OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [sem_aggr.adb] - Blame information for rev 750

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                             S E M _ A G G R                              --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17
-- for  more details.  You should have  received  a copy of the GNU General --
18
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19
-- http://www.gnu.org/licenses for a complete copy of the license.          --
20
--                                                                          --
21
-- GNAT was originally developed  by the GNAT team at  New York University. --
22
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23
--                                                                          --
24
------------------------------------------------------------------------------
25
 
26
with Atree;    use Atree;
27
with Checks;   use Checks;
28
with Einfo;    use Einfo;
29
with Elists;   use Elists;
30
with Errout;   use Errout;
31
with Expander; use Expander;
32
with Exp_Tss;  use Exp_Tss;
33
with Exp_Util; use Exp_Util;
34
with Freeze;   use Freeze;
35
with Itypes;   use Itypes;
36
with Lib;      use Lib;
37
with Lib.Xref; use Lib.Xref;
38
with Namet;    use Namet;
39
with Namet.Sp; use Namet.Sp;
40
with Nmake;    use Nmake;
41
with Nlists;   use Nlists;
42
with Opt;      use Opt;
43
with Restrict; use Restrict;
44
with Sem;      use Sem;
45
with Sem_Aux;  use Sem_Aux;
46
with Sem_Cat;  use Sem_Cat;
47
with Sem_Ch3;  use Sem_Ch3;
48
with Sem_Ch8;  use Sem_Ch8;
49
with Sem_Ch13; use Sem_Ch13;
50
with Sem_Eval; use Sem_Eval;
51
with Sem_Res;  use Sem_Res;
52
with Sem_Util; use Sem_Util;
53
with Sem_Type; use Sem_Type;
54
with Sem_Warn; use Sem_Warn;
55
with Sinfo;    use Sinfo;
56
with Snames;   use Snames;
57
with Stringt;  use Stringt;
58
with Stand;    use Stand;
59
with Style;    use Style;
60
with Targparm; use Targparm;
61
with Tbuild;   use Tbuild;
62
with Uintp;    use Uintp;
63
 
64
package body Sem_Aggr is
65
 
66
   type Case_Bounds is record
67
     Choice_Lo   : Node_Id;
68
     Choice_Hi   : Node_Id;
69
     Choice_Node : Node_Id;
70
   end record;
71
 
72
   type Case_Table_Type is array (Nat range <>) of Case_Bounds;
73
   --  Table type used by Check_Case_Choices procedure
74
 
75
   -----------------------
76
   -- Local Subprograms --
77
   -----------------------
78
 
79
   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
80
   --  Sort the Case Table using the Lower Bound of each Choice as the key.
81
   --  A simple insertion sort is used since the number of choices in a case
82
   --  statement of variant part will usually be small and probably in near
83
   --  sorted order.
84
 
85
   procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
86
   --  Ada 2005 (AI-231): Check bad usage of null for a component for which
87
   --  null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
88
   --  the array case (the component type of the array will be used) or an
89
   --  E_Component/E_Discriminant entity in the record case, in which case the
90
   --  type of the component will be used for the test. If Typ is any other
91
   --  kind of entity, the call is ignored. Expr is the component node in the
92
   --  aggregate which is known to have a null value. A warning message will be
93
   --  issued if the component is null excluding.
94
   --
95
   --  It would be better to pass the proper type for Typ ???
96
 
97
   procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
98
   --  Check that Expr is either not limited or else is one of the cases of
99
   --  expressions allowed for a limited component association (namely, an
100
   --  aggregate, function call, or <> notation). Report error for violations.
101
 
102
   procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
103
   --  Given aggregate Expr, check that sub-aggregates of Expr that are nested
104
   --  at Level are qualified. If Level = 0, this applies to Expr directly.
105
   --  Only issue errors in formal verification mode.
106
 
107
   function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
108
   --  Return True of Expr is an aggregate not contained directly in another
109
   --  aggregate.
110
 
111
   ------------------------------------------------------
112
   -- Subprograms used for RECORD AGGREGATE Processing --
113
   ------------------------------------------------------
114
 
115
   procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
116
   --  This procedure performs all the semantic checks required for record
117
   --  aggregates. Note that for aggregates analysis and resolution go
118
   --  hand in hand. Aggregate analysis has been delayed up to here and
119
   --  it is done while resolving the aggregate.
120
   --
121
   --    N is the N_Aggregate node.
122
   --    Typ is the record type for the aggregate resolution
123
   --
124
   --  While performing the semantic checks, this procedure builds a new
125
   --  Component_Association_List where each record field appears alone in a
126
   --  Component_Choice_List along with its corresponding expression. The
127
   --  record fields in the Component_Association_List appear in the same order
128
   --  in which they appear in the record type Typ.
129
   --
130
   --  Once this new Component_Association_List is built and all the semantic
131
   --  checks performed, the original aggregate subtree is replaced with the
132
   --  new named record aggregate just built. Note that subtree substitution is
133
   --  performed with Rewrite so as to be able to retrieve the original
134
   --  aggregate.
135
   --
136
   --  The aggregate subtree manipulation performed by Resolve_Record_Aggregate
137
   --  yields the aggregate format expected by Gigi. Typically, this kind of
138
   --  tree manipulations are done in the expander. However, because the
139
   --  semantic checks that need to be performed on record aggregates really go
140
   --  hand in hand with the record aggregate normalization, the aggregate
141
   --  subtree transformation is performed during resolution rather than
142
   --  expansion. Had we decided otherwise we would have had to duplicate most
143
   --  of the code in the expansion procedure Expand_Record_Aggregate. Note,
144
   --  however, that all the expansion concerning aggregates for tagged records
145
   --  is done in Expand_Record_Aggregate.
146
   --
147
   --  The algorithm of Resolve_Record_Aggregate proceeds as follows:
148
   --
149
   --  1. Make sure that the record type against which the record aggregate
150
   --     has to be resolved is not abstract. Furthermore if the type is a
151
   --     null aggregate make sure the input aggregate N is also null.
152
   --
153
   --  2. Verify that the structure of the aggregate is that of a record
154
   --     aggregate. Specifically, look for component associations and ensure
155
   --     that each choice list only has identifiers or the N_Others_Choice
156
   --     node. Also make sure that if present, the N_Others_Choice occurs
157
   --     last and by itself.
158
   --
159
   --  3. If Typ contains discriminants, the values for each discriminant is
160
   --     looked for. If the record type Typ has variants, we check that the
161
   --     expressions corresponding to each discriminant ruling the (possibly
162
   --     nested) variant parts of Typ, are static. This allows us to determine
163
   --     the variant parts to which the rest of the aggregate must conform.
164
   --     The names of discriminants with their values are saved in a new
165
   --     association list, New_Assoc_List which is later augmented with the
166
   --     names and values of the remaining components in the record type.
167
   --
168
   --     During this phase we also make sure that every discriminant is
169
   --     assigned exactly one value. Note that when several values for a given
170
   --     discriminant are found, semantic processing continues looking for
171
   --     further errors. In this case it's the first discriminant value found
172
   --     which we will be recorded.
173
   --
174
   --     IMPORTANT NOTE: For derived tagged types this procedure expects
175
   --     First_Discriminant and Next_Discriminant to give the correct list
176
   --     of discriminants, in the correct order.
177
   --
178
   --  4. After all the discriminant values have been gathered, we can set the
179
   --     Etype of the record aggregate. If Typ contains no discriminants this
180
   --     is straightforward: the Etype of N is just Typ, otherwise a new
181
   --     implicit constrained subtype of Typ is built to be the Etype of N.
182
   --
183
   --  5. Gather the remaining record components according to the discriminant
184
   --     values. This involves recursively traversing the record type
185
   --     structure to see what variants are selected by the given discriminant
186
   --     values. This processing is a little more convoluted if Typ is a
187
   --     derived tagged types since we need to retrieve the record structure
188
   --     of all the ancestors of Typ.
189
   --
190
   --  6. After gathering the record components we look for their values in the
191
   --     record aggregate and emit appropriate error messages should we not
192
   --     find such values or should they be duplicated.
193
   --
194
   --  7. We then make sure no illegal component names appear in the record
195
   --     aggregate and make sure that the type of the record components
196
   --     appearing in a same choice list is the same. Finally we ensure that
197
   --     the others choice, if present, is used to provide the value of at
198
   --     least a record component.
199
   --
200
   --  8. The original aggregate node is replaced with the new named aggregate
201
   --     built in steps 3 through 6, as explained earlier.
202
   --
203
   --  Given the complexity of record aggregate resolution, the primary goal of
204
   --  this routine is clarity and simplicity rather than execution and storage
205
   --  efficiency. If there are only positional components in the aggregate the
206
   --  running time is linear. If there are associations the running time is
207
   --  still linear as long as the order of the associations is not too far off
208
   --  the order of the components in the record type. If this is not the case
209
   --  the running time is at worst quadratic in the size of the association
210
   --  list.
211
 
212
   procedure Check_Misspelled_Component
213
     (Elements  : Elist_Id;
214
      Component : Node_Id);
215
   --  Give possible misspelling diagnostic if Component is likely to be a
216
   --  misspelling of one of the components of the Assoc_List. This is called
217
   --  by Resolve_Aggr_Expr after producing an invalid component error message.
218
 
219
   procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
220
   --  An optimization: determine whether a discriminated subtype has a static
221
   --  constraint, and contains array components whose length is also static,
222
   --  either because they are constrained by the discriminant, or because the
223
   --  original component bounds are static.
224
 
225
   -----------------------------------------------------
226
   -- Subprograms used for ARRAY AGGREGATE Processing --
227
   -----------------------------------------------------
228
 
229
   function Resolve_Array_Aggregate
230
     (N              : Node_Id;
231
      Index          : Node_Id;
232
      Index_Constr   : Node_Id;
233
      Component_Typ  : Entity_Id;
234
      Others_Allowed : Boolean) return Boolean;
235
   --  This procedure performs the semantic checks for an array aggregate.
236
   --  True is returned if the aggregate resolution succeeds.
237
   --
238
   --  The procedure works by recursively checking each nested aggregate.
239
   --  Specifically, after checking a sub-aggregate nested at the i-th level
240
   --  we recursively check all the subaggregates at the i+1-st level (if any).
241
   --  Note that for aggregates analysis and resolution go hand in hand.
242
   --  Aggregate analysis has been delayed up to here and it is done while
243
   --  resolving the aggregate.
244
   --
245
   --    N is the current N_Aggregate node to be checked.
246
   --
247
   --    Index is the index node corresponding to the array sub-aggregate that
248
   --    we are currently checking (RM 4.3.3 (8)). Its Etype is the
249
   --    corresponding index type (or subtype).
250
   --
251
   --    Index_Constr is the node giving the applicable index constraint if
252
   --    any (RM 4.3.3 (10)). It "is a constraint provided by certain
253
   --    contexts [...] that can be used to determine the bounds of the array
254
   --    value specified by the aggregate". If Others_Allowed below is False
255
   --    there is no applicable index constraint and this node is set to Index.
256
   --
257
   --    Component_Typ is the array component type.
258
   --
259
   --    Others_Allowed indicates whether an others choice is allowed
260
   --    in the context where the top-level aggregate appeared.
261
   --
262
   --  The algorithm of Resolve_Array_Aggregate proceeds as follows:
263
   --
264
   --  1. Make sure that the others choice, if present, is by itself and
265
   --     appears last in the sub-aggregate. Check that we do not have
266
   --     positional and named components in the array sub-aggregate (unless
267
   --     the named association is an others choice). Finally if an others
268
   --     choice is present, make sure it is allowed in the aggregate context.
269
   --
270
   --  2. If the array sub-aggregate contains discrete_choices:
271
   --
272
   --     (A) Verify their validity. Specifically verify that:
273
   --
274
   --        (a) If a null range is present it must be the only possible
275
   --            choice in the array aggregate.
276
   --
277
   --        (b) Ditto for a non static range.
278
   --
279
   --        (c) Ditto for a non static expression.
280
   --
281
   --        In addition this step analyzes and resolves each discrete_choice,
282
   --        making sure that its type is the type of the corresponding Index.
283
   --        If we are not at the lowest array aggregate level (in the case of
284
   --        multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
285
   --        recursively on each component expression. Otherwise, resolve the
286
   --        bottom level component expressions against the expected component
287
   --        type ONLY IF the component corresponds to a single discrete choice
288
   --        which is not an others choice (to see why read the DELAYED
289
   --        COMPONENT RESOLUTION below).
290
   --
291
   --     (B) Determine the bounds of the sub-aggregate and lowest and
292
   --         highest choice values.
293
   --
294
   --  3. For positional aggregates:
295
   --
296
   --     (A) Loop over the component expressions either recursively invoking
297
   --         Resolve_Array_Aggregate on each of these for multi-dimensional
298
   --         array aggregates or resolving the bottom level component
299
   --         expressions against the expected component type.
300
   --
301
   --     (B) Determine the bounds of the positional sub-aggregates.
302
   --
303
   --  4. Try to determine statically whether the evaluation of the array
304
   --     sub-aggregate raises Constraint_Error. If yes emit proper
305
   --     warnings. The precise checks are the following:
306
   --
307
   --     (A) Check that the index range defined by aggregate bounds is
308
   --         compatible with corresponding index subtype.
309
   --         We also check against the base type. In fact it could be that
310
   --         Low/High bounds of the base type are static whereas those of
311
   --         the index subtype are not. Thus if we can statically catch
312
   --         a problem with respect to the base type we are guaranteed
313
   --         that the same problem will arise with the index subtype
314
   --
315
   --     (B) If we are dealing with a named aggregate containing an others
316
   --         choice and at least one discrete choice then make sure the range
317
   --         specified by the discrete choices does not overflow the
318
   --         aggregate bounds. We also check against the index type and base
319
   --         type bounds for the same reasons given in (A).
320
   --
321
   --     (C) If we are dealing with a positional aggregate with an others
322
   --         choice make sure the number of positional elements specified
323
   --         does not overflow the aggregate bounds. We also check against
324
   --         the index type and base type bounds as mentioned in (A).
325
   --
326
   --     Finally construct an N_Range node giving the sub-aggregate bounds.
327
   --     Set the Aggregate_Bounds field of the sub-aggregate to be this
328
   --     N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
329
   --     to build the appropriate aggregate subtype. Aggregate_Bounds
330
   --     information is needed during expansion.
331
   --
332
   --  DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
333
   --  expressions in an array aggregate may call Duplicate_Subexpr or some
334
   --  other routine that inserts code just outside the outermost aggregate.
335
   --  If the array aggregate contains discrete choices or an others choice,
336
   --  this may be wrong. Consider for instance the following example.
337
   --
338
   --    type Rec is record
339
   --       V : Integer := 0;
340
   --    end record;
341
   --
342
   --    type Acc_Rec is access Rec;
343
   --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
344
   --
345
   --  Then the transformation of "new Rec" that occurs during resolution
346
   --  entails the following code modifications
347
   --
348
   --    P7b : constant Acc_Rec := new Rec;
349
   --    RecIP (P7b.all);
350
   --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
351
   --
352
   --  This code transformation is clearly wrong, since we need to call
353
   --  "new Rec" for each of the 3 array elements. To avoid this problem we
354
   --  delay resolution of the components of non positional array aggregates
355
   --  to the expansion phase. As an optimization, if the discrete choice
356
   --  specifies a single value we do not delay resolution.
357
 
358
   function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
359
   --  This routine returns the type or subtype of an array aggregate.
360
   --
361
   --    N is the array aggregate node whose type we return.
362
   --
363
   --    Typ is the context type in which N occurs.
364
   --
365
   --  This routine creates an implicit array subtype whose bounds are
366
   --  those defined by the aggregate. When this routine is invoked
367
   --  Resolve_Array_Aggregate has already processed aggregate N. Thus the
368
   --  Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
369
   --  sub-aggregate bounds. When building the aggregate itype, this function
370
   --  traverses the array aggregate N collecting such Aggregate_Bounds and
371
   --  constructs the proper array aggregate itype.
372
   --
373
   --  Note that in the case of multidimensional aggregates each inner
374
   --  sub-aggregate corresponding to a given array dimension, may provide a
375
   --  different bounds. If it is possible to determine statically that
376
   --  some sub-aggregates corresponding to the same index do not have the
377
   --  same bounds, then a warning is emitted. If such check is not possible
378
   --  statically (because some sub-aggregate bounds are dynamic expressions)
379
   --  then this job is left to the expander. In all cases the particular
380
   --  bounds that this function will chose for a given dimension is the first
381
   --  N_Range node for a sub-aggregate corresponding to that dimension.
382
   --
383
   --  Note that the Raises_Constraint_Error flag of an array aggregate
384
   --  whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
385
   --  is set in Resolve_Array_Aggregate but the aggregate is not
386
   --  immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
387
   --  first construct the proper itype for the aggregate (Gigi needs
388
   --  this). After constructing the proper itype we will eventually  replace
389
   --  the top-level aggregate with a raise CE (done in Resolve_Aggregate).
390
   --  Of course in cases such as:
391
   --
392
   --     type Arr is array (integer range <>) of Integer;
393
   --     A : Arr := (positive range -1 .. 2 => 0);
394
   --
395
   --  The bounds of the aggregate itype are cooked up to look reasonable
396
   --  (in this particular case the bounds will be 1 .. 2).
397
 
398
   procedure Aggregate_Constraint_Checks
399
     (Exp       : Node_Id;
400
      Check_Typ : Entity_Id);
401
   --  Checks expression Exp against subtype Check_Typ. If Exp is an
402
   --  aggregate and Check_Typ a constrained record type with discriminants,
403
   --  we generate the appropriate discriminant checks. If Exp is an array
404
   --  aggregate then emit the appropriate length checks. If Exp is a scalar
405
   --  type, or a string literal, Exp is changed into Check_Typ'(Exp) to
406
   --  ensure that range checks are performed at run time.
407
 
408
   procedure Make_String_Into_Aggregate (N : Node_Id);
409
   --  A string literal can appear in  a context in  which a one dimensional
410
   --  array of characters is expected. This procedure simply rewrites the
411
   --  string as an aggregate, prior to resolution.
412
 
413
   ---------------------------------
414
   -- Aggregate_Constraint_Checks --
415
   ---------------------------------
416
 
417
   procedure Aggregate_Constraint_Checks
418
     (Exp       : Node_Id;
419
      Check_Typ : Entity_Id)
420
   is
421
      Exp_Typ : constant Entity_Id  := Etype (Exp);
422
 
423
   begin
424
      if Raises_Constraint_Error (Exp) then
425
         return;
426
      end if;
427
 
428
      --  Ada 2005 (AI-230): Generate a conversion to an anonymous access
429
      --  component's type to force the appropriate accessibility checks.
430
 
431
      --  Ada 2005 (AI-231): Generate conversion to the null-excluding
432
      --  type to force the corresponding run-time check
433
 
434
      if Is_Access_Type (Check_Typ)
435
        and then ((Is_Local_Anonymous_Access (Check_Typ))
436
                    or else (Can_Never_Be_Null (Check_Typ)
437
                               and then not Can_Never_Be_Null (Exp_Typ)))
438
      then
439
         Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
440
         Analyze_And_Resolve (Exp, Check_Typ);
441
         Check_Unset_Reference (Exp);
442
      end if;
443
 
444
      --  This is really expansion activity, so make sure that expansion
445
      --  is on and is allowed.
446
 
447
      if not Expander_Active or else In_Spec_Expression then
448
         return;
449
      end if;
450
 
451
      --  First check if we have to insert discriminant checks
452
 
453
      if Has_Discriminants (Exp_Typ) then
454
         Apply_Discriminant_Check (Exp, Check_Typ);
455
 
456
      --  Next emit length checks for array aggregates
457
 
458
      elsif Is_Array_Type (Exp_Typ) then
459
         Apply_Length_Check (Exp, Check_Typ);
460
 
461
      --  Finally emit scalar and string checks. If we are dealing with a
462
      --  scalar literal we need to check by hand because the Etype of
463
      --  literals is not necessarily correct.
464
 
465
      elsif Is_Scalar_Type (Exp_Typ)
466
        and then Compile_Time_Known_Value (Exp)
467
      then
468
         if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
469
            Apply_Compile_Time_Constraint_Error
470
              (Exp, "value not in range of}?", CE_Range_Check_Failed,
471
               Ent => Base_Type (Check_Typ),
472
               Typ => Base_Type (Check_Typ));
473
 
474
         elsif Is_Out_Of_Range (Exp, Check_Typ) then
475
            Apply_Compile_Time_Constraint_Error
476
              (Exp, "value not in range of}?", CE_Range_Check_Failed,
477
               Ent => Check_Typ,
478
               Typ => Check_Typ);
479
 
480
         elsif not Range_Checks_Suppressed (Check_Typ) then
481
            Apply_Scalar_Range_Check (Exp, Check_Typ);
482
         end if;
483
 
484
      --  Verify that target type is also scalar, to prevent view anomalies
485
      --  in instantiations.
486
 
487
      elsif (Is_Scalar_Type (Exp_Typ)
488
              or else Nkind (Exp) = N_String_Literal)
489
        and then Is_Scalar_Type (Check_Typ)
490
        and then Exp_Typ /= Check_Typ
491
      then
492
         if Is_Entity_Name (Exp)
493
           and then Ekind (Entity (Exp)) = E_Constant
494
         then
495
            --  If expression is a constant, it is worthwhile checking whether
496
            --  it is a bound of the type.
497
 
