OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [s-taprop-tru64.adb] - Blame information for rev 706

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
4
--                                                                          --
5
--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6
--                                                                          --
7
--                                  B o d y                                 --
8
--                                                                          --
9
--         Copyright (C) 1992-2011, Free Software Foundation, Inc.          --
10
--                                                                          --
11
-- GNARL is free software; you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNARL was developed by the GNARL team at Florida State University.       --
28
-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
--  This is a Tru64 version of this package
33
 
34
--  This package contains all the GNULL primitives that interface directly with
35
--  the underlying OS.
36
 
37
pragma Polling (Off);
38
--  Turn off polling, we do not want ATC polling to take place during tasking
39
--  operations. It causes infinite loops and other problems.
40
 
41
with Interfaces;
42
with Interfaces.C;
43
 
44
with System.Tasking.Debug;
45
with System.Interrupt_Management;
46
with System.OS_Constants;
47
with System.OS_Primitives;
48
with System.Task_Info;
49
 
50
with System.Soft_Links;
51
--  We use System.Soft_Links instead of System.Tasking.Initialization
52
--  because the later is a higher level package that we shouldn't depend on.
53
--  For example when using the restricted run time, it is replaced by
54
--  System.Tasking.Restricted.Stages.
55
 
56
package body System.Task_Primitives.Operations is
57
 
58
   package OSC renames System.OS_Constants;
59
   package SSL renames System.Soft_Links;
60
 
61
   use System.Tasking.Debug;
62
   use System.Tasking;
63
   use Interfaces.C;
64
   use System.OS_Interface;
65
   use System.Parameters;
66
   use System.OS_Primitives;
67
 
68
   ----------------
69
   -- Local Data --
70
   ----------------
71
 
72
   --  The followings are logically constants, but need to be initialized
73
   --  at run time.
74
 
75
   Single_RTS_Lock : aliased RTS_Lock;
76
   --  This is a lock to allow only one thread of control in the RTS at
77
   --  a time; it is used to execute in mutual exclusion from all other tasks.
78
   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
79
 
80
   Environment_Task_Id : Task_Id;
81
   --  A variable to hold Task_Id for the environment task
82
 
83
   Unblocked_Signal_Mask : aliased sigset_t;
84
   --  The set of signals that should unblocked in all tasks
85
 
86
   Time_Slice_Val : Integer;
87
   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
88
 
89
   Locking_Policy : Character;
90
   pragma Import (C, Locking_Policy, "__gl_locking_policy");
91
 
92
   Dispatching_Policy : Character;
93
   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
94
 
95
   Curpid : pid_t;
96
 
97
   Foreign_Task_Elaborated : aliased Boolean := True;
98
   --  Used to identified fake tasks (i.e., non-Ada Threads)
99
 
100
   Abort_Handler_Installed : Boolean := False;
101
   --  True if a handler for the abort signal is installed
102
 
103
   --------------------
104
   -- Local Packages --
105
   --------------------
106
 
107
   package Specific is
108
 
109
      procedure Initialize (Environment_Task : Task_Id);
110
      pragma Inline (Initialize);
111
      --  Initialize various data needed by this package
112
 
113
      function Is_Valid_Task return Boolean;
114
      pragma Inline (Is_Valid_Task);
115
      --  Does executing thread have a TCB?
116
 
117
      procedure Set (Self_Id : Task_Id);
118
      pragma Inline (Set);
119
      --  Set the self id for the current task
120
 
121
      function Self return Task_Id;
122
      pragma Inline (Self);
123
      --  Return a pointer to the Ada Task Control Block of the calling task
124
 
125
   end Specific;
126
 
127
   package body Specific is separate;
128
   --  The body of this package is target specific
129
 
130
   ----------------------------------
131
   -- ATCB allocation/deallocation --
132
   ----------------------------------
133
 
134
   package body ATCB_Allocation is separate;
135
   --  The body of this package is shared across several targets
136
 
137
   ---------------------------------
138
   -- Support for foreign threads --
139
   ---------------------------------
140
 
141
   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
142
   --  Allocate and initialize a new ATCB for the current Thread
143
 
144
   function Register_Foreign_Thread
145
     (Thread : Thread_Id) return Task_Id is separate;
146
 
147
   -----------------------
148
   -- Local Subprograms --
149
   -----------------------
150
 
151
   procedure Abort_Handler (Sig : Signal);
152
   --  Signal handler used to implement asynchronous abort
153
 
154
   function Get_Policy (Prio : System.Any_Priority) return Character;
155
   pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
156
   --  Get priority specific dispatching policy
157
 
158
   -------------------
159
   -- Abort_Handler --
160
   -------------------
161
 
162
   procedure Abort_Handler (Sig : Signal) is
163
      pragma Unreferenced (Sig);
164
 
165
      T       : constant Task_Id := Self;
166
      Old_Set : aliased sigset_t;
167
 
168
      Result : Interfaces.C.int;
169
      pragma Warnings (Off, Result);
170
 
171
   begin
172
      --  It's not safe to raise an exception when using GCC ZCX mechanism.
173
      --  Note that we still need to install a signal handler, since in some
174
      --  cases (e.g. shutdown of the Server_Task in System.Interrupts) we
175
      --  need to send the Abort signal to a task.
176
 
177
      if ZCX_By_Default then
178
         return;
179
      end if;
180
 
181
      if T.Deferral_Level = 0
182
        and then T.Pending_ATC_Level < T.ATC_Nesting_Level
183
        and then not T.Aborting
184
      then
185
         T.Aborting := True;
186
 
