OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-taprop-posix.adb] - Blame information for rev 720

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
4
--                                                                          --
5
--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6
--                                                                          --
7
--                                  B o d y                                 --
8
--                                                                          --
9
--          Copyright (C) 1992-2011, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNARL is free software; you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNARL was developed by the GNARL team at Florida State University.       --
28
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This is a POSIX-like version of this package
33
 
34
--  This package contains all the GNULL primitives that interface directly with
35
--  the underlying OS.
36
 
37
--  Note: this file can only be used for POSIX compliant systems that implement
38
--  SCHED_FIFO and Ceiling Locking correctly.
39
 
40
--  For configurations where SCHED_FIFO and priority ceiling are not a
41
--  requirement, this file can also be used (e.g AiX threads)
42
 
43
pragma Polling (Off);
44
--  Turn off polling, we do not want ATC polling to take place during tasking
45
--  operations. It causes infinite loops and other problems.
46
 
47
with Ada.Unchecked_Conversion;
48
 
49
with Interfaces.C;
50
 
51
with System.Tasking.Debug;
52
with System.Interrupt_Management;
53
with System.OS_Constants;
54
with System.OS_Primitives;
55
with System.Task_Info;
56
 
57
with System.Soft_Links;
58
--  We use System.Soft_Links instead of System.Tasking.Initialization
59
--  because the later is a higher level package that we shouldn't depend on.
60
--  For example when using the restricted run time, it is replaced by
61
--  System.Tasking.Restricted.Stages.
62
 
63
package body System.Task_Primitives.Operations is
64
 
65
   package OSC renames System.OS_Constants;
66
   package SSL renames System.Soft_Links;
67
 
68
   use System.Tasking.Debug;
69
   use System.Tasking;
70
   use Interfaces.C;
71
   use System.OS_Interface;
72
   use System.Parameters;
73
   use System.OS_Primitives;
74
 
75
   ----------------
76
   -- Local Data --
77
   ----------------
78
 
79
   --  The followings are logically constants, but need to be initialized
80
   --  at run time.
81
 
82
   Single_RTS_Lock : aliased RTS_Lock;
83
   --  This is a lock to allow only one thread of control in the RTS at
84
   --  a time; it is used to execute in mutual exclusion from all other tasks.
85
   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
86
 
87
   Environment_Task_Id : Task_Id;
88
   --  A variable to hold Task_Id for the environment task
89
 
90
   Locking_Policy : Character;
91
   pragma Import (C, Locking_Policy, "__gl_locking_policy");
92
   --  Value of the pragma Locking_Policy:
93
   --    'C' for Ceiling_Locking
94
   --    'I' for Inherit_Locking
95
   --    ' ' for none.
96
 
97
   Unblocked_Signal_Mask : aliased sigset_t;
98
   --  The set of signals that should unblocked in all tasks
99
 
100
   --  The followings are internal configuration constants needed
101
 
102
   Next_Serial_Number : Task_Serial_Number := 100;
103
   --  We start at 100, to reserve some special values for
104
   --  using in error checking.
105
 
106
   Time_Slice_Val : Integer;
107
   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
108
 
109
   Dispatching_Policy : Character;
110
   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
111
 
112
   Foreign_Task_Elaborated : aliased Boolean := True;
113
   --  Used to identified fake tasks (i.e., non-Ada Threads)
114
 
115
   Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
116
   --  Whether to use an alternate signal stack for stack overflows
117
 
118
   Abort_Handler_Installed : Boolean := False;
119
   --  True if a handler for the abort signal is installed
120
 
121
   --------------------
122
   -- Local Packages --
123
   --------------------
124
 
125
   package Specific is
126
 
127
      procedure Initialize (Environment_Task : Task_Id);
128
      pragma Inline (Initialize);
129
      --  Initialize various data needed by this package
130
 
131
      function Is_Valid_Task return Boolean;
132
      pragma Inline (Is_Valid_Task);
133
      --  Does executing thread have a TCB?
134
 
135
      procedure Set (Self_Id : Task_Id);
136
      pragma Inline (Set);
137
      --  Set the self id for the current task
138
 
139
      function Self return Task_Id;
140
      pragma Inline (Self);
141
      --  Return a pointer to the Ada Task Control Block of the calling task
142
 
143
   end Specific;
144
 
145
   package body Specific is separate;
146
   --  The body of this package is target specific
147
 
148
   ----------------------------------
149
   -- ATCB allocation/deallocation --
150
   ----------------------------------
151
 
152
   package body ATCB_Allocation is separate;
153
   --  The body of this package is shared across several targets
154
 
155
   ---------------------------------
156
   -- Support for foreign threads --
157
   ---------------------------------
158
 
159
   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
160
   --  Allocate and Initialize a new ATCB for the current Thread
161
 
162
   function Register_Foreign_Thread
163
     (Thread : Thread_Id) return Task_Id is separate;
164
 
165
   -----------------------
166
   -- Local Subprograms --
167
   -----------------------
168
 
169
   procedure Abort_Handler (Sig : Signal);
170
   --  Signal handler used to implement asynchronous abort.
171
   --  See also comment before body, below.
172
 
173
   function To_Address is
174
     new Ada.Unchecked_Conversion (Task_Id, System.Address);
175
 
176
   function GNAT_pthread_condattr_setup
177
     (attr : access pthread_condattr_t) return int;
178
   pragma Import (C,
179
     GNAT_pthread_condattr_setup, "__gnat_pthread_condattr_setup");
180
 
181
   -------------------
182
   -- Abort_Handler --
183
   -------------------
184
 
185
   --  Target-dependent binding of inter-thread Abort signal to the raising of
186
   --  the Abort_Signal exception.
187
 
188
   --  The technical issues and alternatives here are essentially the
189
   --  same as for raising exceptions in response to other signals
190
   --  (e.g. Storage_Error). See code and comments in the package body
191
   --  System.Interrupt_Management.
192
 
193
   --  Some implementations may not allow an exception to be propagated out of
194
   --  a handler, and others might leave the signal or interrupt that invoked
195
   --  this handler masked after the exceptional return to the application
196
   --  code.
197
 
