1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT RUN-TIME COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- S Y S T E M . R A N D O M _ N U M B E R S --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 2007-2012, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
17 |
|
|
-- --
|
18 |
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
19 |
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
20 |
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
21 |
|
|
-- --
|
22 |
|
|
-- You should have received a copy of the GNU General Public License and --
|
23 |
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
24 |
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
25 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
26 |
|
|
-- --
|
27 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
28 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
29 |
|
|
-- --
|
30 |
|
|
------------------------------------------------------------------------------
|
31 |
|
|
|
32 |
|
|
------------------------------------------------------------------------------
|
33 |
|
|
-- --
|
34 |
|
|
-- The implementation here is derived from a C-program for MT19937, with --
|
35 |
|
|
-- initialization improved 2002/1/26. As required, the following notice is --
|
36 |
|
|
-- copied from the original program. --
|
37 |
|
|
-- --
|
38 |
|
|
-- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, --
|
39 |
|
|
-- All rights reserved. --
|
40 |
|
|
-- --
|
41 |
|
|
-- Redistribution and use in source and binary forms, with or without --
|
42 |
|
|
-- modification, are permitted provided that the following conditions --
|
43 |
|
|
-- are met: --
|
44 |
|
|
-- --
|
45 |
|
|
-- 1. Redistributions of source code must retain the above copyright --
|
46 |
|
|
-- notice, this list of conditions and the following disclaimer. --
|
47 |
|
|
-- --
|
48 |
|
|
-- 2. Redistributions in binary form must reproduce the above copyright --
|
49 |
|
|
-- notice, this list of conditions and the following disclaimer in the --
|
50 |
|
|
-- documentation and/or other materials provided with the distribution.--
|
51 |
|
|
-- --
|
52 |
|
|
-- 3. The names of its contributors may not be used to endorse or promote --
|
53 |
|
|
-- products derived from this software without specific prior written --
|
54 |
|
|
-- permission. --
|
55 |
|
|
-- --
|
56 |
|
|
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS --
|
57 |
|
|
-- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT --
|
58 |
|
|
-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR --
|
59 |
|
|
-- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT --
|
60 |
|
|
-- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, --
|
61 |
|
|
-- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
|
62 |
|
|
-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --
|
63 |
|
|
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --
|
64 |
|
|
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --
|
65 |
|
|
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --
|
66 |
|
|
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --
|
67 |
|
|
-- --
|
68 |
|
|
------------------------------------------------------------------------------
|
69 |
|
|
|
70 |
|
|
------------------------------------------------------------------------------
|
71 |
|
|
-- --
|
72 |
|
|
-- This is an implementation of the Mersenne Twister, twisted generalized --
|
73 |
|
|
-- feedback shift register of rational normal form, with state-bit --
|
74 |
|
|
-- reflection and tempering. This version generates 32-bit integers with a --
|
75 |
|
|
-- period of 2**19937 - 1 (a Mersenne prime, hence the name). For --
|
76 |
|
|
-- applications requiring more than 32 bits (up to 64), we concatenate two --
|
77 |
|
|
-- 32-bit numbers. --
|
78 |
|
|
-- --
|
79 |
|
|
-- See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for --
|
80 |
|
|
-- details. --
|
81 |
|
|
-- --
|
82 |
|
|
-- In contrast to the original code, we do not generate random numbers in --
|
83 |
|
|
-- batches of N. Measurement seems to show this has very little if any --
|
84 |
|
|
-- effect on performance, and it may be marginally better for real-time --
|
85 |
|
|
-- applications with hard deadlines. --
|
86 |
|
|
-- --
|
87 |
|
|
------------------------------------------------------------------------------
|
88 |
|
|
|
89 |
|
|
with Ada.Unchecked_Conversion;
|
90 |
|
|
|
91 |
|
|
with System.Random_Seed;
|
92 |
|
|
|
93 |
|
|
with Interfaces; use Interfaces;
|
94 |
|
|
|
95 |
|
|
use Ada;
|
96 |
|
|
|
97 |
|
|
package body System.Random_Numbers is
|
98 |
|
|
|
99 |
|
|
Image_Numeral_Length : constant := Max_Image_Width / N;
|
100 |
|
|
subtype Image_String is String (1 .. Max_Image_Width);
|
101 |
|
|
|
102 |
|
|
----------------------------
|
103 |
|
|
-- Algorithmic Parameters --
|
104 |
|
|
----------------------------
|
105 |
|
|
|
106 |
|
|
Lower_Mask : constant := 2**31-1;
|
107 |
|
|
Upper_Mask : constant := 2**31;
|
108 |
|
|
|
109 |
|
|
Matrix_A : constant array (State_Val range 0 .. 1) of State_Val
|
110 |
|
|
:= (0, 16#9908b0df#);
|
111 |
|
|
-- The twist transformation is represented by a matrix of the form
|
112 |
|
|
--
|
113 |
|
|
-- [ 0 I(31) ]
|
114 |
|
|
-- [ _a ]
|
115 |
|
|
--
|
116 |
|
|
-- where 0 is a 31x31 block of 0s, I(31) is the 31x31 identity matrix and
|
117 |
|
|
-- _a is a particular bit row-vector, represented here by a 32-bit integer.
