OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-rannum.adb] - Blame information for rev 774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT RUN-TIME COMPONENTS                         --
4
--                                                                          --
5
--                S Y S T E M . R A N D O M _ N U M B E R S                 --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 2007-2012, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
------------------------------------------------------------------------------
33
--                                                                          --
34
-- The implementation here is derived from a C-program for MT19937, with    --
35
-- initialization improved 2002/1/26. As required, the following notice is  --
36
-- copied from the original program.                                        --
37
--                                                                          --
38
-- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,        --
39
-- All rights reserved.                                                     --
40
--                                                                          --
41
-- Redistribution and use in source and binary forms, with or without       --
42
-- modification, are permitted provided that the following conditions       --
43
-- are met:                                                                 --
44
--                                                                          --
45
--   1. Redistributions of source code must retain the above copyright      --
46
--      notice, this list of conditions and the following disclaimer.       --
47
--                                                                          --
48
--   2. Redistributions in binary form must reproduce the above copyright   --
49
--      notice, this list of conditions and the following disclaimer in the --
50
--      documentation and/or other materials provided with the distribution.--
51
--                                                                          --
52
--   3. The names of its contributors may not be used to endorse or promote --
53
--      products derived from this software without specific prior written  --
54
--      permission.                                                         --
55
--                                                                          --
56
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS      --
57
-- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT        --
58
-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR    --
59
-- A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT    --
60
-- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    --
61
-- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
62
-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR   --
63
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF   --
64
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING     --
65
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS       --
66
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.             --
67
--                                                                          --
68
------------------------------------------------------------------------------
69
 
70
------------------------------------------------------------------------------
71
--                                                                          --
72
-- This is an implementation of the Mersenne Twister, twisted generalized   --
73
-- feedback shift register of rational normal form, with state-bit          --
74
-- reflection and tempering. This version generates 32-bit integers with a  --
75
-- period of 2**19937 - 1 (a Mersenne prime, hence the name). For           --
76
-- applications requiring more than 32 bits (up to 64), we concatenate two  --
77
-- 32-bit numbers.                                                          --
78
--                                                                          --
79
-- See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for         --
80
-- details.                                                                 --
81
--                                                                          --
82
-- In contrast to the original code, we do not generate random numbers in   --
83
-- batches of N. Measurement seems to show this has very little if any      --
84
-- effect on performance, and it may be marginally better for real-time     --
85
-- applications with hard deadlines.                                        --
86
--                                                                          --
87
------------------------------------------------------------------------------
88
 
89
with Ada.Unchecked_Conversion;
90
 
91
with System.Random_Seed;
92
 
93
with Interfaces; use Interfaces;
94
 
95
use Ada;
96
 
97
package body System.Random_Numbers is
98
 
99
   Image_Numeral_Length : constant := Max_Image_Width / N;
100
   subtype Image_String is String (1 .. Max_Image_Width);
101
 
102
   ----------------------------
103
   -- Algorithmic Parameters --
104
   ----------------------------
105
 
106
   Lower_Mask : constant := 2**31-1;
107
   Upper_Mask : constant := 2**31;
108
 
109
   Matrix_A   : constant array (State_Val range 0 .. 1) of State_Val
110
     := (0, 16#9908b0df#);
111
   --  The twist transformation is represented by a matrix of the form
112
   --
113
   --               [  0    I(31) ]
114
   --               [    _a       ]
115
   --
116
   --  where 0 is a 31x31 block of 0s, I(31) is the 31x31 identity matrix and
117
   --  _a is a particular bit row-vector, represented here by a 32-bit integer.
118
   --  If integer x represents a row vector of bits (with x(0), the units bit,
119
   --  last), then
120
   --           x * A = [0 x(31..1)] xor Matrix_A(x(0)).
121
 
122
   U      : constant := 11;
123
   S      : constant := 7;
124
   B_Mask : constant := 16#9d2c5680#;
125
   T      : constant := 15;
126
   C_Mask : constant := 16#efc60000#;
127
   L      : constant := 18;
128
   --  The tempering shifts and bit masks, in the order applied
129
 
130
   Seed0 : constant := 5489;
131
   --  Default seed, used to initialize the state vector when Reset not called
132
 
133
   Seed1 : constant := 19650218;
134
   --  Seed used to initialize the state vector when calling Reset with an
135
   --  initialization vector.
136
 