187
         --  Make sure signals used for RTS internal purpose are unmasked
188
 
189
         Result :=
190
           pthread_sigmask
191
             (SIG_UNBLOCK,
192
              Unblocked_Signal_Mask'Access,
193
              Old_Set'Access);
194
         pragma Assert (Result = 0);
195
 
196
         raise Standard'Abort_Signal;
197
      end if;
198
   end Abort_Handler;
199
 
200
   ------------------
201
   -- Stack_Guard  --
202
   ------------------
203
 
204
   --  The underlying thread system sets a guard page at the bottom of a thread
205
   --  stack, so nothing is needed.
206
 
207
   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
208
      pragma Unreferenced (T);
209
      pragma Unreferenced (On);
210
   begin
211
      null;
212
   end Stack_Guard;
213
 
214
   --------------------
215
   -- Get_Thread_Id  --
216
   --------------------
217
 
218
   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
219
   begin
220
      return T.Common.LL.Thread;
221
   end Get_Thread_Id;
222
 
223
   ----------
224
   -- Self --
225
   ----------
226
 
227
   function Self return Task_Id renames Specific.Self;
228
 
229
   ---------------------
230
   -- Initialize_Lock --
231
   ---------------------
232
 
233
   --  Note: mutexes and cond_variables needed per-task basis are initialized
234
   --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
235
   --  as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
236
   --  status change of RTS. Therefore raising Storage_Error in the following
237
   --  routines should be able to be handled safely.
238
 
239
   procedure Initialize_Lock
240
     (Prio : System.Any_Priority;
241
      L    : not null access Lock)
242
   is
243
      Attributes : aliased pthread_mutexattr_t;
244
      Result     : Interfaces.C.int;
245
 
246
   begin
247
      Result := pthread_mutexattr_init (Attributes'Access);
248
      pragma Assert (Result = 0 or else Result = ENOMEM);
249
 
250
      if Result = ENOMEM then
251
         raise Storage_Error;
252
      end if;
253
 
254
      if Locking_Policy = 'C' then
255
         L.Ceiling := Interfaces.C.int (Prio);
256
      end if;
257
 
258
      Result := pthread_mutex_init (L.L'Access, Attributes'Access);
259
      pragma Assert (Result = 0 or else Result = ENOMEM);
260
 
261
      if Result = ENOMEM then
262
         Result := pthread_mutexattr_destroy (Attributes'Access);
263
         raise Storage_Error;
264
      end if;
265
 
266
      Result := pthread_mutexattr_destroy (Attributes'Access);
267
      pragma Assert (Result = 0);
268
   end Initialize_Lock;
269
 
270
   procedure Initialize_Lock
271
     (L     : not null access RTS_Lock;
272
      Level : Lock_Level)
273
   is
274
      pragma Unreferenced (Level);
275
 
276
      Attributes : aliased pthread_mutexattr_t;
277
      Result     : Interfaces.C.int;
278
 
279
   begin
280
      Result := pthread_mutexattr_init (Attributes'Access);
281
      pragma Assert (Result = 0 or else Result = ENOMEM);
282
 
283
      if Result = ENOMEM then
284
         raise Storage_Error;
285
      end if;
286
 
287
      Result := pthread_mutex_init (L, Attributes'Access);
288
      pragma Assert (Result = 0 or else Result = ENOMEM);
289
 
290
      if Result = ENOMEM then
291
         Result := pthread_mutexattr_destroy (Attributes'Access);
292
         raise Storage_Error;
293
      end if;
294
 
295
      Result := pthread_mutexattr_destroy (Attributes'Access);
296
      pragma Assert (Result = 0);
297
   end Initialize_Lock;
298
 
299
   -------------------
300
   -- Finalize_Lock --
301
   -------------------
302
 
303
   procedure Finalize_Lock (L : not null access Lock) is
304
      Result : Interfaces.C.int;
305
   begin
306
      Result := pthread_mutex_destroy (L.L'Access);
307
      pragma Assert (Result = 0);
308
   end Finalize_Lock;
309
 
310
   procedure Finalize_Lock (L : not null access RTS_Lock) is
311
      Result : Interfaces.C.int;
312
   begin
313
      Result := pthread_mutex_destroy (L);
314
      pragma Assert (Result = 0);
315
   end Finalize_Lock;
316
 
317
   ----------------
318
   -- Write_Lock --
319
   ----------------
320
 
321
   procedure Write_Lock
322
     (L                 : not null access Lock;
323
      Ceiling_Violation : out Boolean)
324
   is
325
      Result         : Interfaces.C.int;
326
      Self_ID        : Task_Id;
327
      All_Tasks_Link : Task_Id;
328
      Current_Prio   : System.Any_Priority;
329
 
330
   begin
331
      --  Perform ceiling checks only when this is the locking policy in use
332
 
333
      if Locking_Policy = 'C' then
334
         Self_ID := Self;
335
         All_Tasks_Link := Self_ID.Common.All_Tasks_Link;
336
         Current_Prio := Get_Priority (Self_ID);
337
 
338
         --  If there is no other task, no need to check priorities
339
 
340
         if All_Tasks_Link /= Null_Task
341
           and then L.Ceiling < Interfaces.C.int (Current_Prio)
342
         then
343
            Ceiling_Violation := True;
344
            return;
345
         end if;
346
      end if;
347
 