|
118 |
|
|
-- If integer x represents a row vector of bits (with x(0), the units bit,
|
119 |
|
|
-- last), then
|
120 |
|
|
-- x * A = [0 x(31..1)] xor Matrix_A(x(0)).
|
121 |
|
|
|
122 |
|
|
U : constant := 11;
|
123 |
|
|
S : constant := 7;
|
124 |
|
|
B_Mask : constant := 16#9d2c5680#;
|
125 |
|
|
T : constant := 15;
|
126 |
|
|
C_Mask : constant := 16#efc60000#;
|
127 |
|
|
L : constant := 18;
|
128 |
|
|
-- The tempering shifts and bit masks, in the order applied
|
129 |
|
|
|
130 |
|
|
Seed0 : constant := 5489;
|
131 |
|
|
-- Default seed, used to initialize the state vector when Reset not called
|
132 |
|
|
|
133 |
|
|
Seed1 : constant := 19650218;
|
134 |
|
|
-- Seed used to initialize the state vector when calling Reset with an
|
135 |
|
|
-- initialization vector.
|
136 |
|
|
|
137 |
|
|
Mult0 : constant := 1812433253;
|
138 |
|
|
-- Multiplier for a modified linear congruential generator used to
|
139 |
|
|
-- initialize the state vector when calling Reset with a single integer
|
140 |
|
|
-- seed.
|
141 |
|
|
|
142 |
|
|
Mult1 : constant := 1664525;
|
143 |
|
|
Mult2 : constant := 1566083941;
|
144 |
|
|
-- Multipliers for two modified linear congruential generators used to
|
145 |
|
|
-- initialize the state vector when calling Reset with an initialization
|
146 |
|
|
-- vector.
|
147 |
|
|
|
148 |
|
|
-----------------------
|
149 |
|
|
-- Local Subprograms --
|
150 |
|
|
-----------------------
|
151 |
|
|
|
152 |
|
|
procedure Init (Gen : Generator; Initiator : Unsigned_32);
|
153 |
|
|
-- Perform a default initialization of the state of Gen. The resulting
|
154 |
|
|
-- state is identical for identical values of Initiator.
|
155 |
|
|
|
156 |
|
|
procedure Insert_Image
|
157 |
|
|
(S : in out Image_String;
|
158 |
|
|
Index : Integer;
|
159 |
|
|
V : State_Val);
|
160 |
|
|
-- Insert image of V into S, in the Index'th 11-character substring
|
161 |
|
|
|
162 |
|
|
function Extract_Value (S : String; Index : Integer) return State_Val;
|
163 |
|
|
-- Treat S as a sequence of 11-character decimal numerals and return
|
164 |
|
|
-- the result of converting numeral #Index (numbering from 0)
|
165 |
|
|
|
166 |
|
|
function To_Unsigned is
|
167 |
|
|
new Unchecked_Conversion (Integer_32, Unsigned_32);
|
168 |
|
|
function To_Unsigned is
|
169 |
|
|
new Unchecked_Conversion (Integer_64, Unsigned_64);
|
170 |
|
|
|
171 |
|
|
------------
|
172 |
|
|
-- Random --
|
173 |
|
|
------------
|
174 |
|
|
|
175 |
|
|
function Random (Gen : Generator) return Unsigned_32 is
|
176 |
|
|
G : Generator renames Gen.Writable.Self.all;
|
177 |
|
|
Y : State_Val;
|
178 |
|
|
I : Integer; -- should avoid use of identifier I ???
