OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [sem_attr.adb] - Blame information for rev 720

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                             S E M _ A T T R                              --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17
-- for  more details.  You should have  received  a copy of the GNU General --
18
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19
-- http://www.gnu.org/licenses for a complete copy of the license.          --
20
--                                                                          --
21
-- GNAT was originally developed  by the GNAT team at  New York University. --
22
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23
--                                                                          --
24
------------------------------------------------------------------------------
25
 
26
with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
27
 
28
with Atree;    use Atree;
29
with Casing;   use Casing;
30
with Checks;   use Checks;
31
with Einfo;    use Einfo;
32
with Errout;   use Errout;
33
with Eval_Fat;
34
with Exp_Dist; use Exp_Dist;
35
with Exp_Util; use Exp_Util;
36
with Expander; use Expander;
37
with Freeze;   use Freeze;
38
with Gnatvsn;  use Gnatvsn;
39
with Itypes;   use Itypes;
40
with Lib;      use Lib;
41
with Lib.Xref; use Lib.Xref;
42
with Nlists;   use Nlists;
43
with Nmake;    use Nmake;
44
with Opt;      use Opt;
45
with Restrict; use Restrict;
46
with Rident;   use Rident;
47
with Rtsfind;  use Rtsfind;
48
with Sdefault; use Sdefault;
49
with Sem;      use Sem;
50
with Sem_Aux;  use Sem_Aux;
51
with Sem_Cat;  use Sem_Cat;
52
with Sem_Ch6;  use Sem_Ch6;
53
with Sem_Ch8;  use Sem_Ch8;
54
with Sem_Ch10; use Sem_Ch10;
55
with Sem_Dim;  use Sem_Dim;
56
with Sem_Dist; use Sem_Dist;
57
with Sem_Elim; use Sem_Elim;
58
with Sem_Eval; use Sem_Eval;
59
with Sem_Res;  use Sem_Res;
60
with Sem_Type; use Sem_Type;
61
with Sem_Util; use Sem_Util;
62
with Stand;    use Stand;
63
with Sinfo;    use Sinfo;
64
with Sinput;   use Sinput;
65
with Stringt;  use Stringt;
66
with Style;
67
with Stylesw;  use Stylesw;
68
with Targparm; use Targparm;
69
with Ttypes;   use Ttypes;
70
with Tbuild;   use Tbuild;
71
with Uintp;    use Uintp;
72
with Urealp;   use Urealp;
73
 
74
package body Sem_Attr is
75
 
76
   True_Value  : constant Uint := Uint_1;
77
   False_Value : constant Uint := Uint_0;
78
   --  Synonyms to be used when these constants are used as Boolean values
79
 
80
   Bad_Attribute : exception;
81
   --  Exception raised if an error is detected during attribute processing,
82
   --  used so that we can abandon the processing so we don't run into
83
   --  trouble with cascaded errors.
84
 
85
   --  The following array is the list of attributes defined in the Ada 83 RM
86
   --  that are not included in Ada 95, but still get recognized in GNAT.
87
 
88
   Attribute_83 : constant Attribute_Class_Array := Attribute_Class_Array'(
89
      Attribute_Address                |
90
      Attribute_Aft                    |
91
      Attribute_Alignment              |
92
      Attribute_Base                   |
93
      Attribute_Callable               |
94
      Attribute_Constrained            |
95
      Attribute_Count                  |
96
      Attribute_Delta                  |
97
      Attribute_Digits                 |
98
      Attribute_Emax                   |
99
      Attribute_Epsilon                |
100
      Attribute_First                  |
101
      Attribute_First_Bit              |
102
      Attribute_Fore                   |
103
      Attribute_Image                  |
104
      Attribute_Large                  |
105
      Attribute_Last                   |
106
      Attribute_Last_Bit               |
107
      Attribute_Leading_Part           |
108
      Attribute_Length                 |
109
      Attribute_Machine_Emax           |
110
      Attribute_Machine_Emin           |
111
      Attribute_Machine_Mantissa       |
112
      Attribute_Machine_Overflows      |
113
      Attribute_Machine_Radix          |
114
      Attribute_Machine_Rounds         |
115
      Attribute_Mantissa               |
116
      Attribute_Pos                    |
117
      Attribute_Position               |
118
      Attribute_Pred                   |
119
      Attribute_Range                  |
120
      Attribute_Safe_Emax              |
121
      Attribute_Safe_Large             |
122
      Attribute_Safe_Small             |
123
      Attribute_Size                   |
124
      Attribute_Small                  |
125
      Attribute_Storage_Size           |
126
      Attribute_Succ                   |
127
      Attribute_Terminated             |
128
      Attribute_Val                    |
129
      Attribute_Value                  |
130
      Attribute_Width                  => True,
131
      others                           => False);
132
 
133
   --  The following array is the list of attributes defined in the Ada 2005
134
   --  RM which are not defined in Ada 95. These are recognized in Ada 95 mode,
135
   --  but in Ada 95 they are considered to be implementation defined.
136
 
137
   Attribute_05 : constant Attribute_Class_Array := Attribute_Class_Array'(
138
      Attribute_Machine_Rounding       |
139
      Attribute_Mod                    |
140
      Attribute_Priority               |
141
      Attribute_Stream_Size            |
142
      Attribute_Wide_Wide_Width        => True,
143
      others                           => False);
144
 
145
   --  The following array contains all attributes that imply a modification
146
   --  of their prefixes or result in an access value. Such prefixes can be
147
   --  considered as lvalues.
148
 
149
   Attribute_Name_Implies_Lvalue_Prefix : constant Attribute_Class_Array :=
150
      Attribute_Class_Array'(
151
      Attribute_Access                 |
152
      Attribute_Address                |
153
      Attribute_Input                  |
154
      Attribute_Read                   |
155
      Attribute_Unchecked_Access       |
156
      Attribute_Unrestricted_Access    => True,
157
      others                           => False);
158
 
159
   -----------------------
160
   -- Local_Subprograms --
161
   -----------------------
162
 
163
   procedure Eval_Attribute (N : Node_Id);
164
   --  Performs compile time evaluation of attributes where possible, leaving
165
   --  the Is_Static_Expression/Raises_Constraint_Error flags appropriately
166
   --  set, and replacing the node with a literal node if the value can be
167
   --  computed at compile time. All static attribute references are folded,
168
   --  as well as a number of cases of non-static attributes that can always
169
   --  be computed at compile time (e.g. floating-point model attributes that
170
   --  are applied to non-static subtypes). Of course in such cases, the
171
   --  Is_Static_Expression flag will not be set on the resulting literal.
172
   --  Note that the only required action of this procedure is to catch the
173
   --  static expression cases as described in the RM. Folding of other cases
174
   --  is done where convenient, but some additional non-static folding is in
175
   --  N_Expand_Attribute_Reference in cases where this is more convenient.
176
 
177
   function Is_Anonymous_Tagged_Base
178
     (Anon : Entity_Id;
179
      Typ  : Entity_Id)
180
      return Boolean;
181
   --  For derived tagged types that constrain parent discriminants we build
182
   --  an anonymous unconstrained base type. We need to recognize the relation
183
   --  between the two when analyzing an access attribute for a constrained
184
   --  component, before the full declaration for Typ has been analyzed, and
185
   --  where therefore the prefix of the attribute does not match the enclosing
186
   --  scope.
187
 
188
   -----------------------
189
   -- Analyze_Attribute --
190
   -----------------------
191
 
192
   procedure Analyze_Attribute (N : Node_Id) is
193
      Loc     : constant Source_Ptr   := Sloc (N);
194
      Aname   : constant Name_Id      := Attribute_Name (N);
195
      P       : constant Node_Id      := Prefix (N);
196
      Exprs   : constant List_Id      := Expressions (N);
197
      Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
198
      E1      : Node_Id;
199
      E2      : Node_Id;
200
 
201
      P_Type : Entity_Id;
202
      --  Type of prefix after analysis
203
 
204
      P_Base_Type : Entity_Id;
205
      --  Base type of prefix after analysis
206
 
207
      -----------------------
208
      -- Local Subprograms --
209
      -----------------------
210
 
211
      procedure Analyze_Access_Attribute;
212
      --  Used for Access, Unchecked_Access, Unrestricted_Access attributes.
213
      --  Internally, Id distinguishes which of the three cases is involved.
214
 
215
      procedure Bad_Attribute_For_Predicate;
216
      --  Output error message for use of a predicate (First, Last, Range) not
217
      --  allowed with a type that has predicates. If the type is a generic
218
      --  actual, then the message is a warning, and we generate code to raise
219
      --  program error with an appropriate reason. No error message is given
220
      --  for internally generated uses of the attributes.
221
      --  The legality rule only applies to scalar types, even though the
222
      --  current AI mentions all subtypes.
223
 
224
      procedure Check_Array_Or_Scalar_Type;
225
      --  Common procedure used by First, Last, Range attribute to check
226
      --  that the prefix is a constrained array or scalar type, or a name
227
      --  of an array object, and that an argument appears only if appropriate
228
      --  (i.e. only in the array case).
229
 
230
      procedure Check_Array_Type;
231
      --  Common semantic checks for all array attributes. Checks that the
232
      --  prefix is a constrained array type or the name of an array object.
233
      --  The error message for non-arrays is specialized appropriately.
234
 
235
      procedure Check_Asm_Attribute;
236
      --  Common semantic checks for Asm_Input and Asm_Output attributes
237
 
238
      procedure Check_Component;
239
      --  Common processing for Bit_Position, First_Bit, Last_Bit, and
240
      --  Position. Checks prefix is an appropriate selected component.
241
 
242
      procedure Check_Decimal_Fixed_Point_Type;
243
      --  Check that prefix of attribute N is a decimal fixed-point type
244
 
245
      procedure Check_Dereference;
246
      --  If the prefix of attribute is an object of an access type, then
247
      --  introduce an explicit dereference, and adjust P_Type accordingly.
248
 
249
      procedure Check_Discrete_Type;
250
      --  Verify that prefix of attribute N is a discrete type
251
 
252
      procedure Check_E0;
253
      --  Check that no attribute arguments are present
254
 
255
      procedure Check_Either_E0_Or_E1;
256
      --  Check that there are zero or one attribute arguments present
257
 
258
      procedure Check_E1;
259
      --  Check that exactly one attribute argument is present
260
 
261
      procedure Check_E2;
262
      --  Check that two attribute arguments are present
263
 
264
      procedure Check_Enum_Image;
265
      --  If the prefix type is an enumeration type, set all its literals
266
      --  as referenced, since the image function could possibly end up
267
      --  referencing any of the literals indirectly. Same for Enum_Val.
268
      --  Set the flag only if the reference is in the main code unit. Same
269
      --  restriction when resolving 'Value; otherwise an improperly set
270
      --  reference when analyzing an inlined body will lose a proper warning
271
      --  on a useless with_clause.
272
 
273
      procedure Check_Fixed_Point_Type;
274
      --  Verify that prefix of attribute N is a fixed type
275
 
276
      procedure Check_Fixed_Point_Type_0;
277
      --  Verify that prefix of attribute N is a fixed type and that
278
      --  no attribute expressions are present
279
 
280
      procedure Check_Floating_Point_Type;
281
      --  Verify that prefix of attribute N is a float type
282
 
283
      procedure Check_Floating_Point_Type_0;
284
      --  Verify that prefix of attribute N is a float type and that
285
      --  no attribute expressions are present
286
 
287
      procedure Check_Floating_Point_Type_1;
288
      --  Verify that prefix of attribute N is a float type and that
289
      --  exactly one attribute expression is present
290
 
291
      procedure Check_Floating_Point_Type_2;
292
      --  Verify that prefix of attribute N is a float type and that
293
      --  two attribute expressions are present
294
 
295
      procedure Legal_Formal_Attribute;
296
      --  Common processing for attributes Definite and Has_Discriminants.
297
      --  Checks that prefix is generic indefinite formal type.
298
 
299
      procedure Check_SPARK_Restriction_On_Attribute;
300
      --  Issue an error in formal mode because attribute N is allowed
301
 
302
      procedure Check_Integer_Type;
303
      --  Verify that prefix of attribute N is an integer type
304
 
305
      procedure Check_Modular_Integer_Type;
306
      --  Verify that prefix of attribute N is a modular integer type
307
 
308
      procedure Check_Not_CPP_Type;
309
      --  Check that P (the prefix of the attribute) is not an CPP type
310
      --  for which no Ada predefined primitive is available.
311
 
312
      procedure Check_Not_Incomplete_Type;
313
      --  Check that P (the prefix of the attribute) is not an incomplete
314
      --  type or a private type for which no full view has been given.
315
 
316
      procedure Check_Object_Reference (P : Node_Id);
317
      --  Check that P (the prefix of the attribute) is an object reference
318
 
319
      procedure Check_Program_Unit;
320
      --  Verify that prefix of attribute N is a program unit
321
 
322
      procedure Check_Real_Type;
323
      --  Verify that prefix of attribute N is fixed or float type
324
 
325
      procedure Check_Scalar_Type;
326
      --  Verify that prefix of attribute N is a scalar type
327
 
328
      procedure Check_Standard_Prefix;
329
      --  Verify that prefix of attribute N is package Standard
330
 
331
      procedure Check_Stream_Attribute (Nam : TSS_Name_Type);
332
      --  Validity checking for stream attribute. Nam is the TSS name of the
333
      --  corresponding possible defined attribute function (e.g. for the
334
      --  Read attribute, Nam will be TSS_Stream_Read).
335
 
336
      procedure Check_PolyORB_Attribute;
337
      --  Validity checking for PolyORB/DSA attribute
338
 
339
      procedure Check_Task_Prefix;
340
      --  Verify that prefix of attribute N is a task or task type
341
 
342
      procedure Check_Type;
343
      --  Verify that the prefix of attribute N is a type
344
 
345
      procedure Check_Unit_Name (Nod : Node_Id);
346
      --  Check that Nod is of the form of a library unit name, i.e that
347
      --  it is an identifier, or a selected component whose prefix is
348
      --  itself of the form of a library unit name. Note that this is
349
      --  quite different from Check_Program_Unit, since it only checks
350
      --  the syntactic form of the name, not the semantic identity. This
351
      --  is because it is used with attributes (Elab_Body, Elab_Spec,
352
      --  UET_Address and Elaborated) which can refer to non-visible unit.
353
 
354
      procedure Error_Attr (Msg : String; Error_Node : Node_Id);
355
      pragma No_Return (Error_Attr);
356
      procedure Error_Attr;
357
      pragma No_Return (Error_Attr);
358
      --  Posts error using Error_Msg_N at given node, sets type of attribute
359
      --  node to Any_Type, and then raises Bad_Attribute to avoid any further
360
      --  semantic processing. The message typically contains a % insertion
361
      --  character which is replaced by the attribute name. The call with
362
      --  no arguments is used when the caller has already generated the
363
      --  required error messages.
364
 
365
      procedure Error_Attr_P (Msg : String);
366
      pragma No_Return (Error_Attr);
367
      --  Like Error_Attr, but error is posted at the start of the prefix
368
 
369
      procedure Standard_Attribute (Val : Int);
370
      --  Used to process attributes whose prefix is package Standard which
371
      --  yield values of type Universal_Integer. The attribute reference
372
      --  node is rewritten with an integer literal of the given value.
373
 
374
      procedure Unexpected_Argument (En : Node_Id);
375
      --  Signal unexpected attribute argument (En is the argument)
376
 
377
      procedure Validate_Non_Static_Attribute_Function_Call;
378
      --  Called when processing an attribute that is a function call to a
379
      --  non-static function, i.e. an attribute function that either takes
380
      --  non-scalar arguments or returns a non-scalar result. Verifies that
381
      --  such a call does not appear in a preelaborable context.
382
 
383
      ------------------------------
384
      -- Analyze_Access_Attribute --
385
      ------------------------------
386
 
387
      procedure Analyze_Access_Attribute is
388
         Acc_Type : Entity_Id;
389
 
390
         Scop : Entity_Id;
391
         Typ  : Entity_Id;
392
 
393
         function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id;
394
         --  Build an access-to-object type whose designated type is DT,
395
         --  and whose Ekind is appropriate to the attribute type. The
396
         --  type that is constructed is returned as the result.
397
 
398
         procedure Build_Access_Subprogram_Type (P : Node_Id);
399
         --  Build an access to subprogram whose designated type is the type of
400
         --  the prefix. If prefix is overloaded, so is the node itself. The
401
         --  result is stored in Acc_Type.
402
 
403
         function OK_Self_Reference return Boolean;
404
         --  An access reference whose prefix is a type can legally appear
405
         --  within an aggregate, where it is obtained by expansion of
406
         --  a defaulted aggregate. The enclosing aggregate that contains
407
         --  the self-referenced is flagged so that the self-reference can
408
         --  be expanded into a reference to the target object (see exp_aggr).
409
 
410
         ------------------------------
411
         -- Build_Access_Object_Type --
412
         ------------------------------
413
 
414
         function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id is
415
            Typ : constant Entity_Id :=
416
                    New_Internal_Entity
417
                      (E_Access_Attribute_Type, Current_Scope, Loc, 'A');
418
         begin
419
            Set_Etype                     (Typ, Typ);
420
            Set_Is_Itype                  (Typ);
421
            Set_Associated_Node_For_Itype (Typ, N);
422
            Set_Directly_Designated_Type  (Typ, DT);
423
            return Typ;
424
         end Build_Access_Object_Type;
425
 
426
         ----------------------------------
427
         -- Build_Access_Subprogram_Type --
428
         ----------------------------------
429
 
430
         procedure Build_Access_Subprogram_Type (P : Node_Id) is
431
            Index : Interp_Index;
432
            It    : Interp;
433
 
434
            procedure Check_Local_Access (E : Entity_Id);
435
            --  Deal with possible access to local subprogram. If we have such
436
            --  an access, we set a flag to kill all tracked values on any call
437
            --  because this access value may be passed around, and any called
438
            --  code might use it to access a local procedure which clobbers a
439
            --  tracked value. If the scope is a loop or block, indicate that
440
            --  value tracking is disabled for the enclosing subprogram.
441
 
442
            function Get_Kind (E : Entity_Id) return Entity_Kind;
443
            --  Distinguish between access to regular/protected subprograms
444
 
445
            ------------------------
446
            -- Check_Local_Access --
447
            ------------------------
448
 
449
            procedure Check_Local_Access (E : Entity_Id) is
450
            begin
451
               if not Is_Library_Level_Entity (E) then
452
                  Set_Suppress_Value_Tracking_On_Call (Current_Scope);
453
                  Set_Suppress_Value_Tracking_On_Call
454
                    (Nearest_Dynamic_Scope (Current_Scope));
455
               end if;
456
            end Check_Local_Access;
457
 
458
            --------------
459
            -- Get_Kind --
460
            --------------
461
 
462
            function Get_Kind (E : Entity_Id) return Entity_Kind is
463
            begin
464
               if Convention (E) = Convention_Protected then
465
                  return E_Access_Protected_Subprogram_Type;
466
               else
467
                  return E_Access_Subprogram_Type;
468
               end if;
469
            end Get_Kind;
470
 
471
         --  Start of processing for Build_Access_Subprogram_Type
472
 
473
         begin
474
            --  In the case of an access to subprogram, use the name of the
475
            --  subprogram itself as the designated type. Type-checking in
476
            --  this case compares the signatures of the designated types.
477
 
478
            --  Note: This fragment of the tree is temporarily malformed
479
            --  because the correct tree requires an E_Subprogram_Type entity
480
            --  as the designated type. In most cases this designated type is
481
            --  later overridden by the semantics with the type imposed by the
482
            --  context during the resolution phase. In the specific case of
483
            --  the expression Address!(Prim'Unrestricted_Access), used to
484
            --  initialize slots of dispatch tables, this work will be done by
485
            --  the expander (see Exp_Aggr).
486
 
487
            --  The reason to temporarily add this kind of node to the tree
488
            --  instead of a proper E_Subprogram_Type itype, is the following:
489
            --  in case of errors found in the source file we report better
490
            --  error messages. For example, instead of generating the
491
            --  following error:
492
 
493
            --      "expected access to subprogram with profile
494
            --       defined at line X"
495
 
496
            --  we currently generate:
497
 
498
            --      "expected access to function Z defined at line X"
499
 
500
            Set_Etype (N, Any_Type);
501
 
502
            if not Is_Overloaded (P) then
503
               Check_Local_Access (Entity (P));
504
 
505
               if not Is_Intrinsic_Subprogram (Entity (P)) then
506
                  Acc_Type := Create_Itype (Get_Kind (Entity (P)), N);
507
                  Set_Is_Public (Acc_Type, False);
508
                  Set_Etype (Acc_Type, Acc_Type);
509
                  Set_Convention (Acc_Type, Convention (Entity (P)));
510
                  Set_Directly_Designated_Type (Acc_Type, Entity (P));
511
                  Set_Etype (N, Acc_Type);
512
                  Freeze_Before (N, Acc_Type);
513
               end if;
514
 
515
            else
516
               Get_First_Interp (P, Index, It);
517
               while Present (It.Nam) loop
518
                  Check_Local_Access (It.Nam);
519
 
520
                  if not Is_Intrinsic_Subprogram (It.Nam) then
521
                     Acc_Type := Create_Itype (Get_Kind (It.Nam), N);
522
                     Set_Is_Public (Acc_Type, False);
523
                     Set_Etype (Acc_Type, Acc_Type);
524
                     Set_Convention (Acc_Type, Convention (It.Nam));
525
                     Set_Directly_Designated_Type (Acc_Type, It.Nam);
526
                     Add_One_Interp (N, Acc_Type, Acc_Type);
527
                     Freeze_Before (N, Acc_Type);
528
                  end if;
529
 
530
                  Get_Next_Interp (Index, It);
531
               end loop;
532
            end if;
533
 
534
            --  Cannot be applied to intrinsic. Looking at the tests above,
535
            --  the only way Etype (N) can still be set to Any_Type is if
536
            --  Is_Intrinsic_Subprogram was True for some referenced entity.
537
 
538
            if Etype (N) = Any_Type then
539
               Error_Attr_P ("prefix of % attribute cannot be intrinsic");
540
            end if;
541
         end Build_Access_Subprogram_Type;
542
 
543
         ----------------------
544
         -- OK_Self_Reference --
545
         ----------------------
546
 
547
         function OK_Self_Reference return Boolean is
548
            Par : Node_Id;
549
 
550
         begin
551
            Par := Parent (N);
552
            while Present (Par)
553
              and then
554
               (Nkind (Par) = N_Component_Association
555
                 or else Nkind (Par) in N_Subexpr)
556
            loop
557
               if Nkind_In (Par, N_Aggregate, N_Extension_Aggregate) then
558
                  if Etype (Par) = Typ then
559
                     Set_Has_Self_Reference (Par);
560
                     return True;
561
                  end if;
562
               end if;
563
 
564
               Par := Parent (Par);
565
            end loop;
566
 
567
            --  No enclosing aggregate, or not a self-reference
568
 
569
            return False;
570
         end OK_Self_Reference;
571
 
572
      --  Start of processing for Analyze_Access_Attribute
573
 
574
      begin
575
         Check_SPARK_Restriction_On_Attribute;
576
         Check_E0;
577
 
578
         if Nkind (P) = N_Character_Literal then
579
            Error_Attr_P
580
              ("prefix of % attribute cannot be enumeration literal");
581
         end if;
582
 
583
         --  Case of access to subprogram
584
 
585
         if Is_Entity_Name (P)
586
           and then Is_Overloadable (Entity (P))
587
         then
588
            if Has_Pragma_Inline_Always (Entity (P)) then
589
               Error_Attr_P
590
                 ("prefix of % attribute cannot be Inline_Always subprogram");
591
            end if;
592
 
593
            if Aname = Name_Unchecked_Access then
594
               Error_Attr ("attribute% cannot be applied to a subprogram", P);
595
            end if;
596
 
597
            --  Issue an error if the prefix denotes an eliminated subprogram
598
 
599
            Check_For_Eliminated_Subprogram (P, Entity (P));
600
 
601
            --  Check for obsolescent subprogram reference
602
 
603
            Check_Obsolescent_2005_Entity (Entity (P), P);
604
 
605
            --  Build the appropriate subprogram type
606
 
607
            Build_Access_Subprogram_Type (P);
608
 
609
            --  For P'Access or P'Unrestricted_Access, where P is a nested
610
            --  subprogram, we might be passing P to another subprogram (but we
611
            --  don't check that here), which might call P. P could modify
612
            --  local variables, so we need to kill current values. It is
613
            --  important not to do this for library-level subprograms, because
614
            --  Kill_Current_Values is very inefficient in the case of library
615
            --  level packages with lots of tagged types.
616
 
617
            if Is_Library_Level_Entity (Entity (Prefix (N))) then
618
               null;
619
 
620
            --  Do not kill values on nodes initializing dispatch tables
621
            --  slots. The construct Prim_Ptr!(Prim'Unrestricted_Access)
622
            --  is currently generated by the expander only for this
623
            --  purpose. Done to keep the quality of warnings currently
624
            --  generated by the compiler (otherwise any declaration of
625
            --  a tagged type cleans constant indications from its scope).
626
 
627
            elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
628
              and then (Etype (Parent (N)) = RTE (RE_Prim_Ptr)
629
                          or else
630
                        Etype (Parent (N)) = RTE (RE_Size_Ptr))
631
              and then Is_Dispatching_Operation
632
                         (Directly_Designated_Type (Etype (N)))
633
            then
634
               null;
635
 
636
            else
637
               Kill_Current_Values;
638
            end if;
639
 
640
            return;
641
 
642
         --  Component is an operation of a protected type
643
 
644
         elsif Nkind (P) = N_Selected_Component
645
           and then Is_Overloadable (Entity (Selector_Name (P)))
646
         then
647
            if Ekind (Entity (Selector_Name (P))) = E_Entry then
648
               Error_Attr_P ("prefix of % attribute must be subprogram");
649
            end if;
650
 
651
            Build_Access_Subprogram_Type (Selector_Name (P));
652
            return;
653
         end if;
654
 
655
         --  Deal with incorrect reference to a type, but note that some
656
         --  accesses are allowed: references to the current type instance,
657
         --  or in Ada 2005 self-referential pointer in a default-initialized
658
         --  aggregate.
659
 
660
         if Is_Entity_Name (P) then
661
            Typ := Entity (P);
662
 
663
            --  The reference may appear in an aggregate that has been expanded
664
            --  into a loop. Locate scope of type definition, if any.
665
 
666
            Scop := Current_Scope;
667
            while Ekind (Scop) = E_Loop loop
668
               Scop := Scope (Scop);
669
            end loop;
670
 
671
            if Is_Type (Typ) then
672
 
673
               --  OK if we are within the scope of a limited type
674
               --  let's mark the component as having per object constraint
675
 
676
               if Is_Anonymous_Tagged_Base (Scop, Typ) then
677
                  Typ := Scop;
678
                  Set_Entity (P, Typ);
679
                  Set_Etype  (P, Typ);
680
               end if;
681
 
682
               if Typ = Scop then
683
                  declare
684
                     Q : Node_Id := Parent (N);
685
 
686
                  begin
687
                     while Present (Q)
688
                       and then Nkind (Q) /= N_Component_Declaration
689
                     loop
690
                        Q := Parent (Q);
691
                     end loop;
692
 
693
                     if Present (Q) then
694
                        Set_Has_Per_Object_Constraint
695
                          (Defining_Identifier (Q), True);
696
                     end if;
697
                  end;
698
 
699
                  if Nkind (P) = N_Expanded_Name then
700
                     Error_Msg_F
701
                       ("current instance prefix must be a direct name", P);
702
                  end if;
703
 
704
                  --  If a current instance attribute appears in a component
705
                  --  constraint it must appear alone; other contexts (spec-
706
                  --  expressions, within a task body) are not subject to this
707
                  --  restriction.
708
 
709
                  if not In_Spec_Expression
710
                    and then not Has_Completion (Scop)
711
                    and then not
712
                      Nkind_In (Parent (N), N_Discriminant_Association,
713
                                            N_Index_Or_Discriminant_Constraint)
714
                  then
715
                     Error_Msg_N
716
                       ("current instance attribute must appear alone", N);
717
                  end if;
718
 
719
                  if Is_CPP_Class (Root_Type (Typ)) then
720
                     Error_Msg_N
721
                       ("?current instance unsupported for derivations of "
722
                        & "'C'P'P types", N);
723
                  end if;
724
 
725
               --  OK if we are in initialization procedure for the type
726
               --  in question, in which case the reference to the type
727
               --  is rewritten as a reference to the current object.
728
 
729
               elsif Ekind (Scop) = E_Procedure
730
                 and then Is_Init_Proc (Scop)
731
                 and then Etype (First_Formal (Scop)) = Typ
732
               then
733
                  Rewrite (N,
734
                    Make_Attribute_Reference (Loc,
735
                      Prefix         => Make_Identifier (Loc, Name_uInit),
736
                      Attribute_Name => Name_Unrestricted_Access));
737
                  Analyze (N);
738
                  return;
739
 
740
               --  OK if a task type, this test needs sharpening up ???
741
 
742
               elsif Is_Task_Type (Typ) then
743
                  null;
744
 
745
               --  OK if self-reference in an aggregate in Ada 2005, and
746
               --  the reference comes from a copied default expression.
747
 
748
               --  Note that we check legality of self-reference even if the
749
               --  expression comes from source, e.g. when a single component
750
               --  association in an aggregate has a box association.
751
 
752
               elsif Ada_Version >= Ada_2005
753
                 and then OK_Self_Reference
754
               then
755
                  null;
756
 
757
               --  OK if reference to current instance of a protected object
758
 
759
               elsif Is_Protected_Self_Reference (P) then
760
                  null;
761
 
762
               --  Otherwise we have an error case
763
 
764
               else
765
                  Error_Attr ("% attribute cannot be applied to type", P);
766
                  return;
767
               end if;
768
            end if;
769
         end if;
770
 
771
         --  If we fall through, we have a normal access to object case.
772
         --  Unrestricted_Access is legal wherever an allocator would be
773
         --  legal, so its Etype is set to E_Allocator. The expected type
774
         --  of the other attributes is a general access type, and therefore
775
         --  we label them with E_Access_Attribute_Type.
776
 
777
         if not Is_Overloaded (P) then
778
            Acc_Type := Build_Access_Object_Type (P_Type);
779
            Set_Etype (N, Acc_Type);
780
         else
781
            declare
782
               Index : Interp_Index;
783
               It    : Interp;
784
            begin
785
               Set_Etype (N, Any_Type);
786
               Get_First_Interp (P, Index, It);
787
               while Present (It.Typ) loop
788
                  Acc_Type := Build_Access_Object_Type (It.Typ);
789
                  Add_One_Interp (N, Acc_Type, Acc_Type);
790
                  Get_Next_Interp (Index, It);
791
               end loop;
792
            end;
793
         end if;
794
 
795
         --  Special cases when we can find a prefix that is an entity name
796
 
797
         declare
798
            PP  : Node_Id;
799
            Ent : Entity_Id;
800
 
801
         begin
802
            PP := P;
803
            loop
804
               if Is_Entity_Name (PP) then
805
                  Ent := Entity (PP);
806
 
807
                  --  If we have an access to an object, and the attribute
808
                  --  comes from source, then set the object as potentially
809
                  --  source modified. We do this because the resulting access
810
                  --  pointer can be used to modify the variable, and we might
811
                  --  not detect this, leading to some junk warnings.
812
 
813
                  Set_Never_Set_In_Source (Ent, False);
814
 
815
                  --  Mark entity as address taken, and kill current values
816
 
817
                  Set_Address_Taken (Ent);
818
                  Kill_Current_Values (Ent);
819
                  exit;
820
 
821
               elsif Nkind_In (PP, N_Selected_Component,
822
                                   N_Indexed_Component)
823
               then
824
                  PP := Prefix (PP);
825
 
826
               else
827
                  exit;
828
               end if;
829
            end loop;
830
         end;
831
 
832
         --  Check for aliased view unless unrestricted case. We allow a
833
         --  nonaliased prefix when within an instance because the prefix may
834
         --  have been a tagged formal object, which is defined to be aliased
835
         --  even when the actual might not be (other instance cases will have
836
         --  been caught in the generic). Similarly, within an inlined body we
837
         --  know that the attribute is legal in the original subprogram, and
838
         --  therefore legal in the expansion.
839
 
840
         if Aname /= Name_Unrestricted_Access
841
           and then not Is_Aliased_View (P)
842
           and then not In_Instance
843
           and then not In_Inlined_Body
844
         then
845
            Error_Attr_P ("prefix of % attribute must be aliased");
846
            Check_No_Implicit_Aliasing (P);
847
         end if;
848
      end Analyze_Access_Attribute;
849
 
850
      ---------------------------------
851
      -- Bad_Attribute_For_Predicate --
852
      ---------------------------------
853
 
854
      procedure Bad_Attribute_For_Predicate is
855
      begin
856
         if Is_Scalar_Type (P_Type)
857
           and then  Comes_From_Source (N)
858
         then
859
            Error_Msg_Name_1 := Aname;
860
            Bad_Predicated_Subtype_Use
861
              ("type& has predicates, attribute % not allowed", N, P_Type);
862
         end if;
863
      end Bad_Attribute_For_Predicate;
864
 
865
      --------------------------------
866
      -- Check_Array_Or_Scalar_Type --
867
      --------------------------------
868
 
869
      procedure Check_Array_Or_Scalar_Type is
870
         Index : Entity_Id;
871
 
872
         D : Int;
873
         --  Dimension number for array attributes
874
 
875
      begin
876
         --  Case of string literal or string literal subtype. These cases
877
         --  cannot arise from legal Ada code, but the expander is allowed
878
         --  to generate them. They require special handling because string
879
         --  literal subtypes do not have standard bounds (the whole idea
880
         --  of these subtypes is to avoid having to generate the bounds)
881
 
882
         if Ekind (P_Type) = E_String_Literal_Subtype then
883
            Set_Etype (N, Etype (First_Index (P_Base_Type)));
884
            return;
885
 
886
         --  Scalar types
887
 
888
         elsif Is_Scalar_Type (P_Type) then
889
            Check_Type;
890
 
891
            if Present (E1) then
892
               Error_Attr ("invalid argument in % attribute", E1);
893
            else
894
               Set_Etype (N, P_Base_Type);
895
               return;
896
            end if;
897
 
898
         --  The following is a special test to allow 'First to apply to
899
         --  private scalar types if the attribute comes from generated
900
         --  code. This occurs in the case of Normalize_Scalars code.
901
 
902
         elsif Is_Private_Type (P_Type)
903
           and then Present (Full_View (P_Type))
904
           and then Is_Scalar_Type (Full_View (P_Type))
905
           and then not Comes_From_Source (N)
906
         then
907
            Set_Etype (N, Implementation_Base_Type (P_Type));
908
 
909
         --  Array types other than string literal subtypes handled above
910
 
911
         else
912
            Check_Array_Type;
913
 
914
            --  We know prefix is an array type, or the name of an array
915
            --  object, and that the expression, if present, is static
916
            --  and within the range of the dimensions of the type.
917
 
918
            pragma Assert (Is_Array_Type (P_Type));
919
            Index := First_Index (P_Base_Type);
920
 
921
            if No (E1) then
922
 
923
               --  First dimension assumed
924
 
925
               Set_Etype (N, Base_Type (Etype (Index)));
926
 
927
            else
928
               D := UI_To_Int (Intval (E1));
929
 
930
               for J in 1 .. D - 1 loop
931
                  Next_Index (Index);
932
               end loop;
933
 
934
               Set_Etype (N, Base_Type (Etype (Index)));
935
               Set_Etype (E1, Standard_Integer);
936
            end if;
937
         end if;
938
      end Check_Array_Or_Scalar_Type;
939
 
940
      ----------------------
941
      -- Check_Array_Type --
942
      ----------------------
943
 
944
      procedure Check_Array_Type is
945
         D : Int;
946
         --  Dimension number for array attributes
947
 
948
      begin
949
         --  If the type is a string literal type, then this must be generated
950
         --  internally, and no further check is required on its legality.
951
 
952
         if Ekind (P_Type) = E_String_Literal_Subtype then
953
            return;
954
 
955
         --  If the type is a composite, it is an illegal aggregate, no point
956
         --  in going on.
957
 
958
         elsif P_Type = Any_Composite then
959
            raise Bad_Attribute;
960
         end if;
961
 
962
         --  Normal case of array type or subtype
963
 
964
         Check_Either_E0_Or_E1;
965
         Check_Dereference;
966
 
967
         if Is_Array_Type (P_Type) then
968
            if not Is_Constrained (P_Type)
969
              and then Is_Entity_Name (P)
970
              and then Is_Type (Entity (P))
971
            then
972
               --  Note: we do not call Error_Attr here, since we prefer to
973
               --  continue, using the relevant index type of the array,
974
               --  even though it is unconstrained. This gives better error
975
               --  recovery behavior.
976
 
977
               Error_Msg_Name_1 := Aname;
978
               Error_Msg_F
979
                 ("prefix for % attribute must be constrained array", P);
980
            end if;
981
 
982
            D := Number_Dimensions (P_Type);
983
 
984
         else
985
            if Is_Private_Type (P_Type) then
986
               Error_Attr_P ("prefix for % attribute may not be private type");
987
 
988
            elsif Is_Access_Type (P_Type)
989
              and then Is_Array_Type (Designated_Type (P_Type))
990
              and then Is_Entity_Name (P)
991
              and then Is_Type (Entity (P))
992
            then
993
               Error_Attr_P ("prefix of % attribute cannot be access type");
994
 
995
            elsif Attr_Id = Attribute_First
996
                    or else
997
                  Attr_Id = Attribute_Last
998
            then
999
               Error_Attr ("invalid prefix for % attribute", P);
1000
 
1001
            else
1002
               Error_Attr_P ("prefix for % attribute must be array");
1003
            end if;
1004
         end if;
1005
 
1006
         if Present (E1) then
1007
            Resolve (E1, Any_Integer);
1008
            Set_Etype (E1, Standard_Integer);
1009
 
1010
            if not Is_Static_Expression (E1)
1011
              or else Raises_Constraint_Error (E1)
1012
            then
1013
               Flag_Non_Static_Expr
1014
                 ("expression for dimension must be static!", E1);
1015
               Error_Attr;
1016
 
1017
            elsif  UI_To_Int (Expr_Value (E1)) > D
1018
              or else UI_To_Int (Expr_Value (E1)) < 1
1019
            then
1020
               Error_Attr ("invalid dimension number for array type", E1);
1021
            end if;
1022
         end if;
1023
 
1024
         if (Style_Check and Style_Check_Array_Attribute_Index)
1025
           and then Comes_From_Source (N)
1026
         then
1027
            Style.Check_Array_Attribute_Index (N, E1, D);
1028
         end if;
1029
      end Check_Array_Type;
1030
 
1031
      -------------------------
1032
      -- Check_Asm_Attribute --
1033
      -------------------------
1034
 
1035
      procedure Check_Asm_Attribute is
1036
      begin
1037
         Check_Type;
1038
         Check_E2;
1039
 
1040
         --  Check first argument is static string expression
1041
 
1042
         Analyze_And_Resolve (E1, Standard_String);
1043
 
1044
         if Etype (E1) = Any_Type then
1045
            return;
1046
 
1047
         elsif not Is_OK_Static_Expression (E1) then
1048
            Flag_Non_Static_Expr
1049
              ("constraint argument must be static string expression!", E1);
1050
            Error_Attr;
1051
         end if;
1052
 
1053
         --  Check second argument is right type
1054
 
1055
         Analyze_And_Resolve (E2, Entity (P));
1056
 
1057
         --  Note: that is all we need to do, we don't need to check
1058
         --  that it appears in a correct context. The Ada type system
1059
         --  will do that for us.
1060
 
1061
      end Check_Asm_Attribute;
1062
 
1063
      ---------------------
1064
      -- Check_Component --
1065
      ---------------------
1066
 
1067
      procedure Check_Component is
1068
      begin
1069
         Check_E0;
1070
 
1071
         if Nkind (P) /= N_Selected_Component
1072
           or else
1073
             (Ekind (Entity (Selector_Name (P))) /= E_Component
1074
               and then
1075
              Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
1076
         then
1077
            Error_Attr_P ("prefix for % attribute must be selected component");
1078
         end if;
1079
      end Check_Component;
1080
 
1081
      ------------------------------------
1082
      -- Check_Decimal_Fixed_Point_Type --
1083
      ------------------------------------
1084
 
1085
      procedure Check_Decimal_Fixed_Point_Type is
1086
      begin
1087
         Check_Type;
1088
 
1089
         if not Is_Decimal_Fixed_Point_Type (P_Type) then
1090
            Error_Attr_P ("prefix of % attribute must be decimal type");
1091
         end if;
1092
      end Check_Decimal_Fixed_Point_Type;
1093
 
1094
      -----------------------
1095
      -- Check_Dereference --
1096
      -----------------------
1097
 
1098
      procedure Check_Dereference is
1099
      begin
1100
 
1101
         --  Case of a subtype mark
1102
 
1103
         if Is_Entity_Name (P)
1104
           and then Is_Type (Entity (P))
1105
         then
1106
            return;
1107
         end if;
1108
 