498
            if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
499
                 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
500
              or else (Is_Entity_Name (Type_High_Bound (Check_Typ))
501
                and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
502
            then
503
               return;
504
 
505
            else
506
               Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
507
               Analyze_And_Resolve (Exp, Check_Typ);
508
               Check_Unset_Reference (Exp);
509
            end if;
510
         else
511
            Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
512
            Analyze_And_Resolve (Exp, Check_Typ);
513
            Check_Unset_Reference (Exp);
514
         end if;
515
 
516
      end if;
517
   end Aggregate_Constraint_Checks;
518
 
519
   ------------------------
520
   -- Array_Aggr_Subtype --
521
   ------------------------
522
 
523
   function Array_Aggr_Subtype
524
     (N   : Node_Id;
525
      Typ : Entity_Id) return Entity_Id
526
   is
527
      Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
528
      --  Number of aggregate index dimensions
529
 
530
      Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
531
      --  Constrained N_Range of each index dimension in our aggregate itype
532
 
533
      Aggr_Low   : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
534
      Aggr_High  : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
535
      --  Low and High bounds for each index dimension in our aggregate itype
536
 
537
      Is_Fully_Positional : Boolean := True;
538
 
539
      procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
540
      --  N is an array (sub-)aggregate. Dim is the dimension corresponding
541
      --  to (sub-)aggregate N. This procedure collects and removes the side
542
      --  effects of the constrained N_Range nodes corresponding to each index
543
      --  dimension of our aggregate itype. These N_Range nodes are collected
544
      --  in Aggr_Range above.
545
      --
546
      --  Likewise collect in Aggr_Low & Aggr_High above the low and high
547
      --  bounds of each index dimension. If, when collecting, two bounds
548
      --  corresponding to the same dimension are static and found to differ,
549
      --  then emit a warning, and mark N as raising Constraint_Error.
550
 
551
      -------------------------
552
      -- Collect_Aggr_Bounds --
553
      -------------------------
554
 
555
      procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
556
         This_Range : constant Node_Id := Aggregate_Bounds (N);
557
         --  The aggregate range node of this specific sub-aggregate
558
 
559
         This_Low  : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
560
         This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
561
         --  The aggregate bounds of this specific sub-aggregate
562
 
563
         Assoc : Node_Id;
564
         Expr  : Node_Id;
565
 
566
      begin
567
         Remove_Side_Effects (This_Low,  Variable_Ref => True);
568
         Remove_Side_Effects (This_High, Variable_Ref => True);
569
 
570
         --  Collect the first N_Range for a given dimension that you find.
571
         --  For a given dimension they must be all equal anyway.
572
 
573
         if No (Aggr_Range (Dim)) then
574
            Aggr_Low (Dim)   := This_Low;
575
            Aggr_High (Dim)  := This_High;
576
            Aggr_Range (Dim) := This_Range;
577
 
578
         else
579
            if Compile_Time_Known_Value (This_Low) then
580
               if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
581
                  Aggr_Low (Dim)  := This_Low;
582
 
583
               elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
584
                  Set_Raises_Constraint_Error (N);
585
                  Error_Msg_N ("sub-aggregate low bound mismatch?", N);
586
                  Error_Msg_N
587
                     ("\Constraint_Error will be raised at run time?", N);
588
               end if;
589
            end if;
590
 
591
            if Compile_Time_Known_Value (This_High) then
592
               if not Compile_Time_Known_Value (Aggr_High (Dim)) then
593
                  Aggr_High (Dim)  := This_High;
594
 
595
               elsif
596
                 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
597
               then
598
                  Set_Raises_Constraint_Error (N);
599
                  Error_Msg_N ("sub-aggregate high bound mismatch?", N);
600
                  Error_Msg_N
601
                     ("\Constraint_Error will be raised at run time?", N);
602
               end if;
603
            end if;
604
         end if;
605
 
606
         if Dim < Aggr_Dimension then
607
 
608
            --  Process positional components
609
 
610
            if Present (Expressions (N)) then
611
               Expr := First (Expressions (N));
612
               while Present (Expr) loop
613
                  Collect_Aggr_Bounds (Expr, Dim + 1);
614
                  Next (Expr);
615
               end loop;
616
            end if;
617
 
618
            --  Process component associations
619
 
620
            if Present (Component_Associations (N)) then
621
               Is_Fully_Positional := False;
622
 
623
               Assoc := First (Component_Associations (N));
624
               while Present (Assoc) loop
625
                  Expr := Expression (Assoc);
626
                  Collect_Aggr_Bounds (Expr, Dim + 1);
627
                  Next (Assoc);
628
               end loop;
629
            end if;
630
         end if;
631
      end Collect_Aggr_Bounds;
632
 
633
      --  Array_Aggr_Subtype variables
634
 
635
      Itype : Entity_Id;
636
      --  The final itype of the overall aggregate
637
 
638
      Index_Constraints : constant List_Id := New_List;
639
      --  The list of index constraints of the aggregate itype
640
 
641
   --  Start of processing for Array_Aggr_Subtype
642
 
643
   begin
644
      --  Make sure that the list of index constraints is properly attached to
645
      --  the tree, and then collect the aggregate bounds.
646
 
647
      Set_Parent (Index_Constraints, N);
648
      Collect_Aggr_Bounds (N, 1);
649
 
650
      --  Build the list of constrained indexes of our aggregate itype
651
 
652
      for J in 1 .. Aggr_Dimension loop
653
         Create_Index : declare
654
            Index_Base : constant Entity_Id :=
655
                           Base_Type (Etype (Aggr_Range (J)));
656
            Index_Typ  : Entity_Id;
657
 
658
         begin
659
            --  Construct the Index subtype, and associate it with the range
660
            --  construct that generates it.
661
 
662
            Index_Typ :=
663
              Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
664
 
665
            Set_Etype (Index_Typ, Index_Base);
666
 
667
            if Is_Character_Type (Index_Base) then
668
               Set_Is_Character_Type (Index_Typ);
669
            end if;
670
 
671
            Set_Size_Info      (Index_Typ,                (Index_Base));
672
            Set_RM_Size        (Index_Typ, RM_Size        (Index_Base));
673
            Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
674
            Set_Scalar_Range   (Index_Typ, Aggr_Range (J));
675
 
676
            if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
677
               Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
678
            end if;
679
 
680
            Set_Etype (Aggr_Range (J), Index_Typ);
681
 
682
            Append (Aggr_Range (J), To => Index_Constraints);
683
         end Create_Index;
684
      end loop;
685
 
686
      --  Now build the Itype
687
 
688
      Itype := Create_Itype (E_Array_Subtype, N);
689
 
690
      Set_First_Rep_Item         (Itype, First_Rep_Item        (Typ));
691
      Set_Convention             (Itype, Convention            (Typ));
692
      Set_Depends_On_Private     (Itype, Has_Private_Component (Typ));
693
      Set_Etype                  (Itype, Base_Type             (Typ));
694
      Set_Has_Alignment_Clause   (Itype, Has_Alignment_Clause  (Typ));
695
      Set_Is_Aliased             (Itype, Is_Aliased            (Typ));
696
      Set_Depends_On_Private     (Itype, Depends_On_Private    (Typ));
697
 
698
      Copy_Suppress_Status (Index_Check,  Typ, Itype);
699
      Copy_Suppress_Status (Length_Check, Typ, Itype);
700
 
701
      Set_First_Index    (Itype, First (Index_Constraints));
702
      Set_Is_Constrained (Itype, True);
703
      Set_Is_Internal    (Itype, True);
704
 
705
      --  A simple optimization: purely positional aggregates of static
706
      --  components should be passed to gigi unexpanded whenever possible, and
707
      --  regardless of the staticness of the bounds themselves. Subsequent
708
      --  checks in exp_aggr verify that type is not packed, etc.
709
 
710
      Set_Size_Known_At_Compile_Time (Itype,
711
         Is_Fully_Positional
712
           and then Comes_From_Source (N)
713
           and then Size_Known_At_Compile_Time (Component_Type (Typ)));
714
 
715
      --  We always need a freeze node for a packed array subtype, so that we
716
      --  can build the Packed_Array_Type corresponding to the subtype. If
717
      --  expansion is disabled, the packed array subtype is not built, and we
718
      --  must not generate a freeze node for the type, or else it will appear
719
      --  incomplete to gigi.
720
 
721
      if Is_Packed (Itype)
722
        and then not In_Spec_Expression
723
        and then Expander_Active
724
      then
725
         Freeze_Itype (Itype, N);
726
      end if;
727
 
728
      return Itype;
729
   end Array_Aggr_Subtype;
730
 
731
   --------------------------------
732
   -- Check_Misspelled_Component --
733
   --------------------------------
734
 
735
   procedure Check_Misspelled_Component
736
     (Elements  : Elist_Id;
737
      Component : Node_Id)
738
   is
739
      Max_Suggestions   : constant := 2;
740
 
741
      Nr_Of_Suggestions : Natural := 0;
742
      Suggestion_1      : Entity_Id := Empty;
743
      Suggestion_2      : Entity_Id := Empty;
744
      Component_Elmt    : Elmt_Id;
745
 
746
   begin
747
      --  All the components of List are matched against Component and a count
748
      --  is maintained of possible misspellings. When at the end of the the
749
      --  analysis there are one or two (not more!) possible misspellings,
750
      --  these misspellings will be suggested as possible correction.
751
 
752
      Component_Elmt := First_Elmt (Elements);
753
      while Nr_Of_Suggestions <= Max_Suggestions
754
        and then Present (Component_Elmt)
755
      loop
756
         if Is_Bad_Spelling_Of
757
              (Chars (Node (Component_Elmt)),
758
               Chars (Component))
759
         then
760
            Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
761
 
762
            case Nr_Of_Suggestions is
763
               when 1      => Suggestion_1 := Node (Component_Elmt);
764
               when 2      => Suggestion_2 := Node (Component_Elmt);
765
               when others => exit;
766
            end case;
767
         end if;
768
 
769
         Next_Elmt (Component_Elmt);
770
      end loop;
771
 
772
      --  Report at most two suggestions
773
 
774
      if Nr_Of_Suggestions = 1 then
775
         Error_Msg_NE -- CODEFIX
776
           ("\possible misspelling of&", Component, Suggestion_1);
777
 
778
      elsif Nr_Of_Suggestions = 2 then
779
         Error_Msg_Node_2 := Suggestion_2;
780
         Error_Msg_NE -- CODEFIX
781
           ("\possible misspelling of& or&", Component, Suggestion_1);
782
      end if;
783
   end Check_Misspelled_Component;
784
 
785
   ----------------------------------------
786
   -- Check_Expr_OK_In_Limited_Aggregate --
787
   ----------------------------------------
788
 
789
   procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
790
   begin
791
      if Is_Limited_Type (Etype (Expr))
792
         and then Comes_From_Source (Expr)
793
         and then not In_Instance_Body
794
      then
795
         if not OK_For_Limited_Init (Etype (Expr), Expr) then
796
            Error_Msg_N ("initialization not allowed for limited types", Expr);
797
            Explain_Limited_Type (Etype (Expr), Expr);
798
         end if;
799
      end if;
800
   end Check_Expr_OK_In_Limited_Aggregate;
801
 
802
   -------------------------------
803
   -- Check_Qualified_Aggregate --
804
   -------------------------------
805
 
806
   procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
807
      Comp_Expr : Node_Id;
808
      Comp_Assn : Node_Id;
809
 
810
   begin
811
      if Level = 0 then
812
         if Nkind (Parent (Expr)) /= N_Qualified_Expression then
813
            Check_SPARK_Restriction ("aggregate should be qualified", Expr);
814
         end if;
815
 
816
      else
817
         Comp_Expr := First (Expressions (Expr));
818
         while Present (Comp_Expr) loop
819
            if Nkind (Comp_Expr) = N_Aggregate then
820
               Check_Qualified_Aggregate (Level - 1, Comp_Expr);
821
            end if;
822
 
823
            Comp_Expr := Next (Comp_Expr);
824
         end loop;
825
 
826
         Comp_Assn := First (Component_Associations (Expr));
827
         while Present (Comp_Assn) loop
828
            Comp_Expr := Expression (Comp_Assn);
829
 
830
            if Nkind (Comp_Expr) = N_Aggregate then
831
               Check_Qualified_Aggregate (Level - 1, Comp_Expr);
832
            end if;
833
 
834
            Comp_Assn := Next (Comp_Assn);
835
         end loop;
836
      end if;
837
   end Check_Qualified_Aggregate;
838
 
839
   ----------------------------------------
840
   -- Check_Static_Discriminated_Subtype --
841
   ----------------------------------------
842
 
843
   procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
844
      Disc : constant Entity_Id := First_Discriminant (T);
845
      Comp : Entity_Id;
846
      Ind  : Entity_Id;
847
 
848
   begin
849
      if Has_Record_Rep_Clause (T) then
850
         return;
851
 
852
      elsif Present (Next_Discriminant (Disc)) then
853
         return;
854
 
855
      elsif Nkind (V) /= N_Integer_Literal then
856
         return;
857
      end if;
858
 
859
      Comp := First_Component (T);
860
      while Present (Comp) loop
861
         if Is_Scalar_Type (Etype (Comp)) then
862
            null;
863
 
864
         elsif Is_Private_Type (Etype (Comp))
865
           and then Present (Full_View (Etype (Comp)))
866
           and then Is_Scalar_Type (Full_View (Etype (Comp)))
867
         then
868
            null;
869
 
870
         elsif Is_Array_Type (Etype (Comp)) then
871
            if Is_Bit_Packed_Array (Etype (Comp)) then
872
               return;
873
            end if;
874
 
875
            Ind := First_Index (Etype (Comp));
876
            while Present (Ind) loop
877
               if Nkind (Ind) /= N_Range
878
                 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
879
                 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
880
               then
881
                  return;
882
               end if;
883
 
884
               Next_Index (Ind);
885
            end loop;
886
 
887
         else
888
            return;
889
         end if;
890
 
891
         Next_Component (Comp);
892
      end loop;
893
 
894
      --  On exit, all components have statically known sizes
895
 
896
      Set_Size_Known_At_Compile_Time (T);
897
   end Check_Static_Discriminated_Subtype;
898
 
899
   -------------------------
900
   -- Is_Others_Aggregate --
901
   -------------------------
902
 
903
   function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
904
   begin
905
      return No (Expressions (Aggr))
906
        and then
907
          Nkind (First (Choices (First (Component_Associations (Aggr)))))
908
            = N_Others_Choice;
909
   end Is_Others_Aggregate;
910
 
911
   ----------------------------
912
   -- Is_Top_Level_Aggregate --
913
   ----------------------------
914
 
915
   function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
916
   begin
917
      return Nkind (Parent (Expr)) /= N_Aggregate
918
        and then (Nkind (Parent (Expr)) /= N_Component_Association
919
                   or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
920
   end Is_Top_Level_Aggregate;
921
 
922
   --------------------------------
923
   -- Make_String_Into_Aggregate --
924
   --------------------------------
925
 
926
   procedure Make_String_Into_Aggregate (N : Node_Id) is
927
      Exprs  : constant List_Id    := New_List;
928
      Loc    : constant Source_Ptr := Sloc (N);
929
      Str    : constant String_Id  := Strval (N);
930
      Strlen : constant Nat        := String_Length (Str);
931
      C      : Char_Code;
932
      C_Node : Node_Id;
933
      New_N  : Node_Id;
934
      P      : Source_Ptr;
935
 
936
   begin
937
      P := Loc + 1;
938
      for J in  1 .. Strlen loop
939
         C := Get_String_Char (Str, J);
940
         Set_Character_Literal_Name (C);
941
 
942
         C_Node :=
943
           Make_Character_Literal (P,
944
             Chars              => Name_Find,
945
             Char_Literal_Value => UI_From_CC (C));
946
         Set_Etype (C_Node, Any_Character);
947
         Append_To (Exprs, C_Node);
948
 
949
         P := P + 1;
950
         --  Something special for wide strings???
951
      end loop;
952
 
953
      New_N := Make_Aggregate (Loc, Expressions => Exprs);
954
      Set_Analyzed (New_N);
955
      Set_Etype (New_N, Any_Composite);
956
 
957
      Rewrite (N, New_N);
958
   end Make_String_Into_Aggregate;
959
 
960
   -----------------------
961
   -- Resolve_Aggregate --
962
   -----------------------
963
 
964
   procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
965
      Loc   : constant Source_Ptr := Sloc (N);
966
      Pkind : constant Node_Kind  := Nkind (Parent (N));
967
 
968
      Aggr_Subtyp : Entity_Id;
969
      --  The actual aggregate subtype. This is not necessarily the same as Typ
970
      --  which is the subtype of the context in which the aggregate was found.
971
 
972
   begin
973
      --  Ignore junk empty aggregate resulting from parser error
974
 
975
      if No (Expressions (N))
976
        and then No (Component_Associations (N))
977
        and then not Null_Record_Present (N)
978
      then
979
         return;
980
      end if;
981
 
982
      --  If the aggregate has box-initialized components, its type must be
983
      --  frozen so that initialization procedures can properly be called
984
      --  in the resolution that follows.  The replacement of boxes with
985
      --  initialization calls is properly an expansion activity but it must
986
      --  be done during revolution.
987
 
988
      if Expander_Active
989
        and then  Present (Component_Associations (N))
990
      then
991
         declare
992
            Comp : Node_Id;
993
 
994
         begin
995
            Comp := First (Component_Associations (N));
996
            while Present (Comp) loop
997
               if Box_Present (Comp) then
998
                  Insert_Actions (N, Freeze_Entity (Typ, N));
999
                  exit;
1000
               end if;
1001
 
1002
               Next (Comp);
1003
            end loop;
1004
         end;
1005
      end if;
1006
 
1007
      --  An unqualified aggregate is restricted in SPARK to:
1008
 
1009
      --    An aggregate item inside an aggregate for a multi-dimensional array
1010
 
1011
      --    An expression being assigned to an unconstrained array, but only if
1012
      --    the aggregate specifies a value for OTHERS only.
1013
 
1014
      if Nkind (Parent (N)) = N_Qualified_Expression then
1015
         if Is_Array_Type (Typ) then
1016
            Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
1017
         else
1018
            Check_Qualified_Aggregate (1, N);
1019
         end if;
1020
      else
1021
         if Is_Array_Type (Typ)
1022
           and then Nkind (Parent (N)) = N_Assignment_Statement
1023
           and then not Is_Constrained (Etype (Name (Parent (N))))
1024
         then
1025
            if not Is_Others_Aggregate (N) then
1026
               Check_SPARK_Restriction
1027
                 ("array aggregate should have only OTHERS", N);
1028
            end if;
1029
 
1030
         elsif Is_Top_Level_Aggregate (N) then
1031
            Check_SPARK_Restriction ("aggregate should be qualified", N);
1032
 
1033
         --  The legality of this unqualified aggregate is checked by calling
1034
         --  Check_Qualified_Aggregate from one of its enclosing aggregate,
1035
         --  unless one of these already causes an error to be issued.
1036
 
1037
         else
1038
            null;
1039
         end if;
1040
      end if;
1041
 
1042
      --  Check for aggregates not allowed in configurable run-time mode.
1043
      --  We allow all cases of aggregates that do not come from source, since
1044
      --  these are all assumed to be small (e.g. bounds of a string literal).
1045
      --  We also allow aggregates of types we know to be small.
1046
 
1047
      if not Support_Aggregates_On_Target
1048
        and then Comes_From_Source (N)
1049
        and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
1050
      then
1051
         Error_Msg_CRT ("aggregate", N);
1052
      end if;
1053
 
1054
      --  Ada 2005 (AI-287): Limited aggregates allowed
1055
 
1056
      --  In an instance, ignore aggregate subcomponents tnat may be limited,
1057
      --  because they originate in view conflicts. If the original aggregate
1058
      --  is legal and the actuals are legal, the aggregate itself is legal.
1059
 
1060
      if Is_Limited_Type (Typ)
1061
        and then Ada_Version < Ada_2005
1062
        and then not In_Instance
1063
      then
1064
         Error_Msg_N ("aggregate type cannot be limited", N);
1065
         Explain_Limited_Type (Typ, N);
1066
 
1067
      elsif Is_Class_Wide_Type (Typ) then
1068
         Error_Msg_N ("type of aggregate cannot be class-wide", N);
1069
 
1070
      elsif Typ = Any_String
1071
        or else Typ = Any_Composite
1072
      then
1073
         Error_Msg_N ("no unique type for aggregate", N);
1074
         Set_Etype (N, Any_Composite);
1075
 
1076
      elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
1077
         Error_Msg_N ("null record forbidden in array aggregate", N);
1078
 
1079
      elsif Is_Record_Type (Typ) then
1080
         Resolve_Record_Aggregate (N, Typ);
1081
 
1082
      elsif Is_Array_Type (Typ) then
1083
 
1084
         --  First a special test, for the case of a positional aggregate
1085
         --  of characters which can be replaced by a string literal.
1086
 
1087
         --  Do not perform this transformation if this was a string literal to
1088
         --  start with, whose components needed constraint checks, or if the
1089
         --  component type is non-static, because it will require those checks
1090
         --  and be transformed back into an aggregate.
1091
 
1092
         if Number_Dimensions (Typ) = 1
1093
           and then Is_Standard_Character_Type (Component_Type (Typ))
1094
           and then No (Component_Associations (N))
1095
           and then not Is_Limited_Composite (Typ)
1096
           and then not Is_Private_Composite (Typ)
1097
           and then not Is_Bit_Packed_Array (Typ)
1098
           and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1099
           and then Is_Static_Subtype (Component_Type (Typ))
1100
         then
1101
            declare
1102
               Expr : Node_Id;
1103
 
