1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- S E M _ C H 3 --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Checks; use Checks;
|
28 |
|
|
with Debug; use Debug;
|
29 |
|
|
with Elists; use Elists;
|
30 |
|
|
with Einfo; use Einfo;
|
31 |
|
|
with Errout; use Errout;
|
32 |
|
|
with Eval_Fat; use Eval_Fat;
|
33 |
|
|
with Exp_Ch3; use Exp_Ch3;
|
34 |
|
|
with Exp_Ch9; use Exp_Ch9;
|
35 |
|
|
with Exp_Disp; use Exp_Disp;
|
36 |
|
|
with Exp_Dist; use Exp_Dist;
|
37 |
|
|
with Exp_Tss; use Exp_Tss;
|
38 |
|
|
with Exp_Util; use Exp_Util;
|
39 |
|
|
with Fname; use Fname;
|
40 |
|
|
with Freeze; use Freeze;
|
41 |
|
|
with Itypes; use Itypes;
|
42 |
|
|
with Layout; use Layout;
|
43 |
|
|
with Lib; use Lib;
|
44 |
|
|
with Lib.Xref; use Lib.Xref;
|
45 |
|
|
with Namet; use Namet;
|
46 |
|
|
with Nmake; use Nmake;
|
47 |
|
|
with Opt; use Opt;
|
48 |
|
|
with Restrict; use Restrict;
|
49 |
|
|
with Rident; use Rident;
|
50 |
|
|
with Rtsfind; use Rtsfind;
|
51 |
|
|
with Sem; use Sem;
|
52 |
|
|
with Sem_Aux; use Sem_Aux;
|
53 |
|
|
with Sem_Case; use Sem_Case;
|
54 |
|
|
with Sem_Cat; use Sem_Cat;
|
55 |
|
|
with Sem_Ch6; use Sem_Ch6;
|
56 |
|
|
with Sem_Ch7; use Sem_Ch7;
|
57 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
58 |
|
|
with Sem_Ch13; use Sem_Ch13;
|
59 |
|
|
with Sem_Dim; use Sem_Dim;
|
60 |
|
|
with Sem_Disp; use Sem_Disp;
|
61 |
|
|
with Sem_Dist; use Sem_Dist;
|
62 |
|
|
with Sem_Elim; use Sem_Elim;
|
63 |
|
|
with Sem_Eval; use Sem_Eval;
|
64 |
|
|
with Sem_Mech; use Sem_Mech;
|
65 |
|
|
with Sem_Prag; use Sem_Prag;
|
66 |
|
|
with Sem_Res; use Sem_Res;
|
67 |
|
|
with Sem_Smem; use Sem_Smem;
|
68 |
|
|
with Sem_Type; use Sem_Type;
|
69 |
|
|
with Sem_Util; use Sem_Util;
|
70 |
|
|
with Sem_Warn; use Sem_Warn;
|
71 |
|
|
with Stand; use Stand;
|
72 |
|
|
with Sinfo; use Sinfo;
|
73 |
|
|
with Sinput; use Sinput;
|
74 |
|
|
with Snames; use Snames;
|
75 |
|
|
with Targparm; use Targparm;
|
76 |
|
|
with Tbuild; use Tbuild;
|
77 |
|
|
with Ttypes; use Ttypes;
|
78 |
|
|
with Uintp; use Uintp;
|
79 |
|
|
with Urealp; use Urealp;
|
80 |
|
|
|
81 |
|
|
package body Sem_Ch3 is
|
82 |
|
|
|
83 |
|
|
-----------------------
|
84 |
|
|
-- Local Subprograms --
|
85 |
|
|
-----------------------
|
86 |
|
|
|
87 |
|
|
procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
|
88 |
|
|
-- Ada 2005 (AI-251): Add the tag components corresponding to all the
|
89 |
|
|
-- abstract interface types implemented by a record type or a derived
|
90 |
|
|
-- record type.
|
91 |
|
|
|
92 |
|
|
procedure Build_Derived_Type
|
93 |
|
|
(N : Node_Id;
|
94 |
|
|
Parent_Type : Entity_Id;
|
95 |
|
|
Derived_Type : Entity_Id;
|
96 |
|
|
Is_Completion : Boolean;
|
97 |
|
|
Derive_Subps : Boolean := True);
|
98 |
|
|
-- Create and decorate a Derived_Type given the Parent_Type entity. N is
|
99 |
|
|
-- the N_Full_Type_Declaration node containing the derived type definition.
|
100 |
|
|
-- Parent_Type is the entity for the parent type in the derived type
|
101 |
|
|
-- definition and Derived_Type the actual derived type. Is_Completion must
|
102 |
|
|
-- be set to False if Derived_Type is the N_Defining_Identifier node in N
|
103 |
|
|
-- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
|
104 |
|
|
-- completion of a private type declaration. If Is_Completion is set to
|
105 |
|
|
-- True, N is the completion of a private type declaration and Derived_Type
|
106 |
|
|
-- is different from the defining identifier inside N (i.e. Derived_Type /=
|
107 |
|
|
-- Defining_Identifier (N)). Derive_Subps indicates whether the parent
|
108 |
|
|
-- subprograms should be derived. The only case where this parameter is
|
109 |
|
|
-- False is when Build_Derived_Type is recursively called to process an
|
110 |
|
|
-- implicit derived full type for a type derived from a private type (in
|
111 |
|
|
-- that case the subprograms must only be derived for the private view of
|
112 |
|
|
-- the type).
|
113 |
|
|
--
|
114 |
|
|
-- ??? These flags need a bit of re-examination and re-documentation:
|
115 |
|
|
-- ??? are they both necessary (both seem related to the recursion)?
|
116 |
|
|
|
117 |
|
|
procedure Build_Derived_Access_Type
|
118 |
|
|
(N : Node_Id;
|
119 |
|
|
Parent_Type : Entity_Id;
|
120 |
|
|
Derived_Type : Entity_Id);
|
121 |
|
|
-- Subsidiary procedure to Build_Derived_Type. For a derived access type,
|
122 |
|
|
-- create an implicit base if the parent type is constrained or if the
|
123 |
|
|
-- subtype indication has a constraint.
|
124 |
|
|
|
125 |
|
|
procedure Build_Derived_Array_Type
|
126 |
|
|
(N : Node_Id;
|
127 |
|
|
Parent_Type : Entity_Id;
|
128 |
|
|
Derived_Type : Entity_Id);
|
129 |
|
|
-- Subsidiary procedure to Build_Derived_Type. For a derived array type,
|
130 |
|
|
-- create an implicit base if the parent type is constrained or if the
|
131 |
|
|
-- subtype indication has a constraint.
|
132 |
|
|
|
133 |
|
|
procedure Build_Derived_Concurrent_Type
|
134 |
|
|
(N : Node_Id;
|
135 |
|
|
Parent_Type : Entity_Id;
|
136 |
|
|
Derived_Type : Entity_Id);
|
137 |
|
|
-- Subsidiary procedure to Build_Derived_Type. For a derived task or
|
138 |
|
|
-- protected type, inherit entries and protected subprograms, check
|
139 |
|
|
-- legality of discriminant constraints if any.
|
140 |
|
|
|
141 |
|
|
procedure Build_Derived_Enumeration_Type
|
142 |
|
|
(N : Node_Id;
|
143 |
|
|
Parent_Type : Entity_Id;
|
144 |
|
|
Derived_Type : Entity_Id);
|
145 |
|
|
-- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
|
146 |
|
|
-- type, we must create a new list of literals. Types derived from
|
147 |
|
|
-- Character and [Wide_]Wide_Character are special-cased.
|
148 |
|
|
|
149 |
|
|
procedure Build_Derived_Numeric_Type
|
150 |
|
|
(N : Node_Id;
|
151 |
|
|
Parent_Type : Entity_Id;
|
152 |
|
|
Derived_Type : Entity_Id);
|
153 |
|
|
-- Subsidiary procedure to Build_Derived_Type. For numeric types, create
|
154 |
|
|
-- an anonymous base type, and propagate constraint to subtype if needed.
|
155 |
|
|
|
156 |
|
|
procedure Build_Derived_Private_Type
|
157 |
|
|
(N : Node_Id;
|
158 |
|
|
Parent_Type : Entity_Id;
|
159 |
|
|
Derived_Type : Entity_Id;
|
160 |
|
|
Is_Completion : Boolean;
|
161 |
|
|
Derive_Subps : Boolean := True);
|
162 |
|
|
-- Subsidiary procedure to Build_Derived_Type. This procedure is complex
|
163 |
|
|
-- because the parent may or may not have a completion, and the derivation
|
164 |
|
|
-- may itself be a completion.
|
165 |
|
|
|
166 |
|
|
procedure Build_Derived_Record_Type
|
167 |
|
|
(N : Node_Id;
|
168 |
|
|
Parent_Type : Entity_Id;
|
169 |
|
|
Derived_Type : Entity_Id;
|
170 |
|
|
Derive_Subps : Boolean := True);
|
171 |
|
|
-- Subsidiary procedure for Build_Derived_Type and
|
172 |
|
|
-- Analyze_Private_Extension_Declaration used for tagged and untagged
|
173 |
|
|
-- record types. All parameters are as in Build_Derived_Type except that
|
174 |
|
|
-- N, in addition to being an N_Full_Type_Declaration node, can also be an
|
175 |
|
|
-- N_Private_Extension_Declaration node. See the definition of this routine
|
176 |
|
|
-- for much more info. Derive_Subps indicates whether subprograms should
|
177 |
|
|
-- be derived from the parent type. The only case where Derive_Subps is
|
178 |
|
|
-- False is for an implicit derived full type for a type derived from a
|
179 |
|
|
-- private type (see Build_Derived_Type).
|
180 |
|
|
|
181 |
|
|
procedure Build_Discriminal (Discrim : Entity_Id);
|
182 |
|
|
-- Create the discriminal corresponding to discriminant Discrim, that is
|
183 |
|
|
-- the parameter corresponding to Discrim to be used in initialization
|
184 |
|
|
-- procedures for the type where Discrim is a discriminant. Discriminals
|
185 |
|
|
-- are not used during semantic analysis, and are not fully defined
|
186 |
|
|
-- entities until expansion. Thus they are not given a scope until
|
187 |
|
|
-- initialization procedures are built.
|
188 |
|
|
|
189 |
|
|
function Build_Discriminant_Constraints
|
190 |
|
|
(T : Entity_Id;
|
191 |
|
|
Def : Node_Id;
|
192 |
|
|
Derived_Def : Boolean := False) return Elist_Id;
|
193 |
|
|
-- Validate discriminant constraints and return the list of the constraints
|
194 |
|
|
-- in order of discriminant declarations, where T is the discriminated
|
195 |
|
|
-- unconstrained type. Def is the N_Subtype_Indication node where the
|
196 |
|
|
-- discriminants constraints for T are specified. Derived_Def is True
|
197 |
|
|
-- when building the discriminant constraints in a derived type definition
|
198 |
|
|
-- of the form "type D (...) is new T (xxx)". In this case T is the parent
|
199 |
|
|
-- type and Def is the constraint "(xxx)" on T and this routine sets the
|
200 |
|
|
-- Corresponding_Discriminant field of the discriminants in the derived
|
201 |
|
|
-- type D to point to the corresponding discriminants in the parent type T.
|
202 |
|
|
|
203 |
|
|
procedure Build_Discriminated_Subtype
|
204 |
|
|
(T : Entity_Id;
|
205 |
|
|
Def_Id : Entity_Id;
|
206 |
|
|
Elist : Elist_Id;
|
207 |
|
|
Related_Nod : Node_Id;
|
208 |
|
|
For_Access : Boolean := False);
|
209 |
|
|
-- Subsidiary procedure to Constrain_Discriminated_Type and to
|
210 |
|
|
-- Process_Incomplete_Dependents. Given
|
211 |
|
|
--
|
212 |
|
|
-- T (a possibly discriminated base type)
|
213 |
|
|
-- Def_Id (a very partially built subtype for T),
|
214 |
|
|
--
|
215 |
|
|
-- the call completes Def_Id to be the appropriate E_*_Subtype.
|
216 |
|
|
--
|
217 |
|
|
-- The Elist is the list of discriminant constraints if any (it is set
|
218 |
|
|
-- to No_Elist if T is not a discriminated type, and to an empty list if
|
219 |
|
|
-- T has discriminants but there are no discriminant constraints). The
|
220 |
|
|
-- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
|
221 |
|
|
-- The For_Access says whether or not this subtype is really constraining
|
222 |
|
|
-- an access type. That is its sole purpose is the designated type of an
|
223 |
|
|
-- access type -- in which case a Private_Subtype Is_For_Access_Subtype
|
224 |
|
|
-- is built to avoid freezing T when the access subtype is frozen.
|
225 |
|
|
|
226 |
|
|
function Build_Scalar_Bound
|
227 |
|
|
(Bound : Node_Id;
|
228 |
|
|
Par_T : Entity_Id;
|
229 |
|
|
Der_T : Entity_Id) return Node_Id;
|
230 |
|
|
-- The bounds of a derived scalar type are conversions of the bounds of
|
231 |
|
|
-- the parent type. Optimize the representation if the bounds are literals.
|
232 |
|
|
-- Needs a more complete spec--what are the parameters exactly, and what
|
233 |
|
|
-- exactly is the returned value, and how is Bound affected???
|
234 |
|
|
|
235 |
|
|
procedure Build_Underlying_Full_View
|
236 |
|
|
(N : Node_Id;
|
237 |
|
|
Typ : Entity_Id;
|
238 |
|
|
Par : Entity_Id);
|
239 |
|
|
-- If the completion of a private type is itself derived from a private
|
240 |
|
|
-- type, or if the full view of a private subtype is itself private, the
|
241 |
|
|
-- back-end has no way to compute the actual size of this type. We build
|
242 |
|
|
-- an internal subtype declaration of the proper parent type to convey
|
243 |
|
|
-- this information. This extra mechanism is needed because a full
|
244 |
|
|
-- view cannot itself have a full view (it would get clobbered during
|
245 |
|
|
-- view exchanges).
|
246 |
|
|
|
247 |
|
|
procedure Check_Access_Discriminant_Requires_Limited
|
248 |
|
|
(D : Node_Id;
|
249 |
|
|
Loc : Node_Id);
|
250 |
|
|
-- Check the restriction that the type to which an access discriminant
|
251 |
|
|
-- belongs must be a concurrent type or a descendant of a type with
|
252 |
|
|
-- the reserved word 'limited' in its declaration.
|
253 |
|
|
|
254 |
|
|
procedure Check_Anonymous_Access_Components
|
255 |
|
|
(Typ_Decl : Node_Id;
|
256 |
|
|
Typ : Entity_Id;
|
257 |
|
|
Prev : Entity_Id;
|
258 |
|
|
Comp_List : Node_Id);
|
259 |
|
|
-- Ada 2005 AI-382: an access component in a record definition can refer to
|
260 |
|
|
-- the enclosing record, in which case it denotes the type itself, and not
|
261 |
|
|
-- the current instance of the type. We create an anonymous access type for
|
262 |
|
|
-- the component, and flag it as an access to a component, so accessibility
|
263 |
|
|
-- checks are properly performed on it. The declaration of the access type
|
264 |
|
|
-- is placed ahead of that of the record to prevent order-of-elaboration
|
265 |
|
|
-- circularity issues in Gigi. We create an incomplete type for the record
|
266 |
|
|
-- declaration, which is the designated type of the anonymous access.
|
267 |
|
|
|
268 |
|
|
procedure Check_Delta_Expression (E : Node_Id);
|
269 |
|
|
-- Check that the expression represented by E is suitable for use as a
|
270 |
|
|
-- delta expression, i.e. it is of real type and is static.
|
271 |
|
|
|
272 |
|
|
procedure Check_Digits_Expression (E : Node_Id);
|
273 |
|
|
-- Check that the expression represented by E is suitable for use as a
|
274 |
|
|
-- digits expression, i.e. it is of integer type, positive and static.
|
275 |
|
|
|
276 |
|
|
procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
|
277 |
|
|
-- Validate the initialization of an object declaration. T is the required
|
278 |
|
|
-- type, and Exp is the initialization expression.
|
279 |
|
|
|
280 |
|
|
procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
|
281 |
|
|
-- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
|
282 |
|
|
|
283 |
|
|
procedure Check_Or_Process_Discriminants
|
284 |
|
|
(N : Node_Id;
|
285 |
|
|
T : Entity_Id;
|
286 |
|
|
Prev : Entity_Id := Empty);
|
287 |
|
|
-- If N is the full declaration of the completion T of an incomplete or
|
288 |
|
|
-- private type, check its discriminants (which are already known to be
|
289 |
|
|
-- conformant with those of the partial view, see Find_Type_Name),
|
290 |
|
|
-- otherwise process them. Prev is the entity of the partial declaration,
|
291 |
|
|
-- if any.
|
292 |
|
|
|
293 |
|
|
procedure Check_Real_Bound (Bound : Node_Id);
|
294 |
|
|
-- Check given bound for being of real type and static. If not, post an
|
295 |
|
|
-- appropriate message, and rewrite the bound with the real literal zero.
|
296 |
|
|
|
297 |
|
|
procedure Constant_Redeclaration
|
298 |
|
|
(Id : Entity_Id;
|
299 |
|
|
N : Node_Id;
|
300 |
|
|
T : out Entity_Id);
|
301 |
|
|
-- Various checks on legality of full declaration of deferred constant.
|
302 |
|
|
-- Id is the entity for the redeclaration, N is the N_Object_Declaration,
|
303 |
|
|
-- node. The caller has not yet set any attributes of this entity.
|
304 |
|
|
|
305 |
|
|
function Contain_Interface
|
306 |
|
|
(Iface : Entity_Id;
|
307 |
|
|
Ifaces : Elist_Id) return Boolean;
|
308 |
|
|
-- Ada 2005: Determine whether Iface is present in the list Ifaces
|
309 |
|
|
|
310 |
|
|
procedure Convert_Scalar_Bounds
|
311 |
|
|
(N : Node_Id;
|
312 |
|
|
Parent_Type : Entity_Id;
|
313 |
|
|
Derived_Type : Entity_Id;
|
314 |
|
|
Loc : Source_Ptr);
|
315 |
|
|
-- For derived scalar types, convert the bounds in the type definition to
|
316 |
|
|
-- the derived type, and complete their analysis. Given a constraint of the
|
317 |
|
|
-- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
|
318 |
|
|
-- T'Base, the parent_type. The bounds of the derived type (the anonymous
|
319 |
|
|
-- base) are copies of Lo and Hi. Finally, the bounds of the derived
|
320 |
|
|
-- subtype are conversions of those bounds to the derived_type, so that
|
321 |
|
|
-- their typing is consistent.
|
322 |
|
|
|
323 |
|
|
procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
|
324 |
|
|
-- Copies attributes from array base type T2 to array base type T1. Copies
|
325 |
|
|
-- only attributes that apply to base types, but not subtypes.
|
326 |
|
|
|
327 |
|
|
procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
|
328 |
|
|
-- Copies attributes from array subtype T2 to array subtype T1. Copies
|
329 |
|
|
-- attributes that apply to both subtypes and base types.
|
330 |
|
|
|
331 |
|
|
procedure Create_Constrained_Components
|
332 |
|
|
(Subt : Entity_Id;
|
333 |
|
|
Decl_Node : Node_Id;
|
334 |
|
|
Typ : Entity_Id;
|
335 |
|
|
Constraints : Elist_Id);
|
336 |
|
|
-- Build the list of entities for a constrained discriminated record
|
337 |
|
|
-- subtype. If a component depends on a discriminant, replace its subtype
|
338 |
|
|
-- using the discriminant values in the discriminant constraint. Subt
|
339 |
|
|
-- is the defining identifier for the subtype whose list of constrained
|
340 |
|
|
-- entities we will create. Decl_Node is the type declaration node where
|
341 |
|
|
-- we will attach all the itypes created. Typ is the base discriminated
|
342 |
|
|
-- type for the subtype Subt. Constraints is the list of discriminant
|
343 |
|
|
-- constraints for Typ.
|
344 |
|
|
|
345 |
|
|
function Constrain_Component_Type
|
346 |
|
|
(Comp : Entity_Id;
|
347 |
|
|
Constrained_Typ : Entity_Id;
|
348 |
|
|
Related_Node : Node_Id;
|
349 |
|
|
Typ : Entity_Id;
|
350 |
|
|
Constraints : Elist_Id) return Entity_Id;
|
351 |
|
|
-- Given a discriminated base type Typ, a list of discriminant constraint
|
352 |
|
|
-- Constraints for Typ and a component of Typ, with type Compon_Type,
|
353 |
|
|
-- create and return the type corresponding to Compon_type where all
|
354 |
|
|
-- discriminant references are replaced with the corresponding constraint.
|
355 |
|
|
-- If no discriminant references occur in Compon_Typ then return it as is.
|
356 |
|
|
-- Constrained_Typ is the final constrained subtype to which the
|
357 |
|
|
-- constrained Compon_Type belongs. Related_Node is the node where we will
|
358 |
|
|
-- attach all the itypes created.
|
359 |
|
|
--
|
360 |
|
|
-- Above description is confused, what is Compon_Type???
|
361 |
|
|
|
362 |
|
|
procedure Constrain_Access
|
363 |
|
|
(Def_Id : in out Entity_Id;
|
364 |
|
|
S : Node_Id;
|
365 |
|
|
Related_Nod : Node_Id);
|
366 |
|
|
-- Apply a list of constraints to an access type. If Def_Id is empty, it is
|
367 |
|
|
-- an anonymous type created for a subtype indication. In that case it is
|
368 |
|
|
-- created in the procedure and attached to Related_Nod.
|
369 |
|
|
|
370 |
|
|
procedure Constrain_Array
|
371 |
|
|
(Def_Id : in out Entity_Id;
|
372 |
|
|
SI : Node_Id;
|
373 |
|
|
Related_Nod : Node_Id;
|
374 |
|
|
Related_Id : Entity_Id;
|
375 |
|
|
Suffix : Character);
|
376 |
|
|
-- Apply a list of index constraints to an unconstrained array type. The
|
377 |
|
|
-- first parameter is the entity for the resulting subtype. A value of
|
378 |
|
|
-- Empty for Def_Id indicates that an implicit type must be created, but
|
379 |
|
|
-- creation is delayed (and must be done by this procedure) because other
|
380 |
|
|
-- subsidiary implicit types must be created first (which is why Def_Id
|
381 |
|
|
-- is an in/out parameter). The second parameter is a subtype indication
|
382 |
|
|
-- node for the constrained array to be created (e.g. something of the
|
383 |
|
|
-- form string (1 .. 10)). Related_Nod gives the place where this type
|
384 |
|
|
-- has to be inserted in the tree. The Related_Id and Suffix parameters
|
385 |
|
|
-- are used to build the associated Implicit type name.
|
386 |
|
|
|
387 |
|
|
procedure Constrain_Concurrent
|
388 |
|
|
(Def_Id : in out Entity_Id;
|
389 |
|
|
SI : Node_Id;
|
390 |
|
|
Related_Nod : Node_Id;
|
391 |
|
|
Related_Id : Entity_Id;
|
392 |
|
|
Suffix : Character);
|
393 |
|
|
-- Apply list of discriminant constraints to an unconstrained concurrent
|
394 |
|
|
-- type.
|
395 |
|
|
--
|
396 |
|
|
-- SI is the N_Subtype_Indication node containing the constraint and
|
397 |
|
|
-- the unconstrained type to constrain.
|
398 |
|
|
--
|
399 |
|
|
-- Def_Id is the entity for the resulting constrained subtype. A value
|
400 |
|
|
-- of Empty for Def_Id indicates that an implicit type must be created,
|
401 |
|
|
-- but creation is delayed (and must be done by this procedure) because
|
402 |
|
|
-- other subsidiary implicit types must be created first (which is why
|
403 |
|
|
-- Def_Id is an in/out parameter).
|
404 |
|
|
--
|
405 |
|
|
-- Related_Nod gives the place where this type has to be inserted
|
406 |
|
|
-- in the tree
|
407 |
|
|
--
|
408 |
|
|
-- The last two arguments are used to create its external name if needed.
|
409 |
|
|
|
410 |
|
|
function Constrain_Corresponding_Record
|
411 |
|
|
(Prot_Subt : Entity_Id;
|
412 |
|
|
Corr_Rec : Entity_Id;
|
413 |
|
|
Related_Nod : Node_Id;
|
414 |
|
|
Related_Id : Entity_Id) return Entity_Id;
|
415 |
|
|
-- When constraining a protected type or task type with discriminants,
|
416 |
|
|
-- constrain the corresponding record with the same discriminant values.
|
417 |
|
|
|
418 |
|
|
procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
|
419 |
|
|
-- Constrain a decimal fixed point type with a digits constraint and/or a
|
420 |
|
|
-- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
|
421 |
|
|
|
422 |
|
|
procedure Constrain_Discriminated_Type
|
423 |
|
|
(Def_Id : Entity_Id;
|
424 |
|
|
S : Node_Id;
|
425 |
|
|
Related_Nod : Node_Id;
|
426 |
|
|
For_Access : Boolean := False);
|
427 |
|
|
-- Process discriminant constraints of composite type. Verify that values
|
428 |
|
|
-- have been provided for all discriminants, that the original type is
|
429 |
|
|
-- unconstrained, and that the types of the supplied expressions match
|
430 |
|
|
-- the discriminant types. The first three parameters are like in routine
|
431 |
|
|
-- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
|
432 |
|
|
-- of For_Access.
|
433 |
|
|
|
434 |
|
|
procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
|
435 |
|
|
-- Constrain an enumeration type with a range constraint. This is identical
|
436 |
|
|
-- to Constrain_Integer, but for the Ekind of the resulting subtype.
|
437 |
|
|
|
438 |
|
|
procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
|
439 |
|
|
-- Constrain a floating point type with either a digits constraint
|
440 |
|
|
-- and/or a range constraint, building a E_Floating_Point_Subtype.
|
441 |
|
|
|
442 |
|
|
procedure Constrain_Index
|
443 |
|
|
(Index : Node_Id;
|
444 |
|
|
S : Node_Id;
|
445 |
|
|
Related_Nod : Node_Id;
|
446 |
|
|
Related_Id : Entity_Id;
|
447 |
|
|
Suffix : Character;
|
448 |
|
|
Suffix_Index : Nat);
|
449 |
|
|
-- Process an index constraint S in a constrained array declaration. The
|
450 |
|
|
-- constraint can be a subtype name, or a range with or without an explicit
|
451 |
|
|
-- subtype mark. The index is the corresponding index of the unconstrained
|
452 |
|
|
-- array. The Related_Id and Suffix parameters are used to build the
|
453 |
|
|
-- associated Implicit type name.
|
454 |
|
|
|
455 |
|
|
procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
|
456 |
|
|
-- Build subtype of a signed or modular integer type
|
457 |
|
|
|
458 |
|
|
procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
|
459 |
|
|
-- Constrain an ordinary fixed point type with a range constraint, and
|
460 |
|
|
-- build an E_Ordinary_Fixed_Point_Subtype entity.
|
461 |
|
|
|
462 |
|
|
procedure Copy_And_Swap (Priv, Full : Entity_Id);
|
463 |
|
|
-- Copy the Priv entity into the entity of its full declaration then swap
|
464 |
|
|
-- the two entities in such a manner that the former private type is now
|
465 |
|
|
-- seen as a full type.
|
466 |
|
|
|
467 |
|
|
procedure Decimal_Fixed_Point_Type_Declaration
|
468 |
|
|
(T : Entity_Id;
|
469 |
|
|
Def : Node_Id);
|
470 |
|
|
-- Create a new decimal fixed point type, and apply the constraint to
|
471 |
|
|
-- obtain a subtype of this new type.
|
472 |
|
|
|
473 |
|
|
procedure Complete_Private_Subtype
|
474 |
|
|
(Priv : Entity_Id;
|
475 |
|
|
Full : Entity_Id;
|
476 |
|
|
Full_Base : Entity_Id;
|
477 |
|
|
Related_Nod : Node_Id);
|
478 |
|
|
-- Complete the implicit full view of a private subtype by setting the
|
479 |
|
|
-- appropriate semantic fields. If the full view of the parent is a record
|
480 |
|
|
-- type, build constrained components of subtype.
|
481 |
|
|
|
482 |
|
|
procedure Derive_Progenitor_Subprograms
|
483 |
|
|
(Parent_Type : Entity_Id;
|
484 |
|
|
Tagged_Type : Entity_Id);
|
485 |
|
|
-- Ada 2005 (AI-251): To complete type derivation, collect the primitive
|
486 |
|
|
-- operations of progenitors of Tagged_Type, and replace the subsidiary
|
487 |
|
|
-- subtypes with Tagged_Type, to build the specs of the inherited interface
|
488 |
|
|
-- primitives. The derived primitives are aliased to those of the
|
489 |
|
|
-- interface. This routine takes care also of transferring to the full view
|
490 |
|
|
-- subprograms associated with the partial view of Tagged_Type that cover
|
491 |
|
|
-- interface primitives.
|
492 |
|
|
|
493 |
|
|
procedure Derived_Standard_Character
|
494 |
|
|
(N : Node_Id;
|
495 |
|
|
Parent_Type : Entity_Id;
|
496 |
|
|
Derived_Type : Entity_Id);
|
497 |
|
|
-- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
|
498 |
|
|
-- derivations from types Standard.Character and Standard.Wide_Character.
|
499 |
|
|
|
500 |
|
|
procedure Derived_Type_Declaration
|
501 |
|
|
(T : Entity_Id;
|
502 |
|
|
N : Node_Id;
|
503 |
|
|
Is_Completion : Boolean);
|
504 |
|
|
-- Process a derived type declaration. Build_Derived_Type is invoked
|
505 |
|
|
-- to process the actual derived type definition. Parameters N and
|
506 |
|
|
-- Is_Completion have the same meaning as in Build_Derived_Type.
|
507 |
|
|
-- T is the N_Defining_Identifier for the entity defined in the
|
508 |
|
|
-- N_Full_Type_Declaration node N, that is T is the derived type.
|
509 |
|
|
|
510 |
|
|
procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
|
511 |
|
|
-- Insert each literal in symbol table, as an overloadable identifier. Each
|
512 |
|
|
-- enumeration type is mapped into a sequence of integers, and each literal
|
513 |
|
|
-- is defined as a constant with integer value. If any of the literals are
|
514 |
|
|
-- character literals, the type is a character type, which means that
|
515 |
|
|
-- strings are legal aggregates for arrays of components of the type.
|
516 |
|
|
|
517 |
|
|
function Expand_To_Stored_Constraint
|
518 |
|
|
(Typ : Entity_Id;
|
519 |
|
|
Constraint : Elist_Id) return Elist_Id;
|
520 |
|
|
-- Given a constraint (i.e. a list of expressions) on the discriminants of
|
521 |
|
|
-- Typ, expand it into a constraint on the stored discriminants and return
|
522 |
|
|
-- the new list of expressions constraining the stored discriminants.
|
523 |
|
|
|
524 |
|
|
function Find_Type_Of_Object
|
525 |
|
|
(Obj_Def : Node_Id;
|
526 |
|
|
Related_Nod : Node_Id) return Entity_Id;
|
527 |
|
|
-- Get type entity for object referenced by Obj_Def, attaching the
|
528 |
|
|
-- implicit types generated to Related_Nod
|
529 |
|
|
|
530 |
|
|
procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
|
531 |
|
|
-- Create a new float and apply the constraint to obtain subtype of it
|
532 |
|
|
|
533 |
|
|
function Has_Range_Constraint (N : Node_Id) return Boolean;
|
534 |
|
|
-- Given an N_Subtype_Indication node N, return True if a range constraint
|
535 |
|
|
-- is present, either directly, or as part of a digits or delta constraint.
|
536 |
|
|
-- In addition, a digits constraint in the decimal case returns True, since
|
537 |
|
|
-- it establishes a default range if no explicit range is present.
|
538 |
|
|
|
539 |
|
|
function Inherit_Components
|
540 |
|
|
(N : Node_Id;
|
541 |
|
|
Parent_Base : Entity_Id;
|
542 |
|
|
Derived_Base : Entity_Id;
|
543 |
|
|
Is_Tagged : Boolean;
|
544 |
|
|
Inherit_Discr : Boolean;
|
545 |
|
|
Discs : Elist_Id) return Elist_Id;
|
546 |
|
|
-- Called from Build_Derived_Record_Type to inherit the components of
|
547 |
|
|
-- Parent_Base (a base type) into the Derived_Base (the derived base type).
|
548 |
|
|
-- For more information on derived types and component inheritance please
|
549 |
|
|
-- consult the comment above the body of Build_Derived_Record_Type.
|
550 |
|
|
--
|
551 |
|
|
-- N is the original derived type declaration
|
552 |
|
|
--
|
553 |
|
|
-- Is_Tagged is set if we are dealing with tagged types
|
554 |
|
|
--
|
555 |
|
|
-- If Inherit_Discr is set, Derived_Base inherits its discriminants from
|
556 |
|
|
-- Parent_Base, otherwise no discriminants are inherited.
|
557 |
|
|
--
|
558 |
|
|
-- Discs gives the list of constraints that apply to Parent_Base in the
|
559 |
|
|
-- derived type declaration. If Discs is set to No_Elist, then we have
|
560 |
|
|
-- the following situation:
|
561 |
|
|
--
|
562 |
|
|
-- type Parent (D1..Dn : ..) is [tagged] record ...;
|
563 |
|
|
-- type Derived is new Parent [with ...];
|
564 |
|
|
--
|
565 |
|
|
-- which gets treated as
|
566 |
|
|
--
|
567 |
|
|
-- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
|
568 |
|
|
--
|
569 |
|
|
-- For untagged types the returned value is an association list. The list
|
570 |
|
|
-- starts from the association (Parent_Base => Derived_Base), and then it
|
571 |
|
|
-- contains a sequence of the associations of the form
|
572 |
|
|
--
|
573 |
|
|
-- (Old_Component => New_Component),
|
574 |
|
|
--
|
575 |
|
|
-- where Old_Component is the Entity_Id of a component in Parent_Base and
|
576 |
|
|
-- New_Component is the Entity_Id of the corresponding component in
|
577 |
|
|
-- Derived_Base. For untagged records, this association list is needed when
|
578 |
|
|
-- copying the record declaration for the derived base. In the tagged case
|
579 |
|
|
-- the value returned is irrelevant.
|
580 |
|
|
|
581 |
|
|
function Is_Valid_Constraint_Kind
|
582 |
|
|
(T_Kind : Type_Kind;
|
583 |
|
|
Constraint_Kind : Node_Kind) return Boolean;
|
584 |
|
|
-- Returns True if it is legal to apply the given kind of constraint to the
|
585 |
|
|
-- given kind of type (index constraint to an array type, for example).
|
586 |
|
|
|
587 |
|
|
procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
|
588 |
|
|
-- Create new modular type. Verify that modulus is in bounds
|
589 |
|
|
|
590 |
|
|
procedure New_Concatenation_Op (Typ : Entity_Id);
|
591 |
|
|
-- Create an abbreviated declaration for an operator in order to
|
592 |
|
|
-- materialize concatenation on array types.
|
593 |
|
|
|
594 |
|
|
procedure Ordinary_Fixed_Point_Type_Declaration
|
595 |
|
|
(T : Entity_Id;
|
596 |
|
|
Def : Node_Id);
|
597 |
|
|
-- Create a new ordinary fixed point type, and apply the constraint to
|
598 |
|
|
-- obtain subtype of it.
|
599 |
|
|
|
600 |
|
|
procedure Prepare_Private_Subtype_Completion
|
601 |
|
|
(Id : Entity_Id;
|
602 |
|
|
Related_Nod : Node_Id);
|
603 |
|
|
-- Id is a subtype of some private type. Creates the full declaration
|
604 |
|
|
-- associated with Id whenever possible, i.e. when the full declaration
|
605 |
|
|
-- of the base type is already known. Records each subtype into
|
606 |
|
|
-- Private_Dependents of the base type.
|
607 |
|
|
|
608 |
|
|
procedure Process_Incomplete_Dependents
|
609 |
|
|
(N : Node_Id;
|
610 |
|
|
Full_T : Entity_Id;
|
611 |
|
|
Inc_T : Entity_Id);
|
612 |
|
|
-- Process all entities that depend on an incomplete type. There include
|
613 |
|
|
-- subtypes, subprogram types that mention the incomplete type in their
|
614 |
|
|
-- profiles, and subprogram with access parameters that designate the
|
615 |
|
|
-- incomplete type.
|
616 |
|
|
|
617 |
|
|
-- Inc_T is the defining identifier of an incomplete type declaration, its
|
618 |
|
|
-- Ekind is E_Incomplete_Type.
|
619 |
|
|
--
|
620 |
|
|
-- N is the corresponding N_Full_Type_Declaration for Inc_T.
|
621 |
|
|
--
|
622 |
|
|
-- Full_T is N's defining identifier.
|
623 |
|
|
--
|
624 |
|
|
-- Subtypes of incomplete types with discriminants are completed when the
|
625 |
|
|
-- parent type is. This is simpler than private subtypes, because they can
|
626 |
|
|
-- only appear in the same scope, and there is no need to exchange views.
|
627 |
|
|
-- Similarly, access_to_subprogram types may have a parameter or a return
|
628 |
|
|
-- type that is an incomplete type, and that must be replaced with the
|
629 |
|
|
-- full type.
|
630 |
|
|
--
|
631 |
|
|
-- If the full type is tagged, subprogram with access parameters that
|
632 |
|
|
-- designated the incomplete may be primitive operations of the full type,
|
633 |
|
|
-- and have to be processed accordingly.
|
634 |
|
|
|
635 |
|
|
procedure Process_Real_Range_Specification (Def : Node_Id);
|
636 |
|
|
-- Given the type definition for a real type, this procedure processes and
|
637 |
|
|
-- checks the real range specification of this type definition if one is
|
638 |
|
|
-- present. If errors are found, error messages are posted, and the
|
639 |
|
|
-- Real_Range_Specification of Def is reset to Empty.
|
640 |
|
|
|
641 |
|
|
procedure Record_Type_Declaration
|
642 |
|
|
(T : Entity_Id;
|
643 |
|
|
N : Node_Id;
|
644 |
|
|
Prev : Entity_Id);
|
645 |
|
|
-- Process a record type declaration (for both untagged and tagged
|
646 |
|
|
-- records). Parameters T and N are exactly like in procedure
|
647 |
|
|
-- Derived_Type_Declaration, except that no flag Is_Completion is needed
|
648 |
|
|
-- for this routine. If this is the completion of an incomplete type
|
649 |
|
|
-- declaration, Prev is the entity of the incomplete declaration, used for
|
650 |
|
|
-- cross-referencing. Otherwise Prev = T.
|
651 |
|
|
|
652 |
|
|
procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
|
653 |
|
|
-- This routine is used to process the actual record type definition (both
|
654 |
|
|
-- for untagged and tagged records). Def is a record type definition node.
|
655 |
|
|
-- This procedure analyzes the components in this record type definition.
|
656 |
|
|
-- Prev_T is the entity for the enclosing record type. It is provided so
|
657 |
|
|
-- that its Has_Task flag can be set if any of the component have Has_Task
|
658 |
|
|
-- set. If the declaration is the completion of an incomplete type
|
659 |
|
|
-- declaration, Prev_T is the original incomplete type, whose full view is
|
660 |
|
|
-- the record type.
|
661 |
|
|
|
662 |
|
|
procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
|
663 |
|
|
-- Subsidiary to Build_Derived_Record_Type. For untagged records, we
|
664 |
|
|
-- build a copy of the declaration tree of the parent, and we create
|
665 |
|
|
-- independently the list of components for the derived type. Semantic
|
666 |
|
|
-- information uses the component entities, but record representation
|
667 |
|
|
-- clauses are validated on the declaration tree. This procedure replaces
|
668 |
|
|
-- discriminants and components in the declaration with those that have
|
669 |
|
|
-- been created by Inherit_Components.
|
670 |
|
|
|
671 |
|
|
procedure Set_Fixed_Range
|
672 |
|
|
(E : Entity_Id;
|
673 |
|
|
Loc : Source_Ptr;
|
674 |
|
|
Lo : Ureal;
|
675 |
|
|
Hi : Ureal);
|
676 |
|
|
-- Build a range node with the given bounds and set it as the Scalar_Range
|
677 |
|
|
-- of the given fixed-point type entity. Loc is the source location used
|
678 |
|
|
-- for the constructed range. See body for further details.
|
679 |
|
|
|
680 |
|
|
procedure Set_Scalar_Range_For_Subtype
|
681 |
|
|
(Def_Id : Entity_Id;
|
682 |
|
|
R : Node_Id;
|
683 |
|
|
Subt : Entity_Id);
|
684 |
|
|
-- This routine is used to set the scalar range field for a subtype given
|
685 |
|
|
-- Def_Id, the entity for the subtype, and R, the range expression for the
|
686 |
|
|
-- scalar range. Subt provides the parent subtype to be used to analyze,
|
687 |
|
|
-- resolve, and check the given range.
|
688 |
|
|
|
689 |
|
|
procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
|
690 |
|
|
-- Create a new signed integer entity, and apply the constraint to obtain
|
691 |
|
|
-- the required first named subtype of this type.
|
692 |
|
|
|
693 |
|
|
procedure Set_Stored_Constraint_From_Discriminant_Constraint
|
694 |
|
|
(E : Entity_Id);
|
695 |
|
|
-- E is some record type. This routine computes E's Stored_Constraint
|
696 |
|
|
-- from its Discriminant_Constraint.
|
697 |
|
|
|
698 |
|
|
procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
|
699 |
|
|
-- Check that an entity in a list of progenitors is an interface,
|
700 |
|
|
-- emit error otherwise.
|
701 |
|
|
|
702 |
|
|
-----------------------
|
703 |
|
|
-- Access_Definition --
|
704 |
|
|
-----------------------
|
705 |
|
|
|
706 |
|
|
function Access_Definition
|
707 |
|
|
(Related_Nod : Node_Id;
|
708 |
|
|
N : Node_Id) return Entity_Id
|
709 |
|
|
is
|
710 |
|
|
Anon_Type : Entity_Id;
|
711 |
|
|
Anon_Scope : Entity_Id;
|
712 |
|
|
Desig_Type : Entity_Id;
|
713 |
|
|
Enclosing_Prot_Type : Entity_Id := Empty;
|
714 |
|
|
|
715 |
|
|
begin
|
716 |
|
|
Check_SPARK_Restriction ("access type is not allowed", N);
|
717 |
|
|
|
718 |
|
|
if Is_Entry (Current_Scope)
|
719 |
|
|
and then Is_Task_Type (Etype (Scope (Current_Scope)))
|
720 |
|
|
then
|
721 |
|
|
Error_Msg_N ("task entries cannot have access parameters", N);
|
722 |
|
|
return Empty;
|
723 |
|
|
end if;
|
724 |
|
|
|
725 |
|
|
-- Ada 2005: for an object declaration the corresponding anonymous
|
726 |
|
|
-- type is declared in the current scope.
|
727 |
|
|
|
728 |
|
|
-- If the access definition is the return type of another access to
|
729 |
|
|
-- function, scope is the current one, because it is the one of the
|
730 |
|
|
-- current type declaration, except for the pathological case below.
|
731 |
|
|
|
732 |
|
|
if Nkind_In (Related_Nod, N_Object_Declaration,
|
733 |
|
|
N_Access_Function_Definition)
|
734 |
|
|
then
|
735 |
|
|
Anon_Scope := Current_Scope;
|
736 |
|
|
|
737 |
|
|
-- A pathological case: function returning access functions that
|
738 |
|
|
-- return access functions, etc. Each anonymous access type created
|
739 |
|
|
-- is in the enclosing scope of the outermost function.
|
740 |
|
|
|
741 |
|
|
declare
|
742 |
|
|
Par : Node_Id;
|
743 |
|
|
|
744 |
|
|
begin
|
745 |
|
|
Par := Related_Nod;
|
746 |
|
|
while Nkind_In (Par, N_Access_Function_Definition,
|
747 |
|
|
N_Access_Definition)
|
748 |
|
|
loop
|
749 |
|
|
Par := Parent (Par);
|
750 |
|
|
end loop;
|
751 |
|
|
|
752 |
|
|
if Nkind (Par) = N_Function_Specification then
|
753 |
|
|
Anon_Scope := Scope (Defining_Entity (Par));
|
754 |
|
|
end if;
|
755 |
|
|
end;
|
756 |
|
|
|
757 |
|
|
-- For the anonymous function result case, retrieve the scope of the
|
758 |
|
|
-- function specification's associated entity rather than using the
|
759 |
|
|
-- current scope. The current scope will be the function itself if the
|
760 |
|
|
-- formal part is currently being analyzed, but will be the parent scope
|
761 |
|
|
-- in the case of a parameterless function, and we always want to use
|
762 |
|
|
-- the function's parent scope. Finally, if the function is a child
|
763 |
|
|
-- unit, we must traverse the tree to retrieve the proper entity.
|
764 |
|
|
|
765 |
|
|
elsif Nkind (Related_Nod) = N_Function_Specification
|
766 |
|
|
and then Nkind (Parent (N)) /= N_Parameter_Specification
|
767 |
|
|
then
|
768 |
|
|
-- If the current scope is a protected type, the anonymous access
|
769 |
|
|
-- is associated with one of the protected operations, and must
|
770 |
|
|
-- be available in the scope that encloses the protected declaration.
|
771 |
|
|
-- Otherwise the type is in the scope enclosing the subprogram.
|
772 |
|
|
|
773 |
|
|
-- If the function has formals, The return type of a subprogram
|
774 |
|
|
-- declaration is analyzed in the scope of the subprogram (see
|
775 |
|
|
-- Process_Formals) and thus the protected type, if present, is
|
776 |
|
|
-- the scope of the current function scope.
|
777 |
|
|
|
778 |
|
|
if Ekind (Current_Scope) = E_Protected_Type then
|
779 |
|
|
Enclosing_Prot_Type := Current_Scope;
|
780 |
|
|
|
781 |
|
|
elsif Ekind (Current_Scope) = E_Function
|
782 |
|
|
and then Ekind (Scope (Current_Scope)) = E_Protected_Type
|
783 |
|
|
then
|
784 |
|
|
Enclosing_Prot_Type := Scope (Current_Scope);
|
785 |
|
|
end if;
|
786 |
|
|
|
787 |
|
|
if Present (Enclosing_Prot_Type) then
|
788 |
|
|
Anon_Scope := Scope (Enclosing_Prot_Type);
|
789 |
|
|
|
790 |
|
|
else
|
791 |
|
|
Anon_Scope := Scope (Defining_Entity (Related_Nod));
|
792 |
|
|
end if;
|
793 |
|
|
|
794 |
|
|
-- For an access type definition, if the current scope is a child
|
795 |
|
|
-- unit it is the scope of the type.
|
796 |
|
|
|
797 |
|
|
elsif Is_Compilation_Unit (Current_Scope) then
|
798 |
|
|
Anon_Scope := Current_Scope;
|
799 |
|
|
|
800 |
|
|
-- For access formals, access components, and access discriminants, the
|
801 |
|
|
-- scope is that of the enclosing declaration,
|
802 |
|
|
|
803 |
|
|
else
|
804 |
|
|
Anon_Scope := Scope (Current_Scope);
|
805 |
|
|
end if;
|
806 |
|
|
|
807 |
|
|
Anon_Type :=
|
808 |
|
|
Create_Itype
|
809 |
|
|
(E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
|
810 |
|
|
|
811 |
|
|
if All_Present (N)
|
812 |
|
|
and then Ada_Version >= Ada_2005
|
813 |
|
|
then
|
814 |
|
|
Error_Msg_N ("ALL is not permitted for anonymous access types", N);
|
815 |
|
|
end if;
|
816 |
|
|
|
817 |
|
|
-- Ada 2005 (AI-254): In case of anonymous access to subprograms call
|
818 |
|
|
-- the corresponding semantic routine
|
819 |
|
|
|
820 |
|
|
if Present (Access_To_Subprogram_Definition (N)) then
|
821 |
|
|
|
822 |
|
|
-- Compiler runtime units are compiled in Ada 2005 mode when building
|
823 |
|
|
-- the runtime library but must also be compilable in Ada 95 mode
|
824 |
|
|
-- (when bootstrapping the compiler).
|
825 |
|
|
|
826 |
|
|
Check_Compiler_Unit (N);
|
827 |
|
|
|
828 |
|
|
Access_Subprogram_Declaration
|
829 |
|
|
(T_Name => Anon_Type,
|
830 |
|
|
T_Def => Access_To_Subprogram_Definition (N));
|
831 |
|
|
|
832 |
|
|
if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
|
833 |
|
|
Set_Ekind
|
834 |
|
|
(Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
|
835 |
|
|
else
|
836 |
|
|
Set_Ekind
|
837 |
|
|
(Anon_Type, E_Anonymous_Access_Subprogram_Type);
|
838 |
|
|
end if;
|
839 |
|
|
|
840 |
|
|
Set_Can_Use_Internal_Rep
|
841 |
|
|
(Anon_Type, not Always_Compatible_Rep_On_Target);
|
842 |
|
|
|
843 |
|
|
-- If the anonymous access is associated with a protected operation,
|
844 |
|
|
-- create a reference to it after the enclosing protected definition
|
845 |
|
|
-- because the itype will be used in the subsequent bodies.
|
846 |
|
|
|
847 |
|
|
if Ekind (Current_Scope) = E_Protected_Type then
|
848 |
|
|
Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
|
849 |
|
|
end if;
|
850 |
|
|
|
851 |
|
|
return Anon_Type;
|
852 |
|
|
end if;
|
853 |
|
|
|
854 |
|
|
Find_Type (Subtype_Mark (N));
|
855 |
|
|
Desig_Type := Entity (Subtype_Mark (N));
|
856 |
|
|
|
857 |
|
|
Set_Directly_Designated_Type (Anon_Type, Desig_Type);
|
858 |
|
|
Set_Etype (Anon_Type, Anon_Type);
|
859 |
|
|
|
860 |
|
|
-- Make sure the anonymous access type has size and alignment fields
|
861 |
|
|
-- set, as required by gigi. This is necessary in the case of the
|
862 |
|
|
-- Task_Body_Procedure.
|
863 |
|
|
|
864 |
|
|
if not Has_Private_Component (Desig_Type) then
|
865 |
|
|
Layout_Type (Anon_Type);
|
866 |
|
|
end if;
|
867 |
|
|
|
868 |
|
|
-- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
|
869 |
|
|
-- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
|
870 |
|
|
-- the null value is allowed. In Ada 95 the null value is never allowed.
|
871 |
|
|
|
872 |
|
|
if Ada_Version >= Ada_2005 then
|
873 |
|
|
Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
|
874 |
|
|
else
|
875 |
|
|
Set_Can_Never_Be_Null (Anon_Type, True);
|
876 |
|
|
end if;
|
877 |
|
|
|
878 |
|
|
-- The anonymous access type is as public as the discriminated type or
|
879 |
|
|
-- subprogram that defines it. It is imported (for back-end purposes)
|
880 |
|
|
-- if the designated type is.
|
881 |
|
|
|
882 |
|
|
Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
|
883 |
|
|
|
884 |
|
|
-- Ada 2005 (AI-231): Propagate the access-constant attribute
|
885 |
|
|
|
886 |
|
|
Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
|
887 |
|
|
|
888 |
|
|
-- The context is either a subprogram declaration, object declaration,
|
889 |
|
|
-- or an access discriminant, in a private or a full type declaration.
|
890 |
|
|
-- In the case of a subprogram, if the designated type is incomplete,
|
891 |
|
|
-- the operation will be a primitive operation of the full type, to be
|
892 |
|
|
-- updated subsequently. If the type is imported through a limited_with
|
893 |
|
|
-- clause, the subprogram is not a primitive operation of the type
|
894 |
|
|
-- (which is declared elsewhere in some other scope).
|
895 |
|
|
|
896 |
|
|
if Ekind (Desig_Type) = E_Incomplete_Type
|
897 |
|
|
and then not From_With_Type (Desig_Type)
|
898 |
|
|
and then Is_Overloadable (Current_Scope)
|
899 |
|
|
then
|
900 |
|
|
Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
|
901 |
|
|
Set_Has_Delayed_Freeze (Current_Scope);
|
902 |
|
|
end if;
|
903 |
|
|
|
904 |
|
|
-- Ada 2005: if the designated type is an interface that may contain
|
905 |
|
|
-- tasks, create a Master entity for the declaration. This must be done
|
906 |
|
|
-- before expansion of the full declaration, because the declaration may
|
907 |
|
|
-- include an expression that is an allocator, whose expansion needs the
|
908 |
|
|
-- proper Master for the created tasks.
|
909 |
|
|
|
910 |
|
|
if Nkind (Related_Nod) = N_Object_Declaration
|
911 |
|
|
and then Expander_Active
|
912 |
|
|
then
|
913 |
|
|
if Is_Interface (Desig_Type)
|
914 |
|
|
and then Is_Limited_Record (Desig_Type)
|
915 |
|
|
then
|
916 |
|
|
Build_Class_Wide_Master (Anon_Type);
|
917 |
|
|
|
918 |
|
|
-- Similarly, if the type is an anonymous access that designates
|
919 |
|
|
-- tasks, create a master entity for it in the current context.
|
920 |
|
|
|
921 |
|
|
elsif Has_Task (Desig_Type)
|
922 |
|
|
and then Comes_From_Source (Related_Nod)
|
923 |
|
|
then
|
924 |
|
|
Build_Master_Entity (Defining_Identifier (Related_Nod));
|
925 |
|
|
Build_Master_Renaming (Anon_Type);
|
926 |
|
|
end if;
|
927 |
|
|
end if;
|
928 |
|
|
|
929 |
|
|
-- For a private component of a protected type, it is imperative that
|
930 |
|
|
-- the back-end elaborate the type immediately after the protected
|
931 |
|
|
-- declaration, because this type will be used in the declarations
|
932 |
|
|
-- created for the component within each protected body, so we must
|
933 |
|
|
-- create an itype reference for it now.
|
934 |
|
|
|
935 |
|
|
if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
|
936 |
|
|
Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
|
937 |
|
|
|
938 |
|
|
-- Similarly, if the access definition is the return result of a
|
939 |
|
|
-- function, create an itype reference for it because it will be used
|
940 |
|
|
-- within the function body. For a regular function that is not a
|
941 |
|
|
-- compilation unit, insert reference after the declaration. For a
|
942 |
|
|
-- protected operation, insert it after the enclosing protected type
|
943 |
|
|
-- declaration. In either case, do not create a reference for a type
|
944 |
|
|
-- obtained through a limited_with clause, because this would introduce
|
945 |
|
|
-- semantic dependencies.
|
946 |
|
|
|
947 |
|
|
-- Similarly, do not create a reference if the designated type is a
|
948 |
|
|
-- generic formal, because no use of it will reach the backend.
|
949 |
|
|
|
950 |
|
|
elsif Nkind (Related_Nod) = N_Function_Specification
|
951 |
|
|
and then not From_With_Type (Desig_Type)
|
952 |
|
|
and then not Is_Generic_Type (Desig_Type)
|
953 |
|
|
then
|
954 |
|
|
if Present (Enclosing_Prot_Type) then
|
955 |
|
|
Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
|
956 |
|
|
|
957 |
|
|
elsif Is_List_Member (Parent (Related_Nod))
|
958 |
|
|
and then Nkind (Parent (N)) /= N_Parameter_Specification
|
959 |
|
|
then
|
960 |
|
|
Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
|
961 |
|
|
end if;
|
962 |
|
|
|
963 |
|
|
-- Finally, create an itype reference for an object declaration of an
|
964 |
|
|
-- anonymous access type. This is strictly necessary only for deferred
|
965 |
|
|
-- constants, but in any case will avoid out-of-scope problems in the
|
966 |
|
|
-- back-end.
|
967 |
|
|
|
968 |
|
|
elsif Nkind (Related_Nod) = N_Object_Declaration then
|
969 |
|
|
Build_Itype_Reference (Anon_Type, Related_Nod);
|
970 |
|
|
end if;
|
971 |
|
|
|
972 |
|
|
return Anon_Type;
|
973 |
|
|
end Access_Definition;
|
974 |
|
|
|
975 |
|
|
-----------------------------------
|
976 |
|
|
-- Access_Subprogram_Declaration --
|
977 |
|
|
-----------------------------------
|
978 |
|
|
|
979 |
|
|
procedure Access_Subprogram_Declaration
|
980 |
|
|
(T_Name : Entity_Id;
|
981 |
|
|
T_Def : Node_Id)
|
982 |
|
|
is
|
983 |
|
|
|
984 |
|
|
procedure Check_For_Premature_Usage (Def : Node_Id);
|
985 |
|
|
-- Check that type T_Name is not used, directly or recursively, as a
|
986 |
|
|
-- parameter or a return type in Def. Def is either a subtype, an
|
987 |
|
|
-- access_definition, or an access_to_subprogram_definition.
|
988 |
|
|
|
989 |
|
|
-------------------------------
|
990 |
|
|
-- Check_For_Premature_Usage --
|
991 |
|
|
-------------------------------
|
992 |
|
|
|
993 |
|
|
procedure Check_For_Premature_Usage (Def : Node_Id) is
|
994 |
|
|
Param : Node_Id;
|
995 |
|
|
|
996 |
|
|
begin
|
997 |
|
|
-- Check for a subtype mark
|
998 |
|
|
|
999 |
|
|
if Nkind (Def) in N_Has_Etype then
|
1000 |
|
|
if Etype (Def) = T_Name then
|
1001 |
|
|
Error_Msg_N
|
1002 |
|
|
("type& cannot be used before end of its declaration", Def);
|
1003 |
|
|
end if;
|
1004 |
|
|
|
1005 |
|
|
-- If this is not a subtype, then this is an access_definition
|
1006 |
|
|
|
1007 |
|
|
elsif Nkind (Def) = N_Access_Definition then
|
1008 |
|
|
if Present (Access_To_Subprogram_Definition (Def)) then
|
1009 |
|
|
Check_For_Premature_Usage
|
1010 |
|
|
(Access_To_Subprogram_Definition (Def));
|
1011 |
|
|
else
|
1012 |
|
|
Check_For_Premature_Usage (Subtype_Mark (Def));
|
1013 |
|
|
end if;
|
1014 |
|
|
|
1015 |
|
|
-- The only cases left are N_Access_Function_Definition and
|
1016 |
|
|
-- N_Access_Procedure_Definition.
|
1017 |
|
|
|
1018 |
|
|
else
|
1019 |
|
|
if Present (Parameter_Specifications (Def)) then
|
1020 |
|
|
Param := First (Parameter_Specifications (Def));
|
1021 |
|
|
while Present (Param) loop
|
1022 |
|
|
Check_For_Premature_Usage (Parameter_Type (Param));
|
1023 |
|
|
Param := Next (Param);
|
1024 |
|
|
end loop;
|
1025 |
|
|
end if;
|
1026 |
|
|
|
1027 |
|
|
if Nkind (Def) = N_Access_Function_Definition then
|
1028 |
|
|
Check_For_Premature_Usage (Result_Definition (Def));
|
1029 |
|
|
end if;
|
1030 |
|
|
end if;
|
1031 |
|
|
end Check_For_Premature_Usage;
|
1032 |
|
|
|
1033 |
|
|
-- Local variables
|
1034 |
|
|
|
1035 |
|
|
Formals : constant List_Id := Parameter_Specifications (T_Def);
|
1036 |
|
|
Formal : Entity_Id;
|
1037 |
|
|
D_Ityp : Node_Id;
|
1038 |
|
|
Desig_Type : constant Entity_Id :=
|
1039 |
|
|
Create_Itype (E_Subprogram_Type, Parent (T_Def));
|
1040 |
|
|
|
1041 |
|
|
-- Start of processing for Access_Subprogram_Declaration
|
1042 |
|
|
|
1043 |
|
|
begin
|
1044 |
|
|
Check_SPARK_Restriction ("access type is not allowed", T_Def);
|
1045 |
|
|
|
1046 |
|
|
-- Associate the Itype node with the inner full-type declaration or
|
1047 |
|
|
-- subprogram spec or entry body. This is required to handle nested
|
1048 |
|
|
-- anonymous declarations. For example:
|
1049 |
|
|
|
1050 |
|
|
-- procedure P
|
1051 |
|
|
-- (X : access procedure
|
1052 |
|
|
-- (Y : access procedure
|
1053 |
|
|
-- (Z : access T)))
|
1054 |
|
|
|
1055 |
|
|
D_Ityp := Associated_Node_For_Itype (Desig_Type);
|
1056 |
|
|
while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
|
1057 |
|
|
N_Private_Type_Declaration,
|
1058 |
|
|
N_Private_Extension_Declaration,
|
1059 |
|
|
N_Procedure_Specification,
|
1060 |
|
|
N_Function_Specification,
|
1061 |
|
|
N_Entry_Body)
|
1062 |
|
|
|
1063 |
|
|
or else
|
1064 |
|
|
Nkind_In (D_Ityp, N_Object_Declaration,
|
1065 |
|
|
N_Object_Renaming_Declaration,
|
1066 |
|
|
N_Formal_Object_Declaration,
|
1067 |
|
|
N_Formal_Type_Declaration,
|
1068 |
|
|
N_Task_Type_Declaration,
|
1069 |
|
|
N_Protected_Type_Declaration))
|
1070 |
|
|
loop
|
1071 |
|
|
D_Ityp := Parent (D_Ityp);
|
1072 |
|
|
pragma Assert (D_Ityp /= Empty);
|
1073 |
|
|
end loop;
|
1074 |
|
|
|
1075 |
|
|
Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
|
1076 |
|
|
|
1077 |
|
|
if Nkind_In (D_Ityp, N_Procedure_Specification,
|
1078 |
|
|
N_Function_Specification)
|
1079 |
|
|
then
|
1080 |
|
|
Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
|
1081 |
|
|
|
1082 |
|
|
elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
|
1083 |
|
|
N_Object_Declaration,
|
1084 |
|
|
N_Object_Renaming_Declaration,
|
1085 |
|
|
N_Formal_Type_Declaration)
|
1086 |
|
|
then
|
1087 |
|
|
Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
|
1088 |
|
|
end if;
|
1089 |
|
|
|
1090 |
|
|
if Nkind (T_Def) = N_Access_Function_Definition then
|
1091 |
|
|
if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
|
1092 |
|
|
declare
|
1093 |
|
|
Acc : constant Node_Id := Result_Definition (T_Def);
|
1094 |
|
|
|
1095 |
|
|
begin
|
1096 |
|
|
if Present (Access_To_Subprogram_Definition (Acc))
|
1097 |
|
|
and then
|
1098 |
|
|
Protected_Present (Access_To_Subprogram_Definition (Acc))
|
1099 |
|
|
then
|
1100 |
|
|
Set_Etype
|
1101 |
|
|
(Desig_Type,
|
1102 |
|
|
Replace_Anonymous_Access_To_Protected_Subprogram
|
1103 |
|
|
(T_Def));
|
1104 |
|
|
|
1105 |
|
|
else
|
1106 |
|
|
Set_Etype
|
1107 |
|
|
(Desig_Type,
|
1108 |
|
|
Access_Definition (T_Def, Result_Definition (T_Def)));
|
1109 |
|
|
end if;
|
1110 |
|
|
end;
|
1111 |
|
|
|
1112 |
|
|
else
|
1113 |
|
|
Analyze (Result_Definition (T_Def));
|
1114 |
|
|
|
1115 |
|
|
declare
|
1116 |
|
|
Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
|
1117 |
|
|
|
1118 |
|
|
begin
|
1119 |
|
|
-- If a null exclusion is imposed on the result type, then
|
1120 |
|
|
-- create a null-excluding itype (an access subtype) and use
|
1121 |
|
|
-- it as the function's Etype.
|
1122 |
|
|
|
1123 |
|
|
if Is_Access_Type (Typ)
|
1124 |
|
|
and then Null_Exclusion_In_Return_Present (T_Def)
|
1125 |
|
|
then
|
1126 |
|
|
Set_Etype (Desig_Type,
|
1127 |
|
|
Create_Null_Excluding_Itype
|
1128 |
|
|
(T => Typ,
|
1129 |
|
|
Related_Nod => T_Def,
|
1130 |
|
|
Scope_Id => Current_Scope));
|
1131 |
|
|
|
1132 |
|
|
else
|
1133 |
|
|
if From_With_Type (Typ) then
|
1134 |
|
|
|
1135 |
|
|
-- AI05-151: Incomplete types are allowed in all basic
|
1136 |
|
|
-- declarations, including access to subprograms.
|
1137 |
|
|
|
1138 |
|
|
if Ada_Version >= Ada_2012 then
|
1139 |
|
|
null;
|
1140 |
|
|
|
1141 |
|
|
else
|
1142 |
|
|
Error_Msg_NE
|
1143 |
|
|
("illegal use of incomplete type&",
|
1144 |
|
|
Result_Definition (T_Def), Typ);
|
1145 |
|
|
end if;
|
1146 |
|
|
|
1147 |
|
|
elsif Ekind (Current_Scope) = E_Package
|
1148 |
|
|
and then In_Private_Part (Current_Scope)
|
1149 |
|
|
then
|
1150 |
|
|
if Ekind (Typ) = E_Incomplete_Type then
|
1151 |
|
|
Append_Elmt (Desig_Type, Private_Dependents (Typ));
|
1152 |
|
|
|
1153 |
|
|
elsif Is_Class_Wide_Type (Typ)
|
1154 |
|
|
and then Ekind (Etype (Typ)) = E_Incomplete_Type
|
1155 |
|
|
then
|
1156 |
|
|
Append_Elmt
|
1157 |
|
|
(Desig_Type, Private_Dependents (Etype (Typ)));
|
1158 |
|
|
end if;
|
1159 |
|
|
end if;
|
1160 |
|
|
|
1161 |
|
|
Set_Etype (Desig_Type, Typ);
|
1162 |
|
|
end if;
|
1163 |
|
|
end;
|
1164 |
|
|
end if;
|
1165 |
|
|
|
1166 |
|
|
if not (Is_Type (Etype (Desig_Type))) then
|
1167 |
|
|
Error_Msg_N
|
1168 |
|
|
("expect type in function specification",
|
1169 |
|
|
Result_Definition (T_Def));
|
1170 |
|
|
end if;
|
1171 |
|
|
|
1172 |
|
|
else
|
1173 |
|
|
Set_Etype (Desig_Type, Standard_Void_Type);
|
1174 |
|
|
end if;
|
1175 |
|
|
|
1176 |
|
|
if Present (Formals) then
|
1177 |
|
|
Push_Scope (Desig_Type);
|
1178 |
|
|
|
1179 |
|
|
-- A bit of a kludge here. These kludges will be removed when Itypes
|
1180 |
|
|
-- have proper parent pointers to their declarations???
|
1181 |
|
|
|
1182 |
|
|
-- Kludge 1) Link defining_identifier of formals. Required by
|
1183 |
|
|
-- First_Formal to provide its functionality.
|
1184 |
|
|
|
1185 |
|
|
declare
|
1186 |
|
|
F : Node_Id;
|
1187 |
|
|
|
1188 |
|
|
begin
|
1189 |
|
|
F := First (Formals);
|
1190 |
|
|
|
1191 |
|
|
-- In ASIS mode, the access_to_subprogram may be analyzed twice,
|
1192 |
|
|
-- when it is part of an unconstrained type and subtype expansion
|
1193 |
|
|
-- is disabled. To avoid back-end problems with shared profiles,
|
1194 |
|
|
-- use previous subprogram type as the designated type.
|
1195 |
|
|
|
1196 |
|
|
if ASIS_Mode
|
1197 |
|
|
and then Present (Scope (Defining_Identifier (F)))
|
1198 |
|
|
then
|
1199 |
|
|
Set_Etype (T_Name, T_Name);
|
1200 |
|
|
Init_Size_Align (T_Name);
|
1201 |
|
|
Set_Directly_Designated_Type (T_Name,
|
1202 |
|
|
Scope (Defining_Identifier (F)));
|
1203 |
|
|
return;
|
1204 |
|
|
end if;
|
1205 |
|
|
|
1206 |
|
|
while Present (F) loop
|
1207 |
|
|
if No (Parent (Defining_Identifier (F))) then
|
1208 |
|
|
Set_Parent (Defining_Identifier (F), F);
|
1209 |
|
|
end if;
|
1210 |
|
|
|
1211 |
|
|
Next (F);
|
1212 |
|
|
end loop;
|
1213 |
|
|
end;
|
1214 |
|
|
|
1215 |
|
|
Process_Formals (Formals, Parent (T_Def));
|
1216 |
|
|
|
1217 |
|
|
-- Kludge 2) End_Scope requires that the parent pointer be set to
|
1218 |
|
|
-- something reasonable, but Itypes don't have parent pointers. So
|
1219 |
|
|
-- we set it and then unset it ???
|
1220 |
|
|
|
1221 |
|
|
Set_Parent (Desig_Type, T_Name);
|
1222 |
|
|
End_Scope;
|
1223 |
|
|
Set_Parent (Desig_Type, Empty);
|
1224 |
|
|
end if;
|
1225 |
|
|
|
1226 |
|
|
-- Check for premature usage of the type being defined
|
1227 |
|
|
|
1228 |
|
|
Check_For_Premature_Usage (T_Def);
|
1229 |
|
|
|
1230 |
|
|
-- The return type and/or any parameter type may be incomplete. Mark
|
1231 |
|
|
-- the subprogram_type as depending on the incomplete type, so that
|
1232 |
|
|
-- it can be updated when the full type declaration is seen. This
|
1233 |
|
|
-- only applies to incomplete types declared in some enclosing scope,
|
1234 |
|
|
-- not to limited views from other packages.
|
1235 |
|
|
|
1236 |
|
|
if Present (Formals) then
|
1237 |
|
|
Formal := First_Formal (Desig_Type);
|
1238 |
|
|
while Present (Formal) loop
|
1239 |
|
|
if Ekind (Formal) /= E_In_Parameter
|
1240 |
|
|
and then Nkind (T_Def) = N_Access_Function_Definition
|
1241 |
|
|
then
|
1242 |
|
|
Error_Msg_N ("functions can only have IN parameters", Formal);
|
1243 |
|
|
end if;
|
1244 |
|
|
|
1245 |
|
|
if Ekind (Etype (Formal)) = E_Incomplete_Type
|
1246 |
|
|
and then In_Open_Scopes (Scope (Etype (Formal)))
|
1247 |
|
|
then
|
1248 |
|
|
Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
|
1249 |
|
|
Set_Has_Delayed_Freeze (Desig_Type);
|
1250 |
|
|
end if;
|
1251 |
|
|
|
1252 |
|
|
Next_Formal (Formal);
|
1253 |
|
|
end loop;
|
1254 |
|
|
end if;
|
1255 |
|
|
|
1256 |
|
|
-- If the return type is incomplete, this is legal as long as the
|
1257 |
|
|
-- type is declared in the current scope and will be completed in
|
1258 |
|
|
-- it (rather than being part of limited view).
|
1259 |
|
|
|
1260 |
|
|
if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
|
1261 |
|
|
and then not Has_Delayed_Freeze (Desig_Type)
|
1262 |
|
|
and then In_Open_Scopes (Scope (Etype (Desig_Type)))
|
1263 |
|
|
then
|
1264 |
|
|
Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
|
1265 |
|
|
Set_Has_Delayed_Freeze (Desig_Type);
|
1266 |
|
|
end if;
|
1267 |
|
|
|
1268 |
|
|
Check_Delayed_Subprogram (Desig_Type);
|
1269 |
|
|
|
1270 |
|
|
if Protected_Present (T_Def) then
|
1271 |
|
|
Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
|
1272 |
|
|
Set_Convention (Desig_Type, Convention_Protected);
|
1273 |
|
|
else
|
1274 |
|
|
Set_Ekind (T_Name, E_Access_Subprogram_Type);
|
1275 |
|
|
end if;
|
1276 |
|
|
|
1277 |
|
|
Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
|
1278 |
|
|
|
1279 |
|
|
Set_Etype (T_Name, T_Name);
|
1280 |
|
|
Init_Size_Align (T_Name);
|
1281 |
|
|
Set_Directly_Designated_Type (T_Name, Desig_Type);
|
1282 |
|
|
|
1283 |
|
|
-- Ada 2005 (AI-231): Propagate the null-excluding attribute
|
1284 |
|
|
|
1285 |
|
|
Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
|
1286 |
|
|
|
1287 |
|
|
Check_Restriction (No_Access_Subprograms, T_Def);
|
1288 |
|
|
end Access_Subprogram_Declaration;
|
1289 |
|
|
|
1290 |
|
|
----------------------------
|
1291 |
|
|
-- Access_Type_Declaration --
|
1292 |
|
|
----------------------------
|
1293 |
|
|
|
1294 |
|
|
procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
|
1295 |
|
|
P : constant Node_Id := Parent (Def);
|
1296 |
|
|
S : constant Node_Id := Subtype_Indication (Def);
|
1297 |
|
|
|
1298 |
|
|
Full_Desig : Entity_Id;
|
1299 |
|
|
|
1300 |
|
|
begin
|
1301 |
|
|
Check_SPARK_Restriction ("access type is not allowed", Def);
|
1302 |
|
|
|
1303 |
|
|
-- Check for permissible use of incomplete type
|
1304 |
|
|
|
1305 |
|
|
if Nkind (S) /= N_Subtype_Indication then
|
1306 |
|
|
Analyze (S);
|
1307 |
|
|
|
1308 |
|
|
if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
|
1309 |
|
|
Set_Directly_Designated_Type (T, Entity (S));
|
1310 |
|
|
else
|
1311 |
|
|
Set_Directly_Designated_Type (T,
|
1312 |
|
|
Process_Subtype (S, P, T, 'P'));
|
1313 |
|
|
end if;
|
1314 |
|
|
|
1315 |
|
|
else
|
1316 |
|
|
Set_Directly_Designated_Type (T,
|
1317 |
|
|
Process_Subtype (S, P, T, 'P'));
|
1318 |
|
|
end if;
|
1319 |
|
|
|
1320 |
|
|
if All_Present (Def) or Constant_Present (Def) then
|
1321 |
|
|
Set_Ekind (T, E_General_Access_Type);
|
1322 |
|
|
else
|
1323 |
|
|
Set_Ekind (T, E_Access_Type);
|
1324 |
|
|
end if;
|
1325 |
|
|
|
1326 |
|
|
Full_Desig := Designated_Type (T);
|
1327 |
|
|
|
1328 |
|
|
if Base_Type (Full_Desig) = T then
|
1329 |
|
|
Error_Msg_N ("access type cannot designate itself", S);
|
1330 |
|
|
|
1331 |
|
|
-- In Ada 2005, the type may have a limited view through some unit
|
1332 |
|
|
-- in its own context, allowing the following circularity that cannot
|
1333 |
|
|
-- be detected earlier
|
1334 |
|
|
|
1335 |
|
|
elsif Is_Class_Wide_Type (Full_Desig)
|
1336 |
|
|
and then Etype (Full_Desig) = T
|
1337 |
|
|
then
|
1338 |
|
|
Error_Msg_N
|
1339 |
|
|
("access type cannot designate its own classwide type", S);
|
1340 |
|
|
|
1341 |
|
|
-- Clean up indication of tagged status to prevent cascaded errors
|
1342 |
|
|
|
1343 |
|
|
Set_Is_Tagged_Type (T, False);
|
1344 |
|
|
end if;
|
1345 |
|
|
|
1346 |
|
|
Set_Etype (T, T);
|
1347 |
|
|
|
1348 |
|
|
-- If the type has appeared already in a with_type clause, it is
|
1349 |
|
|
-- frozen and the pointer size is already set. Else, initialize.
|
1350 |
|
|
|
1351 |
|
|
if not From_With_Type (T) then
|
1352 |
|
|
Init_Size_Align (T);
|
1353 |
|
|
end if;
|
1354 |
|
|
|
1355 |
|
|
-- Note that Has_Task is always false, since the access type itself
|
1356 |
|
|
-- is not a task type. See Einfo for more description on this point.
|
1357 |
|
|
-- Exactly the same consideration applies to Has_Controlled_Component.
|
1358 |
|
|
|
1359 |
|
|
Set_Has_Task (T, False);
|
1360 |
|
|
Set_Has_Controlled_Component (T, False);
|
1361 |
|
|
|
1362 |
|
|
-- Initialize field Finalization_Master explicitly to Empty, to avoid
|
1363 |
|
|
-- problems where an incomplete view of this entity has been previously
|
1364 |
|
|
-- established by a limited with and an overlaid version of this field
|
1365 |
|
|
-- (Stored_Constraint) was initialized for the incomplete view.
|
1366 |
|
|
|
1367 |
|
|
-- This reset is performed in most cases except where the access type
|
1368 |
|
|
-- has been created for the purposes of allocating or deallocating a
|
1369 |
|
|
-- build-in-place object. Such access types have explicitly set pools
|
1370 |
|
|
-- and finalization masters.
|
1371 |
|
|
|
1372 |
|
|
if No (Associated_Storage_Pool (T)) then
|
1373 |
|
|
Set_Finalization_Master (T, Empty);
|
1374 |
|
|
end if;
|
1375 |
|
|
|
1376 |
|
|
-- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
|
1377 |
|
|
-- attributes
|
1378 |
|
|
|
1379 |
|
|
Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
|
1380 |
|
|
Set_Is_Access_Constant (T, Constant_Present (Def));
|
1381 |
|
|
end Access_Type_Declaration;
|
1382 |
|
|
|
1383 |
|
|
----------------------------------
|
1384 |
|
|
-- Add_Interface_Tag_Components --
|
1385 |
|
|
----------------------------------
|
1386 |
|
|
|
1387 |
|
|
procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
|
1388 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1389 |
|
|
L : List_Id;
|
1390 |
|
|
Last_Tag : Node_Id;
|
1391 |
|
|
|
1392 |
|
|
procedure Add_Tag (Iface : Entity_Id);
|
1393 |
|
|
-- Add tag for one of the progenitor interfaces
|
1394 |
|
|
|
1395 |
|
|
-------------
|
1396 |
|
|
-- Add_Tag --
|
1397 |
|
|
-------------
|
1398 |
|
|
|
1399 |
|
|
procedure Add_Tag (Iface : Entity_Id) is
|
1400 |
|
|
Decl : Node_Id;
|
1401 |
|
|
Def : Node_Id;
|
1402 |
|
|
Tag : Entity_Id;
|
1403 |
|
|
Offset : Entity_Id;
|
1404 |
|
|
|
1405 |
|
|
begin
|
1406 |
|
|
pragma Assert (Is_Tagged_Type (Iface)
|
1407 |
|
|
and then Is_Interface (Iface));
|
1408 |
|
|
|
1409 |
|
|
-- This is a reasonable place to propagate predicates
|
1410 |
|
|
|
1411 |
|
|
if Has_Predicates (Iface) then
|
1412 |
|
|
Set_Has_Predicates (Typ);
|
1413 |
|
|
end if;
|
1414 |
|
|
|
1415 |
|
|
Def :=
|
1416 |
|
|
Make_Component_Definition (Loc,
|
1417 |
|
|
Aliased_Present => True,
|
1418 |
|
|
Subtype_Indication =>
|
1419 |
|
|
New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
|
1420 |
|
|
|
1421 |
|
|
Tag := Make_Temporary (Loc, 'V');
|
1422 |
|
|
|
1423 |
|
|
Decl :=
|
1424 |
|
|
Make_Component_Declaration (Loc,
|
1425 |
|
|
Defining_Identifier => Tag,
|
1426 |
|
|
Component_Definition => Def);
|
1427 |
|
|
|
1428 |
|
|
Analyze_Component_Declaration (Decl);
|
1429 |
|
|
|
1430 |
|
|
Set_Analyzed (Decl);
|
1431 |
|
|
Set_Ekind (Tag, E_Component);
|
1432 |
|
|
Set_Is_Tag (Tag);
|
1433 |
|
|
Set_Is_Aliased (Tag);
|
1434 |
|
|
Set_Related_Type (Tag, Iface);
|
1435 |
|
|
Init_Component_Location (Tag);
|
1436 |
|
|
|
1437 |
|
|
pragma Assert (Is_Frozen (Iface));
|
1438 |
|
|
|
1439 |
|
|
Set_DT_Entry_Count (Tag,
|
1440 |
|
|
DT_Entry_Count (First_Entity (Iface)));
|
1441 |
|
|
|
1442 |
|
|
if No (Last_Tag) then
|
1443 |
|
|
Prepend (Decl, L);
|
1444 |
|
|
else
|
1445 |
|
|
Insert_After (Last_Tag, Decl);
|
1446 |
|
|
end if;
|
1447 |
|
|
|
1448 |
|
|
Last_Tag := Decl;
|
1449 |
|
|
|
1450 |
|
|
-- If the ancestor has discriminants we need to give special support
|
1451 |
|
|
-- to store the offset_to_top value of the secondary dispatch tables.
|
1452 |
|
|
-- For this purpose we add a supplementary component just after the
|
1453 |
|
|
-- field that contains the tag associated with each secondary DT.
|
1454 |
|
|
|
1455 |
|
|
if Typ /= Etype (Typ)
|
1456 |
|
|
and then Has_Discriminants (Etype (Typ))
|
1457 |
|
|
then
|
1458 |
|
|
Def :=
|
1459 |
|
|
Make_Component_Definition (Loc,
|
1460 |
|
|
Subtype_Indication =>
|
1461 |
|
|
New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
|
1462 |
|
|
|
1463 |
|
|
Offset := Make_Temporary (Loc, 'V');
|
1464 |
|
|
|
1465 |
|
|
Decl :=
|
1466 |
|
|
Make_Component_Declaration (Loc,
|
1467 |
|
|
Defining_Identifier => Offset,
|
1468 |
|
|
Component_Definition => Def);
|
1469 |
|
|
|
1470 |
|
|
Analyze_Component_Declaration (Decl);
|
1471 |
|
|
|
1472 |
|
|
Set_Analyzed (Decl);
|
1473 |
|
|
Set_Ekind (Offset, E_Component);
|
1474 |
|
|
Set_Is_Aliased (Offset);
|
1475 |
|
|
Set_Related_Type (Offset, Iface);
|
1476 |
|
|
Init_Component_Location (Offset);
|
1477 |
|
|
Insert_After (Last_Tag, Decl);
|
1478 |
|
|
Last_Tag := Decl;
|
1479 |
|
|
end if;
|
1480 |
|
|
end Add_Tag;
|
1481 |
|
|
|
1482 |
|
|
-- Local variables
|
1483 |
|
|
|
1484 |
|
|
Elmt : Elmt_Id;
|
1485 |
|
|
Ext : Node_Id;
|
1486 |
|
|
Comp : Node_Id;
|
1487 |
|
|
|
1488 |
|
|
-- Start of processing for Add_Interface_Tag_Components
|
1489 |
|
|
|
1490 |
|
|
begin
|
1491 |
|
|
if not RTE_Available (RE_Interface_Tag) then
|
1492 |
|
|
Error_Msg
|
1493 |
|
|
("(Ada 2005) interface types not supported by this run-time!",
|
1494 |
|
|
Sloc (N));
|
1495 |
|
|
return;
|
1496 |
|
|
end if;
|
1497 |
|
|
|
1498 |
|
|
if Ekind (Typ) /= E_Record_Type
|
1499 |
|
|
or else (Is_Concurrent_Record_Type (Typ)
|
1500 |
|
|
and then Is_Empty_List (Abstract_Interface_List (Typ)))
|
1501 |
|
|
or else (not Is_Concurrent_Record_Type (Typ)
|
1502 |
|
|
and then No (Interfaces (Typ))
|
1503 |
|
|
and then Is_Empty_Elmt_List (Interfaces (Typ)))
|
1504 |
|
|
then
|
1505 |
|
|
return;
|
1506 |
|
|
end if;
|
1507 |
|
|
|
1508 |
|
|
-- Find the current last tag
|
1509 |
|
|
|
1510 |
|
|
if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
|
1511 |
|
|
Ext := Record_Extension_Part (Type_Definition (N));
|
1512 |
|
|
else
|
1513 |
|
|
pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
|
1514 |
|
|
Ext := Type_Definition (N);
|
1515 |
|
|
end if;
|
1516 |
|
|
|
1517 |
|
|
Last_Tag := Empty;
|
1518 |
|
|
|
1519 |
|
|
if not (Present (Component_List (Ext))) then
|
1520 |
|
|
Set_Null_Present (Ext, False);
|
1521 |
|
|
L := New_List;
|
1522 |
|
|
Set_Component_List (Ext,
|
1523 |
|
|
Make_Component_List (Loc,
|
1524 |
|
|
Component_Items => L,
|
1525 |
|
|
Null_Present => False));
|
1526 |
|
|
else
|
1527 |
|
|
if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
|
1528 |
|
|
L := Component_Items
|
1529 |
|
|
(Component_List
|
1530 |
|
|
(Record_Extension_Part
|
1531 |
|
|
(Type_Definition (N))));
|
1532 |
|
|
else
|
1533 |
|
|
L := Component_Items
|
1534 |
|
|
(Component_List
|
1535 |
|
|
(Type_Definition (N)));
|
1536 |
|
|
end if;
|
1537 |
|
|
|
1538 |
|
|
-- Find the last tag component
|
1539 |
|
|
|
1540 |
|
|
Comp := First (L);
|
1541 |
|
|
while Present (Comp) loop
|
1542 |
|
|
if Nkind (Comp) = N_Component_Declaration
|
1543 |
|
|
and then Is_Tag (Defining_Identifier (Comp))
|
1544 |
|
|
then
|
1545 |
|
|
Last_Tag := Comp;
|
1546 |
|
|
end if;
|
1547 |
|
|
|
1548 |
|
|
Next (Comp);
|
1549 |
|
|
end loop;
|
1550 |
|
|
end if;
|
1551 |
|
|
|
1552 |
|
|
-- At this point L references the list of components and Last_Tag
|
1553 |
|
|
-- references the current last tag (if any). Now we add the tag
|
1554 |
|
|
-- corresponding with all the interfaces that are not implemented
|
1555 |
|
|
-- by the parent.
|
1556 |
|
|
|
1557 |
|
|
if Present (Interfaces (Typ)) then
|
1558 |
|
|
Elmt := First_Elmt (Interfaces (Typ));
|
1559 |
|
|
while Present (Elmt) loop
|
1560 |
|
|
Add_Tag (Node (Elmt));
|
1561 |
|
|
Next_Elmt (Elmt);
|
1562 |
|
|
end loop;
|
1563 |
|
|
end if;
|
1564 |
|
|
end Add_Interface_Tag_Components;
|
1565 |
|
|
|
1566 |
|
|
-------------------------------------
|
1567 |
|
|
-- Add_Internal_Interface_Entities --
|
1568 |
|
|
-------------------------------------
|
1569 |
|
|
|
1570 |
|
|
procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
|
1571 |
|
|
Elmt : Elmt_Id;
|
1572 |
|
|
Iface : Entity_Id;
|
1573 |
|
|
Iface_Elmt : Elmt_Id;
|
1574 |
|
|
Iface_Prim : Entity_Id;
|
1575 |
|
|
Ifaces_List : Elist_Id;
|
1576 |
|
|
New_Subp : Entity_Id := Empty;
|
1577 |
|
|
Prim : Entity_Id;
|
1578 |
|
|
Restore_Scope : Boolean := False;
|
1579 |
|
|
|
1580 |
|
|
begin
|
1581 |
|
|
pragma Assert (Ada_Version >= Ada_2005
|
1582 |
|
|
and then Is_Record_Type (Tagged_Type)
|
1583 |
|
|
and then Is_Tagged_Type (Tagged_Type)
|
1584 |
|
|
and then Has_Interfaces (Tagged_Type)
|
1585 |
|
|
and then not Is_Interface (Tagged_Type));
|
1586 |
|
|
|
1587 |
|
|
-- Ensure that the internal entities are added to the scope of the type
|
1588 |
|
|
|
1589 |
|
|
if Scope (Tagged_Type) /= Current_Scope then
|
1590 |
|
|
Push_Scope (Scope (Tagged_Type));
|
1591 |
|
|
Restore_Scope := True;
|
1592 |
|
|
end if;
|
1593 |
|
|
|
1594 |
|
|
Collect_Interfaces (Tagged_Type, Ifaces_List);
|
1595 |
|
|
|
1596 |
|
|
Iface_Elmt := First_Elmt (Ifaces_List);
|
1597 |
|
|
while Present (Iface_Elmt) loop
|
1598 |
|
|
Iface := Node (Iface_Elmt);
|
1599 |
|
|
|
1600 |
|
|
-- Originally we excluded here from this processing interfaces that
|
1601 |
|
|
-- are parents of Tagged_Type because their primitives are located
|
1602 |
|
|
-- in the primary dispatch table (and hence no auxiliary internal
|
1603 |
|
|
-- entities are required to handle secondary dispatch tables in such
|
1604 |
|
|
-- case). However, these auxiliary entities are also required to
|
1605 |
|
|
-- handle derivations of interfaces in formals of generics (see
|
1606 |
|
|
-- Derive_Subprograms).
|
1607 |
|
|
|
1608 |
|
|
Elmt := First_Elmt (Primitive_Operations (Iface));
|
1609 |
|
|
while Present (Elmt) loop
|
1610 |
|
|
Iface_Prim := Node (Elmt);
|
1611 |
|
|
|
1612 |
|
|
if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
|
1613 |
|
|
Prim :=
|
1614 |
|
|
Find_Primitive_Covering_Interface
|
1615 |
|
|
(Tagged_Type => Tagged_Type,
|
1616 |
|
|
Iface_Prim => Iface_Prim);
|
1617 |
|
|
|
1618 |
|
|
if No (Prim) and then Serious_Errors_Detected > 0 then
|
1619 |
|
|
goto Continue;
|
1620 |
|
|
end if;
|
1621 |
|
|
|
1622 |
|
|
pragma Assert (Present (Prim));
|
1623 |
|
|
|
1624 |
|
|
-- Ada 2012 (AI05-0197): If the name of the covering primitive
|
1625 |
|
|
-- differs from the name of the interface primitive then it is
|
1626 |
|
|
-- a private primitive inherited from a parent type. In such
|
1627 |
|
|
-- case, given that Tagged_Type covers the interface, the
|
1628 |
|
|
-- inherited private primitive becomes visible. For such
|
1629 |
|
|
-- purpose we add a new entity that renames the inherited
|
1630 |
|
|
-- private primitive.
|
1631 |
|
|
|
1632 |
|
|
if Chars (Prim) /= Chars (Iface_Prim) then
|
1633 |
|
|
pragma Assert (Has_Suffix (Prim, 'P'));
|
1634 |
|
|
Derive_Subprogram
|
1635 |
|
|
(New_Subp => New_Subp,
|
1636 |
|
|
Parent_Subp => Iface_Prim,
|
1637 |
|
|
Derived_Type => Tagged_Type,
|
1638 |
|
|
Parent_Type => Iface);
|
1639 |
|
|
Set_Alias (New_Subp, Prim);
|
1640 |
|
|
Set_Is_Abstract_Subprogram
|
1641 |
|
|
(New_Subp, Is_Abstract_Subprogram (Prim));
|
1642 |
|
|
end if;
|
1643 |
|
|
|
1644 |
|
|
Derive_Subprogram
|
1645 |
|
|
(New_Subp => New_Subp,
|
1646 |
|
|
Parent_Subp => Iface_Prim,
|
1647 |
|
|
Derived_Type => Tagged_Type,
|
1648 |
|
|
Parent_Type => Iface);
|
1649 |
|
|
|
1650 |
|
|
-- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
|
1651 |
|
|
-- associated with interface types. These entities are
|
1652 |
|
|
-- only registered in the list of primitives of its
|
1653 |
|
|
-- corresponding tagged type because they are only used
|
1654 |
|
|
-- to fill the contents of the secondary dispatch tables.
|
1655 |
|
|
-- Therefore they are removed from the homonym chains.
|
1656 |
|
|
|
1657 |
|
|
Set_Is_Hidden (New_Subp);
|
1658 |
|
|
Set_Is_Internal (New_Subp);
|
1659 |
|
|
Set_Alias (New_Subp, Prim);
|
1660 |
|
|
Set_Is_Abstract_Subprogram
|
1661 |
|
|
(New_Subp, Is_Abstract_Subprogram (Prim));
|
1662 |
|
|
Set_Interface_Alias (New_Subp, Iface_Prim);
|
1663 |
|
|
|
1664 |
|
|
-- Internal entities associated with interface types are
|
1665 |
|
|
-- only registered in the list of primitives of the tagged
|
1666 |
|
|
-- type. They are only used to fill the contents of the
|
1667 |
|
|
-- secondary dispatch tables. Therefore they are not needed
|
1668 |
|
|
-- in the homonym chains.
|
1669 |
|
|
|
1670 |
|
|
Remove_Homonym (New_Subp);
|
1671 |
|
|
|
1672 |
|
|
-- Hidden entities associated with interfaces must have set
|
1673 |
|
|
-- the Has_Delay_Freeze attribute to ensure that, in case of
|
1674 |
|
|
-- locally defined tagged types (or compiling with static
|
1675 |
|
|
-- dispatch tables generation disabled) the corresponding
|
1676 |
|
|
-- entry of the secondary dispatch table is filled when
|
1677 |
|
|
-- such an entity is frozen.
|
1678 |
|
|
|
1679 |
|
|
Set_Has_Delayed_Freeze (New_Subp);
|
1680 |
|
|
end if;
|
1681 |
|
|
|
1682 |
|
|
<<Continue>>
|
1683 |
|
|
Next_Elmt (Elmt);
|
1684 |
|
|
end loop;
|
1685 |
|
|
|
1686 |
|
|
Next_Elmt (Iface_Elmt);
|
1687 |
|
|
end loop;
|
1688 |
|
|
|
1689 |
|
|
if Restore_Scope then
|
1690 |
|
|
Pop_Scope;
|
1691 |
|
|
end if;
|
1692 |
|
|
end Add_Internal_Interface_Entities;
|
1693 |
|
|
|
1694 |
|
|
-----------------------------------
|
1695 |
|
|
-- Analyze_Component_Declaration --
|
1696 |
|
|
-----------------------------------
|
1697 |
|
|
|
1698 |
|
|
procedure Analyze_Component_Declaration (N : Node_Id) is
|
1699 |
|
|
Id : constant Entity_Id := Defining_Identifier (N);
|
1700 |
|
|
E : constant Node_Id := Expression (N);
|
1701 |
|
|
Typ : constant Node_Id :=
|
1702 |
|
|
Subtype_Indication (Component_Definition (N));
|
1703 |
|
|
T : Entity_Id;
|
1704 |
|
|
P : Entity_Id;
|
1705 |
|
|
|
1706 |
|
|
function Contains_POC (Constr : Node_Id) return Boolean;
|
1707 |
|
|
-- Determines whether a constraint uses the discriminant of a record
|
1708 |
|
|
-- type thus becoming a per-object constraint (POC).
|
1709 |
|
|
|
1710 |
|
|
function Is_Known_Limited (Typ : Entity_Id) return Boolean;
|
1711 |
|
|
-- Typ is the type of the current component, check whether this type is
|
1712 |
|
|
-- a limited type. Used to validate declaration against that of
|
1713 |
|
|
-- enclosing record.
|
1714 |
|
|
|
1715 |
|
|
------------------
|
1716 |
|
|
-- Contains_POC --
|
1717 |
|
|
------------------
|
1718 |
|
|
|
1719 |
|
|
function Contains_POC (Constr : Node_Id) return Boolean is
|
1720 |
|
|
begin
|
1721 |
|
|
-- Prevent cascaded errors
|
1722 |
|
|
|
1723 |
|
|
if Error_Posted (Constr) then
|
1724 |
|
|
return False;
|
1725 |
|
|
end if;
|
1726 |
|
|
|
1727 |
|
|
case Nkind (Constr) is
|
1728 |
|
|
when N_Attribute_Reference =>
|
1729 |
|
|
return
|
1730 |
|
|
Attribute_Name (Constr) = Name_Access
|
1731 |
|
|
and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
|
1732 |
|
|
|
1733 |
|
|
when N_Discriminant_Association =>
|
1734 |
|
|
return Denotes_Discriminant (Expression (Constr));
|
1735 |
|
|
|
1736 |
|
|
when N_Identifier =>
|
1737 |
|
|
return Denotes_Discriminant (Constr);
|
1738 |
|
|
|
1739 |
|
|
when N_Index_Or_Discriminant_Constraint =>
|
1740 |
|
|
declare
|
1741 |
|
|
IDC : Node_Id;
|
1742 |
|
|
|
1743 |
|
|
begin
|
1744 |
|
|
IDC := First (Constraints (Constr));
|
1745 |
|
|
while Present (IDC) loop
|
1746 |
|
|
|
1747 |
|
|
-- One per-object constraint is sufficient
|
1748 |
|
|
|
1749 |
|
|
if Contains_POC (IDC) then
|
1750 |
|
|
return True;
|
1751 |
|
|
end if;
|
1752 |
|
|
|
1753 |
|
|
Next (IDC);
|
1754 |
|
|
end loop;
|
1755 |
|
|
|
1756 |
|
|
return False;
|
1757 |
|
|
end;
|
1758 |
|
|
|
1759 |
|
|
when N_Range =>
|
1760 |
|
|
return Denotes_Discriminant (Low_Bound (Constr))
|
1761 |
|
|
or else
|
1762 |
|
|
Denotes_Discriminant (High_Bound (Constr));
|
1763 |
|
|
|
1764 |
|
|
when N_Range_Constraint =>
|
1765 |
|
|
return Denotes_Discriminant (Range_Expression (Constr));
|
1766 |
|
|
|
1767 |
|
|
when others =>
|
1768 |
|
|
return False;
|
1769 |
|
|
|
1770 |
|
|
end case;
|
1771 |
|
|
end Contains_POC;
|
1772 |
|
|
|
1773 |
|
|
----------------------
|
1774 |
|
|
-- Is_Known_Limited --
|
1775 |
|
|
----------------------
|
1776 |
|
|
|
1777 |
|
|
function Is_Known_Limited (Typ : Entity_Id) return Boolean is
|
1778 |
|
|
P : constant Entity_Id := Etype (Typ);
|
1779 |
|
|
R : constant Entity_Id := Root_Type (Typ);
|
1780 |
|
|
|
1781 |
|
|
begin
|
1782 |
|
|
if Is_Limited_Record (Typ) then
|
1783 |
|
|
return True;
|
1784 |
|
|
|
1785 |
|
|
-- If the root type is limited (and not a limited interface)
|
1786 |
|
|
-- so is the current type
|
1787 |
|
|
|
1788 |
|
|
elsif Is_Limited_Record (R)
|
1789 |
|
|
and then
|
1790 |
|
|
(not Is_Interface (R)
|
1791 |
|
|
or else not Is_Limited_Interface (R))
|
1792 |
|
|
then
|
1793 |
|
|
return True;
|
1794 |
|
|
|
1795 |
|
|
-- Else the type may have a limited interface progenitor, but a
|
1796 |
|
|
-- limited record parent.
|
1797 |
|
|
|
1798 |
|
|
elsif R /= P
|
1799 |
|
|
and then Is_Limited_Record (P)
|
1800 |
|
|
then
|
1801 |
|
|
return True;
|
1802 |
|
|
|
1803 |
|
|
else
|
1804 |
|
|
return False;
|
1805 |
|
|
end if;
|
1806 |
|
|
end Is_Known_Limited;
|
1807 |
|
|
|
1808 |
|
|
-- Start of processing for Analyze_Component_Declaration
|
1809 |
|
|
|
1810 |
|
|
begin
|
1811 |
|
|
Generate_Definition (Id);
|
1812 |
|
|
Enter_Name (Id);
|
1813 |
|
|
|
1814 |
|
|
if Present (Typ) then
|
1815 |
|
|
T := Find_Type_Of_Object
|
1816 |
|
|
(Subtype_Indication (Component_Definition (N)), N);
|
1817 |
|
|
|
1818 |
|
|
if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
|
1819 |
|
|
Check_SPARK_Restriction ("subtype mark required", Typ);
|
1820 |
|
|
end if;
|
1821 |
|
|
|
1822 |
|
|
-- Ada 2005 (AI-230): Access Definition case
|
1823 |
|
|
|
1824 |
|
|
else
|
1825 |
|
|
pragma Assert (Present
|
1826 |
|
|
(Access_Definition (Component_Definition (N))));
|
1827 |
|
|
|
1828 |
|
|
T := Access_Definition
|
1829 |
|
|
(Related_Nod => N,
|
1830 |
|
|
N => Access_Definition (Component_Definition (N)));
|
1831 |
|
|
Set_Is_Local_Anonymous_Access (T);
|
1832 |
|
|
|
1833 |
|
|
-- Ada 2005 (AI-254)
|
1834 |
|
|
|
1835 |
|
|
if Present (Access_To_Subprogram_Definition
|
1836 |
|
|
(Access_Definition (Component_Definition (N))))
|
1837 |
|
|
and then Protected_Present (Access_To_Subprogram_Definition
|
1838 |
|
|
(Access_Definition
|
1839 |
|
|
(Component_Definition (N))))
|
1840 |
|
|
then
|
1841 |
|
|
T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
|
1842 |
|
|
end if;
|
1843 |
|
|
end if;
|
1844 |
|
|
|
1845 |
|
|
-- If the subtype is a constrained subtype of the enclosing record,
|
1846 |
|
|
-- (which must have a partial view) the back-end does not properly
|
1847 |
|
|
-- handle the recursion. Rewrite the component declaration with an
|
1848 |
|
|
-- explicit subtype indication, which is acceptable to Gigi. We can copy
|
1849 |
|
|
-- the tree directly because side effects have already been removed from
|
1850 |
|
|
-- discriminant constraints.
|
1851 |
|
|
|
1852 |
|
|
if Ekind (T) = E_Access_Subtype
|
1853 |
|
|
and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
|
1854 |
|
|
and then Comes_From_Source (T)
|
1855 |
|
|
and then Nkind (Parent (T)) = N_Subtype_Declaration
|
1856 |
|
|
and then Etype (Directly_Designated_Type (T)) = Current_Scope
|
1857 |
|
|
then
|
1858 |
|
|
Rewrite
|
1859 |
|
|
(Subtype_Indication (Component_Definition (N)),
|
1860 |
|
|
New_Copy_Tree (Subtype_Indication (Parent (T))));
|
1861 |
|
|
T := Find_Type_Of_Object
|
1862 |
|
|
(Subtype_Indication (Component_Definition (N)), N);
|
1863 |
|
|
end if;
|
1864 |
|
|
|
1865 |
|
|
-- If the component declaration includes a default expression, then we
|
1866 |
|
|
-- check that the component is not of a limited type (RM 3.7(5)),
|
1867 |
|
|
-- and do the special preanalysis of the expression (see section on
|
1868 |
|
|
-- "Handling of Default and Per-Object Expressions" in the spec of
|
1869 |
|
|
-- package Sem).