198
   --  GNAT exceptions are originally implemented using setjmp()/longjmp(). On
199
   --  most UNIX systems, this will allow transfer out of a signal handler,
200
   --  which is usually the only mechanism available for implementing
201
   --  asynchronous handlers of this kind. However, some systems do not
202
   --  restore the signal mask on longjmp(), leaving the abort signal masked.
203
 
204
   procedure Abort_Handler (Sig : Signal) is
205
      pragma Unreferenced (Sig);
206
 
207
      T       : constant Task_Id := Self;
208
      Old_Set : aliased sigset_t;
209
 
210
      Result : Interfaces.C.int;
211
      pragma Warnings (Off, Result);
212
 
213
   begin
214
      --  It's not safe to raise an exception when using GCC ZCX mechanism.
215
      --  Note that we still need to install a signal handler, since in some
216
      --  cases (e.g. shutdown of the Server_Task in System.Interrupts) we
217
      --  need to send the Abort signal to a task.
218
 
219
      if ZCX_By_Default then
220
         return;
221
      end if;
222
 
223
      if T.Deferral_Level = 0
224
        and then T.Pending_ATC_Level < T.ATC_Nesting_Level and then
225
        not T.Aborting
226
      then
227
         T.Aborting := True;
228
 
229
         --  Make sure signals used for RTS internal purpose are unmasked
230
 
231
         Result := pthread_sigmask (SIG_UNBLOCK,
232
           Unblocked_Signal_Mask'Access, Old_Set'Access);
233
         pragma Assert (Result = 0);
234
 
235
         raise Standard'Abort_Signal;
236
      end if;
237
   end Abort_Handler;
238
 
239
   -----------------
240
   -- Stack_Guard --
241
   -----------------
242
 
243
   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
244
      Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread);
245
      Guard_Page_Address : Address;
246
 
247
      Res : Interfaces.C.int;
248
 
249
   begin
250
      if Stack_Base_Available then
251
 
252
         --  Compute the guard page address
253
 
254
         Guard_Page_Address :=
255
           Stack_Base - (Stack_Base mod Get_Page_Size) + Get_Page_Size;
256
 
257
         Res :=
258
           mprotect (Guard_Page_Address, Get_Page_Size,
259
                     prot => (if On then PROT_ON else PROT_OFF));
260
         pragma Assert (Res = 0);
261
      end if;
262
   end Stack_Guard;
263
 
264
   --------------------
265
   -- Get_Thread_Id  --
266
   --------------------
267
 
268
   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
269
   begin
270
      return T.Common.LL.Thread;
271
   end Get_Thread_Id;
272
 
273
   ----------
274
   -- Self --
275
   ----------
276
 
277
   function Self return Task_Id renames Specific.Self;
278
 
279
   ---------------------
280
   -- Initialize_Lock --
281
   ---------------------
282
 
283
   --  Note: mutexes and cond_variables needed per-task basis are
284
   --        initialized in Initialize_TCB and the Storage_Error is
285
   --        handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
286
   --        used in RTS is initialized before any status change of RTS.
287
   --        Therefore raising Storage_Error in the following routines
288
   --        should be able to be handled safely.
289
 
290
   procedure Initialize_Lock
291
     (Prio : System.Any_Priority;
292
      L    : not null access Lock)
293
   is
294
      Attributes : aliased pthread_mutexattr_t;
295
      Result : Interfaces.C.int;
296
 
297
   begin
298
      Result := pthread_mutexattr_init (Attributes'Access);
299
      pragma Assert (Result = 0 or else Result = ENOMEM);
300
 
301
      if Result = ENOMEM then
302
         raise Storage_Error;
303
      end if;
304
 
305
      if Locking_Policy = 'C' then
306
         Result := pthread_mutexattr_setprotocol
307
           (Attributes'Access, PTHREAD_PRIO_PROTECT);
308
         pragma Assert (Result = 0);
309
 
310
         Result := pthread_mutexattr_setprioceiling
311
            (Attributes'Access, Interfaces.C.int (Prio));
312
         pragma Assert (Result = 0);
313
 
314
      elsif Locking_Policy = 'I' then
315
         Result := pthread_mutexattr_setprotocol
316
           (Attributes'Access, PTHREAD_PRIO_INHERIT);
317
         pragma Assert (Result = 0);
318
      end if;
319
 
320
      Result := pthread_mutex_init (L.WO'Access, Attributes'Access);
321
      pragma Assert (Result = 0 or else Result = ENOMEM);
322
 
323
      if Result = ENOMEM then
324
         Result := pthread_mutexattr_destroy (Attributes'Access);
325
         raise Storage_Error;
326
      end if;
327
 
328
      Result := pthread_mutexattr_destroy (Attributes'Access);
329
      pragma Assert (Result = 0);
330
   end Initialize_Lock;
331
 
332
   procedure Initialize_Lock
333
     (L : not null access RTS_Lock; Level : Lock_Level)
334
   is
335
      pragma Unreferenced (Level);
336
 
337
      Attributes : aliased pthread_mutexattr_t;
338
      Result     : Interfaces.C.int;
339
 
340
   begin
341
      Result := pthread_mutexattr_init (Attributes'Access);
342
      pragma Assert (Result = 0 or else Result = ENOMEM);
343
 
344
      if Result = ENOMEM then
345
         raise Storage_Error;
346
      end if;
347
 
348
      if Locking_Policy = 'C' then
349
         Result := pthread_mutexattr_setprotocol
350
           (Attributes'Access, PTHREAD_PRIO_PROTECT);
351
         pragma Assert (Result = 0);
352
 
353
         Result := pthread_mutexattr_setprioceiling
354
            (Attributes'Access, Interfaces.C.int (System.Any_Priority'Last));
355
         pragma Assert (Result = 0);
356
 
357
      elsif Locking_Policy = 'I' then
358
         Result := pthread_mutexattr_setprotocol
359
           (Attributes'Access, PTHREAD_PRIO_INHERIT);
360
         pragma Assert (Result = 0);
361
      end if;
362
 
