OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-regpat.adb] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT LIBRARY COMPONENTS                          --
4
--                                                                          --
5
--                          G N A T . R E G P A T                           --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--               Copyright (C) 1986 by University of Toronto.               --
10
--                      Copyright (C) 1999-2011, AdaCore                    --
11
--                                                                          --
12
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
13
-- terms of the  GNU General Public License as published  by the Free Soft- --
14
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
15
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
16
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
17
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
18
--                                                                          --
19
-- As a special exception under Section 7 of GPL version 3, you are granted --
20
-- additional permissions described in the GCC Runtime Library Exception,   --
21
-- version 3.1, as published by the Free Software Foundation.               --
22
--                                                                          --
23
-- You should have received a copy of the GNU General Public License and    --
24
-- a copy of the GCC Runtime Library Exception along with this program;     --
25
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
26
-- <http://www.gnu.org/licenses/>.                                          --
27
--                                                                          --
28
-- GNAT was originally developed  by the GNAT team at  New York University. --
29
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
30
--                                                                          --
31
------------------------------------------------------------------------------
32
 
33
--  This is an altered Ada 95 version of the original V8 style regular
34
--  expression library written in C by Henry Spencer. Apart from the
35
--  translation to Ada, the interface has been considerably changed to
36
--  use the Ada String type instead of C-style nul-terminated strings.
37
 
38
--  Beware that some of this code is subtly aware of the way operator
39
--  precedence is structured in regular expressions. Serious changes in
40
--  regular-expression syntax might require a total rethink.
41
 
42
with System.IO;               use System.IO;
43
with Ada.Characters.Handling; use Ada.Characters.Handling;
44
with Ada.Unchecked_Conversion;
45
 
46
package body System.Regpat is
47
 
48
   Debug : constant Boolean := False;
49
   --  Set to True to activate debug traces. This is normally set to constant
50
   --  False to simply delete all the trace code. It is to be edited to True
51
   --  for internal debugging of the package.
52
 
53
   ----------------------------
54
   -- Implementation details --
55
   ----------------------------
56
 
57
   --  This is essentially a linear encoding of a nondeterministic
58
   --  finite-state machine, also known as syntax charts or
59
   --  "railroad normal form" in parsing technology.
60
 
61
   --  Each node is an opcode plus a "next" pointer, possibly plus an
62
   --  operand. "Next" pointers of all nodes except BRANCH implement
63
   --  concatenation; a "next" pointer with a BRANCH on both ends of it
64
   --  is connecting two alternatives.
65
 
66
   --  The operand of some types of node is a literal string; for others,
67
   --  it is a node leading into a sub-FSM. In particular, the operand of
68
   --  a BRANCH node is the first node of the branch.
69
   --  (NB this is *not* a tree structure:  the tail of the branch connects
70
   --  to the thing following the set of BRANCHes).
71
 
72
   --  You can see the exact byte-compiled version by using the Dump
73
   --  subprogram. However, here are a few examples:
74
 
75
   --  (a|b):  1 : BRANCH  (next at  9)
76
   --          4 :    EXACT  (next at  17)   operand=a
77
   --          9 : BRANCH  (next at  17)
78
   --         12 :    EXACT  (next at  17)   operand=b
79
   --         17 : EOP  (next at 0)
80
   --
81
   --  (ab)*:  1 : CURLYX  (next at  25)  { 0, 32767}
82
   --          8 :    OPEN 1  (next at  12)
83
   --         12 :       EXACT  (next at  18)   operand=ab
84
   --         18 :    CLOSE 1  (next at  22)
85
   --         22 :    WHILEM  (next at 0)
86
   --         25 : NOTHING  (next at  28)
87
   --         28 : EOP  (next at 0)
88
 
89
   --  The opcodes are:
90
 
91
   type Opcode is
92
 
93
      --  Name          Operand?  Meaning
94
 
95
     (EOP,        -- no        End of program
96
      MINMOD,     -- no        Next operator is not greedy
97
 
98
      --  Classes of characters
99
 
100
      ANY,        -- no        Match any one character except newline
101
      SANY,       -- no        Match any character, including new line
102
      ANYOF,      -- class     Match any character in this class
103
      EXACT,      -- str       Match this string exactly
104
      EXACTF,     -- str       Match this string (case-folding is one)
105
      NOTHING,    -- no        Match empty string
106
      SPACE,      -- no        Match any whitespace character
107
      NSPACE,     -- no        Match any non-whitespace character
108
      DIGIT,      -- no        Match any numeric character
109
      NDIGIT,     -- no        Match any non-numeric character
110
      ALNUM,      -- no        Match any alphanumeric character
111
      NALNUM,     -- no        Match any non-alphanumeric character
112
 
113
      --  Branches
114
 
115
      BRANCH,     -- node      Match this alternative, or the next
116
 
117
      --  Simple loops (when the following node is one character in length)
118
 
119
      STAR,       -- node      Match this simple thing 0 or more times
120
      PLUS,       -- node      Match this simple thing 1 or more times
121
      CURLY,      -- 2num node Match this simple thing between n and m times.
122
 
123
      --  Complex loops
124
 
125
      CURLYX,     -- 2num node Match this complex thing {n,m} times
126
      --                       The nums are coded on two characters each
127
 
128
      WHILEM,     -- no        Do curly processing and see if rest matches
129
 
130
      --  Matches after or before a word
131
 
132
      BOL,        -- no        Match "" at beginning of line
133
      MBOL,       -- no        Same, assuming multiline (match after \n)
134
      SBOL,       -- no        Same, assuming single line (don't match at \n)
135
      EOL,        -- no        Match "" at end of line
136
      MEOL,       -- no        Same, assuming multiline (match before \n)
137
      SEOL,       -- no        Same, assuming single line (don't match at \n)
138
 
139
      BOUND,      -- no        Match "" at any word boundary
140
      NBOUND,     -- no        Match "" at any word non-boundary
141
 
142
      --  Parenthesis groups handling
143
 
144
      REFF,       -- num       Match some already matched string, folded
145
      OPEN,       -- num       Mark this point in input as start of #n
146
      CLOSE);     -- num       Analogous to OPEN
147
 
148
   for Opcode'Size use 8;
149
 
150
   --  Opcode notes:
151
 
152
   --  BRANCH
153
   --    The set of branches constituting a single choice are hooked
154
   --    together with their "next" pointers, since precedence prevents
155
   --    anything being concatenated to any individual branch. The
156
   --    "next" pointer of the last BRANCH in a choice points to the
157
   --    thing following the whole choice. This is also where the
158
   --    final "next" pointer of each individual branch points; each
159
   --    branch starts with the operand node of a BRANCH node.
160
 
161
   --  STAR,PLUS
162
   --    '?', and complex '*' and '+', are implemented with CURLYX.
163
   --    branches. Simple cases (one character per match) are implemented with
164
   --    STAR and PLUS for speed and to minimize recursive plunges.
165
 
166
   --  OPEN,CLOSE
167
   --    ...are numbered at compile time.
168
 
169
   --  EXACT, EXACTF
170
   --    There are in fact two arguments, the first one is the length (minus
171
   --    one of the string argument), coded on one character, the second
172
   --    argument is the string itself, coded on length + 1 characters.
173
 
174
   --  A node is one char of opcode followed by two chars of "next" pointer.
175
   --  "Next" pointers are stored as two 8-bit pieces, high order first. The
176
   --  value is a positive offset from the opcode of the node containing it.
177
   --  An operand, if any, simply follows the node. (Note that much of the
178
   --  code generation knows about this implicit relationship.)
179
 
180
   --  Using two bytes for the "next" pointer is vast overkill for most
181
   --  things, but allows patterns to get big without disasters.
182
 
183
   Next_Pointer_Bytes : constant := 3;
184
   --  Points after the "next pointer" data. An instruction is therefore:
185
   --     1 byte: instruction opcode
186
   --     2 bytes: pointer to next instruction
187
   --     * bytes: optional data for the instruction
188
 
189
   -----------------------
190
   -- Character classes --
191
   -----------------------
192
   --  This is the implementation for character classes ([...]) in the
193
   --  syntax for regular expressions. Each character (0..256) has an
194
   --  entry into the table. This makes for a very fast matching
195
   --  algorithm.
196
 
197
   type Class_Byte is mod 256;
198
   type Character_Class is array (Class_Byte range 0 .. 31) of Class_Byte;
199
 
200
   type Bit_Conversion_Array is array (Class_Byte range 0 .. 7) of Class_Byte;
201
   Bit_Conversion : constant Bit_Conversion_Array :=
202
                      (1, 2, 4, 8, 16, 32, 64, 128);
203
 
204
   type Std_Class is (ANYOF_NONE,
205
                      ANYOF_ALNUM,   --  Alphanumeric class [a-zA-Z0-9]
206
                      ANYOF_NALNUM,
207
                      ANYOF_SPACE,   --  Space class [ \t\n\r\f]
208
                      ANYOF_NSPACE,
209
                      ANYOF_DIGIT,   --  Digit class [0-9]
210
                      ANYOF_NDIGIT,
211
                      ANYOF_ALNUMC,  --  Alphanumeric class [a-zA-Z0-9]
212
                      ANYOF_NALNUMC,
213
                      ANYOF_ALPHA,   --  Alpha class [a-zA-Z]
214
                      ANYOF_NALPHA,
215
                      ANYOF_ASCII,   --  Ascii class (7 bits) 0..127
216
                      ANYOF_NASCII,
217
                      ANYOF_CNTRL,   --  Control class
218
                      ANYOF_NCNTRL,
219
                      ANYOF_GRAPH,   --  Graphic class
220
                      ANYOF_NGRAPH,
221
                      ANYOF_LOWER,   --  Lower case class [a-z]
222
                      ANYOF_NLOWER,
223
                      ANYOF_PRINT,   --  printable class
224
                      ANYOF_NPRINT,
225
                      ANYOF_PUNCT,   --
226
                      ANYOF_NPUNCT,
227
                      ANYOF_UPPER,   --  Upper case class [A-Z]
228
                      ANYOF_NUPPER,
229
                      ANYOF_XDIGIT,  --  Hexadecimal digit
230
                      ANYOF_NXDIGIT
231
                      );
232
 
233
   procedure Set_In_Class
234
     (Bitmap : in out Character_Class;
235
      C      : Character);
236
   --  Set the entry to True for C in the class Bitmap
237
 
238
   function Get_From_Class
239
     (Bitmap : Character_Class;
240
      C      : Character) return Boolean;
241
   --  Return True if the entry is set for C in the class Bitmap
242
 
243
   procedure Reset_Class (Bitmap : out Character_Class);
244
   --  Clear all the entries in the class Bitmap
245
 
246
   pragma Inline (Set_In_Class);
247
   pragma Inline (Get_From_Class);
248
   pragma Inline (Reset_Class);
249
 
250
   -----------------------
251
   -- Local Subprograms --
252
   -----------------------
253
 
254
   function "=" (Left : Character; Right : Opcode) return Boolean;
255
 
256
   function Is_Alnum (C : Character) return Boolean;
257
   --  Return True if C is an alphanum character or an underscore ('_')
258
 
259
   function Is_White_Space (C : Character) return Boolean;
260
   --  Return True if C is a whitespace character
261
 
262
   function Is_Printable (C : Character) return Boolean;
263
   --  Return True if C is a printable character
264
 
265
   function Operand (P : Pointer) return Pointer;
266
   --  Return a pointer to the first operand of the node at P
267
 
268
   function String_Length
269
     (Program : Program_Data;
270
      P       : Pointer) return Program_Size;
271
   --  Return the length of the string argument of the node at P
272
 
273
   function String_Operand (P : Pointer) return Pointer;
274
   --  Return a pointer to the string argument of the node at P
275
 
276
   procedure Bitmap_Operand
277
     (Program : Program_Data;
278
      P       : Pointer;
279
      Op      : out Character_Class);
280
   --  Return a pointer to the string argument of the node at P
281
 
282
   function Get_Next
283
     (Program : Program_Data;
284
      IP      : Pointer) return Pointer;
285
   --  Dig the next instruction pointer out of a node
286
 
287
   procedure Optimize (Self : in out Pattern_Matcher);
288
   --  Optimize a Pattern_Matcher by noting certain special cases
289
 
290
   function Read_Natural
291
     (Program : Program_Data;
292
      IP      : Pointer) return Natural;
293
   --  Return the 2-byte natural coded at position IP
294
 
295
   --  All of the subprograms above are tiny and should be inlined
296
 
297
   pragma Inline ("=");
298
   pragma Inline (Is_Alnum);
299
   pragma Inline (Is_White_Space);
300
   pragma Inline (Get_Next);
301
   pragma Inline (Operand);
302
   pragma Inline (Read_Natural);
303
   pragma Inline (String_Length);
304
   pragma Inline (String_Operand);
305
 
306
   type Expression_Flags is record
307
      Has_Width,            -- Known never to match null string
308
      Simple,               -- Simple enough to be STAR/PLUS operand
309
      SP_Start  : Boolean;  -- Starts with * or +
310
   end record;
311
 
312
   Worst_Expression : constant Expression_Flags := (others => False);
313
   --  Worst case
314
 
315
   procedure Dump_Until
316
     (Program  : Program_Data;
317
      Index    : in out Pointer;
318
      Till     : Pointer;
319
      Indent   : Natural;
320
      Do_Print : Boolean := True);
321
   --  Dump the program until the node Till (not included) is met. Every line
322
   --  is indented with Index spaces at the beginning Dumps till the end if
323
   --  Till is 0.
324
 
325
   procedure Dump_Operation
326
      (Program      : Program_Data;
327
       Index        : Pointer;
328
       Indent       : Natural);
329
   --  Same as above, but only dumps a single operation, and compute its
330
   --  indentation from the program.
331
 
332
   ---------
333
   -- "=" --
334
   ---------
335
 
336
   function "=" (Left : Character; Right : Opcode) return Boolean is
337
   begin
338
      return Character'Pos (Left) = Opcode'Pos (Right);
339
   end "=";
340
 
341
   --------------------
342
   -- Bitmap_Operand --
343
   --------------------
344
 
345
   procedure Bitmap_Operand
346
     (Program : Program_Data;
347
      P       : Pointer;
348
      Op      : out Character_Class)
349
   is
350
      function Convert is new Ada.Unchecked_Conversion
351
        (Program_Data, Character_Class);
352
 
353
   begin
354
      Op (0 .. 31) := Convert (Program (P + Next_Pointer_Bytes .. P + 34));
355
   end Bitmap_Operand;
356
 
357
   -------------
358
   -- Compile --
359
   -------------
360
 
361
   procedure Compile
362
     (Matcher         : out Pattern_Matcher;
363
      Expression      : String;
364
      Final_Code_Size : out Program_Size;
365
      Flags           : Regexp_Flags := No_Flags)
366
   is
367
      --  We can't allocate space until we know how big the compiled form
368
      --  will be, but we can't compile it (and thus know how big it is)
369
      --  until we've got a place to put the code. So we cheat: we compile
370
      --  it twice, once with code generation turned off and size counting
371
      --  turned on, and once "for real".
372
 
373
      --  This also means that we don't allocate space until we are sure
374
      --  that the thing really will compile successfully, and we never
375
      --  have to move the code and thus invalidate pointers into it.
376
 
377
      --  Beware that the optimization-preparation code in here knows
378
      --  about some of the structure of the compiled regexp.
379
 
380
      PM        : Pattern_Matcher renames Matcher;
381
      Program   : Program_Data renames PM.Program;
382
 
383
      Emit_Ptr  : Pointer := Program_First;
384
 
385
      Parse_Pos : Natural := Expression'First; -- Input-scan pointer
386
      Parse_End : constant Natural := Expression'Last;
387
 
388
      ----------------------------
389
      -- Subprograms for Create --
390
      ----------------------------
391
 
392
      procedure Emit (B : Character);
393
      --  Output the Character B to the Program. If code-generation is
394
      --  disabled, simply increments the program counter.
395
 
396
      function  Emit_Node (Op : Opcode) return Pointer;
397
      --  If code-generation is enabled, Emit_Node outputs the
398
      --  opcode Op and reserves space for a pointer to the next node.
399
      --  Return value is the location of new opcode, i.e. old Emit_Ptr.
400
 
401
      procedure Emit_Natural (IP : Pointer; N : Natural);
402
      --  Split N on two characters at position IP
403
 
404
      procedure Emit_Class (Bitmap : Character_Class);
405
      --  Emits a character class
406
 
407
      procedure Case_Emit (C : Character);
408
      --  Emit C, after converting is to lower-case if the regular
409
      --  expression is case insensitive.
410
 