348
      Result := pthread_mutex_lock (L.L'Access);
349
      pragma Assert (Result = 0);
350
 
351
      Ceiling_Violation := False;
352
   end Write_Lock;
353
 
354
   procedure Write_Lock
355
     (L           : not null access RTS_Lock;
356
      Global_Lock : Boolean := False)
357
   is
358
      Result : Interfaces.C.int;
359
   begin
360
      if not Single_Lock or else Global_Lock then
361
         Result := pthread_mutex_lock (L);
362
         pragma Assert (Result = 0);
363
      end if;
364
   end Write_Lock;
365
 
366
   procedure Write_Lock (T : Task_Id) is
367
      Result : Interfaces.C.int;
368
   begin
369
      if not Single_Lock then
370
         Result := pthread_mutex_lock (T.Common.LL.L'Access);
371
         pragma Assert (Result = 0);
372
      end if;
373
   end Write_Lock;
374
 
375
   ---------------
376
   -- Read_Lock --
377
   ---------------
378
 
379
   procedure Read_Lock
380
     (L                 : not null access Lock;
381
      Ceiling_Violation : out Boolean)
382
   is
383
   begin
384
      Write_Lock (L, Ceiling_Violation);
385
   end Read_Lock;
386
 
387
   ------------
388
   -- Unlock --
389
   ------------
390
 
391
   procedure Unlock (L : not null access Lock) is
392
      Result : Interfaces.C.int;
393
   begin
394
      Result := pthread_mutex_unlock (L.L'Access);
395
      pragma Assert (Result = 0);
396
   end Unlock;
397
 
398
   procedure Unlock
399
     (L           : not null access RTS_Lock;
400
      Global_Lock : Boolean := False)
401
   is
402
      Result : Interfaces.C.int;
403
   begin
404
      if not Single_Lock or else Global_Lock then
405
         Result := pthread_mutex_unlock (L);
406
         pragma Assert (Result = 0);
407
      end if;
408
   end Unlock;
409
 
410
   procedure Unlock (T : Task_Id) is
411
      Result : Interfaces.C.int;
412
   begin
413
      if not Single_Lock then
414
         Result := pthread_mutex_unlock (T.Common.LL.L'Access);
415
         pragma Assert (Result = 0);
416
      end if;
417
   end Unlock;
418
 
419
   -----------------
420
   -- Set_Ceiling --
421
   -----------------
422
 
423
   --  Dynamic priority ceilings are not supported by the underlying system
424
 
425
   procedure Set_Ceiling
426
     (L    : not null access Lock;
427
      Prio : System.Any_Priority)
428
   is
429
      pragma Unreferenced (L, Prio);
430
   begin
431
      null;
432
   end Set_Ceiling;
433
 
434
   -----------
435
   -- Sleep --
436
   -----------
437
 
438
   procedure Sleep
439
     (Self_ID : Task_Id;
440
      Reason  : System.Tasking.Task_States)
441
   is
442
      pragma Unreferenced (Reason);
443
 
444
      Result : Interfaces.C.int;
445
 
446
   begin
447
      Result :=
448
        pthread_cond_wait
449
          (cond  => Self_ID.Common.LL.CV'Access,
450
           mutex => (if Single_Lock
451
                     then Single_RTS_Lock'Access
452
                     else Self_ID.Common.LL.L'Access));
453
 
454
      --  EINTR is not considered a failure
455
 
456
      pragma Assert (Result = 0 or else Result = EINTR);
457
   end Sleep;
458
 
459
   -----------------
460
   -- Timed_Sleep --
461
   -----------------
462
 
463
   --  This is for use within the run-time system, so abort is assumed to be
464
   --  already deferred, and the caller should be holding its own ATCB lock.
465
 
466
   procedure Timed_Sleep
467
     (Self_ID  : Task_Id;
468
      Time     : Duration;
469
      Mode     : ST.Delay_Modes;
470
      Reason   : System.Tasking.Task_States;
471
      Timedout : out Boolean;
472
      Yielded  : out Boolean)
473
   is
474
      pragma Unreferenced (Reason);
475
 
476
      Base_Time  : constant Duration := Monotonic_Clock;
477
      Check_Time : Duration := Base_Time;
478
      Abs_Time   : Duration;
479
      Request    : aliased timespec;
480
      Result     : Interfaces.C.int;
481
 
482
   begin
483
      Timedout := True;
484
      Yielded := False;
485
 
486
      Abs_Time :=
487
        (if Mode = Relative
488
         then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
489
         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
490
 
491
      if Abs_Time > Check_Time then
492
         Request := To_Timespec (Abs_Time);
493
 
494
         loop
495
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
496
 
497
            Result :=
498
              pthread_cond_timedwait
499
                (cond    => Self_ID.Common.LL.CV'Access,
500
                 mutex   => (if Single_Lock
501
                             then Single_RTS_Lock'Access
502
                             else Self_ID.Common.LL.L'Access),
503
                 abstime => Request'Access);
504
 
505
            Check_Time := Monotonic_Clock;
506
            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
507
 
508
            if Result = 0 or Result = EINTR then
509
 
510
               --  Somebody may have called Wakeup for us
511
 
512
               Timedout := False;
513
               exit;
514
            end if;
515
 
516
            pragma Assert (Result = ETIMEDOUT);
517
         end loop;
518
      end if;
519
   end Timed_Sleep;
520
 
521
   -----------------
522
   -- Timed_Delay --
523
   -----------------
524
 
525
   --  This is for use in implementing delay statements, so we assume the
526
   --  caller is abort-deferred but is holding no locks.
527
 
