3 |
|
|
-- GNAT RUN-TIME COMPONENTS --
|
| 4 |
|
|
-- --
|
| 5 |
|
|
-- G N A T . M B B S _ D I S C R E T E _ R A N D O M --
|
| 6 |
|
|
-- --
|
| 7 |
|
|
-- B o d y --
|
| 8 |
|
|
-- --
|
| 9 |
|
|
-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
|
| 10 |
|
|
-- --
|
| 11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
| 12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
| 13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
| 14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
| 15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
| 16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
| 17 |
|
|
-- --
|
| 18 |
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
| 19 |
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
| 20 |
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
| 21 |
|
|
-- --
|
| 22 |
|
|
-- You should have received a copy of the GNU General Public License and --
|
| 23 |
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
| 24 |
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
| 25 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
| 26 |
|
|
-- --
|
| 27 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
| 28 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
| 29 |
|
|
-- --
|
| 30 |
|
|
------------------------------------------------------------------------------
|
| 31 |
|
|
|
| 32 |
|
|
with Ada.Calendar;
|
| 33 |
|
|
|
| 34 |
|
|
with Interfaces; use Interfaces;
|
| 35 |
|
|
|
| 36 |
|
|
package body GNAT.MBBS_Discrete_Random is
|
| 37 |
|
|
|
| 38 |
|
|
package Calendar renames Ada.Calendar;
|
| 39 |
|
|
|
| 40 |
|
|
Fits_In_32_Bits : constant Boolean :=
|
| 41 |
|
|
Rst'Size < 31
|
| 42 |
|
|
or else (Rst'Size = 31
|
| 43 |
|
|
and then Rst'Pos (Rst'First) < 0);
|
| 44 |
|
|
-- This is set True if we do not need more than 32 bits in the result. If
|
| 45 |
|
|
-- we need 64-bits, we will only use the meaningful 48 bits of any 64-bit
|
| 46 |
|
|
-- number generated, since if more than 48 bits are required, we split the
|
| 47 |
|
|
-- computation into two separate parts, since the algorithm does not behave
|
| 48 |
|
|
-- above 48 bits.
|
| 49 |
|
|
|
| 50 |
|
|
-- The way this expression works is that obviously if the size is 31 bits,
|
| 51 |
|
|
-- it fits in 32 bits. In the 32-bit case, it fits in 32-bit signed if the
|
| 52 |
|
|
-- range has negative values. It is too conservative in the case that the
|
| 53 |
|
|
-- programmer has set a size greater than the default, e.g. a size of 33
|
| 54 |
|
|
-- for an integer type with a range of 1..10, but an over-conservative
|
| 55 |
|
|
-- result is OK. The important thing is that the value is only True if
|
| 56 |
|
|
-- we know the result will fit in 32-bits signed. If the value is False
|
| 57 |
|
|
-- when it could be True, the behavior will be correct, just a bit less
|
| 58 |
|
|
-- efficient than it could have been in some unusual cases.
|
| 59 |
|
|
--
|
| 60 |
|
|
-- One might assume that we could get a more accurate result by testing
|
| 61 |
|
|
-- the lower and upper bounds of the type Rst against the bounds of 32-bit
|
| 62 |
|
|
-- Integer. However, there is no easy way to do that. Why? Because in the
|
| 63 |
|
|
-- relatively rare case where this expression has to be evaluated at run
|
| 64 |
|
|
-- time rather than compile time (when the bounds are dynamic), we need a
|
| 65 |
|
|
-- type to use for the computation. But the possible range of upper bound
|
| 66 |
|
|
-- values for Rst (remembering the possibility of 64-bit modular types) is
|
| 67 |
|
|
-- from -2**63 to 2**64-1, and no run-time type has a big enough range.