363
      Result := pthread_mutex_init (L, Attributes'Access);
364
      pragma Assert (Result = 0 or else Result = ENOMEM);
365
 
366
      if Result = ENOMEM then
367
         Result := pthread_mutexattr_destroy (Attributes'Access);
368
         raise Storage_Error;
369
      end if;
370
 
371
      Result := pthread_mutexattr_destroy (Attributes'Access);
372
      pragma Assert (Result = 0);
373
   end Initialize_Lock;
374
 
375
   -------------------
376
   -- Finalize_Lock --
377
   -------------------
378
 
379
   procedure Finalize_Lock (L : not null access Lock) is
380
      Result : Interfaces.C.int;
381
   begin
382
      Result := pthread_mutex_destroy (L.WO'Access);
383
      pragma Assert (Result = 0);
384
   end Finalize_Lock;
385
 
386
   procedure Finalize_Lock (L : not null access RTS_Lock) is
387
      Result : Interfaces.C.int;
388
   begin
389
      Result := pthread_mutex_destroy (L);
390
      pragma Assert (Result = 0);
391
   end Finalize_Lock;
392
 
393
   ----------------
394
   -- Write_Lock --
395
   ----------------
396
 
397
   procedure Write_Lock
398
     (L : not null access Lock; Ceiling_Violation : out Boolean)
399
   is
400
      Result : Interfaces.C.int;
401
 
402
   begin
403
      Result := pthread_mutex_lock (L.WO'Access);
404
 
405
      --  Assume that the cause of EINVAL is a priority ceiling violation
406
 
407
      Ceiling_Violation := (Result = EINVAL);
408
      pragma Assert (Result = 0 or else Result = EINVAL);
409
   end Write_Lock;
410
 
411
   procedure Write_Lock
412
     (L           : not null access RTS_Lock;
413
      Global_Lock : Boolean := False)
414
   is
415
      Result : Interfaces.C.int;
416
   begin
417
      if not Single_Lock or else Global_Lock then
418
         Result := pthread_mutex_lock (L);
419
         pragma Assert (Result = 0);
420
      end if;
421
   end Write_Lock;
422
 
423
   procedure Write_Lock (T : Task_Id) is
424
      Result : Interfaces.C.int;
425
   begin
426
      if not Single_Lock then
427
         Result := pthread_mutex_lock (T.Common.LL.L'Access);
428
         pragma Assert (Result = 0);
429
      end if;
430
   end Write_Lock;
431
 
432
   ---------------
433
   -- Read_Lock --
434
   ---------------
435
 
436
   procedure Read_Lock
437
     (L : not null access Lock; Ceiling_Violation : out Boolean) is
438
   begin
439
      Write_Lock (L, Ceiling_Violation);
440
   end Read_Lock;
441
 
442
   ------------
443
   -- Unlock --
444
   ------------
445
 
446
   procedure Unlock (L : not null access Lock) is
447
      Result : Interfaces.C.int;
448
   begin
449
      Result := pthread_mutex_unlock (L.WO'Access);
450
      pragma Assert (Result = 0);
451
   end Unlock;
452
 
453
   procedure Unlock
454
     (L : not null access RTS_Lock; Global_Lock : Boolean := False)
455
   is
456
      Result : Interfaces.C.int;
457
   begin
458
      if not Single_Lock or else Global_Lock then
459
         Result := pthread_mutex_unlock (L);
460
         pragma Assert (Result = 0);
461
      end if;
462
   end Unlock;
463
 
464
   procedure Unlock (T : Task_Id) is
465
      Result : Interfaces.C.int;
466
   begin
467
      if not Single_Lock then
468
         Result := pthread_mutex_unlock (T.Common.LL.L'Access);
469
         pragma Assert (Result = 0);
470
      end if;
471
   end Unlock;
472
 
473
   -----------------
474
   -- Set_Ceiling --
475
   -----------------
476
 
477
   --  Dynamic priority ceilings are not supported by the underlying system
478
 
479
   procedure Set_Ceiling
480
     (L    : not null access Lock;
481
      Prio : System.Any_Priority)
482
   is
483
      pragma Unreferenced (L, Prio);
484
   begin
485
      null;
486
   end Set_Ceiling;
487
 
488
   -----------
489
   -- Sleep --
490
   -----------
491
 
492
   procedure Sleep
493
     (Self_ID : Task_Id;
494
      Reason  : System.Tasking.Task_States)
495
   is
496
      pragma Unreferenced (Reason);
497
 
498
      Result : Interfaces.C.int;
499
 
500
   begin
501
      Result :=
502
        pthread_cond_wait
503
          (cond  => Self_ID.Common.LL.CV'Access,
504
           mutex => (if Single_Lock
505
                     then Single_RTS_Lock'Access
506
                     else Self_ID.Common.LL.L'Access));
507
 
508
      --  EINTR is not considered a failure
509
 
510
      pragma Assert (Result = 0 or else Result = EINTR);
511
   end Sleep;
512
 
513
   -----------------
514
   -- Timed_Sleep --
515
   -----------------
516
 
517
   --  This is for use within the run-time system, so abort is
518
   --  assumed to be already deferred, and the caller should be
519
   --  holding its own ATCB lock.
520
 
521
   procedure Timed_Sleep
522
     (Self_ID  : Task_Id;
523
      Time     : Duration;
524
      Mode     : ST.Delay_Modes;
525
      Reason   : Task_States;
526
      Timedout : out Boolean;
527
      Yielded  : out Boolean)
528
   is
529
      pragma Unreferenced (Reason);
530
 
531
      Base_Time  : constant Duration := Monotonic_Clock;
532
      Check_Time : Duration := Base_Time;
533
      Rel_Time   : Duration;
534
      Abs_Time   : Duration;
535
      Request    : aliased timespec;
536
      Result     : Interfaces.C.int;
537
 
538
   begin
539
      Timedout := True;
540
      Yielded := False;
541
 
542
      if Mode = Relative then
543
         Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
544
 