528
   procedure Timed_Delay
529
     (Self_ID  : Task_Id;
530
      Time     : Duration;
531
      Mode     : ST.Delay_Modes)
532
   is
533
      Base_Time  : constant Duration := Monotonic_Clock;
534
      Check_Time : Duration := Base_Time;
535
      Abs_Time   : Duration;
536
      Request    : aliased timespec;
537
      Result     : Interfaces.C.int;
538
 
539
   begin
540
      if Single_Lock then
541
         Lock_RTS;
542
      end if;
543
 
544
      Write_Lock (Self_ID);
545
 
546
      Abs_Time :=
547
        (if Mode = Relative
548
         then Time + Check_Time
549
         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
550
 
551
      if Abs_Time > Check_Time then
552
         Request := To_Timespec (Abs_Time);
553
         Self_ID.Common.State := Delay_Sleep;
554
 
555
         loop
556
            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
557
 
558
            Result :=
559
              pthread_cond_timedwait
560
                (cond    => Self_ID.Common.LL.CV'Access,
561
                 mutex   => (if Single_Lock
562
                             then Single_RTS_Lock'Access
563
                             else Self_ID.Common.LL.L'Access),
564
                 abstime => Request'Access);
565
 
566
            Check_Time := Monotonic_Clock;
567
            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
568
 
569
            pragma Assert (Result = 0         or else
570
                           Result = ETIMEDOUT or else
571
                           Result = EINTR);
572
         end loop;
573
 
574
         Self_ID.Common.State := Runnable;
575
      end if;
576
 
577
      Unlock (Self_ID);
578
 
579
      if Single_Lock then
580
         Unlock_RTS;
581
      end if;
582
 
583
      Yield;
584
   end Timed_Delay;
585
 
586
   ---------------------
587
   -- Monotonic_Clock --
588
   ---------------------
589
 
590
   function Monotonic_Clock return Duration is
591
      TS     : aliased timespec;
592
      Result : Interfaces.C.int;
593
   begin
594
      Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
595
      pragma Assert (Result = 0);
596
      return To_Duration (TS);
597
   end Monotonic_Clock;
598
 
599
   -------------------
600
   -- RT_Resolution --
601
   -------------------
602
 
603
   function RT_Resolution return Duration is
604
   begin
605
      --  Returned value must be an integral multiple of Duration'Small (1 ns)
606
      --  The following is the best approximation of 1/1024. The clock on the
607
      --  DEC Alpha ticks at 1024 Hz.
608
 
609
      return 0.000_976_563;
610
   end RT_Resolution;
611
 
612
   ------------
613
   -- Wakeup --
614
   ------------
615
 
616
   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
617
      pragma Unreferenced (Reason);
618
      Result : Interfaces.C.int;
619
   begin
620
      Result := pthread_cond_signal (T.Common.LL.CV'Access);
621
      pragma Assert (Result = 0);
622
   end Wakeup;
623
 
624
   -----------
625
   -- Yield --
626
   -----------
627
 
628
   procedure Yield (Do_Yield : Boolean := True) is
629
      Result : Interfaces.C.int;
630
      pragma Unreferenced (Result);
631
   begin
632
      if Do_Yield then
633
         Result := sched_yield;
634
      end if;
635
   end Yield;
636
 
637
   ------------------
638
   -- Set_Priority --
639
   ------------------
640
 
641
   procedure Set_Priority
642
     (T                   : Task_Id;
643
      Prio                : System.Any_Priority;
644
      Loss_Of_Inheritance : Boolean := False)
645
   is
646
      pragma Unreferenced (Loss_Of_Inheritance);
647
 
648
      Result : Interfaces.C.int;
649
      Param  : aliased struct_sched_param;
650
 
651
      Priority_Specific_Policy : constant Character := Get_Policy (Prio);
652
      --  Upper case first character of the policy name corresponding to the
653
      --  task as set by a Priority_Specific_Dispatching pragma.
654
 
655
   begin
656
      T.Common.Current_Priority := Prio;
657
      Param.sched_priority  := Interfaces.C.int (Underlying_Priorities (Prio));
658
 
659
      if Dispatching_Policy = 'R'
660
        or else Priority_Specific_Policy = 'R'
661
        or else Time_Slice_Val > 0
662
      then
663
         Result :=
664
           pthread_setschedparam
665
             (T.Common.LL.Thread, SCHED_RR, Param'Access);
666
 
667
      elsif Dispatching_Policy = 'F'
668
        or else Priority_Specific_Policy = 'F'
669
        or else Time_Slice_Val = 0
670
      then
671
         Result :=
672
           pthread_setschedparam
673
             (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
674
 
675
      else
676
         Result :=
677
           pthread_setschedparam
678
             (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
679
      end if;
680
 
681
      pragma Assert (Result = 0);
682
   end Set_Priority;
683
 
684
   ------------------
685
   -- Get_Priority --
686
   ------------------
687
 
688
   function Get_Priority (T : Task_Id) return System.Any_Priority is
689
   begin
690
      return T.Common.Current_Priority;
691
   end Get_Priority;
692
 
693
   ----------------
694
   -- Enter_Task --
695
   ----------------
696
 
697
   procedure Enter_Task (Self_ID : Task_Id) is
698
   begin
699
      Hide_Unhide_Yellow_Zone (Hide => True);
700
      Self_ID.Common.LL.Thread := pthread_self;
701
 
702
      Specific.Set (Self_ID);
703
   end Enter_Task;
704
 
705
   -------------------
706
   -- Is_Valid_Task --
707
   -------------------
708
 