1109
         --  Case of an expression
1110
 
1111
         Resolve (P);
1112
 
1113
         if Is_Access_Type (P_Type) then
1114
 
1115
            --  If there is an implicit dereference, then we must freeze
1116
            --  the designated type of the access type, since the type of
1117
            --  the referenced array is this type (see AI95-00106).
1118
 
1119
            --  As done elsewhere, freezing must not happen when pre-analyzing
1120
            --  a pre- or postcondition or a default value for an object or
1121
            --  for a formal parameter.
1122
 
1123
            if not In_Spec_Expression then
1124
               Freeze_Before (N, Designated_Type (P_Type));
1125
            end if;
1126
 
1127
            Rewrite (P,
1128
              Make_Explicit_Dereference (Sloc (P),
1129
                Prefix => Relocate_Node (P)));
1130
 
1131
            Analyze_And_Resolve (P);
1132
            P_Type := Etype (P);
1133
 
1134
            if P_Type = Any_Type then
1135
               raise Bad_Attribute;
1136
            end if;
1137
 
1138
            P_Base_Type := Base_Type (P_Type);
1139
         end if;
1140
      end Check_Dereference;
1141
 
1142
      -------------------------
1143
      -- Check_Discrete_Type --
1144
      -------------------------
1145
 
1146
      procedure Check_Discrete_Type is
1147
      begin
1148
         Check_Type;
1149
 
1150
         if not Is_Discrete_Type (P_Type) then
1151
            Error_Attr_P ("prefix of % attribute must be discrete type");
1152
         end if;
1153
      end Check_Discrete_Type;
1154
 
1155
      --------------
1156
      -- Check_E0 --
1157
      --------------
1158
 
1159
      procedure Check_E0 is
1160
      begin
1161
         if Present (E1) then
1162
            Unexpected_Argument (E1);
1163
         end if;
1164
      end Check_E0;
1165
 
1166
      --------------
1167
      -- Check_E1 --
1168
      --------------
1169
 
1170
      procedure Check_E1 is
1171
      begin
1172
         Check_Either_E0_Or_E1;
1173
 
1174
         if No (E1) then
1175
 
1176
            --  Special-case attributes that are functions and that appear as
1177
            --  the prefix of another attribute. Error is posted on parent.
1178
 
1179
            if Nkind (Parent (N)) = N_Attribute_Reference
1180
              and then (Attribute_Name (Parent (N)) = Name_Address
1181
                          or else
1182
                        Attribute_Name (Parent (N)) = Name_Code_Address
1183
                          or else
1184
                        Attribute_Name (Parent (N)) = Name_Access)
1185
            then
1186
               Error_Msg_Name_1 := Attribute_Name (Parent (N));
1187
               Error_Msg_N ("illegal prefix for % attribute", Parent (N));
1188
               Set_Etype (Parent (N), Any_Type);
1189
               Set_Entity (Parent (N), Any_Type);
1190
               raise Bad_Attribute;
1191
 
1192
            else
1193
               Error_Attr ("missing argument for % attribute", N);
1194
            end if;
1195
         end if;
1196
      end Check_E1;
1197
 
1198
      --------------
1199
      -- Check_E2 --
1200
      --------------
1201
 
1202
      procedure Check_E2 is
1203
      begin
1204
         if No (E1) then
1205
            Error_Attr ("missing arguments for % attribute (2 required)", N);
1206
         elsif No (E2) then
1207
            Error_Attr ("missing argument for % attribute (2 required)", N);
1208
         end if;
1209
      end Check_E2;
1210
 
1211
      ---------------------------
1212
      -- Check_Either_E0_Or_E1 --
1213
      ---------------------------
1214
 
1215
      procedure Check_Either_E0_Or_E1 is
1216
      begin
1217
         if Present (E2) then
1218
            Unexpected_Argument (E2);
1219
         end if;
1220
      end Check_Either_E0_Or_E1;
1221
 
1222
      ----------------------
1223
      -- Check_Enum_Image --
1224
      ----------------------
1225
 
1226
      procedure Check_Enum_Image is
1227
         Lit : Entity_Id;
1228
 
1229
      begin
1230
         --  When an enumeration type appears in an attribute reference, all
1231
         --  literals of the type are marked as referenced. This must only be
1232
         --  done if the attribute reference appears in the current source.
1233
         --  Otherwise the information on references may differ between a
1234
         --  normal compilation and one that performs inlining.
1235
 
1236
         if Is_Enumeration_Type (P_Base_Type)
1237
           and then In_Extended_Main_Code_Unit (N)
1238
         then
1239
            Lit := First_Literal (P_Base_Type);
1240
            while Present (Lit) loop
1241
               Set_Referenced (Lit);
1242
               Next_Literal (Lit);
1243
            end loop;
1244
         end if;
1245
      end Check_Enum_Image;
1246
 
1247
      ----------------------------
1248
      -- Check_Fixed_Point_Type --
1249
      ----------------------------
1250
 
1251
      procedure Check_Fixed_Point_Type is
1252
      begin
1253
         Check_Type;
1254
 
1255
         if not Is_Fixed_Point_Type (P_Type) then
1256
            Error_Attr_P ("prefix of % attribute must be fixed point type");
1257
         end if;
1258
      end Check_Fixed_Point_Type;
1259
 
1260
      ------------------------------
1261
      -- Check_Fixed_Point_Type_0 --
1262
      ------------------------------
1263
 
1264
      procedure Check_Fixed_Point_Type_0 is
1265
      begin
1266
         Check_Fixed_Point_Type;
1267
         Check_E0;
1268
      end Check_Fixed_Point_Type_0;
1269
 
1270
      -------------------------------
1271
      -- Check_Floating_Point_Type --
1272
      -------------------------------
1273
 
1274
      procedure Check_Floating_Point_Type is
1275
      begin
1276
         Check_Type;
1277
 
1278
         if not Is_Floating_Point_Type (P_Type) then
1279
            Error_Attr_P ("prefix of % attribute must be float type");
1280
         end if;
1281
      end Check_Floating_Point_Type;
1282
 
1283
      ---------------------------------
1284
      -- Check_Floating_Point_Type_0 --
1285
      ---------------------------------
1286
 
1287
      procedure Check_Floating_Point_Type_0 is
1288
      begin
1289
         Check_Floating_Point_Type;
1290
         Check_E0;
1291
      end Check_Floating_Point_Type_0;
1292
 
1293
      ---------------------------------
1294
      -- Check_Floating_Point_Type_1 --
1295
      ---------------------------------
1296
 
1297
      procedure Check_Floating_Point_Type_1 is
1298
      begin
1299
         Check_Floating_Point_Type;
1300
         Check_E1;
1301
      end Check_Floating_Point_Type_1;
1302
 
1303
      ---------------------------------
1304
      -- Check_Floating_Point_Type_2 --
1305
      ---------------------------------
1306
 
1307
      procedure Check_Floating_Point_Type_2 is
1308
      begin
1309
         Check_Floating_Point_Type;
1310
         Check_E2;
1311
      end Check_Floating_Point_Type_2;
1312
 
1313
      ------------------------
1314
      -- Check_Integer_Type --
1315
      ------------------------
1316
 
1317
      procedure Check_Integer_Type is
1318
      begin
1319
         Check_Type;
1320
 
1321
         if not Is_Integer_Type (P_Type) then
1322
            Error_Attr_P ("prefix of % attribute must be integer type");
1323
         end if;
1324
      end Check_Integer_Type;
1325
 
1326
      --------------------------------
1327
      -- Check_Modular_Integer_Type --
1328
      --------------------------------
1329
 
1330
      procedure Check_Modular_Integer_Type is
1331
      begin
1332
         Check_Type;
1333
 
1334
         if not Is_Modular_Integer_Type (P_Type) then
1335
            Error_Attr_P
1336
              ("prefix of % attribute must be modular integer type");
1337
         end if;
1338
      end Check_Modular_Integer_Type;
1339
 
1340
      ------------------------
1341
      -- Check_Not_CPP_Type --
1342
      ------------------------
1343
 
1344
      procedure Check_Not_CPP_Type is
1345
      begin
1346
         if Is_Tagged_Type (Etype (P))
1347
           and then Convention (Etype (P)) = Convention_CPP
1348
           and then Is_CPP_Class (Root_Type (Etype (P)))
1349
         then
1350
            Error_Attr_P
1351
              ("invalid use of % attribute with 'C'P'P tagged type");
1352
         end if;
1353
      end Check_Not_CPP_Type;
1354
 
1355
      -------------------------------
1356
      -- Check_Not_Incomplete_Type --
1357
      -------------------------------
1358
 
1359
      procedure Check_Not_Incomplete_Type is
1360
         E   : Entity_Id;
1361
         Typ : Entity_Id;
1362
 
1363
      begin
1364
         --  Ada 2005 (AI-50217, AI-326): If the prefix is an explicit
1365
         --  dereference we have to check wrong uses of incomplete types
1366
         --  (other wrong uses are checked at their freezing point).
1367
 
1368
         --  Example 1: Limited-with
1369
 
1370
         --    limited with Pkg;
1371
         --    package P is
1372
         --       type Acc is access Pkg.T;
1373
         --       X : Acc;
1374
         --       S : Integer := X.all'Size;                    -- ERROR
1375
         --    end P;
1376
 
1377
         --  Example 2: Tagged incomplete
1378
 
1379
         --     type T is tagged;
1380
         --     type Acc is access all T;
1381
         --     X : Acc;
1382
         --     S : constant Integer := X.all'Size;             -- ERROR
1383
         --     procedure Q (Obj : Integer := X.all'Alignment); -- ERROR
1384
 
1385
         if Ada_Version >= Ada_2005
1386
           and then Nkind (P) = N_Explicit_Dereference
1387
         then
1388
            E := P;
1389
            while Nkind (E) = N_Explicit_Dereference loop
1390
               E := Prefix (E);
1391
            end loop;
1392
 
1393
            Typ := Etype (E);
1394
 
1395
            if From_With_Type (Typ) then
1396
               Error_Attr_P
1397
                 ("prefix of % attribute cannot be an incomplete type");
1398
 
1399
            else
1400
               if Is_Access_Type (Typ) then
1401
                  Typ := Directly_Designated_Type (Typ);
1402
               end if;
1403
 
1404
               if Is_Class_Wide_Type (Typ) then
1405
                  Typ := Root_Type (Typ);
1406
               end if;
1407
 
1408
               --  A legal use of a shadow entity occurs only when the unit
1409
               --  where the non-limited view resides is imported via a regular
1410
               --  with clause in the current body. Such references to shadow
1411
               --  entities may occur in subprogram formals.
1412
 
1413
               if Is_Incomplete_Type (Typ)
1414
                 and then From_With_Type (Typ)
1415
                 and then Present (Non_Limited_View (Typ))
1416
                 and then Is_Legal_Shadow_Entity_In_Body (Typ)
1417
               then
1418
                  Typ := Non_Limited_View (Typ);
1419
               end if;
1420
 
1421
               if Ekind (Typ) = E_Incomplete_Type
1422
                 and then No (Full_View (Typ))
1423
               then
1424
                  Error_Attr_P
1425
                    ("prefix of % attribute cannot be an incomplete type");
1426
               end if;
1427
            end if;
1428
         end if;
1429
 
1430
         if not Is_Entity_Name (P)
1431
           or else not Is_Type (Entity (P))
1432
           or else In_Spec_Expression
1433
         then
1434
            return;
1435
         else
1436
            Check_Fully_Declared (P_Type, P);
1437
         end if;
1438
      end Check_Not_Incomplete_Type;
1439
 
1440
      ----------------------------
1441
      -- Check_Object_Reference --
1442
      ----------------------------
1443
 
1444
      procedure Check_Object_Reference (P : Node_Id) is
1445
         Rtyp : Entity_Id;
1446
 
1447
      begin
1448
         --  If we need an object, and we have a prefix that is the name of
1449
         --  a function entity, convert it into a function call.
1450
 
1451
         if Is_Entity_Name (P)
1452
           and then Ekind (Entity (P)) = E_Function
1453
         then
1454
            Rtyp := Etype (Entity (P));
1455
 
1456
            Rewrite (P,
1457
              Make_Function_Call (Sloc (P),
1458
                Name => Relocate_Node (P)));
1459
 
1460
            Analyze_And_Resolve (P, Rtyp);
1461
 
1462
         --  Otherwise we must have an object reference
1463
 
1464
         elsif not Is_Object_Reference (P) then
1465
            Error_Attr_P ("prefix of % attribute must be object");
1466
         end if;
1467
      end Check_Object_Reference;
1468
 
1469
      ----------------------------
1470
      -- Check_PolyORB_Attribute --
1471
      ----------------------------
1472
 
1473
      procedure Check_PolyORB_Attribute is
1474
      begin
1475
         Validate_Non_Static_Attribute_Function_Call;
1476
 
1477
         Check_Type;
1478
         Check_Not_CPP_Type;
1479
 
1480
         if Get_PCS_Name /= Name_PolyORB_DSA then
1481
            Error_Attr
1482
              ("attribute% requires the 'Poly'O'R'B 'P'C'S", N);
1483
         end if;
1484
      end Check_PolyORB_Attribute;
1485
 
1486
      ------------------------
1487
      -- Check_Program_Unit --
1488
      ------------------------
1489
 
1490
      procedure Check_Program_Unit is
1491
      begin
1492
         if Is_Entity_Name (P) then
1493
            declare
1494
               K : constant Entity_Kind := Ekind (Entity (P));
1495
               T : constant Entity_Id   := Etype (Entity (P));
1496
 
1497
            begin
1498
               if K in Subprogram_Kind
1499
                 or else K in Task_Kind
1500
                 or else K in Protected_Kind
1501
                 or else K = E_Package
1502
                 or else K in Generic_Unit_Kind
1503
                 or else (K = E_Variable
1504
                            and then
1505
                              (Is_Task_Type (T)
1506
                                 or else
1507
                               Is_Protected_Type (T)))
1508
               then
1509
                  return;
1510
               end if;
1511
            end;
1512
         end if;
1513
 
1514
         Error_Attr_P ("prefix of % attribute must be program unit");
1515
      end Check_Program_Unit;
1516
 
1517
      ---------------------
1518
      -- Check_Real_Type --
1519
      ---------------------
1520
 
1521
      procedure Check_Real_Type is
1522
      begin
1523
         Check_Type;
1524
 
1525
         if not Is_Real_Type (P_Type) then
1526
            Error_Attr_P ("prefix of % attribute must be real type");
1527
         end if;
1528
      end Check_Real_Type;
1529
 
1530
      -----------------------
1531
      -- Check_Scalar_Type --
1532
      -----------------------
1533
 
1534
      procedure Check_Scalar_Type is
1535
      begin
1536
         Check_Type;
1537
 
1538
         if not Is_Scalar_Type (P_Type) then
1539
            Error_Attr_P ("prefix of % attribute must be scalar type");
1540
         end if;
1541
      end Check_Scalar_Type;
1542
 
1543
      ------------------------------------------
1544
      -- Check_SPARK_Restriction_On_Attribute --
1545
      ------------------------------------------
1546
 
1547
      procedure Check_SPARK_Restriction_On_Attribute is
1548
      begin
1549
         Error_Msg_Name_1 := Aname;
1550
         Check_SPARK_Restriction ("attribute % is not allowed", P);
1551
      end Check_SPARK_Restriction_On_Attribute;
1552
 
1553
      ---------------------------
1554
      -- Check_Standard_Prefix --
1555
      ---------------------------
1556
 
1557
      procedure Check_Standard_Prefix is
1558
      begin
1559
         Check_E0;
1560
 
1561
         if Nkind (P) /= N_Identifier
1562
           or else Chars (P) /= Name_Standard
1563
         then
1564
            Error_Attr ("only allowed prefix for % attribute is Standard", P);
1565
         end if;
1566
      end Check_Standard_Prefix;
1567
 
1568
      ----------------------------
1569
      -- Check_Stream_Attribute --
1570
      ----------------------------
1571
 
1572
      procedure Check_Stream_Attribute (Nam : TSS_Name_Type) is
1573
         Etyp : Entity_Id;
1574
         Btyp : Entity_Id;
1575
 
1576
         In_Shared_Var_Procs : Boolean;
1577
         --  True when compiling the body of System.Shared_Storage.
1578
         --  Shared_Var_Procs. For this runtime package (always compiled in
1579
         --  GNAT mode), we allow stream attributes references for limited
1580
         --  types for the case where shared passive objects are implemented
1581
         --  using stream attributes, which is the default in GNAT's persistent
1582
         --  storage implementation.
1583
 
1584
      begin
1585
         Validate_Non_Static_Attribute_Function_Call;
1586
 
1587
         --  With the exception of 'Input, Stream attributes are procedures,
1588
         --  and can only appear at the position of procedure calls. We check
1589
         --  for this here, before they are rewritten, to give a more precise
1590
         --  diagnostic.
1591
 
1592
         if Nam = TSS_Stream_Input then
1593
            null;
1594
 
1595
         elsif Is_List_Member (N)
1596
           and then not Nkind_In (Parent (N), N_Procedure_Call_Statement,
1597
                                              N_Aggregate)
1598
         then
1599
            null;
1600
 
1601
         else
1602
            Error_Attr
1603
              ("invalid context for attribute%, which is a procedure", N);
1604
         end if;
1605
 
1606
         Check_Type;
1607
         Btyp := Implementation_Base_Type (P_Type);
1608
 
1609
         --  Stream attributes not allowed on limited types unless the
1610
         --  attribute reference was generated by the expander (in which
1611
         --  case the underlying type will be used, as described in Sinfo),
1612
         --  or the attribute was specified explicitly for the type itself
1613
         --  or one of its ancestors (taking visibility rules into account if
1614
         --  in Ada 2005 mode), or a pragma Stream_Convert applies to Btyp
1615
         --  (with no visibility restriction).
1616
 
1617
         declare
1618
            Gen_Body : constant Node_Id := Enclosing_Generic_Body (N);
1619
         begin
1620
            if Present (Gen_Body) then
1621
               In_Shared_Var_Procs :=
1622
                 Is_RTE (Corresponding_Spec (Gen_Body), RE_Shared_Var_Procs);
1623
            else
1624
               In_Shared_Var_Procs := False;
1625
            end if;
1626
         end;
1627
 
1628
         if (Comes_From_Source (N)
1629
              and then not (In_Shared_Var_Procs or In_Instance))
1630
           and then not Stream_Attribute_Available (P_Type, Nam)
1631
           and then not Has_Rep_Pragma (Btyp, Name_Stream_Convert)
1632
         then
1633
            Error_Msg_Name_1 := Aname;
1634
 
1635
            if Is_Limited_Type (P_Type) then
1636
               Error_Msg_NE
1637
                 ("limited type& has no% attribute", P, P_Type);
1638
               Explain_Limited_Type (P_Type, P);
1639
            else
1640
               Error_Msg_NE
1641
                 ("attribute% for type& is not available", P, P_Type);
1642
            end if;
1643
         end if;
1644
 
1645
         --  Check restriction violations
1646
 
1647
         --  First check the No_Streams restriction, which prohibits the use
1648
         --  of explicit stream attributes in the source program. We do not
1649
         --  prevent the occurrence of stream attributes in generated code,
1650
         --  for instance those generated implicitly for dispatching purposes.
1651
 
1652
         if Comes_From_Source (N) then
1653
            Check_Restriction (No_Streams, P);
1654
         end if;
1655
 
1656
         --  AI05-0057: if restriction No_Default_Stream_Attributes is active,
1657
         --  it is illegal to use a predefined elementary type stream attribute
1658
         --  either by itself, or more importantly as part of the attribute
1659
         --  subprogram for a composite type.
1660
 
1661
         if Restriction_Active (No_Default_Stream_Attributes) then
1662
            declare
1663
               T : Entity_Id;
1664
 
1665
            begin
1666
               if Nam = TSS_Stream_Input
1667
                    or else
1668
                  Nam = TSS_Stream_Read
1669
               then
1670
                  T :=
1671
                    Type_Without_Stream_Operation (P_Type, TSS_Stream_Read);
1672
               else
1673
                  T :=
1674
                    Type_Without_Stream_Operation (P_Type, TSS_Stream_Write);
1675
               end if;
1676
 
1677
               if Present (T) then
1678
                  Check_Restriction (No_Default_Stream_Attributes, N);
1679
 
1680
                  Error_Msg_NE
1681
                    ("missing user-defined Stream Read or Write for type&",
1682
                      N, T);
1683
                  if not Is_Elementary_Type (P_Type) then
1684
                     Error_Msg_NE
1685
                     ("\which is a component of type&", N, P_Type);
1686
                  end if;
1687
               end if;
1688
            end;
1689
         end if;
1690
 
1691
         --  Check special case of Exception_Id and Exception_Occurrence which
1692
         --  are not allowed for restriction No_Exception_Registration.
1693
 
1694
         if Restriction_Check_Required (No_Exception_Registration)
1695
           and then (Is_RTE (P_Type, RE_Exception_Id)
1696
                       or else
1697
                     Is_RTE (P_Type, RE_Exception_Occurrence))
1698
         then
1699
            Check_Restriction (No_Exception_Registration, P);
1700
         end if;
1701
 
1702
         --  Here we must check that the first argument is an access type
1703
         --  that is compatible with Ada.Streams.Root_Stream_Type'Class.
1704
 
1705
         Analyze_And_Resolve (E1);
1706
         Etyp := Etype (E1);
1707
 
1708
         --  Note: the double call to Root_Type here is needed because the
1709
         --  root type of a class-wide type is the corresponding type (e.g.
1710
         --  X for X'Class, and we really want to go to the root.)
1711
 
1712
         if not Is_Access_Type (Etyp)
1713
           or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
1714
                     RTE (RE_Root_Stream_Type)
1715
         then
1716
            Error_Attr
1717
              ("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
1718
         end if;
1719
 
1720
         --  Check that the second argument is of the right type if there is
1721
         --  one (the Input attribute has only one argument so this is skipped)
1722
 
1723
         if Present (E2) then
1724
            Analyze (E2);
1725
 
1726
            if Nam = TSS_Stream_Read
1727
              and then not Is_OK_Variable_For_Out_Formal (E2)
1728
            then
1729
               Error_Attr
1730
                 ("second argument of % attribute must be a variable", E2);
1731
            end if;
1732
 
1733
            Resolve (E2, P_Type);
1734
         end if;
1735
 
1736
         Check_Not_CPP_Type;
1737
      end Check_Stream_Attribute;
1738
 
1739
      -----------------------
1740
      -- Check_Task_Prefix --
1741
      -----------------------
1742
 
1743
      procedure Check_Task_Prefix is
1744
      begin
1745
         Analyze (P);
1746
 
1747
         --  Ada 2005 (AI-345): Attribute 'Terminated can be applied to
1748
         --  task interface class-wide types.
1749
 
1750
         if Is_Task_Type (Etype (P))
1751
           or else (Is_Access_Type (Etype (P))
1752
                      and then Is_Task_Type (Designated_Type (Etype (P))))
1753
           or else (Ada_Version >= Ada_2005
1754
                      and then Ekind (Etype (P)) = E_Class_Wide_Type
1755
                      and then Is_Interface (Etype (P))
1756
                      and then Is_Task_Interface (Etype (P)))
1757
         then
1758
            Resolve (P);
1759
 
1760
         else
1761
            if Ada_Version >= Ada_2005 then
1762
               Error_Attr_P
1763
                 ("prefix of % attribute must be a task or a task " &
1764
                  "interface class-wide object");
1765
 
1766
            else
1767
               Error_Attr_P ("prefix of % attribute must be a task");
1768
            end if;
1769
         end if;
1770
      end Check_Task_Prefix;
1771
 
1772
      ----------------
1773
      -- Check_Type --
1774
      ----------------
1775
 
1776
      --  The possibilities are an entity name denoting a type, or an
1777
      --  attribute reference that denotes a type (Base or Class). If
1778
      --  the type is incomplete, replace it with its full view.
1779
 
1780
      procedure Check_Type is
1781
      begin
1782
         if not Is_Entity_Name (P)
1783
           or else not Is_Type (Entity (P))
1784
         then
1785
            Error_Attr_P ("prefix of % attribute must be a type");
1786
 
1787
         elsif Is_Protected_Self_Reference (P) then
1788
            Error_Attr_P
1789
              ("prefix of % attribute denotes current instance "
1790
               & "(RM 9.4(21/2))");
1791
 
1792
         elsif Ekind (Entity (P)) = E_Incomplete_Type
1793
            and then Present (Full_View (Entity (P)))
1794
         then
1795
            P_Type := Full_View (Entity (P));
1796
            Set_Entity (P, P_Type);
1797
         end if;
1798
      end Check_Type;
1799
 
1800
      ---------------------
1801
      -- Check_Unit_Name --
1802
      ---------------------
1803
 
1804
      procedure Check_Unit_Name (Nod : Node_Id) is
1805
      begin
1806
         if Nkind (Nod) = N_Identifier then
1807
            return;
1808
 
1809
         elsif Nkind_In (Nod, N_Selected_Component, N_Expanded_Name) then
1810
            Check_Unit_Name (Prefix (Nod));
1811
 
1812
            if Nkind (Selector_Name (Nod)) = N_Identifier then
1813
               return;
1814
            end if;
1815
         end if;
1816
 
1817
         Error_Attr ("argument for % attribute must be unit name", P);
1818
      end Check_Unit_Name;
1819
 
1820
      ----------------
1821
      -- Error_Attr --
1822
      ----------------
1823
 
1824
      procedure Error_Attr is
1825
      begin
1826
         Set_Etype (N, Any_Type);
1827
         Set_Entity (N, Any_Type);
1828
         raise Bad_Attribute;
1829
      end Error_Attr;
1830
 
1831
      procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
1832
      begin
1833
         Error_Msg_Name_1 := Aname;
1834
         Error_Msg_N (Msg, Error_Node);
1835
         Error_Attr;
1836
      end Error_Attr;
1837
 
1838
      ------------------
1839
      -- Error_Attr_P --
1840
      ------------------
1841
 
1842
      procedure Error_Attr_P (Msg : String) is
1843
      begin
1844
         Error_Msg_Name_1 := Aname;
1845
         Error_Msg_F (Msg, P);
1846
         Error_Attr;
1847
      end Error_Attr_P;
1848
 
1849
      ----------------------------
1850
      -- Legal_Formal_Attribute --
1851
      ----------------------------
1852
 
1853
      procedure Legal_Formal_Attribute is
1854
      begin
1855
         Check_E0;
1856
 
1857
         if not Is_Entity_Name (P)
1858
           or else not Is_Type (Entity (P))
1859
         then
1860
            Error_Attr_P ("prefix of % attribute must be generic type");
1861
 
1862
         elsif Is_Generic_Actual_Type (Entity (P))
1863
           or else In_Instance
1864
           or else In_Inlined_Body
1865
         then
1866
            null;
1867
 
1868
         elsif Is_Generic_Type (Entity (P)) then
1869
            if not Is_Indefinite_Subtype (Entity (P)) then
1870
               Error_Attr_P
1871
                 ("prefix of % attribute must be indefinite generic type");
1872
            end if;
1873
 
1874
         else
1875
            Error_Attr_P
1876
              ("prefix of % attribute must be indefinite generic type");
1877
         end if;
1878
 
1879
         Set_Etype (N, Standard_Boolean);
1880
      end Legal_Formal_Attribute;
1881
 
1882
      ------------------------
1883
      -- Standard_Attribute --
1884
      ------------------------
1885
 
1886
      procedure Standard_Attribute (Val : Int) is
1887
      begin
1888
         Check_Standard_Prefix;
1889
         Rewrite (N, Make_Integer_Literal (Loc, Val));
1890
         Analyze (N);
1891
      end Standard_Attribute;
1892
 
1893
      -------------------------
1894
      -- Unexpected Argument --
1895
      -------------------------
1896
 
1897
      procedure Unexpected_Argument (En : Node_Id) is
1898
      begin
1899
         Error_Attr ("unexpected argument for % attribute", En);
1900
      end Unexpected_Argument;
1901
 
1902
      -------------------------------------------------
1903
      -- Validate_Non_Static_Attribute_Function_Call --
1904
      -------------------------------------------------
1905
 
1906
      --  This function should be moved to Sem_Dist ???
1907
 
1908
      procedure Validate_Non_Static_Attribute_Function_Call is
1909
      begin
1910
         if In_Preelaborated_Unit
1911
           and then not In_Subprogram_Or_Concurrent_Unit
1912
         then
1913
            Flag_Non_Static_Expr
1914
              ("non-static function call in preelaborated unit!", N);
1915
         end if;
1916
      end Validate_Non_Static_Attribute_Function_Call;
1917
 
1918
   --  Start of processing for Analyze_Attribute
1919
 
1920
   begin
1921
      --  Immediate return if unrecognized attribute (already diagnosed
1922
      --  by parser, so there is nothing more that we need to do)
1923
 
1924
      if not Is_Attribute_Name (Aname) then
1925
         raise Bad_Attribute;
1926
      end if;
1927
 
1928
      --  Deal with Ada 83 issues
1929
 
1930
      if Comes_From_Source (N) then
1931
         if not Attribute_83 (Attr_Id) then
1932
            if Ada_Version = Ada_83 and then Comes_From_Source (N) then
1933
               Error_Msg_Name_1 := Aname;
1934
               Error_Msg_N ("(Ada 83) attribute% is not standard?", N);
1935
            end if;
1936
 
1937
            if Attribute_Impl_Def (Attr_Id) then
1938
               Check_Restriction (No_Implementation_Attributes, N);
1939
            end if;
1940
         end if;
1941
      end if;
1942
 
1943
      --  Deal with Ada 2005 attributes that are
1944
 
1945
      if Attribute_05 (Attr_Id) and then Ada_Version < Ada_2005 then
1946
         Check_Restriction (No_Implementation_Attributes, N);
1947
      end if;
1948
 
1949
      --   Remote access to subprogram type access attribute reference needs
1950
      --   unanalyzed copy for tree transformation. The analyzed copy is used
1951
      --   for its semantic information (whether prefix is a remote subprogram
1952
      --   name), the unanalyzed copy is used to construct new subtree rooted
1953
      --   with N_Aggregate which represents a fat pointer aggregate.
1954
 
1955
      if Aname = Name_Access then
1956
         Discard_Node (Copy_Separate_Tree (N));
1957
      end if;
1958
 
1959
      --  Analyze prefix and exit if error in analysis. If the prefix is an
1960
      --  incomplete type, use full view if available. Note that there are
1961
      --  some attributes for which we do not analyze the prefix, since the
1962
      --  prefix is not a normal name, or else needs special handling.
1963
 
1964
      if Aname /= Name_Elab_Body
1965
           and then
1966
         Aname /= Name_Elab_Spec
1967
           and then
1968
         Aname /= Name_Elab_Subp_Body
1969
           and then
1970
         Aname /= Name_UET_Address
1971
           and then
1972
         Aname /= Name_Enabled
1973
           and then
1974
         Aname /= Name_Old
1975
      then
1976
         Analyze (P);
1977
         P_Type := Etype (P);
1978
 
1979
         if Is_Entity_Name (P)
1980
           and then Present (Entity (P))
1981
           and then Is_Type (Entity (P))
1982
         then
1983
            if Ekind (Entity (P)) = E_Incomplete_Type then
1984
               P_Type := Get_Full_View (P_Type);
1985
               Set_Entity (P, P_Type);
1986
               Set_Etype  (P, P_Type);
1987
 
1988
            elsif Entity (P) = Current_Scope
1989
              and then Is_Record_Type (Entity (P))
1990
            then
1991
               --  Use of current instance within the type. Verify that if the
1992
               --  attribute appears within a constraint, it  yields an access
1993
               --  type, other uses are illegal.
1994
 
1995
               declare
1996
                  Par : Node_Id;
1997
 
1998
               begin
1999
                  Par := Parent (N);
2000
                  while Present (Par)
2001
                    and then Nkind (Parent (Par)) /= N_Component_Definition
2002
                  loop
2003
                     Par := Parent (Par);
2004
                  end loop;
2005
 
2006
                  if Present (Par)
2007
                    and then Nkind (Par) = N_Subtype_Indication
2008
                  then
2009
                     if Attr_Id /= Attribute_Access
2010
                       and then Attr_Id /= Attribute_Unchecked_Access
2011
                       and then Attr_Id /= Attribute_Unrestricted_Access
2012
                     then
2013
                        Error_Msg_N
2014
                          ("in a constraint the current instance can only"
2015
                             & " be used with an access attribute", N);
2016
                     end if;
2017
                  end if;
2018
               end;
2019
            end if;
2020
         end if;
2021
 
2022
         if P_Type = Any_Type then
2023
            raise Bad_Attribute;
2024
         end if;
2025
 
2026
         P_Base_Type := Base_Type (P_Type);
2027
      end if;
2028
 
2029
      --  Analyze expressions that may be present, exiting if an error occurs
2030
 
2031
      if No (Exprs) then
2032
         E1 := Empty;
2033
         E2 := Empty;
2034
 
2035
      else
2036
         E1 := First (Exprs);
2037
         Analyze (E1);
2038
 
2039
         --  Check for missing/bad expression (result of previous error)
2040
 
2041
         if No (E1) or else Etype (E1) = Any_Type then
2042
            raise Bad_Attribute;
2043
         end if;
2044
 
2045
         E2 := Next (E1);
2046
 
2047
         if Present (E2) then
2048
            Analyze (E2);
2049
 
2050
            if Etype (E2) = Any_Type then
2051
               raise Bad_Attribute;
2052
            end if;
2053
 
2054
            if Present (Next (E2)) then
2055
               Unexpected_Argument (Next (E2));
2056
            end if;
2057
         end if;
2058
      end if;
2059
 
2060
      --  Ada 2005 (AI-345): Ensure that the compiler gives exactly the current
2061
      --  output compiling in Ada 95 mode for the case of ambiguous prefixes.
2062
 
2063
      if Ada_Version < Ada_2005
2064
        and then Is_Overloaded (P)
2065
        and then Aname /= Name_Access
2066
        and then Aname /= Name_Address
2067
        and then Aname /= Name_Code_Address
2068
        and then Aname /= Name_Count
2069
        and then Aname /= Name_Result
2070
        and then Aname /= Name_Unchecked_Access
2071
      then
2072
         Error_Attr ("ambiguous prefix for % attribute", P);
2073
 
2074
      elsif Ada_Version >= Ada_2005
2075
        and then Is_Overloaded (P)
2076
        and then Aname /= Name_Access
2077
        and then Aname /= Name_Address
2078
        and then Aname /= Name_Code_Address
2079
        and then Aname /= Name_Result
2080
        and then Aname /= Name_Unchecked_Access
2081
      then
2082
         --  Ada 2005 (AI-345): Since protected and task types have primitive
2083
         --  entry wrappers, the attributes Count, Caller and AST_Entry require
2084
         --  a context check
2085
 
2086
         if Ada_Version >= Ada_2005
2087
           and then (Aname = Name_Count
2088
                      or else Aname = Name_Caller
2089
                      or else Aname = Name_AST_Entry)
2090
         then
2091
            declare
2092
               Count : Natural := 0;
2093
               I     : Interp_Index;
2094
               It    : Interp;
2095
 
2096
            begin
2097
               Get_First_Interp (P, I, It);
2098
               while Present (It.Nam) loop
2099
                  if Comes_From_Source (It.Nam) then
2100
                     Count := Count + 1;
2101
                  else
2102
                     Remove_Interp (I);
2103
                  end if;
2104
 
2105
                  Get_Next_Interp (I, It);
2106
               end loop;
2107
 
2108
               if Count > 1 then
2109
                  Error_Attr ("ambiguous prefix for % attribute", P);
2110
               else
2111
                  Set_Is_Overloaded (P, False);
2112
               end if;
2113
            end;
2114
 
2115
         else
2116
            Error_Attr ("ambiguous prefix for % attribute", P);
2117
         end if;
2118
      end if;
2119
 
2120
      --  In SPARK, attributes of private types are only allowed if the full
2121
      --  type declaration is visible.
2122
 
2123
      if Is_Entity_Name (P)
2124
        and then Present (Entity (P))  --  needed in some cases
2125
        and then Is_Type (Entity (P))
2126
        and then Is_Private_Type (P_Type)
2127
        and then not In_Open_Scopes (Scope (P_Type))
2128
        and then not In_Spec_Expression
2129
      then
2130
         Check_SPARK_Restriction ("invisible attribute of type", N);
2131
      end if;
2132
 
2133
      --  Remaining processing depends on attribute
2134
 
2135
      case Attr_Id is
2136
 
2137
         --  Attributes related to Ada 2012 iterators. Attribute specifications
2138
         --  exist for these, but they cannot be queried.
2139
 
2140
         when Attribute_Constant_Indexing    |
2141
              Attribute_Default_Iterator     |
2142
              Attribute_Implicit_Dereference |
2143
              Attribute_Iterator_Element     |
2144
              Attribute_Variable_Indexing    =>
2145
            Error_Msg_N ("illegal attribute", N);
2146
 
2147
      ------------------
2148
      -- Abort_Signal --
2149
      ------------------
2150
 
2151
      when Attribute_Abort_Signal =>
2152
         Check_Standard_Prefix;
2153
         Rewrite (N, New_Reference_To (Stand.Abort_Signal, Loc));
2154
         Analyze (N);
2155
 
2156
      ------------
2157
      -- Access --
2158
      ------------
2159
 
2160
      when Attribute_Access =>
2161
         Analyze_Access_Attribute;
2162
 
2163
      -------------
2164
      -- Address --
2165
      -------------
2166
 
2167
      when Attribute_Address =>
2168
         Check_E0;
2169
 
2170
         --  Check for some junk cases, where we have to allow the address
2171
         --  attribute but it does not make much sense, so at least for now
2172
         --  just replace with Null_Address.
2173
 
2174
         --  We also do this if the prefix is a reference to the AST_Entry
2175
         --  attribute. If expansion is active, the attribute will be
2176
         --  replaced by a function call, and address will work fine and
2177
         --  get the proper value, but if expansion is not active, then
2178
         --  the check here allows proper semantic analysis of the reference.
2179
 
2180
         --  An Address attribute created by expansion is legal even when it
2181
         --  applies to other entity-denoting expressions.
2182
 
2183
         if Is_Protected_Self_Reference (P) then
2184
 
2185
            --  Address attribute on a protected object self reference is legal
2186
 
2187
            null;
2188
 
2189
         elsif Is_Entity_Name (P) then
2190
            declare
2191
               Ent : constant Entity_Id := Entity (P);
2192
 
2193
            begin
2194
               if Is_Subprogram (Ent) then
2195
                  Set_Address_Taken (Ent);
2196
                  Kill_Current_Values (Ent);
2197
 
2198
                  --  An Address attribute is accepted when generated by the
2199
                  --  compiler for dispatching operation, and an error is
2200
                  --  issued once the subprogram is frozen (to avoid confusing
2201
                  --  errors about implicit uses of Address in the dispatch
2202
                  --  table initialization).
2203
 
2204
                  if Has_Pragma_Inline_Always (Entity (P))
2205
                    and then Comes_From_Source (P)
2206
                  then
2207
                     Error_Attr_P
2208
                       ("prefix of % attribute cannot be Inline_Always" &
2209
                        " subprogram");
2210
 
2211
                  --  It is illegal to apply 'Address to an intrinsic
2212
                  --  subprogram. This is now formalized in AI05-0095.
2213
                  --  In an instance, an attempt to obtain 'Address of an
2214
                  --  intrinsic subprogram (e.g the renaming of a predefined
2215
                  --  operator that is an actual) raises Program_Error.
2216
 
2217
                  elsif Convention (Ent) = Convention_Intrinsic then
2218
                     if In_Instance then
2219
                        Rewrite (N,
2220
                          Make_Raise_Program_Error (Loc,
2221
                            Reason => PE_Address_Of_Intrinsic));
2222
 
2223
                     else
2224
                        Error_Msg_N
2225
                         ("cannot take Address of intrinsic subprogram", N);
2226
                     end if;
2227
 
2228
                  --  Issue an error if prefix denotes an eliminated subprogram
2229
 
2230
                  else
2231
                     Check_For_Eliminated_Subprogram (P, Ent);
2232
                  end if;
2233
 
2234
               elsif Is_Object (Ent)
2235
                 or else Ekind (Ent) = E_Label
2236
               then
2237
                  Set_Address_Taken (Ent);
2238
 
2239
                  --  Deal with No_Implicit_Aliasing restriction
2240
 
2241
                  if Restriction_Check_Required (No_Implicit_Aliasing) then
2242
                     if not Is_Aliased_View (P) then
2243
                        Check_Restriction (No_Implicit_Aliasing, P);
2244
                     else
2245
                        Check_No_Implicit_Aliasing (P);
2246
                     end if;
2247
                  end if;
2248
 
2249
                  --  If we have an address of an object, and the attribute
2250
                  --  comes from source, then set the object as potentially
2251
                  --  source modified. We do this because the resulting address
2252
                  --  can potentially be used to modify the variable and we
2253
                  --  might not detect this, leading to some junk warnings.
2254
 