411
      procedure Parse
412
        (Parenthesized : Boolean;
413
         Flags         : out Expression_Flags;
414
         IP            : out Pointer);
415
      --  Parse regular expression, i.e. main body or parenthesized thing
416
      --  Caller must absorb opening parenthesis.
417
 
418
      procedure Parse_Branch
419
        (Flags         : out Expression_Flags;
420
         First         : Boolean;
421
         IP            : out Pointer);
422
      --  Implements the concatenation operator and handles '|'
423
      --  First should be true if this is the first item of the alternative.
424
 
425
      procedure Parse_Piece
426
        (Expr_Flags : out Expression_Flags;
427
         IP         : out Pointer);
428
      --  Parse something followed by possible [*+?]
429
 
430
      procedure Parse_Atom
431
        (Expr_Flags : out Expression_Flags;
432
         IP         : out Pointer);
433
      --  Parse_Atom is the lowest level parse procedure.
434
      --
435
      --  Optimization: Gobbles an entire sequence of ordinary characters so
436
      --  that it can turn them into a single node, which is smaller to store
437
      --  and faster to run. Backslashed characters are exceptions, each
438
      --  becoming a separate node; the code is simpler that way and it's
439
      --  not worth fixing.
440
 
441
      procedure Insert_Operator
442
        (Op       : Opcode;
443
         Operand  : Pointer;
444
         Greedy   : Boolean := True);
445
      --  Insert_Operator inserts an operator in front of an already-emitted
446
      --  operand and relocates the operand. This applies to PLUS and STAR.
447
      --  If Minmod is True, then the operator is non-greedy.
448
 
449
      function Insert_Operator_Before
450
        (Op      : Opcode;
451
         Operand : Pointer;
452
         Greedy  : Boolean;
453
         Opsize  : Pointer) return Pointer;
454
      --  Insert an operator before Operand (and move the latter forward in the
455
      --  program). Opsize is the size needed to represent the operator. This
456
      --  returns the position at which the operator was inserted, and moves
457
      --  Emit_Ptr after the new position of the operand.
458
 
459
      procedure Insert_Curly_Operator
460
        (Op      : Opcode;
461
         Min     : Natural;
462
         Max     : Natural;
463
         Operand : Pointer;
464
         Greedy  : Boolean := True);
465
      --  Insert an operator for CURLY ({Min}, {Min,} or {Min,Max}).
466
      --  If Minmod is True, then the operator is non-greedy.
467
 
468
      procedure Link_Tail (P, Val : Pointer);
469
      --  Link_Tail sets the next-pointer at the end of a node chain
470
 
471
      procedure Link_Operand_Tail (P, Val : Pointer);
472
      --  Link_Tail on operand of first argument; noop if operand-less
473
 
474
      procedure Fail (M : String);
475
      pragma No_Return (Fail);
476
      --  Fail with a diagnostic message, if possible
477
 
478
      function Is_Curly_Operator (IP : Natural) return Boolean;
479
      --  Return True if IP is looking at a '{' that is the beginning
480
      --  of a curly operator, i.e. it matches {\d+,?\d*}
481
 
482
      function Is_Mult (IP : Natural) return Boolean;
483
      --  Return True if C is a regexp multiplier: '+', '*' or '?'
484
 
485
      procedure Get_Curly_Arguments
486
        (IP     : Natural;
487
         Min    : out Natural;
488
         Max    : out Natural;
489
         Greedy : out Boolean);
490
      --  Parse the argument list for a curly operator.
491
      --  It is assumed that IP is indeed pointing at a valid operator.
492
      --  So what is IP and how come IP is not referenced in the body ???
493
 
494
      procedure Parse_Character_Class (IP : out Pointer);
495
      --  Parse a character class.
496
      --  The calling subprogram should consume the opening '[' before.
497
 
498
      procedure Parse_Literal
499
        (Expr_Flags : out Expression_Flags;
500
         IP         : out Pointer);
501
      --  Parse_Literal encodes a string of characters to be matched exactly
502
 
503
      function Parse_Posix_Character_Class return Std_Class;
504
      --  Parse a posix character class, like [:alpha:] or [:^alpha:].
505
      --  The caller is supposed to absorb the opening [.
506
 
507
      pragma Inline (Is_Mult);
508
      pragma Inline (Emit_Natural);
509
      pragma Inline (Parse_Character_Class); --  since used only once
510
 
511
      ---------------
512
      -- Case_Emit --
513
      ---------------
514
 
515
      procedure Case_Emit (C : Character) is
516
      begin
517
         if (Flags and Case_Insensitive) /= 0 then
518
            Emit (To_Lower (C));
519
 
520
         else
521
            --  Dump current character
522
 
523
            Emit (C);
524
         end if;
525
      end Case_Emit;
526
 
527
      ----------
528
      -- Emit --
529
      ----------
530
 
531
      procedure Emit (B : Character) is
532
      begin
533
         if Emit_Ptr <= PM.Size then
534
            Program (Emit_Ptr) := B;
535
         end if;
536
 
537
         Emit_Ptr := Emit_Ptr + 1;
538
      end Emit;
539
 
540
      ----------------
541
      -- Emit_Class --
542
      ----------------
543
 
544
      procedure Emit_Class (Bitmap : Character_Class) is
545
         subtype Program31 is Program_Data (0 .. 31);
546
 
547
         function Convert is new Ada.Unchecked_Conversion
548
           (Character_Class, Program31);
549
 
550
      begin
551
         --  What is the mysterious constant 31 here??? Can't it be expressed
552
         --  symbolically (size of integer - 1 or some such???). In any case
553
         --  it should be declared as a constant (and referenced presumably
554
         --  as this constant + 1 below.
555
 
556
         if Emit_Ptr + 31 <= PM.Size then
557
            Program (Emit_Ptr .. Emit_Ptr + 31) := Convert (Bitmap);
558
         end if;
559
 
560
         Emit_Ptr := Emit_Ptr + 32;
561
      end Emit_Class;
562
 
563
      ------------------
564
      -- Emit_Natural --
565
      ------------------
566
 
567
      procedure Emit_Natural (IP : Pointer; N : Natural) is
568
      begin
569
         if IP + 1 <= PM.Size then
570
            Program (IP + 1) := Character'Val (N / 256);
571
            Program (IP) := Character'Val (N mod 256);
572
         end if;
573
      end Emit_Natural;
574
 
575
      ---------------
576
      -- Emit_Node --
577
      ---------------
578
 
579
      function Emit_Node (Op : Opcode) return Pointer is
580
         Result : constant Pointer := Emit_Ptr;
581
 
582
      begin
583
         if Emit_Ptr + 2 <= PM.Size then
584
            Program (Emit_Ptr) := Character'Val (Opcode'Pos (Op));
585
            Program (Emit_Ptr + 1) := ASCII.NUL;
586
            Program (Emit_Ptr + 2) := ASCII.NUL;
587
         end if;
588
 
589
         Emit_Ptr := Emit_Ptr + Next_Pointer_Bytes;
590
         return Result;
591
      end Emit_Node;
592
 
593
      ----------
594
      -- Fail --
595
      ----------
596
 
597
      procedure Fail (M : String) is
598
      begin
599
         raise Expression_Error with M;
600
      end Fail;
601
 
602
      -------------------------
603
      -- Get_Curly_Arguments --
604
      -------------------------
605
 
606
      procedure Get_Curly_Arguments
607
        (IP     : Natural;
608
         Min    : out Natural;
609
         Max    : out Natural;
610
         Greedy : out Boolean)
611
      is
612
         pragma Unreferenced (IP);
613
 
614
         Save_Pos : Natural := Parse_Pos + 1;
615
 
616
      begin
617
         Min := 0;
618
         Max := Max_Curly_Repeat;
619
 
620
         while Expression (Parse_Pos) /= '}'
621
           and then Expression (Parse_Pos) /= ','
622
         loop
623
            Parse_Pos := Parse_Pos + 1;
624
         end loop;
625
 
626
         Min := Natural'Value (Expression (Save_Pos .. Parse_Pos - 1));
627
 
628
         if Expression (Parse_Pos) = ',' then
629
            Save_Pos := Parse_Pos + 1;
630
            while Expression (Parse_Pos) /= '}' loop
631
               Parse_Pos := Parse_Pos + 1;
632
            end loop;
633
 
634
            if Save_Pos /= Parse_Pos then
635
               Max := Natural'Value (Expression (Save_Pos .. Parse_Pos - 1));
636
            end if;
637
 
638
         else
639
            Max := Min;
640
         end if;
641
 
642
         if Parse_Pos < Expression'Last
643
           and then Expression (Parse_Pos + 1) = '?'
644
         then
645
            Greedy := False;
646
            Parse_Pos := Parse_Pos + 1;
647
 
648
         else
649
            Greedy := True;
650
         end if;
651
      end Get_Curly_Arguments;
652
 
653
      ---------------------------
654
      -- Insert_Curly_Operator --
655
      ---------------------------
656
 
657
      procedure Insert_Curly_Operator
658
        (Op      : Opcode;
659
         Min     : Natural;
660
         Max     : Natural;
661
         Operand : Pointer;
662
         Greedy  : Boolean := True)
663
      is
664
         Old    : Pointer;
665
      begin
666
         Old := Insert_Operator_Before (Op, Operand, Greedy, Opsize => 7);
667
         Emit_Natural (Old + Next_Pointer_Bytes, Min);
668
         Emit_Natural (Old + Next_Pointer_Bytes + 2, Max);
669
      end Insert_Curly_Operator;
670
 
671
      ----------------------------
672
      -- Insert_Operator_Before --
673
      ----------------------------
674
 
675
      function Insert_Operator_Before
676
        (Op      : Opcode;
677
         Operand : Pointer;
678
         Greedy  : Boolean;
679
         Opsize  : Pointer) return Pointer
680
      is
681
         Dest : constant Pointer := Emit_Ptr;
682
         Old  : Pointer;
683
         Size : Pointer := Opsize;
684
 
685
      begin
686
         --  If not greedy, we have to emit another opcode first
687
 
688
         if not Greedy then
689
            Size := Size + Next_Pointer_Bytes;
690
         end if;
691
 
692
         --  Move the operand in the byte-compilation, so that we can insert
693
         --  the operator before it.
694
 
695
         if Emit_Ptr + Size <= PM.Size then
696
            Program (Operand + Size .. Emit_Ptr + Size) :=
697
              Program (Operand .. Emit_Ptr);
698
         end if;
699
 
700
         --  Insert the operator at the position previously occupied by the
701
         --  operand.
702
 
703
         Emit_Ptr := Operand;
704
 
705
         if not Greedy then
706
            Old := Emit_Node (MINMOD);
707
            Link_Tail (Old, Old + Next_Pointer_Bytes);
708
         end if;
709
 
710
         Old := Emit_Node (Op);
711
         Emit_Ptr := Dest + Size;
712
         return Old;
713
      end Insert_Operator_Before;
714
 
715
      ---------------------
716
      -- Insert_Operator --
717
      ---------------------
718
 
719
      procedure Insert_Operator
720
        (Op      : Opcode;
721
         Operand : Pointer;
722
         Greedy  : Boolean := True)
723
      is
724
         Discard : Pointer;
725
         pragma Warnings (Off, Discard);
726
      begin
727
         Discard := Insert_Operator_Before
728
            (Op, Operand, Greedy, Opsize => Next_Pointer_Bytes);
729
      end Insert_Operator;
730
 
731
      -----------------------
732
      -- Is_Curly_Operator --
733
      -----------------------
734
 
735
      function Is_Curly_Operator (IP : Natural) return Boolean is
736
         Scan : Natural := IP;
737
 
738
      begin
739
         if Expression (Scan) /= '{'
740
           or else Scan + 2 > Expression'Last
741
           or else not Is_Digit (Expression (Scan + 1))
742
         then
743
            return False;
744
         end if;
745
 
746
         Scan := Scan + 1;
747
 
748
         --  The first digit
749
 
750
         loop
751
            Scan := Scan + 1;
752
 
753
            if Scan > Expression'Last then
754
               return False;
755
            end if;
756
 
757
            exit when not Is_Digit (Expression (Scan));
758
         end loop;
759
 
760
         if Expression (Scan) = ',' then
761
            loop
762
               Scan := Scan + 1;
763
 
764
               if Scan > Expression'Last then
765
                  return False;
766
               end if;
767
 
768
               exit when not Is_Digit (Expression (Scan));
769
            end loop;
770
         end if;
771
 
772
         return Expression (Scan) = '}';
773
      end Is_Curly_Operator;
774
 
775
      -------------
776
      -- Is_Mult --
777
      -------------
778
 
779
      function Is_Mult (IP : Natural) return Boolean is
780
         C : constant Character := Expression (IP);
781
 
782
      begin
783
         return     C = '*'
784
           or else  C = '+'
785
           or else  C = '?'
786
           or else (C = '{' and then Is_Curly_Operator (IP));
787
      end Is_Mult;
788
 
789
      -----------------------
790
      -- Link_Operand_Tail --
791
      -----------------------
792
 
793
      procedure Link_Operand_Tail (P, Val : Pointer) is
794
      begin
795
         if P <= PM.Size and then Program (P) = BRANCH then
796
            Link_Tail (Operand (P), Val);
797
         end if;
798
      end Link_Operand_Tail;
799
 
800
      ---------------
801
      -- Link_Tail --
802
      ---------------
803
 
804
      procedure Link_Tail (P, Val : Pointer) is
805
         Scan   : Pointer;
806
         Temp   : Pointer;
807
         Offset : Pointer;
808
 
809
      begin
810
         --  Find last node (the size of the pattern matcher might be too
811
         --  small, so don't try to read past its end).
812
 
813
         Scan := P;
814
         while Scan + Next_Pointer_Bytes <= PM.Size loop
815
            Temp := Get_Next (Program, Scan);
816
            exit when Temp = Scan;
817
            Scan := Temp;
818
         end loop;
819
 
820
         Offset := Val - Scan;
821
 
822
         Emit_Natural (Scan + 1, Natural (Offset));
823
      end Link_Tail;
824
 
825
      -----------
826
      -- Parse --
827
      -----------
828
 
829
      --  Combining parenthesis handling with the base level of regular
830
      --  expression is a trifle forced, but the need to tie the tails of the
831
      --  the branches to what follows makes it hard to avoid.
832
 
833
      procedure Parse
834
         (Parenthesized  : Boolean;
835
          Flags          : out Expression_Flags;
836
          IP             : out Pointer)
837
      is
838
         E           : String renames Expression;
839
         Br, Br2     : Pointer;
840
         Ender       : Pointer;
841
         Par_No      : Natural;
842
         New_Flags   : Expression_Flags;
843
         Have_Branch : Boolean := False;
844
 
845
      begin
846
         Flags := (Has_Width => True, others => False);  -- Tentatively
847
 
848
         --  Make an OPEN node, if parenthesized
849
 
850
         if Parenthesized then
851
            if Matcher.Paren_Count > Max_Paren_Count then
852
               Fail ("too many ()");
853
            end if;
854
 
855
            Par_No := Matcher.Paren_Count + 1;
856
            Matcher.Paren_Count := Matcher.Paren_Count + 1;
857
            IP := Emit_Node (OPEN);
858
            Emit (Character'Val (Par_No));
859
 
860
         else
861
            IP := 0;
862
            Par_No := 0;
863
         end if;
864
 
865
         --  Pick up the branches, linking them together
866
 
867
         Parse_Branch (New_Flags, True, Br);
868
 
869
         if Br = 0 then
870
            IP := 0;
871
            return;
872
         end if;
873
 
874
         if Parse_Pos <= Parse_End
875
           and then E (Parse_Pos) = '|'
876
         then
877
            Insert_Operator (BRANCH, Br);
878
            Have_Branch := True;
879
         end if;
880
 
881
         if IP /= 0 then
882
            Link_Tail (IP, Br);   -- OPEN -> first
883
         else
884
            IP := Br;
885
         end if;
886
 
887
         if not New_Flags.Has_Width then
888
            Flags.Has_Width := False;
889
         end if;
890
 
891
         Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
892
 
893
         while Parse_Pos <= Parse_End
894
           and then (E (Parse_Pos) = '|')
895
         loop
896
            Parse_Pos := Parse_Pos + 1;
897
            Parse_Branch (New_Flags, False, Br);
898
 
899
            if Br = 0 then
900
               IP := 0;
901
               return;
902
            end if;
903
 
