OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-taprop-hpux-dce.adb] - Blame information for rev 729

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
4
--                                                                          --
5
--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6
--                                                                          --
7
--                                  B o d y                                 --
8
--                                                                          --
9
--         Copyright (C) 1992-2011, Free Software Foundation, Inc.          --
10
--                                                                          --
11
-- GNARL is free software; you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNARL was developed by the GNARL team at Florida State University.       --
28
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This is a HP-UX DCE threads (HPUX 10) version of this package
33
 
34
--  This package contains all the GNULL primitives that interface directly with
35
--  the underlying OS.
36
 
37
pragma Polling (Off);
38
--  Turn off polling, we do not want ATC polling to take place during tasking
39
--  operations. It causes infinite loops and other problems.
40
 
41
with Ada.Unchecked_Conversion;
42
 
43
with Interfaces.C;
44
 
45
with System.Tasking.Debug;
46
with System.Interrupt_Management;
47
with System.OS_Constants;
48
with System.OS_Primitives;
49
with System.Task_Primitives.Interrupt_Operations;
50
 
51
pragma Warnings (Off);
52
with System.Interrupt_Management.Operations;
53
pragma Elaborate_All (System.Interrupt_Management.Operations);
54
pragma Warnings (On);
55
 
56
with System.Soft_Links;
57
--  We use System.Soft_Links instead of System.Tasking.Initialization
58
--  because the later is a higher level package that we shouldn't depend on.
59
--  For example when using the restricted run time, it is replaced by
60
--  System.Tasking.Restricted.Stages.
61
 
62
package body System.Task_Primitives.Operations is
63
 
64
   package OSC renames System.OS_Constants;
65
   package SSL renames System.Soft_Links;
66
 
67
   use System.Tasking.Debug;
68
   use System.Tasking;
69
   use Interfaces.C;
70
   use System.OS_Interface;
71
   use System.Parameters;
72
   use System.OS_Primitives;
73
 
74
   package PIO renames System.Task_Primitives.Interrupt_Operations;
75
 
76
   ----------------
77
   -- Local Data --
78
   ----------------
79
 
80
   --  The followings are logically constants, but need to be initialized
81
   --  at run time.
82
 
83
   Single_RTS_Lock : aliased RTS_Lock;
84
   --  This is a lock to allow only one thread of control in the RTS at
85
   --  a time; it is used to execute in mutual exclusion from all other tasks.
86
   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
87
 
88
   Environment_Task_Id : Task_Id;
89
   --  A variable to hold Task_Id for the environment task
90
 
91
   Unblocked_Signal_Mask : aliased sigset_t;
92
   --  The set of signals that should unblocked in all tasks
93
 
94
   Time_Slice_Val : Integer;
95
   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
96
 
97
   Dispatching_Policy : Character;
98
   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
99
 
100
   --  Note: the reason that Locking_Policy is not needed is that this
101
   --  is not implemented for DCE threads. The HPUX 10 port is at this
102
   --  stage considered dead, and no further work is planned on it.
103
 
104
   Foreign_Task_Elaborated : aliased Boolean := True;
105
   --  Used to identified fake tasks (i.e., non-Ada Threads)
106
 
107
   --------------------
108
   -- Local Packages --
109
   --------------------
110
 
111
   package Specific is
112
 
113
      procedure Initialize (Environment_Task : Task_Id);
114
      pragma Inline (Initialize);
115
      --  Initialize various data needed by this package
116
 
117
      function Is_Valid_Task return Boolean;
118
      pragma Inline (Is_Valid_Task);
119
      --  Does the executing thread have a TCB?
120
 
121
      procedure Set (Self_Id : Task_Id);
122
      pragma Inline (Set);
123
      --  Set the self id for the current task
124
 
125
      function Self return Task_Id;
126
      pragma Inline (Self);
127
      --  Return a pointer to the Ada Task Control Block of the calling task
128
 
129
   end Specific;
130
 
131
   package body Specific is separate;
132
   --  The body of this package is target specific
133
 
134
   ----------------------------------
135
   -- ATCB allocation/deallocation --
136
   ----------------------------------
137
 
138
   package body ATCB_Allocation is separate;
139
   --  The body of this package is shared across several targets
140
 
141
   ---------------------------------
142
   -- Support for foreign threads --
143
   ---------------------------------
144
 
145
   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
146
   --  Allocate and Initialize a new ATCB for the current Thread
147
 
148
   function Register_Foreign_Thread
149
     (Thread : Thread_Id) return Task_Id is separate;
150
 
151
   -----------------------
152
   -- Local Subprograms --
153
   -----------------------
154
 
155
   procedure Abort_Handler (Sig : Signal);
156
 
157
   function To_Address is
158
     new Ada.Unchecked_Conversion (Task_Id, System.Address);
159
 
160
   -------------------
161
   -- Abort_Handler --
162
   -------------------
163
 