709
   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
710
 
711
   -----------------------------
712
   -- Register_Foreign_Thread --
713
   -----------------------------
714
 
715
   function Register_Foreign_Thread return Task_Id is
716
   begin
717
      if Is_Valid_Task then
718
         return Self;
719
      else
720
         return Register_Foreign_Thread (pthread_self);
721
      end if;
722
   end Register_Foreign_Thread;
723
 
724
   --------------------
725
   -- Initialize_TCB --
726
   --------------------
727
 
728
   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
729
      Mutex_Attr : aliased pthread_mutexattr_t;
730
      Result     : Interfaces.C.int;
731
      Cond_Attr  : aliased pthread_condattr_t;
732
 
733
   begin
734
      if not Single_Lock then
735
         Result := pthread_mutexattr_init (Mutex_Attr'Access);
736
         pragma Assert (Result = 0 or else Result = ENOMEM);
737
 
738
         if Result = 0 then
739
            Result :=
740
              pthread_mutex_init
741
                (Self_ID.Common.LL.L'Access, Mutex_Attr'Access);
742
            pragma Assert (Result = 0 or else Result = ENOMEM);
743
         end if;
744
 
745
         if Result /= 0 then
746
            Succeeded := False;
747
            return;
748
         end if;
749
 
750
         Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
751
         pragma Assert (Result = 0);
752
      end if;
753
 
754
      Result := pthread_condattr_init (Cond_Attr'Access);
755
      pragma Assert (Result = 0 or else Result = ENOMEM);
756
 
757
      if Result = 0 then
758
         Result :=
759
           pthread_cond_init
760
             (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
761
         pragma Assert (Result = 0 or else Result = ENOMEM);
762
      end if;
763
 
764
      if Result = 0 then
765
         Succeeded := True;
766
      else
767
         if not Single_Lock then
768
            Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
769
            pragma Assert (Result = 0);
770
         end if;
771
 
772
         Succeeded := False;
773
      end if;
774
 
775
      Result := pthread_condattr_destroy (Cond_Attr'Access);
776
      pragma Assert (Result = 0);
777
   end Initialize_TCB;
778
 
779
   -----------------
780
   -- Create_Task --
781
   -----------------
782
 
783
   procedure Create_Task
784
     (T          : Task_Id;
785
      Wrapper    : System.Address;
786
      Stack_Size : System.Parameters.Size_Type;
787
      Priority   : System.Any_Priority;
788
      Succeeded  : out Boolean)
789
   is
790
      Attributes          : aliased pthread_attr_t;
791
      Adjusted_Stack_Size : Interfaces.C.size_t;
792
      Result              : Interfaces.C.int;
793
      Param               : aliased System.OS_Interface.struct_sched_param;
794
 
795
      Priority_Specific_Policy : constant Character := Get_Policy (Priority);
796
      --  Upper case first character of the policy name corresponding to the
797
      --  task as set by a Priority_Specific_Dispatching pragma.
798
 
799
      use System.Task_Info;
800
 
801
   begin
802
      --  Account for the Yellow Zone (2 pages) and the guard page right above.
803
      --  See Hide_Unhide_Yellow_Zone for the rationale.
804
 
805
      Adjusted_Stack_Size :=
806
        Interfaces.C.size_t (Stack_Size) + 3 * Get_Page_Size;
807
 
808
      Result := pthread_attr_init (Attributes'Access);
809
      pragma Assert (Result = 0 or else Result = ENOMEM);
810
 
811
      if Result /= 0 then
812
         Succeeded := False;
813
         return;
814
      end if;
815
 
816
      Result :=
817
        pthread_attr_setdetachstate
818
          (Attributes'Access, PTHREAD_CREATE_DETACHED);
819
      pragma Assert (Result = 0);
820
 
821
      Result :=
822
        pthread_attr_setstacksize
823
          (Attributes'Access, Adjusted_Stack_Size);
824
      pragma Assert (Result = 0);
825
 
826
      Param.sched_priority :=
827
        Interfaces.C.int (Underlying_Priorities (Priority));
828
      Result :=
829
        pthread_attr_setschedparam
830
          (Attributes'Access, Param'Access);
831
      pragma Assert (Result = 0);
832
 
833
      if Dispatching_Policy = 'R'
834
        or else Priority_Specific_Policy = 'R'
835
        or else Time_Slice_Val > 0
836
      then
837
         Result :=
838
           pthread_attr_setschedpolicy
839
             (Attributes'Access, System.OS_Interface.SCHED_RR);
840
 
841
      elsif Dispatching_Policy = 'F'
842
        or else Priority_Specific_Policy = 'F'
843
        or else Time_Slice_Val = 0
844
      then
845
         Result :=
846
           pthread_attr_setschedpolicy
847
             (Attributes'Access, System.OS_Interface.SCHED_FIFO);
848
 
849
      else
850
         Result :=
851
           pthread_attr_setschedpolicy
852
             (Attributes'Access, System.OS_Interface.SCHED_OTHER);
853
      end if;
854
 
855
      pragma Assert (Result = 0);
856
 
857
      --  Set the scheduling parameters explicitly, since this is the only way
858
      --  to force the OS to take e.g. the sched policy and scope attributes
859
      --  into account.
860
 
861
      Result :=
862
        pthread_attr_setinheritsched
863
          (Attributes'Access, PTHREAD_EXPLICIT_SCHED);
864
      pragma Assert (Result = 0);
865
 