|
179 |
|
|
|
180 |
|
|
begin
|
181 |
|
|
I := G.I;
|
182 |
|
|
|
183 |
|
|
if I < N - M then
|
184 |
|
|
Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
|
185 |
|
|
Y := G.S (I + M) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
|
186 |
|
|
I := I + 1;
|
187 |
|
|
|
188 |
|
|
elsif I < N - 1 then
|
189 |
|
|
Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
|
190 |
|
|
Y := G.S (I + (M - N))
|
191 |
|
|
xor Shift_Right (Y, 1)
|
192 |
|
|
xor Matrix_A (Y and 1);
|
193 |
|
|
I := I + 1;
|
194 |
|
|
|
195 |
|
|
elsif I = N - 1 then
|
196 |
|
|
Y := (G.S (I) and Upper_Mask) or (G.S (0) and Lower_Mask);
|
197 |
|
|
Y := G.S (M - 1) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
|
198 |
|
|
I := 0;
|
199 |
|
|
|
200 |
|
|
else
|
201 |
|
|
Init (G, Seed0);
|
202 |
|
|
return Random (Gen);
|
203 |
|
|
end if;
|
204 |
|
|
|
205 |
|
|
G.S (G.I) := Y;
|
206 |
|
|
G.I := I;
|
207 |
|
|
|
208 |
|
|
Y := Y xor Shift_Right (Y, U);
|
209 |
|
|
Y := Y xor (Shift_Left (Y, S) and B_Mask);
|
210 |
|
|
Y := Y xor (Shift_Left (Y, T) and C_Mask);
|
211 |
|
|
Y := Y xor Shift_Right (Y, L);
|
212 |
|
|
|
213 |
|
|
return Y;
|
214 |
|
|
end Random;
|
215 |
|
|
|
216 |
|
|
generic
|
217 |
|
|
type Unsigned is mod <>;
|
218 |
|
|
type Real is digits <>;
|
219 |
|
|
with function Random (G : Generator) return Unsigned is <>;
|
220 |
|
|
function Random_Float_Template (Gen : Generator) return Real;
|
221 |
|
|
pragma Inline (Random_Float_Template);
|
222 |
|
|
-- Template for a random-number generator implementation that delivers
|
223 |
|
|
-- values of type Real in the range [0 .. 1], using values from Gen,
|
224 |
|
|
-- assuming that Unsigned is large enough to hold the bits of a mantissa
|
225 |
|
|
-- for type Real.
|
226 |
|
|
|
227 |
|
|
---------------------------
|
228 |
|
|
-- Random_Float_Template --
|
229 |
|
|
---------------------------
|
230 |
|
|
|
231 |
|
|
function Random_Float_Template (Gen : Generator) return Real is
|
232 |
|
|
|
233 |
|
|
pragma Compile_Time_Error
|
234 |
|
|
(Unsigned'Last <= 2**(Real'Machine_Mantissa - 1),
|
235 |
|
|
"insufficiently large modular type used to hold mantissa");
|
236 |
|
|
|
237 |
|
|
begin
|
238 |
|
|
-- This code generates random floating-point numbers from unsigned
|
239 |
|
|
-- integers. Assuming that Real'Machine_Radix = 2, it can deliver all
|
240 |
|
|
-- machine values of type Real (as implied by Real'Machine_Mantissa and
|
241 |
|
|
-- Real'Machine_Emin), which is not true of the standard method (to
|
242 |
|
|
-- which we fall back for non-binary radix): computing Real(<random
|
243 |
|
|
-- integer>) / (<max random integer>+1). To do so, we first extract an
|
244 |
|
|
-- (M-1)-bit significand (where M is Real'Machine_Mantissa), and then
|
245 |
|
|
-- decide on a normalized exponent by repeated coin flips, decrementing
|
246 |
|
|
-- from 0 as long as we flip heads (1 bits). This process yields the
|
247 |
|
|
-- proper geometric distribution for the exponent: in a uniformly
|
248 |
|
|
-- distributed set of floating-point numbers, 1/2 of them will be in
|
249 |
|
|
-- (0.5, 1], 1/4 will be in (0.25, 0.5], and so forth. It makes a
|
250 |
|
|
-- further adjustment at binade boundaries (see comments below) to give
|
251 |
|
|
-- the effect of selecting a uniformly distributed real deviate in
|
252 |
|
|
-- [0..1] and then rounding to the nearest representable floating-point
|
253 |
|
|
-- number. The algorithm attempts to be stingy with random integers. In
|
254 |
|
|
-- the worst case, it can consume roughly -Real'Machine_Emin/32 32-bit
|
255 |
|
|
-- integers, but this case occurs with probability around
|
256 |
|
|
-- 2**Machine_Emin, and the expected number of calls to integer-valued
|
257 |
|
|
-- Random is 1. For another discussion of the issues addressed by this
|
258 |
|
|
-- process, see Allen Downey's unpublished paper at
|
259 |
|
|
-- http://allendowney.com/research/rand/downey07randfloat.pdf.
