OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-taprop-solaris.adb] - Blame information for rev 706

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
4
--                                                                          --
5
--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6
--                                                                          --
7
--                                  B o d y                                 --
8
--                                                                          --
9
--         Copyright (C) 1992-2011, Free Software Foundation, Inc.          --
10
--                                                                          --
11
-- GNARL is free software; you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNARL was developed by the GNARL team at Florida State University.       --
28
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This is a Solaris (native) version of this package
33
 
34
--  This package contains all the GNULL primitives that interface directly with
35
--  the underlying OS.
36
 
37
pragma Polling (Off);
38
--  Turn off polling, we do not want ATC polling to take place during tasking
39
--  operations. It causes infinite loops and other problems.
40
 
41
with Interfaces.C;
42
 
43
with System.Multiprocessors;
44
with System.Tasking.Debug;
45
with System.Interrupt_Management;
46
with System.OS_Constants;
47
with System.OS_Primitives;
48
with System.Task_Info;
49
 
50
pragma Warnings (Off);
51
with System.OS_Lib;
52
pragma Warnings (On);
53
 
54
with System.Soft_Links;
55
--  We use System.Soft_Links instead of System.Tasking.Initialization
56
--  because the later is a higher level package that we shouldn't depend on.
57
--  For example when using the restricted run time, it is replaced by
58
--  System.Tasking.Restricted.Stages.
59
 
60
package body System.Task_Primitives.Operations is
61
 
62
   package OSC renames System.OS_Constants;
63
   package SSL renames System.Soft_Links;
64
 
65
   use System.Tasking.Debug;
66
   use System.Tasking;
67
   use Interfaces.C;
68
   use System.OS_Interface;
69
   use System.Parameters;
70
   use System.OS_Primitives;
71
 
72
   ----------------
73
   -- Local Data --
74
   ----------------
75
 
76
   --  The following are logically constants, but need to be initialized
77
   --  at run time.
78
 
79
   Environment_Task_Id : Task_Id;
80
   --  A variable to hold Task_Id for the environment task.
81
   --  If we use this variable to get the Task_Id, we need the following
82
   --  ATCB_Key only for non-Ada threads.
83
 
84
   Unblocked_Signal_Mask : aliased sigset_t;
85
   --  The set of signals that should unblocked in all tasks
86
 
87
   ATCB_Key : aliased thread_key_t;
88
   --  Key used to find the Ada Task_Id associated with a thread,
89
   --  at least for C threads unknown to the Ada run-time system.
90
 
91
   Single_RTS_Lock : aliased RTS_Lock;
92
   --  This is a lock to allow only one thread of control in the RTS at
93
   --  a time; it is used to execute in mutual exclusion from all other tasks.
94
   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
95
 
96
   Next_Serial_Number : Task_Serial_Number := 100;
97
   --  We start at 100, to reserve some special values for
98
   --  using in error checking.
99
   --  The following are internal configuration constants needed.
100
 
101
   Abort_Handler_Installed : Boolean := False;
102
   --  True if a handler for the abort signal is installed
103
 
104
   Null_Thread_Id : constant Thread_Id := Thread_Id'Last;
105
   --  Constant to indicate that the thread identifier has not yet been
106
   --  initialized.
107
 
108
   ----------------------
109
   -- Priority Support --
110
   ----------------------
111
 
112
   Priority_Ceiling_Emulation : constant Boolean := True;
113
   --  controls whether we emulate priority ceiling locking
114
 
115
   --  To get a scheduling close to annex D requirements, we use the real-time
116
   --  class provided for LWPs and map each task/thread to a specific and
117
   --  unique LWP (there is 1 thread per LWP, and 1 LWP per thread).
118
 
119
   --  The real time class can only be set when the process has root
120
   --  privileges, so in the other cases, we use the normal thread scheduling
121
   --  and priority handling.
122
 
123
   Using_Real_Time_Class : Boolean := False;
124
   --  indicates whether the real time class is being used (i.e. the process
125
   --  has root privileges).
126
 
127
   Prio_Param : aliased struct_pcparms;
128
   --  Hold priority info (Real_Time) initialized during the package
129
   --  elaboration.
130
 
131
   -----------------------------------
132
   -- External Configuration Values --
133
   -----------------------------------
134
 
135
   Time_Slice_Val : Integer;
136
   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
137
 
138
   Locking_Policy : Character;
139
   pragma Import (C, Locking_Policy, "__gl_locking_policy");
140
 
141
   Dispatching_Policy : Character;
142
   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
143
 
144
   Foreign_Task_Elaborated : aliased Boolean := True;
145
   --  Used to identified fake tasks (i.e., non-Ada Threads)
146
 
147
   -----------------------
148
   -- Local Subprograms --
149
   -----------------------
150
 
151
   function sysconf (name : System.OS_Interface.int) return processorid_t;
152
   pragma Import (C, sysconf, "sysconf");
153
 
154
   SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14;
155
 
156
   function Num_Procs
157
     (name : System.OS_Interface.int := SC_NPROCESSORS_CONF)
158
      return processorid_t renames sysconf;
159
 
160
   procedure Abort_Handler
161
     (Sig     : Signal;
162
      Code    : not null access siginfo_t;
163
      Context : not null access ucontext_t);
164
   --  Target-dependent binding of inter-thread Abort signal to
165
   --  the raising of the Abort_Signal exception.
166
   --  See also comments in 7staprop.adb
167
 
168
   ------------
169
   -- Checks --
170
   ------------
171
 
172
   function Check_Initialize_Lock
173
     (L     : Lock_Ptr;
174
      Level : Lock_Level) return Boolean;
175
   pragma Inline (Check_Initialize_Lock);
176
 
177
   function Check_Lock (L : Lock_Ptr) return Boolean;
178
   pragma Inline (Check_Lock);
179
 
180
   function Record_Lock (L : Lock_Ptr) return Boolean;
181
   pragma Inline (Record_Lock);
182
 
183
   function Check_Sleep (Reason : Task_States) return Boolean;
184
   pragma Inline (Check_Sleep);
185
 
186
   function Record_Wakeup
187
     (L      : Lock_Ptr;
188
      Reason : Task_States) return Boolean;
189
   pragma Inline (Record_Wakeup);
190
 
191
   function Check_Wakeup
192
     (T      : Task_Id;
193
      Reason : Task_States) return Boolean;
194
   pragma Inline (Check_Wakeup);
195
 
196
   function Check_Unlock (L : Lock_Ptr) return Boolean;
197
   pragma Inline (Check_Unlock);
198
 
199
   function Check_Finalize_Lock (L : Lock_Ptr) return Boolean;
200
   pragma Inline (Check_Finalize_Lock);
201
 
202
   --------------------
203
   -- Local Packages --
204
   --------------------
205
 
206
   package Specific is
207
 
208
      procedure Initialize (Environment_Task : Task_Id);
209
      pragma Inline (Initialize);
210
      --  Initialize various data needed by this package
211
 
212
      function Is_Valid_Task return Boolean;
213
      pragma Inline (Is_Valid_Task);
214
      --  Does executing thread have a TCB?
215
 
216
      procedure Set (Self_Id : Task_Id);
217
      pragma Inline (Set);
218
      --  Set the self id for the current task
219
 
220
      function Self return Task_Id;
221
      pragma Inline (Self);
222
      --  Return a pointer to the Ada Task Control Block of the calling task
223
 
224
   end Specific;
225
 
226
   package body Specific is separate;
227
   --  The body of this package is target specific
228
 
229
   ----------------------------------
230
   -- ATCB allocation/deallocation --
231
   ----------------------------------
232
 
233
   package body ATCB_Allocation is separate;
234
   --  The body of this package is shared across several targets
235
 
236
   ---------------------------------
237
   -- Support for foreign threads --
238
   ---------------------------------
239
 
240
   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
241
   --  Allocate and Initialize a new ATCB for the current Thread
242
 
243
   function Register_Foreign_Thread
244
     (Thread : Thread_Id) return Task_Id is separate;
245
 
246
   ------------
247
   -- Checks --
248
   ------------
249
 
250
   Check_Count  : Integer := 0;
251
   Lock_Count   : Integer := 0;
252
   Unlock_Count : Integer := 0;
253
 
254
   -------------------
255
   -- Abort_Handler --
256
   -------------------
257
 