2255
                  Set_Never_Set_In_Source (Ent, False);
2256
 
2257
               elsif (Is_Concurrent_Type (Etype (Ent))
2258
                       and then Etype (Ent) = Base_Type (Ent))
2259
                 or else Ekind (Ent) = E_Package
2260
                 or else Is_Generic_Unit (Ent)
2261
               then
2262
                  Rewrite (N,
2263
                    New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
2264
 
2265
               else
2266
                  Error_Attr ("invalid prefix for % attribute", P);
2267
               end if;
2268
            end;
2269
 
2270
         elsif Nkind (P) = N_Attribute_Reference
2271
           and then Attribute_Name (P) = Name_AST_Entry
2272
         then
2273
            Rewrite (N,
2274
              New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
2275
 
2276
         elsif Is_Object_Reference (P) then
2277
            null;
2278
 
2279
         elsif Nkind (P) = N_Selected_Component
2280
           and then Is_Subprogram (Entity (Selector_Name (P)))
2281
         then
2282
            null;
2283
 
2284
         --  What exactly are we allowing here ??? and is this properly
2285
         --  documented in the sinfo documentation for this node ???
2286
 
2287
         elsif not Comes_From_Source (N) then
2288
            null;
2289
 
2290
         else
2291
            Error_Attr ("invalid prefix for % attribute", P);
2292
         end if;
2293
 
2294
         Set_Etype (N, RTE (RE_Address));
2295
 
2296
      ------------------
2297
      -- Address_Size --
2298
      ------------------
2299
 
2300
      when Attribute_Address_Size =>
2301
         Standard_Attribute (System_Address_Size);
2302
 
2303
      --------------
2304
      -- Adjacent --
2305
      --------------
2306
 
2307
      when Attribute_Adjacent =>
2308
         Check_Floating_Point_Type_2;
2309
         Set_Etype (N, P_Base_Type);
2310
         Resolve (E1, P_Base_Type);
2311
         Resolve (E2, P_Base_Type);
2312
 
2313
      ---------
2314
      -- Aft --
2315
      ---------
2316
 
2317
      when Attribute_Aft =>
2318
         Check_Fixed_Point_Type_0;
2319
         Set_Etype (N, Universal_Integer);
2320
 
2321
      ---------------
2322
      -- Alignment --
2323
      ---------------
2324
 
2325
      when Attribute_Alignment =>
2326
 
2327
         --  Don't we need more checking here, cf Size ???
2328
 
2329
         Check_E0;
2330
         Check_Not_Incomplete_Type;
2331
         Check_Not_CPP_Type;
2332
         Set_Etype (N, Universal_Integer);
2333
 
2334
      ---------------
2335
      -- Asm_Input --
2336
      ---------------
2337
 
2338
      when Attribute_Asm_Input =>
2339
         Check_Asm_Attribute;
2340
 
2341
         --  The back-end may need to take the address of E2
2342
 
2343
         if Is_Entity_Name (E2) then
2344
            Set_Address_Taken (Entity (E2));
2345
         end if;
2346
 
2347
         Set_Etype (N, RTE (RE_Asm_Input_Operand));
2348
 
2349
      ----------------
2350
      -- Asm_Output --
2351
      ----------------
2352
 
2353
      when Attribute_Asm_Output =>
2354
         Check_Asm_Attribute;
2355
 
2356
         if Etype (E2) = Any_Type then
2357
            return;
2358
 
2359
         elsif Aname = Name_Asm_Output then
2360
            if not Is_Variable (E2) then
2361
               Error_Attr
2362
                 ("second argument for Asm_Output is not variable", E2);
2363
            end if;
2364
         end if;
2365
 
2366
         Note_Possible_Modification (E2, Sure => True);
2367
 
2368
         --  The back-end may need to take the address of E2
2369
 
2370
         if Is_Entity_Name (E2) then
2371
            Set_Address_Taken (Entity (E2));
2372
         end if;
2373
 
2374
         Set_Etype (N, RTE (RE_Asm_Output_Operand));
2375
 
2376
      ---------------
2377
      -- AST_Entry --
2378
      ---------------
2379
 
2380
      when Attribute_AST_Entry => AST_Entry : declare
2381
         Ent  : Entity_Id;
2382
         Pref : Node_Id;
2383
         Ptyp : Entity_Id;
2384
 
2385
         Indexed : Boolean;
2386
         --  Indicates if entry family index is present. Note the coding
2387
         --  here handles the entry family case, but in fact it cannot be
2388
         --  executed currently, because pragma AST_Entry does not permit
2389
         --  the specification of an entry family.
2390
 
2391
         procedure Bad_AST_Entry;
2392
         --  Signal a bad AST_Entry pragma
2393
 
2394
         function OK_Entry (E : Entity_Id) return Boolean;
2395
         --  Checks that E is of an appropriate entity kind for an entry
2396
         --  (i.e. E_Entry if Index is False, or E_Entry_Family if Index
2397
         --  is set True for the entry family case). In the True case,
2398
         --  makes sure that Is_AST_Entry is set on the entry.
2399
 
2400
         -------------------
2401
         -- Bad_AST_Entry --
2402
         -------------------
2403
 
2404
         procedure Bad_AST_Entry is
2405
         begin
2406
            Error_Attr_P ("prefix for % attribute must be task entry");
2407
         end Bad_AST_Entry;
2408
 
2409
         --------------
2410
         -- OK_Entry --
2411
         --------------
2412
 
2413
         function OK_Entry (E : Entity_Id) return Boolean is
2414
            Result : Boolean;
2415
 
2416
         begin
2417
            if Indexed then
2418
               Result := (Ekind (E) = E_Entry_Family);
2419
            else
2420
               Result := (Ekind (E) = E_Entry);
2421
            end if;
2422
 
2423
            if Result then
2424
               if not Is_AST_Entry (E) then
2425
                  Error_Msg_Name_2 := Aname;
2426
                  Error_Attr ("% attribute requires previous % pragma", P);
2427
               end if;
2428
            end if;
2429
 
2430
            return Result;
2431
         end OK_Entry;
2432
 
2433
      --  Start of processing for AST_Entry
2434
 
2435
      begin
2436
         Check_VMS (N);
2437
         Check_E0;
2438
 
2439
         --  Deal with entry family case
2440
 
2441
         if Nkind (P) = N_Indexed_Component then
2442
            Pref := Prefix (P);
2443
            Indexed := True;
2444
         else
2445
            Pref := P;
2446
            Indexed := False;
2447
         end if;
2448
 
2449
         Ptyp := Etype (Pref);
2450
 
2451
         if Ptyp = Any_Type or else Error_Posted (Pref) then
2452
            return;
2453
         end if;
2454
 
2455
         --  If the prefix is a selected component whose prefix is of an
2456
         --  access type, then introduce an explicit dereference.
2457
         --  ??? Could we reuse Check_Dereference here?
2458
 
2459
         if Nkind (Pref) = N_Selected_Component
2460
           and then Is_Access_Type (Ptyp)
2461
         then
2462
            Rewrite (Pref,
2463
              Make_Explicit_Dereference (Sloc (Pref),
2464
                Relocate_Node (Pref)));
2465
            Analyze_And_Resolve (Pref, Designated_Type (Ptyp));
2466
         end if;
2467
 
2468
         --  Prefix can be of the form a.b, where a is a task object
2469
         --  and b is one of the entries of the corresponding task type.
2470
 
2471
         if Nkind (Pref) = N_Selected_Component
2472
           and then OK_Entry (Entity (Selector_Name (Pref)))
2473
           and then Is_Object_Reference (Prefix (Pref))
2474
           and then Is_Task_Type (Etype (Prefix (Pref)))
2475
         then
2476
            null;
2477
 
2478
         --  Otherwise the prefix must be an entry of a containing task,
2479
         --  or of a variable of the enclosing task type.
2480
 
2481
         else
2482
            if Nkind_In (Pref, N_Identifier, N_Expanded_Name) then
2483
               Ent := Entity (Pref);
2484
 
2485
               if not OK_Entry (Ent)
2486
                 or else not In_Open_Scopes (Scope (Ent))
2487
               then
2488
                  Bad_AST_Entry;
2489
               end if;
2490
 
2491
            else
2492
               Bad_AST_Entry;
2493
            end if;
2494
         end if;
2495
 
2496
         Set_Etype (N, RTE (RE_AST_Handler));
2497
      end AST_Entry;
2498
 
2499
      ----------
2500
      -- Base --
2501
      ----------
2502
 
2503
      --  Note: when the base attribute appears in the context of a subtype
2504
      --  mark, the analysis is done by Sem_Ch8.Find_Type, rather than by
2505
      --  the following circuit.
2506
 
2507
      when Attribute_Base => Base : declare
2508
         Typ : Entity_Id;
2509
 
2510
      begin
2511
         Check_E0;
2512
         Find_Type (P);
2513
         Typ := Entity (P);
2514
 
2515
         if Ada_Version >= Ada_95
2516
           and then not Is_Scalar_Type (Typ)
2517
           and then not Is_Generic_Type (Typ)
2518
         then
2519
            Error_Attr_P ("prefix of Base attribute must be scalar type");
2520
 
2521
         elsif Sloc (Typ) = Standard_Location
2522
           and then Base_Type (Typ) = Typ
2523
           and then Warn_On_Redundant_Constructs
2524
         then
2525
            Error_Msg_NE -- CODEFIX
2526
              ("?redundant attribute, & is its own base type", N, Typ);
2527
         end if;
2528
 
2529
         if Nkind (Parent (N)) /= N_Attribute_Reference then
2530
            Error_Msg_Name_1 := Aname;
2531
            Check_SPARK_Restriction
2532
              ("attribute% is only allowed as prefix of another attribute", P);
2533
         end if;
2534
 
2535
         Set_Etype (N, Base_Type (Entity (P)));
2536
         Set_Entity (N, Base_Type (Entity (P)));
2537
         Rewrite (N, New_Reference_To (Entity (N), Loc));
2538
         Analyze (N);
2539
      end Base;
2540
 
2541
      ---------
2542
      -- Bit --
2543
      ---------
2544
 
2545
      when Attribute_Bit => Bit :
2546
      begin
2547
         Check_E0;
2548
 
2549
         if not Is_Object_Reference (P) then
2550
            Error_Attr_P ("prefix for % attribute must be object");
2551
 
2552
         --  What about the access object cases ???
2553
 
2554
         else
2555
            null;
2556
         end if;
2557
 
2558
         Set_Etype (N, Universal_Integer);
2559
      end Bit;
2560
 
2561
      ---------------
2562
      -- Bit_Order --
2563
      ---------------
2564
 
2565
      when Attribute_Bit_Order => Bit_Order :
2566
      begin
2567
         Check_E0;
2568
         Check_Type;
2569
 
2570
         if not Is_Record_Type (P_Type) then
2571
            Error_Attr_P ("prefix of % attribute must be record type");
2572
         end if;
2573
 
2574
         if Bytes_Big_Endian xor Reverse_Bit_Order (P_Type) then
2575
            Rewrite (N,
2576
              New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
2577
         else
2578
            Rewrite (N,
2579
              New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
2580
         end if;
2581
 
2582
         Set_Etype (N, RTE (RE_Bit_Order));
2583
         Resolve (N);
2584
 
2585
         --  Reset incorrect indication of staticness
2586
 
2587
         Set_Is_Static_Expression (N, False);
2588
      end Bit_Order;
2589
 
2590
      ------------------
2591
      -- Bit_Position --
2592
      ------------------
2593
 
2594
      --  Note: in generated code, we can have a Bit_Position attribute
2595
      --  applied to a (naked) record component (i.e. the prefix is an
2596
      --  identifier that references an E_Component or E_Discriminant
2597
      --  entity directly, and this is interpreted as expected by Gigi.
2598
      --  The following code will not tolerate such usage, but when the
2599
      --  expander creates this special case, it marks it as analyzed
2600
      --  immediately and sets an appropriate type.
2601
 
2602
      when Attribute_Bit_Position =>
2603
         if Comes_From_Source (N) then
2604
            Check_Component;
2605
         end if;
2606
 
2607
         Set_Etype (N, Universal_Integer);
2608
 
2609
      ------------------
2610
      -- Body_Version --
2611
      ------------------
2612
 
2613
      when Attribute_Body_Version =>
2614
         Check_E0;
2615
         Check_Program_Unit;
2616
         Set_Etype (N, RTE (RE_Version_String));
2617
 
2618
      --------------
2619
      -- Callable --
2620
      --------------
2621
 
2622
      when Attribute_Callable =>
2623
         Check_E0;
2624
         Set_Etype (N, Standard_Boolean);
2625
         Check_Task_Prefix;
2626
 
2627
      ------------
2628
      -- Caller --
2629
      ------------
2630
 
2631
      when Attribute_Caller => Caller : declare
2632
         Ent        : Entity_Id;
2633
         S          : Entity_Id;
2634
 
2635
      begin
2636
         Check_E0;
2637
 
2638
         if Nkind_In (P, N_Identifier, N_Expanded_Name) then
2639
            Ent := Entity (P);
2640
 
2641
            if not Is_Entry (Ent) then
2642
               Error_Attr ("invalid entry name", N);
2643
            end if;
2644
 
2645
         else
2646
            Error_Attr ("invalid entry name", N);
2647
            return;
2648
         end if;
2649
 
2650
         for J in reverse 0 .. Scope_Stack.Last loop
2651
            S := Scope_Stack.Table (J).Entity;
2652
 
2653
            if S = Scope (Ent) then
2654
               Error_Attr ("Caller must appear in matching accept or body", N);
2655
            elsif S = Ent then
2656
               exit;
2657
            end if;
2658
         end loop;
2659
 
2660
         Set_Etype (N, RTE (RO_AT_Task_Id));
2661
      end Caller;
2662
 
2663
      -------------
2664
      -- Ceiling --
2665
      -------------
2666
 
2667
      when Attribute_Ceiling =>
2668
         Check_Floating_Point_Type_1;
2669
         Set_Etype (N, P_Base_Type);
2670
         Resolve (E1, P_Base_Type);
2671
 
2672
      -----------
2673
      -- Class --
2674
      -----------
2675
 
2676
      when Attribute_Class =>
2677
         Check_Restriction (No_Dispatch, N);
2678
         Check_E0;
2679
         Find_Type (N);
2680
 
2681
         --  Applying Class to untagged incomplete type is obsolescent in Ada
2682
         --  2005. Note that we can't test Is_Tagged_Type here on P_Type, since
2683
         --  this flag gets set by Find_Type in this situation.
2684
 
2685
         if Restriction_Check_Required (No_Obsolescent_Features)
2686
           and then Ada_Version >= Ada_2005
2687
           and then Ekind (P_Type) = E_Incomplete_Type
2688
         then
2689
            declare
2690
               DN : constant Node_Id := Declaration_Node (P_Type);
2691
            begin
2692
               if Nkind (DN) = N_Incomplete_Type_Declaration
2693
                 and then not Tagged_Present (DN)
2694
               then
2695
                  Check_Restriction (No_Obsolescent_Features, P);
2696
               end if;
2697
            end;
2698
         end if;
2699
 
2700
      ------------------
2701
      -- Code_Address --
2702
      ------------------
2703
 
2704
      when Attribute_Code_Address =>
2705
         Check_E0;
2706
 
2707
         if Nkind (P) = N_Attribute_Reference
2708
           and then (Attribute_Name (P) = Name_Elab_Body
2709
                       or else
2710
                     Attribute_Name (P) = Name_Elab_Spec)
2711
         then
2712
            null;
2713
 
2714
         elsif not Is_Entity_Name (P)
2715
           or else (Ekind (Entity (P)) /= E_Function
2716
                      and then
2717
                    Ekind (Entity (P)) /= E_Procedure)
2718
         then
2719
            Error_Attr ("invalid prefix for % attribute", P);
2720
            Set_Address_Taken (Entity (P));
2721
 
2722
         --  Issue an error if the prefix denotes an eliminated subprogram
2723
 
2724
         else
2725
            Check_For_Eliminated_Subprogram (P, Entity (P));
2726
         end if;
2727
 
2728
         Set_Etype (N, RTE (RE_Address));
2729
 
2730
      ----------------------
2731
      -- Compiler_Version --
2732
      ----------------------
2733
 
2734
      when Attribute_Compiler_Version =>
2735
         Check_E0;
2736
         Check_Standard_Prefix;
2737
         Rewrite (N, Make_String_Literal (Loc, "GNAT " & Gnat_Version_String));
2738
         Analyze_And_Resolve (N, Standard_String);
2739
 
2740
      --------------------
2741
      -- Component_Size --
2742
      --------------------
2743
 
2744
      when Attribute_Component_Size =>
2745
         Check_E0;
2746
         Set_Etype (N, Universal_Integer);
2747
 
2748
         --  Note: unlike other array attributes, unconstrained arrays are OK
2749
 
2750
         if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
2751
            null;
2752
         else
2753
            Check_Array_Type;
2754
         end if;
2755
 
2756
      -------------
2757
      -- Compose --
2758
      -------------
2759
 
2760
      when Attribute_Compose =>
2761
         Check_Floating_Point_Type_2;
2762
         Set_Etype (N, P_Base_Type);
2763
         Resolve (E1, P_Base_Type);
2764
         Resolve (E2, Any_Integer);
2765
 
2766
      -----------------
2767
      -- Constrained --
2768
      -----------------
2769
 
2770
      when Attribute_Constrained =>
2771
         Check_E0;
2772
         Set_Etype (N, Standard_Boolean);
2773
 
2774
         --  Case from RM J.4(2) of constrained applied to private type
2775
 
2776
         if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
2777
            Check_Restriction (No_Obsolescent_Features, P);
2778
 
2779
            if Warn_On_Obsolescent_Feature then
2780
               Error_Msg_N
2781
                 ("constrained for private type is an " &
2782
                  "obsolescent feature (RM J.4)?", N);
2783
            end if;
2784
 
2785
            --  If we are within an instance, the attribute must be legal
2786
            --  because it was valid in the generic unit. Ditto if this is
2787
            --  an inlining of a function declared in an instance.
2788
 
2789
            if In_Instance
2790
              or else In_Inlined_Body
2791
            then
2792
               return;
2793
 
2794
            --  For sure OK if we have a real private type itself, but must
2795
            --  be completed, cannot apply Constrained to incomplete type.
2796
 
2797
            elsif Is_Private_Type (Entity (P)) then
2798
 
2799
               --  Note: this is one of the Annex J features that does not
2800
               --  generate a warning from -gnatwj, since in fact it seems
2801
               --  very useful, and is used in the GNAT runtime.
2802
 
2803
               Check_Not_Incomplete_Type;
2804
               return;
2805
            end if;
2806
 
2807
         --  Normal (non-obsolescent case) of application to object of
2808
         --  a discriminated type.
2809
 
2810
         else
2811
            Check_Object_Reference (P);
2812
 
2813
            --  If N does not come from source, then we allow the
2814
            --  the attribute prefix to be of a private type whose
2815
            --  full type has discriminants. This occurs in cases
2816
            --  involving expanded calls to stream attributes.
2817
 
2818
            if not Comes_From_Source (N) then
2819
               P_Type := Underlying_Type (P_Type);
2820
            end if;
2821
 
2822
            --  Must have discriminants or be an access type designating
2823
            --  a type with discriminants. If it is a classwide type is ???
2824
            --  has unknown discriminants.
2825
 
2826
            if Has_Discriminants (P_Type)
2827
               or else Has_Unknown_Discriminants (P_Type)
2828
               or else
2829
                 (Is_Access_Type (P_Type)
2830
                   and then Has_Discriminants (Designated_Type (P_Type)))
2831
            then
2832
               return;
2833
 
2834
            --  Also allow an object of a generic type if extensions allowed
2835
            --  and allow this for any type at all.
2836
 
2837
            elsif (Is_Generic_Type (P_Type)
2838
                     or else Is_Generic_Actual_Type (P_Type))
2839
              and then Extensions_Allowed
2840
            then
2841
               return;
2842
            end if;
2843
         end if;
2844
 
2845
         --  Fall through if bad prefix
2846
 
2847
         Error_Attr_P
2848
           ("prefix of % attribute must be object of discriminated type");
2849
 
2850
      ---------------
2851
      -- Copy_Sign --
2852
      ---------------
2853
 
2854
      when Attribute_Copy_Sign =>
2855
         Check_Floating_Point_Type_2;
2856
         Set_Etype (N, P_Base_Type);
2857
         Resolve (E1, P_Base_Type);
2858
         Resolve (E2, P_Base_Type);
2859
 
2860
      -----------
2861
      -- Count --
2862
      -----------
2863
 
2864
      when Attribute_Count => Count :
2865
      declare
2866
         Ent : Entity_Id;
2867
         S   : Entity_Id;
2868
         Tsk : Entity_Id;
2869
 
2870
      begin
2871
         Check_E0;
2872
 
2873
         if Nkind_In (P, N_Identifier, N_Expanded_Name) then
2874
            Ent := Entity (P);
2875
 
2876
            if Ekind (Ent) /= E_Entry then
2877
               Error_Attr ("invalid entry name", N);
2878
            end if;
2879
 
2880
         elsif Nkind (P) = N_Indexed_Component then
2881
            if not Is_Entity_Name (Prefix (P))
2882
              or else  No (Entity (Prefix (P)))
2883
              or else Ekind (Entity (Prefix (P))) /= E_Entry_Family
2884
            then
2885
               if Nkind (Prefix (P)) = N_Selected_Component
2886
                 and then Present (Entity (Selector_Name (Prefix (P))))
2887
                 and then Ekind (Entity (Selector_Name (Prefix (P)))) =
2888
                                                             E_Entry_Family
2889
               then
2890
                  Error_Attr
2891
                    ("attribute % must apply to entry of current task", P);
2892
 
2893
               else
2894
                  Error_Attr ("invalid entry family name", P);
2895
               end if;
2896
               return;
2897
 
2898
            else
2899
               Ent := Entity (Prefix (P));
2900
            end if;
2901
 
2902
         elsif Nkind (P) = N_Selected_Component
2903
           and then Present (Entity (Selector_Name (P)))
2904
           and then Ekind (Entity (Selector_Name (P))) = E_Entry
2905
         then
2906
            Error_Attr
2907
              ("attribute % must apply to entry of current task", P);
2908
 
2909
         else
2910
            Error_Attr ("invalid entry name", N);
2911
            return;
2912
         end if;
2913
 
2914
         for J in reverse 0 .. Scope_Stack.Last loop
2915
            S := Scope_Stack.Table (J).Entity;
2916
 
2917
            if S = Scope (Ent) then
2918
               if Nkind (P) = N_Expanded_Name then
2919
                  Tsk := Entity (Prefix (P));
2920
 
2921
                  --  The prefix denotes either the task type, or else a
2922
                  --  single task whose task type is being analyzed.
2923
 
2924
                  if (Is_Type (Tsk)
2925
                      and then Tsk = S)
2926
 
2927
                    or else (not Is_Type (Tsk)
2928
                      and then Etype (Tsk) = S
2929
                      and then not (Comes_From_Source (S)))
2930
                  then
2931
                     null;
2932
                  else
2933
                     Error_Attr
2934
                       ("Attribute % must apply to entry of current task", N);
2935
                  end if;
2936
               end if;
2937
 
2938
               exit;
2939
 
2940
            elsif Ekind (Scope (Ent)) in Task_Kind
2941
              and then
2942
                not Ekind_In (S, E_Loop, E_Block, E_Entry, E_Entry_Family)
2943
            then
2944
               Error_Attr ("Attribute % cannot appear in inner unit", N);
2945
 
2946
            elsif Ekind (Scope (Ent)) = E_Protected_Type
2947
              and then not Has_Completion (Scope (Ent))
2948
            then
2949
               Error_Attr ("attribute % can only be used inside body", N);
2950
            end if;
2951
         end loop;
2952
 
2953
         if Is_Overloaded (P) then
2954
            declare
2955
               Index : Interp_Index;
2956
               It    : Interp;
2957
 
2958
            begin
2959
               Get_First_Interp (P, Index, It);
2960
 
2961
               while Present (It.Nam) loop
2962
                  if It.Nam = Ent then
2963
                     null;
2964
 
2965
                  --  Ada 2005 (AI-345): Do not consider primitive entry
2966
                  --  wrappers generated for task or protected types.
2967
 
2968
                  elsif Ada_Version >= Ada_2005
2969
                    and then not Comes_From_Source (It.Nam)
2970
                  then
2971
                     null;
2972
 
2973
                  else
2974
                     Error_Attr ("ambiguous entry name", N);
2975
                  end if;
2976
 
2977
                  Get_Next_Interp (Index, It);
2978
               end loop;
2979
            end;
2980
         end if;
2981
 
2982
         Set_Etype (N, Universal_Integer);
2983
      end Count;
2984
 
2985
      -----------------------
2986
      -- Default_Bit_Order --
2987
      -----------------------
2988
 
2989
      when Attribute_Default_Bit_Order => Default_Bit_Order :
2990
      begin
2991
         Check_Standard_Prefix;
2992
 
2993
         if Bytes_Big_Endian then
2994
            Rewrite (N,
2995
              Make_Integer_Literal (Loc, False_Value));
2996
         else
2997
            Rewrite (N,
2998
              Make_Integer_Literal (Loc, True_Value));
2999
         end if;
3000
 
3001
         Set_Etype (N, Universal_Integer);
3002
         Set_Is_Static_Expression (N);
3003
      end Default_Bit_Order;
3004
 
3005
      --------------
3006
      -- Definite --
3007
      --------------
3008
 
3009
      when Attribute_Definite =>
3010
         Legal_Formal_Attribute;
3011
 
3012
      -----------
3013
      -- Delta --
3014
      -----------
3015
 
3016
      when Attribute_Delta =>
3017
         Check_Fixed_Point_Type_0;
3018
         Set_Etype (N, Universal_Real);
3019
 
3020
      ------------
3021
      -- Denorm --
3022
      ------------
3023
 
3024
      when Attribute_Denorm =>
3025
         Check_Floating_Point_Type_0;
3026
         Set_Etype (N, Standard_Boolean);
3027
 
3028
      ---------------------
3029
      -- Descriptor_Size --
3030
      ---------------------
3031
 
3032
      when Attribute_Descriptor_Size =>
3033
         Check_E0;
3034
 
3035
         if not Is_Entity_Name (P)
3036
           or else not Is_Type (Entity (P))
3037
         then
3038
            Error_Attr_P ("prefix of attribute % must denote a type");
3039
         end if;
3040
 
3041
         Set_Etype (N, Universal_Integer);
3042
 
3043
      ------------
3044
      -- Digits --
3045
      ------------
3046
 
3047
      when Attribute_Digits =>
3048
         Check_E0;
3049
         Check_Type;
3050
 
3051
         if not Is_Floating_Point_Type (P_Type)
3052
           and then not Is_Decimal_Fixed_Point_Type (P_Type)
3053
         then
3054
            Error_Attr_P
3055
              ("prefix of % attribute must be float or decimal type");
3056
         end if;
3057
 
3058
         Set_Etype (N, Universal_Integer);
3059
 
3060
      ---------------
3061
      -- Elab_Body --
3062
      ---------------
3063
 
3064
      --  Also handles processing for Elab_Spec and Elab_Subp_Body
3065
 
3066
      when Attribute_Elab_Body      |
3067
           Attribute_Elab_Spec      |
3068
           Attribute_Elab_Subp_Body =>
3069
 
3070
         Check_E0;
3071
         Check_Unit_Name (P);
3072
         Set_Etype (N, Standard_Void_Type);
3073
 
3074
         --  We have to manually call the expander in this case to get
3075
         --  the necessary expansion (normally attributes that return
3076
         --  entities are not expanded).
3077
 
3078
         Expand (N);
3079
 
3080
      ---------------
3081
      -- Elab_Spec --
3082
      ---------------
3083
 
3084
      --  Shares processing with Elab_Body
3085
 
3086
      ----------------
3087
      -- Elaborated --
3088
      ----------------
3089
 
3090
      when Attribute_Elaborated =>
3091
         Check_E0;
3092
         Check_Unit_Name (P);
3093
         Set_Etype (N, Standard_Boolean);
3094
 
3095
      ----------
3096
      -- Emax --
3097
      ----------
3098
 
3099
      when Attribute_Emax =>
3100
         Check_Floating_Point_Type_0;
3101
         Set_Etype (N, Universal_Integer);
3102
 
3103
      -------------
3104
      -- Enabled --
3105
      -------------
3106
 
3107
      when Attribute_Enabled =>
3108
         Check_Either_E0_Or_E1;
3109
 
3110
         if Present (E1) then
3111
            if not Is_Entity_Name (E1) or else No (Entity (E1)) then
3112
               Error_Msg_N ("entity name expected for Enabled attribute", E1);
3113
               E1 := Empty;
3114
            end if;
3115
         end if;
3116
 
3117
         if Nkind (P) /= N_Identifier then
3118
            Error_Msg_N ("identifier expected (check name)", P);
3119
         elsif Get_Check_Id (Chars (P)) = No_Check_Id then
3120
            Error_Msg_N ("& is not a recognized check name", P);
3121
         end if;
3122
 
3123
         Set_Etype (N, Standard_Boolean);
3124
 
3125
      --------------
3126
      -- Enum_Rep --
3127
      --------------
3128
 
3129
      when Attribute_Enum_Rep => Enum_Rep : declare
3130
      begin
3131
         if Present (E1) then
3132
            Check_E1;
3133
            Check_Discrete_Type;
3134
            Resolve (E1, P_Base_Type);
3135
 
3136
         else
3137
            if not Is_Entity_Name (P)
3138
              or else (not Is_Object (Entity (P))
3139
                         and then
3140
                       Ekind (Entity (P)) /= E_Enumeration_Literal)
3141
            then
3142
               Error_Attr_P
3143
                 ("prefix of % attribute must be " &
3144
                  "discrete type/object or enum literal");
3145
            end if;
3146
         end if;
3147
 
3148
         Set_Etype (N, Universal_Integer);
3149
      end Enum_Rep;
3150
 
3151
      --------------
3152
      -- Enum_Val --
3153
      --------------
3154
 
3155
      when Attribute_Enum_Val => Enum_Val : begin
3156
         Check_E1;
3157
         Check_Type;
3158
 
3159
         if not Is_Enumeration_Type (P_Type) then
3160
            Error_Attr_P ("prefix of % attribute must be enumeration type");
3161
         end if;
3162
 
3163
         --  If the enumeration type has a standard representation, the effect
3164
         --  is the same as 'Val, so rewrite the attribute as a 'Val.
3165
 
3166
         if not Has_Non_Standard_Rep (P_Base_Type) then
3167
            Rewrite (N,
3168
              Make_Attribute_Reference (Loc,
3169
                Prefix         => Relocate_Node (Prefix (N)),
3170
                Attribute_Name => Name_Val,
3171
                Expressions    => New_List (Relocate_Node (E1))));
3172
            Analyze_And_Resolve (N, P_Base_Type);
3173
 
3174
         --  Non-standard representation case (enumeration with holes)
3175
 
3176
         else
3177
            Check_Enum_Image;
3178
            Resolve (E1, Any_Integer);
3179
            Set_Etype (N, P_Base_Type);
3180
         end if;
3181
      end Enum_Val;
3182
 
3183
      -------------
3184
      -- Epsilon --
3185
      -------------
3186
 
3187
      when Attribute_Epsilon =>
3188
         Check_Floating_Point_Type_0;
3189
         Set_Etype (N, Universal_Real);
3190
 
3191
      --------------
3192
      -- Exponent --
3193
      --------------
3194
 
3195
      when Attribute_Exponent =>
3196
         Check_Floating_Point_Type_1;
3197
         Set_Etype (N, Universal_Integer);
3198
         Resolve (E1, P_Base_Type);
3199
 
3200
      ------------------
3201
      -- External_Tag --
3202
      ------------------
3203
 
3204
      when Attribute_External_Tag =>
3205
         Check_E0;
3206
         Check_Type;
3207
 
3208
         Set_Etype (N, Standard_String);
3209
 
3210
         if not Is_Tagged_Type (P_Type) then
3211
            Error_Attr_P ("prefix of % attribute must be tagged");
3212
         end if;
3213
 
3214
      ---------------
3215
      -- Fast_Math --
3216
      ---------------
3217
 
3218
      when Attribute_Fast_Math =>
3219
         Check_Standard_Prefix;
3220
 
3221
         if Opt.Fast_Math then
3222
            Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3223
         else
3224
            Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3225
         end if;
3226
 
3227
      -----------
3228
      -- First --
3229
      -----------
3230
 
3231
      when Attribute_First =>
3232
         Check_Array_Or_Scalar_Type;
3233
         Bad_Attribute_For_Predicate;
3234
 
3235
      ---------------
3236
      -- First_Bit --
3237
      ---------------
3238
 
3239
      when Attribute_First_Bit =>
3240
         Check_Component;
3241
         Set_Etype (N, Universal_Integer);
3242
 
3243
      -----------------
3244
      -- Fixed_Value --
3245
      -----------------
3246
 
3247
      when Attribute_Fixed_Value =>
3248
         Check_E1;
3249
         Check_Fixed_Point_Type;
3250
         Resolve (E1, Any_Integer);
3251
         Set_Etype (N, P_Base_Type);
3252
 
3253
      -----------
3254
      -- Floor --
3255
      -----------
3256
 
3257
      when Attribute_Floor =>
3258
         Check_Floating_Point_Type_1;
3259
         Set_Etype (N, P_Base_Type);
3260
         Resolve (E1, P_Base_Type);
3261
 
3262
      ----------
3263
      -- Fore --
3264
      ----------
3265
 
3266
      when Attribute_Fore =>
3267
         Check_Fixed_Point_Type_0;
3268
         Set_Etype (N, Universal_Integer);
3269
 
3270
      --------------
3271
      -- Fraction --
3272
      --------------
3273
 
3274
      when Attribute_Fraction =>
3275
         Check_Floating_Point_Type_1;
3276
         Set_Etype (N, P_Base_Type);
3277
         Resolve (E1, P_Base_Type);
3278
 
3279
      --------------
3280
      -- From_Any --
3281
      --------------
3282
 
3283
      when Attribute_From_Any =>
3284
         Check_E1;
3285
         Check_PolyORB_Attribute;
3286
         Set_Etype (N, P_Base_Type);
3287
 
3288
      -----------------------
3289
      -- Has_Access_Values --
3290
      -----------------------
3291
 
3292
      when Attribute_Has_Access_Values =>
3293
         Check_Type;
3294
         Check_E0;
3295
         Set_Etype (N, Standard_Boolean);
3296
 
3297
      -----------------------
3298
      -- Has_Tagged_Values --
3299
      -----------------------
3300
 
3301
      when Attribute_Has_Tagged_Values =>
3302
         Check_Type;
3303
         Check_E0;
3304
         Set_Etype (N, Standard_Boolean);
3305
 
3306
      -----------------------
3307
      -- Has_Discriminants --
3308
      -----------------------
3309
 
3310
      when Attribute_Has_Discriminants =>
3311
         Legal_Formal_Attribute;
3312
 
3313
      --------------
3314
      -- Identity --
3315
      --------------
3316
 
3317
      when Attribute_Identity =>
3318
         Check_E0;
3319
         Analyze (P);
3320
 
3321
         if Etype (P) =  Standard_Exception_Type then
3322
            Set_Etype (N, RTE (RE_Exception_Id));
3323
 
3324
         --  Ada 2005 (AI-345): Attribute 'Identity may be applied to
3325
         --  task interface class-wide types.
3326
 
3327
         elsif Is_Task_Type (Etype (P))
3328
           or else (Is_Access_Type (Etype (P))
3329
                      and then Is_Task_Type (Designated_Type (Etype (P))))
3330
           or else (Ada_Version >= Ada_2005
3331
                      and then Ekind (Etype (P)) = E_Class_Wide_Type
3332
                      and then Is_Interface (Etype (P))
3333
                      and then Is_Task_Interface (Etype (P)))
3334
         then
3335
            Resolve (P);
3336
            Set_Etype (N, RTE (RO_AT_Task_Id));
3337
 
3338
         else
3339
            if Ada_Version >= Ada_2005 then
3340
               Error_Attr_P
3341
                 ("prefix of % attribute must be an exception, a " &
3342
                  "task or a task interface class-wide object");
3343
            else
3344
               Error_Attr_P
3345
                 ("prefix of % attribute must be a task or an exception");
3346
            end if;
3347
         end if;
3348
 
3349
      -----------
3350
      -- Image --
3351
      -----------
3352
 
3353
      when Attribute_Image => Image :
3354
      begin
3355
         Check_SPARK_Restriction_On_Attribute;
3356
         Check_Scalar_Type;
3357
         Set_Etype (N, Standard_String);
3358
 
3359
         if Is_Real_Type (P_Type) then
3360
            if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3361
               Error_Msg_Name_1 := Aname;
3362
               Error_Msg_N
3363
                 ("(Ada 83) % attribute not allowed for real types", N);
3364
            end if;
3365
         end if;
3366
 
3367
         if Is_Enumeration_Type (P_Type) then
3368
            Check_Restriction (No_Enumeration_Maps, N);
3369
         end if;
3370
 
3371
         Check_E1;
3372
         Resolve (E1, P_Base_Type);
3373
         Check_Enum_Image;
3374
         Validate_Non_Static_Attribute_Function_Call;
3375
      end Image;
3376
 
3377
      ---------
3378
      -- Img --
3379
      ---------
3380
 
3381
      when Attribute_Img => Img :
3382
      begin
3383
         Check_E0;
3384
         Set_Etype (N, Standard_String);
3385
 
3386
         if not Is_Scalar_Type (P_Type)
3387
           or else (Is_Entity_Name (P) and then Is_Type (Entity (P)))
3388
         then
3389
            Error_Attr_P
3390
              ("prefix of % attribute must be scalar object name");
3391
         end if;
3392
 
3393
         Check_Enum_Image;
3394
      end Img;
3395
 
3396
      -----------
3397
      -- Input --
3398
      -----------
3399
 
3400
      when Attribute_Input =>
3401
         Check_E1;
3402
         Check_Stream_Attribute (TSS_Stream_Input);
3403
         Set_Etype (N, P_Base_Type);
3404
 
3405
      -------------------
3406
      -- Integer_Value --
3407
      -------------------
3408
 
3409
      when Attribute_Integer_Value =>
3410
         Check_E1;
3411
         Check_Integer_Type;
3412
         Resolve (E1, Any_Fixed);
3413
 
3414
         --  Signal an error if argument type is not a specific fixed-point
3415
         --  subtype. An error has been signalled already if the argument
3416
         --  was not of a fixed-point type.
3417
 
3418
         if Etype (E1) = Any_Fixed and then not Error_Posted (E1) then
3419
            Error_Attr ("argument of % must be of a fixed-point type", E1);
3420
         end if;
3421
 
3422
         Set_Etype (N, P_Base_Type);
3423
 
3424
      -------------------
3425
      -- Invalid_Value --
3426
      -------------------
3427
 
3428
      when Attribute_Invalid_Value =>
3429
         Check_E0;
3430
         Check_Scalar_Type;
3431
         Set_Etype (N, P_Base_Type);
3432
         Invalid_Value_Used := True;
3433
 
3434
      -----------
3435
      -- Large --
3436
      -----------
3437
 
3438
      when Attribute_Large =>
3439
         Check_E0;
3440
         Check_Real_Type;
3441
         Set_Etype (N, Universal_Real);
3442
 
3443
      ----------
3444
      -- Last --
3445
      ----------
3446
 
3447
      when Attribute_Last =>
3448
         Check_Array_Or_Scalar_Type;
3449
         Bad_Attribute_For_Predicate;
3450
 
3451
      --------------
3452
      -- Last_Bit --
3453
      --------------
3454
 
3455
      when Attribute_Last_Bit =>
3456
         Check_Component;
3457
         Set_Etype (N, Universal_Integer);
3458
 
3459
      ------------------
3460
      -- Leading_Part --
3461
      ------------------
3462
 
3463
      when Attribute_Leading_Part =>
3464
         Check_Floating_Point_Type_2;
3465
         Set_Etype (N, P_Base_Type);
3466
         Resolve (E1, P_Base_Type);
3467
         Resolve (E2, Any_Integer);
3468
 
3469
      ------------
3470
      -- Length --
3471
      ------------
3472
 
3473
      when Attribute_Length =>
3474
         Check_Array_Type;
3475
         Set_Etype (N, Universal_Integer);
3476
 
3477
      -------------
3478
      -- Machine --
3479
      -------------
3480
 
3481
      when Attribute_Machine =>
3482
         Check_Floating_Point_Type_1;
3483
         Set_Etype (N, P_Base_Type);
3484
         Resolve (E1, P_Base_Type);
3485
 
3486
      ------------------
3487
      -- Machine_Emax --
3488
      ------------------
3489
 
3490
      when Attribute_Machine_Emax =>
3491
         Check_Floating_Point_Type_0;
3492
         Set_Etype (N, Universal_Integer);
3493
 
3494
      ------------------
3495
      -- Machine_Emin --
3496
      ------------------
3497
 
3498
      when Attribute_Machine_Emin =>
3499
         Check_Floating_Point_Type_0;
3500
         Set_Etype (N, Universal_Integer);
3501
 
3502
      ----------------------
3503
      -- Machine_Mantissa --
3504
      ----------------------
3505
 