|
1870 |
|
|
|
1871 |
|
|
if Present (E) then
|
1872 |
|
|
Check_SPARK_Restriction ("default expression is not allowed", E);
|
1873 |
|
|
Preanalyze_Spec_Expression (E, T);
|
1874 |
|
|
Check_Initialization (T, E);
|
1875 |
|
|
|
1876 |
|
|
if Ada_Version >= Ada_2005
|
1877 |
|
|
and then Ekind (T) = E_Anonymous_Access_Type
|
1878 |
|
|
and then Etype (E) /= Any_Type
|
1879 |
|
|
then
|
1880 |
|
|
-- Check RM 3.9.2(9): "if the expected type for an expression is
|
1881 |
|
|
-- an anonymous access-to-specific tagged type, then the object
|
1882 |
|
|
-- designated by the expression shall not be dynamically tagged
|
1883 |
|
|
-- unless it is a controlling operand in a call on a dispatching
|
1884 |
|
|
-- operation"
|
1885 |
|
|
|
1886 |
|
|
if Is_Tagged_Type (Directly_Designated_Type (T))
|
1887 |
|
|
and then
|
1888 |
|
|
Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
|
1889 |
|
|
and then
|
1890 |
|
|
Ekind (Directly_Designated_Type (Etype (E))) =
|
1891 |
|
|
E_Class_Wide_Type
|
1892 |
|
|
then
|
1893 |
|
|
Error_Msg_N
|
1894 |
|
|
("access to specific tagged type required (RM 3.9.2(9))", E);
|
1895 |
|
|
end if;
|
1896 |
|
|
|
1897 |
|
|
-- (Ada 2005: AI-230): Accessibility check for anonymous
|
1898 |
|
|
-- components
|
1899 |
|
|
|
1900 |
|
|
if Type_Access_Level (Etype (E)) >
|
1901 |
|
|
Deepest_Type_Access_Level (T)
|
1902 |
|
|
then
|
1903 |
|
|
Error_Msg_N
|
1904 |
|
|
("expression has deeper access level than component " &
|
1905 |
|
|
"(RM 3.10.2 (12.2))", E);
|
1906 |
|
|
end if;
|
1907 |
|
|
|
1908 |
|
|
-- The initialization expression is a reference to an access
|
1909 |
|
|
-- discriminant. The type of the discriminant is always deeper
|
1910 |
|
|
-- than any access type.
|
1911 |
|
|
|
1912 |
|
|
if Ekind (Etype (E)) = E_Anonymous_Access_Type
|
1913 |
|
|
and then Is_Entity_Name (E)
|
1914 |
|
|
and then Ekind (Entity (E)) = E_In_Parameter
|
1915 |
|
|
and then Present (Discriminal_Link (Entity (E)))
|
1916 |
|
|
then
|
1917 |
|
|
Error_Msg_N
|
1918 |
|
|
("discriminant has deeper accessibility level than target",
|
1919 |
|
|
E);
|
1920 |
|
|
end if;
|
1921 |
|
|
end if;
|
1922 |
|
|
end if;
|
1923 |
|
|
|
1924 |
|
|
-- The parent type may be a private view with unknown discriminants,
|
1925 |
|
|
-- and thus unconstrained. Regular components must be constrained.
|
1926 |
|
|
|
1927 |
|
|
if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
|
1928 |
|
|
if Is_Class_Wide_Type (T) then
|
1929 |
|
|
Error_Msg_N
|
1930 |
|
|
("class-wide subtype with unknown discriminants" &
|
1931 |
|
|
" in component declaration",
|
1932 |
|
|
Subtype_Indication (Component_Definition (N)));
|
1933 |
|
|
else
|
1934 |
|
|
Error_Msg_N
|
1935 |
|
|
("unconstrained subtype in component declaration",
|
1936 |
|
|
Subtype_Indication (Component_Definition (N)));
|
1937 |
|
|
end if;
|
1938 |
|
|
|
1939 |
|
|
-- Components cannot be abstract, except for the special case of
|
1940 |
|
|
-- the _Parent field (case of extending an abstract tagged type)
|
1941 |
|
|
|
1942 |
|
|
elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
|
1943 |
|
|
Error_Msg_N ("type of a component cannot be abstract", N);
|
1944 |
|
|
end if;
|
1945 |
|
|
|
1946 |
|
|
Set_Etype (Id, T);
|
1947 |
|
|
Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
|
1948 |
|
|
|
1949 |
|
|
-- The component declaration may have a per-object constraint, set
|
1950 |
|
|
-- the appropriate flag in the defining identifier of the subtype.
|
1951 |
|
|
|
1952 |
|
|
if Present (Subtype_Indication (Component_Definition (N))) then
|
1953 |
|
|
declare
|
1954 |
|
|
Sindic : constant Node_Id :=
|
1955 |
|
|
Subtype_Indication (Component_Definition (N));
|
1956 |
|
|
begin
|
1957 |
|
|
if Nkind (Sindic) = N_Subtype_Indication
|
1958 |
|
|
and then Present (Constraint (Sindic))
|
1959 |
|
|
and then Contains_POC (Constraint (Sindic))
|
1960 |
|
|
then
|
1961 |
|
|
Set_Has_Per_Object_Constraint (Id);
|
1962 |
|
|
end if;
|
1963 |
|
|
end;
|
1964 |
|
|
end if;
|
1965 |
|
|
|
1966 |
|
|
-- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
|
1967 |
|
|
-- out some static checks.
|
1968 |
|
|
|
1969 |
|
|
if Ada_Version >= Ada_2005
|
1970 |
|
|
and then Can_Never_Be_Null (T)
|
1971 |
|
|
then
|
1972 |
|
|
Null_Exclusion_Static_Checks (N);
|
1973 |
|
|
end if;
|
1974 |
|
|
|
1975 |
|
|
-- If this component is private (or depends on a private type), flag the
|
1976 |
|
|
-- record type to indicate that some operations are not available.
|
1977 |
|
|
|
1978 |
|
|
P := Private_Component (T);
|
1979 |
|
|
|
1980 |
|
|
if Present (P) then
|
1981 |
|
|
|
1982 |
|
|
-- Check for circular definitions
|
1983 |
|
|
|
1984 |
|
|
if P = Any_Type then
|
1985 |
|
|
Set_Etype (Id, Any_Type);
|
1986 |
|
|
|
1987 |
|
|
-- There is a gap in the visibility of operations only if the
|
1988 |
|
|
-- component type is not defined in the scope of the record type.
|
1989 |
|
|
|
1990 |
|
|
elsif Scope (P) = Scope (Current_Scope) then
|
1991 |
|
|
null;
|
1992 |
|
|
|
1993 |
|
|
elsif Is_Limited_Type (P) then
|
1994 |
|
|
Set_Is_Limited_Composite (Current_Scope);
|
1995 |
|
|
|
1996 |
|
|
else
|
1997 |
|
|
Set_Is_Private_Composite (Current_Scope);
|
1998 |
|
|
end if;
|
1999 |
|
|
end if;
|
2000 |
|
|
|
2001 |
|
|
if P /= Any_Type
|
2002 |
|
|
and then Is_Limited_Type (T)
|
2003 |
|
|
and then Chars (Id) /= Name_uParent
|
2004 |
|
|
and then Is_Tagged_Type (Current_Scope)
|
2005 |
|
|
then
|
2006 |
|
|
if Is_Derived_Type (Current_Scope)
|
2007 |
|
|
and then not Is_Known_Limited (Current_Scope)
|
2008 |
|
|
then
|
2009 |
|
|
Error_Msg_N
|
2010 |
|
|
("extension of nonlimited type cannot have limited components",
|
2011 |
|
|
N);
|
2012 |
|
|
|
2013 |
|
|
if Is_Interface (Root_Type (Current_Scope)) then
|
2014 |
|
|
Error_Msg_N
|
2015 |
|
|
("\limitedness is not inherited from limited interface", N);
|
2016 |
|
|
Error_Msg_N ("\add LIMITED to type indication", N);
|
2017 |
|
|
end if;
|
2018 |
|
|
|
2019 |
|
|
Explain_Limited_Type (T, N);
|
2020 |
|
|
Set_Etype (Id, Any_Type);
|
2021 |
|
|
Set_Is_Limited_Composite (Current_Scope, False);
|
2022 |
|
|
|
2023 |
|
|
elsif not Is_Derived_Type (Current_Scope)
|
2024 |
|
|
and then not Is_Limited_Record (Current_Scope)
|
2025 |
|
|
and then not Is_Concurrent_Type (Current_Scope)
|
2026 |
|
|
then
|
2027 |
|
|
Error_Msg_N
|
2028 |
|
|
("nonlimited tagged type cannot have limited components", N);
|
2029 |
|
|
Explain_Limited_Type (T, N);
|
2030 |
|
|
Set_Etype (Id, Any_Type);
|
2031 |
|
|
Set_Is_Limited_Composite (Current_Scope, False);
|
2032 |
|
|
end if;
|
2033 |
|
|
end if;
|
2034 |
|
|
|
2035 |
|
|
Set_Original_Record_Component (Id, Id);
|
2036 |
|
|
|
2037 |
|
|
if Has_Aspects (N) then
|
2038 |
|
|
Analyze_Aspect_Specifications (N, Id);
|
2039 |
|
|
end if;
|
2040 |
|
|
|
2041 |
|
|
Analyze_Dimension (N);
|
2042 |
|
|
end Analyze_Component_Declaration;
|
2043 |
|
|
|
2044 |
|
|
--------------------------
|
2045 |
|
|
-- Analyze_Declarations --
|
2046 |
|
|
--------------------------
|
2047 |
|
|
|
2048 |
|
|
procedure Analyze_Declarations (L : List_Id) is
|
2049 |
|
|
D : Node_Id;
|
2050 |
|
|
Freeze_From : Entity_Id := Empty;
|
2051 |
|
|
Next_Node : Node_Id;
|
2052 |
|
|
|
2053 |
|
|
procedure Adjust_D;
|
2054 |
|
|
-- Adjust D not to include implicit label declarations, since these
|
2055 |
|
|
-- have strange Sloc values that result in elaboration check problems.
|
2056 |
|
|
-- (They have the sloc of the label as found in the source, and that
|
2057 |
|
|
-- is ahead of the current declarative part).
|
2058 |
|
|
|
2059 |
|
|
--------------
|
2060 |
|
|
-- Adjust_D --
|
2061 |
|
|
--------------
|
2062 |
|
|
|
2063 |
|
|
procedure Adjust_D is
|
2064 |
|
|
begin
|
2065 |
|
|
while Present (Prev (D))
|
2066 |
|
|
and then Nkind (D) = N_Implicit_Label_Declaration
|
2067 |
|
|
loop
|
2068 |
|
|
Prev (D);
|
2069 |
|
|
end loop;
|
2070 |
|
|
end Adjust_D;
|
2071 |
|
|
|
2072 |
|
|
-- Start of processing for Analyze_Declarations
|
2073 |
|
|
|
2074 |
|
|
begin
|
2075 |
|
|
if Restriction_Check_Required (SPARK) then
|
2076 |
|
|
Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
|
2077 |
|
|
end if;
|
2078 |
|
|
|
2079 |
|
|
D := First (L);
|
2080 |
|
|
while Present (D) loop
|
2081 |
|
|
|
2082 |
|
|
-- Package spec cannot contain a package declaration in SPARK
|
2083 |
|
|
|
2084 |
|
|
if Nkind (D) = N_Package_Declaration
|
2085 |
|
|
and then Nkind (Parent (L)) = N_Package_Specification
|
2086 |
|
|
then
|
2087 |
|
|
Check_SPARK_Restriction
|
2088 |
|
|
("package specification cannot contain a package declaration",
|
2089 |
|
|
D);
|
2090 |
|
|
end if;
|
2091 |
|
|
|
2092 |
|
|
-- Complete analysis of declaration
|
2093 |
|
|
|
2094 |
|
|
Analyze (D);
|
2095 |
|
|
Next_Node := Next (D);
|
2096 |
|
|
|
2097 |
|
|
if No (Freeze_From) then
|
2098 |
|
|
Freeze_From := First_Entity (Current_Scope);
|
2099 |
|
|
end if;
|
2100 |
|
|
|
2101 |
|
|
-- At the end of a declarative part, freeze remaining entities
|
2102 |
|
|
-- declared in it. The end of the visible declarations of package
|
2103 |
|
|
-- specification is not the end of a declarative part if private
|
2104 |
|
|
-- declarations are present. The end of a package declaration is a
|
2105 |
|
|
-- freezing point only if it a library package. A task definition or
|
2106 |
|
|
-- protected type definition is not a freeze point either. Finally,
|
2107 |
|
|
-- we do not freeze entities in generic scopes, because there is no
|
2108 |
|
|
-- code generated for them and freeze nodes will be generated for
|
2109 |
|
|
-- the instance.
|
2110 |
|
|
|
2111 |
|
|
-- The end of a package instantiation is not a freeze point, but
|
2112 |
|
|
-- for now we make it one, because the generic body is inserted
|
2113 |
|
|
-- (currently) immediately after. Generic instantiations will not
|
2114 |
|
|
-- be a freeze point once delayed freezing of bodies is implemented.
|
2115 |
|
|
-- (This is needed in any case for early instantiations ???).
|
2116 |
|
|
|
2117 |
|
|
if No (Next_Node) then
|
2118 |
|
|
if Nkind_In (Parent (L), N_Component_List,
|
2119 |
|
|
N_Task_Definition,
|
2120 |
|
|
N_Protected_Definition)
|
2121 |
|
|
then
|
2122 |
|
|
null;
|
2123 |
|
|
|
2124 |
|
|
elsif Nkind (Parent (L)) /= N_Package_Specification then
|
2125 |
|
|
if Nkind (Parent (L)) = N_Package_Body then
|
2126 |
|
|
Freeze_From := First_Entity (Current_Scope);
|
2127 |
|
|
end if;
|
2128 |
|
|
|
2129 |
|
|
Adjust_D;
|
2130 |
|
|
Freeze_All (Freeze_From, D);
|
2131 |
|
|
Freeze_From := Last_Entity (Current_Scope);
|
2132 |
|
|
|
2133 |
|
|
elsif Scope (Current_Scope) /= Standard_Standard
|
2134 |
|
|
and then not Is_Child_Unit (Current_Scope)
|
2135 |
|
|
and then No (Generic_Parent (Parent (L)))
|
2136 |
|
|
then
|
2137 |
|
|
null;
|
2138 |
|
|
|
2139 |
|
|
elsif L /= Visible_Declarations (Parent (L))
|
2140 |
|
|
or else No (Private_Declarations (Parent (L)))
|
2141 |
|
|
or else Is_Empty_List (Private_Declarations (Parent (L)))
|
2142 |
|
|
then
|
2143 |
|
|
Adjust_D;
|
2144 |
|
|
Freeze_All (Freeze_From, D);
|
2145 |
|
|
Freeze_From := Last_Entity (Current_Scope);
|
2146 |
|
|
end if;
|
2147 |
|
|
|
2148 |
|
|
-- If next node is a body then freeze all types before the body.
|
2149 |
|
|
-- An exception occurs for some expander-generated bodies. If these
|
2150 |
|
|
-- are generated at places where in general language rules would not
|
2151 |
|
|
-- allow a freeze point, then we assume that the expander has
|
2152 |
|
|
-- explicitly checked that all required types are properly frozen,
|
2153 |
|
|
-- and we do not cause general freezing here. This special circuit
|
2154 |
|
|
-- is used when the encountered body is marked as having already
|
2155 |
|
|
-- been analyzed.
|
2156 |
|
|
|
2157 |
|
|
-- In all other cases (bodies that come from source, and expander
|
2158 |
|
|
-- generated bodies that have not been analyzed yet), freeze all
|
2159 |
|
|
-- types now. Note that in the latter case, the expander must take
|
2160 |
|
|
-- care to attach the bodies at a proper place in the tree so as to
|
2161 |
|
|
-- not cause unwanted freezing at that point.
|
2162 |
|
|
|
2163 |
|
|
elsif not Analyzed (Next_Node)
|
2164 |
|
|
and then (Nkind_In (Next_Node, N_Subprogram_Body,
|
2165 |
|
|
N_Entry_Body,
|
2166 |
|
|
N_Package_Body,
|
2167 |
|
|
N_Protected_Body,
|
2168 |
|
|
N_Task_Body)
|
2169 |
|
|
or else
|
2170 |
|
|
Nkind (Next_Node) in N_Body_Stub)
|
2171 |
|
|
then
|
2172 |
|
|
Adjust_D;
|
2173 |
|
|
Freeze_All (Freeze_From, D);
|
2174 |
|
|
Freeze_From := Last_Entity (Current_Scope);
|
2175 |
|
|
end if;
|
2176 |
|
|
|
2177 |
|
|
D := Next_Node;
|
2178 |
|
|
end loop;
|
2179 |
|
|
|
2180 |
|
|
-- One more thing to do, we need to scan the declarations to check
|
2181 |
|
|
-- for any precondition/postcondition pragmas (Pre/Post aspects have
|
2182 |
|
|
-- by this stage been converted into corresponding pragmas). It is
|
2183 |
|
|
-- at this point that we analyze the expressions in such pragmas,
|
2184 |
|
|
-- to implement the delayed visibility requirement.
|
2185 |
|
|
|
2186 |
|
|
declare
|
2187 |
|
|
Decl : Node_Id;
|
2188 |
|
|
Spec : Node_Id;
|
2189 |
|
|
Sent : Entity_Id;
|
2190 |
|
|
Prag : Node_Id;
|
2191 |
|
|
|
2192 |
|
|
begin
|
2193 |
|
|
Decl := First (L);
|
2194 |
|
|
while Present (Decl) loop
|
2195 |
|
|
if Nkind (Original_Node (Decl)) = N_Subprogram_Declaration then
|
2196 |
|
|
Spec := Specification (Original_Node (Decl));
|
2197 |
|
|
Sent := Defining_Unit_Name (Spec);
|
2198 |
|
|
|
2199 |
|
|
Prag := Spec_PPC_List (Contract (Sent));
|
2200 |
|
|
while Present (Prag) loop
|
2201 |
|
|
Analyze_PPC_In_Decl_Part (Prag, Sent);
|
2202 |
|
|
Prag := Next_Pragma (Prag);
|
2203 |
|
|
end loop;
|
2204 |
|
|
|
2205 |
|
|
Check_Subprogram_Contract (Sent);
|
2206 |
|
|
|
2207 |
|
|
Prag := Spec_TC_List (Contract (Sent));
|
2208 |
|
|
while Present (Prag) loop
|
2209 |
|
|
Analyze_TC_In_Decl_Part (Prag, Sent);
|
2210 |
|
|
Prag := Next_Pragma (Prag);
|
2211 |
|
|
end loop;
|
2212 |
|
|
end if;
|
2213 |
|
|
|
2214 |
|
|
Next (Decl);
|
2215 |
|
|
end loop;
|
2216 |
|
|
end;
|
2217 |
|
|
end Analyze_Declarations;
|
2218 |
|
|
|
2219 |
|
|
-----------------------------------
|
2220 |
|
|
-- Analyze_Full_Type_Declaration --
|
2221 |
|
|
-----------------------------------
|
2222 |
|
|
|
2223 |
|
|
procedure Analyze_Full_Type_Declaration (N : Node_Id) is
|
2224 |
|
|
Def : constant Node_Id := Type_Definition (N);
|
2225 |
|
|
Def_Id : constant Entity_Id := Defining_Identifier (N);
|
2226 |
|
|
T : Entity_Id;
|
2227 |
|
|
Prev : Entity_Id;
|
2228 |
|
|
|
2229 |
|
|
Is_Remote : constant Boolean :=
|
2230 |
|
|
(Is_Remote_Types (Current_Scope)
|
2231 |
|
|
or else Is_Remote_Call_Interface (Current_Scope))
|
2232 |
|
|
and then not (In_Private_Part (Current_Scope)
|
2233 |
|
|
or else In_Package_Body (Current_Scope));
|
2234 |
|
|
|
2235 |
|
|
procedure Check_Ops_From_Incomplete_Type;
|
2236 |
|
|
-- If there is a tagged incomplete partial view of the type, traverse
|
2237 |
|
|
-- the primitives of the incomplete view and change the type of any
|
2238 |
|
|
-- controlling formals and result to indicate the full view. The
|
2239 |
|
|
-- primitives will be added to the full type's primitive operations
|
2240 |
|
|
-- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
|
2241 |
|
|
-- is called from Process_Incomplete_Dependents).
|
2242 |
|
|
|
2243 |
|
|
------------------------------------
|
2244 |
|
|
-- Check_Ops_From_Incomplete_Type --
|
2245 |
|
|
------------------------------------
|
2246 |
|
|
|
2247 |
|
|
procedure Check_Ops_From_Incomplete_Type is
|
2248 |
|
|
Elmt : Elmt_Id;
|
2249 |
|
|
Formal : Entity_Id;
|
2250 |
|
|
Op : Entity_Id;
|
2251 |
|
|
|
2252 |
|
|
begin
|
2253 |
|
|
if Prev /= T
|
2254 |
|
|
and then Ekind (Prev) = E_Incomplete_Type
|
2255 |
|
|
and then Is_Tagged_Type (Prev)
|
2256 |
|
|
and then Is_Tagged_Type (T)
|
2257 |
|
|
then
|
2258 |
|
|
Elmt := First_Elmt (Primitive_Operations (Prev));
|
2259 |
|
|
while Present (Elmt) loop
|
2260 |
|
|
Op := Node (Elmt);
|
2261 |
|
|
|
2262 |
|
|
Formal := First_Formal (Op);
|
2263 |
|
|
while Present (Formal) loop
|
2264 |
|
|
if Etype (Formal) = Prev then
|
2265 |
|
|
Set_Etype (Formal, T);
|
2266 |
|
|
end if;
|
2267 |
|
|
|
2268 |
|
|
Next_Formal (Formal);
|
2269 |
|
|
end loop;
|
2270 |
|
|
|
2271 |
|
|
if Etype (Op) = Prev then
|
2272 |
|
|
Set_Etype (Op, T);
|
2273 |
|
|
end if;
|
2274 |
|
|
|
2275 |
|
|
Next_Elmt (Elmt);
|
2276 |
|
|
end loop;
|
2277 |
|
|
end if;
|
2278 |
|
|
end Check_Ops_From_Incomplete_Type;
|
2279 |
|
|
|
2280 |
|
|
-- Start of processing for Analyze_Full_Type_Declaration
|
2281 |
|
|
|
2282 |
|
|
begin
|
2283 |
|
|
Prev := Find_Type_Name (N);
|
2284 |
|
|
|
2285 |
|
|
-- The full view, if present, now points to the current type
|
2286 |
|
|
|
2287 |
|
|
-- Ada 2005 (AI-50217): If the type was previously decorated when
|
2288 |
|
|
-- imported through a LIMITED WITH clause, it appears as incomplete
|
2289 |
|
|
-- but has no full view.
|
2290 |
|
|
|
2291 |
|
|
if Ekind (Prev) = E_Incomplete_Type
|
2292 |
|
|
and then Present (Full_View (Prev))
|
2293 |
|
|
then
|
2294 |
|
|
T := Full_View (Prev);
|
2295 |
|
|
else
|
2296 |
|
|
T := Prev;
|
2297 |
|
|
end if;
|
2298 |
|
|
|
2299 |
|
|
Set_Is_Pure (T, Is_Pure (Current_Scope));
|
2300 |
|
|
|
2301 |
|
|
-- We set the flag Is_First_Subtype here. It is needed to set the
|
2302 |
|
|
-- corresponding flag for the Implicit class-wide-type created
|
2303 |
|
|
-- during tagged types processing.
|
2304 |
|
|
|
2305 |
|
|
Set_Is_First_Subtype (T, True);
|
2306 |
|
|
|
2307 |
|
|
-- Only composite types other than array types are allowed to have
|
2308 |
|
|
-- discriminants.
|
2309 |
|
|
|
2310 |
|
|
case Nkind (Def) is
|
2311 |
|
|
|
2312 |
|
|
-- For derived types, the rule will be checked once we've figured
|
2313 |
|
|
-- out the parent type.
|
2314 |
|
|
|
2315 |
|
|
when N_Derived_Type_Definition =>
|
2316 |
|
|
null;
|
2317 |
|
|
|
2318 |
|
|
-- For record types, discriminants are allowed, unless we are in
|
2319 |
|
|
-- SPARK.
|
2320 |
|
|
|
2321 |
|
|
when N_Record_Definition =>
|
2322 |
|
|
if Present (Discriminant_Specifications (N)) then
|
2323 |
|
|
Check_SPARK_Restriction
|
2324 |
|
|
("discriminant type is not allowed",
|
2325 |
|
|
Defining_Identifier
|
2326 |
|
|
(First (Discriminant_Specifications (N))));
|
2327 |
|
|
end if;
|
2328 |
|
|
|
2329 |
|
|
when others =>
|
2330 |
|
|
if Present (Discriminant_Specifications (N)) then
|
2331 |
|
|
Error_Msg_N
|
2332 |
|
|
("elementary or array type cannot have discriminants",
|
2333 |
|
|
Defining_Identifier
|
2334 |
|
|
(First (Discriminant_Specifications (N))));
|
2335 |
|
|
end if;
|
2336 |
|
|
end case;
|
2337 |
|
|
|
2338 |
|
|
-- Elaborate the type definition according to kind, and generate
|
2339 |
|
|
-- subsidiary (implicit) subtypes where needed. We skip this if it was
|
2340 |
|
|
-- already done (this happens during the reanalysis that follows a call
|
2341 |
|
|
-- to the high level optimizer).
|
2342 |
|
|
|
2343 |
|
|
if not Analyzed (T) then
|
2344 |
|
|
Set_Analyzed (T);
|
2345 |
|
|
|
2346 |
|
|
case Nkind (Def) is
|
2347 |
|
|
|
2348 |
|
|
when N_Access_To_Subprogram_Definition =>
|
2349 |
|
|
Access_Subprogram_Declaration (T, Def);
|
2350 |
|
|
|
2351 |
|
|
-- If this is a remote access to subprogram, we must create the
|
2352 |
|
|
-- equivalent fat pointer type, and related subprograms.
|
2353 |
|
|
|
2354 |
|
|
if Is_Remote then
|
2355 |
|
|
Process_Remote_AST_Declaration (N);
|
2356 |
|
|
end if;
|
2357 |
|
|
|
2358 |
|
|
-- Validate categorization rule against access type declaration
|
2359 |
|
|
-- usually a violation in Pure unit, Shared_Passive unit.
|
2360 |
|
|
|
2361 |
|
|
Validate_Access_Type_Declaration (T, N);
|
2362 |
|
|
|
2363 |
|
|
when N_Access_To_Object_Definition =>
|
2364 |
|
|
Access_Type_Declaration (T, Def);
|
2365 |
|
|
|
2366 |
|
|
-- Validate categorization rule against access type declaration
|
2367 |
|
|
-- usually a violation in Pure unit, Shared_Passive unit.
|
2368 |
|
|
|
2369 |
|
|
Validate_Access_Type_Declaration (T, N);
|
2370 |
|
|
|
2371 |
|
|
-- If we are in a Remote_Call_Interface package and define a
|
2372 |
|
|
-- RACW, then calling stubs and specific stream attributes
|
2373 |
|
|
-- must be added.
|
2374 |
|
|
|
2375 |
|
|
if Is_Remote
|
2376 |
|
|
and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
|
2377 |
|
|
then
|
2378 |
|
|
Add_RACW_Features (Def_Id);
|
2379 |
|
|
end if;
|
2380 |
|
|
|
2381 |
|
|
-- Set no strict aliasing flag if config pragma seen
|
2382 |
|
|
|
2383 |
|
|
if Opt.No_Strict_Aliasing then
|
2384 |
|
|
Set_No_Strict_Aliasing (Base_Type (Def_Id));
|
2385 |
|
|
end if;
|
2386 |
|
|
|
2387 |
|
|
when N_Array_Type_Definition =>
|
2388 |
|
|
Array_Type_Declaration (T, Def);
|
2389 |
|
|
|
2390 |
|
|
when N_Derived_Type_Definition =>
|
2391 |
|
|
Derived_Type_Declaration (T, N, T /= Def_Id);
|
2392 |
|
|
|
2393 |
|
|
when N_Enumeration_Type_Definition =>
|
2394 |
|
|
Enumeration_Type_Declaration (T, Def);
|
2395 |
|
|
|
2396 |
|
|
when N_Floating_Point_Definition =>
|
2397 |
|
|
Floating_Point_Type_Declaration (T, Def);
|
2398 |
|
|
|
2399 |
|
|
when N_Decimal_Fixed_Point_Definition =>
|
2400 |
|
|
Decimal_Fixed_Point_Type_Declaration (T, Def);
|
2401 |
|
|
|
2402 |
|
|
when N_Ordinary_Fixed_Point_Definition =>
|
2403 |
|
|
Ordinary_Fixed_Point_Type_Declaration (T, Def);
|
2404 |
|
|
|
2405 |
|
|
when N_Signed_Integer_Type_Definition =>
|
2406 |
|
|
Signed_Integer_Type_Declaration (T, Def);
|
2407 |
|
|
|
2408 |
|
|
when N_Modular_Type_Definition =>
|
2409 |
|
|
Modular_Type_Declaration (T, Def);
|
2410 |
|
|
|
2411 |
|
|
when N_Record_Definition =>
|
2412 |
|
|
Record_Type_Declaration (T, N, Prev);
|
2413 |
|
|
|
2414 |
|
|
-- If declaration has a parse error, nothing to elaborate.
|
2415 |
|
|
|
2416 |
|
|
when N_Error =>
|
2417 |
|
|
null;
|
2418 |
|
|
|
2419 |
|
|
when others =>
|
2420 |
|
|
raise Program_Error;
|
2421 |
|
|
|
2422 |
|
|
end case;
|
2423 |
|
|
end if;
|
2424 |
|
|
|
2425 |
|
|
if Etype (T) = Any_Type then
|
2426 |
|
|
return;
|
2427 |
|
|
end if;
|
2428 |
|
|
|
2429 |
|
|
-- Controlled type is not allowed in SPARK
|
2430 |
|
|
|
2431 |
|
|
if Is_Visibly_Controlled (T) then
|
2432 |
|
|
Check_SPARK_Restriction ("controlled type is not allowed", N);
|
2433 |
|
|
end if;
|
2434 |
|
|
|
2435 |
|
|
-- Some common processing for all types
|
2436 |
|
|
|
2437 |
|
|
Set_Depends_On_Private (T, Has_Private_Component (T));
|
2438 |
|
|
Check_Ops_From_Incomplete_Type;
|
2439 |
|
|
|
2440 |
|
|
-- Both the declared entity, and its anonymous base type if one
|
2441 |
|
|
-- was created, need freeze nodes allocated.
|
2442 |
|
|
|
2443 |
|
|
declare
|
2444 |
|
|
B : constant Entity_Id := Base_Type (T);
|
2445 |
|
|
|
2446 |
|
|
begin
|
2447 |
|
|
-- In the case where the base type differs from the first subtype, we
|
2448 |
|
|
-- pre-allocate a freeze node, and set the proper link to the first
|
2449 |
|
|
-- subtype. Freeze_Entity will use this preallocated freeze node when
|
2450 |
|
|
-- it freezes the entity.
|
2451 |
|
|
|
2452 |
|
|
-- This does not apply if the base type is a generic type, whose
|
2453 |
|
|
-- declaration is independent of the current derived definition.
|
2454 |
|
|
|
2455 |
|
|
if B /= T and then not Is_Generic_Type (B) then
|
2456 |
|
|
Ensure_Freeze_Node (B);
|
2457 |
|
|
Set_First_Subtype_Link (Freeze_Node (B), T);
|
2458 |
|
|
end if;
|
2459 |
|
|
|
2460 |
|
|
-- A type that is imported through a limited_with clause cannot
|
2461 |
|
|
-- generate any code, and thus need not be frozen. However, an access
|
2462 |
|
|
-- type with an imported designated type needs a finalization list,
|
2463 |
|
|
-- which may be referenced in some other package that has non-limited
|
2464 |
|
|
-- visibility on the designated type. Thus we must create the
|
2465 |
|
|
-- finalization list at the point the access type is frozen, to
|
2466 |
|
|
-- prevent unsatisfied references at link time.
|
2467 |
|
|
|
2468 |
|
|
if not From_With_Type (T) or else Is_Access_Type (T) then
|
2469 |
|
|
Set_Has_Delayed_Freeze (T);
|
2470 |
|
|
end if;
|
2471 |
|
|
end;
|
2472 |
|
|
|
2473 |
|
|
-- Case where T is the full declaration of some private type which has
|
2474 |
|
|
-- been swapped in Defining_Identifier (N).
|
2475 |
|
|
|
2476 |
|
|
if T /= Def_Id and then Is_Private_Type (Def_Id) then
|
2477 |
|
|
Process_Full_View (N, T, Def_Id);
|
2478 |
|
|
|
2479 |
|
|
-- Record the reference. The form of this is a little strange, since
|
2480 |
|
|
-- the full declaration has been swapped in. So the first parameter
|
2481 |
|
|
-- here represents the entity to which a reference is made which is
|
2482 |
|
|
-- the "real" entity, i.e. the one swapped in, and the second
|
2483 |
|
|
-- parameter provides the reference location.
|
2484 |
|
|
|
2485 |
|
|
-- Also, we want to kill Has_Pragma_Unreferenced temporarily here
|
2486 |
|
|
-- since we don't want a complaint about the full type being an
|
2487 |
|
|
-- unwanted reference to the private type
|
2488 |
|
|
|
2489 |
|
|
declare
|
2490 |
|
|
B : constant Boolean := Has_Pragma_Unreferenced (T);
|
2491 |
|
|
begin
|
2492 |
|
|
Set_Has_Pragma_Unreferenced (T, False);
|
2493 |
|
|
Generate_Reference (T, T, 'c');
|
2494 |
|
|
Set_Has_Pragma_Unreferenced (T, B);
|
2495 |
|
|
end;
|
2496 |
|
|
|
2497 |
|
|
Set_Completion_Referenced (Def_Id);
|
2498 |
|
|
|
2499 |
|
|
-- For completion of incomplete type, process incomplete dependents
|
2500 |
|
|
-- and always mark the full type as referenced (it is the incomplete
|
2501 |
|
|
-- type that we get for any real reference).
|
2502 |
|
|
|
2503 |
|
|
elsif Ekind (Prev) = E_Incomplete_Type then
|
2504 |
|
|
Process_Incomplete_Dependents (N, T, Prev);
|
2505 |
|
|
Generate_Reference (Prev, Def_Id, 'c');
|
2506 |
|
|
Set_Completion_Referenced (Def_Id);
|
2507 |
|
|
|
2508 |
|
|
-- If not private type or incomplete type completion, this is a real
|
2509 |
|
|
-- definition of a new entity, so record it.
|
2510 |
|
|
|
2511 |
|
|
else
|
2512 |
|
|
Generate_Definition (Def_Id);
|
2513 |
|
|
end if;
|
2514 |
|
|
|
2515 |
|
|
if Chars (Scope (Def_Id)) = Name_System
|
2516 |
|
|
and then Chars (Def_Id) = Name_Address
|
2517 |
|
|
and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
|
2518 |
|
|
then
|
2519 |
|
|
Set_Is_Descendent_Of_Address (Def_Id);
|
2520 |
|
|
Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
|
2521 |
|
|
Set_Is_Descendent_Of_Address (Prev);
|
2522 |
|
|
end if;
|
2523 |
|
|
|
2524 |
|
|
Set_Optimize_Alignment_Flags (Def_Id);
|
2525 |
|
|
Check_Eliminated (Def_Id);
|
2526 |
|
|
|
2527 |
|
|
-- If the declaration is a completion and aspects are present, apply
|
2528 |
|
|
-- them to the entity for the type which is currently the partial
|
2529 |
|
|
-- view, but which is the one that will be frozen.
|
2530 |
|
|
|
2531 |
|
|
if Has_Aspects (N) then
|
2532 |
|
|
if Prev /= Def_Id then
|
2533 |
|
|
Analyze_Aspect_Specifications (N, Prev);
|
2534 |
|
|
else
|
2535 |
|
|
Analyze_Aspect_Specifications (N, Def_Id);
|
2536 |
|
|
end if;
|
2537 |
|
|
end if;
|
2538 |
|
|
end Analyze_Full_Type_Declaration;
|
2539 |
|
|
|
2540 |
|
|
----------------------------------
|
2541 |
|
|
-- Analyze_Incomplete_Type_Decl --
|
2542 |
|
|
----------------------------------
|
2543 |
|
|
|
2544 |
|
|
procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
|
2545 |
|
|
F : constant Boolean := Is_Pure (Current_Scope);
|
2546 |
|
|
T : Entity_Id;
|
2547 |
|
|
|
2548 |
|
|
begin
|
2549 |
|
|
Check_SPARK_Restriction ("incomplete type is not allowed", N);
|
2550 |
|
|
|
2551 |
|
|
Generate_Definition (Defining_Identifier (N));
|
2552 |
|
|
|
2553 |
|
|
-- Process an incomplete declaration. The identifier must not have been
|
2554 |
|
|
-- declared already in the scope. However, an incomplete declaration may
|
2555 |
|
|
-- appear in the private part of a package, for a private type that has
|
2556 |
|
|
-- already been declared.
|
2557 |
|
|
|
2558 |
|
|
-- In this case, the discriminants (if any) must match
|
2559 |
|
|
|
2560 |
|
|
T := Find_Type_Name (N);
|
2561 |
|
|
|
2562 |
|
|
Set_Ekind (T, E_Incomplete_Type);
|
2563 |
|
|
Init_Size_Align (T);
|
2564 |
|
|
Set_Is_First_Subtype (T, True);
|
2565 |
|
|
Set_Etype (T, T);
|
2566 |
|
|
|
2567 |
|
|
-- Ada 2005 (AI-326): Minimum decoration to give support to tagged
|
2568 |
|
|
-- incomplete types.
|
2569 |
|
|
|
2570 |
|
|
if Tagged_Present (N) then
|
2571 |
|
|
Set_Is_Tagged_Type (T);
|
2572 |
|
|
Make_Class_Wide_Type (T);
|
2573 |
|
|
Set_Direct_Primitive_Operations (T, New_Elmt_List);
|
2574 |
|
|
end if;
|
2575 |
|
|
|
2576 |
|
|
Push_Scope (T);
|
2577 |
|
|
|
2578 |
|
|
Set_Stored_Constraint (T, No_Elist);
|
2579 |
|
|
|
2580 |
|
|
if Present (Discriminant_Specifications (N)) then
|
2581 |
|
|
Process_Discriminants (N);
|
2582 |
|
|
end if;
|
2583 |
|
|
|
2584 |
|
|
End_Scope;
|
2585 |
|
|
|
2586 |
|
|
-- If the type has discriminants, non-trivial subtypes may be
|
2587 |
|
|
-- declared before the full view of the type. The full views of those
|
2588 |
|
|
-- subtypes will be built after the full view of the type.
|
2589 |
|
|
|
2590 |
|
|
Set_Private_Dependents (T, New_Elmt_List);
|
2591 |
|
|
Set_Is_Pure (T, F);
|
2592 |
|
|
end Analyze_Incomplete_Type_Decl;
|
2593 |
|
|
|
2594 |
|
|
-----------------------------------
|
2595 |
|
|
-- Analyze_Interface_Declaration --
|
2596 |
|
|
-----------------------------------
|
2597 |
|
|
|
2598 |
|
|
procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
|
2599 |
|
|
CW : constant Entity_Id := Class_Wide_Type (T);
|
2600 |
|
|
|
2601 |
|
|
begin
|
2602 |
|
|
Set_Is_Tagged_Type (T);
|
2603 |
|
|
|
2604 |
|
|
Set_Is_Limited_Record (T, Limited_Present (Def)
|
2605 |
|
|
or else Task_Present (Def)
|
2606 |
|
|
or else Protected_Present (Def)
|
2607 |
|
|
or else Synchronized_Present (Def));
|
2608 |
|
|
|
2609 |
|
|
-- Type is abstract if full declaration carries keyword, or if previous
|
2610 |
|
|
-- partial view did.
|
2611 |
|
|
|
2612 |
|
|
Set_Is_Abstract_Type (T);
|
2613 |
|
|
Set_Is_Interface (T);
|
2614 |
|
|
|
2615 |
|
|
-- Type is a limited interface if it includes the keyword limited, task,
|
2616 |
|
|
-- protected, or synchronized.
|
2617 |
|
|
|
2618 |
|
|
Set_Is_Limited_Interface
|
2619 |
|
|
(T, Limited_Present (Def)
|
2620 |
|
|
or else Protected_Present (Def)
|
2621 |
|
|
or else Synchronized_Present (Def)
|
2622 |
|
|
or else Task_Present (Def));
|
2623 |
|
|
|
2624 |
|
|
Set_Interfaces (T, New_Elmt_List);
|
2625 |
|
|
Set_Direct_Primitive_Operations (T, New_Elmt_List);
|
2626 |
|
|
|
2627 |
|
|
-- Complete the decoration of the class-wide entity if it was already
|
2628 |
|
|
-- built (i.e. during the creation of the limited view)
|
2629 |
|
|
|
2630 |
|
|
if Present (CW) then
|
2631 |
|
|
Set_Is_Interface (CW);
|
2632 |
|
|
Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
|
2633 |
|
|
end if;
|
2634 |
|
|
|
2635 |
|
|
-- Check runtime support for synchronized interfaces
|
2636 |
|
|
|
2637 |
|
|
if VM_Target = No_VM
|
2638 |
|
|
and then (Is_Task_Interface (T)
|
2639 |
|
|
or else Is_Protected_Interface (T)
|
2640 |
|
|
or else Is_Synchronized_Interface (T))
|
2641 |
|
|
and then not RTE_Available (RE_Select_Specific_Data)
|
2642 |
|
|
then
|
2643 |
|
|
Error_Msg_CRT ("synchronized interfaces", T);
|
2644 |
|
|
end if;
|
2645 |
|
|
end Analyze_Interface_Declaration;
|
2646 |
|
|
|
2647 |
|
|
-----------------------------
|
2648 |
|
|
-- Analyze_Itype_Reference --
|
2649 |
|
|
-----------------------------
|
2650 |
|
|
|
2651 |
|
|
-- Nothing to do. This node is placed in the tree only for the benefit of
|
2652 |
|
|
-- back end processing, and has no effect on the semantic processing.
|
2653 |
|
|
|
2654 |
|
|
procedure Analyze_Itype_Reference (N : Node_Id) is
|
2655 |
|
|
begin
|
2656 |
|
|
pragma Assert (Is_Itype (Itype (N)));
|
2657 |
|
|
null;
|
2658 |
|
|
end Analyze_Itype_Reference;
|
2659 |
|
|
|
2660 |
|
|
--------------------------------
|
2661 |
|
|
-- Analyze_Number_Declaration --
|
2662 |
|
|
--------------------------------
|
2663 |
|
|
|
2664 |
|
|
procedure Analyze_Number_Declaration (N : Node_Id) is
|
2665 |
|
|
Id : constant Entity_Id := Defining_Identifier (N);
|
2666 |
|
|
E : constant Node_Id := Expression (N);
|
2667 |
|
|
T : Entity_Id;
|
2668 |
|
|
Index : Interp_Index;
|
2669 |
|
|
It : Interp;
|
2670 |
|
|
|
2671 |
|
|
begin
|
2672 |
|
|
Generate_Definition (Id);
|
2673 |
|
|
Enter_Name (Id);
|
2674 |
|
|
|
2675 |
|
|
-- This is an optimization of a common case of an integer literal
|
2676 |
|
|
|
2677 |
|
|
if Nkind (E) = N_Integer_Literal then
|
2678 |
|
|
Set_Is_Static_Expression (E, True);
|
2679 |
|
|
Set_Etype (E, Universal_Integer);
|
2680 |
|
|
|
2681 |
|
|
Set_Etype (Id, Universal_Integer);
|
2682 |
|
|
Set_Ekind (Id, E_Named_Integer);
|
2683 |
|
|
Set_Is_Frozen (Id, True);
|
2684 |
|
|
return;
|
2685 |
|
|
end if;
|
2686 |
|
|
|
2687 |
|
|
Set_Is_Pure (Id, Is_Pure (Current_Scope));
|
2688 |
|
|
|
2689 |
|
|
-- Process expression, replacing error by integer zero, to avoid
|
2690 |
|
|
-- cascaded errors or aborts further along in the processing
|
2691 |
|
|
|
2692 |
|
|
-- Replace Error by integer zero, which seems least likely to cause
|
2693 |
|
|
-- cascaded errors.
|
2694 |
|
|
|
2695 |
|
|
if E = Error then
|
2696 |
|
|
Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
|
2697 |
|
|
Set_Error_Posted (E);
|
2698 |
|
|
end if;
|
2699 |
|
|
|
2700 |
|
|
Analyze (E);
|
2701 |
|
|
|
2702 |
|
|
-- Verify that the expression is static and numeric. If
|
2703 |
|
|
-- the expression is overloaded, we apply the preference
|
2704 |
|
|
-- rule that favors root numeric types.
|
2705 |
|
|
|
2706 |
|
|
if not Is_Overloaded (E) then
|
2707 |
|
|
T := Etype (E);
|
2708 |
|
|
|
2709 |
|
|
else
|
2710 |
|
|
T := Any_Type;
|
2711 |
|
|
|
2712 |
|
|
Get_First_Interp (E, Index, It);
|
2713 |
|
|
while Present (It.Typ) loop
|
2714 |
|
|
if (Is_Integer_Type (It.Typ)
|
2715 |
|
|
or else Is_Real_Type (It.Typ))
|
2716 |
|
|
and then (Scope (Base_Type (It.Typ))) = Standard_Standard
|
2717 |
|
|
then
|
2718 |
|
|
if T = Any_Type then
|
2719 |
|
|
T := It.Typ;
|
2720 |
|
|
|
2721 |
|
|
elsif It.Typ = Universal_Real
|
2722 |
|
|
or else It.Typ = Universal_Integer
|
2723 |
|
|
then
|
2724 |
|
|
-- Choose universal interpretation over any other
|
2725 |
|
|
|
2726 |
|
|
T := It.Typ;
|
2727 |
|
|
exit;
|
2728 |
|
|
end if;
|
2729 |
|
|
end if;
|
2730 |
|
|
|
2731 |
|
|
Get_Next_Interp (Index, It);
|
2732 |
|
|
end loop;
|
2733 |
|
|
end if;
|
2734 |
|
|
|
2735 |
|
|
if Is_Integer_Type (T) then
|
2736 |
|
|
Resolve (E, T);
|
2737 |
|
|
Set_Etype (Id, Universal_Integer);
|
2738 |
|
|
Set_Ekind (Id, E_Named_Integer);
|
2739 |
|
|
|
2740 |
|
|
elsif Is_Real_Type (T) then
|
2741 |
|
|
|
2742 |
|
|
-- Because the real value is converted to universal_real, this is a
|
2743 |
|
|
-- legal context for a universal fixed expression.
|
2744 |
|
|
|
2745 |
|
|
if T = Universal_Fixed then
|
2746 |
|
|
declare
|
2747 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2748 |
|
|
Conv : constant Node_Id := Make_Type_Conversion (Loc,
|
2749 |
|
|
Subtype_Mark =>
|
2750 |
|
|
New_Occurrence_Of (Universal_Real, Loc),
|
2751 |
|
|
Expression => Relocate_Node (E));
|
2752 |
|
|
|
2753 |
|
|
begin
|
2754 |
|
|
Rewrite (E, Conv);
|
2755 |
|
|
Analyze (E);
|
2756 |
|
|
end;
|
2757 |
|
|
|
2758 |
|
|
elsif T = Any_Fixed then
|
2759 |
|
|
Error_Msg_N ("illegal context for mixed mode operation", E);
|
2760 |
|
|
|
2761 |
|
|
-- Expression is of the form : universal_fixed * integer. Try to
|
2762 |
|
|
-- resolve as universal_real.
|
2763 |
|
|
|
2764 |
|
|
T := Universal_Real;
|
2765 |
|
|
Set_Etype (E, T);
|
2766 |
|
|
end if;
|
2767 |
|
|
|
2768 |
|
|
Resolve (E, T);
|
2769 |
|
|
Set_Etype (Id, Universal_Real);
|
2770 |
|
|
Set_Ekind (Id, E_Named_Real);
|
2771 |
|
|
|
2772 |
|
|
else
|
2773 |
|
|
Wrong_Type (E, Any_Numeric);
|
2774 |
|
|
Resolve (E, T);
|
2775 |
|
|
|
2776 |
|
|
Set_Etype (Id, T);
|
2777 |
|
|
Set_Ekind (Id, E_Constant);
|
2778 |
|
|
Set_Never_Set_In_Source (Id, True);
|
2779 |
|
|
Set_Is_True_Constant (Id, True);
|
2780 |
|
|
return;
|
2781 |
|
|
end if;
|
2782 |
|
|
|
2783 |
|
|
if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
|
2784 |
|
|
Set_Etype (E, Etype (Id));
|
2785 |
|
|
end if;
|
2786 |
|
|
|
2787 |
|
|
if not Is_OK_Static_Expression (E) then
|
2788 |
|
|
Flag_Non_Static_Expr
|
2789 |
|
|
("non-static expression used in number declaration!", E);
|
2790 |
|
|
Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
|
2791 |
|
|
Set_Etype (E, Any_Type);
|
2792 |
|
|
end if;
|
2793 |
|
|
end Analyze_Number_Declaration;
|
2794 |
|
|
|
2795 |
|
|
--------------------------------
|
2796 |
|
|
-- Analyze_Object_Declaration --
|
2797 |
|
|
--------------------------------
|
2798 |
|
|
|
2799 |
|
|
procedure Analyze_Object_Declaration (N : Node_Id) is
|
2800 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2801 |
|
|
Id : constant Entity_Id := Defining_Identifier (N);
|
2802 |
|
|
T : Entity_Id;
|
2803 |
|
|
Act_T : Entity_Id;
|
2804 |
|
|
|
2805 |
|
|
E : Node_Id := Expression (N);
|
2806 |
|
|
-- E is set to Expression (N) throughout this routine. When
|
2807 |
|
|
-- Expression (N) is modified, E is changed accordingly.
|
2808 |
|
|
|
2809 |
|
|
Prev_Entity : Entity_Id := Empty;
|
2810 |
|
|
|
2811 |
|
|
function Count_Tasks (T : Entity_Id) return Uint;
|
2812 |
|
|
-- This function is called when a non-generic library level object of a
|
2813 |
|
|
-- task type is declared. Its function is to count the static number of
|
2814 |
|
|
-- tasks declared within the type (it is only called if Has_Tasks is set
|
2815 |
|
|
-- for T). As a side effect, if an array of tasks with non-static bounds
|
2816 |
|
|
-- or a variant record type is encountered, Check_Restrictions is called
|
2817 |
|
|
-- indicating the count is unknown.
|
2818 |
|
|
|
2819 |
|
|
-----------------
|
2820 |
|
|
-- Count_Tasks --
|
2821 |
|
|
-----------------
|
2822 |
|
|
|
2823 |
|
|
function Count_Tasks (T : Entity_Id) return Uint is
|
2824 |
|
|
C : Entity_Id;
|
2825 |
|
|
X : Node_Id;
|
2826 |
|
|
V : Uint;
|
2827 |
|
|
|
2828 |
|
|
begin
|
2829 |
|
|
if Is_Task_Type (T) then
|
2830 |
|
|
return Uint_1;
|
2831 |
|
|
|
2832 |
|
|
elsif Is_Record_Type (T) then
|
2833 |
|
|
if Has_Discriminants (T) then
|
2834 |
|
|
Check_Restriction (Max_Tasks, N);
|
2835 |
|
|
return Uint_0;
|
2836 |
|
|
|
2837 |
|
|
else
|
2838 |
|
|
V := Uint_0;
|
2839 |
|
|
C := First_Component (T);
|
2840 |
|
|
while Present (C) loop
|
2841 |
|
|
V := V + Count_Tasks (Etype (C));
|
2842 |
|
|
Next_Component (C);
|
2843 |
|
|
end loop;
|
2844 |
|
|
|
2845 |
|
|
return V;
|
2846 |
|
|
end if;
|
2847 |
|
|
|
2848 |
|
|
elsif Is_Array_Type (T) then
|
2849 |
|
|
X := First_Index (T);
|
2850 |
|
|
V := Count_Tasks (Component_Type (T));
|
2851 |
|
|
while Present (X) loop
|
2852 |
|
|
C := Etype (X);
|
2853 |
|
|
|
2854 |
|
|
if not Is_Static_Subtype (C) then
|
2855 |
|
|
Check_Restriction (Max_Tasks, N);
|
2856 |
|
|
return Uint_0;
|
2857 |
|
|
else
|
2858 |
|
|
V := V * (UI_Max (Uint_0,
|
2859 |
|
|
Expr_Value (Type_High_Bound (C)) -
|
2860 |
|
|
Expr_Value (Type_Low_Bound (C)) + Uint_1));
|
2861 |
|
|
end if;
|
2862 |
|
|
|
2863 |
|
|
Next_Index (X);
|
2864 |
|
|
end loop;
|
2865 |
|
|
|
2866 |
|
|
return V;
|
2867 |
|
|
|
2868 |
|
|
else
|
2869 |
|
|
return Uint_0;
|
2870 |
|
|
end if;
|
2871 |
|
|
end Count_Tasks;
|
2872 |
|
|
|
2873 |
|
|
-- Start of processing for Analyze_Object_Declaration
|
2874 |
|
|
|
2875 |
|
|
begin
|
2876 |
|
|
-- There are three kinds of implicit types generated by an
|
2877 |
|
|
-- object declaration:
|
2878 |
|
|
|
2879 |
|
|
-- 1. Those generated by the original Object Definition
|
2880 |
|
|
|
2881 |
|
|
-- 2. Those generated by the Expression
|
2882 |
|
|
|
2883 |
|
|
-- 3. Those used to constrain the Object Definition with the
|
2884 |
|
|
-- expression constraints when the definition is unconstrained.
|
2885 |
|
|
|
2886 |
|
|
-- They must be generated in this order to avoid order of elaboration
|
2887 |
|
|
-- issues. Thus the first step (after entering the name) is to analyze
|
2888 |
|
|
-- the object definition.
|
2889 |
|
|
|
2890 |
|
|
if Constant_Present (N) then
|
2891 |
|
|
Prev_Entity := Current_Entity_In_Scope (Id);
|
2892 |
|
|
|
2893 |
|
|
if Present (Prev_Entity)
|
2894 |
|
|
and then
|
2895 |
|
|
|
2896 |
|
|
-- If the homograph is an implicit subprogram, it is overridden
|
2897 |
|
|
-- by the current declaration.
|
2898 |
|
|
|
2899 |
|
|
((Is_Overloadable (Prev_Entity)
|
2900 |
|
|
and then Is_Inherited_Operation (Prev_Entity))
|
2901 |
|
|
|
2902 |
|
|
-- The current object is a discriminal generated for an entry
|
2903 |
|
|
-- family index. Even though the index is a constant, in this
|
2904 |
|
|
-- particular context there is no true constant redeclaration.
|
2905 |
|
|
-- Enter_Name will handle the visibility.
|
2906 |
|
|
|
2907 |
|
|
or else
|
2908 |
|
|
(Is_Discriminal (Id)
|
2909 |
|
|
and then Ekind (Discriminal_Link (Id)) =
|
2910 |
|
|
E_Entry_Index_Parameter)
|
2911 |
|
|
|
2912 |
|
|
-- The current object is the renaming for a generic declared
|
2913 |
|
|
-- within the instance.
|
2914 |
|
|
|
2915 |
|
|
or else
|
2916 |
|
|
(Ekind (Prev_Entity) = E_Package
|
2917 |
|
|
and then Nkind (Parent (Prev_Entity)) =
|
2918 |
|
|
N_Package_Renaming_Declaration
|
2919 |
|
|
and then not Comes_From_Source (Prev_Entity)
|
2920 |
|
|
and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
|
2921 |
|
|
then
|
2922 |
|
|
Prev_Entity := Empty;
|
2923 |
|
|
end if;
|
2924 |
|
|
end if;
|
2925 |
|
|
|
2926 |
|
|
if Present (Prev_Entity) then
|
2927 |
|
|
Constant_Redeclaration (Id, N, T);
|
2928 |
|
|
|
2929 |
|
|
Generate_Reference (Prev_Entity, Id, 'c');
|
2930 |
|
|
Set_Completion_Referenced (Id);
|
2931 |
|
|
|
2932 |
|
|
if Error_Posted (N) then
|
2933 |
|
|
|
2934 |
|
|
-- Type mismatch or illegal redeclaration, Do not analyze
|
2935 |
|
|
-- expression to avoid cascaded errors.
|
2936 |
|
|
|
2937 |
|
|
T := Find_Type_Of_Object (Object_Definition (N), N);
|
2938 |
|
|
Set_Etype (Id, T);
|
2939 |
|
|
Set_Ekind (Id, E_Variable);
|
2940 |
|
|
goto Leave;
|
2941 |
|
|
end if;
|
2942 |
|
|
|
2943 |
|
|
-- In the normal case, enter identifier at the start to catch premature
|
2944 |
|
|
-- usage in the initialization expression.
|
2945 |
|
|
|
2946 |
|
|
else
|
2947 |
|
|
Generate_Definition (Id);
|
2948 |
|
|
Enter_Name (Id);
|
2949 |
|
|
|
2950 |
|
|
Mark_Coextensions (N, Object_Definition (N));
|
2951 |
|
|
|
2952 |
|
|
T := Find_Type_Of_Object (Object_Definition (N), N);
|
2953 |
|
|
|
2954 |
|
|
if Nkind (Object_Definition (N)) = N_Access_Definition
|
2955 |
|
|
and then Present
|
2956 |
|
|
(Access_To_Subprogram_Definition (Object_Definition (N)))
|
2957 |
|
|
and then Protected_Present
|
2958 |
|
|
(Access_To_Subprogram_Definition (Object_Definition (N)))
|
2959 |
|
|
then
|
2960 |
|
|
T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
|
2961 |
|
|
end if;
|
2962 |
|
|
|
2963 |
|
|
if Error_Posted (Id) then
|
2964 |
|
|
Set_Etype (Id, T);
|
2965 |
|
|
Set_Ekind (Id, E_Variable);
|
2966 |
|
|
goto Leave;
|
2967 |
|
|
end if;
|
2968 |
|
|
end if;
|
2969 |
|
|
|
2970 |
|
|
-- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
|
2971 |
|
|
-- out some static checks
|
2972 |
|
|
|
2973 |
|
|
if Ada_Version >= Ada_2005
|
2974 |
|
|
and then Can_Never_Be_Null (T)
|
2975 |
|
|
then
|
2976 |
|
|
-- In case of aggregates we must also take care of the correct
|
2977 |
|
|
-- initialization of nested aggregates bug this is done at the
|
2978 |
|
|
-- point of the analysis of the aggregate (see sem_aggr.adb)
|
2979 |
|
|
|
2980 |
|
|
if Present (Expression (N))
|
2981 |
|
|
and then Nkind (Expression (N)) = N_Aggregate
|
2982 |
|
|
then
|
2983 |
|
|
null;
|
2984 |
|
|
|
2985 |
|
|
else
|
2986 |
|
|
declare
|
2987 |
|
|
Save_Typ : constant Entity_Id := Etype (Id);
|
2988 |
|
|
begin
|
2989 |
|
|
Set_Etype (Id, T); -- Temp. decoration for static checks
|
2990 |
|
|
Null_Exclusion_Static_Checks (N);
|
2991 |
|
|
Set_Etype (Id, Save_Typ);
|
2992 |
|
|
end;
|
2993 |
|
|
end if;
|
2994 |
|
|
end if;
|
2995 |
|
|
|
2996 |
|
|
-- Object is marked pure if it is in a pure scope
|
2997 |
|
|
|
2998 |
|
|
Set_Is_Pure (Id, Is_Pure (Current_Scope));
|
2999 |
|
|
|
3000 |
|
|
-- If deferred constant, make sure context is appropriate. We detect
|
3001 |
|
|
-- a deferred constant as a constant declaration with no expression.
|
3002 |
|
|
-- A deferred constant can appear in a package body if its completion
|
3003 |
|
|
-- is by means of an interface pragma.
|
3004 |
|
|
|
3005 |
|
|
if Constant_Present (N)
|
3006 |
|
|
and then No (E)
|
3007 |
|
|
then
|
3008 |
|
|
-- A deferred constant may appear in the declarative part of the
|
3009 |
|
|
-- following constructs:
|
3010 |
|
|
|
3011 |
|
|
-- blocks
|
3012 |
|
|
-- entry bodies
|
3013 |
|
|
-- extended return statements
|
3014 |
|
|
-- package specs
|
3015 |
|
|
-- package bodies
|
3016 |
|
|
-- subprogram bodies
|
3017 |
|
|
-- task bodies
|
3018 |
|
|
|
3019 |
|
|
-- When declared inside a package spec, a deferred constant must be
|
3020 |
|
|
-- completed by a full constant declaration or pragma Import. In all
|
3021 |
|
|
-- other cases, the only proper completion is pragma Import. Extended
|
3022 |
|
|
-- return statements are flagged as invalid contexts because they do
|
3023 |
|
|
-- not have a declarative part and so cannot accommodate the pragma.
|
3024 |
|
|
|
3025 |
|
|
if Ekind (Current_Scope) = E_Return_Statement then
|
3026 |
|
|
Error_Msg_N
|
3027 |
|
|
("invalid context for deferred constant declaration (RM 7.4)",
|
3028 |
|
|
N);
|
3029 |
|
|
Error_Msg_N
|
3030 |
|
|
("\declaration requires an initialization expression",
|
3031 |
|
|
N);
|
3032 |
|
|
Set_Constant_Present (N, False);
|
3033 |
|
|
|
3034 |
|
|
-- In Ada 83, deferred constant must be of private type
|
3035 |
|
|
|
3036 |
|
|
elsif not Is_Private_Type (T) then
|
3037 |
|
|
if Ada_Version = Ada_83 and then Comes_From_Source (N) then
|
3038 |
|
|
Error_Msg_N
|
3039 |
|
|
("(Ada 83) deferred constant must be private type", N);
|
3040 |
|
|
end if;
|
3041 |
|
|
end if;
|
3042 |
|
|
|
3043 |
|
|
-- If not a deferred constant, then object declaration freezes its type
|
3044 |
|
|
|
3045 |
|
|
else
|
3046 |
|
|
Check_Fully_Declared (T, N);
|
3047 |
|
|
Freeze_Before (N, T);
|
3048 |
|
|
end if;
|
3049 |
|
|
|
3050 |
|
|
-- If the object was created by a constrained array definition, then
|
3051 |
|
|
-- set the link in both the anonymous base type and anonymous subtype
|
3052 |
|
|
-- that are built to represent the array type to point to the object.
|
3053 |
|
|
|
3054 |
|
|
if Nkind (Object_Definition (Declaration_Node (Id))) =
|
3055 |
|
|
N_Constrained_Array_Definition
|
3056 |
|
|
then
|
3057 |
|
|
Set_Related_Array_Object (T, Id);
|
3058 |
|
|
Set_Related_Array_Object (Base_Type (T), Id);
|
3059 |
|
|
end if;
|
3060 |
|
|
|
3061 |
|
|
-- Special checks for protected objects not at library level
|
3062 |
|
|
|
3063 |
|
|
if Is_Protected_Type (T)
|
3064 |
|
|
and then not Is_Library_Level_Entity (Id)
|
3065 |
|
|
then
|
3066 |
|
|
Check_Restriction (No_Local_Protected_Objects, Id);
|
3067 |
|
|
|
3068 |
|
|
-- Protected objects with interrupt handlers must be at library level
|
3069 |
|
|
|
3070 |
|
|
-- Ada 2005: this test is not needed (and the corresponding clause
|
3071 |
|
|
-- in the RM is removed) because accessibility checks are sufficient
|
3072 |
|
|
-- to make handlers not at the library level illegal.
|
3073 |
|
|
|
3074 |
|
|
if Has_Interrupt_Handler (T)
|
3075 |
|
|
and then Ada_Version < Ada_2005
|
3076 |
|
|
then
|
3077 |
|
|
Error_Msg_N
|
3078 |
|
|
("interrupt object can only be declared at library level", Id);
|
3079 |
|
|
end if;
|
3080 |
|
|
end if;
|
3081 |
|
|
|
3082 |
|
|
-- The actual subtype of the object is the nominal subtype, unless
|
3083 |
|
|
-- the nominal one is unconstrained and obtained from the expression.
|
3084 |
|
|
|
3085 |
|
|
Act_T := T;
|
3086 |
|
|
|
3087 |
|
|
-- These checks should be performed before the initialization expression
|
3088 |
|
|
-- is considered, so that the Object_Definition node is still the same
|
3089 |
|
|
-- as in source code.
|
3090 |
|
|
|
3091 |
|
|
-- In SPARK, the nominal subtype shall be given by a subtype mark and
|
3092 |
|
|
-- shall not be unconstrained. (The only exception to this is the
|
3093 |
|
|
-- admission of declarations of constants of type String.)
|
3094 |
|
|
|
3095 |
|
|
if not
|
3096 |
|
|
Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
|
3097 |
|
|
then
|
3098 |
|
|
Check_SPARK_Restriction
|
3099 |
|
|
("subtype mark required", Object_Definition (N));
|
3100 |
|
|
|
3101 |
|
|
elsif Is_Array_Type (T)
|
3102 |
|
|
and then not Is_Constrained (T)
|
3103 |
|
|
and then T /= Standard_String
|
3104 |
|
|
then
|
3105 |
|
|
Check_SPARK_Restriction
|
3106 |
|
|
("subtype mark of constrained type expected",
|
3107 |
|
|
Object_Definition (N));
|
3108 |
|
|
end if;
|
3109 |
|
|
|
3110 |
|
|
-- There are no aliased objects in SPARK
|
3111 |
|
|
|
3112 |
|
|
if Aliased_Present (N) then
|
3113 |
|
|
Check_SPARK_Restriction ("aliased object is not allowed", N);
|
3114 |
|
|
end if;
|
3115 |
|
|
|
3116 |
|
|
-- Process initialization expression if present and not in error
|
3117 |
|
|
|
3118 |
|
|
if Present (E) and then E /= Error then
|
3119 |
|
|
|
3120 |
|
|
-- Generate an error in case of CPP class-wide object initialization.
|
3121 |
|
|
-- Required because otherwise the expansion of the class-wide
|
3122 |
|
|
-- assignment would try to use 'size to initialize the object
|
3123 |
|
|
-- (primitive that is not available in CPP tagged types).
|
3124 |
|
|
|
3125 |
|
|
if Is_Class_Wide_Type (Act_T)
|
3126 |
|
|
and then
|
3127 |
|
|
(Is_CPP_Class (Root_Type (Etype (Act_T)))
|
3128 |
|
|
or else
|
3129 |
|
|
(Present (Full_View (Root_Type (Etype (Act_T))))
|
3130 |
|
|
and then
|
3131 |
|
|
Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
|
3132 |
|
|
then
|
3133 |
|
|
Error_Msg_N
|
3134 |
|
|
("predefined assignment not available for 'C'P'P tagged types",
|
3135 |
|
|
E);
|
3136 |
|
|
end if;
|
3137 |
|
|
|
3138 |
|
|
Mark_Coextensions (N, E);
|
3139 |
|
|
Analyze (E);
|
3140 |
|
|
|
3141 |
|
|
-- In case of errors detected in the analysis of the expression,
|
3142 |
|
|
-- decorate it with the expected type to avoid cascaded errors
|
3143 |
|
|
|
3144 |
|
|
if No (Etype (E)) then
|
3145 |
|
|
Set_Etype (E, T);
|
3146 |
|
|
end if;
|
3147 |
|
|
|
3148 |
|
|
-- If an initialization expression is present, then we set the
|
3149 |
|
|
-- Is_True_Constant flag. It will be reset if this is a variable
|
3150 |
|
|
-- and it is indeed modified.
|
3151 |
|
|
|
3152 |
|
|
Set_Is_True_Constant (Id, True);
|
3153 |
|
|
|
3154 |
|
|
-- If we are analyzing a constant declaration, set its completion
|
3155 |
|
|
-- flag after analyzing and resolving the expression.
|
3156 |
|
|
|
3157 |
|
|
if Constant_Present (N) then
|
3158 |
|
|
Set_Has_Completion (Id);
|
3159 |
|
|
end if;
|
3160 |
|
|
|
3161 |
|
|
-- Set type and resolve (type may be overridden later on)
|
3162 |
|
|
|
3163 |
|
|
Set_Etype (Id, T);
|
3164 |
|
|
Resolve (E, T);
|
3165 |
|
|
|
3166 |
|
|
-- If E is null and has been replaced by an N_Raise_Constraint_Error
|
3167 |
|
|
-- node (which was marked already-analyzed), we need to set the type
|
3168 |
|
|
-- to something other than Any_Access in order to keep gigi happy.
|
3169 |
|
|
|
3170 |
|
|
if Etype (E) = Any_Access then
|
3171 |
|
|
Set_Etype (E, T);
|
3172 |
|
|
end if;
|
3173 |
|
|
|
3174 |
|
|
-- If the object is an access to variable, the initialization
|
3175 |
|
|
-- expression cannot be an access to constant.
|
3176 |
|
|
|
3177 |
|
|
if Is_Access_Type (T)
|
3178 |
|
|
and then not Is_Access_Constant (T)
|
3179 |
|
|
and then Is_Access_Type (Etype (E))
|
3180 |
|
|
and then Is_Access_Constant (Etype (E))
|
3181 |
|
|
then
|
3182 |
|
|
Error_Msg_N
|
3183 |
|
|
("access to variable cannot be initialized "
|
3184 |
|
|
& "with an access-to-constant expression", E);
|
3185 |
|
|
end if;
|
3186 |
|
|
|
3187 |
|
|
if not Assignment_OK (N) then
|
3188 |
|
|
Check_Initialization (T, E);
|
3189 |
|
|
end if;
|
3190 |
|
|
|
3191 |
|
|
Check_Unset_Reference (E);
|
3192 |
|
|
|
3193 |
|
|
-- If this is a variable, then set current value. If this is a
|
3194 |
|
|
-- declared constant of a scalar type with a static expression,
|
3195 |
|
|
-- indicate that it is always valid.
|
3196 |
|
|
|
3197 |
|
|
if not Constant_Present (N) then
|
3198 |
|
|
if Compile_Time_Known_Value (E) then
|
3199 |
|
|
Set_Current_Value (Id, E);
|
3200 |
|
|
end if;
|
3201 |
|
|
|
3202 |
|
|
elsif Is_Scalar_Type (T)
|
3203 |
|
|
and then Is_OK_Static_Expression (E)
|
3204 |
|
|
then
|
3205 |
|
|
Set_Is_Known_Valid (Id);
|
3206 |
|
|
end if;
|
3207 |
|
|
|
3208 |
|
|
-- Deal with setting of null flags
|
3209 |
|
|
|
3210 |
|
|
if Is_Access_Type (T) then
|
3211 |
|
|
if Known_Non_Null (E) then
|
3212 |
|
|
Set_Is_Known_Non_Null (Id, True);
|
3213 |
|
|
elsif Known_Null (E)
|
3214 |
|
|
and then not Can_Never_Be_Null (Id)
|
3215 |
|
|
then
|
3216 |
|
|
Set_Is_Known_Null (Id, True);
|
3217 |
|
|
end if;
|
3218 |
|
|
end if;
|
3219 |
|
|
|
3220 |
|
|
-- Check incorrect use of dynamically tagged expressions.
|
3221 |
|
|
|
3222 |
|
|
if Is_Tagged_Type (T) then
|
3223 |
|
|
Check_Dynamically_Tagged_Expression
|
3224 |
|
|
(Expr => E,
|
3225 |
|
|
Typ => T,
|
3226 |
|
|
Related_Nod => N);
|
3227 |
|
|
end if;
|
3228 |
|
|
|
3229 |
|
|
Apply_Scalar_Range_Check (E, T);
|
3230 |
|
|
Apply_Static_Length_Check (E, T);
|
3231 |
|
|
|
3232 |
|
|
if Nkind (Original_Node (N)) = N_Object_Declaration
|
3233 |
|
|
and then Comes_From_Source (Original_Node (N))
|
3234 |
|
|
|
3235 |
|
|
-- Only call test if needed
|
3236 |
|
|
|
3237 |
|
|
and then Restriction_Check_Required (SPARK)
|
3238 |
|
|
and then not Is_SPARK_Initialization_Expr (E)
|
3239 |
|
|
then
|
3240 |
|
|
Check_SPARK_Restriction
|
3241 |
|
|
("initialization expression is not appropriate", E);
|
3242 |
|
|
end if;
|
3243 |
|
|
end if;
|
3244 |
|
|
|
3245 |
|
|
-- If the No_Streams restriction is set, check that the type of the
|
3246 |
|
|
-- object is not, and does not contain, any subtype derived from
|
3247 |
|
|
-- Ada.Streams.Root_Stream_Type. Note that we guard the call to
|
3248 |
|
|
-- Has_Stream just for efficiency reasons. There is no point in
|
3249 |
|
|
-- spending time on a Has_Stream check if the restriction is not set.
|
3250 |
|
|
|
3251 |
|
|
if Restriction_Check_Required (No_Streams) then
|
3252 |
|
|
if Has_Stream (T) then
|
3253 |
|
|
Check_Restriction (No_Streams, N);
|
3254 |
|
|
end if;
|
3255 |
|
|
end if;
|
3256 |
|
|
|
3257 |
|
|
-- Deal with predicate check before we start to do major rewriting.
|
3258 |
|
|
-- it is OK to initialize and then check the initialized value, since
|
3259 |
|
|
-- the object goes out of scope if we get a predicate failure. Note
|
3260 |
|
|
-- that we do this in the analyzer and not the expander because the
|
3261 |
|
|
-- analyzer does some substantial rewriting in some cases.
|
3262 |
|
|
|
3263 |
|
|
-- We need a predicate check if the type has predicates, and if either
|
3264 |
|
|
-- there is an initializing expression, or for default initialization
|
3265 |
|
|
-- when we have at least one case of an explicit default initial value.
|
3266 |
|
|
|
3267 |
|
|
if not Suppress_Assignment_Checks (N)
|
3268 |
|
|
and then Present (Predicate_Function (T))
|
3269 |
|
|
and then
|
3270 |
|
|
(Present (E)
|
3271 |
|
|
or else
|
3272 |
|
|
Is_Partially_Initialized_Type (T, Include_Implicit => False))
|
3273 |
|
|
then
|
3274 |
|
|
Insert_After (N,
|
3275 |
|
|
Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
|
3276 |
|
|
end if;
|
3277 |
|
|
|
3278 |
|
|
-- Case of unconstrained type
|
3279 |
|
|
|
3280 |
|
|
if Is_Indefinite_Subtype (T) then
|
3281 |
|
|
|
3282 |
|
|
-- In SPARK, a declaration of unconstrained type is allowed
|
3283 |
|
|
-- only for constants of type string.
|
3284 |
|
|
|
3285 |
|
|
if Is_String_Type (T) and then not Constant_Present (N) then
|
3286 |
|
|
Check_SPARK_Restriction
|
3287 |
|
|
("declaration of object of unconstrained type not allowed",
|
3288 |
|
|
N);
|
3289 |
|
|
end if;
|
3290 |
|
|
|
3291 |
|
|
-- Nothing to do in deferred constant case
|
3292 |
|
|
|
3293 |
|
|
if Constant_Present (N) and then No (E) then
|
3294 |
|
|
null;
|
3295 |
|
|
|
3296 |
|
|
-- Case of no initialization present
|
3297 |
|
|
|
3298 |
|
|
elsif No (E) then
|
3299 |
|
|
if No_Initialization (N) then
|
3300 |
|
|
null;
|
3301 |
|
|
|
3302 |
|
|
elsif Is_Class_Wide_Type (T) then
|
3303 |
|
|
Error_Msg_N
|
3304 |
|
|
("initialization required in class-wide declaration ", N);
|
3305 |
|
|
|
3306 |
|
|
else
|
3307 |
|
|
Error_Msg_N
|
3308 |
|
|
("unconstrained subtype not allowed (need initialization)",
|
3309 |
|
|
Object_Definition (N));
|
3310 |
|
|
|
3311 |
|
|
if Is_Record_Type (T) and then Has_Discriminants (T) then
|
3312 |
|
|
Error_Msg_N
|
3313 |
|
|
("\provide initial value or explicit discriminant values",
|
3314 |
|
|
Object_Definition (N));
|
3315 |
|
|
|
3316 |
|
|
Error_Msg_NE
|
3317 |
|
|
("\or give default discriminant values for type&",
|
3318 |
|
|
Object_Definition (N), T);
|
3319 |
|
|
|
3320 |
|
|
elsif Is_Array_Type (T) then
|
3321 |
|
|
Error_Msg_N
|
3322 |
|
|
("\provide initial value or explicit array bounds",
|
3323 |
|
|
Object_Definition (N));
|
3324 |
|
|
end if;
|
3325 |
|
|
end if;
|
3326 |
|
|
|
3327 |
|
|
-- Case of initialization present but in error. Set initial
|
3328 |
|
|
-- expression as absent (but do not make above complaints)
|
3329 |
|
|
|
3330 |
|
|
elsif E = Error then
|
3331 |
|
|
Set_Expression (N, Empty);
|
3332 |
|
|
E := Empty;
|
3333 |
|
|
|
3334 |
|
|
-- Case of initialization present
|
3335 |
|
|
|
3336 |
|
|
else
|
3337 |
|
|
-- Check restrictions in Ada 83
|
3338 |
|
|
|
3339 |
|
|
if not Constant_Present (N) then
|
3340 |
|
|
|
3341 |
|
|
-- Unconstrained variables not allowed in Ada 83 mode
|
3342 |
|
|
|
3343 |
|
|
if Ada_Version = Ada_83
|
3344 |
|
|
and then Comes_From_Source (Object_Definition (N))
|
3345 |
|
|
then
|
3346 |
|
|
Error_Msg_N
|
3347 |
|
|
("(Ada 83) unconstrained variable not allowed",
|
3348 |
|
|
Object_Definition (N));
|
3349 |
|
|
end if;
|
3350 |
|
|
end if;
|
3351 |
|
|
|
3352 |
|
|
-- Now we constrain the variable from the initializing expression
|
3353 |
|
|
|
3354 |
|
|
-- If the expression is an aggregate, it has been expanded into
|
3355 |
|
|
-- individual assignments. Retrieve the actual type from the
|
3356 |
|
|
-- expanded construct.
|
3357 |
|
|
|
3358 |
|
|
if Is_Array_Type (T)
|
3359 |
|
|
and then No_Initialization (N)
|
3360 |
|
|
and then Nkind (Original_Node (E)) = N_Aggregate
|
3361 |
|
|
then
|
3362 |
|
|
Act_T := Etype (E);
|
3363 |
|
|
|
3364 |
|
|
-- In case of class-wide interface object declarations we delay
|
3365 |
|
|
-- the generation of the equivalent record type declarations until
|
3366 |
|
|
-- its expansion because there are cases in they are not required.
|
3367 |
|
|
|
3368 |
|
|
elsif Is_Interface (T) then
|
3369 |
|
|
null;
|
3370 |
|
|
|
3371 |
|
|
else
|
3372 |
|
|
Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
|
3373 |
|
|
Act_T := Find_Type_Of_Object (Object_Definition (N), N);
|
3374 |
|
|
end if;
|
3375 |
|
|
|
3376 |
|
|
Set_Is_Constr_Subt_For_U_Nominal (Act_T);
|
3377 |
|
|
|
3378 |
|
|
if Aliased_Present (N) then
|
3379 |
|
|
Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
|
3380 |
|
|
end if;
|
3381 |
|
|
|
3382 |
|
|
Freeze_Before (N, Act_T);
|
3383 |
|
|
Freeze_Before (N, T);
|
3384 |
|
|
end if;
|
3385 |
|
|
|
3386 |
|
|
elsif Is_Array_Type (T)
|
3387 |
|
|
and then No_Initialization (N)
|
3388 |
|
|
and then Nkind (Original_Node (E)) = N_Aggregate
|
3389 |
|
|
then
|
3390 |
|
|
if not Is_Entity_Name (Object_Definition (N)) then
|
3391 |
|
|
Act_T := Etype (E);
|
3392 |
|
|
Check_Compile_Time_Size (Act_T);
|
3393 |
|
|
|
3394 |
|
|
if Aliased_Present (N) then
|
3395 |
|
|
Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
|
3396 |
|
|
end if;
|
3397 |
|
|
end if;
|
3398 |
|
|
|
3399 |
|
|
-- When the given object definition and the aggregate are specified
|
3400 |
|
|
-- independently, and their lengths might differ do a length check.
|
3401 |
|
|
-- This cannot happen if the aggregate is of the form (others =>...)
|
3402 |
|
|
|
3403 |
|
|
if not Is_Constrained (T) then
|
3404 |
|
|
null;
|
3405 |
|
|
|
3406 |
|
|
elsif Nkind (E) = N_Raise_Constraint_Error then
|
3407 |
|
|
|
3408 |
|
|
-- Aggregate is statically illegal. Place back in declaration
|
3409 |
|
|
|
3410 |
|
|
Set_Expression (N, E);
|
3411 |
|
|
Set_No_Initialization (N, False);
|
3412 |
|
|
|
3413 |
|
|
elsif T = Etype (E) then
|
3414 |
|
|
null;
|
3415 |
|
|
|
3416 |
|
|
elsif Nkind (E) = N_Aggregate
|
3417 |
|
|
and then Present (Component_Associations (E))
|
3418 |
|
|
and then Present (Choices (First (Component_Associations (E))))
|
3419 |
|
|
and then Nkind (First
|
3420 |
|
|
(Choices (First (Component_Associations (E))))) = N_Others_Choice
|
3421 |
|
|
then
|
3422 |
|
|
null;
|
3423 |
|
|
|
3424 |
|
|
else
|
3425 |
|
|
Apply_Length_Check (E, T);
|
3426 |
|
|
end if;
|
3427 |
|
|
|
3428 |
|
|
-- If the type is limited unconstrained with defaulted discriminants and
|
3429 |
|
|
-- there is no expression, then the object is constrained by the
|
3430 |
|
|
-- defaults, so it is worthwhile building the corresponding subtype.
|
3431 |
|
|
|
3432 |
|
|
elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
|
3433 |
|
|
and then not Is_Constrained (T)
|
3434 |
|
|
and then Has_Discriminants (T)
|
3435 |
|
|
then
|
3436 |
|
|
if No (E) then
|
3437 |
|
|
Act_T := Build_Default_Subtype (T, N);
|
3438 |
|
|
else
|
3439 |
|
|
-- Ada 2005: a limited object may be initialized by means of an
|
3440 |
|
|
-- aggregate. If the type has default discriminants it has an
|
3441 |
|
|
-- unconstrained nominal type, Its actual subtype will be obtained
|
3442 |
|
|
-- from the aggregate, and not from the default discriminants.
|
3443 |
|
|
|
3444 |
|
|
Act_T := Etype (E);
|
3445 |
|
|
end if;
|
3446 |
|
|
|
3447 |
|
|
Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
|
3448 |
|
|
|
3449 |
|
|
elsif Present (Underlying_Type (T))
|
3450 |
|
|
and then not Is_Constrained (Underlying_Type (T))
|
3451 |
|
|
and then Has_Discriminants (Underlying_Type (T))
|
3452 |
|
|
and then Nkind (E) = N_Function_Call
|
3453 |
|
|
and then Constant_Present (N)
|
3454 |
|
|
then
|
3455 |
|
|
-- The back-end has problems with constants of a discriminated type
|
3456 |
|
|
-- with defaults, if the initial value is a function call. We
|
3457 |
|
|
-- generate an intermediate temporary for the result of the call.
|
3458 |
|
|
-- It is unclear why this should make it acceptable to gcc. ???
|
3459 |
|
|
|
3460 |
|
|
Remove_Side_Effects (E);
|
3461 |
|
|
|
3462 |
|
|
-- If this is a constant declaration of an unconstrained type and
|
3463 |
|
|
-- the initialization is an aggregate, we can use the subtype of the
|
3464 |
|
|
-- aggregate for the declared entity because it is immutable.
|
3465 |
|
|
|
3466 |
|
|
elsif not Is_Constrained (T)
|
3467 |
|
|
and then Has_Discriminants (T)
|
3468 |
|
|
and then Constant_Present (N)
|
3469 |
|
|
and then not Has_Unchecked_Union (T)
|
3470 |
|
|
and then Nkind (E) = N_Aggregate
|
3471 |
|
|
then
|
3472 |
|
|
Act_T := Etype (E);
|
3473 |
|
|
end if;
|
3474 |
|
|
|
3475 |
|
|
-- Check No_Wide_Characters restriction
|
3476 |
|
|
|
3477 |
|
|
Check_Wide_Character_Restriction (T, Object_Definition (N));
|
3478 |
|
|
|
3479 |
|
|
-- Indicate this is not set in source. Certainly true for constants, and
|
3480 |
|
|
-- true for variables so far (will be reset for a variable if and when
|
3481 |
|
|
-- we encounter a modification in the source).
|
3482 |
|
|
|
3483 |
|
|
Set_Never_Set_In_Source (Id, True);
|
3484 |
|
|
|
3485 |
|
|
-- Now establish the proper kind and type of the object
|
3486 |
|
|
|
3487 |
|
|
if Constant_Present (N) then
|
3488 |
|
|
Set_Ekind (Id, E_Constant);
|
3489 |
|
|
Set_Is_True_Constant (Id, True);
|
3490 |
|
|
|
3491 |
|
|
else
|
3492 |
|
|
Set_Ekind (Id, E_Variable);
|
3493 |
|
|
|
3494 |
|
|
-- A variable is set as shared passive if it appears in a shared
|
3495 |
|
|
-- passive package, and is at the outer level. This is not done for
|
3496 |
|
|
-- entities generated during expansion, because those are always
|
3497 |
|
|
-- manipulated locally.
|
3498 |
|
|
|
3499 |
|
|
if Is_Shared_Passive (Current_Scope)
|
3500 |
|
|
and then Is_Library_Level_Entity (Id)
|
3501 |
|
|
and then Comes_From_Source (Id)
|
3502 |
|
|
then
|
3503 |
|
|
Set_Is_Shared_Passive (Id);
|
3504 |
|
|
Check_Shared_Var (Id, T, N);
|
3505 |
|
|
end if;
|
3506 |
|
|
|
3507 |
|
|
-- Set Has_Initial_Value if initializing expression present. Note
|
3508 |
|
|
-- that if there is no initializing expression, we leave the state
|
3509 |
|
|
-- of this flag unchanged (usually it will be False, but notably in
|
3510 |
|
|
-- the case of exception choice variables, it will already be true).
|
3511 |
|
|
|
3512 |
|
|
if Present (E) then
|
3513 |
|
|
Set_Has_Initial_Value (Id, True);
|
3514 |
|
|
end if;
|
3515 |
|
|
end if;
|
3516 |
|
|
|
3517 |
|
|
-- Initialize alignment and size and capture alignment setting
|
3518 |
|
|
|
3519 |
|
|
Init_Alignment (Id);
|
3520 |
|
|
Init_Esize (Id);
|
3521 |
|
|
Set_Optimize_Alignment_Flags (Id);
|
3522 |
|
|
|
3523 |
|
|
-- Deal with aliased case
|
3524 |
|
|
|
3525 |
|
|
if Aliased_Present (N) then
|
3526 |
|
|
Set_Is_Aliased (Id);
|
3527 |
|
|
|
3528 |
|
|
-- If the object is aliased and the type is unconstrained with
|
3529 |
|
|
-- defaulted discriminants and there is no expression, then the
|
3530 |
|
|
-- object is constrained by the defaults, so it is worthwhile
|
3531 |
|
|
-- building the corresponding subtype.
|
3532 |
|
|
|
3533 |
|
|
-- Ada 2005 (AI-363): If the aliased object is discriminated and
|
3534 |
|
|
-- unconstrained, then only establish an actual subtype if the
|
3535 |
|
|
-- nominal subtype is indefinite. In definite cases the object is
|
3536 |
|
|
-- unconstrained in Ada 2005.
|
3537 |
|
|
|
3538 |
|
|
if No (E)
|
3539 |
|
|
and then Is_Record_Type (T)
|
3540 |
|
|
and then not Is_Constrained (T)
|
3541 |
|
|
and then Has_Discriminants (T)
|
3542 |
|
|
and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
|
3543 |
|
|
then
|
3544 |
|
|
Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
|
3545 |
|
|
end if;
|
3546 |
|
|
end if;
|
3547 |
|
|
|
3548 |
|
|
-- Now we can set the type of the object
|
3549 |
|
|
|
3550 |
|
|
Set_Etype (Id, Act_T);
|
3551 |
|
|
|
3552 |
|
|
-- Object is marked to be treated as volatile if type is volatile and
|
3553 |
|
|
-- we clear the Current_Value setting that may have been set above.
|
3554 |
|
|
|
3555 |
|
|
if Treat_As_Volatile (Etype (Id)) then
|
3556 |
|
|
Set_Treat_As_Volatile (Id);
|
3557 |
|
|
Set_Current_Value (Id, Empty);
|
3558 |
|
|
end if;
|
3559 |
|
|
|
3560 |
|
|
-- Deal with controlled types
|
3561 |
|
|
|
3562 |
|
|
if Has_Controlled_Component (Etype (Id))
|
3563 |
|
|
or else Is_Controlled (Etype (Id))
|
3564 |
|
|
then
|
3565 |
|
|
if not Is_Library_Level_Entity (Id) then
|
3566 |
|
|
Check_Restriction (No_Nested_Finalization, N);
|
3567 |
|
|
else
|
3568 |
|
|
Validate_Controlled_Object (Id);
|
3569 |
|
|
end if;
|
3570 |
|
|
|
3571 |
|
|
-- Generate a warning when an initialization causes an obvious ABE
|
3572 |
|
|
-- violation. If the init expression is a simple aggregate there
|
3573 |
|
|
-- shouldn't be any initialize/adjust call generated. This will be
|
3574 |
|
|
-- true as soon as aggregates are built in place when possible.
|
3575 |
|
|
|
3576 |
|
|
-- ??? at the moment we do not generate warnings for temporaries
|
3577 |
|
|
-- created for those aggregates although Program_Error might be
|
3578 |
|
|
-- generated if compiled with -gnato.
|
3579 |
|
|
|
3580 |
|
|
if Is_Controlled (Etype (Id))
|
3581 |
|
|
and then Comes_From_Source (Id)
|
3582 |
|
|
then
|
3583 |
|
|
declare
|
3584 |
|
|
BT : constant Entity_Id := Base_Type (Etype (Id));
|
3585 |
|
|
|
3586 |
|
|
Implicit_Call : Entity_Id;
|
3587 |
|
|
pragma Warnings (Off, Implicit_Call);
|
3588 |
|
|
-- ??? what is this for (never referenced!)
|
3589 |
|
|
|
3590 |
|
|
function Is_Aggr (N : Node_Id) return Boolean;
|
3591 |
|
|
-- Check that N is an aggregate
|
3592 |
|
|
|
3593 |
|
|
-------------
|
3594 |
|
|
-- Is_Aggr --
|
3595 |
|
|
-------------
|
3596 |
|
|
|
3597 |
|
|
function Is_Aggr (N : Node_Id) return Boolean is
|
3598 |
|
|
begin
|
3599 |
|
|
case Nkind (Original_Node (N)) is
|
3600 |
|
|
when N_Aggregate | N_Extension_Aggregate =>
|
3601 |
|
|
return True;
|
3602 |
|
|
|
3603 |
|
|
when N_Qualified_Expression |
|
3604 |
|
|
N_Type_Conversion |
|
3605 |
|
|
N_Unchecked_Type_Conversion =>
|
3606 |
|
|
return Is_Aggr (Expression (Original_Node (N)));
|
3607 |
|
|
|
3608 |
|
|
when others =>
|
3609 |
|
|
return False;
|
3610 |
|
|
end case;
|
3611 |
|
|
end Is_Aggr;
|
3612 |
|
|
|
3613 |
|
|
begin
|
3614 |
|
|
-- If no underlying type, we already are in an error situation.
|
3615 |
|
|
-- Do not try to add a warning since we do not have access to
|
3616 |
|
|
-- prim-op list.
|
3617 |
|
|
|
3618 |
|
|
if No (Underlying_Type (BT)) then
|
3619 |
|
|
Implicit_Call := Empty;
|
3620 |
|
|
|
3621 |
|
|
-- A generic type does not have usable primitive operators.
|
3622 |
|
|
-- Initialization calls are built for instances.
|
3623 |
|
|
|
3624 |
|
|
elsif Is_Generic_Type (BT) then
|
3625 |
|
|
Implicit_Call := Empty;
|
3626 |
|
|
|
3627 |
|
|
-- If the init expression is not an aggregate, an adjust call
|
3628 |
|
|
-- will be generated
|
3629 |
|
|
|
3630 |
|
|
elsif Present (E) and then not Is_Aggr (E) then
|
3631 |
|
|
Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
|
3632 |
|
|
|
3633 |
|
|
-- If no init expression and we are not in the deferred
|
3634 |
|
|
-- constant case, an Initialize call will be generated
|
3635 |
|
|
|
3636 |
|
|
elsif No (E) and then not Constant_Present (N) then
|
3637 |
|
|
Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
|
3638 |
|
|
|
3639 |
|
|
else
|
3640 |
|
|
Implicit_Call := Empty;
|
3641 |
|
|
end if;
|
3642 |
|
|
end;
|
3643 |
|
|
end if;
|
3644 |
|
|
end if;
|
3645 |
|
|
|
3646 |
|
|
if Has_Task (Etype (Id)) then
|
3647 |
|
|
Check_Restriction (No_Tasking, N);
|
3648 |
|
|
|
3649 |
|
|
-- Deal with counting max tasks
|
3650 |
|
|
|
3651 |
|
|
-- Nothing to do if inside a generic
|
3652 |
|
|
|
3653 |
|
|
if Inside_A_Generic then
|
3654 |
|
|
null;
|
3655 |
|
|
|
3656 |
|
|
-- If library level entity, then count tasks
|
3657 |
|
|
|
3658 |
|
|
elsif Is_Library_Level_Entity (Id) then
|
3659 |
|
|
Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
|
3660 |
|
|
|
3661 |
|
|
-- If not library level entity, then indicate we don't know max
|
3662 |
|
|
-- tasks and also check task hierarchy restriction and blocking
|
3663 |
|
|
-- operation (since starting a task is definitely blocking!)
|
3664 |
|
|
|
3665 |
|
|
else
|
3666 |
|
|
Check_Restriction (Max_Tasks, N);
|
3667 |
|
|
Check_Restriction (No_Task_Hierarchy, N);
|
3668 |
|
|
Check_Potentially_Blocking_Operation (N);
|
3669 |
|
|
end if;
|
3670 |
|
|
|
3671 |
|
|
-- A rather specialized test. If we see two tasks being declared
|
3672 |
|
|
-- of the same type in the same object declaration, and the task
|
3673 |
|
|
-- has an entry with an address clause, we know that program error
|
3674 |
|
|
-- will be raised at run time since we can't have two tasks with
|
3675 |
|
|
-- entries at the same address.
|
3676 |
|
|
|
3677 |
|
|
if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
|
3678 |
|
|
declare
|
3679 |
|
|
E : Entity_Id;
|
3680 |
|
|
|
3681 |
|
|
begin
|
3682 |
|
|
E := First_Entity (Etype (Id));
|
3683 |
|
|
while Present (E) loop
|
3684 |
|
|
if Ekind (E) = E_Entry
|
3685 |
|
|
and then Present (Get_Attribute_Definition_Clause
|
3686 |
|
|
(E, Attribute_Address))
|
3687 |
|
|
then
|
3688 |
|
|
Error_Msg_N
|
3689 |
|
|
("?more than one task with same entry address", N);
|
3690 |
|
|
Error_Msg_N
|
3691 |
|
|
("\?Program_Error will be raised at run time", N);
|
3692 |
|
|
Insert_Action (N,
|
3693 |
|
|
Make_Raise_Program_Error (Loc,
|
3694 |
|
|
Reason => PE_Duplicated_Entry_Address));
|
3695 |
|
|
exit;
|
3696 |
|
|
end if;
|
3697 |
|
|
|
3698 |
|
|
Next_Entity (E);
|
3699 |
|
|
end loop;
|
3700 |
|
|
end;
|
3701 |
|
|
end if;
|
3702 |
|
|
end if;
|
3703 |
|
|
|
3704 |
|
|
-- Some simple constant-propagation: if the expression is a constant
|
3705 |
|
|
-- string initialized with a literal, share the literal. This avoids
|
3706 |
|
|
-- a run-time copy.
|
3707 |
|
|
|
3708 |
|
|
if Present (E)
|
3709 |
|
|
and then Is_Entity_Name (E)
|
3710 |
|
|
and then Ekind (Entity (E)) = E_Constant
|
3711 |
|
|
and then Base_Type (Etype (E)) = Standard_String
|
3712 |
|
|
then
|
3713 |
|
|
declare
|
3714 |
|
|
Val : constant Node_Id := Constant_Value (Entity (E));
|
3715 |
|
|
begin
|
3716 |
|
|
if Present (Val)
|
3717 |
|
|
and then Nkind (Val) = N_String_Literal
|
3718 |
|
|
then
|
3719 |
|
|
Rewrite (E, New_Copy (Val));
|
3720 |
|
|
end if;
|
3721 |
|
|
end;
|
3722 |
|
|
end if;
|
3723 |
|
|
|
3724 |
|
|
-- Another optimization: if the nominal subtype is unconstrained and
|
3725 |
|
|
-- the expression is a function call that returns an unconstrained
|
3726 |
|
|
-- type, rewrite the declaration as a renaming of the result of the
|
3727 |
|
|
-- call. The exceptions below are cases where the copy is expected,
|
3728 |
|
|
-- either by the back end (Aliased case) or by the semantics, as for
|
3729 |
|
|
-- initializing controlled types or copying tags for classwide types.
|
3730 |
|
|
|
3731 |
|
|
if Present (E)
|
3732 |
|
|
and then Nkind (E) = N_Explicit_Dereference
|
3733 |
|
|
and then Nkind (Original_Node (E)) = N_Function_Call
|
3734 |
|
|
and then not Is_Library_Level_Entity (Id)
|
3735 |
|
|
and then not Is_Constrained (Underlying_Type (T))
|
3736 |
|
|
and then not Is_Aliased (Id)
|
3737 |
|
|
and then not Is_Class_Wide_Type (T)
|
3738 |
|
|
and then not Is_Controlled (T)
|
3739 |
|
|
and then not Has_Controlled_Component (Base_Type (T))
|
3740 |
|
|
and then Expander_Active
|
3741 |
|
|
then
|
3742 |
|
|
Rewrite (N,
|
3743 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
3744 |
|
|
Defining_Identifier => Id,
|
3745 |
|
|
Access_Definition => Empty,
|
3746 |
|
|
Subtype_Mark => New_Occurrence_Of
|
3747 |
|
|
(Base_Type (Etype (Id)), Loc),
|
3748 |
|
|
Name => E));
|
3749 |
|
|
|
3750 |
|
|
Set_Renamed_Object (Id, E);
|
3751 |
|
|
|
3752 |
|
|
-- Force generation of debugging information for the constant and for
|
3753 |
|
|
-- the renamed function call.
|
3754 |
|
|
|
3755 |
|
|
Set_Debug_Info_Needed (Id);
|
3756 |
|
|
Set_Debug_Info_Needed (Entity (Prefix (E)));
|
3757 |
|
|
end if;
|
3758 |
|
|
|
3759 |
|
|
if Present (Prev_Entity)
|
3760 |
|
|
and then Is_Frozen (Prev_Entity)
|
3761 |
|
|
and then not Error_Posted (Id)
|
3762 |
|
|
then
|
3763 |
|
|
Error_Msg_N ("full constant declaration appears too late", N);
|
3764 |
|
|
end if;
|
3765 |
|
|
|
3766 |
|
|
Check_Eliminated (Id);
|
3767 |
|
|
|
3768 |
|
|
-- Deal with setting In_Private_Part flag if in private part
|
3769 |
|
|
|
3770 |
|
|
if Ekind (Scope (Id)) = E_Package
|
3771 |
|
|
and then In_Private_Part (Scope (Id))
|
3772 |
|
|
then
|
3773 |
|
|
Set_In_Private_Part (Id);
|
3774 |
|
|
end if;
|
3775 |
|
|
|
3776 |
|
|
-- Check for violation of No_Local_Timing_Events
|
3777 |
|
|
|
3778 |
|
|
if Restriction_Check_Required (No_Local_Timing_Events)
|
3779 |
|
|
and then not Is_Library_Level_Entity (Id)
|
3780 |
|
|
and then Is_RTE (Etype (Id), RE_Timing_Event)
|
3781 |
|
|
then
|
3782 |
|
|
Check_Restriction (No_Local_Timing_Events, N);
|
3783 |
|
|
end if;
|
3784 |
|
|
|
3785 |
|
|
<<Leave>>
|
3786 |
|
|
if Has_Aspects (N) then
|
3787 |
|
|
Analyze_Aspect_Specifications (N, Id);
|
3788 |
|
|
end if;
|
3789 |
|
|
|
3790 |
|
|
Analyze_Dimension (N);
|
3791 |
|
|
end Analyze_Object_Declaration;
|
3792 |
|
|
|
3793 |
|
|
---------------------------
|
3794 |
|
|
-- Analyze_Others_Choice --
|
3795 |
|
|
---------------------------
|
3796 |
|
|
|
3797 |
|
|
-- Nothing to do for the others choice node itself, the semantic analysis
|
3798 |
|
|
-- of the others choice will occur as part of the processing of the parent
|
3799 |
|
|
|
3800 |
|
|
procedure Analyze_Others_Choice (N : Node_Id) is
|
3801 |
|
|
pragma Warnings (Off, N);
|
3802 |
|
|
begin
|
3803 |
|
|
null;
|
3804 |
|
|
end Analyze_Others_Choice;
|
3805 |
|
|
|
3806 |
|
|
-------------------------------------------
|
3807 |
|
|
-- Analyze_Private_Extension_Declaration --
|
3808 |
|
|
-------------------------------------------
|
3809 |
|
|
|
3810 |
|
|
procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
|
3811 |
|
|
T : constant Entity_Id := Defining_Identifier (N);
|
3812 |
|
|
Indic : constant Node_Id := Subtype_Indication (N);
|
3813 |
|
|
Parent_Type : Entity_Id;
|
3814 |
|
|
Parent_Base : Entity_Id;
|
3815 |
|
|
|
3816 |
|
|
begin
|
3817 |
|
|
-- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
|
3818 |
|
|
|
3819 |
|
|
if Is_Non_Empty_List (Interface_List (N)) then
|
3820 |
|
|
declare
|
3821 |
|
|
Intf : Node_Id;
|
3822 |
|
|
T : Entity_Id;
|
3823 |
|
|
|
3824 |
|
|
begin
|
3825 |
|
|
Intf := First (Interface_List (N));
|
3826 |
|
|
while Present (Intf) loop
|
3827 |
|
|
T := Find_Type_Of_Subtype_Indic (Intf);
|
3828 |
|
|
|
3829 |
|
|
Diagnose_Interface (Intf, T);
|
3830 |
|
|
Next (Intf);
|
3831 |
|
|
end loop;
|
3832 |
|
|
end;
|
3833 |
|
|
end if;
|
3834 |
|
|
|
3835 |
|
|
Generate_Definition (T);
|
3836 |
|
|
|
3837 |
|
|
-- For other than Ada 2012, just enter the name in the current scope
|
3838 |
|
|
|
3839 |
|
|
if Ada_Version < Ada_2012 then
|
3840 |
|
|
Enter_Name (T);
|
3841 |
|
|
|
3842 |
|
|
-- Ada 2012 (AI05-0162): Enter the name in the current scope handling
|
3843 |
|
|
-- case of private type that completes an incomplete type.