258
   procedure Abort_Handler
259
     (Sig     : Signal;
260
      Code    : not null access siginfo_t;
261
      Context : not null access ucontext_t)
262
   is
263
      pragma Unreferenced (Sig);
264
      pragma Unreferenced (Code);
265
      pragma Unreferenced (Context);
266
 
267
      Self_ID : constant Task_Id := Self;
268
      Old_Set : aliased sigset_t;
269
 
270
      Result : Interfaces.C.int;
271
      pragma Warnings (Off, Result);
272
 
273
   begin
274
      --  It's not safe to raise an exception when using GCC ZCX mechanism.
275
      --  Note that we still need to install a signal handler, since in some
276
      --  cases (e.g. shutdown of the Server_Task in System.Interrupts) we
277
      --  need to send the Abort signal to a task.
278
 
279
      if ZCX_By_Default then
280
         return;
281
      end if;
282
 
283
      if Self_ID.Deferral_Level = 0
284
        and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
285
        and then not Self_ID.Aborting
286
      then
287
         Self_ID.Aborting := True;
288
 
289
         --  Make sure signals used for RTS internal purpose are unmasked
290
 
291
         Result :=
292
           thr_sigsetmask
293
             (SIG_UNBLOCK,
294
              Unblocked_Signal_Mask'Unchecked_Access,
295
              Old_Set'Unchecked_Access);
296
         pragma Assert (Result = 0);
297
 
298
         raise Standard'Abort_Signal;
299
      end if;
300
   end Abort_Handler;
301
 
302
   -----------------
303
   -- Stack_Guard --
304
   -----------------
305
 
306
   --  The underlying thread system sets a guard page at the
307
   --  bottom of a thread stack, so nothing is needed.
308
 
309
   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
310
      pragma Unreferenced (T);
311
      pragma Unreferenced (On);
312
   begin
313
      null;
314
   end Stack_Guard;
315
 
316
   -------------------
317
   -- Get_Thread_Id --
318
   -------------------
319
 
320
   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
321
   begin
322
      return T.Common.LL.Thread;
323
   end Get_Thread_Id;
324
 
325
   ----------------
326
   -- Initialize --
327
   ----------------
328
 
329
   procedure Initialize (Environment_Task : ST.Task_Id) is
330
      act     : aliased struct_sigaction;
331
      old_act : aliased struct_sigaction;
332
      Tmp_Set : aliased sigset_t;
333
      Result  : Interfaces.C.int;
334
 
335
      procedure Configure_Processors;
336
      --  Processors configuration
337
      --  The user can specify a processor which the program should run
338
      --  on to emulate a single-processor system. This can be easily
339
      --  done by setting environment variable GNAT_PROCESSOR to one of
340
      --  the following :
341
      --
342
      --    -2 : use the default configuration (run the program on all
343
      --         available processors) - this is the same as having
344
      --         GNAT_PROCESSOR unset
345
      --    -1 : let the RTS choose one processor and run the program on
346
      --         that processor
347
      --    0 .. Last_Proc : run the program on the specified processor
348
      --
349
      --  Last_Proc is equal to the value of the system variable
350
      --  _SC_NPROCESSORS_CONF, minus one.
351
 
352
      procedure Configure_Processors is
353
         Proc_Acc  : constant System.OS_Lib.String_Access :=
354
                       System.OS_Lib.Getenv ("GNAT_PROCESSOR");
355
         Proc      : aliased processorid_t;  --  User processor #
356
         Last_Proc : processorid_t;          --  Last processor #
357
 
358
      begin
359
         if Proc_Acc.all'Length /= 0 then
360
 
361
            --  Environment variable is defined
362
 
363
            Last_Proc := Num_Procs - 1;
364
 
365
            if Last_Proc /= -1 then
366
               Proc := processorid_t'Value (Proc_Acc.all);
367
 
368
               if Proc <= -2  or else Proc > Last_Proc then
369
 
370
                  --  Use the default configuration
371
 
372
                  null;
373
 
374
               elsif Proc = -1 then
375
 
376
                  --  Choose a processor
377
 
378
                  Result := 0;
379
                  while Proc < Last_Proc loop
380
                     Proc := Proc + 1;
381
                     Result := p_online (Proc, PR_STATUS);
382
                     exit when Result = PR_ONLINE;
383
                  end loop;
384
 
385
                  pragma Assert (Result = PR_ONLINE);
386
                  Result := processor_bind (P_PID, P_MYID, Proc, null);
387
                  pragma Assert (Result = 0);
388
 
389
               else
390
                  --  Use user processor
391
 
392
                  Result := processor_bind (P_PID, P_MYID, Proc, null);
393
                  pragma Assert (Result = 0);
394
               end if;
395
            end if;
396
         end if;
397
 
398
      exception
399
         when Constraint_Error =>
400
 
401
            --  Illegal environment variable GNAT_PROCESSOR - ignored
402
 
403
            null;
404
      end Configure_Processors;
405
 
406
      function State
407
        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
408
      pragma Import (C, State, "__gnat_get_interrupt_state");
409
      --  Get interrupt state.  Defined in a-init.c
410
      --  The input argument is the interrupt number,
411
      --  and the result is one of the following:
412
 
413
      Default : constant Character := 's';
414
      --    'n'   this interrupt not set by any Interrupt_State pragma
415
      --    'u'   Interrupt_State pragma set state to User
416
      --    'r'   Interrupt_State pragma set state to Runtime
417
      --    's'   Interrupt_State pragma set state to System (use "default"
418
      --           system handler)
419
 
420
   --  Start of processing for Initialize
421
 
422
   begin
423
      Environment_Task_Id := Environment_Task;
424
 
425
      Interrupt_Management.Initialize;
426
 
427
      --  Prepare the set of signals that should unblocked in all tasks
428
 
429
      Result := sigemptyset (Unblocked_Signal_Mask'Access);
430
      pragma Assert (Result = 0);
431
 
432
      for J in Interrupt_Management.Interrupt_ID loop
433
         if System.Interrupt_Management.Keep_Unmasked (J) then
434
            Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
435
            pragma Assert (Result = 0);
436
         end if;
437
      end loop;
438
 
439
      if Dispatching_Policy = 'F' then
440
         declare
441
            Result      : Interfaces.C.long;
442
            Class_Info  : aliased struct_pcinfo;
443
            Secs, Nsecs : Interfaces.C.long;
444
 
445
         begin
446
            --  If a pragma Time_Slice is specified, takes the value in account
447
 
448
            if Time_Slice_Val > 0 then
449
 
450
               --  Convert Time_Slice_Val (microseconds) to seconds/nanosecs
451
 
452
               Secs := Interfaces.C.long (Time_Slice_Val / 1_000_000);
453
               Nsecs :=
454
                 Interfaces.C.long ((Time_Slice_Val rem 1_000_000) * 1_000);
455
 
456
            --  Otherwise, default to no time slicing (i.e run until blocked)
457
 
458
            else
459
               Secs := RT_TQINF;
460
               Nsecs := RT_TQINF;
461
            end if;
462
 
463
            --  Get the real time class id
464
 
465
            Class_Info.pc_clname (1) := 'R';
466
            Class_Info.pc_clname (2) := 'T';
467
            Class_Info.pc_clname (3) := ASCII.NUL;
468
 
469
            Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID,
470
              Class_Info'Address);
471
 
472
            --  Request the real time class
473
 
474
            Prio_Param.pc_cid := Class_Info.pc_cid;
475
            Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri);
476
            Prio_Param.rt_tqsecs := Secs;
477
            Prio_Param.rt_tqnsecs := Nsecs;
478
 
479
            Result :=
480
              priocntl
481
                (PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS, Prio_Param'Address);
482
 
483
            Using_Real_Time_Class := Result /= -1;
484
         end;
485
      end if;
486
 
487
      Specific.Initialize (Environment_Task);
488
 
489
      --  The following is done in Enter_Task, but this is too late for the
490
      --  Environment Task, since we need to call Self in Check_Locks when
491
      --  the run time is compiled with assertions on.
492
 
493
      Specific.Set (Environment_Task);
494
 
495
      --  Initialize the lock used to synchronize chain of all ATCBs
496
 
497
      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
498
 
499
      --  Make environment task known here because it doesn't go through
500
      --  Activate_Tasks, which does it for all other tasks.
501
 
502
      Known_Tasks (Known_Tasks'First) := Environment_Task;
503
      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
504
 