|
260 |
|
|
|
261 |
|
|
if Real'Machine_Radix /= 2 then
|
262 |
|
|
return Real'Machine
|
263 |
|
|
(Real (Unsigned'(Random (Gen))) * 2.0**(-Unsigned'Size));
|
264 |
|
|
|
265 |
|
|
else
|
266 |
|
|
declare
|
267 |
|
|
type Bit_Count is range 0 .. 4;
|
268 |
|
|
|
269 |
|
|
subtype T is Real'Base;
|
270 |
|
|
|
271 |
|
|
Trailing_Ones : constant array (Unsigned_32 range 0 .. 15)
|
272 |
|
|
of Bit_Count :=
|
273 |
|
|
(2#00000# => 0, 2#00001# => 1, 2#00010# => 0, 2#00011# => 2,
|
274 |
|
|
2#00100# => 0, 2#00101# => 1, 2#00110# => 0, 2#00111# => 3,
|
275 |
|
|
2#01000# => 0, 2#01001# => 1, 2#01010# => 0, 2#01011# => 2,
|
276 |
|
|
2#01100# => 0, 2#01101# => 1, 2#01110# => 0, 2#01111# => 4);
|
277 |
|
|
|
278 |
|
|
Pow_Tab : constant array (Bit_Count range 0 .. 3) of Real
|
279 |
|
|
:= (0 => 2.0**(0 - T'Machine_Mantissa),
|
280 |
|
|
1 => 2.0**(-1 - T'Machine_Mantissa),
|
281 |
|
|
2 => 2.0**(-2 - T'Machine_Mantissa),
|
282 |
|
|
3 => 2.0**(-3 - T'Machine_Mantissa));
|
283 |
|
|
|
284 |
|
|
Extra_Bits : constant Natural :=
|
285 |
|
|
(Unsigned'Size - T'Machine_Mantissa + 1);
|
286 |
|
|
-- Random bits left over after selecting mantissa
|
287 |
|
|
|
288 |
|
|
Mantissa : Unsigned;
|
289 |
|
|
|
290 |
|
|
X : Real; -- Scaled mantissa
|
291 |
|
|
R : Unsigned_32; -- Supply of random bits
|
292 |
|
|
R_Bits : Natural; -- Number of bits left in R
|
293 |
|
|
K : Bit_Count; -- Next decrement to exponent
|
294 |
|
|
|
295 |
|
|
begin
|
296 |
|
|
Mantissa := Random (Gen) / 2**Extra_Bits;
|
297 |
|
|
R := Unsigned_32 (Mantissa mod 2**Extra_Bits);
|
298 |
|
|
R_Bits := Extra_Bits;
|
299 |
|
|
X := Real (2**(T'Machine_Mantissa - 1) + Mantissa); -- Exact
|
300 |
|
|
|
301 |
|
|
if Extra_Bits < 4 and then R < 2 ** Extra_Bits - 1 then
|
302 |
|
|
|
303 |
|
|
-- We got lucky and got a zero in our few extra bits
|
304 |
|
|
|
305 |
|
|
K := Trailing_Ones (R);
|
306 |
|
|
|
307 |
|
|
else
|
308 |
|
|
Find_Zero : loop
|
309 |
|
|
|
310 |
|
|
-- R has R_Bits unprocessed random bits, a multiple of 4.
|
311 |
|
|
-- X needs to be halved for each trailing one bit. The
|
312 |
|
|
-- process stops as soon as a 0 bit is found. If R_Bits
|
313 |
|
|
-- becomes zero, reload R.
|
314 |
|
|
|
315 |
|
|
-- Process 4 bits at a time for speed: the two iterations
|
316 |
|
|
-- on average with three tests each was still too slow,
|
317 |
|
|
-- probably because the branches are not predictable.
|
318 |
|
|
-- This loop now will only execute once 94% of the cases,
|
319 |
|
|
-- doing more bits at a time will not help.
|
320 |
|
|
|
321 |
|
|
while R_Bits >= 4 loop
|
322 |
|
|
K := Trailing_Ones (R mod 16);
|
323 |
|
|
|
324 |
|
|
exit Find_Zero when K < 4; -- Exits 94% of the time
|
325 |
|
|
|
326 |
|
|
R_Bits := R_Bits - 4;
|
327 |
|
|
X := X / 16.0;
|
328 |
|
|
R := R / 16;
|
329 |
|
|
end loop;
|
330 |
|
|
|
331 |
|
|
-- Do not allow us to loop endlessly even in the (very
|
332 |
|
|
-- unlikely) case that Random (Gen) keeps yielding all ones.