904
            Link_Tail (IP, Br);   -- BRANCH -> BRANCH
905
 
906
            if not New_Flags.Has_Width then
907
               Flags.Has_Width := False;
908
            end if;
909
 
910
            Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
911
         end loop;
912
 
913
         --  Make a closing node, and hook it on the end
914
 
915
         if Parenthesized then
916
            Ender := Emit_Node (CLOSE);
917
            Emit (Character'Val (Par_No));
918
         else
919
            Ender := Emit_Node (EOP);
920
         end if;
921
 
922
         Link_Tail (IP, Ender);
923
 
924
         if Have_Branch and then Emit_Ptr <= PM.Size then
925
 
926
            --  Hook the tails of the branches to the closing node
927
 
928
            Br := IP;
929
            loop
930
               Link_Operand_Tail (Br, Ender);
931
               Br2 := Get_Next (Program, Br);
932
               exit when Br2 = Br;
933
               Br := Br2;
934
            end loop;
935
         end if;
936
 
937
         --  Check for proper termination
938
 
939
         if Parenthesized then
940
            if Parse_Pos > Parse_End or else E (Parse_Pos) /= ')' then
941
               Fail ("unmatched ()");
942
            end if;
943
 
944
            Parse_Pos := Parse_Pos + 1;
945
 
946
         elsif Parse_Pos <= Parse_End then
947
            if E (Parse_Pos) = ')'  then
948
               Fail ("unmatched ()");
949
            else
950
               Fail ("junk on end");         -- "Can't happen"
951
            end if;
952
         end if;
953
      end Parse;
954
 
955
      ----------------
956
      -- Parse_Atom --
957
      ----------------
958
 
959
      procedure Parse_Atom
960
        (Expr_Flags : out Expression_Flags;
961
         IP         : out Pointer)
962
      is
963
         C : Character;
964
 
965
      begin
966
         --  Tentatively set worst expression case
967
 
968
         Expr_Flags := Worst_Expression;
969
 
970
         C := Expression (Parse_Pos);
971
         Parse_Pos := Parse_Pos + 1;
972
 
973
         case (C) is
974
            when '^' =>
975
               IP :=
976
                 Emit_Node
977
                   (if (Flags and Multiple_Lines) /= 0 then MBOL
978
                    elsif (Flags and Single_Line) /= 0 then SBOL
979
                    else BOL);
980
 
981
            when '$' =>
982
               IP :=
983
                 Emit_Node
984
                   (if (Flags and Multiple_Lines) /= 0 then MEOL
985
                    elsif (Flags and Single_Line) /= 0 then SEOL
986
                    else EOL);
987
 
988
            when '.' =>
989
               IP :=
990
                 Emit_Node
991
                   (if (Flags and Single_Line) /= 0 then SANY else ANY);
992
 
993
               Expr_Flags.Has_Width := True;
994
               Expr_Flags.Simple := True;
995
 
996
            when '[' =>
997
               Parse_Character_Class (IP);
998
               Expr_Flags.Has_Width := True;
999
               Expr_Flags.Simple := True;
1000
 
1001
            when '(' =>
1002
               declare
1003
                  New_Flags : Expression_Flags;
1004
 
1005
               begin
1006
                  Parse (True, New_Flags, IP);
1007
 
1008
                  if IP = 0 then
1009
                     return;
1010
                  end if;
1011
 
1012
                  Expr_Flags.Has_Width :=
1013
                    Expr_Flags.Has_Width or else New_Flags.Has_Width;
1014
                  Expr_Flags.SP_Start :=
1015
                    Expr_Flags.SP_Start or else New_Flags.SP_Start;
1016
               end;
1017
 
1018
            when '|' | ASCII.LF | ')' =>
1019
               Fail ("internal urp");  --  Supposed to be caught earlier
1020
 
1021
            when '?' | '+' | '*' =>
1022
               Fail (C & " follows nothing");
1023
 
1024
            when '{' =>
1025
               if Is_Curly_Operator (Parse_Pos - 1) then
1026
                  Fail (C & " follows nothing");
1027
               else
1028
                  Parse_Literal (Expr_Flags, IP);
1029
               end if;
1030
 
1031
            when '\' =>
1032
               if Parse_Pos > Parse_End then
1033
                  Fail ("trailing \");
1034
               end if;
1035
 
1036
               Parse_Pos := Parse_Pos + 1;
1037
 
1038
               case Expression (Parse_Pos - 1) is
1039
                  when 'b'        =>
1040
                     IP := Emit_Node (BOUND);
1041
 
1042
                  when 'B'        =>
1043
                     IP := Emit_Node (NBOUND);
1044
 
1045
                  when 's'        =>
1046
                     IP := Emit_Node (SPACE);
1047
                     Expr_Flags.Simple := True;
1048
                     Expr_Flags.Has_Width := True;
1049
 
1050
                  when 'S'        =>
1051
                     IP := Emit_Node (NSPACE);
1052
                     Expr_Flags.Simple := True;
1053
                     Expr_Flags.Has_Width := True;
1054
 
1055
                  when 'd'        =>
1056
                     IP := Emit_Node (DIGIT);
1057
                     Expr_Flags.Simple := True;
1058
                     Expr_Flags.Has_Width := True;
1059
 
1060
                  when 'D'        =>
1061
                     IP := Emit_Node (NDIGIT);
1062
                     Expr_Flags.Simple := True;
1063
                     Expr_Flags.Has_Width := True;
1064
 
1065
                  when 'w'        =>
1066
                     IP := Emit_Node (ALNUM);
1067
                     Expr_Flags.Simple := True;
1068
                     Expr_Flags.Has_Width := True;
1069
 
1070
                  when 'W'        =>
1071
                     IP := Emit_Node (NALNUM);
1072
                     Expr_Flags.Simple := True;
1073
                     Expr_Flags.Has_Width := True;
1074
 
1075
                  when 'A'        =>
1076
                     IP := Emit_Node (SBOL);
1077
 
1078
                  when 'G'        =>
1079
                     IP := Emit_Node (SEOL);
1080
 
1081
                  when '0' .. '9' =>
1082
                     IP := Emit_Node (REFF);
1083
 
1084
                     declare
1085
                        Save : constant Natural := Parse_Pos - 1;
1086
 
1087
                     begin
1088
                        while Parse_Pos <= Expression'Last
1089
                          and then Is_Digit (Expression (Parse_Pos))
1090
                        loop
1091
                           Parse_Pos := Parse_Pos + 1;
1092
                        end loop;
1093
 
1094
                        Emit (Character'Val (Natural'Value
1095
                               (Expression (Save .. Parse_Pos - 1))));
1096
                     end;
1097
 
1098
                  when others =>
1099
                     Parse_Pos := Parse_Pos - 1;
1100
                     Parse_Literal (Expr_Flags, IP);
1101
               end case;
1102
 
1103
            when others =>
1104
               Parse_Literal (Expr_Flags, IP);
1105
         end case;
1106
      end Parse_Atom;
1107
 
1108
      ------------------
1109
      -- Parse_Branch --
1110
      ------------------
1111
 
1112
      procedure Parse_Branch
1113
        (Flags : out Expression_Flags;
1114
         First : Boolean;
1115
         IP    : out Pointer)
1116
      is
1117
         E         : String renames Expression;
1118
         Chain     : Pointer;
1119
         Last      : Pointer;
1120
         New_Flags : Expression_Flags;
1121
 
1122
         Discard : Pointer;
1123
         pragma Warnings (Off, Discard);
1124
 
1125
      begin
1126
         Flags := Worst_Expression;    -- Tentatively
1127
         IP := (if First then Emit_Ptr else Emit_Node (BRANCH));
1128
 
1129
         Chain := 0;
1130
         while Parse_Pos <= Parse_End
1131
           and then E (Parse_Pos) /= ')'
1132
           and then E (Parse_Pos) /= ASCII.LF
1133
           and then E (Parse_Pos) /= '|'
1134
         loop
1135
            Parse_Piece (New_Flags, Last);
1136
 
1137
            if Last = 0 then
1138
               IP := 0;
1139
               return;
1140
            end if;
1141
 
1142
            Flags.Has_Width := Flags.Has_Width or else New_Flags.Has_Width;
1143
 
1144
            if Chain = 0 then            -- First piece
1145
               Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
1146
            else
1147
               Link_Tail (Chain, Last);
1148
            end if;
1149
 
1150
            Chain := Last;
1151
         end loop;
1152
 
1153
         --  Case where loop ran zero CURLY
1154
 
1155
         if Chain = 0 then
1156
            Discard := Emit_Node (NOTHING);
1157
         end if;
1158
      end Parse_Branch;
1159
 
1160
      ---------------------------
1161
      -- Parse_Character_Class --
1162
      ---------------------------
1163
 
1164
      procedure Parse_Character_Class (IP : out Pointer) is
1165
         Bitmap      : Character_Class;
1166
         Invert      : Boolean := False;
1167
         In_Range    : Boolean := False;
1168
         Named_Class : Std_Class := ANYOF_NONE;
1169
         Value       : Character;
1170
         Last_Value  : Character := ASCII.NUL;
1171
 
1172
      begin
1173
         Reset_Class (Bitmap);
1174
 
1175
         --  Do we have an invert character class ?
1176
 
1177
         if Parse_Pos <= Parse_End
1178
           and then Expression (Parse_Pos) = '^'
1179
         then
1180
            Invert := True;
1181
            Parse_Pos := Parse_Pos + 1;
1182
         end if;
1183
 
1184
         --  First character can be ] or - without closing the class
1185
 
1186
         if Parse_Pos <= Parse_End
1187
           and then (Expression (Parse_Pos) = ']'
1188
                      or else Expression (Parse_Pos) = '-')
1189
         then
1190
            Set_In_Class (Bitmap, Expression (Parse_Pos));
1191
            Parse_Pos := Parse_Pos + 1;
1192
         end if;
1193
 
1194
         --  While we don't have the end of the class
1195
 
1196
         while Parse_Pos <= Parse_End
1197
           and then Expression (Parse_Pos) /= ']'
1198
         loop
1199
            Named_Class := ANYOF_NONE;
1200
            Value := Expression (Parse_Pos);
1201
            Parse_Pos := Parse_Pos + 1;
1202
 
1203
            --  Do we have a Posix character class
1204
            if Value = '[' then
1205
               Named_Class := Parse_Posix_Character_Class;
1206
 
1207
            elsif Value = '\' then
1208
               if Parse_Pos = Parse_End then
1209
                  Fail ("Trailing \");
1210
               end if;
1211
               Value := Expression (Parse_Pos);
1212
               Parse_Pos := Parse_Pos + 1;
1213
 
1214
               case Value is
1215
                  when 'w' => Named_Class := ANYOF_ALNUM;
1216
                  when 'W' => Named_Class := ANYOF_NALNUM;
1217
                  when 's' => Named_Class := ANYOF_SPACE;
1218
                  when 'S' => Named_Class := ANYOF_NSPACE;
1219
                  when 'd' => Named_Class := ANYOF_DIGIT;
1220
                  when 'D' => Named_Class := ANYOF_NDIGIT;
1221
                  when 'n' => Value := ASCII.LF;
1222
                  when 'r' => Value := ASCII.CR;
1223
                  when 't' => Value := ASCII.HT;
1224
                  when 'f' => Value := ASCII.FF;
1225
                  when 'e' => Value := ASCII.ESC;
1226
                  when 'a' => Value := ASCII.BEL;
1227
 
1228
                  --  when 'x'  => ??? hexadecimal value
1229
                  --  when 'c'  => ??? control character
1230
                  --  when '0'..'9' => ??? octal character
1231
 
1232
                  when others => null;
1233
               end case;
1234
            end if;
1235
 
1236
            --  Do we have a character class?
1237
 
1238
            if Named_Class /= ANYOF_NONE then
1239
 
1240
               --  A range like 'a-\d' or 'a-[:digit:] is not a range
1241
 
1242
               if In_Range then
1243
                  Set_In_Class (Bitmap, Last_Value);
1244
                  Set_In_Class (Bitmap, '-');
1245
                  In_Range := False;
1246
               end if;
1247
 
1248
               --  Expand the range
1249
 
1250
               case Named_Class is
1251
                  when ANYOF_NONE => null;
1252
 
1253
                  when ANYOF_ALNUM | ANYOF_ALNUMC =>
1254
                     for Value in Class_Byte'Range loop
1255
                        if Is_Alnum (Character'Val (Value)) then
1256
                           Set_In_Class (Bitmap, Character'Val (Value));
1257
                        end if;
1258
                     end loop;
1259
 
1260
                  when ANYOF_NALNUM | ANYOF_NALNUMC =>
1261
                     for Value in Class_Byte'Range loop
1262
                        if not Is_Alnum (Character'Val (Value)) then
1263
                           Set_In_Class (Bitmap, Character'Val (Value));
1264
                        end if;
1265
                     end loop;
1266
 
1267
                  when ANYOF_SPACE =>
1268
                     for Value in Class_Byte'Range loop
1269
                        if Is_White_Space (Character'Val (Value)) then
1270
                           Set_In_Class (Bitmap, Character'Val (Value));
1271
                        end if;
1272
                     end loop;
1273
 
1274
                  when ANYOF_NSPACE =>
1275
                     for Value in Class_Byte'Range loop
1276
                        if not Is_White_Space (Character'Val (Value)) then
1277
                           Set_In_Class (Bitmap, Character'Val (Value));
1278
                        end if;
1279
                     end loop;
1280
 
1281
                  when ANYOF_DIGIT =>
1282
                     for Value in Class_Byte'Range loop
1283
                        if Is_Digit (Character'Val (Value)) then
1284
                           Set_In_Class (Bitmap, Character'Val (Value));
1285
                        end if;
1286
                     end loop;
1287
 
1288
                  when ANYOF_NDIGIT =>
1289
                     for Value in Class_Byte'Range loop
1290
                        if not Is_Digit (Character'Val (Value)) then
1291
                           Set_In_Class (Bitmap, Character'Val (Value));
1292
                        end if;
1293
                     end loop;
1294
 
1295
                  when ANYOF_ALPHA =>
1296
                     for Value in Class_Byte'Range loop
1297
                        if Is_Letter (Character'Val (Value)) then
1298
                           Set_In_Class (Bitmap, Character'Val (Value));
1299
                        end if;
1300
                     end loop;
1301
 
1302
                  when ANYOF_NALPHA =>
1303
                     for Value in Class_Byte'Range loop
1304
                        if not Is_Letter (Character'Val (Value)) then
1305
                           Set_In_Class (Bitmap, Character'Val (Value));
1306
                        end if;
1307
                     end loop;
1308
 
1309
                  when ANYOF_ASCII =>
1310
                     for Value in 0 .. 127 loop
1311
                        Set_In_Class (Bitmap, Character'Val (Value));
1312
                     end loop;
1313
 
1314
                  when ANYOF_NASCII =>
1315
                     for Value in 128 .. 255 loop
1316
                        Set_In_Class (Bitmap, Character'Val (Value));
1317
                     end loop;
1318
 
1319
                  when ANYOF_CNTRL =>
1320
                     for Value in Class_Byte'Range loop
1321
                        if Is_Control (Character'Val (Value)) then
1322
                           Set_In_Class (Bitmap, Character'Val (Value));
1323
                        end if;
1324
                     end loop;
1325
 
1326
                  when ANYOF_NCNTRL =>
1327
                     for Value in Class_Byte'Range loop
1328
                        if not Is_Control (Character'Val (Value)) then
1329
                           Set_In_Class (Bitmap, Character'Val (Value));
1330
                        end if;
1331
                     end loop;
1332
 
1333
                  when ANYOF_GRAPH =>
1334
                     for Value in Class_Byte'Range loop
1335
                        if Is_Graphic (Character'Val (Value)) then
1336
                           Set_In_Class (Bitmap, Character'Val (Value));
1337
                        end if;
1338
                     end loop;
1339
 
1340
                  when ANYOF_NGRAPH =>
1341
                     for Value in Class_Byte'Range loop
1342
                        if not Is_Graphic (Character'Val (Value)) then
1343
                           Set_In_Class (Bitmap, Character'Val (Value));
1344
                        end if;
1345
                     end loop;
1346
 
1347
                  when ANYOF_LOWER =>
1348
                     for Value in Class_Byte'Range loop
1349
                        if Is_Lower (Character'Val (Value)) then
1350
                           Set_In_Class (Bitmap, Character'Val (Value));
1351
                        end if;
1352
                     end loop;
1353
 
1354
                  when ANYOF_NLOWER =>
1355
                     for Value in Class_Byte'Range loop
1356
                        if not Is_Lower (Character'Val (Value)) then
1357
                           Set_In_Class (Bitmap, Character'Val (Value));
1358
                        end if;
1359
                     end loop;
1360
 