164
   procedure Abort_Handler (Sig : Signal) is
165
      pragma Unreferenced (Sig);
166
 
167
      Self_Id : constant Task_Id := Self;
168
      Result  : Interfaces.C.int;
169
      Old_Set : aliased sigset_t;
170
 
171
   begin
172
      if Self_Id.Deferral_Level = 0
173
        and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
174
        and then not Self_Id.Aborting
175
      then
176
         Self_Id.Aborting := True;
177
 
178
         --  Make sure signals used for RTS internal purpose are unmasked
179
 
180
         Result :=
181
           pthread_sigmask
182
             (SIG_UNBLOCK,
183
              Unblocked_Signal_Mask'Access,
184
              Old_Set'Access);
185
         pragma Assert (Result = 0);
186
 
187
         raise Standard'Abort_Signal;
188
      end if;
189
   end Abort_Handler;
190
 
191
   -----------------
192
   -- Stack_Guard --
193
   -----------------
194
 
195
   --  The underlying thread system sets a guard page at the bottom of a thread
196
   --  stack, so nothing is needed.
197
   --  ??? Check the comment above
198
 
199
   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
200
      pragma Unreferenced (T, On);
201
   begin
202
      null;
203
   end Stack_Guard;
204
 
205
   -------------------
206
   -- Get_Thread_Id --
207
   -------------------
208
 
209
   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
210
   begin
211
      return T.Common.LL.Thread;
212
   end Get_Thread_Id;
213
 
214
   ----------
215
   -- Self --
216
   ----------
217
 
218
   function Self return Task_Id renames Specific.Self;
219
 
220
   ---------------------
221
   -- Initialize_Lock --
222
   ---------------------
223
 
224
   --  Note: mutexes and cond_variables needed per-task basis are initialized
225
   --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
226
   --  as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
227
   --  status change of RTS. Therefore raising Storage_Error in the following
228
   --  routines should be able to be handled safely.
229
 
230
   procedure Initialize_Lock
231
     (Prio : System.Any_Priority;
232
      L    : not null access Lock)
233
   is
234
      Attributes : aliased pthread_mutexattr_t;
235
      Result     : Interfaces.C.int;
236
 
237
   begin
238
      Result := pthread_mutexattr_init (Attributes'Access);
239
      pragma Assert (Result = 0 or else Result = ENOMEM);
240
 
241
      if Result = ENOMEM then
242
         raise Storage_Error;
243
      end if;
244
 
245
      L.Priority := Prio;
246
 
247
      Result := pthread_mutex_init (L.L'Access, Attributes'Access);
248
      pragma Assert (Result = 0 or else Result = ENOMEM);
249
 
250
      if Result = ENOMEM then
251
         raise Storage_Error;
252
      end if;
253
 
254
      Result := pthread_mutexattr_destroy (Attributes'Access);
255
      pragma Assert (Result = 0);
256
   end Initialize_Lock;
257
 
258
   procedure Initialize_Lock
259
     (L     : not null access RTS_Lock;
260
      Level : Lock_Level)
261
   is
262
      pragma Unreferenced (Level);
263
 
264
      Attributes : aliased pthread_mutexattr_t;
265
      Result     : Interfaces.C.int;
266
 
267
   begin
268
      Result := pthread_mutexattr_init (Attributes'Access);
269
      pragma Assert (Result = 0 or else Result = ENOMEM);
270
 
271
      if Result = ENOMEM then
272
         raise Storage_Error;
273
      end if;
274
 
275
      Result := pthread_mutex_init (L, Attributes'Access);
276
 
277
      pragma Assert (Result = 0 or else Result = ENOMEM);
278
 
279
      if Result = ENOMEM then
280
         raise Storage_Error;
281
      end if;
282
 
283
      Result := pthread_mutexattr_destroy (Attributes'Access);
284
      pragma Assert (Result = 0);
285
   end Initialize_Lock;
286
 
287
   -------------------
288
   -- Finalize_Lock --
289
   -------------------
290
 
291
   procedure Finalize_Lock (L : not null access Lock) is
292
      Result : Interfaces.C.int;
293
   begin
294
      Result := pthread_mutex_destroy (L.L'Access);
295
      pragma Assert (Result = 0);
296
   end Finalize_Lock;
297
 
298
   procedure Finalize_Lock (L : not null access RTS_Lock) is
299
      Result : Interfaces.C.int;
300
   begin
301
      Result := pthread_mutex_destroy (L);
302
      pragma Assert (Result = 0);
303
   end Finalize_Lock;
304
 
305
   ----------------
306
   -- Write_Lock --
307
   ----------------
308
 
309
   procedure Write_Lock
310
     (L                 : not null access Lock;
311
      Ceiling_Violation : out Boolean)
312
   is
313
      Result : Interfaces.C.int;
314
 
315
   begin
316
      L.Owner_Priority := Get_Priority (Self);
317
 
318
      if L.Priority < L.Owner_Priority then
319
         Ceiling_Violation := True;
320
         return;
321
      end if;
322
 