545
         if Relative_Timed_Wait then
546
            Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
547
         end if;
548
 
549
      else
550
         Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
551
 
552
         if Relative_Timed_Wait then
553
            Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
554
         end if;
555
      end if;
556
 
557
      if Abs_Time > Check_Time then
558
         Request :=
559
           To_Timespec (if Relative_Timed_Wait then Rel_Time else Abs_Time);
560
 
561
         loop
562
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
563
 
564
            Result :=
565
              pthread_cond_timedwait
566
                (cond    => Self_ID.Common.LL.CV'Access,
567
                 mutex   => (if Single_Lock
568
                             then Single_RTS_Lock'Access
569
                             else Self_ID.Common.LL.L'Access),
570
                 abstime => Request'Access);
571
 
572
            Check_Time := Monotonic_Clock;
573
            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
574
 
575
            if Result = 0 or Result = EINTR then
576
 
577
               --  Somebody may have called Wakeup for us
578
 
579
               Timedout := False;
580
               exit;
581
            end if;
582
 
583
            pragma Assert (Result = ETIMEDOUT);
584
         end loop;
585
      end if;
586
   end Timed_Sleep;
587
 
588
   -----------------
589
   -- Timed_Delay --
590
   -----------------
591
 
592
   --  This is for use in implementing delay statements, so we assume the
593
   --  caller is abort-deferred but is holding no locks.
594
 
595
   procedure Timed_Delay
596
     (Self_ID : Task_Id;
597
      Time    : Duration;
598
      Mode    : ST.Delay_Modes)
599
   is
600
      Base_Time  : constant Duration := Monotonic_Clock;
601
      Check_Time : Duration := Base_Time;
602
      Abs_Time   : Duration;
603
      Rel_Time   : Duration;
604
      Request    : aliased timespec;
605
 
606
      Result : Interfaces.C.int;
607
      pragma Warnings (Off, Result);
608
 
609
   begin
610
      if Single_Lock then
611
         Lock_RTS;
612
      end if;
613
 
614
      Write_Lock (Self_ID);
615
 
616
      if Mode = Relative then
617
         Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
618
 
619
         if Relative_Timed_Wait then
620
            Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
621
         end if;
622
 
623
      else
624
         Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
625
 
626
         if Relative_Timed_Wait then
627
            Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
628
         end if;
629
      end if;
630
 
631
      if Abs_Time > Check_Time then
632
         Request :=
633
           To_Timespec (if Relative_Timed_Wait then Rel_Time else Abs_Time);
634
         Self_ID.Common.State := Delay_Sleep;
635
 
636
         loop
637
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
638
 
639
            Result :=
640
              pthread_cond_timedwait
641
                (cond    => Self_ID.Common.LL.CV'Access,
642
                 mutex   => (if Single_Lock
643
                             then Single_RTS_Lock'Access
644
                             else Self_ID.Common.LL.L'Access),
645
                 abstime => Request'Access);
646
 
647
            Check_Time := Monotonic_Clock;
648
            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
649
 
650
            pragma Assert (Result = 0
651
                             or else Result = ETIMEDOUT
652
                             or else Result = EINTR);
653
         end loop;
654
 
655
         Self_ID.Common.State := Runnable;
656
      end if;
657
 
658
      Unlock (Self_ID);
659
 
660
      if Single_Lock then
661
         Unlock_RTS;
662
      end if;
663
 
664
      Result := sched_yield;
665
   end Timed_Delay;
666
 
667
   ---------------------
668
   -- Monotonic_Clock --
669
   ---------------------
670
 
671
   function Monotonic_Clock return Duration is
672
      TS     : aliased timespec;
673
      Result : Interfaces.C.int;
674
   begin
675
      Result := clock_gettime
676
        (clock_id => OSC.CLOCK_RT_Ada, tp => TS'Unchecked_Access);
677
      pragma Assert (Result = 0);
678
      return To_Duration (TS);
679
   end Monotonic_Clock;
680
 
681
   -------------------
682
   -- RT_Resolution --
683
   -------------------
684
 
685
   function RT_Resolution return Duration is
686
   begin
687
      return 10#1.0#E-6;
688
   end RT_Resolution;
689
 
690
   ------------
691
   -- Wakeup --
692
   ------------
693
 
694
   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
695
      pragma Unreferenced (Reason);
696
      Result : Interfaces.C.int;
697
   begin
698
      Result := pthread_cond_signal (T.Common.LL.CV'Access);
699
      pragma Assert (Result = 0);
700
   end Wakeup;
701
 
702
   -----------
703
   -- Yield --
704
   -----------
705
 
706
   procedure Yield (Do_Yield : Boolean := True) is
707
      Result : Interfaces.C.int;
708
      pragma Unreferenced (Result);
709
   begin
710
      if Do_Yield then
711
         Result := sched_yield;
712
      end if;
713
   end Yield;
714
 
715
   ------------------
716
   -- Set_Priority --
717
   ------------------
718
 
719
   procedure Set_Priority
720
     (T                   : Task_Id;
721
      Prio                : System.Any_Priority;
722
      Loss_Of_Inheritance : Boolean := False)
723
   is
724
      pragma Unreferenced (Loss_Of_Inheritance);
725
 
726
      Result : Interfaces.C.int;
727
      Param  : aliased struct_sched_param;
728
 
729
      function Get_Policy (Prio : System.Any_Priority) return Character;
730
      pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
731
      --  Get priority specific dispatching policy
732
 
733
      Priority_Specific_Policy : constant Character := Get_Policy (Prio);
734
      --  Upper case first character of the policy name corresponding to the
735
      --  task as set by a Priority_Specific_Dispatching pragma.
736
 
737
   begin
738
      T.Common.Current_Priority := Prio;
739
      Param.sched_priority := To_Target_Priority (Prio);
740
 
741
      if Time_Slice_Supported
742
        and then (Dispatching_Policy = 'R'
743
                  or else Priority_Specific_Policy = 'R'
744
                  or else Time_Slice_Val > 0)
745
      then
746
         Result := pthread_setschedparam
747
           (T.Common.LL.Thread, SCHED_RR, Param'Access);
748
 