|
3844 |
|
|
|
3845 |
|
|
else
|
3846 |
|
|
declare
|
3847 |
|
|
Prev : Entity_Id;
|
3848 |
|
|
|
3849 |
|
|
begin
|
3850 |
|
|
Prev := Find_Type_Name (N);
|
3851 |
|
|
|
3852 |
|
|
pragma Assert (Prev = T
|
3853 |
|
|
or else (Ekind (Prev) = E_Incomplete_Type
|
3854 |
|
|
and then Present (Full_View (Prev))
|
3855 |
|
|
and then Full_View (Prev) = T));
|
3856 |
|
|
end;
|
3857 |
|
|
end if;
|
3858 |
|
|
|
3859 |
|
|
Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
|
3860 |
|
|
Parent_Base := Base_Type (Parent_Type);
|
3861 |
|
|
|
3862 |
|
|
if Parent_Type = Any_Type
|
3863 |
|
|
or else Etype (Parent_Type) = Any_Type
|
3864 |
|
|
then
|
3865 |
|
|
Set_Ekind (T, Ekind (Parent_Type));
|
3866 |
|
|
Set_Etype (T, Any_Type);
|
3867 |
|
|
goto Leave;
|
3868 |
|
|
|
3869 |
|
|
elsif not Is_Tagged_Type (Parent_Type) then
|
3870 |
|
|
Error_Msg_N
|
3871 |
|
|
("parent of type extension must be a tagged type ", Indic);
|
3872 |
|
|
goto Leave;
|
3873 |
|
|
|
3874 |
|
|
elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
|
3875 |
|
|
Error_Msg_N ("premature derivation of incomplete type", Indic);
|
3876 |
|
|
goto Leave;
|
3877 |
|
|
|
3878 |
|
|
elsif Is_Concurrent_Type (Parent_Type) then
|
3879 |
|
|
Error_Msg_N
|
3880 |
|
|
("parent type of a private extension cannot be "
|
3881 |
|
|
& "a synchronized tagged type (RM 3.9.1 (3/1))", N);
|
3882 |
|
|
|
3883 |
|
|
Set_Etype (T, Any_Type);
|
3884 |
|
|
Set_Ekind (T, E_Limited_Private_Type);
|
3885 |
|
|
Set_Private_Dependents (T, New_Elmt_List);
|
3886 |
|
|
Set_Error_Posted (T);
|
3887 |
|
|
goto Leave;
|
3888 |
|
|
end if;
|
3889 |
|
|
|
3890 |
|
|
-- Perhaps the parent type should be changed to the class-wide type's
|
3891 |
|
|
-- specific type in this case to prevent cascading errors ???
|
3892 |
|
|
|
3893 |
|
|
if Is_Class_Wide_Type (Parent_Type) then
|
3894 |
|
|
Error_Msg_N
|
3895 |
|
|
("parent of type extension must not be a class-wide type", Indic);
|
3896 |
|
|
goto Leave;
|
3897 |
|
|
end if;
|
3898 |
|
|
|
3899 |
|
|
if (not Is_Package_Or_Generic_Package (Current_Scope)
|
3900 |
|
|
and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
|
3901 |
|
|
or else In_Private_Part (Current_Scope)
|
3902 |
|
|
|
3903 |
|
|
then
|
3904 |
|
|
Error_Msg_N ("invalid context for private extension", N);
|
3905 |
|
|
end if;
|
3906 |
|
|
|
3907 |
|
|
-- Set common attributes
|
3908 |
|
|
|
3909 |
|
|
Set_Is_Pure (T, Is_Pure (Current_Scope));
|
3910 |
|
|
Set_Scope (T, Current_Scope);
|
3911 |
|
|
Set_Ekind (T, E_Record_Type_With_Private);
|
3912 |
|
|
Init_Size_Align (T);
|
3913 |
|
|
|
3914 |
|
|
Set_Etype (T, Parent_Base);
|
3915 |
|
|
Set_Has_Task (T, Has_Task (Parent_Base));
|
3916 |
|
|
|
3917 |
|
|
Set_Convention (T, Convention (Parent_Type));
|
3918 |
|
|
Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
|
3919 |
|
|
Set_Is_First_Subtype (T);
|
3920 |
|
|
Make_Class_Wide_Type (T);
|
3921 |
|
|
|
3922 |
|
|
if Unknown_Discriminants_Present (N) then
|
3923 |
|
|
Set_Discriminant_Constraint (T, No_Elist);
|
3924 |
|
|
end if;
|
3925 |
|
|
|
3926 |
|
|
Build_Derived_Record_Type (N, Parent_Type, T);
|
3927 |
|
|
|
3928 |
|
|
-- Propagate inherited invariant information. The new type has
|
3929 |
|
|
-- invariants, if the parent type has inheritable invariants,
|
3930 |
|
|
-- and these invariants can in turn be inherited.
|
3931 |
|
|
|
3932 |
|
|
if Has_Inheritable_Invariants (Parent_Type) then
|
3933 |
|
|
Set_Has_Inheritable_Invariants (T);
|
3934 |
|
|
Set_Has_Invariants (T);
|
3935 |
|
|
end if;
|
3936 |
|
|
|
3937 |
|
|
-- Ada 2005 (AI-443): Synchronized private extension or a rewritten
|
3938 |
|
|
-- synchronized formal derived type.
|
3939 |
|
|
|
3940 |
|
|
if Ada_Version >= Ada_2005
|
3941 |
|
|
and then Synchronized_Present (N)
|
3942 |
|
|
then
|
3943 |
|
|
Set_Is_Limited_Record (T);
|
3944 |
|
|
|
3945 |
|
|
-- Formal derived type case
|
3946 |
|
|
|
3947 |
|
|
if Is_Generic_Type (T) then
|
3948 |
|
|
|
3949 |
|
|
-- The parent must be a tagged limited type or a synchronized
|
3950 |
|
|
-- interface.
|
3951 |
|
|
|
3952 |
|
|
if (not Is_Tagged_Type (Parent_Type)
|
3953 |
|
|
or else not Is_Limited_Type (Parent_Type))
|
3954 |
|
|
and then
|
3955 |
|
|
(not Is_Interface (Parent_Type)
|
3956 |
|
|
or else not Is_Synchronized_Interface (Parent_Type))
|
3957 |
|
|
then
|
3958 |
|
|
Error_Msg_NE ("parent type of & must be tagged limited " &
|
3959 |
|
|
"or synchronized", N, T);
|
3960 |
|
|
end if;
|
3961 |
|
|
|
3962 |
|
|
-- The progenitors (if any) must be limited or synchronized
|
3963 |
|
|
-- interfaces.
|
3964 |
|
|
|
3965 |
|
|
if Present (Interfaces (T)) then
|
3966 |
|
|
declare
|
3967 |
|
|
Iface : Entity_Id;
|
3968 |
|
|
Iface_Elmt : Elmt_Id;
|
3969 |
|
|
|
3970 |
|
|
begin
|
3971 |
|
|
Iface_Elmt := First_Elmt (Interfaces (T));
|
3972 |
|
|
while Present (Iface_Elmt) loop
|
3973 |
|
|
Iface := Node (Iface_Elmt);
|
3974 |
|
|
|
3975 |
|
|
if not Is_Limited_Interface (Iface)
|
3976 |
|
|
and then not Is_Synchronized_Interface (Iface)
|
3977 |
|
|
then
|
3978 |
|
|
Error_Msg_NE ("progenitor & must be limited " &
|
3979 |
|
|
"or synchronized", N, Iface);
|
3980 |
|
|
end if;
|
3981 |
|
|
|
3982 |
|
|
Next_Elmt (Iface_Elmt);
|
3983 |
|
|
end loop;
|
3984 |
|
|
end;
|
3985 |
|
|
end if;
|
3986 |
|
|
|
3987 |
|
|
-- Regular derived extension, the parent must be a limited or
|
3988 |
|
|
-- synchronized interface.
|
3989 |
|
|
|
3990 |
|
|
else
|
3991 |
|
|
if not Is_Interface (Parent_Type)
|
3992 |
|
|
or else (not Is_Limited_Interface (Parent_Type)
|
3993 |
|
|
and then
|
3994 |
|
|
not Is_Synchronized_Interface (Parent_Type))
|
3995 |
|
|
then
|
3996 |
|
|
Error_Msg_NE
|
3997 |
|
|
("parent type of & must be limited interface", N, T);
|
3998 |
|
|
end if;
|
3999 |
|
|
end if;
|
4000 |
|
|
|
4001 |
|
|
-- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
|
4002 |
|
|
-- extension with a synchronized parent must be explicitly declared
|
4003 |
|
|
-- synchronized, because the full view will be a synchronized type.
|
4004 |
|
|
-- This must be checked before the check for limited types below,
|
4005 |
|
|
-- to ensure that types declared limited are not allowed to extend
|
4006 |
|
|
-- synchronized interfaces.
|
4007 |
|
|
|
4008 |
|
|
elsif Is_Interface (Parent_Type)
|
4009 |
|
|
and then Is_Synchronized_Interface (Parent_Type)
|
4010 |
|
|
and then not Synchronized_Present (N)
|
4011 |
|
|
then
|
4012 |
|
|
Error_Msg_NE
|
4013 |
|
|
("private extension of& must be explicitly synchronized",
|
4014 |
|
|
N, Parent_Type);
|
4015 |
|
|
|
4016 |
|
|
elsif Limited_Present (N) then
|
4017 |
|
|
Set_Is_Limited_Record (T);
|
4018 |
|
|
|
4019 |
|
|
if not Is_Limited_Type (Parent_Type)
|
4020 |
|
|
and then
|
4021 |
|
|
(not Is_Interface (Parent_Type)
|
4022 |
|
|
or else not Is_Limited_Interface (Parent_Type))
|
4023 |
|
|
then
|
4024 |
|
|
Error_Msg_NE ("parent type& of limited extension must be limited",
|
4025 |
|
|
N, Parent_Type);
|
4026 |
|
|
end if;
|
4027 |
|
|
end if;
|
4028 |
|
|
|
4029 |
|
|
<<Leave>>
|
4030 |
|
|
if Has_Aspects (N) then
|
4031 |
|
|
Analyze_Aspect_Specifications (N, T);
|
4032 |
|
|
end if;
|
4033 |
|
|
end Analyze_Private_Extension_Declaration;
|
4034 |
|
|
|
4035 |
|
|
---------------------------------
|
4036 |
|
|
-- Analyze_Subtype_Declaration --
|
4037 |
|
|
---------------------------------
|
4038 |
|
|
|
4039 |
|
|
procedure Analyze_Subtype_Declaration
|
4040 |
|
|
(N : Node_Id;
|
4041 |
|
|
Skip : Boolean := False)
|
4042 |
|
|
is
|
4043 |
|
|
Id : constant Entity_Id := Defining_Identifier (N);
|
4044 |
|
|
T : Entity_Id;
|
4045 |
|
|
R_Checks : Check_Result;
|
4046 |
|
|
|
4047 |
|
|
begin
|
4048 |
|
|
Generate_Definition (Id);
|
4049 |
|
|
Set_Is_Pure (Id, Is_Pure (Current_Scope));
|
4050 |
|
|
Init_Size_Align (Id);
|
4051 |
|
|
|
4052 |
|
|
-- The following guard condition on Enter_Name is to handle cases where
|
4053 |
|
|
-- the defining identifier has already been entered into the scope but
|
4054 |
|
|
-- the declaration as a whole needs to be analyzed.
|
4055 |
|
|
|
4056 |
|
|
-- This case in particular happens for derived enumeration types. The
|
4057 |
|
|
-- derived enumeration type is processed as an inserted enumeration type
|
4058 |
|
|
-- declaration followed by a rewritten subtype declaration. The defining
|
4059 |
|
|
-- identifier, however, is entered into the name scope very early in the
|
4060 |
|
|
-- processing of the original type declaration and therefore needs to be
|
4061 |
|
|
-- avoided here, when the created subtype declaration is analyzed. (See
|
4062 |
|
|
-- Build_Derived_Types)
|
4063 |
|
|
|
4064 |
|
|
-- This also happens when the full view of a private type is derived
|
4065 |
|
|
-- type with constraints. In this case the entity has been introduced
|
4066 |
|
|
-- in the private declaration.
|
4067 |
|
|
|
4068 |
|
|
if Skip
|
4069 |
|
|
or else (Present (Etype (Id))
|
4070 |
|
|
and then (Is_Private_Type (Etype (Id))
|
4071 |
|
|
or else Is_Task_Type (Etype (Id))
|
4072 |
|
|
or else Is_Rewrite_Substitution (N)))
|
4073 |
|
|
then
|
4074 |
|
|
null;
|
4075 |
|
|
|
4076 |
|
|
else
|
4077 |
|
|
Enter_Name (Id);
|
4078 |
|
|
end if;
|
4079 |
|
|
|
4080 |
|
|
T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
|
4081 |
|
|
|
4082 |
|
|
-- Class-wide equivalent types of records with unknown discriminants
|
4083 |
|
|
-- involve the generation of an itype which serves as the private view
|
4084 |
|
|
-- of a constrained record subtype. In such cases the base type of the
|
4085 |
|
|
-- current subtype we are processing is the private itype. Use the full
|
4086 |
|
|
-- of the private itype when decorating various attributes.
|
4087 |
|
|
|
4088 |
|
|
if Is_Itype (T)
|
4089 |
|
|
and then Is_Private_Type (T)
|
4090 |
|
|
and then Present (Full_View (T))
|
4091 |
|
|
then
|
4092 |
|
|
T := Full_View (T);
|
4093 |
|
|
end if;
|
4094 |
|
|
|
4095 |
|
|
-- Inherit common attributes
|
4096 |
|
|
|
4097 |
|
|
Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
|
4098 |
|
|
Set_Is_Volatile (Id, Is_Volatile (T));
|
4099 |
|
|
Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
|
4100 |
|
|
Set_Is_Atomic (Id, Is_Atomic (T));
|
4101 |
|
|
Set_Is_Ada_2005_Only (Id, Is_Ada_2005_Only (T));
|
4102 |
|
|
Set_Is_Ada_2012_Only (Id, Is_Ada_2012_Only (T));
|
4103 |
|
|
Set_Convention (Id, Convention (T));
|
4104 |
|
|
|
4105 |
|
|
-- If ancestor has predicates then so does the subtype, and in addition
|
4106 |
|
|
-- we must delay the freeze to properly arrange predicate inheritance.
|
4107 |
|
|
|
4108 |
|
|
-- The Ancestor_Type test is a big kludge, there seem to be cases in
|
4109 |
|
|
-- which T = ID, so the above tests and assignments do nothing???
|
4110 |
|
|
|
4111 |
|
|
if Has_Predicates (T)
|
4112 |
|
|
or else (Present (Ancestor_Subtype (T))
|
4113 |
|
|
and then Has_Predicates (Ancestor_Subtype (T)))
|
4114 |
|
|
then
|
4115 |
|
|
Set_Has_Predicates (Id);
|
4116 |
|
|
Set_Has_Delayed_Freeze (Id);
|
4117 |
|
|
end if;
|
4118 |
|
|
|
4119 |
|
|
-- Subtype of Boolean cannot have a constraint in SPARK
|
4120 |
|
|
|
4121 |
|
|
if Is_Boolean_Type (T)
|
4122 |
|
|
and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
|
4123 |
|
|
then
|
4124 |
|
|
Check_SPARK_Restriction
|
4125 |
|
|
("subtype of Boolean cannot have constraint", N);
|
4126 |
|
|
end if;
|
4127 |
|
|
|
4128 |
|
|
if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
|
4129 |
|
|
declare
|
4130 |
|
|
Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
|
4131 |
|
|
One_Cstr : Node_Id;
|
4132 |
|
|
Low : Node_Id;
|
4133 |
|
|
High : Node_Id;
|
4134 |
|
|
|
4135 |
|
|
begin
|
4136 |
|
|
if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
|
4137 |
|
|
One_Cstr := First (Constraints (Cstr));
|
4138 |
|
|
while Present (One_Cstr) loop
|
4139 |
|
|
|
4140 |
|
|
-- Index or discriminant constraint in SPARK must be a
|
4141 |
|
|
-- subtype mark.
|
4142 |
|
|
|
4143 |
|
|
if not
|
4144 |
|
|
Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
|
4145 |
|
|
then
|
4146 |
|
|
Check_SPARK_Restriction
|
4147 |
|
|
("subtype mark required", One_Cstr);
|
4148 |
|
|
|
4149 |
|
|
-- String subtype must have a lower bound of 1 in SPARK.
|
4150 |
|
|
-- Note that we do not need to test for the non-static case
|
4151 |
|
|
-- here, since that was already taken care of in
|
4152 |
|
|
-- Process_Range_Expr_In_Decl.
|
4153 |
|
|
|
4154 |
|
|
elsif Base_Type (T) = Standard_String then
|
4155 |
|
|
Get_Index_Bounds (One_Cstr, Low, High);
|
4156 |
|
|
|
4157 |
|
|
if Is_OK_Static_Expression (Low)
|
4158 |
|
|
and then Expr_Value (Low) /= 1
|
4159 |
|
|
then
|
4160 |
|
|
Check_SPARK_Restriction
|
4161 |
|
|
("String subtype must have lower bound of 1", N);
|
4162 |
|
|
end if;
|
4163 |
|
|
end if;
|
4164 |
|
|
|
4165 |
|
|
Next (One_Cstr);
|
4166 |
|
|
end loop;
|
4167 |
|
|
end if;
|
4168 |
|
|
end;
|
4169 |
|
|
end if;
|
4170 |
|
|
|
4171 |
|
|
-- In the case where there is no constraint given in the subtype
|
4172 |
|
|
-- indication, Process_Subtype just returns the Subtype_Mark, so its
|
4173 |
|
|
-- semantic attributes must be established here.
|
4174 |
|
|
|
4175 |
|
|
if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
|
4176 |
|
|
Set_Etype (Id, Base_Type (T));
|
4177 |
|
|
|
4178 |
|
|
-- Subtype of unconstrained array without constraint is not allowed
|
4179 |
|
|
-- in SPARK.
|
4180 |
|
|
|
4181 |
|
|
if Is_Array_Type (T)
|
4182 |
|
|
and then not Is_Constrained (T)
|
4183 |
|
|
then
|
4184 |
|
|
Check_SPARK_Restriction
|
4185 |
|
|
("subtype of unconstrained array must have constraint", N);
|
4186 |
|
|
end if;
|
4187 |
|
|
|
4188 |
|
|
case Ekind (T) is
|
4189 |
|
|
when Array_Kind =>
|
4190 |
|
|
Set_Ekind (Id, E_Array_Subtype);
|
4191 |
|
|
Copy_Array_Subtype_Attributes (Id, T);
|
4192 |
|
|
|
4193 |
|
|
when Decimal_Fixed_Point_Kind =>
|
4194 |
|
|
Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
|
4195 |
|
|
Set_Digits_Value (Id, Digits_Value (T));
|
4196 |
|
|
Set_Delta_Value (Id, Delta_Value (T));
|
4197 |
|
|
Set_Scale_Value (Id, Scale_Value (T));
|
4198 |
|
|
Set_Small_Value (Id, Small_Value (T));
|
4199 |
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
4200 |
|
|
Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
|
4201 |
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
4202 |
|
|
Set_Is_Known_Valid (Id, Is_Known_Valid (T));
|
4203 |
|
|
Set_RM_Size (Id, RM_Size (T));
|
4204 |
|
|
|
4205 |
|
|
when Enumeration_Kind =>
|
4206 |
|
|
Set_Ekind (Id, E_Enumeration_Subtype);
|
4207 |
|
|
Set_First_Literal (Id, First_Literal (Base_Type (T)));
|
4208 |
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
4209 |
|
|
Set_Is_Character_Type (Id, Is_Character_Type (T));
|
4210 |
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
4211 |
|
|
Set_Is_Known_Valid (Id, Is_Known_Valid (T));
|
4212 |
|
|
Set_RM_Size (Id, RM_Size (T));
|
4213 |
|
|
|
4214 |
|
|
when Ordinary_Fixed_Point_Kind =>
|
4215 |
|
|
Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
|
4216 |
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
4217 |
|
|
Set_Small_Value (Id, Small_Value (T));
|
4218 |
|
|
Set_Delta_Value (Id, Delta_Value (T));
|
4219 |
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
4220 |
|
|
Set_Is_Known_Valid (Id, Is_Known_Valid (T));
|
4221 |
|
|
Set_RM_Size (Id, RM_Size (T));
|
4222 |
|
|
|
4223 |
|
|
when Float_Kind =>
|
4224 |
|
|
Set_Ekind (Id, E_Floating_Point_Subtype);
|
4225 |
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
4226 |
|
|
Set_Digits_Value (Id, Digits_Value (T));
|
4227 |
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
4228 |
|
|
|
4229 |
|
|
when Signed_Integer_Kind =>
|
4230 |
|
|
Set_Ekind (Id, E_Signed_Integer_Subtype);
|
4231 |
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
4232 |
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
4233 |
|
|
Set_Is_Known_Valid (Id, Is_Known_Valid (T));
|
4234 |
|
|
Set_RM_Size (Id, RM_Size (T));
|
4235 |
|
|
|
4236 |
|
|
when Modular_Integer_Kind =>
|
4237 |
|
|
Set_Ekind (Id, E_Modular_Integer_Subtype);
|
4238 |
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
4239 |
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
4240 |
|
|
Set_Is_Known_Valid (Id, Is_Known_Valid (T));
|
4241 |
|
|
Set_RM_Size (Id, RM_Size (T));
|
4242 |
|
|
|
4243 |
|
|
when Class_Wide_Kind =>
|
4244 |
|
|
Set_Ekind (Id, E_Class_Wide_Subtype);
|
4245 |
|
|
Set_First_Entity (Id, First_Entity (T));
|
4246 |
|
|
Set_Last_Entity (Id, Last_Entity (T));
|
4247 |
|
|
Set_Class_Wide_Type (Id, Class_Wide_Type (T));
|
4248 |
|
|
Set_Cloned_Subtype (Id, T);
|
4249 |
|
|
Set_Is_Tagged_Type (Id, True);
|
4250 |
|
|
Set_Has_Unknown_Discriminants
|
4251 |
|
|
(Id, True);
|
4252 |
|
|
|
4253 |
|
|
if Ekind (T) = E_Class_Wide_Subtype then
|
4254 |
|
|
Set_Equivalent_Type (Id, Equivalent_Type (T));
|
4255 |
|
|
end if;
|
4256 |
|
|
|
4257 |
|
|
when E_Record_Type | E_Record_Subtype =>
|
4258 |
|
|
Set_Ekind (Id, E_Record_Subtype);
|
4259 |
|
|
|
4260 |
|
|
if Ekind (T) = E_Record_Subtype
|
4261 |
|
|
and then Present (Cloned_Subtype (T))
|
4262 |
|
|
then
|
4263 |
|
|
Set_Cloned_Subtype (Id, Cloned_Subtype (T));
|
4264 |
|
|
else
|
4265 |
|
|
Set_Cloned_Subtype (Id, T);
|
4266 |
|
|
end if;
|
4267 |
|
|
|
4268 |
|
|
Set_First_Entity (Id, First_Entity (T));
|
4269 |
|
|
Set_Last_Entity (Id, Last_Entity (T));
|
4270 |
|
|
Set_Has_Discriminants (Id, Has_Discriminants (T));
|
4271 |
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
4272 |
|
|
Set_Is_Limited_Record (Id, Is_Limited_Record (T));
|
4273 |
|
|
Set_Has_Implicit_Dereference
|
4274 |
|
|
(Id, Has_Implicit_Dereference (T));
|
4275 |
|
|
Set_Has_Unknown_Discriminants
|
4276 |
|
|
(Id, Has_Unknown_Discriminants (T));
|
4277 |
|
|
|
4278 |
|
|
if Has_Discriminants (T) then
|
4279 |
|
|
Set_Discriminant_Constraint
|
4280 |
|
|
(Id, Discriminant_Constraint (T));
|
4281 |
|
|
Set_Stored_Constraint_From_Discriminant_Constraint (Id);
|
4282 |
|
|
|
4283 |
|
|
elsif Has_Unknown_Discriminants (Id) then
|
4284 |
|
|
Set_Discriminant_Constraint (Id, No_Elist);
|
4285 |
|
|
end if;
|
4286 |
|
|
|
4287 |
|
|
if Is_Tagged_Type (T) then
|
4288 |
|
|
Set_Is_Tagged_Type (Id);
|
4289 |
|
|
Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
|
4290 |
|
|
Set_Direct_Primitive_Operations
|
4291 |
|
|
(Id, Direct_Primitive_Operations (T));
|
4292 |
|
|
Set_Class_Wide_Type (Id, Class_Wide_Type (T));
|
4293 |
|
|
|
4294 |
|
|
if Is_Interface (T) then
|
4295 |
|
|
Set_Is_Interface (Id);
|
4296 |
|
|
Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
|
4297 |
|
|
end if;
|
4298 |
|
|
end if;
|
4299 |
|
|
|
4300 |
|
|
when Private_Kind =>
|
4301 |
|
|
Set_Ekind (Id, Subtype_Kind (Ekind (T)));
|
4302 |
|
|
Set_Has_Discriminants (Id, Has_Discriminants (T));
|
4303 |
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
4304 |
|
|
Set_First_Entity (Id, First_Entity (T));
|
4305 |
|
|
Set_Last_Entity (Id, Last_Entity (T));
|
4306 |
|
|
Set_Private_Dependents (Id, New_Elmt_List);
|
4307 |
|
|
Set_Is_Limited_Record (Id, Is_Limited_Record (T));
|
4308 |
|
|
Set_Has_Implicit_Dereference
|
4309 |
|
|
(Id, Has_Implicit_Dereference (T));
|
4310 |
|
|
Set_Has_Unknown_Discriminants
|
4311 |
|
|
(Id, Has_Unknown_Discriminants (T));
|
4312 |
|
|
Set_Known_To_Have_Preelab_Init
|
4313 |
|
|
(Id, Known_To_Have_Preelab_Init (T));
|
4314 |
|
|
|
4315 |
|
|
if Is_Tagged_Type (T) then
|
4316 |
|
|
Set_Is_Tagged_Type (Id);
|
4317 |
|
|
Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
|
4318 |
|
|
Set_Class_Wide_Type (Id, Class_Wide_Type (T));
|
4319 |
|
|
Set_Direct_Primitive_Operations (Id,
|
4320 |
|
|
Direct_Primitive_Operations (T));
|
4321 |
|
|
end if;
|
4322 |
|
|
|
4323 |
|
|
-- In general the attributes of the subtype of a private type
|
4324 |
|
|
-- are the attributes of the partial view of parent. However,
|
4325 |
|
|
-- the full view may be a discriminated type, and the subtype
|
4326 |
|
|
-- must share the discriminant constraint to generate correct
|
4327 |
|
|
-- calls to initialization procedures.
|
4328 |
|
|
|
4329 |
|
|
if Has_Discriminants (T) then
|
4330 |
|
|
Set_Discriminant_Constraint
|
4331 |
|
|
(Id, Discriminant_Constraint (T));
|
4332 |
|
|
Set_Stored_Constraint_From_Discriminant_Constraint (Id);
|
4333 |
|
|
|
4334 |
|
|
elsif Present (Full_View (T))
|
4335 |
|
|
and then Has_Discriminants (Full_View (T))
|
4336 |
|
|
then
|
4337 |
|
|
Set_Discriminant_Constraint
|
4338 |
|
|
(Id, Discriminant_Constraint (Full_View (T)));
|
4339 |
|
|
Set_Stored_Constraint_From_Discriminant_Constraint (Id);
|
4340 |
|
|
|
4341 |
|
|
-- This would seem semantically correct, but apparently
|
4342 |
|
|
-- confuses the back-end. To be explained and checked with
|
4343 |
|
|
-- current version ???
|
4344 |
|
|
|
4345 |
|
|
-- Set_Has_Discriminants (Id);
|
4346 |
|
|
end if;
|
4347 |
|
|
|
4348 |
|
|
Prepare_Private_Subtype_Completion (Id, N);
|
4349 |
|
|
|
4350 |
|
|
when Access_Kind =>
|
4351 |
|
|
Set_Ekind (Id, E_Access_Subtype);
|
4352 |
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
4353 |
|
|
Set_Is_Access_Constant
|
4354 |
|
|
(Id, Is_Access_Constant (T));
|
4355 |
|
|
Set_Directly_Designated_Type
|
4356 |
|
|
(Id, Designated_Type (T));
|
4357 |
|
|
Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
|
4358 |
|
|
|
4359 |
|
|
-- A Pure library_item must not contain the declaration of a
|
4360 |
|
|
-- named access type, except within a subprogram, generic
|
4361 |
|
|
-- subprogram, task unit, or protected unit, or if it has
|
4362 |
|
|
-- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
|
4363 |
|
|
|
4364 |
|
|
if Comes_From_Source (Id)
|
4365 |
|
|
and then In_Pure_Unit
|
4366 |
|
|
and then not In_Subprogram_Task_Protected_Unit
|
4367 |
|
|
and then not No_Pool_Assigned (Id)
|
4368 |
|
|
then
|
4369 |
|
|
Error_Msg_N
|
4370 |
|
|
("named access types not allowed in pure unit", N);
|
4371 |
|
|
end if;
|
4372 |
|
|
|
4373 |
|
|
when Concurrent_Kind =>
|
4374 |
|
|
Set_Ekind (Id, Subtype_Kind (Ekind (T)));
|
4375 |
|
|
Set_Corresponding_Record_Type (Id,
|
4376 |
|
|
Corresponding_Record_Type (T));
|
4377 |
|
|
Set_First_Entity (Id, First_Entity (T));
|
4378 |
|
|
Set_First_Private_Entity (Id, First_Private_Entity (T));
|
4379 |
|
|
Set_Has_Discriminants (Id, Has_Discriminants (T));
|
4380 |
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
4381 |
|
|
Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
|
4382 |
|
|
Set_Last_Entity (Id, Last_Entity (T));
|
4383 |
|
|
|
4384 |
|
|
if Has_Discriminants (T) then
|
4385 |
|
|
Set_Discriminant_Constraint (Id,
|
4386 |
|
|
Discriminant_Constraint (T));
|
4387 |
|
|
Set_Stored_Constraint_From_Discriminant_Constraint (Id);
|
4388 |
|
|
end if;
|
4389 |
|
|
|
4390 |
|
|
when E_Incomplete_Type =>
|
4391 |
|
|
if Ada_Version >= Ada_2005 then
|
4392 |
|
|
Set_Ekind (Id, E_Incomplete_Subtype);
|
4393 |
|
|
|
4394 |
|
|
-- Ada 2005 (AI-412): Decorate an incomplete subtype
|
4395 |
|
|
-- of an incomplete type visible through a limited
|
4396 |
|
|
-- with clause.
|
4397 |
|
|
|
4398 |
|
|
if From_With_Type (T)
|
4399 |
|
|
and then Present (Non_Limited_View (T))
|
4400 |
|
|
then
|
4401 |
|
|
Set_From_With_Type (Id);
|
4402 |
|
|
Set_Non_Limited_View (Id, Non_Limited_View (T));
|
4403 |
|
|
|
4404 |
|
|
-- Ada 2005 (AI-412): Add the regular incomplete subtype
|
4405 |
|
|
-- to the private dependents of the original incomplete
|
4406 |
|
|
-- type for future transformation.
|
4407 |
|
|
|
4408 |
|
|
else
|
4409 |
|
|
Append_Elmt (Id, Private_Dependents (T));
|
4410 |
|
|
end if;
|
4411 |
|
|
|
4412 |
|
|
-- If the subtype name denotes an incomplete type an error
|
4413 |
|
|
-- was already reported by Process_Subtype.
|
4414 |
|
|
|
4415 |
|
|
else
|
4416 |
|
|
Set_Etype (Id, Any_Type);
|
4417 |
|
|
end if;
|
4418 |
|
|
|
4419 |
|
|
when others =>
|
4420 |
|
|
raise Program_Error;
|
4421 |
|
|
end case;
|
4422 |
|
|
end if;
|
4423 |
|
|
|
4424 |
|
|
if Etype (Id) = Any_Type then
|
4425 |
|
|
goto Leave;
|
4426 |
|
|
end if;
|
4427 |
|
|
|
4428 |
|
|
-- Some common processing on all types
|
4429 |
|
|
|
4430 |
|
|
Set_Size_Info (Id, T);
|
4431 |
|
|
Set_First_Rep_Item (Id, First_Rep_Item (T));
|
4432 |
|
|
|
4433 |
|
|
T := Etype (Id);
|
4434 |
|
|
|
4435 |
|
|
Set_Is_Immediately_Visible (Id, True);
|
4436 |
|
|
Set_Depends_On_Private (Id, Has_Private_Component (T));
|
4437 |
|
|
Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
|
4438 |
|
|
|
4439 |
|
|
if Is_Interface (T) then
|
4440 |
|
|
Set_Is_Interface (Id);
|
4441 |
|
|
end if;
|
4442 |
|
|
|
4443 |
|
|
if Present (Generic_Parent_Type (N))
|
4444 |
|
|
and then
|
4445 |
|
|
(Nkind
|
4446 |
|
|
(Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
|
4447 |
|
|
or else Nkind
|
4448 |
|
|
(Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
|
4449 |
|
|
/= N_Formal_Private_Type_Definition)
|
4450 |
|
|
then
|
4451 |
|
|
if Is_Tagged_Type (Id) then
|
4452 |
|
|
|
4453 |
|
|
-- If this is a generic actual subtype for a synchronized type,
|
4454 |
|
|
-- the primitive operations are those of the corresponding record
|
4455 |
|
|
-- for which there is a separate subtype declaration.
|
4456 |
|
|
|
4457 |
|
|
if Is_Concurrent_Type (Id) then
|
4458 |
|
|
null;
|
4459 |
|
|
elsif Is_Class_Wide_Type (Id) then
|
4460 |
|
|
Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
|
4461 |
|
|
else
|
4462 |
|
|
Derive_Subprograms (Generic_Parent_Type (N), Id, T);
|
4463 |
|
|
end if;
|
4464 |
|
|
|
4465 |
|
|
elsif Scope (Etype (Id)) /= Standard_Standard then
|
4466 |
|
|
Derive_Subprograms (Generic_Parent_Type (N), Id);
|
4467 |
|
|
end if;
|
4468 |
|
|
end if;
|
4469 |
|
|
|
4470 |
|
|
if Is_Private_Type (T)
|
4471 |
|
|
and then Present (Full_View (T))
|
4472 |
|
|
then
|
4473 |
|
|
Conditional_Delay (Id, Full_View (T));
|
4474 |
|
|
|
4475 |
|
|
-- The subtypes of components or subcomponents of protected types
|
4476 |
|
|
-- do not need freeze nodes, which would otherwise appear in the
|
4477 |
|
|
-- wrong scope (before the freeze node for the protected type). The
|
4478 |
|
|
-- proper subtypes are those of the subcomponents of the corresponding
|
4479 |
|
|
-- record.
|
4480 |
|
|
|
4481 |
|
|
elsif Ekind (Scope (Id)) /= E_Protected_Type
|
4482 |
|
|
and then Present (Scope (Scope (Id))) -- error defense!
|
4483 |
|
|
and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
|
4484 |
|
|
then
|
4485 |
|
|
Conditional_Delay (Id, T);
|
4486 |
|
|
end if;
|
4487 |
|
|
|
4488 |
|
|
-- Check that Constraint_Error is raised for a scalar subtype indication
|
4489 |
|
|
-- when the lower or upper bound of a non-null range lies outside the
|
4490 |
|
|
-- range of the type mark.
|
4491 |
|
|
|
4492 |
|
|
if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
|
4493 |
|
|
if Is_Scalar_Type (Etype (Id))
|
4494 |
|
|
and then Scalar_Range (Id) /=
|
4495 |
|
|
Scalar_Range (Etype (Subtype_Mark
|
4496 |
|
|
(Subtype_Indication (N))))
|
4497 |
|
|
then
|
4498 |
|
|
Apply_Range_Check
|
4499 |
|
|
(Scalar_Range (Id),
|
4500 |
|
|
Etype (Subtype_Mark (Subtype_Indication (N))));
|
4501 |
|
|
|
4502 |
|
|
-- In the array case, check compatibility for each index
|
4503 |
|
|
|
4504 |
|
|
elsif Is_Array_Type (Etype (Id))
|
4505 |
|
|
and then Present (First_Index (Id))
|
4506 |
|
|
then
|
4507 |
|
|
-- This really should be a subprogram that finds the indications
|
4508 |
|
|
-- to check???
|
4509 |
|
|
|
4510 |
|
|
declare
|
4511 |
|
|
Subt_Index : Node_Id := First_Index (Id);
|
4512 |
|
|
Target_Index : Node_Id :=
|
4513 |
|
|
First_Index (Etype
|
4514 |
|
|
(Subtype_Mark (Subtype_Indication (N))));
|
4515 |
|
|
Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
|
4516 |
|
|
|
4517 |
|
|
begin
|
4518 |
|
|
while Present (Subt_Index) loop
|
4519 |
|
|
if ((Nkind (Subt_Index) = N_Identifier
|
4520 |
|
|
and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
|
4521 |
|
|
or else Nkind (Subt_Index) = N_Subtype_Indication)
|
4522 |
|
|
and then
|
4523 |
|
|
Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
|
4524 |
|
|
then
|
4525 |
|
|
declare
|
4526 |
|
|
Target_Typ : constant Entity_Id :=
|
4527 |
|
|
Etype (Target_Index);
|
4528 |
|
|
begin
|
4529 |
|
|
R_Checks :=
|
4530 |
|
|
Get_Range_Checks
|
4531 |
|
|
(Scalar_Range (Etype (Subt_Index)),
|
4532 |
|
|
Target_Typ,
|
4533 |
|
|
Etype (Subt_Index),
|
4534 |
|
|
Defining_Identifier (N));
|
4535 |
|
|
|
4536 |
|
|
-- Reset Has_Dynamic_Range_Check on the subtype to
|
4537 |
|
|
-- prevent elision of the index check due to a dynamic
|
4538 |
|
|
-- check generated for a preceding index (needed since
|
4539 |
|
|
-- Insert_Range_Checks tries to avoid generating
|
4540 |
|
|
-- redundant checks on a given declaration).
|
4541 |
|
|
|
4542 |
|
|
Set_Has_Dynamic_Range_Check (N, False);
|
4543 |
|
|
|
4544 |
|
|
Insert_Range_Checks
|
4545 |
|
|
(R_Checks,
|
4546 |
|
|
N,
|
4547 |
|
|
Target_Typ,
|
4548 |
|
|
Sloc (Defining_Identifier (N)));
|
4549 |
|
|
|
4550 |
|
|
-- Record whether this index involved a dynamic check
|
4551 |
|
|
|
4552 |
|
|
Has_Dyn_Chk :=
|
4553 |
|
|
Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
|
4554 |
|
|
end;
|
4555 |
|
|
end if;
|
4556 |
|
|
|
4557 |
|
|
Next_Index (Subt_Index);
|
4558 |
|
|
Next_Index (Target_Index);
|
4559 |
|
|
end loop;
|
4560 |
|
|
|
4561 |
|
|
-- Finally, mark whether the subtype involves dynamic checks
|
4562 |
|
|
|
4563 |
|
|
Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
|
4564 |
|
|
end;
|
4565 |
|
|
end if;
|
4566 |
|
|
end if;
|
4567 |
|
|
|
4568 |
|
|
-- Make sure that generic actual types are properly frozen. The subtype
|
4569 |
|
|
-- is marked as a generic actual type when the enclosing instance is
|
4570 |
|
|
-- analyzed, so here we identify the subtype from the tree structure.
|
4571 |
|
|
|
4572 |
|
|
if Expander_Active
|
4573 |
|
|
and then Is_Generic_Actual_Type (Id)
|
4574 |
|
|
and then In_Instance
|
4575 |
|
|
and then not Comes_From_Source (N)
|
4576 |
|
|
and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
|
4577 |
|
|
and then Is_Frozen (T)
|
4578 |
|
|
then
|
4579 |
|
|
Freeze_Before (N, Id);
|
4580 |
|
|
end if;
|
4581 |
|
|
|
4582 |
|
|
Set_Optimize_Alignment_Flags (Id);
|
4583 |
|
|
Check_Eliminated (Id);
|
4584 |
|
|
|
4585 |
|
|
<<Leave>>
|
4586 |
|
|
if Has_Aspects (N) then
|
4587 |
|
|
Analyze_Aspect_Specifications (N, Id);
|
4588 |
|
|
end if;
|
4589 |
|
|
|
4590 |
|
|
Analyze_Dimension (N);
|
4591 |
|
|
end Analyze_Subtype_Declaration;
|
4592 |
|
|
|
4593 |
|
|
--------------------------------
|
4594 |
|
|
-- Analyze_Subtype_Indication --
|
4595 |
|
|
--------------------------------
|
4596 |
|
|
|
4597 |
|
|
procedure Analyze_Subtype_Indication (N : Node_Id) is
|
4598 |
|
|
T : constant Entity_Id := Subtype_Mark (N);
|
4599 |
|
|
R : constant Node_Id := Range_Expression (Constraint (N));
|
4600 |
|
|
|
4601 |
|
|
begin
|
4602 |
|
|
Analyze (T);
|
4603 |
|
|
|
4604 |
|
|
if R /= Error then
|
4605 |
|
|
Analyze (R);
|
4606 |
|
|
Set_Etype (N, Etype (R));
|
4607 |
|
|
Resolve (R, Entity (T));
|
4608 |
|
|
else
|
4609 |
|
|
Set_Error_Posted (R);
|
4610 |
|
|
Set_Error_Posted (T);
|
4611 |
|
|
end if;
|
4612 |
|
|
end Analyze_Subtype_Indication;
|
4613 |
|
|
|
4614 |
|
|
--------------------------
|
4615 |
|
|
-- Analyze_Variant_Part --
|
4616 |
|
|
--------------------------
|
4617 |
|
|
|
4618 |
|
|
procedure Analyze_Variant_Part (N : Node_Id) is
|
4619 |
|
|
|
4620 |
|
|
procedure Non_Static_Choice_Error (Choice : Node_Id);
|
4621 |
|
|
-- Error routine invoked by the generic instantiation below when the
|
4622 |
|
|
-- variant part has a non static choice.
|
4623 |
|
|
|
4624 |
|
|
procedure Process_Declarations (Variant : Node_Id);
|
4625 |
|
|
-- Analyzes all the declarations associated with a Variant. Needed by
|
4626 |
|
|
-- the generic instantiation below.
|
4627 |
|
|
|
4628 |
|
|
package Variant_Choices_Processing is new
|
4629 |
|
|
Generic_Choices_Processing
|
4630 |
|
|
(Get_Alternatives => Variants,
|
4631 |
|
|
Get_Choices => Discrete_Choices,
|
4632 |
|
|
Process_Empty_Choice => No_OP,
|
4633 |
|
|
Process_Non_Static_Choice => Non_Static_Choice_Error,
|
4634 |
|
|
Process_Associated_Node => Process_Declarations);
|
4635 |
|
|
use Variant_Choices_Processing;
|
4636 |
|
|
-- Instantiation of the generic choice processing package
|
4637 |
|
|
|
4638 |
|
|
-----------------------------
|
4639 |
|
|
-- Non_Static_Choice_Error --
|
4640 |
|
|
-----------------------------
|
4641 |
|
|
|
4642 |
|
|
procedure Non_Static_Choice_Error (Choice : Node_Id) is
|
4643 |
|
|
begin
|
4644 |
|
|
Flag_Non_Static_Expr
|
4645 |
|
|
("choice given in variant part is not static!", Choice);
|
4646 |
|
|
end Non_Static_Choice_Error;
|
4647 |
|
|
|
4648 |
|
|
--------------------------
|
4649 |
|
|
-- Process_Declarations --
|
4650 |
|
|
--------------------------
|
4651 |
|
|
|
4652 |
|
|
procedure Process_Declarations (Variant : Node_Id) is
|
4653 |
|
|
begin
|
4654 |
|
|
if not Null_Present (Component_List (Variant)) then
|
4655 |
|
|
Analyze_Declarations (Component_Items (Component_List (Variant)));
|
4656 |
|
|
|
4657 |
|
|
if Present (Variant_Part (Component_List (Variant))) then
|
4658 |
|
|
Analyze (Variant_Part (Component_List (Variant)));
|
4659 |
|
|
end if;
|
4660 |
|
|
end if;
|
4661 |
|
|
end Process_Declarations;
|
4662 |
|
|
|
4663 |
|
|
-- Local Variables
|
4664 |
|
|
|
4665 |
|
|
Discr_Name : Node_Id;
|
4666 |
|
|
Discr_Type : Entity_Id;
|
4667 |
|
|
|
4668 |
|
|
Dont_Care : Boolean;
|
4669 |
|
|
Others_Present : Boolean := False;
|
4670 |
|
|
|
4671 |
|
|
pragma Warnings (Off, Dont_Care);
|
4672 |
|
|
pragma Warnings (Off, Others_Present);
|
4673 |
|
|
-- We don't care about the assigned values of any of these
|
4674 |
|
|
|
4675 |
|
|
-- Start of processing for Analyze_Variant_Part
|
4676 |
|
|
|
4677 |
|
|
begin
|
4678 |
|
|
Discr_Name := Name (N);
|
4679 |
|
|
Analyze (Discr_Name);
|
4680 |
|
|
|
4681 |
|
|
-- If Discr_Name bad, get out (prevent cascaded errors)
|
4682 |
|
|
|
4683 |
|
|
if Etype (Discr_Name) = Any_Type then
|
4684 |
|
|
return;
|
4685 |
|
|
end if;
|
4686 |
|
|
|
4687 |
|
|
-- Check invalid discriminant in variant part
|
4688 |
|
|
|
4689 |
|
|
if Ekind (Entity (Discr_Name)) /= E_Discriminant then
|
4690 |
|
|
Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
|
4691 |
|
|
end if;
|
4692 |
|
|
|
4693 |
|
|
Discr_Type := Etype (Entity (Discr_Name));
|
4694 |
|
|
|
4695 |
|
|
if not Is_Discrete_Type (Discr_Type) then
|
4696 |
|
|
Error_Msg_N
|
4697 |
|
|
("discriminant in a variant part must be of a discrete type",
|
4698 |
|
|
Name (N));
|
4699 |
|
|
return;
|
4700 |
|
|
end if;
|
4701 |
|
|
|
4702 |
|
|
-- Call the instantiated Analyze_Choices which does the rest of the work
|
4703 |
|
|
|
4704 |
|
|
Analyze_Choices (N, Discr_Type, Dont_Care, Others_Present);
|
4705 |
|
|
end Analyze_Variant_Part;
|
4706 |
|
|
|
4707 |
|
|
----------------------------
|
4708 |
|
|
-- Array_Type_Declaration --
|
4709 |
|
|
----------------------------
|
4710 |
|
|
|
4711 |
|
|
procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
|
4712 |
|
|
Component_Def : constant Node_Id := Component_Definition (Def);
|
4713 |
|
|
Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
|
4714 |
|
|
Element_Type : Entity_Id;
|
4715 |
|
|
Implicit_Base : Entity_Id;
|
4716 |
|
|
Index : Node_Id;
|
4717 |
|
|
Related_Id : Entity_Id := Empty;
|
4718 |
|
|
Nb_Index : Nat;
|
4719 |
|
|
P : constant Node_Id := Parent (Def);
|
4720 |
|
|
Priv : Entity_Id;
|
4721 |
|
|
|
4722 |
|
|
begin
|
4723 |
|
|
if Nkind (Def) = N_Constrained_Array_Definition then
|
4724 |
|
|
Index := First (Discrete_Subtype_Definitions (Def));
|
4725 |
|
|
else
|
4726 |
|
|
Index := First (Subtype_Marks (Def));
|
4727 |
|
|
end if;
|
4728 |
|
|
|
4729 |
|
|
-- Find proper names for the implicit types which may be public. In case
|
4730 |
|
|
-- of anonymous arrays we use the name of the first object of that type
|
4731 |
|
|
-- as prefix.
|
4732 |
|
|
|
4733 |
|
|
if No (T) then
|
4734 |
|
|
Related_Id := Defining_Identifier (P);
|
4735 |
|
|
else
|
4736 |
|
|
Related_Id := T;
|
4737 |
|
|
end if;
|
4738 |
|
|
|
4739 |
|
|
Nb_Index := 1;
|
4740 |
|
|
while Present (Index) loop
|
4741 |
|
|
Analyze (Index);
|
4742 |
|
|
|
4743 |
|
|
if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
|
4744 |
|
|
Check_SPARK_Restriction ("subtype mark required", Index);
|
4745 |
|
|
end if;
|
4746 |
|
|
|
4747 |
|
|
-- Add a subtype declaration for each index of private array type
|
4748 |
|
|
-- declaration whose etype is also private. For example:
|
4749 |
|
|
|
4750 |
|
|
-- package Pkg is
|
4751 |
|
|
-- type Index is private;
|
4752 |
|
|
-- private
|
4753 |
|
|
-- type Table is array (Index) of ...
|
4754 |
|
|
-- end;
|
4755 |
|
|
|
4756 |
|
|
-- This is currently required by the expander for the internally
|
4757 |
|
|
-- generated equality subprogram of records with variant parts in
|
4758 |
|
|
-- which the etype of some component is such private type.
|
4759 |
|
|
|
4760 |
|
|
if Ekind (Current_Scope) = E_Package
|
4761 |
|
|
and then In_Private_Part (Current_Scope)
|
4762 |
|
|
and then Has_Private_Declaration (Etype (Index))
|
4763 |
|
|
then
|
4764 |
|
|
declare
|
4765 |
|
|
Loc : constant Source_Ptr := Sloc (Def);
|
4766 |
|
|
New_E : Entity_Id;
|
4767 |
|
|
Decl : Entity_Id;
|
4768 |
|
|
|
4769 |
|
|
begin
|
4770 |
|
|
New_E := Make_Temporary (Loc, 'T');
|
4771 |
|
|
Set_Is_Internal (New_E);
|
4772 |
|
|
|
4773 |
|
|
Decl :=
|
4774 |
|
|
Make_Subtype_Declaration (Loc,
|
4775 |
|
|
Defining_Identifier => New_E,
|
4776 |
|
|
Subtype_Indication =>
|
4777 |
|
|
New_Occurrence_Of (Etype (Index), Loc));
|
4778 |
|
|
|
4779 |
|
|
Insert_Before (Parent (Def), Decl);
|
4780 |
|
|
Analyze (Decl);
|
4781 |
|
|
Set_Etype (Index, New_E);
|
4782 |
|
|
|
4783 |
|
|
-- If the index is a range the Entity attribute is not
|
4784 |
|
|
-- available. Example:
|
4785 |
|
|
|
4786 |
|
|
-- package Pkg is
|
4787 |
|
|
-- type T is private;
|
4788 |
|
|
-- private
|
4789 |
|
|
-- type T is new Natural;
|
4790 |
|
|
-- Table : array (T(1) .. T(10)) of Boolean;
|
4791 |
|
|
-- end Pkg;
|
4792 |
|
|
|
4793 |
|
|
if Nkind (Index) /= N_Range then
|
4794 |
|
|
Set_Entity (Index, New_E);
|
4795 |
|
|
end if;
|
4796 |
|
|
end;
|
4797 |
|
|
end if;
|
4798 |
|
|
|
4799 |
|
|
Make_Index (Index, P, Related_Id, Nb_Index);
|
4800 |
|
|
|
4801 |
|
|
-- Check error of subtype with predicate for index type
|
4802 |
|
|
|
4803 |
|
|
Bad_Predicated_Subtype_Use
|
4804 |
|
|
("subtype& has predicate, not allowed as index subtype",
|
4805 |
|
|
Index, Etype (Index));
|
4806 |
|
|
|
4807 |
|
|
-- Move to next index
|
4808 |
|
|
|
4809 |
|
|
Next_Index (Index);
|
4810 |
|
|
Nb_Index := Nb_Index + 1;
|
4811 |
|
|
end loop;
|
4812 |
|
|
|
4813 |
|
|
-- Process subtype indication if one is present
|
4814 |
|
|
|
4815 |
|
|
if Present (Component_Typ) then
|
4816 |
|
|
Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
|
4817 |
|
|
|
4818 |
|
|
Set_Etype (Component_Typ, Element_Type);
|
4819 |
|
|
|
4820 |
|
|
if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
|
4821 |
|
|
Check_SPARK_Restriction ("subtype mark required", Component_Typ);
|
4822 |
|
|
end if;
|
4823 |
|
|
|
4824 |
|
|
-- Ada 2005 (AI-230): Access Definition case
|
4825 |
|
|
|
4826 |
|
|
else pragma Assert (Present (Access_Definition (Component_Def)));
|
4827 |
|
|
|
4828 |
|
|
-- Indicate that the anonymous access type is created by the
|
4829 |
|
|
-- array type declaration.
|
4830 |
|
|
|
4831 |
|
|
Element_Type := Access_Definition
|
4832 |
|
|
(Related_Nod => P,
|
4833 |
|
|
N => Access_Definition (Component_Def));
|
4834 |
|
|
Set_Is_Local_Anonymous_Access (Element_Type);
|
4835 |
|
|
|
4836 |
|
|
-- Propagate the parent. This field is needed if we have to generate
|
4837 |
|
|
-- the master_id associated with an anonymous access to task type
|
4838 |
|
|
-- component (see Expand_N_Full_Type_Declaration.Build_Master)
|
4839 |
|
|
|
4840 |
|
|
Set_Parent (Element_Type, Parent (T));
|
4841 |
|
|
|
4842 |
|
|
-- Ada 2005 (AI-230): In case of components that are anonymous access
|
4843 |
|
|
-- types the level of accessibility depends on the enclosing type
|
4844 |
|
|
-- declaration
|
4845 |
|
|
|
4846 |
|
|
Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
|
4847 |
|
|
|
4848 |
|
|
-- Ada 2005 (AI-254)
|
4849 |
|
|
|
4850 |
|
|
declare
|
4851 |
|
|
CD : constant Node_Id :=
|
4852 |
|
|
Access_To_Subprogram_Definition
|
4853 |
|
|
(Access_Definition (Component_Def));
|
4854 |
|
|
begin
|
4855 |
|
|
if Present (CD) and then Protected_Present (CD) then
|
4856 |
|
|
Element_Type :=
|
4857 |
|
|
Replace_Anonymous_Access_To_Protected_Subprogram (Def);
|
4858 |
|
|
end if;
|
4859 |
|
|
end;
|
4860 |
|
|
end if;
|
4861 |
|
|
|
4862 |
|
|
-- Constrained array case
|
4863 |
|
|
|
4864 |
|
|
if No (T) then
|
4865 |
|
|
T := Create_Itype (E_Void, P, Related_Id, 'T');
|
4866 |
|
|
end if;
|
4867 |
|
|
|
4868 |
|
|
if Nkind (Def) = N_Constrained_Array_Definition then
|
4869 |
|
|
|
4870 |
|
|
-- Establish Implicit_Base as unconstrained base type
|
4871 |
|
|
|
4872 |
|
|
Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
|
4873 |
|
|
|
4874 |
|
|
Set_Etype (Implicit_Base, Implicit_Base);
|
4875 |
|
|
Set_Scope (Implicit_Base, Current_Scope);
|
4876 |
|
|
Set_Has_Delayed_Freeze (Implicit_Base);
|
4877 |
|
|
|
4878 |
|
|
-- The constrained array type is a subtype of the unconstrained one
|
4879 |
|
|
|
4880 |
|
|
Set_Ekind (T, E_Array_Subtype);
|
4881 |
|
|
Init_Size_Align (T);
|
4882 |
|
|
Set_Etype (T, Implicit_Base);
|
4883 |
|
|
Set_Scope (T, Current_Scope);
|
4884 |
|
|
Set_Is_Constrained (T, True);
|
4885 |
|
|
Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
|
4886 |
|
|
Set_Has_Delayed_Freeze (T);
|
4887 |
|
|
|
4888 |
|
|
-- Complete setup of implicit base type
|
4889 |
|
|
|
4890 |
|
|
Set_First_Index (Implicit_Base, First_Index (T));
|
4891 |
|
|
Set_Component_Type (Implicit_Base, Element_Type);
|
4892 |
|
|
Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
|
4893 |
|
|
Set_Component_Size (Implicit_Base, Uint_0);
|
4894 |
|
|
Set_Packed_Array_Type (Implicit_Base, Empty);
|
4895 |
|
|
Set_Has_Controlled_Component
|
4896 |
|
|
(Implicit_Base, Has_Controlled_Component
|
4897 |
|
|
(Element_Type)
|
4898 |
|
|
or else Is_Controlled
|
4899 |
|
|
(Element_Type));
|
4900 |
|
|
Set_Finalize_Storage_Only
|
4901 |
|
|
(Implicit_Base, Finalize_Storage_Only
|
4902 |
|
|
(Element_Type));
|
4903 |
|
|
|
4904 |
|
|
-- Unconstrained array case
|
4905 |
|
|
|
4906 |
|
|
else
|
4907 |
|
|
Set_Ekind (T, E_Array_Type);
|
4908 |
|
|
Init_Size_Align (T);
|
4909 |
|
|
Set_Etype (T, T);
|
4910 |
|
|
Set_Scope (T, Current_Scope);
|
4911 |
|
|
Set_Component_Size (T, Uint_0);
|
4912 |
|
|
Set_Is_Constrained (T, False);
|
4913 |
|
|
Set_First_Index (T, First (Subtype_Marks (Def)));
|
4914 |
|
|
Set_Has_Delayed_Freeze (T, True);
|
4915 |
|
|
Set_Has_Task (T, Has_Task (Element_Type));
|
4916 |
|
|
Set_Has_Controlled_Component (T, Has_Controlled_Component
|
4917 |
|
|
(Element_Type)
|
4918 |
|
|
or else
|
4919 |
|
|
Is_Controlled (Element_Type));
|
4920 |
|
|
Set_Finalize_Storage_Only (T, Finalize_Storage_Only
|
4921 |
|
|
(Element_Type));
|
4922 |
|
|
end if;
|
4923 |
|
|
|
4924 |
|
|
-- Common attributes for both cases
|
4925 |
|
|
|
4926 |
|
|
Set_Component_Type (Base_Type (T), Element_Type);
|
4927 |
|
|
Set_Packed_Array_Type (T, Empty);
|
4928 |
|
|
|
4929 |
|
|
if Aliased_Present (Component_Definition (Def)) then
|
4930 |
|
|
Check_SPARK_Restriction
|
4931 |
|
|
("aliased is not allowed", Component_Definition (Def));
|
4932 |
|
|
Set_Has_Aliased_Components (Etype (T));
|
4933 |
|
|
end if;
|
4934 |
|
|
|
4935 |
|
|
-- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
|
4936 |
|
|
-- array type to ensure that objects of this type are initialized.
|
4937 |
|
|
|
4938 |
|
|
if Ada_Version >= Ada_2005
|
4939 |
|
|
and then Can_Never_Be_Null (Element_Type)
|
4940 |
|
|
then
|
4941 |
|
|
Set_Can_Never_Be_Null (T);
|
4942 |
|
|
|
4943 |
|
|
if Null_Exclusion_Present (Component_Definition (Def))
|
4944 |
|
|
|
4945 |
|
|
-- No need to check itypes because in their case this check was
|
4946 |
|
|
-- done at their point of creation
|
4947 |
|
|
|
4948 |
|
|
and then not Is_Itype (Element_Type)
|
4949 |
|
|
then
|
4950 |
|
|
Error_Msg_N
|
4951 |
|
|
("`NOT NULL` not allowed (null already excluded)",
|
4952 |
|
|
Subtype_Indication (Component_Definition (Def)));
|
4953 |
|
|
end if;
|
4954 |
|
|
end if;
|
4955 |
|
|
|
4956 |
|
|
Priv := Private_Component (Element_Type);
|
4957 |
|
|
|
4958 |
|
|
if Present (Priv) then
|
4959 |
|
|
|
4960 |
|
|
-- Check for circular definitions
|
4961 |
|
|
|
4962 |
|
|
if Priv = Any_Type then
|
4963 |
|
|
Set_Component_Type (Etype (T), Any_Type);
|
4964 |
|
|
|
4965 |
|
|
-- There is a gap in the visibility of operations on the composite
|
4966 |
|
|
-- type only if the component type is defined in a different scope.
|
4967 |
|
|
|
4968 |
|
|
elsif Scope (Priv) = Current_Scope then
|
4969 |
|
|
null;
|
4970 |
|
|
|
4971 |
|
|
elsif Is_Limited_Type (Priv) then
|
4972 |
|
|
Set_Is_Limited_Composite (Etype (T));
|
4973 |
|
|
Set_Is_Limited_Composite (T);
|
4974 |
|
|
else
|
4975 |
|
|
Set_Is_Private_Composite (Etype (T));
|
4976 |
|
|
Set_Is_Private_Composite (T);
|
4977 |
|
|
end if;
|
4978 |
|
|
end if;
|
4979 |
|
|
|
4980 |
|
|
-- A syntax error in the declaration itself may lead to an empty index
|
4981 |
|
|
-- list, in which case do a minimal patch.
|
4982 |
|
|
|
4983 |
|
|
if No (First_Index (T)) then
|
4984 |
|
|
Error_Msg_N ("missing index definition in array type declaration", T);
|
4985 |
|
|
|
4986 |
|
|
declare
|
4987 |
|
|
Indexes : constant List_Id :=
|
4988 |
|
|
New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
|
4989 |
|
|
begin
|
4990 |
|
|
Set_Discrete_Subtype_Definitions (Def, Indexes);
|
4991 |
|
|
Set_First_Index (T, First (Indexes));
|
4992 |
|
|
return;
|
4993 |
|
|
end;
|
4994 |
|
|
end if;
|
4995 |
|
|
|
4996 |
|
|
-- Create a concatenation operator for the new type. Internal array
|
4997 |
|
|
-- types created for packed entities do not need such, they are
|
4998 |
|
|
-- compatible with the user-defined type.
|
4999 |
|
|
|
5000 |
|
|
if Number_Dimensions (T) = 1
|
5001 |
|
|
and then not Is_Packed_Array_Type (T)
|
5002 |
|
|
then
|
5003 |
|
|
New_Concatenation_Op (T);
|
5004 |
|
|
end if;
|
5005 |
|
|
|
5006 |
|
|
-- In the case of an unconstrained array the parser has already verified
|
5007 |
|
|
-- that all the indexes are unconstrained but we still need to make sure
|
5008 |
|
|
-- that the element type is constrained.
|
5009 |
|
|
|
5010 |
|
|
if Is_Indefinite_Subtype (Element_Type) then
|
5011 |
|
|
Error_Msg_N
|
5012 |
|
|
("unconstrained element type in array declaration",
|
5013 |
|
|
Subtype_Indication (Component_Def));
|
5014 |
|
|
|
5015 |
|
|
elsif Is_Abstract_Type (Element_Type) then
|
5016 |
|
|
Error_Msg_N
|
5017 |
|
|
("the type of a component cannot be abstract",
|
5018 |
|
|
Subtype_Indication (Component_Def));
|
5019 |
|
|
end if;
|
5020 |
|
|
end Array_Type_Declaration;
|
5021 |
|
|
|
5022 |
|
|
------------------------------------------------------
|
5023 |
|
|
-- Replace_Anonymous_Access_To_Protected_Subprogram --
|
5024 |
|
|
------------------------------------------------------
|
5025 |
|
|
|
5026 |
|
|
function Replace_Anonymous_Access_To_Protected_Subprogram
|
5027 |
|
|
(N : Node_Id) return Entity_Id
|
5028 |
|
|
is
|
5029 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5030 |
|
|
|
5031 |
|
|
Curr_Scope : constant Scope_Stack_Entry :=
|
5032 |
|
|
Scope_Stack.Table (Scope_Stack.Last);
|
5033 |
|
|
|
5034 |
|
|
Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
|
5035 |
|
|
Acc : Node_Id;
|
5036 |
|
|
Comp : Node_Id;
|
5037 |
|
|
Decl : Node_Id;
|
5038 |
|
|
P : Node_Id;
|
5039 |
|
|
|
5040 |
|
|
begin
|
5041 |
|
|
Set_Is_Internal (Anon);
|
5042 |
|
|
|
5043 |
|
|
case Nkind (N) is
|
5044 |
|
|
when N_Component_Declaration |
|
5045 |
|
|
N_Unconstrained_Array_Definition |
|
5046 |
|
|
N_Constrained_Array_Definition =>
|
5047 |
|
|
Comp := Component_Definition (N);
|
5048 |
|
|
Acc := Access_Definition (Comp);
|
5049 |
|
|
|
5050 |
|
|
when N_Discriminant_Specification =>
|
5051 |
|
|
Comp := Discriminant_Type (N);
|
5052 |
|
|
Acc := Comp;
|
5053 |
|
|
|
5054 |
|
|
when N_Parameter_Specification =>
|
5055 |
|
|
Comp := Parameter_Type (N);
|
5056 |
|
|
Acc := Comp;
|
5057 |
|
|
|
5058 |
|
|
when N_Access_Function_Definition =>
|
5059 |
|
|
Comp := Result_Definition (N);
|
5060 |
|
|
Acc := Comp;
|
5061 |
|
|
|
5062 |
|
|
when N_Object_Declaration =>
|
5063 |
|
|
Comp := Object_Definition (N);
|
5064 |
|
|
Acc := Comp;
|
5065 |
|
|
|
5066 |
|
|
when N_Function_Specification =>
|
5067 |
|
|
Comp := Result_Definition (N);
|
5068 |
|
|
Acc := Comp;
|
5069 |
|
|
|
5070 |
|
|
when others =>
|
5071 |
|
|
raise Program_Error;
|
5072 |
|
|
end case;
|
5073 |
|
|
|
5074 |
|
|
Decl := Make_Full_Type_Declaration (Loc,
|
5075 |
|
|
Defining_Identifier => Anon,
|
5076 |
|
|
Type_Definition =>
|
5077 |
|
|
Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
|
5078 |
|
|
|
5079 |
|
|
Mark_Rewrite_Insertion (Decl);
|
5080 |
|
|
|
5081 |
|
|
-- Insert the new declaration in the nearest enclosing scope. If the
|
5082 |
|
|
-- node is a body and N is its return type, the declaration belongs in
|
5083 |
|
|
-- the enclosing scope.
|
5084 |
|
|
|
5085 |
|
|
P := Parent (N);
|
5086 |
|
|
|
5087 |
|
|
if Nkind (P) = N_Subprogram_Body
|
5088 |
|
|
and then Nkind (N) = N_Function_Specification
|
5089 |
|
|
then
|
5090 |
|
|
P := Parent (P);
|
5091 |
|
|
end if;
|
5092 |
|
|
|
5093 |
|
|
while Present (P) and then not Has_Declarations (P) loop
|
5094 |
|
|
P := Parent (P);
|
5095 |
|
|
end loop;
|
5096 |
|
|
|
5097 |
|
|
pragma Assert (Present (P));
|
5098 |
|
|
|
5099 |
|
|
if Nkind (P) = N_Package_Specification then
|
5100 |
|
|
Prepend (Decl, Visible_Declarations (P));
|
5101 |
|
|
else
|
5102 |
|
|
Prepend (Decl, Declarations (P));
|
5103 |
|
|
end if;
|
5104 |
|
|
|
5105 |
|
|
-- Replace the anonymous type with an occurrence of the new declaration.
|
5106 |
|
|
-- In all cases the rewritten node does not have the null-exclusion
|
5107 |
|
|
-- attribute because (if present) it was already inherited by the
|
5108 |
|
|
-- anonymous entity (Anon). Thus, in case of components we do not
|
5109 |
|
|
-- inherit this attribute.
|
5110 |
|
|
|
5111 |
|
|
if Nkind (N) = N_Parameter_Specification then
|
5112 |
|
|
Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
|
5113 |
|
|
Set_Etype (Defining_Identifier (N), Anon);
|
5114 |
|
|
Set_Null_Exclusion_Present (N, False);
|
5115 |
|
|
|
5116 |
|
|
elsif Nkind (N) = N_Object_Declaration then
|
5117 |
|
|
Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
|
5118 |
|
|
Set_Etype (Defining_Identifier (N), Anon);
|
5119 |
|
|
|
5120 |
|
|
elsif Nkind (N) = N_Access_Function_Definition then
|
5121 |
|
|
Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
|
5122 |
|
|
|
5123 |
|
|
elsif Nkind (N) = N_Function_Specification then
|
5124 |
|
|
Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
|
5125 |
|
|
Set_Etype (Defining_Unit_Name (N), Anon);
|
5126 |
|
|
|
5127 |
|
|
else
|
5128 |
|
|
Rewrite (Comp,
|
5129 |
|
|
Make_Component_Definition (Loc,
|
5130 |
|
|
Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
|
5131 |
|
|
end if;
|
5132 |
|
|
|
5133 |
|
|
Mark_Rewrite_Insertion (Comp);
|
5134 |
|
|
|
5135 |
|
|
if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
|
5136 |
|
|
Analyze (Decl);
|
5137 |
|
|
|
5138 |
|
|
else
|
5139 |
|
|
-- Temporarily remove the current scope (record or subprogram) from
|
5140 |
|
|
-- the stack to add the new declarations to the enclosing scope.
|
5141 |
|
|
|
5142 |
|
|
Scope_Stack.Decrement_Last;
|
5143 |
|
|
Analyze (Decl);
|
5144 |
|
|
Set_Is_Itype (Anon);
|
5145 |
|
|
Scope_Stack.Append (Curr_Scope);
|
5146 |
|
|
end if;
|
5147 |
|
|
|
5148 |
|
|
Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
|
5149 |
|
|
Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
|
5150 |
|
|
return Anon;
|
5151 |
|
|
end Replace_Anonymous_Access_To_Protected_Subprogram;
|
5152 |
|
|
|
5153 |
|
|
-------------------------------
|
5154 |
|
|
-- Build_Derived_Access_Type --
|
5155 |
|
|
-------------------------------
|
5156 |
|
|
|
5157 |
|
|
procedure Build_Derived_Access_Type
|
5158 |
|
|
(N : Node_Id;
|
5159 |
|
|
Parent_Type : Entity_Id;
|
5160 |
|
|
Derived_Type : Entity_Id)
|
5161 |
|
|
is
|
5162 |
|
|
S : constant Node_Id := Subtype_Indication (Type_Definition (N));
|
5163 |
|
|
|
5164 |
|
|
Desig_Type : Entity_Id;
|
5165 |
|
|
Discr : Entity_Id;
|
5166 |
|
|
Discr_Con_Elist : Elist_Id;
|
5167 |
|
|
Discr_Con_El : Elmt_Id;
|
5168 |
|
|
Subt : Entity_Id;
|
5169 |
|
|
|
5170 |
|
|
begin
|
5171 |
|
|
-- Set the designated type so it is available in case this is an access
|
5172 |
|
|
-- to a self-referential type, e.g. a standard list type with a next
|
5173 |
|
|
-- pointer. Will be reset after subtype is built.
|
5174 |
|
|
|
5175 |
|
|
Set_Directly_Designated_Type
|
5176 |
|
|
(Derived_Type, Designated_Type (Parent_Type));
|
5177 |
|
|
|
5178 |
|
|
Subt := Process_Subtype (S, N);
|
5179 |
|
|
|
5180 |
|
|
if Nkind (S) /= N_Subtype_Indication
|
5181 |
|
|
and then Subt /= Base_Type (Subt)
|
5182 |
|
|
then
|
5183 |
|
|
Set_Ekind (Derived_Type, E_Access_Subtype);
|
5184 |
|
|
end if;
|
5185 |
|
|
|
5186 |
|
|
if Ekind (Derived_Type) = E_Access_Subtype then
|
5187 |
|
|
declare
|
5188 |
|
|
Pbase : constant Entity_Id := Base_Type (Parent_Type);
|
5189 |
|
|
Ibase : constant Entity_Id :=
|
5190 |
|
|
Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
|
5191 |
|
|
Svg_Chars : constant Name_Id := Chars (Ibase);
|
5192 |
|
|
Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
|
5193 |
|
|
|
5194 |
|
|
begin
|
5195 |
|
|
Copy_Node (Pbase, Ibase);
|
5196 |
|
|
|
5197 |
|
|
Set_Chars (Ibase, Svg_Chars);
|
5198 |
|
|
Set_Next_Entity (Ibase, Svg_Next_E);
|
5199 |
|
|
Set_Sloc (Ibase, Sloc (Derived_Type));
|
5200 |
|
|
Set_Scope (Ibase, Scope (Derived_Type));
|
5201 |
|
|
Set_Freeze_Node (Ibase, Empty);
|
5202 |
|
|
Set_Is_Frozen (Ibase, False);
|
5203 |
|
|
Set_Comes_From_Source (Ibase, False);
|
5204 |
|
|
Set_Is_First_Subtype (Ibase, False);
|
5205 |
|
|
|
5206 |
|
|
Set_Etype (Ibase, Pbase);
|
5207 |
|
|
Set_Etype (Derived_Type, Ibase);
|
5208 |
|
|
end;
|
5209 |
|
|
end if;
|
5210 |
|
|
|
5211 |
|
|
Set_Directly_Designated_Type
|
5212 |
|
|
(Derived_Type, Designated_Type (Subt));
|
5213 |
|
|
|
5214 |
|
|
Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
|
5215 |
|
|
Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
|
5216 |
|
|
Set_Size_Info (Derived_Type, Parent_Type);
|
5217 |
|
|
Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
|
5218 |
|
|
Set_Depends_On_Private (Derived_Type,
|
5219 |
|
|
Has_Private_Component (Derived_Type));
|
5220 |
|
|
Conditional_Delay (Derived_Type, Subt);
|
5221 |
|
|
|
5222 |
|
|
-- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
|
5223 |
|
|
-- that it is not redundant.
|
5224 |
|
|
|
5225 |
|
|
if Null_Exclusion_Present (Type_Definition (N)) then
|
5226 |
|
|
Set_Can_Never_Be_Null (Derived_Type);
|
5227 |
|
|
|
5228 |
|
|
if Can_Never_Be_Null (Parent_Type)
|
5229 |
|
|
and then False
|
5230 |
|
|
then
|
5231 |
|
|
Error_Msg_NE
|
5232 |
|
|
("`NOT NULL` not allowed (& already excludes null)",
|
5233 |
|
|
N, Parent_Type);
|
5234 |
|
|
end if;
|
5235 |
|
|
|
5236 |
|
|
elsif Can_Never_Be_Null (Parent_Type) then
|
5237 |
|
|
Set_Can_Never_Be_Null (Derived_Type);
|
5238 |
|
|
end if;
|
5239 |
|
|
|
5240 |
|
|
-- Note: we do not copy the Storage_Size_Variable, since we always go to
|
5241 |
|
|
-- the root type for this information.
|
5242 |
|
|
|
5243 |
|
|
-- Apply range checks to discriminants for derived record case
|
5244 |
|
|
-- ??? THIS CODE SHOULD NOT BE HERE REALLY.
|
5245 |
|
|
|
5246 |
|
|
Desig_Type := Designated_Type (Derived_Type);
|
5247 |
|
|
if Is_Composite_Type (Desig_Type)
|
5248 |
|
|
and then (not Is_Array_Type (Desig_Type))
|
5249 |
|
|
and then Has_Discriminants (Desig_Type)
|
5250 |
|
|
and then Base_Type (Desig_Type) /= Desig_Type
|
5251 |
|
|
then
|
5252 |
|
|
Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
|
5253 |
|
|
Discr_Con_El := First_Elmt (Discr_Con_Elist);
|
5254 |
|
|
|
5255 |
|
|
Discr := First_Discriminant (Base_Type (Desig_Type));
|
5256 |
|
|
while Present (Discr_Con_El) loop
|
5257 |
|
|
Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
|
5258 |
|
|
Next_Elmt (Discr_Con_El);
|
5259 |
|
|
Next_Discriminant (Discr);
|
5260 |
|
|
end loop;
|
5261 |
|
|
end if;
|
5262 |
|
|
end Build_Derived_Access_Type;
|
5263 |
|
|
|
5264 |
|
|
------------------------------
|
5265 |
|
|
-- Build_Derived_Array_Type --
|
5266 |
|
|
------------------------------
|
5267 |
|
|
|
5268 |
|
|
procedure Build_Derived_Array_Type
|
5269 |
|
|
(N : Node_Id;
|
5270 |
|
|
Parent_Type : Entity_Id;
|
5271 |
|
|
Derived_Type : Entity_Id)
|
5272 |
|
|
is
|
5273 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5274 |
|
|
Tdef : constant Node_Id := Type_Definition (N);
|
5275 |
|
|
Indic : constant Node_Id := Subtype_Indication (Tdef);
|
5276 |
|
|
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
|
5277 |
|
|
Implicit_Base : Entity_Id;
|
5278 |
|
|
New_Indic : Node_Id;
|
5279 |
|
|
|
5280 |
|
|
procedure Make_Implicit_Base;
|
5281 |
|
|
-- If the parent subtype is constrained, the derived type is a subtype
|
5282 |
|
|
-- of an implicit base type derived from the parent base.
|
5283 |
|
|
|
5284 |
|
|
------------------------
|
5285 |
|
|
-- Make_Implicit_Base --
|
5286 |
|
|
------------------------
|
5287 |
|
|
|
5288 |
|
|
procedure Make_Implicit_Base is
|
5289 |
|
|
begin
|
5290 |
|
|
Implicit_Base :=
|
5291 |
|
|
Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
|
5292 |
|
|
|
5293 |
|
|
Set_Ekind (Implicit_Base, Ekind (Parent_Base));
|
5294 |
|
|
Set_Etype (Implicit_Base, Parent_Base);
|
5295 |
|
|
|
5296 |
|
|
Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
|
5297 |
|
|
Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
|
5298 |
|
|
|
5299 |
|
|
Set_Has_Delayed_Freeze (Implicit_Base, True);
|
5300 |
|
|
end Make_Implicit_Base;
|
5301 |
|
|
|
5302 |
|
|
-- Start of processing for Build_Derived_Array_Type
|
5303 |
|
|
|
5304 |
|
|
begin
|
5305 |
|
|
if not Is_Constrained (Parent_Type) then
|
5306 |
|
|
if Nkind (Indic) /= N_Subtype_Indication then
|
5307 |
|
|
Set_Ekind (Derived_Type, E_Array_Type);
|
5308 |
|
|
|
5309 |
|
|
Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
|
5310 |
|
|
Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
|
5311 |
|
|
|
5312 |
|
|
Set_Has_Delayed_Freeze (Derived_Type, True);
|
5313 |
|
|
|
5314 |
|
|
else
|
5315 |
|
|
Make_Implicit_Base;
|
5316 |
|
|
Set_Etype (Derived_Type, Implicit_Base);
|
5317 |
|
|
|
5318 |
|
|
New_Indic :=
|
5319 |
|
|
Make_Subtype_Declaration (Loc,
|
5320 |
|
|
Defining_Identifier => Derived_Type,
|
5321 |
|
|
Subtype_Indication =>
|
5322 |
|
|
Make_Subtype_Indication (Loc,
|
5323 |
|
|
Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
|
5324 |
|
|
Constraint => Constraint (Indic)));
|
5325 |
|
|
|
5326 |
|
|
Rewrite (N, New_Indic);
|
5327 |
|
|
Analyze (N);
|
5328 |
|
|
end if;
|
5329 |
|
|
|
5330 |
|
|
else
|
5331 |
|
|
if Nkind (Indic) /= N_Subtype_Indication then
|
5332 |
|
|
Make_Implicit_Base;
|
5333 |
|
|
|
5334 |
|
|
Set_Ekind (Derived_Type, Ekind (Parent_Type));
|
5335 |
|
|
Set_Etype (Derived_Type, Implicit_Base);
|
5336 |
|
|
Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
|
5337 |
|
|
|
5338 |
|
|
else
|
5339 |
|
|
Error_Msg_N ("illegal constraint on constrained type", Indic);
|
5340 |
|
|
end if;
|
5341 |
|
|
end if;
|
5342 |
|
|
|
5343 |
|
|
-- If parent type is not a derived type itself, and is declared in
|
5344 |
|
|
-- closed scope (e.g. a subprogram), then we must explicitly introduce
|
5345 |
|
|
-- the new type's concatenation operator since Derive_Subprograms
|
5346 |
|
|
-- will not inherit the parent's operator. If the parent type is
|
5347 |
|
|
-- unconstrained, the operator is of the unconstrained base type.
|
5348 |
|
|
|
5349 |
|
|
if Number_Dimensions (Parent_Type) = 1
|
5350 |
|
|
and then not Is_Limited_Type (Parent_Type)
|
5351 |
|
|
and then not Is_Derived_Type (Parent_Type)
|
5352 |
|
|
and then not Is_Package_Or_Generic_Package
|
5353 |
|
|
(Scope (Base_Type (Parent_Type)))
|
5354 |
|
|
then
|
5355 |
|
|
if not Is_Constrained (Parent_Type)
|
5356 |
|
|
and then Is_Constrained (Derived_Type)
|
5357 |
|
|
then
|
5358 |
|
|
New_Concatenation_Op (Implicit_Base);
|
5359 |
|
|
else
|
5360 |
|
|
New_Concatenation_Op (Derived_Type);
|
5361 |
|
|
end if;
|
5362 |
|
|
end if;
|
5363 |
|
|
end Build_Derived_Array_Type;
|
5364 |
|
|
|
5365 |
|
|
-----------------------------------
|
5366 |
|
|
-- Build_Derived_Concurrent_Type --
|
5367 |
|
|
-----------------------------------
|
5368 |
|
|
|
5369 |
|
|
procedure Build_Derived_Concurrent_Type
|
5370 |
|
|
(N : Node_Id;
|
5371 |
|
|
Parent_Type : Entity_Id;
|
5372 |
|
|
Derived_Type : Entity_Id)
|
5373 |
|
|
is
|
5374 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5375 |
|
|
|
5376 |
|
|
Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
|
5377 |
|
|
Corr_Decl : Node_Id;
|
5378 |
|
|
Corr_Decl_Needed : Boolean;
|
5379 |
|
|
-- If the derived type has fewer discriminants than its parent, the
|
5380 |
|
|
-- corresponding record is also a derived type, in order to account for
|
5381 |
|
|
-- the bound discriminants. We create a full type declaration for it in
|
5382 |
|
|
-- this case.
|
5383 |
|
|
|
5384 |
|
|
Constraint_Present : constant Boolean :=
|
5385 |
|
|
Nkind (Subtype_Indication (Type_Definition (N))) =
|
5386 |
|
|
N_Subtype_Indication;
|
5387 |
|
|
|
5388 |
|
|
D_Constraint : Node_Id;
|
5389 |
|
|
New_Constraint : Elist_Id;
|
5390 |
|
|
Old_Disc : Entity_Id;
|
5391 |
|
|
New_Disc : Entity_Id;
|
5392 |
|
|
New_N : Node_Id;
|
5393 |
|
|
|
5394 |
|
|
begin
|
5395 |
|
|
Set_Stored_Constraint (Derived_Type, No_Elist);
|
5396 |
|
|
Corr_Decl_Needed := False;
|
5397 |
|
|
Old_Disc := Empty;
|
5398 |
|
|
|
5399 |
|
|
if Present (Discriminant_Specifications (N))
|
5400 |
|
|
and then Constraint_Present
|
5401 |
|
|
then
|
5402 |
|
|
Old_Disc := First_Discriminant (Parent_Type);
|
5403 |
|
|
New_Disc := First (Discriminant_Specifications (N));
|
5404 |
|
|
while Present (New_Disc) and then Present (Old_Disc) loop
|
5405 |
|
|
Next_Discriminant (Old_Disc);
|
5406 |
|
|
Next (New_Disc);
|
5407 |
|
|
end loop;
|
5408 |
|
|
end if;
|
5409 |
|
|
|
5410 |
|
|
if Present (Old_Disc) and then Expander_Active then
|
5411 |
|
|
|
5412 |
|
|
-- The new type has fewer discriminants, so we need to create a new
|
5413 |
|
|
-- corresponding record, which is derived from the corresponding
|
5414 |
|
|
-- record of the parent, and has a stored constraint that captures
|
5415 |
|
|
-- the values of the discriminant constraints. The corresponding
|
5416 |
|
|
-- record is needed only if expander is active and code generation is
|
5417 |
|
|
-- enabled.
|
5418 |
|
|
|
5419 |
|
|
-- The type declaration for the derived corresponding record has the
|
5420 |
|
|
-- same discriminant part and constraints as the current declaration.
|
5421 |
|
|
-- Copy the unanalyzed tree to build declaration.
|
5422 |
|
|
|
5423 |
|
|
Corr_Decl_Needed := True;
|
5424 |
|
|
New_N := Copy_Separate_Tree (N);
|
5425 |
|
|
|
5426 |
|
|
Corr_Decl :=
|
5427 |
|
|
Make_Full_Type_Declaration (Loc,
|
5428 |
|
|
Defining_Identifier => Corr_Record,
|
5429 |
|
|
Discriminant_Specifications =>
|
5430 |
|
|
Discriminant_Specifications (New_N),
|
5431 |
|
|
Type_Definition =>
|
5432 |
|
|
Make_Derived_Type_Definition (Loc,
|
5433 |
|
|
Subtype_Indication =>
|
5434 |
|
|
Make_Subtype_Indication (Loc,
|
5435 |
|
|
Subtype_Mark =>
|
5436 |
|
|
New_Occurrence_Of
|
5437 |
|
|
(Corresponding_Record_Type (Parent_Type), Loc),
|
5438 |
|
|
Constraint =>
|
5439 |
|
|
Constraint
|
5440 |
|
|
(Subtype_Indication (Type_Definition (New_N))))));
|
5441 |
|
|
end if;
|
5442 |
|
|
|
5443 |
|
|
-- Copy Storage_Size and Relative_Deadline variables if task case
|
5444 |
|
|
|
5445 |
|
|
if Is_Task_Type (Parent_Type) then
|
5446 |
|
|
Set_Storage_Size_Variable (Derived_Type,
|
5447 |
|
|
Storage_Size_Variable (Parent_Type));
|
5448 |
|
|
Set_Relative_Deadline_Variable (Derived_Type,
|
5449 |
|
|
Relative_Deadline_Variable (Parent_Type));
|
5450 |
|
|
end if;
|
5451 |
|
|
|
5452 |
|
|
if Present (Discriminant_Specifications (N)) then
|
5453 |
|
|
Push_Scope (Derived_Type);
|
5454 |
|
|
Check_Or_Process_Discriminants (N, Derived_Type);
|
5455 |
|
|
|
5456 |
|
|
if Constraint_Present then
|
5457 |
|
|
New_Constraint :=
|
5458 |
|
|
Expand_To_Stored_Constraint
|
5459 |
|
|
(Parent_Type,
|
5460 |
|
|
Build_Discriminant_Constraints
|
5461 |
|
|
(Parent_Type,
|
5462 |
|
|
Subtype_Indication (Type_Definition (N)), True));
|
5463 |
|
|
end if;
|
5464 |
|
|
|
5465 |
|
|
End_Scope;
|
5466 |
|
|
|
5467 |
|
|
elsif Constraint_Present then
|
5468 |
|
|
|
5469 |
|
|
-- Build constrained subtype and derive from it
|
5470 |
|
|
|
5471 |
|
|
declare
|
5472 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5473 |
|
|
Anon : constant Entity_Id :=
|
5474 |
|
|
Make_Defining_Identifier (Loc,
|
5475 |
|
|
Chars => New_External_Name (Chars (Derived_Type), 'T'));
|
5476 |
|
|
Decl : Node_Id;
|
5477 |
|
|
|
5478 |
|
|
begin
|
5479 |
|
|
Decl :=
|
5480 |
|
|
Make_Subtype_Declaration (Loc,
|
5481 |
|
|
Defining_Identifier => Anon,
|
5482 |
|
|
Subtype_Indication =>
|
5483 |
|
|
Subtype_Indication (Type_Definition (N)));
|
5484 |
|
|
Insert_Before (N, Decl);
|
5485 |
|
|
Analyze (Decl);
|
5486 |
|
|
|
5487 |
|
|
Rewrite (Subtype_Indication (Type_Definition (N)),
|
5488 |
|
|
New_Occurrence_Of (Anon, Loc));
|
5489 |
|
|
Set_Analyzed (Derived_Type, False);
|
5490 |
|
|
Analyze (N);
|
5491 |
|
|
return;
|
5492 |
|
|
end;
|
5493 |
|
|
end if;
|
5494 |
|
|
|
5495 |
|
|
-- By default, operations and private data are inherited from parent.
|
5496 |
|
|
-- However, in the presence of bound discriminants, a new corresponding
|
5497 |
|
|
-- record will be created, see below.
|
5498 |
|
|
|
5499 |
|
|
Set_Has_Discriminants
|
5500 |
|
|
(Derived_Type, Has_Discriminants (Parent_Type));
|
5501 |
|
|
Set_Corresponding_Record_Type
|
5502 |
|
|
(Derived_Type, Corresponding_Record_Type (Parent_Type));
|
5503 |
|
|
|
5504 |
|
|
-- Is_Constrained is set according the parent subtype, but is set to
|
5505 |
|
|
-- False if the derived type is declared with new discriminants.
|
5506 |
|
|
|
5507 |
|
|
Set_Is_Constrained
|
5508 |
|
|
(Derived_Type,
|
5509 |
|
|
(Is_Constrained (Parent_Type) or else Constraint_Present)
|
5510 |
|
|
and then not Present (Discriminant_Specifications (N)));
|
5511 |
|
|
|
5512 |
|
|
if Constraint_Present then
|
5513 |
|
|
if not Has_Discriminants (Parent_Type) then
|
5514 |
|
|
Error_Msg_N ("untagged parent must have discriminants", N);
|
5515 |
|
|
|
5516 |
|
|
elsif Present (Discriminant_Specifications (N)) then
|
5517 |
|
|
|
5518 |
|
|
-- Verify that new discriminants are used to constrain old ones
|
5519 |
|
|
|
5520 |
|
|
D_Constraint :=
|
5521 |
|
|
First
|
5522 |
|
|
(Constraints
|
5523 |
|
|
(Constraint (Subtype_Indication (Type_Definition (N)))));
|
5524 |
|
|
|
5525 |
|
|
Old_Disc := First_Discriminant (Parent_Type);
|
5526 |
|
|
|
5527 |
|
|
while Present (D_Constraint) loop
|
5528 |
|
|
if Nkind (D_Constraint) /= N_Discriminant_Association then
|
5529 |
|
|
|
5530 |
|
|
-- Positional constraint. If it is a reference to a new
|
5531 |
|
|
-- discriminant, it constrains the corresponding old one.
|
5532 |
|
|
|
5533 |
|
|
if Nkind (D_Constraint) = N_Identifier then
|
5534 |
|
|
New_Disc := First_Discriminant (Derived_Type);
|
5535 |
|
|
while Present (New_Disc) loop
|
5536 |
|
|
exit when Chars (New_Disc) = Chars (D_Constraint);
|
5537 |
|
|
Next_Discriminant (New_Disc);
|
5538 |
|
|
end loop;
|
5539 |
|
|
|
5540 |
|
|
if Present (New_Disc) then
|
5541 |
|
|
Set_Corresponding_Discriminant (New_Disc, Old_Disc);
|
5542 |
|
|
end if;
|
5543 |
|
|
end if;
|
5544 |
|
|
|
5545 |
|
|
Next_Discriminant (Old_Disc);
|
5546 |
|
|
|
5547 |
|
|
-- if this is a named constraint, search by name for the old
|
5548 |
|
|
-- discriminants constrained by the new one.
|
5549 |
|
|
|
5550 |
|
|
elsif Nkind (Expression (D_Constraint)) = N_Identifier then
|
5551 |
|
|
|
5552 |
|
|
-- Find new discriminant with that name
|
5553 |
|
|
|
5554 |
|
|
New_Disc := First_Discriminant (Derived_Type);
|
5555 |
|
|
while Present (New_Disc) loop
|
5556 |
|
|
exit when
|
5557 |
|
|
Chars (New_Disc) = Chars (Expression (D_Constraint));
|
5558 |
|
|
Next_Discriminant (New_Disc);
|
5559 |
|
|
end loop;
|
5560 |
|
|
|
5561 |
|
|
if Present (New_Disc) then
|
5562 |
|
|
|
5563 |
|
|
-- Verify that new discriminant renames some discriminant
|
5564 |
|
|
-- of the parent type, and associate the new discriminant
|
5565 |
|
|
-- with one or more old ones that it renames.
|
5566 |
|
|
|
5567 |
|
|
declare
|
5568 |
|
|
Selector : Node_Id;
|
5569 |
|
|
|
5570 |
|
|
begin
|
5571 |
|
|
Selector := First (Selector_Names (D_Constraint));
|
5572 |
|
|
while Present (Selector) loop
|
5573 |
|
|
Old_Disc := First_Discriminant (Parent_Type);
|
5574 |
|
|
while Present (Old_Disc) loop
|
5575 |
|
|
exit when Chars (Old_Disc) = Chars (Selector);
|
5576 |
|
|
Next_Discriminant (Old_Disc);
|
5577 |
|
|
end loop;
|
5578 |
|
|
|
5579 |
|
|
if Present (Old_Disc) then
|
5580 |
|
|
Set_Corresponding_Discriminant
|
5581 |
|
|
(New_Disc, Old_Disc);
|
5582 |
|
|
end if;
|
5583 |
|
|
|
5584 |
|
|
Next (Selector);
|
5585 |
|
|
end loop;
|
5586 |
|
|
end;
|
5587 |
|
|
end if;
|
5588 |
|
|
end if;
|
5589 |
|
|
|
5590 |
|
|
Next (D_Constraint);
|
5591 |
|
|
end loop;
|
5592 |
|
|
|
5593 |
|
|
New_Disc := First_Discriminant (Derived_Type);
|
5594 |
|
|
while Present (New_Disc) loop
|
5595 |
|
|
if No (Corresponding_Discriminant (New_Disc)) then
|
5596 |
|
|
Error_Msg_NE
|
5597 |
|
|
("new discriminant& must constrain old one", N, New_Disc);
|
5598 |
|
|
|
5599 |
|
|
elsif not
|
5600 |
|
|
Subtypes_Statically_Compatible
|
5601 |
|
|
(Etype (New_Disc),
|
5602 |
|
|
Etype (Corresponding_Discriminant (New_Disc)))
|
5603 |
|
|
then
|
5604 |
|
|
Error_Msg_NE
|
5605 |
|
|
("& not statically compatible with parent discriminant",
|
5606 |
|
|
N, New_Disc);
|
5607 |
|
|
end if;
|
5608 |
|
|
|
5609 |
|
|
Next_Discriminant (New_Disc);
|
5610 |
|
|
end loop;
|
5611 |
|
|
end if;
|
5612 |
|
|
|
5613 |
|
|
elsif Present (Discriminant_Specifications (N)) then
|
5614 |
|
|
Error_Msg_N
|
5615 |
|
|
("missing discriminant constraint in untagged derivation", N);
|
5616 |
|
|
end if;
|
5617 |
|
|
|
5618 |
|
|
-- The entity chain of the derived type includes the new discriminants
|
5619 |
|
|
-- but shares operations with the parent.
|
5620 |
|
|
|
5621 |
|
|
if Present (Discriminant_Specifications (N)) then
|
5622 |
|
|
Old_Disc := First_Discriminant (Parent_Type);
|
5623 |
|
|
while Present (Old_Disc) loop
|
5624 |
|
|
if No (Next_Entity (Old_Disc))
|
5625 |
|
|
or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
|
5626 |
|
|
then
|
5627 |
|
|
Set_Next_Entity
|
5628 |
|
|
(Last_Entity (Derived_Type), Next_Entity (Old_Disc));
|
5629 |
|
|
exit;
|
5630 |
|
|
end if;
|
5631 |
|
|
|
5632 |
|
|
Next_Discriminant (Old_Disc);
|
5633 |
|
|
end loop;
|
5634 |
|
|
|
5635 |
|
|
else
|
5636 |
|
|
Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
|
5637 |
|
|
if Has_Discriminants (Parent_Type) then
|
5638 |
|
|
Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
|
5639 |
|
|
Set_Discriminant_Constraint (
|
5640 |
|
|
Derived_Type, Discriminant_Constraint (Parent_Type));
|
5641 |
|
|
end if;
|
5642 |
|
|
end if;
|
5643 |
|
|
|
5644 |
|
|
Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
|
5645 |
|
|
|
5646 |
|
|
Set_Has_Completion (Derived_Type);
|
5647 |
|
|
|
5648 |
|
|
if Corr_Decl_Needed then
|
5649 |
|
|
Set_Stored_Constraint (Derived_Type, New_Constraint);
|
5650 |
|
|
Insert_After (N, Corr_Decl);
|
5651 |
|
|
Analyze (Corr_Decl);
|
5652 |
|
|
Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
|
5653 |
|
|
end if;
|
5654 |
|
|
end Build_Derived_Concurrent_Type;
|
5655 |
|
|
|
5656 |
|
|
------------------------------------
|
5657 |
|
|
-- Build_Derived_Enumeration_Type --
|
5658 |
|
|
------------------------------------
|
5659 |
|
|
|
5660 |
|
|
procedure Build_Derived_Enumeration_Type
|
5661 |
|
|
(N : Node_Id;
|
5662 |
|
|
Parent_Type : Entity_Id;
|
5663 |
|
|
Derived_Type : Entity_Id)
|
5664 |
|
|
is
|
5665 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5666 |
|
|
Def : constant Node_Id := Type_Definition (N);
|
5667 |
|
|
Indic : constant Node_Id := Subtype_Indication (Def);
|
5668 |
|
|
Implicit_Base : Entity_Id;
|
5669 |
|
|
Literal : Entity_Id;
|
5670 |
|
|
New_Lit : Entity_Id;
|
5671 |
|
|
Literals_List : List_Id;
|
5672 |
|
|
Type_Decl : Node_Id;
|
5673 |
|
|
Hi, Lo : Node_Id;
|
5674 |
|
|
Rang_Expr : Node_Id;
|
5675 |
|
|
|
5676 |
|
|
begin
|
5677 |
|
|
-- Since types Standard.Character and Standard.[Wide_]Wide_Character do
|
5678 |
|
|
-- not have explicit literals lists we need to process types derived
|
5679 |
|
|
-- from them specially. This is handled by Derived_Standard_Character.
|
5680 |
|
|
-- If the parent type is a generic type, there are no literals either,
|
5681 |
|
|
-- and we construct the same skeletal representation as for the generic
|
5682 |
|
|
-- parent type.
|
5683 |
|
|
|
5684 |
|
|
if Is_Standard_Character_Type (Parent_Type) then
|
5685 |
|
|
Derived_Standard_Character (N, Parent_Type, Derived_Type);
|
5686 |
|
|
|
5687 |
|
|
elsif Is_Generic_Type (Root_Type (Parent_Type)) then
|
5688 |
|
|
declare
|
5689 |
|
|
Lo : Node_Id;
|
5690 |
|
|
Hi : Node_Id;
|
5691 |
|
|
|
5692 |
|
|
begin
|
5693 |
|
|
if Nkind (Indic) /= N_Subtype_Indication then
|
5694 |
|
|
Lo :=
|
5695 |
|
|
Make_Attribute_Reference (Loc,
|
5696 |
|
|
Attribute_Name => Name_First,
|
5697 |
|
|
Prefix => New_Reference_To (Derived_Type, Loc));
|
5698 |
|
|
Set_Etype (Lo, Derived_Type);
|
5699 |
|
|
|
5700 |
|
|
Hi :=
|
5701 |
|
|
Make_Attribute_Reference (Loc,
|
5702 |
|
|
Attribute_Name => Name_Last,
|
5703 |
|
|
Prefix => New_Reference_To (Derived_Type, Loc));
|
5704 |
|
|
Set_Etype (Hi, Derived_Type);
|
5705 |
|
|
|
5706 |
|
|
Set_Scalar_Range (Derived_Type,
|
5707 |
|
|
Make_Range (Loc,
|
5708 |
|
|
Low_Bound => Lo,
|
5709 |
|
|
High_Bound => Hi));
|
5710 |
|
|
else
|
5711 |
|
|
|
5712 |
|
|
-- Analyze subtype indication and verify compatibility
|
5713 |
|
|
-- with parent type.
|
5714 |
|
|
|
5715 |
|
|
if Base_Type (Process_Subtype (Indic, N)) /=
|
5716 |
|
|
Base_Type (Parent_Type)
|
5717 |
|
|
then
|
5718 |
|
|
Error_Msg_N
|
5719 |
|
|
("illegal constraint for formal discrete type", N);
|
5720 |
|
|
end if;
|
5721 |
|
|
end if;
|
5722 |
|
|
end;
|
5723 |
|
|
|
5724 |
|
|
else
|
5725 |
|
|
-- If a constraint is present, analyze the bounds to catch
|
5726 |
|
|
-- premature usage of the derived literals.
|
5727 |
|
|
|
5728 |
|
|
if Nkind (Indic) = N_Subtype_Indication
|
5729 |
|
|
and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
|
5730 |
|
|
then
|
5731 |
|
|
Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
|
5732 |
|
|
Analyze (High_Bound (Range_Expression (Constraint (Indic))));
|
5733 |
|
|
end if;
|
5734 |
|
|
|
5735 |
|
|
-- Introduce an implicit base type for the derived type even if there
|
5736 |
|
|
-- is no constraint attached to it, since this seems closer to the
|
5737 |
|
|
-- Ada semantics. Build a full type declaration tree for the derived
|
5738 |
|
|
-- type using the implicit base type as the defining identifier. The
|
5739 |
|
|
-- build a subtype declaration tree which applies the constraint (if
|
5740 |
|
|
-- any) have it replace the derived type declaration.