|
333 |
|
|
|
334 |
|
|
exit Find_Zero when X = 0.0;
|
335 |
|
|
R := Random (Gen);
|
336 |
|
|
R_Bits := 32;
|
337 |
|
|
end loop Find_Zero;
|
338 |
|
|
end if;
|
339 |
|
|
|
340 |
|
|
-- K has the count of trailing ones not reflected yet in X. The
|
341 |
|
|
-- following multiplication takes care of that, as well as the
|
342 |
|
|
-- correction to move the radix point to the left of the mantissa.
|
343 |
|
|
-- Doing it at the end avoids repeated rounding errors in the
|
344 |
|
|
-- exceedingly unlikely case of ever having a subnormal result.
|
345 |
|
|
|
346 |
|
|
X := X * Pow_Tab (K);
|
347 |
|
|
|
348 |
|
|
-- The smallest value in each binade is rounded to by 0.75 of
|
349 |
|
|
-- the span of real numbers as its next larger neighbor, and
|
350 |
|
|
-- 1.0 is rounded to by half of the span of real numbers as its
|
351 |
|
|
-- next smaller neighbor. To account for this, when we encounter
|
352 |
|
|
-- the smallest number in a binade, we substitute the smallest
|
353 |
|
|
-- value in the next larger binade with probability 1/2.
|
354 |
|
|
|
355 |
|
|
if Mantissa = 0 and then Unsigned_32'(Random (Gen)) mod 2 = 0 then
|
356 |
|
|
X := 2.0 * X;
|
357 |
|
|
end if;
|
358 |
|
|
|
359 |
|
|
return X;
|
360 |
|
|
end;
|
361 |
|
|
end if;
|
362 |
|
|
end Random_Float_Template;
|
363 |
|
|
|
364 |
|
|
------------
|
365 |
|
|
-- Random --
|
366 |
|
|
------------
|
367 |
|
|
|
368 |
|
|
function Random (Gen : Generator) return Float is
|
369 |
|
|
function F is new Random_Float_Template (Unsigned_32, Float);
|
370 |
|
|
begin
|
371 |
|
|
return F (Gen);
|
372 |
|
|
end Random;
|
373 |
|
|
|
374 |
|
|
function Random (Gen : Generator) return Long_Float is
|
375 |
|
|
function F is new Random_Float_Template (Unsigned_64, Long_Float);
|
376 |
|
|
begin
|
377 |
|
|
return F (Gen);
|
378 |
|
|
end Random;
|
379 |
|
|
|
380 |
|
|
function Random (Gen : Generator) return Unsigned_64 is
|
381 |
|
|
begin
|
382 |
|
|
return Shift_Left (Unsigned_64 (Unsigned_32'(Random (Gen))), 32)
|
383 |
|
|
or Unsigned_64 (Unsigned_32'(Random (Gen)));
|
384 |
|
|
end Random;
|
385 |
|
|
|
386 |
|
|
---------------------
|
387 |
|
|
-- Random_Discrete --
|
388 |
|
|
---------------------
|
389 |
|
|
|
390 |
|
|
function Random_Discrete
|
391 |
|
|
(Gen : Generator;
|
392 |
|
|
Min : Result_Subtype := Default_Min;
|
393 |
|
|
Max : Result_Subtype := Result_Subtype'Last) return Result_Subtype
|
394 |
|
|
is
|
395 |
|
|
begin
|
396 |
|
|
if Max = Min then
|
397 |
|
|
return Max;
|
398 |
|
|
|
399 |
|
|
elsif Max < Min then
|
400 |
|
|
raise Constraint_Error;
|
401 |
|
|
|
402 |
|
|
elsif Result_Subtype'Base'Size > 32 then
|
403 |
|
|
declare
|
404 |
|
|
-- In the 64-bit case, we have to be careful, since not all 64-bit
|
405 |
|
|
-- unsigned values are representable in GNAT's root_integer type.
|
406 |
|
|
-- Ignore different-size warnings here since GNAT's handling
|
407 |
|
|
-- is correct.
|
408 |
|
|
|
409 |
|
|
pragma Warnings ("Z"); -- better to use msg string! ???