1361
                  when ANYOF_PRINT =>
1362
                     for Value in Class_Byte'Range loop
1363
                        if Is_Printable (Character'Val (Value)) then
1364
                           Set_In_Class (Bitmap, Character'Val (Value));
1365
                        end if;
1366
                     end loop;
1367
 
1368
                  when ANYOF_NPRINT =>
1369
                     for Value in Class_Byte'Range loop
1370
                        if not Is_Printable (Character'Val (Value)) then
1371
                           Set_In_Class (Bitmap, Character'Val (Value));
1372
                        end if;
1373
                     end loop;
1374
 
1375
                  when ANYOF_PUNCT =>
1376
                     for Value in Class_Byte'Range loop
1377
                        if Is_Printable (Character'Val (Value))
1378
                          and then not Is_White_Space (Character'Val (Value))
1379
                          and then not Is_Alnum (Character'Val (Value))
1380
                        then
1381
                           Set_In_Class (Bitmap, Character'Val (Value));
1382
                        end if;
1383
                     end loop;
1384
 
1385
                  when ANYOF_NPUNCT =>
1386
                     for Value in Class_Byte'Range loop
1387
                        if not Is_Printable (Character'Val (Value))
1388
                          or else Is_White_Space (Character'Val (Value))
1389
                          or else Is_Alnum (Character'Val (Value))
1390
                        then
1391
                           Set_In_Class (Bitmap, Character'Val (Value));
1392
                        end if;
1393
                     end loop;
1394
 
1395
                  when ANYOF_UPPER =>
1396
                     for Value in Class_Byte'Range loop
1397
                        if Is_Upper (Character'Val (Value)) then
1398
                           Set_In_Class (Bitmap, Character'Val (Value));
1399
                        end if;
1400
                     end loop;
1401
 
1402
                  when ANYOF_NUPPER =>
1403
                     for Value in Class_Byte'Range loop
1404
                        if not Is_Upper (Character'Val (Value)) then
1405
                           Set_In_Class (Bitmap, Character'Val (Value));
1406
                        end if;
1407
                     end loop;
1408
 
1409
                  when ANYOF_XDIGIT =>
1410
                     for Value in Class_Byte'Range loop
1411
                        if Is_Hexadecimal_Digit (Character'Val (Value)) then
1412
                           Set_In_Class (Bitmap, Character'Val (Value));
1413
                        end if;
1414
                     end loop;
1415
 
1416
                  when ANYOF_NXDIGIT =>
1417
                     for Value in Class_Byte'Range loop
1418
                        if not Is_Hexadecimal_Digit
1419
                          (Character'Val (Value))
1420
                        then
1421
                           Set_In_Class (Bitmap, Character'Val (Value));
1422
                        end if;
1423
                     end loop;
1424
 
1425
               end case;
1426
 
1427
            --  Not a character range
1428
 
1429
            elsif not In_Range then
1430
               Last_Value := Value;
1431
 
1432
               if Parse_Pos > Expression'Last then
1433
                  Fail ("Empty character class []");
1434
               end if;
1435
 
1436
               if Expression (Parse_Pos) = '-'
1437
                 and then Parse_Pos < Parse_End
1438
                 and then Expression (Parse_Pos + 1) /= ']'
1439
               then
1440
                  Parse_Pos := Parse_Pos + 1;
1441
 
1442
                  --  Do we have a range like '\d-a' and '[:space:]-a'
1443
                  --  which is not a real range
1444
 
1445
                  if Named_Class /= ANYOF_NONE then
1446
                     Set_In_Class (Bitmap, '-');
1447
                  else
1448
                     In_Range := True;
1449
                  end if;
1450
 
1451
               else
1452
                  Set_In_Class (Bitmap, Value);
1453
 
1454
               end if;
1455
 
1456
            --  Else in a character range
1457
 
1458
            else
1459
               if Last_Value > Value then
1460
                  Fail ("Invalid Range [" & Last_Value'Img
1461
                        & "-" & Value'Img & "]");
1462
               end if;
1463
 
1464
               while Last_Value <= Value loop
1465
                  Set_In_Class (Bitmap, Last_Value);
1466
                  Last_Value := Character'Succ (Last_Value);
1467
               end loop;
1468
 
1469
               In_Range := False;
1470
 
1471
            end if;
1472
 
1473
         end loop;
1474
 
1475
         --  Optimize case-insensitive ranges (put the upper case or lower
1476
         --  case character into the bitmap)
1477
 
1478
         if (Flags and Case_Insensitive) /= 0 then
1479
            for C in Character'Range loop
1480
               if Get_From_Class (Bitmap, C) then
1481
                  Set_In_Class (Bitmap, To_Lower (C));
1482
                  Set_In_Class (Bitmap, To_Upper (C));
1483
               end if;
1484
            end loop;
1485
         end if;
1486
 
1487
         --  Optimize inverted classes
1488
 
1489
         if Invert then
1490
            for J in Bitmap'Range loop
1491
               Bitmap (J) := not Bitmap (J);
1492
            end loop;
1493
         end if;
1494
 
1495
         Parse_Pos := Parse_Pos + 1;
1496
 
1497
         --  Emit the class
1498
 
1499
         IP := Emit_Node (ANYOF);
1500
         Emit_Class (Bitmap);
1501
      end Parse_Character_Class;
1502
 
1503
      -------------------
1504
      -- Parse_Literal --
1505
      -------------------
1506
 
1507
      --  This is a bit tricky due to quoted chars and due to
1508
      --  the multiplier characters '*', '+', and '?' that
1509
      --  take the SINGLE char previous as their operand.
1510
 
1511
      --  On entry, the character at Parse_Pos - 1 is going to go
1512
      --  into the string, no matter what it is. It could be
1513
      --  following a \ if Parse_Atom was entered from the '\' case.
1514
 
1515
      --  Basic idea is to pick up a good char in C and examine
1516
      --  the next char. If Is_Mult (C) then twiddle, if it's a \
1517
      --  then frozzle and if it's another magic char then push C and
1518
      --  terminate the string. If none of the above, push C on the
1519
      --  string and go around again.
1520
 
1521
      --  Start_Pos is used to remember where "the current character"
1522
      --  starts in the string, if due to an Is_Mult we need to back
1523
      --  up and put the current char in a separate 1-character string.
1524
      --  When Start_Pos is 0, C is the only char in the string;
1525
      --  this is used in Is_Mult handling, and in setting the SIMPLE
1526
      --  flag at the end.
1527
 
1528
      procedure Parse_Literal
1529
        (Expr_Flags : out Expression_Flags;
1530
         IP         : out Pointer)
1531
      is
1532
         Start_Pos  : Natural := 0;
1533
         C          : Character;
1534
         Length_Ptr : Pointer;
1535
 
1536
         Has_Special_Operator : Boolean := False;
1537
 
1538
      begin
1539
         Parse_Pos := Parse_Pos - 1;      --  Look at current character
1540
 
1541
         IP :=
1542
           Emit_Node
1543
             (if (Flags and Case_Insensitive) /= 0 then EXACTF else EXACT);
1544
 
1545
         Length_Ptr := Emit_Ptr;
1546
         Emit_Ptr := String_Operand (IP);
1547
 
1548
         Parse_Loop :
1549
         loop
1550
            C := Expression (Parse_Pos); --  Get current character
1551
 
1552
            case C is
1553
               when '.' | '[' | '(' | ')' | '|' | ASCII.LF | '$' | '^' =>
1554
 
1555
                  if Start_Pos = 0 then
1556
                     Start_Pos := Parse_Pos;
1557
                     Emit (C);         --  First character is always emitted
1558
                  else
1559
                     exit Parse_Loop;  --  Else we are done
1560
                  end if;
1561
 
1562
               when '?' | '+' | '*' | '{' =>
1563
 
1564
                  if Start_Pos = 0 then
1565
                     Start_Pos := Parse_Pos;
1566
                     Emit (C);         --  First character is always emitted
1567
 
1568
                  --  Are we looking at an operator, or is this
1569
                  --  simply a normal character ?
1570
 
1571
                  elsif not Is_Mult (Parse_Pos) then
1572
                     Start_Pos := Parse_Pos;
1573
                     Case_Emit (C);
1574
 
1575
                  else
1576
                     --  We've got something like "abc?d".  Mark this as a
1577
                     --  special case. What we want to emit is a first
1578
                     --  constant string for "ab", then one for "c" that will
1579
                     --  ultimately be transformed with a CURLY operator, A
1580
                     --  special case has to be handled for "a?", since there
1581
                     --  is no initial string to emit.
1582
 
1583
                     Has_Special_Operator := True;
1584
                     exit Parse_Loop;
1585
                  end if;
1586
 
1587
               when '\' =>
1588
                  Start_Pos := Parse_Pos;
1589
 
1590
                  if Parse_Pos = Parse_End then
1591
                     Fail ("Trailing \");
1592
 
1593
                  else
1594
                     case Expression (Parse_Pos + 1) is
1595
                        when 'b' | 'B' | 's' | 'S' | 'd' | 'D'
1596
                          | 'w' | 'W' | '0' .. '9' | 'G' | 'A'
1597
                          => exit Parse_Loop;
1598
                        when 'n'         => Emit (ASCII.LF);
1599
                        when 't'         => Emit (ASCII.HT);
1600
                        when 'r'         => Emit (ASCII.CR);
1601
                        when 'f'         => Emit (ASCII.FF);
1602
                        when 'e'         => Emit (ASCII.ESC);
1603
                        when 'a'         => Emit (ASCII.BEL);
1604
                        when others      => Emit (Expression (Parse_Pos + 1));
1605
                     end case;
1606
 
1607
                     Parse_Pos := Parse_Pos + 1;
1608
                  end if;
1609
 
1610
               when others =>
1611
                  Start_Pos := Parse_Pos;
1612
                  Case_Emit (C);
1613
            end case;
1614
 
1615
            exit Parse_Loop when Emit_Ptr - Length_Ptr = 254;
1616
 
1617
            Parse_Pos := Parse_Pos + 1;
1618
 
1619
            exit Parse_Loop when Parse_Pos > Parse_End;
1620
         end loop Parse_Loop;
1621
 
1622
         --  Is the string followed by a '*+?{' operator ? If yes, and if there
1623
         --  is an initial string to emit, do it now.
1624
 
1625
         if Has_Special_Operator
1626
           and then Emit_Ptr >= Length_Ptr + Next_Pointer_Bytes
1627
         then
1628
            Emit_Ptr := Emit_Ptr - 1;
1629
            Parse_Pos := Start_Pos;
1630
         end if;
1631
 
1632
         if Length_Ptr <= PM.Size then
1633
            Program (Length_Ptr) := Character'Val (Emit_Ptr - Length_Ptr - 2);
1634
         end if;
1635
 
1636
         Expr_Flags.Has_Width := True;
1637
 
1638
         --  Slight optimization when there is a single character
1639
 
1640
         if Emit_Ptr = Length_Ptr + 2 then
1641
            Expr_Flags.Simple := True;
1642
         end if;
1643
      end Parse_Literal;
1644
 
1645
      -----------------
1646
      -- Parse_Piece --
1647
      -----------------
1648
 
1649
      --  Note that the branching code sequences used for '?' and the
1650
      --  general cases of '*' and + are somewhat optimized: they use
1651
      --  the same NOTHING node as both the endmarker for their branch
1652
      --  list and the body of the last branch. It might seem that
1653
      --  this node could be dispensed with entirely, but the endmarker
1654
      --  role is not redundant.
1655
 
1656
      procedure Parse_Piece
1657
        (Expr_Flags : out Expression_Flags;
1658
         IP         : out Pointer)
1659
      is
1660
         Op        : Character;
1661
         New_Flags : Expression_Flags;
1662
         Greedy    : Boolean := True;
1663
 
1664
      begin
1665
         Parse_Atom (New_Flags, IP);
1666
 
1667
         if IP = 0 then
1668
            return;
1669
         end if;
1670
 
1671
         if Parse_Pos > Parse_End
1672
           or else not Is_Mult (Parse_Pos)
1673
         then
1674
            Expr_Flags := New_Flags;
1675
            return;
1676
         end if;
1677
 
1678
         Op := Expression (Parse_Pos);
1679
 
1680
         Expr_Flags :=
1681
           (if Op /= '+'
1682
            then (SP_Start  => True, others => False)
1683
            else (Has_Width => True, others => False));
1684
 
1685
         --  Detect non greedy operators in the easy cases
1686
 
1687
         if Op /= '{'
1688
           and then Parse_Pos + 1 <= Parse_End
1689
           and then Expression (Parse_Pos + 1) = '?'
1690
         then
1691
            Greedy := False;
1692
            Parse_Pos := Parse_Pos + 1;
1693
         end if;
1694
 
1695
         --  Generate the byte code
1696
 
1697
         case Op is
1698
            when '*' =>
1699
 
1700
               if New_Flags.Simple then
1701
                  Insert_Operator (STAR, IP, Greedy);
1702
               else
1703
                  Link_Tail (IP, Emit_Node (WHILEM));
1704
                  Insert_Curly_Operator
1705
                    (CURLYX, 0, Max_Curly_Repeat, IP, Greedy);
1706
                  Link_Tail (IP, Emit_Node (NOTHING));
1707
               end if;
1708
 
1709
            when '+' =>
1710
 
1711
               if New_Flags.Simple then
1712
                  Insert_Operator (PLUS, IP, Greedy);
1713
               else
1714
                  Link_Tail (IP, Emit_Node (WHILEM));
1715
                  Insert_Curly_Operator
1716
                    (CURLYX, 1, Max_Curly_Repeat, IP, Greedy);
1717
                  Link_Tail (IP, Emit_Node (NOTHING));
1718
               end if;
1719
 
1720
            when '?' =>
1721
               if New_Flags.Simple then
1722
                  Insert_Curly_Operator (CURLY, 0, 1, IP, Greedy);
1723
               else
1724
                  Link_Tail (IP, Emit_Node (WHILEM));
1725
                  Insert_Curly_Operator (CURLYX, 0, 1, IP, Greedy);
1726
                  Link_Tail (IP, Emit_Node (NOTHING));
1727
               end if;
1728
 
1729
            when '{' =>
1730
               declare
1731
                  Min, Max : Natural;
1732
 
1733
               begin
1734
                  Get_Curly_Arguments (Parse_Pos, Min, Max, Greedy);
1735
 
1736
                  if New_Flags.Simple then
1737
                     Insert_Curly_Operator (CURLY, Min, Max, IP, Greedy);
1738
                  else
1739
                     Link_Tail (IP, Emit_Node (WHILEM));
1740
                     Insert_Curly_Operator (CURLYX, Min, Max, IP, Greedy);
1741
                     Link_Tail (IP, Emit_Node (NOTHING));
1742
                  end if;
1743
               end;
1744
 
1745
            when others =>
1746
               null;
1747
         end case;
1748
 
1749
         Parse_Pos := Parse_Pos + 1;
1750
 
1751
         if Parse_Pos <= Parse_End
1752
           and then Is_Mult (Parse_Pos)
1753
         then
1754
            Fail ("nested *+{");
1755
         end if;
1756
      end Parse_Piece;
1757
 
1758
      ---------------------------------
1759
      -- Parse_Posix_Character_Class --
1760
      ---------------------------------
1761
 
1762
      function Parse_Posix_Character_Class return Std_Class is
1763
         Invert : Boolean := False;
1764
         Class  : Std_Class := ANYOF_NONE;
1765
         E      : String renames Expression;
1766
 
1767
         --  Class names. Note that code assumes that the length of all
1768
         --  classes starting with the same letter have the same length.
1769
 
1770
         Alnum   : constant String := "alnum:]";
1771
         Alpha   : constant String := "alpha:]";
1772
         Ascii_C : constant String := "ascii:]";
1773
         Cntrl   : constant String := "cntrl:]";
1774
         Digit   : constant String := "digit:]";
1775
         Graph   : constant String := "graph:]";
1776
         Lower   : constant String := "lower:]";
1777
         Print   : constant String := "print:]";
1778
         Punct   : constant String := "punct:]";
1779
         Space   : constant String := "space:]";
1780
         Upper   : constant String := "upper:]";
1781
         Word    : constant String := "word:]";
1782
         Xdigit  : constant String := "xdigit:]";
1783
 
1784
      begin
1785
         --  Case of character class specified
1786
 
1787
         if Parse_Pos <= Parse_End
1788
           and then Expression (Parse_Pos) = ':'
1789
         then
1790
            Parse_Pos := Parse_Pos + 1;
1791
 