|
5741 |
|
|
|
5742 |
|
|
Literal := First_Literal (Parent_Type);
|
5743 |
|
|
Literals_List := New_List;
|
5744 |
|
|
while Present (Literal)
|
5745 |
|
|
and then Ekind (Literal) = E_Enumeration_Literal
|
5746 |
|
|
loop
|
5747 |
|
|
-- Literals of the derived type have the same representation as
|
5748 |
|
|
-- those of the parent type, but this representation can be
|
5749 |
|
|
-- overridden by an explicit representation clause. Indicate
|
5750 |
|
|
-- that there is no explicit representation given yet. These
|
5751 |
|
|
-- derived literals are implicit operations of the new type,
|
5752 |
|
|
-- and can be overridden by explicit ones.
|
5753 |
|
|
|
5754 |
|
|
if Nkind (Literal) = N_Defining_Character_Literal then
|
5755 |
|
|
New_Lit :=
|
5756 |
|
|
Make_Defining_Character_Literal (Loc, Chars (Literal));
|
5757 |
|
|
else
|
5758 |
|
|
New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
|
5759 |
|
|
end if;
|
5760 |
|
|
|
5761 |
|
|
Set_Ekind (New_Lit, E_Enumeration_Literal);
|
5762 |
|
|
Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
|
5763 |
|
|
Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
|
5764 |
|
|
Set_Enumeration_Rep_Expr (New_Lit, Empty);
|
5765 |
|
|
Set_Alias (New_Lit, Literal);
|
5766 |
|
|
Set_Is_Known_Valid (New_Lit, True);
|
5767 |
|
|
|
5768 |
|
|
Append (New_Lit, Literals_List);
|
5769 |
|
|
Next_Literal (Literal);
|
5770 |
|
|
end loop;
|
5771 |
|
|
|
5772 |
|
|
Implicit_Base :=
|
5773 |
|
|
Make_Defining_Identifier (Sloc (Derived_Type),
|
5774 |
|
|
Chars => New_External_Name (Chars (Derived_Type), 'B'));
|
5775 |
|
|
|
5776 |
|
|
-- Indicate the proper nature of the derived type. This must be done
|
5777 |
|
|
-- before analysis of the literals, to recognize cases when a literal
|
5778 |
|
|
-- may be hidden by a previous explicit function definition (cf.
|
5779 |
|
|
-- c83031a).
|
5780 |
|
|
|
5781 |
|
|
Set_Ekind (Derived_Type, E_Enumeration_Subtype);
|
5782 |
|
|
Set_Etype (Derived_Type, Implicit_Base);
|
5783 |
|
|
|
5784 |
|
|
Type_Decl :=
|
5785 |
|
|
Make_Full_Type_Declaration (Loc,
|
5786 |
|
|
Defining_Identifier => Implicit_Base,
|
5787 |
|
|
Discriminant_Specifications => No_List,
|
5788 |
|
|
Type_Definition =>
|
5789 |
|
|
Make_Enumeration_Type_Definition (Loc, Literals_List));
|
5790 |
|
|
|
5791 |
|
|
Mark_Rewrite_Insertion (Type_Decl);
|
5792 |
|
|
Insert_Before (N, Type_Decl);
|
5793 |
|
|
Analyze (Type_Decl);
|
5794 |
|
|
|
5795 |
|
|
-- After the implicit base is analyzed its Etype needs to be changed
|
5796 |
|
|
-- to reflect the fact that it is derived from the parent type which
|
5797 |
|
|
-- was ignored during analysis. We also set the size at this point.
|
5798 |
|
|
|
5799 |
|
|
Set_Etype (Implicit_Base, Parent_Type);
|
5800 |
|
|
|
5801 |
|
|
Set_Size_Info (Implicit_Base, Parent_Type);
|
5802 |
|
|
Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
|
5803 |
|
|
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
|
5804 |
|
|
|
5805 |
|
|
-- Copy other flags from parent type
|
5806 |
|
|
|
5807 |
|
|
Set_Has_Non_Standard_Rep
|
5808 |
|
|
(Implicit_Base, Has_Non_Standard_Rep
|
5809 |
|
|
(Parent_Type));
|
5810 |
|
|
Set_Has_Pragma_Ordered
|
5811 |
|
|
(Implicit_Base, Has_Pragma_Ordered
|
5812 |
|
|
(Parent_Type));
|
5813 |
|
|
Set_Has_Delayed_Freeze (Implicit_Base);
|
5814 |
|
|
|
5815 |
|
|
-- Process the subtype indication including a validation check on the
|
5816 |
|
|
-- constraint, if any. If a constraint is given, its bounds must be
|
5817 |
|
|
-- implicitly converted to the new type.
|
5818 |
|
|
|
5819 |
|
|
if Nkind (Indic) = N_Subtype_Indication then
|
5820 |
|
|
declare
|
5821 |
|
|
R : constant Node_Id :=
|
5822 |
|
|
Range_Expression (Constraint (Indic));
|
5823 |
|
|
|
5824 |
|
|
begin
|
5825 |
|
|
if Nkind (R) = N_Range then
|
5826 |
|
|
Hi := Build_Scalar_Bound
|
5827 |
|
|
(High_Bound (R), Parent_Type, Implicit_Base);
|
5828 |
|
|
Lo := Build_Scalar_Bound
|
5829 |
|
|
(Low_Bound (R), Parent_Type, Implicit_Base);
|
5830 |
|
|
|
5831 |
|
|
else
|
5832 |
|
|
-- Constraint is a Range attribute. Replace with explicit
|
5833 |
|
|
-- mention of the bounds of the prefix, which must be a
|
5834 |
|
|
-- subtype.
|
5835 |
|
|
|
5836 |
|
|
Analyze (Prefix (R));
|
5837 |
|
|
Hi :=
|
5838 |
|
|
Convert_To (Implicit_Base,
|
5839 |
|
|
Make_Attribute_Reference (Loc,
|
5840 |
|
|
Attribute_Name => Name_Last,
|
5841 |
|
|
Prefix =>
|
5842 |
|
|
New_Occurrence_Of (Entity (Prefix (R)), Loc)));
|
5843 |
|
|
|
5844 |
|
|
Lo :=
|
5845 |
|
|
Convert_To (Implicit_Base,
|
5846 |
|
|
Make_Attribute_Reference (Loc,
|
5847 |
|
|
Attribute_Name => Name_First,
|
5848 |
|
|
Prefix =>
|
5849 |
|
|
New_Occurrence_Of (Entity (Prefix (R)), Loc)));
|
5850 |
|
|
end if;
|
5851 |
|
|
end;
|
5852 |
|
|
|
5853 |
|
|
else
|
5854 |
|
|
Hi :=
|
5855 |
|
|
Build_Scalar_Bound
|
5856 |
|
|
(Type_High_Bound (Parent_Type),
|
5857 |
|
|
Parent_Type, Implicit_Base);
|
5858 |
|
|
Lo :=
|
5859 |
|
|
Build_Scalar_Bound
|
5860 |
|
|
(Type_Low_Bound (Parent_Type),
|
5861 |
|
|
Parent_Type, Implicit_Base);
|
5862 |
|
|
end if;
|
5863 |
|
|
|
5864 |
|
|
Rang_Expr :=
|
5865 |
|
|
Make_Range (Loc,
|
5866 |
|
|
Low_Bound => Lo,
|
5867 |
|
|
High_Bound => Hi);
|
5868 |
|
|
|
5869 |
|
|
-- If we constructed a default range for the case where no range
|
5870 |
|
|
-- was given, then the expressions in the range must not freeze
|
5871 |
|
|
-- since they do not correspond to expressions in the source.
|
5872 |
|
|
|
5873 |
|
|
if Nkind (Indic) /= N_Subtype_Indication then
|
5874 |
|
|
Set_Must_Not_Freeze (Lo);
|
5875 |
|
|
Set_Must_Not_Freeze (Hi);
|
5876 |
|
|
Set_Must_Not_Freeze (Rang_Expr);
|
5877 |
|
|
end if;
|
5878 |
|
|
|
5879 |
|
|
Rewrite (N,
|
5880 |
|
|
Make_Subtype_Declaration (Loc,
|
5881 |
|
|
Defining_Identifier => Derived_Type,
|
5882 |
|
|
Subtype_Indication =>
|
5883 |
|
|
Make_Subtype_Indication (Loc,
|
5884 |
|
|
Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
|
5885 |
|
|
Constraint =>
|
5886 |
|
|
Make_Range_Constraint (Loc,
|
5887 |
|
|
Range_Expression => Rang_Expr))));
|
5888 |
|
|
|
5889 |
|
|
Analyze (N);
|
5890 |
|
|
|
5891 |
|
|
-- If pragma Discard_Names applies on the first subtype of the parent
|
5892 |
|
|
-- type, then it must be applied on this subtype as well.
|
5893 |
|
|
|
5894 |
|
|
if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
|
5895 |
|
|
Set_Discard_Names (Derived_Type);
|
5896 |
|
|
end if;
|
5897 |
|
|
|
5898 |
|
|
-- Apply a range check. Since this range expression doesn't have an
|
5899 |
|
|
-- Etype, we have to specifically pass the Source_Typ parameter. Is
|
5900 |
|
|
-- this right???
|
5901 |
|
|
|
5902 |
|
|
if Nkind (Indic) = N_Subtype_Indication then
|
5903 |
|
|
Apply_Range_Check (Range_Expression (Constraint (Indic)),
|
5904 |
|
|
Parent_Type,
|
5905 |
|
|
Source_Typ => Entity (Subtype_Mark (Indic)));
|
5906 |
|
|
end if;
|
5907 |
|
|
end if;
|
5908 |
|
|
end Build_Derived_Enumeration_Type;
|
5909 |
|
|
|
5910 |
|
|
--------------------------------
|
5911 |
|
|
-- Build_Derived_Numeric_Type --
|
5912 |
|
|
--------------------------------
|
5913 |
|
|
|
5914 |
|
|
procedure Build_Derived_Numeric_Type
|
5915 |
|
|
(N : Node_Id;
|
5916 |
|
|
Parent_Type : Entity_Id;
|
5917 |
|
|
Derived_Type : Entity_Id)
|
5918 |
|
|
is
|
5919 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5920 |
|
|
Tdef : constant Node_Id := Type_Definition (N);
|
5921 |
|
|
Indic : constant Node_Id := Subtype_Indication (Tdef);
|
5922 |
|
|
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
|
5923 |
|
|
No_Constraint : constant Boolean := Nkind (Indic) /=
|
5924 |
|
|
N_Subtype_Indication;
|
5925 |
|
|
Implicit_Base : Entity_Id;
|
5926 |
|
|
|
5927 |
|
|
Lo : Node_Id;
|
5928 |
|
|
Hi : Node_Id;
|
5929 |
|
|
|
5930 |
|
|
begin
|
5931 |
|
|
-- Process the subtype indication including a validation check on
|
5932 |
|
|
-- the constraint if any.
|
5933 |
|
|
|
5934 |
|
|
Discard_Node (Process_Subtype (Indic, N));
|
5935 |
|
|
|
5936 |
|
|
-- Introduce an implicit base type for the derived type even if there
|
5937 |
|
|
-- is no constraint attached to it, since this seems closer to the Ada
|
5938 |
|
|
-- semantics.
|
5939 |
|
|
|
5940 |
|
|
Implicit_Base :=
|
5941 |
|
|
Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
|
5942 |
|
|
|
5943 |
|
|
Set_Etype (Implicit_Base, Parent_Base);
|
5944 |
|
|
Set_Ekind (Implicit_Base, Ekind (Parent_Base));
|
5945 |
|
|
Set_Size_Info (Implicit_Base, Parent_Base);
|
5946 |
|
|
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
|
5947 |
|
|
Set_Parent (Implicit_Base, Parent (Derived_Type));
|
5948 |
|
|
Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
|
5949 |
|
|
|
5950 |
|
|
-- Set RM Size for discrete type or decimal fixed-point type
|
5951 |
|
|
-- Ordinary fixed-point is excluded, why???
|
5952 |
|
|
|
5953 |
|
|
if Is_Discrete_Type (Parent_Base)
|
5954 |
|
|
or else Is_Decimal_Fixed_Point_Type (Parent_Base)
|
5955 |
|
|
then
|
5956 |
|
|
Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
|
5957 |
|
|
end if;
|
5958 |
|
|
|
5959 |
|
|
Set_Has_Delayed_Freeze (Implicit_Base);
|
5960 |
|
|
|
5961 |
|
|
Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
|
5962 |
|
|
Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
|
5963 |
|
|
|
5964 |
|
|
Set_Scalar_Range (Implicit_Base,
|
5965 |
|
|
Make_Range (Loc,
|
5966 |
|
|
Low_Bound => Lo,
|
5967 |
|
|
High_Bound => Hi));
|
5968 |
|
|
|
5969 |
|
|
if Has_Infinities (Parent_Base) then
|
5970 |
|
|
Set_Includes_Infinities (Scalar_Range (Implicit_Base));
|
5971 |
|
|
end if;
|
5972 |
|
|
|
5973 |
|
|
-- The Derived_Type, which is the entity of the declaration, is a
|
5974 |
|
|
-- subtype of the implicit base. Its Ekind is a subtype, even in the
|
5975 |
|
|
-- absence of an explicit constraint.
|
5976 |
|
|
|
5977 |
|
|
Set_Etype (Derived_Type, Implicit_Base);
|
5978 |
|
|
|
5979 |
|
|
-- If we did not have a constraint, then the Ekind is set from the
|
5980 |
|
|
-- parent type (otherwise Process_Subtype has set the bounds)
|
5981 |
|
|
|
5982 |
|
|
if No_Constraint then
|
5983 |
|
|
Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
|
5984 |
|
|
end if;
|
5985 |
|
|
|
5986 |
|
|
-- If we did not have a range constraint, then set the range from the
|
5987 |
|
|
-- parent type. Otherwise, the Process_Subtype call has set the bounds.
|
5988 |
|
|
|
5989 |
|
|
if No_Constraint
|
5990 |
|
|
or else not Has_Range_Constraint (Indic)
|
5991 |
|
|
then
|
5992 |
|
|
Set_Scalar_Range (Derived_Type,
|
5993 |
|
|
Make_Range (Loc,
|
5994 |
|
|
Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
|
5995 |
|
|
High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
|
5996 |
|
|
Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
|
5997 |
|
|
|
5998 |
|
|
if Has_Infinities (Parent_Type) then
|
5999 |
|
|
Set_Includes_Infinities (Scalar_Range (Derived_Type));
|
6000 |
|
|
end if;
|
6001 |
|
|
|
6002 |
|
|
Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
|
6003 |
|
|
end if;
|
6004 |
|
|
|
6005 |
|
|
Set_Is_Descendent_Of_Address (Derived_Type,
|
6006 |
|
|
Is_Descendent_Of_Address (Parent_Type));
|
6007 |
|
|
Set_Is_Descendent_Of_Address (Implicit_Base,
|
6008 |
|
|
Is_Descendent_Of_Address (Parent_Type));
|
6009 |
|
|
|
6010 |
|
|
-- Set remaining type-specific fields, depending on numeric type
|
6011 |
|
|
|
6012 |
|
|
if Is_Modular_Integer_Type (Parent_Type) then
|
6013 |
|
|
Set_Modulus (Implicit_Base, Modulus (Parent_Base));
|
6014 |
|
|
|
6015 |
|
|
Set_Non_Binary_Modulus
|
6016 |
|
|
(Implicit_Base, Non_Binary_Modulus (Parent_Base));
|
6017 |
|
|
|
6018 |
|
|
Set_Is_Known_Valid
|
6019 |
|
|
(Implicit_Base, Is_Known_Valid (Parent_Base));
|
6020 |
|
|
|
6021 |
|
|
elsif Is_Floating_Point_Type (Parent_Type) then
|
6022 |
|
|
|
6023 |
|
|
-- Digits of base type is always copied from the digits value of
|
6024 |
|
|
-- the parent base type, but the digits of the derived type will
|
6025 |
|
|
-- already have been set if there was a constraint present.
|
6026 |
|
|
|
6027 |
|
|
Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
|
6028 |
|
|
Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
|
6029 |
|
|
|
6030 |
|
|
if No_Constraint then
|
6031 |
|
|
Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
|
6032 |
|
|
end if;
|
6033 |
|
|
|
6034 |
|
|
elsif Is_Fixed_Point_Type (Parent_Type) then
|
6035 |
|
|
|
6036 |
|
|
-- Small of base type and derived type are always copied from the
|
6037 |
|
|
-- parent base type, since smalls never change. The delta of the
|
6038 |
|
|
-- base type is also copied from the parent base type. However the
|
6039 |
|
|
-- delta of the derived type will have been set already if a
|
6040 |
|
|
-- constraint was present.
|
6041 |
|
|
|
6042 |
|
|
Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
|
6043 |
|
|
Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
|
6044 |
|
|
Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
|
6045 |
|
|
|
6046 |
|
|
if No_Constraint then
|
6047 |
|
|
Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
|
6048 |
|
|
end if;
|
6049 |
|
|
|
6050 |
|
|
-- The scale and machine radix in the decimal case are always
|
6051 |
|
|
-- copied from the parent base type.
|
6052 |
|
|
|
6053 |
|
|
if Is_Decimal_Fixed_Point_Type (Parent_Type) then
|
6054 |
|
|
Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
|
6055 |
|
|
Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
|
6056 |
|
|
|
6057 |
|
|
Set_Machine_Radix_10
|
6058 |
|
|
(Derived_Type, Machine_Radix_10 (Parent_Base));
|
6059 |
|
|
Set_Machine_Radix_10
|
6060 |
|
|
(Implicit_Base, Machine_Radix_10 (Parent_Base));
|
6061 |
|
|
|
6062 |
|
|
Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
|
6063 |
|
|
|
6064 |
|
|
if No_Constraint then
|
6065 |
|
|
Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
|
6066 |
|
|
|
6067 |
|
|
else
|
6068 |
|
|
-- the analysis of the subtype_indication sets the
|
6069 |
|
|
-- digits value of the derived type.
|
6070 |
|
|
|
6071 |
|
|
null;
|
6072 |
|
|
end if;
|
6073 |
|
|
end if;
|
6074 |
|
|
end if;
|
6075 |
|
|
|
6076 |
|
|
-- The type of the bounds is that of the parent type, and they
|
6077 |
|
|
-- must be converted to the derived type.
|
6078 |
|
|
|
6079 |
|
|
Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
|
6080 |
|
|
|
6081 |
|
|
-- The implicit_base should be frozen when the derived type is frozen,
|
6082 |
|
|
-- but note that it is used in the conversions of the bounds. For fixed
|
6083 |
|
|
-- types we delay the determination of the bounds until the proper
|
6084 |
|
|
-- freezing point. For other numeric types this is rejected by GCC, for
|
6085 |
|
|
-- reasons that are currently unclear (???), so we choose to freeze the
|
6086 |
|
|
-- implicit base now. In the case of integers and floating point types
|
6087 |
|
|
-- this is harmless because subsequent representation clauses cannot
|
6088 |
|
|
-- affect anything, but it is still baffling that we cannot use the
|
6089 |
|
|
-- same mechanism for all derived numeric types.
|
6090 |
|
|
|
6091 |
|
|
-- There is a further complication: actually *some* representation
|
6092 |
|
|
-- clauses can affect the implicit base type. Namely, attribute
|
6093 |
|
|
-- definition clauses for stream-oriented attributes need to set the
|
6094 |
|
|
-- corresponding TSS entries on the base type, and this normally cannot
|
6095 |
|
|
-- be done after the base type is frozen, so the circuitry in
|
6096 |
|
|
-- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
|
6097 |
|
|
-- not use Set_TSS in this case.
|
6098 |
|
|
|
6099 |
|
|
if Is_Fixed_Point_Type (Parent_Type) then
|
6100 |
|
|
Conditional_Delay (Implicit_Base, Parent_Type);
|
6101 |
|
|
else
|
6102 |
|
|
Freeze_Before (N, Implicit_Base);
|
6103 |
|
|
end if;
|
6104 |
|
|
end Build_Derived_Numeric_Type;
|
6105 |
|
|
|
6106 |
|
|
--------------------------------
|
6107 |
|
|
-- Build_Derived_Private_Type --
|
6108 |
|
|
--------------------------------
|
6109 |
|
|
|
6110 |
|
|
procedure Build_Derived_Private_Type
|
6111 |
|
|
(N : Node_Id;
|
6112 |
|
|
Parent_Type : Entity_Id;
|
6113 |
|
|
Derived_Type : Entity_Id;
|
6114 |
|
|
Is_Completion : Boolean;
|
6115 |
|
|
Derive_Subps : Boolean := True)
|
6116 |
|
|
is
|
6117 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6118 |
|
|
Der_Base : Entity_Id;
|
6119 |
|
|
Discr : Entity_Id;
|
6120 |
|
|
Full_Decl : Node_Id := Empty;
|
6121 |
|
|
Full_Der : Entity_Id;
|
6122 |
|
|
Full_P : Entity_Id;
|
6123 |
|
|
Last_Discr : Entity_Id;
|
6124 |
|
|
Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
|
6125 |
|
|
Swapped : Boolean := False;
|
6126 |
|
|
|
6127 |
|
|
procedure Copy_And_Build;
|
6128 |
|
|
-- Copy derived type declaration, replace parent with its full view,
|
6129 |
|
|
-- and analyze new declaration.
|
6130 |
|
|
|
6131 |
|
|
--------------------
|
6132 |
|
|
-- Copy_And_Build --
|
6133 |
|
|
--------------------
|
6134 |
|
|
|
6135 |
|
|
procedure Copy_And_Build is
|
6136 |
|
|
Full_N : Node_Id;
|
6137 |
|
|
|
6138 |
|
|
begin
|
6139 |
|
|
if Ekind (Parent_Type) in Record_Kind
|
6140 |
|
|
or else
|
6141 |
|
|
(Ekind (Parent_Type) in Enumeration_Kind
|
6142 |
|
|
and then not Is_Standard_Character_Type (Parent_Type)
|
6143 |
|
|
and then not Is_Generic_Type (Root_Type (Parent_Type)))
|
6144 |
|
|
then
|
6145 |
|
|
Full_N := New_Copy_Tree (N);
|
6146 |
|
|
Insert_After (N, Full_N);
|
6147 |
|
|
Build_Derived_Type (
|
6148 |
|
|
Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
|
6149 |
|
|
|
6150 |
|
|
else
|
6151 |
|
|
Build_Derived_Type (
|
6152 |
|
|
N, Parent_Type, Full_Der, True, Derive_Subps => False);
|
6153 |
|
|
end if;
|
6154 |
|
|
end Copy_And_Build;
|
6155 |
|
|
|
6156 |
|
|
-- Start of processing for Build_Derived_Private_Type
|
6157 |
|
|
|
6158 |
|
|
begin
|
6159 |
|
|
if Is_Tagged_Type (Parent_Type) then
|
6160 |
|
|
Full_P := Full_View (Parent_Type);
|
6161 |
|
|
|
6162 |
|
|
-- A type extension of a type with unknown discriminants is an
|
6163 |
|
|
-- indefinite type that the back-end cannot handle directly.
|
6164 |
|
|
-- We treat it as a private type, and build a completion that is
|
6165 |
|
|
-- derived from the full view of the parent, and hopefully has
|
6166 |
|
|
-- known discriminants.
|
6167 |
|
|
|
6168 |
|
|
-- If the full view of the parent type has an underlying record view,
|
6169 |
|
|
-- use it to generate the underlying record view of this derived type
|
6170 |
|
|
-- (required for chains of derivations with unknown discriminants).
|
6171 |
|
|
|
6172 |
|
|
-- Minor optimization: we avoid the generation of useless underlying
|
6173 |
|
|
-- record view entities if the private type declaration has unknown
|
6174 |
|
|
-- discriminants but its corresponding full view has no
|
6175 |
|
|
-- discriminants.
|
6176 |
|
|
|
6177 |
|
|
if Has_Unknown_Discriminants (Parent_Type)
|
6178 |
|
|
and then Present (Full_P)
|
6179 |
|
|
and then (Has_Discriminants (Full_P)
|
6180 |
|
|
or else Present (Underlying_Record_View (Full_P)))
|
6181 |
|
|
and then not In_Open_Scopes (Par_Scope)
|
6182 |
|
|
and then Expander_Active
|
6183 |
|
|
then
|
6184 |
|
|
declare
|
6185 |
|
|
Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
|
6186 |
|
|
New_Ext : constant Node_Id :=
|
6187 |
|
|
Copy_Separate_Tree
|
6188 |
|
|
(Record_Extension_Part (Type_Definition (N)));
|
6189 |
|
|
Decl : Node_Id;
|
6190 |
|
|
|
6191 |
|
|
begin
|
6192 |
|
|
Build_Derived_Record_Type
|
6193 |
|
|
(N, Parent_Type, Derived_Type, Derive_Subps);
|
6194 |
|
|
|
6195 |
|
|
-- Build anonymous completion, as a derivation from the full
|
6196 |
|
|
-- view of the parent. This is not a completion in the usual
|
6197 |
|
|
-- sense, because the current type is not private.
|
6198 |
|
|
|
6199 |
|
|
Decl :=
|
6200 |
|
|
Make_Full_Type_Declaration (Loc,
|
6201 |
|
|
Defining_Identifier => Full_Der,
|
6202 |
|
|
Type_Definition =>
|
6203 |
|
|
Make_Derived_Type_Definition (Loc,
|
6204 |
|
|
Subtype_Indication =>
|
6205 |
|
|
New_Copy_Tree
|
6206 |
|
|
(Subtype_Indication (Type_Definition (N))),
|
6207 |
|
|
Record_Extension_Part => New_Ext));
|
6208 |
|
|
|
6209 |
|
|
-- If the parent type has an underlying record view, use it
|
6210 |
|
|
-- here to build the new underlying record view.
|
6211 |
|
|
|
6212 |
|
|
if Present (Underlying_Record_View (Full_P)) then
|
6213 |
|
|
pragma Assert
|
6214 |
|
|
(Nkind (Subtype_Indication (Type_Definition (Decl)))
|
6215 |
|
|
= N_Identifier);
|
6216 |
|
|
Set_Entity (Subtype_Indication (Type_Definition (Decl)),
|
6217 |
|
|
Underlying_Record_View (Full_P));
|
6218 |
|
|
end if;
|
6219 |
|
|
|
6220 |
|
|
Install_Private_Declarations (Par_Scope);
|
6221 |
|
|
Install_Visible_Declarations (Par_Scope);
|
6222 |
|
|
Insert_Before (N, Decl);
|
6223 |
|
|
|
6224 |
|
|
-- Mark entity as an underlying record view before analysis,
|
6225 |
|
|
-- to avoid generating the list of its primitive operations
|
6226 |
|
|
-- (which is not really required for this entity) and thus
|
6227 |
|
|
-- prevent spurious errors associated with missing overriding
|
6228 |
|
|
-- of abstract primitives (overridden only for Derived_Type).
|
6229 |
|
|
|
6230 |
|
|
Set_Ekind (Full_Der, E_Record_Type);
|
6231 |
|
|
Set_Is_Underlying_Record_View (Full_Der);
|
6232 |
|
|
|
6233 |
|
|
Analyze (Decl);
|
6234 |
|
|
|
6235 |
|
|
pragma Assert (Has_Discriminants (Full_Der)
|
6236 |
|
|
and then not Has_Unknown_Discriminants (Full_Der));
|
6237 |
|
|
|
6238 |
|
|
Uninstall_Declarations (Par_Scope);
|
6239 |
|
|
|
6240 |
|
|
-- Freeze the underlying record view, to prevent generation of
|
6241 |
|
|
-- useless dispatching information, which is simply shared with
|
6242 |
|
|
-- the real derived type.
|
6243 |
|
|
|
6244 |
|
|
Set_Is_Frozen (Full_Der);
|
6245 |
|
|
|
6246 |
|
|
-- Set up links between real entity and underlying record view
|
6247 |
|
|
|
6248 |
|
|
Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
|
6249 |
|
|
Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
|
6250 |
|
|
end;
|
6251 |
|
|
|
6252 |
|
|
-- If discriminants are known, build derived record
|
6253 |
|
|
|
6254 |
|
|
else
|
6255 |
|
|
Build_Derived_Record_Type
|
6256 |
|
|
(N, Parent_Type, Derived_Type, Derive_Subps);
|
6257 |
|
|
end if;
|
6258 |
|
|
|
6259 |
|
|
return;
|
6260 |
|
|
|
6261 |
|
|
elsif Has_Discriminants (Parent_Type) then
|
6262 |
|
|
if Present (Full_View (Parent_Type)) then
|
6263 |
|
|
if not Is_Completion then
|
6264 |
|
|
|
6265 |
|
|
-- Copy declaration for subsequent analysis, to provide a
|
6266 |
|
|
-- completion for what is a private declaration. Indicate that
|
6267 |
|
|
-- the full type is internally generated.
|
6268 |
|
|
|
6269 |
|
|
Full_Decl := New_Copy_Tree (N);
|
6270 |
|
|
Full_Der := New_Copy (Derived_Type);
|
6271 |
|
|
Set_Comes_From_Source (Full_Decl, False);
|
6272 |
|
|
Set_Comes_From_Source (Full_Der, False);
|
6273 |
|
|
Set_Parent (Full_Der, Full_Decl);
|
6274 |
|
|
|
6275 |
|
|
Insert_After (N, Full_Decl);
|
6276 |
|
|
|
6277 |
|
|
else
|
6278 |
|
|
-- If this is a completion, the full view being built is itself
|
6279 |
|
|
-- private. We build a subtype of the parent with the same
|
6280 |
|
|
-- constraints as this full view, to convey to the back end the
|
6281 |
|
|
-- constrained components and the size of this subtype. If the
|
6282 |
|
|
-- parent is constrained, its full view can serve as the
|
6283 |
|
|
-- underlying full view of the derived type.
|
6284 |
|
|
|
6285 |
|
|
if No (Discriminant_Specifications (N)) then
|
6286 |
|
|
if Nkind (Subtype_Indication (Type_Definition (N))) =
|
6287 |
|
|
N_Subtype_Indication
|
6288 |
|
|
then
|
6289 |
|
|
Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
|
6290 |
|
|
|
6291 |
|
|
elsif Is_Constrained (Full_View (Parent_Type)) then
|
6292 |
|
|
Set_Underlying_Full_View
|
6293 |
|
|
(Derived_Type, Full_View (Parent_Type));
|
6294 |
|
|
end if;
|
6295 |
|
|
|
6296 |
|
|
else
|
6297 |
|
|
-- If there are new discriminants, the parent subtype is
|
6298 |
|
|
-- constrained by them, but it is not clear how to build
|
6299 |
|
|
-- the Underlying_Full_View in this case???
|
6300 |
|
|
|
6301 |
|
|
null;
|
6302 |
|
|
end if;
|
6303 |
|
|
end if;
|
6304 |
|
|
end if;
|
6305 |
|
|
|
6306 |
|
|
-- Build partial view of derived type from partial view of parent
|
6307 |
|
|
|
6308 |
|
|
Build_Derived_Record_Type
|
6309 |
|
|
(N, Parent_Type, Derived_Type, Derive_Subps);
|
6310 |
|
|
|
6311 |
|
|
if Present (Full_View (Parent_Type)) and then not Is_Completion then
|
6312 |
|
|
if not In_Open_Scopes (Par_Scope)
|
6313 |
|
|
or else not In_Same_Source_Unit (N, Parent_Type)
|
6314 |
|
|
then
|
6315 |
|
|
-- Swap partial and full views temporarily
|
6316 |
|
|
|
6317 |
|
|
Install_Private_Declarations (Par_Scope);
|
6318 |
|
|
Install_Visible_Declarations (Par_Scope);
|
6319 |
|
|
Swapped := True;
|
6320 |
|
|
end if;
|
6321 |
|
|
|
6322 |
|
|
-- Build full view of derived type from full view of parent which
|
6323 |
|
|
-- is now installed. Subprograms have been derived on the partial
|
6324 |
|
|
-- view, the completion does not derive them anew.
|
6325 |
|
|
|
6326 |
|
|
if not Is_Tagged_Type (Parent_Type) then
|
6327 |
|
|
|
6328 |
|
|
-- If the parent is itself derived from another private type,
|
6329 |
|
|
-- installing the private declarations has not affected its
|
6330 |
|
|
-- privacy status, so use its own full view explicitly.
|
6331 |
|
|
|
6332 |
|
|
if Is_Private_Type (Parent_Type) then
|
6333 |
|
|
Build_Derived_Record_Type
|
6334 |
|
|
(Full_Decl, Full_View (Parent_Type), Full_Der, False);
|
6335 |
|
|
else
|
6336 |
|
|
Build_Derived_Record_Type
|
6337 |
|
|
(Full_Decl, Parent_Type, Full_Der, False);
|
6338 |
|
|
end if;
|
6339 |
|
|
|
6340 |
|
|
else
|
6341 |
|
|
-- If full view of parent is tagged, the completion inherits
|
6342 |
|
|
-- the proper primitive operations.
|
6343 |
|
|
|
6344 |
|
|
Set_Defining_Identifier (Full_Decl, Full_Der);
|
6345 |
|
|
Build_Derived_Record_Type
|
6346 |
|
|
(Full_Decl, Parent_Type, Full_Der, Derive_Subps);
|
6347 |
|
|
end if;
|
6348 |
|
|
|
6349 |
|
|
-- The full declaration has been introduced into the tree and
|
6350 |
|
|
-- processed in the step above. It should not be analyzed again
|
6351 |
|
|
-- (when encountered later in the current list of declarations)
|
6352 |
|
|
-- to prevent spurious name conflicts. The full entity remains
|
6353 |
|
|
-- invisible.
|
6354 |
|
|
|
6355 |
|
|
Set_Analyzed (Full_Decl);
|
6356 |
|
|
|
6357 |
|
|
if Swapped then
|
6358 |
|
|
Uninstall_Declarations (Par_Scope);
|
6359 |
|
|
|
6360 |
|
|
if In_Open_Scopes (Par_Scope) then
|
6361 |
|
|
Install_Visible_Declarations (Par_Scope);
|
6362 |
|
|
end if;
|
6363 |
|
|
end if;
|
6364 |
|
|
|
6365 |
|
|
Der_Base := Base_Type (Derived_Type);
|
6366 |
|
|
Set_Full_View (Derived_Type, Full_Der);
|
6367 |
|
|
Set_Full_View (Der_Base, Base_Type (Full_Der));
|
6368 |
|
|
|
6369 |
|
|
-- Copy the discriminant list from full view to the partial views
|
6370 |
|
|
-- (base type and its subtype). Gigi requires that the partial and
|
6371 |
|
|
-- full views have the same discriminants.
|
6372 |
|
|
|
6373 |
|
|
-- Note that since the partial view is pointing to discriminants
|
6374 |
|
|
-- in the full view, their scope will be that of the full view.
|
6375 |
|
|
-- This might cause some front end problems and need adjustment???
|
6376 |
|
|
|
6377 |
|
|
Discr := First_Discriminant (Base_Type (Full_Der));
|
6378 |
|
|
Set_First_Entity (Der_Base, Discr);
|
6379 |
|
|
|
6380 |
|
|
loop
|
6381 |
|
|
Last_Discr := Discr;
|
6382 |
|
|
Next_Discriminant (Discr);
|
6383 |
|
|
exit when No (Discr);
|
6384 |
|
|
end loop;
|
6385 |
|
|
|
6386 |
|
|
Set_Last_Entity (Der_Base, Last_Discr);
|
6387 |
|
|
|
6388 |
|
|
Set_First_Entity (Derived_Type, First_Entity (Der_Base));
|
6389 |
|
|
Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
|
6390 |
|
|
Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
|
6391 |
|
|
|
6392 |
|
|
else
|
6393 |
|
|
-- If this is a completion, the derived type stays private and
|
6394 |
|
|
-- there is no need to create a further full view, except in the
|
6395 |
|
|
-- unusual case when the derivation is nested within a child unit,
|
6396 |
|
|
-- see below.
|
6397 |
|
|
|
6398 |
|
|
null;
|
6399 |
|
|
end if;
|
6400 |
|
|
|
6401 |
|
|
elsif Present (Full_View (Parent_Type))
|
6402 |
|
|
and then Has_Discriminants (Full_View (Parent_Type))
|
6403 |
|
|
then
|
6404 |
|
|
if Has_Unknown_Discriminants (Parent_Type)
|
6405 |
|
|
and then Nkind (Subtype_Indication (Type_Definition (N))) =
|
6406 |
|
|
N_Subtype_Indication
|
6407 |
|
|
then
|
6408 |
|
|
Error_Msg_N
|
6409 |
|
|
("cannot constrain type with unknown discriminants",
|
6410 |
|
|
Subtype_Indication (Type_Definition (N)));
|
6411 |
|
|
return;
|
6412 |
|
|
end if;
|
6413 |
|
|
|
6414 |
|
|
-- If full view of parent is a record type, build full view as a
|
6415 |
|
|
-- derivation from the parent's full view. Partial view remains
|
6416 |
|
|
-- private. For code generation and linking, the full view must have
|
6417 |
|
|
-- the same public status as the partial one. This full view is only
|
6418 |
|
|
-- needed if the parent type is in an enclosing scope, so that the
|
6419 |
|
|
-- full view may actually become visible, e.g. in a child unit. This
|
6420 |
|
|
-- is both more efficient, and avoids order of freezing problems with
|
6421 |
|
|
-- the added entities.
|
6422 |
|
|
|
6423 |
|
|
if not Is_Private_Type (Full_View (Parent_Type))
|
6424 |
|
|
and then (In_Open_Scopes (Scope (Parent_Type)))
|
6425 |
|
|
then
|
6426 |
|
|
Full_Der :=
|
6427 |
|
|
Make_Defining_Identifier
|
6428 |
|
|
(Sloc (Derived_Type), Chars (Derived_Type));
|
6429 |
|
|
Set_Is_Itype (Full_Der);
|
6430 |
|
|
Set_Has_Private_Declaration (Full_Der);
|
6431 |
|
|
Set_Has_Private_Declaration (Derived_Type);
|
6432 |
|
|
Set_Associated_Node_For_Itype (Full_Der, N);
|
6433 |
|
|
Set_Parent (Full_Der, Parent (Derived_Type));
|
6434 |
|
|
Set_Full_View (Derived_Type, Full_Der);
|
6435 |
|
|
Set_Is_Public (Full_Der, Is_Public (Derived_Type));
|
6436 |
|
|
Full_P := Full_View (Parent_Type);
|
6437 |
|
|
Exchange_Declarations (Parent_Type);
|
6438 |
|
|
Copy_And_Build;
|
6439 |
|
|
Exchange_Declarations (Full_P);
|
6440 |
|
|
|
6441 |
|
|
else
|
6442 |
|
|
Build_Derived_Record_Type
|
6443 |
|
|
(N, Full_View (Parent_Type), Derived_Type,
|
6444 |
|
|
Derive_Subps => False);
|
6445 |
|
|
end if;
|
6446 |
|
|
|
6447 |
|
|
-- In any case, the primitive operations are inherited from the
|
6448 |
|
|
-- parent type, not from the internal full view.
|
6449 |
|
|
|
6450 |
|
|
Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
|
6451 |
|
|
|
6452 |
|
|
if Derive_Subps then
|
6453 |
|
|
Derive_Subprograms (Parent_Type, Derived_Type);
|
6454 |
|
|
end if;
|
6455 |
|
|
|
6456 |
|
|
else
|
6457 |
|
|
-- Untagged type, No discriminants on either view
|
6458 |
|
|
|
6459 |
|
|
if Nkind (Subtype_Indication (Type_Definition (N))) =
|
6460 |
|
|
N_Subtype_Indication
|
6461 |
|
|
then
|
6462 |
|
|
Error_Msg_N
|
6463 |
|
|
("illegal constraint on type without discriminants", N);
|
6464 |
|
|
end if;
|
6465 |
|
|
|
6466 |
|
|
if Present (Discriminant_Specifications (N))
|
6467 |
|
|
and then Present (Full_View (Parent_Type))
|
6468 |
|
|
and then not Is_Tagged_Type (Full_View (Parent_Type))
|
6469 |
|
|
then
|
6470 |
|
|
Error_Msg_N ("cannot add discriminants to untagged type", N);
|
6471 |
|
|
end if;
|
6472 |
|
|
|
6473 |
|
|
Set_Stored_Constraint (Derived_Type, No_Elist);
|
6474 |
|
|
Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
|
6475 |
|
|
Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
|
6476 |
|
|
Set_Has_Controlled_Component
|
6477 |
|
|
(Derived_Type, Has_Controlled_Component
|
6478 |
|
|
(Parent_Type));
|
6479 |
|
|
|
6480 |
|
|
-- Direct controlled types do not inherit Finalize_Storage_Only flag
|
6481 |
|
|
|
6482 |
|
|
if not Is_Controlled (Parent_Type) then
|
6483 |
|
|
Set_Finalize_Storage_Only
|
6484 |
|
|
(Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
|
6485 |
|
|
end if;
|
6486 |
|
|
|
6487 |
|
|
-- Construct the implicit full view by deriving from full view of the
|
6488 |
|
|
-- parent type. In order to get proper visibility, we install the
|
6489 |
|
|
-- parent scope and its declarations.
|
6490 |
|
|
|
6491 |
|
|
-- ??? If the parent is untagged private and its completion is
|
6492 |
|
|
-- tagged, this mechanism will not work because we cannot derive from
|
6493 |
|
|
-- the tagged full view unless we have an extension.
|
6494 |
|
|
|
6495 |
|
|
if Present (Full_View (Parent_Type))
|
6496 |
|
|
and then not Is_Tagged_Type (Full_View (Parent_Type))
|
6497 |
|
|
and then not Is_Completion
|
6498 |
|
|
then
|
6499 |
|
|
Full_Der :=
|
6500 |
|
|
Make_Defining_Identifier
|
6501 |
|
|
(Sloc (Derived_Type), Chars (Derived_Type));
|
6502 |
|
|
Set_Is_Itype (Full_Der);
|
6503 |
|
|
Set_Has_Private_Declaration (Full_Der);
|
6504 |
|
|
Set_Has_Private_Declaration (Derived_Type);
|
6505 |
|
|
Set_Associated_Node_For_Itype (Full_Der, N);
|
6506 |
|
|
Set_Parent (Full_Der, Parent (Derived_Type));
|
6507 |
|
|
Set_Full_View (Derived_Type, Full_Der);
|
6508 |
|
|
|
6509 |
|
|
if not In_Open_Scopes (Par_Scope) then
|
6510 |
|
|
Install_Private_Declarations (Par_Scope);
|
6511 |
|
|
Install_Visible_Declarations (Par_Scope);
|
6512 |
|
|
Copy_And_Build;
|
6513 |
|
|
Uninstall_Declarations (Par_Scope);
|
6514 |
|
|
|
6515 |
|
|
-- If parent scope is open and in another unit, and parent has a
|
6516 |
|
|
-- completion, then the derivation is taking place in the visible
|
6517 |
|
|
-- part of a child unit. In that case retrieve the full view of
|
6518 |
|
|
-- the parent momentarily.
|
6519 |
|
|
|
6520 |
|
|
elsif not In_Same_Source_Unit (N, Parent_Type) then
|
6521 |
|
|
Full_P := Full_View (Parent_Type);
|
6522 |
|
|
Exchange_Declarations (Parent_Type);
|
6523 |
|
|
Copy_And_Build;
|
6524 |
|
|
Exchange_Declarations (Full_P);
|
6525 |
|
|
|
6526 |
|
|
-- Otherwise it is a local derivation
|
6527 |
|
|
|
6528 |
|
|
else
|
6529 |
|
|
Copy_And_Build;
|
6530 |
|
|
end if;
|
6531 |
|
|
|
6532 |
|
|
Set_Scope (Full_Der, Current_Scope);
|
6533 |
|
|
Set_Is_First_Subtype (Full_Der,
|
6534 |
|
|
Is_First_Subtype (Derived_Type));
|
6535 |
|
|
Set_Has_Size_Clause (Full_Der, False);
|
6536 |
|
|
Set_Has_Alignment_Clause (Full_Der, False);
|
6537 |
|
|
Set_Next_Entity (Full_Der, Empty);
|
6538 |
|
|
Set_Has_Delayed_Freeze (Full_Der);
|
6539 |
|
|
Set_Is_Frozen (Full_Der, False);
|
6540 |
|
|
Set_Freeze_Node (Full_Der, Empty);
|
6541 |
|
|
Set_Depends_On_Private (Full_Der,
|
6542 |
|
|
Has_Private_Component (Full_Der));
|
6543 |
|
|
Set_Public_Status (Full_Der);
|
6544 |
|
|
end if;
|
6545 |
|
|
end if;
|
6546 |
|
|
|
6547 |
|
|
Set_Has_Unknown_Discriminants (Derived_Type,
|
6548 |
|
|
Has_Unknown_Discriminants (Parent_Type));
|
6549 |
|
|
|
6550 |
|
|
if Is_Private_Type (Derived_Type) then
|
6551 |
|
|
Set_Private_Dependents (Derived_Type, New_Elmt_List);
|
6552 |
|
|
end if;
|
6553 |
|
|
|
6554 |
|
|
if Is_Private_Type (Parent_Type)
|
6555 |
|
|
and then Base_Type (Parent_Type) = Parent_Type
|
6556 |
|
|
and then In_Open_Scopes (Scope (Parent_Type))
|
6557 |
|
|
then
|
6558 |
|
|
Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
|
6559 |
|
|
|
6560 |
|
|
if Is_Child_Unit (Scope (Current_Scope))
|
6561 |
|
|
and then Is_Completion
|
6562 |
|
|
and then In_Private_Part (Current_Scope)
|
6563 |
|
|
and then Scope (Parent_Type) /= Current_Scope
|
6564 |
|
|
then
|
6565 |
|
|
-- This is the unusual case where a type completed by a private
|
6566 |
|
|
-- derivation occurs within a package nested in a child unit, and
|
6567 |
|
|
-- the parent is declared in an ancestor. In this case, the full
|
6568 |
|
|
-- view of the parent type will become visible in the body of
|
6569 |
|
|
-- the enclosing child, and only then will the current type be
|
6570 |
|
|
-- possibly non-private. We build a underlying full view that
|
6571 |
|
|
-- will be installed when the enclosing child body is compiled.
|
6572 |
|
|
|
6573 |
|
|
Full_Der :=
|
6574 |
|
|
Make_Defining_Identifier
|
6575 |
|
|
(Sloc (Derived_Type), Chars (Derived_Type));
|
6576 |
|
|
Set_Is_Itype (Full_Der);
|
6577 |
|
|
Build_Itype_Reference (Full_Der, N);
|
6578 |
|
|
|
6579 |
|
|
-- The full view will be used to swap entities on entry/exit to
|
6580 |
|
|
-- the body, and must appear in the entity list for the package.
|
6581 |
|
|
|
6582 |
|
|
Append_Entity (Full_Der, Scope (Derived_Type));
|
6583 |
|
|
Set_Has_Private_Declaration (Full_Der);
|
6584 |
|
|
Set_Has_Private_Declaration (Derived_Type);
|
6585 |
|
|
Set_Associated_Node_For_Itype (Full_Der, N);
|
6586 |
|
|
Set_Parent (Full_Der, Parent (Derived_Type));
|
6587 |
|
|
Full_P := Full_View (Parent_Type);
|
6588 |
|
|
Exchange_Declarations (Parent_Type);
|
6589 |
|
|
Copy_And_Build;
|
6590 |
|
|
Exchange_Declarations (Full_P);
|
6591 |
|
|
Set_Underlying_Full_View (Derived_Type, Full_Der);
|
6592 |
|
|
end if;
|
6593 |
|
|
end if;
|
6594 |
|
|
end Build_Derived_Private_Type;
|
6595 |
|
|
|
6596 |
|
|
-------------------------------
|
6597 |
|
|
-- Build_Derived_Record_Type --
|
6598 |
|
|
-------------------------------
|
6599 |
|
|
|
6600 |
|
|
-- 1. INTRODUCTION
|
6601 |
|
|
|
6602 |
|
|
-- Ideally we would like to use the same model of type derivation for
|
6603 |
|
|
-- tagged and untagged record types. Unfortunately this is not quite
|
6604 |
|
|
-- possible because the semantics of representation clauses is different
|
6605 |
|
|
-- for tagged and untagged records under inheritance. Consider the
|
6606 |
|
|
-- following:
|
6607 |
|
|
|
6608 |
|
|
-- type R (...) is [tagged] record ... end record;
|
6609 |
|
|
-- type T (...) is new R (...) [with ...];
|
6610 |
|
|
|
6611 |
|
|
-- The representation clauses for T can specify a completely different
|
6612 |
|
|
-- record layout from R's. Hence the same component can be placed in two
|
6613 |
|
|
-- very different positions in objects of type T and R. If R and T are
|
6614 |
|
|
-- tagged types, representation clauses for T can only specify the layout
|
6615 |
|
|
-- of non inherited components, thus components that are common in R and T
|
6616 |
|
|
-- have the same position in objects of type R and T.
|
6617 |
|
|
|
6618 |
|
|
-- This has two implications. The first is that the entire tree for R's
|
6619 |
|
|
-- declaration needs to be copied for T in the untagged case, so that T
|
6620 |
|
|
-- can be viewed as a record type of its own with its own representation
|
6621 |
|
|
-- clauses. The second implication is the way we handle discriminants.
|
6622 |
|
|
-- Specifically, in the untagged case we need a way to communicate to Gigi
|
6623 |
|
|
-- what are the real discriminants in the record, while for the semantics
|
6624 |
|
|
-- we need to consider those introduced by the user to rename the
|
6625 |
|
|
-- discriminants in the parent type. This is handled by introducing the
|
6626 |
|
|
-- notion of stored discriminants. See below for more.
|
6627 |
|
|
|
6628 |
|
|
-- Fortunately the way regular components are inherited can be handled in
|
6629 |
|
|
-- the same way in tagged and untagged types.
|
6630 |
|
|
|
6631 |
|
|
-- To complicate things a bit more the private view of a private extension
|
6632 |
|
|
-- cannot be handled in the same way as the full view (for one thing the
|
6633 |
|
|
-- semantic rules are somewhat different). We will explain what differs
|
6634 |
|
|
-- below.
|
6635 |
|
|
|
6636 |
|
|
-- 2. DISCRIMINANTS UNDER INHERITANCE
|
6637 |
|
|
|
6638 |
|
|
-- The semantic rules governing the discriminants of derived types are
|
6639 |
|
|
-- quite subtle.
|
6640 |
|
|
|
6641 |
|
|
-- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
|
6642 |
|
|
-- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
|
6643 |
|
|
|
6644 |
|
|
-- If parent type has discriminants, then the discriminants that are
|
6645 |
|
|
-- declared in the derived type are [3.4 (11)]:
|
6646 |
|
|
|
6647 |
|
|
-- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
|
6648 |
|
|
-- there is one;
|
6649 |
|
|
|
6650 |
|
|
-- o Otherwise, each discriminant of the parent type (implicitly declared
|
6651 |
|
|
-- in the same order with the same specifications). In this case, the
|
6652 |
|
|
-- discriminants are said to be "inherited", or if unknown in the parent
|
6653 |
|
|
-- are also unknown in the derived type.
|
6654 |
|
|
|
6655 |
|
|
-- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
|
6656 |
|
|
|
6657 |
|
|
-- o The parent subtype shall be constrained;
|
6658 |
|
|
|
6659 |
|
|
-- o If the parent type is not a tagged type, then each discriminant of
|
6660 |
|
|
-- the derived type shall be used in the constraint defining a parent
|
6661 |
|
|
-- subtype. [Implementation note: This ensures that the new discriminant
|
6662 |
|
|
-- can share storage with an existing discriminant.]
|
6663 |
|
|
|
6664 |
|
|
-- For the derived type each discriminant of the parent type is either
|
6665 |
|
|
-- inherited, constrained to equal some new discriminant of the derived
|
6666 |
|
|
-- type, or constrained to the value of an expression.
|
6667 |
|
|
|
6668 |
|
|
-- When inherited or constrained to equal some new discriminant, the
|
6669 |
|
|
-- parent discriminant and the discriminant of the derived type are said
|
6670 |
|
|
-- to "correspond".
|
6671 |
|
|
|
6672 |
|
|
-- If a discriminant of the parent type is constrained to a specific value
|
6673 |
|
|
-- in the derived type definition, then the discriminant is said to be
|
6674 |
|
|
-- "specified" by that derived type definition.
|
6675 |
|
|
|
6676 |
|
|
-- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
|
6677 |
|
|
|
6678 |
|
|
-- We have spoken about stored discriminants in point 1 (introduction)
|
6679 |
|
|
-- above. There are two sort of stored discriminants: implicit and
|
6680 |
|
|
-- explicit. As long as the derived type inherits the same discriminants as
|
6681 |
|
|
-- the root record type, stored discriminants are the same as regular
|
6682 |
|
|
-- discriminants, and are said to be implicit. However, if any discriminant
|
6683 |
|
|
-- in the root type was renamed in the derived type, then the derived
|
6684 |
|
|
-- type will contain explicit stored discriminants. Explicit stored
|
6685 |
|
|
-- discriminants are discriminants in addition to the semantically visible
|
6686 |
|
|
-- discriminants defined for the derived type. Stored discriminants are
|
6687 |
|
|
-- used by Gigi to figure out what are the physical discriminants in
|
6688 |
|
|
-- objects of the derived type (see precise definition in einfo.ads).
|
6689 |
|
|
-- As an example, consider the following:
|
6690 |
|
|
|
6691 |
|
|
-- type R (D1, D2, D3 : Int) is record ... end record;
|
6692 |
|
|
-- type T1 is new R;
|
6693 |
|
|
-- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
|
6694 |
|
|
-- type T3 is new T2;
|
6695 |
|
|
-- type T4 (Y : Int) is new T3 (Y, 99);
|
6696 |
|
|
|
6697 |
|
|
-- The following table summarizes the discriminants and stored
|
6698 |
|
|
-- discriminants in R and T1 through T4.
|
6699 |
|
|
|
6700 |
|
|
-- Type Discrim Stored Discrim Comment
|
6701 |
|
|
-- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
|
6702 |
|
|
-- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
|
6703 |
|
|
-- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
|
6704 |
|
|
-- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
|
6705 |
|
|
-- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
|
6706 |
|
|
|
6707 |
|
|
-- Field Corresponding_Discriminant (abbreviated CD below) allows us to
|
6708 |
|
|
-- find the corresponding discriminant in the parent type, while
|
6709 |
|
|
-- Original_Record_Component (abbreviated ORC below), the actual physical
|
6710 |
|
|
-- component that is renamed. Finally the field Is_Completely_Hidden
|
6711 |
|
|
-- (abbreviated ICH below) is set for all explicit stored discriminants
|
6712 |
|
|
-- (see einfo.ads for more info). For the above example this gives:
|
6713 |
|
|
|
6714 |
|
|
-- Discrim CD ORC ICH
|
6715 |
|
|
-- ^^^^^^^ ^^ ^^^ ^^^
|
6716 |
|
|
-- D1 in R empty itself no
|
6717 |
|
|
-- D2 in R empty itself no
|
6718 |
|
|
-- D3 in R empty itself no
|
6719 |
|
|
|
6720 |
|
|
-- D1 in T1 D1 in R itself no
|
6721 |
|
|
-- D2 in T1 D2 in R itself no
|
6722 |
|
|
-- D3 in T1 D3 in R itself no
|
6723 |
|
|
|
6724 |
|
|
-- X1 in T2 D3 in T1 D3 in T2 no
|
6725 |
|
|
-- X2 in T2 D1 in T1 D1 in T2 no
|
6726 |
|
|
-- D1 in T2 empty itself yes
|
6727 |
|
|
-- D2 in T2 empty itself yes
|
6728 |
|
|
-- D3 in T2 empty itself yes
|
6729 |
|
|
|
6730 |
|
|
-- X1 in T3 X1 in T2 D3 in T3 no
|
6731 |
|
|
-- X2 in T3 X2 in T2 D1 in T3 no
|
6732 |
|
|
-- D1 in T3 empty itself yes
|
6733 |
|
|
-- D2 in T3 empty itself yes
|
6734 |
|
|
-- D3 in T3 empty itself yes
|
6735 |
|
|
|
6736 |
|
|
-- Y in T4 X1 in T3 D3 in T3 no
|
6737 |
|
|
-- D1 in T3 empty itself yes
|
6738 |
|
|
-- D2 in T3 empty itself yes
|
6739 |
|
|
-- D3 in T3 empty itself yes
|
6740 |
|
|
|
6741 |
|
|
-- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
|
6742 |
|
|
|
6743 |
|
|
-- Type derivation for tagged types is fairly straightforward. If no
|
6744 |
|
|
-- discriminants are specified by the derived type, these are inherited
|
6745 |
|
|
-- from the parent. No explicit stored discriminants are ever necessary.
|
6746 |
|
|
-- The only manipulation that is done to the tree is that of adding a
|
6747 |
|
|
-- _parent field with parent type and constrained to the same constraint
|
6748 |
|
|
-- specified for the parent in the derived type definition. For instance:
|
6749 |
|
|
|
6750 |
|
|
-- type R (D1, D2, D3 : Int) is tagged record ... end record;
|
6751 |
|
|
-- type T1 is new R with null record;
|
6752 |
|
|
-- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
|
6753 |
|
|
|
6754 |
|
|
-- are changed into:
|
6755 |
|
|
|
6756 |
|
|
-- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
|
6757 |
|
|
-- _parent : R (D1, D2, D3);
|
6758 |
|
|
-- end record;
|
6759 |
|
|
|
6760 |
|
|
-- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
|
6761 |
|
|
-- _parent : T1 (X2, 88, X1);
|
6762 |
|
|
-- end record;
|
6763 |
|
|
|
6764 |
|
|
-- The discriminants actually present in R, T1 and T2 as well as their CD,
|
6765 |
|
|
-- ORC and ICH fields are:
|
6766 |
|
|
|
6767 |
|
|
-- Discrim CD ORC ICH
|
6768 |
|
|
-- ^^^^^^^ ^^ ^^^ ^^^
|
6769 |
|
|
-- D1 in R empty itself no
|
6770 |
|
|
-- D2 in R empty itself no
|
6771 |
|
|
-- D3 in R empty itself no
|
6772 |
|
|
|
6773 |
|
|
-- D1 in T1 D1 in R D1 in R no
|
6774 |
|
|
-- D2 in T1 D2 in R D2 in R no
|
6775 |
|
|
-- D3 in T1 D3 in R D3 in R no
|
6776 |
|
|
|
6777 |
|
|
-- X1 in T2 D3 in T1 D3 in R no
|
6778 |
|
|
-- X2 in T2 D1 in T1 D1 in R no
|
6779 |
|
|
|
6780 |
|
|
-- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
|
6781 |
|
|
--
|
6782 |
|
|
-- Regardless of whether we dealing with a tagged or untagged type
|
6783 |
|
|
-- we will transform all derived type declarations of the form
|
6784 |
|
|
--
|
6785 |
|
|
-- type T is new R (...) [with ...];
|
6786 |
|
|
-- or
|
6787 |
|
|
-- subtype S is R (...);
|
6788 |
|
|
-- type T is new S [with ...];
|
6789 |
|
|
-- into
|
6790 |
|
|
-- type BT is new R [with ...];
|
6791 |
|
|
-- subtype T is BT (...);
|
6792 |
|
|
--
|
6793 |
|
|
-- That is, the base derived type is constrained only if it has no
|
6794 |
|
|
-- discriminants. The reason for doing this is that GNAT's semantic model
|
6795 |
|
|
-- assumes that a base type with discriminants is unconstrained.
|
6796 |
|
|
--
|
6797 |
|
|
-- Note that, strictly speaking, the above transformation is not always
|
6798 |
|
|
-- correct. Consider for instance the following excerpt from ACVC b34011a:
|
6799 |
|
|
--
|
6800 |
|
|
-- procedure B34011A is
|
6801 |
|
|
-- type REC (D : integer := 0) is record
|
6802 |
|
|
-- I : Integer;
|
6803 |
|
|
-- end record;
|
6804 |
|
|
|
6805 |
|
|
-- package P is
|
6806 |
|
|
-- type T6 is new Rec;
|
6807 |
|
|
-- function F return T6;
|
6808 |
|
|
-- end P;
|
6809 |
|
|
|
6810 |
|
|
-- use P;
|
6811 |
|
|
-- package Q6 is
|
6812 |
|
|
-- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
|
6813 |
|
|
-- end Q6;
|
6814 |
|
|
--
|
6815 |
|
|
-- The definition of Q6.U is illegal. However transforming Q6.U into
|
6816 |
|
|
|
6817 |
|
|
-- type BaseU is new T6;
|
6818 |
|
|
-- subtype U is BaseU (Q6.F.I)
|
6819 |
|
|
|
6820 |
|
|
-- turns U into a legal subtype, which is incorrect. To avoid this problem
|
6821 |
|
|
-- we always analyze the constraint (in this case (Q6.F.I)) before applying
|
6822 |
|
|
-- the transformation described above.
|
6823 |
|
|
|
6824 |
|
|
-- There is another instance where the above transformation is incorrect.
|
6825 |
|
|
-- Consider:
|
6826 |
|
|
|
6827 |
|
|
-- package Pack is
|
6828 |
|
|
-- type Base (D : Integer) is tagged null record;
|
6829 |
|
|
-- procedure P (X : Base);
|
6830 |
|
|
|
6831 |
|
|
-- type Der is new Base (2) with null record;
|
6832 |
|
|
-- procedure P (X : Der);
|
6833 |
|
|
-- end Pack;
|
6834 |
|
|
|
6835 |
|
|
-- Then the above transformation turns this into
|
6836 |
|
|
|
6837 |
|
|
-- type Der_Base is new Base with null record;
|
6838 |
|
|
-- -- procedure P (X : Base) is implicitly inherited here
|
6839 |
|
|
-- -- as procedure P (X : Der_Base).
|
6840 |
|
|
|
6841 |
|
|
-- subtype Der is Der_Base (2);
|
6842 |
|
|
-- procedure P (X : Der);
|
6843 |
|
|
-- -- The overriding of P (X : Der_Base) is illegal since we
|
6844 |
|
|
-- -- have a parameter conformance problem.
|
6845 |
|
|
|
6846 |
|
|
-- To get around this problem, after having semantically processed Der_Base
|
6847 |
|
|
-- and the rewritten subtype declaration for Der, we copy Der_Base field
|
6848 |
|
|
-- Discriminant_Constraint from Der so that when parameter conformance is
|
6849 |
|
|
-- checked when P is overridden, no semantic errors are flagged.
|
6850 |
|
|
|
6851 |
|
|
-- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
|
6852 |
|
|
|
6853 |
|
|
-- Regardless of whether we are dealing with a tagged or untagged type
|
6854 |
|
|
-- we will transform all derived type declarations of the form
|
6855 |
|
|
|
6856 |
|
|
-- type R (D1, .., Dn : ...) is [tagged] record ...;
|
6857 |
|
|
-- type T is new R [with ...];
|
6858 |
|
|
-- into
|
6859 |
|
|
-- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
|
6860 |
|
|
|
6861 |
|
|
-- The reason for such transformation is that it allows us to implement a
|
6862 |
|
|
-- very clean form of component inheritance as explained below.
|
6863 |
|
|
|
6864 |
|
|
-- Note that this transformation is not achieved by direct tree rewriting
|
6865 |
|
|
-- and manipulation, but rather by redoing the semantic actions that the
|
6866 |
|
|
-- above transformation will entail. This is done directly in routine
|
6867 |
|
|
-- Inherit_Components.
|
6868 |
|
|
|
6869 |
|
|
-- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
|
6870 |
|
|
|
6871 |
|
|
-- In both tagged and untagged derived types, regular non discriminant
|
6872 |
|
|
-- components are inherited in the derived type from the parent type. In
|
6873 |
|
|
-- the absence of discriminants component, inheritance is straightforward
|
6874 |
|
|
-- as components can simply be copied from the parent.
|
6875 |
|
|
|
6876 |
|
|
-- If the parent has discriminants, inheriting components constrained with
|
6877 |
|
|
-- these discriminants requires caution. Consider the following example:
|
6878 |
|
|
|
6879 |
|
|
-- type R (D1, D2 : Positive) is [tagged] record
|
6880 |
|
|
-- S : String (D1 .. D2);
|
6881 |
|
|
-- end record;
|
6882 |
|
|
|
6883 |
|
|
-- type T1 is new R [with null record];
|
6884 |
|
|
-- type T2 (X : positive) is new R (1, X) [with null record];
|
6885 |
|
|
|
6886 |
|
|
-- As explained in 6. above, T1 is rewritten as
|
6887 |
|
|
-- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
|
6888 |
|
|
-- which makes the treatment for T1 and T2 identical.
|
6889 |
|
|
|
6890 |
|
|
-- What we want when inheriting S, is that references to D1 and D2 in R are
|
6891 |
|
|
-- replaced with references to their correct constraints, i.e. D1 and D2 in
|
6892 |
|
|
-- T1 and 1 and X in T2. So all R's discriminant references are replaced
|
6893 |
|
|
-- with either discriminant references in the derived type or expressions.
|
6894 |
|
|
-- This replacement is achieved as follows: before inheriting R's
|
6895 |
|
|
-- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
|
6896 |
|
|
-- created in the scope of T1 (resp. scope of T2) so that discriminants D1
|
6897 |
|
|
-- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
|
6898 |
|
|
-- For T2, for instance, this has the effect of replacing String (D1 .. D2)
|
6899 |
|
|
-- by String (1 .. X).
|
6900 |
|
|
|
6901 |
|
|
-- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
|
6902 |
|
|
|
6903 |
|
|
-- We explain here the rules governing private type extensions relevant to
|
6904 |
|
|
-- type derivation. These rules are explained on the following example:
|
6905 |
|
|
|
6906 |
|
|
-- type D [(...)] is new A [(...)] with private; <-- partial view
|
6907 |
|
|
-- type D [(...)] is new P [(...)] with null record; <-- full view
|
6908 |
|
|
|
6909 |
|
|
-- Type A is called the ancestor subtype of the private extension.
|
6910 |
|
|
-- Type P is the parent type of the full view of the private extension. It
|
6911 |
|
|
-- must be A or a type derived from A.
|
6912 |
|
|
|
6913 |
|
|
-- The rules concerning the discriminants of private type extensions are
|
6914 |
|
|
-- [7.3(10-13)]:
|
6915 |
|
|
|
6916 |
|
|
-- o If a private extension inherits known discriminants from the ancestor
|
6917 |
|
|
-- subtype, then the full view shall also inherit its discriminants from
|
6918 |
|
|
-- the ancestor subtype and the parent subtype of the full view shall be
|
6919 |
|
|
-- constrained if and only if the ancestor subtype is constrained.
|
6920 |
|
|
|
6921 |
|
|
-- o If a partial view has unknown discriminants, then the full view may
|
6922 |
|
|
-- define a definite or an indefinite subtype, with or without
|
6923 |
|
|
-- discriminants.
|
6924 |
|
|
|
6925 |
|
|
-- o If a partial view has neither known nor unknown discriminants, then
|
6926 |
|
|
-- the full view shall define a definite subtype.
|
6927 |
|
|
|
6928 |
|
|
-- o If the ancestor subtype of a private extension has constrained
|
6929 |
|
|
-- discriminants, then the parent subtype of the full view shall impose a
|
6930 |
|
|
-- statically matching constraint on those discriminants.
|
6931 |
|
|
|
6932 |
|
|
-- This means that only the following forms of private extensions are
|
6933 |
|
|
-- allowed:
|
6934 |
|
|
|
6935 |
|
|
-- type D is new A with private; <-- partial view
|
6936 |
|
|
-- type D is new P with null record; <-- full view
|
6937 |
|
|
|
6938 |
|
|
-- If A has no discriminants than P has no discriminants, otherwise P must
|
6939 |
|
|
-- inherit A's discriminants.
|
6940 |
|
|
|
6941 |
|
|
-- type D is new A (...) with private; <-- partial view
|
6942 |
|
|
-- type D is new P (:::) with null record; <-- full view
|
6943 |
|
|
|
6944 |
|
|
-- P must inherit A's discriminants and (...) and (:::) must statically
|
6945 |
|
|
-- match.
|
6946 |
|
|
|
6947 |
|
|
-- subtype A is R (...);
|
6948 |
|
|
-- type D is new A with private; <-- partial view
|
6949 |
|
|
-- type D is new P with null record; <-- full view
|
6950 |
|
|
|
6951 |
|
|
-- P must have inherited R's discriminants and must be derived from A or
|
6952 |
|
|
-- any of its subtypes.
|
6953 |
|
|
|
6954 |
|
|
-- type D (..) is new A with private; <-- partial view
|
6955 |
|
|
-- type D (..) is new P [(:::)] with null record; <-- full view
|
6956 |
|
|
|
6957 |
|
|
-- No specific constraints on P's discriminants or constraint (:::).
|
6958 |
|
|
-- Note that A can be unconstrained, but the parent subtype P must either
|
6959 |
|
|
-- be constrained or (:::) must be present.
|
6960 |
|
|
|
6961 |
|
|
-- type D (..) is new A [(...)] with private; <-- partial view
|
6962 |
|
|
-- type D (..) is new P [(:::)] with null record; <-- full view
|
6963 |
|
|
|
6964 |
|
|
-- P's constraints on A's discriminants must statically match those
|
6965 |
|
|
-- imposed by (...).
|
6966 |
|
|
|
6967 |
|
|
-- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
|
6968 |
|
|
|
6969 |
|
|
-- The full view of a private extension is handled exactly as described
|
6970 |
|
|
-- above. The model chose for the private view of a private extension is
|
6971 |
|
|
-- the same for what concerns discriminants (i.e. they receive the same
|
6972 |
|
|
-- treatment as in the tagged case). However, the private view of the
|
6973 |
|
|
-- private extension always inherits the components of the parent base,
|
6974 |
|
|
-- without replacing any discriminant reference. Strictly speaking this is
|
6975 |
|
|
-- incorrect. However, Gigi never uses this view to generate code so this
|
6976 |
|
|
-- is a purely semantic issue. In theory, a set of transformations similar
|
6977 |
|
|
-- to those given in 5. and 6. above could be applied to private views of
|
6978 |
|
|
-- private extensions to have the same model of component inheritance as
|
6979 |
|
|
-- for non private extensions. However, this is not done because it would
|
6980 |
|
|
-- further complicate private type processing. Semantically speaking, this
|
6981 |
|
|
-- leaves us in an uncomfortable situation. As an example consider:
|
6982 |
|
|
|
6983 |
|
|
-- package Pack is
|
6984 |
|
|
-- type R (D : integer) is tagged record
|
6985 |
|
|
-- S : String (1 .. D);
|
6986 |
|
|
-- end record;
|
6987 |
|
|
-- procedure P (X : R);
|
6988 |
|
|
-- type T is new R (1) with private;
|
6989 |
|
|
-- private
|
6990 |
|
|
-- type T is new R (1) with null record;
|
6991 |
|
|
-- end;
|
6992 |
|
|
|
6993 |
|
|
-- This is transformed into:
|
6994 |
|
|
|
6995 |
|
|
-- package Pack is
|
6996 |
|
|
-- type R (D : integer) is tagged record
|
6997 |
|
|
-- S : String (1 .. D);
|
6998 |
|
|
-- end record;
|
6999 |
|
|
-- procedure P (X : R);
|
7000 |
|
|
-- type T is new R (1) with private;
|
7001 |
|
|
-- private
|
7002 |
|
|
-- type BaseT is new R with null record;
|
7003 |
|
|
-- subtype T is BaseT (1);
|
7004 |
|
|
-- end;
|
7005 |
|
|
|
7006 |
|
|
-- (strictly speaking the above is incorrect Ada)
|
7007 |
|
|
|
7008 |
|
|
-- From the semantic standpoint the private view of private extension T
|
7009 |
|
|
-- should be flagged as constrained since one can clearly have
|
7010 |
|
|
--
|
7011 |
|
|
-- Obj : T;
|
7012 |
|
|
--
|
7013 |
|
|
-- in a unit withing Pack. However, when deriving subprograms for the
|
7014 |
|
|
-- private view of private extension T, T must be seen as unconstrained
|
7015 |
|
|
-- since T has discriminants (this is a constraint of the current
|
7016 |
|
|
-- subprogram derivation model). Thus, when processing the private view of
|
7017 |
|
|
-- a private extension such as T, we first mark T as unconstrained, we
|
7018 |
|
|
-- process it, we perform program derivation and just before returning from
|
7019 |
|
|
-- Build_Derived_Record_Type we mark T as constrained.
|
7020 |
|
|
|
7021 |
|
|
-- ??? Are there are other uncomfortable cases that we will have to
|
7022 |
|
|
-- deal with.
|
7023 |
|
|
|
7024 |
|
|
-- 10. RECORD_TYPE_WITH_PRIVATE complications
|
7025 |
|
|
|
7026 |
|
|
-- Types that are derived from a visible record type and have a private
|
7027 |
|
|
-- extension present other peculiarities. They behave mostly like private
|
7028 |
|
|
-- types, but if they have primitive operations defined, these will not
|
7029 |
|
|
-- have the proper signatures for further inheritance, because other
|
7030 |
|
|
-- primitive operations will use the implicit base that we define for
|
7031 |
|
|
-- private derivations below. This affect subprogram inheritance (see
|
7032 |
|
|
-- Derive_Subprograms for details). We also derive the implicit base from
|
7033 |
|
|
-- the base type of the full view, so that the implicit base is a record
|
7034 |
|
|
-- type and not another private type, This avoids infinite loops.
|
7035 |
|
|
|
7036 |
|
|
procedure Build_Derived_Record_Type
|
7037 |
|
|
(N : Node_Id;
|
7038 |
|
|
Parent_Type : Entity_Id;
|
7039 |
|
|
Derived_Type : Entity_Id;
|
7040 |
|
|
Derive_Subps : Boolean := True)
|
7041 |
|
|
is
|
7042 |
|
|
Discriminant_Specs : constant Boolean :=
|
7043 |
|
|
Present (Discriminant_Specifications (N));
|
7044 |
|
|
Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
|
7045 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
7046 |
|
|
Private_Extension : constant Boolean :=
|
7047 |
|
|
Nkind (N) = N_Private_Extension_Declaration;
|
7048 |
|
|
Assoc_List : Elist_Id;
|
7049 |
|
|
Constraint_Present : Boolean;
|
7050 |
|
|
Constrs : Elist_Id;
|
7051 |
|
|
Discrim : Entity_Id;
|
7052 |
|
|
Indic : Node_Id;
|
7053 |
|
|
Inherit_Discrims : Boolean := False;
|
7054 |
|
|
Last_Discrim : Entity_Id;
|
7055 |
|
|
New_Base : Entity_Id;
|
7056 |
|
|
New_Decl : Node_Id;
|
7057 |
|
|
New_Discrs : Elist_Id;
|
7058 |
|
|
New_Indic : Node_Id;
|
7059 |
|
|
Parent_Base : Entity_Id;
|
7060 |
|
|
Save_Etype : Entity_Id;
|
7061 |
|
|
Save_Discr_Constr : Elist_Id;
|
7062 |
|
|
Save_Next_Entity : Entity_Id;
|
7063 |
|
|
Type_Def : Node_Id;
|
7064 |
|
|
|
7065 |
|
|
Discs : Elist_Id := New_Elmt_List;
|
7066 |
|
|
-- An empty Discs list means that there were no constraints in the
|
7067 |
|
|
-- subtype indication or that there was an error processing it.
|
7068 |
|
|
|
7069 |
|
|
begin
|
7070 |
|
|
if Ekind (Parent_Type) = E_Record_Type_With_Private
|
7071 |
|
|
and then Present (Full_View (Parent_Type))
|
7072 |
|
|
and then Has_Discriminants (Parent_Type)
|
7073 |
|
|
then
|
7074 |
|
|
Parent_Base := Base_Type (Full_View (Parent_Type));
|
7075 |
|
|
else
|
7076 |
|
|
Parent_Base := Base_Type (Parent_Type);
|
7077 |
|
|
end if;
|
7078 |
|
|
|
7079 |
|
|
-- AI05-0115 : if this is a derivation from a private type in some
|
7080 |
|
|
-- other scope that may lead to invisible components for the derived
|
7081 |
|
|
-- type, mark it accordingly.
|
7082 |
|
|
|
7083 |
|
|
if Is_Private_Type (Parent_Type) then
|
7084 |
|
|
if Scope (Parent_Type) = Scope (Derived_Type) then
|
7085 |
|
|
null;
|
7086 |
|
|
|
7087 |
|
|
elsif In_Open_Scopes (Scope (Parent_Type))
|
7088 |
|
|
and then In_Private_Part (Scope (Parent_Type))
|
7089 |
|
|
then
|
7090 |
|
|
null;
|
7091 |
|
|
|
7092 |
|
|
else
|
7093 |
|
|
Set_Has_Private_Ancestor (Derived_Type);
|
7094 |
|
|
end if;
|
7095 |
|
|
|
7096 |
|
|
else
|
7097 |
|
|
Set_Has_Private_Ancestor
|
7098 |
|
|
(Derived_Type, Has_Private_Ancestor (Parent_Type));
|
7099 |
|
|
end if;
|
7100 |
|
|
|
7101 |
|
|
-- Before we start the previously documented transformations, here is
|
7102 |
|
|
-- little fix for size and alignment of tagged types. Normally when we
|
7103 |
|
|
-- derive type D from type P, we copy the size and alignment of P as the
|
7104 |
|
|
-- default for D, and in the absence of explicit representation clauses
|
7105 |
|
|
-- for D, the size and alignment are indeed the same as the parent.
|
7106 |
|
|
|
7107 |
|
|
-- But this is wrong for tagged types, since fields may be added, and
|
7108 |
|
|
-- the default size may need to be larger, and the default alignment may
|
7109 |
|
|
-- need to be larger.
|
7110 |
|
|
|
7111 |
|
|
-- We therefore reset the size and alignment fields in the tagged case.
|
7112 |
|
|
-- Note that the size and alignment will in any case be at least as
|
7113 |
|
|
-- large as the parent type (since the derived type has a copy of the
|
7114 |
|
|
-- parent type in the _parent field)
|
7115 |
|
|
|
7116 |
|
|
-- The type is also marked as being tagged here, which is needed when
|
7117 |
|
|
-- processing components with a self-referential anonymous access type
|
7118 |
|
|
-- in the call to Check_Anonymous_Access_Components below. Note that
|
7119 |
|
|
-- this flag is also set later on for completeness.
|
7120 |
|
|
|
7121 |
|
|
if Is_Tagged then
|
7122 |
|
|
Set_Is_Tagged_Type (Derived_Type);
|
7123 |
|
|
Init_Size_Align (Derived_Type);
|
7124 |
|
|
end if;
|
7125 |
|
|
|
7126 |
|
|
-- STEP 0a: figure out what kind of derived type declaration we have
|
7127 |
|
|
|
7128 |
|
|
if Private_Extension then
|
7129 |
|
|
Type_Def := N;
|
7130 |
|
|
Set_Ekind (Derived_Type, E_Record_Type_With_Private);
|
7131 |
|
|
|
7132 |
|
|
else
|
7133 |
|
|
Type_Def := Type_Definition (N);
|
7134 |
|
|
|
7135 |
|
|
-- Ekind (Parent_Base) is not necessarily E_Record_Type since
|
7136 |
|
|
-- Parent_Base can be a private type or private extension. However,
|
7137 |
|
|
-- for tagged types with an extension the newly added fields are
|
7138 |
|
|
-- visible and hence the Derived_Type is always an E_Record_Type.
|
7139 |
|
|
-- (except that the parent may have its own private fields).
|
7140 |
|
|
-- For untagged types we preserve the Ekind of the Parent_Base.
|
7141 |
|
|
|
7142 |
|
|
if Present (Record_Extension_Part (Type_Def)) then
|
7143 |
|
|
Set_Ekind (Derived_Type, E_Record_Type);
|
7144 |
|
|
|
7145 |
|
|
-- Create internal access types for components with anonymous
|
7146 |
|
|
-- access types.
|
7147 |
|
|
|
7148 |
|
|
if Ada_Version >= Ada_2005 then
|
7149 |
|
|
Check_Anonymous_Access_Components
|
7150 |
|
|
(N, Derived_Type, Derived_Type,
|
7151 |
|
|
Component_List (Record_Extension_Part (Type_Def)));
|
7152 |
|
|
end if;
|
7153 |
|
|
|
7154 |
|
|
else
|
7155 |
|
|
Set_Ekind (Derived_Type, Ekind (Parent_Base));
|
7156 |
|
|
end if;
|
7157 |
|
|
end if;
|
7158 |
|
|
|
7159 |
|
|
-- Indic can either be an N_Identifier if the subtype indication
|
7160 |
|
|
-- contains no constraint or an N_Subtype_Indication if the subtype
|
7161 |
|
|
-- indication has a constraint.
|
7162 |
|
|
|
7163 |
|
|
Indic := Subtype_Indication (Type_Def);
|
7164 |
|
|
Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
|
7165 |
|
|
|
7166 |
|
|
-- Check that the type has visible discriminants. The type may be
|
7167 |
|
|
-- a private type with unknown discriminants whose full view has
|
7168 |
|
|
-- discriminants which are invisible.
|
7169 |
|
|
|
7170 |
|
|
if Constraint_Present then
|
7171 |
|
|
if not Has_Discriminants (Parent_Base)
|
7172 |
|
|
or else
|
7173 |
|
|
(Has_Unknown_Discriminants (Parent_Base)
|
7174 |
|
|
and then Is_Private_Type (Parent_Base))
|
7175 |
|
|
then
|
7176 |
|
|
Error_Msg_N
|
7177 |
|
|
("invalid constraint: type has no discriminant",
|
7178 |
|
|
Constraint (Indic));
|
7179 |
|
|
|
7180 |
|
|
Constraint_Present := False;
|
7181 |
|
|
Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
|
7182 |
|
|
|
7183 |
|
|
elsif Is_Constrained (Parent_Type) then
|
7184 |
|
|
Error_Msg_N
|
7185 |
|
|
("invalid constraint: parent type is already constrained",
|
7186 |
|
|
Constraint (Indic));
|
7187 |
|
|
|
7188 |
|
|
Constraint_Present := False;
|
7189 |
|
|
Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
|
7190 |
|
|
end if;
|
7191 |
|
|
end if;
|
7192 |
|
|
|
7193 |
|
|
-- STEP 0b: If needed, apply transformation given in point 5. above
|
7194 |
|
|
|
7195 |
|
|
if not Private_Extension
|
7196 |
|
|
and then Has_Discriminants (Parent_Type)
|
7197 |
|
|
and then not Discriminant_Specs
|
7198 |
|
|
and then (Is_Constrained (Parent_Type) or else Constraint_Present)
|
7199 |
|
|
then
|
7200 |
|
|
-- First, we must analyze the constraint (see comment in point 5.)
|
7201 |
|
|
|
7202 |
|
|
if Constraint_Present then
|
7203 |
|
|
New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
|
7204 |
|
|
|
7205 |
|
|
if Has_Discriminants (Derived_Type)
|
7206 |
|
|
and then Has_Private_Declaration (Derived_Type)
|
7207 |
|
|
and then Present (Discriminant_Constraint (Derived_Type))
|
7208 |
|
|
then
|
7209 |
|
|
-- Verify that constraints of the full view statically match
|
7210 |
|
|
-- those given in the partial view.
|
7211 |
|
|
|
7212 |
|
|
declare
|
7213 |
|
|
C1, C2 : Elmt_Id;
|
7214 |
|
|
|
7215 |
|
|
begin
|
7216 |
|
|
C1 := First_Elmt (New_Discrs);
|
7217 |
|
|
C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
|
7218 |
|
|
while Present (C1) and then Present (C2) loop
|
7219 |
|
|
if Fully_Conformant_Expressions (Node (C1), Node (C2))
|
7220 |
|
|
or else
|
7221 |
|
|
(Is_OK_Static_Expression (Node (C1))
|
7222 |
|
|
and then
|
7223 |
|
|
Is_OK_Static_Expression (Node (C2))
|
7224 |
|
|
and then
|
7225 |
|
|
Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
|
7226 |
|
|
then
|
7227 |
|
|
null;
|
7228 |
|
|
|
7229 |
|
|
else
|
7230 |
|
|
Error_Msg_N (
|
7231 |
|
|
"constraint not conformant to previous declaration",
|
7232 |
|
|
Node (C1));
|
7233 |
|
|
end if;
|
7234 |
|
|
|
7235 |
|
|
Next_Elmt (C1);
|
7236 |
|
|
Next_Elmt (C2);
|
7237 |
|
|
end loop;
|
7238 |
|
|
end;
|
7239 |
|
|
end if;
|
7240 |
|
|
end if;
|
7241 |
|
|
|
7242 |
|
|
-- Insert and analyze the declaration for the unconstrained base type
|
7243 |
|
|
|
7244 |
|
|
New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
|
7245 |
|
|
|
7246 |
|
|
New_Decl :=
|
7247 |
|
|
Make_Full_Type_Declaration (Loc,
|
7248 |
|
|
Defining_Identifier => New_Base,
|
7249 |
|
|
Type_Definition =>
|
7250 |
|
|
Make_Derived_Type_Definition (Loc,
|
7251 |
|
|
Abstract_Present => Abstract_Present (Type_Def),
|
7252 |
|
|
Limited_Present => Limited_Present (Type_Def),
|
7253 |
|
|
Subtype_Indication =>
|
7254 |
|
|
New_Occurrence_Of (Parent_Base, Loc),
|
7255 |
|
|
Record_Extension_Part =>
|
7256 |
|
|
Relocate_Node (Record_Extension_Part (Type_Def)),
|
7257 |
|
|
Interface_List => Interface_List (Type_Def)));
|
7258 |
|
|
|
7259 |
|
|
Set_Parent (New_Decl, Parent (N));
|
7260 |
|
|
Mark_Rewrite_Insertion (New_Decl);
|
7261 |
|
|
Insert_Before (N, New_Decl);
|
7262 |
|
|
|
7263 |
|
|
-- In the extension case, make sure ancestor is frozen appropriately
|
7264 |
|
|
-- (see also non-discriminated case below).
|
7265 |
|
|
|
7266 |
|
|
if Present (Record_Extension_Part (Type_Def))
|
7267 |
|
|
or else Is_Interface (Parent_Base)
|
7268 |
|
|
then
|
7269 |
|
|
Freeze_Before (New_Decl, Parent_Type);
|
7270 |
|
|
end if;
|
7271 |
|
|
|
7272 |
|
|
-- Note that this call passes False for the Derive_Subps parameter
|
7273 |
|
|
-- because subprogram derivation is deferred until after creating
|
7274 |
|
|
-- the subtype (see below).
|
7275 |
|
|
|
7276 |
|
|
Build_Derived_Type
|
7277 |
|
|
(New_Decl, Parent_Base, New_Base,
|
7278 |
|
|
Is_Completion => True, Derive_Subps => False);
|
7279 |
|
|
|
7280 |
|
|
-- ??? This needs re-examination to determine whether the
|
7281 |
|
|
-- above call can simply be replaced by a call to Analyze.
|
7282 |
|
|
|
7283 |
|
|
Set_Analyzed (New_Decl);
|
7284 |
|
|
|
7285 |
|
|
-- Insert and analyze the declaration for the constrained subtype
|
7286 |
|
|
|
7287 |
|
|
if Constraint_Present then
|
7288 |
|
|
New_Indic :=
|
7289 |
|
|
Make_Subtype_Indication (Loc,
|
7290 |
|
|
Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
|
7291 |
|
|
Constraint => Relocate_Node (Constraint (Indic)));
|
7292 |
|
|
|
7293 |
|
|
else
|
7294 |
|
|
declare
|
7295 |
|
|
Constr_List : constant List_Id := New_List;
|
7296 |
|
|
C : Elmt_Id;
|
7297 |
|
|
Expr : Node_Id;
|
7298 |
|
|
|
7299 |
|
|
begin
|
7300 |
|
|
C := First_Elmt (Discriminant_Constraint (Parent_Type));
|
7301 |
|
|
while Present (C) loop
|
7302 |
|
|
Expr := Node (C);
|
7303 |
|
|
|
7304 |
|
|
-- It is safe here to call New_Copy_Tree since
|
7305 |
|
|
-- Force_Evaluation was called on each constraint in
|
7306 |
|
|
-- Build_Discriminant_Constraints.
|
7307 |
|
|
|
7308 |
|
|
Append (New_Copy_Tree (Expr), To => Constr_List);
|
7309 |
|
|
|
7310 |
|
|
Next_Elmt (C);
|
7311 |
|
|
end loop;
|
7312 |
|
|
|
7313 |
|
|
New_Indic :=
|
7314 |
|
|
Make_Subtype_Indication (Loc,
|
7315 |
|
|
Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
|
7316 |
|
|
Constraint =>
|
7317 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
|
7318 |
|
|
end;
|
7319 |
|
|
end if;
|
7320 |
|
|
|
7321 |
|
|
Rewrite (N,
|
7322 |
|
|
Make_Subtype_Declaration (Loc,
|
7323 |
|
|
Defining_Identifier => Derived_Type,
|
7324 |
|
|
Subtype_Indication => New_Indic));
|
7325 |
|
|
|
7326 |
|
|
Analyze (N);
|
7327 |
|
|
|
7328 |
|
|
-- Derivation of subprograms must be delayed until the full subtype
|
7329 |
|
|
-- has been established, to ensure proper overriding of subprograms
|
7330 |
|
|
-- inherited by full types. If the derivations occurred as part of
|
7331 |
|
|
-- the call to Build_Derived_Type above, then the check for type
|
7332 |
|
|
-- conformance would fail because earlier primitive subprograms
|
7333 |
|
|
-- could still refer to the full type prior the change to the new
|
7334 |
|
|
-- subtype and hence would not match the new base type created here.
|
7335 |
|
|
-- Subprograms are not derived, however, when Derive_Subps is False
|
7336 |
|
|
-- (since otherwise there could be redundant derivations).
|
7337 |
|
|
|
7338 |
|
|
if Derive_Subps then
|
7339 |
|
|
Derive_Subprograms (Parent_Type, Derived_Type);
|
7340 |
|
|
end if;
|
7341 |
|
|
|
7342 |
|
|
-- For tagged types the Discriminant_Constraint of the new base itype
|
7343 |
|
|
-- is inherited from the first subtype so that no subtype conformance
|
7344 |
|
|
-- problem arise when the first subtype overrides primitive
|
7345 |
|
|
-- operations inherited by the implicit base type.
|
7346 |
|
|
|
7347 |
|
|
if Is_Tagged then
|
7348 |
|
|
Set_Discriminant_Constraint
|
7349 |
|
|
(New_Base, Discriminant_Constraint (Derived_Type));
|
7350 |
|
|
end if;
|
7351 |
|
|
|
7352 |
|
|
return;
|
7353 |
|
|
end if;
|
7354 |
|
|
|
7355 |
|
|
-- If we get here Derived_Type will have no discriminants or it will be
|
7356 |
|
|
-- a discriminated unconstrained base type.
|
7357 |
|
|
|
7358 |
|
|
-- STEP 1a: perform preliminary actions/checks for derived tagged types
|
7359 |
|
|
|
7360 |
|
|
if Is_Tagged then
|
7361 |
|
|
|
7362 |
|
|
-- The parent type is frozen for non-private extensions (RM 13.14(7))
|
7363 |
|
|
-- The declaration of a specific descendant of an interface type
|
7364 |
|
|
-- freezes the interface type (RM 13.14).
|
7365 |
|
|
|
7366 |
|
|
if not Private_Extension or else Is_Interface (Parent_Base) then
|
7367 |
|
|
Freeze_Before (N, Parent_Type);
|
7368 |
|
|
end if;
|
7369 |
|
|
|
7370 |
|
|
-- In Ada 2005 (AI-344), the restriction that a derived tagged type
|
7371 |
|
|
-- cannot be declared at a deeper level than its parent type is
|
7372 |
|
|
-- removed. The check on derivation within a generic body is also
|
7373 |
|
|
-- relaxed, but there's a restriction that a derived tagged type
|
7374 |
|
|
-- cannot be declared in a generic body if it's derived directly
|
7375 |
|
|
-- or indirectly from a formal type of that generic.
|
7376 |
|
|
|
7377 |
|
|
if Ada_Version >= Ada_2005 then
|
7378 |
|
|
if Present (Enclosing_Generic_Body (Derived_Type)) then
|
7379 |
|
|
declare
|
7380 |
|
|
Ancestor_Type : Entity_Id;
|
7381 |
|
|
|
7382 |
|
|
begin
|
7383 |
|
|
-- Check to see if any ancestor of the derived type is a
|
7384 |
|
|
-- formal type.
|
7385 |
|
|
|
7386 |
|
|
Ancestor_Type := Parent_Type;
|
7387 |
|
|
while not Is_Generic_Type (Ancestor_Type)
|
7388 |
|
|
and then Etype (Ancestor_Type) /= Ancestor_Type
|
7389 |
|
|
loop
|
7390 |
|
|
Ancestor_Type := Etype (Ancestor_Type);
|
7391 |
|
|
end loop;
|
7392 |
|
|
|
7393 |
|
|
-- If the derived type does have a formal type as an
|
7394 |
|
|
-- ancestor, then it's an error if the derived type is
|
7395 |
|
|
-- declared within the body of the generic unit that
|
7396 |
|
|
-- declares the formal type in its generic formal part. It's
|
7397 |
|
|
-- sufficient to check whether the ancestor type is declared
|
7398 |
|
|
-- inside the same generic body as the derived type (such as
|
7399 |
|
|
-- within a nested generic spec), in which case the
|
7400 |
|
|
-- derivation is legal. If the formal type is declared
|
7401 |
|
|
-- outside of that generic body, then it's guaranteed that
|
7402 |
|
|
-- the derived type is declared within the generic body of
|
7403 |
|
|
-- the generic unit declaring the formal type.
|
7404 |
|
|
|
7405 |
|
|
if Is_Generic_Type (Ancestor_Type)
|
7406 |
|
|
and then Enclosing_Generic_Body (Ancestor_Type) /=
|
7407 |
|
|
Enclosing_Generic_Body (Derived_Type)
|
7408 |
|
|
then
|
7409 |
|
|
Error_Msg_NE
|
7410 |
|
|
("parent type of& must not be descendant of formal type"
|
7411 |
|
|
& " of an enclosing generic body",
|
7412 |
|
|
Indic, Derived_Type);
|
7413 |
|
|
end if;
|
7414 |
|
|
end;
|
7415 |
|
|
end if;
|
7416 |
|
|
|
7417 |
|
|
elsif Type_Access_Level (Derived_Type) /=
|
7418 |
|
|
Type_Access_Level (Parent_Type)
|
7419 |
|
|
and then not Is_Generic_Type (Derived_Type)
|
7420 |
|
|
then
|
7421 |
|
|
if Is_Controlled (Parent_Type) then
|
7422 |
|
|
Error_Msg_N
|
7423 |
|
|
("controlled type must be declared at the library level",
|
7424 |
|
|
Indic);
|
7425 |
|
|
else
|
7426 |
|
|
Error_Msg_N
|
7427 |
|
|
("type extension at deeper accessibility level than parent",
|
7428 |
|
|
Indic);
|
7429 |
|
|
end if;
|
7430 |
|
|
|
7431 |
|
|
else
|
7432 |
|
|
declare
|
7433 |
|
|
GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
|
7434 |
|
|
|
7435 |
|
|
begin
|
7436 |
|
|
if Present (GB)
|
7437 |
|
|
and then GB /= Enclosing_Generic_Body (Parent_Base)
|
7438 |
|
|
then
|
7439 |
|
|
Error_Msg_NE
|
7440 |
|
|
("parent type of& must not be outside generic body"
|
7441 |
|
|
& " (RM 3.9.1(4))",
|
7442 |
|
|
Indic, Derived_Type);
|
7443 |
|
|
end if;
|
7444 |
|
|
end;
|
7445 |
|
|
end if;
|
7446 |
|
|
end if;
|
7447 |
|
|
|
7448 |
|
|
-- Ada 2005 (AI-251)
|
7449 |
|
|
|
7450 |
|
|
if Ada_Version >= Ada_2005 and then Is_Tagged then
|
7451 |
|
|
|
7452 |
|
|
-- "The declaration of a specific descendant of an interface type
|
7453 |
|
|
-- freezes the interface type" (RM 13.14).
|
7454 |
|
|
|
7455 |
|
|
declare
|
7456 |
|
|
Iface : Node_Id;
|
7457 |
|
|
begin
|
7458 |
|
|
if Is_Non_Empty_List (Interface_List (Type_Def)) then
|
7459 |
|
|
Iface := First (Interface_List (Type_Def));
|
7460 |
|
|
while Present (Iface) loop
|
7461 |
|
|
Freeze_Before (N, Etype (Iface));
|
7462 |
|
|
Next (Iface);
|
7463 |
|
|
end loop;
|
7464 |
|
|
end if;
|
7465 |
|
|
end;
|
7466 |
|
|
end if;
|
7467 |
|
|
|
7468 |
|
|
-- STEP 1b : preliminary cleanup of the full view of private types
|
7469 |
|
|
|
7470 |
|
|
-- If the type is already marked as having discriminants, then it's the
|
7471 |
|
|
-- completion of a private type or private extension and we need to
|
7472 |
|
|
-- retain the discriminants from the partial view if the current
|
7473 |
|
|
-- declaration has Discriminant_Specifications so that we can verify
|
7474 |
|
|
-- conformance. However, we must remove any existing components that
|
7475 |
|
|
-- were inherited from the parent (and attached in Copy_And_Swap)
|
7476 |
|
|
-- because the full type inherits all appropriate components anyway, and
|
7477 |
|
|
-- we do not want the partial view's components interfering.
|
7478 |
|
|
|
7479 |
|
|
if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
|
7480 |
|
|
Discrim := First_Discriminant (Derived_Type);
|
7481 |
|
|
loop
|
7482 |
|
|
Last_Discrim := Discrim;
|
7483 |
|
|
Next_Discriminant (Discrim);
|
7484 |
|
|
exit when No (Discrim);
|
7485 |
|
|
end loop;
|
7486 |
|
|
|
7487 |
|
|
Set_Last_Entity (Derived_Type, Last_Discrim);
|
7488 |
|
|
|
7489 |
|
|
-- In all other cases wipe out the list of inherited components (even
|
7490 |
|
|
-- inherited discriminants), it will be properly rebuilt here.
|
7491 |
|
|
|
7492 |
|
|
else
|
7493 |
|
|
Set_First_Entity (Derived_Type, Empty);
|
7494 |
|
|
Set_Last_Entity (Derived_Type, Empty);
|
7495 |
|
|
end if;
|
7496 |
|
|
|
7497 |
|
|
-- STEP 1c: Initialize some flags for the Derived_Type
|
7498 |
|
|
|
7499 |
|
|
-- The following flags must be initialized here so that
|
7500 |
|
|
-- Process_Discriminants can check that discriminants of tagged types do
|
7501 |
|
|
-- not have a default initial value and that access discriminants are
|
7502 |
|
|
-- only specified for limited records. For completeness, these flags are
|
7503 |
|
|
-- also initialized along with all the other flags below.
|
7504 |
|
|
|
7505 |
|
|
-- AI-419: Limitedness is not inherited from an interface parent, so to
|
7506 |
|
|
-- be limited in that case the type must be explicitly declared as
|
7507 |
|
|
-- limited. However, task and protected interfaces are always limited.
|
7508 |
|
|
|
7509 |
|
|
if Limited_Present (Type_Def) then
|
7510 |
|
|
Set_Is_Limited_Record (Derived_Type);
|
7511 |
|
|
|
7512 |
|
|
elsif Is_Limited_Record (Parent_Type)
|
7513 |
|
|
or else (Present (Full_View (Parent_Type))
|
7514 |
|
|
and then Is_Limited_Record (Full_View (Parent_Type)))
|
7515 |
|
|
then
|
7516 |
|
|
if not Is_Interface (Parent_Type)
|
7517 |
|
|
or else Is_Synchronized_Interface (Parent_Type)
|
7518 |
|
|
or else Is_Protected_Interface (Parent_Type)
|
7519 |
|
|
or else Is_Task_Interface (Parent_Type)
|
7520 |
|
|
then
|
7521 |
|
|
Set_Is_Limited_Record (Derived_Type);
|
7522 |
|
|
end if;
|
7523 |
|
|
end if;
|
7524 |
|
|
|
7525 |
|
|
-- STEP 2a: process discriminants of derived type if any
|
7526 |
|
|
|
7527 |
|
|
Push_Scope (Derived_Type);
|
7528 |
|
|
|
7529 |
|
|
if Discriminant_Specs then
|
7530 |
|
|
Set_Has_Unknown_Discriminants (Derived_Type, False);
|
7531 |
|
|
|
7532 |
|
|
-- The following call initializes fields Has_Discriminants and
|
7533 |
|
|
-- Discriminant_Constraint, unless we are processing the completion
|
7534 |
|
|
-- of a private type declaration.
|
7535 |
|
|
|
7536 |
|
|
Check_Or_Process_Discriminants (N, Derived_Type);
|
7537 |
|
|
|
7538 |
|
|
-- For untagged types, the constraint on the Parent_Type must be
|
7539 |
|
|
-- present and is used to rename the discriminants.
|
7540 |
|
|
|
7541 |
|
|
if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
|
7542 |
|
|
Error_Msg_N ("untagged parent must have discriminants", Indic);
|
7543 |
|
|
|
7544 |
|
|
elsif not Is_Tagged and then not Constraint_Present then
|
7545 |
|
|
Error_Msg_N
|
7546 |
|
|
("discriminant constraint needed for derived untagged records",
|
7547 |
|
|
Indic);
|
7548 |
|
|
|
7549 |
|
|
-- Otherwise the parent subtype must be constrained unless we have a
|
7550 |
|
|
-- private extension.
|
7551 |
|
|
|
7552 |
|
|
elsif not Constraint_Present
|
7553 |
|
|
and then not Private_Extension
|
7554 |
|
|
and then not Is_Constrained (Parent_Type)
|
7555 |
|
|
then
|
7556 |
|
|
Error_Msg_N
|
7557 |
|
|
("unconstrained type not allowed in this context", Indic);
|
7558 |
|
|
|
7559 |
|
|
elsif Constraint_Present then
|
7560 |
|
|
-- The following call sets the field Corresponding_Discriminant
|
7561 |
|
|
-- for the discriminants in the Derived_Type.
|
7562 |
|
|
|
7563 |
|
|
Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
|
7564 |
|
|
|
7565 |
|
|
-- For untagged types all new discriminants must rename
|
7566 |
|
|
-- discriminants in the parent. For private extensions new
|
7567 |
|
|
-- discriminants cannot rename old ones (implied by [7.3(13)]).