749
      elsif Dispatching_Policy = 'F'
750
        or else Priority_Specific_Policy = 'F'
751
        or else Time_Slice_Val = 0
752
      then
753
         Result := pthread_setschedparam
754
           (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
755
 
756
      else
757
         Result := pthread_setschedparam
758
           (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
759
      end if;
760
 
761
      pragma Assert (Result = 0);
762
   end Set_Priority;
763
 
764
   ------------------
765
   -- Get_Priority --
766
   ------------------
767
 
768
   function Get_Priority (T : Task_Id) return System.Any_Priority is
769
   begin
770
      return T.Common.Current_Priority;
771
   end Get_Priority;
772
 
773
   ----------------
774
   -- Enter_Task --
775
   ----------------
776
 
777
   procedure Enter_Task (Self_ID : Task_Id) is
778
   begin
779
      Self_ID.Common.LL.Thread := pthread_self;
780
      Self_ID.Common.LL.LWP := lwp_self;
781
 
782
      Specific.Set (Self_ID);
783
 
784
      if Use_Alternate_Stack then
785
         declare
786
            Stack  : aliased stack_t;
787
            Result : Interfaces.C.int;
788
         begin
789
            Stack.ss_sp    := Self_ID.Common.Task_Alternate_Stack;
790
            Stack.ss_size  := Alternate_Stack_Size;
791
            Stack.ss_flags := 0;
792
            Result := sigaltstack (Stack'Access, null);
793
            pragma Assert (Result = 0);
794
         end;
795
      end if;
796
   end Enter_Task;
797
 
798
   -------------------
799
   -- Is_Valid_Task --
800
   -------------------
801
 
802
   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
803
 
804
   -----------------------------
805
   -- Register_Foreign_Thread --
806
   -----------------------------
807
 
808
   function Register_Foreign_Thread return Task_Id is
809
   begin
810
      if Is_Valid_Task then
811
         return Self;
812
      else
813
         return Register_Foreign_Thread (pthread_self);
814
      end if;
815
   end Register_Foreign_Thread;
816
 
817
   --------------------
818
   -- Initialize_TCB --
819
   --------------------
820
 
821
   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
822
      Mutex_Attr : aliased pthread_mutexattr_t;
823
      Result     : Interfaces.C.int;
824
      Cond_Attr  : aliased pthread_condattr_t;
825
 
826
   begin
827
      --  Give the task a unique serial number
828
 
829
      Self_ID.Serial_Number := Next_Serial_Number;
830
      Next_Serial_Number := Next_Serial_Number + 1;
831
      pragma Assert (Next_Serial_Number /= 0);
832
 
833
      if not Single_Lock then
834
         Result := pthread_mutexattr_init (Mutex_Attr'Access);
835
         pragma Assert (Result = 0 or else Result = ENOMEM);
836
 
837
         if Result = 0 then
838
            if Locking_Policy = 'C' then
839
               Result :=
840
                 pthread_mutexattr_setprotocol
841
                   (Mutex_Attr'Access,
842
                    PTHREAD_PRIO_PROTECT);
843
               pragma Assert (Result = 0);
844
 
845
               Result :=
846
                 pthread_mutexattr_setprioceiling
847
                   (Mutex_Attr'Access,
848
                    Interfaces.C.int (System.Any_Priority'Last));
849
               pragma Assert (Result = 0);
850
 
851
            elsif Locking_Policy = 'I' then
852
               Result :=
853
                 pthread_mutexattr_setprotocol
854
                   (Mutex_Attr'Access,
855
                    PTHREAD_PRIO_INHERIT);
856
               pragma Assert (Result = 0);
857
            end if;
858
 
859
            Result :=
860
              pthread_mutex_init
861
                (Self_ID.Common.LL.L'Access,
862
                 Mutex_Attr'Access);
863
            pragma Assert (Result = 0 or else Result = ENOMEM);
864
         end if;
865
 
866
         if Result /= 0 then
867
            Succeeded := False;
868
            return;
869
         end if;
870
 
871
         Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
872
         pragma Assert (Result = 0);
873
      end if;
874
 
875
      Result := pthread_condattr_init (Cond_Attr'Access);
876
      pragma Assert (Result = 0 or else Result = ENOMEM);
877
 
878
      if Result = 0 then
879
         Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
880
         pragma Assert (Result = 0);
881
 
882
         Result :=
883
           pthread_cond_init
884
             (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
885
         pragma Assert (Result = 0 or else Result = ENOMEM);
886
      end if;
887
 
888
      if Result = 0 then
889
         Succeeded := True;
890
      else
891
         if not Single_Lock then
892
            Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
893
            pragma Assert (Result = 0);
894
         end if;
895
 
896
         Succeeded := False;
897
      end if;
898
 
899
      Result := pthread_condattr_destroy (Cond_Attr'Access);
900
      pragma Assert (Result = 0);
901
   end Initialize_TCB;
902
 
903
   -----------------
904
   -- Create_Task --
905
   -----------------
906
 
907
   procedure Create_Task
908
     (T          : Task_Id;
909
      Wrapper    : System.Address;
910
      Stack_Size : System.Parameters.Size_Type;
911
      Priority   : System.Any_Priority;
912
      Succeeded  : out Boolean)
913
   is
914
      Attributes          : aliased pthread_attr_t;
915
      Adjusted_Stack_Size : Interfaces.C.size_t;
916
      Page_Size           : constant Interfaces.C.size_t := Get_Page_Size;
917
      Result              : Interfaces.C.int;
918
 
919
      function Thread_Body_Access is new
920
        Ada.Unchecked_Conversion (System.Address, Thread_Body);
921
 
922
      use System.Task_Info;
923
 
924
   begin
925
      Adjusted_Stack_Size :=
926
         Interfaces.C.size_t (Stack_Size + Alternate_Stack_Size);
927
 
928
      if Stack_Base_Available then
929
 
930
         --  If Stack Checking is supported then allocate 2 additional pages:
931
 