505
      Enter_Task (Environment_Task);
506
 
507
      Configure_Processors;
508
 
509
      if State
510
          (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
511
      then
512
         --  Set sa_flags to SA_NODEFER so that during the handler execution
513
         --  we do not change the Signal_Mask to be masked for the Abort_Signal
514
         --  This is a temporary fix to the problem that the Signal_Mask is
515
         --  not restored after the exception (longjmp) from the handler.
516
         --  The right fix should be made in sigsetjmp so that we save
517
         --  the Signal_Set and restore it after a longjmp.
518
         --  In that case, this field should be changed back to 0. ???
519
 
520
         act.sa_flags := 16;
521
 
522
         act.sa_handler := Abort_Handler'Address;
523
         Result := sigemptyset (Tmp_Set'Access);
524
         pragma Assert (Result = 0);
525
         act.sa_mask := Tmp_Set;
526
 
527
         Result :=
528
           sigaction
529
             (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
530
              act'Unchecked_Access,
531
              old_act'Unchecked_Access);
532
         pragma Assert (Result = 0);
533
         Abort_Handler_Installed := True;
534
      end if;
535
   end Initialize;
536
 
537
   ---------------------
538
   -- Initialize_Lock --
539
   ---------------------
540
 
541
   --  Note: mutexes and cond_variables needed per-task basis are initialized
542
   --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
543
   --  as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
544
   --  status change of RTS. Therefore raising Storage_Error in the following
545
   --  routines should be able to be handled safely.
546
 
547
   procedure Initialize_Lock
548
     (Prio : System.Any_Priority;
549
      L    : not null access Lock)
550
   is
551
      Result : Interfaces.C.int;
552
 
553
   begin
554
      pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level));
555
 
556
      if Priority_Ceiling_Emulation then
557
         L.Ceiling := Prio;
558
      end if;
559
 
560
      Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
561
      pragma Assert (Result = 0 or else Result = ENOMEM);
562
 
563
      if Result = ENOMEM then
564
         raise Storage_Error with "Failed to allocate a lock";
565
      end if;
566
   end Initialize_Lock;
567
 
568
   procedure Initialize_Lock
569
     (L     : not null access RTS_Lock;
570
      Level : Lock_Level)
571
   is
572
      Result : Interfaces.C.int;
573
 
574
   begin
575
      pragma Assert
576
        (Check_Initialize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)), Level));
577
      Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
578
      pragma Assert (Result = 0 or else Result = ENOMEM);
579
 
580
      if Result = ENOMEM then
581
         raise Storage_Error with "Failed to allocate a lock";
582
      end if;
583
   end Initialize_Lock;
584
 
585
   -------------------
586
   -- Finalize_Lock --
587
   -------------------
588
 
589
   procedure Finalize_Lock (L : not null access Lock) is
590
      Result : Interfaces.C.int;
591
   begin
592
      pragma Assert (Check_Finalize_Lock (Lock_Ptr (L)));
593
      Result := mutex_destroy (L.L'Access);
594
      pragma Assert (Result = 0);
595
   end Finalize_Lock;
596
 
597
   procedure Finalize_Lock (L : not null access RTS_Lock) is
598
      Result : Interfaces.C.int;
599
   begin
600
      pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
601
      Result := mutex_destroy (L.L'Access);
602
      pragma Assert (Result = 0);
603
   end Finalize_Lock;
604
 
605
   ----------------
606
   -- Write_Lock --
607
   ----------------
608
 
609
   procedure Write_Lock
610
     (L                 : not null access Lock;
611
      Ceiling_Violation : out Boolean)
612
   is
613
      Result : Interfaces.C.int;
614
 
615
   begin
616
      pragma Assert (Check_Lock (Lock_Ptr (L)));
617
 
618
      if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
619
         declare
620
            Self_Id        : constant Task_Id := Self;
621
            Saved_Priority : System.Any_Priority;
622
 
623
         begin
624
            if Self_Id.Common.LL.Active_Priority > L.Ceiling then
625
               Ceiling_Violation := True;
626
               return;
627
            end if;
628
 
629
            Saved_Priority := Self_Id.Common.LL.Active_Priority;
630
 
631
            if Self_Id.Common.LL.Active_Priority < L.Ceiling then
632
               Set_Priority (Self_Id, L.Ceiling);
633
            end if;
634
 
635
            Result := mutex_lock (L.L'Access);
636
            pragma Assert (Result = 0);
637
            Ceiling_Violation := False;
638
 
639
            L.Saved_Priority := Saved_Priority;
640
         end;
641
 
642
      else
643
         Result := mutex_lock (L.L'Access);
644
         pragma Assert (Result = 0);
645
         Ceiling_Violation := False;
646
      end if;
647
 
648
      pragma Assert (Record_Lock (Lock_Ptr (L)));
649
   end Write_Lock;
650
 
651
   procedure Write_Lock
652
     (L          : not null access RTS_Lock;
653
     Global_Lock : Boolean := False)
654
   is
655
      Result : Interfaces.C.int;
656
   begin
657
      if not Single_Lock or else Global_Lock then
658
         pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
659
         Result := mutex_lock (L.L'Access);
660
         pragma Assert (Result = 0);
661
         pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
662
      end if;
663
   end Write_Lock;
664
 
665
   procedure Write_Lock (T : Task_Id) is
666
      Result : Interfaces.C.int;
667
   begin
668
      if not Single_Lock then
669
         pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
670
         Result := mutex_lock (T.Common.LL.L.L'Access);
671
         pragma Assert (Result = 0);
672
         pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
673
      end if;
674
   end Write_Lock;
675
 
676
   ---------------
677
   -- Read_Lock --
678
   ---------------
679
 
680
   procedure Read_Lock
681
     (L                 : not null access Lock;
682
      Ceiling_Violation : out Boolean) is
683
   begin
684
      Write_Lock (L, Ceiling_Violation);
685
   end Read_Lock;
686
 
687
   ------------
688
   -- Unlock --
689
   ------------
690
 
691
   procedure Unlock (L : not null access Lock) is
692
      Result : Interfaces.C.int;
693
 
694
   begin
695
      pragma Assert (Check_Unlock (Lock_Ptr (L)));
696
 
697
      if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
698
         declare
699
            Self_Id : constant Task_Id := Self;
700
 
701
         begin
702
            Result := mutex_unlock (L.L'Access);
703
            pragma Assert (Result = 0);
704
 
705
            if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then
706
               Set_Priority (Self_Id, L.Saved_Priority);
707
            end if;
708
         end;
709
      else
710
         Result := mutex_unlock (L.L'Access);
711
         pragma Assert (Result = 0);
712
      end if;
713
   end Unlock;
714
 
715
   procedure Unlock
716
     (L           : not null access RTS_Lock;
717
      Global_Lock : Boolean := False)
718
   is
719
      Result : Interfaces.C.int;
720
   begin
721
      if not Single_Lock or else Global_Lock then
722
         pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
723
         Result := mutex_unlock (L.L'Access);
724
         pragma Assert (Result = 0);
725
      end if;
726
   end Unlock;
727
 
728
   procedure Unlock (T : Task_Id) is
729
      Result : Interfaces.C.int;
730
   begin
731
      if not Single_Lock then
732
         pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access)));
733
         Result := mutex_unlock (T.Common.LL.L.L'Access);
734
         pragma Assert (Result = 0);
735
      end if;
736
   end Unlock;
737
 
738
   -----------------
739
   -- Set_Ceiling --
740
   -----------------
741
 
742
   --  Dynamic priority ceilings are not supported by the underlying system
743
 
744
   procedure Set_Ceiling
745
     (L    : not null access Lock;
746
      Prio : System.Any_Priority)
747
   is
748
      pragma Unreferenced (L, Prio);
749
   begin
750
      null;
751
   end Set_Ceiling;
752
 
753
   --  For the time delay implementation, we need to make sure we
754
   --  achieve following criteria:
755
 
756
   --  1) We have to delay at least for the amount requested.
757
   --  2) We have to give up CPU even though the actual delay does not
758
   --     result in blocking.
759
   --  3) Except for restricted run-time systems that do not support
760
   --     ATC or task abort, the delay must be interrupted by the
761
   --     abort_task operation.
762
   --  4) The implementation has to be efficient so that the delay overhead
763
   --     is relatively cheap.
764
   --  (1)-(3) are Ada requirements. Even though (2) is an Annex-D
765
   --     requirement we still want to provide the effect in all cases.
766
   --     The reason is that users may want to use short delays to implement
767
   --     their own scheduling effect in the absence of language provided
768
   --     scheduling policies.
769
 