323
      Result := pthread_mutex_lock (L.L'Access);
324
      pragma Assert (Result = 0);
325
      Ceiling_Violation := False;
326
   end Write_Lock;
327
 
328
   procedure Write_Lock
329
     (L           : not null access RTS_Lock;
330
      Global_Lock : Boolean := False)
331
   is
332
      Result : Interfaces.C.int;
333
   begin
334
      if not Single_Lock or else Global_Lock then
335
         Result := pthread_mutex_lock (L);
336
         pragma Assert (Result = 0);
337
      end if;
338
   end Write_Lock;
339
 
340
   procedure Write_Lock (T : Task_Id) is
341
      Result : Interfaces.C.int;
342
   begin
343
      if not Single_Lock then
344
         Result := pthread_mutex_lock (T.Common.LL.L'Access);
345
         pragma Assert (Result = 0);
346
      end if;
347
   end Write_Lock;
348
 
349
   ---------------
350
   -- Read_Lock --
351
   ---------------
352
 
353
   procedure Read_Lock
354
     (L                 : not null access Lock;
355
      Ceiling_Violation : out Boolean)
356
   is
357
   begin
358
      Write_Lock (L, Ceiling_Violation);
359
   end Read_Lock;
360
 
361
   ------------
362
   -- Unlock --
363
   ------------
364
 
365
   procedure Unlock (L : not null access Lock) is
366
      Result : Interfaces.C.int;
367
   begin
368
      Result := pthread_mutex_unlock (L.L'Access);
369
      pragma Assert (Result = 0);
370
   end Unlock;
371
 
372
   procedure Unlock
373
     (L           : not null access RTS_Lock;
374
      Global_Lock : Boolean := False)
375
   is
376
      Result : Interfaces.C.int;
377
   begin
378
      if not Single_Lock or else Global_Lock then
379
         Result := pthread_mutex_unlock (L);
380
         pragma Assert (Result = 0);
381
      end if;
382
   end Unlock;
383
 
384
   procedure Unlock (T : Task_Id) is
385
      Result : Interfaces.C.int;
386
   begin
387
      if not Single_Lock then
388
         Result := pthread_mutex_unlock (T.Common.LL.L'Access);
389
         pragma Assert (Result = 0);
390
      end if;
391
   end Unlock;
392
 
393
   -----------------
394
   -- Set_Ceiling --
395
   -----------------
396
 
397
   --  Dynamic priority ceilings are not supported by the underlying system
398
 
399
   procedure Set_Ceiling
400
     (L    : not null access Lock;
401
      Prio : System.Any_Priority)
402
   is
403
      pragma Unreferenced (L, Prio);
404
   begin
405
      null;
406
   end Set_Ceiling;
407
 
408
   -----------
409
   -- Sleep --
410
   -----------
411
 
412
   procedure Sleep
413
     (Self_ID : Task_Id;
414
      Reason  : System.Tasking.Task_States)
415
   is
416
      pragma Unreferenced (Reason);
417
 
418
      Result : Interfaces.C.int;
419
 
420
   begin
421
      Result :=
422
        pthread_cond_wait
423
          (cond  => Self_ID.Common.LL.CV'Access,
424
           mutex => (if Single_Lock
425
                     then Single_RTS_Lock'Access
426
                     else Self_ID.Common.LL.L'Access));
427
 
428
      --  EINTR is not considered a failure
429
 
430
      pragma Assert (Result = 0 or else Result = EINTR);
431
   end Sleep;
432
 
433
   -----------------
434
   -- Timed_Sleep --
435
   -----------------
436
 
437
   procedure Timed_Sleep
438
     (Self_ID  : Task_Id;
439
      Time     : Duration;
440
      Mode     : ST.Delay_Modes;
441
      Reason   : System.Tasking.Task_States;
442
      Timedout : out Boolean;
443
      Yielded  : out Boolean)
444
   is
445
      pragma Unreferenced (Reason);
446
 
447
      Check_Time : constant Duration := Monotonic_Clock;
448
      Abs_Time   : Duration;
449
      Request    : aliased timespec;
450
      Result     : Interfaces.C.int;
451
 
452
   begin
453
      Timedout := True;
454
      Yielded := False;
455
 
456
      Abs_Time :=
457
        (if Mode = Relative
458
         then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
459
         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
460
 
461
      if Abs_Time > Check_Time then
462
         Request := To_Timespec (Abs_Time);
463
 
464
         loop
465
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
466
 
467
            Result :=
468
              pthread_cond_timedwait
469
                (cond    => Self_ID.Common.LL.CV'Access,
470
                 mutex   => (if Single_Lock
471
                             then Single_RTS_Lock'Access
472
                             else Self_ID.Common.LL.L'Access),
473
                 abstime => Request'Access);
474
 