137
   Mult0 : constant := 1812433253;
138
   --  Multiplier for a modified linear congruential generator used to
139
   --  initialize the state vector when calling Reset with a single integer
140
   --  seed.
141
 
142
   Mult1 : constant := 1664525;
143
   Mult2 : constant := 1566083941;
144
   --  Multipliers for two modified linear congruential generators used to
145
   --  initialize the state vector when calling Reset with an initialization
146
   --  vector.
147
 
148
   -----------------------
149
   -- Local Subprograms --
150
   -----------------------
151
 
152
   procedure Init (Gen : Generator; Initiator : Unsigned_32);
153
   --  Perform a default initialization of the state of Gen. The resulting
154
   --  state is identical for identical values of Initiator.
155
 
156
   procedure Insert_Image
157
     (S     : in out Image_String;
158
      Index : Integer;
159
      V     : State_Val);
160
   --  Insert image of V into S, in the Index'th 11-character substring
161
 
162
   function Extract_Value (S : String; Index : Integer) return State_Val;
163
   --  Treat S as a sequence of 11-character decimal numerals and return
164
   --  the result of converting numeral #Index (numbering from 0)
165
 
166
   function To_Unsigned is
167
     new Unchecked_Conversion (Integer_32, Unsigned_32);
168
   function To_Unsigned is
169
     new Unchecked_Conversion (Integer_64, Unsigned_64);
170
 
171
   ------------
172
   -- Random --
173
   ------------
174
 
175
   function Random (Gen : Generator) return Unsigned_32 is
176
      G : Generator renames Gen.Writable.Self.all;
177
      Y : State_Val;
178
      I : Integer;      --  should avoid use of identifier I ???
179
 
180
   begin
181
      I := G.I;
182
 
183
      if I < N - M then
184
         Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
185
         Y := G.S (I + M) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
186
         I := I + 1;
187
 
188
      elsif I < N - 1 then
189
         Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
190
         Y := G.S (I + (M - N))
191
                xor Shift_Right (Y, 1)
192
                xor Matrix_A (Y and 1);
193
         I := I + 1;
194
 
195
      elsif I = N - 1 then
196
         Y := (G.S (I) and Upper_Mask) or (G.S (0) and Lower_Mask);
197
         Y := G.S (M - 1) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
198
         I := 0;
199
 
200
      else
201
         Init (G, Seed0);
202
         return Random (Gen);
203
      end if;
204
 
205
      G.S (G.I) := Y;
206
      G.I := I;
207
 
208
      Y := Y xor Shift_Right (Y, U);
209
      Y := Y xor (Shift_Left (Y, S)  and B_Mask);
210
      Y := Y xor (Shift_Left (Y, T) and C_Mask);
211
      Y := Y xor Shift_Right (Y, L);
212
 
213
      return Y;
214
   end Random;
215
 
216
   generic
217
      type Unsigned is mod <>;
218
      type Real is digits <>;
219
      with function Random (G : Generator) return Unsigned is <>;
220
   function Random_Float_Template (Gen : Generator) return Real;
221
   pragma Inline (Random_Float_Template);
222
   --  Template for a random-number generator implementation that delivers
223
   --  values of type Real in the range [0 .. 1], using values from Gen,
224
   --  assuming that Unsigned is large enough to hold the bits of a mantissa
225
   --  for type Real.
226
 
227
   ---------------------------
228
   -- Random_Float_Template --
229
   ---------------------------
230
 
231
   function Random_Float_Template (Gen : Generator) return Real is
232
 
233
      pragma Compile_Time_Error
234
        (Unsigned'Last <= 2**(Real'Machine_Mantissa - 1),
235
         "insufficiently large modular type used to hold mantissa");
236
 