|
7568 |
|
|
|
7569 |
|
|
Discrim := First_Discriminant (Derived_Type);
|
7570 |
|
|
while Present (Discrim) loop
|
7571 |
|
|
if not Is_Tagged
|
7572 |
|
|
and then No (Corresponding_Discriminant (Discrim))
|
7573 |
|
|
then
|
7574 |
|
|
Error_Msg_N
|
7575 |
|
|
("new discriminants must constrain old ones", Discrim);
|
7576 |
|
|
|
7577 |
|
|
elsif Private_Extension
|
7578 |
|
|
and then Present (Corresponding_Discriminant (Discrim))
|
7579 |
|
|
then
|
7580 |
|
|
Error_Msg_N
|
7581 |
|
|
("only static constraints allowed for parent"
|
7582 |
|
|
& " discriminants in the partial view", Indic);
|
7583 |
|
|
exit;
|
7584 |
|
|
end if;
|
7585 |
|
|
|
7586 |
|
|
-- If a new discriminant is used in the constraint, then its
|
7587 |
|
|
-- subtype must be statically compatible with the parent
|
7588 |
|
|
-- discriminant's subtype (3.7(15)).
|
7589 |
|
|
|
7590 |
|
|
if Present (Corresponding_Discriminant (Discrim))
|
7591 |
|
|
and then
|
7592 |
|
|
not Subtypes_Statically_Compatible
|
7593 |
|
|
(Etype (Discrim),
|
7594 |
|
|
Etype (Corresponding_Discriminant (Discrim)))
|
7595 |
|
|
then
|
7596 |
|
|
Error_Msg_N
|
7597 |
|
|
("subtype must be compatible with parent discriminant",
|
7598 |
|
|
Discrim);
|
7599 |
|
|
end if;
|
7600 |
|
|
|
7601 |
|
|
Next_Discriminant (Discrim);
|
7602 |
|
|
end loop;
|
7603 |
|
|
|
7604 |
|
|
-- Check whether the constraints of the full view statically
|
7605 |
|
|
-- match those imposed by the parent subtype [7.3(13)].
|
7606 |
|
|
|
7607 |
|
|
if Present (Stored_Constraint (Derived_Type)) then
|
7608 |
|
|
declare
|
7609 |
|
|
C1, C2 : Elmt_Id;
|
7610 |
|
|
|
7611 |
|
|
begin
|
7612 |
|
|
C1 := First_Elmt (Discs);
|
7613 |
|
|
C2 := First_Elmt (Stored_Constraint (Derived_Type));
|
7614 |
|
|
while Present (C1) and then Present (C2) loop
|
7615 |
|
|
if not
|
7616 |
|
|
Fully_Conformant_Expressions (Node (C1), Node (C2))
|
7617 |
|
|
then
|
7618 |
|
|
Error_Msg_N
|
7619 |
|
|
("not conformant with previous declaration",
|
7620 |
|
|
Node (C1));
|
7621 |
|
|
end if;
|
7622 |
|
|
|
7623 |
|
|
Next_Elmt (C1);
|
7624 |
|
|
Next_Elmt (C2);
|
7625 |
|
|
end loop;
|
7626 |
|
|
end;
|
7627 |
|
|
end if;
|
7628 |
|
|
end if;
|
7629 |
|
|
|
7630 |
|
|
-- STEP 2b: No new discriminants, inherit discriminants if any
|
7631 |
|
|
|
7632 |
|
|
else
|
7633 |
|
|
if Private_Extension then
|
7634 |
|
|
Set_Has_Unknown_Discriminants
|
7635 |
|
|
(Derived_Type,
|
7636 |
|
|
Has_Unknown_Discriminants (Parent_Type)
|
7637 |
|
|
or else Unknown_Discriminants_Present (N));
|
7638 |
|
|
|
7639 |
|
|
-- The partial view of the parent may have unknown discriminants,
|
7640 |
|
|
-- but if the full view has discriminants and the parent type is
|
7641 |
|
|
-- in scope they must be inherited.
|
7642 |
|
|
|
7643 |
|
|
elsif Has_Unknown_Discriminants (Parent_Type)
|
7644 |
|
|
and then
|
7645 |
|
|
(not Has_Discriminants (Parent_Type)
|
7646 |
|
|
or else not In_Open_Scopes (Scope (Parent_Type)))
|
7647 |
|
|
then
|
7648 |
|
|
Set_Has_Unknown_Discriminants (Derived_Type);
|
7649 |
|
|
end if;
|
7650 |
|
|
|
7651 |
|
|
if not Has_Unknown_Discriminants (Derived_Type)
|
7652 |
|
|
and then not Has_Unknown_Discriminants (Parent_Base)
|
7653 |
|
|
and then Has_Discriminants (Parent_Type)
|
7654 |
|
|
then
|
7655 |
|
|
Inherit_Discrims := True;
|
7656 |
|
|
Set_Has_Discriminants
|
7657 |
|
|
(Derived_Type, True);
|
7658 |
|
|
Set_Discriminant_Constraint
|
7659 |
|
|
(Derived_Type, Discriminant_Constraint (Parent_Base));
|
7660 |
|
|
end if;
|
7661 |
|
|
|
7662 |
|
|
-- The following test is true for private types (remember
|
7663 |
|
|
-- transformation 5. is not applied to those) and in an error
|
7664 |
|
|
-- situation.
|
7665 |
|
|
|
7666 |
|
|
if Constraint_Present then
|
7667 |
|
|
Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
|
7668 |
|
|
end if;
|
7669 |
|
|
|
7670 |
|
|
-- For now mark a new derived type as constrained only if it has no
|
7671 |
|
|
-- discriminants. At the end of Build_Derived_Record_Type we properly
|
7672 |
|
|
-- set this flag in the case of private extensions. See comments in
|
7673 |
|
|
-- point 9. just before body of Build_Derived_Record_Type.
|
7674 |
|
|
|
7675 |
|
|
Set_Is_Constrained
|
7676 |
|
|
(Derived_Type,
|
7677 |
|
|
not (Inherit_Discrims
|
7678 |
|
|
or else Has_Unknown_Discriminants (Derived_Type)));
|
7679 |
|
|
end if;
|
7680 |
|
|
|
7681 |
|
|
-- STEP 3: initialize fields of derived type
|
7682 |
|
|
|
7683 |
|
|
Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
|
7684 |
|
|
Set_Stored_Constraint (Derived_Type, No_Elist);
|
7685 |
|
|
|
7686 |
|
|
-- Ada 2005 (AI-251): Private type-declarations can implement interfaces
|
7687 |
|
|
-- but cannot be interfaces
|
7688 |
|
|
|
7689 |
|
|
if not Private_Extension
|
7690 |
|
|
and then Ekind (Derived_Type) /= E_Private_Type
|
7691 |
|
|
and then Ekind (Derived_Type) /= E_Limited_Private_Type
|
7692 |
|
|
then
|
7693 |
|
|
if Interface_Present (Type_Def) then
|
7694 |
|
|
Analyze_Interface_Declaration (Derived_Type, Type_Def);
|
7695 |
|
|
end if;
|
7696 |
|
|
|
7697 |
|
|
Set_Interfaces (Derived_Type, No_Elist);
|
7698 |
|
|
end if;
|
7699 |
|
|
|
7700 |
|
|
-- Fields inherited from the Parent_Type
|
7701 |
|
|
|
7702 |
|
|
Set_Discard_Names
|
7703 |
|
|
(Derived_Type, Einfo.Discard_Names (Parent_Type));
|
7704 |
|
|
Set_Has_Specified_Layout
|
7705 |
|
|
(Derived_Type, Has_Specified_Layout (Parent_Type));
|
7706 |
|
|
Set_Is_Limited_Composite
|
7707 |
|
|
(Derived_Type, Is_Limited_Composite (Parent_Type));
|
7708 |
|
|
Set_Is_Private_Composite
|
7709 |
|
|
(Derived_Type, Is_Private_Composite (Parent_Type));
|
7710 |
|
|
|
7711 |
|
|
-- Fields inherited from the Parent_Base
|
7712 |
|
|
|
7713 |
|
|
Set_Has_Controlled_Component
|
7714 |
|
|
(Derived_Type, Has_Controlled_Component (Parent_Base));
|
7715 |
|
|
Set_Has_Non_Standard_Rep
|
7716 |
|
|
(Derived_Type, Has_Non_Standard_Rep (Parent_Base));
|
7717 |
|
|
Set_Has_Primitive_Operations
|
7718 |
|
|
(Derived_Type, Has_Primitive_Operations (Parent_Base));
|
7719 |
|
|
|
7720 |
|
|
-- Fields inherited from the Parent_Base in the non-private case
|
7721 |
|
|
|
7722 |
|
|
if Ekind (Derived_Type) = E_Record_Type then
|
7723 |
|
|
Set_Has_Complex_Representation
|
7724 |
|
|
(Derived_Type, Has_Complex_Representation (Parent_Base));
|
7725 |
|
|
end if;
|
7726 |
|
|
|
7727 |
|
|
-- Fields inherited from the Parent_Base for record types
|
7728 |
|
|
|
7729 |
|
|
if Is_Record_Type (Derived_Type) then
|
7730 |
|
|
|
7731 |
|
|
-- Ekind (Parent_Base) is not necessarily E_Record_Type since
|
7732 |
|
|
-- Parent_Base can be a private type or private extension.
|
7733 |
|
|
|
7734 |
|
|
if Present (Full_View (Parent_Base)) then
|
7735 |
|
|
Set_OK_To_Reorder_Components
|
7736 |
|
|
(Derived_Type,
|
7737 |
|
|
OK_To_Reorder_Components (Full_View (Parent_Base)));
|
7738 |
|
|
Set_Reverse_Bit_Order
|
7739 |
|
|
(Derived_Type, Reverse_Bit_Order (Full_View (Parent_Base)));
|
7740 |
|
|
else
|
7741 |
|
|
Set_OK_To_Reorder_Components
|
7742 |
|
|
(Derived_Type, OK_To_Reorder_Components (Parent_Base));
|
7743 |
|
|
Set_Reverse_Bit_Order
|
7744 |
|
|
(Derived_Type, Reverse_Bit_Order (Parent_Base));
|
7745 |
|
|
end if;
|
7746 |
|
|
end if;
|
7747 |
|
|
|
7748 |
|
|
-- Direct controlled types do not inherit Finalize_Storage_Only flag
|
7749 |
|
|
|
7750 |
|
|
if not Is_Controlled (Parent_Type) then
|
7751 |
|
|
Set_Finalize_Storage_Only
|
7752 |
|
|
(Derived_Type, Finalize_Storage_Only (Parent_Type));
|
7753 |
|
|
end if;
|
7754 |
|
|
|
7755 |
|
|
-- Set fields for private derived types
|
7756 |
|
|
|
7757 |
|
|
if Is_Private_Type (Derived_Type) then
|
7758 |
|
|
Set_Depends_On_Private (Derived_Type, True);
|
7759 |
|
|
Set_Private_Dependents (Derived_Type, New_Elmt_List);
|
7760 |
|
|
|
7761 |
|
|
-- Inherit fields from non private record types. If this is the
|
7762 |
|
|
-- completion of a derivation from a private type, the parent itself
|
7763 |
|
|
-- is private, and the attributes come from its full view, which must
|
7764 |
|
|
-- be present.
|
7765 |
|
|
|
7766 |
|
|
else
|
7767 |
|
|
if Is_Private_Type (Parent_Base)
|
7768 |
|
|
and then not Is_Record_Type (Parent_Base)
|
7769 |
|
|
then
|
7770 |
|
|
Set_Component_Alignment
|
7771 |
|
|
(Derived_Type, Component_Alignment (Full_View (Parent_Base)));
|
7772 |
|
|
Set_C_Pass_By_Copy
|
7773 |
|
|
(Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
|
7774 |
|
|
else
|
7775 |
|
|
Set_Component_Alignment
|
7776 |
|
|
(Derived_Type, Component_Alignment (Parent_Base));
|
7777 |
|
|
Set_C_Pass_By_Copy
|
7778 |
|
|
(Derived_Type, C_Pass_By_Copy (Parent_Base));
|
7779 |
|
|
end if;
|
7780 |
|
|
end if;
|
7781 |
|
|
|
7782 |
|
|
-- Set fields for tagged types
|
7783 |
|
|
|
7784 |
|
|
if Is_Tagged then
|
7785 |
|
|
Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
|
7786 |
|
|
|
7787 |
|
|
-- All tagged types defined in Ada.Finalization are controlled
|
7788 |
|
|
|
7789 |
|
|
if Chars (Scope (Derived_Type)) = Name_Finalization
|
7790 |
|
|
and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
|
7791 |
|
|
and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
|
7792 |
|
|
then
|
7793 |
|
|
Set_Is_Controlled (Derived_Type);
|
7794 |
|
|
else
|
7795 |
|
|
Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
|
7796 |
|
|
end if;
|
7797 |
|
|
|
7798 |
|
|
-- Minor optimization: there is no need to generate the class-wide
|
7799 |
|
|
-- entity associated with an underlying record view.
|
7800 |
|
|
|
7801 |
|
|
if not Is_Underlying_Record_View (Derived_Type) then
|
7802 |
|
|
Make_Class_Wide_Type (Derived_Type);
|
7803 |
|
|
end if;
|
7804 |
|
|
|
7805 |
|
|
Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
|
7806 |
|
|
|
7807 |
|
|
if Has_Discriminants (Derived_Type)
|
7808 |
|
|
and then Constraint_Present
|
7809 |
|
|
then
|
7810 |
|
|
Set_Stored_Constraint
|
7811 |
|
|
(Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
|
7812 |
|
|
end if;
|
7813 |
|
|
|
7814 |
|
|
if Ada_Version >= Ada_2005 then
|
7815 |
|
|
declare
|
7816 |
|
|
Ifaces_List : Elist_Id;
|
7817 |
|
|
|
7818 |
|
|
begin
|
7819 |
|
|
-- Checks rules 3.9.4 (13/2 and 14/2)
|
7820 |
|
|
|
7821 |
|
|
if Comes_From_Source (Derived_Type)
|
7822 |
|
|
and then not Is_Private_Type (Derived_Type)
|
7823 |
|
|
and then Is_Interface (Parent_Type)
|
7824 |
|
|
and then not Is_Interface (Derived_Type)
|
7825 |
|
|
then
|
7826 |
|
|
if Is_Task_Interface (Parent_Type) then
|
7827 |
|
|
Error_Msg_N
|
7828 |
|
|
("(Ada 2005) task type required (RM 3.9.4 (13.2))",
|
7829 |
|
|
Derived_Type);
|
7830 |
|
|
|
7831 |
|
|
elsif Is_Protected_Interface (Parent_Type) then
|
7832 |
|
|
Error_Msg_N
|
7833 |
|
|
("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
|
7834 |
|
|
Derived_Type);
|
7835 |
|
|
end if;
|
7836 |
|
|
end if;
|
7837 |
|
|
|
7838 |
|
|
-- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
|
7839 |
|
|
|
7840 |
|
|
Check_Interfaces (N, Type_Def);
|
7841 |
|
|
|
7842 |
|
|
-- Ada 2005 (AI-251): Collect the list of progenitors that are
|
7843 |
|
|
-- not already in the parents.
|
7844 |
|
|
|
7845 |
|
|
Collect_Interfaces
|
7846 |
|
|
(T => Derived_Type,
|
7847 |
|
|
Ifaces_List => Ifaces_List,
|
7848 |
|
|
Exclude_Parents => True);
|
7849 |
|
|
|
7850 |
|
|
Set_Interfaces (Derived_Type, Ifaces_List);
|
7851 |
|
|
|
7852 |
|
|
-- If the derived type is the anonymous type created for
|
7853 |
|
|
-- a declaration whose parent has a constraint, propagate
|
7854 |
|
|
-- the interface list to the source type. This must be done
|
7855 |
|
|
-- prior to the completion of the analysis of the source type
|
7856 |
|
|
-- because the components in the extension may contain current
|
7857 |
|
|
-- instances whose legality depends on some ancestor.
|
7858 |
|
|
|
7859 |
|
|
if Is_Itype (Derived_Type) then
|
7860 |
|
|
declare
|
7861 |
|
|
Def : constant Node_Id :=
|
7862 |
|
|
Associated_Node_For_Itype (Derived_Type);
|
7863 |
|
|
begin
|
7864 |
|
|
if Present (Def)
|
7865 |
|
|
and then Nkind (Def) = N_Full_Type_Declaration
|
7866 |
|
|
then
|
7867 |
|
|
Set_Interfaces
|
7868 |
|
|
(Defining_Identifier (Def), Ifaces_List);
|
7869 |
|
|
end if;
|
7870 |
|
|
end;
|
7871 |
|
|
end if;
|
7872 |
|
|
end;
|
7873 |
|
|
end if;
|
7874 |
|
|
|
7875 |
|
|
else
|
7876 |
|
|
Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
|
7877 |
|
|
Set_Has_Non_Standard_Rep
|
7878 |
|
|
(Derived_Type, Has_Non_Standard_Rep (Parent_Base));
|
7879 |
|
|
end if;
|
7880 |
|
|
|
7881 |
|
|
-- STEP 4: Inherit components from the parent base and constrain them.
|
7882 |
|
|
-- Apply the second transformation described in point 6. above.
|
7883 |
|
|
|
7884 |
|
|
if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
|
7885 |
|
|
or else not Has_Discriminants (Parent_Type)
|
7886 |
|
|
or else not Is_Constrained (Parent_Type)
|
7887 |
|
|
then
|
7888 |
|
|
Constrs := Discs;
|
7889 |
|
|
else
|
7890 |
|
|
Constrs := Discriminant_Constraint (Parent_Type);
|
7891 |
|
|
end if;
|
7892 |
|
|
|
7893 |
|
|
Assoc_List :=
|
7894 |
|
|
Inherit_Components
|
7895 |
|
|
(N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
|
7896 |
|
|
|
7897 |
|
|
-- STEP 5a: Copy the parent record declaration for untagged types
|
7898 |
|
|
|
7899 |
|
|
if not Is_Tagged then
|
7900 |
|
|
|
7901 |
|
|
-- Discriminant_Constraint (Derived_Type) has been properly
|
7902 |
|
|
-- constructed. Save it and temporarily set it to Empty because we
|
7903 |
|
|
-- do not want the call to New_Copy_Tree below to mess this list.
|
7904 |
|
|
|
7905 |
|
|
if Has_Discriminants (Derived_Type) then
|
7906 |
|
|
Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
|
7907 |
|
|
Set_Discriminant_Constraint (Derived_Type, No_Elist);
|
7908 |
|
|
else
|
7909 |
|
|
Save_Discr_Constr := No_Elist;
|
7910 |
|
|
end if;
|
7911 |
|
|
|
7912 |
|
|
-- Save the Etype field of Derived_Type. It is correctly set now,
|
7913 |
|
|
-- but the call to New_Copy tree may remap it to point to itself,
|
7914 |
|
|
-- which is not what we want. Ditto for the Next_Entity field.
|
7915 |
|
|
|
7916 |
|
|
Save_Etype := Etype (Derived_Type);
|
7917 |
|
|
Save_Next_Entity := Next_Entity (Derived_Type);
|
7918 |
|
|
|
7919 |
|
|
-- Assoc_List maps all stored discriminants in the Parent_Base to
|
7920 |
|
|
-- stored discriminants in the Derived_Type. It is fundamental that
|
7921 |
|
|
-- no types or itypes with discriminants other than the stored
|
7922 |
|
|
-- discriminants appear in the entities declared inside
|
7923 |
|
|
-- Derived_Type, since the back end cannot deal with it.
|
7924 |
|
|
|
7925 |
|
|
New_Decl :=
|
7926 |
|
|
New_Copy_Tree
|
7927 |
|
|
(Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
|
7928 |
|
|
|
7929 |
|
|
-- Restore the fields saved prior to the New_Copy_Tree call
|
7930 |
|
|
-- and compute the stored constraint.
|
7931 |
|
|
|
7932 |
|
|
Set_Etype (Derived_Type, Save_Etype);
|
7933 |
|
|
Set_Next_Entity (Derived_Type, Save_Next_Entity);
|
7934 |
|
|
|
7935 |
|
|
if Has_Discriminants (Derived_Type) then
|
7936 |
|
|
Set_Discriminant_Constraint
|
7937 |
|
|
(Derived_Type, Save_Discr_Constr);
|
7938 |
|
|
Set_Stored_Constraint
|
7939 |
|
|
(Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
|
7940 |
|
|
Replace_Components (Derived_Type, New_Decl);
|
7941 |
|
|
Set_Has_Implicit_Dereference
|
7942 |
|
|
(Derived_Type, Has_Implicit_Dereference (Parent_Type));
|
7943 |
|
|
end if;
|
7944 |
|
|
|
7945 |
|
|
-- Insert the new derived type declaration
|
7946 |
|
|
|
7947 |
|
|
Rewrite (N, New_Decl);
|
7948 |
|
|
|
7949 |
|
|
-- STEP 5b: Complete the processing for record extensions in generics
|
7950 |
|
|
|
7951 |
|
|
-- There is no completion for record extensions declared in the
|
7952 |
|
|
-- parameter part of a generic, so we need to complete processing for
|
7953 |
|
|
-- these generic record extensions here. The Record_Type_Definition call
|
7954 |
|
|
-- will change the Ekind of the components from E_Void to E_Component.
|
7955 |
|
|
|
7956 |
|
|
elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
|
7957 |
|
|
Record_Type_Definition (Empty, Derived_Type);
|
7958 |
|
|
|
7959 |
|
|
-- STEP 5c: Process the record extension for non private tagged types
|
7960 |
|
|
|
7961 |
|
|
elsif not Private_Extension then
|
7962 |
|
|
|
7963 |
|
|
-- Add the _parent field in the derived type
|
7964 |
|
|
|
7965 |
|
|
Expand_Record_Extension (Derived_Type, Type_Def);
|
7966 |
|
|
|
7967 |
|
|
-- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
|
7968 |
|
|
-- implemented interfaces if we are in expansion mode
|
7969 |
|
|
|
7970 |
|
|
if Expander_Active
|
7971 |
|
|
and then Has_Interfaces (Derived_Type)
|
7972 |
|
|
then
|
7973 |
|
|
Add_Interface_Tag_Components (N, Derived_Type);
|
7974 |
|
|
end if;
|
7975 |
|
|
|
7976 |
|
|
-- Analyze the record extension
|
7977 |
|
|
|
7978 |
|
|
Record_Type_Definition
|
7979 |
|
|
(Record_Extension_Part (Type_Def), Derived_Type);
|
7980 |
|
|
end if;
|
7981 |
|
|
|
7982 |
|
|
End_Scope;
|
7983 |
|
|
|
7984 |
|
|
-- Nothing else to do if there is an error in the derivation.
|
7985 |
|
|
-- An unusual case: the full view may be derived from a type in an
|
7986 |
|
|
-- instance, when the partial view was used illegally as an actual
|
7987 |
|
|
-- in that instance, leading to a circular definition.
|
7988 |
|
|
|
7989 |
|
|
if Etype (Derived_Type) = Any_Type
|
7990 |
|
|
or else Etype (Parent_Type) = Derived_Type
|
7991 |
|
|
then
|
7992 |
|
|
return;
|
7993 |
|
|
end if;
|
7994 |
|
|
|
7995 |
|
|
-- Set delayed freeze and then derive subprograms, we need to do
|
7996 |
|
|
-- this in this order so that derived subprograms inherit the
|
7997 |
|
|
-- derived freeze if necessary.
|
7998 |
|
|
|
7999 |
|
|
Set_Has_Delayed_Freeze (Derived_Type);
|
8000 |
|
|
|
8001 |
|
|
if Derive_Subps then
|
8002 |
|
|
Derive_Subprograms (Parent_Type, Derived_Type);
|
8003 |
|
|
end if;
|
8004 |
|
|
|
8005 |
|
|
-- If we have a private extension which defines a constrained derived
|
8006 |
|
|
-- type mark as constrained here after we have derived subprograms. See
|
8007 |
|
|
-- comment on point 9. just above the body of Build_Derived_Record_Type.
|
8008 |
|
|
|
8009 |
|
|
if Private_Extension and then Inherit_Discrims then
|
8010 |
|
|
if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
|
8011 |
|
|
Set_Is_Constrained (Derived_Type, True);
|
8012 |
|
|
Set_Discriminant_Constraint (Derived_Type, Discs);
|
8013 |
|
|
|
8014 |
|
|
elsif Is_Constrained (Parent_Type) then
|
8015 |
|
|
Set_Is_Constrained
|
8016 |
|
|
(Derived_Type, True);
|
8017 |
|
|
Set_Discriminant_Constraint
|
8018 |
|
|
(Derived_Type, Discriminant_Constraint (Parent_Type));
|
8019 |
|
|
end if;
|
8020 |
|
|
end if;
|
8021 |
|
|
|
8022 |
|
|
-- Update the class-wide type, which shares the now-completed entity
|
8023 |
|
|
-- list with its specific type. In case of underlying record views,
|
8024 |
|
|
-- we do not generate the corresponding class wide entity.
|
8025 |
|
|
|
8026 |
|
|
if Is_Tagged
|
8027 |
|
|
and then not Is_Underlying_Record_View (Derived_Type)
|
8028 |
|
|
then
|
8029 |
|
|
Set_First_Entity
|
8030 |
|
|
(Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
|
8031 |
|
|
Set_Last_Entity
|
8032 |
|
|
(Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
|
8033 |
|
|
end if;
|
8034 |
|
|
end Build_Derived_Record_Type;
|
8035 |
|
|
|
8036 |
|
|
------------------------
|
8037 |
|
|
-- Build_Derived_Type --
|
8038 |
|
|
------------------------
|
8039 |
|
|
|
8040 |
|
|
procedure Build_Derived_Type
|
8041 |
|
|
(N : Node_Id;
|
8042 |
|
|
Parent_Type : Entity_Id;
|
8043 |
|
|
Derived_Type : Entity_Id;
|
8044 |
|
|
Is_Completion : Boolean;
|
8045 |
|
|
Derive_Subps : Boolean := True)
|
8046 |
|
|
is
|
8047 |
|
|
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
|
8048 |
|
|
|
8049 |
|
|
begin
|
8050 |
|
|
-- Set common attributes
|
8051 |
|
|
|
8052 |
|
|
Set_Scope (Derived_Type, Current_Scope);
|
8053 |
|
|
|
8054 |
|
|
Set_Ekind (Derived_Type, Ekind (Parent_Base));
|
8055 |
|
|
Set_Etype (Derived_Type, Parent_Base);
|
8056 |
|
|
Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
|
8057 |
|
|
|
8058 |
|
|
Set_Size_Info (Derived_Type, Parent_Type);
|
8059 |
|
|
Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
|
8060 |
|
|
Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
|
8061 |
|
|
Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
|
8062 |
|
|
|
8063 |
|
|
-- If the parent type is a private subtype, the convention on the base
|
8064 |
|
|
-- type may be set in the private part, and not propagated to the
|
8065 |
|
|
-- subtype until later, so we obtain the convention from the base type.
|
8066 |
|
|
|
8067 |
|
|
Set_Convention (Derived_Type, Convention (Parent_Base));
|
8068 |
|
|
|
8069 |
|
|
-- Propagate invariant information. The new type has invariants if
|
8070 |
|
|
-- they are inherited from the parent type, and these invariants can
|
8071 |
|
|
-- be further inherited, so both flags are set.
|
8072 |
|
|
|
8073 |
|
|
if Has_Inheritable_Invariants (Parent_Type) then
|
8074 |
|
|
Set_Has_Inheritable_Invariants (Derived_Type);
|
8075 |
|
|
Set_Has_Invariants (Derived_Type);
|
8076 |
|
|
end if;
|
8077 |
|
|
|
8078 |
|
|
-- We similarly inherit predicates
|
8079 |
|
|
|
8080 |
|
|
if Has_Predicates (Parent_Type) then
|
8081 |
|
|
Set_Has_Predicates (Derived_Type);
|
8082 |
|
|
end if;
|
8083 |
|
|
|
8084 |
|
|
-- The derived type inherits the representation clauses of the parent.
|
8085 |
|
|
-- However, for a private type that is completed by a derivation, there
|
8086 |
|
|
-- may be operation attributes that have been specified already (stream
|
8087 |
|
|
-- attributes and External_Tag) and those must be provided. Finally,
|
8088 |
|
|
-- if the partial view is a private extension, the representation items
|
8089 |
|
|
-- of the parent have been inherited already, and should not be chained
|
8090 |
|
|
-- twice to the derived type.
|
8091 |
|
|
|
8092 |
|
|
if Is_Tagged_Type (Parent_Type)
|
8093 |
|
|
and then Present (First_Rep_Item (Derived_Type))
|
8094 |
|
|
then
|
8095 |
|
|
-- The existing items are either operational items or items inherited
|
8096 |
|
|
-- from a private extension declaration.
|
8097 |
|
|
|
8098 |
|
|
declare
|
8099 |
|
|
Rep : Node_Id;
|
8100 |
|
|
-- Used to iterate over representation items of the derived type
|
8101 |
|
|
|
8102 |
|
|
Last_Rep : Node_Id;
|
8103 |
|
|
-- Last representation item of the (non-empty) representation
|
8104 |
|
|
-- item list of the derived type.
|
8105 |
|
|
|
8106 |
|
|
Found : Boolean := False;
|
8107 |
|
|
|
8108 |
|
|
begin
|
8109 |
|
|
Rep := First_Rep_Item (Derived_Type);
|
8110 |
|
|
Last_Rep := Rep;
|
8111 |
|
|
while Present (Rep) loop
|
8112 |
|
|
if Rep = First_Rep_Item (Parent_Type) then
|
8113 |
|
|
Found := True;
|
8114 |
|
|
exit;
|
8115 |
|
|
|
8116 |
|
|
else
|
8117 |
|
|
Rep := Next_Rep_Item (Rep);
|
8118 |
|
|
|
8119 |
|
|
if Present (Rep) then
|
8120 |
|
|
Last_Rep := Rep;
|
8121 |
|
|
end if;
|
8122 |
|
|
end if;
|
8123 |
|
|
end loop;
|
8124 |
|
|
|
8125 |
|
|
-- Here if we either encountered the parent type's first rep
|
8126 |
|
|
-- item on the derived type's rep item list (in which case
|
8127 |
|
|
-- Found is True, and we have nothing else to do), or if we
|
8128 |
|
|
-- reached the last rep item of the derived type, which is
|
8129 |
|
|
-- Last_Rep, in which case we further chain the parent type's
|
8130 |
|
|
-- rep items to those of the derived type.
|
8131 |
|
|
|
8132 |
|
|
if not Found then
|
8133 |
|
|
Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
|
8134 |
|
|
end if;
|
8135 |
|
|
end;
|
8136 |
|
|
|
8137 |
|
|
else
|
8138 |
|
|
Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
|
8139 |
|
|
end if;
|
8140 |
|
|
|
8141 |
|
|
case Ekind (Parent_Type) is
|
8142 |
|
|
when Numeric_Kind =>
|
8143 |
|
|
Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
|
8144 |
|
|
|
8145 |
|
|
when Array_Kind =>
|
8146 |
|
|
Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
|
8147 |
|
|
|
8148 |
|
|
when E_Record_Type
|
8149 |
|
|
| E_Record_Subtype
|
8150 |
|
|
| Class_Wide_Kind =>
|
8151 |
|
|
Build_Derived_Record_Type
|
8152 |
|
|
(N, Parent_Type, Derived_Type, Derive_Subps);
|
8153 |
|
|
return;
|
8154 |
|
|
|
8155 |
|
|
when Enumeration_Kind =>
|
8156 |
|
|
Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
|
8157 |
|
|
|
8158 |
|
|
when Access_Kind =>
|
8159 |
|
|
Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
|
8160 |
|
|
|
8161 |
|
|
when Incomplete_Or_Private_Kind =>
|
8162 |
|
|
Build_Derived_Private_Type
|
8163 |
|
|
(N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
|
8164 |
|
|
|
8165 |
|
|
-- For discriminated types, the derivation includes deriving
|
8166 |
|
|
-- primitive operations. For others it is done below.
|
8167 |
|
|
|
8168 |
|
|
if Is_Tagged_Type (Parent_Type)
|
8169 |
|
|
or else Has_Discriminants (Parent_Type)
|
8170 |
|
|
or else (Present (Full_View (Parent_Type))
|
8171 |
|
|
and then Has_Discriminants (Full_View (Parent_Type)))
|
8172 |
|
|
then
|
8173 |
|
|
return;
|
8174 |
|
|
end if;
|
8175 |
|
|
|
8176 |
|
|
when Concurrent_Kind =>
|
8177 |
|
|
Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
|
8178 |
|
|
|
8179 |
|
|
when others =>
|
8180 |
|
|
raise Program_Error;
|
8181 |
|
|
end case;
|
8182 |
|
|
|
8183 |
|
|
if Etype (Derived_Type) = Any_Type then
|
8184 |
|
|
return;
|
8185 |
|
|
end if;
|
8186 |
|
|
|
8187 |
|
|
-- Set delayed freeze and then derive subprograms, we need to do this
|
8188 |
|
|
-- in this order so that derived subprograms inherit the derived freeze
|
8189 |
|
|
-- if necessary.
|
8190 |
|
|
|
8191 |
|
|
Set_Has_Delayed_Freeze (Derived_Type);
|
8192 |
|
|
if Derive_Subps then
|
8193 |
|
|
Derive_Subprograms (Parent_Type, Derived_Type);
|
8194 |
|
|
end if;
|
8195 |
|
|
|
8196 |
|
|
Set_Has_Primitive_Operations
|
8197 |
|
|
(Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
|
8198 |
|
|
end Build_Derived_Type;
|
8199 |
|
|
|
8200 |
|
|
-----------------------
|
8201 |
|
|
-- Build_Discriminal --
|
8202 |
|
|
-----------------------
|
8203 |
|
|
|
8204 |
|
|
procedure Build_Discriminal (Discrim : Entity_Id) is
|
8205 |
|
|
D_Minal : Entity_Id;
|
8206 |
|
|
CR_Disc : Entity_Id;
|
8207 |
|
|
|
8208 |
|
|
begin
|
8209 |
|
|
-- A discriminal has the same name as the discriminant
|
8210 |
|
|
|
8211 |
|
|
D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
|
8212 |
|
|
|
8213 |
|
|
Set_Ekind (D_Minal, E_In_Parameter);
|
8214 |
|
|
Set_Mechanism (D_Minal, Default_Mechanism);
|
8215 |
|
|
Set_Etype (D_Minal, Etype (Discrim));
|
8216 |
|
|
Set_Scope (D_Minal, Current_Scope);
|
8217 |
|
|
|
8218 |
|
|
Set_Discriminal (Discrim, D_Minal);
|
8219 |
|
|
Set_Discriminal_Link (D_Minal, Discrim);
|
8220 |
|
|
|
8221 |
|
|
-- For task types, build at once the discriminants of the corresponding
|
8222 |
|
|
-- record, which are needed if discriminants are used in entry defaults
|
8223 |
|
|
-- and in family bounds.
|
8224 |
|
|
|
8225 |
|
|
if Is_Concurrent_Type (Current_Scope)
|
8226 |
|
|
or else Is_Limited_Type (Current_Scope)
|
8227 |
|
|
then
|
8228 |
|
|
CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
|
8229 |
|
|
|
8230 |
|
|
Set_Ekind (CR_Disc, E_In_Parameter);
|
8231 |
|
|
Set_Mechanism (CR_Disc, Default_Mechanism);
|
8232 |
|
|
Set_Etype (CR_Disc, Etype (Discrim));
|
8233 |
|
|
Set_Scope (CR_Disc, Current_Scope);
|
8234 |
|
|
Set_Discriminal_Link (CR_Disc, Discrim);
|
8235 |
|
|
Set_CR_Discriminant (Discrim, CR_Disc);
|
8236 |
|
|
end if;
|
8237 |
|
|
end Build_Discriminal;
|
8238 |
|
|
|
8239 |
|
|
------------------------------------
|
8240 |
|
|
-- Build_Discriminant_Constraints --
|
8241 |
|
|
------------------------------------
|
8242 |
|
|
|
8243 |
|
|
function Build_Discriminant_Constraints
|
8244 |
|
|
(T : Entity_Id;
|
8245 |
|
|
Def : Node_Id;
|
8246 |
|
|
Derived_Def : Boolean := False) return Elist_Id
|
8247 |
|
|
is
|
8248 |
|
|
C : constant Node_Id := Constraint (Def);
|
8249 |
|
|
Nb_Discr : constant Nat := Number_Discriminants (T);
|
8250 |
|
|
|
8251 |
|
|
Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
|
8252 |
|
|
-- Saves the expression corresponding to a given discriminant in T
|
8253 |
|
|
|
8254 |
|
|
function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
|
8255 |
|
|
-- Return the Position number within array Discr_Expr of a discriminant
|
8256 |
|
|
-- D within the discriminant list of the discriminated type T.
|
8257 |
|
|
|
8258 |
|
|
------------------
|
8259 |
|
|
-- Pos_Of_Discr --
|
8260 |
|
|
------------------
|
8261 |
|
|
|
8262 |
|
|
function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
|
8263 |
|
|
Disc : Entity_Id;
|
8264 |
|
|
|
8265 |
|
|
begin
|
8266 |
|
|
Disc := First_Discriminant (T);
|
8267 |
|
|
for J in Discr_Expr'Range loop
|
8268 |
|
|
if Disc = D then
|
8269 |
|
|
return J;
|
8270 |
|
|
end if;
|
8271 |
|
|
|
8272 |
|
|
Next_Discriminant (Disc);
|
8273 |
|
|
end loop;
|
8274 |
|
|
|
8275 |
|
|
-- Note: Since this function is called on discriminants that are
|
8276 |
|
|
-- known to belong to the discriminated type, falling through the
|
8277 |
|
|
-- loop with no match signals an internal compiler error.
|
8278 |
|
|
|
8279 |
|
|
raise Program_Error;
|
8280 |
|
|
end Pos_Of_Discr;
|
8281 |
|
|
|
8282 |
|
|
-- Declarations local to Build_Discriminant_Constraints
|
8283 |
|
|
|
8284 |
|
|
Discr : Entity_Id;
|
8285 |
|
|
E : Entity_Id;
|
8286 |
|
|
Elist : constant Elist_Id := New_Elmt_List;
|
8287 |
|
|
|
8288 |
|
|
Constr : Node_Id;
|
8289 |
|
|
Expr : Node_Id;
|
8290 |
|
|
Id : Node_Id;
|
8291 |
|
|
Position : Nat;
|
8292 |
|
|
Found : Boolean;
|
8293 |
|
|
|
8294 |
|
|
Discrim_Present : Boolean := False;
|
8295 |
|
|
|
8296 |
|
|
-- Start of processing for Build_Discriminant_Constraints
|
8297 |
|
|
|
8298 |
|
|
begin
|
8299 |
|
|
-- The following loop will process positional associations only.
|
8300 |
|
|
-- For a positional association, the (single) discriminant is
|
8301 |
|
|
-- implicitly specified by position, in textual order (RM 3.7.2).
|
8302 |
|
|
|
8303 |
|
|
Discr := First_Discriminant (T);
|
8304 |
|
|
Constr := First (Constraints (C));
|
8305 |
|
|
for D in Discr_Expr'Range loop
|
8306 |
|
|
exit when Nkind (Constr) = N_Discriminant_Association;
|
8307 |
|
|
|
8308 |
|
|
if No (Constr) then
|
8309 |
|
|
Error_Msg_N ("too few discriminants given in constraint", C);
|
8310 |
|
|
return New_Elmt_List;
|
8311 |
|
|
|
8312 |
|
|
elsif Nkind (Constr) = N_Range
|
8313 |
|
|
or else (Nkind (Constr) = N_Attribute_Reference
|
8314 |
|
|
and then
|
8315 |
|
|
Attribute_Name (Constr) = Name_Range)
|
8316 |
|
|
then
|
8317 |
|
|
Error_Msg_N
|
8318 |
|
|
("a range is not a valid discriminant constraint", Constr);
|
8319 |
|
|
Discr_Expr (D) := Error;
|
8320 |
|
|
|
8321 |
|
|
else
|
8322 |
|
|
Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
|
8323 |
|
|
Discr_Expr (D) := Constr;
|
8324 |
|
|
end if;
|
8325 |
|
|
|
8326 |
|
|
Next_Discriminant (Discr);
|
8327 |
|
|
Next (Constr);
|
8328 |
|
|
end loop;
|
8329 |
|
|
|
8330 |
|
|
if No (Discr) and then Present (Constr) then
|
8331 |
|
|
Error_Msg_N ("too many discriminants given in constraint", Constr);
|
8332 |
|
|
return New_Elmt_List;
|
8333 |
|
|
end if;
|
8334 |
|
|
|
8335 |
|
|
-- Named associations can be given in any order, but if both positional
|
8336 |
|
|
-- and named associations are used in the same discriminant constraint,
|
8337 |
|
|
-- then positional associations must occur first, at their normal
|
8338 |
|
|
-- position. Hence once a named association is used, the rest of the
|
8339 |
|
|
-- discriminant constraint must use only named associations.
|
8340 |
|
|
|
8341 |
|
|
while Present (Constr) loop
|
8342 |
|
|
|
8343 |
|
|
-- Positional association forbidden after a named association
|
8344 |
|
|
|
8345 |
|
|
if Nkind (Constr) /= N_Discriminant_Association then
|
8346 |
|
|
Error_Msg_N ("positional association follows named one", Constr);
|
8347 |
|
|
return New_Elmt_List;
|
8348 |
|
|
|
8349 |
|
|
-- Otherwise it is a named association
|
8350 |
|
|
|
8351 |
|
|
else
|
8352 |
|
|
-- E records the type of the discriminants in the named
|
8353 |
|
|
-- association. All the discriminants specified in the same name
|
8354 |
|
|
-- association must have the same type.
|
8355 |
|
|
|
8356 |
|
|
E := Empty;
|
8357 |
|
|
|
8358 |
|
|
-- Search the list of discriminants in T to see if the simple name
|
8359 |
|
|
-- given in the constraint matches any of them.
|
8360 |
|
|
|
8361 |
|
|
Id := First (Selector_Names (Constr));
|
8362 |
|
|
while Present (Id) loop
|
8363 |
|
|
Found := False;
|
8364 |
|
|
|
8365 |
|
|
-- If Original_Discriminant is present, we are processing a
|
8366 |
|
|
-- generic instantiation and this is an instance node. We need
|
8367 |
|
|
-- to find the name of the corresponding discriminant in the
|
8368 |
|
|
-- actual record type T and not the name of the discriminant in
|
8369 |
|
|
-- the generic formal. Example:
|
8370 |
|
|
|
8371 |
|
|
-- generic
|
8372 |
|
|
-- type G (D : int) is private;
|
8373 |
|
|
-- package P is
|
8374 |
|
|
-- subtype W is G (D => 1);
|
8375 |
|
|
-- end package;
|
8376 |
|
|
-- type Rec (X : int) is record ... end record;
|
8377 |
|
|
-- package Q is new P (G => Rec);
|
8378 |
|
|
|
8379 |
|
|
-- At the point of the instantiation, formal type G is Rec
|
8380 |
|
|
-- and therefore when reanalyzing "subtype W is G (D => 1);"
|
8381 |
|
|
-- which really looks like "subtype W is Rec (D => 1);" at
|
8382 |
|
|
-- the point of instantiation, we want to find the discriminant
|
8383 |
|
|
-- that corresponds to D in Rec, i.e. X.
|
8384 |
|
|
|
8385 |
|
|
if Present (Original_Discriminant (Id))
|
8386 |
|
|
and then In_Instance
|
8387 |
|
|
then
|
8388 |
|
|
Discr := Find_Corresponding_Discriminant (Id, T);
|
8389 |
|
|
Found := True;
|
8390 |
|
|
|
8391 |
|
|
else
|
8392 |
|
|
Discr := First_Discriminant (T);
|
8393 |
|
|
while Present (Discr) loop
|
8394 |
|
|
if Chars (Discr) = Chars (Id) then
|
8395 |
|
|
Found := True;
|
8396 |
|
|
exit;
|
8397 |
|
|
end if;
|
8398 |
|
|
|
8399 |
|
|
Next_Discriminant (Discr);
|
8400 |
|
|
end loop;
|
8401 |
|
|
|
8402 |
|
|
if not Found then
|
8403 |
|
|
Error_Msg_N ("& does not match any discriminant", Id);
|
8404 |
|
|
return New_Elmt_List;
|
8405 |
|
|
|
8406 |
|
|
-- If the parent type is a generic formal, preserve the
|
8407 |
|
|
-- name of the discriminant for subsequent instances.
|
8408 |
|
|
-- see comment at the beginning of this if statement.
|
8409 |
|
|
|
8410 |
|
|
elsif Is_Generic_Type (Root_Type (T)) then
|
8411 |
|
|
Set_Original_Discriminant (Id, Discr);
|
8412 |
|
|
end if;
|
8413 |
|
|
end if;
|
8414 |
|
|
|
8415 |
|
|
Position := Pos_Of_Discr (T, Discr);
|
8416 |
|
|
|
8417 |
|
|
if Present (Discr_Expr (Position)) then
|
8418 |
|
|
Error_Msg_N ("duplicate constraint for discriminant&", Id);
|
8419 |
|
|
|
8420 |
|
|
else
|
8421 |
|
|
-- Each discriminant specified in the same named association
|
8422 |
|
|
-- must be associated with a separate copy of the
|
8423 |
|
|
-- corresponding expression.
|
8424 |
|
|
|
8425 |
|
|
if Present (Next (Id)) then
|
8426 |
|
|
Expr := New_Copy_Tree (Expression (Constr));
|
8427 |
|
|
Set_Parent (Expr, Parent (Expression (Constr)));
|
8428 |
|
|
else
|
8429 |
|
|
Expr := Expression (Constr);
|
8430 |
|
|
end if;
|
8431 |
|
|
|
8432 |
|
|
Discr_Expr (Position) := Expr;
|
8433 |
|
|
Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
|
8434 |
|
|
end if;
|
8435 |
|
|
|
8436 |
|
|
-- A discriminant association with more than one discriminant
|
8437 |
|
|
-- name is only allowed if the named discriminants are all of
|
8438 |
|
|
-- the same type (RM 3.7.1(8)).
|
8439 |
|
|
|
8440 |
|
|
if E = Empty then
|
8441 |
|
|
E := Base_Type (Etype (Discr));
|
8442 |
|
|
|
8443 |
|
|
elsif Base_Type (Etype (Discr)) /= E then
|
8444 |
|
|
Error_Msg_N
|
8445 |
|
|
("all discriminants in an association " &
|
8446 |
|
|
"must have the same type", Id);
|
8447 |
|
|
end if;
|
8448 |
|
|
|
8449 |
|
|
Next (Id);
|
8450 |
|
|
end loop;
|
8451 |
|
|
end if;
|
8452 |
|
|
|
8453 |
|
|
Next (Constr);
|
8454 |
|
|
end loop;
|
8455 |
|
|
|
8456 |
|
|
-- A discriminant constraint must provide exactly one value for each
|
8457 |
|
|
-- discriminant of the type (RM 3.7.1(8)).
|
8458 |
|
|
|
8459 |
|
|
for J in Discr_Expr'Range loop
|
8460 |
|
|
if No (Discr_Expr (J)) then
|
8461 |
|
|
Error_Msg_N ("too few discriminants given in constraint", C);
|
8462 |
|
|
return New_Elmt_List;
|
8463 |
|
|
end if;
|
8464 |
|
|
end loop;
|
8465 |
|
|
|
8466 |
|
|
-- Determine if there are discriminant expressions in the constraint
|
8467 |
|
|
|
8468 |
|
|
for J in Discr_Expr'Range loop
|
8469 |
|
|
if Denotes_Discriminant
|
8470 |
|
|
(Discr_Expr (J), Check_Concurrent => True)
|
8471 |
|
|
then
|
8472 |
|
|
Discrim_Present := True;
|
8473 |
|
|
end if;
|
8474 |
|
|
end loop;
|
8475 |
|
|
|
8476 |
|
|
-- Build an element list consisting of the expressions given in the
|
8477 |
|
|
-- discriminant constraint and apply the appropriate checks. The list
|
8478 |
|
|
-- is constructed after resolving any named discriminant associations
|
8479 |
|
|
-- and therefore the expressions appear in the textual order of the
|
8480 |
|
|
-- discriminants.
|
8481 |
|
|
|
8482 |
|
|
Discr := First_Discriminant (T);
|
8483 |
|
|
for J in Discr_Expr'Range loop
|
8484 |
|
|
if Discr_Expr (J) /= Error then
|
8485 |
|
|
Append_Elmt (Discr_Expr (J), Elist);
|
8486 |
|
|
|
8487 |
|
|
-- If any of the discriminant constraints is given by a
|
8488 |
|
|
-- discriminant and we are in a derived type declaration we
|
8489 |
|
|
-- have a discriminant renaming. Establish link between new
|
8490 |
|
|
-- and old discriminant.
|
8491 |
|
|
|
8492 |
|
|
if Denotes_Discriminant (Discr_Expr (J)) then
|
8493 |
|
|
if Derived_Def then
|
8494 |
|
|
Set_Corresponding_Discriminant
|
8495 |
|
|
(Entity (Discr_Expr (J)), Discr);
|
8496 |
|
|
end if;
|
8497 |
|
|
|
8498 |
|
|
-- Force the evaluation of non-discriminant expressions.
|
8499 |
|
|
-- If we have found a discriminant in the constraint 3.4(26)
|
8500 |
|
|
-- and 3.8(18) demand that no range checks are performed are
|
8501 |
|
|
-- after evaluation. If the constraint is for a component
|
8502 |
|
|
-- definition that has a per-object constraint, expressions are
|
8503 |
|
|
-- evaluated but not checked either. In all other cases perform
|
8504 |
|
|
-- a range check.
|
8505 |
|
|
|
8506 |
|
|
else
|
8507 |
|
|
if Discrim_Present then
|
8508 |
|
|
null;
|
8509 |
|
|
|
8510 |
|
|
elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
|
8511 |
|
|
and then
|
8512 |
|
|
Has_Per_Object_Constraint
|
8513 |
|
|
(Defining_Identifier (Parent (Parent (Def))))
|
8514 |
|
|
then
|
8515 |
|
|
null;
|
8516 |
|
|
|
8517 |
|
|
elsif Is_Access_Type (Etype (Discr)) then
|
8518 |
|
|
Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
|
8519 |
|
|
|
8520 |
|
|
else
|
8521 |
|
|
Apply_Range_Check (Discr_Expr (J), Etype (Discr));
|
8522 |
|
|
end if;
|
8523 |
|
|
|
8524 |
|
|
Force_Evaluation (Discr_Expr (J));
|
8525 |
|
|
end if;
|
8526 |
|
|
|
8527 |
|
|
-- Check that the designated type of an access discriminant's
|
8528 |
|
|
-- expression is not a class-wide type unless the discriminant's
|
8529 |
|
|
-- designated type is also class-wide.
|
8530 |
|
|
|
8531 |
|
|
if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
|
8532 |
|
|
and then not Is_Class_Wide_Type
|
8533 |
|
|
(Designated_Type (Etype (Discr)))
|
8534 |
|
|
and then Etype (Discr_Expr (J)) /= Any_Type
|
8535 |
|
|
and then Is_Class_Wide_Type
|
8536 |
|
|
(Designated_Type (Etype (Discr_Expr (J))))
|
8537 |
|
|
then
|
8538 |
|
|
Wrong_Type (Discr_Expr (J), Etype (Discr));
|
8539 |
|
|
|
8540 |
|
|
elsif Is_Access_Type (Etype (Discr))
|
8541 |
|
|
and then not Is_Access_Constant (Etype (Discr))
|
8542 |
|
|
and then Is_Access_Type (Etype (Discr_Expr (J)))
|
8543 |
|
|
and then Is_Access_Constant (Etype (Discr_Expr (J)))
|
8544 |
|
|
then
|
8545 |
|
|
Error_Msg_NE
|
8546 |
|
|
("constraint for discriminant& must be access to variable",
|
8547 |
|
|
Def, Discr);
|
8548 |
|
|
end if;
|
8549 |
|
|
end if;
|
8550 |
|
|
|
8551 |
|
|
Next_Discriminant (Discr);
|
8552 |
|
|
end loop;
|
8553 |
|
|
|
8554 |
|
|
return Elist;
|
8555 |
|
|
end Build_Discriminant_Constraints;
|
8556 |
|
|
|
8557 |
|
|
---------------------------------
|
8558 |
|
|
-- Build_Discriminated_Subtype --
|
8559 |
|
|
---------------------------------
|
8560 |
|
|
|
8561 |
|
|
procedure Build_Discriminated_Subtype
|
8562 |
|
|
(T : Entity_Id;
|
8563 |
|
|
Def_Id : Entity_Id;
|
8564 |
|
|
Elist : Elist_Id;
|
8565 |
|
|
Related_Nod : Node_Id;
|
8566 |
|
|
For_Access : Boolean := False)
|
8567 |
|
|
is
|
8568 |
|
|
Has_Discrs : constant Boolean := Has_Discriminants (T);
|
8569 |
|
|
Constrained : constant Boolean :=
|
8570 |
|
|
(Has_Discrs
|
8571 |
|
|
and then not Is_Empty_Elmt_List (Elist)
|
8572 |
|
|
and then not Is_Class_Wide_Type (T))
|
8573 |
|
|
or else Is_Constrained (T);
|
8574 |
|
|
|
8575 |
|
|
begin
|
8576 |
|
|
if Ekind (T) = E_Record_Type then
|
8577 |
|
|
if For_Access then
|
8578 |
|
|
Set_Ekind (Def_Id, E_Private_Subtype);
|
8579 |
|
|
Set_Is_For_Access_Subtype (Def_Id, True);
|
8580 |
|
|
else
|
8581 |
|
|
Set_Ekind (Def_Id, E_Record_Subtype);
|
8582 |
|
|
end if;
|
8583 |
|
|
|
8584 |
|
|
-- Inherit preelaboration flag from base, for types for which it
|
8585 |
|
|
-- may have been set: records, private types, protected types.
|
8586 |
|
|
|
8587 |
|
|
Set_Known_To_Have_Preelab_Init
|
8588 |
|
|
(Def_Id, Known_To_Have_Preelab_Init (T));
|
8589 |
|
|
|
8590 |
|
|
elsif Ekind (T) = E_Task_Type then
|
8591 |
|
|
Set_Ekind (Def_Id, E_Task_Subtype);
|
8592 |
|
|
|
8593 |
|
|
elsif Ekind (T) = E_Protected_Type then
|
8594 |
|
|
Set_Ekind (Def_Id, E_Protected_Subtype);
|
8595 |
|
|
Set_Known_To_Have_Preelab_Init
|
8596 |
|
|
(Def_Id, Known_To_Have_Preelab_Init (T));
|
8597 |
|
|
|
8598 |
|
|
elsif Is_Private_Type (T) then
|
8599 |
|
|
Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
|
8600 |
|
|
Set_Known_To_Have_Preelab_Init
|
8601 |
|
|
(Def_Id, Known_To_Have_Preelab_Init (T));
|
8602 |
|
|
|
8603 |
|
|
elsif Is_Class_Wide_Type (T) then
|
8604 |
|
|
Set_Ekind (Def_Id, E_Class_Wide_Subtype);
|
8605 |
|
|
|
8606 |
|
|
else
|
8607 |
|
|
-- Incomplete type. Attach subtype to list of dependents, to be
|
8608 |
|
|
-- completed with full view of parent type, unless is it the
|
8609 |
|
|
-- designated subtype of a record component within an init_proc.
|
8610 |
|
|
-- This last case arises for a component of an access type whose
|
8611 |
|
|
-- designated type is incomplete (e.g. a Taft Amendment type).
|
8612 |
|
|
-- The designated subtype is within an inner scope, and needs no
|
8613 |
|
|
-- elaboration, because only the access type is needed in the
|
8614 |
|
|
-- initialization procedure.
|
8615 |
|
|
|
8616 |
|
|
Set_Ekind (Def_Id, Ekind (T));
|
8617 |
|
|
|
8618 |
|
|
if For_Access and then Within_Init_Proc then
|
8619 |
|
|
null;
|
8620 |
|
|
else
|
8621 |
|
|
Append_Elmt (Def_Id, Private_Dependents (T));
|
8622 |
|
|
end if;
|
8623 |
|
|
end if;
|
8624 |
|
|
|
8625 |
|
|
Set_Etype (Def_Id, T);
|
8626 |
|
|
Init_Size_Align (Def_Id);
|
8627 |
|
|
Set_Has_Discriminants (Def_Id, Has_Discrs);
|
8628 |
|
|
Set_Is_Constrained (Def_Id, Constrained);
|
8629 |
|
|
|
8630 |
|
|
Set_First_Entity (Def_Id, First_Entity (T));
|
8631 |
|
|
Set_Last_Entity (Def_Id, Last_Entity (T));
|
8632 |
|
|
Set_Has_Implicit_Dereference
|
8633 |
|
|
(Def_Id, Has_Implicit_Dereference (T));
|
8634 |
|
|
|
8635 |
|
|
-- If the subtype is the completion of a private declaration, there may
|
8636 |
|
|
-- have been representation clauses for the partial view, and they must
|
8637 |
|
|
-- be preserved. Build_Derived_Type chains the inherited clauses with
|
8638 |
|
|
-- the ones appearing on the extension. If this comes from a subtype
|
8639 |
|
|
-- declaration, all clauses are inherited.
|
8640 |
|
|
|
8641 |
|
|
if No (First_Rep_Item (Def_Id)) then
|
8642 |
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
8643 |
|
|
end if;
|
8644 |
|
|
|
8645 |
|
|
if Is_Tagged_Type (T) then
|
8646 |
|
|
Set_Is_Tagged_Type (Def_Id);
|
8647 |
|
|
Make_Class_Wide_Type (Def_Id);
|
8648 |
|
|
end if;
|
8649 |
|
|
|
8650 |
|
|
Set_Stored_Constraint (Def_Id, No_Elist);
|
8651 |
|
|
|
8652 |
|
|
if Has_Discrs then
|
8653 |
|
|
Set_Discriminant_Constraint (Def_Id, Elist);
|
8654 |
|
|
Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
|
8655 |
|
|
end if;
|
8656 |
|
|
|
8657 |
|
|
if Is_Tagged_Type (T) then
|
8658 |
|
|
|
8659 |
|
|
-- Ada 2005 (AI-251): In case of concurrent types we inherit the
|
8660 |
|
|
-- concurrent record type (which has the list of primitive
|
8661 |
|
|
-- operations).
|
8662 |
|
|
|
8663 |
|
|
if Ada_Version >= Ada_2005
|
8664 |
|
|
and then Is_Concurrent_Type (T)
|
8665 |
|
|
then
|
8666 |
|
|
Set_Corresponding_Record_Type (Def_Id,
|
8667 |
|
|
Corresponding_Record_Type (T));
|
8668 |
|
|
else
|
8669 |
|
|
Set_Direct_Primitive_Operations (Def_Id,
|
8670 |
|
|
Direct_Primitive_Operations (T));
|
8671 |
|
|
end if;
|
8672 |
|
|
|
8673 |
|
|
Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
|
8674 |
|
|
end if;
|
8675 |
|
|
|
8676 |
|
|
-- Subtypes introduced by component declarations do not need to be
|
8677 |
|
|
-- marked as delayed, and do not get freeze nodes, because the semantics
|
8678 |
|
|
-- verifies that the parents of the subtypes are frozen before the
|
8679 |
|
|
-- enclosing record is frozen.
|
8680 |
|
|
|
8681 |
|
|
if not Is_Type (Scope (Def_Id)) then
|
8682 |
|
|
Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
|
8683 |
|
|
|
8684 |
|
|
if Is_Private_Type (T)
|
8685 |
|
|
and then Present (Full_View (T))
|
8686 |
|
|
then
|
8687 |
|
|
Conditional_Delay (Def_Id, Full_View (T));
|
8688 |
|
|
else
|
8689 |
|
|
Conditional_Delay (Def_Id, T);
|
8690 |
|
|
end if;
|
8691 |
|
|
end if;
|
8692 |
|
|
|
8693 |
|
|
if Is_Record_Type (T) then
|
8694 |
|
|
Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
|
8695 |
|
|
|
8696 |
|
|
if Has_Discrs
|
8697 |
|
|
and then not Is_Empty_Elmt_List (Elist)
|
8698 |
|
|
and then not For_Access
|
8699 |
|
|
then
|
8700 |
|
|
Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
|
8701 |
|
|
elsif not For_Access then
|
8702 |
|
|
Set_Cloned_Subtype (Def_Id, T);
|
8703 |
|
|
end if;
|
8704 |
|
|
end if;
|
8705 |
|
|
end Build_Discriminated_Subtype;
|
8706 |
|
|
|
8707 |
|
|
---------------------------
|
8708 |
|
|
-- Build_Itype_Reference --
|
8709 |
|
|
---------------------------
|
8710 |
|
|
|
8711 |
|
|
procedure Build_Itype_Reference
|
8712 |
|
|
(Ityp : Entity_Id;
|
8713 |
|
|
Nod : Node_Id)
|
8714 |
|
|
is
|
8715 |
|
|
IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
|
8716 |
|
|
begin
|
8717 |
|
|
|
8718 |
|
|
-- Itype references are only created for use by the back-end
|
8719 |
|
|
|
8720 |
|
|
if Inside_A_Generic then
|
8721 |
|
|
return;
|
8722 |
|
|
else
|
8723 |
|
|
Set_Itype (IR, Ityp);
|
8724 |
|
|
Insert_After (Nod, IR);
|
8725 |
|
|
end if;
|
8726 |
|
|
end Build_Itype_Reference;
|
8727 |
|
|
|
8728 |
|
|
------------------------
|
8729 |
|
|
-- Build_Scalar_Bound --
|
8730 |
|
|
------------------------
|
8731 |
|
|
|
8732 |
|
|
function Build_Scalar_Bound
|
8733 |
|
|
(Bound : Node_Id;
|
8734 |
|
|
Par_T : Entity_Id;
|
8735 |
|
|
Der_T : Entity_Id) return Node_Id
|
8736 |
|
|
is
|
8737 |
|
|
New_Bound : Entity_Id;
|
8738 |
|
|
|
8739 |
|
|
begin
|
8740 |
|
|
-- Note: not clear why this is needed, how can the original bound
|
8741 |
|
|
-- be unanalyzed at this point? and if it is, what business do we
|
8742 |
|
|
-- have messing around with it? and why is the base type of the
|
8743 |
|
|
-- parent type the right type for the resolution. It probably is
|
8744 |
|
|
-- not! It is OK for the new bound we are creating, but not for
|
8745 |
|
|
-- the old one??? Still if it never happens, no problem!
|
8746 |
|
|
|
8747 |
|
|
Analyze_And_Resolve (Bound, Base_Type (Par_T));
|
8748 |
|
|
|
8749 |
|
|
if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
|
8750 |
|
|
New_Bound := New_Copy (Bound);
|
8751 |
|
|
Set_Etype (New_Bound, Der_T);
|
8752 |
|
|
Set_Analyzed (New_Bound);
|
8753 |
|
|
|
8754 |
|
|
elsif Is_Entity_Name (Bound) then
|
8755 |
|
|
New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
|
8756 |
|
|
|
8757 |
|
|
-- The following is almost certainly wrong. What business do we have
|
8758 |
|
|
-- relocating a node (Bound) that is presumably still attached to
|
8759 |
|
|
-- the tree elsewhere???
|
8760 |
|
|
|
8761 |
|
|
else
|
8762 |
|
|
New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
|
8763 |
|
|
end if;
|
8764 |
|
|
|
8765 |
|
|
Set_Etype (New_Bound, Der_T);
|
8766 |
|
|
return New_Bound;
|
8767 |
|
|
end Build_Scalar_Bound;
|
8768 |
|
|
|
8769 |
|
|
--------------------------------
|
8770 |
|
|
-- Build_Underlying_Full_View --
|
8771 |
|
|
--------------------------------
|
8772 |
|
|
|
8773 |
|
|
procedure Build_Underlying_Full_View
|
8774 |
|
|
(N : Node_Id;
|
8775 |
|
|
Typ : Entity_Id;
|
8776 |
|
|
Par : Entity_Id)
|
8777 |
|
|
is
|
8778 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
8779 |
|
|
Subt : constant Entity_Id :=
|
8780 |
|
|
Make_Defining_Identifier
|
8781 |
|
|
(Loc, New_External_Name (Chars (Typ), 'S'));
|
8782 |
|
|
|
8783 |
|
|
Constr : Node_Id;
|
8784 |
|
|
Indic : Node_Id;
|
8785 |
|
|
C : Node_Id;
|
8786 |
|
|
Id : Node_Id;
|
8787 |
|
|
|
8788 |
|
|
procedure Set_Discriminant_Name (Id : Node_Id);
|
8789 |
|
|
-- If the derived type has discriminants, they may rename discriminants
|
8790 |
|
|
-- of the parent. When building the full view of the parent, we need to
|
8791 |
|
|
-- recover the names of the original discriminants if the constraint is
|
8792 |
|
|
-- given by named associations.
|
8793 |
|
|
|
8794 |
|
|
---------------------------
|
8795 |
|
|
-- Set_Discriminant_Name --
|
8796 |
|
|
---------------------------
|
8797 |
|
|
|
8798 |
|
|
procedure Set_Discriminant_Name (Id : Node_Id) is
|
8799 |
|
|
Disc : Entity_Id;
|
8800 |
|
|
|
8801 |
|
|
begin
|
8802 |
|
|
Set_Original_Discriminant (Id, Empty);
|
8803 |
|
|
|
8804 |
|
|
if Has_Discriminants (Typ) then
|
8805 |
|
|
Disc := First_Discriminant (Typ);
|
8806 |
|
|
while Present (Disc) loop
|
8807 |
|
|
if Chars (Disc) = Chars (Id)
|
8808 |
|
|
and then Present (Corresponding_Discriminant (Disc))
|
8809 |
|
|
then
|
8810 |
|
|
Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
|
8811 |
|
|
end if;
|
8812 |
|
|
Next_Discriminant (Disc);
|
8813 |
|
|
end loop;
|
8814 |
|
|
end if;
|
8815 |
|
|
end Set_Discriminant_Name;
|
8816 |
|
|
|
8817 |
|
|
-- Start of processing for Build_Underlying_Full_View
|
8818 |
|
|
|
8819 |
|
|
begin
|
8820 |
|
|
if Nkind (N) = N_Full_Type_Declaration then
|
8821 |
|
|
Constr := Constraint (Subtype_Indication (Type_Definition (N)));
|
8822 |
|
|
|
8823 |
|
|
elsif Nkind (N) = N_Subtype_Declaration then
|
8824 |
|
|
Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
|
8825 |
|
|
|
8826 |
|
|
elsif Nkind (N) = N_Component_Declaration then
|
8827 |
|
|
Constr :=
|
8828 |
|
|
New_Copy_Tree
|
8829 |
|
|
(Constraint (Subtype_Indication (Component_Definition (N))));
|
8830 |
|
|
|
8831 |
|
|
else
|
8832 |
|
|
raise Program_Error;
|
8833 |
|
|
end if;
|
8834 |
|
|
|
8835 |
|
|
C := First (Constraints (Constr));
|
8836 |
|
|
while Present (C) loop
|
8837 |
|
|
if Nkind (C) = N_Discriminant_Association then
|
8838 |
|
|
Id := First (Selector_Names (C));
|
8839 |
|
|
while Present (Id) loop
|
8840 |
|
|
Set_Discriminant_Name (Id);
|
8841 |
|
|
Next (Id);
|
8842 |
|
|
end loop;
|
8843 |
|
|
end if;
|
8844 |
|
|
|
8845 |
|
|
Next (C);
|
8846 |
|
|
end loop;
|
8847 |
|
|
|
8848 |
|
|
Indic :=
|
8849 |
|
|
Make_Subtype_Declaration (Loc,
|
8850 |
|
|
Defining_Identifier => Subt,
|
8851 |
|
|
Subtype_Indication =>
|
8852 |
|
|
Make_Subtype_Indication (Loc,
|
8853 |
|
|
Subtype_Mark => New_Reference_To (Par, Loc),
|
8854 |
|
|
Constraint => New_Copy_Tree (Constr)));
|
8855 |
|
|
|
8856 |
|
|
-- If this is a component subtype for an outer itype, it is not
|
8857 |
|
|
-- a list member, so simply set the parent link for analysis: if
|
8858 |
|
|
-- the enclosing type does not need to be in a declarative list,
|
8859 |
|
|
-- neither do the components.
|
8860 |
|
|
|
8861 |
|
|
if Is_List_Member (N)
|
8862 |
|
|
and then Nkind (N) /= N_Component_Declaration
|
8863 |
|
|
then
|
8864 |
|
|
Insert_Before (N, Indic);
|
8865 |
|
|
else
|
8866 |
|
|
Set_Parent (Indic, Parent (N));
|
8867 |
|
|
end if;
|
8868 |
|
|
|
8869 |
|
|
Analyze (Indic);
|
8870 |
|
|
Set_Underlying_Full_View (Typ, Full_View (Subt));
|
8871 |
|
|
end Build_Underlying_Full_View;
|
8872 |
|
|
|
8873 |
|
|
-------------------------------
|
8874 |
|
|
-- Check_Abstract_Overriding --
|
8875 |
|
|
-------------------------------
|
8876 |
|
|
|
8877 |
|
|
procedure Check_Abstract_Overriding (T : Entity_Id) is
|
8878 |
|
|
Alias_Subp : Entity_Id;
|
8879 |
|
|
Elmt : Elmt_Id;
|
8880 |
|
|
Op_List : Elist_Id;
|
8881 |
|
|
Subp : Entity_Id;
|
8882 |
|
|
Type_Def : Node_Id;
|
8883 |
|
|
|
8884 |
|
|
procedure Check_Pragma_Implemented (Subp : Entity_Id);
|
8885 |
|
|
-- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
|
8886 |
|
|
-- which has pragma Implemented already set. Check whether Subp's entity
|
8887 |
|
|
-- kind conforms to the implementation kind of the overridden routine.
|
8888 |
|
|
|
8889 |
|
|
procedure Check_Pragma_Implemented
|
8890 |
|
|
(Subp : Entity_Id;
|
8891 |
|
|
Iface_Subp : Entity_Id);
|
8892 |
|
|
-- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
|
8893 |
|
|
-- Iface_Subp and both entities have pragma Implemented already set on
|
8894 |
|
|
-- them. Check whether the two implementation kinds are conforming.
|
8895 |
|
|
|
8896 |
|
|
procedure Inherit_Pragma_Implemented
|
8897 |
|
|
(Subp : Entity_Id;
|
8898 |
|
|
Iface_Subp : Entity_Id);
|
8899 |
|
|
-- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
|
8900 |
|
|
-- subprogram Iface_Subp which has been marked by pragma Implemented.
|
8901 |
|
|
-- Propagate the implementation kind of Iface_Subp to Subp.
|
8902 |
|
|
|
8903 |
|
|
------------------------------
|
8904 |
|
|
-- Check_Pragma_Implemented --
|
8905 |
|
|
------------------------------
|
8906 |
|
|
|
8907 |
|
|
procedure Check_Pragma_Implemented (Subp : Entity_Id) is
|
8908 |
|
|
Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
|
8909 |
|
|
Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
|
8910 |
|
|
Subp_Alias : constant Entity_Id := Alias (Subp);
|
8911 |
|
|
Contr_Typ : Entity_Id;
|
8912 |
|
|
Impl_Subp : Entity_Id;
|
8913 |
|
|
|
8914 |
|
|
begin
|
8915 |
|
|
-- Subp must have an alias since it is a hidden entity used to link
|
8916 |
|
|
-- an interface subprogram to its overriding counterpart.
|
8917 |
|
|
|
8918 |
|
|
pragma Assert (Present (Subp_Alias));
|
8919 |
|
|
|
8920 |
|
|
-- Handle aliases to synchronized wrappers
|
8921 |
|
|
|
8922 |
|
|
Impl_Subp := Subp_Alias;
|
8923 |
|
|
|
8924 |
|
|
if Is_Primitive_Wrapper (Impl_Subp) then
|
8925 |
|
|
Impl_Subp := Wrapped_Entity (Impl_Subp);
|
8926 |
|
|
end if;
|
8927 |
|
|
|
8928 |
|
|
-- Extract the type of the controlling formal
|
8929 |
|
|
|
8930 |
|
|
Contr_Typ := Etype (First_Formal (Subp_Alias));
|
8931 |
|
|
|
8932 |
|
|
if Is_Concurrent_Record_Type (Contr_Typ) then
|
8933 |
|
|
Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
|
8934 |
|
|
end if;
|
8935 |
|
|
|
8936 |
|
|
-- An interface subprogram whose implementation kind is By_Entry must
|
8937 |
|
|
-- be implemented by an entry.
|
8938 |
|
|
|
8939 |
|
|
if Impl_Kind = Name_By_Entry
|
8940 |
|
|
and then Ekind (Impl_Subp) /= E_Entry
|
8941 |
|
|
then
|
8942 |
|
|
Error_Msg_Node_2 := Iface_Alias;
|
8943 |
|
|
Error_Msg_NE
|
8944 |
|
|
("type & must implement abstract subprogram & with an entry",
|
8945 |
|
|
Subp_Alias, Contr_Typ);
|
8946 |
|
|
|
8947 |
|
|
elsif Impl_Kind = Name_By_Protected_Procedure then
|
8948 |
|
|
|
8949 |
|
|
-- An interface subprogram whose implementation kind is By_
|
8950 |
|
|
-- Protected_Procedure cannot be implemented by a primitive
|
8951 |
|
|
-- procedure of a task type.
|
8952 |
|
|
|
8953 |
|
|
if Ekind (Contr_Typ) /= E_Protected_Type then
|
8954 |
|
|
Error_Msg_Node_2 := Contr_Typ;
|
8955 |
|
|
Error_Msg_NE
|
8956 |
|
|
("interface subprogram & cannot be implemented by a " &
|
8957 |
|
|
"primitive procedure of task type &", Subp_Alias,
|
8958 |
|
|
Iface_Alias);
|
8959 |
|
|
|
8960 |
|
|
-- An interface subprogram whose implementation kind is By_
|
8961 |
|
|
-- Protected_Procedure must be implemented by a procedure.
|
8962 |
|
|
|
8963 |
|
|
elsif Ekind (Impl_Subp) /= E_Procedure then
|
8964 |
|
|
Error_Msg_Node_2 := Iface_Alias;
|
8965 |
|
|
Error_Msg_NE
|
8966 |
|
|
("type & must implement abstract subprogram & with a " &
|
8967 |
|
|
"procedure", Subp_Alias, Contr_Typ);
|
8968 |
|
|
end if;
|
8969 |
|
|
end if;
|
8970 |
|
|
end Check_Pragma_Implemented;
|
8971 |
|
|
|
8972 |
|
|
------------------------------
|
8973 |
|
|
-- Check_Pragma_Implemented --
|
8974 |
|
|
------------------------------
|
8975 |
|
|
|
8976 |
|
|
procedure Check_Pragma_Implemented
|
8977 |
|
|
(Subp : Entity_Id;
|
8978 |
|
|
Iface_Subp : Entity_Id)
|
8979 |
|
|
is
|
8980 |
|
|
Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
|
8981 |
|
|
Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
|
8982 |
|
|
|
8983 |
|
|
begin
|
8984 |
|
|
-- Ada 2012 (AI05-0030): The implementation kinds of an overridden
|
8985 |
|
|
-- and overriding subprogram are different. In general this is an
|
8986 |
|
|
-- error except when the implementation kind of the overridden
|
8987 |
|
|
-- subprograms is By_Any or Optional.
|
8988 |
|
|
|
8989 |
|
|
if Iface_Kind /= Subp_Kind
|
8990 |
|
|
and then Iface_Kind /= Name_By_Any
|
8991 |
|
|
and then Iface_Kind /= Name_Optional
|
8992 |
|
|
then
|
8993 |
|
|
if Iface_Kind = Name_By_Entry then
|
8994 |
|
|
Error_Msg_N
|
8995 |
|
|
("incompatible implementation kind, overridden subprogram " &
|
8996 |
|
|
"is marked By_Entry", Subp);
|
8997 |
|
|
else
|
8998 |
|
|
Error_Msg_N
|
8999 |
|
|
("incompatible implementation kind, overridden subprogram " &
|
9000 |
|
|
"is marked By_Protected_Procedure", Subp);
|
9001 |
|
|
end if;
|
9002 |
|
|
end if;
|
9003 |
|
|
end Check_Pragma_Implemented;
|
9004 |
|
|
|
9005 |
|
|
--------------------------------
|
9006 |
|
|
-- Inherit_Pragma_Implemented --
|
9007 |
|
|
--------------------------------
|
9008 |
|
|
|
9009 |
|
|
procedure Inherit_Pragma_Implemented
|
9010 |
|
|
(Subp : Entity_Id;
|
9011 |
|
|
Iface_Subp : Entity_Id)
|
9012 |
|
|
is
|
9013 |
|
|
Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
|
9014 |
|
|
Loc : constant Source_Ptr := Sloc (Subp);
|
9015 |
|
|
Impl_Prag : Node_Id;
|
9016 |
|
|
|
9017 |
|
|
begin
|
9018 |
|
|
-- Since the implementation kind is stored as a representation item
|
9019 |
|
|
-- rather than a flag, create a pragma node.
|
9020 |
|
|
|
9021 |
|
|
Impl_Prag :=
|
9022 |
|
|
Make_Pragma (Loc,
|
9023 |
|
|
Chars => Name_Implemented,
|
9024 |
|
|
Pragma_Argument_Associations => New_List (
|
9025 |
|
|
Make_Pragma_Argument_Association (Loc,
|
9026 |
|
|
Expression =>
|
9027 |
|
|
New_Reference_To (Subp, Loc)),
|
9028 |
|
|
|
9029 |
|
|
Make_Pragma_Argument_Association (Loc,
|
9030 |
|
|
Expression => Make_Identifier (Loc, Iface_Kind))));
|
9031 |
|
|
|
9032 |
|
|
-- The pragma doesn't need to be analyzed because it is internally
|
9033 |
|
|
-- build. It is safe to directly register it as a rep item since we
|
9034 |
|
|
-- are only interested in the characters of the implementation kind.
|
9035 |
|
|
|
9036 |
|
|
Record_Rep_Item (Subp, Impl_Prag);
|
9037 |
|
|
end Inherit_Pragma_Implemented;
|
9038 |
|
|
|
9039 |
|
|
-- Start of processing for Check_Abstract_Overriding
|
9040 |
|
|
|
9041 |
|
|
begin
|
9042 |
|
|
Op_List := Primitive_Operations (T);
|
9043 |
|
|
|
9044 |
|
|
-- Loop to check primitive operations
|
9045 |
|
|
|
9046 |
|
|
Elmt := First_Elmt (Op_List);
|
9047 |
|
|
while Present (Elmt) loop
|
9048 |
|
|
Subp := Node (Elmt);
|
9049 |
|
|
Alias_Subp := Alias (Subp);
|
9050 |
|
|
|
9051 |
|
|
-- Inherited subprograms are identified by the fact that they do not
|
9052 |
|
|
-- come from source, and the associated source location is the
|
9053 |
|
|
-- location of the first subtype of the derived type.
|
9054 |
|
|
|
9055 |
|
|
-- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
|
9056 |
|
|
-- subprograms that "require overriding".
|
9057 |
|
|
|
9058 |
|
|
-- Special exception, do not complain about failure to override the
|
9059 |
|
|
-- stream routines _Input and _Output, as well as the primitive
|
9060 |
|
|
-- operations used in dispatching selects since we always provide
|
9061 |
|
|
-- automatic overridings for these subprograms.
|
9062 |
|
|
|
9063 |
|
|
-- Also ignore this rule for convention CIL since .NET libraries
|
9064 |
|
|
-- do bizarre things with interfaces???
|
9065 |
|
|
|
9066 |
|
|
-- The partial view of T may have been a private extension, for
|
9067 |
|
|
-- which inherited functions dispatching on result are abstract.
|
9068 |
|
|
-- If the full view is a null extension, there is no need for
|
9069 |
|
|
-- overriding in Ada 2005, but wrappers need to be built for them
|
9070 |
|
|
-- (see exp_ch3, Build_Controlling_Function_Wrappers).
|
9071 |
|
|
|
9072 |
|
|
if Is_Null_Extension (T)
|
9073 |
|
|
and then Has_Controlling_Result (Subp)
|
9074 |
|
|
and then Ada_Version >= Ada_2005
|
9075 |
|
|
and then Present (Alias_Subp)
|
9076 |
|
|
and then not Comes_From_Source (Subp)
|
9077 |
|
|
and then not Is_Abstract_Subprogram (Alias_Subp)
|
9078 |
|
|
and then not Is_Access_Type (Etype (Subp))
|
9079 |
|
|
then
|
9080 |
|
|
null;
|
9081 |
|
|
|
9082 |
|
|
-- Ada 2005 (AI-251): Internal entities of interfaces need no
|
9083 |
|
|
-- processing because this check is done with the aliased
|
9084 |
|
|
-- entity
|
9085 |
|
|
|
9086 |
|
|
elsif Present (Interface_Alias (Subp)) then
|
9087 |
|
|
null;
|
9088 |
|
|
|
9089 |
|
|
elsif (Is_Abstract_Subprogram (Subp)
|
9090 |
|
|
or else Requires_Overriding (Subp)
|
9091 |
|
|
or else
|
9092 |
|
|
(Has_Controlling_Result (Subp)
|
9093 |
|
|
and then Present (Alias_Subp)
|
9094 |
|
|
and then not Comes_From_Source (Subp)
|
9095 |
|
|
and then Sloc (Subp) = Sloc (First_Subtype (T))))
|
9096 |
|
|
and then not Is_TSS (Subp, TSS_Stream_Input)
|
9097 |
|
|
and then not Is_TSS (Subp, TSS_Stream_Output)
|
9098 |
|
|
and then not Is_Abstract_Type (T)
|
9099 |
|
|
and then Convention (T) /= Convention_CIL
|
9100 |
|
|
and then not Is_Predefined_Interface_Primitive (Subp)
|
9101 |
|
|
|
9102 |
|
|
-- Ada 2005 (AI-251): Do not consider hidden entities associated
|
9103 |
|
|
-- with abstract interface types because the check will be done
|
9104 |
|
|
-- with the aliased entity (otherwise we generate a duplicated
|
9105 |
|
|
-- error message).
|
9106 |
|
|
|
9107 |
|
|
and then not Present (Interface_Alias (Subp))
|
9108 |
|
|
then
|
9109 |
|
|
if Present (Alias_Subp) then
|
9110 |
|
|
|
9111 |
|
|
-- Only perform the check for a derived subprogram when the
|
9112 |
|
|
-- type has an explicit record extension. This avoids incorrect
|
9113 |
|
|
-- flagging of abstract subprograms for the case of a type
|
9114 |
|
|
-- without an extension that is derived from a formal type
|
9115 |
|
|
-- with a tagged actual (can occur within a private part).
|
9116 |
|
|
|
9117 |
|
|
-- Ada 2005 (AI-391): In the case of an inherited function with
|
9118 |
|
|
-- a controlling result of the type, the rule does not apply if
|
9119 |
|
|
-- the type is a null extension (unless the parent function
|
9120 |
|
|
-- itself is abstract, in which case the function must still be
|
9121 |
|
|
-- be overridden). The expander will generate an overriding
|
9122 |
|
|
-- wrapper function calling the parent subprogram (see
|
9123 |
|
|
-- Exp_Ch3.Make_Controlling_Wrapper_Functions).
|
9124 |
|
|
|
9125 |
|
|
Type_Def := Type_Definition (Parent (T));
|
9126 |
|
|
|
9127 |
|
|
if Nkind (Type_Def) = N_Derived_Type_Definition
|
9128 |
|
|
and then Present (Record_Extension_Part (Type_Def))
|
9129 |
|
|
and then
|
9130 |
|
|
(Ada_Version < Ada_2005
|
9131 |
|
|
or else not Is_Null_Extension (T)
|
9132 |
|
|
or else Ekind (Subp) = E_Procedure
|
9133 |
|
|
or else not Has_Controlling_Result (Subp)
|
9134 |
|
|
or else Is_Abstract_Subprogram (Alias_Subp)
|
9135 |
|
|
or else Requires_Overriding (Subp)
|
9136 |
|
|
or else Is_Access_Type (Etype (Subp)))
|
9137 |
|
|
then
|
9138 |
|
|
-- Avoid reporting error in case of abstract predefined
|
9139 |
|
|
-- primitive inherited from interface type because the
|
9140 |
|
|
-- body of internally generated predefined primitives
|
9141 |
|
|
-- of tagged types are generated later by Freeze_Type
|
9142 |
|
|
|
9143 |
|
|
if Is_Interface (Root_Type (T))
|
9144 |
|
|
and then Is_Abstract_Subprogram (Subp)
|
9145 |
|
|
and then Is_Predefined_Dispatching_Operation (Subp)
|
9146 |
|
|
and then not Comes_From_Source (Ultimate_Alias (Subp))
|
9147 |
|
|
then
|
9148 |
|
|
null;
|
9149 |
|
|
|
9150 |
|
|
else
|
9151 |
|
|
Error_Msg_NE
|
9152 |
|
|
("type must be declared abstract or & overridden",
|
9153 |
|
|
T, Subp);
|
9154 |
|
|
|
9155 |
|
|
-- Traverse the whole chain of aliased subprograms to
|
9156 |
|
|
-- complete the error notification. This is especially
|
9157 |
|
|
-- useful for traceability of the chain of entities when
|
9158 |
|
|
-- the subprogram corresponds with an interface
|
9159 |
|
|
-- subprogram (which may be defined in another package).
|
9160 |
|
|
|
9161 |
|
|
if Present (Alias_Subp) then
|
9162 |
|
|
declare
|
9163 |
|
|
E : Entity_Id;
|
9164 |
|
|
|
9165 |
|
|
begin
|
9166 |
|
|
E := Subp;
|
9167 |
|
|
while Present (Alias (E)) loop
|
9168 |
|
|
|
9169 |
|
|
-- Avoid reporting redundant errors on entities
|
9170 |
|
|
-- inherited from interfaces
|
9171 |
|
|
|
9172 |
|
|
if Sloc (E) /= Sloc (T) then
|
9173 |
|
|
Error_Msg_Sloc := Sloc (E);
|
9174 |
|
|
Error_Msg_NE
|
9175 |
|
|
("\& has been inherited #", T, Subp);
|
9176 |
|
|
end if;
|
9177 |
|
|
|
9178 |
|
|
E := Alias (E);
|
9179 |
|
|
end loop;
|
9180 |
|
|
|
9181 |
|
|
Error_Msg_Sloc := Sloc (E);
|
9182 |
|
|
|
9183 |
|
|
-- AI05-0068: report if there is an overriding
|
9184 |
|
|
-- non-abstract subprogram that is invisible.
|
9185 |
|
|
|
9186 |
|
|
if Is_Hidden (E)
|
9187 |
|
|
and then not Is_Abstract_Subprogram (E)
|
9188 |
|
|
then
|
9189 |
|
|
Error_Msg_NE
|
9190 |
|
|
("\& subprogram# is not visible",
|
9191 |
|
|
T, Subp);
|
9192 |
|
|
|
9193 |
|
|
else
|
9194 |
|
|
Error_Msg_NE
|
9195 |
|
|
("\& has been inherited from subprogram #",
|
9196 |
|
|
T, Subp);
|
9197 |
|
|
end if;
|
9198 |
|
|
end;
|
9199 |
|
|
end if;
|
9200 |
|
|
end if;
|
9201 |
|
|
|
9202 |
|
|
-- Ada 2005 (AI-345): Protected or task type implementing
|
9203 |
|
|
-- abstract interfaces.
|
9204 |
|
|
|
9205 |
|
|
elsif Is_Concurrent_Record_Type (T)
|
9206 |
|
|
and then Present (Interfaces (T))
|
9207 |
|
|
then
|
9208 |
|
|
-- The controlling formal of Subp must be of mode "out",
|
9209 |
|
|
-- "in out" or an access-to-variable to be overridden.
|
9210 |
|
|
|
9211 |
|
|
if Ekind (First_Formal (Subp)) = E_In_Parameter
|
9212 |
|
|
and then Ekind (Subp) /= E_Function
|
9213 |
|
|
then
|
9214 |
|
|
if not Is_Predefined_Dispatching_Operation (Subp)
|
9215 |
|
|
and then Is_Protected_Type
|
9216 |
|
|
(Corresponding_Concurrent_Type (T))
|
9217 |
|
|
then
|
9218 |
|
|
Error_Msg_PT (T, Subp);
|
9219 |
|
|
end if;
|
9220 |
|
|
|
9221 |
|
|
-- Some other kind of overriding failure
|
9222 |
|
|
|
9223 |
|
|
else
|
9224 |
|
|
Error_Msg_NE
|
9225 |
|
|
("interface subprogram & must be overridden",
|
9226 |
|
|
T, Subp);
|
9227 |
|
|
|
9228 |
|
|
-- Examine primitive operations of synchronized type,
|
9229 |
|
|
-- to find homonyms that have the wrong profile.
|
9230 |
|
|
|
9231 |
|
|
declare
|
9232 |
|
|
Prim : Entity_Id;
|
9233 |
|
|
|
9234 |
|
|
begin
|
9235 |
|
|
Prim :=
|
9236 |
|
|
First_Entity (Corresponding_Concurrent_Type (T));
|
9237 |
|
|
while Present (Prim) loop
|
9238 |
|
|
if Chars (Prim) = Chars (Subp) then
|
9239 |
|
|
Error_Msg_NE
|
9240 |
|
|
("profile is not type conformant with "
|
9241 |
|
|
& "prefixed view profile of "
|
9242 |
|
|
& "inherited operation&", Prim, Subp);
|
9243 |
|
|
end if;
|
9244 |
|
|
|
9245 |
|
|
Next_Entity (Prim);
|
9246 |
|
|
end loop;
|
9247 |
|
|
end;
|
9248 |
|
|
end if;
|
9249 |
|
|
end if;
|
9250 |
|
|
|
9251 |
|
|
else
|
9252 |
|
|
Error_Msg_Node_2 := T;
|
9253 |
|
|
Error_Msg_N
|
9254 |
|
|
("abstract subprogram& not allowed for type&", Subp);
|
9255 |
|
|
|
9256 |
|
|
-- Also post unconditional warning on the type (unconditional
|
9257 |
|
|
-- so that if there are more than one of these cases, we get
|
9258 |
|
|
-- them all, and not just the first one).
|
9259 |
|
|
|
9260 |
|
|
Error_Msg_Node_2 := Subp;
|
9261 |
|
|
Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
|
9262 |
|
|
end if;
|
9263 |
|
|
end if;
|
9264 |
|
|
|
9265 |
|
|
-- Ada 2012 (AI05-0030): Perform some checks related to pragma
|
9266 |
|
|
-- Implemented
|
9267 |
|
|
|
9268 |
|
|
-- Subp is an expander-generated procedure which maps an interface
|
9269 |
|
|
-- alias to a protected wrapper. The interface alias is flagged by
|
9270 |
|
|
-- pragma Implemented. Ensure that Subp is a procedure when the
|
9271 |
|
|
-- implementation kind is By_Protected_Procedure or an entry when
|
9272 |
|
|
-- By_Entry.
|
9273 |
|
|
|
9274 |
|
|
if Ada_Version >= Ada_2012
|
9275 |
|
|
and then Is_Hidden (Subp)
|
9276 |
|
|
and then Present (Interface_Alias (Subp))
|
9277 |
|
|
and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
|
9278 |
|
|
then
|
9279 |
|
|
Check_Pragma_Implemented (Subp);
|
9280 |
|
|
end if;
|
9281 |
|
|
|
9282 |
|
|
-- Subp is an interface primitive which overrides another interface
|
9283 |
|
|
-- primitive marked with pragma Implemented.
|
9284 |
|
|
|
9285 |
|
|
if Ada_Version >= Ada_2012
|
9286 |
|
|
and then Present (Overridden_Operation (Subp))
|
9287 |
|
|
and then Has_Rep_Pragma
|
9288 |
|
|
(Overridden_Operation (Subp), Name_Implemented)
|
9289 |
|
|
then
|
9290 |
|
|
-- If the overriding routine is also marked by Implemented, check
|
9291 |
|
|
-- that the two implementation kinds are conforming.
|
9292 |
|
|
|
9293 |
|
|
if Has_Rep_Pragma (Subp, Name_Implemented) then
|
9294 |
|
|
Check_Pragma_Implemented
|
9295 |
|
|
(Subp => Subp,
|
9296 |
|
|
Iface_Subp => Overridden_Operation (Subp));
|
9297 |
|
|
|
9298 |
|
|
-- Otherwise the overriding routine inherits the implementation
|
9299 |
|
|
-- kind from the overridden subprogram.
|
9300 |
|
|
|
9301 |
|
|
else
|
9302 |
|
|
Inherit_Pragma_Implemented
|
9303 |
|
|
(Subp => Subp,
|
9304 |
|
|
Iface_Subp => Overridden_Operation (Subp));
|
9305 |
|
|
end if;
|
9306 |
|
|
end if;
|
9307 |
|
|
|
9308 |
|
|
Next_Elmt (Elmt);
|
9309 |
|
|
end loop;
|
9310 |
|
|
end Check_Abstract_Overriding;
|
9311 |
|
|
|
9312 |
|
|
------------------------------------------------
|
9313 |
|
|
-- Check_Access_Discriminant_Requires_Limited --
|
9314 |
|
|
------------------------------------------------
|
9315 |
|
|
|
9316 |
|
|
procedure Check_Access_Discriminant_Requires_Limited
|
9317 |
|
|
(D : Node_Id;
|
9318 |
|
|
Loc : Node_Id)
|
9319 |
|
|
is
|
9320 |
|
|
begin
|
9321 |
|
|
-- A discriminant_specification for an access discriminant shall appear
|
9322 |
|
|
-- only in the declaration for a task or protected type, or for a type
|
9323 |
|
|
-- with the reserved word 'limited' in its definition or in one of its
|
9324 |
|
|
-- ancestors (RM 3.7(10)).
|
9325 |
|
|
|
9326 |
|
|
-- AI-0063: The proper condition is that type must be immutably limited,
|
9327 |
|
|
-- or else be a partial view.
|
9328 |
|
|
|
9329 |
|
|
if Nkind (Discriminant_Type (D)) = N_Access_Definition then
|
9330 |
|
|
if Is_Immutably_Limited_Type (Current_Scope)
|
9331 |
|
|
or else
|
9332 |
|
|
(Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
|
9333 |
|
|
and then Limited_Present (Parent (Current_Scope)))
|
9334 |
|
|
then
|
9335 |
|
|
null;
|
9336 |
|
|
|
9337 |
|
|
else
|
9338 |
|
|
Error_Msg_N
|
9339 |
|
|
("access discriminants allowed only for limited types", Loc);
|
9340 |
|
|
end if;
|
9341 |
|
|
end if;
|
9342 |
|
|
end Check_Access_Discriminant_Requires_Limited;
|
9343 |
|
|
|
9344 |
|
|
-----------------------------------
|
9345 |
|
|
-- Check_Aliased_Component_Types --
|
9346 |
|
|
-----------------------------------
|
9347 |
|
|
|
9348 |
|
|
procedure Check_Aliased_Component_Types (T : Entity_Id) is
|
9349 |
|
|
C : Entity_Id;
|
9350 |
|
|
|
9351 |
|
|
begin
|
9352 |
|
|
-- ??? Also need to check components of record extensions, but not
|
9353 |
|
|
-- components of protected types (which are always limited).
|
9354 |
|
|
|
9355 |
|
|
-- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
|
9356 |
|
|
-- types to be unconstrained. This is safe because it is illegal to
|
9357 |
|
|
-- create access subtypes to such types with explicit discriminant
|
9358 |
|
|
-- constraints.
|
9359 |
|
|
|
9360 |
|
|
if not Is_Limited_Type (T) then
|
9361 |
|
|
if Ekind (T) = E_Record_Type then
|
9362 |
|
|
C := First_Component (T);
|
9363 |
|
|
while Present (C) loop
|
9364 |
|
|
if Is_Aliased (C)
|
9365 |
|
|
and then Has_Discriminants (Etype (C))
|
9366 |
|
|
and then not Is_Constrained (Etype (C))
|
9367 |
|
|
and then not In_Instance_Body
|
9368 |
|
|
and then Ada_Version < Ada_2005
|
9369 |
|
|
then
|
9370 |
|
|
Error_Msg_N
|
9371 |
|
|
("aliased component must be constrained (RM 3.6(11))",
|
9372 |
|
|
C);
|
9373 |
|
|
end if;
|
9374 |
|
|
|
9375 |
|
|
Next_Component (C);
|
9376 |
|
|
end loop;
|
9377 |
|
|
|
9378 |
|
|
elsif Ekind (T) = E_Array_Type then
|
9379 |
|
|
if Has_Aliased_Components (T)
|
9380 |
|
|
and then Has_Discriminants (Component_Type (T))
|
9381 |
|
|
and then not Is_Constrained (Component_Type (T))
|
9382 |
|
|
and then not In_Instance_Body
|
9383 |
|
|
and then Ada_Version < Ada_2005
|
9384 |
|
|
then
|
9385 |
|
|
Error_Msg_N
|
9386 |
|
|
("aliased component type must be constrained (RM 3.6(11))",
|
9387 |
|
|
T);
|
9388 |
|
|
end if;
|
9389 |
|
|
end if;
|
9390 |
|
|
end if;
|
9391 |
|
|
end Check_Aliased_Component_Types;
|
9392 |
|
|
|
9393 |
|
|
----------------------
|
9394 |
|
|
-- Check_Completion --
|
9395 |
|
|
----------------------
|
9396 |
|
|
|
9397 |
|
|
procedure Check_Completion (Body_Id : Node_Id := Empty) is
|
9398 |
|
|
E : Entity_Id;
|
9399 |
|
|
|
9400 |
|
|
procedure Post_Error;
|
9401 |
|
|
-- Post error message for lack of completion for entity E
|
9402 |
|
|
|
9403 |
|
|
----------------
|
9404 |
|
|
-- Post_Error --
|
9405 |
|
|
----------------
|
9406 |
|
|
|
9407 |
|
|
procedure Post_Error is
|
9408 |
|
|
|
9409 |
|
|
procedure Missing_Body;
|
9410 |
|
|
-- Output missing body message
|
9411 |
|
|
|
9412 |
|
|
------------------
|
9413 |
|
|
-- Missing_Body --
|
9414 |
|
|
------------------
|
9415 |
|
|
|
9416 |
|
|
procedure Missing_Body is
|
9417 |
|
|
begin
|
9418 |
|
|
-- Spec is in same unit, so we can post on spec
|
9419 |
|
|
|
9420 |
|
|
if In_Same_Source_Unit (Body_Id, E) then
|
9421 |
|
|
Error_Msg_N ("missing body for &", E);
|
9422 |
|
|
|
9423 |
|
|
-- Spec is in a separate unit, so we have to post on the body
|
9424 |
|
|
|
9425 |
|
|
else
|
9426 |
|
|
Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
|
9427 |
|
|
end if;
|
9428 |
|
|
end Missing_Body;
|
9429 |
|
|
|
9430 |
|
|
-- Start of processing for Post_Error
|
9431 |
|
|
|
9432 |
|
|
begin
|
9433 |
|
|
if not Comes_From_Source (E) then
|
9434 |
|
|
|
9435 |
|
|
if Ekind_In (E, E_Task_Type, E_Protected_Type) then
|
9436 |
|
|
-- It may be an anonymous protected type created for a
|
9437 |
|
|
-- single variable. Post error on variable, if present.
|
9438 |
|
|
|
9439 |
|
|
declare
|
9440 |
|
|
Var : Entity_Id;
|
9441 |
|
|
|
9442 |
|
|
begin
|
9443 |
|
|
Var := First_Entity (Current_Scope);
|
9444 |
|
|
while Present (Var) loop
|
9445 |
|
|
exit when Etype (Var) = E
|
9446 |
|
|
and then Comes_From_Source (Var);
|
9447 |
|
|
|
9448 |
|
|
Next_Entity (Var);
|
9449 |
|
|
end loop;
|
9450 |
|
|
|
9451 |
|
|
if Present (Var) then
|
9452 |
|
|
E := Var;
|
9453 |
|
|
end if;
|
9454 |
|
|
end;
|
9455 |
|
|
end if;
|
9456 |
|
|
end if;
|
9457 |
|
|
|
9458 |
|
|
-- If a generated entity has no completion, then either previous
|
9459 |
|
|
-- semantic errors have disabled the expansion phase, or else we had
|
9460 |
|
|
-- missing subunits, or else we are compiling without expansion,
|
9461 |
|
|
-- or else something is very wrong.
|
9462 |
|
|
|
9463 |
|
|
if not Comes_From_Source (E) then
|
9464 |
|
|
pragma Assert
|
9465 |
|
|
(Serious_Errors_Detected > 0
|
9466 |
|
|
or else Configurable_Run_Time_Violations > 0
|
9467 |
|
|
or else Subunits_Missing
|
9468 |
|
|
or else not Expander_Active);
|
9469 |
|
|
return;
|
9470 |
|
|
|
9471 |
|
|
-- Here for source entity
|
9472 |
|
|
|
9473 |
|
|
else
|
9474 |
|
|
-- Here if no body to post the error message, so we post the error
|
9475 |
|
|
-- on the declaration that has no completion. This is not really
|
9476 |
|
|
-- the right place to post it, think about this later ???
|
9477 |
|
|
|
9478 |
|
|
if No (Body_Id) then
|
9479 |
|
|
if Is_Type (E) then
|
9480 |
|
|
Error_Msg_NE
|
9481 |
|
|
("missing full declaration for }", Parent (E), E);
|
9482 |
|
|
else
|
9483 |
|
|
Error_Msg_NE ("missing body for &", Parent (E), E);
|
9484 |
|
|
end if;
|
9485 |
|
|
|
9486 |
|
|
-- Package body has no completion for a declaration that appears
|
9487 |
|
|
-- in the corresponding spec. Post error on the body, with a
|
9488 |
|
|
-- reference to the non-completed declaration.
|
9489 |
|
|
|
9490 |
|
|
else
|
9491 |
|
|
Error_Msg_Sloc := Sloc (E);
|
9492 |
|
|
|
9493 |
|
|
if Is_Type (E) then
|
9494 |
|
|
Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
|
9495 |
|
|
|
9496 |
|
|
elsif Is_Overloadable (E)
|
9497 |
|
|
and then Current_Entity_In_Scope (E) /= E
|
9498 |
|
|
then
|
9499 |
|
|
-- It may be that the completion is mistyped and appears as
|
9500 |
|
|
-- a distinct overloading of the entity.