1104
            begin
1105
               Expr := First (Expressions (N));
1106
               while Present (Expr) loop
1107
                  exit when Nkind (Expr) /= N_Character_Literal;
1108
                  Next (Expr);
1109
               end loop;
1110
 
1111
               if No (Expr) then
1112
                  Start_String;
1113
 
1114
                  Expr := First (Expressions (N));
1115
                  while Present (Expr) loop
1116
                     Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1117
                     Next (Expr);
1118
                  end loop;
1119
 
1120
                  Rewrite (N, Make_String_Literal (Loc, End_String));
1121
 
1122
                  Analyze_And_Resolve (N, Typ);
1123
                  return;
1124
               end if;
1125
            end;
1126
         end if;
1127
 
1128
         --  Here if we have a real aggregate to deal with
1129
 
1130
         Array_Aggregate : declare
1131
            Aggr_Resolved : Boolean;
1132
 
1133
            Aggr_Typ : constant Entity_Id := Etype (Typ);
1134
            --  This is the unconstrained array type, which is the type against
1135
            --  which the aggregate is to be resolved. Typ itself is the array
1136
            --  type of the context which may not be the same subtype as the
1137
            --  subtype for the final aggregate.
1138
 
1139
         begin
1140
            --  In the following we determine whether an OTHERS choice is
1141
            --  allowed inside the array aggregate. The test checks the context
1142
            --  in which the array aggregate occurs. If the context does not
1143
            --  permit it, or the aggregate type is unconstrained, an OTHERS
1144
            --  choice is not allowed (except that it is always allowed on the
1145
            --  right-hand side of an assignment statement; in this case the
1146
            --  constrainedness of the type doesn't matter).
1147
 
1148
            --  If expansion is disabled (generic context, or semantics-only
1149
            --  mode) actual subtypes cannot be constructed, and the type of an
1150
            --  object may be its unconstrained nominal type. However, if the
1151
            --  context is an assignment, we assume that OTHERS is allowed,
1152
            --  because the target of the assignment will have a constrained
1153
            --  subtype when fully compiled.
1154
 
1155
            --  Note that there is no node for Explicit_Actual_Parameter.
1156
            --  To test for this context we therefore have to test for node
1157
            --  N_Parameter_Association which itself appears only if there is a
1158
            --  formal parameter. Consequently we also need to test for
1159
            --  N_Procedure_Call_Statement or N_Function_Call.
1160
 
1161
            Set_Etype (N, Aggr_Typ);  --  May be overridden later on
1162
 
1163
            if Pkind = N_Assignment_Statement
1164
              or else (Is_Constrained (Typ)
1165
                        and then
1166
                          (Pkind = N_Parameter_Association     or else
1167
                           Pkind = N_Function_Call             or else
1168
                           Pkind = N_Procedure_Call_Statement  or else
1169
                           Pkind = N_Generic_Association       or else
1170
                           Pkind = N_Formal_Object_Declaration or else
1171
                           Pkind = N_Simple_Return_Statement   or else
1172
                           Pkind = N_Object_Declaration        or else
1173
                           Pkind = N_Component_Declaration     or else
1174
                           Pkind = N_Parameter_Specification   or else
1175
                           Pkind = N_Qualified_Expression      or else
1176
                           Pkind = N_Aggregate                 or else
1177
                           Pkind = N_Extension_Aggregate       or else
1178
                           Pkind = N_Component_Association))
1179
            then
1180
               Aggr_Resolved :=
1181
                 Resolve_Array_Aggregate
1182
                   (N,
1183
                    Index          => First_Index (Aggr_Typ),
1184
                    Index_Constr   => First_Index (Typ),
1185
                    Component_Typ  => Component_Type (Typ),
1186
                    Others_Allowed => True);
1187
 
1188
            elsif not Expander_Active
1189
              and then Pkind = N_Assignment_Statement
1190
            then
1191
               Aggr_Resolved :=
1192
                 Resolve_Array_Aggregate
1193
                   (N,
1194
                    Index          => First_Index (Aggr_Typ),
1195
                    Index_Constr   => First_Index (Typ),
1196
                    Component_Typ  => Component_Type (Typ),
1197
                    Others_Allowed => True);
1198
 
1199
            else
1200
               Aggr_Resolved :=
1201
                 Resolve_Array_Aggregate
1202
                   (N,
1203
                    Index          => First_Index (Aggr_Typ),
1204
                    Index_Constr   => First_Index (Aggr_Typ),
1205
                    Component_Typ  => Component_Type (Typ),
1206
                    Others_Allowed => False);
1207
            end if;
1208
 
1209
            if not Aggr_Resolved then
1210
 
1211
               --  A parenthesized expression may have been intended as an
1212
               --  aggregate, leading to a type error when analyzing the
1213
               --  component. This can also happen for a nested component
1214
               --  (see Analyze_Aggr_Expr).
1215
 
1216
               if Paren_Count (N) > 0 then
1217
                  Error_Msg_N
1218
                    ("positional aggregate cannot have one component", N);
1219
               end if;
1220
 
1221
               Aggr_Subtyp := Any_Composite;
1222
 
1223
            else
1224
               Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1225
            end if;
1226
 
1227
            Set_Etype (N, Aggr_Subtyp);
1228
         end Array_Aggregate;
1229
 
1230
      elsif Is_Private_Type (Typ)
1231
        and then Present (Full_View (Typ))
1232
        and then (In_Inlined_Body or In_Instance_Body)
1233
        and then Is_Composite_Type (Full_View (Typ))
1234
      then
1235
         Resolve (N, Full_View (Typ));
1236
 
1237
      else
1238
         Error_Msg_N ("illegal context for aggregate", N);
1239
      end if;
1240
 
1241
      --  If we can determine statically that the evaluation of the aggregate
1242
      --  raises Constraint_Error, then replace the aggregate with an
1243
      --  N_Raise_Constraint_Error node, but set the Etype to the right
1244
      --  aggregate subtype. Gigi needs this.
1245
 
1246
      if Raises_Constraint_Error (N) then
1247
         Aggr_Subtyp := Etype (N);
1248
         Rewrite (N,
1249
           Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1250
         Set_Raises_Constraint_Error (N);
1251
         Set_Etype (N, Aggr_Subtyp);
1252
         Set_Analyzed (N);
1253
      end if;
1254
   end Resolve_Aggregate;
1255
 
1256
   -----------------------------
1257
   -- Resolve_Array_Aggregate --
1258
   -----------------------------
1259
 
1260
   function Resolve_Array_Aggregate
1261
     (N              : Node_Id;
1262
      Index          : Node_Id;
1263
      Index_Constr   : Node_Id;
1264
      Component_Typ  : Entity_Id;
1265
      Others_Allowed : Boolean) return Boolean
1266
   is
1267
      Loc : constant Source_Ptr := Sloc (N);
1268
 
1269
      Failure : constant Boolean := False;
1270
      Success : constant Boolean := True;
1271
 
1272
      Index_Typ      : constant Entity_Id := Etype (Index);
1273
      Index_Typ_Low  : constant Node_Id   := Type_Low_Bound  (Index_Typ);
1274
      Index_Typ_High : constant Node_Id   := Type_High_Bound (Index_Typ);
1275
      --  The type of the index corresponding to the array sub-aggregate along
1276
      --  with its low and upper bounds.
1277
 
1278
      Index_Base      : constant Entity_Id := Base_Type (Index_Typ);
1279
      Index_Base_Low  : constant Node_Id   := Type_Low_Bound (Index_Base);
1280
      Index_Base_High : constant Node_Id   := Type_High_Bound (Index_Base);
1281
      --  Ditto for the base type
1282
 
1283
      function Add (Val : Uint; To : Node_Id) return Node_Id;
1284
      --  Creates a new expression node where Val is added to expression To.
1285
      --  Tries to constant fold whenever possible. To must be an already
1286
      --  analyzed expression.
1287
 
1288
      procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1289
      --  Checks that AH (the upper bound of an array aggregate) is less than
1290
      --  or equal to BH (the upper bound of the index base type). If the check
1291
      --  fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1292
      --  set, and AH is replaced with a duplicate of BH.
1293
 
1294
      procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1295
      --  Checks that range AL .. AH is compatible with range L .. H. Emits a
1296
      --  warning if not and sets the Raises_Constraint_Error flag in N.
1297
 
1298
      procedure Check_Length (L, H : Node_Id; Len : Uint);
1299
      --  Checks that range L .. H contains at least Len elements. Emits a
1300
      --  warning if not and sets the Raises_Constraint_Error flag in N.
1301
 
1302
      function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1303
      --  Returns True if range L .. H is dynamic or null
1304
 
1305
      procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1306
      --  Given expression node From, this routine sets OK to False if it
1307
      --  cannot statically evaluate From. Otherwise it stores this static
1308
      --  value into Value.
1309
 
1310
      function Resolve_Aggr_Expr
1311
        (Expr        : Node_Id;
1312
         Single_Elmt : Boolean) return Boolean;
1313
      --  Resolves aggregate expression Expr. Returns False if resolution
1314
      --  fails. If Single_Elmt is set to False, the expression Expr may be
1315
      --  used to initialize several array aggregate elements (this can happen
1316
      --  for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1317
      --  In this event we do not resolve Expr unless expansion is disabled.
1318
      --  To know why, see the DELAYED COMPONENT RESOLUTION note above.
1319
      --
1320
      --  NOTE: In the case of "... => <>", we pass the in the
1321
      --  N_Component_Association node as Expr, since there is no Expression in
1322
      --  that case, and we need a Sloc for the error message.
1323
 
1324
      ---------
1325
      -- Add --
1326
      ---------
1327
 
1328
      function Add (Val : Uint; To : Node_Id) return Node_Id is
1329
         Expr_Pos : Node_Id;
1330
         Expr     : Node_Id;
1331
         To_Pos   : Node_Id;
1332
 
1333
      begin
1334
         if Raises_Constraint_Error (To) then
1335
            return To;
1336
         end if;
1337
 
1338
         --  First test if we can do constant folding
1339
 
1340
         if Compile_Time_Known_Value (To)
1341
           or else Nkind (To) = N_Integer_Literal
1342
         then
1343
            Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1344
            Set_Is_Static_Expression (Expr_Pos);
1345
            Set_Etype (Expr_Pos, Etype (To));
1346
            Set_Analyzed (Expr_Pos, Analyzed (To));
1347
 
1348
            if not Is_Enumeration_Type (Index_Typ) then
1349
               Expr := Expr_Pos;
1350
 
1351
            --  If we are dealing with enumeration return
1352
            --     Index_Typ'Val (Expr_Pos)
1353
 
1354
            else
1355
               Expr :=
1356
                 Make_Attribute_Reference
1357
                   (Loc,
1358
                    Prefix         => New_Reference_To (Index_Typ, Loc),
1359
                    Attribute_Name => Name_Val,
1360
                    Expressions    => New_List (Expr_Pos));
1361
            end if;
1362
 
1363
            return Expr;
1364
         end if;
1365
 
1366
         --  If we are here no constant folding possible
1367
 
1368
         if not Is_Enumeration_Type (Index_Base) then
1369
            Expr :=
1370
              Make_Op_Add (Loc,
1371
                Left_Opnd  => Duplicate_Subexpr (To),
1372
                Right_Opnd => Make_Integer_Literal (Loc, Val));
1373
 
1374
         --  If we are dealing with enumeration return
1375
         --    Index_Typ'Val (Index_Typ'Pos (To) + Val)
1376
 
1377
         else
1378
            To_Pos :=
1379
              Make_Attribute_Reference
1380
                (Loc,
1381
                 Prefix         => New_Reference_To (Index_Typ, Loc),
1382
                 Attribute_Name => Name_Pos,
1383
                 Expressions    => New_List (Duplicate_Subexpr (To)));
1384
 
1385
            Expr_Pos :=
1386
              Make_Op_Add (Loc,
1387
                           Left_Opnd  => To_Pos,
1388
                           Right_Opnd => Make_Integer_Literal (Loc, Val));
1389
 
1390
            Expr :=
1391
              Make_Attribute_Reference
1392
                (Loc,
1393
                 Prefix         => New_Reference_To (Index_Typ, Loc),
1394
                 Attribute_Name => Name_Val,
1395
                 Expressions    => New_List (Expr_Pos));
1396
 
1397
            --  If the index type has a non standard representation, the
1398
            --  attributes 'Val and 'Pos expand into function calls and the
1399
            --  resulting expression is considered non-safe for reevaluation
1400
            --  by the backend. Relocate it into a constant temporary in order
1401
            --  to make it safe for reevaluation.
1402
 
1403
            if Has_Non_Standard_Rep (Etype (N)) then
1404
               declare
1405
                  Def_Id : Entity_Id;
1406
 
1407
               begin
1408
                  Def_Id := Make_Temporary (Loc, 'R', Expr);
1409
                  Set_Etype (Def_Id, Index_Typ);
1410
                  Insert_Action (N,
1411
                    Make_Object_Declaration (Loc,
1412
                      Defining_Identifier => Def_Id,
1413
                      Object_Definition   => New_Reference_To (Index_Typ, Loc),
1414
                      Constant_Present    => True,
1415
                      Expression          => Relocate_Node (Expr)));
1416
 
1417
                  Expr := New_Reference_To (Def_Id, Loc);
1418
               end;
1419
            end if;
1420
         end if;
1421
 
1422
         return Expr;
1423
      end Add;
1424
 
1425
      -----------------
1426
      -- Check_Bound --
1427
      -----------------
1428
 
1429
      procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1430
         Val_BH : Uint;
1431
         Val_AH : Uint;
1432
 
1433
         OK_BH : Boolean;
1434
         OK_AH : Boolean;
1435
 
1436
      begin
1437
         Get (Value => Val_BH, From => BH, OK => OK_BH);
1438
         Get (Value => Val_AH, From => AH, OK => OK_AH);
1439
 
1440
         if OK_BH and then OK_AH and then Val_BH < Val_AH then
1441
            Set_Raises_Constraint_Error (N);
1442
            Error_Msg_N ("upper bound out of range?", AH);
1443
            Error_Msg_N ("\Constraint_Error will be raised at run time?", AH);
1444
 
1445
            --  You need to set AH to BH or else in the case of enumerations
1446
            --  indexes we will not be able to resolve the aggregate bounds.
1447
 
1448
            AH := Duplicate_Subexpr (BH);
1449
         end if;
1450
      end Check_Bound;
1451
 
1452
      ------------------
1453
      -- Check_Bounds --
1454
      ------------------
1455
 
1456
      procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1457
         Val_L  : Uint;
1458
         Val_H  : Uint;
1459
         Val_AL : Uint;
1460
         Val_AH : Uint;
1461
 
1462
         OK_L : Boolean;
1463
         OK_H : Boolean;
1464
 
1465
         OK_AL : Boolean;
1466
         OK_AH  : Boolean;
1467
         pragma Warnings (Off, OK_AL);
1468
         pragma Warnings (Off, OK_AH);
1469
 
1470
      begin
1471
         if Raises_Constraint_Error (N)
1472
           or else Dynamic_Or_Null_Range (AL, AH)
1473
         then
1474
            return;
1475
         end if;
1476
 
1477
         Get (Value => Val_L, From => L, OK => OK_L);
1478
         Get (Value => Val_H, From => H, OK => OK_H);
1479
 
1480
         Get (Value => Val_AL, From => AL, OK => OK_AL);
1481
         Get (Value => Val_AH, From => AH, OK => OK_AH);
1482
 
1483
         if OK_L and then Val_L > Val_AL then
1484
            Set_Raises_Constraint_Error (N);
1485
            Error_Msg_N ("lower bound of aggregate out of range?", N);
1486
            Error_Msg_N ("\Constraint_Error will be raised at run time?", N);
1487
         end if;
1488
 
1489
         if OK_H and then Val_H < Val_AH then
1490
            Set_Raises_Constraint_Error (N);
1491
            Error_Msg_N ("upper bound of aggregate out of range?", N);
1492
            Error_Msg_N ("\Constraint_Error will be raised at run time?", N);
1493
         end if;
1494
      end Check_Bounds;
1495
 
1496
      ------------------
1497
      -- Check_Length --
1498
      ------------------
1499
 
1500
      procedure Check_Length (L, H : Node_Id; Len : Uint) is
1501
         Val_L  : Uint;
1502
         Val_H  : Uint;
1503
 
1504
         OK_L  : Boolean;
1505
         OK_H  : Boolean;
1506
 
1507
         Range_Len : Uint;
1508
 
1509
      begin
1510
         if Raises_Constraint_Error (N) then
1511
            return;
1512
         end if;
1513
 
1514
         Get (Value => Val_L, From => L, OK => OK_L);
1515
         Get (Value => Val_H, From => H, OK => OK_H);
1516
 
1517
         if not OK_L or else not OK_H then
1518
            return;
1519
         end if;
1520
 
1521
         --  If null range length is zero
1522
 
1523
         if Val_L > Val_H then
1524
            Range_Len := Uint_0;
1525
         else
1526
            Range_Len := Val_H - Val_L + 1;
1527
         end if;
1528
 
1529
         if Range_Len < Len then
1530
            Set_Raises_Constraint_Error (N);
1531
            Error_Msg_N ("too many elements?", N);
1532
            Error_Msg_N ("\Constraint_Error will be raised at run time?", N);
1533
         end if;
1534
      end Check_Length;
1535
 
1536
      ---------------------------
1537
      -- Dynamic_Or_Null_Range --
1538
      ---------------------------
1539
 
1540
      function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1541
         Val_L : Uint;
1542
         Val_H : Uint;
1543
 
1544
         OK_L  : Boolean;
1545
         OK_H  : Boolean;
1546
 
1547
      begin
1548
         Get (Value => Val_L, From => L, OK => OK_L);
1549
         Get (Value => Val_H, From => H, OK => OK_H);
1550
 
1551
         return not OK_L or else not OK_H
1552
           or else not Is_OK_Static_Expression (L)
1553
           or else not Is_OK_Static_Expression (H)
1554
           or else Val_L > Val_H;
1555
      end Dynamic_Or_Null_Range;
1556
 
1557
      ---------
1558
      -- Get --
1559
      ---------
1560
 
1561
      procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1562
      begin
1563
         OK := True;
1564
 
1565
         if Compile_Time_Known_Value (From) then
1566
            Value := Expr_Value (From);
1567
 
1568
         --  If expression From is something like Some_Type'Val (10) then
1569
         --  Value = 10
1570
 
1571
         elsif Nkind (From) = N_Attribute_Reference
1572
           and then Attribute_Name (From) = Name_Val
1573
           and then Compile_Time_Known_Value (First (Expressions (From)))
1574
         then
1575
            Value := Expr_Value (First (Expressions (From)));
1576
 
1577
         else
1578
            Value := Uint_0;
1579
            OK := False;
1580
         end if;
1581
      end Get;
1582
 
1583
      -----------------------
1584
      -- Resolve_Aggr_Expr --
1585
      -----------------------
1586
 
1587
      function Resolve_Aggr_Expr
1588
        (Expr        : Node_Id;
1589
         Single_Elmt : Boolean) return Boolean
1590
      is
1591
         Nxt_Ind        : constant Node_Id := Next_Index (Index);
1592
         Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1593
         --  Index is the current index corresponding to the expression
1594
 
1595
         Resolution_OK : Boolean := True;
1596
         --  Set to False if resolution of the expression failed
1597
 
1598
      begin
1599
         --  Defend against previous errors
1600
 
1601
         if Nkind (Expr) = N_Error
1602
           or else Error_Posted (Expr)
1603
         then
1604
            return True;
1605
         end if;
1606
 
1607
         --  If the array type against which we are resolving the aggregate
1608
         --  has several dimensions, the expressions nested inside the
1609
         --  aggregate must be further aggregates (or strings).
1610
 
1611
         if Present (Nxt_Ind) then
1612
            if Nkind (Expr) /= N_Aggregate then
1613
 
1614
               --  A string literal can appear where a one-dimensional array
1615
               --  of characters is expected. If the literal looks like an
1616
               --  operator, it is still an operator symbol, which will be
1617
               --  transformed into a string when analyzed.
1618
 
1619
               if Is_Character_Type (Component_Typ)
1620
                 and then No (Next_Index (Nxt_Ind))
1621
                 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1622
               then
1623
                  --  A string literal used in a multidimensional array
1624
                  --  aggregate in place of the final one-dimensional
1625
                  --  aggregate must not be enclosed in parentheses.
1626
 
1627
                  if Paren_Count (Expr) /= 0 then
1628
                     Error_Msg_N ("no parenthesis allowed here", Expr);
1629
                  end if;
1630
 
1631
                  Make_String_Into_Aggregate (Expr);
1632
 
1633
               else
1634
                  Error_Msg_N ("nested array aggregate expected", Expr);
1635
 
1636
                  --  If the expression is parenthesized, this may be
1637
                  --  a missing component association for a 1-aggregate.
1638
 
1639
                  if Paren_Count (Expr) > 0 then
1640
                     Error_Msg_N
1641
                       ("\if single-component aggregate is intended,"
1642
                        & " write e.g. (1 ='> ...)", Expr);
1643
                  end if;
1644
 
1645
                  return Failure;
1646
               end if;
1647
            end if;
1648
 