3506
      when Attribute_Machine_Mantissa =>
3507
         Check_Floating_Point_Type_0;
3508
         Set_Etype (N, Universal_Integer);
3509
 
3510
      -----------------------
3511
      -- Machine_Overflows --
3512
      -----------------------
3513
 
3514
      when Attribute_Machine_Overflows =>
3515
         Check_Real_Type;
3516
         Check_E0;
3517
         Set_Etype (N, Standard_Boolean);
3518
 
3519
      -------------------
3520
      -- Machine_Radix --
3521
      -------------------
3522
 
3523
      when Attribute_Machine_Radix =>
3524
         Check_Real_Type;
3525
         Check_E0;
3526
         Set_Etype (N, Universal_Integer);
3527
 
3528
      ----------------------
3529
      -- Machine_Rounding --
3530
      ----------------------
3531
 
3532
      when Attribute_Machine_Rounding =>
3533
         Check_Floating_Point_Type_1;
3534
         Set_Etype (N, P_Base_Type);
3535
         Resolve (E1, P_Base_Type);
3536
 
3537
      --------------------
3538
      -- Machine_Rounds --
3539
      --------------------
3540
 
3541
      when Attribute_Machine_Rounds =>
3542
         Check_Real_Type;
3543
         Check_E0;
3544
         Set_Etype (N, Standard_Boolean);
3545
 
3546
      ------------------
3547
      -- Machine_Size --
3548
      ------------------
3549
 
3550
      when Attribute_Machine_Size =>
3551
         Check_E0;
3552
         Check_Type;
3553
         Check_Not_Incomplete_Type;
3554
         Set_Etype (N, Universal_Integer);
3555
 
3556
      --------------
3557
      -- Mantissa --
3558
      --------------
3559
 
3560
      when Attribute_Mantissa =>
3561
         Check_E0;
3562
         Check_Real_Type;
3563
         Set_Etype (N, Universal_Integer);
3564
 
3565
      ---------
3566
      -- Max --
3567
      ---------
3568
 
3569
      when Attribute_Max =>
3570
         Check_E2;
3571
         Check_Scalar_Type;
3572
         Resolve (E1, P_Base_Type);
3573
         Resolve (E2, P_Base_Type);
3574
         Set_Etype (N, P_Base_Type);
3575
 
3576
      ----------------------------------
3577
      -- Max_Alignment_For_Allocation --
3578
      -- Max_Size_In_Storage_Elements --
3579
      ----------------------------------
3580
 
3581
      when Attribute_Max_Alignment_For_Allocation |
3582
        Attribute_Max_Size_In_Storage_Elements =>
3583
         Check_E0;
3584
         Check_Type;
3585
         Check_Not_Incomplete_Type;
3586
         Set_Etype (N, Universal_Integer);
3587
 
3588
      -----------------------
3589
      -- Maximum_Alignment --
3590
      -----------------------
3591
 
3592
      when Attribute_Maximum_Alignment =>
3593
         Standard_Attribute (Ttypes.Maximum_Alignment);
3594
 
3595
      --------------------
3596
      -- Mechanism_Code --
3597
      --------------------
3598
 
3599
      when Attribute_Mechanism_Code =>
3600
         if not Is_Entity_Name (P)
3601
           or else not Is_Subprogram (Entity (P))
3602
         then
3603
            Error_Attr_P ("prefix of % attribute must be subprogram");
3604
         end if;
3605
 
3606
         Check_Either_E0_Or_E1;
3607
 
3608
         if Present (E1) then
3609
            Resolve (E1, Any_Integer);
3610
            Set_Etype (E1, Standard_Integer);
3611
 
3612
            if not Is_Static_Expression (E1) then
3613
               Flag_Non_Static_Expr
3614
                 ("expression for parameter number must be static!", E1);
3615
               Error_Attr;
3616
 
3617
            elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
3618
              or else UI_To_Int (Intval (E1)) < 0
3619
            then
3620
               Error_Attr ("invalid parameter number for % attribute", E1);
3621
            end if;
3622
         end if;
3623
 
3624
         Set_Etype (N, Universal_Integer);
3625
 
3626
      ---------
3627
      -- Min --
3628
      ---------
3629
 
3630
      when Attribute_Min =>
3631
         Check_E2;
3632
         Check_Scalar_Type;
3633
         Resolve (E1, P_Base_Type);
3634
         Resolve (E2, P_Base_Type);
3635
         Set_Etype (N, P_Base_Type);
3636
 
3637
      ---------
3638
      -- Mod --
3639
      ---------
3640
 
3641
      when Attribute_Mod =>
3642
 
3643
         --  Note: this attribute is only allowed in Ada 2005 mode, but
3644
         --  we do not need to test that here, since Mod is only recognized
3645
         --  as an attribute name in Ada 2005 mode during the parse.
3646
 
3647
         Check_E1;
3648
         Check_Modular_Integer_Type;
3649
         Resolve (E1, Any_Integer);
3650
         Set_Etype (N, P_Base_Type);
3651
 
3652
      -----------
3653
      -- Model --
3654
      -----------
3655
 
3656
      when Attribute_Model =>
3657
         Check_Floating_Point_Type_1;
3658
         Set_Etype (N, P_Base_Type);
3659
         Resolve (E1, P_Base_Type);
3660
 
3661
      ----------------
3662
      -- Model_Emin --
3663
      ----------------
3664
 
3665
      when Attribute_Model_Emin =>
3666
         Check_Floating_Point_Type_0;
3667
         Set_Etype (N, Universal_Integer);
3668
 
3669
      -------------------
3670
      -- Model_Epsilon --
3671
      -------------------
3672
 
3673
      when Attribute_Model_Epsilon =>
3674
         Check_Floating_Point_Type_0;
3675
         Set_Etype (N, Universal_Real);
3676
 
3677
      --------------------
3678
      -- Model_Mantissa --
3679
      --------------------
3680
 
3681
      when Attribute_Model_Mantissa =>
3682
         Check_Floating_Point_Type_0;
3683
         Set_Etype (N, Universal_Integer);
3684
 
3685
      -----------------
3686
      -- Model_Small --
3687
      -----------------
3688
 
3689
      when Attribute_Model_Small =>
3690
         Check_Floating_Point_Type_0;
3691
         Set_Etype (N, Universal_Real);
3692
 
3693
      -------------
3694
      -- Modulus --
3695
      -------------
3696
 
3697
      when Attribute_Modulus =>
3698
         Check_E0;
3699
         Check_Modular_Integer_Type;
3700
         Set_Etype (N, Universal_Integer);
3701
 
3702
      --------------------
3703
      -- Null_Parameter --
3704
      --------------------
3705
 
3706
      when Attribute_Null_Parameter => Null_Parameter : declare
3707
         Parnt  : constant Node_Id := Parent (N);
3708
         GParnt : constant Node_Id := Parent (Parnt);
3709
 
3710
         procedure Bad_Null_Parameter (Msg : String);
3711
         --  Used if bad Null parameter attribute node is found. Issues
3712
         --  given error message, and also sets the type to Any_Type to
3713
         --  avoid blowups later on from dealing with a junk node.
3714
 
3715
         procedure Must_Be_Imported (Proc_Ent : Entity_Id);
3716
         --  Called to check that Proc_Ent is imported subprogram
3717
 
3718
         ------------------------
3719
         -- Bad_Null_Parameter --
3720
         ------------------------
3721
 
3722
         procedure Bad_Null_Parameter (Msg : String) is
3723
         begin
3724
            Error_Msg_N (Msg, N);
3725
            Set_Etype (N, Any_Type);
3726
         end Bad_Null_Parameter;
3727
 
3728
         ----------------------
3729
         -- Must_Be_Imported --
3730
         ----------------------
3731
 
3732
         procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
3733
            Pent : constant Entity_Id := Ultimate_Alias (Proc_Ent);
3734
 
3735
         begin
3736
            --  Ignore check if procedure not frozen yet (we will get
3737
            --  another chance when the default parameter is reanalyzed)
3738
 
3739
            if not Is_Frozen (Pent) then
3740
               return;
3741
 
3742
            elsif not Is_Imported (Pent) then
3743
               Bad_Null_Parameter
3744
                 ("Null_Parameter can only be used with imported subprogram");
3745
 
3746
            else
3747
               return;
3748
            end if;
3749
         end Must_Be_Imported;
3750
 
3751
      --  Start of processing for Null_Parameter
3752
 
3753
      begin
3754
         Check_Type;
3755
         Check_E0;
3756
         Set_Etype (N, P_Type);
3757
 
3758
         --  Case of attribute used as default expression
3759
 
3760
         if Nkind (Parnt) = N_Parameter_Specification then
3761
            Must_Be_Imported (Defining_Entity (GParnt));
3762
 
3763
         --  Case of attribute used as actual for subprogram (positional)
3764
 
3765
         elsif Nkind_In (Parnt, N_Procedure_Call_Statement,
3766
                                N_Function_Call)
3767
            and then Is_Entity_Name (Name (Parnt))
3768
         then
3769
            Must_Be_Imported (Entity (Name (Parnt)));
3770
 
3771
         --  Case of attribute used as actual for subprogram (named)
3772
 
3773
         elsif Nkind (Parnt) = N_Parameter_Association
3774
           and then Nkind_In (GParnt, N_Procedure_Call_Statement,
3775
                                      N_Function_Call)
3776
           and then Is_Entity_Name (Name (GParnt))
3777
         then
3778
            Must_Be_Imported (Entity (Name (GParnt)));
3779
 
3780
         --  Not an allowed case
3781
 
3782
         else
3783
            Bad_Null_Parameter
3784
              ("Null_Parameter must be actual or default parameter");
3785
         end if;
3786
      end Null_Parameter;
3787
 
3788
      -----------------
3789
      -- Object_Size --
3790
      -----------------
3791
 
3792
      when Attribute_Object_Size =>
3793
         Check_E0;
3794
         Check_Type;
3795
         Check_Not_Incomplete_Type;
3796
         Set_Etype (N, Universal_Integer);
3797
 
3798
      ---------
3799
      -- Old --
3800
      ---------
3801
 
3802
      when Attribute_Old =>
3803
 
3804
         --  The attribute reference is a primary. If expressions follow, the
3805
         --  attribute reference is an indexable object, so rewrite the node
3806
         --  accordingly.
3807
 
3808
         if Present (E1) then
3809
            Rewrite (N,
3810
              Make_Indexed_Component (Loc,
3811
                Prefix      =>
3812
                  Make_Attribute_Reference (Loc,
3813
                    Prefix         => Relocate_Node (Prefix (N)),
3814
                    Attribute_Name => Name_Old),
3815
                Expressions => Expressions (N)));
3816
 
3817
            Analyze (N);
3818
            return;
3819
         end if;
3820
 
3821
         Check_E0;
3822
 
3823
         --  Prefix has not been analyzed yet, and its full analysis will take
3824
         --  place during expansion (see below).
3825
 
3826
         Preanalyze_And_Resolve (P);
3827
         P_Type := Etype (P);
3828
         Set_Etype (N, P_Type);
3829
 
3830
         if No (Current_Subprogram) then
3831
            Error_Attr ("attribute % can only appear within subprogram", N);
3832
         end if;
3833
 
3834
         if Is_Limited_Type (P_Type) then
3835
            Error_Attr ("attribute % cannot apply to limited objects", P);
3836
         end if;
3837
 
3838
         if Is_Entity_Name (P)
3839
           and then Is_Constant_Object (Entity (P))
3840
         then
3841
            Error_Msg_N
3842
              ("?attribute Old applied to constant has no effect", P);
3843
         end if;
3844
 
3845
         --  Check that the expression does not refer to local entities
3846
 
3847
         Check_Local : declare
3848
            Subp : Entity_Id := Current_Subprogram;
3849
 
3850
            function Process (N : Node_Id) return Traverse_Result;
3851
            --  Check that N does not contain references to local variables or
3852
            --  other local entities of Subp.
3853
 
3854
            -------------
3855
            -- Process --
3856
            -------------
3857
 
3858
            function Process (N : Node_Id) return Traverse_Result is
3859
            begin
3860
               if Is_Entity_Name (N)
3861
                 and then Present (Entity (N))
3862
                 and then not Is_Formal (Entity (N))
3863
                 and then Enclosing_Subprogram (Entity (N)) = Subp
3864
               then
3865
                  Error_Msg_Node_1 := Entity (N);
3866
                  Error_Attr
3867
                    ("attribute % cannot refer to local variable&", N);
3868
               end if;
3869
 
3870
               return OK;
3871
            end Process;
3872
 
3873
            procedure Check_No_Local is new Traverse_Proc;
3874
 
3875
         --  Start of processing for Check_Local
3876
 
3877
         begin
3878
            Check_No_Local (P);
3879
 
3880
            if In_Parameter_Specification (P) then
3881
 
3882
               --  We have additional restrictions on using 'Old in parameter
3883
               --  specifications.
3884
 
3885
               if Present (Enclosing_Subprogram (Current_Subprogram)) then
3886
 
3887
                  --  Check that there is no reference to the enclosing
3888
                  --  subprogram local variables. Otherwise, we might end up
3889
                  --  being called from the enclosing subprogram and thus using
3890
                  --  'Old on a local variable which is not defined at entry
3891
                  --  time.
3892
 
3893
                  Subp := Enclosing_Subprogram (Current_Subprogram);
3894
                  Check_No_Local (P);
3895
 
3896
               else
3897
                  --  We must prevent default expression of library-level
3898
                  --  subprogram from using 'Old, as the subprogram may be
3899
                  --  used in elaboration code for which there is no enclosing
3900
                  --  subprogram.
3901
 
3902
                  Error_Attr
3903
                    ("attribute % can only appear within subprogram", N);
3904
               end if;
3905
            end if;
3906
         end Check_Local;
3907
 
3908
         --  The attribute appears within a pre/postcondition, but refers to
3909
         --  an entity in the enclosing subprogram. If it is a component of a
3910
         --  formal its expansion might generate actual subtypes that may be
3911
         --  referenced in an inner context, and which must be elaborated
3912
         --  within the subprogram itself. As a result we create a declaration
3913
         --  for it and insert it at the start of the enclosing subprogram
3914
         --  This is properly an expansion activity but it has to be performed
3915
         --  now to prevent out-of-order issues.
3916
 
3917
         if Nkind (P) = N_Selected_Component
3918
           and then Has_Discriminants (Etype (Prefix (P)))
3919
         then
3920
            P_Type := Base_Type (P_Type);
3921
            Set_Etype (N, P_Type);
3922
            Set_Etype (P, P_Type);
3923
            Expand (N);
3924
         end if;
3925
 
3926
      ----------------------
3927
      -- Overlaps_Storage --
3928
      ----------------------
3929
 
3930
      when Attribute_Overlaps_Storage =>
3931
         if Ada_Version < Ada_2012 then
3932
            Error_Msg_N
3933
              ("attribute Overlaps_Storage is an Ada 2012 feature", N);
3934
            Error_Msg_N
3935
              ("\unit must be compiled with -gnat2012 switch", N);
3936
         end if;
3937
         Check_E1;
3938
 
3939
         --  Both arguments must be objects of any type
3940
 
3941
         Analyze_And_Resolve (P);
3942
         Analyze_And_Resolve (E1);
3943
         Check_Object_Reference (P);
3944
         Check_Object_Reference (E1);
3945
         Set_Etype (N, Standard_Boolean);
3946
 
3947
      ------------
3948
      -- Output --
3949
      ------------
3950
 
3951
      when Attribute_Output =>
3952
         Check_E2;
3953
         Check_Stream_Attribute (TSS_Stream_Output);
3954
         Set_Etype (N, Standard_Void_Type);
3955
         Resolve (N, Standard_Void_Type);
3956
 
3957
      ------------------
3958
      -- Partition_ID --
3959
      ------------------
3960
 
3961
      when Attribute_Partition_ID => Partition_Id :
3962
      begin
3963
         Check_E0;
3964
 
3965
         if P_Type /= Any_Type then
3966
            if not Is_Library_Level_Entity (Entity (P)) then
3967
               Error_Attr_P
3968
                 ("prefix of % attribute must be library-level entity");
3969
 
3970
            --  The defining entity of prefix should not be declared inside a
3971
            --  Pure unit. RM E.1(8). Is_Pure was set during declaration.
3972
 
3973
            elsif Is_Entity_Name (P)
3974
              and then Is_Pure (Entity (P))
3975
            then
3976
               Error_Attr_P ("prefix of% attribute must not be declared pure");
3977
            end if;
3978
         end if;
3979
 
3980
         Set_Etype (N, Universal_Integer);
3981
      end Partition_Id;
3982
 
3983
      -------------------------
3984
      -- Passed_By_Reference --
3985
      -------------------------
3986
 
3987
      when Attribute_Passed_By_Reference =>
3988
         Check_E0;
3989
         Check_Type;
3990
         Set_Etype (N, Standard_Boolean);
3991
 
3992
      ------------------
3993
      -- Pool_Address --
3994
      ------------------
3995
 
3996
      when Attribute_Pool_Address =>
3997
         Check_E0;
3998
         Set_Etype (N, RTE (RE_Address));
3999
 
4000
      ---------
4001
      -- Pos --
4002
      ---------
4003
 
4004
      when Attribute_Pos =>
4005
         Check_Discrete_Type;
4006
         Check_E1;
4007
 
4008
         if Is_Boolean_Type (P_Type) then
4009
            Error_Msg_Name_1 := Aname;
4010
            Error_Msg_Name_2 := Chars (P_Type);
4011
            Check_SPARK_Restriction
4012
              ("attribute% is not allowed for type%", P);
4013
         end if;
4014
 
4015
         Resolve (E1, P_Base_Type);
4016
         Set_Etype (N, Universal_Integer);
4017
 
4018
      --------------
4019
      -- Position --
4020
      --------------
4021
 
4022
      when Attribute_Position =>
4023
         Check_Component;
4024
         Set_Etype (N, Universal_Integer);
4025
 
4026
      ----------
4027
      -- Pred --
4028
      ----------
4029
 
4030
      when Attribute_Pred =>
4031
         Check_Scalar_Type;
4032
         Check_E1;
4033
 
4034
         if Is_Real_Type (P_Type) or else Is_Boolean_Type (P_Type) then
4035
            Error_Msg_Name_1 := Aname;
4036
            Error_Msg_Name_2 := Chars (P_Type);
4037
            Check_SPARK_Restriction
4038
              ("attribute% is not allowed for type%", P);
4039
         end if;
4040
 
4041
         Resolve (E1, P_Base_Type);
4042
         Set_Etype (N, P_Base_Type);
4043
 
4044
         --  Nothing to do for real type case
4045
 
4046
         if Is_Real_Type (P_Type) then
4047
            null;
4048
 
4049
         --  If not modular type, test for overflow check required
4050
 
4051
         else
4052
            if not Is_Modular_Integer_Type (P_Type)
4053
              and then not Range_Checks_Suppressed (P_Base_Type)
4054
            then
4055
               Enable_Range_Check (E1);
4056
            end if;
4057
         end if;
4058
 
4059
      --------------
4060
      -- Priority --
4061
      --------------
4062
 
4063
      --  Ada 2005 (AI-327): Dynamic ceiling priorities
4064
 
4065
      when Attribute_Priority =>
4066
         if Ada_Version < Ada_2005 then
4067
            Error_Attr ("% attribute is allowed only in Ada 2005 mode", P);
4068
         end if;
4069
 
4070
         Check_E0;
4071
 
4072
         --  The prefix must be a protected object (AARM D.5.2 (2/2))
4073
 
4074
         Analyze (P);
4075
 
4076
         if Is_Protected_Type (Etype (P))
4077
           or else (Is_Access_Type (Etype (P))
4078
                      and then Is_Protected_Type (Designated_Type (Etype (P))))
4079
         then
4080
            Resolve (P, Etype (P));
4081
         else
4082
            Error_Attr_P ("prefix of % attribute must be a protected object");
4083
         end if;
4084
 
4085
         Set_Etype (N, Standard_Integer);
4086
 
4087
         --  Must be called from within a protected procedure or entry of the
4088
         --  protected object.
4089
 
4090
         declare
4091
            S : Entity_Id;
4092
 
4093
         begin
4094
            S := Current_Scope;
4095
            while S /= Etype (P)
4096
               and then S /= Standard_Standard
4097
            loop
4098
               S := Scope (S);
4099
            end loop;
4100
 
4101
            if S = Standard_Standard then
4102
               Error_Attr ("the attribute % is only allowed inside protected "
4103
                           & "operations", P);
4104
            end if;
4105
         end;
4106
 
4107
         Validate_Non_Static_Attribute_Function_Call;
4108
 
4109
      -----------
4110
      -- Range --
4111
      -----------
4112
 
4113
      when Attribute_Range =>
4114
         Check_Array_Or_Scalar_Type;
4115
         Bad_Attribute_For_Predicate;
4116
 
4117
         if Ada_Version = Ada_83
4118
           and then Is_Scalar_Type (P_Type)
4119
           and then Comes_From_Source (N)
4120
         then
4121
            Error_Attr
4122
              ("(Ada 83) % attribute not allowed for scalar type", P);
4123
         end if;
4124
 
4125
      ------------
4126
      -- Result --
4127
      ------------
4128
 
4129
      when Attribute_Result => Result : declare
4130
         CS : Entity_Id;
4131
         --  The enclosing scope, excluding loops for quantified expressions
4132
 
4133
         PS : Entity_Id;
4134
         --  During analysis, CS is the postcondition subprogram and PS the
4135
         --  source subprogram to which the postcondition applies. During
4136
         --  pre-analysis, CS is the scope of the subprogram declaration.
4137
 
4138
         Prag : Node_Id;
4139
         --  During pre-analysis, Prag is the enclosing pragma node if any
4140
 
4141
      begin
4142
         --  Find enclosing scopes, excluding loops
4143
 
4144
         CS := Current_Scope;
4145
         while Ekind (CS) = E_Loop loop
4146
            CS := Scope (CS);
4147
         end loop;
4148
 
4149
         PS := Scope (CS);
4150
 
4151
         --  If the enclosing subprogram is always inlined, the enclosing
4152
         --  postcondition will not be propagated to the expanded call.
4153
 
4154
         if not In_Spec_Expression
4155
           and then Has_Pragma_Inline_Always (PS)
4156
           and then Warn_On_Redundant_Constructs
4157
         then
4158
            Error_Msg_N
4159
              ("postconditions on inlined functions not enforced?", N);
4160
         end if;
4161
 
4162
         --  If we are in the scope of a function and in Spec_Expression mode,
4163
         --  this is likely the prescan of the postcondition pragma, and we
4164
         --  just set the proper type. If there is an error it will be caught
4165
         --  when the real Analyze call is done.
4166
 
4167
         if Ekind (CS) = E_Function
4168
           and then In_Spec_Expression
4169
         then
4170
            --  Check OK prefix
4171
 
4172
            if Chars (CS) /= Chars (P) then
4173
               Error_Msg_Name_1 := Name_Result;
4174
 
4175
               Error_Msg_NE
4176
                 ("incorrect prefix for % attribute, expected &", P, CS);
4177
               Error_Attr;
4178
            end if;
4179
 
4180
            --  Check in postcondition of function
4181
 
4182
            Prag := N;
4183
            while not Nkind_In (Prag, N_Pragma,
4184
                                      N_Function_Specification,
4185
                                      N_Subprogram_Body)
4186
            loop
4187
               Prag := Parent (Prag);
4188
            end loop;
4189
 
4190
            if Nkind (Prag) /= N_Pragma then
4191
               Error_Attr
4192
                 ("% attribute can only appear in postcondition of function",
4193
                  P);
4194
 
4195
            elsif Get_Pragma_Id (Prag) = Pragma_Test_Case then
4196
               declare
4197
                  Arg_Ens : constant Node_Id :=
4198
                              Get_Ensures_From_Test_Case_Pragma (Prag);
4199
                  Arg     : Node_Id;
4200
 
4201
               begin
4202
                  Arg := N;
4203
                  while Arg /= Prag and Arg /= Arg_Ens loop
4204
                     Arg := Parent (Arg);
4205
                  end loop;
4206
 
4207
                  if Arg /= Arg_Ens then
4208
                     Error_Attr ("% attribute misplaced inside Test_Case", P);
4209
                  end if;
4210
               end;
4211
 
4212
            elsif Get_Pragma_Id (Prag) /= Pragma_Postcondition then
4213
               Error_Attr
4214
                 ("% attribute can only appear in postcondition of function",
4215
                  P);
4216
            end if;
4217
 
4218
            --  The attribute reference is a primary. If expressions follow,
4219
            --  the attribute reference is really an indexable object, so
4220
            --  rewrite and analyze as an indexed component.
4221
 
4222
            if Present (E1) then
4223
               Rewrite (N,
4224
                 Make_Indexed_Component (Loc,
4225
                   Prefix      =>
4226
                     Make_Attribute_Reference (Loc,
4227
                       Prefix         => Relocate_Node (Prefix (N)),
4228
                       Attribute_Name => Name_Result),
4229
                   Expressions => Expressions (N)));
4230
               Analyze (N);
4231
               return;
4232
            end if;
4233
 
4234
            Set_Etype (N, Etype (CS));
4235
 
4236
            --  If several functions with that name are visible,
4237
            --  the intended one is the current scope.
4238
 
4239
            if Is_Overloaded (P) then
4240
               Set_Entity (P, CS);
4241
               Set_Is_Overloaded (P, False);
4242
            end if;
4243
 
4244
         --  Body case, where we must be inside a generated _Postcondition
4245
         --  procedure, and the prefix must be on the scope stack, or else
4246
         --  the attribute use is definitely misplaced. The condition itself
4247
         --  may have generated transient scopes, and is not necessarily the
4248
         --  current one.
4249
 
4250
         else
4251
            while Present (CS) and then CS /= Standard_Standard loop
4252
               if Chars (CS) = Name_uPostconditions then
4253
                  exit;
4254
               else
4255
                  CS := Scope (CS);
4256
               end if;
4257
            end loop;
4258
 
4259
            PS := Scope (CS);
4260
 
4261
            if Chars (CS) = Name_uPostconditions
4262
              and then Ekind (PS) = E_Function
4263
            then
4264
               --  Check OK prefix
4265
 
4266
               if Nkind_In (P, N_Identifier, N_Operator_Symbol)
4267
                 and then Chars (P) = Chars (PS)
4268
               then
4269
                  null;
4270
 
4271
               --  Within an instance, the prefix designates the local renaming
4272
               --  of the original generic.
4273
 
4274
               elsif Is_Entity_Name (P)
4275
                 and then Ekind (Entity (P)) = E_Function
4276
                 and then Present (Alias (Entity (P)))
4277
                 and then Chars (Alias (Entity (P))) = Chars (PS)
4278
               then
4279
                  null;
4280
 
4281
               else
4282
                  Error_Msg_NE
4283
                    ("incorrect prefix for % attribute, expected &", P, PS);
4284
                  Error_Attr;
4285
               end if;
4286
 
4287
               Rewrite (N, Make_Identifier (Sloc (N), Name_uResult));
4288
               Analyze_And_Resolve (N, Etype (PS));
4289
 
4290
            else
4291
               Error_Attr
4292
                 ("% attribute can only appear in postcondition of function",
4293
                  P);
4294
            end if;
4295
         end if;
4296
      end Result;
4297
 
4298
      ------------------
4299
      -- Range_Length --
4300
      ------------------
4301
 
4302
      when Attribute_Range_Length =>
4303
         Check_E0;
4304
         Check_Discrete_Type;
4305
         Set_Etype (N, Universal_Integer);
4306
 
4307
      ----------
4308
      -- Read --
4309
      ----------
4310
 
4311
      when Attribute_Read =>
4312
         Check_E2;
4313
         Check_Stream_Attribute (TSS_Stream_Read);
4314
         Set_Etype (N, Standard_Void_Type);
4315
         Resolve (N, Standard_Void_Type);
4316
         Note_Possible_Modification (E2, Sure => True);
4317
 
4318
      ---------
4319
      -- Ref --
4320
      ---------
4321
 
4322
      when Attribute_Ref =>
4323
         Check_E1;
4324
         Analyze (P);
4325
 
4326
         if Nkind (P) /= N_Expanded_Name
4327
           or else not Is_RTE (P_Type, RE_Address)
4328
         then
4329
            Error_Attr_P ("prefix of % attribute must be System.Address");
4330
         end if;
4331
 
4332
         Analyze_And_Resolve (E1, Any_Integer);
4333
         Set_Etype (N, RTE (RE_Address));
4334
 
4335
      ---------------
4336
      -- Remainder --
4337
      ---------------
4338
 
4339
      when Attribute_Remainder =>
4340
         Check_Floating_Point_Type_2;
4341
         Set_Etype (N, P_Base_Type);
4342
         Resolve (E1, P_Base_Type);
4343
         Resolve (E2, P_Base_Type);
4344
 
4345
      -----------
4346
      -- Round --
4347
      -----------
4348
 
4349
      when Attribute_Round =>
4350
         Check_E1;
4351
         Check_Decimal_Fixed_Point_Type;
4352
         Set_Etype (N, P_Base_Type);
4353
 
4354
         --  Because the context is universal_real (3.5.10(12)) it is a legal
4355
         --  context for a universal fixed expression. This is the only
4356
         --  attribute whose functional description involves U_R.
4357
 
4358
         if Etype (E1) = Universal_Fixed then
4359
            declare
4360
               Conv : constant Node_Id := Make_Type_Conversion (Loc,
4361
                  Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
4362
                  Expression   => Relocate_Node (E1));
4363
 
4364
            begin
4365
               Rewrite (E1, Conv);
4366
               Analyze (E1);
4367
            end;
4368
         end if;
4369
 
4370
         Resolve (E1, Any_Real);
4371
 
4372
      --------------
4373
      -- Rounding --
4374
      --------------
4375
 
4376
      when Attribute_Rounding =>
4377
         Check_Floating_Point_Type_1;
4378
         Set_Etype (N, P_Base_Type);
4379
         Resolve (E1, P_Base_Type);
4380
 
4381
      ---------------
4382
      -- Safe_Emax --
4383
      ---------------
4384
 
4385
      when Attribute_Safe_Emax =>
4386
         Check_Floating_Point_Type_0;
4387
         Set_Etype (N, Universal_Integer);
4388
 
4389
      ----------------
4390
      -- Safe_First --
4391
      ----------------
4392
 
4393
      when Attribute_Safe_First =>
4394
         Check_Floating_Point_Type_0;
4395
         Set_Etype (N, Universal_Real);
4396
 
4397
      ----------------
4398
      -- Safe_Large --
4399
      ----------------
4400
 
4401
      when Attribute_Safe_Large =>
4402
         Check_E0;
4403
         Check_Real_Type;
4404
         Set_Etype (N, Universal_Real);
4405
 
4406
      ---------------
4407
      -- Safe_Last --
4408
      ---------------
4409
 
4410
      when Attribute_Safe_Last =>
4411
         Check_Floating_Point_Type_0;
4412
         Set_Etype (N, Universal_Real);
4413
 
4414
      ----------------
4415
      -- Safe_Small --
4416
      ----------------
4417
 
4418
      when Attribute_Safe_Small =>
4419
         Check_E0;
4420
         Check_Real_Type;
4421
         Set_Etype (N, Universal_Real);
4422
 
4423
      ------------------
4424
      -- Same_Storage --
4425
      ------------------
4426
 
4427
      when Attribute_Same_Storage =>
4428
         if Ada_Version < Ada_2012 then
4429
            Error_Msg_N
4430
              ("attribute Same_Storage is an Ada 2012 feature", N);
4431
            Error_Msg_N
4432
              ("\unit must be compiled with -gnat2012 switch", N);
4433
         end if;
4434
 
4435
         Check_E1;
4436
 
4437
         --  The arguments must be objects of any type
4438
 
4439
         Analyze_And_Resolve (P);
4440
         Analyze_And_Resolve (E1);
4441
         Check_Object_Reference (P);
4442
         Check_Object_Reference (E1);
4443
         Set_Etype (N, Standard_Boolean);
4444
 
4445
      -----------
4446
      -- Scale --
4447
      -----------
4448
 
4449
      when Attribute_Scale =>
4450
         Check_E0;
4451
         Check_Decimal_Fixed_Point_Type;
4452
         Set_Etype (N, Universal_Integer);
4453
 
4454
      -------------
4455
      -- Scaling --
4456
      -------------
4457
 
4458
      when Attribute_Scaling =>
4459
         Check_Floating_Point_Type_2;
4460
         Set_Etype (N, P_Base_Type);
4461
         Resolve (E1, P_Base_Type);
4462
 
4463
      ------------------
4464
      -- Signed_Zeros --
4465
      ------------------
4466
 
4467
      when Attribute_Signed_Zeros =>
4468
         Check_Floating_Point_Type_0;
4469
         Set_Etype (N, Standard_Boolean);
4470
 
4471
      ----------
4472
      -- Size --
4473
      ----------
4474
 
4475
      when Attribute_Size | Attribute_VADS_Size => Size :
4476
      begin
4477
         Check_E0;
4478
 
4479
         --  If prefix is parameterless function call, rewrite and resolve
4480
         --  as such.
4481
 
4482
         if Is_Entity_Name (P)
4483
           and then Ekind (Entity (P)) = E_Function
4484
         then
4485
            Resolve (P);
4486
 
4487
         --  Similar processing for a protected function call
4488
 
4489
         elsif Nkind (P) = N_Selected_Component
4490
           and then Ekind (Entity (Selector_Name (P))) = E_Function
4491
         then
4492
            Resolve (P);
4493
         end if;
4494
 
4495
         if Is_Object_Reference (P) then
4496
            Check_Object_Reference (P);
4497
 
4498
         elsif Is_Entity_Name (P)
4499
           and then (Is_Type (Entity (P))
4500
                       or else Ekind (Entity (P)) = E_Enumeration_Literal)
4501
         then
4502
            null;
4503
 
4504
         elsif Nkind (P) = N_Type_Conversion
4505
           and then not Comes_From_Source (P)
4506
         then
4507
            null;
4508
 
4509
         else
4510
            Error_Attr_P ("invalid prefix for % attribute");
4511
         end if;
4512
 
4513
         Check_Not_Incomplete_Type;
4514
         Check_Not_CPP_Type;
4515
         Set_Etype (N, Universal_Integer);
4516
      end Size;
4517
 
4518
      -----------
4519
      -- Small --
4520
      -----------
4521
 
4522
      when Attribute_Small =>
4523
         Check_E0;
4524
         Check_Real_Type;
4525
         Set_Etype (N, Universal_Real);
4526
 
4527
      ------------------
4528
      -- Storage_Pool --
4529
      ------------------
4530
 
4531
      when Attribute_Storage_Pool        |
4532
           Attribute_Simple_Storage_Pool => Storage_Pool :
4533
      begin
4534
         Check_E0;
4535
 
4536
         if Is_Access_Type (P_Type) then
4537
            if Ekind (P_Type) = E_Access_Subprogram_Type then
4538
               Error_Attr_P
4539
                 ("cannot use % attribute for access-to-subprogram type");
4540
            end if;
4541
 
4542
            --  Set appropriate entity
4543
 
4544
            if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
4545
               Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
4546
            else
4547
               Set_Entity (N, RTE (RE_Global_Pool_Object));
4548
            end if;
4549
 
4550
            if Attr_Id = Attribute_Storage_Pool then
4551
               if Present (Get_Rep_Pragma (Etype (Entity (N)),
4552
                                           Name_Simple_Storage_Pool_Type))
4553
               then
4554
                  Error_Msg_Name_1 := Aname;
4555
                  Error_Msg_N ("cannot use % attribute for type with simple " &
4556
                               "storage pool?", N);
4557
                  Error_Msg_N
4558
                     ("\Program_Error will be raised at run time?", N);
4559
 
4560
                  Rewrite
4561
                    (N, Make_Raise_Program_Error
4562
                          (Sloc (N), Reason => PE_Explicit_Raise));
4563
               end if;
4564
 
4565
               Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
4566
 
4567
            --  In the Simple_Storage_Pool case, verify that the pool entity is
4568
            --  actually of a simple storage pool type, and set the attribute's
4569
            --  type to the pool object's type.
4570
 
4571
            else
4572
               if not Present (Get_Rep_Pragma (Etype (Entity (N)),
4573
                                               Name_Simple_Storage_Pool_Type))
4574
               then
4575
                  Error_Attr_P
4576
                    ("cannot use % attribute for type without simple " &
4577
                     "storage pool");
4578
               end if;
4579
 
4580
               Set_Etype (N, Etype (Entity (N)));
4581
            end if;
4582
 
4583
            --  Validate_Remote_Access_To_Class_Wide_Type for attribute
4584
            --  Storage_Pool since this attribute is not defined for such
4585
            --  types (RM E.2.3(22)).
4586
 
4587
            Validate_Remote_Access_To_Class_Wide_Type (N);
4588
 
4589
         else
4590
            Error_Attr_P ("prefix of % attribute must be access type");
4591
         end if;
4592
      end Storage_Pool;
4593
 
4594
      ------------------
4595
      -- Storage_Size --
4596
      ------------------
4597
 
4598
      when Attribute_Storage_Size => Storage_Size :
4599
      begin
4600
         Check_E0;
4601
 
4602
         if Is_Task_Type (P_Type) then
4603
            Set_Etype (N, Universal_Integer);
4604
 
4605
            --  Use with tasks is an obsolescent feature
4606
 
4607
            Check_Restriction (No_Obsolescent_Features, P);
4608
 
4609
         elsif Is_Access_Type (P_Type) then
4610
            if Ekind (P_Type) = E_Access_Subprogram_Type then
4611
               Error_Attr_P
4612
                 ("cannot use % attribute for access-to-subprogram type");
4613
            end if;
4614
 
4615
            if Is_Entity_Name (P)
4616
              and then Is_Type (Entity (P))
4617
            then
4618
               Check_Type;
4619
               Set_Etype (N, Universal_Integer);
4620
 
4621
               --   Validate_Remote_Access_To_Class_Wide_Type for attribute
4622
               --   Storage_Size since this attribute is not defined for
4623
               --   such types (RM E.2.3(22)).
4624
 
4625
               Validate_Remote_Access_To_Class_Wide_Type (N);
4626
 
4627
            --  The prefix is allowed to be an implicit dereference
4628
            --  of an access value designating a task.
4629
 
4630
            else
4631
               Check_Task_Prefix;
4632
               Set_Etype (N, Universal_Integer);
4633
            end if;
4634
 
4635
         else
4636
            Error_Attr_P ("prefix of % attribute must be access or task type");
4637
         end if;
4638
      end Storage_Size;
4639
 
4640
      ------------------
4641
      -- Storage_Unit --
4642
      ------------------
4643
 
4644
      when Attribute_Storage_Unit =>
4645
         Standard_Attribute (Ttypes.System_Storage_Unit);
4646
 
4647
      -----------------
4648
      -- Stream_Size --
4649
      -----------------
4650
 
4651
      when Attribute_Stream_Size =>
4652
         Check_E0;
4653
         Check_Type;
4654
 
4655
         if Is_Entity_Name (P)
4656
           and then Is_Elementary_Type (Entity (P))
4657
         then
4658
            Set_Etype (N, Universal_Integer);
4659
         else
4660
            Error_Attr_P ("invalid prefix for % attribute");
4661
         end if;
4662
 
4663
      ---------------
4664
      -- Stub_Type --
4665
      ---------------
4666
 
4667
      when Attribute_Stub_Type =>
4668
         Check_Type;
4669
         Check_E0;
4670
 
4671
         if Is_Remote_Access_To_Class_Wide_Type (Base_Type (P_Type)) then
4672
 
4673
            --  For a real RACW [sub]type, use corresponding stub type
4674
 
4675
            if not Is_Generic_Type (P_Type) then
4676
               Rewrite (N,
4677
                 New_Occurrence_Of
4678
                   (Corresponding_Stub_Type (Base_Type (P_Type)), Loc));
4679
 
4680
            --  For a generic type (that has been marked as an RACW using the
4681
            --  Remote_Access_Type aspect or pragma), use a generic RACW stub
4682
            --  type. Note that if the actual is not a remote access type, the
4683
            --  instantiation will fail.
4684
 
4685
            else
4686
               --  Note: we go to the underlying type here because the view
4687
               --  returned by RTE (RE_RACW_Stub_Type) might be incomplete.
4688
 
4689
               Rewrite (N,
4690
                 New_Occurrence_Of
4691
                   (Underlying_Type (RTE (RE_RACW_Stub_Type)), Loc));
4692
            end if;
4693
 
4694
         else
4695
            Error_Attr_P
4696
              ("prefix of% attribute must be remote access to classwide");
4697
         end if;
4698
 
4699
      ----------
4700
      -- Succ --
4701
      ----------
4702
 
4703
      when Attribute_Succ =>
4704
         Check_Scalar_Type;
4705
         Check_E1;
4706
 
4707
         if Is_Real_Type (P_Type) or else Is_Boolean_Type (P_Type) then
4708
            Error_Msg_Name_1 := Aname;
4709
            Error_Msg_Name_2 := Chars (P_Type);
4710
            Check_SPARK_Restriction
4711
              ("attribute% is not allowed for type%", P);
4712
         end if;
4713
 
