OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-taprop-mingw.adb] - Blame information for rev 706

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
4
--                                                                          --
5
--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6
--                                                                          --
7
--                                  B o d y                                 --
8
--                                                                          --
9
--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNARL is free software; you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNARL was developed by the GNARL team at Florida State University.       --
28
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This is a NT (native) version of this package
33
 
34
--  This package contains all the GNULL primitives that interface directly with
35
--  the underlying OS.
36
 
37
pragma Polling (Off);
38
--  Turn off polling, we do not want ATC polling to take place during tasking
39
--  operations. It causes infinite loops and other problems.
40
 
41
with Interfaces.C;
42
with Interfaces.C.Strings;
43
 
44
with System.Float_Control;
45
with System.Interrupt_Management;
46
with System.Multiprocessors;
47
with System.OS_Primitives;
48
with System.Task_Info;
49
with System.Tasking.Debug;
50
with System.Win32.Ext;
51
 
52
with System.Soft_Links;
53
--  We use System.Soft_Links instead of System.Tasking.Initialization because
54
--  the later is a higher level package that we shouldn't depend on. For
55
--  example when using the restricted run time, it is replaced by
56
--  System.Tasking.Restricted.Stages.
57
 
58
package body System.Task_Primitives.Operations is
59
 
60
   package SSL renames System.Soft_Links;
61
 
62
   use Interfaces.C;
63
   use Interfaces.C.Strings;
64
   use System.OS_Interface;
65
   use System.OS_Primitives;
66
   use System.Parameters;
67
   use System.Task_Info;
68
   use System.Tasking;
69
   use System.Tasking.Debug;
70
   use System.Win32;
71
   use System.Win32.Ext;
72
 
73
   pragma Link_With ("-Xlinker --stack=0x200000,0x1000");
74
   --  Change the default stack size (2 MB) for tasking programs on Windows.
75
   --  This allows about 1000 tasks running at the same time. Note that
76
   --  we set the stack size for non tasking programs on System unit.
77
   --  Also note that under Windows XP, we use a Windows XP extension to
78
   --  specify the stack size on a per task basis, as done under other OSes.
79
 
80
   ---------------------
81
   -- Local Functions --
82
   ---------------------
83
 
84
   procedure InitializeCriticalSection (pCriticalSection : access RTS_Lock);
85
   procedure InitializeCriticalSection
86
     (pCriticalSection : access CRITICAL_SECTION);
87
   pragma Import
88
     (Stdcall, InitializeCriticalSection, "InitializeCriticalSection");
89
 
90
   procedure EnterCriticalSection (pCriticalSection : access RTS_Lock);
91
   procedure EnterCriticalSection
92
     (pCriticalSection : access CRITICAL_SECTION);
93
   pragma Import (Stdcall, EnterCriticalSection, "EnterCriticalSection");
94
 
95
   procedure LeaveCriticalSection (pCriticalSection : access RTS_Lock);
96
   procedure LeaveCriticalSection (pCriticalSection : access CRITICAL_SECTION);
97
   pragma Import (Stdcall, LeaveCriticalSection, "LeaveCriticalSection");
98
 
99
   procedure DeleteCriticalSection (pCriticalSection : access RTS_Lock);
100
   procedure DeleteCriticalSection
101
     (pCriticalSection : access CRITICAL_SECTION);
102
   pragma Import (Stdcall, DeleteCriticalSection, "DeleteCriticalSection");
103
 
104
   ----------------
105
   -- Local Data --
106
   ----------------
107
 
108
   Environment_Task_Id : Task_Id;
109
   --  A variable to hold Task_Id for the environment task
110
 
111
   Single_RTS_Lock : aliased RTS_Lock;
112
   --  This is a lock to allow only one thread of control in the RTS at
113
   --  a time; it is used to execute in mutual exclusion from all other tasks.
114
   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
115
 
116
   Time_Slice_Val : Integer;
117
   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
118
 
119
   Dispatching_Policy : Character;
120
   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
121
 
122
   function Get_Policy (Prio : System.Any_Priority) return Character;
123
   pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
124
   --  Get priority specific dispatching policy
125
 
126
   Foreign_Task_Elaborated : aliased Boolean := True;
127
   --  Used to identified fake tasks (i.e., non-Ada Threads)
128
 
129
   Null_Thread_Id : constant Thread_Id := 0;
130
   --  Constant to indicate that the thread identifier has not yet been
131
   --  initialized.
132
 
133
   ------------------------------------
134
   -- The thread local storage index --
135
   ------------------------------------
136
 
137
   TlsIndex : DWORD;
138
   pragma Export (Ada, TlsIndex);
139
   --  To ensure that this variable won't be local to this package, since
140
   --  in some cases, inlining forces this variable to be global anyway.
141
 
142
   --------------------
143
   -- Local Packages --
144
   --------------------
145
 
146
   package Specific is
147
 
148
      function Is_Valid_Task return Boolean;
149
      pragma Inline (Is_Valid_Task);
150
      --  Does executing thread have a TCB?
151
 
152
      procedure Set (Self_Id : Task_Id);
153
      pragma Inline (Set);
154
      --  Set the self id for the current task
155
 
156
   end Specific;
157
 
158
   package body Specific is
159
 
160
      function Is_Valid_Task return Boolean is
161
      begin
162
         return TlsGetValue (TlsIndex) /= System.Null_Address;
163
      end Is_Valid_Task;
164
 
165
      procedure Set (Self_Id : Task_Id) is
166
         Succeeded : BOOL;
167
      begin
168
         Succeeded := TlsSetValue (TlsIndex, To_Address (Self_Id));
169
         pragma Assert (Succeeded = Win32.TRUE);
170
      end Set;
171
 
172
   end Specific;
173
 
174
   ----------------------------------
175
   -- ATCB allocation/deallocation --
176
   ----------------------------------
177
 