1792
            --  Do we have something like:  [[:^alpha:]]
1793
 
1794
            if Parse_Pos <= Parse_End
1795
              and then Expression (Parse_Pos) = '^'
1796
            then
1797
               Invert := True;
1798
               Parse_Pos := Parse_Pos + 1;
1799
            end if;
1800
 
1801
            --  Check for class names based on first letter
1802
 
1803
            case Expression (Parse_Pos) is
1804
               when 'a' =>
1805
 
1806
                  --  All 'a' classes have the same length (Alnum'Length)
1807
 
1808
                  if Parse_Pos + Alnum'Length - 1 <= Parse_End then
1809
                     if
1810
                       E (Parse_Pos .. Parse_Pos + Alnum'Length - 1) = Alnum
1811
                     then
1812
                        Class :=
1813
                          (if Invert then ANYOF_NALNUMC else ANYOF_ALNUMC);
1814
                        Parse_Pos := Parse_Pos + Alnum'Length;
1815
 
1816
                     elsif
1817
                       E (Parse_Pos .. Parse_Pos + Alpha'Length - 1) = Alpha
1818
                     then
1819
                        Class :=
1820
                          (if Invert then ANYOF_NALPHA else ANYOF_ALPHA);
1821
                        Parse_Pos := Parse_Pos + Alpha'Length;
1822
 
1823
                     elsif E (Parse_Pos .. Parse_Pos + Ascii_C'Length - 1) =
1824
                                                                      Ascii_C
1825
                     then
1826
                        Class :=
1827
                          (if Invert then ANYOF_NASCII else ANYOF_ASCII);
1828
                        Parse_Pos := Parse_Pos + Ascii_C'Length;
1829
                     else
1830
                        Fail ("Invalid character class: " & E);
1831
                     end if;
1832
 
1833
                  else
1834
                     Fail ("Invalid character class: " & E);
1835
                  end if;
1836
 
1837
               when 'c' =>
1838
                  if Parse_Pos + Cntrl'Length - 1 <= Parse_End
1839
                    and then
1840
                      E (Parse_Pos .. Parse_Pos + Cntrl'Length - 1) = Cntrl
1841
                  then
1842
                     Class := (if Invert then ANYOF_NCNTRL else ANYOF_CNTRL);
1843
                     Parse_Pos := Parse_Pos + Cntrl'Length;
1844
                  else
1845
                     Fail ("Invalid character class: " & E);
1846
                  end if;
1847
 
1848
               when 'd' =>
1849
                  if Parse_Pos + Digit'Length - 1 <= Parse_End
1850
                    and then
1851
                      E (Parse_Pos .. Parse_Pos + Digit'Length - 1) = Digit
1852
                  then
1853
                     Class := (if Invert then ANYOF_NDIGIT else ANYOF_DIGIT);
1854
                     Parse_Pos := Parse_Pos + Digit'Length;
1855
                  end if;
1856
 
1857
               when 'g' =>
1858
                  if Parse_Pos + Graph'Length - 1 <= Parse_End
1859
                    and then
1860
                      E (Parse_Pos .. Parse_Pos + Graph'Length - 1) = Graph
1861
                  then
1862
                     Class := (if Invert then ANYOF_NGRAPH else ANYOF_GRAPH);
1863
                     Parse_Pos := Parse_Pos + Graph'Length;
1864
                  else
1865
                     Fail ("Invalid character class: " & E);
1866
                  end if;
1867
 
1868
               when 'l' =>
1869
                  if Parse_Pos + Lower'Length - 1 <= Parse_End
1870
                    and then
1871
                      E (Parse_Pos .. Parse_Pos + Lower'Length - 1) = Lower
1872
                  then
1873
                     Class := (if Invert then ANYOF_NLOWER else ANYOF_LOWER);
1874
                     Parse_Pos := Parse_Pos + Lower'Length;
1875
                  else
1876
                     Fail ("Invalid character class: " & E);
1877
                  end if;
1878
 
1879
               when 'p' =>
1880
 
1881
                  --  All 'p' classes have the same length
1882
 
1883
                  if Parse_Pos + Print'Length - 1 <= Parse_End then
1884
                     if
1885
                       E (Parse_Pos .. Parse_Pos + Print'Length - 1) = Print
1886
                     then
1887
                        Class :=
1888
                          (if Invert then ANYOF_NPRINT else ANYOF_PRINT);
1889
                        Parse_Pos := Parse_Pos + Print'Length;
1890
 
1891
                     elsif
1892
                       E (Parse_Pos .. Parse_Pos + Punct'Length - 1) = Punct
1893
                     then
1894
                        Class :=
1895
                          (if Invert then ANYOF_NPUNCT else ANYOF_PUNCT);
1896
                        Parse_Pos := Parse_Pos + Punct'Length;
1897
 
1898
                     else
1899
                        Fail ("Invalid character class: " & E);
1900
                     end if;
1901
 
1902
                  else
1903
                     Fail ("Invalid character class: " & E);
1904
                  end if;
1905
 
1906
               when 's' =>
1907
                  if Parse_Pos + Space'Length - 1 <= Parse_End
1908
                    and then
1909
                      E (Parse_Pos .. Parse_Pos + Space'Length - 1) = Space
1910
                  then
1911
                     Class := (if Invert then ANYOF_NSPACE else ANYOF_SPACE);
1912
                     Parse_Pos := Parse_Pos + Space'Length;
1913
                  else
1914
                     Fail ("Invalid character class: " & E);
1915
                  end if;
1916
 
1917
               when 'u' =>
1918
                  if Parse_Pos + Upper'Length - 1 <= Parse_End
1919
                    and then
1920
                      E (Parse_Pos .. Parse_Pos + Upper'Length - 1) = Upper
1921
                  then
1922
                     Class := (if Invert then ANYOF_NUPPER else ANYOF_UPPER);
1923
                     Parse_Pos := Parse_Pos + Upper'Length;
1924
                  else
1925
                     Fail ("Invalid character class: " & E);
1926
                  end if;
1927
 
1928
               when 'w' =>
1929
                  if Parse_Pos + Word'Length - 1 <= Parse_End
1930
                    and then
1931
                      E (Parse_Pos .. Parse_Pos + Word'Length - 1) = Word
1932
                  then
1933
                     Class := (if Invert then ANYOF_NALNUM else ANYOF_ALNUM);
1934
                     Parse_Pos := Parse_Pos + Word'Length;
1935
                  else
1936
                     Fail ("Invalid character class: " & E);
1937
                  end if;
1938
 
1939
               when 'x' =>
1940
                  if Parse_Pos + Xdigit'Length - 1 <= Parse_End
1941
                    and then
1942
                      E (Parse_Pos .. Parse_Pos + Xdigit'Length - 1) = Xdigit
1943
                  then
1944
                     Class := (if Invert then ANYOF_NXDIGIT else ANYOF_XDIGIT);
1945
                     Parse_Pos := Parse_Pos + Xdigit'Length;
1946
 
1947
                  else
1948
                     Fail ("Invalid character class: " & E);
1949
                  end if;
1950
 
1951
               when others =>
1952
                  Fail ("Invalid character class: " & E);
1953
            end case;
1954
 
1955
         --  Character class not specified
1956
 
1957
         else
1958
            return ANYOF_NONE;
1959
         end if;
1960
 
1961
         return Class;
1962
      end Parse_Posix_Character_Class;
1963
 
1964
      --  Local Declarations
1965
 
1966
      Result : Pointer;
1967
 
1968
      Expr_Flags : Expression_Flags;
1969
      pragma Unreferenced (Expr_Flags);
1970
 
1971
   --  Start of processing for Compile
1972
 
1973
   begin
1974
      Parse (False, Expr_Flags, Result);
1975
 
1976
      if Result = 0 then
1977
         Fail ("Couldn't compile expression");
1978
      end if;
1979
 
1980
      Final_Code_Size := Emit_Ptr - 1;
1981
 
1982
      --  Do we want to actually compile the expression, or simply get the
1983
      --  code size ???
1984
 
1985
      if Emit_Ptr <= PM.Size then
1986
         Optimize (PM);
1987
      end if;
1988
 
1989
      PM.Flags := Flags;
1990
   end Compile;
1991
 
1992
   function Compile
1993
     (Expression : String;
1994
      Flags      : Regexp_Flags := No_Flags) return Pattern_Matcher
1995
   is
1996
      --  Assume the compiled regexp will fit in 1000 chars. If it does not we
1997
      --  will have to compile a second time once the correct size is known. If
1998
      --  it fits, we save a significant amount of time by avoiding the second
1999
      --  compilation.
2000
 
2001
      Dummy : Pattern_Matcher (1000);
2002
      Size  : Program_Size;
2003
 
2004
   begin
2005
      Compile (Dummy, Expression, Size, Flags);
2006
 
2007
      if Size <= Dummy.Size then
2008
         return Pattern_Matcher'
2009
           (Size             => Size,
2010
            First            => Dummy.First,
2011
            Anchored         => Dummy.Anchored,
2012
            Must_Have        => Dummy.Must_Have,
2013
            Must_Have_Length => Dummy.Must_Have_Length,
2014
            Paren_Count      => Dummy.Paren_Count,
2015
            Flags            => Dummy.Flags,
2016
            Program          =>
2017
              Dummy.Program
2018
                (Dummy.Program'First .. Dummy.Program'First + Size - 1));
2019
      else
2020
         --  We have to recompile now that we know the size
2021
         --  ??? Can we use Ada 2005's return construct ?
2022
 
2023
         declare
2024
            Result : Pattern_Matcher (Size);
2025
         begin
2026
            Compile (Result, Expression, Size, Flags);
2027
            return Result;
2028
         end;
2029
      end if;
2030
   end Compile;
2031
 
2032
   procedure Compile
2033
     (Matcher    : out Pattern_Matcher;
2034
      Expression : String;
2035
      Flags      : Regexp_Flags := No_Flags)
2036
   is
2037
      Size : Program_Size;
2038
 
2039
   begin
2040
      Compile (Matcher, Expression, Size, Flags);
2041
 
2042
      if Size > Matcher.Size then
2043
         raise Expression_Error with "Pattern_Matcher is too small";
2044
      end if;
2045
   end Compile;
2046
 
2047
   --------------------
2048
   -- Dump_Operation --
2049
   --------------------
2050
 
2051
   procedure Dump_Operation
2052
      (Program : Program_Data;
2053
       Index   : Pointer;
2054
       Indent  : Natural)
2055
   is
2056
      Current : Pointer := Index;
2057
   begin
2058
      Dump_Until (Program, Current, Current + 1, Indent);
2059
   end Dump_Operation;
2060
 
2061
   ----------------
2062
   -- Dump_Until --
2063
   ----------------
2064
 
2065
   procedure Dump_Until
2066
      (Program  : Program_Data;
2067
       Index    : in out Pointer;
2068
       Till     : Pointer;
2069
       Indent   : Natural;
2070
       Do_Print : Boolean := True)
2071
   is
2072
      function Image (S : String) return String;
2073
      --  Remove leading space
2074
 
2075
      -----------
2076
      -- Image --
2077
      -----------
2078
 
2079
      function Image (S : String) return String is
2080
      begin
2081
         if S (S'First) = ' ' then
2082
            return S (S'First + 1 .. S'Last);
2083
         else
2084
            return S;
2085
         end if;
2086
      end Image;
2087
 
2088
      --  Local variables
2089
 
2090
      Op           : Opcode;
2091
      Next         : Pointer;
2092
      Length       : Pointer;
2093
      Local_Indent : Natural := Indent;
2094
 
2095
   --  Start of processing for Dump_Until
2096
 
2097
   begin
2098
      while Index < Till loop
2099
         Op   := Opcode'Val (Character'Pos ((Program (Index))));
2100
         Next := Get_Next (Program, Index);
2101
 
2102
         if Do_Print then
2103
            declare
2104
               Point   : constant String := Pointer'Image (Index);
2105
            begin
2106
               Put ((1 .. 4 - Point'Length => ' ')
2107
                    & Point & ":"
2108
                    & (1 .. Local_Indent * 2 => ' ') & Opcode'Image (Op));
2109
            end;
2110
 
2111
            --  Print the parenthesis number
2112
 
2113
            if Op = OPEN or else Op = CLOSE or else Op = REFF then
2114
               Put (Image (Natural'Image
2115
                            (Character'Pos
2116
                               (Program (Index + Next_Pointer_Bytes)))));
2117
            end if;
2118
 
2119
            if Next = Index then
2120
               Put (" (-)");
2121
            else
2122
               Put (" (" & Image (Pointer'Image (Next)) & ")");
2123
            end if;
2124
         end if;
2125
 
2126
         case Op is
2127
            when ANYOF =>
2128
               declare
2129
                  Bitmap       : Character_Class;
2130
                  Last         : Character := ASCII.NUL;
2131
                  Current      : Natural := 0;
2132
                  Current_Char : Character;
2133
 
2134
               begin
2135
                  Bitmap_Operand (Program, Index, Bitmap);
2136
 
2137
                  if Do_Print then
2138
                     Put ("[");
2139
 
2140
                     while Current <= 255 loop
2141
                        Current_Char := Character'Val (Current);
2142
 
2143
                        --  First item in a range
2144
 
2145
                        if Get_From_Class (Bitmap, Current_Char) then
2146
                           Last := Current_Char;
2147
 
2148
                           --  Search for the last item in the range
2149
 
2150
                           loop
2151
                              Current := Current + 1;
2152
                              exit when Current > 255;
2153
                              Current_Char := Character'Val (Current);
2154
                              exit when
2155
                                not Get_From_Class (Bitmap, Current_Char);
2156
                           end loop;
2157
 
2158
                           if not Is_Graphic (Last) then
2159
                              Put (Last'Img);
2160
                           else
2161
                              Put (Last);
2162
                           end if;
2163
 
2164
                           if Character'Succ (Last) /= Current_Char then
2165
                              Put ("\-" & Character'Pred (Current_Char));
2166
                           end if;
2167
 
2168
                        else
2169
                           Current := Current + 1;
2170
                        end if;
2171
                     end loop;
2172
 
2173
                     Put_Line ("]");
2174
                  end if;
2175
 
2176
                  Index := Index + Next_Pointer_Bytes + Bitmap'Length;
2177
               end;
2178
 
2179
            when EXACT | EXACTF =>
2180
               Length := String_Length (Program, Index);
2181
               if Do_Print then
2182
                  Put (" (" & Image (Program_Size'Image (Length + 1))
2183
                          & " chars) <"
2184
                          & String (Program (String_Operand (Index)
2185
                                              .. String_Operand (Index)
2186
                                              + Length)));
2187
                  Put_Line (">");
2188
               end if;
2189
 
2190
               Index := String_Operand (Index) + Length + 1;
2191
 
2192
               --  Node operand
2193
 
2194
            when BRANCH | STAR | PLUS =>
2195
               if Do_Print then
2196
                  New_Line;
2197
               end if;
2198
 
2199
               Index  := Index + Next_Pointer_Bytes;
2200
               Dump_Until (Program, Index, Pointer'Min (Next, Till),
2201
                           Local_Indent + 1, Do_Print);
2202
 
2203
            when CURLY | CURLYX =>
2204
               if Do_Print then
2205
                  Put_Line
2206
                    (" {"
2207
                    & Image (Natural'Image
2208
                       (Read_Natural (Program, Index + Next_Pointer_Bytes)))
2209
                    & ","
2210
                    & Image (Natural'Image (Read_Natural (Program, Index + 5)))
2211
                    & "}");
2212
               end if;
2213
 
2214
               Index  := Index + 7;
2215
               Dump_Until (Program, Index, Pointer'Min (Next, Till),
2216
                           Local_Indent + 1, Do_Print);
2217
 
2218
            when OPEN =>
2219
               if Do_Print then
2220
                  New_Line;
2221
               end if;
2222
 
2223
               Index := Index + 4;
2224
               Local_Indent := Local_Indent + 1;
2225
 
2226
            when CLOSE | REFF =>
2227
               if Do_Print then
2228
                  New_Line;
2229
               end if;
2230
 
2231
               Index := Index + 4;
2232
 
2233
               if Op = CLOSE then
2234
                  Local_Indent := Local_Indent - 1;
2235
               end if;
2236
 
2237
            when others =>
2238
               Index := Index + Next_Pointer_Bytes;
2239
 
2240
               if Do_Print then
2241
                  New_Line;
2242
               end if;
2243
 