|
9501 |
|
|
|
9502 |
|
|
declare
|
9503 |
|
|
Candidate : constant Entity_Id :=
|
9504 |
|
|
Current_Entity_In_Scope (E);
|
9505 |
|
|
Decl : constant Node_Id :=
|
9506 |
|
|
Unit_Declaration_Node (Candidate);
|
9507 |
|
|
|
9508 |
|
|
begin
|
9509 |
|
|
if Is_Overloadable (Candidate)
|
9510 |
|
|
and then Ekind (Candidate) = Ekind (E)
|
9511 |
|
|
and then Nkind (Decl) = N_Subprogram_Body
|
9512 |
|
|
and then Acts_As_Spec (Decl)
|
9513 |
|
|
then
|
9514 |
|
|
Check_Type_Conformant (Candidate, E);
|
9515 |
|
|
|
9516 |
|
|
else
|
9517 |
|
|
Missing_Body;
|
9518 |
|
|
end if;
|
9519 |
|
|
end;
|
9520 |
|
|
|
9521 |
|
|
else
|
9522 |
|
|
Missing_Body;
|
9523 |
|
|
end if;
|
9524 |
|
|
end if;
|
9525 |
|
|
end if;
|
9526 |
|
|
end Post_Error;
|
9527 |
|
|
|
9528 |
|
|
-- Start of processing for Check_Completion
|
9529 |
|
|
|
9530 |
|
|
begin
|
9531 |
|
|
E := First_Entity (Current_Scope);
|
9532 |
|
|
while Present (E) loop
|
9533 |
|
|
if Is_Intrinsic_Subprogram (E) then
|
9534 |
|
|
null;
|
9535 |
|
|
|
9536 |
|
|
-- The following situation requires special handling: a child unit
|
9537 |
|
|
-- that appears in the context clause of the body of its parent:
|
9538 |
|
|
|
9539 |
|
|
-- procedure Parent.Child (...);
|
9540 |
|
|
|
9541 |
|
|
-- with Parent.Child;
|
9542 |
|
|
-- package body Parent is
|
9543 |
|
|
|
9544 |
|
|
-- Here Parent.Child appears as a local entity, but should not be
|
9545 |
|
|
-- flagged as requiring completion, because it is a compilation
|
9546 |
|
|
-- unit.
|
9547 |
|
|
|
9548 |
|
|
-- Ignore missing completion for a subprogram that does not come from
|
9549 |
|
|
-- source (including the _Call primitive operation of RAS types,
|
9550 |
|
|
-- which has to have the flag Comes_From_Source for other purposes):
|
9551 |
|
|
-- we assume that the expander will provide the missing completion.
|
9552 |
|
|
-- In case of previous errors, other expansion actions that provide
|
9553 |
|
|
-- bodies for null procedures with not be invoked, so inhibit message
|
9554 |
|
|
-- in those cases.
|
9555 |
|
|
|
9556 |
|
|
-- Note that E_Operator is not in the list that follows, because
|
9557 |
|
|
-- this kind is reserved for predefined operators, that are
|
9558 |
|
|
-- intrinsic and do not need completion.
|
9559 |
|
|
|
9560 |
|
|
elsif Ekind (E) = E_Function
|
9561 |
|
|
or else Ekind (E) = E_Procedure
|
9562 |
|
|
or else Ekind (E) = E_Generic_Function
|
9563 |
|
|
or else Ekind (E) = E_Generic_Procedure
|
9564 |
|
|
then
|
9565 |
|
|
if Has_Completion (E) then
|
9566 |
|
|
null;
|
9567 |
|
|
|
9568 |
|
|
elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
|
9569 |
|
|
null;
|
9570 |
|
|
|
9571 |
|
|
elsif Is_Subprogram (E)
|
9572 |
|
|
and then (not Comes_From_Source (E)
|
9573 |
|
|
or else Chars (E) = Name_uCall)
|
9574 |
|
|
then
|
9575 |
|
|
null;
|
9576 |
|
|
|
9577 |
|
|
elsif
|
9578 |
|
|
Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
|
9579 |
|
|
then
|
9580 |
|
|
null;
|
9581 |
|
|
|
9582 |
|
|
elsif Nkind (Parent (E)) = N_Procedure_Specification
|
9583 |
|
|
and then Null_Present (Parent (E))
|
9584 |
|
|
and then Serious_Errors_Detected > 0
|
9585 |
|
|
then
|
9586 |
|
|
null;
|
9587 |
|
|
|
9588 |
|
|
else
|
9589 |
|
|
Post_Error;
|
9590 |
|
|
end if;
|
9591 |
|
|
|
9592 |
|
|
elsif Is_Entry (E) then
|
9593 |
|
|
if not Has_Completion (E) and then
|
9594 |
|
|
(Ekind (Scope (E)) = E_Protected_Object
|
9595 |
|
|
or else Ekind (Scope (E)) = E_Protected_Type)
|
9596 |
|
|
then
|
9597 |
|
|
Post_Error;
|
9598 |
|
|
end if;
|
9599 |
|
|
|
9600 |
|
|
elsif Is_Package_Or_Generic_Package (E) then
|
9601 |
|
|
if Unit_Requires_Body (E) then
|
9602 |
|
|
if not Has_Completion (E)
|
9603 |
|
|
and then Nkind (Parent (Unit_Declaration_Node (E))) /=
|
9604 |
|
|
N_Compilation_Unit
|
9605 |
|
|
then
|
9606 |
|
|
Post_Error;
|
9607 |
|
|
end if;
|
9608 |
|
|
|
9609 |
|
|
elsif not Is_Child_Unit (E) then
|
9610 |
|
|
May_Need_Implicit_Body (E);
|
9611 |
|
|
end if;
|
9612 |
|
|
|
9613 |
|
|
-- A formal incomplete type (Ada 2012) does not require a completion;
|
9614 |
|
|
-- other incomplete type declarations do.
|
9615 |
|
|
|
9616 |
|
|
elsif Ekind (E) = E_Incomplete_Type
|
9617 |
|
|
and then No (Underlying_Type (E))
|
9618 |
|
|
and then not Is_Generic_Type (E)
|
9619 |
|
|
then
|
9620 |
|
|
Post_Error;
|
9621 |
|
|
|
9622 |
|
|
elsif (Ekind (E) = E_Task_Type or else
|
9623 |
|
|
Ekind (E) = E_Protected_Type)
|
9624 |
|
|
and then not Has_Completion (E)
|
9625 |
|
|
then
|
9626 |
|
|
Post_Error;
|
9627 |
|
|
|
9628 |
|
|
-- A single task declared in the current scope is a constant, verify
|
9629 |
|
|
-- that the body of its anonymous type is in the same scope. If the
|
9630 |
|
|
-- task is defined elsewhere, this may be a renaming declaration for
|
9631 |
|
|
-- which no completion is needed.
|
9632 |
|
|
|
9633 |
|
|
elsif Ekind (E) = E_Constant
|
9634 |
|
|
and then Ekind (Etype (E)) = E_Task_Type
|
9635 |
|
|
and then not Has_Completion (Etype (E))
|
9636 |
|
|
and then Scope (Etype (E)) = Current_Scope
|
9637 |
|
|
then
|
9638 |
|
|
Post_Error;
|
9639 |
|
|
|
9640 |
|
|
elsif Ekind (E) = E_Protected_Object
|
9641 |
|
|
and then not Has_Completion (Etype (E))
|
9642 |
|
|
then
|
9643 |
|
|
Post_Error;
|
9644 |
|
|
|
9645 |
|
|
elsif Ekind (E) = E_Record_Type then
|
9646 |
|
|
if Is_Tagged_Type (E) then
|
9647 |
|
|
Check_Abstract_Overriding (E);
|
9648 |
|
|
Check_Conventions (E);
|
9649 |
|
|
end if;
|
9650 |
|
|
|
9651 |
|
|
Check_Aliased_Component_Types (E);
|
9652 |
|
|
|
9653 |
|
|
elsif Ekind (E) = E_Array_Type then
|
9654 |
|
|
Check_Aliased_Component_Types (E);
|
9655 |
|
|
|
9656 |
|
|
end if;
|
9657 |
|
|
|
9658 |
|
|
Next_Entity (E);
|
9659 |
|
|
end loop;
|
9660 |
|
|
end Check_Completion;
|
9661 |
|
|
|
9662 |
|
|
------------------------------------
|
9663 |
|
|
-- Check_CPP_Type_Has_No_Defaults --
|
9664 |
|
|
------------------------------------
|
9665 |
|
|
|
9666 |
|
|
procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
|
9667 |
|
|
Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
|
9668 |
|
|
Clist : Node_Id;
|
9669 |
|
|
Comp : Node_Id;
|
9670 |
|
|
|
9671 |
|
|
begin
|
9672 |
|
|
-- Obtain the component list
|
9673 |
|
|
|
9674 |
|
|
if Nkind (Tdef) = N_Record_Definition then
|
9675 |
|
|
Clist := Component_List (Tdef);
|
9676 |
|
|
else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
|
9677 |
|
|
Clist := Component_List (Record_Extension_Part (Tdef));
|
9678 |
|
|
end if;
|
9679 |
|
|
|
9680 |
|
|
-- Check all components to ensure no default expressions
|
9681 |
|
|
|
9682 |
|
|
if Present (Clist) then
|
9683 |
|
|
Comp := First (Component_Items (Clist));
|
9684 |
|
|
while Present (Comp) loop
|
9685 |
|
|
if Present (Expression (Comp)) then
|
9686 |
|
|
Error_Msg_N
|
9687 |
|
|
("component of imported 'C'P'P type cannot have "
|
9688 |
|
|
& "default expression", Expression (Comp));
|
9689 |
|
|
end if;
|
9690 |
|
|
|
9691 |
|
|
Next (Comp);
|
9692 |
|
|
end loop;
|
9693 |
|
|
end if;
|
9694 |
|
|
end Check_CPP_Type_Has_No_Defaults;
|
9695 |
|
|
|
9696 |
|
|
----------------------------
|
9697 |
|
|
-- Check_Delta_Expression --
|
9698 |
|
|
----------------------------
|
9699 |
|
|
|
9700 |
|
|
procedure Check_Delta_Expression (E : Node_Id) is
|
9701 |
|
|
begin
|
9702 |
|
|
if not (Is_Real_Type (Etype (E))) then
|
9703 |
|
|
Wrong_Type (E, Any_Real);
|
9704 |
|
|
|
9705 |
|
|
elsif not Is_OK_Static_Expression (E) then
|
9706 |
|
|
Flag_Non_Static_Expr
|
9707 |
|
|
("non-static expression used for delta value!", E);
|
9708 |
|
|
|
9709 |
|
|
elsif not UR_Is_Positive (Expr_Value_R (E)) then
|
9710 |
|
|
Error_Msg_N ("delta expression must be positive", E);
|
9711 |
|
|
|
9712 |
|
|
else
|
9713 |
|
|
return;
|
9714 |
|
|
end if;
|
9715 |
|
|
|
9716 |
|
|
-- If any of above errors occurred, then replace the incorrect
|
9717 |
|
|
-- expression by the real 0.1, which should prevent further errors.
|
9718 |
|
|
|
9719 |
|
|
Rewrite (E,
|
9720 |
|
|
Make_Real_Literal (Sloc (E), Ureal_Tenth));
|
9721 |
|
|
Analyze_And_Resolve (E, Standard_Float);
|
9722 |
|
|
end Check_Delta_Expression;
|
9723 |
|
|
|
9724 |
|
|
-----------------------------
|
9725 |
|
|
-- Check_Digits_Expression --
|
9726 |
|
|
-----------------------------
|
9727 |
|
|
|
9728 |
|
|
procedure Check_Digits_Expression (E : Node_Id) is
|
9729 |
|
|
begin
|
9730 |
|
|
if not (Is_Integer_Type (Etype (E))) then
|
9731 |
|
|
Wrong_Type (E, Any_Integer);
|
9732 |
|
|
|
9733 |
|
|
elsif not Is_OK_Static_Expression (E) then
|
9734 |
|
|
Flag_Non_Static_Expr
|
9735 |
|
|
("non-static expression used for digits value!", E);
|
9736 |
|
|
|
9737 |
|
|
elsif Expr_Value (E) <= 0 then
|
9738 |
|
|
Error_Msg_N ("digits value must be greater than zero", E);
|
9739 |
|
|
|
9740 |
|
|
else
|
9741 |
|
|
return;
|
9742 |
|
|
end if;
|
9743 |
|
|
|
9744 |
|
|
-- If any of above errors occurred, then replace the incorrect
|
9745 |
|
|
-- expression by the integer 1, which should prevent further errors.
|
9746 |
|
|
|
9747 |
|
|
Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
|
9748 |
|
|
Analyze_And_Resolve (E, Standard_Integer);
|
9749 |
|
|
|
9750 |
|
|
end Check_Digits_Expression;
|
9751 |
|
|
|
9752 |
|
|
--------------------------
|
9753 |
|
|
-- Check_Initialization --
|
9754 |
|
|
--------------------------
|
9755 |
|
|
|
9756 |
|
|
procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
|
9757 |
|
|
begin
|
9758 |
|
|
if Is_Limited_Type (T)
|
9759 |
|
|
and then not In_Instance
|
9760 |
|
|
and then not In_Inlined_Body
|
9761 |
|
|
then
|
9762 |
|
|
if not OK_For_Limited_Init (T, Exp) then
|
9763 |
|
|
|
9764 |
|
|
-- In GNAT mode, this is just a warning, to allow it to be evilly
|
9765 |
|
|
-- turned off. Otherwise it is a real error.
|
9766 |
|
|
|
9767 |
|
|
if GNAT_Mode then
|
9768 |
|
|
Error_Msg_N
|
9769 |
|
|
("?cannot initialize entities of limited type!", Exp);
|
9770 |
|
|
|
9771 |
|
|
elsif Ada_Version < Ada_2005 then
|
9772 |
|
|
|
9773 |
|
|
-- The side effect removal machinery may generate illegal Ada
|
9774 |
|
|
-- code to avoid the usage of access types and 'reference in
|
9775 |
|
|
-- Alfa mode. Since this is legal code with respect to theorem
|
9776 |
|
|
-- proving, do not emit the error.
|
9777 |
|
|
|
9778 |
|
|
if Alfa_Mode
|
9779 |
|
|
and then Nkind (Exp) = N_Function_Call
|
9780 |
|
|
and then Nkind (Parent (Exp)) = N_Object_Declaration
|
9781 |
|
|
and then not Comes_From_Source
|
9782 |
|
|
(Defining_Identifier (Parent (Exp)))
|
9783 |
|
|
then
|
9784 |
|
|
null;
|
9785 |
|
|
|
9786 |
|
|
else
|
9787 |
|
|
Error_Msg_N
|
9788 |
|
|
("cannot initialize entities of limited type", Exp);
|
9789 |
|
|
Explain_Limited_Type (T, Exp);
|
9790 |
|
|
end if;
|
9791 |
|
|
|
9792 |
|
|
else
|
9793 |
|
|
-- Specialize error message according to kind of illegal
|
9794 |
|
|
-- initial expression.
|
9795 |
|
|
|
9796 |
|
|
if Nkind (Exp) = N_Type_Conversion
|
9797 |
|
|
and then Nkind (Expression (Exp)) = N_Function_Call
|
9798 |
|
|
then
|
9799 |
|
|
Error_Msg_N
|
9800 |
|
|
("illegal context for call"
|
9801 |
|
|
& " to function with limited result", Exp);
|
9802 |
|
|
|
9803 |
|
|
else
|
9804 |
|
|
Error_Msg_N
|
9805 |
|
|
("initialization of limited object requires aggregate "
|
9806 |
|
|
& "or function call", Exp);
|
9807 |
|
|
end if;
|
9808 |
|
|
end if;
|
9809 |
|
|
end if;
|
9810 |
|
|
end if;
|
9811 |
|
|
end Check_Initialization;
|
9812 |
|
|
|
9813 |
|
|
----------------------
|
9814 |
|
|
-- Check_Interfaces --
|
9815 |
|
|
----------------------
|
9816 |
|
|
|
9817 |
|
|
procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
|
9818 |
|
|
Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
|
9819 |
|
|
|
9820 |
|
|
Iface : Node_Id;
|
9821 |
|
|
Iface_Def : Node_Id;
|
9822 |
|
|
Iface_Typ : Entity_Id;
|
9823 |
|
|
Parent_Node : Node_Id;
|
9824 |
|
|
|
9825 |
|
|
Is_Task : Boolean := False;
|
9826 |
|
|
-- Set True if parent type or any progenitor is a task interface
|
9827 |
|
|
|
9828 |
|
|
Is_Protected : Boolean := False;
|
9829 |
|
|
-- Set True if parent type or any progenitor is a protected interface
|
9830 |
|
|
|
9831 |
|
|
procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
|
9832 |
|
|
-- Check that a progenitor is compatible with declaration.
|
9833 |
|
|
-- Error is posted on Error_Node.
|
9834 |
|
|
|
9835 |
|
|
------------------
|
9836 |
|
|
-- Check_Ifaces --
|
9837 |
|
|
------------------
|
9838 |
|
|
|
9839 |
|
|
procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
|
9840 |
|
|
Iface_Id : constant Entity_Id :=
|
9841 |
|
|
Defining_Identifier (Parent (Iface_Def));
|
9842 |
|
|
Type_Def : Node_Id;
|
9843 |
|
|
|
9844 |
|
|
begin
|
9845 |
|
|
if Nkind (N) = N_Private_Extension_Declaration then
|
9846 |
|
|
Type_Def := N;
|
9847 |
|
|
else
|
9848 |
|
|
Type_Def := Type_Definition (N);
|
9849 |
|
|
end if;
|
9850 |
|
|
|
9851 |
|
|
if Is_Task_Interface (Iface_Id) then
|
9852 |
|
|
Is_Task := True;
|
9853 |
|
|
|
9854 |
|
|
elsif Is_Protected_Interface (Iface_Id) then
|
9855 |
|
|
Is_Protected := True;
|
9856 |
|
|
end if;
|
9857 |
|
|
|
9858 |
|
|
if Is_Synchronized_Interface (Iface_Id) then
|
9859 |
|
|
|
9860 |
|
|
-- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
|
9861 |
|
|
-- extension derived from a synchronized interface must explicitly
|
9862 |
|
|
-- be declared synchronized, because the full view will be a
|
9863 |
|
|
-- synchronized type.
|
9864 |
|
|
|
9865 |
|
|
if Nkind (N) = N_Private_Extension_Declaration then
|
9866 |
|
|
if not Synchronized_Present (N) then
|
9867 |
|
|
Error_Msg_NE
|
9868 |
|
|
("private extension of& must be explicitly synchronized",
|
9869 |
|
|
N, Iface_Id);
|
9870 |
|
|
end if;
|
9871 |
|
|
|
9872 |
|
|
-- However, by 3.9.4(16/2), a full type that is a record extension
|
9873 |
|
|
-- is never allowed to derive from a synchronized interface (note
|
9874 |
|
|
-- that interfaces must be excluded from this check, because those
|
9875 |
|
|
-- are represented by derived type definitions in some cases).
|
9876 |
|
|
|
9877 |
|
|
elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
|
9878 |
|
|
and then not Interface_Present (Type_Definition (N))
|
9879 |
|
|
then
|
9880 |
|
|
Error_Msg_N ("record extension cannot derive from synchronized"
|
9881 |
|
|
& " interface", Error_Node);
|
9882 |
|
|
end if;
|
9883 |
|
|
end if;
|
9884 |
|
|
|
9885 |
|
|
-- Check that the characteristics of the progenitor are compatible
|
9886 |
|
|
-- with the explicit qualifier in the declaration.
|
9887 |
|
|
-- The check only applies to qualifiers that come from source.
|
9888 |
|
|
-- Limited_Present also appears in the declaration of corresponding
|
9889 |
|
|
-- records, and the check does not apply to them.
|
9890 |
|
|
|
9891 |
|
|
if Limited_Present (Type_Def)
|
9892 |
|
|
and then not
|
9893 |
|
|
Is_Concurrent_Record_Type (Defining_Identifier (N))
|
9894 |
|
|
then
|
9895 |
|
|
if Is_Limited_Interface (Parent_Type)
|
9896 |
|
|
and then not Is_Limited_Interface (Iface_Id)
|
9897 |
|
|
then
|
9898 |
|
|
Error_Msg_NE
|
9899 |
|
|
("progenitor& must be limited interface",
|
9900 |
|
|
Error_Node, Iface_Id);
|
9901 |
|
|
|
9902 |
|
|
elsif
|
9903 |
|
|
(Task_Present (Iface_Def)
|
9904 |
|
|
or else Protected_Present (Iface_Def)
|
9905 |
|
|
or else Synchronized_Present (Iface_Def))
|
9906 |
|
|
and then Nkind (N) /= N_Private_Extension_Declaration
|
9907 |
|
|
and then not Error_Posted (N)
|
9908 |
|
|
then
|
9909 |
|
|
Error_Msg_NE
|
9910 |
|
|
("progenitor& must be limited interface",
|
9911 |
|
|
Error_Node, Iface_Id);
|
9912 |
|
|
end if;
|
9913 |
|
|
|
9914 |
|
|
-- Protected interfaces can only inherit from limited, synchronized
|
9915 |
|
|
-- or protected interfaces.
|
9916 |
|
|
|
9917 |
|
|
elsif Nkind (N) = N_Full_Type_Declaration
|
9918 |
|
|
and then Protected_Present (Type_Def)
|
9919 |
|
|
then
|
9920 |
|
|
if Limited_Present (Iface_Def)
|
9921 |
|
|
or else Synchronized_Present (Iface_Def)
|
9922 |
|
|
or else Protected_Present (Iface_Def)
|
9923 |
|
|
then
|
9924 |
|
|
null;
|
9925 |
|
|
|
9926 |
|
|
elsif Task_Present (Iface_Def) then
|
9927 |
|
|
Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
|
9928 |
|
|
& " from task interface", Error_Node);
|
9929 |
|
|
|
9930 |
|
|
else
|
9931 |
|
|
Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
|
9932 |
|
|
& " from non-limited interface", Error_Node);
|
9933 |
|
|
end if;
|
9934 |
|
|
|
9935 |
|
|
-- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
|
9936 |
|
|
-- limited and synchronized.
|
9937 |
|
|
|
9938 |
|
|
elsif Synchronized_Present (Type_Def) then
|
9939 |
|
|
if Limited_Present (Iface_Def)
|
9940 |
|
|
or else Synchronized_Present (Iface_Def)
|
9941 |
|
|
then
|
9942 |
|
|
null;
|
9943 |
|
|
|
9944 |
|
|
elsif Protected_Present (Iface_Def)
|
9945 |
|
|
and then Nkind (N) /= N_Private_Extension_Declaration
|
9946 |
|
|
then
|
9947 |
|
|
Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
|
9948 |
|
|
& " from protected interface", Error_Node);
|
9949 |
|
|
|
9950 |
|
|
elsif Task_Present (Iface_Def)
|
9951 |
|
|
and then Nkind (N) /= N_Private_Extension_Declaration
|
9952 |
|
|
then
|
9953 |
|
|
Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
|
9954 |
|
|
& " from task interface", Error_Node);
|
9955 |
|
|
|
9956 |
|
|
elsif not Is_Limited_Interface (Iface_Id) then
|
9957 |
|
|
Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
|
9958 |
|
|
& " from non-limited interface", Error_Node);
|
9959 |
|
|
end if;
|
9960 |
|
|
|
9961 |
|
|
-- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
|
9962 |
|
|
-- synchronized or task interfaces.
|
9963 |
|
|
|
9964 |
|
|
elsif Nkind (N) = N_Full_Type_Declaration
|
9965 |
|
|
and then Task_Present (Type_Def)
|
9966 |
|
|
then
|
9967 |
|
|
if Limited_Present (Iface_Def)
|
9968 |
|
|
or else Synchronized_Present (Iface_Def)
|
9969 |
|
|
or else Task_Present (Iface_Def)
|
9970 |
|
|
then
|
9971 |
|
|
null;
|
9972 |
|
|
|
9973 |
|
|
elsif Protected_Present (Iface_Def) then
|
9974 |
|
|
Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
|
9975 |
|
|
& " protected interface", Error_Node);
|
9976 |
|
|
|
9977 |
|
|
else
|
9978 |
|
|
Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
|
9979 |
|
|
& " non-limited interface", Error_Node);
|
9980 |
|
|
end if;
|
9981 |
|
|
end if;
|
9982 |
|
|
end Check_Ifaces;
|
9983 |
|
|
|
9984 |
|
|
-- Start of processing for Check_Interfaces
|
9985 |
|
|
|
9986 |
|
|
begin
|
9987 |
|
|
if Is_Interface (Parent_Type) then
|
9988 |
|
|
if Is_Task_Interface (Parent_Type) then
|
9989 |
|
|
Is_Task := True;
|
9990 |
|
|
|
9991 |
|
|
elsif Is_Protected_Interface (Parent_Type) then
|
9992 |
|
|
Is_Protected := True;
|
9993 |
|
|
end if;
|
9994 |
|
|
end if;
|
9995 |
|
|
|
9996 |
|
|
if Nkind (N) = N_Private_Extension_Declaration then
|
9997 |
|
|
|
9998 |
|
|
-- Check that progenitors are compatible with declaration
|
9999 |
|
|
|
10000 |
|
|
Iface := First (Interface_List (Def));
|
10001 |
|
|
while Present (Iface) loop
|
10002 |
|
|
Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
|
10003 |
|
|
|
10004 |
|
|
Parent_Node := Parent (Base_Type (Iface_Typ));
|
10005 |
|
|
Iface_Def := Type_Definition (Parent_Node);
|
10006 |
|
|
|
10007 |
|
|
if not Is_Interface (Iface_Typ) then
|
10008 |
|
|
Diagnose_Interface (Iface, Iface_Typ);
|
10009 |
|
|
|
10010 |
|
|
else
|
10011 |
|
|
Check_Ifaces (Iface_Def, Iface);
|
10012 |
|
|
end if;
|
10013 |
|
|
|
10014 |
|
|
Next (Iface);
|
10015 |
|
|
end loop;
|
10016 |
|
|
|
10017 |
|
|
if Is_Task and Is_Protected then
|
10018 |
|
|
Error_Msg_N
|
10019 |
|
|
("type cannot derive from task and protected interface", N);
|
10020 |
|
|
end if;
|
10021 |
|
|
|
10022 |
|
|
return;
|
10023 |
|
|
end if;
|
10024 |
|
|
|
10025 |
|
|
-- Full type declaration of derived type.
|
10026 |
|
|
-- Check compatibility with parent if it is interface type
|
10027 |
|
|
|
10028 |
|
|
if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
|
10029 |
|
|
and then Is_Interface (Parent_Type)
|
10030 |
|
|
then
|
10031 |
|
|
Parent_Node := Parent (Parent_Type);
|
10032 |
|
|
|
10033 |
|
|
-- More detailed checks for interface varieties
|
10034 |
|
|
|
10035 |
|
|
Check_Ifaces
|
10036 |
|
|
(Iface_Def => Type_Definition (Parent_Node),
|
10037 |
|
|
Error_Node => Subtype_Indication (Type_Definition (N)));
|
10038 |
|
|
end if;
|
10039 |
|
|
|
10040 |
|
|
Iface := First (Interface_List (Def));
|
10041 |
|
|
while Present (Iface) loop
|
10042 |
|
|
Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
|
10043 |
|
|
|
10044 |
|
|
Parent_Node := Parent (Base_Type (Iface_Typ));
|
10045 |
|
|
Iface_Def := Type_Definition (Parent_Node);
|
10046 |
|
|
|
10047 |
|
|
if not Is_Interface (Iface_Typ) then
|
10048 |
|
|
Diagnose_Interface (Iface, Iface_Typ);
|
10049 |
|
|
|
10050 |
|
|
else
|
10051 |
|
|
-- "The declaration of a specific descendant of an interface
|
10052 |
|
|
-- type freezes the interface type" RM 13.14
|
10053 |
|
|
|
10054 |
|
|
Freeze_Before (N, Iface_Typ);
|
10055 |
|
|
Check_Ifaces (Iface_Def, Error_Node => Iface);
|
10056 |
|
|
end if;
|
10057 |
|
|
|
10058 |
|
|
Next (Iface);
|
10059 |
|
|
end loop;
|
10060 |
|
|
|
10061 |
|
|
if Is_Task and Is_Protected then
|
10062 |
|
|
Error_Msg_N
|
10063 |
|
|
("type cannot derive from task and protected interface", N);
|
10064 |
|
|
end if;
|
10065 |
|
|
end Check_Interfaces;
|
10066 |
|
|
|
10067 |
|
|
------------------------------------
|
10068 |
|
|
-- Check_Or_Process_Discriminants --
|
10069 |
|
|
------------------------------------
|
10070 |
|
|
|
10071 |
|
|
-- If an incomplete or private type declaration was already given for the
|
10072 |
|
|
-- type, the discriminants may have already been processed if they were
|
10073 |
|
|
-- present on the incomplete declaration. In this case a full conformance
|
10074 |
|
|
-- check has been performed in Find_Type_Name, and we then recheck here
|
10075 |
|
|
-- some properties that can't be checked on the partial view alone.
|
10076 |
|
|
-- Otherwise we call Process_Discriminants.
|
10077 |
|
|
|
10078 |
|
|
procedure Check_Or_Process_Discriminants
|
10079 |
|
|
(N : Node_Id;
|
10080 |
|
|
T : Entity_Id;
|
10081 |
|
|
Prev : Entity_Id := Empty)
|
10082 |
|
|
is
|
10083 |
|
|
begin
|
10084 |
|
|
if Has_Discriminants (T) then
|
10085 |
|
|
|
10086 |
|
|
-- Discriminants are already set on T if they were already present
|
10087 |
|
|
-- on the partial view. Make them visible to component declarations.
|
10088 |
|
|
|
10089 |
|
|
declare
|
10090 |
|
|
D : Entity_Id;
|
10091 |
|
|
-- Discriminant on T (full view) referencing expr on partial view
|
10092 |
|
|
|
10093 |
|
|
Prev_D : Entity_Id;
|
10094 |
|
|
-- Entity of corresponding discriminant on partial view
|
10095 |
|
|
|
10096 |
|
|
New_D : Node_Id;
|
10097 |
|
|
-- Discriminant specification for full view, expression is the
|
10098 |
|
|
-- syntactic copy on full view (which has been checked for
|
10099 |
|
|
-- conformance with partial view), only used here to post error
|
10100 |
|
|
-- message.
|
10101 |
|
|
|
10102 |
|
|
begin
|
10103 |
|
|
D := First_Discriminant (T);
|
10104 |
|
|
New_D := First (Discriminant_Specifications (N));
|
10105 |
|
|
while Present (D) loop
|
10106 |
|
|
Prev_D := Current_Entity (D);
|
10107 |
|
|
Set_Current_Entity (D);
|
10108 |
|
|
Set_Is_Immediately_Visible (D);
|
10109 |
|
|
Set_Homonym (D, Prev_D);
|
10110 |
|
|
|
10111 |
|
|
-- Handle the case where there is an untagged partial view and
|
10112 |
|
|
-- the full view is tagged: must disallow discriminants with
|
10113 |
|
|
-- defaults, unless compiling for Ada 2012, which allows a
|
10114 |
|
|
-- limited tagged type to have defaulted discriminants (see
|
10115 |
|
|
-- AI05-0214). However, suppress the error here if it was
|
10116 |
|
|
-- already reported on the default expression of the partial
|
10117 |
|
|
-- view.
|
10118 |
|
|
|
10119 |
|
|
if Is_Tagged_Type (T)
|
10120 |
|
|
and then Present (Expression (Parent (D)))
|
10121 |
|
|
and then (not Is_Limited_Type (Current_Scope)
|
10122 |
|
|
or else Ada_Version < Ada_2012)
|
10123 |
|
|
and then not Error_Posted (Expression (Parent (D)))
|
10124 |
|
|
then
|
10125 |
|
|
if Ada_Version >= Ada_2012 then
|
10126 |
|
|
Error_Msg_N
|
10127 |
|
|
("discriminants of nonlimited tagged type cannot have"
|
10128 |
|
|
& " defaults",
|
10129 |
|
|
Expression (New_D));
|
10130 |
|
|
else
|
10131 |
|
|
Error_Msg_N
|
10132 |
|
|
("discriminants of tagged type cannot have defaults",
|
10133 |
|
|
Expression (New_D));
|
10134 |
|
|
end if;
|
10135 |
|
|
end if;
|
10136 |
|
|
|
10137 |
|
|
-- Ada 2005 (AI-230): Access discriminant allowed in
|
10138 |
|
|
-- non-limited record types.
|
10139 |
|
|
|
10140 |
|
|
if Ada_Version < Ada_2005 then
|
10141 |
|
|
|
10142 |
|
|
-- This restriction gets applied to the full type here. It
|
10143 |
|
|
-- has already been applied earlier to the partial view.
|
10144 |
|
|
|
10145 |
|
|
Check_Access_Discriminant_Requires_Limited (Parent (D), N);
|
10146 |
|
|
end if;
|
10147 |
|
|
|
10148 |
|
|
Next_Discriminant (D);
|
10149 |
|
|
Next (New_D);
|
10150 |
|
|
end loop;
|
10151 |
|
|
end;
|
10152 |
|
|
|
10153 |
|
|
elsif Present (Discriminant_Specifications (N)) then
|
10154 |
|
|
Process_Discriminants (N, Prev);
|
10155 |
|
|
end if;
|
10156 |
|
|
end Check_Or_Process_Discriminants;
|
10157 |
|
|
|
10158 |
|
|
----------------------
|
10159 |
|
|
-- Check_Real_Bound --
|
10160 |
|
|
----------------------
|
10161 |
|
|
|
10162 |
|
|
procedure Check_Real_Bound (Bound : Node_Id) is
|
10163 |
|
|
begin
|
10164 |
|
|
if not Is_Real_Type (Etype (Bound)) then
|
10165 |
|
|
Error_Msg_N
|
10166 |
|
|
("bound in real type definition must be of real type", Bound);
|
10167 |
|
|
|
10168 |
|
|
elsif not Is_OK_Static_Expression (Bound) then
|
10169 |
|
|
Flag_Non_Static_Expr
|
10170 |
|
|
("non-static expression used for real type bound!", Bound);
|
10171 |
|
|
|
10172 |
|
|
else
|
10173 |
|
|
return;
|
10174 |
|
|
end if;
|
10175 |
|
|
|
10176 |
|
|
Rewrite
|
10177 |
|
|
(Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
|
10178 |
|
|
Analyze (Bound);
|
10179 |
|
|
Resolve (Bound, Standard_Float);
|
10180 |
|
|
end Check_Real_Bound;
|
10181 |
|
|
|
10182 |
|
|
------------------------------
|
10183 |
|
|
-- Complete_Private_Subtype --
|
10184 |
|
|
------------------------------
|
10185 |
|
|
|
10186 |
|
|
procedure Complete_Private_Subtype
|
10187 |
|
|
(Priv : Entity_Id;
|
10188 |
|
|
Full : Entity_Id;
|
10189 |
|
|
Full_Base : Entity_Id;
|
10190 |
|
|
Related_Nod : Node_Id)
|
10191 |
|
|
is
|
10192 |
|
|
Save_Next_Entity : Entity_Id;
|
10193 |
|
|
Save_Homonym : Entity_Id;
|
10194 |
|
|
|
10195 |
|
|
begin
|
10196 |
|
|
-- Set semantic attributes for (implicit) private subtype completion.
|
10197 |
|
|
-- If the full type has no discriminants, then it is a copy of the full
|
10198 |
|
|
-- view of the base. Otherwise, it is a subtype of the base with a
|
10199 |
|
|
-- possible discriminant constraint. Save and restore the original
|
10200 |
|
|
-- Next_Entity field of full to ensure that the calls to Copy_Node
|
10201 |
|
|
-- do not corrupt the entity chain.
|
10202 |
|
|
|
10203 |
|
|
-- Note that the type of the full view is the same entity as the type of
|
10204 |
|
|
-- the partial view. In this fashion, the subtype has access to the
|
10205 |
|
|
-- correct view of the parent.
|
10206 |
|
|
|
10207 |
|
|
Save_Next_Entity := Next_Entity (Full);
|
10208 |
|
|
Save_Homonym := Homonym (Priv);
|
10209 |
|
|
|
10210 |
|
|
case Ekind (Full_Base) is
|
10211 |
|
|
when E_Record_Type |
|
10212 |
|
|
E_Record_Subtype |
|
10213 |
|
|
Class_Wide_Kind |
|
10214 |
|
|
Private_Kind |
|
10215 |
|
|
Task_Kind |
|
10216 |
|
|
Protected_Kind =>
|
10217 |
|
|
Copy_Node (Priv, Full);
|
10218 |
|
|
|
10219 |
|
|
Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
|
10220 |
|
|
Set_First_Entity (Full, First_Entity (Full_Base));
|
10221 |
|
|
Set_Last_Entity (Full, Last_Entity (Full_Base));
|
10222 |
|
|
|
10223 |
|
|
when others =>
|
10224 |
|
|
Copy_Node (Full_Base, Full);
|
10225 |
|
|
Set_Chars (Full, Chars (Priv));
|
10226 |
|
|
Conditional_Delay (Full, Priv);
|
10227 |
|
|
Set_Sloc (Full, Sloc (Priv));
|
10228 |
|
|
end case;
|
10229 |
|
|
|
10230 |
|
|
Set_Next_Entity (Full, Save_Next_Entity);
|
10231 |
|
|
Set_Homonym (Full, Save_Homonym);
|
10232 |
|
|
Set_Associated_Node_For_Itype (Full, Related_Nod);
|
10233 |
|
|
|
10234 |
|
|
-- Set common attributes for all subtypes: kind, convention, etc.
|
10235 |
|
|
|
10236 |
|
|
Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
|
10237 |
|
|
Set_Convention (Full, Convention (Full_Base));
|
10238 |
|
|
|
10239 |
|
|
-- The Etype of the full view is inconsistent. Gigi needs to see the
|
10240 |
|
|
-- structural full view, which is what the current scheme gives:
|
10241 |
|
|
-- the Etype of the full view is the etype of the full base. However,
|
10242 |
|
|
-- if the full base is a derived type, the full view then looks like
|
10243 |
|
|
-- a subtype of the parent, not a subtype of the full base. If instead
|
10244 |
|
|
-- we write:
|
10245 |
|
|
|
10246 |
|
|
-- Set_Etype (Full, Full_Base);
|
10247 |
|
|
|
10248 |
|
|
-- then we get inconsistencies in the front-end (confusion between
|
10249 |
|
|
-- views). Several outstanding bugs are related to this ???
|
10250 |
|
|
|
10251 |
|
|
Set_Is_First_Subtype (Full, False);
|
10252 |
|
|
Set_Scope (Full, Scope (Priv));
|
10253 |
|
|
Set_Size_Info (Full, Full_Base);
|
10254 |
|
|
Set_RM_Size (Full, RM_Size (Full_Base));
|
10255 |
|
|
Set_Is_Itype (Full);
|
10256 |
|
|
|
10257 |
|
|
-- A subtype of a private-type-without-discriminants, whose full-view
|
10258 |
|
|
-- has discriminants with default expressions, is not constrained!
|
10259 |
|
|
|
10260 |
|
|
if not Has_Discriminants (Priv) then
|
10261 |
|
|
Set_Is_Constrained (Full, Is_Constrained (Full_Base));
|
10262 |
|
|
|
10263 |
|
|
if Has_Discriminants (Full_Base) then
|
10264 |
|
|
Set_Discriminant_Constraint
|
10265 |
|
|
(Full, Discriminant_Constraint (Full_Base));
|
10266 |
|
|
|
10267 |
|
|
-- The partial view may have been indefinite, the full view
|
10268 |
|
|
-- might not be.
|
10269 |
|
|
|
10270 |
|
|
Set_Has_Unknown_Discriminants
|
10271 |
|
|
(Full, Has_Unknown_Discriminants (Full_Base));
|
10272 |
|
|
end if;
|
10273 |
|
|
end if;
|
10274 |
|
|
|
10275 |
|
|
Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
|
10276 |
|
|
Set_Depends_On_Private (Full, Has_Private_Component (Full));
|
10277 |
|
|
|
10278 |
|
|
-- Freeze the private subtype entity if its parent is delayed, and not
|
10279 |
|
|
-- already frozen. We skip this processing if the type is an anonymous
|
10280 |
|
|
-- subtype of a record component, or is the corresponding record of a
|
10281 |
|
|
-- protected type, since ???
|
10282 |
|
|
|
10283 |
|
|
if not Is_Type (Scope (Full)) then
|
10284 |
|
|
Set_Has_Delayed_Freeze (Full,
|
10285 |
|
|
Has_Delayed_Freeze (Full_Base)
|
10286 |
|
|
and then (not Is_Frozen (Full_Base)));
|
10287 |
|
|
end if;
|
10288 |
|
|
|
10289 |
|
|
Set_Freeze_Node (Full, Empty);
|
10290 |
|
|
Set_Is_Frozen (Full, False);
|
10291 |
|
|
Set_Full_View (Priv, Full);
|
10292 |
|
|
|
10293 |
|
|
if Has_Discriminants (Full) then
|
10294 |
|
|
Set_Stored_Constraint_From_Discriminant_Constraint (Full);
|
10295 |
|
|
Set_Stored_Constraint (Priv, Stored_Constraint (Full));
|
10296 |
|
|
|
10297 |
|
|
if Has_Unknown_Discriminants (Full) then
|
10298 |
|
|
Set_Discriminant_Constraint (Full, No_Elist);
|
10299 |
|
|
end if;
|
10300 |
|
|
end if;
|
10301 |
|
|
|
10302 |
|
|
if Ekind (Full_Base) = E_Record_Type
|
10303 |
|
|
and then Has_Discriminants (Full_Base)
|
10304 |
|
|
and then Has_Discriminants (Priv) -- might not, if errors
|
10305 |
|
|
and then not Has_Unknown_Discriminants (Priv)
|
10306 |
|
|
and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
|
10307 |
|
|
then
|
10308 |
|
|
Create_Constrained_Components
|
10309 |
|
|
(Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
|
10310 |
|
|
|
10311 |
|
|
-- If the full base is itself derived from private, build a congruent
|
10312 |
|
|
-- subtype of its underlying type, for use by the back end. For a
|
10313 |
|
|
-- constrained record component, the declaration cannot be placed on
|
10314 |
|
|
-- the component list, but it must nevertheless be built an analyzed, to
|
10315 |
|
|
-- supply enough information for Gigi to compute the size of component.
|
10316 |
|
|
|
10317 |
|
|
elsif Ekind (Full_Base) in Private_Kind
|
10318 |
|
|
and then Is_Derived_Type (Full_Base)
|
10319 |
|
|
and then Has_Discriminants (Full_Base)
|
10320 |
|
|
and then (Ekind (Current_Scope) /= E_Record_Subtype)
|
10321 |
|
|
then
|
10322 |
|
|
if not Is_Itype (Priv)
|
10323 |
|
|
and then
|
10324 |
|
|
Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
|
10325 |
|
|
then
|
10326 |
|
|
Build_Underlying_Full_View
|
10327 |
|
|
(Parent (Priv), Full, Etype (Full_Base));
|
10328 |
|
|
|
10329 |
|
|
elsif Nkind (Related_Nod) = N_Component_Declaration then
|
10330 |
|
|
Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
|
10331 |
|
|
end if;
|
10332 |
|
|
|
10333 |
|
|
elsif Is_Record_Type (Full_Base) then
|
10334 |
|
|
|
10335 |
|
|
-- Show Full is simply a renaming of Full_Base
|
10336 |
|
|
|
10337 |
|
|
Set_Cloned_Subtype (Full, Full_Base);
|
10338 |
|
|
end if;
|
10339 |
|
|
|
10340 |
|
|
-- It is unsafe to share to bounds of a scalar type, because the Itype
|
10341 |
|
|
-- is elaborated on demand, and if a bound is non-static then different
|
10342 |
|
|
-- orders of elaboration in different units will lead to different
|
10343 |
|
|
-- external symbols.
|
10344 |
|
|
|
10345 |
|
|
if Is_Scalar_Type (Full_Base) then
|
10346 |
|
|
Set_Scalar_Range (Full,
|
10347 |
|
|
Make_Range (Sloc (Related_Nod),
|
10348 |
|
|
Low_Bound =>
|
10349 |
|
|
Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
|
10350 |
|
|
High_Bound =>
|
10351 |
|
|
Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
|
10352 |
|
|
|
10353 |
|
|
-- This completion inherits the bounds of the full parent, but if
|
10354 |
|
|
-- the parent is an unconstrained floating point type, so is the
|
10355 |
|
|
-- completion.
|
10356 |
|
|
|
10357 |
|
|
if Is_Floating_Point_Type (Full_Base) then
|
10358 |
|
|
Set_Includes_Infinities
|
10359 |
|
|
(Scalar_Range (Full), Has_Infinities (Full_Base));
|
10360 |
|
|
end if;
|
10361 |
|
|
end if;
|
10362 |
|
|
|
10363 |
|
|
-- ??? It seems that a lot of fields are missing that should be copied
|
10364 |
|
|
-- from Full_Base to Full. Here are some that are introduced in a
|
10365 |
|
|
-- non-disruptive way but a cleanup is necessary.
|
10366 |
|
|
|
10367 |
|
|
if Is_Tagged_Type (Full_Base) then
|
10368 |
|
|
Set_Is_Tagged_Type (Full);
|
10369 |
|
|
Set_Direct_Primitive_Operations (Full,
|
10370 |
|
|
Direct_Primitive_Operations (Full_Base));
|
10371 |
|
|
|
10372 |
|
|
-- Inherit class_wide type of full_base in case the partial view was
|
10373 |
|
|
-- not tagged. Otherwise it has already been created when the private
|
10374 |
|
|
-- subtype was analyzed.
|
10375 |
|
|
|
10376 |
|
|
if No (Class_Wide_Type (Full)) then
|
10377 |
|
|
Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
|
10378 |
|
|
end if;
|
10379 |
|
|
|
10380 |
|
|
-- If this is a subtype of a protected or task type, constrain its
|
10381 |
|
|
-- corresponding record, unless this is a subtype without constraints,
|
10382 |
|
|
-- i.e. a simple renaming as with an actual subtype in an instance.
|
10383 |
|
|
|
10384 |
|
|
elsif Is_Concurrent_Type (Full_Base) then
|
10385 |
|
|
if Has_Discriminants (Full)
|
10386 |
|
|
and then Present (Corresponding_Record_Type (Full_Base))
|
10387 |
|
|
and then
|
10388 |
|
|
not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
|
10389 |
|
|
then
|
10390 |
|
|
Set_Corresponding_Record_Type (Full,
|
10391 |
|
|
Constrain_Corresponding_Record
|
10392 |
|
|
(Full, Corresponding_Record_Type (Full_Base),
|
10393 |
|
|
Related_Nod, Full_Base));
|
10394 |
|
|
|
10395 |
|
|
else
|
10396 |
|
|
Set_Corresponding_Record_Type (Full,
|
10397 |
|
|
Corresponding_Record_Type (Full_Base));
|
10398 |
|
|
end if;
|
10399 |
|
|
end if;
|
10400 |
|
|
|
10401 |
|
|
-- Link rep item chain, and also setting of Has_Predicates from private
|
10402 |
|
|
-- subtype to full subtype, since we will need these on the full subtype
|
10403 |
|
|
-- to create the predicate function. Note that the full subtype may
|
10404 |
|
|
-- already have rep items, inherited from the full view of the base
|
10405 |
|
|
-- type, so we must be sure not to overwrite these entries.
|
10406 |
|
|
|
10407 |
|
|
declare
|
10408 |
|
|
Append : Boolean;
|
10409 |
|
|
Item : Node_Id;
|
10410 |
|
|
Next_Item : Node_Id;
|
10411 |
|
|
|
10412 |
|
|
begin
|
10413 |
|
|
Item := First_Rep_Item (Full);
|
10414 |
|
|
|
10415 |
|
|
-- If no existing rep items on full type, we can just link directly
|
10416 |
|
|
-- to the list of items on the private type.
|
10417 |
|
|
|
10418 |
|
|
if No (Item) then
|
10419 |
|
|
Set_First_Rep_Item (Full, First_Rep_Item (Priv));
|
10420 |
|
|
|
10421 |
|
|
-- Otherwise, search to the end of items currently linked to the full
|
10422 |
|
|
-- subtype and append the private items to the end. However, if Priv
|
10423 |
|
|
-- and Full already have the same list of rep items, then the append
|
10424 |
|
|
-- is not done, as that would create a circularity.
|
10425 |
|
|
|
10426 |
|
|
elsif Item /= First_Rep_Item (Priv) then
|
10427 |
|
|
Append := True;
|
10428 |
|
|
|
10429 |
|
|
loop
|
10430 |
|
|
Next_Item := Next_Rep_Item (Item);
|
10431 |
|
|
exit when No (Next_Item);
|
10432 |
|
|
Item := Next_Item;
|
10433 |
|
|
|
10434 |
|
|
-- If the private view has aspect specifications, the full view
|
10435 |
|
|
-- inherits them. Since these aspects may already have been
|
10436 |
|
|
-- attached to the full view during derivation, do not append
|
10437 |
|
|
-- them if already present.
|
10438 |
|
|
|
10439 |
|
|
if Item = First_Rep_Item (Priv) then
|
10440 |
|
|
Append := False;
|
10441 |
|
|
exit;
|
10442 |
|
|
end if;
|
10443 |
|
|
end loop;
|
10444 |
|
|
|
10445 |
|
|
-- And link the private type items at the end of the chain
|
10446 |
|
|
|
10447 |
|
|
if Append then
|
10448 |
|
|
Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
|
10449 |
|
|
end if;
|
10450 |
|
|
end if;
|
10451 |
|
|
end;
|
10452 |
|
|
|
10453 |
|
|
-- Make sure Has_Predicates is set on full type if it is set on the
|
10454 |
|
|
-- private type. Note that it may already be set on the full type and
|
10455 |
|
|
-- if so, we don't want to unset it.
|
10456 |
|
|
|
10457 |
|
|
if Has_Predicates (Priv) then
|
10458 |
|
|
Set_Has_Predicates (Full);
|
10459 |
|
|
end if;
|
10460 |
|
|
end Complete_Private_Subtype;
|
10461 |
|
|
|
10462 |
|
|
----------------------------
|
10463 |
|
|
-- Constant_Redeclaration --
|
10464 |
|
|
----------------------------
|
10465 |
|
|
|
10466 |
|
|
procedure Constant_Redeclaration
|
10467 |
|
|
(Id : Entity_Id;
|
10468 |
|
|
N : Node_Id;
|
10469 |
|
|
T : out Entity_Id)
|
10470 |
|
|
is
|
10471 |
|
|
Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
|
10472 |
|
|
Obj_Def : constant Node_Id := Object_Definition (N);
|
10473 |
|
|
New_T : Entity_Id;
|
10474 |
|
|
|
10475 |
|
|
procedure Check_Possible_Deferred_Completion
|
10476 |
|
|
(Prev_Id : Entity_Id;
|
10477 |
|
|
Prev_Obj_Def : Node_Id;
|
10478 |
|
|
Curr_Obj_Def : Node_Id);
|
10479 |
|
|
-- Determine whether the two object definitions describe the partial
|
10480 |
|
|
-- and the full view of a constrained deferred constant. Generate
|
10481 |
|
|
-- a subtype for the full view and verify that it statically matches
|
10482 |
|
|
-- the subtype of the partial view.
|
10483 |
|
|
|
10484 |
|
|
procedure Check_Recursive_Declaration (Typ : Entity_Id);
|
10485 |
|
|
-- If deferred constant is an access type initialized with an allocator,
|
10486 |
|
|
-- check whether there is an illegal recursion in the definition,
|
10487 |
|
|
-- through a default value of some record subcomponent. This is normally
|
10488 |
|
|
-- detected when generating init procs, but requires this additional
|
10489 |
|
|
-- mechanism when expansion is disabled.
|
10490 |
|
|
|
10491 |
|
|
----------------------------------------
|
10492 |
|
|
-- Check_Possible_Deferred_Completion --
|
10493 |
|
|
----------------------------------------
|
10494 |
|
|
|
10495 |
|
|
procedure Check_Possible_Deferred_Completion
|
10496 |
|
|
(Prev_Id : Entity_Id;
|
10497 |
|
|
Prev_Obj_Def : Node_Id;
|
10498 |
|
|
Curr_Obj_Def : Node_Id)
|
10499 |
|
|
is
|
10500 |
|
|
begin
|
10501 |
|
|
if Nkind (Prev_Obj_Def) = N_Subtype_Indication
|
10502 |
|
|
and then Present (Constraint (Prev_Obj_Def))
|
10503 |
|
|
and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
|
10504 |
|
|
and then Present (Constraint (Curr_Obj_Def))
|
10505 |
|
|
then
|
10506 |
|
|
declare
|
10507 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
10508 |
|
|
Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
|
10509 |
|
|
Decl : constant Node_Id :=
|
10510 |
|
|
Make_Subtype_Declaration (Loc,
|
10511 |
|
|
Defining_Identifier => Def_Id,
|
10512 |
|
|
Subtype_Indication =>
|
10513 |
|
|
Relocate_Node (Curr_Obj_Def));
|
10514 |
|
|
|
10515 |
|
|
begin
|
10516 |
|
|
Insert_Before_And_Analyze (N, Decl);
|
10517 |
|
|
Set_Etype (Id, Def_Id);
|
10518 |
|
|
|
10519 |
|
|
if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
|
10520 |
|
|
Error_Msg_Sloc := Sloc (Prev_Id);
|
10521 |
|
|
Error_Msg_N ("subtype does not statically match deferred " &
|
10522 |
|
|
"declaration#", N);
|
10523 |
|
|
end if;
|
10524 |
|
|
end;
|
10525 |
|
|
end if;
|
10526 |
|
|
end Check_Possible_Deferred_Completion;
|
10527 |
|
|
|
10528 |
|
|
---------------------------------
|
10529 |
|
|
-- Check_Recursive_Declaration --
|
10530 |
|
|
---------------------------------
|
10531 |
|
|
|
10532 |
|
|
procedure Check_Recursive_Declaration (Typ : Entity_Id) is
|
10533 |
|
|
Comp : Entity_Id;
|
10534 |
|
|
|
10535 |
|
|
begin
|
10536 |
|
|
if Is_Record_Type (Typ) then
|
10537 |
|
|
Comp := First_Component (Typ);
|
10538 |
|
|
while Present (Comp) loop
|
10539 |
|
|
if Comes_From_Source (Comp) then
|
10540 |
|
|
if Present (Expression (Parent (Comp)))
|
10541 |
|
|
and then Is_Entity_Name (Expression (Parent (Comp)))
|
10542 |
|
|
and then Entity (Expression (Parent (Comp))) = Prev
|
10543 |
|
|
then
|
10544 |
|
|
Error_Msg_Sloc := Sloc (Parent (Comp));
|
10545 |
|
|
Error_Msg_NE
|
10546 |
|
|
("illegal circularity with declaration for&#",
|
10547 |
|
|
N, Comp);
|
10548 |
|
|
return;
|
10549 |
|
|
|
10550 |
|
|
elsif Is_Record_Type (Etype (Comp)) then
|
10551 |
|
|
Check_Recursive_Declaration (Etype (Comp));
|
10552 |
|
|
end if;
|
10553 |
|
|
end if;
|
10554 |
|
|
|
10555 |
|
|
Next_Component (Comp);
|
10556 |
|
|
end loop;
|
10557 |
|
|
end if;
|
10558 |
|
|
end Check_Recursive_Declaration;
|
10559 |
|
|
|
10560 |
|
|
-- Start of processing for Constant_Redeclaration
|
10561 |
|
|
|
10562 |
|
|
begin
|
10563 |
|
|
if Nkind (Parent (Prev)) = N_Object_Declaration then
|
10564 |
|
|
if Nkind (Object_Definition
|
10565 |
|
|
(Parent (Prev))) = N_Subtype_Indication
|
10566 |
|
|
then
|
10567 |
|
|
-- Find type of new declaration. The constraints of the two
|
10568 |
|
|
-- views must match statically, but there is no point in
|
10569 |
|
|
-- creating an itype for the full view.
|
10570 |
|
|
|
10571 |
|
|
if Nkind (Obj_Def) = N_Subtype_Indication then
|
10572 |
|
|
Find_Type (Subtype_Mark (Obj_Def));
|
10573 |
|
|
New_T := Entity (Subtype_Mark (Obj_Def));
|
10574 |
|
|
|
10575 |
|
|
else
|
10576 |
|
|
Find_Type (Obj_Def);
|
10577 |
|
|
New_T := Entity (Obj_Def);
|
10578 |
|
|
end if;
|
10579 |
|
|
|
10580 |
|
|
T := Etype (Prev);
|
10581 |
|
|
|
10582 |
|
|
else
|
10583 |
|
|
-- The full view may impose a constraint, even if the partial
|
10584 |
|
|
-- view does not, so construct the subtype.
|
10585 |
|
|
|
10586 |
|
|
New_T := Find_Type_Of_Object (Obj_Def, N);
|
10587 |
|
|
T := New_T;
|
10588 |
|
|
end if;
|
10589 |
|
|
|
10590 |
|
|
else
|
10591 |
|
|
-- Current declaration is illegal, diagnosed below in Enter_Name
|
10592 |
|
|
|
10593 |
|
|
T := Empty;
|
10594 |
|
|
New_T := Any_Type;
|
10595 |
|
|
end if;
|
10596 |
|
|
|
10597 |
|
|
-- If previous full declaration or a renaming declaration exists, or if
|
10598 |
|
|
-- a homograph is present, let Enter_Name handle it, either with an
|
10599 |
|
|
-- error or with the removal of an overridden implicit subprogram.
|
10600 |
|
|
|
10601 |
|
|
if Ekind (Prev) /= E_Constant
|
10602 |
|
|
or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
|
10603 |
|
|
or else Present (Expression (Parent (Prev)))
|
10604 |
|
|
or else Present (Full_View (Prev))
|
10605 |
|
|
then
|
10606 |
|
|
Enter_Name (Id);
|
10607 |
|
|
|
10608 |
|
|
-- Verify that types of both declarations match, or else that both types
|
10609 |
|
|
-- are anonymous access types whose designated subtypes statically match
|
10610 |
|
|
-- (as allowed in Ada 2005 by AI-385).
|
10611 |
|
|
|
10612 |
|
|
elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
|
10613 |
|
|
and then
|
10614 |
|
|
(Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
|
10615 |
|
|
or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
|
10616 |
|
|
or else Is_Access_Constant (Etype (New_T)) /=
|
10617 |
|
|
Is_Access_Constant (Etype (Prev))
|
10618 |
|
|
or else Can_Never_Be_Null (Etype (New_T)) /=
|
10619 |
|
|
Can_Never_Be_Null (Etype (Prev))
|
10620 |
|
|
or else Null_Exclusion_Present (Parent (Prev)) /=
|
10621 |
|
|
Null_Exclusion_Present (Parent (Id))
|
10622 |
|
|
or else not Subtypes_Statically_Match
|
10623 |
|
|
(Designated_Type (Etype (Prev)),
|
10624 |
|
|
Designated_Type (Etype (New_T))))
|
10625 |
|
|
then
|
10626 |
|
|
Error_Msg_Sloc := Sloc (Prev);
|
10627 |
|
|
Error_Msg_N ("type does not match declaration#", N);
|
10628 |
|
|
Set_Full_View (Prev, Id);
|
10629 |
|
|
Set_Etype (Id, Any_Type);
|
10630 |
|
|
|
10631 |
|
|
elsif
|
10632 |
|
|
Null_Exclusion_Present (Parent (Prev))
|
10633 |
|
|
and then not Null_Exclusion_Present (N)
|
10634 |
|
|
then
|
10635 |
|
|
Error_Msg_Sloc := Sloc (Prev);
|
10636 |
|
|
Error_Msg_N ("null-exclusion does not match declaration#", N);
|
10637 |
|
|
Set_Full_View (Prev, Id);
|
10638 |
|
|
Set_Etype (Id, Any_Type);
|
10639 |
|
|
|
10640 |
|
|
-- If so, process the full constant declaration
|
10641 |
|
|
|
10642 |
|
|
else
|
10643 |
|
|
-- RM 7.4 (6): If the subtype defined by the subtype_indication in
|
10644 |
|
|
-- the deferred declaration is constrained, then the subtype defined
|
10645 |
|
|
-- by the subtype_indication in the full declaration shall match it
|
10646 |
|
|
-- statically.
|
10647 |
|
|
|
10648 |
|
|
Check_Possible_Deferred_Completion
|
10649 |
|
|
(Prev_Id => Prev,
|
10650 |
|
|
Prev_Obj_Def => Object_Definition (Parent (Prev)),
|
10651 |
|
|
Curr_Obj_Def => Obj_Def);
|
10652 |
|
|
|
10653 |
|
|
Set_Full_View (Prev, Id);
|
10654 |
|
|
Set_Is_Public (Id, Is_Public (Prev));
|
10655 |
|
|
Set_Is_Internal (Id);
|
10656 |
|
|
Append_Entity (Id, Current_Scope);
|
10657 |
|
|
|
10658 |
|
|
-- Check ALIASED present if present before (RM 7.4(7))
|
10659 |
|
|
|
10660 |
|
|
if Is_Aliased (Prev)
|
10661 |
|
|
and then not Aliased_Present (N)
|
10662 |
|
|
then
|
10663 |
|
|
Error_Msg_Sloc := Sloc (Prev);
|
10664 |
|
|
Error_Msg_N ("ALIASED required (see declaration#)", N);
|
10665 |
|
|
end if;
|
10666 |
|
|
|
10667 |
|
|
-- Check that placement is in private part and that the incomplete
|
10668 |
|
|
-- declaration appeared in the visible part.
|
10669 |
|
|
|
10670 |
|
|
if Ekind (Current_Scope) = E_Package
|
10671 |
|
|
and then not In_Private_Part (Current_Scope)
|
10672 |
|
|
then
|
10673 |
|
|
Error_Msg_Sloc := Sloc (Prev);
|
10674 |
|
|
Error_Msg_N
|
10675 |
|
|
("full constant for declaration#"
|
10676 |
|
|
& " must be in private part", N);
|
10677 |
|
|
|
10678 |
|
|
elsif Ekind (Current_Scope) = E_Package
|
10679 |
|
|
and then
|
10680 |
|
|
List_Containing (Parent (Prev)) /=
|
10681 |
|
|
Visible_Declarations
|
10682 |
|
|
(Specification (Unit_Declaration_Node (Current_Scope)))
|
10683 |
|
|
then
|
10684 |
|
|
Error_Msg_N
|
10685 |
|
|
("deferred constant must be declared in visible part",
|
10686 |
|
|
Parent (Prev));
|
10687 |
|
|
end if;
|
10688 |
|
|
|
10689 |
|
|
if Is_Access_Type (T)
|
10690 |
|
|
and then Nkind (Expression (N)) = N_Allocator
|
10691 |
|
|
then
|
10692 |
|
|
Check_Recursive_Declaration (Designated_Type (T));
|
10693 |
|
|
end if;
|
10694 |
|
|
end if;
|
10695 |
|
|
end Constant_Redeclaration;
|
10696 |
|
|
|
10697 |
|
|
----------------------
|
10698 |
|
|
-- Constrain_Access --
|
10699 |
|
|
----------------------
|
10700 |
|
|
|
10701 |
|
|
procedure Constrain_Access
|
10702 |
|
|
(Def_Id : in out Entity_Id;
|
10703 |
|
|
S : Node_Id;
|
10704 |
|
|
Related_Nod : Node_Id)
|
10705 |
|
|
is
|
10706 |
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
10707 |
|
|
Desig_Type : constant Entity_Id := Designated_Type (T);
|
10708 |
|
|
Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
|
10709 |
|
|
Constraint_OK : Boolean := True;
|
10710 |
|
|
|
10711 |
|
|
function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
|
10712 |
|
|
-- Simple predicate to test for defaulted discriminants
|
10713 |
|
|
-- Shouldn't this be in sem_util???
|
10714 |
|
|
|
10715 |
|
|
---------------------------------
|
10716 |
|
|
-- Has_Defaulted_Discriminants --
|
10717 |
|
|
---------------------------------
|
10718 |
|
|
|
10719 |
|
|
function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
|
10720 |
|
|
begin
|
10721 |
|
|
return Has_Discriminants (Typ)
|
10722 |
|
|
and then Present (First_Discriminant (Typ))
|
10723 |
|
|
and then Present
|
10724 |
|
|
(Discriminant_Default_Value (First_Discriminant (Typ)));
|
10725 |
|
|
end Has_Defaulted_Discriminants;
|
10726 |
|
|
|
10727 |
|
|
-- Start of processing for Constrain_Access
|
10728 |
|
|
|
10729 |
|
|
begin
|
10730 |
|
|
if Is_Array_Type (Desig_Type) then
|
10731 |
|
|
Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
|
10732 |
|
|
|
10733 |
|
|
elsif (Is_Record_Type (Desig_Type)
|
10734 |
|
|
or else Is_Incomplete_Or_Private_Type (Desig_Type))
|
10735 |
|
|
and then not Is_Constrained (Desig_Type)
|
10736 |
|
|
then
|
10737 |
|
|
-- ??? The following code is a temporary kludge to ignore a
|
10738 |
|
|
-- discriminant constraint on access type if it is constraining
|
10739 |
|
|
-- the current record. Avoid creating the implicit subtype of the
|
10740 |
|
|
-- record we are currently compiling since right now, we cannot
|
10741 |
|
|
-- handle these. For now, just return the access type itself.
|
10742 |
|
|
|
10743 |
|
|
if Desig_Type = Current_Scope
|
10744 |
|
|
and then No (Def_Id)
|
10745 |
|
|
then
|
10746 |
|
|
Set_Ekind (Desig_Subtype, E_Record_Subtype);
|
10747 |
|
|
Def_Id := Entity (Subtype_Mark (S));
|
10748 |
|
|
|
10749 |
|
|
-- This call added to ensure that the constraint is analyzed
|
10750 |
|
|
-- (needed for a B test). Note that we still return early from
|
10751 |
|
|
-- this procedure to avoid recursive processing. ???
|
10752 |
|
|
|
10753 |
|
|
Constrain_Discriminated_Type
|
10754 |
|
|
(Desig_Subtype, S, Related_Nod, For_Access => True);
|
10755 |
|
|
return;
|
10756 |
|
|
end if;
|
10757 |
|
|
|
10758 |
|
|
-- Enforce rule that the constraint is illegal if there is an
|
10759 |
|
|
-- unconstrained view of the designated type. This means that the
|
10760 |
|
|
-- partial view (either a private type declaration or a derivation
|
10761 |
|
|
-- from a private type) has no discriminants. (Defect Report
|
10762 |
|
|
-- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
|
10763 |
|
|
|
10764 |
|
|
-- Rule updated for Ada 2005: the private type is said to have
|
10765 |
|
|
-- a constrained partial view, given that objects of the type
|
10766 |
|
|
-- can be declared. Furthermore, the rule applies to all access
|
10767 |
|
|
-- types, unlike the rule concerning default discriminants (see
|
10768 |
|
|
-- RM 3.7.1(7/3))
|
10769 |
|
|
|
10770 |
|
|
if (Ekind (T) = E_General_Access_Type
|
10771 |
|
|
or else Ada_Version >= Ada_2005)
|
10772 |
|
|
and then Has_Private_Declaration (Desig_Type)
|
10773 |
|
|
and then In_Open_Scopes (Scope (Desig_Type))
|
10774 |
|
|
and then Has_Discriminants (Desig_Type)
|
10775 |
|
|
then
|
10776 |
|
|
declare
|
10777 |
|
|
Pack : constant Node_Id :=
|
10778 |
|
|
Unit_Declaration_Node (Scope (Desig_Type));
|
10779 |
|
|
Decls : List_Id;
|
10780 |
|
|
Decl : Node_Id;
|
10781 |
|
|
|
10782 |
|
|
begin
|
10783 |
|
|
if Nkind (Pack) = N_Package_Declaration then
|
10784 |
|
|
Decls := Visible_Declarations (Specification (Pack));
|
10785 |
|
|
Decl := First (Decls);
|
10786 |
|
|
while Present (Decl) loop
|
10787 |
|
|
if (Nkind (Decl) = N_Private_Type_Declaration
|
10788 |
|
|
and then
|
10789 |
|
|
Chars (Defining_Identifier (Decl)) =
|
10790 |
|
|
Chars (Desig_Type))
|
10791 |
|
|
|
10792 |
|
|
or else
|
10793 |
|
|
(Nkind (Decl) = N_Full_Type_Declaration
|
10794 |
|
|
and then
|
10795 |
|
|
Chars (Defining_Identifier (Decl)) =
|
10796 |
|
|
Chars (Desig_Type)
|
10797 |
|
|
and then Is_Derived_Type (Desig_Type)
|
10798 |
|
|
and then
|
10799 |
|
|
Has_Private_Declaration (Etype (Desig_Type)))
|
10800 |
|
|
then
|
10801 |
|
|
if No (Discriminant_Specifications (Decl)) then
|
10802 |
|
|
Error_Msg_N
|
10803 |
|
|
("cannot constrain access type if designated " &
|
10804 |
|
|
"type has constrained partial view", S);
|
10805 |
|
|
end if;
|
10806 |
|
|
|
10807 |
|
|
exit;
|
10808 |
|
|
end if;
|
10809 |
|
|
|
10810 |
|
|
Next (Decl);
|
10811 |
|
|
end loop;
|
10812 |
|
|
end if;
|
10813 |
|
|
end;
|
10814 |
|
|
end if;
|
10815 |
|
|
|
10816 |
|
|
Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
|
10817 |
|
|
For_Access => True);
|
10818 |
|
|
|
10819 |
|
|
elsif (Is_Task_Type (Desig_Type)
|
10820 |
|
|
or else Is_Protected_Type (Desig_Type))
|
10821 |
|
|
and then not Is_Constrained (Desig_Type)
|
10822 |
|
|
then
|
10823 |
|
|
Constrain_Concurrent
|
10824 |
|
|
(Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
|
10825 |
|
|
|
10826 |
|
|
else
|
10827 |
|
|
Error_Msg_N ("invalid constraint on access type", S);
|
10828 |
|
|
Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
|
10829 |
|
|
Constraint_OK := False;
|
10830 |
|
|
end if;
|
10831 |
|
|
|
10832 |
|
|
if No (Def_Id) then
|
10833 |
|
|
Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
|
10834 |
|
|
else
|
10835 |
|
|
Set_Ekind (Def_Id, E_Access_Subtype);
|
10836 |
|
|
end if;
|
10837 |
|
|
|
10838 |
|
|
if Constraint_OK then
|
10839 |
|
|
Set_Etype (Def_Id, Base_Type (T));
|
10840 |
|
|
|
10841 |
|
|
if Is_Private_Type (Desig_Type) then
|
10842 |
|
|
Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
|
10843 |
|
|
end if;
|
10844 |
|
|
else
|
10845 |
|
|
Set_Etype (Def_Id, Any_Type);
|
10846 |
|
|
end if;
|
10847 |
|
|
|
10848 |
|
|
Set_Size_Info (Def_Id, T);
|
10849 |
|
|
Set_Is_Constrained (Def_Id, Constraint_OK);
|
10850 |
|
|
Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
|
10851 |
|
|
Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
|
10852 |
|
|
Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
|
10853 |
|
|
|
10854 |
|
|
Conditional_Delay (Def_Id, T);
|
10855 |
|
|
|
10856 |
|
|
-- AI-363 : Subtypes of general access types whose designated types have
|
10857 |
|
|
-- default discriminants are disallowed. In instances, the rule has to
|
10858 |
|
|
-- be checked against the actual, of which T is the subtype. In a
|
10859 |
|
|
-- generic body, the rule is checked assuming that the actual type has
|
10860 |
|
|
-- defaulted discriminants.
|
10861 |
|
|
|
10862 |
|
|
if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
|
10863 |
|
|
if Ekind (Base_Type (T)) = E_General_Access_Type
|
10864 |
|
|
and then Has_Defaulted_Discriminants (Desig_Type)
|
10865 |
|
|
then
|
10866 |
|
|
if Ada_Version < Ada_2005 then
|
10867 |
|
|
Error_Msg_N
|
10868 |
|
|
("access subtype of general access type would not " &
|
10869 |
|
|
"be allowed in Ada 2005?", S);
|
10870 |
|
|
else
|
10871 |
|
|
Error_Msg_N
|
10872 |
|
|
("access subtype of general access type not allowed", S);
|
10873 |
|
|
end if;
|
10874 |
|
|
|
10875 |
|
|
Error_Msg_N ("\discriminants have defaults", S);
|
10876 |
|
|
|
10877 |
|
|
elsif Is_Access_Type (T)
|
10878 |
|
|
and then Is_Generic_Type (Desig_Type)
|
10879 |
|
|
and then Has_Discriminants (Desig_Type)
|
10880 |
|
|
and then In_Package_Body (Current_Scope)
|
10881 |
|
|
then
|
10882 |
|
|
if Ada_Version < Ada_2005 then
|
10883 |
|
|
Error_Msg_N
|
10884 |
|
|
("access subtype would not be allowed in generic body " &
|
10885 |
|
|
"in Ada 2005?", S);
|
10886 |
|
|
else
|
10887 |
|
|
Error_Msg_N
|
10888 |
|
|
("access subtype not allowed in generic body", S);
|
10889 |
|
|
end if;
|
10890 |
|
|
|
10891 |
|
|
Error_Msg_N
|
10892 |
|
|
("\designated type is a discriminated formal", S);
|
10893 |
|
|
end if;
|
10894 |
|
|
end if;
|
10895 |
|
|
end Constrain_Access;
|
10896 |
|
|
|
10897 |
|
|
---------------------
|
10898 |
|
|
-- Constrain_Array --
|
10899 |
|
|
---------------------
|
10900 |
|
|
|
10901 |
|
|
procedure Constrain_Array
|
10902 |
|
|
(Def_Id : in out Entity_Id;
|
10903 |
|
|
SI : Node_Id;
|
10904 |
|
|
Related_Nod : Node_Id;
|
10905 |
|
|
Related_Id : Entity_Id;
|
10906 |
|
|
Suffix : Character)
|
10907 |
|
|
is
|
10908 |
|
|
C : constant Node_Id := Constraint (SI);
|
10909 |
|
|
Number_Of_Constraints : Nat := 0;
|
10910 |
|
|
Index : Node_Id;
|
10911 |
|
|
S, T : Entity_Id;
|
10912 |
|
|
Constraint_OK : Boolean := True;
|
10913 |
|
|
|
10914 |
|
|
begin
|
10915 |
|
|
T := Entity (Subtype_Mark (SI));
|
10916 |
|
|
|
10917 |
|
|
if Ekind (T) in Access_Kind then
|
10918 |
|
|
T := Designated_Type (T);
|
10919 |
|
|
end if;
|
10920 |
|
|
|
10921 |
|
|
-- If an index constraint follows a subtype mark in a subtype indication
|
10922 |
|
|
-- then the type or subtype denoted by the subtype mark must not already
|
10923 |
|
|
-- impose an index constraint. The subtype mark must denote either an
|
10924 |
|
|
-- unconstrained array type or an access type whose designated type
|
10925 |
|
|
-- is such an array type... (RM 3.6.1)
|
10926 |
|
|
|
10927 |
|
|
if Is_Constrained (T) then
|
10928 |
|
|
Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
|
10929 |
|
|
Constraint_OK := False;
|
10930 |
|
|
|
10931 |
|
|
else
|
10932 |
|
|
S := First (Constraints (C));
|
10933 |
|
|
while Present (S) loop
|
10934 |
|
|
Number_Of_Constraints := Number_Of_Constraints + 1;
|
10935 |
|
|
Next (S);
|
10936 |
|
|
end loop;
|
10937 |
|
|
|
10938 |
|
|
-- In either case, the index constraint must provide a discrete
|
10939 |
|
|
-- range for each index of the array type and the type of each
|
10940 |
|
|
-- discrete range must be the same as that of the corresponding
|
10941 |
|
|
-- index. (RM 3.6.1)
|
10942 |
|
|
|
10943 |
|
|
if Number_Of_Constraints /= Number_Dimensions (T) then
|
10944 |
|
|
Error_Msg_NE ("incorrect number of index constraints for }", C, T);
|
10945 |
|
|
Constraint_OK := False;
|
10946 |
|
|
|
10947 |
|
|
else
|
10948 |
|
|
S := First (Constraints (C));
|
10949 |
|
|
Index := First_Index (T);
|
10950 |
|
|
Analyze (Index);
|
10951 |
|
|
|
10952 |
|
|
-- Apply constraints to each index type
|
10953 |
|
|
|
10954 |
|
|
for J in 1 .. Number_Of_Constraints loop
|
10955 |
|
|
Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
|
10956 |
|
|
Next (Index);
|
10957 |
|
|
Next (S);
|
10958 |
|
|
end loop;
|
10959 |
|
|
|
10960 |
|
|
end if;
|
10961 |
|
|
end if;
|
10962 |
|
|
|
10963 |
|
|
if No (Def_Id) then
|
10964 |
|
|
Def_Id :=
|
10965 |
|
|
Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
|
10966 |
|
|
Set_Parent (Def_Id, Related_Nod);
|
10967 |
|
|
|
10968 |
|
|
else
|
10969 |
|
|
Set_Ekind (Def_Id, E_Array_Subtype);
|
10970 |
|
|
end if;
|
10971 |
|
|
|
10972 |
|
|
Set_Size_Info (Def_Id, (T));
|
10973 |
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
10974 |
|
|
Set_Etype (Def_Id, Base_Type (T));
|
10975 |
|
|
|
10976 |
|
|
if Constraint_OK then
|
10977 |
|
|
Set_First_Index (Def_Id, First (Constraints (C)));
|
10978 |
|
|
else
|
10979 |
|
|
Set_First_Index (Def_Id, First_Index (T));
|
10980 |
|
|
end if;
|
10981 |
|
|
|
10982 |
|
|
Set_Is_Constrained (Def_Id, True);
|
10983 |
|
|
Set_Is_Aliased (Def_Id, Is_Aliased (T));
|
10984 |
|
|
Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
|
10985 |
|
|
|
10986 |
|
|
Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
|
10987 |
|
|
Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
|
10988 |
|
|
|
10989 |
|
|
-- A subtype does not inherit the packed_array_type of is parent. We
|
10990 |
|
|
-- need to initialize the attribute because if Def_Id is previously
|
10991 |
|
|
-- analyzed through a limited_with clause, it will have the attributes
|
10992 |
|
|
-- of an incomplete type, one of which is an Elist that overlaps the
|
10993 |
|
|
-- Packed_Array_Type field.
|
10994 |
|
|
|
10995 |
|
|
Set_Packed_Array_Type (Def_Id, Empty);
|
10996 |
|
|
|
10997 |
|
|
-- Build a freeze node if parent still needs one. Also make sure that
|
10998 |
|
|
-- the Depends_On_Private status is set because the subtype will need
|
10999 |
|
|
-- reprocessing at the time the base type does, and also we must set a
|
11000 |
|
|
-- conditional delay.
|
11001 |
|
|
|
11002 |
|
|
Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
|
11003 |
|
|
Conditional_Delay (Def_Id, T);
|
11004 |
|
|
end Constrain_Array;
|
11005 |
|
|
|
11006 |
|
|
------------------------------
|
11007 |
|
|
-- Constrain_Component_Type --
|
11008 |
|
|
------------------------------
|
11009 |
|
|
|
11010 |
|
|
function Constrain_Component_Type
|
11011 |
|
|
(Comp : Entity_Id;
|
11012 |
|
|
Constrained_Typ : Entity_Id;
|
11013 |
|
|
Related_Node : Node_Id;
|
11014 |
|
|
Typ : Entity_Id;
|
11015 |
|
|
Constraints : Elist_Id) return Entity_Id
|
11016 |
|
|
is
|
11017 |
|
|
Loc : constant Source_Ptr := Sloc (Constrained_Typ);
|
11018 |
|
|
Compon_Type : constant Entity_Id := Etype (Comp);
|
11019 |
|
|
|
11020 |
|
|
function Build_Constrained_Array_Type
|
11021 |
|
|
(Old_Type : Entity_Id) return Entity_Id;
|
11022 |
|
|
-- If Old_Type is an array type, one of whose indexes is constrained
|
11023 |
|
|
-- by a discriminant, build an Itype whose constraint replaces the
|
11024 |
|
|
-- discriminant with its value in the constraint.
|
11025 |
|
|
|
11026 |
|
|
function Build_Constrained_Discriminated_Type
|
11027 |
|
|
(Old_Type : Entity_Id) return Entity_Id;
|
11028 |
|
|
-- Ditto for record components
|
11029 |
|
|
|
11030 |
|
|
function Build_Constrained_Access_Type
|
11031 |
|
|
(Old_Type : Entity_Id) return Entity_Id;
|
11032 |
|
|
-- Ditto for access types. Makes use of previous two functions, to
|
11033 |
|
|
-- constrain designated type.
|
11034 |
|
|
|
11035 |
|
|
function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
|
11036 |
|
|
-- T is an array or discriminated type, C is a list of constraints
|
11037 |
|
|
-- that apply to T. This routine builds the constrained subtype.
|
11038 |
|
|
|
11039 |
|
|
function Is_Discriminant (Expr : Node_Id) return Boolean;
|
11040 |
|
|
-- Returns True if Expr is a discriminant
|
11041 |
|
|
|
11042 |
|
|
function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
|
11043 |
|
|
-- Find the value of discriminant Discrim in Constraint
|
11044 |
|
|
|
11045 |
|
|
-----------------------------------
|
11046 |
|
|
-- Build_Constrained_Access_Type --
|
11047 |
|
|
-----------------------------------
|
11048 |
|
|
|
11049 |
|
|
function Build_Constrained_Access_Type
|
11050 |
|
|
(Old_Type : Entity_Id) return Entity_Id
|
11051 |
|
|
is
|
11052 |
|
|
Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
|
11053 |
|
|
Itype : Entity_Id;
|
11054 |
|
|
Desig_Subtype : Entity_Id;
|
11055 |
|
|
Scop : Entity_Id;
|
11056 |
|
|
|
11057 |
|
|
begin
|
11058 |
|
|
-- if the original access type was not embedded in the enclosing
|
11059 |
|
|
-- type definition, there is no need to produce a new access
|
11060 |
|
|
-- subtype. In fact every access type with an explicit constraint
|
11061 |
|
|
-- generates an itype whose scope is the enclosing record.
|
11062 |
|
|
|
11063 |
|
|
if not Is_Type (Scope (Old_Type)) then
|
11064 |
|
|
return Old_Type;
|
11065 |
|
|
|
11066 |
|
|
elsif Is_Array_Type (Desig_Type) then
|
11067 |
|
|
Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
|
11068 |
|
|
|
11069 |
|
|
elsif Has_Discriminants (Desig_Type) then
|
11070 |
|
|
|
11071 |
|
|
-- This may be an access type to an enclosing record type for
|
11072 |
|
|
-- which we are constructing the constrained components. Return
|
11073 |
|
|
-- the enclosing record subtype. This is not always correct,
|
11074 |
|
|
-- but avoids infinite recursion. ???
|
11075 |
|
|
|
11076 |
|
|
Desig_Subtype := Any_Type;
|
11077 |
|
|
|
11078 |
|
|
for J in reverse 0 .. Scope_Stack.Last loop
|
11079 |
|
|
Scop := Scope_Stack.Table (J).Entity;
|
11080 |
|
|
|
11081 |
|
|
if Is_Type (Scop)
|
11082 |
|
|
and then Base_Type (Scop) = Base_Type (Desig_Type)
|
11083 |
|
|
then
|
11084 |
|
|
Desig_Subtype := Scop;
|
11085 |
|
|
end if;
|
11086 |
|
|
|
11087 |
|
|
exit when not Is_Type (Scop);
|
11088 |
|
|
end loop;
|
11089 |
|
|
|
11090 |
|
|
if Desig_Subtype = Any_Type then
|
11091 |
|
|
Desig_Subtype :=
|
11092 |
|
|
Build_Constrained_Discriminated_Type (Desig_Type);
|
11093 |
|
|
end if;
|
11094 |
|
|
|
11095 |
|
|
else
|
11096 |
|
|
return Old_Type;
|
11097 |
|
|
end if;
|
11098 |
|
|
|
11099 |
|
|
if Desig_Subtype /= Desig_Type then
|
11100 |
|
|
|
11101 |
|
|
-- The Related_Node better be here or else we won't be able
|
11102 |
|
|
-- to attach new itypes to a node in the tree.
|
11103 |
|
|
|
11104 |
|
|
pragma Assert (Present (Related_Node));
|
11105 |
|
|
|
11106 |
|
|
Itype := Create_Itype (E_Access_Subtype, Related_Node);
|
11107 |
|
|
|
11108 |
|
|
Set_Etype (Itype, Base_Type (Old_Type));
|
11109 |
|
|
Set_Size_Info (Itype, (Old_Type));
|
11110 |
|
|
Set_Directly_Designated_Type (Itype, Desig_Subtype);
|
11111 |
|
|
Set_Depends_On_Private (Itype, Has_Private_Component
|
11112 |
|
|
(Old_Type));
|
11113 |
|
|
Set_Is_Access_Constant (Itype, Is_Access_Constant
|
11114 |
|
|
(Old_Type));
|
11115 |
|
|
|
11116 |
|
|
-- The new itype needs freezing when it depends on a not frozen
|
11117 |
|
|
-- type and the enclosing subtype needs freezing.
|
11118 |
|
|
|
11119 |
|
|
if Has_Delayed_Freeze (Constrained_Typ)
|
11120 |
|
|
and then not Is_Frozen (Constrained_Typ)
|
11121 |
|
|
then
|
11122 |
|
|
Conditional_Delay (Itype, Base_Type (Old_Type));
|
11123 |
|
|
end if;
|
11124 |
|
|
|
11125 |
|
|
return Itype;
|
11126 |
|
|
|
11127 |
|
|
else
|
11128 |
|
|
return Old_Type;
|
11129 |
|
|
end if;
|
11130 |
|
|
end Build_Constrained_Access_Type;
|
11131 |
|
|
|
11132 |
|
|
----------------------------------
|
11133 |
|
|
-- Build_Constrained_Array_Type --
|
11134 |
|
|
----------------------------------
|
11135 |
|
|
|
11136 |
|
|
function Build_Constrained_Array_Type
|
11137 |
|
|
(Old_Type : Entity_Id) return Entity_Id
|
11138 |
|
|
is
|
11139 |
|
|
Lo_Expr : Node_Id;
|
11140 |
|
|
Hi_Expr : Node_Id;
|
11141 |
|
|
Old_Index : Node_Id;
|
11142 |
|
|
Range_Node : Node_Id;
|
11143 |
|
|
Constr_List : List_Id;
|
11144 |
|
|
|
11145 |
|
|
Need_To_Create_Itype : Boolean := False;
|
11146 |
|
|
|
11147 |
|
|
begin
|
11148 |
|
|
Old_Index := First_Index (Old_Type);
|
11149 |
|
|
while Present (Old_Index) loop
|
11150 |
|
|
Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
|
11151 |
|
|
|
11152 |
|
|
if Is_Discriminant (Lo_Expr)
|
11153 |
|
|
or else Is_Discriminant (Hi_Expr)
|
11154 |
|
|
then
|
11155 |
|
|
Need_To_Create_Itype := True;
|
11156 |
|
|
end if;
|
11157 |
|
|
|
11158 |
|
|
Next_Index (Old_Index);
|
11159 |
|
|
end loop;
|
11160 |
|
|
|
11161 |
|
|
if Need_To_Create_Itype then
|
11162 |
|
|
Constr_List := New_List;
|
11163 |
|
|
|
11164 |
|
|
Old_Index := First_Index (Old_Type);
|
11165 |
|
|
while Present (Old_Index) loop
|
11166 |
|
|
Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
|
11167 |
|
|
|
11168 |
|
|
if Is_Discriminant (Lo_Expr) then
|
11169 |
|
|
Lo_Expr := Get_Discr_Value (Lo_Expr);
|
11170 |
|
|
end if;
|
11171 |
|
|
|
11172 |
|
|
if Is_Discriminant (Hi_Expr) then
|
11173 |
|
|
Hi_Expr := Get_Discr_Value (Hi_Expr);
|
11174 |
|
|
end if;
|
11175 |
|
|
|
11176 |
|
|
Range_Node :=
|
11177 |
|
|
Make_Range
|
11178 |
|
|
(Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
|
11179 |
|
|
|
11180 |
|
|
Append (Range_Node, To => Constr_List);
|
11181 |
|
|
|
11182 |
|
|
Next_Index (Old_Index);
|
11183 |
|
|
end loop;
|
11184 |
|
|
|
11185 |
|
|
return Build_Subtype (Old_Type, Constr_List);
|
11186 |
|
|
|
11187 |
|
|
else
|
11188 |
|
|
return Old_Type;
|
11189 |
|
|
end if;
|
11190 |
|
|
end Build_Constrained_Array_Type;
|
11191 |
|
|
|
11192 |
|
|
------------------------------------------
|
11193 |
|
|
-- Build_Constrained_Discriminated_Type --
|
11194 |
|
|
------------------------------------------
|
11195 |
|
|
|
11196 |
|
|
function Build_Constrained_Discriminated_Type
|
11197 |
|
|
(Old_Type : Entity_Id) return Entity_Id
|
11198 |
|
|
is
|
11199 |
|
|
Expr : Node_Id;
|
11200 |
|
|
Constr_List : List_Id;
|
11201 |
|
|
Old_Constraint : Elmt_Id;
|
11202 |
|
|
|
11203 |
|
|
Need_To_Create_Itype : Boolean := False;
|
11204 |
|
|
|
11205 |
|
|
begin
|
11206 |
|
|
Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
|
11207 |
|
|
while Present (Old_Constraint) loop
|
11208 |
|
|
Expr := Node (Old_Constraint);
|
11209 |
|
|
|
11210 |
|
|
if Is_Discriminant (Expr) then
|
11211 |
|
|
Need_To_Create_Itype := True;
|
11212 |
|
|
end if;
|
11213 |
|
|
|
11214 |
|
|
Next_Elmt (Old_Constraint);
|
11215 |
|
|
end loop;
|
11216 |
|
|
|
11217 |
|
|
if Need_To_Create_Itype then
|
11218 |
|
|
Constr_List := New_List;
|
11219 |
|
|
|
11220 |
|
|
Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
|
11221 |
|
|
while Present (Old_Constraint) loop
|
11222 |
|
|
Expr := Node (Old_Constraint);
|
11223 |
|
|
|
11224 |
|
|
if Is_Discriminant (Expr) then
|
11225 |
|
|
Expr := Get_Discr_Value (Expr);
|
11226 |
|
|
end if;
|
11227 |
|
|
|
11228 |
|
|
Append (New_Copy_Tree (Expr), To => Constr_List);
|
11229 |
|
|
|
11230 |
|
|
Next_Elmt (Old_Constraint);
|
11231 |
|
|
end loop;
|
11232 |
|
|
|
11233 |
|
|
return Build_Subtype (Old_Type, Constr_List);
|
11234 |
|
|
|
11235 |
|
|
else
|
11236 |
|
|
return Old_Type;
|
11237 |
|
|
end if;
|
11238 |
|
|
end Build_Constrained_Discriminated_Type;
|
11239 |
|
|
|
11240 |
|
|
-------------------
|
11241 |
|
|
-- Build_Subtype --
|
11242 |
|
|
-------------------
|
11243 |
|
|
|
11244 |
|
|
function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
|
11245 |
|
|
Indic : Node_Id;
|
11246 |
|
|
Subtyp_Decl : Node_Id;
|
11247 |
|
|
Def_Id : Entity_Id;
|
11248 |
|
|
Btyp : Entity_Id := Base_Type (T);
|
11249 |
|
|
|
11250 |
|
|
begin
|
11251 |
|
|
-- The Related_Node better be here or else we won't be able to
|
11252 |
|
|
-- attach new itypes to a node in the tree.
|
11253 |
|
|
|
11254 |
|
|
pragma Assert (Present (Related_Node));
|
11255 |
|
|
|
11256 |
|
|
-- If the view of the component's type is incomplete or private
|
11257 |
|
|
-- with unknown discriminants, then the constraint must be applied
|
11258 |
|
|
-- to the full type.
|
11259 |
|
|
|
11260 |
|
|
if Has_Unknown_Discriminants (Btyp)
|
11261 |
|
|
and then Present (Underlying_Type (Btyp))
|
11262 |
|
|
then
|
11263 |
|
|
Btyp := Underlying_Type (Btyp);
|
11264 |
|
|
end if;
|
11265 |
|
|
|
11266 |
|
|
Indic :=
|
11267 |
|
|
Make_Subtype_Indication (Loc,
|
11268 |
|
|
Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
|
11269 |
|
|
Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
|
11270 |
|
|
|
11271 |
|
|
Def_Id := Create_Itype (Ekind (T), Related_Node);
|
11272 |
|
|
|
11273 |
|
|
Subtyp_Decl :=
|
11274 |
|
|
Make_Subtype_Declaration (Loc,
|
11275 |
|
|
Defining_Identifier => Def_Id,
|
11276 |
|
|
Subtype_Indication => Indic);
|
11277 |
|
|
|
11278 |
|
|
Set_Parent (Subtyp_Decl, Parent (Related_Node));
|
11279 |
|
|
|
11280 |
|
|
-- Itypes must be analyzed with checks off (see package Itypes)
|
11281 |
|
|
|
11282 |
|
|
Analyze (Subtyp_Decl, Suppress => All_Checks);
|
11283 |
|
|
|
11284 |
|
|
return Def_Id;
|
11285 |
|
|
end Build_Subtype;
|
11286 |
|
|
|
11287 |
|
|
---------------------
|
11288 |
|
|
-- Get_Discr_Value --
|
11289 |
|
|
---------------------
|
11290 |
|
|
|
11291 |
|
|
function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
|
11292 |
|
|
D : Entity_Id;
|
11293 |
|
|
E : Elmt_Id;
|
11294 |
|
|
|
11295 |
|
|
begin
|
11296 |
|
|
-- The discriminant may be declared for the type, in which case we
|
11297 |
|
|
-- find it by iterating over the list of discriminants. If the
|
11298 |
|
|
-- discriminant is inherited from a parent type, it appears as the
|
11299 |
|
|
-- corresponding discriminant of the current type. This will be the
|
11300 |
|
|
-- case when constraining an inherited component whose constraint is
|
11301 |
|
|
-- given by a discriminant of the parent.
|
11302 |
|
|
|
11303 |
|
|
D := First_Discriminant (Typ);
|
11304 |
|
|
E := First_Elmt (Constraints);
|
11305 |
|
|
|
11306 |
|
|
while Present (D) loop
|
11307 |
|
|
if D = Entity (Discrim)
|
11308 |
|
|
or else D = CR_Discriminant (Entity (Discrim))
|
11309 |
|
|
or else Corresponding_Discriminant (D) = Entity (Discrim)
|
11310 |
|
|
then
|
11311 |
|
|
return Node (E);
|
11312 |
|
|
end if;
|
11313 |
|
|
|
11314 |
|
|
Next_Discriminant (D);
|
11315 |
|
|
Next_Elmt (E);
|
11316 |
|
|
end loop;
|
11317 |
|
|
|
11318 |
|
|
-- The Corresponding_Discriminant mechanism is incomplete, because
|
11319 |
|
|
-- the correspondence between new and old discriminants is not one
|
11320 |
|
|
-- to one: one new discriminant can constrain several old ones. In
|
11321 |
|
|
-- that case, scan sequentially the stored_constraint, the list of
|
11322 |
|
|
-- discriminants of the parents, and the constraints.
|
11323 |
|
|
-- Previous code checked for the present of the Stored_Constraint
|
11324 |
|
|
-- list for the derived type, but did not use it at all. Should it
|
11325 |
|
|
-- be present when the component is a discriminated task type?
|
11326 |
|
|
|
11327 |
|
|
if Is_Derived_Type (Typ)
|
11328 |
|
|
and then Scope (Entity (Discrim)) = Etype (Typ)
|
11329 |
|
|
then
|
11330 |
|
|
D := First_Discriminant (Etype (Typ));
|
11331 |
|
|
E := First_Elmt (Constraints);
|
11332 |
|
|
while Present (D) loop
|
11333 |
|
|
if D = Entity (Discrim) then
|
11334 |
|
|
return Node (E);
|
11335 |
|
|
end if;
|
11336 |
|
|
|
11337 |
|
|
Next_Discriminant (D);
|
11338 |
|
|
Next_Elmt (E);
|
11339 |
|
|
end loop;
|
11340 |
|
|
end if;
|
11341 |
|
|
|
11342 |
|
|
-- Something is wrong if we did not find the value
|
11343 |
|
|
|
11344 |
|
|
raise Program_Error;
|
11345 |
|
|
end Get_Discr_Value;
|
11346 |
|
|
|
11347 |
|
|
---------------------
|
11348 |
|
|
-- Is_Discriminant --
|
11349 |
|
|
---------------------
|
11350 |
|
|
|
11351 |
|
|
function Is_Discriminant (Expr : Node_Id) return Boolean is
|
11352 |
|
|
Discrim_Scope : Entity_Id;
|
11353 |
|
|
|
11354 |
|
|
begin
|
11355 |
|
|
if Denotes_Discriminant (Expr) then
|
11356 |
|
|
Discrim_Scope := Scope (Entity (Expr));
|
11357 |
|
|
|
11358 |
|
|
-- Either we have a reference to one of Typ's discriminants,
|
11359 |
|
|
|
11360 |
|
|
pragma Assert (Discrim_Scope = Typ
|
11361 |
|
|
|
11362 |
|
|
-- or to the discriminants of the parent type, in the case
|
11363 |
|
|
-- of a derivation of a tagged type with variants.
|
11364 |
|
|
|
11365 |
|
|
or else Discrim_Scope = Etype (Typ)
|
11366 |
|
|
or else Full_View (Discrim_Scope) = Etype (Typ)
|
11367 |
|
|
|
11368 |
|
|
-- or same as above for the case where the discriminants
|
11369 |
|
|
-- were declared in Typ's private view.
|
11370 |
|
|
|
11371 |
|
|
or else (Is_Private_Type (Discrim_Scope)
|
11372 |
|
|
and then Chars (Discrim_Scope) = Chars (Typ))
|
11373 |
|
|
|
11374 |
|
|
-- or else we are deriving from the full view and the
|
11375 |
|
|
-- discriminant is declared in the private entity.
|
11376 |
|
|
|
11377 |
|
|
or else (Is_Private_Type (Typ)
|
11378 |
|
|
and then Chars (Discrim_Scope) = Chars (Typ))
|
11379 |
|
|
|
11380 |
|
|
-- Or we are constrained the corresponding record of a
|
11381 |
|
|
-- synchronized type that completes a private declaration.
|
11382 |
|
|
|
11383 |
|
|
or else (Is_Concurrent_Record_Type (Typ)
|
11384 |
|
|
and then
|
11385 |
|
|
Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
|
11386 |
|
|
|
11387 |
|
|
-- or we have a class-wide type, in which case make sure the
|
11388 |
|
|
-- discriminant found belongs to the root type.
|
11389 |
|
|
|
11390 |
|
|
or else (Is_Class_Wide_Type (Typ)
|
11391 |
|
|
and then Etype (Typ) = Discrim_Scope));
|
11392 |
|
|
|
11393 |
|
|
return True;
|
11394 |
|
|
end if;
|
11395 |
|
|
|
11396 |
|
|
-- In all other cases we have something wrong
|
11397 |
|
|
|
11398 |
|
|
return False;
|
11399 |
|
|
end Is_Discriminant;
|
11400 |
|
|
|
11401 |
|
|
-- Start of processing for Constrain_Component_Type
|
11402 |
|
|
|
11403 |
|
|
begin
|
11404 |
|
|
if Nkind (Parent (Comp)) = N_Component_Declaration
|
11405 |
|
|
and then Comes_From_Source (Parent (Comp))
|
11406 |
|
|
and then Comes_From_Source
|
11407 |
|
|
(Subtype_Indication (Component_Definition (Parent (Comp))))
|
11408 |
|
|
and then
|
11409 |
|
|
Is_Entity_Name
|
11410 |
|
|
(Subtype_Indication (Component_Definition (Parent (Comp))))
|
11411 |
|
|
then
|
11412 |
|
|
return Compon_Type;
|
11413 |
|
|
|
11414 |
|
|
elsif Is_Array_Type (Compon_Type) then
|
11415 |
|
|
return Build_Constrained_Array_Type (Compon_Type);
|
11416 |
|
|
|
11417 |
|
|
elsif Has_Discriminants (Compon_Type) then
|
11418 |
|
|
return Build_Constrained_Discriminated_Type (Compon_Type);
|
11419 |
|
|
|
11420 |
|
|
elsif Is_Access_Type (Compon_Type) then
|
11421 |
|
|
return Build_Constrained_Access_Type (Compon_Type);
|
11422 |
|
|
|
11423 |
|
|
else
|
11424 |
|
|
return Compon_Type;
|
11425 |
|
|
end if;
|
11426 |
|
|
end Constrain_Component_Type;
|
11427 |
|
|
|
11428 |
|
|
--------------------------
|
11429 |
|
|
-- Constrain_Concurrent --
|
11430 |
|
|
--------------------------
|
11431 |
|
|
|
11432 |
|
|
-- For concurrent types, the associated record value type carries the same
|
11433 |
|
|
-- discriminants, so when we constrain a concurrent type, we must constrain
|
11434 |
|
|
-- the corresponding record type as well.
|
11435 |
|
|
|
11436 |
|
|
procedure Constrain_Concurrent
|
11437 |
|
|
(Def_Id : in out Entity_Id;
|
11438 |
|
|
SI : Node_Id;
|
11439 |
|
|
Related_Nod : Node_Id;
|
11440 |
|
|
Related_Id : Entity_Id;
|
11441 |
|
|
Suffix : Character)
|
11442 |
|
|
is
|
11443 |
|
|
-- Retrieve Base_Type to ensure getting to the concurrent type in the
|
11444 |
|
|
-- case of a private subtype (needed when only doing semantic analysis).
|
11445 |
|
|
|
11446 |
|
|
T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
|
11447 |
|
|
T_Val : Entity_Id;
|
11448 |
|
|
|
11449 |
|
|
begin
|
11450 |
|
|
if Ekind (T_Ent) in Access_Kind then
|
11451 |
|
|
T_Ent := Designated_Type (T_Ent);
|
11452 |
|
|
end if;
|
11453 |
|
|
|
11454 |
|
|
T_Val := Corresponding_Record_Type (T_Ent);
|
11455 |
|
|
|
11456 |
|
|
if Present (T_Val) then
|
11457 |
|
|
|
11458 |
|
|
if No (Def_Id) then
|
11459 |
|
|
Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
|
11460 |
|
|
end if;
|
11461 |
|
|
|
11462 |
|
|
Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
|
11463 |
|
|
|
11464 |
|
|
Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
|
11465 |
|
|
Set_Corresponding_Record_Type (Def_Id,
|
11466 |
|
|
Constrain_Corresponding_Record
|
11467 |
|
|
(Def_Id, T_Val, Related_Nod, Related_Id));
|
11468 |
|
|
|
11469 |
|
|
else
|
11470 |
|
|
-- If there is no associated record, expansion is disabled and this
|
11471 |
|
|
-- is a generic context. Create a subtype in any case, so that
|
11472 |
|
|
-- semantic analysis can proceed.