178
   package body ATCB_Allocation is separate;
179
   --  The body of this package is shared across several targets
180
 
181
   ---------------------------------
182
   -- Support for foreign threads --
183
   ---------------------------------
184
 
185
   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
186
   --  Allocate and Initialize a new ATCB for the current Thread
187
 
188
   function Register_Foreign_Thread
189
     (Thread : Thread_Id) return Task_Id is separate;
190
 
191
   ----------------------------------
192
   -- Condition Variable Functions --
193
   ----------------------------------
194
 
195
   procedure Initialize_Cond (Cond : not null access Condition_Variable);
196
   --  Initialize given condition variable Cond
197
 
198
   procedure Finalize_Cond (Cond : not null access Condition_Variable);
199
   --  Finalize given condition variable Cond
200
 
201
   procedure Cond_Signal (Cond : not null access Condition_Variable);
202
   --  Signal condition variable Cond
203
 
204
   procedure Cond_Wait
205
     (Cond : not null access Condition_Variable;
206
      L    : not null access RTS_Lock);
207
   --  Wait on conditional variable Cond, using lock L
208
 
209
   procedure Cond_Timed_Wait
210
     (Cond      : not null access Condition_Variable;
211
      L         : not null access RTS_Lock;
212
      Rel_Time  : Duration;
213
      Timed_Out : out Boolean;
214
      Status    : out Integer);
215
   --  Do timed wait on condition variable Cond using lock L. The duration
216
   --  of the timed wait is given by Rel_Time. When the condition is
217
   --  signalled, Timed_Out shows whether or not a time out occurred.
218
   --  Status is only valid if Timed_Out is False, in which case it
219
   --  shows whether Cond_Timed_Wait completed successfully.
220
 
221
   ---------------------
222
   -- Initialize_Cond --
223
   ---------------------
224
 
225
   procedure Initialize_Cond (Cond : not null access Condition_Variable) is
226
      hEvent : HANDLE;
227
   begin
228
      hEvent := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
229
      pragma Assert (hEvent /= 0);
230
      Cond.all := Condition_Variable (hEvent);
231
   end Initialize_Cond;
232
 
233
   -------------------
234
   -- Finalize_Cond --
235
   -------------------
236
 
237
   --  No such problem here, DosCloseEventSem has been derived.
238
   --  What does such refer to in above comment???
239
 
240
   procedure Finalize_Cond (Cond : not null access Condition_Variable) is
241
      Result : BOOL;
242
   begin
243
      Result := CloseHandle (HANDLE (Cond.all));
244
      pragma Assert (Result = Win32.TRUE);
245
   end Finalize_Cond;
246
 
247
   -----------------
248
   -- Cond_Signal --
249
   -----------------
250
 
251
   procedure Cond_Signal (Cond : not null access Condition_Variable) is
252
      Result : BOOL;
253
   begin
254
      Result := SetEvent (HANDLE (Cond.all));
255
      pragma Assert (Result = Win32.TRUE);
256
   end Cond_Signal;
257
 
258
   ---------------
259
   -- Cond_Wait --
260
   ---------------
261
 
262
   --  Pre-condition: Cond is posted
263
   --                 L is locked.
264
 
265
   --  Post-condition: Cond is posted
266
   --                  L is locked.
267
 
268
   procedure Cond_Wait
269
     (Cond : not null access Condition_Variable;
270
      L    : not null access RTS_Lock)
271
   is
272
      Result      : DWORD;
273
      Result_Bool : BOOL;
274
 
275
   begin
276
      --  Must reset Cond BEFORE L is unlocked
277
 
278
      Result_Bool := ResetEvent (HANDLE (Cond.all));
279
      pragma Assert (Result_Bool = Win32.TRUE);
280
      Unlock (L, Global_Lock => True);
281
 
282
      --  No problem if we are interrupted here: if the condition is signaled,
283
      --  WaitForSingleObject will simply not block
284
 
285
      Result := WaitForSingleObject (HANDLE (Cond.all), Wait_Infinite);
286
      pragma Assert (Result = 0);
287
 
288
      Write_Lock (L, Global_Lock => True);
289
   end Cond_Wait;
290
 
291
   ---------------------
292
   -- Cond_Timed_Wait --
293
   ---------------------
294
 
295
   --  Pre-condition: Cond is posted
296
   --                 L is locked.
297
 
298
   --  Post-condition: Cond is posted
299
   --                  L is locked.
300
 
301
   procedure Cond_Timed_Wait
302
     (Cond      : not null access Condition_Variable;
303
      L         : not null access RTS_Lock;
304
      Rel_Time  : Duration;
305
      Timed_Out : out Boolean;
306
      Status    : out Integer)
307
   is
308
      Time_Out_Max : constant DWORD := 16#FFFF0000#;
309
      --  NT 4 can't handle excessive timeout values (e.g. DWORD'Last - 1)
310
 
311
      Time_Out    : DWORD;
312
      Result      : BOOL;
313
      Wait_Result : DWORD;
314
 
315
   begin
316
      --  Must reset Cond BEFORE L is unlocked
317
 
318
      Result := ResetEvent (HANDLE (Cond.all));
319
      pragma Assert (Result = Win32.TRUE);
320
      Unlock (L, Global_Lock => True);
321
 
322
      --  No problem if we are interrupted here: if the condition is signaled,
323
      --  WaitForSingleObject will simply not block.
324
 
325
      if Rel_Time <= 0.0 then
326
         Timed_Out := True;
327
         Wait_Result := 0;
328
 
329
      else
330
         Time_Out :=
331
           (if Rel_Time >= Duration (Time_Out_Max) / 1000
332
            then Time_Out_Max
333
            else DWORD (Rel_Time * 1000));
334
 