932
         --  In the worst case, stack is allocated at something like
933
         --  N * Get_Page_Size - epsilon, we need to add the size for 2 pages
934
         --  to be sure the effective stack size is greater than what
935
         --  has been asked.
936
 
937
         Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Page_Size;
938
      end if;
939
 
940
      --  Round stack size as this is required by some OSes (Darwin)
941
 
942
      Adjusted_Stack_Size := Adjusted_Stack_Size + Page_Size - 1;
943
      Adjusted_Stack_Size :=
944
        Adjusted_Stack_Size - Adjusted_Stack_Size mod Page_Size;
945
 
946
      Result := pthread_attr_init (Attributes'Access);
947
      pragma Assert (Result = 0 or else Result = ENOMEM);
948
 
949
      if Result /= 0 then
950
         Succeeded := False;
951
         return;
952
      end if;
953
 
954
      Result :=
955
        pthread_attr_setdetachstate
956
          (Attributes'Access, PTHREAD_CREATE_DETACHED);
957
      pragma Assert (Result = 0);
958
 
959
      Result :=
960
        pthread_attr_setstacksize
961
          (Attributes'Access, Adjusted_Stack_Size);
962
      pragma Assert (Result = 0);
963
 
964
      if T.Common.Task_Info /= Default_Scope then
965
         case T.Common.Task_Info is
966
            when System.Task_Info.Process_Scope =>
967
               Result :=
968
                 pthread_attr_setscope
969
                   (Attributes'Access, PTHREAD_SCOPE_PROCESS);
970
 
971
            when System.Task_Info.System_Scope =>
972
               Result :=
973
                 pthread_attr_setscope
974
                   (Attributes'Access, PTHREAD_SCOPE_SYSTEM);
975
 
976
            when System.Task_Info.Default_Scope =>
977
               Result := 0;
978
         end case;
979
 
980
         pragma Assert (Result = 0);
981
      end if;
982
 
983
      --  Since the initial signal mask of a thread is inherited from the
984
      --  creator, and the Environment task has all its signals masked, we
985
      --  do not need to manipulate caller's signal mask at this point.
986
      --  All tasks in RTS will have All_Tasks_Mask initially.
987
 
988
      --  Note: the use of Unrestricted_Access in the following call is needed
989
      --  because otherwise we have an error of getting a access-to-volatile
990
      --  value which points to a non-volatile object. But in this case it is
991
      --  safe to do this, since we know we have no problems with aliasing and
992
      --  Unrestricted_Access bypasses this check.
993
 
994
      Result := pthread_create
995
        (T.Common.LL.Thread'Unrestricted_Access,
996
         Attributes'Access,
997
         Thread_Body_Access (Wrapper),
998
         To_Address (T));
999
      pragma Assert (Result = 0 or else Result = EAGAIN);
1000
 
1001
      Succeeded := Result = 0;
1002
 
1003
      Result := pthread_attr_destroy (Attributes'Access);
1004
      pragma Assert (Result = 0);
1005
 
1006
      if Succeeded then
1007
         Set_Priority (T, Priority);
1008
      end if;
1009
   end Create_Task;
1010
 
1011
   ------------------
1012
   -- Finalize_TCB --
1013
   ------------------
1014
 
1015
   procedure Finalize_TCB (T : Task_Id) is
1016
      Result : Interfaces.C.int;
1017
 
1018
   begin
1019
      if not Single_Lock then
1020
         Result := pthread_mutex_destroy (T.Common.LL.L'Access);
1021
         pragma Assert (Result = 0);
1022
      end if;
1023
 
1024
      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
1025
      pragma Assert (Result = 0);
1026
 
1027
      if T.Known_Tasks_Index /= -1 then
1028
         Known_Tasks (T.Known_Tasks_Index) := null;
1029
      end if;
1030
 
1031
      ATCB_Allocation.Free_ATCB (T);
1032
   end Finalize_TCB;
1033
 
1034
   ---------------
1035
   -- Exit_Task --
1036
   ---------------
1037
 
1038
   procedure Exit_Task is
1039
   begin
1040
      --  Mark this task as unknown, so that if Self is called, it won't
1041
      --  return a dangling pointer.
1042
 
1043
      Specific.Set (null);
1044
   end Exit_Task;
1045
 
1046
   ----------------
1047
   -- Abort_Task --
1048
   ----------------
1049
 
1050
   procedure Abort_Task (T : Task_Id) is
1051
      Result : Interfaces.C.int;
1052
   begin
1053
      if Abort_Handler_Installed then
1054
         Result :=
1055
           pthread_kill
1056
             (T.Common.LL.Thread,
1057
              Signal (System.Interrupt_Management.Abort_Task_Interrupt));
1058
         pragma Assert (Result = 0);
1059
      end if;
1060
   end Abort_Task;
1061
 
1062
   ----------------
1063
   -- Initialize --
1064
   ----------------
1065
 
1066
   procedure Initialize (S : in out Suspension_Object) is
1067
      Mutex_Attr : aliased pthread_mutexattr_t;
1068
      Cond_Attr  : aliased pthread_condattr_t;
1069
      Result     : Interfaces.C.int;
1070
 
1071
   begin
1072
      --  Initialize internal state (always to False (RM D.10 (6)))
1073
 
1074
      S.State := False;
1075
      S.Waiting := False;
1076
 
1077
      --  Initialize internal mutex
1078
 
1079
      Result := pthread_mutexattr_init (Mutex_Attr'Access);
1080
      pragma Assert (Result = 0 or else Result = ENOMEM);
1081
 
1082
      if Result = ENOMEM then
1083
         raise Storage_Error;
1084
      end if;
1085
 
1086
      Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
1087
      pragma Assert (Result = 0 or else Result = ENOMEM);
1088
 
1089
      if Result = ENOMEM then
1090
         Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1091
         pragma Assert (Result = 0);
1092
 
1093
         raise Storage_Error;
1094
      end if;
1095
 
1096
      Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1097
      pragma Assert (Result = 0);
1098
 
1099
      --  Initialize internal condition variable
1100
 
1101
      Result := pthread_condattr_init (Cond_Attr'Access);
1102
      pragma Assert (Result = 0 or else Result = ENOMEM);
1103
 