1649
            --  If it's "... => <>", nothing to resolve
1650
 
1651
            if Nkind (Expr) = N_Component_Association then
1652
               pragma Assert (Box_Present (Expr));
1653
               return Success;
1654
            end if;
1655
 
1656
            --  Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1657
            --  Required to check the null-exclusion attribute (if present).
1658
            --  This value may be overridden later on.
1659
 
1660
            Set_Etype (Expr, Etype (N));
1661
 
1662
            Resolution_OK := Resolve_Array_Aggregate
1663
              (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1664
 
1665
         else
1666
 
1667
            --  If it's "... => <>", nothing to resolve
1668
 
1669
            if Nkind (Expr) = N_Component_Association then
1670
               pragma Assert (Box_Present (Expr));
1671
               return Success;
1672
            end if;
1673
 
1674
            --  Do not resolve the expressions of discrete or others choices
1675
            --  unless the expression covers a single component, or the
1676
            --  expander is inactive.
1677
 
1678
            --  In Alfa mode, expressions that can perform side-effects will be
1679
            --  recognized by the gnat2why back-end, and the whole subprogram
1680
            --  will be ignored. So semantic analysis can be performed safely.
1681
 
1682
            if Single_Elmt
1683
              or else not Full_Expander_Active
1684
              or else In_Spec_Expression
1685
            then
1686
               Analyze_And_Resolve (Expr, Component_Typ);
1687
               Check_Expr_OK_In_Limited_Aggregate (Expr);
1688
               Check_Non_Static_Context (Expr);
1689
               Aggregate_Constraint_Checks (Expr, Component_Typ);
1690
               Check_Unset_Reference (Expr);
1691
            end if;
1692
         end if;
1693
 
1694
         --  If an aggregate component has a type with predicates, an explicit
1695
         --  predicate check must be applied, as for an assignment statement,
1696
         --  because the aggegate might not be expanded into individual
1697
         --  component assignments.
1698
 
1699
         if Present (Predicate_Function (Component_Typ)) then
1700
            Apply_Predicate_Check (Expr, Component_Typ);
1701
         end if;
1702
 
1703
         if Raises_Constraint_Error (Expr)
1704
           and then Nkind (Parent (Expr)) /= N_Component_Association
1705
         then
1706
            Set_Raises_Constraint_Error (N);
1707
         end if;
1708
 
1709
         --  If the expression has been marked as requiring a range check,
1710
         --  then generate it here.
1711
 
1712
         if Do_Range_Check (Expr) then
1713
            Set_Do_Range_Check (Expr, False);
1714
            Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1715
         end if;
1716
 
1717
         return Resolution_OK;
1718
      end Resolve_Aggr_Expr;
1719
 
1720
      --  Variables local to Resolve_Array_Aggregate
1721
 
1722
      Assoc   : Node_Id;
1723
      Choice  : Node_Id;
1724
      Expr    : Node_Id;
1725
 
1726
      Discard : Node_Id;
1727
      pragma Warnings (Off, Discard);
1728
 
1729
      Aggr_Low  : Node_Id := Empty;
1730
      Aggr_High : Node_Id := Empty;
1731
      --  The actual low and high bounds of this sub-aggregate
1732
 
1733
      Choices_Low  : Node_Id := Empty;
1734
      Choices_High : Node_Id := Empty;
1735
      --  The lowest and highest discrete choices values for a named aggregate
1736
 
1737
      Nb_Elements : Uint := Uint_0;
1738
      --  The number of elements in a positional aggregate
1739
 
1740
      Others_Present : Boolean := False;
1741
 
1742
      Nb_Choices : Nat := 0;
1743
      --  Contains the overall number of named choices in this sub-aggregate
1744
 
1745
      Nb_Discrete_Choices : Nat := 0;
1746
      --  The overall number of discrete choices (not counting others choice)
1747
 
1748
      Case_Table_Size : Nat;
1749
      --  Contains the size of the case table needed to sort aggregate choices
1750
 
1751
   --  Start of processing for Resolve_Array_Aggregate
1752
 
1753
   begin
1754
      --  Ignore junk empty aggregate resulting from parser error
1755
 
1756
      if No (Expressions (N))
1757
        and then No (Component_Associations (N))
1758
        and then not Null_Record_Present (N)
1759
      then
1760
         return False;
1761
      end if;
1762
 
1763
      --  STEP 1: make sure the aggregate is correctly formatted
1764
 
1765
      if Present (Component_Associations (N)) then
1766
         Assoc := First (Component_Associations (N));
1767
         while Present (Assoc) loop
1768
            Choice := First (Choices (Assoc));
1769
            while Present (Choice) loop
1770
               if Nkind (Choice) = N_Others_Choice then
1771
                  Others_Present := True;
1772
 
1773
                  if Choice /= First (Choices (Assoc))
1774
                    or else Present (Next (Choice))
1775
                  then
1776
                     Error_Msg_N
1777
                       ("OTHERS must appear alone in a choice list", Choice);
1778
                     return Failure;
1779
                  end if;
1780
 
1781
                  if Present (Next (Assoc)) then
1782
                     Error_Msg_N
1783
                       ("OTHERS must appear last in an aggregate", Choice);
1784
                     return Failure;
1785
                  end if;
1786
 
1787
                  if Ada_Version = Ada_83
1788
                    and then Assoc /= First (Component_Associations (N))
1789
                    and then Nkind_In (Parent (N), N_Assignment_Statement,
1790
                                                   N_Object_Declaration)
1791
                  then
1792
                     Error_Msg_N
1793
                       ("(Ada 83) illegal context for OTHERS choice", N);
1794
                  end if;
1795
               end if;
1796
 
1797
               Nb_Choices := Nb_Choices + 1;
1798
               Next (Choice);
1799
            end loop;
1800
 
1801
            Next (Assoc);
1802
         end loop;
1803
      end if;
1804
 
1805
      --  At this point we know that the others choice, if present, is by
1806
      --  itself and appears last in the aggregate. Check if we have mixed
1807
      --  positional and discrete associations (other than the others choice).
1808
 
1809
      if Present (Expressions (N))
1810
        and then (Nb_Choices > 1
1811
                   or else (Nb_Choices = 1 and then not Others_Present))
1812
      then
1813
         Error_Msg_N
1814
           ("named association cannot follow positional association",
1815
            First (Choices (First (Component_Associations (N)))));
1816
         return Failure;
1817
      end if;
1818
 
1819
      --  Test for the validity of an others choice if present
1820
 
1821
      if Others_Present and then not Others_Allowed then
1822
         Error_Msg_N
1823
           ("OTHERS choice not allowed here",
1824
            First (Choices (First (Component_Associations (N)))));
1825
         return Failure;
1826
      end if;
1827
 
1828
      if Others_Present
1829
        and then Nkind (Parent (N)) /= N_Component_Association
1830
        and then No (Expressions (N))
1831
        and then
1832
          Nkind (First (Choices (First (Component_Associations (N)))))
1833
            = N_Others_Choice
1834
        and then Is_Elementary_Type (Component_Typ)
1835
        and then False
1836
      then
1837
         declare
1838
            Assoc : constant Node_Id := First (Component_Associations (N));
1839
         begin
1840
            Rewrite (Assoc,
1841
              Make_Component_Association (Loc,
1842
                 Choices =>
1843
                   New_List (
1844
                     Make_Attribute_Reference (Loc,
1845
                       Prefix => New_Occurrence_Of (Index_Typ, Loc),
1846
                       Attribute_Name => Name_Range)),
1847
                 Expression => Relocate_Node (Expression (Assoc))));
1848
            return Resolve_Array_Aggregate
1849
              (N, Index, Index_Constr, Component_Typ, Others_Allowed);
1850
         end;
1851
      end if;
1852
 
1853
      --  Protect against cascaded errors
1854
 
1855
      if Etype (Index_Typ) = Any_Type then
1856
         return Failure;
1857
      end if;
1858
 
1859
      --  STEP 2: Process named components
1860
 
1861
      if No (Expressions (N)) then
1862
         if Others_Present then
1863
            Case_Table_Size := Nb_Choices - 1;
1864
         else
1865
            Case_Table_Size := Nb_Choices;
1866
         end if;
1867
 
1868
         Step_2 : declare
1869
            Low  : Node_Id;
1870
            High : Node_Id;
1871
            --  Denote the lowest and highest values in an aggregate choice
1872
 
1873
            Hi_Val : Uint;
1874
            Lo_Val : Uint;
1875
            --  High end of one range and Low end of the next. Should be
1876
            --  contiguous if there is no hole in the list of values.
1877
 
1878
            Missing_Values : Boolean;
1879
            --  Set True if missing index values
1880
 
1881
            S_Low  : Node_Id := Empty;
1882
            S_High : Node_Id := Empty;
1883
            --  if a choice in an aggregate is a subtype indication these
1884
            --  denote the lowest and highest values of the subtype
1885
 
1886
            Table : Case_Table_Type (1 .. Case_Table_Size);
1887
            --  Used to sort all the different choice values
1888
 
1889
            Single_Choice : Boolean;
1890
            --  Set to true every time there is a single discrete choice in a
1891
            --  discrete association
1892
 
1893
            Prev_Nb_Discrete_Choices : Nat;
1894
            --  Used to keep track of the number of discrete choices in the
1895
            --  current association.
1896
 
1897
            Errors_Posted_On_Choices : Boolean := False;
1898
            --  Keeps track of whether any choices have semantic errors
1899
 
1900
         begin
1901
            --  STEP 2 (A): Check discrete choices validity
1902
 
1903
            Assoc := First (Component_Associations (N));
1904
            while Present (Assoc) loop
1905
               Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1906
               Choice := First (Choices (Assoc));
1907
               loop
1908
                  Analyze (Choice);
1909
 
1910
                  if Nkind (Choice) = N_Others_Choice then
1911
                     Single_Choice := False;
1912
                     exit;
1913
 
1914
                  --  Test for subtype mark without constraint
1915
 
1916
                  elsif Is_Entity_Name (Choice) and then
1917
                    Is_Type (Entity (Choice))
1918
                  then
1919
                     if Base_Type (Entity (Choice)) /= Index_Base then
1920
                        Error_Msg_N
1921
                          ("invalid subtype mark in aggregate choice",
1922
                           Choice);
1923
                        return Failure;
1924
                     end if;
1925
 
1926
                  --  Case of subtype indication
1927
 
1928
                  elsif Nkind (Choice) = N_Subtype_Indication then
1929
                     Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1930
 
1931
                     --  Does the subtype indication evaluation raise CE ?
1932
 
1933
                     Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1934
                     Get_Index_Bounds (Choice, Low, High);
1935
                     Check_Bounds (S_Low, S_High, Low, High);
1936
 
1937
                  --  Case of range or expression
1938
 
1939
                  else
1940
                     Resolve (Choice, Index_Base);
1941
                     Check_Unset_Reference (Choice);
1942
                     Check_Non_Static_Context (Choice);
1943
 
1944
                     --  If semantic errors were posted on the choice, then
1945
                     --  record that for possible early return from later
1946
                     --  processing (see handling of enumeration choices).
1947
 
1948
                     if Error_Posted (Choice) then
1949
                        Errors_Posted_On_Choices := True;
1950
                     end if;
1951
 
1952
                     --  Do not range check a choice. This check is redundant
1953
                     --  since this test is already done when we check that the
1954
                     --  bounds of the array aggregate are within range.
1955
 
1956
                     Set_Do_Range_Check (Choice, False);
1957
 
1958
                     --  In SPARK, the choice must be static
1959
 
1960
                     if not (Is_Static_Expression (Choice)
1961
                              or else (Nkind (Choice) = N_Range
1962
                                        and then Is_Static_Range (Choice)))
1963
                     then
1964
                        Check_SPARK_Restriction
1965
                          ("choice should be static", Choice);
1966
                     end if;
1967
                  end if;
1968
 
1969
                  --  If we could not resolve the discrete choice stop here
1970
 
1971
                  if Etype (Choice) = Any_Type then
1972
                     return Failure;
1973
 
1974
                  --  If the discrete choice raises CE get its original bounds
1975
 
1976
                  elsif Nkind (Choice) = N_Raise_Constraint_Error then
1977
                     Set_Raises_Constraint_Error (N);
1978
                     Get_Index_Bounds (Original_Node (Choice), Low, High);
1979
 
1980
                  --  Otherwise get its bounds as usual
1981
 
1982
                  else
1983
                     Get_Index_Bounds (Choice, Low, High);
1984
                  end if;
1985
 
1986
                  if (Dynamic_Or_Null_Range (Low, High)
1987
                       or else (Nkind (Choice) = N_Subtype_Indication
1988
                                 and then
1989
                                   Dynamic_Or_Null_Range (S_Low, S_High)))
1990
                    and then Nb_Choices /= 1
1991
                  then
1992
                     Error_Msg_N
1993
                       ("dynamic or empty choice in aggregate " &
1994
                        "must be the only choice", Choice);
1995
                     return Failure;
1996
                  end if;
1997
 
1998
                  Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
1999
                  Table (Nb_Discrete_Choices).Choice_Lo := Low;
2000
                  Table (Nb_Discrete_Choices).Choice_Hi := High;
2001
 
2002
                  Next (Choice);
2003
 
2004
                  if No (Choice) then
2005
 
2006
                     --  Check if we have a single discrete choice and whether
2007
                     --  this discrete choice specifies a single value.
2008
 
2009
                     Single_Choice :=
2010
                       (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2011
                         and then (Low = High);
2012
 
2013
                     exit;
2014
                  end if;
2015
               end loop;
2016
 
2017
               --  Ada 2005 (AI-231)
2018
 
2019
               if Ada_Version >= Ada_2005
2020
                 and then Known_Null (Expression (Assoc))
2021
               then
2022
                  Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2023
               end if;
2024
 
2025
               --  Ada 2005 (AI-287): In case of default initialized component
2026
               --  we delay the resolution to the expansion phase.
2027
 
2028
               if Box_Present (Assoc) then
2029
 
2030
                  --  Ada 2005 (AI-287): In case of default initialization of a
2031
                  --  component the expander will generate calls to the
2032
                  --  corresponding initialization subprogram. We need to call
2033
                  --  Resolve_Aggr_Expr to check the rules about
2034
                  --  dimensionality.
2035
 
2036
                  if not Resolve_Aggr_Expr (Assoc,
2037
                                            Single_Elmt => Single_Choice)
2038
                  then
2039
                     return Failure;
2040
                  end if;
2041
 
2042
               elsif not Resolve_Aggr_Expr (Expression (Assoc),
2043
                                            Single_Elmt => Single_Choice)
2044
               then
2045
                  return Failure;
2046
 
2047
               --  Check incorrect use of dynamically tagged expression
2048
 
2049
               --  We differentiate here two cases because the expression may
2050
               --  not be decorated. For example, the analysis and resolution
2051
               --  of the expression associated with the others choice will be
2052
               --  done later with the full aggregate. In such case we
2053
               --  duplicate the expression tree to analyze the copy and
2054
               --  perform the required check.
2055
 
2056
               elsif not Present (Etype (Expression (Assoc))) then
2057
                  declare
2058
                     Save_Analysis : constant Boolean := Full_Analysis;
2059
                     Expr          : constant Node_Id :=
2060
                                       New_Copy_Tree (Expression (Assoc));
2061
 
2062
                  begin
2063
                     Expander_Mode_Save_And_Set (False);
2064
                     Full_Analysis := False;
2065
 
2066
                     --  Analyze the expression, making sure it is properly
2067
                     --  attached to the tree before we do the analysis.
2068
 
2069
                     Set_Parent (Expr, Parent (Expression (Assoc)));
2070
                     Analyze (Expr);
2071
 
2072
                     --  If the expression is a literal, propagate this info
2073
                     --  to the expression in the association, to enable some
2074
                     --  optimizations downstream.
2075
 
2076
                     if Is_Entity_Name (Expr)
2077
                       and then Present (Entity (Expr))
2078
                       and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2079
                     then
2080
                        Analyze_And_Resolve
2081
                          (Expression (Assoc), Component_Typ);
2082
                     end if;
2083
 
2084
                     Full_Analysis := Save_Analysis;
2085
                     Expander_Mode_Restore;
2086
 
2087
                     if Is_Tagged_Type (Etype (Expr)) then
2088
                        Check_Dynamically_Tagged_Expression
2089
                          (Expr => Expr,
2090
                           Typ  => Component_Type (Etype (N)),
2091
                           Related_Nod => N);
2092
                     end if;
2093
                  end;
2094
 
2095
               elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2096
                  Check_Dynamically_Tagged_Expression
2097
                    (Expr        => Expression (Assoc),
2098
                     Typ         => Component_Type (Etype (N)),
2099
                     Related_Nod => N);
2100
               end if;
2101
 
2102
               Next (Assoc);
2103
            end loop;
2104
 
2105
            --  If aggregate contains more than one choice then these must be
2106
            --  static. Sort them and check that they are contiguous.
2107
 
2108
            if Nb_Discrete_Choices > 1 then
2109
               Sort_Case_Table (Table);
2110
               Missing_Values := False;
2111
 
2112
               Outer : for J in 1 .. Nb_Discrete_Choices - 1 loop
2113
                  if Expr_Value (Table (J).Choice_Hi) >=
2114
                       Expr_Value (Table (J + 1).Choice_Lo)
2115
                  then
2116
                     Error_Msg_N
2117
                       ("duplicate choice values in array aggregate",
2118
                        Table (J).Choice_Hi);
2119
                     return Failure;
2120
 
2121
                  elsif not Others_Present then
2122
                     Hi_Val := Expr_Value (Table (J).Choice_Hi);
2123
                     Lo_Val := Expr_Value (Table (J + 1).Choice_Lo);
2124
 
2125
                     --  If missing values, output error messages
2126
 
2127
                     if Lo_Val - Hi_Val > 1 then
2128
 
2129
                        --  Header message if not first missing value
2130
 
2131
                        if not Missing_Values then
2132
                           Error_Msg_N
2133
                             ("missing index value(s) in array aggregate", N);
2134
                           Missing_Values := True;
2135
                        end if;
2136
 
2137
                        --  Output values of missing indexes
2138
 
2139
                        Lo_Val := Lo_Val - 1;
2140
                        Hi_Val := Hi_Val + 1;
2141
 
2142
                        --  Enumeration type case
2143
 
2144
                        if Is_Enumeration_Type (Index_Typ) then
2145
                           Error_Msg_Name_1 :=
2146
                             Chars
2147
                               (Get_Enum_Lit_From_Pos
2148
                                 (Index_Typ, Hi_Val, Loc));
2149
 
2150
                           if Lo_Val = Hi_Val then
2151
                              Error_Msg_N ("\  %", N);
2152
                           else
2153
                              Error_Msg_Name_2 :=
2154
                                Chars
2155
                                  (Get_Enum_Lit_From_Pos
2156
                                    (Index_Typ, Lo_Val, Loc));
2157
                              Error_Msg_N ("\  % .. %", N);
2158
                           end if;
2159
 
2160
                        --  Integer types case
2161
 
2162
                        else
2163
                           Error_Msg_Uint_1 := Hi_Val;
2164
 
2165
                           if Lo_Val = Hi_Val then
2166
                              Error_Msg_N ("\  ^", N);
2167
                           else
2168
                              Error_Msg_Uint_2 := Lo_Val;
2169
                              Error_Msg_N ("\  ^ .. ^", N);
2170
                           end if;
2171
                        end if;
2172
                     end if;
2173
                  end if;
2174
               end loop Outer;
2175
 
2176
               if Missing_Values then
2177
                  Set_Etype (N, Any_Composite);
2178
                  return Failure;
2179
               end if;
2180
            end if;
2181
 
2182
            --  STEP 2 (B): Compute aggregate bounds and min/max choices values
2183
 
2184
            if Nb_Discrete_Choices > 0 then
2185
               Choices_Low  := Table (1).Choice_Lo;
2186
               Choices_High := Table (Nb_Discrete_Choices).Choice_Hi;
2187
            end if;
2188
 
2189
            --  If Others is present, then bounds of aggregate come from the
2190
            --  index constraint (not the choices in the aggregate itself).
2191
 
2192
            if Others_Present then
2193
               Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2194
 
2195
            --  No others clause present
2196
 
2197
            else
2198
               --  Special processing if others allowed and not present. This
2199
               --  means that the bounds of the aggregate come from the index
2200
               --  constraint (and the length must match).
2201
 
2202
               if Others_Allowed then
2203
                  Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2204
 
2205
                  --  If others allowed, and no others present, then the array
2206
                  --  should cover all index values. If it does not, we will
2207
                  --  get a length check warning, but there is two cases where
2208
                  --  an additional warning is useful:
2209
 
2210
                  --  If we have no positional components, and the length is
2211
                  --  wrong (which we can tell by others being allowed with
2212
                  --  missing components), and the index type is an enumeration
2213
                  --  type, then issue appropriate warnings about these missing
2214
                  --  components. They are only warnings, since the aggregate
2215
                  --  is fine, it's just the wrong length. We skip this check
2216
                  --  for standard character types (since there are no literals
2217
                  --  and it is too much trouble to concoct them), and also if
2218
                  --  any of the bounds have not-known-at-compile-time values.
2219
 
2220
                  --  Another case warranting a warning is when the length is
2221
                  --  right, but as above we have an index type that is an
2222
                  --  enumeration, and the bounds do not match. This is a
2223
                  --  case where dubious sliding is allowed and we generate
2224
                  --  a warning that the bounds do not match.
2225
 