237
   begin
238
      --  This code generates random floating-point numbers from unsigned
239
      --  integers. Assuming that Real'Machine_Radix = 2, it can deliver all
240
      --  machine values of type Real (as implied by Real'Machine_Mantissa and
241
      --  Real'Machine_Emin), which is not true of the standard method (to
242
      --  which we fall back for non-binary radix): computing Real(<random
243
      --  integer>) / (<max random integer>+1). To do so, we first extract an
244
      --  (M-1)-bit significand (where M is Real'Machine_Mantissa), and then
245
      --  decide on a normalized exponent by repeated coin flips, decrementing
246
      --  from 0 as long as we flip heads (1 bits). This process yields the
247
      --  proper geometric distribution for the exponent: in a uniformly
248
      --  distributed set of floating-point numbers, 1/2 of them will be in
249
      --  (0.5, 1], 1/4 will be in (0.25, 0.5], and so forth. It makes a
250
      --  further adjustment at binade boundaries (see comments below) to give
251
      --  the effect of selecting a uniformly distributed real deviate in
252
      --  [0..1] and then rounding to the nearest representable floating-point
253
      --  number.  The algorithm attempts to be stingy with random integers. In
254
      --  the worst case, it can consume roughly -Real'Machine_Emin/32 32-bit
255
      --  integers, but this case occurs with probability around
256
      --  2**Machine_Emin, and the expected number of calls to integer-valued
257
      --  Random is 1.  For another discussion of the issues addressed by this
258
      --  process, see Allen Downey's unpublished paper at
259
      --  http://allendowney.com/research/rand/downey07randfloat.pdf.
260
 
261
      if Real'Machine_Radix /= 2 then
262
         return Real'Machine
263
           (Real (Unsigned'(Random (Gen))) * 2.0**(-Unsigned'Size));
264
 
265
      else
266
         declare
267
            type Bit_Count is range 0 .. 4;
268
 
269
            subtype T is Real'Base;
270
 
271
            Trailing_Ones : constant array (Unsigned_32 range 0 .. 15)
272
              of Bit_Count :=
273
                  (2#00000# => 0, 2#00001# => 1, 2#00010# => 0, 2#00011# => 2,
274
                   2#00100# => 0, 2#00101# => 1, 2#00110# => 0, 2#00111# => 3,
275
                   2#01000# => 0, 2#01001# => 1, 2#01010# => 0, 2#01011# => 2,
276
                   2#01100# => 0, 2#01101# => 1, 2#01110# => 0, 2#01111# => 4);
277
 
278
            Pow_Tab : constant array (Bit_Count range 0 .. 3) of Real
279
              := (0 => 2.0**(0 - T'Machine_Mantissa),
280
                  1 => 2.0**(-1 - T'Machine_Mantissa),
281
                  2 => 2.0**(-2 - T'Machine_Mantissa),
282
                  3 => 2.0**(-3 - T'Machine_Mantissa));
283
 
284
            Extra_Bits : constant Natural :=
285
                         (Unsigned'Size - T'Machine_Mantissa + 1);
286
            --  Random bits left over after selecting mantissa
287
 
288
            Mantissa : Unsigned;
289
 
290
            X      : Real;            --  Scaled mantissa
291
            R      : Unsigned_32;     --  Supply of random bits
292
            R_Bits : Natural;         --  Number of bits left in R
293
            K      : Bit_Count;       --  Next decrement to exponent
294
 
295
         begin
296
            Mantissa := Random (Gen) / 2**Extra_Bits;
297
            R := Unsigned_32 (Mantissa mod 2**Extra_Bits);
298
            R_Bits := Extra_Bits;
299
            X := Real (2**(T'Machine_Mantissa - 1) + Mantissa); -- Exact
300
 
301
            if Extra_Bits < 4 and then R < 2 ** Extra_Bits - 1 then
302
 
303
               --  We got lucky and got a zero in our few extra bits
304
 
305
               K := Trailing_Ones (R);
306
 
307
            else
308
               Find_Zero : loop
309
 
310
                  --  R has R_Bits unprocessed random bits, a multiple of 4.
311
                  --  X needs to be halved for each trailing one bit. The
312
                  --  process stops as soon as a 0 bit is found. If R_Bits
313
                  --  becomes zero, reload R.
314
 
315
                  --  Process 4 bits at a time for speed: the two iterations
316
                  --  on average with three tests each was still too slow,
317
                  --  probably because the branches are not predictable.
318
                  --  This loop now will only execute once 94% of the cases,
319
                  --  doing more bits at a time will not help.
320
 
321
                  while R_Bits >= 4 loop
322
                     K := Trailing_Ones (R mod 16);
323
 