4714
         Resolve (E1, P_Base_Type);
4715
         Set_Etype (N, P_Base_Type);
4716
 
4717
         --  Nothing to do for real type case
4718
 
4719
         if Is_Real_Type (P_Type) then
4720
            null;
4721
 
4722
         --  If not modular type, test for overflow check required
4723
 
4724
         else
4725
            if not Is_Modular_Integer_Type (P_Type)
4726
              and then not Range_Checks_Suppressed (P_Base_Type)
4727
            then
4728
               Enable_Range_Check (E1);
4729
            end if;
4730
         end if;
4731
 
4732
      --------------------------------
4733
      -- System_Allocator_Alignment --
4734
      --------------------------------
4735
 
4736
      when Attribute_System_Allocator_Alignment =>
4737
         Standard_Attribute (Ttypes.System_Allocator_Alignment);
4738
 
4739
      ---------
4740
      -- Tag --
4741
      ---------
4742
 
4743
      when Attribute_Tag => Tag :
4744
      begin
4745
         Check_E0;
4746
         Check_Dereference;
4747
 
4748
         if not Is_Tagged_Type (P_Type) then
4749
            Error_Attr_P ("prefix of % attribute must be tagged");
4750
 
4751
         --  Next test does not apply to generated code
4752
         --  why not, and what does the illegal reference mean???
4753
 
4754
         elsif Is_Object_Reference (P)
4755
           and then not Is_Class_Wide_Type (P_Type)
4756
           and then Comes_From_Source (N)
4757
         then
4758
            Error_Attr_P
4759
              ("% attribute can only be applied to objects " &
4760
               "of class - wide type");
4761
         end if;
4762
 
4763
         --  The prefix cannot be an incomplete type. However, references
4764
         --  to 'Tag can be generated when expanding interface conversions,
4765
         --  and this is legal.
4766
 
4767
         if Comes_From_Source (N) then
4768
            Check_Not_Incomplete_Type;
4769
         end if;
4770
 
4771
         --  Set appropriate type
4772
 
4773
         Set_Etype (N, RTE (RE_Tag));
4774
      end Tag;
4775
 
4776
      -----------------
4777
      -- Target_Name --
4778
      -----------------
4779
 
4780
      when Attribute_Target_Name => Target_Name : declare
4781
         TN : constant String := Sdefault.Target_Name.all;
4782
         TL : Natural;
4783
 
4784
      begin
4785
         Check_Standard_Prefix;
4786
 
4787
         TL := TN'Last;
4788
 
4789
         if TN (TL) = '/' or else TN (TL) = '\' then
4790
            TL := TL - 1;
4791
         end if;
4792
 
4793
         Rewrite (N,
4794
           Make_String_Literal (Loc,
4795
             Strval => TN (TN'First .. TL)));
4796
         Analyze_And_Resolve (N, Standard_String);
4797
      end Target_Name;
4798
 
4799
      ----------------
4800
      -- Terminated --
4801
      ----------------
4802
 
4803
      when Attribute_Terminated =>
4804
         Check_E0;
4805
         Set_Etype (N, Standard_Boolean);
4806
         Check_Task_Prefix;
4807
 
4808
      ----------------
4809
      -- To_Address --
4810
      ----------------
4811
 
4812
      when Attribute_To_Address =>
4813
         Check_E1;
4814
         Analyze (P);
4815
 
4816
         if Nkind (P) /= N_Identifier
4817
           or else Chars (P) /= Name_System
4818
         then
4819
            Error_Attr_P ("prefix of % attribute must be System");
4820
         end if;
4821
 
4822
         Generate_Reference (RTE (RE_Address), P);
4823
         Analyze_And_Resolve (E1, Any_Integer);
4824
         Set_Etype (N, RTE (RE_Address));
4825
 
4826
      ------------
4827
      -- To_Any --
4828
      ------------
4829
 
4830
      when Attribute_To_Any =>
4831
         Check_E1;
4832
         Check_PolyORB_Attribute;
4833
         Set_Etype (N, RTE (RE_Any));
4834
 
4835
      ----------------
4836
      -- Truncation --
4837
      ----------------
4838
 
4839
      when Attribute_Truncation =>
4840
         Check_Floating_Point_Type_1;
4841
         Resolve (E1, P_Base_Type);
4842
         Set_Etype (N, P_Base_Type);
4843
 
4844
      ----------------
4845
      -- Type_Class --
4846
      ----------------
4847
 
4848
      when Attribute_Type_Class =>
4849
         Check_E0;
4850
         Check_Type;
4851
         Check_Not_Incomplete_Type;
4852
         Set_Etype (N, RTE (RE_Type_Class));
4853
 
4854
      --------------
4855
      -- TypeCode --
4856
      --------------
4857
 
4858
      when Attribute_TypeCode =>
4859
         Check_E0;
4860
         Check_PolyORB_Attribute;
4861
         Set_Etype (N, RTE (RE_TypeCode));
4862
 
4863
      --------------
4864
      -- Type_Key --
4865
      --------------
4866
 
4867
      when Attribute_Type_Key =>
4868
         Check_E0;
4869
         Check_Type;
4870
 
4871
         --  This processing belongs in Eval_Attribute ???
4872
 
4873
         declare
4874
            function Type_Key return String_Id;
4875
            --  A very preliminary implementation. For now, a signature
4876
            --  consists of only the type name. This is clearly incomplete
4877
            --  (e.g., adding a new field to a record type should change the
4878
            --  type's Type_Key attribute).
4879
 
4880
            --------------
4881
            -- Type_Key --
4882
            --------------
4883
 
4884
            function Type_Key return String_Id is
4885
               Full_Name : constant String_Id :=
4886
                             Fully_Qualified_Name_String (Entity (P));
4887
 
4888
            begin
4889
               --  Copy all characters in Full_Name but the trailing NUL
4890
 
4891
               Start_String;
4892
               for J in 1 .. String_Length (Full_Name) - 1 loop
4893
                  Store_String_Char (Get_String_Char (Full_Name, Int (J)));
4894
               end loop;
4895
 
4896
               Store_String_Chars ("'Type_Key");
4897
               return End_String;
4898
            end Type_Key;
4899
 
4900
         begin
4901
            Rewrite (N, Make_String_Literal (Loc, Type_Key));
4902
         end;
4903
 
4904
         Analyze_And_Resolve (N, Standard_String);
4905
 
4906
      -----------------
4907
      -- UET_Address --
4908
      -----------------
4909
 
4910
      when Attribute_UET_Address =>
4911
         Check_E0;
4912
         Check_Unit_Name (P);
4913
         Set_Etype (N, RTE (RE_Address));
4914
 
4915
      -----------------------
4916
      -- Unbiased_Rounding --
4917
      -----------------------
4918
 
4919
      when Attribute_Unbiased_Rounding =>
4920
         Check_Floating_Point_Type_1;
4921
         Set_Etype (N, P_Base_Type);
4922
         Resolve (E1, P_Base_Type);
4923
 
4924
      ----------------------
4925
      -- Unchecked_Access --
4926
      ----------------------
4927
 
4928
      when Attribute_Unchecked_Access =>
4929
         if Comes_From_Source (N) then
4930
            Check_Restriction (No_Unchecked_Access, N);
4931
         end if;
4932
 
4933
         Analyze_Access_Attribute;
4934
 
4935
      -------------------------
4936
      -- Unconstrained_Array --
4937
      -------------------------
4938
 
4939
      when Attribute_Unconstrained_Array =>
4940
         Check_E0;
4941
         Check_Type;
4942
         Check_Not_Incomplete_Type;
4943
         Set_Etype (N, Standard_Boolean);
4944
 
4945
      ------------------------------
4946
      -- Universal_Literal_String --
4947
      ------------------------------
4948
 
4949
      --  This is a GNAT specific attribute whose prefix must be a named
4950
      --  number where the expression is either a single numeric literal,
4951
      --  or a numeric literal immediately preceded by a minus sign. The
4952
      --  result is equivalent to a string literal containing the text of
4953
      --  the literal as it appeared in the source program with a possible
4954
      --  leading minus sign.
4955
 
4956
      when Attribute_Universal_Literal_String => Universal_Literal_String :
4957
      begin
4958
         Check_E0;
4959
 
4960
         if not Is_Entity_Name (P)
4961
           or else Ekind (Entity (P)) not in Named_Kind
4962
         then
4963
            Error_Attr_P ("prefix for % attribute must be named number");
4964
 
4965
         else
4966
            declare
4967
               Expr     : Node_Id;
4968
               Negative : Boolean;
4969
               S        : Source_Ptr;
4970
               Src      : Source_Buffer_Ptr;
4971
 
4972
            begin
4973
               Expr := Original_Node (Expression (Parent (Entity (P))));
4974
 
4975
               if Nkind (Expr) = N_Op_Minus then
4976
                  Negative := True;
4977
                  Expr := Original_Node (Right_Opnd (Expr));
4978
               else
4979
                  Negative := False;
4980
               end if;
4981
 
4982
               if not Nkind_In (Expr, N_Integer_Literal, N_Real_Literal) then
4983
                  Error_Attr
4984
                    ("named number for % attribute must be simple literal", N);
4985
               end if;
4986
 
4987
               --  Build string literal corresponding to source literal text
4988
 
4989
               Start_String;
4990
 
4991
               if Negative then
4992
                  Store_String_Char (Get_Char_Code ('-'));
4993
               end if;
4994
 
4995
               S := Sloc (Expr);
4996
               Src := Source_Text (Get_Source_File_Index (S));
4997
 
4998
               while Src (S) /= ';' and then Src (S) /= ' ' loop
4999
                  Store_String_Char (Get_Char_Code (Src (S)));
5000
                  S := S + 1;
5001
               end loop;
5002
 
5003
               --  Now we rewrite the attribute with the string literal
5004
 
5005
               Rewrite (N,
5006
                 Make_String_Literal (Loc, End_String));
5007
               Analyze (N);
5008
            end;
5009
         end if;
5010
      end Universal_Literal_String;
5011
 
5012
      -------------------------
5013
      -- Unrestricted_Access --
5014
      -------------------------
5015
 
5016
      --  This is a GNAT specific attribute which is like Access except that
5017
      --  all scope checks and checks for aliased views are omitted.
5018
 
5019
      when Attribute_Unrestricted_Access =>
5020
 
5021
         --  If from source, deal with relevant restrictions
5022
 
5023
         if Comes_From_Source (N) then
5024
            Check_Restriction (No_Unchecked_Access, N);
5025
 
5026
            if Nkind (P) in N_Has_Entity
5027
              and then Present (Entity (P))
5028
              and then Is_Object (Entity (P))
5029
            then
5030
               Check_Restriction (No_Implicit_Aliasing, N);
5031
            end if;
5032
         end if;
5033
 
5034
         if Is_Entity_Name (P) then
5035
            Set_Address_Taken (Entity (P));
5036
         end if;
5037
 
5038
         Analyze_Access_Attribute;
5039
 
5040
      ---------
5041
      -- Val --
5042
      ---------
5043
 
5044
      when Attribute_Val => Val : declare
5045
      begin
5046
         Check_E1;
5047
         Check_Discrete_Type;
5048
 
5049
         if Is_Boolean_Type (P_Type) then
5050
            Error_Msg_Name_1 := Aname;
5051
            Error_Msg_Name_2 := Chars (P_Type);
5052
            Check_SPARK_Restriction
5053
              ("attribute% is not allowed for type%", P);
5054
         end if;
5055
 
5056
         Resolve (E1, Any_Integer);
5057
         Set_Etype (N, P_Base_Type);
5058
 
5059
         --  Note, we need a range check in general, but we wait for the
5060
         --  Resolve call to do this, since we want to let Eval_Attribute
5061
         --  have a chance to find an static illegality first!
5062
      end Val;
5063
 
5064
      -----------
5065
      -- Valid --
5066
      -----------
5067
 
5068
      when Attribute_Valid =>
5069
         Check_E0;
5070
 
5071
         --  Ignore check for object if we have a 'Valid reference generated
5072
         --  by the expanded code, since in some cases valid checks can occur
5073
         --  on items that are names, but are not objects (e.g. attributes).
5074
 
5075
         if Comes_From_Source (N) then
5076
            Check_Object_Reference (P);
5077
         end if;
5078
 
5079
         if not Is_Scalar_Type (P_Type) then
5080
            Error_Attr_P ("object for % attribute must be of scalar type");
5081
         end if;
5082
 
5083
         Set_Etype (N, Standard_Boolean);
5084
 
5085
      -----------
5086
      -- Value --
5087
      -----------
5088
 
5089
      when Attribute_Value => Value :
5090
      begin
5091
         Check_SPARK_Restriction_On_Attribute;
5092
         Check_E1;
5093
         Check_Scalar_Type;
5094
 
5095
         --  Case of enumeration type
5096
 
5097
         --  When an enumeration type appears in an attribute reference, all
5098
         --  literals of the type are marked as referenced. This must only be
5099
         --  done if the attribute reference appears in the current source.
5100
         --  Otherwise the information on references may differ between a
5101
         --  normal compilation and one that performs inlining.
5102
 
5103
         if Is_Enumeration_Type (P_Type)
5104
           and then In_Extended_Main_Code_Unit (N)
5105
         then
5106
            Check_Restriction (No_Enumeration_Maps, N);
5107
 
5108
            --  Mark all enumeration literals as referenced, since the use of
5109
            --  the Value attribute can implicitly reference any of the
5110
            --  literals of the enumeration base type.
5111
 
5112
            declare
5113
               Ent : Entity_Id := First_Literal (P_Base_Type);
5114
            begin
5115
               while Present (Ent) loop
5116
                  Set_Referenced (Ent);
5117
                  Next_Literal (Ent);
5118
               end loop;
5119
            end;
5120
         end if;
5121
 
5122
         --  Set Etype before resolving expression because expansion of
5123
         --  expression may require enclosing type. Note that the type
5124
         --  returned by 'Value is the base type of the prefix type.
5125
 
5126
         Set_Etype (N, P_Base_Type);
5127
         Validate_Non_Static_Attribute_Function_Call;
5128
      end Value;
5129
 
5130
      ----------------
5131
      -- Value_Size --
5132
      ----------------
5133
 
5134
      when Attribute_Value_Size =>
5135
         Check_E0;
5136
         Check_Type;
5137
         Check_Not_Incomplete_Type;
5138
         Set_Etype (N, Universal_Integer);
5139
 
5140
      -------------
5141
      -- Version --
5142
      -------------
5143
 
5144
      when Attribute_Version =>
5145
         Check_E0;
5146
         Check_Program_Unit;
5147
         Set_Etype (N, RTE (RE_Version_String));
5148
 
5149
      ------------------
5150
      -- Wchar_T_Size --
5151
      ------------------
5152
 
5153
      when Attribute_Wchar_T_Size =>
5154
         Standard_Attribute (Interfaces_Wchar_T_Size);
5155
 
5156
      ----------------
5157
      -- Wide_Image --
5158
      ----------------
5159
 
5160
      when Attribute_Wide_Image => Wide_Image :
5161
      begin
5162
         Check_SPARK_Restriction_On_Attribute;
5163
         Check_Scalar_Type;
5164
         Set_Etype (N, Standard_Wide_String);
5165
         Check_E1;
5166
         Resolve (E1, P_Base_Type);
5167
         Validate_Non_Static_Attribute_Function_Call;
5168
      end Wide_Image;
5169
 
5170
      ---------------------
5171
      -- Wide_Wide_Image --
5172
      ---------------------
5173
 
5174
      when Attribute_Wide_Wide_Image => Wide_Wide_Image :
5175
      begin
5176
         Check_Scalar_Type;
5177
         Set_Etype (N, Standard_Wide_Wide_String);
5178
         Check_E1;
5179
         Resolve (E1, P_Base_Type);
5180
         Validate_Non_Static_Attribute_Function_Call;
5181
      end Wide_Wide_Image;
5182
 
5183
      ----------------
5184
      -- Wide_Value --
5185
      ----------------
5186
 
5187
      when Attribute_Wide_Value => Wide_Value :
5188
      begin
5189
         Check_SPARK_Restriction_On_Attribute;
5190
         Check_E1;
5191
         Check_Scalar_Type;
5192
 
5193
         --  Set Etype before resolving expression because expansion
5194
         --  of expression may require enclosing type.
5195
 
5196
         Set_Etype (N, P_Type);
5197
         Validate_Non_Static_Attribute_Function_Call;
5198
      end Wide_Value;
5199
 
5200
      ---------------------
5201
      -- Wide_Wide_Value --
5202
      ---------------------
5203
 
5204
      when Attribute_Wide_Wide_Value => Wide_Wide_Value :
5205
      begin
5206
         Check_E1;
5207
         Check_Scalar_Type;
5208
 
5209
         --  Set Etype before resolving expression because expansion
5210
         --  of expression may require enclosing type.
5211
 
5212
         Set_Etype (N, P_Type);
5213
         Validate_Non_Static_Attribute_Function_Call;
5214
      end Wide_Wide_Value;
5215
 
5216
      ---------------------
5217
      -- Wide_Wide_Width --
5218
      ---------------------
5219
 
5220
      when Attribute_Wide_Wide_Width =>
5221
         Check_E0;
5222
         Check_Scalar_Type;
5223
         Set_Etype (N, Universal_Integer);
5224
 
5225
      ----------------
5226
      -- Wide_Width --
5227
      ----------------
5228
 
5229
      when Attribute_Wide_Width =>
5230
         Check_SPARK_Restriction_On_Attribute;
5231
         Check_E0;
5232
         Check_Scalar_Type;
5233
         Set_Etype (N, Universal_Integer);
5234
 
5235
      -----------
5236
      -- Width --
5237
      -----------
5238
 
5239
      when Attribute_Width =>
5240
         Check_SPARK_Restriction_On_Attribute;
5241
         Check_E0;
5242
         Check_Scalar_Type;
5243
         Set_Etype (N, Universal_Integer);
5244
 
5245
      ---------------
5246
      -- Word_Size --
5247
      ---------------
5248
 
5249
      when Attribute_Word_Size =>
5250
         Standard_Attribute (System_Word_Size);
5251
 
5252
      -----------
5253
      -- Write --
5254
      -----------
5255
 
5256
      when Attribute_Write =>
5257
         Check_E2;
5258
         Check_Stream_Attribute (TSS_Stream_Write);
5259
         Set_Etype (N, Standard_Void_Type);
5260
         Resolve (N, Standard_Void_Type);
5261
 
5262
      end case;
5263
 
5264
   --  All errors raise Bad_Attribute, so that we get out before any further
5265
   --  damage occurs when an error is detected (for example, if we check for
5266
   --  one attribute expression, and the check succeeds, we want to be able
5267
   --  to proceed securely assuming that an expression is in fact present.
5268
 
5269
   --  Note: we set the attribute analyzed in this case to prevent any
5270
   --  attempt at reanalysis which could generate spurious error msgs.
5271
 
5272
   exception
5273
      when Bad_Attribute =>
5274
         Set_Analyzed (N);
5275
         Set_Etype (N, Any_Type);
5276
         return;
5277
   end Analyze_Attribute;
5278
 
5279
   --------------------
5280
   -- Eval_Attribute --
5281
   --------------------
5282
 
5283
   procedure Eval_Attribute (N : Node_Id) is
5284
      Loc   : constant Source_Ptr   := Sloc (N);
5285
      Aname : constant Name_Id      := Attribute_Name (N);
5286
      Id    : constant Attribute_Id := Get_Attribute_Id (Aname);
5287
      P     : constant Node_Id      := Prefix (N);
5288
 
5289
      C_Type : constant Entity_Id := Etype (N);
5290
      --  The type imposed by the context
5291
 
5292
      E1 : Node_Id;
5293
      --  First expression, or Empty if none
5294
 
5295
      E2 : Node_Id;
5296
      --  Second expression, or Empty if none
5297
 
5298
      P_Entity : Entity_Id;
5299
      --  Entity denoted by prefix
5300
 
5301
      P_Type : Entity_Id;
5302
      --  The type of the prefix
5303
 
5304
      P_Base_Type : Entity_Id;
5305
      --  The base type of the prefix type
5306
 
5307
      P_Root_Type : Entity_Id;
5308
      --  The root type of the prefix type
5309
 
5310
      Static : Boolean;
5311
      --  True if the result is Static. This is set by the general processing
5312
      --  to true if the prefix is static, and all expressions are static. It
5313
      --  can be reset as processing continues for particular attributes
5314
 
5315
      Lo_Bound, Hi_Bound : Node_Id;
5316
      --  Expressions for low and high bounds of type or array index referenced
5317
      --  by First, Last, or Length attribute for array, set by Set_Bounds.
5318
 
5319
      CE_Node : Node_Id;
5320
      --  Constraint error node used if we have an attribute reference has
5321
      --  an argument that raises a constraint error. In this case we replace
5322
      --  the attribute with a raise constraint_error node. This is important
5323
      --  processing, since otherwise gigi might see an attribute which it is
5324
      --  unprepared to deal with.
5325
 
5326
      procedure Check_Concurrent_Discriminant (Bound : Node_Id);
5327
      --  If Bound is a reference to a discriminant of a task or protected type
5328
      --  occurring within the object's body, rewrite attribute reference into
5329
      --  a reference to the corresponding discriminal. Use for the expansion
5330
      --  of checks against bounds of entry family index subtypes.
5331
 
5332
      procedure Check_Expressions;
5333
      --  In case where the attribute is not foldable, the expressions, if
5334
      --  any, of the attribute, are in a non-static context. This procedure
5335
      --  performs the required additional checks.
5336
 
5337
      function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean;
5338
      --  Determines if the given type has compile time known bounds. Note
5339
      --  that we enter the case statement even in cases where the prefix
5340
      --  type does NOT have known bounds, so it is important to guard any
5341
      --  attempt to evaluate both bounds with a call to this function.
5342
 
5343
      procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint);
5344
      --  This procedure is called when the attribute N has a non-static
5345
      --  but compile time known value given by Val. It includes the
5346
      --  necessary checks for out of range values.
5347
 
5348
      function Fore_Value return Nat;
5349
      --  Computes the Fore value for the current attribute prefix, which is
5350
      --  known to be a static fixed-point type. Used by Fore and Width.
5351
 
5352
      function Is_VAX_Float (Typ : Entity_Id) return Boolean;
5353
      --  Determine whether Typ denotes a VAX floating point type
5354
 
5355
      function Mantissa return Uint;
5356
      --  Returns the Mantissa value for the prefix type
5357
 
5358
      procedure Set_Bounds;
5359
      --  Used for First, Last and Length attributes applied to an array or
5360
      --  array subtype. Sets the variables Lo_Bound and Hi_Bound to the low
5361
      --  and high bound expressions for the index referenced by the attribute
5362
      --  designator (i.e. the first index if no expression is present, and
5363
      --  the N'th index if the value N is present as an expression). Also
5364
      --  used for First and Last of scalar types. Static is reset to False
5365
      --  if the type or index type is not statically constrained.
5366
 
5367
      function Statically_Denotes_Entity (N : Node_Id) return Boolean;
5368
      --  Verify that the prefix of a potentially static array attribute
5369
      --  satisfies the conditions of 4.9 (14).
5370
 
5371
      -----------------------------------
5372
      -- Check_Concurrent_Discriminant --
5373
      -----------------------------------
5374
 
5375
      procedure Check_Concurrent_Discriminant (Bound : Node_Id) is
5376
         Tsk : Entity_Id;
5377
         --  The concurrent (task or protected) type
5378
 
5379
      begin
5380
         if Nkind (Bound) = N_Identifier
5381
           and then Ekind (Entity (Bound)) = E_Discriminant
5382
           and then Is_Concurrent_Record_Type (Scope (Entity (Bound)))
5383
         then
5384
            Tsk := Corresponding_Concurrent_Type (Scope (Entity (Bound)));
5385
 
5386
            if In_Open_Scopes (Tsk) and then Has_Completion (Tsk) then
5387
 
5388
               --  Find discriminant of original concurrent type, and use
5389
               --  its current discriminal, which is the renaming within
5390
               --  the task/protected body.
5391
 
5392
               Rewrite (N,
5393
                 New_Occurrence_Of
5394
                   (Find_Body_Discriminal (Entity (Bound)), Loc));
5395
            end if;
5396
         end if;
5397
      end Check_Concurrent_Discriminant;
5398
 
5399
      -----------------------
5400
      -- Check_Expressions --
5401
      -----------------------
5402
 
5403
      procedure Check_Expressions is
5404
         E : Node_Id;
5405
      begin
5406
         E := E1;
5407
         while Present (E) loop
5408
            Check_Non_Static_Context (E);
5409
            Next (E);
5410
         end loop;
5411
      end Check_Expressions;
5412
 
5413
      ----------------------------------
5414
      -- Compile_Time_Known_Attribute --
5415
      ----------------------------------
5416
 
5417
      procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint) is
5418
         T : constant Entity_Id := Etype (N);
5419
 
5420
      begin
5421
         Fold_Uint (N, Val, False);
5422
 
5423
         --  Check that result is in bounds of the type if it is static
5424
 
5425
         if Is_In_Range (N, T, Assume_Valid => False) then
5426
            null;
5427
 
5428
         elsif Is_Out_Of_Range (N, T) then
5429
            Apply_Compile_Time_Constraint_Error
5430
              (N, "value not in range of}?", CE_Range_Check_Failed);
5431
 
5432
         elsif not Range_Checks_Suppressed (T) then
5433
            Enable_Range_Check (N);
5434
 
5435
         else
5436
            Set_Do_Range_Check (N, False);
5437
         end if;
5438
      end Compile_Time_Known_Attribute;
5439
 
5440
      -------------------------------
5441
      -- Compile_Time_Known_Bounds --
5442
      -------------------------------
5443
 
5444
      function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean is
5445
      begin
5446
         return
5447
           Compile_Time_Known_Value (Type_Low_Bound (Typ))
5448
             and then
5449
           Compile_Time_Known_Value (Type_High_Bound (Typ));
5450
      end Compile_Time_Known_Bounds;
5451
 
5452
      ----------------
5453
      -- Fore_Value --
5454
      ----------------
5455
 
5456
      --  Note that the Fore calculation is based on the actual values
5457
      --  of the bounds, and does not take into account possible rounding.
5458
 
5459
      function Fore_Value return Nat is
5460
         Lo      : constant Uint  := Expr_Value (Type_Low_Bound (P_Type));
5461
         Hi      : constant Uint  := Expr_Value (Type_High_Bound (P_Type));
5462
         Small   : constant Ureal := Small_Value (P_Type);
5463
         Lo_Real : constant Ureal := Lo * Small;
5464
         Hi_Real : constant Ureal := Hi * Small;
5465
         T       : Ureal;
5466
         R       : Nat;
5467
 
5468
      begin
5469
         --  Bounds are given in terms of small units, so first compute
5470
         --  proper values as reals.
5471
 
5472
         T := UR_Max (abs Lo_Real, abs Hi_Real);
5473
         R := 2;
5474
 
5475
         --  Loop to compute proper value if more than one digit required
5476
 
5477
         while T >= Ureal_10 loop
5478
            R := R + 1;
5479
            T := T / Ureal_10;
5480
         end loop;
5481
 
5482
         return R;
5483
      end Fore_Value;
5484
 
5485
      ------------------
5486
      -- Is_VAX_Float --
5487
      ------------------
5488
 
5489
      function Is_VAX_Float (Typ : Entity_Id) return Boolean is
5490
      begin
5491
         return
5492
           Is_Floating_Point_Type (Typ)
5493
             and then
5494
               (Float_Format = 'V'
5495
                  or else Float_Rep (Typ) = VAX_Native);
5496
      end Is_VAX_Float;
5497
 
5498
      --------------
5499
      -- Mantissa --
5500
      --------------
5501
 
5502
      --  Table of mantissa values accessed by function  Computed using
5503
      --  the relation:
5504
 
5505
      --    T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
5506
 
5507
      --  where D is T'Digits (RM83 3.5.7)
5508
 
5509
      Mantissa_Value : constant array (Nat range 1 .. 40) of Nat := (
5510
          1 =>   5,
5511
          2 =>   8,
5512
          3 =>  11,
5513
          4 =>  15,
5514
          5 =>  18,
5515
          6 =>  21,
5516
          7 =>  25,
5517
          8 =>  28,
5518
          9 =>  31,
5519
         10 =>  35,
5520
         11 =>  38,
5521
         12 =>  41,
5522
         13 =>  45,
5523
         14 =>  48,
5524
         15 =>  51,
5525
         16 =>  55,
5526
         17 =>  58,
5527
         18 =>  61,
5528
         19 =>  65,
5529
         20 =>  68,
5530
         21 =>  71,
5531
         22 =>  75,
5532
         23 =>  78,
5533
         24 =>  81,
5534
         25 =>  85,
5535
         26 =>  88,
5536
         27 =>  91,
5537
         28 =>  95,
5538
         29 =>  98,
5539
         30 => 101,
5540
         31 => 104,
5541
         32 => 108,
5542
         33 => 111,
5543
         34 => 114,
5544
         35 => 118,
5545
         36 => 121,
5546
         37 => 124,
5547
         38 => 128,
5548
         39 => 131,
5549
         40 => 134);
5550
 
5551
      function Mantissa return Uint is
5552
      begin
5553
         return
5554
           UI_From_Int (Mantissa_Value (UI_To_Int (Digits_Value (P_Type))));
5555
      end Mantissa;
5556
 
5557
      ----------------
5558
      -- Set_Bounds --
5559
      ----------------
5560
 
5561
      procedure Set_Bounds is
5562
         Ndim : Nat;
5563
         Indx : Node_Id;
5564
         Ityp : Entity_Id;
5565
 
5566
      begin
5567
         --  For a string literal subtype, we have to construct the bounds.
5568
         --  Valid Ada code never applies attributes to string literals, but
5569
         --  it is convenient to allow the expander to generate attribute
5570
         --  references of this type (e.g. First and Last applied to a string
5571
         --  literal).
5572
 
5573
         --  Note that the whole point of the E_String_Literal_Subtype is to
5574
         --  avoid this construction of bounds, but the cases in which we
5575
         --  have to materialize them are rare enough that we don't worry!
5576
 
5577
         --  The low bound is simply the low bound of the base type. The
5578
         --  high bound is computed from the length of the string and this
5579
         --  low bound.
5580
 
5581
         if Ekind (P_Type) = E_String_Literal_Subtype then
5582
            Ityp := Etype (First_Index (Base_Type (P_Type)));
5583
            Lo_Bound := Type_Low_Bound (Ityp);
5584
 
5585
            Hi_Bound :=
5586
              Make_Integer_Literal (Sloc (P),
5587
                Intval =>
5588
                  Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
5589
 
5590
            Set_Parent (Hi_Bound, P);
5591
            Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
5592
            return;
5593
 
5594
         --  For non-array case, just get bounds of scalar type
5595
 
5596
         elsif Is_Scalar_Type (P_Type) then
5597
            Ityp := P_Type;
5598
 
5599
            --  For a fixed-point type, we must freeze to get the attributes
5600
            --  of the fixed-point type set now so we can reference them.
5601
 
5602
            if Is_Fixed_Point_Type (P_Type)
5603
              and then not Is_Frozen (Base_Type (P_Type))
5604
              and then Compile_Time_Known_Value (Type_Low_Bound (P_Type))
5605
              and then Compile_Time_Known_Value (Type_High_Bound (P_Type))
5606
            then
5607
               Freeze_Fixed_Point_Type (Base_Type (P_Type));
5608
            end if;
5609
 
5610
         --  For array case, get type of proper index
5611
 
5612
         else
5613
            if No (E1) then
5614
               Ndim := 1;
5615
            else
5616
               Ndim := UI_To_Int (Expr_Value (E1));
5617
            end if;
5618
 
5619
            Indx := First_Index (P_Type);
5620
            for J in 1 .. Ndim - 1 loop
5621
               Next_Index (Indx);
5622
            end loop;
5623
 
5624
            --  If no index type, get out (some other error occurred, and
5625
            --  we don't have enough information to complete the job!)
5626
 
5627
            if No (Indx) then
5628
               Lo_Bound := Error;
5629
               Hi_Bound := Error;
5630
               return;
5631
            end if;
5632
 
5633
            Ityp := Etype (Indx);
5634
         end if;
5635
 
5636
         --  A discrete range in an index constraint is allowed to be a
5637
         --  subtype indication. This is syntactically a pain, but should
5638
         --  not propagate to the entity for the corresponding index subtype.
5639
         --  After checking that the subtype indication is legal, the range
5640
         --  of the subtype indication should be transfered to the entity.
5641
         --  The attributes for the bounds should remain the simple retrievals
5642
         --  that they are now.
5643
 
5644
         Lo_Bound := Type_Low_Bound (Ityp);
5645
         Hi_Bound := Type_High_Bound (Ityp);
5646
 
5647
         if not Is_Static_Subtype (Ityp) then
5648
            Static := False;
5649
         end if;
5650
      end Set_Bounds;
5651
 
5652
      -------------------------------
5653
      -- Statically_Denotes_Entity --
5654
      -------------------------------
5655
 
5656
      function Statically_Denotes_Entity (N : Node_Id) return Boolean is
5657
         E : Entity_Id;
5658
 
5659
      begin
5660
         if not Is_Entity_Name (N) then
5661
            return False;
5662
         else
5663
            E := Entity (N);
5664
         end if;
5665
 
5666
         return
5667
           Nkind (Parent (E)) /= N_Object_Renaming_Declaration
5668
             or else Statically_Denotes_Entity (Renamed_Object (E));
5669
      end Statically_Denotes_Entity;
5670
 
5671
   --  Start of processing for Eval_Attribute
5672
 
5673
   begin
5674
      --  Acquire first two expressions (at the moment, no attributes take more
5675
      --  than two expressions in any case).
5676
 
5677
      if Present (Expressions (N)) then
5678
         E1 := First (Expressions (N));
5679
         E2 := Next (E1);
5680
      else
5681
         E1 := Empty;
5682
         E2 := Empty;
5683
      end if;
5684
 
5685
      --  Special processing for Enabled attribute. This attribute has a very
5686
      --  special prefix, and the easiest way to avoid lots of special checks
5687
      --  to protect this special prefix from causing trouble is to deal with
5688
      --  this attribute immediately and be done with it.
5689
 
5690
      if Id = Attribute_Enabled then
5691
 
5692
         --  We skip evaluation if the expander is not active. This is not just
5693
         --  an optimization. It is of key importance that we not rewrite the
5694
         --  attribute in a generic template, since we want to pick up the
5695
         --  setting of the check in the instance, and testing expander active
5696
         --  is as easy way of doing this as any.
5697
 
5698
         if Expander_Active then
5699
            declare
5700
               C : constant Check_Id := Get_Check_Id (Chars (P));
5701
               R : Boolean;
5702
 
5703
            begin
5704
               if No (E1) then
5705
                  if C in Predefined_Check_Id then
5706
                     R := Scope_Suppress (C);
5707
                  else
5708
                     R := Is_Check_Suppressed (Empty, C);
5709
                  end if;
5710
 
5711
               else
5712
                  R := Is_Check_Suppressed (Entity (E1), C);
5713
               end if;
5714
 
5715
               if R then
5716
                  Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5717
               else
5718
                  Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
5719
               end if;
5720
            end;
5721
         end if;
5722
 
5723
         return;
5724
      end if;
5725
 
5726
      --  Special processing for cases where the prefix is an object. For
5727
      --  this purpose, a string literal counts as an object (attributes
5728
      --  of string literals can only appear in generated code).
5729
 
5730
      if Is_Object_Reference (P) or else Nkind (P) = N_String_Literal then
5731
 
5732
         --  For Component_Size, the prefix is an array object, and we apply
5733
         --  the attribute to the type of the object. This is allowed for
5734
         --  both unconstrained and constrained arrays, since the bounds
5735
         --  have no influence on the value of this attribute.
5736
 
5737
         if Id = Attribute_Component_Size then
5738
            P_Entity := Etype (P);
5739
 
5740
         --  For First and Last, the prefix is an array object, and we apply
5741
         --  the attribute to the type of the array, but we need a constrained
5742
         --  type for this, so we use the actual subtype if available.
5743
 
5744
         elsif Id = Attribute_First
5745
                 or else
5746
               Id = Attribute_Last
5747
                 or else
5748
               Id = Attribute_Length
5749
         then
5750
            declare
5751
               AS : constant Entity_Id := Get_Actual_Subtype_If_Available (P);
5752
 
5753
            begin
5754
               if Present (AS) and then Is_Constrained (AS) then
5755
                  P_Entity := AS;
5756
 
5757
               --  If we have an unconstrained type we cannot fold
5758
 
5759
               else
5760
                  Check_Expressions;
5761
                  return;
5762
               end if;
5763
            end;
5764
 
5765
         --  For Size, give size of object if available, otherwise we
5766
         --  cannot fold Size.
5767
 
5768
         elsif Id = Attribute_Size then
5769
            if Is_Entity_Name (P)
5770
              and then Known_Esize (Entity (P))
5771
            then
5772
               Compile_Time_Known_Attribute (N, Esize (Entity (P)));
5773
               return;
5774
 
5775
            else
5776
               Check_Expressions;
5777
               return;
5778
            end if;
5779
 
5780
         --  For Alignment, give size of object if available, otherwise we
5781
         --  cannot fold Alignment.
5782
 
5783
         elsif Id = Attribute_Alignment then
5784
            if Is_Entity_Name (P)
5785
              and then Known_Alignment (Entity (P))
5786
            then
5787
               Fold_Uint (N, Alignment (Entity (P)), False);
5788
               return;
5789
 
5790
            else
5791
               Check_Expressions;
5792
               return;
5793
            end if;
5794
 
5795
         --  No other attributes for objects are folded
5796
 
5797
         else
5798
            Check_Expressions;
5799
            return;
5800
         end if;
5801
 
5802
      --  Cases where P is not an object. Cannot do anything if P is
5803
      --  not the name of an entity.
5804
 
5805
      elsif not Is_Entity_Name (P) then
5806
         Check_Expressions;
5807
         return;
5808
 
5809
      --  Otherwise get prefix entity
5810
 
5811
      else
5812
         P_Entity := Entity (P);
5813
      end if;
5814
 
5815
      --  At this stage P_Entity is the entity to which the attribute
5816
      --  is to be applied. This is usually simply the entity of the
5817
      --  prefix, except in some cases of attributes for objects, where
5818
      --  as described above, we apply the attribute to the object type.
5819
 
5820
      --  First foldable possibility is a scalar or array type (RM 4.9(7))
5821
      --  that is not generic (generic types are eliminated by RM 4.9(25)).
5822
      --  Note we allow non-static non-generic types at this stage as further
5823
      --  described below.
5824
 
5825
      if Is_Type (P_Entity)
5826
        and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
5827
        and then (not Is_Generic_Type (P_Entity))
5828
      then
5829
         P_Type := P_Entity;
5830
 
5831
      --  Second foldable possibility is an array object (RM 4.9(8))
5832
 
5833
      elsif (Ekind (P_Entity) = E_Variable
5834
               or else
5835
             Ekind (P_Entity) = E_Constant)
5836
        and then Is_Array_Type (Etype (P_Entity))
5837
        and then (not Is_Generic_Type (Etype (P_Entity)))
5838
      then
5839
         P_Type := Etype (P_Entity);
5840
 
5841
         --  If the entity is an array constant with an unconstrained nominal
5842
         --  subtype then get the type from the initial value. If the value has
5843
         --  been expanded into assignments, there is no expression and the
5844
         --  attribute reference remains dynamic.
5845
 
5846
         --  We could do better here and retrieve the type ???
5847
 
5848
         if Ekind (P_Entity) = E_Constant
5849
           and then not Is_Constrained (P_Type)
5850
         then
5851
            if No (Constant_Value (P_Entity)) then
5852
               return;
5853
            else
5854
               P_Type := Etype (Constant_Value (P_Entity));
5855
            end if;
5856
         end if;
5857
 
5858
      --  Definite must be folded if the prefix is not a generic type,
5859
      --  that is to say if we are within an instantiation. Same processing
5860
      --  applies to the GNAT attributes Has_Discriminants, Type_Class,
5861
      --  Has_Tagged_Value, and Unconstrained_Array.
5862
 
5863
      elsif (Id = Attribute_Definite
5864
               or else
5865
             Id = Attribute_Has_Access_Values
5866
               or else
5867
             Id = Attribute_Has_Discriminants
5868
               or else
5869
             Id = Attribute_Has_Tagged_Values
5870
               or else
5871
             Id = Attribute_Type_Class
5872
               or else
5873
             Id = Attribute_Unconstrained_Array
5874
               or else
5875
             Id = Attribute_Max_Alignment_For_Allocation)
5876
        and then not Is_Generic_Type (P_Entity)
5877
      then
5878
         P_Type := P_Entity;
5879
 
5880
      --  We can fold 'Size applied to a type if the size is known (as happens
5881
      --  for a size from an attribute definition clause). At this stage, this
5882
      --  can happen only for types (e.g. record types) for which the size is
5883
      --  always non-static. We exclude generic types from consideration (since
5884
      --  they have bogus sizes set within templates).
5885
 
5886
      elsif Id = Attribute_Size
5887
        and then Is_Type (P_Entity)
5888
        and then (not Is_Generic_Type (P_Entity))
5889
        and then Known_Static_RM_Size (P_Entity)
5890
      then
5891
         Compile_Time_Known_Attribute (N, RM_Size (P_Entity));
5892
         return;
5893
 