770
   ---------------------
771
   -- Monotonic_Clock --
772
   ---------------------
773
 
774
   function Monotonic_Clock return Duration is
775
      TS     : aliased timespec;
776
      Result : Interfaces.C.int;
777
   begin
778
      Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
779
      pragma Assert (Result = 0);
780
      return To_Duration (TS);
781
   end Monotonic_Clock;
782
 
783
   -------------------
784
   -- RT_Resolution --
785
   -------------------
786
 
787
   function RT_Resolution return Duration is
788
   begin
789
      return 10#1.0#E-6;
790
   end RT_Resolution;
791
 
792
   -----------
793
   -- Yield --
794
   -----------
795
 
796
   procedure Yield (Do_Yield : Boolean := True) is
797
   begin
798
      if Do_Yield then
799
         System.OS_Interface.thr_yield;
800
      end if;
801
   end Yield;
802
 
803
   -----------
804
   -- Self ---
805
   -----------
806
 
807
   function Self return Task_Id renames Specific.Self;
808
 
809
   ------------------
810
   -- Set_Priority --
811
   ------------------
812
 
813
   procedure Set_Priority
814
     (T                   : Task_Id;
815
      Prio                : System.Any_Priority;
816
      Loss_Of_Inheritance : Boolean := False)
817
   is
818
      pragma Unreferenced (Loss_Of_Inheritance);
819
 
820
      Result : Interfaces.C.int;
821
      pragma Unreferenced (Result);
822
 
823
      Param : aliased struct_pcparms;
824
 
825
      use Task_Info;
826
 
827
   begin
828
      T.Common.Current_Priority := Prio;
829
 
830
      if Priority_Ceiling_Emulation then
831
         T.Common.LL.Active_Priority := Prio;
832
      end if;
833
 
834
      if Using_Real_Time_Class then
835
         Param.pc_cid := Prio_Param.pc_cid;
836
         Param.rt_pri := pri_t (Prio);
837
         Param.rt_tqsecs := Prio_Param.rt_tqsecs;
838
         Param.rt_tqnsecs := Prio_Param.rt_tqnsecs;
839
 
840
         Result := Interfaces.C.int (
841
           priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS,
842
             Param'Address));
843
 
844
      else
845
         if T.Common.Task_Info /= null
846
           and then not T.Common.Task_Info.Bound_To_LWP
847
         then
848
            --  The task is not bound to a LWP, so use thr_setprio
849
 
850
            Result :=
851
              thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio));
852
 
853
         else
854
            --  The task is bound to a LWP, use priocntl
855
            --  ??? TBD
856
 
857
            null;
858
         end if;
859
      end if;
860
   end Set_Priority;
861
 
862
   ------------------
863
   -- Get_Priority --
864
   ------------------
865
 
866
   function Get_Priority (T : Task_Id) return System.Any_Priority is
867
   begin
868
      return T.Common.Current_Priority;
869
   end Get_Priority;
870
 
871
   ----------------
872
   -- Enter_Task --
873
   ----------------
874
 
875
   procedure Enter_Task (Self_ID : Task_Id) is
876
   begin
877
      Self_ID.Common.LL.Thread := thr_self;
878
      Self_ID.Common.LL.LWP    := lwp_self;
879
 
880
      Set_Task_Affinity (Self_ID);
881
      Specific.Set (Self_ID);
882
 
883
      --  We need the above code even if we do direct fetch of Task_Id in Self
884
      --  for the main task on Sun, x86 Solaris and for gcc 2.7.2.
885
   end Enter_Task;
886
 
887
   -------------------
888
   -- Is_Valid_Task --
889
   -------------------
890
 
891
   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
892
 
893
   -----------------------------
894
   -- Register_Foreign_Thread --
895
   -----------------------------
896
 
897
   function Register_Foreign_Thread return Task_Id is
898
   begin
899
      if Is_Valid_Task then
900
         return Self;
901
      else
902
         return Register_Foreign_Thread (thr_self);
903
      end if;
904
   end Register_Foreign_Thread;
905
 
906
   --------------------
907
   -- Initialize_TCB --
908
   --------------------
909
 
910
   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
911
      Result : Interfaces.C.int := 0;
912
 
913
   begin
914
      --  Give the task a unique serial number
915
 
916
      Self_ID.Serial_Number := Next_Serial_Number;
917
      Next_Serial_Number := Next_Serial_Number + 1;
918
      pragma Assert (Next_Serial_Number /= 0);
919
 
920
      Self_ID.Common.LL.Thread := Null_Thread_Id;
921
 
922
      if not Single_Lock then
923
         Result :=
924
           mutex_init
925
             (Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address);
926
         Self_ID.Common.LL.L.Level :=
927
           Private_Task_Serial_Number (Self_ID.Serial_Number);
928
         pragma Assert (Result = 0 or else Result = ENOMEM);
929
      end if;
930
 
931
      if Result = 0 then
932
         Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0);
933
         pragma Assert (Result = 0 or else Result = ENOMEM);
934
      end if;
935
 
936
      if Result = 0 then
937
         Succeeded := True;
938
      else
939
         if not Single_Lock then
940
            Result := mutex_destroy (Self_ID.Common.LL.L.L'Access);
941
            pragma Assert (Result = 0);
942
         end if;
943
 
944
         Succeeded := False;
945
      end if;
946
   end Initialize_TCB;
947
 
948
   -----------------
949
   -- Create_Task --
950
   -----------------
951
 
952
   procedure Create_Task
953
     (T          : Task_Id;
954
      Wrapper    : System.Address;
955
      Stack_Size : System.Parameters.Size_Type;
956
      Priority   : System.Any_Priority;
957
      Succeeded  : out Boolean)
958
   is
959
      pragma Unreferenced (Priority);
960
 
961
      Result              : Interfaces.C.int;
962
      Adjusted_Stack_Size : Interfaces.C.size_t;
963
      Opts                : Interfaces.C.int := THR_DETACHED;
964
 
965
      Page_Size           : constant System.Parameters.Size_Type := 4096;
966
      --  This constant is for reserving extra space at the
967
      --  end of the stack, which can be used by the stack
968
      --  checking as guard page. The idea is that we need
969
      --  to have at least Stack_Size bytes available for
970
      --  actual use.
971
 
972
      use System.Task_Info;
973
      use type System.Multiprocessors.CPU_Range;
974
 
975
   begin
976
      --  Check whether both Dispatching_Domain and CPU are specified for the
977
      --  task, and the CPU value is not contained within the range of
978
      --  processors for the domain.
979
 
980
      if T.Common.Domain /= null
981
        and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
982
        and then
983
          (T.Common.Base_CPU not in T.Common.Domain'Range
984
            or else not T.Common.Domain (T.Common.Base_CPU))
985
      then
986
         Succeeded := False;
987
         return;
988
      end if;
989
 
990
      Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size + Page_Size);
991
 
992
      --  Since the initial signal mask of a thread is inherited from the
993
      --  creator, and the Environment task has all its signals masked, we
994
      --  do not need to manipulate caller's signal mask at this point.
995
      --  All tasks in RTS will have All_Tasks_Mask initially.
996
 
997
      if T.Common.Task_Info /= null then
998
         if T.Common.Task_Info.New_LWP then
999
            Opts := Opts + THR_NEW_LWP;
1000
         end if;
1001
 
1002
         if T.Common.Task_Info.Bound_To_LWP then
1003
            Opts := Opts + THR_BOUND;
1004
         end if;
1005
 
1006
      else
1007
         Opts := THR_DETACHED + THR_BOUND;
1008
      end if;
1009
 
1010
      --  Note: the use of Unrestricted_Access in the following call is needed
1011
      --  because otherwise we have an error of getting a access-to-volatile
1012
      --  value which points to a non-volatile object. But in this case it is
1013
      --  safe to do this, since we know we have no problems with aliasing and
1014
      --  Unrestricted_Access bypasses this check.
1015
 
1016
      Result :=
1017
        thr_create
1018
          (System.Null_Address,
1019
           Adjusted_Stack_Size,
1020
           Thread_Body_Access (Wrapper),
1021
           To_Address (T),
1022
           Opts,
1023
           T.Common.LL.Thread'Unrestricted_Access);
1024
 
1025
      Succeeded := Result = 0;
1026
      pragma Assert
1027
        (Result = 0
1028
          or else Result = ENOMEM
1029
          or else Result = EAGAIN);
1030
   end Create_Task;
1031
 
1032
   ------------------
1033
   -- Finalize_TCB --
1034
   ------------------
1035
 