324
                     exit Find_Zero when K < 4; -- Exits 94% of the time
325
 
326
                     R_Bits := R_Bits - 4;
327
                     X := X / 16.0;
328
                     R := R / 16;
329
                  end loop;
330
 
331
                  --  Do not allow us to loop endlessly even in the (very
332
                  --  unlikely) case that Random (Gen) keeps yielding all ones.
333
 
334
                  exit Find_Zero when X = 0.0;
335
                  R := Random (Gen);
336
                  R_Bits := 32;
337
               end loop Find_Zero;
338
            end if;
339
 
340
            --  K has the count of trailing ones not reflected yet in X. The
341
            --  following multiplication takes care of that, as well as the
342
            --  correction to move the radix point to the left of the mantissa.
343
            --  Doing it at the end avoids repeated rounding errors in the
344
            --  exceedingly unlikely case of ever having a subnormal result.
345
 
346
            X := X * Pow_Tab (K);
347
 
348
            --  The smallest value in each binade is rounded to by 0.75 of
349
            --  the span of real numbers as its next larger neighbor, and
350
            --  1.0 is rounded to by half of the span of real numbers as its
351
            --  next smaller neighbor. To account for this, when we encounter
352
            --  the smallest number in a binade, we substitute the smallest
353
            --  value in the next larger binade with probability 1/2.
354
 
355
            if Mantissa = 0 and then Unsigned_32'(Random (Gen)) mod 2 = 0 then
356
               X := 2.0 * X;
357
            end if;
358
 
359
            return X;
360
         end;
361
      end if;
362
   end Random_Float_Template;
363
 
364
   ------------
365
   -- Random --
366
   ------------
367
 
368
   function Random (Gen : Generator) return Float is
369
      function F is new Random_Float_Template (Unsigned_32, Float);
370
   begin
371
      return F (Gen);
372
   end Random;
373
 
374
   function Random (Gen : Generator) return Long_Float is
375
      function F is new Random_Float_Template (Unsigned_64, Long_Float);
376
   begin
377
      return F (Gen);
378
   end Random;
379
 
380
   function Random (Gen : Generator) return Unsigned_64 is
381
   begin
382
      return Shift_Left (Unsigned_64 (Unsigned_32'(Random (Gen))), 32)
383
        or Unsigned_64 (Unsigned_32'(Random (Gen)));
384
   end Random;
385
 
386
   ---------------------
387
   -- Random_Discrete --
388
   ---------------------
389
 
390
   function Random_Discrete
391
     (Gen : Generator;
392
      Min : Result_Subtype := Default_Min;
393
      Max : Result_Subtype := Result_Subtype'Last) return Result_Subtype
394
   is
395
   begin
396
      if Max = Min then
397
         return Max;
398
 
399
      elsif Max < Min then
400
         raise Constraint_Error;
401
 
402
      elsif Result_Subtype'Base'Size > 32 then
403
         declare
404
            --  In the 64-bit case, we have to be careful, since not all 64-bit
405
            --  unsigned values are representable in GNAT's root_integer type.
406
            --  Ignore different-size warnings here since GNAT's handling
407
            --  is correct.
408
 
409
            pragma Warnings ("Z");  -- better to use msg string! ???
410
            function Conv_To_Unsigned is
411
               new Unchecked_Conversion (Result_Subtype'Base, Unsigned_64);
412
            function Conv_To_Result is
413
               new Unchecked_Conversion (Unsigned_64, Result_Subtype'Base);
414
            pragma Warnings ("z");
415
 
416
            N : constant Unsigned_64 :=
417
                  Conv_To_Unsigned (Max) - Conv_To_Unsigned (Min) + 1;
418
 
419
            X, Slop : Unsigned_64;
420
 
421
         begin
422
            if N = 0 then
423
               return Conv_To_Result (Conv_To_Unsigned (Min) + Random (Gen));
424
 
425
            else
426
               Slop := Unsigned_64'Last rem N + 1;
427
 
428
               loop
429
                  X := Random (Gen);
430
                  exit when Slop = N or else X <= Unsigned_64'Last - Slop;
431
               end loop;
432
 
433
               return Conv_To_Result (Conv_To_Unsigned (Min) + X rem N);
434
            end if;
435
         end;
436
 