|
| 68 |
|
|
|
| 69 |
|
|
-----------------------
|
| 70 |
|
|
-- Local Subprograms --
|
| 71 |
|
|
-----------------------
|
| 72 |
|
|
|
| 73 |
|
|
function Square_Mod_N (X, N : Int) return Int;
|
| 74 |
|
|
pragma Inline (Square_Mod_N);
|
| 75 |
|
|
-- Computes X**2 mod N avoiding intermediate overflow
|
| 76 |
|
|
|
| 77 |
|
|
-----------
|
| 78 |
|
|
-- Image --
|
| 79 |
|
|
-----------
|
| 80 |
|
|
|
| 81 |
|
|
function Image (Of_State : State) return String is
|
| 82 |
|
|
begin
|
| 83 |
|
|
return Int'Image (Of_State.X1) &
|
| 84 |
|
|
',' &
|
| 85 |
|
|
Int'Image (Of_State.X2) &
|
| 86 |
|
|
',' &
|
| 87 |
|
|
Int'Image (Of_State.Q);
|
| 88 |
|
|
end Image;
|
| 89 |
|
|
|
| 90 |
|
|
------------
|
| 91 |
|
|
-- Random --
|
| 92 |
|
|
------------
|
| 93 |
|
|
|
| 94 |
|
|
function Random (Gen : Generator) return Rst is
|
| 95 |
|
|
S : State renames Gen.Writable.Self.Gen_State;
|
| 96 |
|
|
Temp : Int;
|
| 97 |
|
|
TF : Flt;
|
| 98 |
|
|
|
| 99 |
|
|
begin
|
| 100 |
|
|
-- Check for flat range here, since we are typically run with checks
|
| 101 |
|
|
-- off, note that in practice, this condition will usually be static
|
| 102 |
|
|
-- so we will not actually generate any code for the normal case.
|
| 103 |
|
|
|
| 104 |
|
|
if Rst'Last < Rst'First then
|
| 105 |
|
|
raise Constraint_Error;
|
| 106 |
|
|
end if;
|
| 107 |
|
|
|
| 108 |
|
|
-- Continue with computation if non-flat range
|
| 109 |
|
|
|
| 110 |
|
|
S.X1 := Square_Mod_N (S.X1, S.P);
|
| 111 |
|
|
S.X2 := Square_Mod_N (S.X2, S.Q);
|
| 112 |
|
|
Temp := S.X2 - S.X1;
|
| 113 |
|
|
|
| 114 |
|
|
-- Following duplication is not an error, it is a loop unwinding!
|
| 115 |
|
|
|
| 116 |
|
|
if Temp < 0 then
|
| 117 |
|
|
Temp := Temp + S.Q;
|
| 118 |
|
|
end if;
|
| 119 |
|
|
|
| 120 |
|
|
if Temp < 0 then
|
| 121 |
|
|
Temp := Temp + S.Q;
|
| 122 |
|
|
end if;
|
| 123 |
|
|
|
| 124 |
|
|
TF := Offs + (Flt (Temp) * Flt (S.P) + Flt (S.X1)) * S.Scl;
|
| 125 |
|
|
|
| 126 |
|
|
-- Pathological, but there do exist cases where the rounding implicit
|
| 127 |
|
|
-- in calculating the scale factor will cause rounding to 'Last + 1.
|
| 128 |
|
|
-- In those cases, returning 'First results in the least bias.