2226
                  if No (Expressions (N))
2227
                    and then Nkind (Index) = N_Range
2228
                    and then Is_Enumeration_Type (Etype (Index))
2229
                    and then not Is_Standard_Character_Type (Etype (Index))
2230
                    and then Compile_Time_Known_Value (Aggr_Low)
2231
                    and then Compile_Time_Known_Value (Aggr_High)
2232
                    and then Compile_Time_Known_Value (Choices_Low)
2233
                    and then Compile_Time_Known_Value (Choices_High)
2234
                  then
2235
                     --  If any of the expressions or range bounds in choices
2236
                     --  have semantic errors, then do not attempt further
2237
                     --  resolution, to prevent cascaded errors.
2238
 
2239
                     if Errors_Posted_On_Choices then
2240
                        return Failure;
2241
                     end if;
2242
 
2243
                     declare
2244
                        ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2245
                        AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2246
                        CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2247
                        CHi : constant Node_Id := Expr_Value_E (Choices_High);
2248
 
2249
                        Ent : Entity_Id;
2250
 
2251
                     begin
2252
                        --  Warning case 1, missing values at start/end. Only
2253
                        --  do the check if the number of entries is too small.
2254
 
2255
                        if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2256
                              <
2257
                           (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2258
                        then
2259
                           Error_Msg_N
2260
                             ("missing index value(s) in array aggregate?", N);
2261
 
2262
                           --  Output missing value(s) at start
2263
 
2264
                           if Chars (ALo) /= Chars (CLo) then
2265
                              Ent := Prev (CLo);
2266
 
2267
                              if Chars (ALo) = Chars (Ent) then
2268
                                 Error_Msg_Name_1 := Chars (ALo);
2269
                                 Error_Msg_N ("\  %?", N);
2270
                              else
2271
                                 Error_Msg_Name_1 := Chars (ALo);
2272
                                 Error_Msg_Name_2 := Chars (Ent);
2273
                                 Error_Msg_N ("\  % .. %?", N);
2274
                              end if;
2275
                           end if;
2276
 
2277
                           --  Output missing value(s) at end
2278
 
2279
                           if Chars (AHi) /= Chars (CHi) then
2280
                              Ent := Next (CHi);
2281
 
2282
                              if Chars (AHi) = Chars (Ent) then
2283
                                 Error_Msg_Name_1 := Chars (Ent);
2284
                                 Error_Msg_N ("\  %?", N);
2285
                              else
2286
                                 Error_Msg_Name_1 := Chars (Ent);
2287
                                 Error_Msg_Name_2 := Chars (AHi);
2288
                                 Error_Msg_N ("\  % .. %?", N);
2289
                              end if;
2290
                           end if;
2291
 
2292
                        --  Warning case 2, dubious sliding. The First_Subtype
2293
                        --  test distinguishes between a constrained type where
2294
                        --  sliding is not allowed (so we will get a warning
2295
                        --  later that Constraint_Error will be raised), and
2296
                        --  the unconstrained case where sliding is permitted.
2297
 
2298
                        elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2299
                                 =
2300
                              (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2301
                          and then Chars (ALo) /= Chars (CLo)
2302
                          and then
2303
                            not Is_Constrained (First_Subtype (Etype (N)))
2304
                        then
2305
                           Error_Msg_N
2306
                             ("bounds of aggregate do not match target?", N);
2307
                        end if;
2308
                     end;
2309
                  end if;
2310
               end if;
2311
 
2312
               --  If no others, aggregate bounds come from aggregate
2313
 
2314
               Aggr_Low  := Choices_Low;
2315
               Aggr_High := Choices_High;
2316
            end if;
2317
         end Step_2;
2318
 
2319
      --  STEP 3: Process positional components
2320
 
2321
      else
2322
         --  STEP 3 (A): Process positional elements
2323
 
2324
         Expr := First (Expressions (N));
2325
         Nb_Elements := Uint_0;
2326
         while Present (Expr) loop
2327
            Nb_Elements := Nb_Elements + 1;
2328
 
2329
            --  Ada 2005 (AI-231)
2330
 
2331
            if Ada_Version >= Ada_2005
2332
              and then Known_Null (Expr)
2333
            then
2334
               Check_Can_Never_Be_Null (Etype (N), Expr);
2335
            end if;
2336
 
2337
            if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2338
               return Failure;
2339
            end if;
2340
 
2341
            --  Check incorrect use of dynamically tagged expression
2342
 
2343
            if Is_Tagged_Type (Etype (Expr)) then
2344
               Check_Dynamically_Tagged_Expression
2345
                 (Expr => Expr,
2346
                  Typ  => Component_Type (Etype (N)),
2347
                  Related_Nod => N);
2348
            end if;
2349
 
2350
            Next (Expr);
2351
         end loop;
2352
 
2353
         if Others_Present then
2354
            Assoc := Last (Component_Associations (N));
2355
 
2356
            --  Ada 2005 (AI-231)
2357
 
2358
            if Ada_Version >= Ada_2005
2359
              and then Known_Null (Assoc)
2360
            then
2361
               Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2362
            end if;
2363
 
2364
            --  Ada 2005 (AI-287): In case of default initialized component,
2365
            --  we delay the resolution to the expansion phase.
2366
 
2367
            if Box_Present (Assoc) then
2368
 
2369
               --  Ada 2005 (AI-287): In case of default initialization of a
2370
               --  component the expander will generate calls to the
2371
               --  corresponding initialization subprogram. We need to call
2372
               --  Resolve_Aggr_Expr to check the rules about
2373
               --  dimensionality.
2374
 
2375
               if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2376
                  return Failure;
2377
               end if;
2378
 
2379
            elsif not Resolve_Aggr_Expr (Expression (Assoc),
2380
                                         Single_Elmt => False)
2381
            then
2382
               return Failure;
2383
 
2384
            --  Check incorrect use of dynamically tagged expression. The
2385
            --  expression of the others choice has not been resolved yet.
2386
            --  In order to diagnose the semantic error we create a duplicate
2387
            --  tree to analyze it and perform the check.
2388
 
2389
            else
2390
               declare
2391
                  Save_Analysis : constant Boolean := Full_Analysis;
2392
                  Expr          : constant Node_Id :=
2393
                                    New_Copy_Tree (Expression (Assoc));
2394
 
2395
               begin
2396
                  Expander_Mode_Save_And_Set (False);
2397
                  Full_Analysis := False;
2398
                  Analyze (Expr);
2399
                  Full_Analysis := Save_Analysis;
2400
                  Expander_Mode_Restore;
2401
 
2402
                  if Is_Tagged_Type (Etype (Expr)) then
2403
                     Check_Dynamically_Tagged_Expression
2404
                       (Expr => Expr,
2405
                        Typ  => Component_Type (Etype (N)),
2406
                        Related_Nod => N);
2407
                  end if;
2408
               end;
2409
            end if;
2410
         end if;
2411
 
2412
         --  STEP 3 (B): Compute the aggregate bounds
2413
 
2414
         if Others_Present then
2415
            Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2416
 
2417
         else
2418
            if Others_Allowed then
2419
               Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2420
            else
2421
               Aggr_Low := Index_Typ_Low;
2422
            end if;
2423
 
2424
            Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2425
            Check_Bound (Index_Base_High, Aggr_High);
2426
         end if;
2427
      end if;
2428
 
2429
      --  STEP 4: Perform static aggregate checks and save the bounds
2430
 
2431
      --  Check (A)
2432
 
2433
      Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2434
      Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2435
 
2436
      --  Check (B)
2437
 
2438
      if Others_Present and then Nb_Discrete_Choices > 0 then
2439
         Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2440
         Check_Bounds (Index_Typ_Low, Index_Typ_High,
2441
                       Choices_Low, Choices_High);
2442
         Check_Bounds (Index_Base_Low, Index_Base_High,
2443
                       Choices_Low, Choices_High);
2444
 
2445
      --  Check (C)
2446
 
2447
      elsif Others_Present and then Nb_Elements > 0 then
2448
         Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2449
         Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2450
         Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2451
      end if;
2452
 
2453
      if Raises_Constraint_Error (Aggr_Low)
2454
        or else Raises_Constraint_Error (Aggr_High)
2455
      then
2456
         Set_Raises_Constraint_Error (N);
2457
      end if;
2458
 
2459
      Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2460
 
2461
      --  Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2462
      --  since the addition node returned by Add is not yet analyzed. Attach
2463
      --  to tree and analyze first. Reset analyzed flag to ensure it will get
2464
      --  analyzed when it is a literal bound whose type must be properly set.
2465
 
2466
      if Others_Present or else Nb_Discrete_Choices > 0 then
2467
         Aggr_High := Duplicate_Subexpr (Aggr_High);
2468
 
2469
         if Etype (Aggr_High) = Universal_Integer then
2470
            Set_Analyzed (Aggr_High, False);
2471
         end if;
2472
      end if;
2473
 
2474
      --  If the aggregate already has bounds attached to it, it means this is
2475
      --  a positional aggregate created as an optimization by
2476
      --  Exp_Aggr.Convert_To_Positional, so we don't want to change those
2477
      --  bounds.
2478
 
2479
      if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2480
         Aggr_Low  := Low_Bound  (Aggregate_Bounds (N));
2481
         Aggr_High := High_Bound (Aggregate_Bounds (N));
2482
      end if;
2483
 
2484
      Set_Aggregate_Bounds
2485
        (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2486
 
2487
      --  The bounds may contain expressions that must be inserted upwards.
2488
      --  Attach them fully to the tree. After analysis, remove side effects
2489
      --  from upper bound, if still needed.
2490
 
2491
      Set_Parent (Aggregate_Bounds (N), N);
2492
      Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2493
      Check_Unset_Reference (Aggregate_Bounds (N));
2494
 
2495
      if not Others_Present and then Nb_Discrete_Choices = 0 then
2496
         Set_High_Bound (Aggregate_Bounds (N),
2497
             Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2498
      end if;
2499
 
2500
      return Success;
2501
   end Resolve_Array_Aggregate;
2502
 
2503
   ---------------------------------
2504
   -- Resolve_Extension_Aggregate --
2505
   ---------------------------------
2506
 
2507
   --  There are two cases to consider:
2508
 
2509
   --  a) If the ancestor part is a type mark, the components needed are the
2510
   --  difference between the components of the expected type and the
2511
   --  components of the given type mark.
2512
 
2513
   --  b) If the ancestor part is an expression, it must be unambiguous, and
2514
   --  once we have its type we can also compute the needed components as in
2515
   --  the previous case. In both cases, if the ancestor type is not the
2516
   --  immediate ancestor, we have to build this ancestor recursively.
2517
 
2518
   --  In both cases, discriminants of the ancestor type do not play a role in
2519
   --  the resolution of the needed components, because inherited discriminants
2520
   --  cannot be used in a type extension. As a result we can compute
2521
   --  independently the list of components of the ancestor type and of the
2522
   --  expected type.
2523
 
2524
   procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
2525
      A      : constant Node_Id := Ancestor_Part (N);
2526
      A_Type : Entity_Id;
2527
      I      : Interp_Index;
2528
      It     : Interp;
2529
 
2530
      function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2531
      --  If the type is limited, verify that the ancestor part is a legal
2532
      --  expression (aggregate or function call, including 'Input)) that does
2533
      --  not require a copy, as specified in 7.5(2).
2534
 
2535
      function Valid_Ancestor_Type return Boolean;
2536
      --  Verify that the type of the ancestor part is a non-private ancestor
2537
      --  of the expected type, which must be a type extension.
2538
 
2539
      ----------------------------
2540
      -- Valid_Limited_Ancestor --
2541
      ----------------------------
2542
 
2543
      function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2544
      begin
2545
         if Is_Entity_Name (Anc)
2546
           and then Is_Type (Entity (Anc))
2547
         then
2548
            return True;
2549
 
2550
         elsif Nkind_In (Anc, N_Aggregate, N_Function_Call) then
2551
            return True;
2552
 
2553
         elsif Nkind (Anc) = N_Attribute_Reference
2554
           and then Attribute_Name (Anc) = Name_Input
2555
         then
2556
            return True;
2557
 
2558
         elsif Nkind (Anc) = N_Qualified_Expression then
2559
            return Valid_Limited_Ancestor (Expression (Anc));
2560
 
2561
         else
2562
            return False;
2563
         end if;
2564
      end Valid_Limited_Ancestor;
2565
 
2566
      -------------------------
2567
      -- Valid_Ancestor_Type --
2568
      -------------------------
2569
 
2570
      function Valid_Ancestor_Type return Boolean is
2571
         Imm_Type : Entity_Id;
2572
 
2573
      begin
2574
         Imm_Type := Base_Type (Typ);
2575
         while Is_Derived_Type (Imm_Type) loop
2576
            if Etype (Imm_Type) = Base_Type (A_Type) then
2577
               return True;
2578
 
2579
            --  The base type of the parent type may appear as  a private
2580
            --  extension if it is declared as such in a parent unit of the
2581
            --  current one. For consistency of the subsequent analysis use
2582
            --  the partial view for the ancestor part.
2583
 
2584
            elsif Is_Private_Type (Etype (Imm_Type))
2585
              and then Present (Full_View (Etype (Imm_Type)))
2586
              and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2587
            then
2588
               A_Type := Etype (Imm_Type);
2589
               return True;
2590
 
2591
            --  The parent type may be a private extension. The aggregate is
2592
            --  legal if the type of the aggregate is an extension of it that
2593
            --  is not a private extension.
2594
 
2595
            elsif Is_Private_Type (A_Type)
2596
              and then not Is_Private_Type (Imm_Type)
2597
              and then Present (Full_View (A_Type))
2598
              and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2599
            then
2600
               return True;
2601
 
2602
            else
2603
               Imm_Type := Etype (Base_Type (Imm_Type));
2604
            end if;
2605
         end loop;
2606
 
2607
         --  If previous loop did not find a proper ancestor, report error
2608
 
2609
         Error_Msg_NE ("expect ancestor type of &", A, Typ);
2610
         return False;
2611
      end Valid_Ancestor_Type;
2612
 
2613
   --  Start of processing for Resolve_Extension_Aggregate
2614
 
2615
   begin
2616
      --  Analyze the ancestor part and account for the case where it is a
2617
      --  parameterless function call.
2618
 
2619
      Analyze (A);
2620
      Check_Parameterless_Call (A);
2621
 
2622
      --  In SPARK, the ancestor part cannot be a type mark
2623
 
2624
      if Is_Entity_Name (A)
2625
        and then Is_Type (Entity (A))
2626
      then
2627
         Check_SPARK_Restriction ("ancestor part cannot be a type mark", A);
2628
 
2629
         --  AI05-0115: if the ancestor part is a subtype mark, the ancestor
2630
         --  must not have unknown discriminants.
2631
 
2632
         if Has_Unknown_Discriminants (Root_Type (Typ)) then
2633
            Error_Msg_NE
2634
              ("aggregate not available for type& whose ancestor "
2635
                 & "has unknown discriminants", N, Typ);
2636
         end if;
2637
      end if;
2638
 
2639
      if not Is_Tagged_Type (Typ) then
2640
         Error_Msg_N ("type of extension aggregate must be tagged", N);
2641
         return;
2642
 
2643
      elsif Is_Limited_Type (Typ) then
2644
 
2645
         --  Ada 2005 (AI-287): Limited aggregates are allowed
2646
 
2647
         if Ada_Version < Ada_2005 then
2648
            Error_Msg_N ("aggregate type cannot be limited", N);
2649
            Explain_Limited_Type (Typ, N);
2650
            return;
2651
 
2652
         elsif Valid_Limited_Ancestor (A) then
2653
            null;
2654
 
2655
         else
2656
            Error_Msg_N
2657
              ("limited ancestor part must be aggregate or function call", A);
2658
         end if;
2659
 
2660
      elsif Is_Class_Wide_Type (Typ) then
2661
         Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2662
         return;
2663
      end if;
2664
 
2665
      if Is_Entity_Name (A)
2666
        and then Is_Type (Entity (A))
2667
      then
2668
         A_Type := Get_Full_View (Entity (A));
2669
 
2670
         if Valid_Ancestor_Type then
2671
            Set_Entity (A, A_Type);
2672
            Set_Etype  (A, A_Type);
2673
 
2674
            Validate_Ancestor_Part (N);
2675
            Resolve_Record_Aggregate (N, Typ);
2676
         end if;
2677
 
2678
      elsif Nkind (A) /= N_Aggregate then
2679
         if Is_Overloaded (A) then
2680
            A_Type := Any_Type;
2681
 
2682
            Get_First_Interp (A, I, It);
2683
            while Present (It.Typ) loop
2684
               --  Only consider limited interpretations in the Ada 2005 case
2685
 
2686
               if Is_Tagged_Type (It.Typ)
2687
                 and then (Ada_Version >= Ada_2005
2688
                            or else not Is_Limited_Type (It.Typ))
2689
               then
2690
                  if A_Type /= Any_Type then
2691
                     Error_Msg_N ("cannot resolve expression", A);
2692
                     return;
2693
                  else
2694
                     A_Type := It.Typ;
2695
                  end if;
2696
               end if;
2697
 
2698
               Get_Next_Interp (I, It);
2699
            end loop;
2700
 
2701
            if A_Type = Any_Type then
2702
               if Ada_Version >= Ada_2005 then
2703
                  Error_Msg_N ("ancestor part must be of a tagged type", A);
2704
               else
2705
                  Error_Msg_N
2706
                    ("ancestor part must be of a nonlimited tagged type", A);
2707
               end if;
2708
 
2709
               return;
2710
            end if;
2711
 
2712
         else
2713
            A_Type := Etype (A);
2714
         end if;
2715
 
2716
         if Valid_Ancestor_Type then
2717
            Resolve (A, A_Type);
2718
            Check_Unset_Reference (A);
2719
            Check_Non_Static_Context (A);
2720
 
2721
            --  The aggregate is illegal if the ancestor expression is a call
2722
            --  to a function with a limited unconstrained result, unless the
2723
            --  type of the aggregate is a null extension. This restriction
2724
            --  was added in AI05-67 to simplify implementation.
2725
 
2726
            if Nkind (A) = N_Function_Call
2727
              and then Is_Limited_Type (A_Type)
2728
              and then not Is_Null_Extension (Typ)
2729
              and then not Is_Constrained (A_Type)
2730
            then
2731
               Error_Msg_N
2732
                 ("type of limited ancestor part must be constrained", A);
2733
 
2734
            --  Reject the use of CPP constructors that leave objects partially
2735
            --  initialized. For example:
2736
 
2737
            --    type CPP_Root is tagged limited record ...
2738
            --    pragma Import (CPP, CPP_Root);
2739
 
2740
            --    type CPP_DT is new CPP_Root and Iface ...
2741
            --    pragma Import (CPP, CPP_DT);
2742
 
2743
            --    type Ada_DT is new CPP_DT with ...
2744
 
2745
            --    Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2746
 
2747
            --  Using the constructor of CPP_Root the slots of the dispatch
2748
            --  table of CPP_DT cannot be set, and the secondary tag of
2749
            --  CPP_DT is unknown.
2750
 
2751
            elsif Nkind (A) = N_Function_Call
2752
              and then Is_CPP_Constructor_Call (A)
2753
              and then Enclosing_CPP_Parent (Typ) /= A_Type
2754
            then
2755
               Error_Msg_NE
2756
                 ("?must use 'C'P'P constructor for type &", A,
2757
                  Enclosing_CPP_Parent (Typ));
2758
 
2759
               --  The following call is not needed if the previous warning
2760
               --  is promoted to an error.
2761
 
2762
               Resolve_Record_Aggregate (N, Typ);
2763
 
2764
            elsif Is_Class_Wide_Type (Etype (A))
2765
              and then Nkind (Original_Node (A)) = N_Function_Call
2766
            then
2767
               --  If the ancestor part is a dispatching call, it appears
2768
               --  statically to be a legal ancestor, but it yields any member
2769
               --  of the class, and it is not possible to determine whether
2770
               --  it is an ancestor of the extension aggregate (much less
2771
               --  which ancestor). It is not possible to determine the
2772
               --  components of the extension part.
2773
 
2774
               --  This check implements AI-306, which in fact was motivated by
2775
               --  an AdaCore query to the ARG after this test was added.
2776
 
2777
               Error_Msg_N ("ancestor part must be statically tagged", A);
2778
            else
2779
               Resolve_Record_Aggregate (N, Typ);
2780
            end if;
2781
         end if;
2782
 
2783
      else
2784
         Error_Msg_N ("no unique type for this aggregate",  A);
2785
      end if;
2786
   end Resolve_Extension_Aggregate;
2787
 
2788
   ------------------------------
2789
   -- Resolve_Record_Aggregate --
2790
   ------------------------------
2791
 
2792
   procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2793
      Assoc : Node_Id;
2794
      --  N_Component_Association node belonging to the input aggregate N
2795
 
2796
      Expr            : Node_Id;
2797
      Positional_Expr : Node_Id;
2798
      Component       : Entity_Id;
2799
      Component_Elmt  : Elmt_Id;
2800
 
2801
      Components : constant Elist_Id := New_Elmt_List;
2802
      --  Components is the list of the record components whose value must be
2803
      --  provided in the aggregate. This list does include discriminants.
2804
 
2805
      New_Assoc_List : constant List_Id := New_List;
2806
      New_Assoc      : Node_Id;
2807
      --  New_Assoc_List is the newly built list of N_Component_Association
2808
      --  nodes. New_Assoc is one such N_Component_Association node in it.
2809
      --  Note that while Assoc and New_Assoc contain the same kind of nodes,
2810
      --  they are used to iterate over two different N_Component_Association
2811
      --  lists.
2812
 