866
      T.Common.Current_Priority := Priority;
867
 
868
      if T.Common.Task_Info /= null then
869
         case T.Common.Task_Info.Contention_Scope is
870
            when System.Task_Info.Process_Scope =>
871
               Result :=
872
                 pthread_attr_setscope
873
                   (Attributes'Access, PTHREAD_SCOPE_PROCESS);
874
 
875
            when System.Task_Info.System_Scope =>
876
               Result :=
877
                 pthread_attr_setscope
878
                   (Attributes'Access, PTHREAD_SCOPE_SYSTEM);
879
 
880
            when System.Task_Info.Default_Scope =>
881
               Result := 0;
882
         end case;
883
 
884
         pragma Assert (Result = 0);
885
      end if;
886
 
887
      --  Since the initial signal mask of a thread is inherited from the
888
      --  creator, and the Environment task has all its signals masked, we
889
      --  do not need to manipulate caller's signal mask at this point.
890
      --  All tasks in RTS will have All_Tasks_Mask initially.
891
 
892
      --  Note: the use of Unrestricted_Access in the following call is needed
893
      --  because otherwise we have an error of getting a access-to-volatile
894
      --  value which points to a non-volatile object. But in this case it is
895
      --  safe to do this, since we know we have no problems with aliasing and
896
      --  Unrestricted_Access bypasses this check.
897
 
898
      Result :=
899
        pthread_create
900
          (T.Common.LL.Thread'Unrestricted_Access,
901
           Attributes'Access,
902
           Thread_Body_Access (Wrapper),
903
           To_Address (T));
904
      pragma Assert (Result = 0 or else Result = EAGAIN);
905
 
906
      Succeeded := Result = 0;
907
 
908
      Result := pthread_attr_destroy (Attributes'Access);
909
      pragma Assert (Result = 0);
910
 
911
      if Succeeded and then T.Common.Task_Info /= null then
912
 
913
         --  ??? We're using a process-wide function to implement a task
914
         --  specific characteristic.
915
 
916
         if T.Common.Task_Info.Bind_To_Cpu_Number = 0 then
917
            Result := bind_to_cpu (Curpid, 0);
918
 
919
         elsif T.Common.Task_Info.Bind_To_Cpu_Number > 0 then
920
            Result :=
921
              bind_to_cpu
922
                (Curpid,
923
                 Interfaces.C.unsigned_long (
924
                   Interfaces.Shift_Left
925
                     (Interfaces.Unsigned_64'(1),
926
                      T.Common.Task_Info.Bind_To_Cpu_Number - 1)));
927
            pragma Assert (Result = 0);
928
         end if;
929
      end if;
930
   end Create_Task;
931
 
932
   ------------------
933
   -- Finalize_TCB --
934
   ------------------
935
 
936
   procedure Finalize_TCB (T : Task_Id) is
937
      Result : Interfaces.C.int;
938
 
939
   begin
940
      if not Single_Lock then
941
         Result := pthread_mutex_destroy (T.Common.LL.L'Access);
942
         pragma Assert (Result = 0);
943
      end if;
944
 
945
      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
946
      pragma Assert (Result = 0);
947
 
948
      if T.Known_Tasks_Index /= -1 then
949
         Known_Tasks (T.Known_Tasks_Index) := null;
950
      end if;
951
 
952
      ATCB_Allocation.Free_ATCB (T);
953
   end Finalize_TCB;
954
 
955
   ---------------
956
   -- Exit_Task --
957
   ---------------
958
 
959
   procedure Exit_Task is
960
   begin
961
      Specific.Set (null);
962
      Hide_Unhide_Yellow_Zone (Hide => False);
963
   end Exit_Task;
964
 
965
   ----------------
966
   -- Abort_Task --
967
   ----------------
968
 
969
   procedure Abort_Task (T : Task_Id) is
970
      Result : Interfaces.C.int;
971
   begin
972
      if Abort_Handler_Installed then
973
         Result := pthread_kill (T.Common.LL.Thread,
974
           Signal (System.Interrupt_Management.Abort_Task_Interrupt));
975
         pragma Assert (Result = 0);
976
      end if;
977
   end Abort_Task;
978
 
979
   ----------------
980
   -- Initialize --
981
   ----------------
982
 
983
   procedure Initialize (S : in out Suspension_Object) is
984
      Mutex_Attr : aliased pthread_mutexattr_t;
985
      Cond_Attr  : aliased pthread_condattr_t;
986
      Result     : Interfaces.C.int;
987
 
988
   begin
989
      --  Initialize internal state (always to False (RM D.10(6)))
990
 
991
      S.State := False;
992
      S.Waiting := False;
993
 
994
      --  Initialize internal mutex
995
 
996
      Result := pthread_mutexattr_init (Mutex_Attr'Access);
997
      pragma Assert (Result = 0 or else Result = ENOMEM);
998
 
999
      if Result = ENOMEM then
1000
         raise Storage_Error;
1001
      end if;
1002
 
1003
      Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
1004
      pragma Assert (Result = 0 or else Result = ENOMEM);
1005
 
1006
      if Result = ENOMEM then
1007
         Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1008
         raise Storage_Error;
1009
      end if;
1010
 
1011
      Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1012
      pragma Assert (Result = 0);
1013
 
1014
      --  Initialize internal condition variable
1015
 
1016
      Result := pthread_condattr_init (Cond_Attr'Access);
1017
      pragma Assert (Result = 0 or else Result = ENOMEM);
1018
 