|
| 129 |
|
|
|
| 130 |
|
|
if TF >= Flt (Rst'Pos (Rst'Last)) + 0.5 then
|
| 131 |
|
|
return Rst'First;
|
| 132 |
|
|
|
| 133 |
|
|
elsif not Fits_In_32_Bits then
|
| 134 |
|
|
return Rst'Val (Interfaces.Integer_64 (TF));
|
| 135 |
|
|
|
| 136 |
|
|
else
|
| 137 |
|
|
return Rst'Val (Int (TF));
|
| 138 |
|
|
end if;
|
| 139 |
|
|
end Random;
|
| 140 |
|
|
|
| 141 |
|
|
-----------
|
| 142 |
|
|
-- Reset --
|
| 143 |
|
|
-----------
|
| 144 |
|
|
|
| 145 |
|
|
procedure Reset (Gen : Generator; Initiator : Integer) is
|
| 146 |
|
|
S : State renames Gen.Writable.Self.Gen_State;
|
| 147 |
|
|
X1, X2 : Int;
|
| 148 |
|
|
|
| 149 |
|
|
begin
|
| 150 |
|
|
X1 := 2 + Int (Initiator) mod (K1 - 3);
|
| 151 |
|
|
X2 := 2 + Int (Initiator) mod (K2 - 3);
|
| 152 |
|
|
|
| 153 |
|
|
for J in 1 .. 5 loop
|
| 154 |
|
|
X1 := Square_Mod_N (X1, K1);
|
| 155 |
|
|
X2 := Square_Mod_N (X2, K2);
|
| 156 |
|
|
end loop;
|
| 157 |
|
|
|
| 158 |
|
|
-- Eliminate effects of small Initiators
|
| 159 |
|
|
|
| 160 |
|
|
S :=
|
| 161 |
|
|
(X1 => X1,
|
| 162 |
|
|
X2 => X2,
|
| 163 |
|
|
P => K1,
|
| 164 |
|
|
Q => K2,
|
| 165 |
|
|
FP => K1F,
|
| 166 |
|
|
Scl => Scal);
|
| 167 |
|
|
end Reset;
|
| 168 |
|
|
|
| 169 |
|
|
-----------
|
| 170 |
|
|
-- Reset --
|
| 171 |
|
|
-----------
|
| 172 |
|
|
|
| 173 |
|
|
procedure Reset (Gen : Generator) is
|
| 174 |
|
|
S : State renames Gen.Writable.Self.Gen_State;
|
| 175 |
|
|
Now : constant Calendar.Time := Calendar.Clock;
|
| 176 |
|
|
X1 : Int;
|
| 177 |
|
|
X2 : Int;
|
| 178 |
|
|
|
| 179 |
|
|
begin
|
| 180 |
|
|
X1 := Int (Calendar.Year (Now)) * 12 * 31 +
|
| 181 |
|
|
Int (Calendar.Month (Now) * 31) +
|
| 182 |
|
|
Int (Calendar.Day (Now));
|
| 183 |
|
|
|
| 184 |
|
|
X2 := Int (Calendar.Seconds (Now) * Duration (1000.0));
|
| 185 |
|
|
|
| 186 |
|
|
X1 := 2 + X1 mod (K1 - 3);
|
| 187 |
|
|
X2 := 2 + X2 mod (K2 - 3);
|
| 188 |
|
|
|
| 189 |
|
|
-- Eliminate visible effects of same day starts
|
| 190 |
|
|
|
| 191 |
|
|
for J in 1 .. 5 loop
|
| 192 |
|
|
X1 := Square_Mod_N (X1, K1);
|
| 193 |
|
|
X2 := Square_Mod_N (X2, K2);
|
| 194 |
|
|
end loop;
|
| 195 |
|
|
|
| 196 |
|
|
S :=
|
| 197 |
|
|
(X1 => X1,
|
| 198 |
|
|
X2 => X2,
|
| 199 |
|
|
P => K1,
|
| 200 |
|
|
Q => K2,
|
| 201 |
|
|
FP => K1F,
|
| 202 |
|
|
Scl => Scal);
|
| 203 |
|
|
|
| 204 |
|
|
end Reset;
|
| 205 |
|
|
|
| 206 |
|
|
-----------
|
| 207 |
|
|
-- Reset --
|
| 208 |
|
|
-----------
|
| 209 |
|
|
|
| 210 |
|
|