|
410 |
|
|
function Conv_To_Unsigned is
|
411 |
|
|
new Unchecked_Conversion (Result_Subtype'Base, Unsigned_64);
|
412 |
|
|
function Conv_To_Result is
|
413 |
|
|
new Unchecked_Conversion (Unsigned_64, Result_Subtype'Base);
|
414 |
|
|
pragma Warnings ("z");
|
415 |
|
|
|
416 |
|
|
N : constant Unsigned_64 :=
|
417 |
|
|
Conv_To_Unsigned (Max) - Conv_To_Unsigned (Min) + 1;
|
418 |
|
|
|
419 |
|
|
X, Slop : Unsigned_64;
|
420 |
|
|
|
421 |
|
|
begin
|
422 |
|
|
if N = 0 then
|
423 |
|
|
return Conv_To_Result (Conv_To_Unsigned (Min) + Random (Gen));
|
424 |
|
|
|
425 |
|
|
else
|
426 |
|
|
Slop := Unsigned_64'Last rem N + 1;
|
427 |
|
|
|
428 |
|
|
loop
|
429 |
|
|
X := Random (Gen);
|
430 |
|
|
exit when Slop = N or else X <= Unsigned_64'Last - Slop;
|
431 |
|
|
end loop;
|
432 |
|
|
|
433 |
|
|
return Conv_To_Result (Conv_To_Unsigned (Min) + X rem N);
|
434 |
|
|
end if;
|
435 |
|
|
end;
|
436 |
|
|
|
437 |
|
|
elsif Result_Subtype'Pos (Max) - Result_Subtype'Pos (Min) =
|
438 |
|
|
2 ** 32 - 1
|
439 |
|
|
then
|
440 |
|
|
return Result_Subtype'Val
|
441 |
|
|
(Result_Subtype'Pos (Min) + Unsigned_32'Pos (Random (Gen)));
|
442 |
|
|
else
|
443 |
|
|
declare
|
444 |
|
|
N : constant Unsigned_32 :=
|
445 |
|
|
Unsigned_32 (Result_Subtype'Pos (Max) -
|
446 |
|
|
Result_Subtype'Pos (Min) + 1);
|
447 |
|
|
Slop : constant Unsigned_32 := Unsigned_32'Last rem N + 1;
|
448 |
|
|
X : Unsigned_32;
|
449 |
|
|
|
450 |
|
|
begin
|
451 |
|
|
loop
|
452 |
|
|
X := Random (Gen);
|
453 |
|
|
exit when Slop = N or else X <= Unsigned_32'Last - Slop;
|
454 |
|
|
end loop;
|
455 |
|
|
|
456 |
|
|
return
|
457 |
|
|
Result_Subtype'Val
|
458 |
|
|
(Result_Subtype'Pos (Min) + Unsigned_32'Pos (X rem N));
|
459 |
|
|
end;
|
460 |
|
|
end if;
|
461 |
|
|
end Random_Discrete;
|
462 |
|
|
|
463 |
|
|
------------------
|
464 |
|
|
-- Random_Float --
|
465 |
|
|
------------------
|
466 |
|
|
|
467 |
|
|
function Random_Float (Gen : Generator) return Result_Subtype is
|
468 |
|
|
begin
|
469 |
|
|
if Result_Subtype'Base'Digits > Float'Digits then
|
470 |
|
|
return Result_Subtype'Machine (Result_Subtype
|
471 |
|
|
(Long_Float'(Random (Gen))));
|
472 |
|
|
else
|
473 |
|
|
return Result_Subtype'Machine (Result_Subtype
|
474 |
|
|
(Float'(Random (Gen))));
|
475 |
|
|
end if;
|
476 |
|
|
end Random_Float;
|
477 |
|
|
|
478 |
|
|
-----------
|
479 |
|
|
-- Reset --
|
480 |
|
|
-----------
|
481 |
|
|
|
482 |
|
|
procedure Reset (Gen : Generator) is
|
483 |
|
|
begin
|
484 |
|
|
Init (Gen, Unsigned_32'Mod (Random_Seed.Get_Seed));
|
485 |
|
|
end Reset;
|
486 |
|
|
|
487 |
|
|
procedure Reset (Gen : Generator; Initiator : Integer_32) is
|
488 |
|
|
begin
|
489 |
|
|
Init (Gen, To_Unsigned (Initiator));
|
490 |
|
|
end Reset;
|
491 |
|
|
|
492 |
|
|
procedure Reset (Gen : Generator; Initiator : Unsigned_32) is
|
493 |
|
|
begin
|
494 |
|
|
Init (Gen, Initiator);
|
495 |
|
|
end Reset;
|
496 |
|
|
|
497 |
|
|
procedure Reset (Gen : Generator; Initiator : Integer) is
|
498 |
|
|
begin
|
499 |
|
|
pragma Warnings (Off, "condition is always *");
|
500 |
|
|
-- This is probably an unnecessary precaution against future change, but
|
501 |
|
|
-- since the test is a static expression, no extra code is involved.