1104
      if Result /= 0 then
1105
         Result := pthread_mutex_destroy (S.L'Access);
1106
         pragma Assert (Result = 0);
1107
 
1108
         --  Storage_Error is propagated as intended if the allocation of the
1109
         --  underlying OS entities fails.
1110
 
1111
         raise Storage_Error;
1112
 
1113
      else
1114
         Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
1115
         pragma Assert (Result = 0);
1116
      end if;
1117
 
1118
      Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
1119
      pragma Assert (Result = 0 or else Result = ENOMEM);
1120
 
1121
      if Result /= 0 then
1122
         Result := pthread_mutex_destroy (S.L'Access);
1123
         pragma Assert (Result = 0);
1124
 
1125
         Result := pthread_condattr_destroy (Cond_Attr'Access);
1126
         pragma Assert (Result = 0);
1127
 
1128
         --  Storage_Error is propagated as intended if the allocation of the
1129
         --  underlying OS entities fails.
1130
 
1131
         raise Storage_Error;
1132
      end if;
1133
 
1134
      Result := pthread_condattr_destroy (Cond_Attr'Access);
1135
      pragma Assert (Result = 0);
1136
   end Initialize;
1137
 
1138
   --------------
1139
   -- Finalize --
1140
   --------------
1141
 
1142
   procedure Finalize (S : in out Suspension_Object) is
1143
      Result : Interfaces.C.int;
1144
 
1145
   begin
1146
      --  Destroy internal mutex
1147
 
1148
      Result := pthread_mutex_destroy (S.L'Access);
1149
      pragma Assert (Result = 0);
1150
 
1151
      --  Destroy internal condition variable
1152
 
1153
      Result := pthread_cond_destroy (S.CV'Access);
1154
      pragma Assert (Result = 0);
1155
   end Finalize;
1156
 
1157
   -------------------
1158
   -- Current_State --
1159
   -------------------
1160
 
1161
   function Current_State (S : Suspension_Object) return Boolean is
1162
   begin
1163
      --  We do not want to use lock on this read operation. State is marked
1164
      --  as Atomic so that we ensure that the value retrieved is correct.
1165
 
1166
      return S.State;
1167
   end Current_State;
1168
 
1169
   ---------------
1170
   -- Set_False --
1171
   ---------------
1172
 
1173
   procedure Set_False (S : in out Suspension_Object) is
1174
      Result : Interfaces.C.int;
1175
 
1176
   begin
1177
      SSL.Abort_Defer.all;
1178
 
1179
      Result := pthread_mutex_lock (S.L'Access);
1180
      pragma Assert (Result = 0);
1181
 
1182
      S.State := False;
1183
 
1184
      Result := pthread_mutex_unlock (S.L'Access);
1185
      pragma Assert (Result = 0);
1186
 
1187
      SSL.Abort_Undefer.all;
1188
   end Set_False;
1189
 
1190
   --------------
1191
   -- Set_True --
1192
   --------------
1193
 
1194
   procedure Set_True (S : in out Suspension_Object) is
1195
      Result : Interfaces.C.int;
1196
 
1197
   begin
1198
      SSL.Abort_Defer.all;
1199
 
1200
      Result := pthread_mutex_lock (S.L'Access);
1201
      pragma Assert (Result = 0);
1202
 
1203
      --  If there is already a task waiting on this suspension object then
1204
      --  we resume it, leaving the state of the suspension object to False,
1205
      --  as it is specified in (RM D.10(9)). Otherwise, it just leaves
1206
      --  the state to True.
1207
 
1208
      if S.Waiting then
1209
         S.Waiting := False;
1210
         S.State := False;
1211
 
1212
         Result := pthread_cond_signal (S.CV'Access);
1213
         pragma Assert (Result = 0);
1214
 
1215
      else
1216
         S.State := True;
1217
      end if;
1218
 
1219
      Result := pthread_mutex_unlock (S.L'Access);
1220
      pragma Assert (Result = 0);
1221
 
1222
      SSL.Abort_Undefer.all;
1223
   end Set_True;
1224
 
1225
   ------------------------
1226
   -- Suspend_Until_True --
1227
   ------------------------
1228
 
1229
   procedure Suspend_Until_True (S : in out Suspension_Object) is
1230
      Result : Interfaces.C.int;
1231
 
1232
   begin
1233
      SSL.Abort_Defer.all;
1234
 
1235
      Result := pthread_mutex_lock (S.L'Access);
1236
      pragma Assert (Result = 0);
1237
 
1238
      if S.Waiting then
1239
 
1240
         --  Program_Error must be raised upon calling Suspend_Until_True
1241
         --  if another task is already waiting on that suspension object
1242
         --  (RM D.10(10)).
1243
 
1244
         Result := pthread_mutex_unlock (S.L'Access);
1245
         pragma Assert (Result = 0);
1246
 
1247
         SSL.Abort_Undefer.all;
1248
 
1249
         raise Program_Error;
1250
 
1251
      else
1252
         --  Suspend the task if the state is False. Otherwise, the task
1253
         --  continues its execution, and the state of the suspension object
1254
         --  is set to False (ARM D.10 par. 9).
1255
 
1256
         if S.State then
1257
            S.State := False;
1258
         else
1259
            S.Waiting := True;
1260
 
1261
            loop
1262
               --  Loop in case pthread_cond_wait returns earlier than expected
1263
               --  (e.g. in case of EINTR caused by a signal).
1264
 
1265
               Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1266
               pragma Assert (Result = 0 or else Result = EINTR);
1267
 
1268
               exit when not S.Waiting;
1269
            end loop;
1270
         end if;
1271
 
1272
         Result := pthread_mutex_unlock (S.L'Access);
1273
         pragma Assert (Result = 0);
1274
 
1275
         SSL.Abort_Undefer.all;
1276
      end if;
1277
   end Suspend_Until_True;
1278
 
1279
   ----------------
1280
   -- Check_Exit --
1281
   ----------------
1282
 
1283
   --  Dummy version
1284
 
1285
   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1286
      pragma Unreferenced (Self_ID);
1287
   begin
1288
      return True;
1289
   end Check_Exit;
1290
 