|
11473 |
|
|
|
11474 |
|
|
if No (Def_Id) then
|
11475 |
|
|
Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
|
11476 |
|
|
end if;
|
11477 |
|
|
|
11478 |
|
|
Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
|
11479 |
|
|
end if;
|
11480 |
|
|
end Constrain_Concurrent;
|
11481 |
|
|
|
11482 |
|
|
------------------------------------
|
11483 |
|
|
-- Constrain_Corresponding_Record --
|
11484 |
|
|
------------------------------------
|
11485 |
|
|
|
11486 |
|
|
function Constrain_Corresponding_Record
|
11487 |
|
|
(Prot_Subt : Entity_Id;
|
11488 |
|
|
Corr_Rec : Entity_Id;
|
11489 |
|
|
Related_Nod : Node_Id;
|
11490 |
|
|
Related_Id : Entity_Id) return Entity_Id
|
11491 |
|
|
is
|
11492 |
|
|
T_Sub : constant Entity_Id :=
|
11493 |
|
|
Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
|
11494 |
|
|
|
11495 |
|
|
begin
|
11496 |
|
|
Set_Etype (T_Sub, Corr_Rec);
|
11497 |
|
|
Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
|
11498 |
|
|
Set_Is_Constrained (T_Sub, True);
|
11499 |
|
|
Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
|
11500 |
|
|
Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
|
11501 |
|
|
|
11502 |
|
|
-- As elsewhere, we do not want to create a freeze node for this itype
|
11503 |
|
|
-- if it is created for a constrained component of an enclosing record
|
11504 |
|
|
-- because references to outer discriminants will appear out of scope.
|
11505 |
|
|
|
11506 |
|
|
if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
|
11507 |
|
|
Conditional_Delay (T_Sub, Corr_Rec);
|
11508 |
|
|
else
|
11509 |
|
|
Set_Is_Frozen (T_Sub);
|
11510 |
|
|
end if;
|
11511 |
|
|
|
11512 |
|
|
if Has_Discriminants (Prot_Subt) then -- False only if errors.
|
11513 |
|
|
Set_Discriminant_Constraint
|
11514 |
|
|
(T_Sub, Discriminant_Constraint (Prot_Subt));
|
11515 |
|
|
Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
|
11516 |
|
|
Create_Constrained_Components
|
11517 |
|
|
(T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
|
11518 |
|
|
end if;
|
11519 |
|
|
|
11520 |
|
|
Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
|
11521 |
|
|
|
11522 |
|
|
return T_Sub;
|
11523 |
|
|
end Constrain_Corresponding_Record;
|
11524 |
|
|
|
11525 |
|
|
-----------------------
|
11526 |
|
|
-- Constrain_Decimal --
|
11527 |
|
|
-----------------------
|
11528 |
|
|
|
11529 |
|
|
procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
|
11530 |
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
11531 |
|
|
C : constant Node_Id := Constraint (S);
|
11532 |
|
|
Loc : constant Source_Ptr := Sloc (C);
|
11533 |
|
|
Range_Expr : Node_Id;
|
11534 |
|
|
Digits_Expr : Node_Id;
|
11535 |
|
|
Digits_Val : Uint;
|
11536 |
|
|
Bound_Val : Ureal;
|
11537 |
|
|
|
11538 |
|
|
begin
|
11539 |
|
|
Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
|
11540 |
|
|
|
11541 |
|
|
if Nkind (C) = N_Range_Constraint then
|
11542 |
|
|
Range_Expr := Range_Expression (C);
|
11543 |
|
|
Digits_Val := Digits_Value (T);
|
11544 |
|
|
|
11545 |
|
|
else
|
11546 |
|
|
pragma Assert (Nkind (C) = N_Digits_Constraint);
|
11547 |
|
|
|
11548 |
|
|
Check_SPARK_Restriction ("digits constraint is not allowed", S);
|
11549 |
|
|
|
11550 |
|
|
Digits_Expr := Digits_Expression (C);
|
11551 |
|
|
Analyze_And_Resolve (Digits_Expr, Any_Integer);
|
11552 |
|
|
|
11553 |
|
|
Check_Digits_Expression (Digits_Expr);
|
11554 |
|
|
Digits_Val := Expr_Value (Digits_Expr);
|
11555 |
|
|
|
11556 |
|
|
if Digits_Val > Digits_Value (T) then
|
11557 |
|
|
Error_Msg_N
|
11558 |
|
|
("digits expression is incompatible with subtype", C);
|
11559 |
|
|
Digits_Val := Digits_Value (T);
|
11560 |
|
|
end if;
|
11561 |
|
|
|
11562 |
|
|
if Present (Range_Constraint (C)) then
|
11563 |
|
|
Range_Expr := Range_Expression (Range_Constraint (C));
|
11564 |
|
|
else
|
11565 |
|
|
Range_Expr := Empty;
|
11566 |
|
|
end if;
|
11567 |
|
|
end if;
|
11568 |
|
|
|
11569 |
|
|
Set_Etype (Def_Id, Base_Type (T));
|
11570 |
|
|
Set_Size_Info (Def_Id, (T));
|
11571 |
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
11572 |
|
|
Set_Delta_Value (Def_Id, Delta_Value (T));
|
11573 |
|
|
Set_Scale_Value (Def_Id, Scale_Value (T));
|
11574 |
|
|
Set_Small_Value (Def_Id, Small_Value (T));
|
11575 |
|
|
Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
|
11576 |
|
|
Set_Digits_Value (Def_Id, Digits_Val);
|
11577 |
|
|
|
11578 |
|
|
-- Manufacture range from given digits value if no range present
|
11579 |
|
|
|
11580 |
|
|
if No (Range_Expr) then
|
11581 |
|
|
Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
|
11582 |
|
|
Range_Expr :=
|
11583 |
|
|
Make_Range (Loc,
|
11584 |
|
|
Low_Bound =>
|
11585 |
|
|
Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
|
11586 |
|
|
High_Bound =>
|
11587 |
|
|
Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
|
11588 |
|
|
end if;
|
11589 |
|
|
|
11590 |
|
|
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
|
11591 |
|
|
Set_Discrete_RM_Size (Def_Id);
|
11592 |
|
|
|
11593 |
|
|
-- Unconditionally delay the freeze, since we cannot set size
|
11594 |
|
|
-- information in all cases correctly until the freeze point.
|
11595 |
|
|
|
11596 |
|
|
Set_Has_Delayed_Freeze (Def_Id);
|
11597 |
|
|
end Constrain_Decimal;
|
11598 |
|
|
|
11599 |
|
|
----------------------------------
|
11600 |
|
|
-- Constrain_Discriminated_Type --
|
11601 |
|
|
----------------------------------
|
11602 |
|
|
|
11603 |
|
|
procedure Constrain_Discriminated_Type
|
11604 |
|
|
(Def_Id : Entity_Id;
|
11605 |
|
|
S : Node_Id;
|
11606 |
|
|
Related_Nod : Node_Id;
|
11607 |
|
|
For_Access : Boolean := False)
|
11608 |
|
|
is
|
11609 |
|
|
E : constant Entity_Id := Entity (Subtype_Mark (S));
|
11610 |
|
|
T : Entity_Id;
|
11611 |
|
|
C : Node_Id;
|
11612 |
|
|
Elist : Elist_Id := New_Elmt_List;
|
11613 |
|
|
|
11614 |
|
|
procedure Fixup_Bad_Constraint;
|
11615 |
|
|
-- This is called after finding a bad constraint, and after having
|
11616 |
|
|
-- posted an appropriate error message. The mission is to leave the
|
11617 |
|
|
-- entity T in as reasonable state as possible!
|
11618 |
|
|
|
11619 |
|
|
--------------------------
|
11620 |
|
|
-- Fixup_Bad_Constraint --
|
11621 |
|
|
--------------------------
|
11622 |
|
|
|
11623 |
|
|
procedure Fixup_Bad_Constraint is
|
11624 |
|
|
begin
|
11625 |
|
|
-- Set a reasonable Ekind for the entity. For an incomplete type,
|
11626 |
|
|
-- we can't do much, but for other types, we can set the proper
|
11627 |
|
|
-- corresponding subtype kind.
|
11628 |
|
|
|
11629 |
|
|
if Ekind (T) = E_Incomplete_Type then
|
11630 |
|
|
Set_Ekind (Def_Id, Ekind (T));
|
11631 |
|
|
else
|
11632 |
|
|
Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
|
11633 |
|
|
end if;
|
11634 |
|
|
|
11635 |
|
|
-- Set Etype to the known type, to reduce chances of cascaded errors
|
11636 |
|
|
|
11637 |
|
|
Set_Etype (Def_Id, E);
|
11638 |
|
|
Set_Error_Posted (Def_Id);
|
11639 |
|
|
end Fixup_Bad_Constraint;
|
11640 |
|
|
|
11641 |
|
|
-- Start of processing for Constrain_Discriminated_Type
|
11642 |
|
|
|
11643 |
|
|
begin
|
11644 |
|
|
C := Constraint (S);
|
11645 |
|
|
|
11646 |
|
|
-- A discriminant constraint is only allowed in a subtype indication,
|
11647 |
|
|
-- after a subtype mark. This subtype mark must denote either a type
|
11648 |
|
|
-- with discriminants, or an access type whose designated type is a
|
11649 |
|
|
-- type with discriminants. A discriminant constraint specifies the
|
11650 |
|
|
-- values of these discriminants (RM 3.7.2(5)).
|
11651 |
|
|
|
11652 |
|
|
T := Base_Type (Entity (Subtype_Mark (S)));
|
11653 |
|
|
|
11654 |
|
|
if Ekind (T) in Access_Kind then
|
11655 |
|
|
T := Designated_Type (T);
|
11656 |
|
|
end if;
|
11657 |
|
|
|
11658 |
|
|
-- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
|
11659 |
|
|
-- Avoid generating an error for access-to-incomplete subtypes.
|
11660 |
|
|
|
11661 |
|
|
if Ada_Version >= Ada_2005
|
11662 |
|
|
and then Ekind (T) = E_Incomplete_Type
|
11663 |
|
|
and then Nkind (Parent (S)) = N_Subtype_Declaration
|
11664 |
|
|
and then not Is_Itype (Def_Id)
|
11665 |
|
|
then
|
11666 |
|
|
-- A little sanity check, emit an error message if the type
|
11667 |
|
|
-- has discriminants to begin with. Type T may be a regular
|
11668 |
|
|
-- incomplete type or imported via a limited with clause.
|
11669 |
|
|
|
11670 |
|
|
if Has_Discriminants (T)
|
11671 |
|
|
or else
|
11672 |
|
|
(From_With_Type (T)
|
11673 |
|
|
and then Present (Non_Limited_View (T))
|
11674 |
|
|
and then Nkind (Parent (Non_Limited_View (T))) =
|
11675 |
|
|
N_Full_Type_Declaration
|
11676 |
|
|
and then Present (Discriminant_Specifications
|
11677 |
|
|
(Parent (Non_Limited_View (T)))))
|
11678 |
|
|
then
|
11679 |
|
|
Error_Msg_N
|
11680 |
|
|
("(Ada 2005) incomplete subtype may not be constrained", C);
|
11681 |
|
|
else
|
11682 |
|
|
Error_Msg_N ("invalid constraint: type has no discriminant", C);
|
11683 |
|
|
end if;
|
11684 |
|
|
|
11685 |
|
|
Fixup_Bad_Constraint;
|
11686 |
|
|
return;
|
11687 |
|
|
|
11688 |
|
|
-- Check that the type has visible discriminants. The type may be
|
11689 |
|
|
-- a private type with unknown discriminants whose full view has
|
11690 |
|
|
-- discriminants which are invisible.
|
11691 |
|
|
|
11692 |
|
|
elsif not Has_Discriminants (T)
|
11693 |
|
|
or else
|
11694 |
|
|
(Has_Unknown_Discriminants (T)
|
11695 |
|
|
and then Is_Private_Type (T))
|
11696 |
|
|
then
|
11697 |
|
|
Error_Msg_N ("invalid constraint: type has no discriminant", C);
|
11698 |
|
|
Fixup_Bad_Constraint;
|
11699 |
|
|
return;
|
11700 |
|
|
|
11701 |
|
|
elsif Is_Constrained (E)
|
11702 |
|
|
or else (Ekind (E) = E_Class_Wide_Subtype
|
11703 |
|
|
and then Present (Discriminant_Constraint (E)))
|
11704 |
|
|
then
|
11705 |
|
|
Error_Msg_N ("type is already constrained", Subtype_Mark (S));
|
11706 |
|
|
Fixup_Bad_Constraint;
|
11707 |
|
|
return;
|
11708 |
|
|
end if;
|
11709 |
|
|
|
11710 |
|
|
-- T may be an unconstrained subtype (e.g. a generic actual).
|
11711 |
|
|
-- Constraint applies to the base type.
|
11712 |
|
|
|
11713 |
|
|
T := Base_Type (T);
|
11714 |
|
|
|
11715 |
|
|
Elist := Build_Discriminant_Constraints (T, S);
|
11716 |
|
|
|
11717 |
|
|
-- If the list returned was empty we had an error in building the
|
11718 |
|
|
-- discriminant constraint. We have also already signalled an error
|
11719 |
|
|
-- in the incomplete type case
|
11720 |
|
|
|
11721 |
|
|
if Is_Empty_Elmt_List (Elist) then
|
11722 |
|
|
Fixup_Bad_Constraint;
|
11723 |
|
|
return;
|
11724 |
|
|
end if;
|
11725 |
|
|
|
11726 |
|
|
Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
|
11727 |
|
|
end Constrain_Discriminated_Type;
|
11728 |
|
|
|
11729 |
|
|
---------------------------
|
11730 |
|
|
-- Constrain_Enumeration --
|
11731 |
|
|
---------------------------
|
11732 |
|
|
|
11733 |
|
|
procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
|
11734 |
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
11735 |
|
|
C : constant Node_Id := Constraint (S);
|
11736 |
|
|
|
11737 |
|
|
begin
|
11738 |
|
|
Set_Ekind (Def_Id, E_Enumeration_Subtype);
|
11739 |
|
|
|
11740 |
|
|
Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
|
11741 |
|
|
|
11742 |
|
|
Set_Etype (Def_Id, Base_Type (T));
|
11743 |
|
|
Set_Size_Info (Def_Id, (T));
|
11744 |
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
11745 |
|
|
Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
|
11746 |
|
|
|
11747 |
|
|
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
|
11748 |
|
|
|
11749 |
|
|
Set_Discrete_RM_Size (Def_Id);
|
11750 |
|
|
end Constrain_Enumeration;
|
11751 |
|
|
|
11752 |
|
|
----------------------
|
11753 |
|
|
-- Constrain_Float --
|
11754 |
|
|
----------------------
|
11755 |
|
|
|
11756 |
|
|
procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
|
11757 |
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
11758 |
|
|
C : Node_Id;
|
11759 |
|
|
D : Node_Id;
|
11760 |
|
|
Rais : Node_Id;
|
11761 |
|
|
|
11762 |
|
|
begin
|
11763 |
|
|
Set_Ekind (Def_Id, E_Floating_Point_Subtype);
|
11764 |
|
|
|
11765 |
|
|
Set_Etype (Def_Id, Base_Type (T));
|
11766 |
|
|
Set_Size_Info (Def_Id, (T));
|
11767 |
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
11768 |
|
|
|
11769 |
|
|
-- Process the constraint
|
11770 |
|
|
|
11771 |
|
|
C := Constraint (S);
|
11772 |
|
|
|
11773 |
|
|
-- Digits constraint present
|
11774 |
|
|
|
11775 |
|
|
if Nkind (C) = N_Digits_Constraint then
|
11776 |
|
|
|
11777 |
|
|
Check_SPARK_Restriction ("digits constraint is not allowed", S);
|
11778 |
|
|
Check_Restriction (No_Obsolescent_Features, C);
|
11779 |
|
|
|
11780 |
|
|
if Warn_On_Obsolescent_Feature then
|
11781 |
|
|
Error_Msg_N
|
11782 |
|
|
("subtype digits constraint is an " &
|
11783 |
|
|
"obsolescent feature (RM J.3(8))?", C);
|
11784 |
|
|
end if;
|
11785 |
|
|
|
11786 |
|
|
D := Digits_Expression (C);
|
11787 |
|
|
Analyze_And_Resolve (D, Any_Integer);
|
11788 |
|
|
Check_Digits_Expression (D);
|
11789 |
|
|
Set_Digits_Value (Def_Id, Expr_Value (D));
|
11790 |
|
|
|
11791 |
|
|
-- Check that digits value is in range. Obviously we can do this
|
11792 |
|
|
-- at compile time, but it is strictly a runtime check, and of
|
11793 |
|
|
-- course there is an ACVC test that checks this!
|
11794 |
|
|
|
11795 |
|
|
if Digits_Value (Def_Id) > Digits_Value (T) then
|
11796 |
|
|
Error_Msg_Uint_1 := Digits_Value (T);
|
11797 |
|
|
Error_Msg_N ("?digits value is too large, maximum is ^", D);
|
11798 |
|
|
Rais :=
|
11799 |
|
|
Make_Raise_Constraint_Error (Sloc (D),
|
11800 |
|
|
Reason => CE_Range_Check_Failed);
|
11801 |
|
|
Insert_Action (Declaration_Node (Def_Id), Rais);
|
11802 |
|
|
end if;
|
11803 |
|
|
|
11804 |
|
|
C := Range_Constraint (C);
|
11805 |
|
|
|
11806 |
|
|
-- No digits constraint present
|
11807 |
|
|
|
11808 |
|
|
else
|
11809 |
|
|
Set_Digits_Value (Def_Id, Digits_Value (T));
|
11810 |
|
|
end if;
|
11811 |
|
|
|
11812 |
|
|
-- Range constraint present
|
11813 |
|
|
|
11814 |
|
|
if Nkind (C) = N_Range_Constraint then
|
11815 |
|
|
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
|
11816 |
|
|
|
11817 |
|
|
-- No range constraint present
|
11818 |
|
|
|
11819 |
|
|
else
|
11820 |
|
|
pragma Assert (No (C));
|
11821 |
|
|
Set_Scalar_Range (Def_Id, Scalar_Range (T));
|
11822 |
|
|
end if;
|
11823 |
|
|
|
11824 |
|
|
Set_Is_Constrained (Def_Id);
|
11825 |
|
|
end Constrain_Float;
|
11826 |
|
|
|
11827 |
|
|
---------------------
|
11828 |
|
|
-- Constrain_Index --
|
11829 |
|
|
---------------------
|
11830 |
|
|
|
11831 |
|
|
procedure Constrain_Index
|
11832 |
|
|
(Index : Node_Id;
|
11833 |
|
|
S : Node_Id;
|
11834 |
|
|
Related_Nod : Node_Id;
|
11835 |
|
|
Related_Id : Entity_Id;
|
11836 |
|
|
Suffix : Character;
|
11837 |
|
|
Suffix_Index : Nat)
|
11838 |
|
|
is
|
11839 |
|
|
Def_Id : Entity_Id;
|
11840 |
|
|
R : Node_Id := Empty;
|
11841 |
|
|
T : constant Entity_Id := Etype (Index);
|
11842 |
|
|
|
11843 |
|
|
begin
|
11844 |
|
|
if Nkind (S) = N_Range
|
11845 |
|
|
or else
|
11846 |
|
|
(Nkind (S) = N_Attribute_Reference
|
11847 |
|
|
and then Attribute_Name (S) = Name_Range)
|
11848 |
|
|
then
|
11849 |
|
|
-- A Range attribute will be transformed into N_Range by Resolve
|
11850 |
|
|
|
11851 |
|
|
Analyze (S);
|
11852 |
|
|
Set_Etype (S, T);
|
11853 |
|
|
R := S;
|
11854 |
|
|
|
11855 |
|
|
Process_Range_Expr_In_Decl (R, T, Empty_List);
|
11856 |
|
|
|
11857 |
|
|
if not Error_Posted (S)
|
11858 |
|
|
and then
|
11859 |
|
|
(Nkind (S) /= N_Range
|
11860 |
|
|
or else not Covers (T, (Etype (Low_Bound (S))))
|
11861 |
|
|
or else not Covers (T, (Etype (High_Bound (S)))))
|
11862 |
|
|
then
|
11863 |
|
|
if Base_Type (T) /= Any_Type
|
11864 |
|
|
and then Etype (Low_Bound (S)) /= Any_Type
|
11865 |
|
|
and then Etype (High_Bound (S)) /= Any_Type
|
11866 |
|
|
then
|
11867 |
|
|
Error_Msg_N ("range expected", S);
|
11868 |
|
|
end if;
|
11869 |
|
|
end if;
|
11870 |
|
|
|
11871 |
|
|
elsif Nkind (S) = N_Subtype_Indication then
|
11872 |
|
|
|
11873 |
|
|
-- The parser has verified that this is a discrete indication
|
11874 |
|
|
|
11875 |
|
|
Resolve_Discrete_Subtype_Indication (S, T);
|
11876 |
|
|
R := Range_Expression (Constraint (S));
|
11877 |
|
|
|
11878 |
|
|
-- Capture values of bounds and generate temporaries for them if
|
11879 |
|
|
-- needed, since checks may cause duplication of the expressions
|
11880 |
|
|
-- which must not be reevaluated.
|
11881 |
|
|
|
11882 |
|
|
-- The forced evaluation removes side effects from expressions,
|
11883 |
|
|
-- which should occur also in Alfa mode. Otherwise, we end up with
|
11884 |
|
|
-- unexpected insertions of actions at places where this is not
|
11885 |
|
|
-- supposed to occur, e.g. on default parameters of a call.
|
11886 |
|
|
|
11887 |
|
|
if Expander_Active then
|
11888 |
|
|
Force_Evaluation (Low_Bound (R));
|
11889 |
|
|
Force_Evaluation (High_Bound (R));
|
11890 |
|
|
end if;
|
11891 |
|
|
|
11892 |
|
|
elsif Nkind (S) = N_Discriminant_Association then
|
11893 |
|
|
|
11894 |
|
|
-- Syntactically valid in subtype indication
|
11895 |
|
|
|
11896 |
|
|
Error_Msg_N ("invalid index constraint", S);
|
11897 |
|
|
Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
|
11898 |
|
|
return;
|
11899 |
|
|
|
11900 |
|
|
-- Subtype_Mark case, no anonymous subtypes to construct
|
11901 |
|
|
|
11902 |
|
|
else
|
11903 |
|
|
Analyze (S);
|
11904 |
|
|
|
11905 |
|
|
if Is_Entity_Name (S) then
|
11906 |
|
|
if not Is_Type (Entity (S)) then
|
11907 |
|
|
Error_Msg_N ("expect subtype mark for index constraint", S);
|
11908 |
|
|
|
11909 |
|
|
elsif Base_Type (Entity (S)) /= Base_Type (T) then
|
11910 |
|
|
Wrong_Type (S, Base_Type (T));
|
11911 |
|
|
|
11912 |
|
|
-- Check error of subtype with predicate in index constraint
|
11913 |
|
|
|
11914 |
|
|
else
|
11915 |
|
|
Bad_Predicated_Subtype_Use
|
11916 |
|
|
("subtype& has predicate, not allowed in index constraint",
|
11917 |
|
|
S, Entity (S));
|
11918 |
|
|
end if;
|
11919 |
|
|
|
11920 |
|
|
return;
|
11921 |
|
|
|
11922 |
|
|
else
|
11923 |
|
|
Error_Msg_N ("invalid index constraint", S);
|
11924 |
|
|
Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
|
11925 |
|
|
return;
|
11926 |
|
|
end if;
|
11927 |
|
|
end if;
|
11928 |
|
|
|
11929 |
|
|
Def_Id :=
|
11930 |
|
|
Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
|
11931 |
|
|
|
11932 |
|
|
Set_Etype (Def_Id, Base_Type (T));
|
11933 |
|
|
|
11934 |
|
|
if Is_Modular_Integer_Type (T) then
|
11935 |
|
|
Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
|
11936 |
|
|
|
11937 |
|
|
elsif Is_Integer_Type (T) then
|
11938 |
|
|
Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
|
11939 |
|
|
|
11940 |
|
|
else
|
11941 |
|
|
Set_Ekind (Def_Id, E_Enumeration_Subtype);
|
11942 |
|
|
Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
|
11943 |
|
|
Set_First_Literal (Def_Id, First_Literal (T));
|
11944 |
|
|
end if;
|
11945 |
|
|
|
11946 |
|
|
Set_Size_Info (Def_Id, (T));
|
11947 |
|
|
Set_RM_Size (Def_Id, RM_Size (T));
|
11948 |
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
11949 |
|
|
|
11950 |
|
|
Set_Scalar_Range (Def_Id, R);
|
11951 |
|
|
|
11952 |
|
|
Set_Etype (S, Def_Id);
|
11953 |
|
|
Set_Discrete_RM_Size (Def_Id);
|
11954 |
|
|
end Constrain_Index;
|
11955 |
|
|
|
11956 |
|
|
-----------------------
|
11957 |
|
|
-- Constrain_Integer --
|
11958 |
|
|
-----------------------
|
11959 |
|
|
|
11960 |
|
|
procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
|
11961 |
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
11962 |
|
|
C : constant Node_Id := Constraint (S);
|
11963 |
|
|
|
11964 |
|
|
begin
|
11965 |
|
|
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
|
11966 |
|
|
|
11967 |
|
|
if Is_Modular_Integer_Type (T) then
|
11968 |
|
|
Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
|
11969 |
|
|
else
|
11970 |
|
|
Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
|
11971 |
|
|
end if;
|
11972 |
|
|
|
11973 |
|
|
Set_Etype (Def_Id, Base_Type (T));
|
11974 |
|
|
Set_Size_Info (Def_Id, (T));
|
11975 |
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
11976 |
|
|
Set_Discrete_RM_Size (Def_Id);
|
11977 |
|
|
end Constrain_Integer;
|
11978 |
|
|
|
11979 |
|
|
------------------------------
|
11980 |
|
|
-- Constrain_Ordinary_Fixed --
|
11981 |
|
|
------------------------------
|
11982 |
|
|
|
11983 |
|
|
procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
|
11984 |
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
11985 |
|
|
C : Node_Id;
|
11986 |
|
|
D : Node_Id;
|
11987 |
|
|
Rais : Node_Id;
|
11988 |
|
|
|
11989 |
|
|
begin
|
11990 |
|
|
Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
|
11991 |
|
|
Set_Etype (Def_Id, Base_Type (T));
|
11992 |
|
|
Set_Size_Info (Def_Id, (T));
|
11993 |
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
11994 |
|
|
Set_Small_Value (Def_Id, Small_Value (T));
|
11995 |
|
|
|
11996 |
|
|
-- Process the constraint
|
11997 |
|
|
|
11998 |
|
|
C := Constraint (S);
|
11999 |
|
|
|
12000 |
|
|
-- Delta constraint present
|
12001 |
|
|
|
12002 |
|
|
if Nkind (C) = N_Delta_Constraint then
|
12003 |
|
|
|
12004 |
|
|
Check_SPARK_Restriction ("delta constraint is not allowed", S);
|
12005 |
|
|
Check_Restriction (No_Obsolescent_Features, C);
|
12006 |
|
|
|
12007 |
|
|
if Warn_On_Obsolescent_Feature then
|
12008 |
|
|
Error_Msg_S
|
12009 |
|
|
("subtype delta constraint is an " &
|
12010 |
|
|
"obsolescent feature (RM J.3(7))?");
|
12011 |
|
|
end if;
|
12012 |
|
|
|
12013 |
|
|
D := Delta_Expression (C);
|
12014 |
|
|
Analyze_And_Resolve (D, Any_Real);
|
12015 |
|
|
Check_Delta_Expression (D);
|
12016 |
|
|
Set_Delta_Value (Def_Id, Expr_Value_R (D));
|
12017 |
|
|
|
12018 |
|
|
-- Check that delta value is in range. Obviously we can do this
|
12019 |
|
|
-- at compile time, but it is strictly a runtime check, and of
|
12020 |
|
|
-- course there is an ACVC test that checks this!
|
12021 |
|
|
|
12022 |
|
|
if Delta_Value (Def_Id) < Delta_Value (T) then
|
12023 |
|
|
Error_Msg_N ("?delta value is too small", D);
|
12024 |
|
|
Rais :=
|
12025 |
|
|
Make_Raise_Constraint_Error (Sloc (D),
|
12026 |
|
|
Reason => CE_Range_Check_Failed);
|
12027 |
|
|
Insert_Action (Declaration_Node (Def_Id), Rais);
|
12028 |
|
|
end if;
|
12029 |
|
|
|
12030 |
|
|
C := Range_Constraint (C);
|
12031 |
|
|
|
12032 |
|
|
-- No delta constraint present
|
12033 |
|
|
|
12034 |
|
|
else
|
12035 |
|
|
Set_Delta_Value (Def_Id, Delta_Value (T));
|
12036 |
|
|
end if;
|
12037 |
|
|
|
12038 |
|
|
-- Range constraint present
|
12039 |
|
|
|
12040 |
|
|
if Nkind (C) = N_Range_Constraint then
|
12041 |
|
|
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
|
12042 |
|
|
|
12043 |
|
|
-- No range constraint present
|
12044 |
|
|
|
12045 |
|
|
else
|
12046 |
|
|
pragma Assert (No (C));
|
12047 |
|
|
Set_Scalar_Range (Def_Id, Scalar_Range (T));
|
12048 |
|
|
|
12049 |
|
|
end if;
|
12050 |
|
|
|
12051 |
|
|
Set_Discrete_RM_Size (Def_Id);
|
12052 |
|
|
|
12053 |
|
|
-- Unconditionally delay the freeze, since we cannot set size
|
12054 |
|
|
-- information in all cases correctly until the freeze point.
|
12055 |
|
|
|
12056 |
|
|
Set_Has_Delayed_Freeze (Def_Id);
|
12057 |
|
|
end Constrain_Ordinary_Fixed;
|
12058 |
|
|
|
12059 |
|
|
-----------------------
|
12060 |
|
|
-- Contain_Interface --
|
12061 |
|
|
-----------------------
|
12062 |
|
|
|
12063 |
|
|
function Contain_Interface
|
12064 |
|
|
(Iface : Entity_Id;
|
12065 |
|
|
Ifaces : Elist_Id) return Boolean
|
12066 |
|
|
is
|
12067 |
|
|
Iface_Elmt : Elmt_Id;
|
12068 |
|
|
|
12069 |
|
|
begin
|
12070 |
|
|
if Present (Ifaces) then
|
12071 |
|
|
Iface_Elmt := First_Elmt (Ifaces);
|
12072 |
|
|
while Present (Iface_Elmt) loop
|
12073 |
|
|
if Node (Iface_Elmt) = Iface then
|
12074 |
|
|
return True;
|
12075 |
|
|
end if;
|
12076 |
|
|
|
12077 |
|
|
Next_Elmt (Iface_Elmt);
|
12078 |
|
|
end loop;
|
12079 |
|
|
end if;
|
12080 |
|
|
|
12081 |
|
|
return False;
|
12082 |
|
|
end Contain_Interface;
|
12083 |
|
|
|
12084 |
|
|
---------------------------
|
12085 |
|
|
-- Convert_Scalar_Bounds --
|
12086 |
|
|
---------------------------
|
12087 |
|
|
|
12088 |
|
|
procedure Convert_Scalar_Bounds
|
12089 |
|
|
(N : Node_Id;
|
12090 |
|
|
Parent_Type : Entity_Id;
|
12091 |
|
|
Derived_Type : Entity_Id;
|
12092 |
|
|
Loc : Source_Ptr)
|
12093 |
|
|
is
|
12094 |
|
|
Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
|
12095 |
|
|
|
12096 |
|
|
Lo : Node_Id;
|
12097 |
|
|
Hi : Node_Id;
|
12098 |
|
|
Rng : Node_Id;
|
12099 |
|
|
|
12100 |
|
|
begin
|
12101 |
|
|
-- Defend against previous errors
|
12102 |
|
|
|
12103 |
|
|
if No (Scalar_Range (Derived_Type)) then
|
12104 |
|
|
return;
|
12105 |
|
|
end if;
|
12106 |
|
|
|
12107 |
|
|
Lo := Build_Scalar_Bound
|
12108 |
|
|
(Type_Low_Bound (Derived_Type),
|
12109 |
|
|
Parent_Type, Implicit_Base);
|
12110 |
|
|
|
12111 |
|
|
Hi := Build_Scalar_Bound
|
12112 |
|
|
(Type_High_Bound (Derived_Type),
|
12113 |
|
|
Parent_Type, Implicit_Base);
|
12114 |
|
|
|
12115 |
|
|
Rng :=
|
12116 |
|
|
Make_Range (Loc,
|
12117 |
|
|
Low_Bound => Lo,
|
12118 |
|
|
High_Bound => Hi);
|
12119 |
|
|
|
12120 |
|
|
Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
|
12121 |
|
|
|
12122 |
|
|
Set_Parent (Rng, N);
|
12123 |
|
|
Set_Scalar_Range (Derived_Type, Rng);
|
12124 |
|
|
|
12125 |
|
|
-- Analyze the bounds
|
12126 |
|
|
|
12127 |
|
|
Analyze_And_Resolve (Lo, Implicit_Base);
|
12128 |
|
|
Analyze_And_Resolve (Hi, Implicit_Base);
|
12129 |
|
|
|
12130 |
|
|
-- Analyze the range itself, except that we do not analyze it if
|
12131 |
|
|
-- the bounds are real literals, and we have a fixed-point type.
|
12132 |
|
|
-- The reason for this is that we delay setting the bounds in this
|
12133 |
|
|
-- case till we know the final Small and Size values (see circuit
|
12134 |
|
|
-- in Freeze.Freeze_Fixed_Point_Type for further details).
|
12135 |
|
|
|
12136 |
|
|
if Is_Fixed_Point_Type (Parent_Type)
|
12137 |
|
|
and then Nkind (Lo) = N_Real_Literal
|
12138 |
|
|
and then Nkind (Hi) = N_Real_Literal
|
12139 |
|
|
then
|
12140 |
|
|
return;
|
12141 |
|
|
|
12142 |
|
|
-- Here we do the analysis of the range
|
12143 |
|
|
|
12144 |
|
|
-- Note: we do this manually, since if we do a normal Analyze and
|
12145 |
|
|
-- Resolve call, there are problems with the conversions used for
|
12146 |
|
|
-- the derived type range.
|
12147 |
|
|
|
12148 |
|
|
else
|
12149 |
|
|
Set_Etype (Rng, Implicit_Base);
|
12150 |
|
|
Set_Analyzed (Rng, True);
|
12151 |
|
|
end if;
|
12152 |
|
|
end Convert_Scalar_Bounds;
|
12153 |
|
|
|
12154 |
|
|
-------------------
|
12155 |
|
|
-- Copy_And_Swap --
|
12156 |
|
|
-------------------
|
12157 |
|
|
|
12158 |
|
|
procedure Copy_And_Swap (Priv, Full : Entity_Id) is
|
12159 |
|
|
begin
|
12160 |
|
|
-- Initialize new full declaration entity by copying the pertinent
|
12161 |
|
|
-- fields of the corresponding private declaration entity.
|
12162 |
|
|
|
12163 |
|
|
-- We temporarily set Ekind to a value appropriate for a type to
|
12164 |
|
|
-- avoid assert failures in Einfo from checking for setting type
|
12165 |
|
|
-- attributes on something that is not a type. Ekind (Priv) is an
|
12166 |
|
|
-- appropriate choice, since it allowed the attributes to be set
|
12167 |
|
|
-- in the first place. This Ekind value will be modified later.
|
12168 |
|
|
|
12169 |
|
|
Set_Ekind (Full, Ekind (Priv));
|
12170 |
|
|
|
12171 |
|
|
-- Also set Etype temporarily to Any_Type, again, in the absence
|
12172 |
|
|
-- of errors, it will be properly reset, and if there are errors,
|
12173 |
|
|
-- then we want a value of Any_Type to remain.
|
12174 |
|
|
|
12175 |
|
|
Set_Etype (Full, Any_Type);
|
12176 |
|
|
|
12177 |
|
|
-- Now start copying attributes
|
12178 |
|
|
|
12179 |
|
|
Set_Has_Discriminants (Full, Has_Discriminants (Priv));
|
12180 |
|
|
|
12181 |
|
|
if Has_Discriminants (Full) then
|
12182 |
|
|
Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
|
12183 |
|
|
Set_Stored_Constraint (Full, Stored_Constraint (Priv));
|
12184 |
|
|
end if;
|
12185 |
|
|
|
12186 |
|
|
Set_First_Rep_Item (Full, First_Rep_Item (Priv));
|
12187 |
|
|
Set_Homonym (Full, Homonym (Priv));
|
12188 |
|
|
Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
|
12189 |
|
|
Set_Is_Public (Full, Is_Public (Priv));
|
12190 |
|
|
Set_Is_Pure (Full, Is_Pure (Priv));
|
12191 |
|
|
Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
|
12192 |
|
|
Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
|
12193 |
|
|
Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
|
12194 |
|
|
Set_Has_Pragma_Unreferenced_Objects
|
12195 |
|
|
(Full, Has_Pragma_Unreferenced_Objects
|
12196 |
|
|
(Priv));
|
12197 |
|
|
|
12198 |
|
|
Conditional_Delay (Full, Priv);
|
12199 |
|
|
|
12200 |
|
|
if Is_Tagged_Type (Full) then
|
12201 |
|
|
Set_Direct_Primitive_Operations (Full,
|
12202 |
|
|
Direct_Primitive_Operations (Priv));
|
12203 |
|
|
|
12204 |
|
|
if Is_Base_Type (Priv) then
|
12205 |
|
|
Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
|
12206 |
|
|
end if;
|
12207 |
|
|
end if;
|
12208 |
|
|
|
12209 |
|
|
Set_Is_Volatile (Full, Is_Volatile (Priv));
|
12210 |
|
|
Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
|
12211 |
|
|
Set_Scope (Full, Scope (Priv));
|
12212 |
|
|
Set_Next_Entity (Full, Next_Entity (Priv));
|
12213 |
|
|
Set_First_Entity (Full, First_Entity (Priv));
|
12214 |
|
|
Set_Last_Entity (Full, Last_Entity (Priv));
|
12215 |
|
|
|
12216 |
|
|
-- If access types have been recorded for later handling, keep them in
|
12217 |
|
|
-- the full view so that they get handled when the full view freeze
|
12218 |
|
|
-- node is expanded.
|
12219 |
|
|
|
12220 |
|
|
if Present (Freeze_Node (Priv))
|
12221 |
|
|
and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
|
12222 |
|
|
then
|
12223 |
|
|
Ensure_Freeze_Node (Full);
|
12224 |
|
|
Set_Access_Types_To_Process
|
12225 |
|
|
(Freeze_Node (Full),
|
12226 |
|
|
Access_Types_To_Process (Freeze_Node (Priv)));
|
12227 |
|
|
end if;
|
12228 |
|
|
|
12229 |
|
|
-- Swap the two entities. Now Private is the full type entity and Full
|
12230 |
|
|
-- is the private one. They will be swapped back at the end of the
|
12231 |
|
|
-- private part. This swapping ensures that the entity that is visible
|
12232 |
|
|
-- in the private part is the full declaration.
|
12233 |
|
|
|
12234 |
|
|
Exchange_Entities (Priv, Full);
|
12235 |
|
|
Append_Entity (Full, Scope (Full));
|
12236 |
|
|
end Copy_And_Swap;
|
12237 |
|
|
|
12238 |
|
|
-------------------------------------
|
12239 |
|
|
-- Copy_Array_Base_Type_Attributes --
|
12240 |
|
|
-------------------------------------
|
12241 |
|
|
|
12242 |
|
|
procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
|
12243 |
|
|
begin
|
12244 |
|
|
Set_Component_Alignment (T1, Component_Alignment (T2));
|
12245 |
|
|
Set_Component_Type (T1, Component_Type (T2));
|
12246 |
|
|
Set_Component_Size (T1, Component_Size (T2));
|
12247 |
|
|
Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
|
12248 |
|
|
Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
|
12249 |
|
|
Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
|
12250 |
|
|
Set_Has_Task (T1, Has_Task (T2));
|
12251 |
|
|
Set_Is_Packed (T1, Is_Packed (T2));
|
12252 |
|
|
Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
|
12253 |
|
|
Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
|
12254 |
|
|
Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
|
12255 |
|
|
end Copy_Array_Base_Type_Attributes;
|
12256 |
|
|
|
12257 |
|
|
-----------------------------------
|
12258 |
|
|
-- Copy_Array_Subtype_Attributes --
|
12259 |
|
|
-----------------------------------
|
12260 |
|
|
|
12261 |
|
|
procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
|
12262 |
|
|
begin
|
12263 |
|
|
Set_Size_Info (T1, T2);
|
12264 |
|
|
|
12265 |
|
|
Set_First_Index (T1, First_Index (T2));
|
12266 |
|
|
Set_Is_Aliased (T1, Is_Aliased (T2));
|
12267 |
|
|
Set_Is_Atomic (T1, Is_Atomic (T2));
|
12268 |
|
|
Set_Is_Volatile (T1, Is_Volatile (T2));
|
12269 |
|
|
Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
|
12270 |
|
|
Set_Is_Constrained (T1, Is_Constrained (T2));
|
12271 |
|
|
Set_Depends_On_Private (T1, Has_Private_Component (T2));
|
12272 |
|
|
Set_First_Rep_Item (T1, First_Rep_Item (T2));
|
12273 |
|
|
Set_Convention (T1, Convention (T2));
|
12274 |
|
|
Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
|
12275 |
|
|
Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
|
12276 |
|
|
Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
|
12277 |
|
|
end Copy_Array_Subtype_Attributes;
|
12278 |
|
|
|
12279 |
|
|
-----------------------------------
|
12280 |
|
|
-- Create_Constrained_Components --
|
12281 |
|
|
-----------------------------------
|
12282 |
|
|
|
12283 |
|
|
procedure Create_Constrained_Components
|
12284 |
|
|
(Subt : Entity_Id;
|
12285 |
|
|
Decl_Node : Node_Id;
|
12286 |
|
|
Typ : Entity_Id;
|
12287 |
|
|
Constraints : Elist_Id)
|
12288 |
|
|
is
|
12289 |
|
|
Loc : constant Source_Ptr := Sloc (Subt);
|
12290 |
|
|
Comp_List : constant Elist_Id := New_Elmt_List;
|
12291 |
|
|
Parent_Type : constant Entity_Id := Etype (Typ);
|
12292 |
|
|
Assoc_List : constant List_Id := New_List;
|
12293 |
|
|
Discr_Val : Elmt_Id;
|
12294 |
|
|
Errors : Boolean;
|
12295 |
|
|
New_C : Entity_Id;
|
12296 |
|
|
Old_C : Entity_Id;
|
12297 |
|
|
Is_Static : Boolean := True;
|
12298 |
|
|
|
12299 |
|
|
procedure Collect_Fixed_Components (Typ : Entity_Id);
|
12300 |
|
|
-- Collect parent type components that do not appear in a variant part
|
12301 |
|
|
|
12302 |
|
|
procedure Create_All_Components;
|
12303 |
|
|
-- Iterate over Comp_List to create the components of the subtype
|
12304 |
|
|
|
12305 |
|
|
function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
|
12306 |
|
|
-- Creates a new component from Old_Compon, copying all the fields from
|
12307 |
|
|
-- it, including its Etype, inserts the new component in the Subt entity
|
12308 |
|
|
-- chain and returns the new component.
|
12309 |
|
|
|
12310 |
|
|
function Is_Variant_Record (T : Entity_Id) return Boolean;
|
12311 |
|
|
-- If true, and discriminants are static, collect only components from
|
12312 |
|
|
-- variants selected by discriminant values.
|
12313 |
|
|
|
12314 |
|
|
------------------------------
|
12315 |
|
|
-- Collect_Fixed_Components --
|
12316 |
|
|
------------------------------
|
12317 |
|
|
|
12318 |
|
|
procedure Collect_Fixed_Components (Typ : Entity_Id) is
|
12319 |
|
|
begin
|
12320 |
|
|
-- Build association list for discriminants, and find components of the
|
12321 |
|
|
-- variant part selected by the values of the discriminants.
|
12322 |
|
|
|
12323 |
|
|
Old_C := First_Discriminant (Typ);
|
12324 |
|
|
Discr_Val := First_Elmt (Constraints);
|
12325 |
|
|
while Present (Old_C) loop
|
12326 |
|
|
Append_To (Assoc_List,
|
12327 |
|
|
Make_Component_Association (Loc,
|
12328 |
|
|
Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
|
12329 |
|
|
Expression => New_Copy (Node (Discr_Val))));
|
12330 |
|
|
|
12331 |
|
|
Next_Elmt (Discr_Val);
|
12332 |
|
|
Next_Discriminant (Old_C);
|
12333 |
|
|
end loop;
|
12334 |
|
|
|
12335 |
|
|
-- The tag and the possible parent component are unconditionally in
|
12336 |
|
|
-- the subtype.
|
12337 |
|
|
|
12338 |
|
|
if Is_Tagged_Type (Typ)
|
12339 |
|
|
or else Has_Controlled_Component (Typ)
|
12340 |
|
|
then
|
12341 |
|
|
Old_C := First_Component (Typ);
|
12342 |
|
|
while Present (Old_C) loop
|
12343 |
|
|
if Chars ((Old_C)) = Name_uTag
|
12344 |
|
|
or else Chars ((Old_C)) = Name_uParent
|
12345 |
|
|
then
|
12346 |
|
|
Append_Elmt (Old_C, Comp_List);
|
12347 |
|
|
end if;
|
12348 |
|
|
|
12349 |
|
|
Next_Component (Old_C);
|
12350 |
|
|
end loop;
|
12351 |
|
|
end if;
|
12352 |
|
|
end Collect_Fixed_Components;
|
12353 |
|
|
|
12354 |
|
|
---------------------------
|
12355 |
|
|
-- Create_All_Components --
|
12356 |
|
|
---------------------------
|
12357 |
|
|
|
12358 |
|
|
procedure Create_All_Components is
|
12359 |
|
|
Comp : Elmt_Id;
|
12360 |
|
|
|
12361 |
|
|
begin
|
12362 |
|
|
Comp := First_Elmt (Comp_List);
|
12363 |
|
|
while Present (Comp) loop
|
12364 |
|
|
Old_C := Node (Comp);
|
12365 |
|
|
New_C := Create_Component (Old_C);
|
12366 |
|
|
|
12367 |
|
|
Set_Etype
|
12368 |
|
|
(New_C,
|
12369 |
|
|
Constrain_Component_Type
|
12370 |
|
|
(Old_C, Subt, Decl_Node, Typ, Constraints));
|
12371 |
|
|
Set_Is_Public (New_C, Is_Public (Subt));
|
12372 |
|
|
|
12373 |
|
|
Next_Elmt (Comp);
|
12374 |
|
|
end loop;
|
12375 |
|
|
end Create_All_Components;
|
12376 |
|
|
|
12377 |
|
|
----------------------
|
12378 |
|
|
-- Create_Component --
|
12379 |
|
|
----------------------
|
12380 |
|
|
|
12381 |
|
|
function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
|
12382 |
|
|
New_Compon : constant Entity_Id := New_Copy (Old_Compon);
|
12383 |
|
|
|
12384 |
|
|
begin
|
12385 |
|
|
if Ekind (Old_Compon) = E_Discriminant
|
12386 |
|
|
and then Is_Completely_Hidden (Old_Compon)
|
12387 |
|
|
then
|
12388 |
|
|
-- This is a shadow discriminant created for a discriminant of
|
12389 |
|
|
-- the parent type, which needs to be present in the subtype.
|
12390 |
|
|
-- Give the shadow discriminant an internal name that cannot
|
12391 |
|
|
-- conflict with that of visible components.
|
12392 |
|
|
|
12393 |
|
|
Set_Chars (New_Compon, New_Internal_Name ('C'));
|
12394 |
|
|
end if;
|
12395 |
|
|
|
12396 |
|
|
-- Set the parent so we have a proper link for freezing etc. This is
|
12397 |
|
|
-- not a real parent pointer, since of course our parent does not own
|
12398 |
|
|
-- up to us and reference us, we are an illegitimate child of the
|
12399 |
|
|
-- original parent!
|
12400 |
|
|
|
12401 |
|
|
Set_Parent (New_Compon, Parent (Old_Compon));
|
12402 |
|
|
|
12403 |
|
|
-- If the old component's Esize was already determined and is a
|
12404 |
|
|
-- static value, then the new component simply inherits it. Otherwise
|
12405 |
|
|
-- the old component's size may require run-time determination, but
|
12406 |
|
|
-- the new component's size still might be statically determinable
|
12407 |
|
|
-- (if, for example it has a static constraint). In that case we want
|
12408 |
|
|
-- Layout_Type to recompute the component's size, so we reset its
|
12409 |
|
|
-- size and positional fields.
|
12410 |
|
|
|
12411 |
|
|
if Frontend_Layout_On_Target
|
12412 |
|
|
and then not Known_Static_Esize (Old_Compon)
|
12413 |
|
|
then
|
12414 |
|
|
Set_Esize (New_Compon, Uint_0);
|
12415 |
|
|
Init_Normalized_First_Bit (New_Compon);
|
12416 |
|
|
Init_Normalized_Position (New_Compon);
|
12417 |
|
|
Init_Normalized_Position_Max (New_Compon);
|
12418 |
|
|
end if;
|
12419 |
|
|
|
12420 |
|
|
-- We do not want this node marked as Comes_From_Source, since
|
12421 |
|
|
-- otherwise it would get first class status and a separate cross-
|
12422 |
|
|
-- reference line would be generated. Illegitimate children do not
|
12423 |
|
|
-- rate such recognition.
|
12424 |
|
|
|
12425 |
|
|
Set_Comes_From_Source (New_Compon, False);
|
12426 |
|
|
|
12427 |
|
|
-- But it is a real entity, and a birth certificate must be properly
|
12428 |
|
|
-- registered by entering it into the entity list.
|
12429 |
|
|
|
12430 |
|
|
Enter_Name (New_Compon);
|
12431 |
|
|
|
12432 |
|
|
return New_Compon;
|
12433 |
|
|
end Create_Component;
|
12434 |
|
|
|
12435 |
|
|
-----------------------
|
12436 |
|
|
-- Is_Variant_Record --
|
12437 |
|
|
-----------------------
|
12438 |
|
|
|
12439 |
|
|
function Is_Variant_Record (T : Entity_Id) return Boolean is
|
12440 |
|
|
begin
|
12441 |
|
|
return Nkind (Parent (T)) = N_Full_Type_Declaration
|
12442 |
|
|
and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
|
12443 |
|
|
and then Present (Component_List (Type_Definition (Parent (T))))
|
12444 |
|
|
and then
|
12445 |
|
|
Present
|
12446 |
|
|
(Variant_Part (Component_List (Type_Definition (Parent (T)))));
|
12447 |
|
|
end Is_Variant_Record;
|
12448 |
|
|
|
12449 |
|
|
-- Start of processing for Create_Constrained_Components
|
12450 |
|
|
|
12451 |
|
|
begin
|
12452 |
|
|
pragma Assert (Subt /= Base_Type (Subt));
|
12453 |
|
|
pragma Assert (Typ = Base_Type (Typ));
|
12454 |
|
|
|
12455 |
|
|
Set_First_Entity (Subt, Empty);
|
12456 |
|
|
Set_Last_Entity (Subt, Empty);
|
12457 |
|
|
|
12458 |
|
|
-- Check whether constraint is fully static, in which case we can
|
12459 |
|
|
-- optimize the list of components.
|
12460 |
|
|
|
12461 |
|
|
Discr_Val := First_Elmt (Constraints);
|
12462 |
|
|
while Present (Discr_Val) loop
|
12463 |
|
|
if not Is_OK_Static_Expression (Node (Discr_Val)) then
|
12464 |
|
|
Is_Static := False;
|
12465 |
|
|
exit;
|
12466 |
|
|
end if;
|
12467 |
|
|
|
12468 |
|
|
Next_Elmt (Discr_Val);
|
12469 |
|
|
end loop;
|
12470 |
|
|
|
12471 |
|
|
Set_Has_Static_Discriminants (Subt, Is_Static);
|
12472 |
|
|
|
12473 |
|
|
Push_Scope (Subt);
|
12474 |
|
|
|
12475 |
|
|
-- Inherit the discriminants of the parent type
|
12476 |
|
|
|
12477 |
|
|
Add_Discriminants : declare
|
12478 |
|
|
Num_Disc : Int;
|
12479 |
|
|
Num_Gird : Int;
|
12480 |
|
|
|
12481 |
|
|
begin
|
12482 |
|
|
Num_Disc := 0;
|
12483 |
|
|
Old_C := First_Discriminant (Typ);
|
12484 |
|
|
|
12485 |
|
|
while Present (Old_C) loop
|
12486 |
|
|
Num_Disc := Num_Disc + 1;
|
12487 |
|
|
New_C := Create_Component (Old_C);
|
12488 |
|
|
Set_Is_Public (New_C, Is_Public (Subt));
|
12489 |
|
|
Next_Discriminant (Old_C);
|
12490 |
|
|
end loop;
|
12491 |
|
|
|
12492 |
|
|
-- For an untagged derived subtype, the number of discriminants may
|
12493 |
|
|
-- be smaller than the number of inherited discriminants, because
|
12494 |
|
|
-- several of them may be renamed by a single new discriminant or
|
12495 |
|
|
-- constrained. In this case, add the hidden discriminants back into
|
12496 |
|
|
-- the subtype, because they need to be present if the optimizer of
|
12497 |
|
|
-- the GCC 4.x back-end decides to break apart assignments between
|
12498 |
|
|
-- objects using the parent view into member-wise assignments.
|
12499 |
|
|
|
12500 |
|
|
Num_Gird := 0;
|
12501 |
|
|
|
12502 |
|
|
if Is_Derived_Type (Typ)
|
12503 |
|
|
and then not Is_Tagged_Type (Typ)
|
12504 |
|
|
then
|
12505 |
|
|
Old_C := First_Stored_Discriminant (Typ);
|
12506 |
|
|
|
12507 |
|
|
while Present (Old_C) loop
|
12508 |
|
|
Num_Gird := Num_Gird + 1;
|
12509 |
|
|
Next_Stored_Discriminant (Old_C);
|
12510 |
|
|
end loop;
|
12511 |
|
|
end if;
|
12512 |
|
|
|
12513 |
|
|
if Num_Gird > Num_Disc then
|
12514 |
|
|
|
12515 |
|
|
-- Find out multiple uses of new discriminants, and add hidden
|
12516 |
|
|
-- components for the extra renamed discriminants. We recognize
|
12517 |
|
|
-- multiple uses through the Corresponding_Discriminant of a
|
12518 |
|
|
-- new discriminant: if it constrains several old discriminants,
|
12519 |
|
|
-- this field points to the last one in the parent type. The
|
12520 |
|
|
-- stored discriminants of the derived type have the same name
|
12521 |
|
|
-- as those of the parent.
|
12522 |
|
|
|
12523 |
|
|
declare
|
12524 |
|
|
Constr : Elmt_Id;
|
12525 |
|
|
New_Discr : Entity_Id;
|
12526 |
|
|
Old_Discr : Entity_Id;
|
12527 |
|
|
|
12528 |
|
|
begin
|
12529 |
|
|
Constr := First_Elmt (Stored_Constraint (Typ));
|
12530 |
|
|
Old_Discr := First_Stored_Discriminant (Typ);
|
12531 |
|
|
while Present (Constr) loop
|
12532 |
|
|
if Is_Entity_Name (Node (Constr))
|
12533 |
|
|
and then Ekind (Entity (Node (Constr))) = E_Discriminant
|
12534 |
|
|
then
|
12535 |
|
|
New_Discr := Entity (Node (Constr));
|
12536 |
|
|
|
12537 |
|
|
if Chars (Corresponding_Discriminant (New_Discr)) /=
|
12538 |
|
|
Chars (Old_Discr)
|
12539 |
|
|
then
|
12540 |
|
|
-- The new discriminant has been used to rename a
|
12541 |
|
|
-- subsequent old discriminant. Introduce a shadow
|
12542 |
|
|
-- component for the current old discriminant.
|
12543 |
|
|
|
12544 |
|
|
New_C := Create_Component (Old_Discr);
|
12545 |
|
|
Set_Original_Record_Component (New_C, Old_Discr);
|
12546 |
|
|
end if;
|
12547 |
|
|
|
12548 |
|
|
else
|
12549 |
|
|
-- The constraint has eliminated the old discriminant.
|
12550 |
|
|
-- Introduce a shadow component.
|
12551 |
|
|
|
12552 |
|
|
New_C := Create_Component (Old_Discr);
|
12553 |
|
|
Set_Original_Record_Component (New_C, Old_Discr);
|
12554 |
|
|
end if;
|
12555 |
|
|
|
12556 |
|
|
Next_Elmt (Constr);
|
12557 |
|
|
Next_Stored_Discriminant (Old_Discr);
|
12558 |
|
|
end loop;
|
12559 |
|
|
end;
|
12560 |
|
|
end if;
|
12561 |
|
|
end Add_Discriminants;
|
12562 |
|
|
|
12563 |
|
|
if Is_Static
|
12564 |
|
|
and then Is_Variant_Record (Typ)
|
12565 |
|
|
then
|
12566 |
|
|
Collect_Fixed_Components (Typ);
|
12567 |
|
|
|
12568 |
|
|
Gather_Components (
|
12569 |
|
|
Typ,
|
12570 |
|
|
Component_List (Type_Definition (Parent (Typ))),
|
12571 |
|
|
Governed_By => Assoc_List,
|
12572 |
|
|
Into => Comp_List,
|
12573 |
|
|
Report_Errors => Errors);
|
12574 |
|
|
pragma Assert (not Errors);
|
12575 |
|
|
|
12576 |
|
|
Create_All_Components;
|
12577 |
|
|
|
12578 |
|
|
-- If the subtype declaration is created for a tagged type derivation
|
12579 |
|
|
-- with constraints, we retrieve the record definition of the parent
|
12580 |
|
|
-- type to select the components of the proper variant.
|
12581 |
|
|
|
12582 |
|
|
elsif Is_Static
|
12583 |
|
|
and then Is_Tagged_Type (Typ)
|
12584 |
|
|
and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
|
12585 |
|
|
and then
|
12586 |
|
|
Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
|
12587 |
|
|
and then Is_Variant_Record (Parent_Type)
|
12588 |
|
|
then
|
12589 |
|
|
Collect_Fixed_Components (Typ);
|
12590 |
|
|
|
12591 |
|
|
Gather_Components (
|
12592 |
|
|
Typ,
|
12593 |
|
|
Component_List (Type_Definition (Parent (Parent_Type))),
|
12594 |
|
|
Governed_By => Assoc_List,
|
12595 |
|
|
Into => Comp_List,
|
12596 |
|
|
Report_Errors => Errors);
|
12597 |
|
|
pragma Assert (not Errors);
|
12598 |
|
|
|
12599 |
|
|
-- If the tagged derivation has a type extension, collect all the
|
12600 |
|
|
-- new components therein.
|
12601 |
|
|
|
12602 |
|
|
if Present
|
12603 |
|
|
(Record_Extension_Part (Type_Definition (Parent (Typ))))
|
12604 |
|
|
then
|
12605 |
|
|
Old_C := First_Component (Typ);
|
12606 |
|
|
while Present (Old_C) loop
|
12607 |
|
|
if Original_Record_Component (Old_C) = Old_C
|
12608 |
|
|
and then Chars (Old_C) /= Name_uTag
|
12609 |
|
|
and then Chars (Old_C) /= Name_uParent
|
12610 |
|
|
then
|
12611 |
|
|
Append_Elmt (Old_C, Comp_List);
|
12612 |
|
|
end if;
|
12613 |
|
|
|
12614 |
|
|
Next_Component (Old_C);
|
12615 |
|
|
end loop;
|
12616 |
|
|
end if;
|
12617 |
|
|
|
12618 |
|
|
Create_All_Components;
|
12619 |
|
|
|
12620 |
|
|
else
|
12621 |
|
|
-- If discriminants are not static, or if this is a multi-level type
|
12622 |
|
|
-- extension, we have to include all components of the parent type.
|
12623 |
|
|
|
12624 |
|
|
Old_C := First_Component (Typ);
|
12625 |
|
|
while Present (Old_C) loop
|
12626 |
|
|
New_C := Create_Component (Old_C);
|
12627 |
|
|
|
12628 |
|
|
Set_Etype
|
12629 |
|
|
(New_C,
|
12630 |
|
|
Constrain_Component_Type
|
12631 |
|
|
(Old_C, Subt, Decl_Node, Typ, Constraints));
|
12632 |
|
|
Set_Is_Public (New_C, Is_Public (Subt));
|
12633 |
|
|
|
12634 |
|
|
Next_Component (Old_C);
|
12635 |
|
|
end loop;
|
12636 |
|
|
end if;
|
12637 |
|
|
|
12638 |
|
|
End_Scope;
|
12639 |
|
|
end Create_Constrained_Components;
|
12640 |
|
|
|
12641 |
|
|
------------------------------------------
|
12642 |
|
|
-- Decimal_Fixed_Point_Type_Declaration --
|
12643 |
|
|
------------------------------------------
|
12644 |
|
|
|
12645 |
|
|
procedure Decimal_Fixed_Point_Type_Declaration
|
12646 |
|
|
(T : Entity_Id;
|
12647 |
|
|
Def : Node_Id)
|
12648 |
|
|
is
|
12649 |
|
|
Loc : constant Source_Ptr := Sloc (Def);
|
12650 |
|
|
Digs_Expr : constant Node_Id := Digits_Expression (Def);
|
12651 |
|
|
Delta_Expr : constant Node_Id := Delta_Expression (Def);
|
12652 |
|
|
Implicit_Base : Entity_Id;
|
12653 |
|
|
Digs_Val : Uint;
|
12654 |
|
|
Delta_Val : Ureal;
|
12655 |
|
|
Scale_Val : Uint;
|
12656 |
|
|
Bound_Val : Ureal;
|
12657 |
|
|
|
12658 |
|
|
begin
|
12659 |
|
|
Check_SPARK_Restriction
|
12660 |
|
|
("decimal fixed point type is not allowed", Def);
|
12661 |
|
|
Check_Restriction (No_Fixed_Point, Def);
|
12662 |
|
|
|
12663 |
|
|
-- Create implicit base type
|
12664 |
|
|
|
12665 |
|
|
Implicit_Base :=
|
12666 |
|
|
Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
|
12667 |
|
|
Set_Etype (Implicit_Base, Implicit_Base);
|
12668 |
|
|
|
12669 |
|
|
-- Analyze and process delta expression
|
12670 |
|
|
|
12671 |
|
|
Analyze_And_Resolve (Delta_Expr, Universal_Real);
|
12672 |
|
|
|
12673 |
|
|
Check_Delta_Expression (Delta_Expr);
|
12674 |
|
|
Delta_Val := Expr_Value_R (Delta_Expr);
|
12675 |
|
|
|
12676 |
|
|
-- Check delta is power of 10, and determine scale value from it
|
12677 |
|
|
|
12678 |
|
|
declare
|
12679 |
|
|
Val : Ureal;
|
12680 |
|
|
|
12681 |
|
|
begin
|
12682 |
|
|
Scale_Val := Uint_0;
|
12683 |
|
|
Val := Delta_Val;
|
12684 |
|
|
|
12685 |
|
|
if Val < Ureal_1 then
|
12686 |
|
|
while Val < Ureal_1 loop
|
12687 |
|
|
Val := Val * Ureal_10;
|
12688 |
|
|
Scale_Val := Scale_Val + 1;
|
12689 |
|
|
end loop;
|
12690 |
|
|
|
12691 |
|
|
if Scale_Val > 18 then
|
12692 |
|
|
Error_Msg_N ("scale exceeds maximum value of 18", Def);
|
12693 |
|
|
Scale_Val := UI_From_Int (+18);
|
12694 |
|
|
end if;
|
12695 |
|
|
|
12696 |
|
|
else
|
12697 |
|
|
while Val > Ureal_1 loop
|
12698 |
|
|
Val := Val / Ureal_10;
|
12699 |
|
|
Scale_Val := Scale_Val - 1;
|
12700 |
|
|
end loop;
|
12701 |
|
|
|
12702 |
|
|
if Scale_Val < -18 then
|
12703 |
|
|
Error_Msg_N ("scale is less than minimum value of -18", Def);
|
12704 |
|
|
Scale_Val := UI_From_Int (-18);
|
12705 |
|
|
end if;
|
12706 |
|
|
end if;
|
12707 |
|
|
|
12708 |
|
|
if Val /= Ureal_1 then
|
12709 |
|
|
Error_Msg_N ("delta expression must be a power of 10", Def);
|
12710 |
|
|
Delta_Val := Ureal_10 ** (-Scale_Val);
|
12711 |
|
|
end if;
|
12712 |
|
|
end;
|
12713 |
|
|
|
12714 |
|
|
-- Set delta, scale and small (small = delta for decimal type)
|
12715 |
|
|
|
12716 |
|
|
Set_Delta_Value (Implicit_Base, Delta_Val);
|
12717 |
|
|
Set_Scale_Value (Implicit_Base, Scale_Val);
|
12718 |
|
|
Set_Small_Value (Implicit_Base, Delta_Val);
|
12719 |
|
|
|
12720 |
|
|
-- Analyze and process digits expression
|
12721 |
|
|
|
12722 |
|
|
Analyze_And_Resolve (Digs_Expr, Any_Integer);
|
12723 |
|
|
Check_Digits_Expression (Digs_Expr);
|
12724 |
|
|
Digs_Val := Expr_Value (Digs_Expr);
|
12725 |
|
|
|
12726 |
|
|
if Digs_Val > 18 then
|
12727 |
|
|
Digs_Val := UI_From_Int (+18);
|
12728 |
|
|
Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
|
12729 |
|
|
end if;
|
12730 |
|
|
|
12731 |
|
|
Set_Digits_Value (Implicit_Base, Digs_Val);
|
12732 |
|
|
Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
|
12733 |
|
|
|
12734 |
|
|
-- Set range of base type from digits value for now. This will be
|
12735 |
|
|
-- expanded to represent the true underlying base range by Freeze.
|
12736 |
|
|
|
12737 |
|
|
Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
|
12738 |
|
|
|
12739 |
|
|
-- Note: We leave size as zero for now, size will be set at freeze
|
12740 |
|
|
-- time. We have to do this for ordinary fixed-point, because the size
|
12741 |
|
|
-- depends on the specified small, and we might as well do the same for
|
12742 |
|
|
-- decimal fixed-point.
|
12743 |
|
|
|
12744 |
|
|
pragma Assert (Esize (Implicit_Base) = Uint_0);
|
12745 |
|
|
|
12746 |
|
|
-- If there are bounds given in the declaration use them as the
|
12747 |
|
|
-- bounds of the first named subtype.
|
12748 |
|
|
|
12749 |
|
|
if Present (Real_Range_Specification (Def)) then
|
12750 |
|
|
declare
|
12751 |
|
|
RRS : constant Node_Id := Real_Range_Specification (Def);
|
12752 |
|
|
Low : constant Node_Id := Low_Bound (RRS);
|
12753 |
|
|
High : constant Node_Id := High_Bound (RRS);
|
12754 |
|
|
Low_Val : Ureal;
|
12755 |
|
|
High_Val : Ureal;
|
12756 |
|
|
|
12757 |
|
|
begin
|
12758 |
|
|
Analyze_And_Resolve (Low, Any_Real);
|
12759 |
|
|
Analyze_And_Resolve (High, Any_Real);
|
12760 |
|
|
Check_Real_Bound (Low);
|
12761 |
|
|
Check_Real_Bound (High);
|
12762 |
|
|
Low_Val := Expr_Value_R (Low);
|
12763 |
|
|
High_Val := Expr_Value_R (High);
|
12764 |
|
|
|
12765 |
|
|
if Low_Val < (-Bound_Val) then
|
12766 |
|
|
Error_Msg_N
|
12767 |
|
|
("range low bound too small for digits value", Low);
|
12768 |
|
|
Low_Val := -Bound_Val;
|
12769 |
|
|
end if;
|
12770 |
|
|
|
12771 |
|
|
if High_Val > Bound_Val then
|
12772 |
|
|
Error_Msg_N
|
12773 |
|
|
("range high bound too large for digits value", High);
|
12774 |
|
|
High_Val := Bound_Val;
|
12775 |
|
|
end if;
|
12776 |
|
|
|
12777 |
|
|
Set_Fixed_Range (T, Loc, Low_Val, High_Val);
|
12778 |
|
|
end;
|
12779 |
|
|
|
12780 |
|
|
-- If no explicit range, use range that corresponds to given
|
12781 |
|
|
-- digits value. This will end up as the final range for the
|
12782 |
|
|
-- first subtype.
|
12783 |
|
|
|
12784 |
|
|
else
|
12785 |
|
|
Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
|
12786 |
|
|
end if;
|
12787 |
|
|
|
12788 |
|
|
-- Complete entity for first subtype
|
12789 |
|
|
|
12790 |
|
|
Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
|
12791 |
|
|
Set_Etype (T, Implicit_Base);
|
12792 |
|
|
Set_Size_Info (T, Implicit_Base);
|
12793 |
|
|
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
|
12794 |
|
|
Set_Digits_Value (T, Digs_Val);
|
12795 |
|
|
Set_Delta_Value (T, Delta_Val);
|
12796 |
|
|
Set_Small_Value (T, Delta_Val);
|
12797 |
|
|
Set_Scale_Value (T, Scale_Val);
|
12798 |
|
|
Set_Is_Constrained (T);
|
12799 |
|
|
end Decimal_Fixed_Point_Type_Declaration;
|
12800 |
|
|
|
12801 |
|
|
-----------------------------------
|
12802 |
|
|
-- Derive_Progenitor_Subprograms --
|
12803 |
|
|
-----------------------------------
|
12804 |
|
|
|
12805 |
|
|
procedure Derive_Progenitor_Subprograms
|
12806 |
|
|
(Parent_Type : Entity_Id;
|
12807 |
|
|
Tagged_Type : Entity_Id)
|
12808 |
|
|
is
|
12809 |
|
|
E : Entity_Id;
|
12810 |
|
|
Elmt : Elmt_Id;
|
12811 |
|
|
Iface : Entity_Id;
|
12812 |
|
|
Iface_Elmt : Elmt_Id;
|
12813 |
|
|
Iface_Subp : Entity_Id;
|
12814 |
|
|
New_Subp : Entity_Id := Empty;
|
12815 |
|
|
Prim_Elmt : Elmt_Id;
|
12816 |
|
|
Subp : Entity_Id;
|
12817 |
|
|
Typ : Entity_Id;
|
12818 |
|
|
|
12819 |
|
|
begin
|
12820 |
|
|
pragma Assert (Ada_Version >= Ada_2005
|
12821 |
|
|
and then Is_Record_Type (Tagged_Type)
|
12822 |
|
|
and then Is_Tagged_Type (Tagged_Type)
|
12823 |
|
|
and then Has_Interfaces (Tagged_Type));
|
12824 |
|
|
|
12825 |
|
|
-- Step 1: Transfer to the full-view primitives associated with the
|
12826 |
|
|
-- partial-view that cover interface primitives. Conceptually this
|
12827 |
|
|
-- work should be done later by Process_Full_View; done here to
|
12828 |
|
|
-- simplify its implementation at later stages. It can be safely
|
12829 |
|
|
-- done here because interfaces must be visible in the partial and
|
12830 |
|
|
-- private view (RM 7.3(7.3/2)).
|
12831 |
|
|
|
12832 |
|
|
-- Small optimization: This work is only required if the parent is
|
12833 |
|
|
-- abstract. If the tagged type is not abstract, it cannot have
|
12834 |
|
|
-- abstract primitives (the only entities in the list of primitives of
|
12835 |
|
|
-- non-abstract tagged types that can reference abstract primitives
|
12836 |
|
|
-- through its Alias attribute are the internal entities that have
|
12837 |
|
|
-- attribute Interface_Alias, and these entities are generated later
|
12838 |
|
|
-- by Add_Internal_Interface_Entities).
|
12839 |
|
|
|
12840 |
|
|
if In_Private_Part (Current_Scope)
|
12841 |
|
|
and then Is_Abstract_Type (Parent_Type)
|
12842 |
|
|
then
|
12843 |
|
|
Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
|
12844 |
|
|
while Present (Elmt) loop
|
12845 |
|
|
Subp := Node (Elmt);
|
12846 |
|
|
|
12847 |
|
|
-- At this stage it is not possible to have entities in the list
|
12848 |
|
|
-- of primitives that have attribute Interface_Alias
|
12849 |
|
|
|
12850 |
|
|
pragma Assert (No (Interface_Alias (Subp)));
|
12851 |
|
|
|
12852 |
|
|
Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
|
12853 |
|
|
|
12854 |
|
|
if Is_Interface (Typ) then
|
12855 |
|
|
E := Find_Primitive_Covering_Interface
|
12856 |
|
|
(Tagged_Type => Tagged_Type,
|
12857 |
|
|
Iface_Prim => Subp);
|
12858 |
|
|
|
12859 |
|
|
if Present (E)
|
12860 |
|
|
and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
|
12861 |
|
|
then
|
12862 |
|
|
Replace_Elmt (Elmt, E);
|
12863 |
|
|
Remove_Homonym (Subp);
|
12864 |
|
|
end if;
|
12865 |
|
|
end if;
|
12866 |
|
|
|
12867 |
|
|
Next_Elmt (Elmt);
|
12868 |
|
|
end loop;
|
12869 |
|
|
end if;
|
12870 |
|
|
|
12871 |
|
|
-- Step 2: Add primitives of progenitors that are not implemented by
|
12872 |
|
|
-- parents of Tagged_Type
|
12873 |
|
|
|
12874 |
|
|
if Present (Interfaces (Base_Type (Tagged_Type))) then
|
12875 |
|
|
Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
|
12876 |
|
|
while Present (Iface_Elmt) loop
|
12877 |
|
|
Iface := Node (Iface_Elmt);
|
12878 |
|
|
|
12879 |
|
|
Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
|
12880 |
|
|
while Present (Prim_Elmt) loop
|
12881 |
|
|
Iface_Subp := Node (Prim_Elmt);
|
12882 |
|
|
|
12883 |
|
|
-- Exclude derivation of predefined primitives except those
|
12884 |
|
|
-- that come from source, or are inherited from one that comes
|
12885 |
|
|
-- from source. Required to catch declarations of equality
|
12886 |
|
|
-- operators of interfaces. For example:
|
12887 |
|
|
|
12888 |
|
|
-- type Iface is interface;
|
12889 |
|
|
-- function "=" (Left, Right : Iface) return Boolean;
|
12890 |
|
|
|
12891 |
|
|
if not Is_Predefined_Dispatching_Operation (Iface_Subp)
|
12892 |
|
|
or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
|
12893 |
|
|
then
|
12894 |
|
|
E := Find_Primitive_Covering_Interface
|
12895 |
|
|
(Tagged_Type => Tagged_Type,
|
12896 |
|
|
Iface_Prim => Iface_Subp);
|
12897 |
|
|
|
12898 |
|
|
-- If not found we derive a new primitive leaving its alias
|
12899 |
|
|
-- attribute referencing the interface primitive
|
12900 |
|
|
|
12901 |
|
|
if No (E) then
|
12902 |
|
|
Derive_Subprogram
|
12903 |
|
|
(New_Subp, Iface_Subp, Tagged_Type, Iface);
|
12904 |
|
|
|
12905 |
|
|
-- Ada 2012 (AI05-0197): If the covering primitive's name
|
12906 |
|
|
-- differs from the name of the interface primitive then it
|
12907 |
|
|
-- is a private primitive inherited from a parent type. In
|
12908 |
|
|
-- such case, given that Tagged_Type covers the interface,
|
12909 |
|
|
-- the inherited private primitive becomes visible. For such
|
12910 |
|
|
-- purpose we add a new entity that renames the inherited
|
12911 |
|
|
-- private primitive.
|
12912 |
|
|
|
12913 |
|
|
elsif Chars (E) /= Chars (Iface_Subp) then
|
12914 |
|
|
pragma Assert (Has_Suffix (E, 'P'));
|
12915 |
|
|
Derive_Subprogram
|
12916 |
|
|
(New_Subp, Iface_Subp, Tagged_Type, Iface);
|
12917 |
|
|
Set_Alias (New_Subp, E);
|
12918 |
|
|
Set_Is_Abstract_Subprogram (New_Subp,
|
12919 |
|
|
Is_Abstract_Subprogram (E));
|
12920 |
|
|
|
12921 |
|
|
-- Propagate to the full view interface entities associated
|
12922 |
|
|
-- with the partial view
|
12923 |
|
|
|
12924 |
|
|
elsif In_Private_Part (Current_Scope)
|
12925 |
|
|
and then Present (Alias (E))
|
12926 |
|
|
and then Alias (E) = Iface_Subp
|
12927 |
|
|
and then
|
12928 |
|
|
List_Containing (Parent (E)) /=
|
12929 |
|
|
Private_Declarations
|
12930 |
|
|
(Specification
|
12931 |
|
|
(Unit_Declaration_Node (Current_Scope)))
|
12932 |
|
|
then
|
12933 |
|
|
Append_Elmt (E, Primitive_Operations (Tagged_Type));
|
12934 |
|
|
end if;
|
12935 |
|
|
end if;
|
12936 |
|
|
|
12937 |
|
|
Next_Elmt (Prim_Elmt);
|
12938 |
|
|
end loop;
|
12939 |
|
|
|
12940 |
|
|
Next_Elmt (Iface_Elmt);
|
12941 |
|
|
end loop;
|
12942 |
|
|
end if;
|
12943 |
|
|
end Derive_Progenitor_Subprograms;
|
12944 |
|
|
|
12945 |
|
|
-----------------------
|
12946 |
|
|
-- Derive_Subprogram --
|
12947 |
|
|
-----------------------
|
12948 |
|
|
|
12949 |
|
|
procedure Derive_Subprogram
|
12950 |
|
|
(New_Subp : in out Entity_Id;
|
12951 |
|
|
Parent_Subp : Entity_Id;
|
12952 |
|
|
Derived_Type : Entity_Id;
|
12953 |
|
|
Parent_Type : Entity_Id;
|
12954 |
|
|
Actual_Subp : Entity_Id := Empty)
|
12955 |
|
|
is
|
12956 |
|
|
Formal : Entity_Id;
|
12957 |
|
|
-- Formal parameter of parent primitive operation
|
12958 |
|
|
|
12959 |
|
|
Formal_Of_Actual : Entity_Id;
|
12960 |
|
|
-- Formal parameter of actual operation, when the derivation is to
|
12961 |
|
|
-- create a renaming for a primitive operation of an actual in an
|
12962 |
|
|
-- instantiation.
|
12963 |
|
|
|
12964 |
|
|
New_Formal : Entity_Id;
|
12965 |
|
|
-- Formal of inherited operation
|
12966 |
|
|
|
12967 |
|
|
Visible_Subp : Entity_Id := Parent_Subp;
|
12968 |
|
|
|
12969 |
|
|
function Is_Private_Overriding return Boolean;
|
12970 |
|
|
-- If Subp is a private overriding of a visible operation, the inherited
|
12971 |
|
|
-- operation derives from the overridden op (even though its body is the
|
12972 |
|
|
-- overriding one) and the inherited operation is visible now. See
|
12973 |
|
|
-- sem_disp to see the full details of the handling of the overridden
|
12974 |
|
|
-- subprogram, which is removed from the list of primitive operations of
|
12975 |
|
|
-- the type. The overridden subprogram is saved locally in Visible_Subp,
|
12976 |
|
|
-- and used to diagnose abstract operations that need overriding in the
|
12977 |
|
|
-- derived type.
|
12978 |
|
|
|
12979 |
|
|
procedure Replace_Type (Id, New_Id : Entity_Id);
|
12980 |
|
|
-- When the type is an anonymous access type, create a new access type
|
12981 |
|
|
-- designating the derived type.
|
12982 |
|
|
|
12983 |
|
|
procedure Set_Derived_Name;
|
12984 |
|
|
-- This procedure sets the appropriate Chars name for New_Subp. This
|
12985 |
|
|
-- is normally just a copy of the parent name. An exception arises for
|
12986 |
|
|
-- type support subprograms, where the name is changed to reflect the
|
12987 |
|
|
-- name of the derived type, e.g. if type foo is derived from type bar,
|
12988 |
|
|
-- then a procedure barDA is derived with a name fooDA.
|
12989 |
|
|
|
12990 |
|
|
---------------------------
|
12991 |
|
|
-- Is_Private_Overriding --
|
12992 |
|
|
---------------------------
|
12993 |
|
|
|
12994 |
|
|
function Is_Private_Overriding return Boolean is
|
12995 |
|
|
Prev : Entity_Id;
|
12996 |
|
|
|
12997 |
|
|
begin
|
12998 |
|
|
-- If the parent is not a dispatching operation there is no
|
12999 |
|
|
-- need to investigate overridings
|
13000 |
|
|
|
13001 |
|
|
if not Is_Dispatching_Operation (Parent_Subp) then
|
13002 |
|
|
return False;
|
13003 |
|
|
end if;
|
13004 |
|
|
|
13005 |
|
|
-- The visible operation that is overridden is a homonym of the
|
13006 |
|
|
-- parent subprogram. We scan the homonym chain to find the one
|
13007 |
|
|
-- whose alias is the subprogram we are deriving.
|
13008 |
|
|
|
13009 |
|
|
Prev := Current_Entity (Parent_Subp);
|
13010 |
|
|
while Present (Prev) loop
|
13011 |
|
|
if Ekind (Prev) = Ekind (Parent_Subp)
|
13012 |
|
|
and then Alias (Prev) = Parent_Subp
|
13013 |
|
|
and then Scope (Parent_Subp) = Scope (Prev)
|
13014 |
|
|
and then not Is_Hidden (Prev)
|
13015 |
|
|
then
|
13016 |
|
|
Visible_Subp := Prev;
|
13017 |
|
|
return True;
|
13018 |
|
|
end if;
|
13019 |
|
|
|
13020 |
|
|
Prev := Homonym (Prev);
|
13021 |
|
|
end loop;
|
13022 |
|
|
|
13023 |
|
|
return False;
|
13024 |
|
|
end Is_Private_Overriding;
|
13025 |
|
|
|
13026 |
|
|
------------------
|
13027 |
|
|
-- Replace_Type --
|
13028 |
|
|
------------------
|
13029 |
|
|
|
13030 |
|
|
procedure Replace_Type (Id, New_Id : Entity_Id) is
|
13031 |
|
|
Acc_Type : Entity_Id;
|
13032 |
|
|
Par : constant Node_Id := Parent (Derived_Type);
|
13033 |
|
|
|
13034 |
|
|
begin
|
13035 |
|
|
-- When the type is an anonymous access type, create a new access
|
13036 |
|
|
-- type designating the derived type. This itype must be elaborated
|
13037 |
|
|
-- at the point of the derivation, not on subsequent calls that may
|
13038 |
|
|
-- be out of the proper scope for Gigi, so we insert a reference to
|
13039 |
|
|
-- it after the derivation.
|
13040 |
|
|
|
13041 |
|
|
if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
|
13042 |
|
|
declare
|
13043 |
|
|
Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
|
13044 |
|
|
|
13045 |
|
|
begin
|
13046 |
|
|
if Ekind (Desig_Typ) = E_Record_Type_With_Private
|
13047 |
|
|
and then Present (Full_View (Desig_Typ))
|
13048 |
|
|
and then not Is_Private_Type (Parent_Type)
|
13049 |
|
|
then
|
13050 |
|
|
Desig_Typ := Full_View (Desig_Typ);
|
13051 |
|
|
end if;
|
13052 |
|
|
|
13053 |
|
|
if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
|
13054 |
|
|
|
13055 |
|
|
-- Ada 2005 (AI-251): Handle also derivations of abstract
|
13056 |
|
|
-- interface primitives.
|
13057 |
|
|
|
13058 |
|
|
or else (Is_Interface (Desig_Typ)
|
13059 |
|
|
and then not Is_Class_Wide_Type (Desig_Typ))
|
13060 |
|
|
then
|
13061 |
|
|
Acc_Type := New_Copy (Etype (Id));
|
13062 |
|
|
Set_Etype (Acc_Type, Acc_Type);
|
13063 |
|
|
Set_Scope (Acc_Type, New_Subp);
|
13064 |
|
|
|
13065 |
|
|
-- Compute size of anonymous access type
|
13066 |
|
|
|
13067 |
|
|
if Is_Array_Type (Desig_Typ)
|
13068 |
|
|
and then not Is_Constrained (Desig_Typ)
|
13069 |
|
|
then
|
13070 |
|
|
Init_Size (Acc_Type, 2 * System_Address_Size);
|
13071 |
|
|
else
|
13072 |
|
|
Init_Size (Acc_Type, System_Address_Size);
|
13073 |
|
|
end if;
|
13074 |
|
|
|
13075 |
|
|
Init_Alignment (Acc_Type);
|
13076 |
|
|
Set_Directly_Designated_Type (Acc_Type, Derived_Type);
|
13077 |
|
|
|
13078 |
|
|
Set_Etype (New_Id, Acc_Type);
|
13079 |
|
|
Set_Scope (New_Id, New_Subp);
|
13080 |
|
|
|
13081 |
|
|
-- Create a reference to it
|
13082 |
|
|
Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
|
13083 |
|
|
|
13084 |
|
|
else
|
13085 |
|
|
Set_Etype (New_Id, Etype (Id));
|
13086 |
|
|
end if;
|
13087 |
|
|
end;
|
13088 |
|
|
|
13089 |
|
|
elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
|
13090 |
|
|
or else
|
13091 |
|
|
(Ekind (Etype (Id)) = E_Record_Type_With_Private
|
13092 |
|
|
and then Present (Full_View (Etype (Id)))
|
13093 |
|
|
and then
|
13094 |
|
|
Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
|
13095 |
|
|
then
|
13096 |
|
|
-- Constraint checks on formals are generated during expansion,
|
13097 |
|
|
-- based on the signature of the original subprogram. The bounds
|
13098 |
|
|
-- of the derived type are not relevant, and thus we can use
|
13099 |
|
|
-- the base type for the formals. However, the return type may be
|
13100 |
|
|
-- used in a context that requires that the proper static bounds
|
13101 |
|
|
-- be used (a case statement, for example) and for those cases
|
13102 |
|
|
-- we must use the derived type (first subtype), not its base.
|
13103 |
|
|
|
13104 |
|
|
-- If the derived_type_definition has no constraints, we know that
|
13105 |
|
|
-- the derived type has the same constraints as the first subtype
|
13106 |
|
|
-- of the parent, and we can also use it rather than its base,
|
13107 |
|
|
-- which can lead to more efficient code.
|
13108 |
|
|
|
13109 |
|
|
if Etype (Id) = Parent_Type then
|
13110 |
|
|
if Is_Scalar_Type (Parent_Type)
|
13111 |
|
|
and then
|
13112 |
|
|
Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
|
13113 |
|
|
then
|
13114 |
|
|
Set_Etype (New_Id, Derived_Type);
|
13115 |
|
|
|
13116 |
|
|
elsif Nkind (Par) = N_Full_Type_Declaration
|
13117 |
|
|
and then
|
13118 |
|
|
Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
|
13119 |
|
|
and then
|
13120 |
|
|
Is_Entity_Name
|
13121 |
|
|
(Subtype_Indication (Type_Definition (Par)))
|
13122 |
|
|
then
|
13123 |
|
|
Set_Etype (New_Id, Derived_Type);
|
13124 |
|
|
|
13125 |
|
|
else
|
13126 |
|
|
Set_Etype (New_Id, Base_Type (Derived_Type));
|
13127 |
|
|
end if;
|
13128 |
|
|
|
13129 |
|
|
else
|
13130 |
|
|
Set_Etype (New_Id, Base_Type (Derived_Type));
|
13131 |
|
|
end if;
|
13132 |
|
|
|
13133 |
|
|
else
|
13134 |
|
|
Set_Etype (New_Id, Etype (Id));
|
13135 |
|
|
end if;
|
13136 |
|
|
end Replace_Type;
|
13137 |
|
|
|
13138 |
|
|
----------------------
|
13139 |
|
|
-- Set_Derived_Name --
|
13140 |
|
|
----------------------
|
13141 |
|
|
|
13142 |
|
|
procedure Set_Derived_Name is
|
13143 |
|
|
Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
|
13144 |
|
|
begin
|
13145 |
|
|
if Nm = TSS_Null then
|
13146 |
|
|
Set_Chars (New_Subp, Chars (Parent_Subp));
|
13147 |
|
|
else
|
13148 |
|
|
Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
|
13149 |
|
|
end if;
|
13150 |
|
|
end Set_Derived_Name;
|
13151 |
|
|
|
13152 |
|
|
-- Start of processing for Derive_Subprogram
|
13153 |
|
|
|
13154 |
|
|
begin
|
13155 |
|
|
New_Subp :=
|
13156 |
|
|
New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
|
13157 |
|
|
Set_Ekind (New_Subp, Ekind (Parent_Subp));
|
13158 |
|
|
Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
|
13159 |
|
|
|
13160 |
|
|
-- Check whether the inherited subprogram is a private operation that
|
13161 |
|
|
-- should be inherited but not yet made visible. Such subprograms can
|
13162 |
|
|
-- become visible at a later point (e.g., the private part of a public
|
13163 |
|
|
-- child unit) via Declare_Inherited_Private_Subprograms. If the
|
13164 |
|
|
-- following predicate is true, then this is not such a private
|
13165 |
|
|
-- operation and the subprogram simply inherits the name of the parent
|
13166 |
|
|
-- subprogram. Note the special check for the names of controlled
|
13167 |
|
|
-- operations, which are currently exempted from being inherited with
|
13168 |
|
|
-- a hidden name because they must be findable for generation of
|
13169 |
|
|
-- implicit run-time calls.
|
13170 |
|
|
|
13171 |
|
|
if not Is_Hidden (Parent_Subp)
|
13172 |
|
|
or else Is_Internal (Parent_Subp)
|
13173 |
|
|
or else Is_Private_Overriding
|
13174 |
|
|
or else Is_Internal_Name (Chars (Parent_Subp))
|
13175 |
|
|
or else Chars (Parent_Subp) = Name_Initialize
|
13176 |
|
|
or else Chars (Parent_Subp) = Name_Adjust
|
13177 |
|
|
or else Chars (Parent_Subp) = Name_Finalize
|
13178 |
|
|
then
|
13179 |
|
|
Set_Derived_Name;
|
13180 |
|
|
|
13181 |
|
|
-- An inherited dispatching equality will be overridden by an internally
|
13182 |
|
|
-- generated one, or by an explicit one, so preserve its name and thus
|
13183 |
|
|
-- its entry in the dispatch table. Otherwise, if Parent_Subp is a
|
13184 |
|
|
-- private operation it may become invisible if the full view has
|
13185 |
|
|
-- progenitors, and the dispatch table will be malformed.
|
13186 |
|
|
-- We check that the type is limited to handle the anomalous declaration
|
13187 |
|
|
-- of Limited_Controlled, which is derived from a non-limited type, and
|
13188 |
|
|
-- which is handled specially elsewhere as well.
|
13189 |
|
|
|
13190 |
|
|
elsif Chars (Parent_Subp) = Name_Op_Eq
|
13191 |
|
|
and then Is_Dispatching_Operation (Parent_Subp)
|
13192 |
|
|
and then Etype (Parent_Subp) = Standard_Boolean
|
13193 |
|
|
and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
|
13194 |
|
|
and then
|
13195 |
|
|
Etype (First_Formal (Parent_Subp)) =
|
13196 |
|
|
Etype (Next_Formal (First_Formal (Parent_Subp)))
|
13197 |
|
|
then
|
13198 |
|
|
Set_Derived_Name;
|
13199 |
|
|
|
13200 |
|
|
-- If parent is hidden, this can be a regular derivation if the
|
13201 |
|
|
-- parent is immediately visible in a non-instantiating context,
|
13202 |
|
|
-- or if we are in the private part of an instance. This test
|
13203 |
|
|
-- should still be refined ???
|
13204 |
|
|
|
13205 |
|
|
-- The test for In_Instance_Not_Visible avoids inheriting the derived
|
13206 |
|
|
-- operation as a non-visible operation in cases where the parent
|
13207 |
|
|
-- subprogram might not be visible now, but was visible within the
|
13208 |
|
|
-- original generic, so it would be wrong to make the inherited
|
13209 |
|
|
-- subprogram non-visible now. (Not clear if this test is fully
|
13210 |
|
|
-- correct; are there any cases where we should declare the inherited
|
13211 |
|
|
-- operation as not visible to avoid it being overridden, e.g., when
|
13212 |
|
|
-- the parent type is a generic actual with private primitives ???)
|
13213 |
|
|
|
13214 |
|
|
-- (they should be treated the same as other private inherited
|
13215 |
|
|
-- subprograms, but it's not clear how to do this cleanly). ???
|
13216 |
|
|
|
13217 |
|
|
elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
|
13218 |
|
|
and then Is_Immediately_Visible (Parent_Subp)
|
13219 |
|
|
and then not In_Instance)
|
13220 |
|
|
or else In_Instance_Not_Visible
|
13221 |
|
|
then
|
13222 |
|
|
Set_Derived_Name;
|
13223 |
|
|
|
13224 |
|
|
-- Ada 2005 (AI-251): Regular derivation if the parent subprogram
|
13225 |
|
|
-- overrides an interface primitive because interface primitives
|
13226 |
|
|
-- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
|
13227 |
|
|
|
13228 |
|
|
elsif Ada_Version >= Ada_2005
|
13229 |
|
|
and then Is_Dispatching_Operation (Parent_Subp)
|
13230 |
|
|
and then Covers_Some_Interface (Parent_Subp)
|
13231 |
|
|
then
|
13232 |
|
|
Set_Derived_Name;
|
13233 |
|
|
|
13234 |
|
|
-- Otherwise, the type is inheriting a private operation, so enter
|
13235 |
|
|
-- it with a special name so it can't be overridden.
|
13236 |
|
|
|
13237 |
|
|
else
|
13238 |
|
|
Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
|
13239 |
|
|
end if;
|
13240 |
|
|
|
13241 |
|
|
Set_Parent (New_Subp, Parent (Derived_Type));
|
13242 |
|
|
|
13243 |
|
|
if Present (Actual_Subp) then
|
13244 |
|
|
Replace_Type (Actual_Subp, New_Subp);
|
13245 |
|
|
else
|
13246 |
|
|
Replace_Type (Parent_Subp, New_Subp);
|
13247 |
|
|
end if;
|
13248 |
|
|
|
13249 |
|
|
Conditional_Delay (New_Subp, Parent_Subp);
|
13250 |
|
|
|
13251 |
|
|
-- If we are creating a renaming for a primitive operation of an
|
13252 |
|
|
-- actual of a generic derived type, we must examine the signature
|
13253 |
|
|
-- of the actual primitive, not that of the generic formal, which for
|
13254 |
|
|
-- example may be an interface. However the name and initial value
|
13255 |
|
|
-- of the inherited operation are those of the formal primitive.
|
13256 |
|
|
|
13257 |
|
|
Formal := First_Formal (Parent_Subp);
|
13258 |
|
|
|
13259 |
|
|
if Present (Actual_Subp) then
|
13260 |
|
|
Formal_Of_Actual := First_Formal (Actual_Subp);
|
13261 |
|
|
else
|
13262 |
|
|
Formal_Of_Actual := Empty;
|
13263 |
|
|
end if;
|
13264 |
|
|
|
13265 |
|
|
while Present (Formal) loop
|
13266 |
|
|
New_Formal := New_Copy (Formal);
|
13267 |
|
|
|
13268 |
|
|
-- Normally we do not go copying parents, but in the case of
|
13269 |
|
|
-- formals, we need to link up to the declaration (which is the
|
13270 |
|
|
-- parameter specification), and it is fine to link up to the
|
13271 |
|
|
-- original formal's parameter specification in this case.
|
13272 |
|
|
|
13273 |
|
|
Set_Parent (New_Formal, Parent (Formal));
|
13274 |
|
|
Append_Entity (New_Formal, New_Subp);
|
13275 |
|
|
|
13276 |
|
|
if Present (Formal_Of_Actual) then
|
13277 |
|
|
Replace_Type (Formal_Of_Actual, New_Formal);
|
13278 |
|
|
Next_Formal (Formal_Of_Actual);
|
13279 |
|
|
else
|
13280 |
|
|
Replace_Type (Formal, New_Formal);
|
13281 |
|
|
end if;
|
13282 |
|
|
|
13283 |
|
|
Next_Formal (Formal);
|
13284 |
|
|
end loop;
|
13285 |
|
|
|
13286 |
|
|
-- If this derivation corresponds to a tagged generic actual, then
|
13287 |
|
|
-- primitive operations rename those of the actual. Otherwise the
|
13288 |
|
|
-- primitive operations rename those of the parent type, If the parent
|
13289 |
|
|
-- renames an intrinsic operator, so does the new subprogram. We except
|
13290 |
|
|
-- concatenation, which is always properly typed, and does not get
|
13291 |
|
|
-- expanded as other intrinsic operations.
|
13292 |
|
|
|
13293 |
|
|
if No (Actual_Subp) then
|
13294 |
|
|
if Is_Intrinsic_Subprogram (Parent_Subp) then
|
13295 |
|
|
Set_Is_Intrinsic_Subprogram (New_Subp);
|
13296 |
|
|
|
13297 |
|
|
if Present (Alias (Parent_Subp))
|
13298 |
|
|
and then Chars (Parent_Subp) /= Name_Op_Concat
|
13299 |
|
|
then
|
13300 |
|
|
Set_Alias (New_Subp, Alias (Parent_Subp));
|
13301 |
|
|
else
|
13302 |
|
|
Set_Alias (New_Subp, Parent_Subp);
|
13303 |
|
|
end if;
|
13304 |
|
|
|
13305 |
|
|
else
|
13306 |
|
|
Set_Alias (New_Subp, Parent_Subp);
|
13307 |
|
|
end if;
|
13308 |
|
|
|
13309 |
|
|
else
|
13310 |
|
|
Set_Alias (New_Subp, Actual_Subp);
|
13311 |
|
|
end if;
|
13312 |
|
|
|
13313 |
|
|
-- Derived subprograms of a tagged type must inherit the convention
|
13314 |
|
|
-- of the parent subprogram (a requirement of AI-117). Derived
|
13315 |
|
|
-- subprograms of untagged types simply get convention Ada by default.
|
13316 |
|
|
|
13317 |
|
|
if Is_Tagged_Type (Derived_Type) then
|
13318 |
|
|
Set_Convention (New_Subp, Convention (Parent_Subp));
|
13319 |
|
|
end if;
|
13320 |
|
|
|
13321 |
|
|
-- Predefined controlled operations retain their name even if the parent
|
13322 |
|
|
-- is hidden (see above), but they are not primitive operations if the
|
13323 |
|
|
-- ancestor is not visible, for example if the parent is a private
|
13324 |
|
|
-- extension completed with a controlled extension. Note that a full
|
13325 |
|
|
-- type that is controlled can break privacy: the flag Is_Controlled is
|
13326 |
|
|
-- set on both views of the type.
|
13327 |
|
|
|
13328 |
|
|
if Is_Controlled (Parent_Type)
|
13329 |
|
|
and then
|
13330 |
|
|
(Chars (Parent_Subp) = Name_Initialize
|
13331 |
|
|
or else Chars (Parent_Subp) = Name_Adjust
|
13332 |
|
|
or else Chars (Parent_Subp) = Name_Finalize)
|
13333 |
|
|
and then Is_Hidden (Parent_Subp)
|
13334 |
|
|
and then not Is_Visibly_Controlled (Parent_Type)
|
13335 |
|
|
then
|
13336 |
|
|
Set_Is_Hidden (New_Subp);
|
13337 |
|
|
end if;
|
13338 |
|
|
|
13339 |
|
|
Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
|
13340 |
|
|
Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
|
13341 |
|
|
|
13342 |
|
|
if Ekind (Parent_Subp) = E_Procedure then
|
13343 |
|
|
Set_Is_Valued_Procedure
|
13344 |
|
|
(New_Subp, Is_Valued_Procedure (Parent_Subp));
|
13345 |
|
|
else
|
13346 |
|
|
Set_Has_Controlling_Result
|
13347 |
|
|
(New_Subp, Has_Controlling_Result (Parent_Subp));
|
13348 |
|
|
end if;
|
13349 |
|
|
|
13350 |
|
|
-- No_Return must be inherited properly. If this is overridden in the
|
13351 |
|
|
-- case of a dispatching operation, then a check is made in Sem_Disp
|
13352 |
|
|
-- that the overriding operation is also No_Return (no such check is
|
13353 |
|
|
-- required for the case of non-dispatching operation.
|
13354 |
|
|
|
13355 |
|
|
Set_No_Return (New_Subp, No_Return (Parent_Subp));
|
13356 |
|
|
|
13357 |
|
|
-- A derived function with a controlling result is abstract. If the
|
13358 |
|
|
-- Derived_Type is a nonabstract formal generic derived type, then
|
13359 |
|
|
-- inherited operations are not abstract: the required check is done at
|
13360 |
|
|
-- instantiation time. If the derivation is for a generic actual, the
|
13361 |
|
|
-- function is not abstract unless the actual is.