475
            exit when Abs_Time <= Monotonic_Clock;
476
 
477
            if Result = 0 or Result = EINTR then
478
 
479
               --  Somebody may have called Wakeup for us
480
 
481
               Timedout := False;
482
               exit;
483
            end if;
484
 
485
            pragma Assert (Result = ETIMEDOUT);
486
         end loop;
487
      end if;
488
   end Timed_Sleep;
489
 
490
   -----------------
491
   -- Timed_Delay --
492
   -----------------
493
 
494
   procedure Timed_Delay
495
     (Self_ID : Task_Id;
496
      Time    : Duration;
497
      Mode    : ST.Delay_Modes)
498
   is
499
      Check_Time : constant Duration := Monotonic_Clock;
500
      Abs_Time   : Duration;
501
      Request    : aliased timespec;
502
 
503
      Result : Interfaces.C.int;
504
      pragma Warnings (Off, Result);
505
 
506
   begin
507
      if Single_Lock then
508
         Lock_RTS;
509
      end if;
510
 
511
      Write_Lock (Self_ID);
512
 
513
      Abs_Time :=
514
        (if Mode = Relative
515
         then Time + Check_Time
516
         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
517
 
518
      if Abs_Time > Check_Time then
519
         Request := To_Timespec (Abs_Time);
520
         Self_ID.Common.State := Delay_Sleep;
521
 
522
         loop
523
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
524
 
525
            Result :=
526
              pthread_cond_timedwait
527
                (cond    => Self_ID.Common.LL.CV'Access,
528
                 mutex   => (if Single_Lock
529
                             then Single_RTS_Lock'Access
530
                             else Self_ID.Common.LL.L'Access),
531
                 abstime => Request'Access);
532
 
533
            exit when Abs_Time <= Monotonic_Clock;
534
 
535
            pragma Assert (Result = 0 or else
536
              Result = ETIMEDOUT or else
537
              Result = EINTR);
538
         end loop;
539
 
540
         Self_ID.Common.State := Runnable;
541
      end if;
542
 
543
      Unlock (Self_ID);
544
 
545
      if Single_Lock then
546
         Unlock_RTS;
547
      end if;
548
 
549
      Result := sched_yield;
550
   end Timed_Delay;
551
 
552
   ---------------------
553
   -- Monotonic_Clock --
554
   ---------------------
555
 
556
   function Monotonic_Clock return Duration is
557
      TS     : aliased timespec;
558
      Result : Interfaces.C.int;
559
   begin
560
      Result := Clock_Gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
561
      pragma Assert (Result = 0);
562
      return To_Duration (TS);
563
   end Monotonic_Clock;
564
 
565
   -------------------
566
   -- RT_Resolution --
567
   -------------------
568
 
569
   function RT_Resolution return Duration is
570
   begin
571
      return 10#1.0#E-6;
572
   end RT_Resolution;
573
 
574
   ------------
575
   -- Wakeup --
576
   ------------
577
 
578
   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
579
      pragma Unreferenced (Reason);
580
      Result : Interfaces.C.int;
581
   begin
582
      Result := pthread_cond_signal (T.Common.LL.CV'Access);
583
      pragma Assert (Result = 0);
584
   end Wakeup;
585
 
586
   -----------
587
   -- Yield --
588
   -----------
589
 
590
   procedure Yield (Do_Yield : Boolean := True) is
591
      Result : Interfaces.C.int;
592
      pragma Unreferenced (Result);
593
   begin
594
      if Do_Yield then
595
         Result := sched_yield;
596
      end if;
597
   end Yield;
598
 
599
   ------------------
600
   -- Set_Priority --
601
   ------------------
602
 
603
   type Prio_Array_Type is array (System.Any_Priority) of Integer;
604
   pragma Atomic_Components (Prio_Array_Type);
605
 
606
   Prio_Array : Prio_Array_Type;
607
   --  Global array containing the id of the currently running task for
608
   --  each priority.
609
   --
610
   --  Note: assume we are on single processor with run-til-blocked scheduling
611
 
612
   procedure Set_Priority
613
     (T                   : Task_Id;
614
      Prio                : System.Any_Priority;
615
      Loss_Of_Inheritance : Boolean := False)
616
   is
617
      Result     : Interfaces.C.int;
618
      Array_Item : Integer;
619
      Param      : aliased struct_sched_param;
620
 
621
      function Get_Policy (Prio : System.Any_Priority) return Character;
622
      pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
623
      --  Get priority specific dispatching policy
624
 
625
      Priority_Specific_Policy : constant Character := Get_Policy (Prio);
626
      --  Upper case first character of the policy name corresponding to the
627
      --  task as set by a Priority_Specific_Dispatching pragma.
628
 
629
   begin
630
      Param.sched_priority  := Interfaces.C.int (Underlying_Priorities (Prio));
631
 
632
      if Dispatching_Policy = 'R'
633
        or else Priority_Specific_Policy = 'R'
634
        or else Time_Slice_Val > 0
635
      then
636
         Result :=
637
           pthread_setschedparam
638
             (T.Common.LL.Thread, SCHED_RR, Param'Access);
639
 