5894
      --  We can fold 'Alignment applied to a type if the alignment is known
5895
      --  (as happens for an alignment from an attribute definition clause).
5896
      --  At this stage, this can happen only for types (e.g. record
5897
      --  types) for which the size is always non-static. We exclude
5898
      --  generic types from consideration (since they have bogus
5899
      --  sizes set within templates).
5900
 
5901
      elsif Id = Attribute_Alignment
5902
        and then Is_Type (P_Entity)
5903
        and then (not Is_Generic_Type (P_Entity))
5904
        and then Known_Alignment (P_Entity)
5905
      then
5906
         Compile_Time_Known_Attribute (N, Alignment (P_Entity));
5907
         return;
5908
 
5909
      --  If this is an access attribute that is known to fail accessibility
5910
      --  check, rewrite accordingly.
5911
 
5912
      elsif Attribute_Name (N) = Name_Access
5913
        and then Raises_Constraint_Error (N)
5914
      then
5915
         Rewrite (N,
5916
           Make_Raise_Program_Error (Loc,
5917
             Reason => PE_Accessibility_Check_Failed));
5918
         Set_Etype (N, C_Type);
5919
         return;
5920
 
5921
      --  No other cases are foldable (they certainly aren't static, and at
5922
      --  the moment we don't try to fold any cases other than these three).
5923
 
5924
      else
5925
         Check_Expressions;
5926
         return;
5927
      end if;
5928
 
5929
      --  If either attribute or the prefix is Any_Type, then propagate
5930
      --  Any_Type to the result and don't do anything else at all.
5931
 
5932
      if P_Type = Any_Type
5933
        or else (Present (E1) and then Etype (E1) = Any_Type)
5934
        or else (Present (E2) and then Etype (E2) = Any_Type)
5935
      then
5936
         Set_Etype (N, Any_Type);
5937
         return;
5938
      end if;
5939
 
5940
      --  Scalar subtype case. We have not yet enforced the static requirement
5941
      --  of (RM 4.9(7)) and we don't intend to just yet, since there are cases
5942
      --  of non-static attribute references (e.g. S'Digits for a non-static
5943
      --  floating-point type, which we can compute at compile time).
5944
 
5945
      --  Note: this folding of non-static attributes is not simply a case of
5946
      --  optimization. For many of the attributes affected, Gigi cannot handle
5947
      --  the attribute and depends on the front end having folded them away.
5948
 
5949
      --  Note: although we don't require staticness at this stage, we do set
5950
      --  the Static variable to record the staticness, for easy reference by
5951
      --  those attributes where it matters (e.g. Succ and Pred), and also to
5952
      --  be used to ensure that non-static folded things are not marked as
5953
      --  being static (a check that is done right at the end).
5954
 
5955
      P_Root_Type := Root_Type (P_Type);
5956
      P_Base_Type := Base_Type (P_Type);
5957
 
5958
      --  If the root type or base type is generic, then we cannot fold. This
5959
      --  test is needed because subtypes of generic types are not always
5960
      --  marked as being generic themselves (which seems odd???)
5961
 
5962
      if Is_Generic_Type (P_Root_Type)
5963
        or else Is_Generic_Type (P_Base_Type)
5964
      then
5965
         return;
5966
      end if;
5967
 
5968
      if Is_Scalar_Type (P_Type) then
5969
         Static := Is_OK_Static_Subtype (P_Type);
5970
 
5971
      --  Array case. We enforce the constrained requirement of (RM 4.9(7-8))
5972
      --  since we can't do anything with unconstrained arrays. In addition,
5973
      --  only the First, Last and Length attributes are possibly static.
5974
 
5975
      --  Definite, Has_Access_Values, Has_Discriminants, Has_Tagged_Values,
5976
      --  Type_Class, and Unconstrained_Array are again exceptions, because
5977
      --  they apply as well to unconstrained types.
5978
 
5979
      --  In addition Component_Size is an exception since it is possibly
5980
      --  foldable, even though it is never static, and it does apply to
5981
      --  unconstrained arrays. Furthermore, it is essential to fold this
5982
      --  in the packed case, since otherwise the value will be incorrect.
5983
 
5984
      elsif Id = Attribute_Definite
5985
              or else
5986
            Id = Attribute_Has_Access_Values
5987
              or else
5988
            Id = Attribute_Has_Discriminants
5989
              or else
5990
            Id = Attribute_Has_Tagged_Values
5991
              or else
5992
            Id = Attribute_Type_Class
5993
              or else
5994
            Id = Attribute_Unconstrained_Array
5995
              or else
5996
            Id = Attribute_Component_Size
5997
      then
5998
         Static := False;
5999
 
6000
      elsif Id /= Attribute_Max_Alignment_For_Allocation then
6001
         if not Is_Constrained (P_Type)
6002
           or else (Id /= Attribute_First and then
6003
                    Id /= Attribute_Last  and then
6004
                    Id /= Attribute_Length)
6005
         then
6006
            Check_Expressions;
6007
            return;
6008
         end if;
6009
 
6010
         --  The rules in (RM 4.9(7,8)) require a static array, but as in the
6011
         --  scalar case, we hold off on enforcing staticness, since there are
6012
         --  cases which we can fold at compile time even though they are not
6013
         --  static (e.g. 'Length applied to a static index, even though other
6014
         --  non-static indexes make the array type non-static). This is only
6015
         --  an optimization, but it falls out essentially free, so why not.
6016
         --  Again we compute the variable Static for easy reference later
6017
         --  (note that no array attributes are static in Ada 83).
6018
 
6019
         --  We also need to set Static properly for subsequent legality checks
6020
         --  which might otherwise accept non-static constants in contexts
6021
         --  where they are not legal.
6022
 
6023
         Static := Ada_Version >= Ada_95
6024
                     and then Statically_Denotes_Entity (P);
6025
 
6026
         declare
6027
            N : Node_Id;
6028
 
6029
         begin
6030
            N := First_Index (P_Type);
6031
 
6032
            --  The expression is static if the array type is constrained
6033
            --  by given bounds, and not by an initial expression. Constant
6034
            --  strings are static in any case.
6035
 
6036
            if Root_Type (P_Type) /= Standard_String then
6037
               Static :=
6038
                 Static and then not Is_Constr_Subt_For_U_Nominal (P_Type);
6039
            end if;
6040
 
6041
            while Present (N) loop
6042
               Static := Static and then Is_Static_Subtype (Etype (N));
6043
 
6044
               --  If however the index type is generic, or derived from
6045
               --  one, attributes cannot be folded.
6046
 
6047
               if Is_Generic_Type (Root_Type (Etype (N)))
6048
                 and then Id /= Attribute_Component_Size
6049
               then
6050
                  return;
6051
               end if;
6052
 
6053
               Next_Index (N);
6054
            end loop;
6055
         end;
6056
      end if;
6057
 
6058
      --  Check any expressions that are present. Note that these expressions,
6059
      --  depending on the particular attribute type, are either part of the
6060
      --  attribute designator, or they are arguments in a case where the
6061
      --  attribute reference returns a function. In the latter case, the
6062
      --  rule in (RM 4.9(22)) applies and in particular requires the type
6063
      --  of the expressions to be scalar in order for the attribute to be
6064
      --  considered to be static.
6065
 
6066
      declare
6067
         E : Node_Id;
6068
 
6069
      begin
6070
         E := E1;
6071
         while Present (E) loop
6072
 
6073
            --  If expression is not static, then the attribute reference
6074
            --  result certainly cannot be static.
6075
 
6076
            if not Is_Static_Expression (E) then
6077
               Static := False;
6078
            end if;
6079
 
6080
            --  If the result is not known at compile time, or is not of
6081
            --  a scalar type, then the result is definitely not static,
6082
            --  so we can quit now.
6083
 
6084
            if not Compile_Time_Known_Value (E)
6085
              or else not Is_Scalar_Type (Etype (E))
6086
            then
6087
               --  An odd special case, if this is a Pos attribute, this
6088
               --  is where we need to apply a range check since it does
6089
               --  not get done anywhere else.
6090
 
6091
               if Id = Attribute_Pos then
6092
                  if Is_Integer_Type (Etype (E)) then
6093
                     Apply_Range_Check (E, Etype (N));
6094
                  end if;
6095
               end if;
6096
 
6097
               Check_Expressions;
6098
               return;
6099
 
6100
            --  If the expression raises a constraint error, then so does
6101
            --  the attribute reference. We keep going in this case because
6102
            --  we are still interested in whether the attribute reference
6103
            --  is static even if it is not static.
6104
 
6105
            elsif Raises_Constraint_Error (E) then
6106
               Set_Raises_Constraint_Error (N);
6107
            end if;
6108
 
6109
            Next (E);
6110
         end loop;
6111
 
6112
         if Raises_Constraint_Error (Prefix (N)) then
6113
            return;
6114
         end if;
6115
      end;
6116
 
6117
      --  Deal with the case of a static attribute reference that raises
6118
      --  constraint error. The Raises_Constraint_Error flag will already
6119
      --  have been set, and the Static flag shows whether the attribute
6120
      --  reference is static. In any case we certainly can't fold such an
6121
      --  attribute reference.
6122
 
6123
      --  Note that the rewriting of the attribute node with the constraint
6124
      --  error node is essential in this case, because otherwise Gigi might
6125
      --  blow up on one of the attributes it never expects to see.
6126
 
6127
      --  The constraint_error node must have the type imposed by the context,
6128
      --  to avoid spurious errors in the enclosing expression.
6129
 
6130
      if Raises_Constraint_Error (N) then
6131
         CE_Node :=
6132
           Make_Raise_Constraint_Error (Sloc (N),
6133
             Reason => CE_Range_Check_Failed);
6134
         Set_Etype (CE_Node, Etype (N));
6135
         Set_Raises_Constraint_Error (CE_Node);
6136
         Check_Expressions;
6137
         Rewrite (N, Relocate_Node (CE_Node));
6138
         Set_Is_Static_Expression (N, Static);
6139
         return;
6140
      end if;
6141
 
6142
      --  At this point we have a potentially foldable attribute reference.
6143
      --  If Static is set, then the attribute reference definitely obeys
6144
      --  the requirements in (RM 4.9(7,8,22)), and it definitely can be
6145
      --  folded. If Static is not set, then the attribute may or may not
6146
      --  be foldable, and the individual attribute processing routines
6147
      --  test Static as required in cases where it makes a difference.
6148
 
6149
      --  In the case where Static is not set, we do know that all the
6150
      --  expressions present are at least known at compile time (we assumed
6151
      --  above that if this was not the case, then there was no hope of static
6152
      --  evaluation). However, we did not require that the bounds of the
6153
      --  prefix type be compile time known, let alone static). That's because
6154
      --  there are many attributes that can be computed at compile time on
6155
      --  non-static subtypes, even though such references are not static
6156
      --  expressions.
6157
 
6158
      case Id is
6159
 
6160
         --  Attributes related to Ada 2012 iterators (placeholder ???)
6161
 
6162
         when Attribute_Constant_Indexing    => null;
6163
         when Attribute_Default_Iterator     => null;
6164
         when Attribute_Implicit_Dereference => null;
6165
         when Attribute_Iterator_Element     => null;
6166
         when Attribute_Variable_Indexing    => null;
6167
 
6168
      --------------
6169
      -- Adjacent --
6170
      --------------
6171
 
6172
      when Attribute_Adjacent =>
6173
         Fold_Ureal (N,
6174
           Eval_Fat.Adjacent
6175
             (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)), Static);
6176
 
6177
      ---------
6178
      -- Aft --
6179
      ---------
6180
 
6181
      when Attribute_Aft =>
6182
         Fold_Uint (N, Aft_Value (P_Type), True);
6183
 
6184
      ---------------
6185
      -- Alignment --
6186
      ---------------
6187
 
6188
      when Attribute_Alignment => Alignment_Block : declare
6189
         P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
6190
 
6191
      begin
6192
         --  Fold if alignment is set and not otherwise
6193
 
6194
         if Known_Alignment (P_TypeA) then
6195
            Fold_Uint (N, Alignment (P_TypeA), Is_Discrete_Type (P_TypeA));
6196
         end if;
6197
      end Alignment_Block;
6198
 
6199
      ---------------
6200
      -- AST_Entry --
6201
      ---------------
6202
 
6203
      --  Can only be folded in No_Ast_Handler case
6204
 
6205
      when Attribute_AST_Entry =>
6206
         if not Is_AST_Entry (P_Entity) then
6207
            Rewrite (N,
6208
              New_Occurrence_Of (RTE (RE_No_AST_Handler), Loc));
6209
         else
6210
            null;
6211
         end if;
6212
 
6213
      ---------
6214
      -- Bit --
6215
      ---------
6216
 
6217
      --  Bit can never be folded
6218
 
6219
      when Attribute_Bit =>
6220
         null;
6221
 
6222
      ------------------
6223
      -- Body_Version --
6224
      ------------------
6225
 
6226
      --  Body_version can never be static
6227
 
6228
      when Attribute_Body_Version =>
6229
         null;
6230
 
6231
      -------------
6232
      -- Ceiling --
6233
      -------------
6234
 
6235
      when Attribute_Ceiling =>
6236
         Fold_Ureal (N,
6237
           Eval_Fat.Ceiling (P_Root_Type, Expr_Value_R (E1)), Static);
6238
 
6239
      --------------------
6240
      -- Component_Size --
6241
      --------------------
6242
 
6243
      when Attribute_Component_Size =>
6244
         if Known_Static_Component_Size (P_Type) then
6245
            Fold_Uint (N, Component_Size (P_Type), False);
6246
         end if;
6247
 
6248
      -------------
6249
      -- Compose --
6250
      -------------
6251
 
6252
      when Attribute_Compose =>
6253
         Fold_Ureal (N,
6254
           Eval_Fat.Compose
6255
             (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)),
6256
              Static);
6257
 
6258
      -----------------
6259
      -- Constrained --
6260
      -----------------
6261
 
6262
      --  Constrained is never folded for now, there may be cases that
6263
      --  could be handled at compile time. To be looked at later.
6264
 
6265
      when Attribute_Constrained =>
6266
         null;
6267
 
6268
      ---------------
6269
      -- Copy_Sign --
6270
      ---------------
6271
 
6272
      when Attribute_Copy_Sign =>
6273
         Fold_Ureal (N,
6274
           Eval_Fat.Copy_Sign
6275
             (P_Root_Type, Expr_Value_R (E1), Expr_Value_R (E2)), Static);
6276
 
6277
      --------------
6278
      -- Definite --
6279
      --------------
6280
 
6281
      when Attribute_Definite =>
6282
         Rewrite (N, New_Occurrence_Of (
6283
           Boolean_Literals (not Is_Indefinite_Subtype (P_Entity)), Loc));
6284
         Analyze_And_Resolve (N, Standard_Boolean);
6285
 
6286
      -----------
6287
      -- Delta --
6288
      -----------
6289
 
6290
      when Attribute_Delta =>
6291
         Fold_Ureal (N, Delta_Value (P_Type), True);
6292
 
6293
      ------------
6294
      -- Denorm --
6295
      ------------
6296
 
6297
      when Attribute_Denorm =>
6298
         Fold_Uint
6299
           (N, UI_From_Int (Boolean'Pos (Denorm_On_Target)), True);
6300
 
6301
      ---------------------
6302
      -- Descriptor_Size --
6303
      ---------------------
6304
 
6305
      when Attribute_Descriptor_Size =>
6306
         null;
6307
 
6308
      ------------
6309
      -- Digits --
6310
      ------------
6311
 
6312
      when Attribute_Digits =>
6313
         Fold_Uint (N, Digits_Value (P_Type), True);
6314
 
6315
      ----------
6316
      -- Emax --
6317
      ----------
6318
 
6319
      when Attribute_Emax =>
6320
 
6321
         --  Ada 83 attribute is defined as (RM83 3.5.8)
6322
 
6323
         --    T'Emax = 4 * T'Mantissa
6324
 
6325
         Fold_Uint (N, 4 * Mantissa, True);
6326
 
6327
      --------------
6328
      -- Enum_Rep --
6329
      --------------
6330
 
6331
      when Attribute_Enum_Rep =>
6332
 
6333
         --  For an enumeration type with a non-standard representation use
6334
         --  the Enumeration_Rep field of the proper constant. Note that this
6335
         --  will not work for types Character/Wide_[Wide-]Character, since no
6336
         --  real entities are created for the enumeration literals, but that
6337
         --  does not matter since these two types do not have non-standard
6338
         --  representations anyway.
6339
 
6340
         if Is_Enumeration_Type (P_Type)
6341
           and then Has_Non_Standard_Rep (P_Type)
6342
         then
6343
            Fold_Uint (N, Enumeration_Rep (Expr_Value_E (E1)), Static);
6344
 
6345
         --  For enumeration types with standard representations and all
6346
         --  other cases (i.e. all integer and modular types), Enum_Rep
6347
         --  is equivalent to Pos.
6348
 
6349
         else
6350
            Fold_Uint (N, Expr_Value (E1), Static);
6351
         end if;
6352
 
6353
      --------------
6354
      -- Enum_Val --
6355
      --------------
6356
 
6357
      when Attribute_Enum_Val => Enum_Val : declare
6358
         Lit : Node_Id;
6359
 
6360
      begin
6361
         --  We have something like Enum_Type'Enum_Val (23), so search for a
6362
         --  corresponding value in the list of Enum_Rep values for the type.
6363
 
6364
         Lit := First_Literal (P_Base_Type);
6365
         loop
6366
            if Enumeration_Rep (Lit) = Expr_Value (E1) then
6367
               Fold_Uint (N, Enumeration_Pos (Lit), Static);
6368
               exit;
6369
            end if;
6370
 
6371
            Next_Literal (Lit);
6372
 
6373
            if No (Lit) then
6374
               Apply_Compile_Time_Constraint_Error
6375
                 (N, "no representation value matches",
6376
                  CE_Range_Check_Failed,
6377
                  Warn => not Static);
6378
               exit;
6379
            end if;
6380
         end loop;
6381
      end Enum_Val;
6382
 
6383
      -------------
6384
      -- Epsilon --
6385
      -------------
6386
 
6387
      when Attribute_Epsilon =>
6388
 
6389
         --  Ada 83 attribute is defined as (RM83 3.5.8)
6390
 
6391
         --    T'Epsilon = 2.0**(1 - T'Mantissa)
6392
 
6393
         Fold_Ureal (N, Ureal_2 ** (1 - Mantissa), True);
6394
 
6395
      --------------
6396
      -- Exponent --
6397
      --------------
6398
 
6399
      when Attribute_Exponent =>
6400
         Fold_Uint (N,
6401
           Eval_Fat.Exponent (P_Root_Type, Expr_Value_R (E1)), Static);
6402
 
6403
      -----------
6404
      -- First --
6405
      -----------
6406
 
6407
      when Attribute_First => First_Attr :
6408
      begin
6409
         Set_Bounds;
6410
 
6411
         if Compile_Time_Known_Value (Lo_Bound) then
6412
            if Is_Real_Type (P_Type) then
6413
               Fold_Ureal (N, Expr_Value_R (Lo_Bound), Static);
6414
            else
6415
               Fold_Uint  (N, Expr_Value (Lo_Bound), Static);
6416
            end if;
6417
 
6418
         --  Replace VAX Float_Type'First with a reference to the temporary
6419
         --  which represents the low bound of the type. This transformation
6420
         --  is needed since the back end cannot evaluate 'First on VAX.
6421
 
6422
         elsif Is_VAX_Float (P_Type)
6423
           and then Nkind (Lo_Bound) = N_Identifier
6424
         then
6425
            Rewrite (N, New_Reference_To (Entity (Lo_Bound), Sloc (N)));
6426
            Analyze (N);
6427
 
6428
         else
6429
            Check_Concurrent_Discriminant (Lo_Bound);
6430
         end if;
6431
      end First_Attr;
6432
 
6433
      -----------------
6434
      -- Fixed_Value --
6435
      -----------------
6436
 
6437
      when Attribute_Fixed_Value =>
6438
         null;
6439
 
6440
      -----------
6441
      -- Floor --
6442
      -----------
6443
 
6444
      when Attribute_Floor =>
6445
         Fold_Ureal (N,
6446
           Eval_Fat.Floor (P_Root_Type, Expr_Value_R (E1)), Static);
6447
 
6448
      ----------
6449
      -- Fore --
6450
      ----------
6451
 
6452
      when Attribute_Fore =>
6453
         if Compile_Time_Known_Bounds (P_Type) then
6454
            Fold_Uint (N, UI_From_Int (Fore_Value), Static);
6455
         end if;
6456
 
6457
      --------------
6458
      -- Fraction --
6459
      --------------
6460
 
6461
      when Attribute_Fraction =>
6462
         Fold_Ureal (N,
6463
           Eval_Fat.Fraction (P_Root_Type, Expr_Value_R (E1)), Static);
6464
 
6465
      -----------------------
6466
      -- Has_Access_Values --
6467
      -----------------------
6468
 
6469
      when Attribute_Has_Access_Values =>
6470
         Rewrite (N, New_Occurrence_Of
6471
           (Boolean_Literals (Has_Access_Values (P_Root_Type)), Loc));
6472
         Analyze_And_Resolve (N, Standard_Boolean);
6473
 
6474
      -----------------------
6475
      -- Has_Discriminants --
6476
      -----------------------
6477
 
6478
      when Attribute_Has_Discriminants =>
6479
         Rewrite (N, New_Occurrence_Of (
6480
           Boolean_Literals (Has_Discriminants (P_Entity)), Loc));
6481
         Analyze_And_Resolve (N, Standard_Boolean);
6482
 
6483
      -----------------------
6484
      -- Has_Tagged_Values --
6485
      -----------------------
6486
 
6487
      when Attribute_Has_Tagged_Values =>
6488
         Rewrite (N, New_Occurrence_Of
6489
           (Boolean_Literals (Has_Tagged_Component (P_Root_Type)), Loc));
6490
         Analyze_And_Resolve (N, Standard_Boolean);
6491
 
6492
      --------------
6493
      -- Identity --
6494
      --------------
6495
 
6496
      when Attribute_Identity =>
6497
         null;
6498
 
6499
      -----------
6500
      -- Image --
6501
      -----------
6502
 
6503
      --  Image is a scalar attribute, but is never static, because it is
6504
      --  not a static function (having a non-scalar argument (RM 4.9(22))
6505
      --  However, we can constant-fold the image of an enumeration literal
6506
      --  if names are available.
6507
 
6508
      when Attribute_Image =>
6509
         if Is_Entity_Name (E1)
6510
           and then Ekind (Entity (E1)) = E_Enumeration_Literal
6511
           and then not Discard_Names (First_Subtype (Etype (E1)))
6512
           and then not Global_Discard_Names
6513
         then
6514
            declare
6515
               Lit : constant Entity_Id := Entity (E1);
6516
               Str : String_Id;
6517
            begin
6518
               Start_String;
6519
               Get_Unqualified_Decoded_Name_String (Chars (Lit));
6520
               Set_Casing (All_Upper_Case);
6521
               Store_String_Chars (Name_Buffer (1 .. Name_Len));
6522
               Str := End_String;
6523
               Rewrite (N, Make_String_Literal (Loc, Strval => Str));
6524
               Analyze_And_Resolve (N, Standard_String);
6525
               Set_Is_Static_Expression (N, False);
6526
            end;
6527
         end if;
6528
 
6529
      ---------
6530
      -- Img --
6531
      ---------
6532
 
6533
      --  Img is a scalar attribute, but is never static, because it is
6534
      --  not a static function (having a non-scalar argument (RM 4.9(22))
6535
 
6536
      when Attribute_Img =>
6537
         null;
6538
 
6539
      -------------------
6540
      -- Integer_Value --
6541
      -------------------
6542
 
6543
      --  We never try to fold Integer_Value (though perhaps we could???)
6544
 
6545
      when Attribute_Integer_Value =>
6546
         null;
6547
 
6548
      -------------------
6549
      -- Invalid_Value --
6550
      -------------------
6551
 
6552
      --  Invalid_Value is a scalar attribute that is never static, because
6553
      --  the value is by design out of range.
6554
 
6555
      when Attribute_Invalid_Value =>
6556
         null;
6557
 
6558
      -----------
6559
      -- Large --
6560
      -----------
6561
 
6562
      when Attribute_Large =>
6563
 
6564
         --  For fixed-point, we use the identity:
6565
 
6566
         --    T'Large = (2.0**T'Mantissa - 1.0) * T'Small
6567
 
6568
         if Is_Fixed_Point_Type (P_Type) then
6569
            Rewrite (N,
6570
              Make_Op_Multiply (Loc,
6571
                Left_Opnd =>
6572
                  Make_Op_Subtract (Loc,
6573
                    Left_Opnd =>
6574
                      Make_Op_Expon (Loc,
6575
                        Left_Opnd =>
6576
                          Make_Real_Literal (Loc, Ureal_2),
6577
                        Right_Opnd =>
6578
                          Make_Attribute_Reference (Loc,
6579
                            Prefix => P,
6580
                            Attribute_Name => Name_Mantissa)),
6581
                    Right_Opnd => Make_Real_Literal (Loc, Ureal_1)),
6582
 
6583
                Right_Opnd =>
6584
                  Make_Real_Literal (Loc, Small_Value (Entity (P)))));
6585
 
6586
            Analyze_And_Resolve (N, C_Type);
6587
 
6588
         --  Floating-point (Ada 83 compatibility)
6589
 
6590
         else
6591
            --  Ada 83 attribute is defined as (RM83 3.5.8)
6592
 
6593
            --    T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
6594
 
6595
            --  where
6596
 
6597
            --    T'Emax = 4 * T'Mantissa
6598
 
6599
            Fold_Ureal (N,
6600
              Ureal_2 ** (4 * Mantissa) * (Ureal_1 - Ureal_2 ** (-Mantissa)),
6601
              True);
6602
         end if;
6603
 
6604
      ----------
6605
      -- Last --
6606
      ----------
6607
 
6608
      when Attribute_Last => Last :
6609
      begin
6610
         Set_Bounds;
6611
 
6612
         if Compile_Time_Known_Value (Hi_Bound) then
6613
            if Is_Real_Type (P_Type) then
6614
               Fold_Ureal (N, Expr_Value_R (Hi_Bound), Static);
6615
            else
6616
               Fold_Uint  (N, Expr_Value (Hi_Bound), Static);
6617
            end if;
6618
 
6619
         --  Replace VAX Float_Type'Last with a reference to the temporary
6620
         --  which represents the high bound of the type. This transformation
6621
         --  is needed since the back end cannot evaluate 'Last on VAX.
6622
 
6623
         elsif Is_VAX_Float (P_Type)
6624
           and then Nkind (Hi_Bound) = N_Identifier
6625
         then
6626
            Rewrite (N, New_Reference_To (Entity (Hi_Bound), Sloc (N)));
6627
            Analyze (N);
6628
 
6629
         else
6630
            Check_Concurrent_Discriminant (Hi_Bound);
6631
         end if;
6632
      end Last;
6633
 
6634
      ------------------
6635
      -- Leading_Part --
6636
      ------------------
6637
 
6638
      when Attribute_Leading_Part =>
6639
         Fold_Ureal (N,
6640
           Eval_Fat.Leading_Part
6641
             (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)), Static);
6642
 
6643
      ------------
6644
      -- Length --
6645
      ------------
6646
 
6647
      when Attribute_Length => Length : declare
6648
         Ind : Node_Id;
6649
 
6650
      begin
6651
         --  If any index type is a formal type, or derived from one, the
6652
         --  bounds are not static. Treating them as static can produce
6653
         --  spurious warnings or improper constant folding.
6654
 
6655
         Ind := First_Index (P_Type);
6656
         while Present (Ind) loop
6657
            if Is_Generic_Type (Root_Type (Etype (Ind))) then
6658
               return;
6659
            end if;
6660
 
6661
            Next_Index (Ind);
6662
         end loop;
6663
 
6664
         Set_Bounds;
6665
 
6666
         --  For two compile time values, we can compute length
6667
 
6668
         if Compile_Time_Known_Value (Lo_Bound)
6669
           and then Compile_Time_Known_Value (Hi_Bound)
6670
         then
6671
            Fold_Uint (N,
6672
              UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))),
6673
              True);
6674
         end if;
6675
 
6676
         --  One more case is where Hi_Bound and Lo_Bound are compile-time
6677
         --  comparable, and we can figure out the difference between them.
6678
 
6679
         declare
6680
            Diff : aliased Uint;
6681
 
6682
         begin
6683
            case
6684
              Compile_Time_Compare
6685
                (Lo_Bound, Hi_Bound, Diff'Access, Assume_Valid => False)
6686
            is
6687
               when EQ =>
6688
                  Fold_Uint (N, Uint_1, False);
6689
 
6690
               when GT =>
6691
                  Fold_Uint (N, Uint_0, False);
6692
 
6693
               when LT =>
6694
                  if Diff /= No_Uint then
6695
                     Fold_Uint (N, Diff + 1, False);
6696
                  end if;
6697
 
6698
               when others =>
6699
                  null;
6700
            end case;
6701
         end;
6702
      end Length;
6703
 
6704
      -------------
6705
      -- Machine --
6706
      -------------
6707
 
6708
      when Attribute_Machine =>
6709
         Fold_Ureal (N,
6710
           Eval_Fat.Machine
6711
             (P_Root_Type, Expr_Value_R (E1), Eval_Fat.Round, N),
6712
           Static);
6713
 
6714
      ------------------
6715
      -- Machine_Emax --
6716
      ------------------
6717
 
6718
      when Attribute_Machine_Emax =>
6719
         Fold_Uint (N, Machine_Emax_Value (P_Type), Static);
6720
 
6721
      ------------------
6722
      -- Machine_Emin --
6723
      ------------------
6724
 
6725
      when Attribute_Machine_Emin =>
6726
         Fold_Uint (N, Machine_Emin_Value (P_Type), Static);
6727
 
6728
      ----------------------
6729
      -- Machine_Mantissa --
6730
      ----------------------
6731
 
6732
      when Attribute_Machine_Mantissa =>
6733
         Fold_Uint (N, Machine_Mantissa_Value (P_Type), Static);
6734
 
6735
      -----------------------
6736
      -- Machine_Overflows --
6737
      -----------------------
6738
 
6739
      when Attribute_Machine_Overflows =>
6740
 
6741
         --  Always true for fixed-point
6742
 
6743
         if Is_Fixed_Point_Type (P_Type) then
6744
            Fold_Uint (N, True_Value, True);
6745
 
6746
         --  Floating point case
6747
 
6748
         else
6749
            Fold_Uint (N,
6750
              UI_From_Int (Boolean'Pos (Machine_Overflows_On_Target)),
6751
              True);
6752
         end if;
6753
 
6754
      -------------------
6755
      -- Machine_Radix --
6756
      -------------------
6757
 
6758
      when Attribute_Machine_Radix =>
6759
         if Is_Fixed_Point_Type (P_Type) then
6760
            if Is_Decimal_Fixed_Point_Type (P_Type)
6761
              and then Machine_Radix_10 (P_Type)
6762
            then
6763
               Fold_Uint (N, Uint_10, True);
6764
            else
6765
               Fold_Uint (N, Uint_2, True);
6766
            end if;
6767
 
6768
         --  All floating-point type always have radix 2
6769
 
6770
         else
6771
            Fold_Uint (N, Uint_2, True);
6772
         end if;
6773
 
6774
      ----------------------
6775
      -- Machine_Rounding --
6776
      ----------------------
6777
 
6778
      --  Note: for the folding case, it is fine to treat Machine_Rounding
6779
      --  exactly the same way as Rounding, since this is one of the allowed
6780
      --  behaviors, and performance is not an issue here. It might be a bit
6781
      --  better to give the same result as it would give at run time, even
6782
      --  though the non-determinism is certainly permitted.
6783
 
6784
      when Attribute_Machine_Rounding =>
6785
         Fold_Ureal (N,
6786
           Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)), Static);
6787
 
6788
      --------------------
6789
      -- Machine_Rounds --
6790
      --------------------
6791
 
6792
      when Attribute_Machine_Rounds =>
6793
 
6794
         --  Always False for fixed-point
6795
 
6796
         if Is_Fixed_Point_Type (P_Type) then
6797
            Fold_Uint (N, False_Value, True);
6798
 
6799
         --  Else yield proper floating-point result
6800
 
6801
         else
6802
            Fold_Uint
6803
              (N, UI_From_Int (Boolean'Pos (Machine_Rounds_On_Target)), True);
6804
         end if;
6805
 
6806
      ------------------
6807
      -- Machine_Size --
6808
      ------------------
6809
 
6810
      --  Note: Machine_Size is identical to Object_Size
6811
 
6812
      when Attribute_Machine_Size => Machine_Size : declare
6813
         P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
6814
 
6815
      begin
6816
         if Known_Esize (P_TypeA) then
6817
            Fold_Uint (N, Esize (P_TypeA), True);
6818
         end if;
6819
      end Machine_Size;
6820
 
6821
      --------------
6822
      -- Mantissa --
6823
      --------------
6824
 
6825
      when Attribute_Mantissa =>
6826
 
6827
         --  Fixed-point mantissa
6828
 
6829
         if Is_Fixed_Point_Type (P_Type) then
6830
 
6831
            --  Compile time foldable case
6832
 
6833
            if Compile_Time_Known_Value (Type_Low_Bound  (P_Type))
6834
                 and then
6835
               Compile_Time_Known_Value (Type_High_Bound (P_Type))
6836
            then
6837
               --  The calculation of the obsolete Ada 83 attribute Mantissa
6838
               --  is annoying, because of AI00143, quoted here:
6839
 
6840
               --  !question 84-01-10
6841
 
6842
               --  Consider the model numbers for F:
6843
 
6844
               --         type F is delta 1.0 range -7.0 .. 8.0;
6845
 
6846
               --  The wording requires that F'MANTISSA be the SMALLEST
6847
               --  integer number for which each  bound  of the specified
6848
               --  range is either a model number or lies at most small
6849
               --  distant from a model number. This means F'MANTISSA
6850
               --  is required to be 3 since the range  -7.0 .. 7.0 fits
6851
               --  in 3 signed bits, and 8 is "at most" 1.0 from a model
6852
               --  number, namely, 7. Is this analysis correct? Note that
6853
               --  this implies the upper bound of the range is not
6854
               --  represented as a model number.
6855
 
6856
               --  !response 84-03-17
6857
 
6858
               --  The analysis is correct. The upper and lower bounds for
6859
               --  a fixed  point type can lie outside the range of model
6860
               --  numbers.
6861
 
6862
               declare
6863
                  Siz     : Uint;
6864
                  LBound  : Ureal;
6865
                  UBound  : Ureal;
6866
                  Bound   : Ureal;
6867
                  Max_Man : Uint;
6868
 
6869
               begin
6870
                  LBound  := Expr_Value_R (Type_Low_Bound  (P_Type));
6871
                  UBound  := Expr_Value_R (Type_High_Bound (P_Type));
6872
                  Bound   := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
6873
                  Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
6874
 
6875
                  --  If the Bound is exactly a model number, i.e. a multiple
6876
                  --  of Small, then we back it off by one to get the integer
6877
                  --  value that must be representable.
6878
 
6879
                  if Small_Value (P_Type) * Max_Man = Bound then
6880
                     Max_Man := Max_Man - 1;
6881
                  end if;
6882
 
6883
                  --  Now find corresponding size = Mantissa value
6884
 
6885
                  Siz := Uint_0;
6886
                  while 2 ** Siz < Max_Man loop
6887
                     Siz := Siz + 1;
6888
                  end loop;
6889
 
6890
                  Fold_Uint (N, Siz, True);
6891
               end;
6892
 
6893
            else
6894
               --  The case of dynamic bounds cannot be evaluated at compile
6895
               --  time. Instead we use a runtime routine (see Exp_Attr).
6896
 
6897
               null;
6898
            end if;
6899
 
6900
         --  Floating-point Mantissa
6901
 
6902
         else
6903
            Fold_Uint (N, Mantissa, True);
6904
         end if;
6905
 
6906
      ---------
6907
      -- Max --
6908
      ---------
6909
 
6910
      when Attribute_Max => Max :
6911
      begin
6912
         if Is_Real_Type (P_Type) then
6913
            Fold_Ureal
6914
              (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
6915
         else
6916
            Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)), Static);
6917
         end if;
6918
      end Max;
6919
 
6920
      ----------------------------------
6921
      -- Max_Alignment_For_Allocation --
6922
      ----------------------------------
6923
 
6924
      --  Max_Alignment_For_Allocation is usually the Alignment. However,
6925
      --  arrays are allocated with dope, so we need to take into account both
6926
      --  the alignment of the array, which comes from the component alignment,
6927
      --  and the alignment of the dope. Also, if the alignment is unknown, we
6928
      --  use the max (it's OK to be pessimistic).
6929
 
6930
      when Attribute_Max_Alignment_For_Allocation =>
6931
         declare
6932
            A : Uint := UI_From_Int (Ttypes.Maximum_Alignment);
6933
         begin
6934
            if Known_Alignment (P_Type) and then
6935
              (not Is_Array_Type (P_Type) or else Alignment (P_Type) > A)
6936
            then
6937
               A := Alignment (P_Type);
6938
            end if;
6939
 
6940
            Fold_Uint (N, A, Static);
6941
         end;
6942
 
6943
      ----------------------------------
6944
      -- Max_Size_In_Storage_Elements --
6945
      ----------------------------------
6946
 
6947
      --  Max_Size_In_Storage_Elements is simply the Size rounded up to a
6948
      --  Storage_Unit boundary. We can fold any cases for which the size
6949
      --  is known by the front end.
6950
 
6951
      when Attribute_Max_Size_In_Storage_Elements =>
6952
         if Known_Esize (P_Type) then
6953
            Fold_Uint (N,
6954
              (Esize (P_Type) + System_Storage_Unit - 1) /
6955
                                          System_Storage_Unit,
6956
               Static);
6957
         end if;
6958
 
6959
      --------------------
6960
      -- Mechanism_Code --
6961
      --------------------
6962
 
6963
      when Attribute_Mechanism_Code =>
6964
         declare
6965
            Val    : Int;
6966
            Formal : Entity_Id;
6967
            Mech   : Mechanism_Type;
6968
 
6969
         begin
6970
            if No (E1) then
6971
               Mech := Mechanism (P_Entity);
6972
 
6973
            else
6974
               Val := UI_To_Int (Expr_Value (E1));
6975
 
6976
               Formal := First_Formal (P_Entity);
6977
               for J in 1 .. Val - 1 loop
6978
                  Next_Formal (Formal);
6979
               end loop;
6980
               Mech := Mechanism (Formal);
6981
            end if;
6982
 
6983
            if Mech < 0 then
6984
               Fold_Uint (N, UI_From_Int (Int (-Mech)), True);
6985
            end if;
6986
         end;
6987
 
6988
      ---------
6989
      -- Min --
6990
      ---------
6991
 
6992
      when Attribute_Min => Min :
6993
      begin
6994
         if Is_Real_Type (P_Type) then
6995
            Fold_Ureal
6996
              (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
6997
         else
6998
            Fold_Uint
6999
              (N, UI_Min (Expr_Value (E1), Expr_Value (E2)), Static);
7000
         end if;
7001
      end Min;
7002
 
7003
      ---------
7004
      -- Mod --
7005
      ---------
7006
 
7007
      when Attribute_Mod =>
7008
         Fold_Uint
7009
           (N, UI_Mod (Expr_Value (E1), Modulus (P_Base_Type)), Static);
7010
 
7011
      -----------
7012
      -- Model --
7013
      -----------
7014
 
7015
      when Attribute_Model =>
7016
         Fold_Ureal (N,
7017
           Eval_Fat.Model (P_Root_Type, Expr_Value_R (E1)), Static);
7018
 
7019
      ----------------
7020
      -- Model_Emin --
7021
      ----------------
7022
 
7023
      when Attribute_Model_Emin =>
7024
         Fold_Uint (N, Model_Emin_Value (P_Base_Type), Static);
7025
 
7026
      -------------------
7027
      -- Model_Epsilon --
7028
      -------------------
7029
 
7030
      when Attribute_Model_Epsilon =>
7031
         Fold_Ureal (N, Model_Epsilon_Value (P_Base_Type), Static);
7032
 
7033
      --------------------
7034
      -- Model_Mantissa --
7035
      --------------------
7036
 
7037
      when Attribute_Model_Mantissa =>
7038
         Fold_Uint (N, Model_Mantissa_Value (P_Base_Type), Static);
7039
 
7040
      -----------------
7041
      -- Model_Small --
7042
      -----------------
7043
 
7044
      when Attribute_Model_Small =>
7045
         Fold_Ureal (N, Model_Small_Value (P_Base_Type), Static);
7046
 
7047
      -------------
7048
      -- Modulus --
7049
      -------------
7050
 
7051
      when Attribute_Modulus =>
7052
         Fold_Uint (N, Modulus (P_Type), True);
7053
 
7054
      --------------------
7055
      -- Null_Parameter --
7056
      --------------------
7057
 