1036
   procedure Finalize_TCB (T : Task_Id) is
1037
      Result : Interfaces.C.int;
1038
 
1039
   begin
1040
      T.Common.LL.Thread := Null_Thread_Id;
1041
 
1042
      if not Single_Lock then
1043
         Result := mutex_destroy (T.Common.LL.L.L'Access);
1044
         pragma Assert (Result = 0);
1045
      end if;
1046
 
1047
      Result := cond_destroy (T.Common.LL.CV'Access);
1048
      pragma Assert (Result = 0);
1049
 
1050
      if T.Known_Tasks_Index /= -1 then
1051
         Known_Tasks (T.Known_Tasks_Index) := null;
1052
      end if;
1053
 
1054
      ATCB_Allocation.Free_ATCB (T);
1055
   end Finalize_TCB;
1056
 
1057
   ---------------
1058
   -- Exit_Task --
1059
   ---------------
1060
 
1061
   --  This procedure must be called with abort deferred. It can no longer
1062
   --  call Self or access the current task's ATCB, since the ATCB has been
1063
   --  deallocated.
1064
 
1065
   procedure Exit_Task is
1066
   begin
1067
      Specific.Set (null);
1068
   end Exit_Task;
1069
 
1070
   ----------------
1071
   -- Abort_Task --
1072
   ----------------
1073
 
1074
   procedure Abort_Task (T : Task_Id) is
1075
      Result : Interfaces.C.int;
1076
   begin
1077
      if Abort_Handler_Installed then
1078
         pragma Assert (T /= Self);
1079
         Result :=
1080
           thr_kill
1081
             (T.Common.LL.Thread,
1082
              Signal (System.Interrupt_Management.Abort_Task_Interrupt));
1083
         pragma Assert (Result = 0);
1084
      end if;
1085
   end Abort_Task;
1086
 
1087
   -----------
1088
   -- Sleep --
1089
   -----------
1090
 
1091
   procedure Sleep
1092
     (Self_ID : Task_Id;
1093
      Reason  : Task_States)
1094
   is
1095
      Result : Interfaces.C.int;
1096
 
1097
   begin
1098
      pragma Assert (Check_Sleep (Reason));
1099
 
1100
      if Single_Lock then
1101
         Result :=
1102
           cond_wait
1103
             (Self_ID.Common.LL.CV'Access, Single_RTS_Lock.L'Access);
1104
      else
1105
         Result :=
1106
           cond_wait
1107
             (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access);
1108
      end if;
1109
 
1110
      pragma Assert
1111
        (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
1112
      pragma Assert (Result = 0 or else Result = EINTR);
1113
   end Sleep;
1114
 
1115
   --  Note that we are relying heavily here on GNAT representing
1116
   --  Calendar.Time, System.Real_Time.Time, Duration,
1117
   --  System.Real_Time.Time_Span in the same way, i.e., as a 64-bit count of
1118
   --  nanoseconds.
1119
 
1120
   --  This allows us to always pass the timeout value as a Duration
1121
 
1122
   --  ???
1123
   --  We are taking liberties here with the semantics of the delays. That is,
1124
   --  we make no distinction between delays on the Calendar clock and delays
1125
   --  on the Real_Time clock. That is technically incorrect, if the Calendar
1126
   --  clock happens to be reset or adjusted. To solve this defect will require
1127
   --  modification to the compiler interface, so that it can pass through more
1128
   --  information, to tell us here which clock to use!
1129
 
1130
   --  cond_timedwait will return if any of the following happens:
1131
   --  1) some other task did cond_signal on this condition variable
1132
   --     In this case, the return value is 0
1133
   --  2) the call just returned, for no good reason
1134
   --     This is called a "spurious wakeup".
1135
   --     In this case, the return value may also be 0.
1136
   --  3) the time delay expires
1137
   --     In this case, the return value is ETIME
1138
   --  4) this task received a signal, which was handled by some
1139
   --     handler procedure, and now the thread is resuming execution
1140
   --     UNIX calls this an "interrupted" system call.
1141
   --     In this case, the return value is EINTR
1142
 
1143
   --  If the cond_timedwait returns 0 or EINTR, it is still possible that the
1144
   --  time has actually expired, and by chance a signal or cond_signal
1145
   --  occurred at around the same time.
1146
 
1147
   --  We have also observed that on some OS's the value ETIME will be
1148
   --  returned, but the clock will show that the full delay has not yet
1149
   --  expired.
1150
 
1151
   --  For these reasons, we need to check the clock after return from
1152
   --  cond_timedwait. If the time has expired, we will set Timedout = True.
1153
 
1154
   --  This check might be omitted for systems on which the cond_timedwait()
1155
   --  never returns early or wakes up spuriously.
1156
 
1157
   --  Annex D requires that completion of a delay cause the task to go to the
1158
   --  end of its priority queue, regardless of whether the task actually was
1159
   --  suspended by the delay. Since cond_timedwait does not do this on
1160
   --  Solaris, we add a call to thr_yield at the end. We might do this at the
1161
   --  beginning, instead, but then the round-robin effect would not be the
1162
   --  same; the delayed task would be ahead of other tasks of the same
1163
   --  priority that awoke while it was sleeping.
1164
 
1165
   --  For Timed_Sleep, we are expecting possible cond_signals to indicate
1166
   --  other events (e.g., completion of a RV or completion of the abortable
1167
   --  part of an async. select), we want to always return if interrupted. The
1168
   --  caller will be responsible for checking the task state to see whether
1169
   --  the wakeup was spurious, and to go back to sleep again in that case. We
1170
   --  don't need to check for pending abort or priority change on the way in
1171
   --  our out; that is the caller's responsibility.
1172
 
1173
   --  For Timed_Delay, we are not expecting any cond_signals or other
1174
   --  interruptions, except for priority changes and aborts. Therefore, we
1175
   --  don't want to return unless the delay has actually expired, or the call
1176
   --  has been aborted. In this case, since we want to implement the entire
1177
   --  delay statement semantics, we do need to check for pending abort and
1178
   --  priority changes. We can quietly handle priority changes inside the
1179
   --  procedure, since there is no entry-queue reordering involved.
1180
 
1181
   -----------------
1182
   -- Timed_Sleep --
1183
   -----------------
1184
 
1185
   procedure Timed_Sleep
1186
     (Self_ID  : Task_Id;
1187
      Time     : Duration;
1188
      Mode     : ST.Delay_Modes;
1189
      Reason   : System.Tasking.Task_States;
1190
      Timedout : out Boolean;
1191
      Yielded  : out Boolean)
1192
   is
1193
      Base_Time  : constant Duration := Monotonic_Clock;
1194
      Check_Time : Duration := Base_Time;
1195
      Abs_Time   : Duration;
1196
      Request    : aliased timespec;
1197
      Result     : Interfaces.C.int;
1198
 
1199
   begin
1200
      pragma Assert (Check_Sleep (Reason));
1201
      Timedout := True;
1202
      Yielded := False;
1203
 
1204
      Abs_Time :=
1205
        (if Mode = Relative
1206
         then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
1207
         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
1208
 
1209
      if Abs_Time > Check_Time then
1210
         Request := To_Timespec (Abs_Time);
1211
         loop
1212
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
1213
 
1214
            if Single_Lock then
1215
               Result :=
1216
                 cond_timedwait
1217
                   (Self_ID.Common.LL.CV'Access,
1218
                    Single_RTS_Lock.L'Access, Request'Access);
1219
            else
1220
               Result :=
1221
                 cond_timedwait
1222
                   (Self_ID.Common.LL.CV'Access,
1223
                    Self_ID.Common.LL.L.L'Access, Request'Access);
1224
            end if;
1225
 
1226
            Yielded := True;
1227
 
1228
            Check_Time := Monotonic_Clock;
1229
            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
1230
 
1231
            if Result = 0 or Result = EINTR then
1232
 
1233
               --  Somebody may have called Wakeup for us
1234
 
1235
               Timedout := False;
1236
               exit;
1237
            end if;
1238
 
1239
            pragma Assert (Result = ETIME);
1240
         end loop;
1241
      end if;
1242
 
1243
      pragma Assert
1244
        (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
1245
   end Timed_Sleep;
1246
 
1247
   -----------------
1248
   -- Timed_Delay --
1249
   -----------------
1250
 