335
         Wait_Result := WaitForSingleObject (HANDLE (Cond.all), Time_Out);
336
 
337
         if Wait_Result = WAIT_TIMEOUT then
338
            Timed_Out := True;
339
            Wait_Result := 0;
340
         else
341
            Timed_Out := False;
342
         end if;
343
      end if;
344
 
345
      Write_Lock (L, Global_Lock => True);
346
 
347
      --  Ensure post-condition
348
 
349
      if Timed_Out then
350
         Result := SetEvent (HANDLE (Cond.all));
351
         pragma Assert (Result = Win32.TRUE);
352
      end if;
353
 
354
      Status := Integer (Wait_Result);
355
   end Cond_Timed_Wait;
356
 
357
   ------------------
358
   -- Stack_Guard  --
359
   ------------------
360
 
361
   --  The underlying thread system sets a guard page at the bottom of a thread
362
   --  stack, so nothing is needed.
363
   --  ??? Check the comment above
364
 
365
   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
366
      pragma Unreferenced (T, On);
367
   begin
368
      null;
369
   end Stack_Guard;
370
 
371
   --------------------
372
   -- Get_Thread_Id  --
373
   --------------------
374
 
375
   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
376
   begin
377
      return T.Common.LL.Thread;
378
   end Get_Thread_Id;
379
 
380
   ----------
381
   -- Self --
382
   ----------
383
 
384
   function Self return Task_Id is
385
      Self_Id : constant Task_Id := To_Task_Id (TlsGetValue (TlsIndex));
386
   begin
387
      if Self_Id = null then
388
         return Register_Foreign_Thread (GetCurrentThread);
389
      else
390
         return Self_Id;
391
      end if;
392
   end Self;
393
 
394
   ---------------------
395
   -- Initialize_Lock --
396
   ---------------------
397
 
398
   --  Note: mutexes and cond_variables needed per-task basis are initialized
399
   --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
400
   --  as RTS_Lock, Memory_Lock...) used in the RTS is initialized before any
401
   --  status change of RTS. Therefore raising Storage_Error in the following
402
   --  routines should be able to be handled safely.
403
 
404
   procedure Initialize_Lock
405
     (Prio : System.Any_Priority;
406
      L    : not null access Lock)
407
   is
408
   begin
409
      InitializeCriticalSection (L.Mutex'Access);
410
      L.Owner_Priority := 0;
411
      L.Priority := Prio;
412
   end Initialize_Lock;
413
 
414
   procedure Initialize_Lock
415
     (L : not null access RTS_Lock; Level : Lock_Level)
416
   is
417
      pragma Unreferenced (Level);
418
   begin
419
      InitializeCriticalSection (L);
420
   end Initialize_Lock;
421
 
422
   -------------------
423
   -- Finalize_Lock --
424
   -------------------
425
 
426
   procedure Finalize_Lock (L : not null access Lock) is
427
   begin
428
      DeleteCriticalSection (L.Mutex'Access);
429
   end Finalize_Lock;
430
 
431
   procedure Finalize_Lock (L : not null access RTS_Lock) is
432
   begin
433
      DeleteCriticalSection (L);
434
   end Finalize_Lock;
435
 
436
   ----------------
437
   -- Write_Lock --
438
   ----------------
439
 
440
   procedure Write_Lock
441
     (L : not null access Lock; Ceiling_Violation : out Boolean) is
442
   begin
443
      L.Owner_Priority := Get_Priority (Self);
444
 
445
      if L.Priority < L.Owner_Priority then
446
         Ceiling_Violation := True;
447
         return;
448
      end if;
449
 
450
      EnterCriticalSection (L.Mutex'Access);
451
 
452
      Ceiling_Violation := False;
453
   end Write_Lock;
454
 
455
   procedure Write_Lock
456
     (L           : not null access RTS_Lock;
457
      Global_Lock : Boolean := False)
458
   is
459
   begin
460
      if not Single_Lock or else Global_Lock then
461
         EnterCriticalSection (L);
462
      end if;
463
   end Write_Lock;
464
 
465
   procedure Write_Lock (T : Task_Id) is
466
   begin
467
      if not Single_Lock then
468
         EnterCriticalSection (T.Common.LL.L'Access);
469
      end if;
470
   end Write_Lock;
471
 
472
   ---------------
473
   -- Read_Lock --
474
   ---------------
475
 
476
   procedure Read_Lock
477
     (L : not null access Lock; Ceiling_Violation : out Boolean) is
478
   begin
479
      Write_Lock (L, Ceiling_Violation);
480
   end Read_Lock;
481
 
482
   ------------
483
   -- Unlock --
484
   ------------
485
 
486
   procedure Unlock (L : not null access Lock) is
487
   begin
488
      LeaveCriticalSection (L.Mutex'Access);
489
   end Unlock;
490
 
491
   procedure Unlock
492
     (L : not null access RTS_Lock; Global_Lock : Boolean := False) is
493
   begin
494
      if not Single_Lock or else Global_Lock then
495
         LeaveCriticalSection (L);
496
      end if;
497
   end Unlock;
498
 
499
   procedure Unlock (T : Task_Id) is
500
   begin
501
      if not Single_Lock then
502
         LeaveCriticalSection (T.Common.LL.L'Access);
503
      end if;
504
   end Unlock;
505
 
506
   -----------------
507
   -- Set_Ceiling --
508
   -----------------
509
 
510
   --  Dynamic priority ceilings are not supported by the underlying system
511
 
512
   procedure Set_Ceiling
513
     (L    : not null access Lock;
514
      Prio : System.Any_Priority)
515
   is
516
      pragma Unreferenced (L, Prio);
517
   begin
518
      null;
519
   end Set_Ceiling;
520
 
521
   -----------
522
   -- Sleep --
523
   -----------
524
 
525
   procedure Sleep
526
     (Self_ID : Task_Id;
527
      Reason  : System.Tasking.Task_States)
528
   is
529
      pragma Unreferenced (Reason);
530
 