7058
      --  Cannot fold, we know the value sort of, but the whole point is
7059
      --  that there is no way to talk about this imaginary value except
7060
      --  by using the attribute, so we leave it the way it is.
7061
 
7062
      when Attribute_Null_Parameter =>
7063
         null;
7064
 
7065
      -----------------
7066
      -- Object_Size --
7067
      -----------------
7068
 
7069
      --  The Object_Size attribute for a type returns the Esize of the
7070
      --  type and can be folded if this value is known.
7071
 
7072
      when Attribute_Object_Size => Object_Size : declare
7073
         P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
7074
 
7075
      begin
7076
         if Known_Esize (P_TypeA) then
7077
            Fold_Uint (N, Esize (P_TypeA), True);
7078
         end if;
7079
      end Object_Size;
7080
 
7081
      ----------------------
7082
      -- Overlaps_Storage --
7083
      ----------------------
7084
 
7085
      when Attribute_Overlaps_Storage =>
7086
         null;
7087
 
7088
      -------------------------
7089
      -- Passed_By_Reference --
7090
      -------------------------
7091
 
7092
      --  Scalar types are never passed by reference
7093
 
7094
      when Attribute_Passed_By_Reference =>
7095
         Fold_Uint (N, False_Value, True);
7096
 
7097
      ---------
7098
      -- Pos --
7099
      ---------
7100
 
7101
      when Attribute_Pos =>
7102
         Fold_Uint (N, Expr_Value (E1), True);
7103
 
7104
      ----------
7105
      -- Pred --
7106
      ----------
7107
 
7108
      when Attribute_Pred => Pred :
7109
      begin
7110
         --  Floating-point case
7111
 
7112
         if Is_Floating_Point_Type (P_Type) then
7113
            Fold_Ureal (N,
7114
              Eval_Fat.Pred (P_Root_Type, Expr_Value_R (E1)), Static);
7115
 
7116
         --  Fixed-point case
7117
 
7118
         elsif Is_Fixed_Point_Type (P_Type) then
7119
            Fold_Ureal (N,
7120
              Expr_Value_R (E1) - Small_Value (P_Type), True);
7121
 
7122
         --  Modular integer case (wraps)
7123
 
7124
         elsif Is_Modular_Integer_Type (P_Type) then
7125
            Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type), Static);
7126
 
7127
         --  Other scalar cases
7128
 
7129
         else
7130
            pragma Assert (Is_Scalar_Type (P_Type));
7131
 
7132
            if Is_Enumeration_Type (P_Type)
7133
              and then Expr_Value (E1) =
7134
                         Expr_Value (Type_Low_Bound (P_Base_Type))
7135
            then
7136
               Apply_Compile_Time_Constraint_Error
7137
                 (N, "Pred of `&''First`",
7138
                  CE_Overflow_Check_Failed,
7139
                  Ent  => P_Base_Type,
7140
                  Warn => not Static);
7141
 
7142
               Check_Expressions;
7143
               return;
7144
            end if;
7145
 
7146
            Fold_Uint (N, Expr_Value (E1) - 1, Static);
7147
         end if;
7148
      end Pred;
7149
 
7150
      -----------
7151
      -- Range --
7152
      -----------
7153
 
7154
      --  No processing required, because by this stage, Range has been
7155
      --  replaced by First .. Last, so this branch can never be taken.
7156
 
7157
      when Attribute_Range =>
7158
         raise Program_Error;
7159
 
7160
      ------------------
7161
      -- Range_Length --
7162
      ------------------
7163
 
7164
      when Attribute_Range_Length =>
7165
         Set_Bounds;
7166
 
7167
         --  Can fold if both bounds are compile time known
7168
 
7169
         if Compile_Time_Known_Value (Hi_Bound)
7170
           and then Compile_Time_Known_Value (Lo_Bound)
7171
         then
7172
            Fold_Uint (N,
7173
              UI_Max
7174
                (0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1),
7175
                 Static);
7176
         end if;
7177
 
7178
         --  One more case is where Hi_Bound and Lo_Bound are compile-time
7179
         --  comparable, and we can figure out the difference between them.
7180
 
7181
         declare
7182
            Diff : aliased Uint;
7183
 
7184
         begin
7185
            case
7186
              Compile_Time_Compare
7187
                (Lo_Bound, Hi_Bound, Diff'Access, Assume_Valid => False)
7188
            is
7189
               when EQ =>
7190
                  Fold_Uint (N, Uint_1, False);
7191
 
7192
               when GT =>
7193
                  Fold_Uint (N, Uint_0, False);
7194
 
7195
               when LT =>
7196
                  if Diff /= No_Uint then
7197
                     Fold_Uint (N, Diff + 1, False);
7198
                  end if;
7199
 
7200
               when others =>
7201
                  null;
7202
            end case;
7203
         end;
7204
 
7205
      ---------
7206
      -- Ref --
7207
      ---------
7208
 
7209
      when Attribute_Ref =>
7210
         Fold_Uint (N, Expr_Value (E1), True);
7211
 
7212
      ---------------
7213
      -- Remainder --
7214
      ---------------
7215
 
7216
      when Attribute_Remainder => Remainder : declare
7217
         X : constant Ureal := Expr_Value_R (E1);
7218
         Y : constant Ureal := Expr_Value_R (E2);
7219
 
7220
      begin
7221
         if UR_Is_Zero (Y) then
7222
            Apply_Compile_Time_Constraint_Error
7223
              (N, "division by zero in Remainder",
7224
               CE_Overflow_Check_Failed,
7225
               Warn => not Static);
7226
 
7227
            Check_Expressions;
7228
            return;
7229
         end if;
7230
 
7231
         Fold_Ureal (N, Eval_Fat.Remainder (P_Root_Type, X, Y), Static);
7232
      end Remainder;
7233
 
7234
      -----------
7235
      -- Round --
7236
      -----------
7237
 
7238
      when Attribute_Round => Round :
7239
      declare
7240
         Sr : Ureal;
7241
         Si : Uint;
7242
 
7243
      begin
7244
         --  First we get the (exact result) in units of small
7245
 
7246
         Sr := Expr_Value_R (E1) / Small_Value (C_Type);
7247
 
7248
         --  Now round that exactly to an integer
7249
 
7250
         Si := UR_To_Uint (Sr);
7251
 
7252
         --  Finally the result is obtained by converting back to real
7253
 
7254
         Fold_Ureal (N, Si * Small_Value (C_Type), Static);
7255
      end Round;
7256
 
7257
      --------------
7258
      -- Rounding --
7259
      --------------
7260
 
7261
      when Attribute_Rounding =>
7262
         Fold_Ureal (N,
7263
           Eval_Fat.Rounding (P_Root_Type, Expr_Value_R (E1)), Static);
7264
 
7265
      ---------------
7266
      -- Safe_Emax --
7267
      ---------------
7268
 
7269
      when Attribute_Safe_Emax =>
7270
         Fold_Uint (N, Safe_Emax_Value (P_Type), Static);
7271
 
7272
      ----------------
7273
      -- Safe_First --
7274
      ----------------
7275
 
7276
      when Attribute_Safe_First =>
7277
         Fold_Ureal (N, Safe_First_Value (P_Type), Static);
7278
 
7279
      ----------------
7280
      -- Safe_Large --
7281
      ----------------
7282
 
7283
      when Attribute_Safe_Large =>
7284
         if Is_Fixed_Point_Type (P_Type) then
7285
            Fold_Ureal
7286
              (N, Expr_Value_R (Type_High_Bound (P_Base_Type)), Static);
7287
         else
7288
            Fold_Ureal (N, Safe_Last_Value (P_Type), Static);
7289
         end if;
7290
 
7291
      ---------------
7292
      -- Safe_Last --
7293
      ---------------
7294
 
7295
      when Attribute_Safe_Last =>
7296
         Fold_Ureal (N, Safe_Last_Value (P_Type), Static);
7297
 
7298
      ----------------
7299
      -- Safe_Small --
7300
      ----------------
7301
 
7302
      when Attribute_Safe_Small =>
7303
 
7304
         --  In Ada 95, the old Ada 83 attribute Safe_Small is redundant
7305
         --  for fixed-point, since is the same as Small, but we implement
7306
         --  it for backwards compatibility.
7307
 
7308
         if Is_Fixed_Point_Type (P_Type) then
7309
            Fold_Ureal (N, Small_Value (P_Type), Static);
7310
 
7311
         --  Ada 83 Safe_Small for floating-point cases
7312
 
7313
         else
7314
            Fold_Ureal (N, Model_Small_Value (P_Type), Static);
7315
         end if;
7316
 
7317
      ------------------
7318
      -- Same_Storage --
7319
      ------------------
7320
 
7321
      when Attribute_Same_Storage =>
7322
         null;
7323
 
7324
      -----------
7325
      -- Scale --
7326
      -----------
7327
 
7328
      when Attribute_Scale =>
7329
         Fold_Uint (N, Scale_Value (P_Type), True);
7330
 
7331
      -------------
7332
      -- Scaling --
7333
      -------------
7334
 
7335
      when Attribute_Scaling =>
7336
         Fold_Ureal (N,
7337
           Eval_Fat.Scaling
7338
             (P_Root_Type, Expr_Value_R (E1), Expr_Value (E2)), Static);
7339
 
7340
      ------------------
7341
      -- Signed_Zeros --
7342
      ------------------
7343
 
7344
      when Attribute_Signed_Zeros =>
7345
         Fold_Uint
7346
           (N, UI_From_Int (Boolean'Pos (Signed_Zeros_On_Target)), Static);
7347
 
7348
      ----------
7349
      -- Size --
7350
      ----------
7351
 
7352
      --  Size attribute returns the RM size. All scalar types can be folded,
7353
      --  as well as any types for which the size is known by the front end,
7354
      --  including any type for which a size attribute is specified.
7355
 
7356
      when Attribute_Size | Attribute_VADS_Size => Size : declare
7357
         P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
7358
 
7359
      begin
7360
         if RM_Size (P_TypeA) /= Uint_0 then
7361
 
7362
            --  VADS_Size case
7363
 
7364
            if Id = Attribute_VADS_Size or else Use_VADS_Size then
7365
               declare
7366
                  S : constant Node_Id := Size_Clause (P_TypeA);
7367
 
7368
               begin
7369
                  --  If a size clause applies, then use the size from it.
7370
                  --  This is one of the rare cases where we can use the
7371
                  --  Size_Clause field for a subtype when Has_Size_Clause
7372
                  --  is False. Consider:
7373
 
7374
                  --    type x is range 1 .. 64;
7375
                  --    for x'size use 12;
7376
                  --    subtype y is x range 0 .. 3;
7377
 
7378
                  --  Here y has a size clause inherited from x, but normally
7379
                  --  it does not apply, and y'size is 2. However, y'VADS_Size
7380
                  --  is indeed 12 and not 2.
7381
 
7382
                  if Present (S)
7383
                    and then Is_OK_Static_Expression (Expression (S))
7384
                  then
7385
                     Fold_Uint (N, Expr_Value (Expression (S)), True);
7386
 
7387
                  --  If no size is specified, then we simply use the object
7388
                  --  size in the VADS_Size case (e.g. Natural'Size is equal
7389
                  --  to Integer'Size, not one less).
7390
 
7391
                  else
7392
                     Fold_Uint (N, Esize (P_TypeA), True);
7393
                  end if;
7394
               end;
7395
 
7396
            --  Normal case (Size) in which case we want the RM_Size
7397
 
7398
            else
7399
               Fold_Uint (N,
7400
                 RM_Size (P_TypeA),
7401
                 Static and then Is_Discrete_Type (P_TypeA));
7402
            end if;
7403
         end if;
7404
      end Size;
7405
 
7406
      -----------
7407
      -- Small --
7408
      -----------
7409
 
7410
      when Attribute_Small =>
7411
 
7412
         --  The floating-point case is present only for Ada 83 compatibility.
7413
         --  Note that strictly this is an illegal addition, since we are
7414
         --  extending an Ada 95 defined attribute, but we anticipate an
7415
         --  ARG ruling that will permit this.
7416
 
7417
         if Is_Floating_Point_Type (P_Type) then
7418
 
7419
            --  Ada 83 attribute is defined as (RM83 3.5.8)
7420
 
7421
            --    T'Small = 2.0**(-T'Emax - 1)
7422
 
7423
            --  where
7424
 
7425
            --    T'Emax = 4 * T'Mantissa
7426
 
7427
            Fold_Ureal (N, Ureal_2 ** ((-(4 * Mantissa)) - 1), Static);
7428
 
7429
         --  Normal Ada 95 fixed-point case
7430
 
7431
         else
7432
            Fold_Ureal (N, Small_Value (P_Type), True);
7433
         end if;
7434
 
7435
      -----------------
7436
      -- Stream_Size --
7437
      -----------------
7438
 
7439
      when Attribute_Stream_Size =>
7440
         null;
7441
 
7442
      ----------
7443
      -- Succ --
7444
      ----------
7445
 
7446
      when Attribute_Succ => Succ :
7447
      begin
7448
         --  Floating-point case
7449
 
7450
         if Is_Floating_Point_Type (P_Type) then
7451
            Fold_Ureal (N,
7452
              Eval_Fat.Succ (P_Root_Type, Expr_Value_R (E1)), Static);
7453
 
7454
         --  Fixed-point case
7455
 
7456
         elsif Is_Fixed_Point_Type (P_Type) then
7457
            Fold_Ureal (N,
7458
              Expr_Value_R (E1) + Small_Value (P_Type), Static);
7459
 
7460
         --  Modular integer case (wraps)
7461
 
7462
         elsif Is_Modular_Integer_Type (P_Type) then
7463
            Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type), Static);
7464
 
7465
         --  Other scalar cases
7466
 
7467
         else
7468
            pragma Assert (Is_Scalar_Type (P_Type));
7469
 
7470
            if Is_Enumeration_Type (P_Type)
7471
              and then Expr_Value (E1) =
7472
                         Expr_Value (Type_High_Bound (P_Base_Type))
7473
            then
7474
               Apply_Compile_Time_Constraint_Error
7475
                 (N, "Succ of `&''Last`",
7476
                  CE_Overflow_Check_Failed,
7477
                  Ent  => P_Base_Type,
7478
                  Warn => not Static);
7479
 
7480
               Check_Expressions;
7481
               return;
7482
            else
7483
               Fold_Uint (N, Expr_Value (E1) + 1, Static);
7484
            end if;
7485
         end if;
7486
      end Succ;
7487
 
7488
      ----------------
7489
      -- Truncation --
7490
      ----------------
7491
 
7492
      when Attribute_Truncation =>
7493
         Fold_Ureal (N,
7494
           Eval_Fat.Truncation (P_Root_Type, Expr_Value_R (E1)), Static);
7495
 
7496
      ----------------
7497
      -- Type_Class --
7498
      ----------------
7499
 
7500
      when Attribute_Type_Class => Type_Class : declare
7501
         Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
7502
         Id  : RE_Id;
7503
 
7504
      begin
7505
         if Is_Descendent_Of_Address (Typ) then
7506
            Id := RE_Type_Class_Address;
7507
 
7508
         elsif Is_Enumeration_Type (Typ) then
7509
            Id := RE_Type_Class_Enumeration;
7510
 
7511
         elsif Is_Integer_Type (Typ) then
7512
            Id := RE_Type_Class_Integer;
7513
 
7514
         elsif Is_Fixed_Point_Type (Typ) then
7515
            Id := RE_Type_Class_Fixed_Point;
7516
 
7517
         elsif Is_Floating_Point_Type (Typ) then
7518
            Id := RE_Type_Class_Floating_Point;
7519
 
7520
         elsif Is_Array_Type (Typ) then
7521
            Id := RE_Type_Class_Array;
7522
 
7523
         elsif Is_Record_Type (Typ) then
7524
            Id := RE_Type_Class_Record;
7525
 
7526
         elsif Is_Access_Type (Typ) then
7527
            Id := RE_Type_Class_Access;
7528
 
7529
         elsif Is_Enumeration_Type (Typ) then
7530
            Id := RE_Type_Class_Enumeration;
7531
 
7532
         elsif Is_Task_Type (Typ) then
7533
            Id := RE_Type_Class_Task;
7534
 
7535
         --  We treat protected types like task types. It would make more
7536
         --  sense to have another enumeration value, but after all the
7537
         --  whole point of this feature is to be exactly DEC compatible,
7538
         --  and changing the type Type_Class would not meet this requirement.
7539
 
7540
         elsif Is_Protected_Type (Typ) then
7541
            Id := RE_Type_Class_Task;
7542
 
7543
         --  Not clear if there are any other possibilities, but if there
7544
         --  are, then we will treat them as the address case.
7545
 
7546
         else
7547
            Id := RE_Type_Class_Address;
7548
         end if;
7549
 
7550
         Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
7551
      end Type_Class;
7552
 
7553
      -----------------------
7554
      -- Unbiased_Rounding --
7555
      -----------------------
7556
 
7557
      when Attribute_Unbiased_Rounding =>
7558
         Fold_Ureal (N,
7559
           Eval_Fat.Unbiased_Rounding (P_Root_Type, Expr_Value_R (E1)),
7560
           Static);
7561
 
7562
      -------------------------
7563
      -- Unconstrained_Array --
7564
      -------------------------
7565
 
7566
      when Attribute_Unconstrained_Array => Unconstrained_Array : declare
7567
         Typ : constant Entity_Id := Underlying_Type (P_Type);
7568
 
7569
      begin
7570
         Rewrite (N, New_Occurrence_Of (
7571
           Boolean_Literals (
7572
             Is_Array_Type (P_Type)
7573
              and then not Is_Constrained (Typ)), Loc));
7574
 
7575
         --  Analyze and resolve as boolean, note that this attribute is
7576
         --  a static attribute in GNAT.
7577
 
7578
         Analyze_And_Resolve (N, Standard_Boolean);
7579
         Static := True;
7580
      end Unconstrained_Array;
7581
 
7582
      ---------------
7583
      -- VADS_Size --
7584
      ---------------
7585
 
7586
      --  Processing is shared with Size
7587
 
7588
      ---------
7589
      -- Val --
7590
      ---------
7591
 
7592
      when Attribute_Val => Val :
7593
      begin
7594
         if  Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
7595
           or else
7596
             Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
7597
         then
7598
            Apply_Compile_Time_Constraint_Error
7599
              (N, "Val expression out of range",
7600
               CE_Range_Check_Failed,
7601
               Warn => not Static);
7602
 
7603
            Check_Expressions;
7604
            return;
7605
 
7606
         else
7607
            Fold_Uint (N, Expr_Value (E1), Static);
7608
         end if;
7609
      end Val;
7610
 
7611
      ----------------
7612
      -- Value_Size --
7613
      ----------------
7614
 
7615
      --  The Value_Size attribute for a type returns the RM size of the
7616
      --  type. This an always be folded for scalar types, and can also
7617
      --  be folded for non-scalar types if the size is set.
7618
 
7619
      when Attribute_Value_Size => Value_Size : declare
7620
         P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
7621
      begin
7622
         if RM_Size (P_TypeA) /= Uint_0 then
7623
            Fold_Uint (N, RM_Size (P_TypeA), True);
7624
         end if;
7625
      end Value_Size;
7626
 
7627
      -------------
7628
      -- Version --
7629
      -------------
7630
 
7631
      --  Version can never be static
7632
 
7633
      when Attribute_Version =>
7634
         null;
7635
 
7636
      ----------------
7637
      -- Wide_Image --
7638
      ----------------
7639
 
7640
      --  Wide_Image is a scalar attribute, but is never static, because it
7641
      --  is not a static function (having a non-scalar argument (RM 4.9(22))
7642
 
7643
      when Attribute_Wide_Image =>
7644
         null;
7645
 
7646
      ---------------------
7647
      -- Wide_Wide_Image --
7648
      ---------------------
7649
 
7650
      --  Wide_Wide_Image is a scalar attribute but is never static, because it
7651
      --  is not a static function (having a non-scalar argument (RM 4.9(22)).
7652
 
7653
      when Attribute_Wide_Wide_Image =>
7654
         null;
7655
 
7656
      ---------------------
7657
      -- Wide_Wide_Width --
7658
      ---------------------
7659
 
7660
      --  Processing for Wide_Wide_Width is combined with Width
7661
 
7662
      ----------------
7663
      -- Wide_Width --
7664
      ----------------
7665
 
7666
      --  Processing for Wide_Width is combined with Width
7667
 
7668
      -----------
7669
      -- Width --
7670
      -----------
7671
 
7672
      --  This processing also handles the case of Wide_[Wide_]Width
7673
 
7674
      when Attribute_Width |
7675
           Attribute_Wide_Width |
7676
           Attribute_Wide_Wide_Width => Width :
7677
      begin
7678
         if Compile_Time_Known_Bounds (P_Type) then
7679
 
7680
            --  Floating-point types
7681
 
7682
            if Is_Floating_Point_Type (P_Type) then
7683
 
7684
               --  Width is zero for a null range (RM 3.5 (38))
7685
 
7686
               if Expr_Value_R (Type_High_Bound (P_Type)) <
7687
                  Expr_Value_R (Type_Low_Bound (P_Type))
7688
               then
7689
                  Fold_Uint (N, Uint_0, True);
7690
 
7691
               else
7692
                  --  For floating-point, we have +N.dddE+nnn where length
7693
                  --  of ddd is determined by type'Digits - 1, but is one
7694
                  --  if Digits is one (RM 3.5 (33)).
7695
 
7696
                  --  nnn is set to 2 for Short_Float and Float (32 bit
7697
                  --  floats), and 3 for Long_Float and Long_Long_Float.
7698
                  --  For machines where Long_Long_Float is the IEEE
7699
                  --  extended precision type, the exponent takes 4 digits.
7700
 
7701
                  declare
7702
                     Len : Int :=
7703
                             Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
7704
 
7705
                  begin
7706
                     if Esize (P_Type) <= 32 then
7707
                        Len := Len + 6;
7708
                     elsif Esize (P_Type) = 64 then
7709
                        Len := Len + 7;
7710
                     else
7711
                        Len := Len + 8;
7712
                     end if;
7713
 
7714
                     Fold_Uint (N, UI_From_Int (Len), True);
7715
                  end;
7716
               end if;
7717
 
7718
            --  Fixed-point types
7719
 
7720
            elsif Is_Fixed_Point_Type (P_Type) then
7721
 
7722
               --  Width is zero for a null range (RM 3.5 (38))
7723
 
7724
               if Expr_Value (Type_High_Bound (P_Type)) <
7725
                  Expr_Value (Type_Low_Bound  (P_Type))
7726
               then
7727
                  Fold_Uint (N, Uint_0, True);
7728
 
7729
               --  The non-null case depends on the specific real type
7730
 
7731
               else
7732
                  --  For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
7733
 
7734
                  Fold_Uint
7735
                    (N, UI_From_Int (Fore_Value + 1) + Aft_Value (P_Type),
7736
                     True);
7737
               end if;
7738
 
7739
            --  Discrete types
7740
 
7741
            else
7742
               declare
7743
                  R  : constant Entity_Id := Root_Type (P_Type);
7744
                  Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
7745
                  Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
7746
                  W  : Nat;
7747
                  Wt : Nat;
7748
                  T  : Uint;
7749
                  L  : Node_Id;
7750
                  C  : Character;
7751
 
7752
               begin
7753
                  --  Empty ranges
7754
 
7755
                  if Lo > Hi then
7756
                     W := 0;
7757
 
7758
                  --  Width for types derived from Standard.Character
7759
                  --  and Standard.Wide_[Wide_]Character.
7760
 
7761
                  elsif Is_Standard_Character_Type (P_Type) then
7762
                     W := 0;
7763
 
7764
                     --  Set W larger if needed
7765
 
7766
                     for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
7767
 
7768
                        --  All wide characters look like Hex_hhhhhhhh
7769
 
7770
                        if J > 255 then
7771
 
7772
                           --  No need to compute this more than once!
7773
 
7774
                           exit;
7775
 
7776
                        else
7777
                           C := Character'Val (J);
7778
 
7779
                           --  Test for all cases where Character'Image
7780
                           --  yields an image that is longer than three
7781
                           --  characters. First the cases of Reserved_xxx
7782
                           --  names (length = 12).
7783
 
7784
                           case C is
7785
                              when Reserved_128 | Reserved_129 |
7786
                                   Reserved_132 | Reserved_153
7787
                                => Wt := 12;
7788
 
7789
                              when BS | HT | LF | VT | FF | CR |
7790
                                   SO | SI | EM | FS | GS | RS |
7791
                                   US | RI | MW | ST | PM
7792
                                => Wt := 2;
7793
 
7794
                              when NUL | SOH | STX | ETX | EOT |
7795
                                   ENQ | ACK | BEL | DLE | DC1 |
7796
                                   DC2 | DC3 | DC4 | NAK | SYN |
7797
                                   ETB | CAN | SUB | ESC | DEL |
7798
                                   BPH | NBH | NEL | SSA | ESA |
7799
                                   HTS | HTJ | VTS | PLD | PLU |
7800
                                   SS2 | SS3 | DCS | PU1 | PU2 |
7801
                                   STS | CCH | SPA | EPA | SOS |
7802
                                   SCI | CSI | OSC | APC
7803
                                => Wt := 3;
7804
 
7805
                              when Space .. Tilde |
7806
                                   No_Break_Space .. LC_Y_Diaeresis
7807
                                =>
7808
                                 --  Special case of soft hyphen in Ada 2005
7809
 
7810
                                 if C = Character'Val (16#AD#)
7811
                                   and then Ada_Version >= Ada_2005
7812
                                 then
7813
                                    Wt := 11;
7814
                                 else
7815
                                    Wt := 3;
7816
                                 end if;
7817
                           end case;
7818
 
7819
                           W := Int'Max (W, Wt);
7820
                        end if;
7821
                     end loop;
7822
 
7823
                  --  Width for types derived from Standard.Boolean
7824
 
7825
                  elsif R = Standard_Boolean then
7826
                     if Lo = 0 then
7827
                        W := 5; -- FALSE
7828
                     else
7829
                        W := 4; -- TRUE
7830
                     end if;
7831
 
7832
                  --  Width for integer types
7833
 
7834
                  elsif Is_Integer_Type (P_Type) then
7835
                     T := UI_Max (abs Lo, abs Hi);
7836
 
7837
                     W := 2;
7838
                     while T >= 10 loop
7839
                        W := W + 1;
7840
                        T := T / 10;
7841
                     end loop;
7842
 
7843
                  --  User declared enum type with discard names
7844
 
7845
                  elsif Discard_Names (R) then
7846
 
7847
                     --  If range is null, result is zero, that has already
7848
                     --  been dealt with, so what we need is the power of ten
7849
                     --  that accomodates the Pos of the largest value, which
7850
                     --  is the high bound of the range + one for the space.
7851
 
7852
                     W := 1;
7853
                     T := Hi;
7854
                     while T /= 0 loop
7855
                        T := T / 10;
7856
                        W := W + 1;
7857
                     end loop;
7858
 
7859
                  --  Only remaining possibility is user declared enum type
7860
                  --  with normal case of Discard_Names not active.
7861
 
7862
                  else
7863
                     pragma Assert (Is_Enumeration_Type (P_Type));
7864
 
7865
                     W := 0;
7866
                     L := First_Literal (P_Type);
7867
                     while Present (L) loop
7868
 
7869
                        --  Only pay attention to in range characters
7870
 
7871
                        if Lo <= Enumeration_Pos (L)
7872
                          and then Enumeration_Pos (L) <= Hi
7873
                        then
7874
                           --  For Width case, use decoded name
7875
 
7876
                           if Id = Attribute_Width then
7877
                              Get_Decoded_Name_String (Chars (L));
7878
                              Wt := Nat (Name_Len);
7879
 
7880
                           --  For Wide_[Wide_]Width, use encoded name, and
7881
                           --  then adjust for the encoding.
7882
 
7883
                           else
7884
                              Get_Name_String (Chars (L));
7885
 
7886
                              --  Character literals are always of length 3
7887
 
7888
                              if Name_Buffer (1) = 'Q' then
7889
                                 Wt := 3;
7890
 
7891
                              --  Otherwise loop to adjust for upper/wide chars
7892
 
7893
                              else
7894
                                 Wt := Nat (Name_Len);
7895
 
7896
                                 for J in 1 .. Name_Len loop
7897
                                    if Name_Buffer (J) = 'U' then
7898
                                       Wt := Wt - 2;
7899
                                    elsif Name_Buffer (J) = 'W' then
7900
                                       Wt := Wt - 4;
7901
                                    end if;
7902
                                 end loop;
7903
                              end if;
7904
                           end if;
7905
 
7906
                           W := Int'Max (W, Wt);
7907
                        end if;
7908
 
7909
                        Next_Literal (L);
7910
                     end loop;
7911
                  end if;
7912
 
7913
                  Fold_Uint (N, UI_From_Int (W), True);
7914
               end;
7915
            end if;
7916
         end if;
7917
      end Width;
7918
 
7919
      --  The following attributes denote functions that cannot be folded
7920
 
7921
      when Attribute_From_Any |
7922
           Attribute_To_Any   |
7923
           Attribute_TypeCode =>
7924
         null;
7925
 
7926
      --  The following attributes can never be folded, and furthermore we
7927
      --  should not even have entered the case statement for any of these.
7928
      --  Note that in some cases, the values have already been folded as
7929
      --  a result of the processing in Analyze_Attribute.
7930
 
7931
      when Attribute_Abort_Signal               |
7932
           Attribute_Access                     |
7933
           Attribute_Address                    |
7934
           Attribute_Address_Size               |
7935
           Attribute_Asm_Input                  |
7936
           Attribute_Asm_Output                 |
7937
           Attribute_Base                       |
7938
           Attribute_Bit_Order                  |
7939
           Attribute_Bit_Position               |
7940
           Attribute_Callable                   |
7941
           Attribute_Caller                     |
7942
           Attribute_Class                      |
7943
           Attribute_Code_Address               |
7944
           Attribute_Compiler_Version           |
7945
           Attribute_Count                      |
7946
           Attribute_Default_Bit_Order          |
7947
           Attribute_Elaborated                 |
7948
           Attribute_Elab_Body                  |
7949
           Attribute_Elab_Spec                  |
7950
           Attribute_Elab_Subp_Body             |
7951
           Attribute_Enabled                    |
7952
           Attribute_External_Tag               |
7953
           Attribute_Fast_Math                  |
7954
           Attribute_First_Bit                  |
7955
           Attribute_Input                      |
7956
           Attribute_Last_Bit                   |
7957
           Attribute_Maximum_Alignment          |
7958
           Attribute_Old                        |
7959
           Attribute_Output                     |
7960
           Attribute_Partition_ID               |
7961
           Attribute_Pool_Address               |
7962
           Attribute_Position                   |
7963
           Attribute_Priority                   |
7964
           Attribute_Read                       |
7965
           Attribute_Result                     |
7966
           Attribute_Simple_Storage_Pool        |
7967
           Attribute_Storage_Pool               |
7968
           Attribute_Storage_Size               |
7969
           Attribute_Storage_Unit               |
7970
           Attribute_Stub_Type                  |
7971
           Attribute_System_Allocator_Alignment |
7972
           Attribute_Tag                        |
7973
           Attribute_Target_Name                |
7974
           Attribute_Terminated                 |
7975
           Attribute_To_Address                 |
7976
           Attribute_Type_Key                   |
7977
           Attribute_UET_Address                |
7978
           Attribute_Unchecked_Access           |
7979
           Attribute_Universal_Literal_String   |
7980
           Attribute_Unrestricted_Access        |
7981
           Attribute_Valid                      |
7982
           Attribute_Value                      |
7983
           Attribute_Wchar_T_Size               |
7984
           Attribute_Wide_Value                 |
7985
           Attribute_Wide_Wide_Value            |
7986
           Attribute_Word_Size                  |
7987
           Attribute_Write                      =>
7988
 
7989
         raise Program_Error;
7990
      end case;
7991
 
7992
      --  At the end of the case, one more check. If we did a static evaluation
7993
      --  so that the result is now a literal, then set Is_Static_Expression
7994
      --  in the constant only if the prefix type is a static subtype. For
7995
      --  non-static subtypes, the folding is still OK, but not static.
7996
 
7997
      --  An exception is the GNAT attribute Constrained_Array which is
7998
      --  defined to be a static attribute in all cases.
7999
 
8000
      if Nkind_In (N, N_Integer_Literal,
8001
                      N_Real_Literal,
8002
                      N_Character_Literal,
8003
                      N_String_Literal)
8004
        or else (Is_Entity_Name (N)
8005
                  and then Ekind (Entity (N)) = E_Enumeration_Literal)
8006
      then
8007
         Set_Is_Static_Expression (N, Static);
8008
 
8009
      --  If this is still an attribute reference, then it has not been folded
8010
      --  and that means that its expressions are in a non-static context.
8011
 
8012
      elsif Nkind (N) = N_Attribute_Reference then
8013
         Check_Expressions;
8014
 
8015
      --  Note: the else case not covered here are odd cases where the
8016
      --  processing has transformed the attribute into something other
8017
      --  than a constant. Nothing more to do in such cases.
8018
 
8019
      else
8020
         null;
8021
      end if;
8022
   end Eval_Attribute;
8023
 
8024
   ------------------------------
8025
   -- Is_Anonymous_Tagged_Base --
8026
   ------------------------------
8027
 
8028
   function Is_Anonymous_Tagged_Base
8029
     (Anon : Entity_Id;
8030
      Typ  : Entity_Id)
8031
      return Boolean
8032
   is
8033
   begin
8034
      return
8035
        Anon = Current_Scope
8036
          and then Is_Itype (Anon)
8037
          and then Associated_Node_For_Itype (Anon) = Parent (Typ);
8038
   end Is_Anonymous_Tagged_Base;
8039
 
8040
   --------------------------------
8041
   -- Name_Implies_Lvalue_Prefix --
8042
   --------------------------------
8043
 
8044
   function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean is
8045
      pragma Assert (Is_Attribute_Name (Nam));
8046
   begin
8047
      return Attribute_Name_Implies_Lvalue_Prefix (Get_Attribute_Id (Nam));
8048
   end Name_Implies_Lvalue_Prefix;
8049
 
8050
   -----------------------
8051
   -- Resolve_Attribute --
8052
   -----------------------
8053
 
8054
   procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
8055
      Loc      : constant Source_Ptr   := Sloc (N);
8056
      P        : constant Node_Id      := Prefix (N);
8057
      Aname    : constant Name_Id      := Attribute_Name (N);
8058
      Attr_Id  : constant Attribute_Id := Get_Attribute_Id (Aname);
8059
      Btyp     : constant Entity_Id    := Base_Type (Typ);
8060
      Des_Btyp : Entity_Id;
8061
      Index    : Interp_Index;
8062
      It       : Interp;
8063
      Nom_Subt : Entity_Id;
8064
 
8065
      procedure Accessibility_Message;
8066
      --  Error, or warning within an instance, if the static accessibility
8067
      --  rules of 3.10.2 are violated.
8068
 
8069
      ---------------------------
8070
      -- Accessibility_Message --
8071
      ---------------------------
8072
 
8073
      procedure Accessibility_Message is
8074
         Indic : Node_Id := Parent (Parent (N));
8075
 
8076
      begin
8077
         --  In an instance, this is a runtime check, but one we
8078
         --  know will fail, so generate an appropriate warning.
8079
 
8080
         if In_Instance_Body then
8081
            Error_Msg_F ("?non-local pointer cannot point to local object", P);
8082
            Error_Msg_F
8083
              ("\?Program_Error will be raised at run time", P);
8084
            Rewrite (N,
8085
              Make_Raise_Program_Error (Loc,
8086
                Reason => PE_Accessibility_Check_Failed));
8087
            Set_Etype (N, Typ);
8088
            return;
8089
 
8090
         else
8091
            Error_Msg_F ("non-local pointer cannot point to local object", P);
8092
 
8093
            --  Check for case where we have a missing access definition
8094
 
8095
            if Is_Record_Type (Current_Scope)
8096
              and then
8097
                Nkind_In (Parent (N), N_Discriminant_Association,
8098
                                      N_Index_Or_Discriminant_Constraint)
8099
            then
8100
               Indic := Parent (Parent (N));
8101
               while Present (Indic)
8102
                 and then Nkind (Indic) /= N_Subtype_Indication
8103
               loop
8104
                  Indic := Parent (Indic);
8105
               end loop;
8106
 
8107
               if Present (Indic) then
8108
                  Error_Msg_NE
8109
                    ("\use an access definition for" &
8110
                     " the access discriminant of&",
8111
                     N, Entity (Subtype_Mark (Indic)));
8112
               end if;
8113
            end if;
8114
         end if;
8115
      end Accessibility_Message;
8116
 
8117
   --  Start of processing for Resolve_Attribute
8118
 
8119
   begin
8120
      --  If error during analysis, no point in continuing, except for array
8121
      --  types, where we get better recovery by using unconstrained indexes
8122
      --  than nothing at all (see Check_Array_Type).
8123
 
8124
      if Error_Posted (N)
8125
        and then Attr_Id /= Attribute_First
8126
        and then Attr_Id /= Attribute_Last
8127
        and then Attr_Id /= Attribute_Length
8128
        and then Attr_Id /= Attribute_Range
8129
      then
8130
         return;
8131
      end if;
8132
 
8133
      --  If attribute was universal type, reset to actual type
8134
 
8135
      if Etype (N) = Universal_Integer
8136
        or else Etype (N) = Universal_Real
8137
      then
8138
         Set_Etype (N, Typ);
8139
      end if;
8140
 
8141
      --  Remaining processing depends on attribute
8142
 
8143
      case Attr_Id is
8144
 
8145
         ------------
8146
         -- Access --
8147
         ------------
8148
 
8149
         --  For access attributes, if the prefix denotes an entity, it is
8150
         --  interpreted as a name, never as a call. It may be overloaded,
8151
         --  in which case resolution uses the profile of the context type.
8152
         --  Otherwise prefix must be resolved.
8153
 
8154
         when Attribute_Access
8155
            | Attribute_Unchecked_Access
8156
            | Attribute_Unrestricted_Access =>
8157
 
8158
         Access_Attribute :
8159
         begin
8160
            if Is_Variable (P) then
8161
               Note_Possible_Modification (P, Sure => False);
8162
            end if;
8163
 
8164
            --  The following comes from a query by Adam Beneschan, concerning
8165
            --  improper use of universal_access in equality tests involving
8166
            --  anonymous access types. Another good reason for 'Ref, but
8167
            --  for now disable the test, which breaks several filed tests.
8168
 
8169
            if Ekind (Typ) = E_Anonymous_Access_Type
8170
              and then Nkind_In (Parent (N), N_Op_Eq, N_Op_Ne)
8171
              and then False
8172
            then
8173
               Error_Msg_N ("need unique type to resolve 'Access", N);
8174
               Error_Msg_N ("\qualify attribute with some access type", N);
8175
            end if;
8176
 
8177
            if Is_Entity_Name (P) then
8178
               if Is_Overloaded (P) then
8179
                  Get_First_Interp (P, Index, It);
8180
                  while Present (It.Nam) loop
8181
                     if Type_Conformant (Designated_Type (Typ), It.Nam) then
8182
                        Set_Entity (P, It.Nam);
8183
 
8184
                        --  The prefix is definitely NOT overloaded anymore at
8185
                        --  this point, so we reset the Is_Overloaded flag to
8186
                        --  avoid any confusion when reanalyzing the node.
8187
 
8188
                        Set_Is_Overloaded (P, False);
8189
                        Set_Is_Overloaded (N, False);
8190
                        Generate_Reference (Entity (P), P);
8191
                        exit;
8192
                     end if;
8193
 
8194
                     Get_Next_Interp (Index, It);
8195
                  end loop;
8196
 
8197
               --  If Prefix is a subprogram name, it is frozen by this
8198
               --  reference:
8199
 
8200
               --    If it is a type, there is nothing to resolve.
8201
               --    If it is an object, complete its resolution.
8202
 
8203
               elsif Is_Overloadable (Entity (P)) then
8204
 
8205
                  --  Avoid insertion of freeze actions in spec expression mode
8206
 
8207
                  if not In_Spec_Expression then
8208
                     Freeze_Before (N, Entity (P));
8209
                  end if;
8210
 
8211
               elsif Is_Type (Entity (P)) then
8212
                  null;
8213
               else
8214
                  Resolve (P);
8215
               end if;
8216
 
8217
               Error_Msg_Name_1 := Aname;
8218
 
8219
               if not Is_Entity_Name (P) then
8220
                  null;
8221
 
8222
               elsif Is_Overloadable (Entity (P))
8223
                 and then Is_Abstract_Subprogram (Entity (P))
8224
               then
8225
                  Error_Msg_F ("prefix of % attribute cannot be abstract", P);
8226
                  Set_Etype (N, Any_Type);
8227
 
8228
               elsif Convention (Entity (P)) = Convention_Intrinsic then
8229
                  if Ekind (Entity (P)) = E_Enumeration_Literal then
8230
                     Error_Msg_F
8231
                       ("prefix of % attribute cannot be enumeration literal",
8232
                        P);
8233
                  else
8234
                     Error_Msg_F
8235
                       ("prefix of % attribute cannot be intrinsic", P);
8236
                  end if;
8237
 