2813
      Others_Etype : Entity_Id := Empty;
2814
      --  This variable is used to save the Etype of the last record component
2815
      --  that takes its value from the others choice. Its purpose is:
2816
      --
2817
      --    (a) make sure the others choice is useful
2818
      --
2819
      --    (b) make sure the type of all the components whose value is
2820
      --        subsumed by the others choice are the same.
2821
      --
2822
      --  This variable is updated as a side effect of function Get_Value.
2823
 
2824
      Is_Box_Present : Boolean := False;
2825
      Others_Box     : Boolean := False;
2826
      --  Ada 2005 (AI-287): Variables used in case of default initialization
2827
      --  to provide a functionality similar to Others_Etype. Box_Present
2828
      --  indicates that the component takes its default initialization;
2829
      --  Others_Box indicates that at least one component takes its default
2830
      --  initialization. Similar to Others_Etype, they are also updated as a
2831
      --  side effect of function Get_Value.
2832
 
2833
      procedure Add_Association
2834
        (Component      : Entity_Id;
2835
         Expr           : Node_Id;
2836
         Assoc_List     : List_Id;
2837
         Is_Box_Present : Boolean := False);
2838
      --  Builds a new N_Component_Association node which associates Component
2839
      --  to expression Expr and adds it to the association list being built,
2840
      --  either New_Assoc_List, or the association being built for an inner
2841
      --  aggregate.
2842
 
2843
      function Discr_Present (Discr : Entity_Id) return Boolean;
2844
      --  If aggregate N is a regular aggregate this routine will return True.
2845
      --  Otherwise, if N is an extension aggregate, Discr is a discriminant
2846
      --  whose value may already have been specified by N's ancestor part.
2847
      --  This routine checks whether this is indeed the case and if so returns
2848
      --  False, signaling that no value for Discr should appear in N's
2849
      --  aggregate part. Also, in this case, the routine appends to
2850
      --  New_Assoc_List the discriminant value specified in the ancestor part.
2851
      --
2852
      --  If the aggregate is in a context with expansion delayed, it will be
2853
      --  reanalyzed. The inherited discriminant values must not be reinserted
2854
      --  in the component list to prevent spurious errors, but they must be
2855
      --  present on first analysis to build the proper subtype indications.
2856
      --  The flag Inherited_Discriminant is used to prevent the re-insertion.
2857
 
2858
      function Get_Value
2859
        (Compon                 : Node_Id;
2860
         From                   : List_Id;
2861
         Consider_Others_Choice : Boolean := False)
2862
         return                   Node_Id;
2863
      --  Given a record component stored in parameter Compon, this function
2864
      --  returns its value as it appears in the list From, which is a list
2865
      --  of N_Component_Association nodes.
2866
      --
2867
      --  If no component association has a choice for the searched component,
2868
      --  the value provided by the others choice is returned, if there is one,
2869
      --  and Consider_Others_Choice is set to true. Otherwise Empty is
2870
      --  returned. If there is more than one component association giving a
2871
      --  value for the searched record component, an error message is emitted
2872
      --  and the first found value is returned.
2873
      --
2874
      --  If Consider_Others_Choice is set and the returned expression comes
2875
      --  from the others choice, then Others_Etype is set as a side effect.
2876
      --  An error message is emitted if the components taking their value from
2877
      --  the others choice do not have same type.
2878
 
2879
      procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
2880
      --  Analyzes and resolves expression Expr against the Etype of the
2881
      --  Component. This routine also applies all appropriate checks to Expr.
2882
      --  It finally saves a Expr in the newly created association list that
2883
      --  will be attached to the final record aggregate. Note that if the
2884
      --  Parent pointer of Expr is not set then Expr was produced with a
2885
      --  New_Copy_Tree or some such.
2886
 
2887
      ---------------------
2888
      -- Add_Association --
2889
      ---------------------
2890
 
2891
      procedure Add_Association
2892
        (Component      : Entity_Id;
2893
         Expr           : Node_Id;
2894
         Assoc_List     : List_Id;
2895
         Is_Box_Present : Boolean := False)
2896
      is
2897
         Loc : Source_Ptr;
2898
         Choice_List : constant List_Id := New_List;
2899
         New_Assoc   : Node_Id;
2900
 
2901
      begin
2902
         --  If this is a box association the expression is missing, so
2903
         --  use the Sloc of the aggregate itself for the new association.
2904
 
2905
         if Present (Expr) then
2906
            Loc := Sloc (Expr);
2907
         else
2908
            Loc := Sloc (N);
2909
         end if;
2910
 
2911
         Append (New_Occurrence_Of (Component, Loc), Choice_List);
2912
         New_Assoc :=
2913
           Make_Component_Association (Loc,
2914
             Choices     => Choice_List,
2915
             Expression  => Expr,
2916
             Box_Present => Is_Box_Present);
2917
         Append (New_Assoc, Assoc_List);
2918
      end Add_Association;
2919
 
2920
      -------------------
2921
      -- Discr_Present --
2922
      -------------------
2923
 
2924
      function Discr_Present (Discr : Entity_Id) return Boolean is
2925
         Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
2926
 
2927
         Loc : Source_Ptr;
2928
 
2929
         Ancestor     : Node_Id;
2930
         Comp_Assoc   : Node_Id;
2931
         Discr_Expr   : Node_Id;
2932
 
2933
         Ancestor_Typ : Entity_Id;
2934
         Orig_Discr   : Entity_Id;
2935
         D            : Entity_Id;
2936
         D_Val        : Elmt_Id := No_Elmt; -- stop junk warning
2937
 
2938
         Ancestor_Is_Subtyp : Boolean;
2939
 
2940
      begin
2941
         if Regular_Aggr then
2942
            return True;
2943
         end if;
2944
 
2945
         --  Check whether inherited discriminant values have already been
2946
         --  inserted in the aggregate. This will be the case if we are
2947
         --  re-analyzing an aggregate whose expansion was delayed.
2948
 
2949
         if Present (Component_Associations (N)) then
2950
            Comp_Assoc := First (Component_Associations (N));
2951
            while Present (Comp_Assoc) loop
2952
               if Inherited_Discriminant (Comp_Assoc) then
2953
                  return True;
2954
               end if;
2955
 
2956
               Next (Comp_Assoc);
2957
            end loop;
2958
         end if;
2959
 
2960
         Ancestor     := Ancestor_Part (N);
2961
         Ancestor_Typ := Etype (Ancestor);
2962
         Loc          := Sloc (Ancestor);
2963
 
2964
         --  For a private type with unknown discriminants, use the underlying
2965
         --  record view if it is available.
2966
 
2967
         if Has_Unknown_Discriminants (Ancestor_Typ)
2968
           and then Present (Full_View (Ancestor_Typ))
2969
           and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
2970
         then
2971
            Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
2972
         end if;
2973
 
2974
         Ancestor_Is_Subtyp :=
2975
           Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
2976
 
2977
         --  If the ancestor part has no discriminants clearly N's aggregate
2978
         --  part must provide a value for Discr.
2979
 
2980
         if not Has_Discriminants (Ancestor_Typ) then
2981
            return True;
2982
 
2983
         --  If the ancestor part is an unconstrained subtype mark then the
2984
         --  Discr must be present in N's aggregate part.
2985
 
2986
         elsif Ancestor_Is_Subtyp
2987
           and then not Is_Constrained (Entity (Ancestor))
2988
         then
2989
            return True;
2990
         end if;
2991
 
2992
         --  Now look to see if Discr was specified in the ancestor part
2993
 
2994
         if Ancestor_Is_Subtyp then
2995
            D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
2996
         end if;
2997
 
2998
         Orig_Discr := Original_Record_Component (Discr);
2999
 
3000
         D := First_Discriminant (Ancestor_Typ);
3001
         while Present (D) loop
3002
 
3003
            --  If Ancestor has already specified Disc value then insert its
3004
            --  value in the final aggregate.
3005
 
3006
            if Original_Record_Component (D) = Orig_Discr then
3007
               if Ancestor_Is_Subtyp then
3008
                  Discr_Expr := New_Copy_Tree (Node (D_Val));
3009
               else
3010
                  Discr_Expr :=
3011
                    Make_Selected_Component (Loc,
3012
                      Prefix        => Duplicate_Subexpr (Ancestor),
3013
                      Selector_Name => New_Occurrence_Of (Discr, Loc));
3014
               end if;
3015
 
3016
               Resolve_Aggr_Expr (Discr_Expr, Discr);
3017
               Set_Inherited_Discriminant (Last (New_Assoc_List));
3018
               return False;
3019
            end if;
3020
 
3021
            Next_Discriminant (D);
3022
 
3023
            if Ancestor_Is_Subtyp then
3024
               Next_Elmt (D_Val);
3025
            end if;
3026
         end loop;
3027
 
3028
         return True;
3029
      end Discr_Present;
3030
 
3031
      ---------------
3032
      -- Get_Value --
3033
      ---------------
3034
 
3035
      function Get_Value
3036
        (Compon                 : Node_Id;
3037
         From                   : List_Id;
3038
         Consider_Others_Choice : Boolean := False)
3039
         return                   Node_Id
3040
      is
3041
         Assoc         : Node_Id;
3042
         Expr          : Node_Id := Empty;
3043
         Selector_Name : Node_Id;
3044
 
3045
      begin
3046
         Is_Box_Present := False;
3047
 
3048
         if Present (From) then
3049
            Assoc := First (From);
3050
         else
3051
            return Empty;
3052
         end if;
3053
 
3054
         while Present (Assoc) loop
3055
            Selector_Name := First (Choices (Assoc));
3056
            while Present (Selector_Name) loop
3057
               if Nkind (Selector_Name) = N_Others_Choice then
3058
                  if Consider_Others_Choice and then No (Expr) then
3059
 
3060
                     --  We need to duplicate the expression for each
3061
                     --  successive component covered by the others choice.
3062
                     --  This is redundant if the others_choice covers only
3063
                     --  one component (small optimization possible???), but
3064
                     --  indispensable otherwise, because each one must be
3065
                     --  expanded individually to preserve side-effects.
3066
 
3067
                     --  Ada 2005 (AI-287): In case of default initialization
3068
                     --  of components, we duplicate the corresponding default
3069
                     --  expression (from the record type declaration). The
3070
                     --  copy must carry the sloc of the association (not the
3071
                     --  original expression) to prevent spurious elaboration
3072
                     --  checks when the default includes function calls.
3073
 
3074
                     if Box_Present (Assoc) then
3075
                        Others_Box     := True;
3076
                        Is_Box_Present := True;
3077
 
3078
                        if Expander_Active then
3079
                           return
3080
                             New_Copy_Tree
3081
                               (Expression (Parent (Compon)),
3082
                                New_Sloc => Sloc (Assoc));
3083
                        else
3084
                           return Expression (Parent (Compon));
3085
                        end if;
3086
 
3087
                     else
3088
                        if Present (Others_Etype) and then
3089
                           Base_Type (Others_Etype) /= Base_Type (Etype
3090
                                                                   (Compon))
3091
                        then
3092
                           Error_Msg_N ("components in OTHERS choice must " &
3093
                                        "have same type", Selector_Name);
3094
                        end if;
3095
 
3096
                        Others_Etype := Etype (Compon);
3097
 
3098
                        if Expander_Active then
3099
                           return New_Copy_Tree (Expression (Assoc));
3100
                        else
3101
                           return Expression (Assoc);
3102
                        end if;
3103
                     end if;
3104
                  end if;
3105
 
3106
               elsif Chars (Compon) = Chars (Selector_Name) then
3107
                  if No (Expr) then
3108
 
3109
                     --  Ada 2005 (AI-231)
3110
 
3111
                     if Ada_Version >= Ada_2005
3112
                       and then Known_Null (Expression (Assoc))
3113
                     then
3114
                        Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3115
                     end if;
3116
 
3117
                     --  We need to duplicate the expression when several
3118
                     --  components are grouped together with a "|" choice.
3119
                     --  For instance "filed1 | filed2 => Expr"
3120
 
3121
                     --  Ada 2005 (AI-287)
3122
 
3123
                     if Box_Present (Assoc) then
3124
                        Is_Box_Present := True;
3125
 
3126
                        --  Duplicate the default expression of the component
3127
                        --  from the record type declaration, so a new copy
3128
                        --  can be attached to the association.
3129
 
3130
                        --  Note that we always copy the default expression,
3131
                        --  even when the association has a single choice, in
3132
                        --  order to create a proper association for the
3133
                        --  expanded aggregate.
3134
 
3135
                        Expr := New_Copy_Tree (Expression (Parent (Compon)));
3136
 
3137
                        --  Component may have no default, in which case the
3138
                        --  expression is empty and the component is default-
3139
                        --  initialized, but an association for the component
3140
                        --  exists, and it is not covered by an others clause.
3141
 
3142
                        return Expr;
3143
 
3144
                     else
3145
                        if Present (Next (Selector_Name)) then
3146
                           Expr := New_Copy_Tree (Expression (Assoc));
3147
                        else
3148
                           Expr := Expression (Assoc);
3149
                        end if;
3150
                     end if;
3151
 
3152
                     Generate_Reference (Compon, Selector_Name, 'm');
3153
 
3154
                  else
3155
                     Error_Msg_NE
3156
                       ("more than one value supplied for &",
3157
                        Selector_Name, Compon);
3158
 
3159
                  end if;
3160
               end if;
3161
 
3162
               Next (Selector_Name);
3163
            end loop;
3164
 
3165
            Next (Assoc);
3166
         end loop;
3167
 
3168
         return Expr;
3169
      end Get_Value;
3170
 
3171
      -----------------------
3172
      -- Resolve_Aggr_Expr --
3173
      -----------------------
3174
 
3175
      procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
3176
         New_C     : Entity_Id := Component;
3177
         Expr_Type : Entity_Id := Empty;
3178
 
3179
         function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3180
         --  If the expression is an aggregate (possibly qualified) then its
3181
         --  expansion is delayed until the enclosing aggregate is expanded
3182
         --  into assignments. In that case, do not generate checks on the
3183
         --  expression, because they will be generated later, and will other-
3184
         --  wise force a copy (to remove side-effects) that would leave a
3185
         --  dynamic-sized aggregate in the code, something that gigi cannot
3186
         --  handle.
3187
 
3188
         Relocate : Boolean;
3189
         --  Set to True if the resolved Expr node needs to be relocated when
3190
         --  attached to the newly created association list. This node need not
3191
         --  be relocated if its parent pointer is not set. In fact in this
3192
         --  case Expr is the output of a New_Copy_Tree call. If Relocate is
3193
         --  True then we have analyzed the expression node in the original
3194
         --  aggregate and hence it needs to be relocated when moved over to
3195
         --  the new association list.
3196
 
3197
         ---------------------------
3198
         -- Has_Expansion_Delayed --
3199
         ---------------------------
3200
 
3201
         function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3202
            Kind : constant Node_Kind := Nkind (Expr);
3203
         begin
3204
            return (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate)
3205
                     and then Present (Etype (Expr))
3206
                     and then Is_Record_Type (Etype (Expr))
3207
                     and then Expansion_Delayed (Expr))
3208
              or else (Kind = N_Qualified_Expression
3209
                        and then Has_Expansion_Delayed (Expression (Expr)));
3210
         end Has_Expansion_Delayed;
3211
 
3212
      --  Start of processing for Resolve_Aggr_Expr
3213
 
3214
      begin
3215
         --  If the type of the component is elementary or the type of the
3216
         --  aggregate does not contain discriminants, use the type of the
3217
         --  component to resolve Expr.
3218
 
3219
         if Is_Elementary_Type (Etype (Component))
3220
           or else not Has_Discriminants (Etype (N))
3221
         then
3222
            Expr_Type := Etype (Component);
3223
 
3224
         --  Otherwise we have to pick up the new type of the component from
3225
         --  the new constrained subtype of the aggregate. In fact components
3226
         --  which are of a composite type might be constrained by a
3227
         --  discriminant, and we want to resolve Expr against the subtype were
3228
         --  all discriminant occurrences are replaced with their actual value.
3229
 
3230
         else
3231
            New_C := First_Component (Etype (N));
3232
            while Present (New_C) loop
3233
               if Chars (New_C) = Chars (Component) then
3234
                  Expr_Type := Etype (New_C);
3235
                  exit;
3236
               end if;
3237
 
3238
               Next_Component (New_C);
3239
            end loop;
3240
 
3241
            pragma Assert (Present (Expr_Type));
3242
 
3243
            --  For each range in an array type where a discriminant has been
3244
            --  replaced with the constraint, check that this range is within
3245
            --  the range of the base type. This checks is done in the init
3246
            --  proc for regular objects, but has to be done here for
3247
            --  aggregates since no init proc is called for them.
3248
 
3249
            if Is_Array_Type (Expr_Type) then
3250
               declare
3251
                  Index : Node_Id;
3252
                  --  Range of the current constrained index in the array
3253
 
3254
                  Orig_Index : Node_Id := First_Index (Etype (Component));
3255
                  --  Range corresponding to the range Index above in the
3256
                  --  original unconstrained record type. The bounds of this
3257
                  --  range may be governed by discriminants.
3258
 
3259
                  Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3260
                  --  Range corresponding to the range Index above for the
3261
                  --  unconstrained array type. This range is needed to apply
3262
                  --  range checks.
3263
 
3264
               begin
3265
                  Index := First_Index (Expr_Type);
3266
                  while Present (Index) loop
3267
                     if Depends_On_Discriminant (Orig_Index) then
3268
                        Apply_Range_Check (Index, Etype (Unconstr_Index));
3269
                     end if;
3270
 
3271
                     Next_Index (Index);
3272
                     Next_Index (Orig_Index);
3273
                     Next_Index (Unconstr_Index);
3274
                  end loop;
3275
               end;
3276
            end if;
3277
         end if;
3278
 
3279
         --  If the Parent pointer of Expr is not set, Expr is an expression
3280
         --  duplicated by New_Tree_Copy (this happens for record aggregates
3281
         --  that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3282
         --  Such a duplicated expression must be attached to the tree
3283
         --  before analysis and resolution to enforce the rule that a tree
3284
         --  fragment should never be analyzed or resolved unless it is
3285
         --  attached to the current compilation unit.
3286
 
3287
         if No (Parent (Expr)) then
3288
            Set_Parent (Expr, N);
3289
            Relocate := False;
3290
         else
3291
            Relocate := True;
3292
         end if;
3293
 
3294
         Analyze_And_Resolve (Expr, Expr_Type);
3295
         Check_Expr_OK_In_Limited_Aggregate (Expr);
3296
         Check_Non_Static_Context (Expr);
3297
         Check_Unset_Reference (Expr);
3298
 
3299
         --  Check wrong use of class-wide types
3300
 
3301
         if Is_Class_Wide_Type (Etype (Expr)) then
3302
            Error_Msg_N ("dynamically tagged expression not allowed", Expr);
3303
         end if;
3304
 
3305
         if not Has_Expansion_Delayed (Expr) then
3306
            Aggregate_Constraint_Checks (Expr, Expr_Type);
3307
         end if;
3308
 
3309
         --  If an aggregate component has a type with predicates, an explicit
3310
         --  predicate check must be applied, as for an assignment statement,
3311
         --  because the aggegate might not be expanded into individual
3312
         --  component assignments.
3313
 
3314
         if Present (Predicate_Function (Expr_Type)) then
3315
            Apply_Predicate_Check (Expr, Expr_Type);
3316
         end if;
3317
 
3318
         if Raises_Constraint_Error (Expr) then
3319
            Set_Raises_Constraint_Error (N);
3320
         end if;
3321
 
3322
         --  If the expression has been marked as requiring a range check, then
3323
         --  generate it here.
3324
 
3325
         if Do_Range_Check (Expr) then
3326
            Set_Do_Range_Check (Expr, False);
3327
            Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
3328
         end if;
3329
 
3330
         if Relocate then
3331
            Add_Association (New_C, Relocate_Node (Expr), New_Assoc_List);
3332
         else
3333
            Add_Association (New_C, Expr, New_Assoc_List);
3334
         end if;
3335
      end Resolve_Aggr_Expr;
3336
 
3337
   --  Start of processing for Resolve_Record_Aggregate
3338
 
3339
   begin
3340
      --  A record aggregate is restricted in SPARK:
3341
      --    Each named association can have only a single choice.
3342
      --    OTHERS cannot be used.
3343
      --    Positional and named associations cannot be mixed.
3344
 
3345
      if Present (Component_Associations (N))
3346
        and then Present (First (Component_Associations (N)))
3347
      then
3348
 
3349
         if Present (Expressions (N)) then
3350
            Check_SPARK_Restriction
3351
              ("named association cannot follow positional one",
3352
               First (Choices (First (Component_Associations (N)))));
3353
         end if;
3354
 
3355
         declare
3356
            Assoc : Node_Id;
3357
 
3358
         begin
3359
            Assoc := First (Component_Associations (N));
3360
            while Present (Assoc) loop
3361
               if List_Length (Choices (Assoc)) > 1 then
3362
                  Check_SPARK_Restriction
3363
                    ("component association in record aggregate must "
3364
                     & "contain a single choice", Assoc);
3365
               end if;
3366
 
3367
               if Nkind (First (Choices (Assoc))) = N_Others_Choice then
3368
                  Check_SPARK_Restriction
3369
                    ("record aggregate cannot contain OTHERS", Assoc);
3370
               end if;
3371
 