531
   begin
532
      pragma Assert (Self_ID = Self);
533
 
534
      if Single_Lock then
535
         Cond_Wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
536
      else
537
         Cond_Wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
538
      end if;
539
 
540
      if Self_ID.Deferral_Level = 0
541
        and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
542
      then
543
         Unlock (Self_ID);
544
         raise Standard'Abort_Signal;
545
      end if;
546
   end Sleep;
547
 
548
   -----------------
549
   -- Timed_Sleep --
550
   -----------------
551
 
552
   --  This is for use within the run-time system, so abort is assumed to be
553
   --  already deferred, and the caller should be holding its own ATCB lock.
554
 
555
   procedure Timed_Sleep
556
     (Self_ID  : Task_Id;
557
      Time     : Duration;
558
      Mode     : ST.Delay_Modes;
559
      Reason   : System.Tasking.Task_States;
560
      Timedout : out Boolean;
561
      Yielded  : out Boolean)
562
   is
563
      pragma Unreferenced (Reason);
564
      Check_Time : Duration := Monotonic_Clock;
565
      Rel_Time   : Duration;
566
      Abs_Time   : Duration;
567
 
568
      Result : Integer;
569
      pragma Unreferenced (Result);
570
 
571
      Local_Timedout : Boolean;
572
 
573
   begin
574
      Timedout := True;
575
      Yielded  := False;
576
 
577
      if Mode = Relative then
578
         Rel_Time := Time;
579
         Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
580
      else
581
         Rel_Time := Time - Check_Time;
582
         Abs_Time := Time;
583
      end if;
584
 
585
      if Rel_Time > 0.0 then
586
         loop
587
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
588
 
589
            if Single_Lock then
590
               Cond_Timed_Wait
591
                 (Self_ID.Common.LL.CV'Access,
592
                  Single_RTS_Lock'Access,
593
                  Rel_Time, Local_Timedout, Result);
594
            else
595
               Cond_Timed_Wait
596
                 (Self_ID.Common.LL.CV'Access,
597
                  Self_ID.Common.LL.L'Access,
598
                  Rel_Time, Local_Timedout, Result);
599
            end if;
600
 
601
            Check_Time := Monotonic_Clock;
602
            exit when Abs_Time <= Check_Time;
603
 
604
            if not Local_Timedout then
605
 
606
               --  Somebody may have called Wakeup for us
607
 
608
               Timedout := False;
609
               exit;
610
            end if;
611
 
612
            Rel_Time := Abs_Time - Check_Time;
613
         end loop;
614
      end if;
615
   end Timed_Sleep;
616
 
617
   -----------------
618
   -- Timed_Delay --
619
   -----------------
620
 
621
   procedure Timed_Delay
622
     (Self_ID : Task_Id;
623
      Time    : Duration;
624
      Mode    : ST.Delay_Modes)
625
   is
626
      Check_Time : Duration := Monotonic_Clock;
627
      Rel_Time   : Duration;
628
      Abs_Time   : Duration;
629
 
630
      Timedout : Boolean;
631
      Result   : Integer;
632
      pragma Unreferenced (Timedout, Result);
633
 
634
   begin
635
      if Single_Lock then
636
         Lock_RTS;
637
      end if;
638
 
639
      Write_Lock (Self_ID);
640
 
641
      if Mode = Relative then
642
         Rel_Time := Time;
643
         Abs_Time := Time + Check_Time;
644
      else
645
         Rel_Time := Time - Check_Time;
646
         Abs_Time := Time;
647
      end if;
648
 
649
      if Rel_Time > 0.0 then
650
         Self_ID.Common.State := Delay_Sleep;
651
 
652
         loop
653
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
654
 
655
            if Single_Lock then
656
               Cond_Timed_Wait
657
                 (Self_ID.Common.LL.CV'Access,
658
                  Single_RTS_Lock'Access,
659
                  Rel_Time, Timedout, Result);
660
            else
661
               Cond_Timed_Wait
662
                 (Self_ID.Common.LL.CV'Access,
663
                  Self_ID.Common.LL.L'Access,
664
                  Rel_Time, Timedout, Result);
665
            end if;
666
 
667
            Check_Time := Monotonic_Clock;
668
            exit when Abs_Time <= Check_Time;
669
 
670
            Rel_Time := Abs_Time - Check_Time;
671
         end loop;
672
 
673
         Self_ID.Common.State := Runnable;
674
      end if;
675
 
676
      Unlock (Self_ID);
677
 
678
      if Single_Lock then
679
         Unlock_RTS;
680
      end if;
681
 
682
      Yield;
683
   end Timed_Delay;
684
 
685
   ------------
686
   -- Wakeup --
687
   ------------
688
 
689
   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
690
      pragma Unreferenced (Reason);
691
   begin
692
      Cond_Signal (T.Common.LL.CV'Access);
693
   end Wakeup;
694
 
695
   -----------
696
   -- Yield --
697
   -----------
698
 
699
   procedure Yield (Do_Yield : Boolean := True) is
700
   begin
701
      --  Note: in a previous implementation if Do_Yield was False, then we
702
      --  introduced a delay of 1 millisecond in an attempt to get closer to
703
      --  annex D semantics, and in particular to make ACATS CXD8002 pass. But
704
      --  this change introduced a huge performance regression evaluating the
705
      --  Count attribute. So we decided to remove this processing.
706
 
707
      --  Moreover, CXD8002 appears to pass on Windows (although we do not
708
      --  guarantee full Annex D compliance on Windows in any case).
709
 
710
      if Do_Yield then
711
         SwitchToThread;
712
      end if;
713
   end Yield;
714
 
715
   ------------------
716
   -- Set_Priority --
717
   ------------------
718
 