437
      elsif Result_Subtype'Pos (Max) - Result_Subtype'Pos (Min) =
438
                                                         2 ** 32 - 1
439
      then
440
         return Result_Subtype'Val
441
           (Result_Subtype'Pos (Min) + Unsigned_32'Pos (Random (Gen)));
442
      else
443
         declare
444
            N    : constant Unsigned_32 :=
445
                     Unsigned_32 (Result_Subtype'Pos (Max) -
446
                                    Result_Subtype'Pos (Min) + 1);
447
            Slop : constant Unsigned_32 := Unsigned_32'Last rem N + 1;
448
            X    : Unsigned_32;
449
 
450
         begin
451
            loop
452
               X := Random (Gen);
453
               exit when Slop = N or else X <= Unsigned_32'Last - Slop;
454
            end loop;
455
 
456
            return
457
              Result_Subtype'Val
458
                (Result_Subtype'Pos (Min) + Unsigned_32'Pos (X rem N));
459
         end;
460
      end if;
461
   end Random_Discrete;
462
 
463
   ------------------
464
   -- Random_Float --
465
   ------------------
466
 
467
   function Random_Float (Gen : Generator) return Result_Subtype is
468
   begin
469
      if Result_Subtype'Base'Digits > Float'Digits then
470
         return Result_Subtype'Machine (Result_Subtype
471
                                         (Long_Float'(Random (Gen))));
472
      else
473
         return Result_Subtype'Machine (Result_Subtype
474
                                         (Float'(Random (Gen))));
475
      end if;
476
   end Random_Float;
477
 
478
   -----------
479
   -- Reset --
480
   -----------
481
 
482
   procedure Reset (Gen : Generator) is
483
   begin
484
      Init (Gen, Unsigned_32'Mod (Random_Seed.Get_Seed));
485
   end Reset;
486
 
487
   procedure Reset (Gen : Generator; Initiator : Integer_32) is
488
   begin
489
      Init (Gen, To_Unsigned (Initiator));
490
   end Reset;
491
 
492
   procedure Reset (Gen : Generator; Initiator : Unsigned_32) is
493
   begin
494
      Init (Gen, Initiator);
495
   end Reset;
496
 
497
   procedure Reset (Gen : Generator; Initiator : Integer) is
498
   begin
499
      pragma Warnings (Off, "condition is always *");
500
      --  This is probably an unnecessary precaution against future change, but
501
      --  since the test is a static expression, no extra code is involved.
502
 
503
      if Integer'Size <= 32 then
504
         Init (Gen, To_Unsigned (Integer_32 (Initiator)));
505
 
506
      else
507
         declare
508
            Initiator1 : constant Unsigned_64 :=
509
                           To_Unsigned (Integer_64 (Initiator));
510
            Init0      : constant Unsigned_32 :=
511
                           Unsigned_32 (Initiator1 mod 2 ** 32);
512
            Init1      : constant Unsigned_32 :=
513
                           Unsigned_32 (Shift_Right (Initiator1, 32));
514
         begin
515
            Reset (Gen, Initialization_Vector'(Init0, Init1));
516
         end;
517
      end if;
518
 
519
      pragma Warnings (On, "condition is always *");
520
   end Reset;
521
 
522
   procedure Reset (Gen : Generator; Initiator : Initialization_Vector) is
523
      G    : Generator renames Gen.Writable.Self.all;
524
      I, J : Integer;
525
 
526
   begin
527
      Init (G, Seed1);
528
      I := 1;
529
      J := 0;
530
 
531
      if Initiator'Length > 0 then
532
         for K in reverse 1 .. Integer'Max (N, Initiator'Length) loop
533
            G.S (I) :=
534
              (G.S (I) xor ((G.S (I - 1)
535
                               xor Shift_Right (G.S (I - 1), 30)) * Mult1))
536
              + Initiator (J + Initiator'First) + Unsigned_32 (J);
537
 
538
            I := I + 1;
539
            J := J + 1;
540
 
541
            if I >= N then
542
               G.S (0) := G.S (N - 1);
543
               I := 1;
544
            end if;
545
 
546
            if J >= Initiator'Length then
547
               J := 0;
548
            end if;
549
         end loop;
550
      end if;
551
 
552
      for K in reverse 1 .. N - 1 loop
553
         G.S (I) :=
554
           (G.S (I) xor ((G.S (I - 1)
555
                            xor Shift_Right (G.S (I - 1), 30)) * Mult2))
556
           - Unsigned_32 (I);
557
         I := I + 1;
558
 