3372
               Assoc := Next (Assoc);
3373
            end loop;
3374
         end;
3375
      end if;
3376
 
3377
      --  We may end up calling Duplicate_Subexpr on expressions that are
3378
      --  attached to New_Assoc_List. For this reason we need to attach it
3379
      --  to the tree by setting its parent pointer to N. This parent point
3380
      --  will change in STEP 8 below.
3381
 
3382
      Set_Parent (New_Assoc_List, N);
3383
 
3384
      --  STEP 1: abstract type and null record verification
3385
 
3386
      if Is_Abstract_Type (Typ) then
3387
         Error_Msg_N ("type of aggregate cannot be abstract",  N);
3388
      end if;
3389
 
3390
      if No (First_Entity (Typ)) and then Null_Record_Present (N) then
3391
         Set_Etype (N, Typ);
3392
         return;
3393
 
3394
      elsif Present (First_Entity (Typ))
3395
        and then Null_Record_Present (N)
3396
        and then not Is_Tagged_Type (Typ)
3397
      then
3398
         Error_Msg_N ("record aggregate cannot be null", N);
3399
         return;
3400
 
3401
      --  If the type has no components, then the aggregate should either
3402
      --  have "null record", or in Ada 2005 it could instead have a single
3403
      --  component association given by "others => <>". For Ada 95 we flag an
3404
      --  error at this point, but for Ada 2005 we proceed with checking the
3405
      --  associations below, which will catch the case where it's not an
3406
      --  aggregate with "others => <>". Note that the legality of a <>
3407
      --  aggregate for a null record type was established by AI05-016.
3408
 
3409
      elsif No (First_Entity (Typ))
3410
         and then Ada_Version < Ada_2005
3411
      then
3412
         Error_Msg_N ("record aggregate must be null", N);
3413
         return;
3414
      end if;
3415
 
3416
      --  STEP 2: Verify aggregate structure
3417
 
3418
      Step_2 : declare
3419
         Selector_Name : Node_Id;
3420
         Bad_Aggregate : Boolean := False;
3421
 
3422
      begin
3423
         if Present (Component_Associations (N)) then
3424
            Assoc := First (Component_Associations (N));
3425
         else
3426
            Assoc := Empty;
3427
         end if;
3428
 
3429
         while Present (Assoc) loop
3430
            Selector_Name := First (Choices (Assoc));
3431
            while Present (Selector_Name) loop
3432
               if Nkind (Selector_Name) = N_Identifier then
3433
                  null;
3434
 
3435
               elsif Nkind (Selector_Name) = N_Others_Choice then
3436
                  if Selector_Name /= First (Choices (Assoc))
3437
                    or else Present (Next (Selector_Name))
3438
                  then
3439
                     Error_Msg_N
3440
                       ("OTHERS must appear alone in a choice list",
3441
                        Selector_Name);
3442
                     return;
3443
 
3444
                  elsif Present (Next (Assoc)) then
3445
                     Error_Msg_N
3446
                       ("OTHERS must appear last in an aggregate",
3447
                        Selector_Name);
3448
                     return;
3449
 
3450
                  --  (Ada 2005): If this is an association with a box,
3451
                  --  indicate that the association need not represent
3452
                  --  any component.
3453
 
3454
                  elsif Box_Present (Assoc) then
3455
                     Others_Box := True;
3456
                  end if;
3457
 
3458
               else
3459
                  Error_Msg_N
3460
                    ("selector name should be identifier or OTHERS",
3461
                     Selector_Name);
3462
                  Bad_Aggregate := True;
3463
               end if;
3464
 
3465
               Next (Selector_Name);
3466
            end loop;
3467
 
3468
            Next (Assoc);
3469
         end loop;
3470
 
3471
         if Bad_Aggregate then
3472
            return;
3473
         end if;
3474
      end Step_2;
3475
 
3476
      --  STEP 3: Find discriminant Values
3477
 
3478
      Step_3 : declare
3479
         Discrim               : Entity_Id;
3480
         Missing_Discriminants : Boolean := False;
3481
 
3482
      begin
3483
         if Present (Expressions (N)) then
3484
            Positional_Expr := First (Expressions (N));
3485
         else
3486
            Positional_Expr := Empty;
3487
         end if;
3488
 
3489
         --  AI05-0115: if the ancestor part is a subtype mark, the ancestor
3490
         --  must npt have unknown discriminants.
3491
 
3492
         if Is_Derived_Type (Typ)
3493
           and then Has_Unknown_Discriminants (Root_Type (Typ))
3494
           and then Nkind (N) /= N_Extension_Aggregate
3495
         then
3496
            Error_Msg_NE
3497
              ("aggregate not available for type& whose ancestor "
3498
                 & "has unknown discriminants ", N, Typ);
3499
         end if;
3500
 
3501
         if Has_Unknown_Discriminants (Typ)
3502
           and then Present (Underlying_Record_View (Typ))
3503
         then
3504
            Discrim := First_Discriminant (Underlying_Record_View (Typ));
3505
         elsif Has_Discriminants (Typ) then
3506
            Discrim := First_Discriminant (Typ);
3507
         else
3508
            Discrim := Empty;
3509
         end if;
3510
 
3511
         --  First find the discriminant values in the positional components
3512
 
3513
         while Present (Discrim) and then Present (Positional_Expr) loop
3514
            if Discr_Present (Discrim) then
3515
               Resolve_Aggr_Expr (Positional_Expr, Discrim);
3516
 
3517
               --  Ada 2005 (AI-231)
3518
 
3519
               if Ada_Version >= Ada_2005
3520
                 and then Known_Null (Positional_Expr)
3521
               then
3522
                  Check_Can_Never_Be_Null (Discrim, Positional_Expr);
3523
               end if;
3524
 
3525
               Next (Positional_Expr);
3526
            end if;
3527
 
3528
            if Present (Get_Value (Discrim, Component_Associations (N))) then
3529
               Error_Msg_NE
3530
                 ("more than one value supplied for discriminant&",
3531
                  N, Discrim);
3532
            end if;
3533
 
3534
            Next_Discriminant (Discrim);
3535
         end loop;
3536
 
3537
         --  Find remaining discriminant values if any among named components
3538
 
3539
         while Present (Discrim) loop
3540
            Expr := Get_Value (Discrim, Component_Associations (N), True);
3541
 
3542
            if not Discr_Present (Discrim) then
3543
               if Present (Expr) then
3544
                  Error_Msg_NE
3545
                    ("more than one value supplied for discriminant&",
3546
                     N, Discrim);
3547
               end if;
3548
 
3549
            elsif No (Expr) then
3550
               Error_Msg_NE
3551
                 ("no value supplied for discriminant &", N, Discrim);
3552
               Missing_Discriminants := True;
3553
 
3554
            else
3555
               Resolve_Aggr_Expr (Expr, Discrim);
3556
            end if;
3557
 
3558
            Next_Discriminant (Discrim);
3559
         end loop;
3560
 
3561
         if Missing_Discriminants then
3562
            return;
3563
         end if;
3564
 
3565
         --  At this point and until the beginning of STEP 6, New_Assoc_List
3566
         --  contains only the discriminants and their values.
3567
 
3568
      end Step_3;
3569
 
3570
      --  STEP 4: Set the Etype of the record aggregate
3571
 
3572
      --  ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3573
      --  routine should really be exported in sem_util or some such and used
3574
      --  in sem_ch3 and here rather than have a copy of the code which is a
3575
      --  maintenance nightmare.
3576
 
3577
      --  ??? Performance WARNING. The current implementation creates a new
3578
      --  itype for all aggregates whose base type is discriminated. This means
3579
      --  that for record aggregates nested inside an array aggregate we will
3580
      --  create a new itype for each record aggregate if the array component
3581
      --  type has discriminants. For large aggregates this may be a problem.
3582
      --  What should be done in this case is to reuse itypes as much as
3583
      --  possible.
3584
 
3585
      if Has_Discriminants (Typ)
3586
        or else (Has_Unknown_Discriminants (Typ)
3587
                   and then Present (Underlying_Record_View (Typ)))
3588
      then
3589
         Build_Constrained_Itype : declare
3590
            Loc         : constant Source_Ptr := Sloc (N);
3591
            Indic       : Node_Id;
3592
            Subtyp_Decl : Node_Id;
3593
            Def_Id      : Entity_Id;
3594
 
3595
            C : constant List_Id := New_List;
3596
 
3597
         begin
3598
            New_Assoc := First (New_Assoc_List);
3599
            while Present (New_Assoc) loop
3600
               Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
3601
               Next (New_Assoc);
3602
            end loop;
3603
 
3604
            if Has_Unknown_Discriminants (Typ)
3605
              and then Present (Underlying_Record_View (Typ))
3606
            then
3607
               Indic :=
3608
                 Make_Subtype_Indication (Loc,
3609
                   Subtype_Mark =>
3610
                     New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
3611
                   Constraint  =>
3612
                     Make_Index_Or_Discriminant_Constraint (Loc, C));
3613
            else
3614
               Indic :=
3615
                 Make_Subtype_Indication (Loc,
3616
                   Subtype_Mark =>
3617
                     New_Occurrence_Of (Base_Type (Typ), Loc),
3618
                   Constraint  =>
3619
                     Make_Index_Or_Discriminant_Constraint (Loc, C));
3620
            end if;
3621
 
3622
            Def_Id := Create_Itype (Ekind (Typ), N);
3623
 
3624
            Subtyp_Decl :=
3625
              Make_Subtype_Declaration (Loc,
3626
                Defining_Identifier => Def_Id,
3627
                Subtype_Indication  => Indic);
3628
            Set_Parent (Subtyp_Decl, Parent (N));
3629
 
3630
            --  Itypes must be analyzed with checks off (see itypes.ads)
3631
 
3632
            Analyze (Subtyp_Decl, Suppress => All_Checks);
3633
 
3634
            Set_Etype (N, Def_Id);
3635
            Check_Static_Discriminated_Subtype
3636
              (Def_Id, Expression (First (New_Assoc_List)));
3637
         end Build_Constrained_Itype;
3638
 
3639
      else
3640
         Set_Etype (N, Typ);
3641
      end if;
3642
 
3643
      --  STEP 5: Get remaining components according to discriminant values
3644
 
3645
      Step_5 : declare
3646
         Record_Def      : Node_Id;
3647
         Parent_Typ      : Entity_Id;
3648
         Root_Typ        : Entity_Id;
3649
         Parent_Typ_List : Elist_Id;
3650
         Parent_Elmt     : Elmt_Id;
3651
         Errors_Found    : Boolean := False;
3652
         Dnode           : Node_Id;
3653
 
3654
         function Find_Private_Ancestor return Entity_Id;
3655
         --  AI05-0115: Find earlier ancestor in the derivation chain that is
3656
         --  derived from a private view. Whether the aggregate is legal
3657
         --  depends on the current visibility of the type as well as that
3658
         --  of the parent of the ancestor.
3659
 
3660
         ---------------------------
3661
         -- Find_Private_Ancestor --
3662
         ---------------------------
3663
 
3664
         function Find_Private_Ancestor return Entity_Id is
3665
            Par : Entity_Id;
3666
         begin
3667
            Par := Typ;
3668
            loop
3669
               if Has_Private_Ancestor (Par)
3670
                 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3671
               then
3672
                  return Par;
3673
 
3674
               elsif not Is_Derived_Type (Par) then
3675
                  return Empty;
3676
 
3677
               else
3678
                  Par := Etype (Base_Type (Par));
3679
               end if;
3680
            end loop;
3681
         end Find_Private_Ancestor;
3682
 
3683
      begin
3684
         if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
3685
            Parent_Typ_List := New_Elmt_List;
3686
 
3687
            --  If this is an extension aggregate, the component list must
3688
            --  include all components that are not in the given ancestor type.
3689
            --  Otherwise, the component list must include components of all
3690
            --  ancestors, starting with the root.
3691
 
3692
            if Nkind (N) = N_Extension_Aggregate then
3693
               Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
3694
 
3695
            else
3696
               --  AI05-0115:  check legality of aggregate for type with
3697
               --  aa private ancestor.
3698
 
3699
               Root_Typ := Root_Type (Typ);
3700
               if Has_Private_Ancestor (Typ) then
3701
                  declare
3702
                     Ancestor      : constant Entity_Id :=
3703
                       Find_Private_Ancestor;
3704
                     Ancestor_Unit : constant Entity_Id :=
3705
                       Cunit_Entity (Get_Source_Unit (Ancestor));
3706
                     Parent_Unit   : constant Entity_Id :=
3707
                       Cunit_Entity
3708
                         (Get_Source_Unit (Base_Type (Etype (Ancestor))));
3709
                  begin
3710
 
3711
                     --  check whether we are in a scope that has full view
3712
                     --  over the private ancestor and its parent. This can
3713
                     --  only happen if the derivation takes place in a child
3714
                     --  unit of the unit that declares the parent, and we are
3715
                     --  in the private part or body of that child unit, else
3716
                     --  the aggregate is illegal.
3717
 
3718
                     if Is_Child_Unit (Ancestor_Unit)
3719
                       and then Scope (Ancestor_Unit) = Parent_Unit
3720
                       and then In_Open_Scopes (Scope (Ancestor))
3721
                       and then
3722
                        (In_Private_Part (Scope (Ancestor))
3723
                           or else In_Package_Body (Scope (Ancestor)))
3724
                     then
3725
                        null;
3726
 
3727
                     else
3728
                        Error_Msg_NE
3729
                          ("type of aggregate has private ancestor&!",
3730
                              N, Root_Typ);
3731
                        Error_Msg_N ("must use extension aggregate!", N);
3732
                        return;
3733
                     end if;
3734
                  end;
3735
               end if;
3736
 
3737
               Dnode := Declaration_Node (Base_Type (Root_Typ));
3738
 
3739
               --  If we don't get a full declaration, then we have some error
3740
               --  which will get signalled later so skip this part. Otherwise
3741
               --  gather components of root that apply to the aggregate type.
3742
               --  We use the base type in case there is an applicable stored
3743
               --  constraint that renames the discriminants of the root.
3744
 
3745
               if Nkind (Dnode) = N_Full_Type_Declaration then
3746
                  Record_Def := Type_Definition (Dnode);
3747
                  Gather_Components (Base_Type (Typ),
3748
                    Component_List (Record_Def),
3749
                    Governed_By   => New_Assoc_List,
3750
                    Into          => Components,
3751
                    Report_Errors => Errors_Found);
3752
               end if;
3753
            end if;
3754
 
3755
            Parent_Typ := Base_Type (Typ);
3756
            while Parent_Typ /= Root_Typ loop
3757
               Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
3758
               Parent_Typ := Etype (Parent_Typ);
3759
 
3760
               if Nkind (Parent (Base_Type (Parent_Typ))) =
3761
                                        N_Private_Type_Declaration
3762
                 or else Nkind (Parent (Base_Type (Parent_Typ))) =
3763
                                        N_Private_Extension_Declaration
3764
               then
3765
                  if Nkind (N) /= N_Extension_Aggregate then
3766
                     Error_Msg_NE
3767
                       ("type of aggregate has private ancestor&!",
3768
                        N, Parent_Typ);
3769
                     Error_Msg_N  ("must use extension aggregate!", N);
3770
                     return;
3771
 
3772
                  elsif Parent_Typ /= Root_Typ then
3773
                     Error_Msg_NE
3774
                       ("ancestor part of aggregate must be private type&",
3775
                         Ancestor_Part (N), Parent_Typ);
3776
                     return;
3777
                  end if;
3778
 
3779
               --  The current view of ancestor part may be a private type,
3780
               --  while the context type is always non-private.
3781
 
3782
               elsif Is_Private_Type (Root_Typ)
3783
                 and then Present (Full_View (Root_Typ))
3784
                 and then Nkind (N) = N_Extension_Aggregate
3785
               then
3786
                  exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
3787
               end if;
3788
            end loop;
3789
 
3790
            --  Now collect components from all other ancestors, beginning
3791
            --  with the current type. If the type has unknown discriminants
3792
            --  use the component list of the Underlying_Record_View, which
3793
            --  needs to be used for the subsequent expansion of the aggregate
3794
            --  into assignments.
3795
 
3796
            Parent_Elmt := First_Elmt (Parent_Typ_List);
3797
            while Present (Parent_Elmt) loop
3798
               Parent_Typ := Node (Parent_Elmt);
3799
 
3800
               if Has_Unknown_Discriminants (Parent_Typ)
3801
                 and then Present (Underlying_Record_View (Typ))
3802
               then
3803
                  Parent_Typ := Underlying_Record_View (Parent_Typ);
3804
               end if;
3805
 
3806
               Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
3807
               Gather_Components (Empty,
3808
                 Component_List (Record_Extension_Part (Record_Def)),
3809
                 Governed_By   => New_Assoc_List,
3810
                 Into          => Components,
3811
                 Report_Errors => Errors_Found);
3812
 
3813
               Next_Elmt (Parent_Elmt);
3814
            end loop;
3815
 
3816
         else
3817
            Record_Def := Type_Definition (Parent (Base_Type (Typ)));
3818
 
3819
            if Null_Present (Record_Def) then
3820
               null;
3821
 
3822
            elsif not Has_Unknown_Discriminants (Typ) then
3823
               Gather_Components (Base_Type (Typ),
3824
                 Component_List (Record_Def),
3825
                 Governed_By   => New_Assoc_List,
3826
                 Into          => Components,
3827
                 Report_Errors => Errors_Found);
3828
 
3829
            else
3830
               Gather_Components
3831
                 (Base_Type (Underlying_Record_View (Typ)),
3832
                 Component_List (Record_Def),
3833
                 Governed_By   => New_Assoc_List,
3834
                 Into          => Components,
3835
                 Report_Errors => Errors_Found);
3836
            end if;
3837
         end if;
3838
 
3839
         if Errors_Found then
3840
            return;
3841
         end if;
3842
      end Step_5;
3843
 
3844
      --  STEP 6: Find component Values
3845
 
3846
      Component := Empty;
3847
      Component_Elmt := First_Elmt (Components);
3848
 
3849
      --  First scan the remaining positional associations in the aggregate.
3850
      --  Remember that at this point Positional_Expr contains the current
3851
      --  positional association if any is left after looking for discriminant
3852
      --  values in step 3.
3853
 
3854
      while Present (Positional_Expr) and then Present (Component_Elmt) loop
3855
         Component := Node (Component_Elmt);
3856
         Resolve_Aggr_Expr (Positional_Expr, Component);
3857
 
3858
         --  Ada 2005 (AI-231)
3859
 
3860
         if Ada_Version >= Ada_2005
3861
           and then Known_Null (Positional_Expr)
3862
         then
3863
            Check_Can_Never_Be_Null (Component, Positional_Expr);
3864
         end if;
3865
 
3866
         if Present (Get_Value (Component, Component_Associations (N))) then
3867
            Error_Msg_NE
3868
              ("more than one value supplied for Component &", N, Component);
3869
         end if;
3870
 
3871
         Next (Positional_Expr);
3872
         Next_Elmt (Component_Elmt);
3873
      end loop;
3874
 
3875
      if Present (Positional_Expr) then
3876
         Error_Msg_N
3877
           ("too many components for record aggregate", Positional_Expr);
3878
      end if;
3879
 
3880
      --  Now scan for the named arguments of the aggregate
3881
 
3882
      while Present (Component_Elmt) loop
3883
         Component := Node (Component_Elmt);
3884
         Expr := Get_Value (Component, Component_Associations (N), True);
3885
 
3886
         --  Note: The previous call to Get_Value sets the value of the
3887
         --  variable Is_Box_Present.
3888
 
3889
         --  Ada 2005 (AI-287): Handle components with default initialization.
3890
         --  Note: This feature was originally added to Ada 2005 for limited
3891
         --  but it was finally allowed with any type.
3892
 
3893
         if Is_Box_Present then
3894
            Check_Box_Component : declare
3895
               Ctyp : constant Entity_Id := Etype (Component);
3896
 
3897
            begin
3898
               --  If there is a default expression for the aggregate, copy
3899
               --  it into a new association. This copy must modify the scopes
3900
               --  of internal types that may be attached to the expression
3901
               --  (e.g. index subtypes of arrays) because in general the type
3902
               --  declaration and the aggregate appear in different scopes,
3903
               --  and the backend requires the scope of the type to match the
3904
               --  point at which it is elaborated.
3905
 
3906
               --  If the component has an initialization procedure (IP) we
3907
               --  pass the component to the expander, which will generate
3908
               --  the call to such IP.
3909
 
3910
               --  If the component has discriminants, their values must
3911
               --  be taken from their subtype. This is indispensable for
3912
               --  constraints that are given by the current instance of an
3913
               --  enclosing type, to allow the expansion of the aggregate to
3914
               --  replace the reference to the current instance by the target
3915
               --  object of the aggregate.
3916
 
3917
               if Present (Parent (Component))
3918
                 and then
3919
                   Nkind (Parent (Component)) = N_Component_Declaration
3920
                 and then Present (Expression (Parent (Component)))
3921
               then
3922
                  Expr :=
3923
                    New_Copy_Tree
3924
                      (Expression (Parent (Component)),
3925
                       New_Scope => Current_Scope,
3926
                       New_Sloc  => Sloc (N));
3927
 
3928
                  Add_Association
3929
                    (Component  => Component,
3930
                     Expr       => Expr,
3931
                     Assoc_List => New_Assoc_List);
3932
                  Set_Has_Self_Reference (N);
3933
 