719
   type Prio_Array_Type is array (System.Any_Priority) of Integer;
720
   pragma Atomic_Components (Prio_Array_Type);
721
 
722
   Prio_Array : Prio_Array_Type;
723
   --  Global array containing the id of the currently running task for
724
   --  each priority.
725
   --
726
   --  Note: we assume that we are on a single processor with run-til-blocked
727
   --  scheduling.
728
 
729
   procedure Set_Priority
730
     (T                   : Task_Id;
731
      Prio                : System.Any_Priority;
732
      Loss_Of_Inheritance : Boolean := False)
733
   is
734
      Res        : BOOL;
735
      Array_Item : Integer;
736
 
737
   begin
738
      Res := SetThreadPriority
739
        (T.Common.LL.Thread, Interfaces.C.int (Underlying_Priorities (Prio)));
740
      pragma Assert (Res = Win32.TRUE);
741
 
742
      if Dispatching_Policy = 'F' or else Get_Policy (Prio) = 'F' then
743
 
744
         --  Annex D requirement [RM D.2.2 par. 9]:
745
         --    If the task drops its priority due to the loss of inherited
746
         --    priority, it is added at the head of the ready queue for its
747
         --    new active priority.
748
 
749
         if Loss_Of_Inheritance
750
           and then Prio < T.Common.Current_Priority
751
         then
752
            Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
753
            Prio_Array (T.Common.Base_Priority) := Array_Item;
754
 
755
            loop
756
               --  Let some processes a chance to arrive
757
 
758
               Yield;
759
 
760
               --  Then wait for our turn to proceed
761
 
762
               exit when Array_Item = Prio_Array (T.Common.Base_Priority)
763
                 or else Prio_Array (T.Common.Base_Priority) = 1;
764
            end loop;
765
 
766
            Prio_Array (T.Common.Base_Priority) :=
767
              Prio_Array (T.Common.Base_Priority) - 1;
768
         end if;
769
      end if;
770
 
771
      T.Common.Current_Priority := Prio;
772
   end Set_Priority;
773
 
774
   ------------------
775
   -- Get_Priority --
776
   ------------------
777
 
778
   function Get_Priority (T : Task_Id) return System.Any_Priority is
779
   begin
780
      return T.Common.Current_Priority;
781
   end Get_Priority;
782
 
783
   ----------------
784
   -- Enter_Task --
785
   ----------------
786
 
787
   --  There were two paths were we needed to call Enter_Task :
788
   --  1) from System.Task_Primitives.Operations.Initialize
789
   --  2) from System.Tasking.Stages.Task_Wrapper
790
 
791
   --  The thread initialisation has to be done only for the first case
792
 
793
   --  This is because the GetCurrentThread NT call does not return the real
794
   --  thread handler but only a "pseudo" one. It is not possible to release
795
   --  the thread handle and free the system resources from this "pseudo"
796
   --  handle. So we really want to keep the real thread handle set in
797
   --  System.Task_Primitives.Operations.Create_Task during thread creation.
798
 
799
   procedure Enter_Task (Self_ID : Task_Id) is
800
      procedure Get_Stack_Bounds (Base : Address; Limit : Address);
801
      pragma Import (C, Get_Stack_Bounds, "__gnat_get_stack_bounds");
802
      --  Get stack boundaries
803
   begin
804
      Specific.Set (Self_ID);
805
 
806
      --  Properly initializes the FPU for x86 systems
807
 
808
      System.Float_Control.Reset;
809
 
810
      if Self_ID.Common.Task_Info /= null
811
        and then
812
          Self_ID.Common.Task_Info.CPU >= CPU_Number (Number_Of_Processors)
813
      then
814
         raise Invalid_CPU_Number;
815
      end if;
816
 
817
      Self_ID.Common.LL.Thread_Id := GetCurrentThreadId;
818
 
819
      Get_Stack_Bounds
820
        (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base'Address,
821
         Self_ID.Common.Compiler_Data.Pri_Stack_Info.Limit'Address);
822
   end Enter_Task;
823
 
824
   -------------------
825
   -- Is_Valid_Task --
826
   -------------------
827
 
828
   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
829
 
830
   -----------------------------
831
   -- Register_Foreign_Thread --
832
   -----------------------------
833
 
834
   function Register_Foreign_Thread return Task_Id is
835
   begin
836
      if Is_Valid_Task then
837
         return Self;
838
      else
839
         return Register_Foreign_Thread (GetCurrentThread);
840
      end if;
841
   end Register_Foreign_Thread;
842
 
843
   --------------------
844
   -- Initialize_TCB --
845
   --------------------
846
 
847
   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
848
   begin
849
      --  Initialize thread ID to 0, this is needed to detect threads that
850
      --  are not yet activated.
851
 
852
      Self_ID.Common.LL.Thread := Null_Thread_Id;
853
 
854
      Initialize_Cond (Self_ID.Common.LL.CV'Access);
855
 
856
      if not Single_Lock then
857
         Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
858
      end if;
859
 
860
      Succeeded := True;
861
   end Initialize_TCB;
862
 
863
   -----------------
864
   -- Create_Task --
865
   -----------------
866
 
867
   procedure Create_Task
868
     (T          : Task_Id;
869
      Wrapper    : System.Address;
870
      Stack_Size : System.Parameters.Size_Type;
871
      Priority   : System.Any_Priority;
872
      Succeeded  : out Boolean)
873
   is
874
      Initial_Stack_Size : constant := 1024;
875
      --  We set the initial stack size to 1024. On Windows version prior to XP
876
      --  there is no way to fix a task stack size. Only the initial stack size
877
      --  can be set, the operating system will raise the task stack size if
878
      --  needed.
879
 
880
      function Is_Windows_XP return Integer;
881
      pragma Import (C, Is_Windows_XP, "__gnat_is_windows_xp");
882
      --  Returns 1 if running on Windows XP
883
 