|
502 |
|
|
|
503 |
|
|
if Integer'Size <= 32 then
|
504 |
|
|
Init (Gen, To_Unsigned (Integer_32 (Initiator)));
|
505 |
|
|
|
506 |
|
|
else
|
507 |
|
|
declare
|
508 |
|
|
Initiator1 : constant Unsigned_64 :=
|
509 |
|
|
To_Unsigned (Integer_64 (Initiator));
|
510 |
|
|
Init0 : constant Unsigned_32 :=
|
511 |
|
|
Unsigned_32 (Initiator1 mod 2 ** 32);
|
512 |
|
|
Init1 : constant Unsigned_32 :=
|
513 |
|
|
Unsigned_32 (Shift_Right (Initiator1, 32));
|
514 |
|
|
begin
|
515 |
|
|
Reset (Gen, Initialization_Vector'(Init0, Init1));
|
516 |
|
|
end;
|
517 |
|
|
end if;
|
518 |
|
|
|
519 |
|
|
pragma Warnings (On, "condition is always *");
|
520 |
|
|
end Reset;
|
521 |
|
|
|
522 |
|
|
procedure Reset (Gen : Generator; Initiator : Initialization_Vector) is
|
523 |
|
|
G : Generator renames Gen.Writable.Self.all;
|
524 |
|
|
I, J : Integer;
|
525 |
|
|
|
526 |
|
|
begin
|
527 |
|
|
Init (G, Seed1);
|
528 |
|
|
I := 1;
|
529 |
|
|
J := 0;
|
530 |
|
|
|
531 |
|
|
if Initiator'Length > 0 then
|
532 |
|
|
for K in reverse 1 .. Integer'Max (N, Initiator'Length) loop
|
533 |
|
|
G.S (I) :=
|
534 |
|
|
(G.S (I) xor ((G.S (I - 1)
|
535 |
|
|
xor Shift_Right (G.S (I - 1), 30)) * Mult1))
|
536 |
|
|
+ Initiator (J + Initiator'First) + Unsigned_32 (J);
|
537 |
|
|
|
538 |
|
|
I := I + 1;
|
539 |
|
|
J := J + 1;
|
540 |
|
|
|
541 |
|
|
if I >= N then
|
542 |
|
|
G.S (0) := G.S (N - 1);
|
543 |
|
|
I := 1;
|
544 |
|
|
end if;
|
545 |
|
|
|
546 |
|
|
if J >= Initiator'Length then
|
547 |
|
|
J := 0;
|
548 |
|
|
end if;
|
549 |
|
|
end loop;
|
550 |
|
|
end if;
|
551 |
|
|
|
552 |
|
|
for K in reverse 1 .. N - 1 loop
|
553 |
|
|
G.S (I) :=
|
554 |
|
|
(G.S (I) xor ((G.S (I - 1)
|
555 |
|
|
xor Shift_Right (G.S (I - 1), 30)) * Mult2))
|
556 |
|
|
- Unsigned_32 (I);
|
557 |
|
|
I := I + 1;
|
558 |
|
|
|
559 |
|
|
if I >= N then
|
560 |
|
|
G.S (0) := G.S (N - 1);
|
561 |
|
|
I := 1;
|
562 |
|
|
end if;
|
563 |
|
|
end loop;
|
564 |
|
|
|
565 |
|
|
G.S (0) := Upper_Mask;
|
566 |
|
|
end Reset;
|
567 |
|
|
|
568 |
|
|
procedure Reset (Gen : Generator; From_State : Generator) is
|
569 |
|
|
G : Generator renames Gen.Writable.Self.all;
|
570 |
|
|
begin
|
571 |
|
|
G.S := From_State.S;
|
572 |
|
|
G.I := From_State.I;
|
573 |
|
|
end Reset;
|
574 |
|
|
|
575 |
|
|
procedure Reset (Gen : Generator; From_State : State) is
|
576 |
|
|
G : Generator renames Gen.Writable.Self.all;
|
577 |
|
|
begin
|
578 |
|
|
G.I := 0;
|
579 |
|
|
G.S := From_State;
|
580 |
|
|
end Reset;
|
581 |
|
|
|
582 |
|
|
procedure Reset (Gen : Generator; From_Image : String) is
|
583 |
|
|
G : Generator renames Gen.Writable.Self.all;
|
584 |
|
|
begin
|
585 |
|
|
G.I := 0;
|
586 |
|
|
|
587 |
|
|
for J in 0 .. N - 1 loop
|
588 |
|
|
G.S (J) := Extract_Value (From_Image, J);
|
589 |
|
|
end loop;
|
590 |
|
|
end Reset;
|
591 |
|
|
|
592 |
|
|
----------
|
593 |
|
|
-- Save --
|
594 |
|
|
----------
|
595 |
|
|
|
596 |
|
|
procedure Save (Gen : Generator; To_State : out State) is