2244
               exit when Op = EOP;
2245
         end case;
2246
      end loop;
2247
   end Dump_Until;
2248
 
2249
   ----------
2250
   -- Dump --
2251
   ----------
2252
 
2253
   procedure Dump (Self : Pattern_Matcher) is
2254
      Program : Program_Data renames Self.Program;
2255
      Index   : Pointer := Program'First;
2256
 
2257
   --  Start of processing for Dump
2258
 
2259
   begin
2260
      Put_Line ("Must start with (Self.First) = "
2261
                & Character'Image (Self.First));
2262
 
2263
      if (Self.Flags and Case_Insensitive) /= 0 then
2264
         Put_Line ("  Case_Insensitive mode");
2265
      end if;
2266
 
2267
      if (Self.Flags and Single_Line) /= 0 then
2268
         Put_Line ("  Single_Line mode");
2269
      end if;
2270
 
2271
      if (Self.Flags and Multiple_Lines) /= 0 then
2272
         Put_Line ("  Multiple_Lines mode");
2273
      end if;
2274
 
2275
      Dump_Until (Program, Index, Self.Program'Last + 1, 0);
2276
   end Dump;
2277
 
2278
   --------------------
2279
   -- Get_From_Class --
2280
   --------------------
2281
 
2282
   function Get_From_Class
2283
     (Bitmap : Character_Class;
2284
      C      : Character) return Boolean
2285
   is
2286
      Value : constant Class_Byte := Character'Pos (C);
2287
   begin
2288
      return
2289
        (Bitmap (Value / 8) and Bit_Conversion (Value mod 8)) /= 0;
2290
   end Get_From_Class;
2291
 
2292
   --------------
2293
   -- Get_Next --
2294
   --------------
2295
 
2296
   function Get_Next (Program : Program_Data; IP : Pointer) return Pointer is
2297
   begin
2298
      return IP + Pointer (Read_Natural (Program, IP + 1));
2299
   end Get_Next;
2300
 
2301
   --------------
2302
   -- Is_Alnum --
2303
   --------------
2304
 
2305
   function Is_Alnum (C : Character) return Boolean is
2306
   begin
2307
      return Is_Alphanumeric (C) or else C = '_';
2308
   end Is_Alnum;
2309
 
2310
   ------------------
2311
   -- Is_Printable --
2312
   ------------------
2313
 
2314
   function Is_Printable (C : Character) return Boolean is
2315
   begin
2316
      --  Printable if space or graphic character or other whitespace
2317
      --  Other white space includes (HT/LF/VT/FF/CR = codes 9-13)
2318
 
2319
      return C in Character'Val (32) .. Character'Val (126)
2320
        or else C in ASCII.HT .. ASCII.CR;
2321
   end Is_Printable;
2322
 
2323
   --------------------
2324
   -- Is_White_Space --
2325
   --------------------
2326
 
2327
   function Is_White_Space (C : Character) return Boolean is
2328
   begin
2329
      --  Note: HT = 9, LF = 10, VT = 11, FF = 12, CR = 13
2330
 
2331
      return C = ' ' or else C in ASCII.HT .. ASCII.CR;
2332
   end Is_White_Space;
2333
 
2334
   -----------
2335
   -- Match --
2336
   -----------
2337
 
2338
   procedure Match
2339
     (Self       : Pattern_Matcher;
2340
      Data       : String;
2341
      Matches    : out Match_Array;
2342
      Data_First : Integer := -1;
2343
      Data_Last  : Positive := Positive'Last)
2344
   is
2345
      Program : Program_Data renames Self.Program; -- Shorter notation
2346
 
2347
      First_In_Data : constant Integer := Integer'Max (Data_First, Data'First);
2348
      Last_In_Data  : constant Integer := Integer'Min (Data_Last, Data'Last);
2349
 
2350
      --  Global work variables
2351
 
2352
      Input_Pos : Natural;           -- String-input pointer
2353
      BOL_Pos   : Natural;           -- Beginning of input, for ^ check
2354
      Matched   : Boolean := False;  -- Until proven True
2355
 
2356
      Matches_Full : Match_Array (0 .. Natural'Max (Self.Paren_Count,
2357
                                                    Matches'Last));
2358
      --  Stores the value of all the parenthesis pairs.
2359
      --  We do not use directly Matches, so that we can also use back
2360
      --  references (REFF) even if Matches is too small.
2361
 
2362
      type Natural_Array is array (Match_Count range <>) of Natural;
2363
      Matches_Tmp : Natural_Array (Matches_Full'Range);
2364
      --  Save the opening position of parenthesis
2365
 
2366
      Last_Paren  : Natural := 0;
2367
      --  Last parenthesis seen
2368
 
2369
      Greedy : Boolean := True;
2370
      --  True if the next operator should be greedy
2371
 
2372
      type Current_Curly_Record;
2373
      type Current_Curly_Access is access all Current_Curly_Record;
2374
      type Current_Curly_Record is record
2375
         Paren_Floor : Natural;  --  How far back to strip parenthesis data
2376
         Cur         : Integer;  --  How many instances of scan we've matched
2377
         Min         : Natural;  --  Minimal number of scans to match
2378
         Max         : Natural;  --  Maximal number of scans to match
2379
         Greedy      : Boolean;  --  Whether to work our way up or down
2380
         Scan        : Pointer;  --  The thing to match
2381
         Next        : Pointer;  --  What has to match after it
2382
         Lastloc     : Natural;  --  Where we started matching this scan
2383
         Old_Cc      : Current_Curly_Access; --  Before we started this one
2384
      end record;
2385
      --  Data used to handle the curly operator and the plus and star
2386
      --  operators for complex expressions.
2387
 
2388
      Current_Curly : Current_Curly_Access := null;
2389
      --  The curly currently being processed
2390
 
2391
      -----------------------
2392
      -- Local Subprograms --
2393
      -----------------------
2394
 
2395
      function Index (Start : Positive; C : Character) return Natural;
2396
      --  Find character C in Data starting at Start and return position
2397
 
2398
      function Repeat
2399
        (IP  : Pointer;
2400
         Max : Natural := Natural'Last) return Natural;
2401
      --  Repeatedly match something simple, report how many
2402
      --  It only matches on things of length 1.
2403
      --  Starting from Input_Pos, it matches at most Max CURLY.
2404
 
2405
      function Try (Pos : Positive) return Boolean;
2406
      --  Try to match at specific point
2407
 
2408
      function Match (IP : Pointer) return Boolean;
2409
      --  This is the main matching routine. Conceptually the strategy
2410
      --  is simple:  check to see whether the current node matches,
2411
      --  call self recursively to see whether the rest matches,
2412
      --  and then act accordingly.
2413
      --
2414
      --  In practice Match makes some effort to avoid recursion, in
2415
      --  particular by going through "ordinary" nodes (that don't
2416
      --  need to know whether the rest of the match failed) by
2417
      --  using a loop instead of recursion.
2418
      --  Why is the above comment part of the spec rather than body ???
2419
 
2420
      function Match_Whilem return Boolean;
2421
      --  Return True if a WHILEM matches the Current_Curly
2422
 
2423
      function Recurse_Match (IP : Pointer; From : Natural) return Boolean;
2424
      pragma Inline (Recurse_Match);
2425
      --  Calls Match recursively. It saves and restores the parenthesis
2426
      --  status and location in the input stream correctly, so that
2427
      --  backtracking is possible
2428
 
2429
      function Match_Simple_Operator
2430
        (Op     : Opcode;
2431
         Scan   : Pointer;
2432
         Next   : Pointer;
2433
         Greedy : Boolean) return Boolean;
2434
      --  Return True it the simple operator (possibly non-greedy) matches
2435
 
2436
      Dump_Indent : Integer := -1;
2437
      procedure Dump_Current (Scan : Pointer; Prefix : Boolean := True);
2438
      procedure Dump_Error (Msg : String);
2439
      --  Debug: print the current context
2440
 
2441
      pragma Inline (Index);
2442
      pragma Inline (Repeat);
2443
 
2444
      --  These are two complex functions, but used only once
2445
 
2446
      pragma Inline (Match_Whilem);
2447
      pragma Inline (Match_Simple_Operator);
2448
 
2449
      -----------
2450
      -- Index --
2451
      -----------
2452
 
2453
      function Index (Start : Positive; C : Character) return Natural is
2454
      begin
2455
         for J in Start .. Last_In_Data loop
2456
            if Data (J) = C then
2457
               return J;
2458
            end if;
2459
         end loop;
2460
 
2461
         return 0;
2462
      end Index;
2463
 
2464
      -------------------
2465
      -- Recurse_Match --
2466
      -------------------
2467
 
2468
      function Recurse_Match (IP : Pointer; From : Natural) return Boolean is
2469
         L     : constant Natural := Last_Paren;
2470
         Tmp_F : constant Match_Array :=
2471
                   Matches_Full (From + 1 .. Matches_Full'Last);
2472
         Start : constant Natural_Array :=
2473
                   Matches_Tmp (From + 1 .. Matches_Tmp'Last);
2474
         Input : constant Natural := Input_Pos;
2475
 
2476
         Dump_Indent_Save : constant Integer := Dump_Indent;
2477
 
2478
      begin
2479
         if Match (IP) then
2480
            return True;
2481
         end if;
2482
 
2483
         Last_Paren := L;
2484
         Matches_Full (Tmp_F'Range) := Tmp_F;
2485
         Matches_Tmp (Start'Range) := Start;
2486
         Input_Pos := Input;
2487
         Dump_Indent := Dump_Indent_Save;
2488
         return False;
2489
      end Recurse_Match;
2490
 
2491
      ------------------
2492
      -- Dump_Current --
2493
      ------------------
2494
 
2495
      procedure Dump_Current (Scan : Pointer; Prefix : Boolean := True) is
2496
         Length : constant := 10;
2497
         Pos    : constant String := Integer'Image (Input_Pos);
2498
 
2499
      begin
2500
         if Prefix then
2501
            Put ((1 .. 5 - Pos'Length => ' '));
2502
            Put (Pos & " <"
2503
                 & Data (Input_Pos
2504
                     .. Integer'Min (Last_In_Data, Input_Pos + Length - 1)));
2505
            Put ((1 .. Length - 1 - Last_In_Data + Input_Pos => ' '));
2506
            Put ("> |");
2507
 
2508
         else
2509
            Put ("                    ");
2510
         end if;
2511
 
2512
         Dump_Operation (Program, Scan, Indent => Dump_Indent);
2513
      end Dump_Current;
2514
 
2515
      ----------------
2516
      -- Dump_Error --
2517
      ----------------
2518
 
2519
      procedure Dump_Error (Msg : String) is
2520
      begin
2521
         Put ("                   |     ");
2522
         Put ((1 .. Dump_Indent * 2 => ' '));
2523
         Put_Line (Msg);
2524
      end Dump_Error;
2525
 
2526
      -----------
2527
      -- Match --
2528
      -----------
2529
 
2530
      function Match (IP : Pointer) return Boolean is
2531
         Scan   : Pointer := IP;
2532
         Next   : Pointer;
2533
         Op     : Opcode;
2534
         Result : Boolean;
2535
 
2536
      begin
2537
         Dump_Indent := Dump_Indent + 1;
2538
 
2539
         State_Machine :
2540
         loop
2541
            pragma Assert (Scan /= 0);
2542
 
2543
            --  Determine current opcode and count its usage in debug mode
2544
 
2545
            Op := Opcode'Val (Character'Pos (Program (Scan)));
2546
 
2547
            --  Calculate offset of next instruction. Second character is most
2548
            --  significant in Program_Data.
2549
 
2550
            Next := Get_Next (Program, Scan);
2551
 
2552
            if Debug then
2553
               Dump_Current (Scan);
2554
            end if;
2555
 
2556
            case Op is
2557
               when EOP =>
2558
                  Dump_Indent := Dump_Indent - 1;
2559
                  return True;  --  Success !
2560
 
2561
               when BRANCH =>
2562
                  if Program (Next) /= BRANCH then
2563
                     Next := Operand (Scan); -- No choice, avoid recursion
2564
 
2565
                  else
2566
                     loop
2567
                        if Recurse_Match (Operand (Scan), 0) then
2568
                           Dump_Indent := Dump_Indent - 1;
2569
                           return True;
2570
                        end if;
2571
 
2572
                        Scan := Get_Next (Program, Scan);
2573
                        exit when Scan = 0 or else Program (Scan) /= BRANCH;
2574
                     end loop;
2575
 
2576
                     exit State_Machine;
2577
                  end if;
2578
 
2579
               when NOTHING =>
2580
                  null;
2581
 
2582
               when BOL =>
2583
                  exit State_Machine when Input_Pos /= BOL_Pos
2584
                    and then ((Self.Flags and Multiple_Lines) = 0
2585
                               or else Data (Input_Pos - 1) /= ASCII.LF);
2586
 
2587
               when MBOL =>
2588
                  exit State_Machine when Input_Pos /= BOL_Pos
2589
                    and then Data (Input_Pos - 1) /= ASCII.LF;
2590
 
2591
               when SBOL =>
2592
                  exit State_Machine when Input_Pos /= BOL_Pos;
2593
 
2594
               when EOL =>
2595
                  exit State_Machine when Input_Pos <= Data'Last
2596
                    and then ((Self.Flags and Multiple_Lines) = 0
2597
                               or else Data (Input_Pos) /= ASCII.LF);
2598
 
2599
               when MEOL =>
2600
                  exit State_Machine when Input_Pos <= Data'Last
2601
                    and then Data (Input_Pos) /= ASCII.LF;
2602
 
2603
               when SEOL =>
2604
                  exit State_Machine when Input_Pos <= Data'Last;
2605
 
2606
               when BOUND | NBOUND =>
2607
 
2608
                  --  Was last char in word ?
2609
 
2610
                  declare
2611
                     N  : Boolean := False;
2612
                     Ln : Boolean := False;
2613
 
2614
                  begin
2615
                     if Input_Pos /= First_In_Data then
2616
                        N := Is_Alnum (Data (Input_Pos - 1));
2617
                     end if;
2618
 
2619
                     Ln :=
2620
                       (if Input_Pos > Last_In_Data
2621
                        then False
2622
                        else Is_Alnum (Data (Input_Pos)));
2623
 
2624
                     if Op = BOUND then
2625
                        if N = Ln then
2626
                           exit State_Machine;
2627
                        end if;
2628
                     else
2629
                        if N /= Ln then
2630
                           exit State_Machine;
2631
                        end if;
2632
                     end if;
2633
                  end;
2634
 
2635
               when SPACE =>
2636
                  exit State_Machine when Input_Pos > Last_In_Data
2637
                    or else not Is_White_Space (Data (Input_Pos));
2638
                  Input_Pos := Input_Pos + 1;
2639
 
2640
               when NSPACE =>
2641
                  exit State_Machine when Input_Pos > Last_In_Data
2642
                    or else Is_White_Space (Data (Input_Pos));
2643
                  Input_Pos := Input_Pos + 1;
2644
 
2645
               when DIGIT =>
2646
                  exit State_Machine when Input_Pos > Last_In_Data
2647
                    or else not Is_Digit (Data (Input_Pos));
2648
                  Input_Pos := Input_Pos + 1;
2649
 
2650
               when NDIGIT =>
2651
                  exit State_Machine when Input_Pos > Last_In_Data
2652
                    or else Is_Digit (Data (Input_Pos));
2653
                  Input_Pos := Input_Pos + 1;
2654
 
2655
               when ALNUM =>
2656
                  exit State_Machine when Input_Pos > Last_In_Data
2657
                    or else not Is_Alnum (Data (Input_Pos));
2658
                  Input_Pos := Input_Pos + 1;
2659
 
2660
               when NALNUM =>
2661
                  exit State_Machine when Input_Pos > Last_In_Data
2662
                    or else Is_Alnum (Data (Input_Pos));
2663
                  Input_Pos := Input_Pos + 1;
2664
 
2665
               when ANY =>
2666
                  exit State_Machine when Input_Pos > Last_In_Data
2667
                    or else Data (Input_Pos) = ASCII.LF;
2668
                  Input_Pos := Input_Pos + 1;
2669
 
2670
               when SANY =>
2671
                  exit State_Machine when Input_Pos > Last_In_Data;
2672
                  Input_Pos := Input_Pos + 1;
2673
 
2674
               when EXACT =>
2675
                  declare
2676
                     Opnd    : Pointer  := String_Operand (Scan);
2677
                     Current : Positive := Input_Pos;
2678
                     Last    : constant Pointer :=
2679
                                 Opnd + String_Length (Program, Scan);
2680
 