640
      elsif Dispatching_Policy = 'F'
641
        or else Priority_Specific_Policy = 'F'
642
        or else Time_Slice_Val = 0
643
      then
644
         Result :=
645
           pthread_setschedparam
646
             (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
647
 
648
      else
649
         Result :=
650
           pthread_setschedparam
651
             (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
652
      end if;
653
 
654
      pragma Assert (Result = 0);
655
 
656
      if Dispatching_Policy = 'F' or else Priority_Specific_Policy = 'F' then
657
 
658
         --  Annex D requirement [RM D.2.2 par. 9]:
659
         --    If the task drops its priority due to the loss of inherited
660
         --    priority, it is added at the head of the ready queue for its
661
         --    new active priority.
662
 
663
         if Loss_Of_Inheritance
664
           and then Prio < T.Common.Current_Priority
665
         then
666
            Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
667
            Prio_Array (T.Common.Base_Priority) := Array_Item;
668
 
669
            loop
670
               --  Let some processes a chance to arrive
671
 
672
               Yield;
673
 
674
               --  Then wait for our turn to proceed
675
 
676
               exit when Array_Item = Prio_Array (T.Common.Base_Priority)
677
                 or else Prio_Array (T.Common.Base_Priority) = 1;
678
            end loop;
679
 
680
            Prio_Array (T.Common.Base_Priority) :=
681
              Prio_Array (T.Common.Base_Priority) - 1;
682
         end if;
683
      end if;
684
 
685
      T.Common.Current_Priority := Prio;
686
   end Set_Priority;
687
 
688
   ------------------
689
   -- Get_Priority --
690
   ------------------
691
 
692
   function Get_Priority (T : Task_Id) return System.Any_Priority is
693
   begin
694
      return T.Common.Current_Priority;
695
   end Get_Priority;
696
 
697
   ----------------
698
   -- Enter_Task --
699
   ----------------
700
 
701
   procedure Enter_Task (Self_ID : Task_Id) is
702
   begin
703
      Self_ID.Common.LL.Thread := pthread_self;
704
      Specific.Set (Self_ID);
705
   end Enter_Task;
706
 
707
   -------------------
708
   -- Is_Valid_Task --
709
   -------------------
710
 
711
   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
712
 
713
   -----------------------------
714
   -- Register_Foreign_Thread --
715
   -----------------------------
716
 
717
   function Register_Foreign_Thread return Task_Id is
718
   begin
719
      if Is_Valid_Task then
720
         return Self;
721
      else
722
         return Register_Foreign_Thread (pthread_self);
723
      end if;
724
   end Register_Foreign_Thread;
725
 
726
   --------------------
727
   -- Initialize_TCB --
728
   --------------------
729
 
730
   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
731
      Mutex_Attr : aliased pthread_mutexattr_t;
732
      Result     : Interfaces.C.int;
733
      Cond_Attr  : aliased pthread_condattr_t;
734
 
735
   begin
736
      if not Single_Lock then
737
         Result := pthread_mutexattr_init (Mutex_Attr'Access);
738
         pragma Assert (Result = 0 or else Result = ENOMEM);
739
 
740
         if Result = 0 then
741
            Result :=
742
              pthread_mutex_init
743
                (Self_ID.Common.LL.L'Access, Mutex_Attr'Access);
744
            pragma Assert (Result = 0 or else Result = ENOMEM);
745
         end if;
746
 
747
         if Result /= 0 then
748
            Succeeded := False;
749
            return;
750
         end if;
751
 
752
         Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
753
         pragma Assert (Result = 0);
754
      end if;
755
 
756
      Result := pthread_condattr_init (Cond_Attr'Access);
757
      pragma Assert (Result = 0 or else Result = ENOMEM);
758
 
759
      if Result = 0 then
760
         Result :=
761
           pthread_cond_init
762
             (Self_ID.Common.LL.CV'Access,
763
              Cond_Attr'Access);
764
         pragma Assert (Result = 0 or else Result = ENOMEM);
765
      end if;
766
 
767
      if Result = 0 then
768
         Succeeded := True;
769
      else
770
         if not Single_Lock then
771
            Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
772
            pragma Assert (Result = 0);
773
         end if;
774
 
775
         Succeeded := False;
776
      end if;
777
 
778
      Result := pthread_condattr_destroy (Cond_Attr'Access);
779
      pragma Assert (Result = 0);
780
   end Initialize_TCB;
781
 
782
   -----------------
783
   -- Create_Task --
784
   -----------------
785
 
786
   procedure Create_Task
787
     (T          : Task_Id;
788
      Wrapper    : System.Address;
789
      Stack_Size : System.Parameters.Size_Type;
790
      Priority   : System.Any_Priority;
791
      Succeeded  : out Boolean)
792
   is
793
      Attributes : aliased pthread_attr_t;
794
      Result     : Interfaces.C.int;
795
 