1251
   procedure Timed_Delay
1252
     (Self_ID : Task_Id;
1253
      Time    : Duration;
1254
      Mode    : ST.Delay_Modes)
1255
   is
1256
      Base_Time  : constant Duration := Monotonic_Clock;
1257
      Check_Time : Duration := Base_Time;
1258
      Abs_Time   : Duration;
1259
      Request    : aliased timespec;
1260
      Result     : Interfaces.C.int;
1261
      Yielded    : Boolean := False;
1262
 
1263
   begin
1264
      if Single_Lock then
1265
         Lock_RTS;
1266
      end if;
1267
 
1268
      Write_Lock (Self_ID);
1269
 
1270
      Abs_Time :=
1271
        (if Mode = Relative
1272
         then Time + Check_Time
1273
         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
1274
 
1275
      if Abs_Time > Check_Time then
1276
         Request := To_Timespec (Abs_Time);
1277
         Self_ID.Common.State := Delay_Sleep;
1278
 
1279
         pragma Assert (Check_Sleep (Delay_Sleep));
1280
 
1281
         loop
1282
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
1283
 
1284
            if Single_Lock then
1285
               Result :=
1286
                 cond_timedwait
1287
                   (Self_ID.Common.LL.CV'Access,
1288
                    Single_RTS_Lock.L'Access,
1289
                    Request'Access);
1290
            else
1291
               Result :=
1292
                 cond_timedwait
1293
                   (Self_ID.Common.LL.CV'Access,
1294
                    Self_ID.Common.LL.L.L'Access,
1295
                    Request'Access);
1296
            end if;
1297
 
1298
            Yielded := True;
1299
 
1300
            Check_Time := Monotonic_Clock;
1301
            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
1302
 
1303
            pragma Assert
1304
              (Result = 0     or else
1305
               Result = ETIME or else
1306
               Result = EINTR);
1307
         end loop;
1308
 
1309
         pragma Assert
1310
           (Record_Wakeup
1311
              (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep));
1312
 
1313
         Self_ID.Common.State := Runnable;
1314
      end if;
1315
 
1316
      Unlock (Self_ID);
1317
 
1318
      if Single_Lock then
1319
         Unlock_RTS;
1320
      end if;
1321
 
1322
      if not Yielded then
1323
         thr_yield;
1324
      end if;
1325
   end Timed_Delay;
1326
 
1327
   ------------
1328
   -- Wakeup --
1329
   ------------
1330
 
1331
   procedure Wakeup
1332
     (T : Task_Id;
1333
      Reason : Task_States)
1334
   is
1335
      Result : Interfaces.C.int;
1336
   begin
1337
      pragma Assert (Check_Wakeup (T, Reason));
1338
      Result := cond_signal (T.Common.LL.CV'Access);
1339
      pragma Assert (Result = 0);
1340
   end Wakeup;
1341
 
1342
   ---------------------------
1343
   -- Check_Initialize_Lock --
1344
   ---------------------------
1345
 
1346
   --  The following code is intended to check some of the invariant assertions
1347
   --  related to lock usage, on which we depend.
1348
 
1349
   function Check_Initialize_Lock
1350
     (L     : Lock_Ptr;
1351
      Level : Lock_Level) return Boolean
1352
   is
1353
      Self_ID : constant Task_Id := Self;
1354
 
1355
   begin
1356
      --  Check that caller is abort-deferred
1357
 
1358
      if Self_ID.Deferral_Level = 0 then
1359
         return False;
1360
      end if;
1361
 
1362
      --  Check that the lock is not yet initialized
1363
 
1364
      if L.Level /= 0 then
1365
         return False;
1366
      end if;
1367
 
1368
      L.Level := Lock_Level'Pos (Level) + 1;
1369
      return True;
1370
   end Check_Initialize_Lock;
1371
 
1372
   ----------------
1373
   -- Check_Lock --
1374
   ----------------
1375
 
1376
   function Check_Lock (L : Lock_Ptr) return Boolean is
1377
      Self_ID : constant Task_Id := Self;
1378
      P       : Lock_Ptr;
1379
 
1380
   begin
1381
      --  Check that the argument is not null
1382
 
1383
      if L = null then
1384
         return False;
1385
      end if;
1386
 
1387
      --  Check that L is not frozen
1388
 
1389
      if L.Frozen then
1390
         return False;
1391
      end if;
1392
 
1393
      --  Check that caller is abort-deferred
1394
 
1395
      if Self_ID.Deferral_Level = 0 then
1396
         return False;
1397
      end if;
1398
 
1399
      --  Check that caller is not holding this lock already
1400
 
1401
      if L.Owner = To_Owner_ID (To_Address (Self_ID)) then
1402
         return False;
1403
      end if;
1404
 
1405
      if Single_Lock then
1406
         return True;
1407
      end if;
1408
 
1409
      --  Check that TCB lock order rules are satisfied
1410
 
1411
      P := Self_ID.Common.LL.Locks;
1412
      if P /= null then
1413
         if P.Level >= L.Level
1414
           and then (P.Level > 2 or else L.Level > 2)
1415
         then
1416
            return False;
1417
         end if;
1418
      end if;
1419
 
1420
      return True;
1421
   end Check_Lock;
1422
 
1423
   -----------------
1424
   -- Record_Lock --
1425
   -----------------
1426
 
1427
   function Record_Lock (L : Lock_Ptr) return Boolean is
1428
      Self_ID : constant Task_Id := Self;
1429
      P       : Lock_Ptr;
1430
 
1431
   begin
1432
      Lock_Count := Lock_Count + 1;
1433
 
1434
      --  There should be no owner for this lock at this point
1435
 
1436
      if L.Owner /= null then
1437
         return False;
1438
      end if;
1439
 
1440
      --  Record new owner
1441
 
1442
      L.Owner := To_Owner_ID (To_Address (Self_ID));
1443
 
1444
      if Single_Lock then
1445
         return True;
1446
      end if;
1447
 
1448
      --  Check that TCB lock order rules are satisfied
1449
 
1450
      P := Self_ID.Common.LL.Locks;
1451
 
1452
      if P /= null then
1453
         L.Next := P;
1454
      end if;
1455
 
1456
      Self_ID.Common.LL.Locking := null;
1457
      Self_ID.Common.LL.Locks := L;
1458
      return True;
1459
   end Record_Lock;
1460
 
1461
   -----------------
1462
   -- Check_Sleep --
1463
   -----------------
1464
 
1465
   function Check_Sleep (Reason : Task_States) return Boolean is
1466
      pragma Unreferenced (Reason);
1467
 
1468
      Self_ID : constant Task_Id := Self;
1469
      P       : Lock_Ptr;
1470
 
1471
   begin
1472
      --  Check that caller is abort-deferred
1473
 
1474
      if Self_ID.Deferral_Level = 0 then
1475
         return False;
1476
      end if;
1477
 
1478
      if Single_Lock then
1479
         return True;
1480
      end if;
1481
 
1482
      --  Check that caller is holding own lock, on top of list
1483
 
1484
      if Self_ID.Common.LL.Locks /=
1485
        To_Lock_Ptr (Self_ID.Common.LL.L'Access)
1486
      then
1487
         return False;
1488
      end if;
1489
 
1490
      --  Check that TCB lock order rules are satisfied
1491
 
1492
      if Self_ID.Common.LL.Locks.Next /= null then
1493
         return False;
1494
      end if;
1495
 
1496
      Self_ID.Common.LL.L.Owner := null;
1497
      P := Self_ID.Common.LL.Locks;
1498
      Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
1499
      P.Next := null;
1500
      return True;
1501
   end Check_Sleep;
1502
 
1503
   -------------------
1504
   -- Record_Wakeup --
1505
   -------------------
1506
 
1507
   function Record_Wakeup
1508
     (L      : Lock_Ptr;
1509
      Reason : Task_States) return Boolean
1510
   is
1511
      pragma Unreferenced (Reason);
1512
 
1513
      Self_ID : constant Task_Id := Self;
1514
      P       : Lock_Ptr;
1515
 
1516
   begin
1517
      --  Record new owner
1518
 
1519
      L.Owner := To_Owner_ID (To_Address (Self_ID));
1520
 
1521
      if Single_Lock then
1522
         return True;
1523
      end if;
1524
 
1525
      --  Check that TCB lock order rules are satisfied
1526
 
1527
      P := Self_ID.Common.LL.Locks;
1528
 
1529
      if P /= null then
1530
         L.Next := P;
1531
      end if;
1532
 
1533
      Self_ID.Common.LL.Locking := null;
1534
      Self_ID.Common.LL.Locks := L;
1535
      return True;
1536
   end Record_Wakeup;
1537
 
