OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [repinfo.ads] - Blame information for rev 866

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                              R E P I N F O                               --
6
--                                                                          --
7
--                                 S p e c                                  --
8
--                                                                          --
9
--          Copyright (C) 1999-2009, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This package contains the routines to handle back annotation of the
33
--  tree to fill in representation information, and also the routine used
34
--  by -gnatR to print this information. This unit is used both in the
35
--  compiler and in ASIS (it is used in ASIS as part of the implementation
36
--  of the data decomposition annex).
37
 
38
with Types; use Types;
39
with Uintp; use Uintp;
40
 
41
package Repinfo is
42
 
43
   --------------------------------
44
   -- Representation Information --
45
   --------------------------------
46
 
47
   --  The representation information of interest here is size and
48
   --  component information for arrays and records. For primitive
49
   --  types, the front end computes the Esize and RM_Size fields of
50
   --  the corresponding entities as constant non-negative integers,
51
   --  and the Uint values are stored directly in these fields.
52
 
53
   --  For composite types, there are three cases:
54
 
55
   --    1. In some cases the front end knows the values statically,
56
   --       for example in the case where representation clauses or
57
   --       pragmas specify the values.
58
 
59
   --    2. If Backend_Layout is True, then the backend is responsible
60
   --       for layout of all types and objects not laid out by the
61
   --       front end. This includes all dynamic values, and also
62
   --       static values (e.g. record sizes) when not set by the
63
   --       front end.
64
 
65
   --    3. If Backend_Layout is False, then the front end lays out
66
   --       all data, according to target dependent size and alignment
67
   --       information, creating dynamic inlinable functions where
68
   --       needed in the case of sizes not known till runtime.
69
 
70
   -----------------------------
71
   -- Back-Annotation by Gigi --
72
   -----------------------------
73
 
74
   --  The following interface is used by gigi if Backend_Layout is True
75
 
76
   --  As part of the processing in gigi, the types are laid out and
77
   --  appropriate values computed for the sizes and component positions
78
   --  and sizes of records and arrays.
79
 
80
   --  The back-annotation circuit in gigi is responsible for updating the
81
   --  relevant fields in the tree to reflect these computations, as follows:
82
 
83
   --    For E_Array_Type entities, the Component_Size field
84
 
85
   --    For all record and array types and subtypes, the Esize field,
86
   --    which contains the Size (more accurately the Object_SIze) value
87
   --    for the type or subtype.
88
 
89
   --    For E_Component and E_Discriminant entities, the Esize (size
90
   --    of component) and Component_Bit_Offset fields. Note that gigi
91
   --    does not (yet ???) back annotate Normalized_Position/First_Bit.
92
 
93
   --  There are three cases to consider:
94
 
95
   --    1. The value is constant. In this case, the back annotation works
96
   --       by simply storing the non-negative universal integer value in
97
   --       the appropriate field corresponding to this constant size.
98
 
99
   --    2. The value depends on variables other than discriminants of the
100
   --       current record. In this case, the value is not known, even if
101
   --       the complete data of the record is available, and gigi marks
102
   --       this situation by storing the special value No_Uint.
103
 
104
   --    3. The value depends on the discriminant values for the current
105
   --       record. In this case, gigi back annotates the field with a
106
   --       representation of the expression for computing the value in
107
   --       terms of the discriminants. A negative Uint value is used to
108
   --       represent the value of such an expression, as explained in
109
   --       the following section.
110
 
111
   --  GCC expressions are represented with a Uint value that is negative.
112
   --  See the body of this package for details on the representation used.
113
 
114
   --  One other case in which gigi back annotates GCC expressions is in
115
   --  the Present_Expr field of an N_Variant node. This expression which
116
   --  will always depend on discriminants, and hence always be represented
117
   --  as a negative Uint value, provides an expression which, when evaluated
118
   --  with a given set of discriminant values, indicates whether the variant
119
   --  is present for that set of values (result is True, i.e. non-zero) or
120
   --  not present (result is False, i.e. zero).
121
 
122
   subtype Node_Ref is Uint;
123
   --  Subtype used for negative Uint values used to represent nodes
124
 
125
   subtype Node_Ref_Or_Val is Uint;
126
   --  Subtype used for values that can either be a Node_Ref (negative)
127
   --  or a value (non-negative)
128
 
129
   type TCode is range 0 .. 28;
130
   --  Type used on Ada side to represent DEFTREECODE values defined in
131
   --  tree.def. Only a subset of these tree codes can actually appear.
132
   --  The names are the names from tree.def in Ada casing.
133
 
134
   --  name                             code   description           operands
135
 