1291
   --------------------
1292
   -- Check_No_Locks --
1293
   --------------------
1294
 
1295
   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1296
      pragma Unreferenced (Self_ID);
1297
   begin
1298
      return True;
1299
   end Check_No_Locks;
1300
 
1301
   ----------------------
1302
   -- Environment_Task --
1303
   ----------------------
1304
 
1305
   function Environment_Task return Task_Id is
1306
   begin
1307
      return Environment_Task_Id;
1308
   end Environment_Task;
1309
 
1310
   --------------
1311
   -- Lock_RTS --
1312
   --------------
1313
 
1314
   procedure Lock_RTS is
1315
   begin
1316
      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1317
   end Lock_RTS;
1318
 
1319
   ----------------
1320
   -- Unlock_RTS --
1321
   ----------------
1322
 
1323
   procedure Unlock_RTS is
1324
   begin
1325
      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1326
   end Unlock_RTS;
1327
 
1328
   ------------------
1329
   -- Suspend_Task --
1330
   ------------------
1331
 
1332
   function Suspend_Task
1333
     (T           : ST.Task_Id;
1334
      Thread_Self : Thread_Id) return Boolean
1335
   is
1336
      pragma Unreferenced (T, Thread_Self);
1337
   begin
1338
      return False;
1339
   end Suspend_Task;
1340
 
1341
   -----------------
1342
   -- Resume_Task --
1343
   -----------------
1344
 
1345
   function Resume_Task
1346
     (T           : ST.Task_Id;
1347
      Thread_Self : Thread_Id) return Boolean
1348
   is
1349
      pragma Unreferenced (T, Thread_Self);
1350
   begin
1351
      return False;
1352
   end Resume_Task;
1353
 
1354
   --------------------
1355
   -- Stop_All_Tasks --
1356
   --------------------
1357
 
1358
   procedure Stop_All_Tasks is
1359
   begin
1360
      null;
1361
   end Stop_All_Tasks;
1362
 
1363
   ---------------
1364
   -- Stop_Task --
1365
   ---------------
1366
 
1367
   function Stop_Task (T : ST.Task_Id) return Boolean is
1368
      pragma Unreferenced (T);
1369
   begin
1370
      return False;
1371
   end Stop_Task;
1372
 
1373
   -------------------
1374
   -- Continue_Task --
1375
   -------------------
1376
 
1377
   function Continue_Task (T : ST.Task_Id) return Boolean is
1378
      pragma Unreferenced (T);
1379
   begin
1380
      return False;
1381
   end Continue_Task;
1382
 
1383
   ----------------
1384
   -- Initialize --
1385
   ----------------
1386
 
1387
   procedure Initialize (Environment_Task : Task_Id) is
1388
      act     : aliased struct_sigaction;
1389
      old_act : aliased struct_sigaction;
1390
      Tmp_Set : aliased sigset_t;
1391
      Result  : Interfaces.C.int;
1392
 
1393
      function State
1394
        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1395
      pragma Import (C, State, "__gnat_get_interrupt_state");
1396
      --  Get interrupt state.  Defined in a-init.c
1397
      --  The input argument is the interrupt number,
1398
      --  and the result is one of the following:
1399
 
1400
      Default : constant Character := 's';
1401
      --    'n'   this interrupt not set by any Interrupt_State pragma
1402
      --    'u'   Interrupt_State pragma set state to User
1403
      --    'r'   Interrupt_State pragma set state to Runtime
1404
      --    's'   Interrupt_State pragma set state to System (use "default"
1405
      --           system handler)
1406
 
1407
   begin
1408
      Environment_Task_Id := Environment_Task;
1409
 
1410
      Interrupt_Management.Initialize;
1411
 
1412
      --  Prepare the set of signals that should unblocked in all tasks
1413
 
1414
      Result := sigemptyset (Unblocked_Signal_Mask'Access);
1415
      pragma Assert (Result = 0);
1416
 
1417
      for J in Interrupt_Management.Interrupt_ID loop
1418
         if System.Interrupt_Management.Keep_Unmasked (J) then
1419
            Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1420
            pragma Assert (Result = 0);
1421
         end if;
1422
      end loop;
1423
 
1424
      --  Initialize the lock used to synchronize chain of all ATCBs
1425
 
1426
      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1427
 
1428
      Specific.Initialize (Environment_Task);
1429
 
1430
      if Use_Alternate_Stack then
1431
         Environment_Task.Common.Task_Alternate_Stack :=
1432
           Alternate_Stack'Address;
1433
      end if;
1434
 
1435
      --  Make environment task known here because it doesn't go through
1436
      --  Activate_Tasks, which does it for all other tasks.
1437
 
1438
      Known_Tasks (Known_Tasks'First) := Environment_Task;
1439
      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1440
 
1441
      Enter_Task (Environment_Task);
1442
 
1443
      if State
1444
          (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
1445
      then
1446
         act.sa_flags := 0;
1447
         act.sa_handler := Abort_Handler'Address;
1448
 
1449
         Result := sigemptyset (Tmp_Set'Access);
1450
         pragma Assert (Result = 0);
1451
         act.sa_mask := Tmp_Set;
1452
 
1453
         Result :=
1454
           sigaction
1455
             (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1456
              act'Unchecked_Access,
1457
              old_act'Unchecked_Access);
1458
         pragma Assert (Result = 0);
1459
         Abort_Handler_Installed := True;
1460
      end if;
1461
   end Initialize;
1462
 
1463
   -----------------------
1464
   -- Set_Task_Affinity --
1465
   -----------------------
1466
 
1467
   procedure Set_Task_Affinity (T : ST.Task_Id) is
1468
      pragma Unreferenced (T);
1469
 
1470
   begin
1471
      --  Setting task affinity is not supported by the underlying system
1472
 
1473
      null;
1474
   end Set_Task_Affinity;
1475
 
1476
end System.Task_Primitives.Operations;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.