796
      function Thread_Body_Access is new
797
        Ada.Unchecked_Conversion (System.Address, Thread_Body);
798
 
799
   begin
800
      Result := pthread_attr_init (Attributes'Access);
801
      pragma Assert (Result = 0 or else Result = ENOMEM);
802
 
803
      if Result /= 0 then
804
         Succeeded := False;
805
         return;
806
      end if;
807
 
808
      Result := pthread_attr_setstacksize
809
        (Attributes'Access, Interfaces.C.size_t (Stack_Size));
810
      pragma Assert (Result = 0);
811
 
812
      --  Since the initial signal mask of a thread is inherited from the
813
      --  creator, and the Environment task has all its signals masked, we
814
      --  do not need to manipulate caller's signal mask at this point.
815
      --  All tasks in RTS will have All_Tasks_Mask initially.
816
 
817
      Result := pthread_create
818
        (T.Common.LL.Thread'Access,
819
         Attributes'Access,
820
         Thread_Body_Access (Wrapper),
821
         To_Address (T));
822
      pragma Assert (Result = 0 or else Result = EAGAIN);
823
 
824
      Succeeded := Result = 0;
825
 
826
      pthread_detach (T.Common.LL.Thread'Access);
827
      --  Detach the thread using pthread_detach, since DCE threads do not have
828
      --  pthread_attr_set_detachstate.
829
 
830
      Result := pthread_attr_destroy (Attributes'Access);
831
      pragma Assert (Result = 0);
832
 
833
      Set_Priority (T, Priority);
834
   end Create_Task;
835
 
836
   ------------------
837
   -- Finalize_TCB --
838
   ------------------
839
 
840
   procedure Finalize_TCB (T : Task_Id) is
841
      Result : Interfaces.C.int;
842
 
843
   begin
844
      if not Single_Lock then
845
         Result := pthread_mutex_destroy (T.Common.LL.L'Access);
846
         pragma Assert (Result = 0);
847
      end if;
848
 
849
      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
850
      pragma Assert (Result = 0);
851
 
852
      if T.Known_Tasks_Index /= -1 then
853
         Known_Tasks (T.Known_Tasks_Index) := null;
854
      end if;
855
 
856
      ATCB_Allocation.Free_ATCB (T);
857
   end Finalize_TCB;
858
 
859
   ---------------
860
   -- Exit_Task --
861
   ---------------
862
 
863
   procedure Exit_Task is
864
   begin
865
      Specific.Set (null);
866
   end Exit_Task;
867
 
868
   ----------------
869
   -- Abort_Task --
870
   ----------------
871
 
872
   procedure Abort_Task (T : Task_Id) is
873
   begin
874
      --  Interrupt Server_Tasks may be waiting on an "event" flag (signal)
875
 
876
      if T.Common.State = Interrupt_Server_Blocked_On_Event_Flag then
877
         System.Interrupt_Management.Operations.Interrupt_Self_Process
878
           (PIO.Get_Interrupt_ID (T));
879
      end if;
880
   end Abort_Task;
881
 
882
   ----------------
883
   -- Initialize --
884
   ----------------
885
 
886
   procedure Initialize (S : in out Suspension_Object) is
887
      Mutex_Attr : aliased pthread_mutexattr_t;
888
      Cond_Attr  : aliased pthread_condattr_t;
889
      Result     : Interfaces.C.int;
890
   begin
891
      --  Initialize internal state (always to False (ARM D.10(6)))
892
 
893
      S.State := False;
894
      S.Waiting := False;
895
 
896
      --  Initialize internal mutex
897
 
898
      Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
899
      pragma Assert (Result = 0 or else Result = ENOMEM);
900
 
901
      if Result = ENOMEM then
902
         raise Storage_Error;
903
      end if;
904
 
905
      --  Initialize internal condition variable
906
 
907
      Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
908
      pragma Assert (Result = 0 or else Result = ENOMEM);
909
 
910
      if Result /= 0 then
911
         Result := pthread_mutex_destroy (S.L'Access);
912
         pragma Assert (Result = 0);
913
 
914
         if Result = ENOMEM then
915
            raise Storage_Error;
916
         end if;
917
      end if;
918
   end Initialize;
919
 
920
   --------------
921
   -- Finalize --
922
   --------------
923
 
924
   procedure Finalize (S : in out Suspension_Object) is
925
      Result  : Interfaces.C.int;
926
 
927
   begin
928
      --  Destroy internal mutex
929
 
930
      Result := pthread_mutex_destroy (S.L'Access);
931
      pragma Assert (Result = 0);
932
 
933
      --  Destroy internal condition variable
934
 
935
      Result := pthread_cond_destroy (S.CV'Access);
936
      pragma Assert (Result = 0);
937
   end Finalize;
938
 
939
   -------------------
940
   -- Current_State --
941
   -------------------
942
 