8238
                  Set_Etype (N, Any_Type);
8239
               end if;
8240
 
8241
               --  Assignments, return statements, components of aggregates,
8242
               --  generic instantiations will require convention checks if
8243
               --  the type is an access to subprogram. Given that there will
8244
               --  also be accessibility checks on those, this is where the
8245
               --  checks can eventually be centralized ???
8246
 
8247
               if Ekind_In (Btyp, E_Access_Subprogram_Type,
8248
                                  E_Anonymous_Access_Subprogram_Type,
8249
                                  E_Access_Protected_Subprogram_Type,
8250
                                  E_Anonymous_Access_Protected_Subprogram_Type)
8251
               then
8252
                  --  Deal with convention mismatch
8253
 
8254
                  if Convention (Designated_Type (Btyp)) /=
8255
                     Convention (Entity (P))
8256
                  then
8257
                     Error_Msg_FE
8258
                       ("subprogram & has wrong convention", P, Entity (P));
8259
                     Error_Msg_FE
8260
                       ("\does not match convention of access type &",
8261
                        P, Btyp);
8262
 
8263
                     if not Has_Convention_Pragma (Btyp) then
8264
                        Error_Msg_FE
8265
                          ("\probable missing pragma Convention for &",
8266
                           P, Btyp);
8267
                     end if;
8268
 
8269
                  else
8270
                     Check_Subtype_Conformant
8271
                       (New_Id  => Entity (P),
8272
                        Old_Id  => Designated_Type (Btyp),
8273
                        Err_Loc => P);
8274
                  end if;
8275
 
8276
                  if Attr_Id = Attribute_Unchecked_Access then
8277
                     Error_Msg_Name_1 := Aname;
8278
                     Error_Msg_F
8279
                       ("attribute% cannot be applied to a subprogram", P);
8280
 
8281
                  elsif Aname = Name_Unrestricted_Access then
8282
                     null;  --  Nothing to check
8283
 
8284
                  --  Check the static accessibility rule of 3.10.2(32).
8285
                  --  This rule also applies within the private part of an
8286
                  --  instantiation. This rule does not apply to anonymous
8287
                  --  access-to-subprogram types in access parameters.
8288
 
8289
                  elsif Attr_Id = Attribute_Access
8290
                    and then not In_Instance_Body
8291
                    and then
8292
                      (Ekind (Btyp) = E_Access_Subprogram_Type
8293
                        or else Is_Local_Anonymous_Access (Btyp))
8294
 
8295
                    and then Subprogram_Access_Level (Entity (P)) >
8296
                               Type_Access_Level (Btyp)
8297
                  then
8298
                     Error_Msg_F
8299
                       ("subprogram must not be deeper than access type", P);
8300
 
8301
                  --  Check the restriction of 3.10.2(32) that disallows the
8302
                  --  access attribute within a generic body when the ultimate
8303
                  --  ancestor of the type of the attribute is declared outside
8304
                  --  of the generic unit and the subprogram is declared within
8305
                  --  that generic unit. This includes any such attribute that
8306
                  --  occurs within the body of a generic unit that is a child
8307
                  --  of the generic unit where the subprogram is declared.
8308
 
8309
                  --  The rule also prohibits applying the attribute when the
8310
                  --  access type is a generic formal access type (since the
8311
                  --  level of the actual type is not known). This restriction
8312
                  --  does not apply when the attribute type is an anonymous
8313
                  --  access-to-subprogram type. Note that this check was
8314
                  --  revised by AI-229, because the originally Ada 95 rule
8315
                  --  was too lax. The original rule only applied when the
8316
                  --  subprogram was declared within the body of the generic,
8317
                  --  which allowed the possibility of dangling references).
8318
                  --  The rule was also too strict in some case, in that it
8319
                  --  didn't permit the access to be declared in the generic
8320
                  --  spec, whereas the revised rule does (as long as it's not
8321
                  --  a formal type).
8322
 
8323
                  --  There are a couple of subtleties of the test for applying
8324
                  --  the check that are worth noting. First, we only apply it
8325
                  --  when the levels of the subprogram and access type are the
8326
                  --  same (the case where the subprogram is statically deeper
8327
                  --  was applied above, and the case where the type is deeper
8328
                  --  is always safe). Second, we want the check to apply
8329
                  --  within nested generic bodies and generic child unit
8330
                  --  bodies, but not to apply to an attribute that appears in
8331
                  --  the generic unit's specification. This is done by testing
8332
                  --  that the attribute's innermost enclosing generic body is
8333
                  --  not the same as the innermost generic body enclosing the
8334
                  --  generic unit where the subprogram is declared (we don't
8335
                  --  want the check to apply when the access attribute is in
8336
                  --  the spec and there's some other generic body enclosing
8337
                  --  generic). Finally, there's no point applying the check
8338
                  --  when within an instance, because any violations will have
8339
                  --  been caught by the compilation of the generic unit.
8340
 
8341
                  --  Note that we relax this check in CodePeer mode for
8342
                  --  compatibility with legacy code, since CodePeer is an
8343
                  --  Ada source code analyzer, not a strict compiler.
8344
                  --  ??? Note that a better approach would be to have a
8345
                  --  separate switch to relax this rule, and enable this
8346
                  --  switch in CodePeer mode.
8347
 
8348
                  elsif Attr_Id = Attribute_Access
8349
                    and then not CodePeer_Mode
8350
                    and then not In_Instance
8351
                    and then Present (Enclosing_Generic_Unit (Entity (P)))
8352
                    and then Present (Enclosing_Generic_Body (N))
8353
                    and then Enclosing_Generic_Body (N) /=
8354
                               Enclosing_Generic_Body
8355
                                 (Enclosing_Generic_Unit (Entity (P)))
8356
                    and then Subprogram_Access_Level (Entity (P)) =
8357
                               Type_Access_Level (Btyp)
8358
                    and then Ekind (Btyp) /=
8359
                               E_Anonymous_Access_Subprogram_Type
8360
                    and then Ekind (Btyp) /=
8361
                               E_Anonymous_Access_Protected_Subprogram_Type
8362
                  then
8363
                     --  The attribute type's ultimate ancestor must be
8364
                     --  declared within the same generic unit as the
8365
                     --  subprogram is declared. The error message is
8366
                     --  specialized to say "ancestor" for the case where the
8367
                     --  access type is not its own ancestor, since saying
8368
                     --  simply "access type" would be very confusing.
8369
 
8370
                     if Enclosing_Generic_Unit (Entity (P)) /=
8371
                          Enclosing_Generic_Unit (Root_Type (Btyp))
8372
                     then
8373
                        Error_Msg_N
8374
                          ("''Access attribute not allowed in generic body",
8375
                           N);
8376
 
8377
                        if Root_Type (Btyp) = Btyp then
8378
                           Error_Msg_NE
8379
                             ("\because " &
8380
                              "access type & is declared outside " &
8381
                              "generic unit (RM 3.10.2(32))", N, Btyp);
8382
                        else
8383
                           Error_Msg_NE
8384
                             ("\because ancestor of " &
8385
                              "access type & is declared outside " &
8386
                              "generic unit (RM 3.10.2(32))", N, Btyp);
8387
                        end if;
8388
 
8389
                        Error_Msg_NE
8390
                          ("\move ''Access to private part, or " &
8391
                           "(Ada 2005) use anonymous access type instead of &",
8392
                           N, Btyp);
8393
 
8394
                     --  If the ultimate ancestor of the attribute's type is
8395
                     --  a formal type, then the attribute is illegal because
8396
                     --  the actual type might be declared at a higher level.
8397
                     --  The error message is specialized to say "ancestor"
8398
                     --  for the case where the access type is not its own
8399
                     --  ancestor, since saying simply "access type" would be
8400
                     --  very confusing.
8401
 
8402
                     elsif Is_Generic_Type (Root_Type (Btyp)) then
8403
                        if Root_Type (Btyp) = Btyp then
8404
                           Error_Msg_N
8405
                             ("access type must not be a generic formal type",
8406
                              N);
8407
                        else
8408
                           Error_Msg_N
8409
                             ("ancestor access type must not be a generic " &
8410
                              "formal type", N);
8411
                        end if;
8412
                     end if;
8413
                  end if;
8414
               end if;
8415
 
8416
               --  If this is a renaming, an inherited operation, or a
8417
               --  subprogram instance, use the original entity. This may make
8418
               --  the node type-inconsistent, so this transformation can only
8419
               --  be done if the node will not be reanalyzed. In particular,
8420
               --  if it is within a default expression, the transformation
8421
               --  must be delayed until the default subprogram is created for
8422
               --  it, when the enclosing subprogram is frozen.
8423
 
8424
               if Is_Entity_Name (P)
8425
                 and then Is_Overloadable (Entity (P))
8426
                 and then Present (Alias (Entity (P)))
8427
                 and then Expander_Active
8428
               then
8429
                  Rewrite (P,
8430
                    New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
8431
               end if;
8432
 
8433
            elsif Nkind (P) = N_Selected_Component
8434
              and then Is_Overloadable (Entity (Selector_Name (P)))
8435
            then
8436
               --  Protected operation. If operation is overloaded, must
8437
               --  disambiguate. Prefix that denotes protected object itself
8438
               --  is resolved with its own type.
8439
 
8440
               if Attr_Id = Attribute_Unchecked_Access then
8441
                  Error_Msg_Name_1 := Aname;
8442
                  Error_Msg_F
8443
                    ("attribute% cannot be applied to protected operation", P);
8444
               end if;
8445
 
8446
               Resolve (Prefix (P));
8447
               Generate_Reference (Entity (Selector_Name (P)), P);
8448
 
8449
            elsif Is_Overloaded (P) then
8450
 
8451
               --  Use the designated type of the context to disambiguate
8452
               --  Note that this was not strictly conformant to Ada 95,
8453
               --  but was the implementation adopted by most Ada 95 compilers.
8454
               --  The use of the context type to resolve an Access attribute
8455
               --  reference is now mandated in AI-235 for Ada 2005.
8456
 
8457
               declare
8458
                  Index : Interp_Index;
8459
                  It    : Interp;
8460
 
8461
               begin
8462
                  Get_First_Interp (P, Index, It);
8463
                  while Present (It.Typ) loop
8464
                     if Covers (Designated_Type (Typ), It.Typ) then
8465
                        Resolve (P, It.Typ);
8466
                        exit;
8467
                     end if;
8468
 
8469
                     Get_Next_Interp (Index, It);
8470
                  end loop;
8471
               end;
8472
            else
8473
               Resolve (P);
8474
            end if;
8475
 
8476
            --  X'Access is illegal if X denotes a constant and the access type
8477
            --  is access-to-variable. Same for 'Unchecked_Access. The rule
8478
            --  does not apply to 'Unrestricted_Access. If the reference is a
8479
            --  default-initialized aggregate component for a self-referential
8480
            --  type the reference is legal.
8481
 
8482
            if not (Ekind (Btyp) = E_Access_Subprogram_Type
8483
                     or else Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
8484
                     or else (Is_Record_Type (Btyp)
8485
                               and then
8486
                                 Present (Corresponding_Remote_Type (Btyp)))
8487
                     or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
8488
                     or else Ekind (Btyp)
8489
                               = E_Anonymous_Access_Protected_Subprogram_Type
8490
                     or else Is_Access_Constant (Btyp)
8491
                     or else Is_Variable (P)
8492
                     or else Attr_Id = Attribute_Unrestricted_Access)
8493
            then
8494
               if Is_Entity_Name (P)
8495
                 and then Is_Type (Entity (P))
8496
               then
8497
                  --  Legality of a self-reference through an access
8498
                  --  attribute has been verified in Analyze_Access_Attribute.
8499
 
8500
                  null;
8501
 
8502
               elsif Comes_From_Source (N) then
8503
                  Error_Msg_F ("access-to-variable designates constant", P);
8504
               end if;
8505
            end if;
8506
 
8507
            Des_Btyp := Designated_Type (Btyp);
8508
 
8509
            if Ada_Version >= Ada_2005
8510
              and then Is_Incomplete_Type (Des_Btyp)
8511
            then
8512
               --  Ada 2005 (AI-412): If the (sub)type is a limited view of an
8513
               --  imported entity, and the non-limited view is visible, make
8514
               --  use of it. If it is an incomplete subtype, use the base type
8515
               --  in any case.
8516
 
8517
               if From_With_Type (Des_Btyp)
8518
                 and then Present (Non_Limited_View (Des_Btyp))
8519
               then
8520
                  Des_Btyp := Non_Limited_View (Des_Btyp);
8521
 
8522
               elsif Ekind (Des_Btyp) = E_Incomplete_Subtype then
8523
                  Des_Btyp := Etype (Des_Btyp);
8524
               end if;
8525
            end if;
8526
 
8527
            if (Attr_Id = Attribute_Access
8528
                  or else
8529
                Attr_Id = Attribute_Unchecked_Access)
8530
              and then (Ekind (Btyp) = E_General_Access_Type
8531
                          or else Ekind (Btyp) = E_Anonymous_Access_Type)
8532
            then
8533
               --  Ada 2005 (AI-230): Check the accessibility of anonymous
8534
               --  access types for stand-alone objects, record and array
8535
               --  components, and return objects. For a component definition
8536
               --  the level is the same of the enclosing composite type.
8537
 
8538
               if Ada_Version >= Ada_2005
8539
                 and then (Is_Local_Anonymous_Access (Btyp)
8540
 
8541
                            --  Handle cases where Btyp is the
8542
                            --  anonymous access type of an Ada 2012
8543
                            --  stand-alone object.
8544
 
8545
                            or else Nkind (Associated_Node_For_Itype (Btyp)) =
8546
                                                        N_Object_Declaration)
8547
                 and then Object_Access_Level (P)
8548
                          > Deepest_Type_Access_Level (Btyp)
8549
                 and then Attr_Id = Attribute_Access
8550
               then
8551
                  --  In an instance, this is a runtime check, but one we
8552
                  --  know will fail, so generate an appropriate warning.
8553
 
8554
                  if In_Instance_Body then
8555
                     Error_Msg_F
8556
                       ("?non-local pointer cannot point to local object", P);
8557
                     Error_Msg_F
8558
                       ("\?Program_Error will be raised at run time", P);
8559
                     Rewrite (N,
8560
                       Make_Raise_Program_Error (Loc,
8561
                         Reason => PE_Accessibility_Check_Failed));
8562
                     Set_Etype (N, Typ);
8563
 
8564
                  else
8565
                     Error_Msg_F
8566
                       ("non-local pointer cannot point to local object", P);
8567
                  end if;
8568
               end if;
8569
 
8570
               if Is_Dependent_Component_Of_Mutable_Object (P) then
8571
                  Error_Msg_F
8572
                    ("illegal attribute for discriminant-dependent component",
8573
                     P);
8574
               end if;
8575
 
8576
               --  Check static matching rule of 3.10.2(27). Nominal subtype
8577
               --  of the prefix must statically match the designated type.
8578
 
8579
               Nom_Subt := Etype (P);
8580
 
8581
               if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
8582
                  Nom_Subt := Base_Type (Nom_Subt);
8583
               end if;
8584
 
8585
               if Is_Tagged_Type (Designated_Type (Typ)) then
8586
 
8587
                  --  If the attribute is in the context of an access
8588
                  --  parameter, then the prefix is allowed to be of the
8589
                  --  class-wide type (by AI-127).
8590
 
8591
                  if Ekind (Typ) = E_Anonymous_Access_Type then
8592
                     if not Covers (Designated_Type (Typ), Nom_Subt)
8593
                       and then not Covers (Nom_Subt, Designated_Type (Typ))
8594
                     then
8595
                        declare
8596
                           Desig : Entity_Id;
8597
 
8598
                        begin
8599
                           Desig := Designated_Type (Typ);
8600
 
8601
                           if Is_Class_Wide_Type (Desig) then
8602
                              Desig := Etype (Desig);
8603
                           end if;
8604
 
8605
                           if Is_Anonymous_Tagged_Base (Nom_Subt, Desig) then
8606
                              null;
8607
 
8608
                           else
8609
                              Error_Msg_FE
8610
                                ("type of prefix: & not compatible",
8611
                                  P, Nom_Subt);
8612
                              Error_Msg_FE
8613
                                ("\with &, the expected designated type",
8614
                                  P, Designated_Type (Typ));
8615
                           end if;
8616
                        end;
8617
                     end if;
8618
 
8619
                  elsif not Covers (Designated_Type (Typ), Nom_Subt)
8620
                    or else
8621
                      (not Is_Class_Wide_Type (Designated_Type (Typ))
8622
                        and then Is_Class_Wide_Type (Nom_Subt))
8623
                  then
8624
                     Error_Msg_FE
8625
                       ("type of prefix: & is not covered", P, Nom_Subt);
8626
                     Error_Msg_FE
8627
                       ("\by &, the expected designated type" &
8628
                           " (RM 3.10.2 (27))", P, Designated_Type (Typ));
8629
                  end if;
8630
 
8631
                  if Is_Class_Wide_Type (Designated_Type (Typ))
8632
                    and then Has_Discriminants (Etype (Designated_Type (Typ)))
8633
                    and then Is_Constrained (Etype (Designated_Type (Typ)))
8634
                    and then Designated_Type (Typ) /= Nom_Subt
8635
                  then
8636
                     Apply_Discriminant_Check
8637
                       (N, Etype (Designated_Type (Typ)));
8638
                  end if;
8639
 
8640
               --  Ada 2005 (AI-363): Require static matching when designated
8641
               --  type has discriminants and a constrained partial view, since
8642
               --  in general objects of such types are mutable, so we can't
8643
               --  allow the access value to designate a constrained object
8644
               --  (because access values must be assumed to designate mutable
8645
               --  objects when designated type does not impose a constraint).
8646
 
8647
               elsif Subtypes_Statically_Match (Des_Btyp, Nom_Subt) then
8648
                  null;
8649
 
8650
               elsif Has_Discriminants (Designated_Type (Typ))
8651
                 and then not Is_Constrained (Des_Btyp)
8652
                 and then
8653
                   (Ada_Version < Ada_2005
8654
                     or else
8655
                       not Effectively_Has_Constrained_Partial_View
8656
                             (Typ => Designated_Type (Base_Type (Typ)),
8657
                              Scop => Current_Scope))
8658
               then
8659
                  null;
8660
 
8661
               else
8662
                  Error_Msg_F
8663
                    ("object subtype must statically match "
8664
                     & "designated subtype", P);
8665
 
8666
                  if Is_Entity_Name (P)
8667
                    and then Is_Array_Type (Designated_Type (Typ))
8668
                  then
8669
                     declare
8670
                        D : constant Node_Id := Declaration_Node (Entity (P));
8671
                     begin
8672
                        Error_Msg_N ("aliased object has explicit bounds?",
8673
                          D);
8674
                        Error_Msg_N ("\declare without bounds"
8675
                          & " (and with explicit initialization)?", D);
8676
                        Error_Msg_N ("\for use with unconstrained access?", D);
8677
                     end;
8678
                  end if;
8679
               end if;
8680
 
8681
               --  Check the static accessibility rule of 3.10.2(28). Note that
8682
               --  this check is not performed for the case of an anonymous
8683
               --  access type, since the access attribute is always legal
8684
               --  in such a context.
8685
 
8686
               if Attr_Id /= Attribute_Unchecked_Access
8687
                 and then
8688
                   Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
8689
                 and then Ekind (Btyp) = E_General_Access_Type
8690
               then
8691
                  Accessibility_Message;
8692
                  return;
8693
               end if;
8694
            end if;
8695
 
8696
            if Ekind_In (Btyp, E_Access_Protected_Subprogram_Type,
8697
                               E_Anonymous_Access_Protected_Subprogram_Type)
8698
            then
8699
               if Is_Entity_Name (P)
8700
                 and then not Is_Protected_Type (Scope (Entity (P)))
8701
               then
8702
                  Error_Msg_F ("context requires a protected subprogram", P);
8703
 
8704
               --  Check accessibility of protected object against that of the
8705
               --  access type, but only on user code, because the expander
8706
               --  creates access references for handlers. If the context is an
8707
               --  anonymous_access_to_protected, there are no accessibility
8708
               --  checks either. Omit check entirely for Unrestricted_Access.
8709
 
8710
               elsif Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
8711
                 and then Comes_From_Source (N)
8712
                 and then Ekind (Btyp) = E_Access_Protected_Subprogram_Type
8713
                 and then Attr_Id /= Attribute_Unrestricted_Access
8714
               then
8715
                  Accessibility_Message;
8716
                  return;
8717
               end if;
8718
 
8719
            elsif Ekind_In (Btyp, E_Access_Subprogram_Type,
8720
                                  E_Anonymous_Access_Subprogram_Type)
8721
              and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
8722
            then
8723
               Error_Msg_F ("context requires a non-protected subprogram", P);
8724
            end if;
8725
 
8726
            --  The context cannot be a pool-specific type, but this is a
8727
            --  legality rule, not a resolution rule, so it must be checked
8728
            --  separately, after possibly disambiguation (see AI-245).
8729
 
8730
            if Ekind (Btyp) = E_Access_Type
8731
              and then Attr_Id /= Attribute_Unrestricted_Access
8732
            then
8733
               Wrong_Type (N, Typ);
8734
            end if;
8735
 
8736
            --  The context may be a constrained access type (however ill-
8737
            --  advised such subtypes might be) so in order to generate a
8738
            --  constraint check when needed set the type of the attribute
8739
            --  reference to the base type of the context.
8740
 
8741
            Set_Etype (N, Btyp);
8742
 
8743
            --  Check for incorrect atomic/volatile reference (RM C.6(12))
8744
 
8745
            if Attr_Id /= Attribute_Unrestricted_Access then
8746
               if Is_Atomic_Object (P)
8747
                 and then not Is_Atomic (Designated_Type (Typ))
8748
               then
8749
                  Error_Msg_F
8750
                    ("access to atomic object cannot yield access-to-" &
8751
                     "non-atomic type", P);
8752
 
8753
               elsif Is_Volatile_Object (P)
8754
                 and then not Is_Volatile (Designated_Type (Typ))
8755
               then
8756
                  Error_Msg_F
8757
                    ("access to volatile object cannot yield access-to-" &
8758
                     "non-volatile type", P);
8759
               end if;
8760
            end if;
8761
 
8762
            if Is_Entity_Name (P) then
8763
               Set_Address_Taken (Entity (P));
8764
            end if;
8765
         end Access_Attribute;
8766
 
8767
         -------------
8768
         -- Address --
8769
         -------------
8770
 
8771
         --  Deal with resolving the type for Address attribute, overloading
8772
         --  is not permitted here, since there is no context to resolve it.
8773
 
8774
         when Attribute_Address | Attribute_Code_Address =>
8775
         Address_Attribute : begin
8776
 
8777
            --  To be safe, assume that if the address of a variable is taken,
8778
            --  it may be modified via this address, so note modification.
8779
 
8780
            if Is_Variable (P) then
8781
               Note_Possible_Modification (P, Sure => False);
8782
            end if;
8783
 
8784
            if Nkind (P) in N_Subexpr
8785
              and then Is_Overloaded (P)
8786
            then
8787
               Get_First_Interp (P, Index, It);
8788
               Get_Next_Interp (Index, It);
8789
 
8790
               if Present (It.Nam) then
8791
                  Error_Msg_Name_1 := Aname;
8792
                  Error_Msg_F
8793
                    ("prefix of % attribute cannot be overloaded", P);
8794
               end if;
8795
            end if;
8796
 
8797
            if not Is_Entity_Name (P)
8798
              or else not Is_Overloadable (Entity (P))
8799
            then
8800
               if not Is_Task_Type (Etype (P))
8801
                 or else Nkind (P) = N_Explicit_Dereference
8802
               then
8803
                  Resolve (P);
8804
               end if;
8805
            end if;
8806
 
8807
            --  If this is the name of a derived subprogram, or that of a
8808
            --  generic actual, the address is that of the original entity.
8809
 
8810
            if Is_Entity_Name (P)
8811
              and then Is_Overloadable (Entity (P))
8812
              and then Present (Alias (Entity (P)))
8813
            then
8814
               Rewrite (P,
8815
                 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
8816
            end if;
8817
 
8818
            if Is_Entity_Name (P) then
8819
               Set_Address_Taken (Entity (P));
8820
            end if;
8821
 
8822
            if Nkind (P) = N_Slice then
8823
 
8824
               --  Arr (X .. Y)'address is identical to Arr (X)'address,
8825
               --  even if the array is packed and the slice itself is not
8826
               --  addressable. Transform the prefix into an indexed component.
8827
 
8828
               --  Note that the transformation is safe only if we know that
8829
               --  the slice is non-null. That is because a null slice can have
8830
               --  an out of bounds index value.
8831
 
8832
               --  Right now, gigi blows up if given 'Address on a slice as a
8833
               --  result of some incorrect freeze nodes generated by the front
8834
               --  end, and this covers up that bug in one case, but the bug is
8835
               --  likely still there in the cases not handled by this code ???
8836
 
8837
               --  It's not clear what 'Address *should* return for a null
8838
               --  slice with out of bounds indexes, this might be worth an ARG
8839
               --  discussion ???
8840
 
8841
               --  One approach would be to do a length check unconditionally,
8842
               --  and then do the transformation below unconditionally, but
8843
               --  analyze with checks off, avoiding the problem of the out of
8844
               --  bounds index. This approach would interpret the address of
8845
               --  an out of bounds null slice as being the address where the
8846
               --  array element would be if there was one, which is probably
8847
               --  as reasonable an interpretation as any ???
8848
 
8849
               declare
8850
                  Loc : constant Source_Ptr := Sloc (P);
8851
                  D   : constant Node_Id := Discrete_Range (P);
8852
                  Lo  : Node_Id;
8853
 
8854
               begin
8855
                  if Is_Entity_Name (D)
8856
                    and then
8857
                      Not_Null_Range
8858
                        (Type_Low_Bound (Entity (D)),
8859
                         Type_High_Bound (Entity (D)))
8860
                  then
8861
                     Lo :=
8862
                       Make_Attribute_Reference (Loc,
8863
                          Prefix => (New_Occurrence_Of (Entity (D), Loc)),
8864
                          Attribute_Name => Name_First);
8865
 
8866
                  elsif Nkind (D) = N_Range
8867
                    and then Not_Null_Range (Low_Bound (D), High_Bound (D))
8868
                  then
8869
                     Lo := Low_Bound (D);
8870
 
8871
                  else
8872
                     Lo := Empty;
8873
                  end if;
8874
 
8875
                  if Present (Lo) then
8876
                     Rewrite (P,
8877
                        Make_Indexed_Component (Loc,
8878
                           Prefix =>  Relocate_Node (Prefix (P)),
8879
                           Expressions => New_List (Lo)));
8880
 
8881
                     Analyze_And_Resolve (P);
8882
                  end if;
8883
               end;
8884
            end if;
8885
         end Address_Attribute;
8886
 
8887
         ---------------
8888
         -- AST_Entry --
8889
         ---------------
8890
 
8891
         --  Prefix of the AST_Entry attribute is an entry name which must
8892
         --  not be resolved, since this is definitely not an entry call.
8893
 
8894
         when Attribute_AST_Entry =>
8895
            null;
8896
 
8897
         ------------------
8898
         -- Body_Version --
8899
         ------------------
8900
 
8901
         --  Prefix of Body_Version attribute can be a subprogram name which
8902
         --  must not be resolved, since this is not a call.
8903
 
8904
         when Attribute_Body_Version =>
8905
            null;
8906
 
8907
         ------------
8908
         -- Caller --
8909
         ------------
8910
 
8911
         --  Prefix of Caller attribute is an entry name which must not
8912
         --  be resolved, since this is definitely not an entry call.
8913
 
8914
         when Attribute_Caller =>
8915
            null;
8916
 
8917
         ------------------
8918
         -- Code_Address --
8919
         ------------------
8920
 
8921
         --  Shares processing with Address attribute
8922
 
8923
         -----------
8924
         -- Count --
8925
         -----------
8926
 
8927
         --  If the prefix of the Count attribute is an entry name it must not
8928
         --  be resolved, since this is definitely not an entry call. However,
8929
         --  if it is an element of an entry family, the index itself may
8930
         --  have to be resolved because it can be a general expression.
8931
 
8932
         when Attribute_Count =>
8933
            if Nkind (P) = N_Indexed_Component
8934
              and then Is_Entity_Name (Prefix (P))
8935
            then
8936
               declare
8937
                  Indx : constant Node_Id   := First (Expressions (P));
8938
                  Fam  : constant Entity_Id := Entity (Prefix (P));
8939
               begin
8940
                  Resolve (Indx, Entry_Index_Type (Fam));
8941
                  Apply_Range_Check (Indx, Entry_Index_Type (Fam));
8942
               end;
8943
            end if;
8944
 
8945
         ----------------
8946
         -- Elaborated --
8947
         ----------------
8948
 
8949
         --  Prefix of the Elaborated attribute is a subprogram name which
8950
         --  must not be resolved, since this is definitely not a call. Note
8951
         --  that it is a library unit, so it cannot be overloaded here.
8952
 
8953
         when Attribute_Elaborated =>
8954
            null;
8955
 
8956
         -------------
8957
         -- Enabled --
8958
         -------------
8959
 
8960
         --  Prefix of Enabled attribute is a check name, which must be treated
8961
         --  specially and not touched by Resolve.
8962
 
8963
         when Attribute_Enabled =>
8964
            null;
8965
 
8966
         --------------------
8967
         -- Mechanism_Code --
8968
         --------------------
8969
 
8970
         --  Prefix of the Mechanism_Code attribute is a function name
8971
         --  which must not be resolved. Should we check for overloaded ???
8972
 
8973
         when Attribute_Mechanism_Code =>
8974
            null;
8975
 
8976
         ------------------
8977
         -- Partition_ID --
8978
         ------------------
8979
 
8980
         --  Most processing is done in sem_dist, after determining the
8981
         --  context type. Node is rewritten as a conversion to a runtime call.
8982
 
8983
         when Attribute_Partition_ID =>
8984
            Process_Partition_Id (N);
8985
            return;
8986
 
8987
         ------------------
8988
         -- Pool_Address --
8989
         ------------------
8990
 
8991
         when Attribute_Pool_Address =>
8992
            Resolve (P);
8993
 
8994
         -----------
8995
         -- Range --
8996
         -----------
8997
 
8998
         --  We replace the Range attribute node with a range expression whose
8999
         --  bounds are the 'First and 'Last attributes applied to the same
9000
         --  prefix. The reason that we do this transformation here instead of
9001
         --  in the expander is that it simplifies other parts of the semantic
9002
         --  analysis which assume that the Range has been replaced; thus it
9003
         --  must be done even when in semantic-only mode (note that the RM
9004
         --  specifically mentions this equivalence, we take care that the
9005
         --  prefix is only evaluated once).
9006
 
9007
         when Attribute_Range => Range_Attribute :
9008
            declare
9009
               LB   : Node_Id;
9010
               HB   : Node_Id;
9011
               Dims : List_Id;
9012
 
9013
            begin
9014
               if not Is_Entity_Name (P)
9015
                 or else not Is_Type (Entity (P))
9016
               then
9017
                  Resolve (P);
9018
               end if;
9019
 
9020
               Dims := Expressions (N);
9021
 
9022
               HB :=
9023
                 Make_Attribute_Reference (Loc,
9024
                   Prefix         =>
9025
                     Duplicate_Subexpr (P, Name_Req => True),
9026
                   Attribute_Name => Name_Last,
9027
                   Expressions    => Dims);
9028
 
9029
               LB :=
9030
                 Make_Attribute_Reference (Loc,
9031
                   Prefix          => P,
9032
                   Attribute_Name  => Name_First,
9033
                   Expressions     => (Dims));
9034
 
9035
               --  Do not share the dimension indicator, if present. Even
9036
               --  though it is a static constant, its source location
9037
               --  may be modified when printing expanded code and node
9038
               --  sharing will lead to chaos in Sprint.
9039
 
9040
               if Present (Dims) then
9041
                  Set_Expressions (LB,
9042
                    New_List (New_Copy_Tree (First (Dims))));
9043
               end if;
9044
 
9045
               --  If the original was marked as Must_Not_Freeze (see code
9046
               --  in Sem_Ch3.Make_Index), then make sure the rewriting
9047
               --  does not freeze either.
9048
 
9049
               if Must_Not_Freeze (N) then
9050
                  Set_Must_Not_Freeze (HB);
9051
                  Set_Must_Not_Freeze (LB);
9052
                  Set_Must_Not_Freeze (Prefix (HB));
9053
                  Set_Must_Not_Freeze (Prefix (LB));
9054
               end if;
9055
 
9056
               if Raises_Constraint_Error (Prefix (N)) then
9057
 
9058
                  --  Preserve Sloc of prefix in the new bounds, so that
9059
                  --  the posted warning can be removed if we are within
9060
                  --  unreachable code.
9061
 
9062
                  Set_Sloc (LB, Sloc (Prefix (N)));
9063
                  Set_Sloc (HB, Sloc (Prefix (N)));
9064
               end if;
9065
 
9066
               Rewrite (N, Make_Range (Loc, LB, HB));
9067
               Analyze_And_Resolve (N, Typ);
9068
 
9069
               --  Ensure that the expanded range does not have side effects
9070
 
9071
               Force_Evaluation (LB);
9072
               Force_Evaluation (HB);
9073
 
9074
               --  Normally after resolving attribute nodes, Eval_Attribute
9075
               --  is called to do any possible static evaluation of the node.
9076
               --  However, here since the Range attribute has just been
9077
               --  transformed into a range expression it is no longer an
9078
               --  attribute node and therefore the call needs to be avoided
9079
               --  and is accomplished by simply returning from the procedure.
9080
 
9081
               return;
9082
            end Range_Attribute;
9083
 
9084
         ------------
9085
         -- Result --
9086
         ------------
9087
 
9088
         --  We will only come here during the prescan of a spec expression
9089
         --  containing a Result attribute. In that case the proper Etype has
9090
         --  already been set, and nothing more needs to be done here.
9091
 
9092
         when Attribute_Result =>
9093
            null;
9094
 
9095
         -----------------
9096
         -- UET_Address --
9097
         -----------------
9098
 
9099
         --  Prefix must not be resolved in this case, since it is not a
9100
         --  real entity reference. No action of any kind is require!
9101
 
9102
         when Attribute_UET_Address =>
9103
            return;
9104
 
9105
         ----------------------
9106
         -- Unchecked_Access --
9107
         ----------------------
9108
 
9109
         --  Processing is shared with Access
9110
 
9111
         -------------------------
9112
         -- Unrestricted_Access --
9113
         -------------------------
9114
 
9115
         --  Processing is shared with Access
9116
 
9117
         ---------
9118
         -- Val --
9119
         ---------
9120
 
9121
         --  Apply range check. Note that we did not do this during the
9122
         --  analysis phase, since we wanted Eval_Attribute to have a
9123
         --  chance at finding an illegal out of range value.
9124
 
9125
         when Attribute_Val =>
9126
 
9127
            --  Note that we do our own Eval_Attribute call here rather than
9128
            --  use the common one, because we need to do processing after
9129
            --  the call, as per above comment.
9130
 
9131
            Eval_Attribute (N);
9132
 
9133
            --  Eval_Attribute may replace the node with a raise CE, or
9134
            --  fold it to a constant. Obviously we only apply a scalar
9135
            --  range check if this did not happen!
9136
 
9137
            if Nkind (N) = N_Attribute_Reference
9138
              and then Attribute_Name (N) = Name_Val
9139
            then
9140
               Apply_Scalar_Range_Check (First (Expressions (N)), Btyp);
9141
            end if;
9142
 
9143
            return;
9144
 
9145
         -------------
9146
         -- Version --
9147
         -------------
9148
 
9149
         --  Prefix of Version attribute can be a subprogram name which
9150
         --  must not be resolved, since this is not a call.
9151
 
9152
         when Attribute_Version =>
9153
            null;
9154
 
9155
         ----------------------
9156
         -- Other Attributes --
9157
         ----------------------
9158
 
9159
         --  For other attributes, resolve prefix unless it is a type. If
9160
         --  the attribute reference itself is a type name ('Base and 'Class)
9161
         --  then this is only legal within a task or protected record.
9162
 
9163
         when others =>
9164
            if not Is_Entity_Name (P)
9165
              or else not Is_Type (Entity (P))
9166
            then
9167
               Resolve (P);
9168
            end if;
9169
 
9170
            --  If the attribute reference itself is a type name ('Base,
9171
            --  'Class) then this is only legal within a task or protected
9172
            --  record. What is this all about ???
9173
 
9174
            if Is_Entity_Name (N)
9175
              and then Is_Type (Entity (N))
9176
            then
9177
               if Is_Concurrent_Type (Entity (N))
9178
                 and then In_Open_Scopes (Entity (P))
9179
               then
9180
                  null;
9181
               else
9182
                  Error_Msg_N
9183
                    ("invalid use of subtype name in expression or call", N);
9184
               end if;
9185
            end if;
9186
 
9187
            --  For attributes whose argument may be a string, complete
9188
            --  resolution of argument now. This avoids premature expansion
9189
            --  (and the creation of transient scopes) before the attribute
9190
            --  reference is resolved.
9191
 
9192
            case Attr_Id is
9193
               when Attribute_Value =>
9194
                  Resolve (First (Expressions (N)), Standard_String);
9195
 
9196
               when Attribute_Wide_Value =>
9197
                  Resolve (First (Expressions (N)), Standard_Wide_String);
9198
 
9199
               when Attribute_Wide_Wide_Value =>
9200
                  Resolve (First (Expressions (N)), Standard_Wide_Wide_String);
9201
 
9202
               when others => null;
9203
            end case;
9204
 
9205
            --  If the prefix of the attribute is a class-wide type then it
9206
            --  will be expanded into a dispatching call to a predefined
9207
            --  primitive. Therefore we must check for potential violation
9208
            --  of such restriction.
9209
 
9210
            if Is_Class_Wide_Type (Etype (P)) then
9211
               Check_Restriction (No_Dispatching_Calls, N);
9212
            end if;
9213
      end case;
9214
 
9215
      --  Normally the Freezing is done by Resolve but sometimes the Prefix
9216
      --  is not resolved, in which case the freezing must be done now.
9217
 
9218
      Freeze_Expression (P);
9219
 
9220
      --  Finally perform static evaluation on the attribute reference
9221
 
9222
      Analyze_Dimension (N);
9223
      Eval_Attribute (N);
9224
   end Resolve_Attribute;
9225
 
9226
   --------------------------------
9227
   -- Stream_Attribute_Available --
9228
   --------------------------------
9229
 
9230
   function Stream_Attribute_Available
9231
     (Typ          : Entity_Id;
9232
      Nam          : TSS_Name_Type;
9233
      Partial_View : Node_Id := Empty) return Boolean
9234
   is
9235
      Etyp : Entity_Id := Typ;
9236
 
9237
   --  Start of processing for Stream_Attribute_Available
9238
 
9239
   begin
9240
      --  We need some comments in this body ???
9241
 
9242
      if Has_Stream_Attribute_Definition (Typ, Nam) then
9243
         return True;
9244
      end if;
9245
 
9246
      if Is_Class_Wide_Type (Typ) then
9247
         return not Is_Limited_Type (Typ)
9248
           or else Stream_Attribute_Available (Etype (Typ), Nam);
9249
      end if;
9250
 
9251
      if Nam = TSS_Stream_Input
9252
        and then Is_Abstract_Type (Typ)
9253
        and then not Is_Class_Wide_Type (Typ)
9254
      then
9255
         return False;
9256
      end if;
9257
 
9258
      if not (Is_Limited_Type (Typ)
9259
        or else (Present (Partial_View)
9260
                   and then Is_Limited_Type (Partial_View)))
9261
      then
9262
         return True;
9263
      end if;
9264
 
9265
      --  In Ada 2005, Input can invoke Read, and Output can invoke Write
9266
 
9267
      if Nam = TSS_Stream_Input
9268
        and then Ada_Version >= Ada_2005
9269
        and then Stream_Attribute_Available (Etyp, TSS_Stream_Read)
9270
      then
9271
         return True;
9272
 
9273
      elsif Nam = TSS_Stream_Output
9274
        and then Ada_Version >= Ada_2005
9275
        and then Stream_Attribute_Available (Etyp, TSS_Stream_Write)
9276
      then
9277
         return True;
9278
      end if;
9279
 
9280
      --  Case of Read and Write: check for attribute definition clause that
9281
      --  applies to an ancestor type.
9282
 
9283
      while Etype (Etyp) /= Etyp loop
9284
         Etyp := Etype (Etyp);
9285
 
9286
         if Has_Stream_Attribute_Definition (Etyp, Nam) then
9287
            return True;
9288
         end if;
9289
      end loop;
9290
 
9291
      if Ada_Version < Ada_2005 then
9292
 
9293
         --  In Ada 95 mode, also consider a non-visible definition
9294
 
9295
         declare
9296
            Btyp : constant Entity_Id := Implementation_Base_Type (Typ);
9297
         begin
9298
            return Btyp /= Typ
9299
              and then Stream_Attribute_Available
9300
                         (Btyp, Nam, Partial_View => Typ);
9301
         end;
9302
      end if;
9303
 
9304
      return False;
9305
   end Stream_Attribute_Available;
9306
 
9307
end Sem_Attr;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.