3934
               --  A box-defaulted access component gets the value null. Also
3935
               --  included are components of private types whose underlying
3936
               --  type is an access type. In either case set the type of the
3937
               --  literal, for subsequent use in semantic checks.
3938
 
3939
               elsif Present (Underlying_Type (Ctyp))
3940
                 and then Is_Access_Type (Underlying_Type (Ctyp))
3941
               then
3942
                  if not Is_Private_Type (Ctyp) then
3943
                     Expr := Make_Null (Sloc (N));
3944
                     Set_Etype (Expr, Ctyp);
3945
                     Add_Association
3946
                       (Component  => Component,
3947
                        Expr       => Expr,
3948
                        Assoc_List => New_Assoc_List);
3949
 
3950
                  --  If the component's type is private with an access type as
3951
                  --  its underlying type then we have to create an unchecked
3952
                  --  conversion to satisfy type checking.
3953
 
3954
                  else
3955
                     declare
3956
                        Qual_Null : constant Node_Id :=
3957
                                      Make_Qualified_Expression (Sloc (N),
3958
                                        Subtype_Mark =>
3959
                                          New_Occurrence_Of
3960
                                            (Underlying_Type (Ctyp), Sloc (N)),
3961
                                        Expression => Make_Null (Sloc (N)));
3962
 
3963
                        Convert_Null : constant Node_Id :=
3964
                                         Unchecked_Convert_To
3965
                                           (Ctyp, Qual_Null);
3966
 
3967
                     begin
3968
                        Analyze_And_Resolve (Convert_Null, Ctyp);
3969
                        Add_Association
3970
                          (Component  => Component,
3971
                           Expr       => Convert_Null,
3972
                           Assoc_List => New_Assoc_List);
3973
                     end;
3974
                  end if;
3975
 
3976
               elsif Has_Non_Null_Base_Init_Proc (Ctyp)
3977
                 or else not Expander_Active
3978
               then
3979
                  if Is_Record_Type (Ctyp)
3980
                    and then Has_Discriminants (Ctyp)
3981
                    and then not Is_Private_Type (Ctyp)
3982
                  then
3983
                     --  We build a partially initialized aggregate with the
3984
                     --  values of the discriminants and box initialization
3985
                     --  for the rest, if other components are present.
3986
                     --  The type of the aggregate is the known subtype of
3987
                     --  the component. The capture of discriminants must
3988
                     --  be recursive because subcomponents may be constrained
3989
                     --  (transitively) by discriminants of enclosing types.
3990
                     --  For a private type with discriminants, a call to the
3991
                     --  initialization procedure will be generated, and no
3992
                     --  subaggregate is needed.
3993
 
3994
                     Capture_Discriminants : declare
3995
                        Loc  : constant Source_Ptr := Sloc (N);
3996
                        Expr : Node_Id;
3997
 
3998
                        procedure Add_Discriminant_Values
3999
                          (New_Aggr   : Node_Id;
4000
                           Assoc_List : List_Id);
4001
                        --  The constraint to a component may be given by a
4002
                        --  discriminant of the enclosing type, in which case
4003
                        --  we have to retrieve its value, which is part of the
4004
                        --  enclosing aggregate. Assoc_List provides the
4005
                        --  discriminant associations of the current type or
4006
                        --  of some enclosing record.
4007
 
4008
                        procedure Propagate_Discriminants
4009
                          (Aggr       : Node_Id;
4010
                           Assoc_List : List_Id);
4011
                        --  Nested components may themselves be discriminated
4012
                        --  types constrained by outer discriminants, whose
4013
                        --  values must be captured before the aggregate is
4014
                        --  expanded into assignments.
4015
 
4016
                        -----------------------------
4017
                        -- Add_Discriminant_Values --
4018
                        -----------------------------
4019
 
4020
                        procedure Add_Discriminant_Values
4021
                          (New_Aggr   : Node_Id;
4022
                           Assoc_List : List_Id)
4023
                        is
4024
                           Assoc      : Node_Id;
4025
                           Discr      : Entity_Id;
4026
                           Discr_Elmt : Elmt_Id;
4027
                           Discr_Val  : Node_Id;
4028
                           Val        : Entity_Id;
4029
 
4030
                        begin
4031
                           Discr := First_Discriminant (Etype (New_Aggr));
4032
                           Discr_Elmt :=
4033
                             First_Elmt
4034
                               (Discriminant_Constraint (Etype (New_Aggr)));
4035
                           while Present (Discr_Elmt) loop
4036
                              Discr_Val := Node (Discr_Elmt);
4037
 
4038
                              --  If the constraint is given by a discriminant
4039
                              --  it is a discriminant of an enclosing record,
4040
                              --  and its value has already been placed in the
4041
                              --  association list.
4042
 
4043
                              if Is_Entity_Name (Discr_Val)
4044
                                and then
4045
                                  Ekind (Entity (Discr_Val)) = E_Discriminant
4046
                              then
4047
                                 Val := Entity (Discr_Val);
4048
 
4049
                                 Assoc := First (Assoc_List);
4050
                                 while Present (Assoc) loop
4051
                                    if Present
4052
                                      (Entity (First (Choices (Assoc))))
4053
                                      and then
4054
                                        Entity (First (Choices (Assoc)))
4055
                                          = Val
4056
                                    then
4057
                                       Discr_Val := Expression (Assoc);
4058
                                       exit;
4059
                                    end if;
4060
                                    Next (Assoc);
4061
                                 end loop;
4062
                              end if;
4063
 
4064
                              Add_Association
4065
                                (Discr, New_Copy_Tree (Discr_Val),
4066
                                  Component_Associations (New_Aggr));
4067
 
4068
                              --  If the discriminant constraint is a current
4069
                              --  instance, mark the current aggregate so that
4070
                              --  the self-reference can be expanded later.
4071
 
4072
                              if Nkind (Discr_Val) = N_Attribute_Reference
4073
                                and then Is_Entity_Name (Prefix (Discr_Val))
4074
                                and then Is_Type (Entity (Prefix (Discr_Val)))
4075
                                and then Etype (N) =
4076
                                  Entity (Prefix (Discr_Val))
4077
                              then
4078
                                 Set_Has_Self_Reference (N);
4079
                              end if;
4080
 
4081
                              Next_Elmt (Discr_Elmt);
4082
                              Next_Discriminant (Discr);
4083
                           end loop;
4084
                        end Add_Discriminant_Values;
4085
 
4086
                        ------------------------------
4087
                        --  Propagate_Discriminants --
4088
                        ------------------------------
4089
 
4090
                        procedure Propagate_Discriminants
4091
                          (Aggr       : Node_Id;
4092
                           Assoc_List : List_Id)
4093
                        is
4094
                           Aggr_Type : constant Entity_Id :=
4095
                                         Base_Type (Etype (Aggr));
4096
                           Def_Node  : constant Node_Id :=
4097
                                         Type_Definition
4098
                                           (Declaration_Node (Aggr_Type));
4099
 
4100
                           Comp       : Node_Id;
4101
                           Comp_Elmt  : Elmt_Id;
4102
                           Components : constant Elist_Id := New_Elmt_List;
4103
                           Needs_Box  : Boolean := False;
4104
                           Errors     : Boolean;
4105
 
4106
                           procedure Process_Component (Comp : Entity_Id);
4107
                           --  Add one component with a box association to the
4108
                           --  inner aggregate, and recurse if component is
4109
                           --  itself composite.
4110
 
4111
                           ------------------------
4112
                           --  Process_Component --
4113
                           ------------------------
4114
 
4115
                           procedure Process_Component (Comp : Entity_Id) is
4116
                              T : constant Entity_Id := Etype (Comp);
4117
                              New_Aggr   : Node_Id;
4118
 
4119
                           begin
4120
                              if Is_Record_Type (T)
4121
                                and then Has_Discriminants (T)
4122
                              then
4123
                                 New_Aggr :=
4124
                                   Make_Aggregate (Loc, New_List, New_List);
4125
                                 Set_Etype (New_Aggr, T);
4126
                                 Add_Association
4127
                                   (Comp, New_Aggr,
4128
                                     Component_Associations (Aggr));
4129
 
4130
                                 --  Collect discriminant values and recurse
4131
 
4132
                                 Add_Discriminant_Values
4133
                                   (New_Aggr, Assoc_List);
4134
                                 Propagate_Discriminants
4135
                                   (New_Aggr, Assoc_List);
4136
 
4137
                              else
4138
                                 Needs_Box := True;
4139
                              end if;
4140
                           end Process_Component;
4141
 
4142
                        --  Start of processing for Propagate_Discriminants
4143
 
4144
                        begin
4145
                           --  The component type may be a variant type, so
4146
                           --  collect the components that are ruled by the
4147
                           --  known values of the discriminants. Their values
4148
                           --  have already been inserted into the component
4149
                           --  list of the current aggregate.
4150
 
4151
                           if Nkind (Def_Node) =  N_Record_Definition
4152
                             and then
4153
                               Present (Component_List (Def_Node))
4154
                             and then
4155
                               Present
4156
                                 (Variant_Part (Component_List (Def_Node)))
4157
                           then
4158
                              Gather_Components (Aggr_Type,
4159
                                Component_List (Def_Node),
4160
                                Governed_By   => Component_Associations (Aggr),
4161
                                Into          => Components,
4162
                                Report_Errors => Errors);
4163
 
4164
                              Comp_Elmt := First_Elmt (Components);
4165
                              while Present (Comp_Elmt) loop
4166
                                 if
4167
                                   Ekind (Node (Comp_Elmt)) /= E_Discriminant
4168
                                 then
4169
                                    Process_Component (Node (Comp_Elmt));
4170
                                 end if;
4171
 
4172
                                 Next_Elmt (Comp_Elmt);
4173
                              end loop;
4174
 
4175
                           --  No variant part, iterate over all components
4176
 
4177
                           else
4178
                              Comp := First_Component (Etype (Aggr));
4179
                              while Present (Comp) loop
4180
                                 Process_Component (Comp);
4181
                                 Next_Component (Comp);
4182
                              end loop;
4183
                           end if;
4184
 
4185
                           if Needs_Box then
4186
                              Append
4187
                                (Make_Component_Association (Loc,
4188
                                   Choices     =>
4189
                                     New_List (Make_Others_Choice (Loc)),
4190
                                   Expression  => Empty,
4191
                                      Box_Present => True),
4192
                                 Component_Associations (Aggr));
4193
                           end if;
4194
                        end Propagate_Discriminants;
4195
 
4196
                     --  Start of processing for Capture_Discriminants
4197
 
4198
                     begin
4199
                        Expr := Make_Aggregate (Loc, New_List, New_List);
4200
                        Set_Etype (Expr, Ctyp);
4201
 
4202
                        --  If the enclosing type has discriminants, they have
4203
                        --  been collected in the aggregate earlier, and they
4204
                        --  may appear as constraints of subcomponents.
4205
 
4206
                        --  Similarly if this component has discriminants, they
4207
                        --  might in turn be propagated to their components.
4208
 
4209
                        if Has_Discriminants (Typ) then
4210
                           Add_Discriminant_Values (Expr, New_Assoc_List);
4211
                           Propagate_Discriminants (Expr, New_Assoc_List);
4212
 
4213
                        elsif Has_Discriminants (Ctyp) then
4214
                           Add_Discriminant_Values
4215
                              (Expr, Component_Associations (Expr));
4216
                           Propagate_Discriminants
4217
                              (Expr, Component_Associations (Expr));
4218
 
4219
                        else
4220
                           declare
4221
                              Comp : Entity_Id;
4222
 
4223
                           begin
4224
                              --  If the type has additional components, create
4225
                              --  an OTHERS box association for them.
4226
 
4227
                              Comp := First_Component (Ctyp);
4228
                              while Present (Comp) loop
4229
                                 if Ekind (Comp) = E_Component then
4230
                                    if not Is_Record_Type (Etype (Comp)) then
4231
                                       Append
4232
                                         (Make_Component_Association (Loc,
4233
                                            Choices     =>
4234
                                              New_List
4235
                                               (Make_Others_Choice (Loc)),
4236
                                            Expression  => Empty,
4237
                                               Box_Present => True),
4238
                                          Component_Associations (Expr));
4239
                                    end if;
4240
                                    exit;
4241
                                 end if;
4242
 
4243
                                 Next_Component (Comp);
4244
                              end loop;
4245
                           end;
4246
                        end if;
4247
 
4248
                        Add_Association
4249
                          (Component  => Component,
4250
                           Expr       => Expr,
4251
                           Assoc_List => New_Assoc_List);
4252
                     end Capture_Discriminants;
4253
 
4254
                  else
4255
                     Add_Association
4256
                       (Component      => Component,
4257
                        Expr           => Empty,
4258
                        Assoc_List     => New_Assoc_List,
4259
                        Is_Box_Present => True);
4260
                  end if;
4261
 
4262
               --  Otherwise we only need to resolve the expression if the
4263
               --  component has partially initialized values (required to
4264
               --  expand the corresponding assignments and run-time checks).
4265
 
4266
               elsif Present (Expr)
4267
                 and then Is_Partially_Initialized_Type (Ctyp)
4268
               then
4269
                  Resolve_Aggr_Expr (Expr, Component);
4270
               end if;
4271
            end Check_Box_Component;
4272
 
4273
         elsif No (Expr) then
4274
 
4275
            --  Ignore hidden components associated with the position of the
4276
            --  interface tags: these are initialized dynamically.
4277
 
4278
            if not Present (Related_Type (Component)) then
4279
               Error_Msg_NE
4280
                 ("no value supplied for component &!", N, Component);
4281
            end if;
4282
 
4283
         else
4284
            Resolve_Aggr_Expr (Expr, Component);
4285
         end if;
4286
 
4287
         Next_Elmt (Component_Elmt);
4288
      end loop;
4289
 
4290
      --  STEP 7: check for invalid components + check type in choice list
4291
 
4292
      Step_7 : declare
4293
         Selectr : Node_Id;
4294
         --  Selector name
4295
 
4296
         Typech : Entity_Id;
4297
         --  Type of first component in choice list
4298
 
4299
      begin
4300
         if Present (Component_Associations (N)) then
4301
            Assoc := First (Component_Associations (N));
4302
         else
4303
            Assoc := Empty;
4304
         end if;
4305
 
4306
         Verification : while Present (Assoc) loop
4307
            Selectr := First (Choices (Assoc));
4308
            Typech := Empty;
4309
 
4310
            if Nkind (Selectr) = N_Others_Choice then
4311
 
4312
               --  Ada 2005 (AI-287): others choice may have expression or box
4313
 
4314
               if No (Others_Etype)
4315
                  and then not Others_Box
4316
               then
4317
                  Error_Msg_N
4318
                    ("OTHERS must represent at least one component", Selectr);
4319
               end if;
4320
 
4321
               exit Verification;
4322
            end if;
4323
 
4324
            while Present (Selectr) loop
4325
               New_Assoc := First (New_Assoc_List);
4326
               while Present (New_Assoc) loop
4327
                  Component := First (Choices (New_Assoc));
4328
 
4329
                  if Chars (Selectr) = Chars (Component) then
4330
                     if Style_Check then
4331
                        Check_Identifier (Selectr, Entity (Component));
4332
                     end if;
4333
 
4334
                     exit;
4335
                  end if;
4336
 
4337
                  Next (New_Assoc);
4338
               end loop;
4339
 
4340
               --  If no association, this is not a legal component of
4341
               --  of the type in question, except if its association
4342
               --  is provided with a box.
4343
 
4344
               if No (New_Assoc) then
4345
                  if Box_Present (Parent (Selectr)) then
4346
 
4347
                     --  This may still be a bogus component with a box. Scan
4348
                     --  list of components to verify that a component with
4349
                     --  that name exists.
4350
 
4351
                     declare
4352
                        C : Entity_Id;
4353
 
4354
                     begin
4355
                        C := First_Component (Typ);
4356
                        while Present (C) loop
4357
                           if Chars (C) = Chars (Selectr) then
4358
 
4359
                              --  If the context is an extension aggregate,
4360
                              --  the component must not be inherited from
4361
                              --  the ancestor part of the aggregate.
4362
 
4363
                              if Nkind (N) /= N_Extension_Aggregate
4364
                                or else
4365
                                  Scope (Original_Record_Component (C)) /=
4366
                                                     Etype (Ancestor_Part (N))
4367
                              then
4368
                                 exit;
4369
                              end if;
4370
                           end if;
4371
 
4372
                           Next_Component (C);
4373
                        end loop;
4374
 
4375
                        if No (C) then
4376
                           Error_Msg_Node_2 := Typ;
4377
                           Error_Msg_N ("& is not a component of}", Selectr);
4378
                        end if;
4379
                     end;
4380
 
4381
                  elsif Chars (Selectr) /= Name_uTag
4382
                    and then Chars (Selectr) /= Name_uParent
4383
                  then
4384
                     if not Has_Discriminants (Typ) then
4385
                        Error_Msg_Node_2 := Typ;
4386
                        Error_Msg_N ("& is not a component of}", Selectr);
4387
                     else
4388
                        Error_Msg_N
4389
                          ("& is not a component of the aggregate subtype",
4390
                            Selectr);
4391
                     end if;
4392
 
4393
                     Check_Misspelled_Component (Components, Selectr);
4394
                  end if;
4395
 
4396
               elsif No (Typech) then
4397
                  Typech := Base_Type (Etype (Component));
4398
 
4399
               --  AI05-0199: In Ada 2012, several components of anonymous
4400
               --  access types can appear in a choice list, as long as the
4401
               --  designated types match.
4402
 
4403
               elsif Typech /= Base_Type (Etype (Component)) then
4404
                  if Ada_Version >= Ada_2012
4405
                    and then Ekind (Typech) = E_Anonymous_Access_Type
4406
                    and then
4407
                       Ekind (Etype (Component)) = E_Anonymous_Access_Type
4408
                    and then Base_Type (Designated_Type (Typech)) =
4409
                             Base_Type (Designated_Type (Etype (Component)))
4410
                    and then
4411
                      Subtypes_Statically_Match (Typech, (Etype (Component)))
4412
                  then
4413
                     null;
4414
 
4415
                  elsif not Box_Present (Parent (Selectr)) then
4416
                     Error_Msg_N
4417
                       ("components in choice list must have same type",
4418
                        Selectr);
4419
                  end if;
4420
               end if;
4421
 
4422
               Next (Selectr);
4423
            end loop;
4424
 
4425
            Next (Assoc);
4426
         end loop Verification;
4427
      end Step_7;
4428
 
4429
      --  STEP 8: replace the original aggregate
4430
 
4431
      Step_8 : declare
4432
         New_Aggregate : constant Node_Id := New_Copy (N);
4433
 
4434
      begin
4435
         Set_Expressions            (New_Aggregate, No_List);
4436
         Set_Etype                  (New_Aggregate, Etype (N));
4437
         Set_Component_Associations (New_Aggregate, New_Assoc_List);
4438
 
4439
         Rewrite (N, New_Aggregate);
4440
      end Step_8;
4441
   end Resolve_Record_Aggregate;
4442
 
4443
   -----------------------------
4444
   -- Check_Can_Never_Be_Null --
4445
   -----------------------------
4446
 
4447
   procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
4448
      Comp_Typ : Entity_Id;
4449
 
4450
   begin
4451
      pragma Assert
4452
        (Ada_Version >= Ada_2005
4453
          and then Present (Expr)
4454
          and then Known_Null (Expr));
4455
 
4456
      case Ekind (Typ) is
4457
         when E_Array_Type  =>
4458
            Comp_Typ := Component_Type (Typ);
4459
 
4460
         when E_Component    |
4461
              E_Discriminant =>
4462
            Comp_Typ := Etype (Typ);
4463
 
4464
         when others =>
4465
            return;
4466
      end case;
4467
 
4468
      if Can_Never_Be_Null (Comp_Typ) then
4469
 
4470
         --  Here we know we have a constraint error. Note that we do not use
4471
         --  Apply_Compile_Time_Constraint_Error here to the Expr, which might
4472
         --  seem the more natural approach. That's because in some cases the
4473
         --  components are rewritten, and the replacement would be missed.
4474
 
4475
         Insert_Action
4476
           (Compile_Time_Constraint_Error
4477
              (Expr,
4478
               "(Ada 2005) null not allowed in null-excluding component?"),
4479
            Make_Raise_Constraint_Error (Sloc (Expr),
4480
              Reason => CE_Access_Check_Failed));
4481
 
4482
         --  Set proper type for bogus component (why is this needed???)
4483
 
4484
         Set_Etype    (Expr, Comp_Typ);
4485
         Set_Analyzed (Expr);
4486
      end if;
4487
   end Check_Can_Never_Be_Null;
4488
 
4489
   ---------------------
4490
   -- Sort_Case_Table --
4491
   ---------------------
4492
 
4493
   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
4494
      L : constant Int := Case_Table'First;
4495
      U : constant Int := Case_Table'Last;
4496
      K : Int;
4497
      J : Int;
4498
      T : Case_Bounds;
4499
 
4500
   begin
4501
      K := L;
4502
      while K /= U loop
4503
         T := Case_Table (K + 1);
4504
 
4505
         J := K + 1;
4506
         while J /= L
4507
           and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
4508
                    Expr_Value (T.Choice_Lo)
4509
         loop
4510
            Case_Table (J) := Case_Table (J - 1);
4511
            J := J - 1;
4512
         end loop;
4513
 
4514
         Case_Table (J) := T;
4515
         K := K + 1;
4516
      end loop;
4517
   end Sort_Case_Table;
4518
 
4519
end Sem_Aggr;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.