1019
      Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
1020
 
1021
      pragma Assert (Result = 0 or else Result = ENOMEM);
1022
 
1023
      if Result /= 0 then
1024
         Result := pthread_mutex_destroy (S.L'Access);
1025
         pragma Assert (Result = 0);
1026
 
1027
         if Result = ENOMEM then
1028
            raise Storage_Error;
1029
         end if;
1030
      end if;
1031
   end Initialize;
1032
 
1033
   --------------
1034
   -- Finalize --
1035
   --------------
1036
 
1037
   procedure Finalize (S : in out Suspension_Object) is
1038
      Result  : Interfaces.C.int;
1039
 
1040
   begin
1041
      --  Destroy internal mutex
1042
 
1043
      Result := pthread_mutex_destroy (S.L'Access);
1044
      pragma Assert (Result = 0);
1045
 
1046
      --  Destroy internal condition variable
1047
 
1048
      Result := pthread_cond_destroy (S.CV'Access);
1049
      pragma Assert (Result = 0);
1050
   end Finalize;
1051
 
1052
   -------------------
1053
   -- Current_State --
1054
   -------------------
1055
 
1056
   function Current_State (S : Suspension_Object) return Boolean is
1057
   begin
1058
      --  We do not want to use lock on this read operation. State is marked
1059
      --  as Atomic so that we ensure that the value retrieved is correct.
1060
 
1061
      return S.State;
1062
   end Current_State;
1063
 
1064
   ---------------
1065
   -- Set_False --
1066
   ---------------
1067
 
1068
   procedure Set_False (S : in out Suspension_Object) is
1069
      Result  : Interfaces.C.int;
1070
 
1071
   begin
1072
      SSL.Abort_Defer.all;
1073
 
1074
      Result := pthread_mutex_lock (S.L'Access);
1075
      pragma Assert (Result = 0);
1076
 
1077
      S.State := False;
1078
 
1079
      Result := pthread_mutex_unlock (S.L'Access);
1080
      pragma Assert (Result = 0);
1081
 
1082
      SSL.Abort_Undefer.all;
1083
   end Set_False;
1084
 
1085
   --------------
1086
   -- Set_True --
1087
   --------------
1088
 
1089
   procedure Set_True (S : in out Suspension_Object) is
1090
      Result : Interfaces.C.int;
1091
 
1092
   begin
1093
      SSL.Abort_Defer.all;
1094
 
1095
      Result := pthread_mutex_lock (S.L'Access);
1096
      pragma Assert (Result = 0);
1097
 
1098
      --  If there is already a task waiting on this suspension object then we
1099
      --  resume it, leaving the state of the suspension object to False, as
1100
      --  specified in (RM D.10(9)). Otherwise, leave the state set to True.
1101
 
1102
      if S.Waiting then
1103
         S.Waiting := False;
1104
         S.State := False;
1105
 
1106
         Result := pthread_cond_signal (S.CV'Access);
1107
         pragma Assert (Result = 0);
1108
 
1109
      else
1110
         S.State := True;
1111
      end if;
1112
 
1113
      Result := pthread_mutex_unlock (S.L'Access);
1114
      pragma Assert (Result = 0);
1115
 
1116
      SSL.Abort_Undefer.all;
1117
   end Set_True;
1118
 
1119
   ------------------------
1120
   -- Suspend_Until_True --
1121
   ------------------------
1122
 
1123
   procedure Suspend_Until_True (S : in out Suspension_Object) is
1124
      Result : Interfaces.C.int;
1125
 
1126
   begin
1127
      SSL.Abort_Defer.all;
1128
 
1129
      Result := pthread_mutex_lock (S.L'Access);
1130
      pragma Assert (Result = 0);
1131
 
1132
      if S.Waiting then
1133
 
1134
         --  Program_Error must be raised upon calling Suspend_Until_True
1135
         --  if another task is already waiting on that suspension object
1136
         --  (AM D.10(10)).
1137
 
1138
         Result := pthread_mutex_unlock (S.L'Access);
1139
         pragma Assert (Result = 0);
1140
 
1141
         SSL.Abort_Undefer.all;
1142
 
1143
         raise Program_Error;
1144
 
1145
      else
1146
         --  Suspend the task if the state is False. Otherwise, the task
1147
         --  continues its execution, and the state of the suspension object
1148
         --  is set to False (RM D.10(9)).
1149
 
1150
         if S.State then
1151
            S.State := False;
1152
         else
1153
            S.Waiting := True;
1154
 
1155
            loop
1156
               --  Loop in case pthread_cond_wait returns earlier than expected
1157
               --  (e.g. in case of EINTR caused by a signal).
1158
 
1159
               Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1160
               pragma Assert (Result = 0 or else Result = EINTR);
1161
 
1162
               exit when not S.Waiting;
1163
            end loop;
1164
         end if;
1165
 
1166
         Result := pthread_mutex_unlock (S.L'Access);
1167
         pragma Assert (Result = 0);
1168
 
1169
         SSL.Abort_Undefer.all;
1170
      end if;
1171
   end Suspend_Until_True;
1172
 
1173
   ----------------
1174
   -- Check_Exit --
1175
   ----------------
1176
 
1177
   --  Dummy version
1178
 
1179
   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1180
      pragma Unreferenced (Self_ID);
1181
   begin
1182
      return True;
1183
   end Check_Exit;
1184
 
1185
   --------------------
1186
   -- Check_No_Locks --
1187
   --------------------
1188
 
1189
   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1190
      pragma Unreferenced (Self_ID);
1191
   begin
1192
      return True;
1193
   end Check_No_Locks;
1194
 