884
      hTask          : HANDLE;
885
      TaskId         : aliased DWORD;
886
      pTaskParameter : Win32.PVOID;
887
      Result         : DWORD;
888
      Entry_Point    : PTHREAD_START_ROUTINE;
889
 
890
      use type System.Multiprocessors.CPU_Range;
891
 
892
   begin
893
      --  Check whether both Dispatching_Domain and CPU are specified for the
894
      --  task, and the CPU value is not contained within the range of
895
      --  processors for the domain.
896
 
897
      if T.Common.Domain /= null
898
        and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
899
        and then
900
          (T.Common.Base_CPU not in T.Common.Domain'Range
901
            or else not T.Common.Domain (T.Common.Base_CPU))
902
      then
903
         Succeeded := False;
904
         return;
905
      end if;
906
 
907
      pTaskParameter := To_Address (T);
908
 
909
      Entry_Point := To_PTHREAD_START_ROUTINE (Wrapper);
910
 
911
      if Is_Windows_XP = 1 then
912
         hTask := CreateThread
913
           (null,
914
            DWORD (Stack_Size),
915
            Entry_Point,
916
            pTaskParameter,
917
            DWORD (Create_Suspended) or
918
              DWORD (Stack_Size_Param_Is_A_Reservation),
919
            TaskId'Unchecked_Access);
920
      else
921
         hTask := CreateThread
922
           (null,
923
            Initial_Stack_Size,
924
            Entry_Point,
925
            pTaskParameter,
926
            DWORD (Create_Suspended),
927
            TaskId'Unchecked_Access);
928
      end if;
929
 
930
      --  Step 1: Create the thread in blocked mode
931
 
932
      if hTask = 0 then
933
         Succeeded := False;
934
         return;
935
      end if;
936
 
937
      --  Step 2: set its TCB
938
 
939
      T.Common.LL.Thread := hTask;
940
 
941
      --  Note: it would be useful to initialize Thread_Id right away to avoid
942
      --  a race condition in gdb where Thread_ID may not have the right value
943
      --  yet, but GetThreadId is a Vista specific API, not available under XP:
944
      --  T.Common.LL.Thread_Id := GetThreadId (hTask); so instead we set the
945
      --  field to 0 to avoid having a random value. Thread_Id is initialized
946
      --  in Enter_Task anyway.
947
 
948
      T.Common.LL.Thread_Id := 0;
949
 
950
      --  Step 3: set its priority (child has inherited priority from parent)
951
 
952
      Set_Priority (T, Priority);
953
 
954
      if Time_Slice_Val = 0
955
        or else Dispatching_Policy = 'F'
956
        or else Get_Policy (Priority) = 'F'
957
      then
958
         --  Here we need Annex D semantics so we disable the NT priority
959
         --  boost. A priority boost is temporarily given by the system to
960
         --  a thread when it is taken out of a wait state.
961
 
962
         SetThreadPriorityBoost (hTask, DisablePriorityBoost => Win32.TRUE);
963
      end if;
964
 
965
      --  Step 4: Handle pragma CPU and Task_Info
966
 
967
      Set_Task_Affinity (T);
968
 
969
      --  Step 5: Now, start it for good
970
 
971
      Result := ResumeThread (hTask);
972
      pragma Assert (Result = 1);
973
 
974
      Succeeded := Result = 1;
975
   end Create_Task;
976
 
977
   ------------------
978
   -- Finalize_TCB --
979
   ------------------
980
 
981
   procedure Finalize_TCB (T : Task_Id) is
982
      Succeeded : BOOL;
983
 
984
   begin
985
      if not Single_Lock then
986
         Finalize_Lock (T.Common.LL.L'Access);
987
      end if;
988
 
989
      Finalize_Cond (T.Common.LL.CV'Access);
990
 
991
      if T.Known_Tasks_Index /= -1 then
992
         Known_Tasks (T.Known_Tasks_Index) := null;
993
      end if;
994
 
995
      if T.Common.LL.Thread /= 0 then
996
 
997
         --  This task has been activated. Close the thread handle. This
998
         --  is needed to release system resources.
999
 
1000
         Succeeded := CloseHandle (T.Common.LL.Thread);
1001
         pragma Assert (Succeeded = Win32.TRUE);
1002
      end if;
1003
 
1004
      ATCB_Allocation.Free_ATCB (T);
1005
   end Finalize_TCB;
1006
 
1007
   ---------------
1008
   -- Exit_Task --
1009
   ---------------
1010
 
1011
   procedure Exit_Task is
1012
   begin
1013
      Specific.Set (null);
1014
   end Exit_Task;
1015
 
1016
   ----------------
1017
   -- Abort_Task --
1018
   ----------------
1019
 
1020
   procedure Abort_Task (T : Task_Id) is
1021
      pragma Unreferenced (T);
1022
   begin
1023
      null;
1024
   end Abort_Task;
1025
 
1026
   ----------------------
1027
   -- Environment_Task --
1028
   ----------------------
1029
 
1030
   function Environment_Task return Task_Id is
1031
   begin
1032
      return Environment_Task_Id;
1033
   end Environment_Task;
1034
 
1035
   --------------
1036
   -- Lock_RTS --
1037
   --------------
1038
 
1039
   procedure Lock_RTS is
1040
   begin
1041
      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1042
   end Lock_RTS;
1043
 
1044
   ----------------
1045
   -- Unlock_RTS --
1046
   ----------------
1047
 
1048
   procedure Unlock_RTS is
1049
   begin
1050
      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1051
   end Unlock_RTS;
1052
 
1053
   ----------------
1054
   -- Initialize --
1055
   ----------------
1056
 
1057
   procedure Initialize (Environment_Task : Task_Id) is
1058
      Discard : BOOL;
1059
      pragma Unreferenced (Discard);
1060
 