1538
   ------------------
1539
   -- Check_Wakeup --
1540
   ------------------
1541
 
1542
   function Check_Wakeup
1543
     (T      : Task_Id;
1544
      Reason : Task_States) return Boolean
1545
   is
1546
      Self_ID : constant Task_Id := Self;
1547
 
1548
   begin
1549
      --  Is caller holding T's lock?
1550
 
1551
      if T.Common.LL.L.Owner /= To_Owner_ID (To_Address (Self_ID)) then
1552
         return False;
1553
      end if;
1554
 
1555
      --  Are reasons for wakeup and sleep consistent?
1556
 
1557
      if T.Common.State /= Reason then
1558
         return False;
1559
      end if;
1560
 
1561
      return True;
1562
   end Check_Wakeup;
1563
 
1564
   ------------------
1565
   -- Check_Unlock --
1566
   ------------------
1567
 
1568
   function Check_Unlock (L : Lock_Ptr) return Boolean is
1569
      Self_ID : constant Task_Id := Self;
1570
      P       : Lock_Ptr;
1571
 
1572
   begin
1573
      Unlock_Count := Unlock_Count + 1;
1574
 
1575
      if L = null then
1576
         return False;
1577
      end if;
1578
 
1579
      if L.Buddy /= null then
1580
         return False;
1581
      end if;
1582
 
1583
      --  Magic constant 4???
1584
 
1585
      if L.Level = 4 then
1586
         Check_Count := Unlock_Count;
1587
      end if;
1588
 
1589
      --  Magic constant 1000???
1590
 
1591
      if Unlock_Count - Check_Count > 1000 then
1592
         Check_Count := Unlock_Count;
1593
      end if;
1594
 
1595
      --  Check that caller is abort-deferred
1596
 
1597
      if Self_ID.Deferral_Level = 0 then
1598
         return False;
1599
      end if;
1600
 
1601
      --  Check that caller is holding this lock, on top of list
1602
 
1603
      if Self_ID.Common.LL.Locks /= L then
1604
         return False;
1605
      end if;
1606
 
1607
      --  Record there is no owner now
1608
 
1609
      L.Owner := null;
1610
      P := Self_ID.Common.LL.Locks;
1611
      Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
1612
      P.Next := null;
1613
      return True;
1614
   end Check_Unlock;
1615
 
1616
   --------------------
1617
   -- Check_Finalize --
1618
   --------------------
1619
 
1620
   function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is
1621
      Self_ID : constant Task_Id := Self;
1622
 
1623
   begin
1624
      --  Check that caller is abort-deferred
1625
 
1626
      if Self_ID.Deferral_Level = 0 then
1627
         return False;
1628
      end if;
1629
 
1630
      --  Check that no one is holding this lock
1631
 
1632
      if L.Owner /= null then
1633
         return False;
1634
      end if;
1635
 
1636
      L.Frozen := True;
1637
      return True;
1638
   end Check_Finalize_Lock;
1639
 
1640
   ----------------
1641
   -- Initialize --
1642
   ----------------
1643
 
1644
   procedure Initialize (S : in out Suspension_Object) is
1645
      Result : Interfaces.C.int;
1646
 
1647
   begin
1648
      --  Initialize internal state (always to zero (RM D.10(6)))
1649
 
1650
      S.State := False;
1651
      S.Waiting := False;
1652
 
1653
      --  Initialize internal mutex
1654
 
1655
      Result := mutex_init (S.L'Access, USYNC_THREAD, System.Null_Address);
1656
      pragma Assert (Result = 0 or else Result = ENOMEM);
1657
 
1658
      if Result = ENOMEM then
1659
         raise Storage_Error with "Failed to allocate a lock";
1660
      end if;
1661
 
1662
      --  Initialize internal condition variable
1663
 
1664
      Result := cond_init (S.CV'Access, USYNC_THREAD, 0);
1665
      pragma Assert (Result = 0 or else Result = ENOMEM);
1666
 
1667
      if Result /= 0 then
1668
         Result := mutex_destroy (S.L'Access);
1669
         pragma Assert (Result = 0);
1670
 
1671
         if Result = ENOMEM then
1672
            raise Storage_Error;
1673
         end if;
1674
      end if;
1675
   end Initialize;
1676
 
1677
   --------------
1678
   -- Finalize --
1679
   --------------
1680
 
1681
   procedure Finalize (S : in out Suspension_Object) is
1682
      Result  : Interfaces.C.int;
1683
 
1684
   begin
1685
      --  Destroy internal mutex
1686
 
1687
      Result := mutex_destroy (S.L'Access);
1688
      pragma Assert (Result = 0);
1689
 
1690
      --  Destroy internal condition variable
1691
 
1692
      Result := cond_destroy (S.CV'Access);
1693
      pragma Assert (Result = 0);
1694
   end Finalize;
1695
 
1696
   -------------------
1697
   -- Current_State --
1698
   -------------------
1699
 
1700
   function Current_State (S : Suspension_Object) return Boolean is
1701
   begin
1702
      --  We do not want to use lock on this read operation. State is marked
1703
      --  as Atomic so that we ensure that the value retrieved is correct.
1704
 
1705
      return S.State;
1706
   end Current_State;
1707
 
1708
   ---------------
1709
   -- Set_False --
1710
   ---------------
1711
 
1712
   procedure Set_False (S : in out Suspension_Object) is
1713
      Result  : Interfaces.C.int;
1714
 
1715
   begin
1716
      SSL.Abort_Defer.all;
1717
 
1718
      Result := mutex_lock (S.L'Access);
1719
      pragma Assert (Result = 0);
1720
 
1721
      S.State := False;
1722
 
1723
      Result := mutex_unlock (S.L'Access);
1724
      pragma Assert (Result = 0);
1725
 
1726
      SSL.Abort_Undefer.all;
1727
   end Set_False;
1728
 
1729
   --------------
1730
   -- Set_True --
1731
   --------------
1732
 
1733
   procedure Set_True (S : in out Suspension_Object) is
1734
      Result : Interfaces.C.int;
1735
 
1736
   begin
1737
      SSL.Abort_Defer.all;
1738
 
1739
      Result := mutex_lock (S.L'Access);
1740
      pragma Assert (Result = 0);
1741
 
1742
      --  If there is already a task waiting on this suspension object then
1743
      --  we resume it, leaving the state of the suspension object to False,
1744
      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1745
      --  the state to True.
1746
 
1747
      if S.Waiting then
1748
         S.Waiting := False;
1749
         S.State := False;
1750
 
1751
         Result := cond_signal (S.CV'Access);
1752
         pragma Assert (Result = 0);
1753
 
1754
      else
1755
         S.State := True;
1756
      end if;
1757
 
1758
      Result := mutex_unlock (S.L'Access);
1759
      pragma Assert (Result = 0);
1760
 
1761
      SSL.Abort_Undefer.all;
1762
   end Set_True;
1763
 
1764
   ------------------------
1765
   -- Suspend_Until_True --
1766
   ------------------------
1767
 
1768
   procedure Suspend_Until_True (S : in out Suspension_Object) is
1769
      Result : Interfaces.C.int;
1770
 
1771
   begin
1772
      SSL.Abort_Defer.all;
1773
 
1774
      Result := mutex_lock (S.L'Access);
1775
      pragma Assert (Result = 0);
1776
 
1777
      if S.Waiting then
1778
 
1779
         --  Program_Error must be raised upon calling Suspend_Until_True
1780
         --  if another task is already waiting on that suspension object
1781
         --  (RM D.10(10)).
1782
 
1783
         Result := mutex_unlock (S.L'Access);
1784
         pragma Assert (Result = 0);
1785
 
1786
         SSL.Abort_Undefer.all;
1787
 
1788
         raise Program_Error;
1789
 
1790
      else
1791
         --  Suspend the task if the state is False. Otherwise, the task
1792
         --  continues its execution, and the state of the suspension object
1793
         --  is set to False (ARM D.10 par. 9).
1794
 
1795
         if S.State then
1796
            S.State := False;
1797
         else
1798
            S.Waiting := True;
1799
 
1800
            loop
1801
               --  Loop in case pthread_cond_wait returns earlier than expected
1802
               --  (e.g. in case of EINTR caused by a signal).
1803
 