2681
                  begin
2682
                     while Opnd <= Last loop
2683
                        exit State_Machine when Current > Last_In_Data
2684
                          or else Program (Opnd) /= Data (Current);
2685
                        Current := Current + 1;
2686
                        Opnd := Opnd + 1;
2687
                     end loop;
2688
 
2689
                     Input_Pos := Current;
2690
                  end;
2691
 
2692
               when EXACTF =>
2693
                  declare
2694
                     Opnd    : Pointer  := String_Operand (Scan);
2695
                     Current : Positive := Input_Pos;
2696
 
2697
                     Last : constant Pointer :=
2698
                              Opnd + String_Length (Program, Scan);
2699
 
2700
                  begin
2701
                     while Opnd <= Last loop
2702
                        exit State_Machine when Current > Last_In_Data
2703
                          or else Program (Opnd) /= To_Lower (Data (Current));
2704
                        Current := Current + 1;
2705
                        Opnd := Opnd + 1;
2706
                     end loop;
2707
 
2708
                     Input_Pos := Current;
2709
                  end;
2710
 
2711
               when ANYOF =>
2712
                  declare
2713
                     Bitmap : Character_Class;
2714
                  begin
2715
                     Bitmap_Operand (Program, Scan, Bitmap);
2716
                     exit State_Machine when Input_Pos > Last_In_Data
2717
                       or else not Get_From_Class (Bitmap, Data (Input_Pos));
2718
                     Input_Pos := Input_Pos + 1;
2719
                  end;
2720
 
2721
               when OPEN =>
2722
                  declare
2723
                     No : constant Natural :=
2724
                            Character'Pos (Program (Operand (Scan)));
2725
                  begin
2726
                     Matches_Tmp (No) := Input_Pos;
2727
                  end;
2728
 
2729
               when CLOSE =>
2730
                  declare
2731
                     No : constant Natural :=
2732
                            Character'Pos (Program (Operand (Scan)));
2733
 
2734
                  begin
2735
                     Matches_Full (No) := (Matches_Tmp (No), Input_Pos - 1);
2736
 
2737
                     if Last_Paren < No then
2738
                        Last_Paren := No;
2739
                     end if;
2740
                  end;
2741
 
2742
               when REFF =>
2743
                  declare
2744
                     No : constant Natural :=
2745
                            Character'Pos (Program (Operand (Scan)));
2746
 
2747
                     Data_Pos : Natural;
2748
 
2749
                  begin
2750
                     --  If we haven't seen that parenthesis yet
2751
 
2752
                     if Last_Paren < No then
2753
                        Dump_Indent := Dump_Indent - 1;
2754
 
2755
                        if Debug then
2756
                           Dump_Error ("REFF: No match, backtracking");
2757
                        end if;
2758
 
2759
                        return False;
2760
                     end if;
2761
 
2762
                     Data_Pos := Matches_Full (No).First;
2763
 
2764
                     while Data_Pos <= Matches_Full (No).Last loop
2765
                        if Input_Pos > Last_In_Data
2766
                          or else Data (Input_Pos) /= Data (Data_Pos)
2767
                        then
2768
                           Dump_Indent := Dump_Indent - 1;
2769
 
2770
                           if Debug then
2771
                              Dump_Error ("REFF: No match, backtracking");
2772
                           end if;
2773
 
2774
                           return False;
2775
                        end if;
2776
 
2777
                        Input_Pos := Input_Pos + 1;
2778
                        Data_Pos := Data_Pos + 1;
2779
                     end loop;
2780
                  end;
2781
 
2782
               when MINMOD =>
2783
                  Greedy := False;
2784
 
2785
               when STAR | PLUS | CURLY =>
2786
                  declare
2787
                     Greed : constant Boolean := Greedy;
2788
                  begin
2789
                     Greedy := True;
2790
                     Result := Match_Simple_Operator (Op, Scan, Next, Greed);
2791
                     Dump_Indent := Dump_Indent - 1;
2792
                     return Result;
2793
                  end;
2794
 
2795
               when CURLYX =>
2796
 
2797
                  --  Looking at something like:
2798
 
2799
                  --    1: CURLYX {n,m}  (->4)
2800
                  --    2:   code for complex thing  (->3)
2801
                  --    3:   WHILEM (->0)
2802
                  --    4: NOTHING
2803
 
2804
                  declare
2805
                     Min : constant Natural :=
2806
                             Read_Natural (Program, Scan + Next_Pointer_Bytes);
2807
                     Max : constant Natural :=
2808
                             Read_Natural
2809
                                (Program, Scan + Next_Pointer_Bytes + 2);
2810
                     Cc  : aliased Current_Curly_Record;
2811
 
2812
                     Has_Match : Boolean;
2813
 
2814
                  begin
2815
                     Cc := (Paren_Floor => Last_Paren,
2816
                            Cur         => -1,
2817
                            Min         => Min,
2818
                            Max         => Max,
2819
                            Greedy      => Greedy,
2820
                            Scan        => Scan + 7,
2821
                            Next        => Next,
2822
                            Lastloc     => 0,
2823
                            Old_Cc      => Current_Curly);
2824
                     Greedy := True;
2825
                     Current_Curly := Cc'Unchecked_Access;
2826
 
2827
                     Has_Match := Match (Next - Next_Pointer_Bytes);
2828
 
2829
                     --  Start on the WHILEM
2830
 
2831
                     Current_Curly := Cc.Old_Cc;
2832
                     Dump_Indent := Dump_Indent - 1;
2833
 
2834
                     if not Has_Match then
2835
                        if Debug then
2836
                           Dump_Error ("CURLYX failed...");
2837
                        end if;
2838
                     end if;
2839
 
2840
                     return Has_Match;
2841
                  end;
2842
 
2843
               when WHILEM =>
2844
                  Result := Match_Whilem;
2845
                  Dump_Indent := Dump_Indent - 1;
2846
 
2847
                  if Debug and then not Result then
2848
                     Dump_Error ("WHILEM: no match, backtracking");
2849
                  end if;
2850
 
2851
                  return Result;
2852
            end case;
2853
 
2854
            Scan := Next;
2855
         end loop State_Machine;
2856
 
2857
         if Debug then
2858
            Dump_Error ("failed...");
2859
            Dump_Indent := Dump_Indent - 1;
2860
         end if;
2861
 
2862
         --  If we get here, there is no match. For successful matches when EOP
2863
         --  is the terminating point.
2864
 
2865
         return False;
2866
      end Match;
2867
 
2868
      ---------------------------
2869
      -- Match_Simple_Operator --
2870
      ---------------------------
2871
 
2872
      function Match_Simple_Operator
2873
        (Op     : Opcode;
2874
         Scan   : Pointer;
2875
         Next   : Pointer;
2876
         Greedy : Boolean) return Boolean
2877
      is
2878
         Next_Char       : Character := ASCII.NUL;
2879
         Next_Char_Known : Boolean := False;
2880
         No              : Integer;  --  Can be negative
2881
         Min             : Natural;
2882
         Max             : Natural := Natural'Last;
2883
         Operand_Code    : Pointer;
2884
         Old             : Natural;
2885
         Last_Pos        : Natural;
2886
         Save            : constant Natural := Input_Pos;
2887
 
2888
      begin
2889
         --  Lookahead to avoid useless match attempts when we know what
2890
         --  character comes next.
2891
 
2892
         if Program (Next) = EXACT then
2893
            Next_Char := Program (String_Operand (Next));
2894
            Next_Char_Known := True;
2895
         end if;
2896
 
2897
         --  Find the minimal and maximal values for the operator
2898
 
2899
         case Op is
2900
            when STAR =>
2901
               Min := 0;
2902
               Operand_Code := Operand (Scan);
2903
 
2904
            when PLUS =>
2905
               Min := 1;
2906
               Operand_Code := Operand (Scan);
2907
 
2908
            when others =>
2909
               Min := Read_Natural (Program, Scan + Next_Pointer_Bytes);
2910
               Max := Read_Natural (Program, Scan + Next_Pointer_Bytes + 2);
2911
               Operand_Code := Scan + 7;
2912
         end case;
2913
 
2914
         if Debug then
2915
            Dump_Current (Operand_Code, Prefix => False);
2916
         end if;
2917
 
2918
         --  Non greedy operators
2919
 
2920
         if not Greedy then
2921
 
2922
            --  Test we can repeat at least Min times
2923
 
2924
            if Min /= 0 then
2925
               No := Repeat (Operand_Code, Min);
2926
 
2927
               if No < Min then
2928
                  if Debug then
2929
                     Dump_Error ("failed... matched" & No'Img & " times");
2930
                  end if;
2931
 
2932
                  return False;
2933
               end if;
2934
            end if;
2935
 
2936
            Old := Input_Pos;
2937
 
2938
            --  Find the place where 'next' could work
2939
 
2940
            if Next_Char_Known then
2941
 
2942
               --  Last position to check
2943
 
2944
               if Max = Natural'Last then
2945
                  Last_Pos := Last_In_Data;
2946
               else
2947
                  Last_Pos := Input_Pos + Max;
2948
 
2949
                  if Last_Pos > Last_In_Data then
2950
                     Last_Pos := Last_In_Data;
2951
                  end if;
2952
               end if;
2953
 
2954
               --  Look for the first possible opportunity
2955
 
2956
               if Debug then
2957
                  Dump_Error ("Next_Char must be " & Next_Char);
2958
               end if;
2959
 
2960
               loop
2961
                  --  Find the next possible position
2962
 
2963
                  while Input_Pos <= Last_Pos
2964
                    and then Data (Input_Pos) /= Next_Char
2965
                  loop
2966
                     Input_Pos := Input_Pos + 1;
2967
                  end loop;
2968
 
2969
                  if Input_Pos > Last_Pos then
2970
                     return False;
2971
                  end if;
2972
 
2973
                  --  Check that we still match if we stop at the position we
2974
                  --  just found.
2975
 
2976
                  declare
2977
                     Num : constant Natural := Input_Pos - Old;
2978
 
2979
                  begin
2980
                     Input_Pos := Old;
2981
 
2982
                     if Debug then
2983
                        Dump_Error ("Would we still match at that position?");
2984
                     end if;
2985
 
2986
                     if Repeat (Operand_Code, Num) < Num then
2987
                        return False;
2988
                     end if;
2989
                  end;
2990
 
2991
                  --  Input_Pos now points to the new position
2992
 
2993
                  if Match (Get_Next (Program, Scan)) then
2994
                     return True;
2995
                  end if;
2996
 
2997
                  Old := Input_Pos;
2998
                  Input_Pos := Input_Pos + 1;
2999
               end loop;
3000
 
3001
            --  We do not know what the next character is
3002
 
3003
            else
3004
               while Max >= Min loop
3005
                  if Debug then
3006
                     Dump_Error ("Non-greedy repeat, N=" & Min'Img);
3007
                     Dump_Error ("Do we still match Next if we stop here?");
3008
                  end if;
3009
 
3010
                  --  If the next character matches
3011
 
3012
                  if Recurse_Match (Next, 1) then
3013
                     return True;
3014
                  end if;
3015
 
3016
                  Input_Pos := Save + Min;
3017
 
3018
                  --  Could not or did not match -- move forward
3019
 
3020
                  if Repeat (Operand_Code, 1) /= 0 then
3021
                     Min := Min + 1;
3022
                  else
3023
                     if Debug then
3024
                        Dump_Error ("Non-greedy repeat failed...");
3025
                     end if;
3026
 
3027
                     return False;
3028
                  end if;
3029
               end loop;
3030
            end if;
3031
 
3032
            return False;
3033
 
3034
         --  Greedy operators
3035
 
3036
         else
3037
            No := Repeat (Operand_Code, Max);
3038
 
3039
            if Debug and then No < Min then
3040
               Dump_Error ("failed... matched" & No'Img & " times");
3041
            end if;
3042
 
3043
            --  ??? Perl has some special code here in case the next
3044
            --  instruction is of type EOL, since $ and \Z can match before
3045
            --  *and* after newline at the end.
3046
 
3047
            --  ??? Perl has some special code here in case (paren) is True
3048
 
3049
            --  Else, if we don't have any parenthesis
3050
 
3051
            while No >= Min loop
3052
               if not Next_Char_Known
3053
                 or else (Input_Pos <= Last_In_Data
3054
                           and then Data (Input_Pos) = Next_Char)
3055
               then
3056
                  if Match (Next) then
3057
                     return True;
3058
                  end if;
3059
               end if;
3060
 
3061
               --  Could not or did not work, we back up
3062
 
3063
               No := No - 1;
3064
               Input_Pos := Save + No;
3065
            end loop;
3066
 
3067
            return False;
3068
         end if;
3069
      end Match_Simple_Operator;
3070
 
3071
      ------------------
3072
      -- Match_Whilem --
3073
      ------------------
3074
 
3075
      --  This is really hard to understand, because after we match what we
3076
      --  are trying to match, we must make sure the rest of the REx is going
3077
      --  to match for sure, and to do that we have to go back UP the parse
3078
      --  tree by recursing ever deeper.  And if it fails, we have to reset
3079
      --  our parent's current state that we can try again after backing off.
3080
 
3081
      function Match_Whilem return Boolean is
3082
         Cc : constant Current_Curly_Access := Current_Curly;
3083
 
3084
         N  : constant Natural              := Cc.Cur + 1;
3085
         Ln : Natural                       := 0;
3086
 
3087
         Lastloc : constant Natural := Cc.Lastloc;
3088
         --  Detection of 0-len
3089
 
3090
      begin
3091
         --  If degenerate scan matches "", assume scan done
3092
 
3093
         if Input_Pos = Cc.Lastloc
3094
           and then N >= Cc.Min
3095
         then
3096
            --  Temporarily restore the old context, and check that we
3097
            --  match was comes after CURLYX.
3098
 
3099
            Current_Curly := Cc.Old_Cc;
3100
 
3101
            if Current_Curly /= null then
3102
               Ln := Current_Curly.Cur;
3103
            end if;
3104
 
3105
            if Match (Cc.Next) then
3106
               return True;
3107
            end if;
3108
 
3109
            if Current_Curly /= null then
3110
               Current_Curly.Cur := Ln;
3111
            end if;
3112
 
3113
            Current_Curly := Cc;
3114
            return False;
3115
         end if;
3116
 
3117
         --  First, just match a string of min scans
3118
 
3119
         if N < Cc.Min then
3120
            Cc.Cur := N;
3121
            Cc.Lastloc := Input_Pos;
3122
 
3123
            if Debug then
3124
               Dump_Error
3125
                 ("Tests that we match at least" & Cc.Min'Img & " N=" & N'Img);
3126
            end if;
3127
 
3128
            if Match (Cc.Scan) then
3129
               return True;
3130
            end if;
3131
 
3132
            Cc.Cur := N - 1;
3133
            Cc.Lastloc := Lastloc;
3134
 
3135
            if Debug then
3136
               Dump_Error ("failed...");
3137
            end if;
3138
 
3139
            return False;
3140
         end if;
3141
 
3142
         --  Prefer next over scan for minimal matching
3143
 
3144
         if not Cc.Greedy then
3145
            Current_Curly := Cc.Old_Cc;
3146
 
3147
            if Current_Curly /= null then
3148
               Ln := Current_Curly.Cur;
3149
            end if;
3150
 
3151
            if Recurse_Match (Cc.Next, Cc.Paren_Floor) then
3152
               return True;
3153
            end if;
3154
 
3155
            if Current_Curly /= null then
3156
               Current_Curly.Cur := Ln;
3157
            end if;
3158
 
3159
            Current_Curly := Cc;
3160
 
3161
            --  Maximum greed exceeded ?
3162
 
3163
            if N >= Cc.Max then
3164
               if Debug then
3165
                  Dump_Error ("failed...");
3166
               end if;
3167
               return False;
3168
            end if;
3169
 
3170
            --  Try scanning more and see if it helps
3171
            Cc.Cur := N;
3172
            Cc.Lastloc := Input_Pos;
3173
 
3174
            if Debug then
3175
               Dump_Error ("Next failed, what about Current?");
3176
            end if;
3177
 
3178
            if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3179
               return True;
3180
            end if;
3181
 
3182
            Cc.Cur := N - 1;
3183
            Cc.Lastloc := Lastloc;
3184
            return False;
3185
         end if;
3186
 
3187
         --  Prefer scan over next for maximal matching
3188
 
3189
         if N < Cc.Max then   --  more greed allowed ?
3190
            Cc.Cur := N;
3191
            Cc.Lastloc := Input_Pos;
3192
 