procedure Reset (Gen : Generator; From_State : State) is
|
| 211 |
|
|
begin
|
| 212 |
|
|
Gen.Writable.Self.Gen_State := From_State;
|
| 213 |
|
|
end Reset;
|
| 214 |
|
|
|
| 215 |
|
|
----------
|
| 216 |
|
|
-- Save --
|
| 217 |
|
|
----------
|
| 218 |
|
|
|
| 219 |
|
|
procedure Save (Gen : Generator; To_State : out State) is
|
| 220 |
|
|
begin
|
| 221 |
|
|
To_State := Gen.Gen_State;
|
| 222 |
|
|
end Save;
|
| 223 |
|
|
|
| 224 |
|
|
------------------
|
| 225 |
|
|
-- Square_Mod_N --
|
| 226 |
|
|
------------------
|
| 227 |
|
|
|
| 228 |
|
|
function Square_Mod_N (X, N : Int) return Int is
|
| 229 |
|
|
begin
|
| 230 |
|
|
return Int ((Integer_64 (X) ** 2) mod (Integer_64 (N)));
|
| 231 |
|
|
end Square_Mod_N;
|
| 232 |
|
|
|
| 233 |
|
|
-----------
|
| 234 |
|
|
-- Value --
|
| 235 |
|
|
-----------
|
| 236 |
|
|
|
| 237 |
|
|
function Value (Coded_State : String) return State is
|
| 238 |
|
|
Last : constant Natural := Coded_State'Last;
|
| 239 |
|
|
Start : Positive := Coded_State'First;
|
| 240 |
|
|
Stop : Positive := Coded_State'First;
|
| 241 |
|
|
Outs : State;
|
| 242 |
|
|
|
| 243 |
|
|
begin
|
| 244 |
|
|
while Stop <= Last and then Coded_State (Stop) /= ',' loop
|
| 245 |
|
|
Stop := Stop + 1;
|
| 246 |
|
|
end loop;
|
| 247 |
|
|
|
| 248 |
|
|
if Stop > Last then
|
| 249 |
|
|
raise Constraint_Error;
|
| 250 |
|
|
end if;
|
| 251 |
|
|
|
| 252 |
|
|
Outs.X1 := Int'Value (Coded_State (Start .. Stop - 1));
|
| 253 |
|
|
Start := Stop + 1;
|
| 254 |
|
|
|
| 255 |
|
|
loop
|
| 256 |
|
|
Stop := Stop + 1;
|
| 257 |
|
|
exit when Stop > Last or else Coded_State (Stop) = ',';
|
| 258 |
|
|
end loop;
|
| 259 |
|
|
|
| 260 |
|
|
if Stop > Last then
|
| 261 |
|
|
raise Constraint_Error;
|
| 262 |
|
|
end if;
|
| 263 |
|
|
|
| 264 |
|
|
Outs.X2 := Int'Value (Coded_State (Start .. Stop - 1));
|
| 265 |
|
|
Outs.Q := Int'Value (Coded_State (Stop + 1 .. Last));
|
| 266 |
|
|
Outs.P := Outs.Q * 2 + 1;
|
| 267 |
|
|
Outs.FP := Flt (Outs.P);
|
| 268 |
|
|
Outs.Scl := (RstL - RstF + 1.0) / (Flt (Outs.P) * Flt (Outs.Q));
|
| 269 |
|
|
|
| 270 |
|
|
-- Now do *some* sanity checks
|
| 271 |
|
|
|
| 272 |
|
|
if Outs.Q < 31
|
| 273 |
|
|
or else Outs.X1 not in 2 .. Outs.P - 1
|
| 274 |
|
|
or else Outs.X2 not in 2 .. Outs.Q - 1
|
| 275 |
|
|
then
|
| 276 |
|
|
raise Constraint_Error;
|
| 277 |
|
|
end if;
|
| 278 |
|
|
|
| 279 |
|
|
return Outs;
|
| 280 |
|
|
end Value;
|
| 281 |
|
|
|
| 282 |
|
|
end GNAT.MBBS_Discrete_Random;
|