943
   function Current_State (S : Suspension_Object) return Boolean is
944
   begin
945
      --  We do not want to use lock on this read operation. State is marked
946
      --  as Atomic so that we ensure that the value retrieved is correct.
947
 
948
      return S.State;
949
   end Current_State;
950
 
951
   ---------------
952
   -- Set_False --
953
   ---------------
954
 
955
   procedure Set_False (S : in out Suspension_Object) is
956
      Result  : Interfaces.C.int;
957
 
958
   begin
959
      SSL.Abort_Defer.all;
960
 
961
      Result := pthread_mutex_lock (S.L'Access);
962
      pragma Assert (Result = 0);
963
 
964
      S.State := False;
965
 
966
      Result := pthread_mutex_unlock (S.L'Access);
967
      pragma Assert (Result = 0);
968
 
969
      SSL.Abort_Undefer.all;
970
   end Set_False;
971
 
972
   --------------
973
   -- Set_True --
974
   --------------
975
 
976
   procedure Set_True (S : in out Suspension_Object) is
977
      Result : Interfaces.C.int;
978
 
979
   begin
980
      SSL.Abort_Defer.all;
981
 
982
      Result := pthread_mutex_lock (S.L'Access);
983
      pragma Assert (Result = 0);
984
 
985
      --  If there is already a task waiting on this suspension object then
986
      --  we resume it, leaving the state of the suspension object to False,
987
      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
988
      --  the state to True.
989
 
990
      if S.Waiting then
991
         S.Waiting := False;
992
         S.State := False;
993
 
994
         Result := pthread_cond_signal (S.CV'Access);
995
         pragma Assert (Result = 0);
996
 
997
      else
998
         S.State := True;
999
      end if;
1000
 
1001
      Result := pthread_mutex_unlock (S.L'Access);
1002
      pragma Assert (Result = 0);
1003
 
1004
      SSL.Abort_Undefer.all;
1005
   end Set_True;
1006
 
1007
   ------------------------
1008
   -- Suspend_Until_True --
1009
   ------------------------
1010
 
1011
   procedure Suspend_Until_True (S : in out Suspension_Object) is
1012
      Result : Interfaces.C.int;
1013
 
1014
   begin
1015
      SSL.Abort_Defer.all;
1016
 
1017
      Result := pthread_mutex_lock (S.L'Access);
1018
      pragma Assert (Result = 0);
1019
 
1020
      if S.Waiting then
1021
         --  Program_Error must be raised upon calling Suspend_Until_True
1022
         --  if another task is already waiting on that suspension object
1023
         --  (ARM D.10 par. 10).
1024
 
1025
         Result := pthread_mutex_unlock (S.L'Access);
1026
         pragma Assert (Result = 0);
1027
 
1028
         SSL.Abort_Undefer.all;
1029
 
1030
         raise Program_Error;
1031
      else
1032
         --  Suspend the task if the state is False. Otherwise, the task
1033
         --  continues its execution, and the state of the suspension object
1034
         --  is set to False (ARM D.10 par. 9).
1035
 
1036
         if S.State then
1037
            S.State := False;
1038
         else
1039
            S.Waiting := True;
1040
 
1041
            loop
1042
               --  Loop in case pthread_cond_wait returns earlier than expected
1043
               --  (e.g. in case of EINTR caused by a signal).
1044
 
1045
               Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1046
               pragma Assert (Result = 0 or else Result = EINTR);
1047
 
1048
               exit when not S.Waiting;
1049
            end loop;
1050
         end if;
1051
 
1052
         Result := pthread_mutex_unlock (S.L'Access);
1053
         pragma Assert (Result = 0);
1054
 
1055
         SSL.Abort_Undefer.all;
1056
      end if;
1057
   end Suspend_Until_True;
1058
 
1059
   ----------------
1060
   -- Check_Exit --
1061
   ----------------
1062
 
1063
   --  Dummy version
1064
 
1065
   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1066
      pragma Unreferenced (Self_ID);
1067
   begin
1068
      return True;
1069
   end Check_Exit;
1070
 
1071
   --------------------
1072
   -- Check_No_Locks --
1073
   --------------------
1074
 
1075
   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1076
      pragma Unreferenced (Self_ID);
1077
   begin
1078
      return True;
1079
   end Check_No_Locks;
1080
 
1081
   ----------------------
1082
   -- Environment_Task --
1083
   ----------------------
1084
 
1085
   function Environment_Task return Task_Id is
1086
   begin
1087
      return Environment_Task_Id;
1088
   end Environment_Task;
1089
 
1090
   --------------
1091
   -- Lock_RTS --
1092
   --------------
1093
 
1094
   procedure Lock_RTS is
1095
   begin
1096
      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1097
   end Lock_RTS;
1098
 
1099
   ----------------
1100
   -- Unlock_RTS --
1101
   ----------------
1102
 
1103
   procedure Unlock_RTS is
1104
   begin
1105
      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1106
   end Unlock_RTS;
1107
 