|
597 |
|
|
Gen2 : Generator;
|
598 |
|
|
|
599 |
|
|
begin
|
600 |
|
|
if Gen.I = N then
|
601 |
|
|
Init (Gen2, 5489);
|
602 |
|
|
To_State := Gen2.S;
|
603 |
|
|
|
604 |
|
|
else
|
605 |
|
|
To_State (0 .. N - 1 - Gen.I) := Gen.S (Gen.I .. N - 1);
|
606 |
|
|
To_State (N - Gen.I .. N - 1) := Gen.S (0 .. Gen.I - 1);
|
607 |
|
|
end if;
|
608 |
|
|
end Save;
|
609 |
|
|
|
610 |
|
|
-----------
|
611 |
|
|
-- Image --
|
612 |
|
|
-----------
|
613 |
|
|
|
614 |
|
|
function Image (Of_State : State) return String is
|
615 |
|
|
Result : Image_String;
|
616 |
|
|
|
617 |
|
|
begin
|
618 |
|
|
Result := (others => ' ');
|
619 |
|
|
|
620 |
|
|
for J in Of_State'Range loop
|
621 |
|
|
Insert_Image (Result, J, Of_State (J));
|
622 |
|
|
end loop;
|
623 |
|
|
|
624 |
|
|
return Result;
|
625 |
|
|
end Image;
|
626 |
|
|
|
627 |
|
|
function Image (Gen : Generator) return String is
|
628 |
|
|
Result : Image_String;
|
629 |
|
|
|
630 |
|
|
begin
|
631 |
|
|
Result := (others => ' ');
|
632 |
|
|
for J in 0 .. N - 1 loop
|
633 |
|
|
Insert_Image (Result, J, Gen.S ((J + Gen.I) mod N));
|
634 |
|
|
end loop;
|
635 |
|
|
|
636 |
|
|
return Result;
|
637 |
|
|
end Image;
|
638 |
|
|
|
639 |
|
|
-----------
|
640 |
|
|
-- Value --
|
641 |
|
|
-----------
|
642 |
|
|
|
643 |
|
|
function Value (Coded_State : String) return State is
|
644 |
|
|
Gen : Generator;
|
645 |
|
|
S : State;
|
646 |
|
|
begin
|
647 |
|
|
Reset (Gen, Coded_State);
|
648 |
|
|
Save (Gen, S);
|
649 |
|
|
return S;
|
650 |
|
|
end Value;
|
651 |
|
|
|
652 |
|
|
----------
|
653 |
|
|
-- Init --
|
654 |
|
|
----------
|
655 |
|
|
|
656 |
|
|
procedure Init (Gen : Generator; Initiator : Unsigned_32) is
|
657 |
|
|
G : Generator renames Gen.Writable.Self.all;
|
658 |
|
|
begin
|
659 |
|
|
G.S (0) := Initiator;
|
660 |
|
|
|
661 |
|
|
for I in 1 .. N - 1 loop
|
662 |
|
|
G.S (I) :=
|
663 |
|
|
(G.S (I - 1) xor Shift_Right (G.S (I - 1), 30)) * Mult0
|
664 |
|
|
+ Unsigned_32 (I);
|
665 |
|
|
end loop;
|
666 |
|
|
|
667 |
|
|
G.I := 0;
|
668 |
|
|
end Init;
|
669 |
|
|
|
670 |
|
|
------------------
|
671 |
|
|
-- Insert_Image --
|
672 |
|
|
------------------
|
673 |
|
|
|
674 |
|
|
procedure Insert_Image
|
675 |
|
|
(S : in out Image_String;
|
676 |
|
|
Index : Integer;
|
677 |
|
|
V : State_Val)
|
678 |
|
|
is
|
679 |
|
|
Value : constant String := State_Val'Image (V);
|
680 |
|
|
begin
|
681 |
|
|
S (Index * 11 + 1 .. Index * 11 + Value'Length) := Value;
|
682 |
|
|
end Insert_Image;
|
683 |
|
|
|
684 |
|
|
-------------------
|
685 |
|
|
-- Extract_Value --
|
686 |
|
|
-------------------
|
687 |
|
|
|
688 |
|
|
function Extract_Value (S : String; Index : Integer) return State_Val is
|
689 |
|
|
Start : constant Integer := S'First + Index * Image_Numeral_Length;
|
690 |
|
|
begin
|
691 |
|
|
return State_Val'Value (S (Start .. Start + Image_Numeral_Length - 1));
|
692 |
|
|
end Extract_Value;
|
693 |
|
|
|
694 |
|
|
end System.Random_Numbers;
|