559
         if I >= N then
560
            G.S (0) := G.S (N - 1);
561
            I := 1;
562
         end if;
563
      end loop;
564
 
565
      G.S (0) := Upper_Mask;
566
   end Reset;
567
 
568
   procedure Reset (Gen : Generator; From_State : Generator) is
569
      G : Generator renames Gen.Writable.Self.all;
570
   begin
571
      G.S := From_State.S;
572
      G.I := From_State.I;
573
   end Reset;
574
 
575
   procedure Reset (Gen : Generator; From_State : State) is
576
      G : Generator renames Gen.Writable.Self.all;
577
   begin
578
      G.I := 0;
579
      G.S := From_State;
580
   end Reset;
581
 
582
   procedure Reset (Gen : Generator; From_Image : String) is
583
      G : Generator renames Gen.Writable.Self.all;
584
   begin
585
      G.I := 0;
586
 
587
      for J in 0 .. N - 1 loop
588
         G.S (J) := Extract_Value (From_Image, J);
589
      end loop;
590
   end Reset;
591
 
592
   ----------
593
   -- Save --
594
   ----------
595
 
596
   procedure Save (Gen : Generator; To_State : out State) is
597
      Gen2 : Generator;
598
 
599
   begin
600
      if Gen.I = N then
601
         Init (Gen2, 5489);
602
         To_State := Gen2.S;
603
 
604
      else
605
         To_State (0 .. N - 1 - Gen.I) := Gen.S (Gen.I .. N - 1);
606
         To_State (N - Gen.I .. N - 1) := Gen.S (0 .. Gen.I - 1);
607
      end if;
608
   end Save;
609
 
610
   -----------
611
   -- Image --
612
   -----------
613
 
614
   function Image (Of_State : State) return String is
615
      Result : Image_String;
616
 
617
   begin
618
      Result := (others => ' ');
619
 
620
      for J in Of_State'Range loop
621
         Insert_Image (Result, J, Of_State (J));
622
      end loop;
623
 
624
      return Result;
625
   end Image;
626
 
627
   function Image (Gen : Generator) return String is
628
      Result : Image_String;
629
 
630
   begin
631
      Result := (others => ' ');
632
      for J in 0 .. N - 1 loop
633
         Insert_Image (Result, J, Gen.S ((J + Gen.I) mod N));
634
      end loop;
635
 
636
      return Result;
637
   end Image;
638
 
639
   -----------
640
   -- Value --
641
   -----------
642
 
643
   function Value (Coded_State : String) return State is
644
      Gen : Generator;
645
      S   : State;
646
   begin
647
      Reset (Gen, Coded_State);
648
      Save (Gen, S);
649
      return S;
650
   end Value;
651
 
652
   ----------
653
   -- Init --
654
   ----------
655
 
656
   procedure Init (Gen : Generator; Initiator : Unsigned_32) is
657
      G : Generator renames Gen.Writable.Self.all;
658
   begin
659
      G.S (0) := Initiator;
660
 
661
      for I in 1 .. N - 1 loop
662
         G.S (I) :=
663
           (G.S (I - 1) xor Shift_Right (G.S (I - 1), 30)) * Mult0
664
           + Unsigned_32 (I);
665
      end loop;
666
 
667
      G.I := 0;
668
   end Init;
669
 
670
   ------------------
671
   -- Insert_Image --
672
   ------------------
673
 
674
   procedure Insert_Image
675
     (S     : in out Image_String;
676
      Index : Integer;
677
      V     : State_Val)
678
   is
679
      Value : constant String := State_Val'Image (V);
680
   begin
681
      S (Index * 11 + 1 .. Index * 11 + Value'Length) := Value;
682
   end Insert_Image;
683
 
684
   -------------------
685
   -- Extract_Value --
686
   -------------------
687
 
688
   function Extract_Value (S : String; Index : Integer) return State_Val is
689
      Start : constant Integer := S'First + Index * Image_Numeral_Length;
690
   begin
691
      return State_Val'Value (S (Start .. Start + Image_Numeral_Length - 1));
692
   end Extract_Value;
693
 
694
end System.Random_Numbers;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.