1195
   ----------------------
1196
   -- Environment_Task --
1197
   ----------------------
1198
 
1199
   function Environment_Task return Task_Id is
1200
   begin
1201
      return Environment_Task_Id;
1202
   end Environment_Task;
1203
 
1204
   --------------
1205
   -- Lock_RTS --
1206
   --------------
1207
 
1208
   procedure Lock_RTS is
1209
   begin
1210
      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1211
   end Lock_RTS;
1212
 
1213
   ----------------
1214
   -- Unlock_RTS --
1215
   ----------------
1216
 
1217
   procedure Unlock_RTS is
1218
   begin
1219
      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1220
   end Unlock_RTS;
1221
 
1222
   ------------------
1223
   -- Suspend_Task --
1224
   ------------------
1225
 
1226
   function Suspend_Task
1227
     (T           : ST.Task_Id;
1228
      Thread_Self : Thread_Id) return Boolean
1229
   is
1230
      pragma Unreferenced (T, Thread_Self);
1231
   begin
1232
      return False;
1233
   end Suspend_Task;
1234
 
1235
   -----------------
1236
   -- Resume_Task --
1237
   -----------------
1238
 
1239
   function Resume_Task
1240
     (T           : ST.Task_Id;
1241
      Thread_Self : Thread_Id) return Boolean
1242
   is
1243
      pragma Unreferenced (T, Thread_Self);
1244
   begin
1245
      return False;
1246
   end Resume_Task;
1247
 
1248
   --------------------
1249
   -- Stop_All_Tasks --
1250
   --------------------
1251
 
1252
   procedure Stop_All_Tasks is
1253
   begin
1254
      null;
1255
   end Stop_All_Tasks;
1256
 
1257
   ---------------
1258
   -- Stop_Task --
1259
   ---------------
1260
 
1261
   function Stop_Task (T : ST.Task_Id) return Boolean is
1262
      pragma Unreferenced (T);
1263
   begin
1264
      return False;
1265
   end Stop_Task;
1266
 
1267
   -------------------
1268
   -- Continue_Task --
1269
   -------------------
1270
 
1271
   function Continue_Task (T : ST.Task_Id) return Boolean is
1272
      pragma Unreferenced (T);
1273
   begin
1274
      return False;
1275
   end Continue_Task;
1276
 
1277
   ----------------
1278
   -- Initialize --
1279
   ----------------
1280
 
1281
   procedure Initialize (Environment_Task : Task_Id) is
1282
      act     : aliased struct_sigaction;
1283
      old_act : aliased struct_sigaction;
1284
      Tmp_Set : aliased sigset_t;
1285
      Result  : Interfaces.C.int;
1286
 
1287
      function State
1288
        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1289
      pragma Import (C, State, "__gnat_get_interrupt_state");
1290
      --  Get interrupt state. Defined in a-init.c. The input argument is
1291
      --  the interrupt number, and the result is one of the following:
1292
 
1293
      Default : constant Character := 's';
1294
      --    'n'   this interrupt not set by any Interrupt_State pragma
1295
      --    'u'   Interrupt_State pragma set state to User
1296
      --    'r'   Interrupt_State pragma set state to Runtime
1297
      --    's'   Interrupt_State pragma set state to System (use "default"
1298
      --           system handler)
1299
 
1300
   begin
1301
      Environment_Task_Id := Environment_Task;
1302
 
1303
      Interrupt_Management.Initialize;
1304
 
1305
      --  Prepare the set of signals that should unblocked in all tasks
1306
 
1307
      Result := sigemptyset (Unblocked_Signal_Mask'Access);
1308
      pragma Assert (Result = 0);
1309
 
1310
      for J in Interrupt_Management.Interrupt_ID loop
1311
         if System.Interrupt_Management.Keep_Unmasked (J) then
1312
            Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1313
            pragma Assert (Result = 0);
1314
         end if;
1315
      end loop;
1316
 
1317
      Curpid := getpid;
1318
 
1319
      --  Initialize the lock used to synchronize chain of all ATCBs
1320
 
1321
      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1322
 
1323
      Specific.Initialize (Environment_Task);
1324
 
1325
      --  Make environment task known here because it doesn't go through
1326
      --  Activate_Tasks, which does it for all other tasks.
1327
 
1328
      Known_Tasks (Known_Tasks'First) := Environment_Task;
1329
      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1330
 
1331
      Enter_Task (Environment_Task);
1332
 
1333
      if State
1334
          (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
1335
      then
1336
         act.sa_flags := 0;
1337
         act.sa_handler := Abort_Handler'Address;
1338
 
1339
         Result := sigemptyset (Tmp_Set'Access);
1340
         pragma Assert (Result = 0);
1341
         act.sa_mask := Tmp_Set;
1342
 
1343
         Result :=
1344
           sigaction
1345
             (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1346
              act'Unchecked_Access,
1347
              old_act'Unchecked_Access);
1348
         pragma Assert (Result = 0);
1349
         Abort_Handler_Installed := True;
1350
      end if;
1351
   end Initialize;
1352
 
1353
   -----------------------
1354
   -- Set_Task_Affinity --
1355
   -----------------------
1356
 
1357
   procedure Set_Task_Affinity (T : ST.Task_Id) is
1358
      pragma Unreferenced (T);
1359
 
1360
   begin
1361
      --  Setting task affinity is not supported by the underlying system
1362
 
1363
      null;
1364
   end Set_Task_Affinity;
1365
end System.Task_Primitives.Operations;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.