1804
               Result := cond_wait (S.CV'Access, S.L'Access);
1805
               pragma Assert (Result = 0 or else Result = EINTR);
1806
 
1807
               exit when not S.Waiting;
1808
            end loop;
1809
         end if;
1810
 
1811
         Result := mutex_unlock (S.L'Access);
1812
         pragma Assert (Result = 0);
1813
 
1814
         SSL.Abort_Undefer.all;
1815
      end if;
1816
   end Suspend_Until_True;
1817
 
1818
   ----------------
1819
   -- Check_Exit --
1820
   ----------------
1821
 
1822
   function Check_Exit (Self_ID : Task_Id) return Boolean is
1823
   begin
1824
      --  Check that caller is just holding Global_Task_Lock and no other locks
1825
 
1826
      if Self_ID.Common.LL.Locks = null then
1827
         return False;
1828
      end if;
1829
 
1830
      --  2 = Global_Task_Level
1831
 
1832
      if Self_ID.Common.LL.Locks.Level /= 2 then
1833
         return False;
1834
      end if;
1835
 
1836
      if Self_ID.Common.LL.Locks.Next /= null then
1837
         return False;
1838
      end if;
1839
 
1840
      --  Check that caller is abort-deferred
1841
 
1842
      if Self_ID.Deferral_Level = 0 then
1843
         return False;
1844
      end if;
1845
 
1846
      return True;
1847
   end Check_Exit;
1848
 
1849
   --------------------
1850
   -- Check_No_Locks --
1851
   --------------------
1852
 
1853
   function Check_No_Locks (Self_ID : Task_Id) return Boolean is
1854
   begin
1855
      return Self_ID.Common.LL.Locks = null;
1856
   end Check_No_Locks;
1857
 
1858
   ----------------------
1859
   -- Environment_Task --
1860
   ----------------------
1861
 
1862
   function Environment_Task return Task_Id is
1863
   begin
1864
      return Environment_Task_Id;
1865
   end Environment_Task;
1866
 
1867
   --------------
1868
   -- Lock_RTS --
1869
   --------------
1870
 
1871
   procedure Lock_RTS is
1872
   begin
1873
      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1874
   end Lock_RTS;
1875
 
1876
   ----------------
1877
   -- Unlock_RTS --
1878
   ----------------
1879
 
1880
   procedure Unlock_RTS is
1881
   begin
1882
      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1883
   end Unlock_RTS;
1884
 
1885
   ------------------
1886
   -- Suspend_Task --
1887
   ------------------
1888
 
1889
   function Suspend_Task
1890
     (T           : ST.Task_Id;
1891
      Thread_Self : Thread_Id) return Boolean
1892
   is
1893
   begin
1894
      if T.Common.LL.Thread /= Thread_Self then
1895
         return thr_suspend (T.Common.LL.Thread) = 0;
1896
      else
1897
         return True;
1898
      end if;
1899
   end Suspend_Task;
1900
 
1901
   -----------------
1902
   -- Resume_Task --
1903
   -----------------
1904
 
1905
   function Resume_Task
1906
     (T           : ST.Task_Id;
1907
      Thread_Self : Thread_Id) return Boolean
1908
   is
1909
   begin
1910
      if T.Common.LL.Thread /= Thread_Self then
1911
         return thr_continue (T.Common.LL.Thread) = 0;
1912
      else
1913
         return True;
1914
      end if;
1915
   end Resume_Task;
1916
 
1917
   --------------------
1918
   -- Stop_All_Tasks --
1919
   --------------------
1920
 
1921
   procedure Stop_All_Tasks is
1922
   begin
1923
      null;
1924
   end Stop_All_Tasks;
1925
 
1926
   ---------------
1927
   -- Stop_Task --
1928
   ---------------
1929
 
1930
   function Stop_Task (T : ST.Task_Id) return Boolean is
1931
      pragma Unreferenced (T);
1932
   begin
1933
      return False;
1934
   end Stop_Task;
1935
 
1936
   -------------------
1937
   -- Continue_Task --
1938
   -------------------
1939
 
1940
   function Continue_Task (T : ST.Task_Id) return Boolean is
1941
      pragma Unreferenced (T);
1942
   begin
1943
      return False;
1944
   end Continue_Task;
1945
 
1946
   -----------------------
1947
   -- Set_Task_Affinity --
1948
   -----------------------
1949
 
1950
   procedure Set_Task_Affinity (T : ST.Task_Id) is
1951
      Result    : Interfaces.C.int;
1952
      Proc      : processorid_t;  --  User processor #
1953
      Last_Proc : processorid_t;  --  Last processor #
1954
 
1955
      use System.Task_Info;
1956
      use type System.Multiprocessors.CPU_Range;
1957
 
1958
   begin
1959
      --  Do nothing if the underlying thread has not yet been created. If the
1960
      --  thread has not yet been created then the proper affinity will be set
1961
      --  during its creation.
1962
 
1963
      if T.Common.LL.Thread = Null_Thread_Id then
1964
         null;
1965
 
1966
      --  pragma CPU
1967
 
1968
      elsif T.Common.Base_CPU /=
1969
           System.Multiprocessors.Not_A_Specific_CPU
1970
      then
1971
         --  The CPU numbering in pragma CPU starts at 1 while the subprogram
1972
         --  to set the affinity starts at 0, therefore we must substract 1.
1973
 
1974
         Result :=
1975
           processor_bind
1976
             (P_LWPID, id_t (T.Common.LL.LWP),
1977
              processorid_t (T.Common.Base_CPU) - 1, null);
1978
         pragma Assert (Result = 0);
1979
 
1980
      --  Task_Info
1981
 
1982
      elsif T.Common.Task_Info /= null then
1983
         if T.Common.Task_Info.New_LWP
1984
           and then T.Common.Task_Info.CPU /= CPU_UNCHANGED
1985
         then
1986
            Last_Proc := Num_Procs - 1;
1987
 
1988
            if T.Common.Task_Info.CPU = ANY_CPU then
1989
               Result := 0;
1990
 
1991
               Proc := 0;
1992
               while Proc < Last_Proc loop
1993
                  Result := p_online (Proc, PR_STATUS);
1994
                  exit when Result = PR_ONLINE;
1995
                  Proc := Proc + 1;
1996
               end loop;
1997
 
1998
               Result :=
1999
                 processor_bind
2000
                   (P_LWPID, id_t (T.Common.LL.LWP), Proc, null);
2001
               pragma Assert (Result = 0);
2002
 
2003
            else
2004
               --  Use specified processor
2005
 
2006
               if T.Common.Task_Info.CPU < 0
2007
                 or else T.Common.Task_Info.CPU > Last_Proc
2008
               then
2009
                  raise Invalid_CPU_Number;
2010
               end if;
2011
 
2012
               Result :=
2013
                 processor_bind
2014
                   (P_LWPID, id_t (T.Common.LL.LWP),
2015
                    T.Common.Task_Info.CPU, null);
2016
               pragma Assert (Result = 0);
2017
            end if;
2018
         end if;
2019
 
2020
      --  Handle dispatching domains
2021
 
2022
      elsif T.Common.Domain /= null
2023
        and then (T.Common.Domain /= ST.System_Domain
2024
                   or else T.Common.Domain.all /=
2025
                             (Multiprocessors.CPU'First ..
2026
                              Multiprocessors.Number_Of_CPUs => True))
2027
      then
2028
         declare
2029
            CPU_Set : aliased psetid_t;
2030
            Result  : int;
2031
 
2032
         begin
2033
            Result := pset_create (CPU_Set'Access);
2034
            pragma Assert (Result = 0);
2035
 
2036
            --  Set the affinity to all the processors belonging to the
2037
            --  dispatching domain.
2038
 
2039
            for Proc in T.Common.Domain'Range loop
2040
 
2041
               --  The Ada CPU numbering starts at 1 while the subprogram to
2042
               --  set the affinity starts at 0, therefore we must substract 1.
2043
 
2044
               if T.Common.Domain (Proc) then
2045
                  Result :=
2046
                    pset_assign (CPU_Set, processorid_t (Proc) - 1, null);
2047
                  pragma Assert (Result = 0);
2048
               end if;
2049
            end loop;
2050
 
2051
            Result :=
2052
              pset_bind (CPU_Set, P_LWPID, id_t (T.Common.LL.LWP), null);
2053
            pragma Assert (Result = 0);
2054
         end;
2055
      end if;
2056
   end Set_Task_Affinity;
2057
 
2058
end System.Task_Primitives.Operations;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.