136
   Cond_Expr        : constant TCode :=  1; -- conditional              3
137
   Plus_Expr        : constant TCode :=  2; -- addition                 2
138
   Minus_Expr       : constant TCode :=  3; -- subtraction              2
139
   Mult_Expr        : constant TCode :=  4; -- multiplication           2
140
   Trunc_Div_Expr   : constant TCode :=  5; -- truncating division      2
141
   Ceil_Div_Expr    : constant TCode :=  6; -- division rounding up     2
142
   Floor_Div_Expr   : constant TCode :=  7; -- division rounding down   2
143
   Trunc_Mod_Expr   : constant TCode :=  8; -- mod for trunc_div        2
144
   Ceil_Mod_Expr    : constant TCode :=  9; -- mod for ceil_div         2
145
   Floor_Mod_Expr   : constant TCode := 10; -- mod for floor_div        2
146
   Exact_Div_Expr   : constant TCode := 11; -- exact div                2
147
   Negate_Expr      : constant TCode := 12; -- negation                 1
148
   Min_Expr         : constant TCode := 13; -- minimum                  2
149
   Max_Expr         : constant TCode := 14; -- maximum                  2
150
   Abs_Expr         : constant TCode := 15; -- absolute value           1
151
   Truth_Andif_Expr : constant TCode := 16; -- Boolean and then         2
152
   Truth_Orif_Expr  : constant TCode := 17; -- Boolean or else          2
153
   Truth_And_Expr   : constant TCode := 18; -- Boolean and              2
154
   Truth_Or_Expr    : constant TCode := 19; -- Boolean or               2
155
   Truth_Xor_Expr   : constant TCode := 20; -- Boolean xor              2
156
   Truth_Not_Expr   : constant TCode := 21; -- Boolean not              1
157
   Lt_Expr          : constant TCode := 22; -- comparison <             2
158
   Le_Expr          : constant TCode := 23; -- comparison <=            2
159
   Gt_Expr          : constant TCode := 24; -- comparison >             2
160
   Ge_Expr          : constant TCode := 25; -- comparison >=            2
161
   Eq_Expr          : constant TCode := 26; -- comparison =             2
162
   Ne_Expr          : constant TCode := 27; -- comparison /=            2
163
   Bit_And_Expr     : constant TCode := 28; -- Binary and               2
164
 
165
   --  The following entry is used to represent a discriminant value in
166
   --  the tree. It has a special tree code that does not correspond
167
   --  directly to a gcc node. The single operand is the number of the
168
   --  discriminant in the record (1 = first discriminant).
169
 
170
   Discrim_Val : constant TCode := 0;  -- discriminant value       1
171
 
172
   ------------------------
173
   -- The gigi Interface --
174
   ------------------------
175
 
176
   --  The following declarations are for use by gigi for back annotation
177
 
178
   function Create_Node
179
     (Expr : TCode;
180
      Op1  : Node_Ref_Or_Val;
181
      Op2  : Node_Ref_Or_Val := No_Uint;
182
      Op3  : Node_Ref_Or_Val := No_Uint) return Node_Ref;
183
   --  Creates a node using the tree code defined by Expr and from one to three
184
   --  operands as required (unused operands set as shown to No_Uint) Note that
185
   --  this call can be used to create a discriminant reference by using (Expr
186
   --  => Discrim_Val, Op1 => discriminant_number).
187
 
188
   function Create_Discrim_Ref (Discr : Entity_Id) return Node_Ref;
189
   --  Creates a reference to the discriminant whose entity is Discr
190
 
191
   --------------------------------------------------------
192
   -- Front-End Interface for Dynamic Size/Offset Values --
193
   --------------------------------------------------------
194
 
195
   --  If Backend_Layout is False, then the front-end deals with all
196
   --  dynamic size and offset fields. There are two cases:
197
 
198
   --    1. The value can be computed at the time of type freezing, and
199
   --       is stored in a run-time constant. In this case, the field
200
   --       contains a reference to this entity. In the case of sizes
201
   --       the value stored is the size in storage units, since dynamic
202
   --       sizes are always a multiple of storage units.
203
 
204
   --    2. The size/offset depends on the value of discriminants at
205
   --       run-time. In this case, the front end builds a function to
206
   --       compute the value. This function has a single parameter
207
   --       which is the discriminated record object in question. Any
208
   --       references to discriminant values are simply references to
209
   --       the appropriate discriminant in this single argument, and
210
   --       to compute the required size/offset value at run time, the
211
   --       code generator simply constructs a call to the function
212
   --       with the appropriate argument. The size/offset field in
213
   --       this case contains a reference to the function entity.
214
   --       Note that as for case 1, if such a function is used to
215
   --       return a size, then the size in storage units is returned,
216
   --       not the size in bits.
217
 