3193
            if Debug then
3194
               Dump_Error ("Recurse at current position");
3195
            end if;
3196
 
3197
            if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3198
               return True;
3199
            end if;
3200
         end if;
3201
 
3202
         --  Failed deeper matches of scan, so see if this one works
3203
 
3204
         Current_Curly := Cc.Old_Cc;
3205
 
3206
         if Current_Curly /= null then
3207
            Ln := Current_Curly.Cur;
3208
         end if;
3209
 
3210
         if Debug then
3211
            Dump_Error ("Failed matching for later positions");
3212
         end if;
3213
 
3214
         if Match (Cc.Next) then
3215
            return True;
3216
         end if;
3217
 
3218
         if Current_Curly /= null then
3219
            Current_Curly.Cur := Ln;
3220
         end if;
3221
 
3222
         Current_Curly := Cc;
3223
         Cc.Cur := N - 1;
3224
         Cc.Lastloc := Lastloc;
3225
 
3226
         if Debug then
3227
            Dump_Error ("failed...");
3228
         end if;
3229
 
3230
         return False;
3231
      end Match_Whilem;
3232
 
3233
      ------------
3234
      -- Repeat --
3235
      ------------
3236
 
3237
      function Repeat
3238
        (IP  : Pointer;
3239
         Max : Natural := Natural'Last) return Natural
3240
      is
3241
         Scan  : Natural := Input_Pos;
3242
         Last  : Natural;
3243
         Op    : constant Opcode := Opcode'Val (Character'Pos (Program (IP)));
3244
         Count : Natural;
3245
         C     : Character;
3246
         Is_First : Boolean := True;
3247
         Bitmap   : Character_Class;
3248
 
3249
      begin
3250
         if Max = Natural'Last or else Scan + Max - 1 > Last_In_Data then
3251
            Last := Last_In_Data;
3252
         else
3253
            Last := Scan + Max - 1;
3254
         end if;
3255
 
3256
         case Op is
3257
            when ANY =>
3258
               while Scan <= Last
3259
                 and then Data (Scan) /= ASCII.LF
3260
               loop
3261
                  Scan := Scan + 1;
3262
               end loop;
3263
 
3264
            when SANY =>
3265
               Scan := Last + 1;
3266
 
3267
            when EXACT =>
3268
 
3269
               --  The string has only one character if Repeat was called
3270
 
3271
               C := Program (String_Operand (IP));
3272
               while Scan <= Last
3273
                 and then C = Data (Scan)
3274
               loop
3275
                  Scan := Scan + 1;
3276
               end loop;
3277
 
3278
            when EXACTF =>
3279
 
3280
               --  The string has only one character if Repeat was called
3281
 
3282
               C := Program (String_Operand (IP));
3283
               while Scan <= Last
3284
                 and then To_Lower (C) = Data (Scan)
3285
               loop
3286
                  Scan := Scan + 1;
3287
               end loop;
3288
 
3289
            when ANYOF =>
3290
               if Is_First then
3291
                  Bitmap_Operand (Program, IP, Bitmap);
3292
                  Is_First := False;
3293
               end if;
3294
 
3295
               while Scan <= Last
3296
                 and then Get_From_Class (Bitmap, Data (Scan))
3297
               loop
3298
                  Scan := Scan + 1;
3299
               end loop;
3300
 
3301
            when ALNUM =>
3302
               while Scan <= Last
3303
                 and then Is_Alnum (Data (Scan))
3304
               loop
3305
                  Scan := Scan + 1;
3306
               end loop;
3307
 
3308
            when NALNUM =>
3309
               while Scan <= Last
3310
                 and then not Is_Alnum (Data (Scan))
3311
               loop
3312
                  Scan := Scan + 1;
3313
               end loop;
3314
 
3315
            when SPACE =>
3316
               while Scan <= Last
3317
                 and then Is_White_Space (Data (Scan))
3318
               loop
3319
                  Scan := Scan + 1;
3320
               end loop;
3321
 
3322
            when NSPACE =>
3323
               while Scan <= Last
3324
                 and then not Is_White_Space (Data (Scan))
3325
               loop
3326
                  Scan := Scan + 1;
3327
               end loop;
3328
 
3329
            when DIGIT  =>
3330
               while Scan <= Last
3331
                 and then Is_Digit (Data (Scan))
3332
               loop
3333
                  Scan := Scan + 1;
3334
               end loop;
3335
 
3336
            when NDIGIT  =>
3337
               while Scan <= Last
3338
                 and then not Is_Digit (Data (Scan))
3339
               loop
3340
                  Scan := Scan + 1;
3341
               end loop;
3342
 
3343
            when others =>
3344
               raise Program_Error;
3345
         end case;
3346
 
3347
         Count := Scan - Input_Pos;
3348
         Input_Pos := Scan;
3349
         return Count;
3350
      end Repeat;
3351
 
3352
      ---------
3353
      -- Try --
3354
      ---------
3355
 
3356
      function Try (Pos : Positive) return Boolean is
3357
      begin
3358
         Input_Pos  := Pos;
3359
         Last_Paren := 0;
3360
         Matches_Full := (others => No_Match);
3361
 
3362
         if Match (Program_First) then
3363
            Matches_Full (0) := (Pos, Input_Pos - 1);
3364
            return True;
3365
         end if;
3366
 
3367
         return False;
3368
      end Try;
3369
 
3370
   --  Start of processing for Match
3371
 
3372
   begin
3373
      --  Do we have the regexp Never_Match?
3374
 
3375
      if Self.Size = 0 then
3376
         Matches := (others => No_Match);
3377
         return;
3378
      end if;
3379
 
3380
      --  If there is a "must appear" string, look for it
3381
 
3382
      if Self.Must_Have_Length > 0 then
3383
         declare
3384
            First      : constant Character := Program (Self.Must_Have);
3385
            Must_First : constant Pointer := Self.Must_Have;
3386
            Must_Last  : constant Pointer :=
3387
                           Must_First + Pointer (Self.Must_Have_Length - 1);
3388
            Next_Try   : Natural := Index (First_In_Data, First);
3389
 
3390
         begin
3391
            while Next_Try /= 0
3392
              and then Data (Next_Try .. Next_Try + Self.Must_Have_Length - 1)
3393
                          = String (Program (Must_First .. Must_Last))
3394
            loop
3395
               Next_Try := Index (Next_Try + 1, First);
3396
            end loop;
3397
 
3398
            if Next_Try = 0 then
3399
               Matches := (others => No_Match);
3400
               return;                  -- Not present
3401
            end if;
3402
         end;
3403
      end if;
3404
 
3405
      --  Mark beginning of line for ^
3406
 
3407
      BOL_Pos := Data'First;
3408
 
3409
      --  Simplest case first: an anchored match need be tried only once
3410
 
3411
      if Self.Anchored and then (Self.Flags and Multiple_Lines) = 0 then
3412
         Matched := Try (First_In_Data);
3413
 
3414
      elsif Self.Anchored then
3415
         declare
3416
            Next_Try : Natural := First_In_Data;
3417
         begin
3418
            --  Test the first position in the buffer
3419
            Matched := Try (Next_Try);
3420
 
3421
            --  Else only test after newlines
3422
 
3423
            if not Matched then
3424
               while Next_Try <= Last_In_Data loop
3425
                  while Next_Try <= Last_In_Data
3426
                    and then Data (Next_Try) /= ASCII.LF
3427
                  loop
3428
                     Next_Try := Next_Try + 1;
3429
                  end loop;
3430
 
3431
                  Next_Try := Next_Try + 1;
3432
 
3433
                  if Next_Try <= Last_In_Data then
3434
                     Matched := Try (Next_Try);
3435
                     exit when Matched;
3436
                  end if;
3437
               end loop;
3438
            end if;
3439
         end;
3440
 
3441
      elsif Self.First /= ASCII.NUL then
3442
         --  We know what char it must start with
3443
 
3444
         declare
3445
            Next_Try : Natural := Index (First_In_Data, Self.First);
3446
 
3447
         begin
3448
            while Next_Try /= 0 loop
3449
               Matched := Try (Next_Try);
3450
               exit when Matched;
3451
               Next_Try := Index (Next_Try + 1, Self.First);
3452
            end loop;
3453
         end;
3454
 
3455
      else
3456
         --  Messy cases: try all locations (including for the empty string)
3457
 
3458
         Matched := Try (First_In_Data);
3459
 
3460
         if not Matched then
3461
            for S in First_In_Data + 1 .. Last_In_Data loop
3462
               Matched := Try (S);
3463
               exit when Matched;
3464
            end loop;
3465
         end if;
3466
      end if;
3467
 
3468
      --  Matched has its value
3469
 
3470
      for J in Last_Paren + 1 .. Matches'Last loop
3471
         Matches_Full (J) := No_Match;
3472
      end loop;
3473
 
3474
      Matches := Matches_Full (Matches'Range);
3475
   end Match;
3476
 
3477
   -----------
3478
   -- Match --
3479
   -----------
3480
 
3481
   function Match
3482
     (Self       : Pattern_Matcher;
3483
      Data       : String;
3484
      Data_First : Integer := -1;
3485
      Data_Last  : Positive := Positive'Last) return Natural
3486
   is
3487
      Matches : Match_Array (0 .. 0);
3488
 
3489
   begin
3490
      Match (Self, Data, Matches, Data_First, Data_Last);
3491
      if Matches (0) = No_Match then
3492
         return Data'First - 1;
3493
      else
3494
         return Matches (0).First;
3495
      end if;
3496
   end Match;
3497
 
3498
   function Match
3499
     (Self       : Pattern_Matcher;
3500
      Data       : String;
3501
      Data_First : Integer  := -1;
3502
      Data_Last  : Positive := Positive'Last) return Boolean
3503
   is
3504
      Matches : Match_Array (0 .. 0);
3505
 
3506
   begin
3507
      Match (Self, Data, Matches, Data_First, Data_Last);
3508
      return Matches (0).First >= Data'First;
3509
   end Match;
3510
 
3511
   procedure Match
3512
     (Expression : String;
3513
      Data       : String;
3514
      Matches    : out Match_Array;
3515
      Size       : Program_Size := Auto_Size;
3516
      Data_First : Integer      := -1;
3517
      Data_Last  : Positive     := Positive'Last)
3518
   is
3519
      PM            : Pattern_Matcher (Size);
3520
      Finalize_Size : Program_Size;
3521
      pragma Unreferenced (Finalize_Size);
3522
   begin
3523
      if Size = 0 then
3524
         Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3525
      else
3526
         Compile (PM, Expression, Finalize_Size);
3527
         Match (PM, Data, Matches, Data_First, Data_Last);
3528
      end if;
3529
   end Match;
3530
 
3531
   -----------
3532
   -- Match --
3533
   -----------
3534
 
3535
   function Match
3536
     (Expression : String;
3537
      Data       : String;
3538
      Size       : Program_Size := Auto_Size;
3539
      Data_First : Integer      := -1;
3540
      Data_Last  : Positive     := Positive'Last) return Natural
3541
   is
3542
      PM         : Pattern_Matcher (Size);
3543
      Final_Size : Program_Size;
3544
      pragma Unreferenced (Final_Size);
3545
   begin
3546
      if Size = 0 then
3547
         return Match (Compile (Expression), Data, Data_First, Data_Last);
3548
      else
3549
         Compile (PM, Expression, Final_Size);
3550
         return Match (PM, Data, Data_First, Data_Last);
3551
      end if;
3552
   end Match;
3553
 
3554
   -----------
3555
   -- Match --
3556
   -----------
3557
 
3558
   function  Match
3559
     (Expression : String;
3560
      Data       : String;
3561
      Size       : Program_Size := Auto_Size;
3562
      Data_First : Integer      := -1;
3563
      Data_Last  : Positive     := Positive'Last) return Boolean
3564
   is
3565
      Matches    : Match_Array (0 .. 0);
3566
      PM         : Pattern_Matcher (Size);
3567
      Final_Size : Program_Size;
3568
      pragma Unreferenced (Final_Size);
3569
   begin
3570
      if Size = 0 then
3571
         Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3572
      else
3573
         Compile (PM, Expression, Final_Size);
3574
         Match (PM, Data, Matches, Data_First, Data_Last);
3575
      end if;
3576
 
3577
      return Matches (0).First >= Data'First;
3578
   end Match;
3579
 
3580
   -------------
3581
   -- Operand --
3582
   -------------
3583
 
3584
   function Operand (P : Pointer) return Pointer is
3585
   begin
3586
      return P + Next_Pointer_Bytes;
3587
   end Operand;
3588
 
3589
   --------------
3590
   -- Optimize --
3591
   --------------
3592
 
3593
   procedure Optimize (Self : in out Pattern_Matcher) is
3594
      Scan    : Pointer;
3595
      Program : Program_Data renames Self.Program;
3596
 
3597
   begin
3598
      --  Start with safe defaults (no optimization):
3599
      --    *  No known first character of match
3600
      --    *  Does not necessarily start at beginning of line
3601
      --    *  No string known that has to appear in data
3602
 
3603
      Self.First := ASCII.NUL;
3604
      Self.Anchored := False;
3605
      Self.Must_Have := Program'Last + 1;
3606
      Self.Must_Have_Length := 0;
3607
 
3608
      Scan := Program_First;  --  First instruction (can be anything)
3609
 
3610
      if Program (Scan) = EXACT then
3611
         Self.First := Program (String_Operand (Scan));
3612
 
3613
      elsif Program (Scan) = BOL
3614
        or else Program (Scan) = SBOL
3615
        or else Program (Scan) = MBOL
3616
      then
3617
         Self.Anchored := True;
3618
      end if;
3619
   end Optimize;
3620
 
3621
   -----------------
3622
   -- Paren_Count --
3623
   -----------------
3624
 
3625
   function Paren_Count (Regexp : Pattern_Matcher) return Match_Count is
3626
   begin
3627
      return Regexp.Paren_Count;
3628
   end Paren_Count;
3629
 
3630
   -----------
3631
   -- Quote --
3632
   -----------
3633
 
3634
   function Quote (Str : String) return String is
3635
      S    : String (1 .. Str'Length * 2);
3636
      Last : Natural := 0;
3637
 
3638
   begin
3639
      for J in Str'Range loop
3640
         case Str (J) is
3641
            when '^' | '$' | '|' | '*' | '+' | '?' | '{' |
3642
                 '}' | '[' | ']' | '(' | ')' | '\' | '.' =>
3643
 
3644
               S (Last + 1) := '\';
3645
               S (Last + 2) := Str (J);
3646
               Last := Last + 2;
3647
 
3648
            when others =>
3649
               S (Last + 1) := Str (J);
3650
               Last := Last + 1;
3651
         end case;
3652
      end loop;
3653
 
3654
      return S (1 .. Last);
3655
   end Quote;
3656
 
3657
   ------------------
3658
   -- Read_Natural --
3659
   ------------------
3660
 
3661
   function Read_Natural
3662
     (Program : Program_Data;
3663
      IP      : Pointer) return Natural
3664
   is
3665
   begin
3666
      return Character'Pos (Program (IP)) +
3667
               256 * Character'Pos (Program (IP + 1));
3668
   end Read_Natural;
3669
 
3670
   -----------------
3671
   -- Reset_Class --
3672
   -----------------
3673
 
3674
   procedure Reset_Class (Bitmap : out Character_Class) is
3675
   begin
3676
      Bitmap := (others => 0);
3677
   end Reset_Class;
3678
 
3679
   ------------------
3680
   -- Set_In_Class --
3681
   ------------------
3682
 
3683
   procedure Set_In_Class
3684
     (Bitmap : in out Character_Class;
3685
      C      : Character)
3686
   is
3687
      Value : constant Class_Byte := Character'Pos (C);
3688
   begin
3689
      Bitmap (Value / 8) := Bitmap (Value / 8)
3690
        or Bit_Conversion (Value mod 8);
3691
   end Set_In_Class;
3692
 
3693
   -------------------
3694
   -- String_Length --
3695
   -------------------
3696
 
3697
   function String_Length
3698
     (Program : Program_Data;
3699
      P       : Pointer) return Program_Size
3700
   is
3701
   begin
3702
      pragma Assert (Program (P) = EXACT or else Program (P) = EXACTF);
3703
      return Character'Pos (Program (P + Next_Pointer_Bytes));
3704
   end String_Length;
3705
 
3706
   --------------------
3707
   -- String_Operand --
3708
   --------------------
3709
 
3710
   function String_Operand (P : Pointer) return Pointer is
3711
   begin
3712
      return P + 4;
3713
   end String_Operand;
3714
 
3715
end System.Regpat;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.