1061
   begin
1062
      Environment_Task_Id := Environment_Task;
1063
      OS_Primitives.Initialize;
1064
      Interrupt_Management.Initialize;
1065
 
1066
      if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then
1067
         --  Here we need Annex D semantics, switch the current process to the
1068
         --  Realtime_Priority_Class.
1069
 
1070
         Discard := OS_Interface.SetPriorityClass
1071
                      (GetCurrentProcess, Realtime_Priority_Class);
1072
      end if;
1073
 
1074
      TlsIndex := TlsAlloc;
1075
 
1076
      --  Initialize the lock used to synchronize chain of all ATCBs
1077
 
1078
      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1079
 
1080
      Environment_Task.Common.LL.Thread := GetCurrentThread;
1081
 
1082
      --  Make environment task known here because it doesn't go through
1083
      --  Activate_Tasks, which does it for all other tasks.
1084
 
1085
      Known_Tasks (Known_Tasks'First) := Environment_Task;
1086
      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1087
 
1088
      Enter_Task (Environment_Task);
1089
 
1090
      --  pragma CPU and dispatching domains for the environment task
1091
 
1092
      Set_Task_Affinity (Environment_Task);
1093
   end Initialize;
1094
 
1095
   ---------------------
1096
   -- Monotonic_Clock --
1097
   ---------------------
1098
 
1099
   function Monotonic_Clock return Duration
1100
     renames System.OS_Primitives.Monotonic_Clock;
1101
 
1102
   -------------------
1103
   -- RT_Resolution --
1104
   -------------------
1105
 
1106
   function RT_Resolution return Duration is
1107
   begin
1108
      return 0.000_001; --  1 micro-second
1109
   end RT_Resolution;
1110
 
1111
   ----------------
1112
   -- Initialize --
1113
   ----------------
1114
 
1115
   procedure Initialize (S : in out Suspension_Object) is
1116
   begin
1117
      --  Initialize internal state. It is always initialized to False (ARM
1118
      --  D.10 par. 6).
1119
 
1120
      S.State := False;
1121
      S.Waiting := False;
1122
 
1123
      --  Initialize internal mutex
1124
 
1125
      InitializeCriticalSection (S.L'Access);
1126
 
1127
      --  Initialize internal condition variable
1128
 
1129
      S.CV := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
1130
      pragma Assert (S.CV /= 0);
1131
   end Initialize;
1132
 
1133
   --------------
1134
   -- Finalize --
1135
   --------------
1136
 
1137
   procedure Finalize (S : in out Suspension_Object) is
1138
      Result : BOOL;
1139
 
1140
   begin
1141
      --  Destroy internal mutex
1142
 
1143
      DeleteCriticalSection (S.L'Access);
1144
 
1145
      --  Destroy internal condition variable
1146
 
1147
      Result := CloseHandle (S.CV);
1148
      pragma Assert (Result = Win32.TRUE);
1149
   end Finalize;
1150
 
1151
   -------------------
1152
   -- Current_State --
1153
   -------------------
1154
 
1155
   function Current_State (S : Suspension_Object) return Boolean is
1156
   begin
1157
      --  We do not want to use lock on this read operation. State is marked
1158
      --  as Atomic so that we ensure that the value retrieved is correct.
1159
 
1160
      return S.State;
1161
   end Current_State;
1162
 
1163
   ---------------
1164
   -- Set_False --
1165
   ---------------
1166
 
1167
   procedure Set_False (S : in out Suspension_Object) is
1168
   begin
1169
      SSL.Abort_Defer.all;
1170
 
1171
      EnterCriticalSection (S.L'Access);
1172
 
1173
      S.State := False;
1174
 
1175
      LeaveCriticalSection (S.L'Access);
1176
 
1177
      SSL.Abort_Undefer.all;
1178
   end Set_False;
1179
 
1180
   --------------
1181
   -- Set_True --
1182
   --------------
1183
 
1184
   procedure Set_True (S : in out Suspension_Object) is
1185
      Result : BOOL;
1186
 
1187
   begin
1188
      SSL.Abort_Defer.all;
1189
 
1190
      EnterCriticalSection (S.L'Access);
1191
 
1192
      --  If there is already a task waiting on this suspension object then
1193
      --  we resume it, leaving the state of the suspension object to False,
1194
      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1195
      --  the state to True.
1196
 
1197
      if S.Waiting then
1198
         S.Waiting := False;
1199
         S.State := False;
1200
 
1201
         Result := SetEvent (S.CV);
1202
         pragma Assert (Result = Win32.TRUE);
1203
 
1204
      else
1205
         S.State := True;
1206
      end if;
1207
 
1208
      LeaveCriticalSection (S.L'Access);
1209
 
1210
      SSL.Abort_Undefer.all;
1211
   end Set_True;
1212
 
1213
   ------------------------
1214
   -- Suspend_Until_True --
1215
   ------------------------
1216
 
1217
   procedure Suspend_Until_True (S : in out Suspension_Object) is
1218
      Result      : DWORD;
1219
      Result_Bool : BOOL;
1220
 
1221
   begin
1222
      SSL.Abort_Defer.all;
1223
 
1224
      EnterCriticalSection (S.L'Access);
1225
 
1226
      if S.Waiting then
1227
 
1228
         --  Program_Error must be raised upon calling Suspend_Until_True
1229
         --  if another task is already waiting on that suspension object
1230
         --  (ARM D.10 par. 10).
1231
 
1232
         LeaveCriticalSection (S.L'Access);
1233
 
1234
         SSL.Abort_Undefer.all;
1235
 
1236
         raise Program_Error;
1237
 
1238
      else
1239
         --  Suspend the task if the state is False. Otherwise, the task
1240
         --  continues its execution, and the state of the suspension object
1241
         --  is set to False (ARM D.10 par. 9).
1242
 