218
   --  The interface here allows these created entities to be referenced
219
   --  using negative Unit values, so that they can be stored in the
220
   --  appropriate size and offset fields in the tree.
221
 
222
   --  In the case of components, if the location of the component is static,
223
   --  then all four fields (Component_Bit_Offset, Normalized_Position, Esize,
224
   --  and Normalized_First_Bit) are set to appropriate values. In the case of
225
   --  a non-static component location, Component_Bit_Offset is not used and
226
   --  is left set to Unknown. Normalized_Position and Normalized_First_Bit
227
   --  are set appropriately.
228
 
229
   subtype SO_Ref is Uint;
230
   --  Type used to represent a Uint value that represents a static or
231
   --  dynamic size/offset value (non-negative if static, negative if
232
   --  the size value is dynamic).
233
 
234
   subtype Dynamic_SO_Ref is Uint;
235
   --  Type used to represent a negative Uint value used to store
236
   --  a dynamic size/offset value.
237
 
238
   function Is_Dynamic_SO_Ref (U : SO_Ref) return Boolean;
239
   pragma Inline (Is_Dynamic_SO_Ref);
240
   --  Given a SO_Ref (Uint) value, returns True iff the SO_Ref value
241
   --  represents a dynamic Size/Offset value (i.e. it is negative).
242
 
243
   function Is_Static_SO_Ref (U : SO_Ref) return Boolean;
244
   pragma Inline (Is_Static_SO_Ref);
245
   --  Given a SO_Ref (Uint) value, returns True iff the SO_Ref value
246
   --  represents a static Size/Offset value (i.e. it is non-negative).
247
 
248
   function Create_Dynamic_SO_Ref (E : Entity_Id) return Dynamic_SO_Ref;
249
   --  Given the Entity_Id for a constant (case 1), the Node_Id for an
250
   --  expression (case 2), or the Entity_Id for a function (case 3),
251
   --  this function returns a (negative) Uint value that can be used
252
   --  to retrieve the entity or expression for later use.
253
 
254
   function Get_Dynamic_SO_Entity (U : Dynamic_SO_Ref) return Entity_Id;
255
   --  Retrieve the Node_Id or Entity_Id stored by a previous call to
256
   --  Create_Dynamic_SO_Ref. The approach is that the front end makes
257
   --  the necessary Create_Dynamic_SO_Ref calls to associate the node
258
   --  and entity id values and the back end makes Get_Dynamic_SO_Ref
259
   --  calls to retrieve them.
260
 
261
   --------------------
262
   -- ASIS_Interface --
263
   --------------------
264
 
265
   type Discrim_List is array (Pos range <>) of Uint;
266
   --  Type used to represent list of discriminant values
267
 
268
   function Rep_Value
269
     (Val : Node_Ref_Or_Val;
270
      D   : Discrim_List) return Uint;
271
   --  Given the contents of a First_Bit_Position or Esize field containing
272
   --  a node reference (i.e. a negative Uint value) and D, the list of
273
   --  discriminant values, returns the interpreted value of this field.
274
   --  For convenience, Rep_Value will take a non-negative Uint value
275
   --  as an argument value, and return it unmodified. A No_Uint value is
276
   --  also returned unmodified.
277
 
278
   procedure Tree_Read;
279
   --  Initializes internal tables from current tree file using the relevant
280
   --  Table.Tree_Read routines.
281
 
282
   ------------------------
283
   -- Compiler Interface --
284
   ------------------------
285
 
286
   procedure List_Rep_Info;
287
   --  Procedure to list representation information
288
 
289
   procedure Tree_Write;
290
   --  Writes out internal tables to current tree file using the relevant
291
   --  Table.Tree_Write routines.
292
 
293
   --------------------------
294
   -- Debugging Procedures --
295
   --------------------------
296
 
297
   procedure List_GCC_Expression (U : Node_Ref_Or_Val);
298
   --  Prints out given expression in symbolic form. Constants are listed
299
   --  in decimal numeric form, Discriminants are listed with a # followed
300
   --  by the discriminant number, and operators are output in appropriate
301
   --  symbolic form No_Uint displays as two question marks. The output is
302
   --  on a single line but has no line return after it. This procedure is
303
   --  useful only if operating in backend layout mode.
304
 
305
   procedure lgx (U : Node_Ref_Or_Val);
306
   --  In backend layout mode, this is like List_GCC_Expression, but
307
   --  includes a line return at the end. If operating in front end
308
   --  layout mode, then the name of the entity for the size (either
309
   --  a function of a variable) is listed followed by a line return.
310
 
311
end Repinfo;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.