1108
   ------------------
1109
   -- Suspend_Task --
1110
   ------------------
1111
 
1112
   function Suspend_Task
1113
     (T           : ST.Task_Id;
1114
      Thread_Self : Thread_Id) return Boolean
1115
   is
1116
      pragma Unreferenced (T);
1117
      pragma Unreferenced (Thread_Self);
1118
   begin
1119
      return False;
1120
   end Suspend_Task;
1121
 
1122
   -----------------
1123
   -- Resume_Task --
1124
   -----------------
1125
 
1126
   function Resume_Task
1127
     (T           : ST.Task_Id;
1128
      Thread_Self : Thread_Id) return Boolean
1129
   is
1130
      pragma Unreferenced (T);
1131
      pragma Unreferenced (Thread_Self);
1132
   begin
1133
      return False;
1134
   end Resume_Task;
1135
 
1136
   --------------------
1137
   -- Stop_All_Tasks --
1138
   --------------------
1139
 
1140
   procedure Stop_All_Tasks is
1141
   begin
1142
      null;
1143
   end Stop_All_Tasks;
1144
 
1145
   ---------------
1146
   -- Stop_Task --
1147
   ---------------
1148
 
1149
   function Stop_Task (T : ST.Task_Id) return Boolean is
1150
      pragma Unreferenced (T);
1151
   begin
1152
      return False;
1153
   end Stop_Task;
1154
 
1155
   -------------------
1156
   -- Continue_Task --
1157
   -------------------
1158
 
1159
   function Continue_Task (T : ST.Task_Id) return Boolean is
1160
      pragma Unreferenced (T);
1161
   begin
1162
      return False;
1163
   end Continue_Task;
1164
 
1165
   ----------------
1166
   -- Initialize --
1167
   ----------------
1168
 
1169
   procedure Initialize (Environment_Task : Task_Id) is
1170
      act     : aliased struct_sigaction;
1171
      old_act : aliased struct_sigaction;
1172
      Tmp_Set : aliased sigset_t;
1173
      Result  : Interfaces.C.int;
1174
 
1175
      function State
1176
        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1177
      pragma Import (C, State, "__gnat_get_interrupt_state");
1178
      --  Get interrupt state. Defined in a-init.c. The input argument is
1179
      --  the interrupt number, and the result is one of the following:
1180
 
1181
      Default : constant Character := 's';
1182
      --    'n'   this interrupt not set by any Interrupt_State pragma
1183
      --    'u'   Interrupt_State pragma set state to User
1184
      --    'r'   Interrupt_State pragma set state to Runtime
1185
      --    's'   Interrupt_State pragma set state to System (use "default"
1186
      --           system handler)
1187
 
1188
   begin
1189
      Environment_Task_Id := Environment_Task;
1190
 
1191
      Interrupt_Management.Initialize;
1192
 
1193
      --  Initialize the lock used to synchronize chain of all ATCBs
1194
 
1195
      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1196
 
1197
      Specific.Initialize (Environment_Task);
1198
 
1199
      --  Make environment task known here because it doesn't go through
1200
      --  Activate_Tasks, which does it for all other tasks.
1201
 
1202
      Known_Tasks (Known_Tasks'First) := Environment_Task;
1203
      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1204
 
1205
      Enter_Task (Environment_Task);
1206
 
1207
      --  Install the abort-signal handler
1208
 
1209
      if State (System.Interrupt_Management.Abort_Task_Interrupt)
1210
                                                     /= Default
1211
      then
1212
         act.sa_flags := 0;
1213
         act.sa_handler := Abort_Handler'Address;
1214
 
1215
         Result := sigemptyset (Tmp_Set'Access);
1216
         pragma Assert (Result = 0);
1217
         act.sa_mask := Tmp_Set;
1218
 
1219
         Result :=
1220
           sigaction (
1221
             Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1222
             act'Unchecked_Access,
1223
             old_act'Unchecked_Access);
1224
         pragma Assert (Result = 0);
1225
      end if;
1226
   end Initialize;
1227
 
1228
   --  NOTE: Unlike other pthread implementations, we do *not* mask all
1229
   --  signals here since we handle signals using the process-wide primitive
1230
   --  signal, rather than using sigthreadmask and sigwait. The reason of
1231
   --  this difference is that sigwait doesn't work when some critical
1232
   --  signals (SIGABRT, SIGPIPE) are masked.
1233
 
1234
   -----------------------
1235
   -- Set_Task_Affinity --
1236
   -----------------------
1237
 
1238
   procedure Set_Task_Affinity (T : ST.Task_Id) is
1239
      pragma Unreferenced (T);
1240
 
1241
   begin
1242
      --  Setting task affinity is not supported by the underlying system
1243
 
1244
      null;
1245
   end Set_Task_Affinity;
1246
 
1247
end System.Task_Primitives.Operations;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.