1243
         if S.State then
1244
            S.State := False;
1245
 
1246
            LeaveCriticalSection (S.L'Access);
1247
 
1248
            SSL.Abort_Undefer.all;
1249
 
1250
         else
1251
            S.Waiting := True;
1252
 
1253
            --  Must reset CV BEFORE L is unlocked
1254
 
1255
            Result_Bool := ResetEvent (S.CV);
1256
            pragma Assert (Result_Bool = Win32.TRUE);
1257
 
1258
            LeaveCriticalSection (S.L'Access);
1259
 
1260
            SSL.Abort_Undefer.all;
1261
 
1262
            Result := WaitForSingleObject (S.CV, Wait_Infinite);
1263
            pragma Assert (Result = 0);
1264
         end if;
1265
      end if;
1266
   end Suspend_Until_True;
1267
 
1268
   ----------------
1269
   -- Check_Exit --
1270
   ----------------
1271
 
1272
   --  Dummy versions, currently this only works for solaris (native)
1273
 
1274
   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1275
      pragma Unreferenced (Self_ID);
1276
   begin
1277
      return True;
1278
   end Check_Exit;
1279
 
1280
   --------------------
1281
   -- Check_No_Locks --
1282
   --------------------
1283
 
1284
   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1285
      pragma Unreferenced (Self_ID);
1286
   begin
1287
      return True;
1288
   end Check_No_Locks;
1289
 
1290
   ------------------
1291
   -- Suspend_Task --
1292
   ------------------
1293
 
1294
   function Suspend_Task
1295
     (T           : ST.Task_Id;
1296
      Thread_Self : Thread_Id) return Boolean
1297
   is
1298
   begin
1299
      if T.Common.LL.Thread /= Thread_Self then
1300
         return SuspendThread (T.Common.LL.Thread) = NO_ERROR;
1301
      else
1302
         return True;
1303
      end if;
1304
   end Suspend_Task;
1305
 
1306
   -----------------
1307
   -- Resume_Task --
1308
   -----------------
1309
 
1310
   function Resume_Task
1311
     (T           : ST.Task_Id;
1312
      Thread_Self : Thread_Id) return Boolean
1313
   is
1314
   begin
1315
      if T.Common.LL.Thread /= Thread_Self then
1316
         return ResumeThread (T.Common.LL.Thread) = NO_ERROR;
1317
      else
1318
         return True;
1319
      end if;
1320
   end Resume_Task;
1321
 
1322
   --------------------
1323
   -- Stop_All_Tasks --
1324
   --------------------
1325
 
1326
   procedure Stop_All_Tasks is
1327
   begin
1328
      null;
1329
   end Stop_All_Tasks;
1330
 
1331
   ---------------
1332
   -- Stop_Task --
1333
   ---------------
1334
 
1335
   function Stop_Task (T : ST.Task_Id) return Boolean is
1336
      pragma Unreferenced (T);
1337
   begin
1338
      return False;
1339
   end Stop_Task;
1340
 
1341
   -------------------
1342
   -- Continue_Task --
1343
   -------------------
1344
 
1345
   function Continue_Task (T : ST.Task_Id) return Boolean is
1346
      pragma Unreferenced (T);
1347
   begin
1348
      return False;
1349
   end Continue_Task;
1350
 
1351
   -----------------------
1352
   -- Set_Task_Affinity --
1353
   -----------------------
1354
 
1355
   procedure Set_Task_Affinity (T : ST.Task_Id) is
1356
      Result : DWORD;
1357
 
1358
      use type System.Multiprocessors.CPU_Range;
1359
 
1360
   begin
1361
      --  Do nothing if the underlying thread has not yet been created. If the
1362
      --  thread has not yet been created then the proper affinity will be set
1363
      --  during its creation.
1364
 
1365
      if T.Common.LL.Thread = Null_Thread_Id then
1366
         null;
1367
 
1368
      --  pragma CPU
1369
 
1370
      elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
1371
 
1372
         --  The CPU numbering in pragma CPU starts at 1 while the subprogram
1373
         --  to set the affinity starts at 0, therefore we must substract 1.
1374
 
1375
         Result :=
1376
           SetThreadIdealProcessor
1377
             (T.Common.LL.Thread, ProcessorId (T.Common.Base_CPU) - 1);
1378
         pragma Assert (Result = 1);
1379
 
1380
      --  Task_Info
1381
 
1382
      elsif T.Common.Task_Info /= null then
1383
         if T.Common.Task_Info.CPU /= Task_Info.Any_CPU then
1384
            Result :=
1385
              SetThreadIdealProcessor
1386
                (T.Common.LL.Thread, T.Common.Task_Info.CPU);
1387
            pragma Assert (Result = 1);
1388
         end if;
1389
 
1390
      --  Dispatching domains
1391
 
1392
      elsif T.Common.Domain /= null
1393
        and then (T.Common.Domain /= ST.System_Domain
1394
                   or else
1395
                     T.Common.Domain.all /=
1396
                       (Multiprocessors.CPU'First ..
1397
                        Multiprocessors.Number_Of_CPUs => True))
1398
      then
1399
         declare
1400
            CPU_Set : DWORD := 0;
1401
 
1402
         begin
1403
            for Proc in T.Common.Domain'Range loop
1404
               if T.Common.Domain (Proc) then
1405
 
1406
                  --  The thread affinity mask is a bit vector in which each
1407
                  --  bit represents a logical processor.
1408
 
1409
                  CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1);
1410
               end if;
1411
            end loop;
1412
 
1413
            Result := SetThreadAffinityMask (T.Common.LL.Thread, CPU_Set);
1414
            pragma Assert (Result = 1);
1415
         end;
1416
      end if;
1417
   end Set_Task_Affinity;
1418
 
1419
end System.Task_Primitives.Operations;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.