|
13362 |
|
|
|
13363 |
|
|
if Is_Generic_Type (Derived_Type)
|
13364 |
|
|
and then not Is_Abstract_Type (Derived_Type)
|
13365 |
|
|
then
|
13366 |
|
|
null;
|
13367 |
|
|
|
13368 |
|
|
-- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
|
13369 |
|
|
-- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
|
13370 |
|
|
|
13371 |
|
|
elsif Ada_Version >= Ada_2005
|
13372 |
|
|
and then (Is_Abstract_Subprogram (Alias (New_Subp))
|
13373 |
|
|
or else (Is_Tagged_Type (Derived_Type)
|
13374 |
|
|
and then Etype (New_Subp) = Derived_Type
|
13375 |
|
|
and then not Is_Null_Extension (Derived_Type))
|
13376 |
|
|
or else (Is_Tagged_Type (Derived_Type)
|
13377 |
|
|
and then Ekind (Etype (New_Subp)) =
|
13378 |
|
|
E_Anonymous_Access_Type
|
13379 |
|
|
and then Designated_Type (Etype (New_Subp)) =
|
13380 |
|
|
Derived_Type
|
13381 |
|
|
and then not Is_Null_Extension (Derived_Type)))
|
13382 |
|
|
and then No (Actual_Subp)
|
13383 |
|
|
then
|
13384 |
|
|
if not Is_Tagged_Type (Derived_Type)
|
13385 |
|
|
or else Is_Abstract_Type (Derived_Type)
|
13386 |
|
|
or else Is_Abstract_Subprogram (Alias (New_Subp))
|
13387 |
|
|
then
|
13388 |
|
|
Set_Is_Abstract_Subprogram (New_Subp);
|
13389 |
|
|
else
|
13390 |
|
|
Set_Requires_Overriding (New_Subp);
|
13391 |
|
|
end if;
|
13392 |
|
|
|
13393 |
|
|
elsif Ada_Version < Ada_2005
|
13394 |
|
|
and then (Is_Abstract_Subprogram (Alias (New_Subp))
|
13395 |
|
|
or else (Is_Tagged_Type (Derived_Type)
|
13396 |
|
|
and then Etype (New_Subp) = Derived_Type
|
13397 |
|
|
and then No (Actual_Subp)))
|
13398 |
|
|
then
|
13399 |
|
|
Set_Is_Abstract_Subprogram (New_Subp);
|
13400 |
|
|
|
13401 |
|
|
-- AI05-0097 : an inherited operation that dispatches on result is
|
13402 |
|
|
-- abstract if the derived type is abstract, even if the parent type
|
13403 |
|
|
-- is concrete and the derived type is a null extension.
|
13404 |
|
|
|
13405 |
|
|
elsif Has_Controlling_Result (Alias (New_Subp))
|
13406 |
|
|
and then Is_Abstract_Type (Etype (New_Subp))
|
13407 |
|
|
then
|
13408 |
|
|
Set_Is_Abstract_Subprogram (New_Subp);
|
13409 |
|
|
|
13410 |
|
|
-- Finally, if the parent type is abstract we must verify that all
|
13411 |
|
|
-- inherited operations are either non-abstract or overridden, or that
|
13412 |
|
|
-- the derived type itself is abstract (this check is performed at the
|
13413 |
|
|
-- end of a package declaration, in Check_Abstract_Overriding). A
|
13414 |
|
|
-- private overriding in the parent type will not be visible in the
|
13415 |
|
|
-- derivation if we are not in an inner package or in a child unit of
|
13416 |
|
|
-- the parent type, in which case the abstractness of the inherited
|
13417 |
|
|
-- operation is carried to the new subprogram.
|
13418 |
|
|
|
13419 |
|
|
elsif Is_Abstract_Type (Parent_Type)
|
13420 |
|
|
and then not In_Open_Scopes (Scope (Parent_Type))
|
13421 |
|
|
and then Is_Private_Overriding
|
13422 |
|
|
and then Is_Abstract_Subprogram (Visible_Subp)
|
13423 |
|
|
then
|
13424 |
|
|
if No (Actual_Subp) then
|
13425 |
|
|
Set_Alias (New_Subp, Visible_Subp);
|
13426 |
|
|
Set_Is_Abstract_Subprogram (New_Subp, True);
|
13427 |
|
|
|
13428 |
|
|
else
|
13429 |
|
|
-- If this is a derivation for an instance of a formal derived
|
13430 |
|
|
-- type, abstractness comes from the primitive operation of the
|
13431 |
|
|
-- actual, not from the operation inherited from the ancestor.
|
13432 |
|
|
|
13433 |
|
|
Set_Is_Abstract_Subprogram
|
13434 |
|
|
(New_Subp, Is_Abstract_Subprogram (Actual_Subp));
|
13435 |
|
|
end if;
|
13436 |
|
|
end if;
|
13437 |
|
|
|
13438 |
|
|
New_Overloaded_Entity (New_Subp, Derived_Type);
|
13439 |
|
|
|
13440 |
|
|
-- Check for case of a derived subprogram for the instantiation of a
|
13441 |
|
|
-- formal derived tagged type, if so mark the subprogram as dispatching
|
13442 |
|
|
-- and inherit the dispatching attributes of the actual subprogram. The
|
13443 |
|
|
-- derived subprogram is effectively renaming of the actual subprogram,
|
13444 |
|
|
-- so it needs to have the same attributes as the actual.
|
13445 |
|
|
|
13446 |
|
|
if Present (Actual_Subp)
|
13447 |
|
|
and then Is_Dispatching_Operation (Actual_Subp)
|
13448 |
|
|
then
|
13449 |
|
|
Set_Is_Dispatching_Operation (New_Subp);
|
13450 |
|
|
|
13451 |
|
|
if Present (DTC_Entity (Actual_Subp)) then
|
13452 |
|
|
Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
|
13453 |
|
|
Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
|
13454 |
|
|
end if;
|
13455 |
|
|
end if;
|
13456 |
|
|
|
13457 |
|
|
-- Indicate that a derived subprogram does not require a body and that
|
13458 |
|
|
-- it does not require processing of default expressions.
|
13459 |
|
|
|
13460 |
|
|
Set_Has_Completion (New_Subp);
|
13461 |
|
|
Set_Default_Expressions_Processed (New_Subp);
|
13462 |
|
|
|
13463 |
|
|
if Ekind (New_Subp) = E_Function then
|
13464 |
|
|
Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
|
13465 |
|
|
end if;
|
13466 |
|
|
end Derive_Subprogram;
|
13467 |
|
|
|
13468 |
|
|
------------------------
|
13469 |
|
|
-- Derive_Subprograms --
|
13470 |
|
|
------------------------
|
13471 |
|
|
|
13472 |
|
|
procedure Derive_Subprograms
|
13473 |
|
|
(Parent_Type : Entity_Id;
|
13474 |
|
|
Derived_Type : Entity_Id;
|
13475 |
|
|
Generic_Actual : Entity_Id := Empty)
|
13476 |
|
|
is
|
13477 |
|
|
Op_List : constant Elist_Id :=
|
13478 |
|
|
Collect_Primitive_Operations (Parent_Type);
|
13479 |
|
|
|
13480 |
|
|
function Check_Derived_Type return Boolean;
|
13481 |
|
|
-- Check that all the entities derived from Parent_Type are found in
|
13482 |
|
|
-- the list of primitives of Derived_Type exactly in the same order.
|
13483 |
|
|
|
13484 |
|
|
procedure Derive_Interface_Subprogram
|
13485 |
|
|
(New_Subp : in out Entity_Id;
|
13486 |
|
|
Subp : Entity_Id;
|
13487 |
|
|
Actual_Subp : Entity_Id);
|
13488 |
|
|
-- Derive New_Subp from the ultimate alias of the parent subprogram Subp
|
13489 |
|
|
-- (which is an interface primitive). If Generic_Actual is present then
|
13490 |
|
|
-- Actual_Subp is the actual subprogram corresponding with the generic
|
13491 |
|
|
-- subprogram Subp.
|
13492 |
|
|
|
13493 |
|
|
function Check_Derived_Type return Boolean is
|
13494 |
|
|
E : Entity_Id;
|
13495 |
|
|
Elmt : Elmt_Id;
|
13496 |
|
|
List : Elist_Id;
|
13497 |
|
|
New_Subp : Entity_Id;
|
13498 |
|
|
Op_Elmt : Elmt_Id;
|
13499 |
|
|
Subp : Entity_Id;
|
13500 |
|
|
|
13501 |
|
|
begin
|
13502 |
|
|
-- Traverse list of entities in the current scope searching for
|
13503 |
|
|
-- an incomplete type whose full-view is derived type
|
13504 |
|
|
|
13505 |
|
|
E := First_Entity (Scope (Derived_Type));
|
13506 |
|
|
while Present (E)
|
13507 |
|
|
and then E /= Derived_Type
|
13508 |
|
|
loop
|
13509 |
|
|
if Ekind (E) = E_Incomplete_Type
|
13510 |
|
|
and then Present (Full_View (E))
|
13511 |
|
|
and then Full_View (E) = Derived_Type
|
13512 |
|
|
then
|
13513 |
|
|
-- Disable this test if Derived_Type completes an incomplete
|
13514 |
|
|
-- type because in such case more primitives can be added
|
13515 |
|
|
-- later to the list of primitives of Derived_Type by routine
|
13516 |
|
|
-- Process_Incomplete_Dependents
|
13517 |
|
|
|
13518 |
|
|
return True;
|
13519 |
|
|
end if;
|
13520 |
|
|
|
13521 |
|
|
E := Next_Entity (E);
|
13522 |
|
|
end loop;
|
13523 |
|
|
|
13524 |
|
|
List := Collect_Primitive_Operations (Derived_Type);
|
13525 |
|
|
Elmt := First_Elmt (List);
|
13526 |
|
|
|
13527 |
|
|
Op_Elmt := First_Elmt (Op_List);
|
13528 |
|
|
while Present (Op_Elmt) loop
|
13529 |
|
|
Subp := Node (Op_Elmt);
|
13530 |
|
|
New_Subp := Node (Elmt);
|
13531 |
|
|
|
13532 |
|
|
-- At this early stage Derived_Type has no entities with attribute
|
13533 |
|
|
-- Interface_Alias. In addition, such primitives are always
|
13534 |
|
|
-- located at the end of the list of primitives of Parent_Type.
|
13535 |
|
|
-- Therefore, if found we can safely stop processing pending
|
13536 |
|
|
-- entities.
|
13537 |
|
|
|
13538 |
|
|
exit when Present (Interface_Alias (Subp));
|
13539 |
|
|
|
13540 |
|
|
-- Handle hidden entities
|
13541 |
|
|
|
13542 |
|
|
if not Is_Predefined_Dispatching_Operation (Subp)
|
13543 |
|
|
and then Is_Hidden (Subp)
|
13544 |
|
|
then
|
13545 |
|
|
if Present (New_Subp)
|
13546 |
|
|
and then Primitive_Names_Match (Subp, New_Subp)
|
13547 |
|
|
then
|
13548 |
|
|
Next_Elmt (Elmt);
|
13549 |
|
|
end if;
|
13550 |
|
|
|
13551 |
|
|
else
|
13552 |
|
|
if not Present (New_Subp)
|
13553 |
|
|
or else Ekind (Subp) /= Ekind (New_Subp)
|
13554 |
|
|
or else not Primitive_Names_Match (Subp, New_Subp)
|
13555 |
|
|
then
|
13556 |
|
|
return False;
|
13557 |
|
|
end if;
|
13558 |
|
|
|
13559 |
|
|
Next_Elmt (Elmt);
|
13560 |
|
|
end if;
|
13561 |
|
|
|
13562 |
|
|
Next_Elmt (Op_Elmt);
|
13563 |
|
|
end loop;
|
13564 |
|
|
|
13565 |
|
|
return True;
|
13566 |
|
|
end Check_Derived_Type;
|
13567 |
|
|
|
13568 |
|
|
---------------------------------
|
13569 |
|
|
-- Derive_Interface_Subprogram --
|
13570 |
|
|
---------------------------------
|
13571 |
|
|
|
13572 |
|
|
procedure Derive_Interface_Subprogram
|
13573 |
|
|
(New_Subp : in out Entity_Id;
|
13574 |
|
|
Subp : Entity_Id;
|
13575 |
|
|
Actual_Subp : Entity_Id)
|
13576 |
|
|
is
|
13577 |
|
|
Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
|
13578 |
|
|
Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
|
13579 |
|
|
|
13580 |
|
|
begin
|
13581 |
|
|
pragma Assert (Is_Interface (Iface_Type));
|
13582 |
|
|
|
13583 |
|
|
Derive_Subprogram
|
13584 |
|
|
(New_Subp => New_Subp,
|
13585 |
|
|
Parent_Subp => Iface_Subp,
|
13586 |
|
|
Derived_Type => Derived_Type,
|
13587 |
|
|
Parent_Type => Iface_Type,
|
13588 |
|
|
Actual_Subp => Actual_Subp);
|
13589 |
|
|
|
13590 |
|
|
-- Given that this new interface entity corresponds with a primitive
|
13591 |
|
|
-- of the parent that was not overridden we must leave it associated
|
13592 |
|
|
-- with its parent primitive to ensure that it will share the same
|
13593 |
|
|
-- dispatch table slot when overridden.
|
13594 |
|
|
|
13595 |
|
|
if No (Actual_Subp) then
|
13596 |
|
|
Set_Alias (New_Subp, Subp);
|
13597 |
|
|
|
13598 |
|
|
-- For instantiations this is not needed since the previous call to
|
13599 |
|
|
-- Derive_Subprogram leaves the entity well decorated.
|
13600 |
|
|
|
13601 |
|
|
else
|
13602 |
|
|
pragma Assert (Alias (New_Subp) = Actual_Subp);
|
13603 |
|
|
null;
|
13604 |
|
|
end if;
|
13605 |
|
|
end Derive_Interface_Subprogram;
|
13606 |
|
|
|
13607 |
|
|
-- Local variables
|
13608 |
|
|
|
13609 |
|
|
Alias_Subp : Entity_Id;
|
13610 |
|
|
Act_List : Elist_Id;
|
13611 |
|
|
Act_Elmt : Elmt_Id := No_Elmt;
|
13612 |
|
|
Act_Subp : Entity_Id := Empty;
|
13613 |
|
|
Elmt : Elmt_Id;
|
13614 |
|
|
Need_Search : Boolean := False;
|
13615 |
|
|
New_Subp : Entity_Id := Empty;
|
13616 |
|
|
Parent_Base : Entity_Id;
|
13617 |
|
|
Subp : Entity_Id;
|
13618 |
|
|
|
13619 |
|
|
-- Start of processing for Derive_Subprograms
|
13620 |
|
|
|
13621 |
|
|
begin
|
13622 |
|
|
if Ekind (Parent_Type) = E_Record_Type_With_Private
|
13623 |
|
|
and then Has_Discriminants (Parent_Type)
|
13624 |
|
|
and then Present (Full_View (Parent_Type))
|
13625 |
|
|
then
|
13626 |
|
|
Parent_Base := Full_View (Parent_Type);
|
13627 |
|
|
else
|
13628 |
|
|
Parent_Base := Parent_Type;
|
13629 |
|
|
end if;
|
13630 |
|
|
|
13631 |
|
|
if Present (Generic_Actual) then
|
13632 |
|
|
Act_List := Collect_Primitive_Operations (Generic_Actual);
|
13633 |
|
|
Act_Elmt := First_Elmt (Act_List);
|
13634 |
|
|
end if;
|
13635 |
|
|
|
13636 |
|
|
-- Derive primitives inherited from the parent. Note that if the generic
|
13637 |
|
|
-- actual is present, this is not really a type derivation, it is a
|
13638 |
|
|
-- completion within an instance.
|
13639 |
|
|
|
13640 |
|
|
-- Case 1: Derived_Type does not implement interfaces
|
13641 |
|
|
|
13642 |
|
|
if not Is_Tagged_Type (Derived_Type)
|
13643 |
|
|
or else (not Has_Interfaces (Derived_Type)
|
13644 |
|
|
and then not (Present (Generic_Actual)
|
13645 |
|
|
and then
|
13646 |
|
|
Has_Interfaces (Generic_Actual)))
|
13647 |
|
|
then
|
13648 |
|
|
Elmt := First_Elmt (Op_List);
|
13649 |
|
|
while Present (Elmt) loop
|
13650 |
|
|
Subp := Node (Elmt);
|
13651 |
|
|
|
13652 |
|
|
-- Literals are derived earlier in the process of building the
|
13653 |
|
|
-- derived type, and are skipped here.
|
13654 |
|
|
|
13655 |
|
|
if Ekind (Subp) = E_Enumeration_Literal then
|
13656 |
|
|
null;
|
13657 |
|
|
|
13658 |
|
|
-- The actual is a direct descendant and the common primitive
|
13659 |
|
|
-- operations appear in the same order.
|
13660 |
|
|
|
13661 |
|
|
-- If the generic parent type is present, the derived type is an
|
13662 |
|
|
-- instance of a formal derived type, and within the instance its
|
13663 |
|
|
-- operations are those of the actual. We derive from the formal
|
13664 |
|
|
-- type but make the inherited operations aliases of the
|
13665 |
|
|
-- corresponding operations of the actual.
|
13666 |
|
|
|
13667 |
|
|
else
|
13668 |
|
|
pragma Assert (No (Node (Act_Elmt))
|
13669 |
|
|
or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
|
13670 |
|
|
and then
|
13671 |
|
|
Type_Conformant (Subp, Node (Act_Elmt),
|
13672 |
|
|
Skip_Controlling_Formals => True)));
|
13673 |
|
|
|
13674 |
|
|
Derive_Subprogram
|
13675 |
|
|
(New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
|
13676 |
|
|
|
13677 |
|
|
if Present (Act_Elmt) then
|
13678 |
|
|
Next_Elmt (Act_Elmt);
|
13679 |
|
|
end if;
|
13680 |
|
|
end if;
|
13681 |
|
|
|
13682 |
|
|
Next_Elmt (Elmt);
|
13683 |
|
|
end loop;
|
13684 |
|
|
|
13685 |
|
|
-- Case 2: Derived_Type implements interfaces
|
13686 |
|
|
|
13687 |
|
|
else
|
13688 |
|
|
-- If the parent type has no predefined primitives we remove
|
13689 |
|
|
-- predefined primitives from the list of primitives of generic
|
13690 |
|
|
-- actual to simplify the complexity of this algorithm.
|
13691 |
|
|
|
13692 |
|
|
if Present (Generic_Actual) then
|
13693 |
|
|
declare
|
13694 |
|
|
Has_Predefined_Primitives : Boolean := False;
|
13695 |
|
|
|
13696 |
|
|
begin
|
13697 |
|
|
-- Check if the parent type has predefined primitives
|
13698 |
|
|
|
13699 |
|
|
Elmt := First_Elmt (Op_List);
|
13700 |
|
|
while Present (Elmt) loop
|
13701 |
|
|
Subp := Node (Elmt);
|
13702 |
|
|
|
13703 |
|
|
if Is_Predefined_Dispatching_Operation (Subp)
|
13704 |
|
|
and then not Comes_From_Source (Ultimate_Alias (Subp))
|
13705 |
|
|
then
|
13706 |
|
|
Has_Predefined_Primitives := True;
|
13707 |
|
|
exit;
|
13708 |
|
|
end if;
|
13709 |
|
|
|
13710 |
|
|
Next_Elmt (Elmt);
|
13711 |
|
|
end loop;
|
13712 |
|
|
|
13713 |
|
|
-- Remove predefined primitives of Generic_Actual. We must use
|
13714 |
|
|
-- an auxiliary list because in case of tagged types the value
|
13715 |
|
|
-- returned by Collect_Primitive_Operations is the value stored
|
13716 |
|
|
-- in its Primitive_Operations attribute (and we don't want to
|
13717 |
|
|
-- modify its current contents).
|
13718 |
|
|
|
13719 |
|
|
if not Has_Predefined_Primitives then
|
13720 |
|
|
declare
|
13721 |
|
|
Aux_List : constant Elist_Id := New_Elmt_List;
|
13722 |
|
|
|
13723 |
|
|
begin
|
13724 |
|
|
Elmt := First_Elmt (Act_List);
|
13725 |
|
|
while Present (Elmt) loop
|
13726 |
|
|
Subp := Node (Elmt);
|
13727 |
|
|
|
13728 |
|
|
if not Is_Predefined_Dispatching_Operation (Subp)
|
13729 |
|
|
or else Comes_From_Source (Subp)
|
13730 |
|
|
then
|
13731 |
|
|
Append_Elmt (Subp, Aux_List);
|
13732 |
|
|
end if;
|
13733 |
|
|
|
13734 |
|
|
Next_Elmt (Elmt);
|
13735 |
|
|
end loop;
|
13736 |
|
|
|
13737 |
|
|
Act_List := Aux_List;
|
13738 |
|
|
end;
|
13739 |
|
|
end if;
|
13740 |
|
|
|
13741 |
|
|
Act_Elmt := First_Elmt (Act_List);
|
13742 |
|
|
Act_Subp := Node (Act_Elmt);
|
13743 |
|
|
end;
|
13744 |
|
|
end if;
|
13745 |
|
|
|
13746 |
|
|
-- Stage 1: If the generic actual is not present we derive the
|
13747 |
|
|
-- primitives inherited from the parent type. If the generic parent
|
13748 |
|
|
-- type is present, the derived type is an instance of a formal
|
13749 |
|
|
-- derived type, and within the instance its operations are those of
|
13750 |
|
|
-- the actual. We derive from the formal type but make the inherited
|
13751 |
|
|
-- operations aliases of the corresponding operations of the actual.
|
13752 |
|
|
|
13753 |
|
|
Elmt := First_Elmt (Op_List);
|
13754 |
|
|
while Present (Elmt) loop
|
13755 |
|
|
Subp := Node (Elmt);
|
13756 |
|
|
Alias_Subp := Ultimate_Alias (Subp);
|
13757 |
|
|
|
13758 |
|
|
-- Do not derive internal entities of the parent that link
|
13759 |
|
|
-- interface primitives with their covering primitive. These
|
13760 |
|
|
-- entities will be added to this type when frozen.
|
13761 |
|
|
|
13762 |
|
|
if Present (Interface_Alias (Subp)) then
|
13763 |
|
|
goto Continue;
|
13764 |
|
|
end if;
|
13765 |
|
|
|
13766 |
|
|
-- If the generic actual is present find the corresponding
|
13767 |
|
|
-- operation in the generic actual. If the parent type is a
|
13768 |
|
|
-- direct ancestor of the derived type then, even if it is an
|
13769 |
|
|
-- interface, the operations are inherited from the primary
|
13770 |
|
|
-- dispatch table and are in the proper order. If we detect here
|
13771 |
|
|
-- that primitives are not in the same order we traverse the list
|
13772 |
|
|
-- of primitive operations of the actual to find the one that
|
13773 |
|
|
-- implements the interface primitive.
|
13774 |
|
|
|
13775 |
|
|
if Need_Search
|
13776 |
|
|
or else
|
13777 |
|
|
(Present (Generic_Actual)
|
13778 |
|
|
and then Present (Act_Subp)
|
13779 |
|
|
and then not
|
13780 |
|
|
(Primitive_Names_Match (Subp, Act_Subp)
|
13781 |
|
|
and then
|
13782 |
|
|
Type_Conformant (Subp, Act_Subp,
|
13783 |
|
|
Skip_Controlling_Formals => True)))
|
13784 |
|
|
then
|
13785 |
|
|
pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
|
13786 |
|
|
Use_Full_View => True));
|
13787 |
|
|
|
13788 |
|
|
-- Remember that we need searching for all pending primitives
|
13789 |
|
|
|
13790 |
|
|
Need_Search := True;
|
13791 |
|
|
|
13792 |
|
|
-- Handle entities associated with interface primitives
|
13793 |
|
|
|
13794 |
|
|
if Present (Alias_Subp)
|
13795 |
|
|
and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
|
13796 |
|
|
and then not Is_Predefined_Dispatching_Operation (Subp)
|
13797 |
|
|
then
|
13798 |
|
|
-- Search for the primitive in the homonym chain
|
13799 |
|
|
|
13800 |
|
|
Act_Subp :=
|
13801 |
|
|
Find_Primitive_Covering_Interface
|
13802 |
|
|
(Tagged_Type => Generic_Actual,
|
13803 |
|
|
Iface_Prim => Alias_Subp);
|
13804 |
|
|
|
13805 |
|
|
-- Previous search may not locate primitives covering
|
13806 |
|
|
-- interfaces defined in generics units or instantiations.
|
13807 |
|
|
-- (it fails if the covering primitive has formals whose
|
13808 |
|
|
-- type is also defined in generics or instantiations).
|
13809 |
|
|
-- In such case we search in the list of primitives of the
|
13810 |
|
|
-- generic actual for the internal entity that links the
|
13811 |
|
|
-- interface primitive and the covering primitive.
|
13812 |
|
|
|
13813 |
|
|
if No (Act_Subp)
|
13814 |
|
|
and then Is_Generic_Type (Parent_Type)
|
13815 |
|
|
then
|
13816 |
|
|
-- This code has been designed to handle only generic
|
13817 |
|
|
-- formals that implement interfaces that are defined
|
13818 |
|
|
-- in a generic unit or instantiation. If this code is
|
13819 |
|
|
-- needed for other cases we must review it because
|
13820 |
|
|
-- (given that it relies on Original_Location to locate
|
13821 |
|
|
-- the primitive of Generic_Actual that covers the
|
13822 |
|
|
-- interface) it could leave linked through attribute
|
13823 |
|
|
-- Alias entities of unrelated instantiations).
|
13824 |
|
|
|
13825 |
|
|
pragma Assert
|
13826 |
|
|
(Is_Generic_Unit
|
13827 |
|
|
(Scope (Find_Dispatching_Type (Alias_Subp)))
|
13828 |
|
|
or else
|
13829 |
|
|
Instantiation_Depth
|
13830 |
|
|
(Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
|
13831 |
|
|
|
13832 |
|
|
declare
|
13833 |
|
|
Iface_Prim_Loc : constant Source_Ptr :=
|
13834 |
|
|
Original_Location (Sloc (Alias_Subp));
|
13835 |
|
|
Elmt : Elmt_Id;
|
13836 |
|
|
Prim : Entity_Id;
|
13837 |
|
|
begin
|
13838 |
|
|
Elmt :=
|
13839 |
|
|
First_Elmt (Primitive_Operations (Generic_Actual));
|
13840 |
|
|
|
13841 |
|
|
Search : while Present (Elmt) loop
|
13842 |
|
|
Prim := Node (Elmt);
|
13843 |
|
|
|
13844 |
|
|
if Present (Interface_Alias (Prim))
|
13845 |
|
|
and then Original_Location
|
13846 |
|
|
(Sloc (Interface_Alias (Prim)))
|
13847 |
|
|
= Iface_Prim_Loc
|
13848 |
|
|
then
|
13849 |
|
|
Act_Subp := Alias (Prim);
|
13850 |
|
|
exit Search;
|
13851 |
|
|
end if;
|
13852 |
|
|
|
13853 |
|
|
Next_Elmt (Elmt);
|
13854 |
|
|
end loop Search;
|
13855 |
|
|
end;
|
13856 |
|
|
end if;
|
13857 |
|
|
|
13858 |
|
|
pragma Assert (Present (Act_Subp)
|
13859 |
|
|
or else Is_Abstract_Type (Generic_Actual)
|
13860 |
|
|
or else Serious_Errors_Detected > 0);
|
13861 |
|
|
|
13862 |
|
|
-- Handle predefined primitives plus the rest of user-defined
|
13863 |
|
|
-- primitives
|
13864 |
|
|
|
13865 |
|
|
else
|
13866 |
|
|
Act_Elmt := First_Elmt (Act_List);
|
13867 |
|
|
while Present (Act_Elmt) loop
|
13868 |
|
|
Act_Subp := Node (Act_Elmt);
|
13869 |
|
|
|
13870 |
|
|
exit when Primitive_Names_Match (Subp, Act_Subp)
|
13871 |
|
|
and then Type_Conformant
|
13872 |
|
|
(Subp, Act_Subp,
|
13873 |
|
|
Skip_Controlling_Formals => True)
|
13874 |
|
|
and then No (Interface_Alias (Act_Subp));
|
13875 |
|
|
|
13876 |
|
|
Next_Elmt (Act_Elmt);
|
13877 |
|
|
end loop;
|
13878 |
|
|
|
13879 |
|
|
if No (Act_Elmt) then
|
13880 |
|
|
Act_Subp := Empty;
|
13881 |
|
|
end if;
|
13882 |
|
|
end if;
|
13883 |
|
|
end if;
|
13884 |
|
|
|
13885 |
|
|
-- Case 1: If the parent is a limited interface then it has the
|
13886 |
|
|
-- predefined primitives of synchronized interfaces. However, the
|
13887 |
|
|
-- actual type may be a non-limited type and hence it does not
|
13888 |
|
|
-- have such primitives.
|
13889 |
|
|
|
13890 |
|
|
if Present (Generic_Actual)
|
13891 |
|
|
and then not Present (Act_Subp)
|
13892 |
|
|
and then Is_Limited_Interface (Parent_Base)
|
13893 |
|
|
and then Is_Predefined_Interface_Primitive (Subp)
|
13894 |
|
|
then
|
13895 |
|
|
null;
|
13896 |
|
|
|
13897 |
|
|
-- Case 2: Inherit entities associated with interfaces that were
|
13898 |
|
|
-- not covered by the parent type. We exclude here null interface
|
13899 |
|
|
-- primitives because they do not need special management.
|
13900 |
|
|
|
13901 |
|
|
-- We also exclude interface operations that are renamings. If the
|
13902 |
|
|
-- subprogram is an explicit renaming of an interface primitive,
|
13903 |
|
|
-- it is a regular primitive operation, and the presence of its
|
13904 |
|
|
-- alias is not relevant: it has to be derived like any other
|
13905 |
|
|
-- primitive.
|
13906 |
|
|
|
13907 |
|
|
elsif Present (Alias (Subp))
|
13908 |
|
|
and then Nkind (Unit_Declaration_Node (Subp)) /=
|
13909 |
|
|
N_Subprogram_Renaming_Declaration
|
13910 |
|
|
and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
|
13911 |
|
|
and then not
|
13912 |
|
|
(Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
|
13913 |
|
|
and then Null_Present (Parent (Alias_Subp)))
|
13914 |
|
|
then
|
13915 |
|
|
-- If this is an abstract private type then we transfer the
|
13916 |
|
|
-- derivation of the interface primitive from the partial view
|
13917 |
|
|
-- to the full view. This is safe because all the interfaces
|
13918 |
|
|
-- must be visible in the partial view. Done to avoid adding
|
13919 |
|
|
-- a new interface derivation to the private part of the
|
13920 |
|
|
-- enclosing package; otherwise this new derivation would be
|
13921 |
|
|
-- decorated as hidden when the analysis of the enclosing
|
13922 |
|
|
-- package completes.
|
13923 |
|
|
|
13924 |
|
|
if Is_Abstract_Type (Derived_Type)
|
13925 |
|
|
and then In_Private_Part (Current_Scope)
|
13926 |
|
|
and then Has_Private_Declaration (Derived_Type)
|
13927 |
|
|
then
|
13928 |
|
|
declare
|
13929 |
|
|
Partial_View : Entity_Id;
|
13930 |
|
|
Elmt : Elmt_Id;
|
13931 |
|
|
Ent : Entity_Id;
|
13932 |
|
|
|
13933 |
|
|
begin
|
13934 |
|
|
Partial_View := First_Entity (Current_Scope);
|
13935 |
|
|
loop
|
13936 |
|
|
exit when No (Partial_View)
|
13937 |
|
|
or else (Has_Private_Declaration (Partial_View)
|
13938 |
|
|
and then
|
13939 |
|
|
Full_View (Partial_View) = Derived_Type);
|
13940 |
|
|
|
13941 |
|
|
Next_Entity (Partial_View);
|
13942 |
|
|
end loop;
|
13943 |
|
|
|
13944 |
|
|
-- If the partial view was not found then the source code
|
13945 |
|
|
-- has errors and the derivation is not needed.
|
13946 |
|
|
|
13947 |
|
|
if Present (Partial_View) then
|
13948 |
|
|
Elmt :=
|
13949 |
|
|
First_Elmt (Primitive_Operations (Partial_View));
|
13950 |
|
|
while Present (Elmt) loop
|
13951 |
|
|
Ent := Node (Elmt);
|
13952 |
|
|
|
13953 |
|
|
if Present (Alias (Ent))
|
13954 |
|
|
and then Ultimate_Alias (Ent) = Alias (Subp)
|
13955 |
|
|
then
|
13956 |
|
|
Append_Elmt
|
13957 |
|
|
(Ent, Primitive_Operations (Derived_Type));
|
13958 |
|
|
exit;
|
13959 |
|
|
end if;
|
13960 |
|
|
|
13961 |
|
|
Next_Elmt (Elmt);
|
13962 |
|
|
end loop;
|
13963 |
|
|
|
13964 |
|
|
-- If the interface primitive was not found in the
|
13965 |
|
|
-- partial view then this interface primitive was
|
13966 |
|
|
-- overridden. We add a derivation to activate in
|
13967 |
|
|
-- Derive_Progenitor_Subprograms the machinery to
|
13968 |
|
|
-- search for it.
|
13969 |
|
|
|
13970 |
|
|
if No (Elmt) then
|
13971 |
|
|
Derive_Interface_Subprogram
|
13972 |
|
|
(New_Subp => New_Subp,
|
13973 |
|
|
Subp => Subp,
|
13974 |
|
|
Actual_Subp => Act_Subp);
|
13975 |
|
|
end if;
|
13976 |
|
|
end if;
|
13977 |
|
|
end;
|
13978 |
|
|
else
|
13979 |
|
|
Derive_Interface_Subprogram
|
13980 |
|
|
(New_Subp => New_Subp,
|
13981 |
|
|
Subp => Subp,
|
13982 |
|
|
Actual_Subp => Act_Subp);
|
13983 |
|
|
end if;
|
13984 |
|
|
|
13985 |
|
|
-- Case 3: Common derivation
|
13986 |
|
|
|
13987 |
|
|
else
|
13988 |
|
|
Derive_Subprogram
|
13989 |
|
|
(New_Subp => New_Subp,
|
13990 |
|
|
Parent_Subp => Subp,
|
13991 |
|
|
Derived_Type => Derived_Type,
|
13992 |
|
|
Parent_Type => Parent_Base,
|
13993 |
|
|
Actual_Subp => Act_Subp);
|
13994 |
|
|
end if;
|
13995 |
|
|
|
13996 |
|
|
-- No need to update Act_Elm if we must search for the
|
13997 |
|
|
-- corresponding operation in the generic actual
|
13998 |
|
|
|
13999 |
|
|
if not Need_Search
|
14000 |
|
|
and then Present (Act_Elmt)
|
14001 |
|
|
then
|
14002 |
|
|
Next_Elmt (Act_Elmt);
|
14003 |
|
|
Act_Subp := Node (Act_Elmt);
|
14004 |
|
|
end if;
|
14005 |
|
|
|
14006 |
|
|
<<Continue>>
|
14007 |
|
|
Next_Elmt (Elmt);
|
14008 |
|
|
end loop;
|
14009 |
|
|
|
14010 |
|
|
-- Inherit additional operations from progenitors. If the derived
|
14011 |
|
|
-- type is a generic actual, there are not new primitive operations
|
14012 |
|
|
-- for the type because it has those of the actual, and therefore
|
14013 |
|
|
-- nothing needs to be done. The renamings generated above are not
|
14014 |
|
|
-- primitive operations, and their purpose is simply to make the
|
14015 |
|
|
-- proper operations visible within an instantiation.
|
14016 |
|
|
|
14017 |
|
|
if No (Generic_Actual) then
|
14018 |
|
|
Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
|
14019 |
|
|
end if;
|
14020 |
|
|
end if;
|
14021 |
|
|
|
14022 |
|
|
-- Final check: Direct descendants must have their primitives in the
|
14023 |
|
|
-- same order. We exclude from this test untagged types and instances
|
14024 |
|
|
-- of formal derived types. We skip this test if we have already
|
14025 |
|
|
-- reported serious errors in the sources.
|
14026 |
|
|
|
14027 |
|
|
pragma Assert (not Is_Tagged_Type (Derived_Type)
|
14028 |
|
|
or else Present (Generic_Actual)
|
14029 |
|
|
or else Serious_Errors_Detected > 0
|
14030 |
|
|
or else Check_Derived_Type);
|
14031 |
|
|
end Derive_Subprograms;
|
14032 |
|
|
|
14033 |
|
|
--------------------------------
|
14034 |
|
|
-- Derived_Standard_Character --
|
14035 |
|
|
--------------------------------
|
14036 |
|
|
|
14037 |
|
|
procedure Derived_Standard_Character
|
14038 |
|
|
(N : Node_Id;
|
14039 |
|
|
Parent_Type : Entity_Id;
|
14040 |
|
|
Derived_Type : Entity_Id)
|
14041 |
|
|
is
|
14042 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
14043 |
|
|
Def : constant Node_Id := Type_Definition (N);
|
14044 |
|
|
Indic : constant Node_Id := Subtype_Indication (Def);
|
14045 |
|
|
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
|
14046 |
|
|
Implicit_Base : constant Entity_Id :=
|
14047 |
|
|
Create_Itype
|
14048 |
|
|
(E_Enumeration_Type, N, Derived_Type, 'B');
|
14049 |
|
|
|
14050 |
|
|
Lo : Node_Id;
|
14051 |
|
|
Hi : Node_Id;
|
14052 |
|
|
|
14053 |
|
|
begin
|
14054 |
|
|
Discard_Node (Process_Subtype (Indic, N));
|
14055 |
|
|
|
14056 |
|
|
Set_Etype (Implicit_Base, Parent_Base);
|
14057 |
|
|
Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
|
14058 |
|
|
Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
|
14059 |
|
|
|
14060 |
|
|
Set_Is_Character_Type (Implicit_Base, True);
|
14061 |
|
|
Set_Has_Delayed_Freeze (Implicit_Base);
|
14062 |
|
|
|
14063 |
|
|
-- The bounds of the implicit base are the bounds of the parent base.
|
14064 |
|
|
-- Note that their type is the parent base.
|
14065 |
|
|
|
14066 |
|
|
Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
|
14067 |
|
|
Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
|
14068 |
|
|
|
14069 |
|
|
Set_Scalar_Range (Implicit_Base,
|
14070 |
|
|
Make_Range (Loc,
|
14071 |
|
|
Low_Bound => Lo,
|
14072 |
|
|
High_Bound => Hi));
|
14073 |
|
|
|
14074 |
|
|
Conditional_Delay (Derived_Type, Parent_Type);
|
14075 |
|
|
|
14076 |
|
|
Set_Ekind (Derived_Type, E_Enumeration_Subtype);
|
14077 |
|
|
Set_Etype (Derived_Type, Implicit_Base);
|
14078 |
|
|
Set_Size_Info (Derived_Type, Parent_Type);
|
14079 |
|
|
|
14080 |
|
|
if Unknown_RM_Size (Derived_Type) then
|
14081 |
|
|
Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
|
14082 |
|
|
end if;
|
14083 |
|
|
|
14084 |
|
|
Set_Is_Character_Type (Derived_Type, True);
|
14085 |
|
|
|
14086 |
|
|
if Nkind (Indic) /= N_Subtype_Indication then
|
14087 |
|
|
|
14088 |
|
|
-- If no explicit constraint, the bounds are those
|
14089 |
|
|
-- of the parent type.
|
14090 |
|
|
|
14091 |
|
|
Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
|
14092 |
|
|
Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
|
14093 |
|
|
Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
|
14094 |
|
|
end if;
|
14095 |
|
|
|
14096 |
|
|
Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
|
14097 |
|
|
|
14098 |
|
|
-- Because the implicit base is used in the conversion of the bounds, we
|
14099 |
|
|
-- have to freeze it now. This is similar to what is done for numeric
|
14100 |
|
|
-- types, and it equally suspicious, but otherwise a non-static bound
|
14101 |
|
|
-- will have a reference to an unfrozen type, which is rejected by Gigi
|
14102 |
|
|
-- (???). This requires specific care for definition of stream
|
14103 |
|
|
-- attributes. For details, see comments at the end of
|
14104 |
|
|
-- Build_Derived_Numeric_Type.
|
14105 |
|
|
|
14106 |
|
|
Freeze_Before (N, Implicit_Base);
|
14107 |
|
|
end Derived_Standard_Character;
|
14108 |
|
|
|
14109 |
|
|
------------------------------
|
14110 |
|
|
-- Derived_Type_Declaration --
|
14111 |
|
|
------------------------------
|
14112 |
|
|
|
14113 |
|
|
procedure Derived_Type_Declaration
|
14114 |
|
|
(T : Entity_Id;
|
14115 |
|
|
N : Node_Id;
|
14116 |
|
|
Is_Completion : Boolean)
|
14117 |
|
|
is
|
14118 |
|
|
Parent_Type : Entity_Id;
|
14119 |
|
|
|
14120 |
|
|
function Comes_From_Generic (Typ : Entity_Id) return Boolean;
|
14121 |
|
|
-- Check whether the parent type is a generic formal, or derives
|
14122 |
|
|
-- directly or indirectly from one.
|
14123 |
|
|
|
14124 |
|
|
------------------------
|
14125 |
|
|
-- Comes_From_Generic --
|
14126 |
|
|
------------------------
|
14127 |
|
|
|
14128 |
|
|
function Comes_From_Generic (Typ : Entity_Id) return Boolean is
|
14129 |
|
|
begin
|
14130 |
|
|
if Is_Generic_Type (Typ) then
|
14131 |
|
|
return True;
|
14132 |
|
|
|
14133 |
|
|
elsif Is_Generic_Type (Root_Type (Parent_Type)) then
|
14134 |
|
|
return True;
|
14135 |
|
|
|
14136 |
|
|
elsif Is_Private_Type (Typ)
|
14137 |
|
|
and then Present (Full_View (Typ))
|
14138 |
|
|
and then Is_Generic_Type (Root_Type (Full_View (Typ)))
|
14139 |
|
|
then
|
14140 |
|
|
return True;
|
14141 |
|
|
|
14142 |
|
|
elsif Is_Generic_Actual_Type (Typ) then
|
14143 |
|
|
return True;
|
14144 |
|
|
|
14145 |
|
|
else
|
14146 |
|
|
return False;
|
14147 |
|
|
end if;
|
14148 |
|
|
end Comes_From_Generic;
|
14149 |
|
|
|
14150 |
|
|
-- Local variables
|
14151 |
|
|
|
14152 |
|
|
Def : constant Node_Id := Type_Definition (N);
|
14153 |
|
|
Iface_Def : Node_Id;
|
14154 |
|
|
Indic : constant Node_Id := Subtype_Indication (Def);
|
14155 |
|
|
Extension : constant Node_Id := Record_Extension_Part (Def);
|
14156 |
|
|
Parent_Node : Node_Id;
|
14157 |
|
|
Taggd : Boolean;
|
14158 |
|
|
|
14159 |
|
|
-- Start of processing for Derived_Type_Declaration
|
14160 |
|
|
|
14161 |
|
|
begin
|
14162 |
|
|
Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
|
14163 |
|
|
|
14164 |
|
|
-- Ada 2005 (AI-251): In case of interface derivation check that the
|
14165 |
|
|
-- parent is also an interface.
|
14166 |
|
|
|
14167 |
|
|
if Interface_Present (Def) then
|
14168 |
|
|
Check_SPARK_Restriction ("interface is not allowed", Def);
|
14169 |
|
|
|
14170 |
|
|
if not Is_Interface (Parent_Type) then
|
14171 |
|
|
Diagnose_Interface (Indic, Parent_Type);
|
14172 |
|
|
|
14173 |
|
|
else
|
14174 |
|
|
Parent_Node := Parent (Base_Type (Parent_Type));
|
14175 |
|
|
Iface_Def := Type_Definition (Parent_Node);
|
14176 |
|
|
|
14177 |
|
|
-- Ada 2005 (AI-251): Limited interfaces can only inherit from
|
14178 |
|
|
-- other limited interfaces.
|
14179 |
|
|
|
14180 |
|
|
if Limited_Present (Def) then
|
14181 |
|
|
if Limited_Present (Iface_Def) then
|
14182 |
|
|
null;
|
14183 |
|
|
|
14184 |
|
|
elsif Protected_Present (Iface_Def) then
|
14185 |
|
|
Error_Msg_NE
|
14186 |
|
|
("descendant of& must be declared"
|
14187 |
|
|
& " as a protected interface",
|
14188 |
|
|
N, Parent_Type);
|
14189 |
|
|
|
14190 |
|
|
elsif Synchronized_Present (Iface_Def) then
|
14191 |
|
|
Error_Msg_NE
|
14192 |
|
|
("descendant of& must be declared"
|
14193 |
|
|
& " as a synchronized interface",
|
14194 |
|
|
N, Parent_Type);
|
14195 |
|
|
|
14196 |
|
|
elsif Task_Present (Iface_Def) then
|
14197 |
|
|
Error_Msg_NE
|
14198 |
|
|
("descendant of& must be declared as a task interface",
|
14199 |
|
|
N, Parent_Type);
|
14200 |
|
|
|
14201 |
|
|
else
|
14202 |
|
|
Error_Msg_N
|
14203 |
|
|
("(Ada 2005) limited interface cannot "
|
14204 |
|
|
& "inherit from non-limited interface", Indic);
|
14205 |
|
|
end if;
|
14206 |
|
|
|
14207 |
|
|
-- Ada 2005 (AI-345): Non-limited interfaces can only inherit
|
14208 |
|
|
-- from non-limited or limited interfaces.
|
14209 |
|
|
|
14210 |
|
|
elsif not Protected_Present (Def)
|
14211 |
|
|
and then not Synchronized_Present (Def)
|
14212 |
|
|
and then not Task_Present (Def)
|
14213 |
|
|
then
|
14214 |
|
|
if Limited_Present (Iface_Def) then
|
14215 |
|
|
null;
|
14216 |
|
|
|
14217 |
|
|
elsif Protected_Present (Iface_Def) then
|
14218 |
|
|
Error_Msg_NE
|
14219 |
|
|
("descendant of& must be declared"
|
14220 |
|
|
& " as a protected interface",
|
14221 |
|
|
N, Parent_Type);
|
14222 |
|
|
|
14223 |
|
|
elsif Synchronized_Present (Iface_Def) then
|
14224 |
|
|
Error_Msg_NE
|
14225 |
|
|
("descendant of& must be declared"
|
14226 |
|
|
& " as a synchronized interface",
|
14227 |
|
|
N, Parent_Type);
|
14228 |
|
|
|
14229 |
|
|
elsif Task_Present (Iface_Def) then
|
14230 |
|
|
Error_Msg_NE
|
14231 |
|
|
("descendant of& must be declared as a task interface",
|
14232 |
|
|
N, Parent_Type);
|
14233 |
|
|
else
|
14234 |
|
|
null;
|
14235 |
|
|
end if;
|
14236 |
|
|
end if;
|
14237 |
|
|
end if;
|
14238 |
|
|
end if;
|
14239 |
|
|
|
14240 |
|
|
if Is_Tagged_Type (Parent_Type)
|
14241 |
|
|
and then Is_Concurrent_Type (Parent_Type)
|
14242 |
|
|
and then not Is_Interface (Parent_Type)
|
14243 |
|
|
then
|
14244 |
|
|
Error_Msg_N
|
14245 |
|
|
("parent type of a record extension cannot be "
|
14246 |
|
|
& "a synchronized tagged type (RM 3.9.1 (3/1))", N);
|
14247 |
|
|
Set_Etype (T, Any_Type);
|
14248 |
|
|
return;
|
14249 |
|
|
end if;
|
14250 |
|
|
|
14251 |
|
|
-- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
|
14252 |
|
|
-- interfaces
|
14253 |
|
|
|
14254 |
|
|
if Is_Tagged_Type (Parent_Type)
|
14255 |
|
|
and then Is_Non_Empty_List (Interface_List (Def))
|
14256 |
|
|
then
|
14257 |
|
|
declare
|
14258 |
|
|
Intf : Node_Id;
|
14259 |
|
|
T : Entity_Id;
|
14260 |
|
|
|
14261 |
|
|
begin
|
14262 |
|
|
Intf := First (Interface_List (Def));
|
14263 |
|
|
while Present (Intf) loop
|
14264 |
|
|
T := Find_Type_Of_Subtype_Indic (Intf);
|
14265 |
|
|
|
14266 |
|
|
if not Is_Interface (T) then
|
14267 |
|
|
Diagnose_Interface (Intf, T);
|
14268 |
|
|
|
14269 |
|
|
-- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
|
14270 |
|
|
-- a limited type from having a nonlimited progenitor.
|
14271 |
|
|
|
14272 |
|
|
elsif (Limited_Present (Def)
|
14273 |
|
|
or else (not Is_Interface (Parent_Type)
|
14274 |
|
|
and then Is_Limited_Type (Parent_Type)))
|
14275 |
|
|
and then not Is_Limited_Interface (T)
|
14276 |
|
|
then
|
14277 |
|
|
Error_Msg_NE
|
14278 |
|
|
("progenitor interface& of limited type must be limited",
|
14279 |
|
|
N, T);
|
14280 |
|
|
end if;
|
14281 |
|
|
|
14282 |
|
|
Next (Intf);
|
14283 |
|
|
end loop;
|
14284 |
|
|
end;
|
14285 |
|
|
end if;
|
14286 |
|
|
|
14287 |
|
|
if Parent_Type = Any_Type
|
14288 |
|
|
or else Etype (Parent_Type) = Any_Type
|
14289 |
|
|
or else (Is_Class_Wide_Type (Parent_Type)
|
14290 |
|
|
and then Etype (Parent_Type) = T)
|
14291 |
|
|
then
|
14292 |
|
|
-- If Parent_Type is undefined or illegal, make new type into a
|
14293 |
|
|
-- subtype of Any_Type, and set a few attributes to prevent cascaded
|
14294 |
|
|
-- errors. If this is a self-definition, emit error now.
|
14295 |
|
|
|
14296 |
|
|
if T = Parent_Type
|
14297 |
|
|
or else T = Etype (Parent_Type)
|
14298 |
|
|
then
|
14299 |
|
|
Error_Msg_N ("type cannot be used in its own definition", Indic);
|
14300 |
|
|
end if;
|
14301 |
|
|
|
14302 |
|
|
Set_Ekind (T, Ekind (Parent_Type));
|
14303 |
|
|
Set_Etype (T, Any_Type);
|
14304 |
|
|
Set_Scalar_Range (T, Scalar_Range (Any_Type));
|
14305 |
|
|
|
14306 |
|
|
if Is_Tagged_Type (T)
|
14307 |
|
|
and then Is_Record_Type (T)
|
14308 |
|
|
then
|
14309 |
|
|
Set_Direct_Primitive_Operations (T, New_Elmt_List);
|
14310 |
|
|
end if;
|
14311 |
|
|
|
14312 |
|
|
return;
|
14313 |
|
|
end if;
|
14314 |
|
|
|
14315 |
|
|
-- Ada 2005 (AI-251): The case in which the parent of the full-view is
|
14316 |
|
|
-- an interface is special because the list of interfaces in the full
|
14317 |
|
|
-- view can be given in any order. For example:
|
14318 |
|
|
|
14319 |
|
|
-- type A is interface;
|
14320 |
|
|
-- type B is interface and A;
|
14321 |
|
|
-- type D is new B with private;
|
14322 |
|
|
-- private
|
14323 |
|
|
-- type D is new A and B with null record; -- 1 --
|
14324 |
|
|
|
14325 |
|
|
-- In this case we perform the following transformation of -1-:
|
14326 |
|
|
|
14327 |
|
|
-- type D is new B and A with null record;
|
14328 |
|
|
|
14329 |
|
|
-- If the parent of the full-view covers the parent of the partial-view
|
14330 |
|
|
-- we have two possible cases:
|
14331 |
|
|
|
14332 |
|
|
-- 1) They have the same parent
|
14333 |
|
|
-- 2) The parent of the full-view implements some further interfaces
|
14334 |
|
|
|
14335 |
|
|
-- In both cases we do not need to perform the transformation. In the
|
14336 |
|
|
-- first case the source program is correct and the transformation is
|
14337 |
|
|
-- not needed; in the second case the source program does not fulfill
|
14338 |
|
|
-- the no-hidden interfaces rule (AI-396) and the error will be reported
|
14339 |
|
|
-- later.
|
14340 |
|
|
|
14341 |
|
|
-- This transformation not only simplifies the rest of the analysis of
|
14342 |
|
|
-- this type declaration but also simplifies the correct generation of
|
14343 |
|
|
-- the object layout to the expander.
|
14344 |
|
|
|
14345 |
|
|
if In_Private_Part (Current_Scope)
|
14346 |
|
|
and then Is_Interface (Parent_Type)
|
14347 |
|
|
then
|
14348 |
|
|
declare
|
14349 |
|
|
Iface : Node_Id;
|
14350 |
|
|
Partial_View : Entity_Id;
|
14351 |
|
|
Partial_View_Parent : Entity_Id;
|
14352 |
|
|
New_Iface : Node_Id;
|
14353 |
|
|
|
14354 |
|
|
begin
|
14355 |
|
|
-- Look for the associated private type declaration
|
14356 |
|
|
|
14357 |
|
|
Partial_View := First_Entity (Current_Scope);
|
14358 |
|
|
loop
|
14359 |
|
|
exit when No (Partial_View)
|
14360 |
|
|
or else (Has_Private_Declaration (Partial_View)
|
14361 |
|
|
and then Full_View (Partial_View) = T);
|
14362 |
|
|
|
14363 |
|
|
Next_Entity (Partial_View);
|
14364 |
|
|
end loop;
|
14365 |
|
|
|
14366 |
|
|
-- If the partial view was not found then the source code has
|
14367 |
|
|
-- errors and the transformation is not needed.
|
14368 |
|
|
|
14369 |
|
|
if Present (Partial_View) then
|
14370 |
|
|
Partial_View_Parent := Etype (Partial_View);
|
14371 |
|
|
|
14372 |
|
|
-- If the parent of the full-view covers the parent of the
|
14373 |
|
|
-- partial-view we have nothing else to do.
|
14374 |
|
|
|
14375 |
|
|
if Interface_Present_In_Ancestor
|
14376 |
|
|
(Parent_Type, Partial_View_Parent)
|
14377 |
|
|
then
|
14378 |
|
|
null;
|
14379 |
|
|
|
14380 |
|
|
-- Traverse the list of interfaces of the full-view to look
|
14381 |
|
|
-- for the parent of the partial-view and perform the tree
|
14382 |
|
|
-- transformation.
|
14383 |
|
|
|
14384 |
|
|
else
|
14385 |
|
|
Iface := First (Interface_List (Def));
|
14386 |
|
|
while Present (Iface) loop
|
14387 |
|
|
if Etype (Iface) = Etype (Partial_View) then
|
14388 |
|
|
Rewrite (Subtype_Indication (Def),
|
14389 |
|
|
New_Copy (Subtype_Indication
|
14390 |
|
|
(Parent (Partial_View))));
|
14391 |
|
|
|
14392 |
|
|
New_Iface :=
|
14393 |
|
|
Make_Identifier (Sloc (N), Chars (Parent_Type));
|
14394 |
|
|
Append (New_Iface, Interface_List (Def));
|
14395 |
|
|
|
14396 |
|
|
-- Analyze the transformed code
|
14397 |
|
|
|
14398 |
|
|
Derived_Type_Declaration (T, N, Is_Completion);
|
14399 |
|
|
return;
|
14400 |
|
|
end if;
|
14401 |
|
|
|
14402 |
|
|
Next (Iface);
|
14403 |
|
|
end loop;
|
14404 |
|
|
end if;
|
14405 |
|
|
end if;
|
14406 |
|
|
end;
|
14407 |
|
|
end if;
|
14408 |
|
|
|
14409 |
|
|
-- Only composite types other than array types are allowed to have
|
14410 |
|
|
-- discriminants. In SPARK, no types are allowed to have discriminants.
|
14411 |
|
|
|
14412 |
|
|
if Present (Discriminant_Specifications (N)) then
|
14413 |
|
|
if (Is_Elementary_Type (Parent_Type)
|
14414 |
|
|
or else Is_Array_Type (Parent_Type))
|
14415 |
|
|
and then not Error_Posted (N)
|
14416 |
|
|
then
|
14417 |
|
|
Error_Msg_N
|
14418 |
|
|
("elementary or array type cannot have discriminants",
|
14419 |
|
|
Defining_Identifier (First (Discriminant_Specifications (N))));
|
14420 |
|
|
Set_Has_Discriminants (T, False);
|
14421 |
|
|
else
|
14422 |
|
|
Check_SPARK_Restriction ("discriminant type is not allowed", N);
|
14423 |
|
|
end if;
|
14424 |
|
|
end if;
|
14425 |
|
|
|
14426 |
|
|
-- In Ada 83, a derived type defined in a package specification cannot
|
14427 |
|
|
-- be used for further derivation until the end of its visible part.
|
14428 |
|
|
-- Note that derivation in the private part of the package is allowed.
|
14429 |
|
|
|
14430 |
|
|
if Ada_Version = Ada_83
|
14431 |
|
|
and then Is_Derived_Type (Parent_Type)
|
14432 |
|
|
and then In_Visible_Part (Scope (Parent_Type))
|
14433 |
|
|
then
|
14434 |
|
|
if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
|
14435 |
|
|
Error_Msg_N
|
14436 |
|
|
("(Ada 83): premature use of type for derivation", Indic);
|
14437 |
|
|
end if;
|
14438 |
|
|
end if;
|
14439 |
|
|
|
14440 |
|
|
-- Check for early use of incomplete or private type
|
14441 |
|
|
|
14442 |
|
|
if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
|
14443 |
|
|
Error_Msg_N ("premature derivation of incomplete type", Indic);
|
14444 |
|
|
return;
|
14445 |
|
|
|
14446 |
|
|
elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
|
14447 |
|
|
and then not Comes_From_Generic (Parent_Type))
|
14448 |
|
|
or else Has_Private_Component (Parent_Type)
|
14449 |
|
|
then
|
14450 |
|
|
-- The ancestor type of a formal type can be incomplete, in which
|
14451 |
|
|
-- case only the operations of the partial view are available in the
|
14452 |
|
|
-- generic. Subsequent checks may be required when the full view is
|
14453 |
|
|
-- analyzed to verify that a derivation from a tagged type has an
|
14454 |
|
|
-- extension.
|
14455 |
|
|
|
14456 |
|
|
if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
|
14457 |
|
|
null;
|
14458 |
|
|
|
14459 |
|
|
elsif No (Underlying_Type (Parent_Type))
|
14460 |
|
|
or else Has_Private_Component (Parent_Type)
|
14461 |
|
|
then
|
14462 |
|
|
Error_Msg_N
|
14463 |
|
|
("premature derivation of derived or private type", Indic);
|
14464 |
|
|
|
14465 |
|
|
-- Flag the type itself as being in error, this prevents some
|
14466 |
|
|
-- nasty problems with subsequent uses of the malformed type.
|
14467 |
|
|
|
14468 |
|
|
Set_Error_Posted (T);
|
14469 |
|
|
|
14470 |
|
|
-- Check that within the immediate scope of an untagged partial
|
14471 |
|
|
-- view it's illegal to derive from the partial view if the
|
14472 |
|
|
-- full view is tagged. (7.3(7))
|
14473 |
|
|
|
14474 |
|
|
-- We verify that the Parent_Type is a partial view by checking
|
14475 |
|
|
-- that it is not a Full_Type_Declaration (i.e. a private type or
|
14476 |
|
|
-- private extension declaration), to distinguish a partial view
|
14477 |
|
|
-- from a derivation from a private type which also appears as
|
14478 |
|
|
-- E_Private_Type. If the parent base type is not declared in an
|
14479 |
|
|
-- enclosing scope there is no need to check.
|
14480 |
|
|
|
14481 |
|
|
elsif Present (Full_View (Parent_Type))
|
14482 |
|
|
and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
|
14483 |
|
|
and then not Is_Tagged_Type (Parent_Type)
|
14484 |
|
|
and then Is_Tagged_Type (Full_View (Parent_Type))
|
14485 |
|
|
and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
|
14486 |
|
|
then
|
14487 |
|
|
Error_Msg_N
|
14488 |
|
|
("premature derivation from type with tagged full view",
|
14489 |
|
|
Indic);
|
14490 |
|
|
end if;
|
14491 |
|
|
end if;
|
14492 |
|
|
|
14493 |
|
|
-- Check that form of derivation is appropriate
|
14494 |
|
|
|
14495 |
|
|
Taggd := Is_Tagged_Type (Parent_Type);
|
14496 |
|
|
|
14497 |
|
|
-- Perhaps the parent type should be changed to the class-wide type's
|
14498 |
|
|
-- specific type in this case to prevent cascading errors ???
|
14499 |
|
|
|
14500 |
|
|
if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
|
14501 |
|
|
Error_Msg_N ("parent type must not be a class-wide type", Indic);
|
14502 |
|
|
return;
|
14503 |
|
|
end if;
|
14504 |
|
|
|
14505 |
|
|
if Present (Extension) and then not Taggd then
|
14506 |
|
|
Error_Msg_N
|
14507 |
|
|
("type derived from untagged type cannot have extension", Indic);
|
14508 |
|
|
|
14509 |
|
|
elsif No (Extension) and then Taggd then
|
14510 |
|
|
|
14511 |
|
|
-- If this declaration is within a private part (or body) of a
|
14512 |
|
|
-- generic instantiation then the derivation is allowed (the parent
|
14513 |
|
|
-- type can only appear tagged in this case if it's a generic actual
|
14514 |
|
|
-- type, since it would otherwise have been rejected in the analysis
|
14515 |
|
|
-- of the generic template).
|
14516 |
|
|
|
14517 |
|
|
if not Is_Generic_Actual_Type (Parent_Type)
|
14518 |
|
|
or else In_Visible_Part (Scope (Parent_Type))
|
14519 |
|
|
then
|
14520 |
|
|
if Is_Class_Wide_Type (Parent_Type) then
|
14521 |
|
|
Error_Msg_N
|
14522 |
|
|
("parent type must not be a class-wide type", Indic);
|
14523 |
|
|
|
14524 |
|
|
-- Use specific type to prevent cascaded errors.
|
14525 |
|
|
|
14526 |
|
|
Parent_Type := Etype (Parent_Type);
|
14527 |
|
|
|
14528 |
|
|
else
|
14529 |
|
|
Error_Msg_N
|
14530 |
|
|
("type derived from tagged type must have extension", Indic);
|
14531 |
|
|
end if;
|
14532 |
|
|
end if;
|
14533 |
|
|
end if;
|
14534 |
|
|
|
14535 |
|
|
-- AI-443: Synchronized formal derived types require a private
|
14536 |
|
|
-- extension. There is no point in checking the ancestor type or
|
14537 |
|
|
-- the progenitors since the construct is wrong to begin with.
|
14538 |
|
|
|
14539 |
|
|
if Ada_Version >= Ada_2005
|
14540 |
|
|
and then Is_Generic_Type (T)
|
14541 |
|
|
and then Present (Original_Node (N))
|
14542 |
|
|
then
|
14543 |
|
|
declare
|
14544 |
|
|
Decl : constant Node_Id := Original_Node (N);
|
14545 |
|
|
|
14546 |
|
|
begin
|
14547 |
|
|
if Nkind (Decl) = N_Formal_Type_Declaration
|
14548 |
|
|
and then Nkind (Formal_Type_Definition (Decl)) =
|
14549 |
|
|
N_Formal_Derived_Type_Definition
|
14550 |
|
|
and then Synchronized_Present (Formal_Type_Definition (Decl))
|
14551 |
|
|
and then No (Extension)
|
14552 |
|
|
|
14553 |
|
|
-- Avoid emitting a duplicate error message
|
14554 |
|
|
|
14555 |
|
|
and then not Error_Posted (Indic)
|
14556 |
|
|
then
|
14557 |
|
|
Error_Msg_N
|
14558 |
|
|
("synchronized derived type must have extension", N);
|
14559 |
|
|
end if;
|
14560 |
|
|
end;
|
14561 |
|
|
end if;
|
14562 |
|
|
|
14563 |
|
|
if Null_Exclusion_Present (Def)
|
14564 |
|
|
and then not Is_Access_Type (Parent_Type)
|
14565 |
|
|
then
|
14566 |
|
|
Error_Msg_N ("null exclusion can only apply to an access type", N);
|
14567 |
|
|
end if;
|
14568 |
|
|
|
14569 |
|
|
-- Avoid deriving parent primitives of underlying record views
|
14570 |
|
|
|
14571 |
|
|
Build_Derived_Type (N, Parent_Type, T, Is_Completion,
|
14572 |
|
|
Derive_Subps => not Is_Underlying_Record_View (T));
|
14573 |
|
|
|
14574 |
|
|
-- AI-419: The parent type of an explicitly limited derived type must
|
14575 |
|
|
-- be a limited type or a limited interface.
|
14576 |
|
|
|
14577 |
|
|
if Limited_Present (Def) then
|
14578 |
|
|
Set_Is_Limited_Record (T);
|
14579 |
|
|
|
14580 |
|
|
if Is_Interface (T) then
|
14581 |
|
|
Set_Is_Limited_Interface (T);
|
14582 |
|
|
end if;
|
14583 |
|
|
|
14584 |
|
|
if not Is_Limited_Type (Parent_Type)
|
14585 |
|
|
and then
|
14586 |
|
|
(not Is_Interface (Parent_Type)
|
14587 |
|
|
or else not Is_Limited_Interface (Parent_Type))
|
14588 |
|
|
then
|
14589 |
|
|
-- AI05-0096: a derivation in the private part of an instance is
|
14590 |
|
|
-- legal if the generic formal is untagged limited, and the actual
|
14591 |
|
|
-- is non-limited.
|
14592 |
|
|
|
14593 |
|
|
if Is_Generic_Actual_Type (Parent_Type)
|
14594 |
|
|
and then In_Private_Part (Current_Scope)
|
14595 |
|
|
and then
|
14596 |
|
|
not Is_Tagged_Type
|
14597 |
|
|
(Generic_Parent_Type (Parent (Parent_Type)))
|
14598 |
|
|
then
|
14599 |
|
|
null;
|
14600 |
|
|
|
14601 |
|
|
else
|
14602 |
|
|
Error_Msg_NE
|
14603 |
|
|
("parent type& of limited type must be limited",
|
14604 |
|
|
N, Parent_Type);
|
14605 |
|
|
end if;
|
14606 |
|
|
end if;
|
14607 |
|
|
end if;
|
14608 |
|
|
|
14609 |
|
|
-- In SPARK, there are no derived type definitions other than type
|
14610 |
|
|
-- extensions of tagged record types.
|
14611 |
|
|
|
14612 |
|
|
if No (Extension) then
|
14613 |
|
|
Check_SPARK_Restriction ("derived type is not allowed", N);
|
14614 |
|
|
end if;
|
14615 |
|
|
end Derived_Type_Declaration;
|
14616 |
|
|
|
14617 |
|
|
------------------------
|
14618 |
|
|
-- Diagnose_Interface --
|
14619 |
|
|
------------------------
|
14620 |
|
|
|
14621 |
|
|
procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
|
14622 |
|
|
begin
|
14623 |
|
|
if not Is_Interface (E)
|
14624 |
|
|
and then E /= Any_Type
|
14625 |
|
|
then
|
14626 |
|
|
Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
|
14627 |
|
|
end if;
|
14628 |
|
|
end Diagnose_Interface;
|
14629 |
|
|
|
14630 |
|
|
----------------------------------
|
14631 |
|
|
-- Enumeration_Type_Declaration --
|
14632 |
|
|
----------------------------------
|
14633 |
|
|
|
14634 |
|
|
procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
|
14635 |
|
|
Ev : Uint;
|
14636 |
|
|
L : Node_Id;
|
14637 |
|
|
R_Node : Node_Id;
|
14638 |
|
|
B_Node : Node_Id;
|
14639 |
|
|
|
14640 |
|
|
begin
|
14641 |
|
|
-- Create identifier node representing lower bound
|
14642 |
|
|
|
14643 |
|
|
B_Node := New_Node (N_Identifier, Sloc (Def));
|
14644 |
|
|
L := First (Literals (Def));
|
14645 |
|
|
Set_Chars (B_Node, Chars (L));
|
14646 |
|
|
Set_Entity (B_Node, L);
|
14647 |
|
|
Set_Etype (B_Node, T);
|
14648 |
|
|
Set_Is_Static_Expression (B_Node, True);
|
14649 |
|
|
|
14650 |
|
|
R_Node := New_Node (N_Range, Sloc (Def));
|
14651 |
|
|
Set_Low_Bound (R_Node, B_Node);
|
14652 |
|
|
|
14653 |
|
|
Set_Ekind (T, E_Enumeration_Type);
|
14654 |
|
|
Set_First_Literal (T, L);
|
14655 |
|
|
Set_Etype (T, T);
|
14656 |
|
|
Set_Is_Constrained (T);
|
14657 |
|
|
|
14658 |
|
|
Ev := Uint_0;
|
14659 |
|
|
|
14660 |
|
|
-- Loop through literals of enumeration type setting pos and rep values
|
14661 |
|
|
-- except that if the Ekind is already set, then it means the literal
|
14662 |
|
|
-- was already constructed (case of a derived type declaration and we
|
14663 |
|
|
-- should not disturb the Pos and Rep values.
|
14664 |
|
|
|
14665 |
|
|
while Present (L) loop
|
14666 |
|
|
if Ekind (L) /= E_Enumeration_Literal then
|
14667 |
|
|
Set_Ekind (L, E_Enumeration_Literal);
|
14668 |
|
|
Set_Enumeration_Pos (L, Ev);
|
14669 |
|
|
Set_Enumeration_Rep (L, Ev);
|
14670 |
|
|
Set_Is_Known_Valid (L, True);
|
14671 |
|
|
end if;
|
14672 |
|
|
|
14673 |
|
|
Set_Etype (L, T);
|
14674 |
|
|
New_Overloaded_Entity (L);
|
14675 |
|
|
Generate_Definition (L);
|
14676 |
|
|
Set_Convention (L, Convention_Intrinsic);
|
14677 |
|
|
|
14678 |
|
|
-- Case of character literal
|
14679 |
|
|
|
14680 |
|
|
if Nkind (L) = N_Defining_Character_Literal then
|
14681 |
|
|
Set_Is_Character_Type (T, True);
|
14682 |
|
|
|
14683 |
|
|
-- Check violation of No_Wide_Characters
|
14684 |
|
|
|
14685 |
|
|
if Restriction_Check_Required (No_Wide_Characters) then
|
14686 |
|
|
Get_Name_String (Chars (L));
|
14687 |
|
|
|
14688 |
|
|
if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
|
14689 |
|
|
Check_Restriction (No_Wide_Characters, L);
|
14690 |
|
|
end if;
|
14691 |
|
|
end if;
|
14692 |
|
|
end if;
|
14693 |
|
|
|
14694 |
|
|
Ev := Ev + 1;
|
14695 |
|
|
Next (L);
|
14696 |
|
|
end loop;
|
14697 |
|
|
|
14698 |
|
|
-- Now create a node representing upper bound
|
14699 |
|
|
|
14700 |
|
|
B_Node := New_Node (N_Identifier, Sloc (Def));
|
14701 |
|
|
Set_Chars (B_Node, Chars (Last (Literals (Def))));
|
14702 |
|
|
Set_Entity (B_Node, Last (Literals (Def)));
|
14703 |
|
|
Set_Etype (B_Node, T);
|
14704 |
|
|
Set_Is_Static_Expression (B_Node, True);
|
14705 |
|
|
|
14706 |
|
|
Set_High_Bound (R_Node, B_Node);
|
14707 |
|
|
|
14708 |
|
|
-- Initialize various fields of the type. Some of this information
|
14709 |
|
|
-- may be overwritten later through rep.clauses.
|
14710 |
|
|
|
14711 |
|
|
Set_Scalar_Range (T, R_Node);
|
14712 |
|
|
Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
|
14713 |
|
|
Set_Enum_Esize (T);
|
14714 |
|
|
Set_Enum_Pos_To_Rep (T, Empty);
|
14715 |
|
|
|
14716 |
|
|
-- Set Discard_Names if configuration pragma set, or if there is
|
14717 |
|
|
-- a parameterless pragma in the current declarative region
|
14718 |
|
|
|
14719 |
|
|
if Global_Discard_Names
|
14720 |
|
|
or else Discard_Names (Scope (T))
|
14721 |
|
|
then
|
14722 |
|
|
Set_Discard_Names (T);
|
14723 |
|
|
end if;
|
14724 |
|
|
|
14725 |
|
|
-- Process end label if there is one
|
14726 |
|
|
|
14727 |
|
|
if Present (Def) then
|
14728 |
|
|
Process_End_Label (Def, 'e', T);
|
14729 |
|
|
end if;
|
14730 |
|
|
end Enumeration_Type_Declaration;
|
14731 |
|
|
|
14732 |
|
|
---------------------------------
|
14733 |
|
|
-- Expand_To_Stored_Constraint --
|
14734 |
|
|
---------------------------------
|
14735 |
|
|
|
14736 |
|
|
function Expand_To_Stored_Constraint
|
14737 |
|
|
(Typ : Entity_Id;
|
14738 |
|
|
Constraint : Elist_Id) return Elist_Id
|
14739 |
|
|
is
|
14740 |
|
|
Explicitly_Discriminated_Type : Entity_Id;
|
14741 |
|
|
Expansion : Elist_Id;
|
14742 |
|
|
Discriminant : Entity_Id;
|
14743 |
|
|
|
14744 |
|
|
function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
|
14745 |
|
|
-- Find the nearest type that actually specifies discriminants
|
14746 |
|
|
|
14747 |
|
|
---------------------------------
|
14748 |
|
|
-- Type_With_Explicit_Discrims --
|
14749 |
|
|
---------------------------------
|
14750 |
|
|
|
14751 |
|
|
function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
|
14752 |
|
|
Typ : constant E := Base_Type (Id);
|
14753 |
|
|
|
14754 |
|
|
begin
|
14755 |
|
|
if Ekind (Typ) in Incomplete_Or_Private_Kind then
|
14756 |
|
|
if Present (Full_View (Typ)) then
|
14757 |
|
|
return Type_With_Explicit_Discrims (Full_View (Typ));
|
14758 |
|
|
end if;
|
14759 |
|
|
|
14760 |
|
|
else
|
14761 |
|
|
if Has_Discriminants (Typ) then
|
14762 |
|
|
return Typ;
|
14763 |
|
|
end if;
|
14764 |
|
|
end if;
|
14765 |
|
|
|
14766 |
|
|
if Etype (Typ) = Typ then
|
14767 |
|
|
return Empty;
|
14768 |
|
|
elsif Has_Discriminants (Typ) then
|
14769 |
|
|
return Typ;
|
14770 |
|
|
else
|
14771 |
|
|
return Type_With_Explicit_Discrims (Etype (Typ));
|
14772 |
|
|
end if;
|
14773 |
|
|
|
14774 |
|
|
end Type_With_Explicit_Discrims;
|
14775 |
|
|
|
14776 |
|
|
-- Start of processing for Expand_To_Stored_Constraint
|
14777 |
|
|
|
14778 |
|
|
begin
|
14779 |
|
|
if No (Constraint)
|
14780 |
|
|
or else Is_Empty_Elmt_List (Constraint)
|
14781 |
|
|
then
|
14782 |
|
|
return No_Elist;
|
14783 |
|
|
end if;
|
14784 |
|
|
|
14785 |
|
|
Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
|
14786 |
|
|
|
14787 |
|
|
if No (Explicitly_Discriminated_Type) then
|
14788 |
|
|
return No_Elist;
|
14789 |
|
|
end if;
|
14790 |
|
|
|
14791 |
|
|
Expansion := New_Elmt_List;
|
14792 |
|
|
|
14793 |
|
|
Discriminant :=
|
14794 |
|
|
First_Stored_Discriminant (Explicitly_Discriminated_Type);
|
14795 |
|
|
while Present (Discriminant) loop
|
14796 |
|
|
Append_Elmt (
|
14797 |
|
|
Get_Discriminant_Value (
|
14798 |
|
|
Discriminant, Explicitly_Discriminated_Type, Constraint),
|
14799 |
|
|
Expansion);
|
14800 |
|
|
Next_Stored_Discriminant (Discriminant);
|
14801 |
|
|
end loop;
|
14802 |
|
|
|
14803 |
|
|
return Expansion;
|
14804 |
|
|
end Expand_To_Stored_Constraint;
|
14805 |
|
|
|
14806 |
|
|
---------------------------
|
14807 |
|
|
-- Find_Hidden_Interface --
|
14808 |
|
|
---------------------------
|
14809 |
|
|
|
14810 |
|
|
function Find_Hidden_Interface
|
14811 |
|
|
(Src : Elist_Id;
|
14812 |
|
|
Dest : Elist_Id) return Entity_Id
|
14813 |
|
|
is
|
14814 |
|
|
Iface : Entity_Id;
|
14815 |
|
|
Iface_Elmt : Elmt_Id;
|
14816 |
|
|
|
14817 |
|
|
begin
|
14818 |
|
|
if Present (Src) and then Present (Dest) then
|
14819 |
|
|
Iface_Elmt := First_Elmt (Src);
|
14820 |
|
|
while Present (Iface_Elmt) loop
|
14821 |
|
|
Iface := Node (Iface_Elmt);
|
14822 |
|
|
|
14823 |
|
|
if Is_Interface (Iface)
|
14824 |
|
|
and then not Contain_Interface (Iface, Dest)
|
14825 |
|
|
then
|
14826 |
|
|
return Iface;
|
14827 |
|
|
end if;
|
14828 |
|
|
|
14829 |
|
|
Next_Elmt (Iface_Elmt);
|
14830 |
|
|
end loop;
|
14831 |
|
|
end if;
|
14832 |
|
|
|
14833 |
|
|
return Empty;
|
14834 |
|
|
end Find_Hidden_Interface;
|
14835 |
|
|
|
14836 |
|
|
--------------------
|
14837 |
|
|
-- Find_Type_Name --
|
14838 |
|
|
--------------------
|
14839 |
|
|
|
14840 |
|
|
function Find_Type_Name (N : Node_Id) return Entity_Id is
|
14841 |
|
|
Id : constant Entity_Id := Defining_Identifier (N);
|
14842 |
|
|
Prev : Entity_Id;
|
14843 |
|
|
New_Id : Entity_Id;
|
14844 |
|
|
Prev_Par : Node_Id;
|
14845 |
|
|
|
14846 |
|
|
procedure Tag_Mismatch;
|
14847 |
|
|
-- Diagnose a tagged partial view whose full view is untagged.
|
14848 |
|
|
-- We post the message on the full view, with a reference to
|
14849 |
|
|
-- the previous partial view. The partial view can be private
|
14850 |
|
|
-- or incomplete, and these are handled in a different manner,
|
14851 |
|
|
-- so we determine the position of the error message from the
|
14852 |
|
|
-- respective slocs of both.
|
14853 |
|
|
|
14854 |
|
|
------------------
|
14855 |
|
|
-- Tag_Mismatch --
|
14856 |
|
|
------------------
|
14857 |
|
|
|
14858 |
|
|
procedure Tag_Mismatch is
|
14859 |
|
|
begin
|
14860 |
|
|
if Sloc (Prev) < Sloc (Id) then
|
14861 |
|
|
if Ada_Version >= Ada_2012
|
14862 |
|
|
and then Nkind (N) = N_Private_Type_Declaration
|
14863 |
|
|
then
|
14864 |
|
|
Error_Msg_NE
|
14865 |
|
|
("declaration of private } must be a tagged type ", Id, Prev);
|
14866 |
|
|
else
|
14867 |
|
|
Error_Msg_NE
|
14868 |
|
|
("full declaration of } must be a tagged type ", Id, Prev);
|
14869 |
|
|
end if;
|
14870 |
|
|
else
|
14871 |
|
|
if Ada_Version >= Ada_2012
|
14872 |
|
|
and then Nkind (N) = N_Private_Type_Declaration
|
14873 |
|
|
then
|
14874 |
|
|
Error_Msg_NE
|
14875 |
|
|
("declaration of private } must be a tagged type ", Prev, Id);
|
14876 |
|
|
else
|
14877 |
|
|
Error_Msg_NE
|
14878 |
|
|
("full declaration of } must be a tagged type ", Prev, Id);
|
14879 |
|
|
end if;
|
14880 |
|
|
end if;
|
14881 |
|
|
end Tag_Mismatch;
|
14882 |
|
|
|
14883 |
|
|
-- Start of processing for Find_Type_Name
|
14884 |
|
|
|
14885 |
|
|
begin
|
14886 |
|
|
-- Find incomplete declaration, if one was given
|
14887 |
|
|
|
14888 |
|
|
Prev := Current_Entity_In_Scope (Id);
|
14889 |
|
|
|
14890 |
|
|
-- New type declaration
|
14891 |
|
|
|
14892 |
|
|
if No (Prev) then
|
14893 |
|
|
Enter_Name (Id);
|
14894 |
|
|
return Id;
|
14895 |
|
|
|
14896 |
|
|
-- Previous declaration exists
|
14897 |
|
|
|
14898 |
|
|
else
|
14899 |
|
|
Prev_Par := Parent (Prev);
|
14900 |
|
|
|
14901 |
|
|
-- Error if not incomplete/private case except if previous
|
14902 |
|
|
-- declaration is implicit, etc. Enter_Name will emit error if
|
14903 |
|
|
-- appropriate.
|
14904 |
|
|
|
14905 |
|
|
if not Is_Incomplete_Or_Private_Type (Prev) then
|
14906 |
|
|
Enter_Name (Id);
|
14907 |
|
|
New_Id := Id;
|
14908 |
|
|
|
14909 |
|
|
-- Check invalid completion of private or incomplete type
|
14910 |
|
|
|
14911 |
|
|
elsif not Nkind_In (N, N_Full_Type_Declaration,
|
14912 |
|
|
N_Task_Type_Declaration,
|
14913 |
|
|
N_Protected_Type_Declaration)
|
14914 |
|
|
and then
|
14915 |
|
|
(Ada_Version < Ada_2012
|
14916 |
|
|
or else not Is_Incomplete_Type (Prev)
|
14917 |
|
|
or else not Nkind_In (N, N_Private_Type_Declaration,
|
14918 |
|
|
N_Private_Extension_Declaration))
|
14919 |
|
|
then
|
14920 |
|
|
-- Completion must be a full type declarations (RM 7.3(4))
|
14921 |
|
|
|
14922 |
|
|
Error_Msg_Sloc := Sloc (Prev);
|
14923 |
|
|
Error_Msg_NE ("invalid completion of }", Id, Prev);
|
14924 |
|
|
|
14925 |
|
|
-- Set scope of Id to avoid cascaded errors. Entity is never
|
14926 |
|
|
-- examined again, except when saving globals in generics.
|
14927 |
|
|
|
14928 |
|
|
Set_Scope (Id, Current_Scope);
|
14929 |
|
|
New_Id := Id;
|
14930 |
|
|
|
14931 |
|
|
-- If this is a repeated incomplete declaration, no further
|
14932 |
|
|
-- checks are possible.
|
14933 |
|
|
|
14934 |
|
|
if Nkind (N) = N_Incomplete_Type_Declaration then
|
14935 |
|
|
return Prev;
|
14936 |
|
|
end if;
|
14937 |
|
|
|
14938 |
|
|
-- Case of full declaration of incomplete type
|
14939 |
|
|
|
14940 |
|
|
elsif Ekind (Prev) = E_Incomplete_Type
|
14941 |
|
|
and then (Ada_Version < Ada_2012
|
14942 |
|
|
or else No (Full_View (Prev))
|
14943 |
|
|
or else not Is_Private_Type (Full_View (Prev)))
|
14944 |
|
|
then
|
14945 |
|
|
|
14946 |
|
|
-- Indicate that the incomplete declaration has a matching full
|
14947 |
|
|
-- declaration. The defining occurrence of the incomplete
|
14948 |
|
|
-- declaration remains the visible one, and the procedure
|
14949 |
|
|
-- Get_Full_View dereferences it whenever the type is used.
|
14950 |
|
|
|
14951 |
|
|
if Present (Full_View (Prev)) then
|
14952 |
|
|
Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
|
14953 |
|
|
end if;
|
14954 |
|
|
|
14955 |
|
|
Set_Full_View (Prev, Id);
|
14956 |
|
|
Append_Entity (Id, Current_Scope);
|
14957 |
|
|
Set_Is_Public (Id, Is_Public (Prev));
|
14958 |
|
|
Set_Is_Internal (Id);
|
14959 |
|
|
New_Id := Prev;
|
14960 |
|
|
|
14961 |
|
|
-- If the incomplete view is tagged, a class_wide type has been
|
14962 |
|
|
-- created already. Use it for the private type as well, in order
|
14963 |
|
|
-- to prevent multiple incompatible class-wide types that may be
|
14964 |
|
|
-- created for self-referential anonymous access components.
|
14965 |
|
|
|
14966 |
|
|
if Is_Tagged_Type (Prev)
|
14967 |
|
|
and then Present (Class_Wide_Type (Prev))
|
14968 |
|
|
then
|
14969 |
|
|
Set_Ekind (Id, Ekind (Prev)); -- will be reset later
|
14970 |
|
|
Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
|
14971 |
|
|
|
14972 |
|
|
-- If the incomplete type is completed by a private declaration
|
14973 |
|
|
-- the class-wide type remains associated with the incomplete
|
14974 |
|
|
-- type, to prevent order-of-elaboration issues in gigi, else
|
14975 |
|
|
-- we associate the class-wide type with the known full view.
|
14976 |
|
|
|
14977 |
|
|
if Nkind (N) /= N_Private_Type_Declaration then
|
14978 |
|
|
Set_Etype (Class_Wide_Type (Id), Id);
|
14979 |
|
|
end if;
|
14980 |
|
|
end if;
|
14981 |
|
|
|
14982 |
|
|
-- Case of full declaration of private type
|
14983 |
|
|
|
14984 |
|
|
else
|
14985 |
|
|
-- If the private type was a completion of an incomplete type then
|
14986 |
|
|
-- update Prev to reference the private type
|
14987 |
|
|
|
14988 |
|
|
if Ada_Version >= Ada_2012
|
14989 |
|
|
and then Ekind (Prev) = E_Incomplete_Type
|
14990 |
|
|
and then Present (Full_View (Prev))
|
14991 |
|
|
and then Is_Private_Type (Full_View (Prev))
|
14992 |
|
|
then
|
14993 |
|
|
Prev := Full_View (Prev);
|
14994 |
|
|
Prev_Par := Parent (Prev);
|
14995 |
|
|
end if;
|
14996 |
|
|
|
14997 |
|
|
if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
|
14998 |
|
|
if Etype (Prev) /= Prev then
|
14999 |
|
|
|
15000 |
|
|
-- Prev is a private subtype or a derived type, and needs
|
15001 |
|
|
-- no completion.
|
15002 |
|
|
|
15003 |
|
|
Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
|
15004 |
|
|
New_Id := Id;
|
15005 |
|
|
|
15006 |
|
|
elsif Ekind (Prev) = E_Private_Type
|
15007 |
|
|
and then Nkind_In (N, N_Task_Type_Declaration,
|
15008 |
|
|
N_Protected_Type_Declaration)
|
15009 |
|
|
then
|
15010 |
|
|
Error_Msg_N
|
15011 |
|
|
("completion of nonlimited type cannot be limited", N);
|
15012 |
|
|
|
15013 |
|
|
elsif Ekind (Prev) = E_Record_Type_With_Private
|
15014 |
|
|
and then Nkind_In (N, N_Task_Type_Declaration,
|
15015 |
|
|
N_Protected_Type_Declaration)
|
15016 |
|
|
then
|
15017 |
|
|
if not Is_Limited_Record (Prev) then
|
15018 |
|
|
Error_Msg_N
|
15019 |
|
|
("completion of nonlimited type cannot be limited", N);
|
15020 |
|
|
|
15021 |
|
|
elsif No (Interface_List (N)) then
|
15022 |
|
|
Error_Msg_N
|
15023 |
|
|
("completion of tagged private type must be tagged",
|
15024 |
|
|
N);
|
15025 |
|
|
end if;
|
15026 |
|
|
|
15027 |
|
|
elsif Nkind (N) = N_Full_Type_Declaration
|
15028 |
|
|
and then
|
15029 |
|
|
Nkind (Type_Definition (N)) = N_Record_Definition
|
15030 |
|
|
and then Interface_Present (Type_Definition (N))
|
15031 |
|
|
then
|
15032 |
|
|
Error_Msg_N
|
15033 |
|
|
("completion of private type cannot be an interface", N);
|
15034 |
|
|
end if;
|
15035 |
|
|
|
15036 |
|
|
-- Ada 2005 (AI-251): Private extension declaration of a task
|
15037 |
|
|
-- type or a protected type. This case arises when covering
|
15038 |
|
|
-- interface types.
|
15039 |
|
|
|
15040 |
|
|
elsif Nkind_In (N, N_Task_Type_Declaration,
|
15041 |
|
|
N_Protected_Type_Declaration)
|
15042 |
|
|
then
|
15043 |
|
|
null;
|
15044 |
|
|
|
15045 |
|
|
elsif Nkind (N) /= N_Full_Type_Declaration
|
15046 |
|
|
or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
|
15047 |
|
|
then
|
15048 |
|
|
Error_Msg_N
|
15049 |
|
|
("full view of private extension must be an extension", N);
|
15050 |
|
|
|
15051 |
|
|
elsif not (Abstract_Present (Parent (Prev)))
|
15052 |
|
|
and then Abstract_Present (Type_Definition (N))
|
15053 |
|
|
then
|
15054 |
|
|
Error_Msg_N
|
15055 |
|
|
("full view of non-abstract extension cannot be abstract", N);
|
15056 |
|
|
end if;
|
15057 |
|
|
|
15058 |
|
|
if not In_Private_Part (Current_Scope) then
|
15059 |
|
|
Error_Msg_N
|
15060 |
|
|
("declaration of full view must appear in private part", N);
|
15061 |
|
|
end if;
|
15062 |
|
|
|
15063 |
|
|
Copy_And_Swap (Prev, Id);
|
15064 |
|
|
Set_Has_Private_Declaration (Prev);
|
15065 |
|
|
Set_Has_Private_Declaration (Id);
|
15066 |
|
|
|
15067 |
|
|
-- Preserve aspect and iterator flags that may have been set on
|
15068 |
|
|
-- the partial view.
|
15069 |
|
|
|
15070 |
|
|
Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
|
15071 |
|
|
Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
|
15072 |
|
|
|
15073 |
|
|
-- If no error, propagate freeze_node from private to full view.
|
15074 |
|
|
-- It may have been generated for an early operational item.
|
15075 |
|
|
|
15076 |
|
|
if Present (Freeze_Node (Id))
|
15077 |
|
|
and then Serious_Errors_Detected = 0
|
15078 |
|
|
and then No (Full_View (Id))
|
15079 |
|
|
then
|
15080 |
|
|
Set_Freeze_Node (Prev, Freeze_Node (Id));
|
15081 |
|
|
Set_Freeze_Node (Id, Empty);
|
15082 |
|
|
Set_First_Rep_Item (Prev, First_Rep_Item (Id));
|
15083 |
|
|
end if;
|
15084 |
|
|
|
15085 |
|
|
Set_Full_View (Id, Prev);
|
15086 |
|
|
New_Id := Prev;
|
15087 |
|
|
end if;
|
15088 |
|
|
|
15089 |
|
|
-- Verify that full declaration conforms to partial one
|
15090 |
|
|
|
15091 |
|
|
if Is_Incomplete_Or_Private_Type (Prev)
|
15092 |
|
|
and then Present (Discriminant_Specifications (Prev_Par))
|
15093 |
|
|
then
|
15094 |
|
|
if Present (Discriminant_Specifications (N)) then
|
15095 |
|
|
if Ekind (Prev) = E_Incomplete_Type then
|
15096 |
|
|
Check_Discriminant_Conformance (N, Prev, Prev);
|
15097 |
|
|
else
|
15098 |
|
|
Check_Discriminant_Conformance (N, Prev, Id);
|
15099 |
|
|
end if;
|
15100 |
|
|
|
15101 |
|
|
else
|
15102 |
|
|
Error_Msg_N
|
15103 |
|
|
("missing discriminants in full type declaration", N);
|
15104 |
|
|
|
15105 |
|
|
-- To avoid cascaded errors on subsequent use, share the
|
15106 |
|
|
-- discriminants of the partial view.
|
15107 |
|
|
|
15108 |
|
|
Set_Discriminant_Specifications (N,
|
15109 |
|
|
Discriminant_Specifications (Prev_Par));
|
15110 |
|
|
end if;
|
15111 |
|
|
end if;
|
15112 |
|
|
|
15113 |
|
|
-- A prior untagged partial view can have an associated class-wide
|
15114 |
|
|
-- type due to use of the class attribute, and in this case the full
|
15115 |
|
|
-- type must also be tagged. This Ada 95 usage is deprecated in favor
|
15116 |
|
|
-- of incomplete tagged declarations, but we check for it.
|
15117 |
|
|
|
15118 |
|
|
if Is_Type (Prev)
|
15119 |
|
|
and then (Is_Tagged_Type (Prev)
|
15120 |
|
|
or else Present (Class_Wide_Type (Prev)))
|
15121 |
|
|
then
|
15122 |
|
|
-- Ada 2012 (AI05-0162): A private type may be the completion of
|
15123 |
|
|
-- an incomplete type
|
15124 |
|
|
|
15125 |
|
|
if Ada_Version >= Ada_2012
|
15126 |
|
|
and then Is_Incomplete_Type (Prev)
|
15127 |
|
|
and then Nkind_In (N, N_Private_Type_Declaration,
|
15128 |
|
|
N_Private_Extension_Declaration)
|
15129 |
|
|
then
|
15130 |
|
|
-- No need to check private extensions since they are tagged
|
15131 |
|
|
|
15132 |
|
|
if Nkind (N) = N_Private_Type_Declaration
|
15133 |
|
|
and then not Tagged_Present (N)
|
15134 |
|
|
then
|
15135 |
|
|
Tag_Mismatch;
|
15136 |
|
|
end if;
|
15137 |
|
|
|
15138 |
|
|
-- The full declaration is either a tagged type (including
|
15139 |
|
|
-- a synchronized type that implements interfaces) or a
|
15140 |
|
|
-- type extension, otherwise this is an error.
|
15141 |
|
|
|
15142 |
|
|
elsif Nkind_In (N, N_Task_Type_Declaration,
|
15143 |
|
|
N_Protected_Type_Declaration)
|
15144 |
|
|
then
|
15145 |
|
|
if No (Interface_List (N))
|
15146 |
|
|
and then not Error_Posted (N)
|
15147 |
|
|
then
|
15148 |
|
|
Tag_Mismatch;
|
15149 |
|
|
end if;
|
15150 |
|
|
|
15151 |
|
|
elsif Nkind (Type_Definition (N)) = N_Record_Definition then
|
15152 |
|
|
|
15153 |
|
|
-- Indicate that the previous declaration (tagged incomplete
|
15154 |
|
|
-- or private declaration) requires the same on the full one.
|
15155 |
|
|
|
15156 |
|
|
if not Tagged_Present (Type_Definition (N)) then
|
15157 |
|
|
Tag_Mismatch;
|
15158 |
|
|
Set_Is_Tagged_Type (Id);
|
15159 |
|
|
end if;
|
15160 |
|
|
|
15161 |
|
|
elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
|
15162 |
|
|
if No (Record_Extension_Part (Type_Definition (N))) then
|
15163 |
|
|
Error_Msg_NE
|
15164 |
|
|
("full declaration of } must be a record extension",
|
15165 |
|
|
Prev, Id);
|
15166 |
|
|
|
15167 |
|
|
-- Set some attributes to produce a usable full view
|
15168 |
|
|
|
15169 |
|
|
Set_Is_Tagged_Type (Id);
|
15170 |
|
|
end if;
|
15171 |
|
|
|
15172 |
|
|
else
|
15173 |
|
|
Tag_Mismatch;
|
15174 |
|
|
end if;
|
15175 |
|
|
end if;
|
15176 |
|
|
|
15177 |
|
|
if Present (Prev)
|
15178 |
|
|
and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
|
15179 |
|
|
and then Present (Premature_Use (Parent (Prev)))
|
15180 |
|
|
then
|
15181 |
|
|
Error_Msg_Sloc := Sloc (N);
|
15182 |
|
|
Error_Msg_N
|
15183 |
|
|
("\full declaration #", Premature_Use (Parent (Prev)));
|
15184 |
|
|
end if;
|
15185 |
|
|
|
15186 |
|
|
return New_Id;
|
15187 |
|
|
end if;
|
15188 |
|
|
end Find_Type_Name;
|
15189 |
|
|
|
15190 |
|
|
-------------------------
|
15191 |
|
|
-- Find_Type_Of_Object --
|
15192 |
|
|
-------------------------
|
15193 |
|
|
|
15194 |
|
|
function Find_Type_Of_Object
|
15195 |
|
|
(Obj_Def : Node_Id;
|
15196 |
|
|
Related_Nod : Node_Id) return Entity_Id
|
15197 |
|
|
is
|
15198 |
|
|
Def_Kind : constant Node_Kind := Nkind (Obj_Def);
|
15199 |
|
|
P : Node_Id := Parent (Obj_Def);
|
15200 |
|
|
T : Entity_Id;
|
15201 |
|
|
Nam : Name_Id;
|
15202 |
|
|
|
15203 |
|
|
begin
|
15204 |
|
|
-- If the parent is a component_definition node we climb to the
|
15205 |
|
|
-- component_declaration node
|
15206 |
|
|
|
15207 |
|
|
if Nkind (P) = N_Component_Definition then
|
15208 |
|
|
P := Parent (P);
|
15209 |
|
|
end if;
|
15210 |
|
|
|
15211 |
|
|
-- Case of an anonymous array subtype
|
15212 |
|
|
|
15213 |
|
|
if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
|
15214 |
|
|
N_Unconstrained_Array_Definition)
|
15215 |
|
|
then
|
15216 |
|
|
T := Empty;
|
15217 |
|
|
Array_Type_Declaration (T, Obj_Def);
|
15218 |
|
|
|
15219 |
|
|
-- Create an explicit subtype whenever possible
|
15220 |
|
|
|
15221 |
|
|
elsif Nkind (P) /= N_Component_Declaration
|
15222 |
|
|
and then Def_Kind = N_Subtype_Indication
|
15223 |
|
|
then
|
15224 |
|
|
-- Base name of subtype on object name, which will be unique in
|
15225 |
|
|
-- the current scope.
|
15226 |
|
|
|
15227 |
|
|
-- If this is a duplicate declaration, return base type, to avoid
|
15228 |
|
|
-- generating duplicate anonymous types.
|
15229 |
|
|
|
15230 |
|
|
if Error_Posted (P) then
|
15231 |
|
|
Analyze (Subtype_Mark (Obj_Def));
|
15232 |
|
|
return Entity (Subtype_Mark (Obj_Def));
|
15233 |
|
|
end if;
|
15234 |
|
|
|
15235 |
|
|
Nam :=
|
15236 |
|
|
New_External_Name
|
15237 |
|
|
(Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
|
15238 |
|
|
|
15239 |
|
|
T := Make_Defining_Identifier (Sloc (P), Nam);
|
15240 |
|
|
|
15241 |
|
|
Insert_Action (Obj_Def,
|
15242 |
|
|
Make_Subtype_Declaration (Sloc (P),
|
15243 |
|
|
Defining_Identifier => T,
|
15244 |
|
|
Subtype_Indication => Relocate_Node (Obj_Def)));
|
15245 |
|
|
|
15246 |
|
|
-- This subtype may need freezing, and this will not be done
|
15247 |
|
|
-- automatically if the object declaration is not in declarative
|
15248 |
|
|
-- part. Since this is an object declaration, the type cannot always
|
15249 |
|
|
-- be frozen here. Deferred constants do not freeze their type
|
15250 |
|
|
-- (which often enough will be private).
|
15251 |
|
|
|
15252 |
|
|
if Nkind (P) = N_Object_Declaration
|
15253 |
|
|
and then Constant_Present (P)
|
15254 |
|
|
and then No (Expression (P))
|
15255 |
|
|
then
|
15256 |
|
|
null;
|
15257 |
|
|
else
|
15258 |
|
|
Insert_Actions (Obj_Def, Freeze_Entity (T, P));
|
15259 |
|
|
end if;
|
15260 |
|
|
|
15261 |
|
|
-- Ada 2005 AI-406: the object definition in an object declaration
|
15262 |
|
|
-- can be an access definition.
|
15263 |
|
|
|
15264 |
|
|
elsif Def_Kind = N_Access_Definition then
|
15265 |
|
|
T := Access_Definition (Related_Nod, Obj_Def);
|
15266 |
|
|
|
15267 |
|
|
Set_Is_Local_Anonymous_Access
|
15268 |
|
|
(T,
|
15269 |
|
|
V => (Ada_Version < Ada_2012)
|
15270 |
|
|
or else (Nkind (P) /= N_Object_Declaration)
|
15271 |
|
|
or else Is_Library_Level_Entity (Defining_Identifier (P)));
|
15272 |
|
|
|
15273 |
|
|
-- Otherwise, the object definition is just a subtype_mark
|
15274 |
|
|
|
15275 |
|
|
else
|
15276 |
|
|
T := Process_Subtype (Obj_Def, Related_Nod);
|
15277 |
|
|
|
15278 |
|
|
-- If expansion is disabled an object definition that is an aggregate
|
15279 |
|
|
-- will not get expanded and may lead to scoping problems in the back
|
15280 |
|
|
-- end, if the object is referenced in an inner scope. In that case
|
15281 |
|
|
-- create an itype reference for the object definition now. This
|
15282 |
|
|
-- may be redundant in some cases, but harmless.
|
15283 |
|
|
|
15284 |
|
|
if Is_Itype (T)
|
15285 |
|
|
and then Nkind (Related_Nod) = N_Object_Declaration
|
15286 |
|
|
and then ASIS_Mode
|
15287 |
|
|
then
|
15288 |
|
|
Build_Itype_Reference (T, Related_Nod);
|
15289 |
|
|
end if;
|
15290 |
|
|
end if;
|
15291 |
|
|
|
15292 |
|
|
return T;
|
15293 |
|
|
end Find_Type_Of_Object;
|
15294 |
|
|
|
15295 |
|
|
--------------------------------
|
15296 |
|
|
-- Find_Type_Of_Subtype_Indic --
|
15297 |
|
|
--------------------------------
|
15298 |
|
|
|
15299 |
|
|
function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
|
15300 |
|
|
Typ : Entity_Id;
|
15301 |
|
|
|
15302 |
|
|
begin
|
15303 |
|
|
-- Case of subtype mark with a constraint
|
15304 |
|
|
|
15305 |
|
|
if Nkind (S) = N_Subtype_Indication then
|
15306 |
|
|
Find_Type (Subtype_Mark (S));
|
15307 |
|
|
Typ := Entity (Subtype_Mark (S));
|
15308 |
|
|
|
15309 |
|
|
if not
|
15310 |
|
|
Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
|
15311 |
|
|
then
|
15312 |
|
|
Error_Msg_N
|
15313 |
|
|
("incorrect constraint for this kind of type", Constraint (S));
|
15314 |
|
|
Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
|
15315 |
|
|
end if;
|
15316 |
|
|
|
15317 |
|
|
-- Otherwise we have a subtype mark without a constraint
|
15318 |
|
|
|
15319 |
|
|
elsif Error_Posted (S) then
|
15320 |
|
|
Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
|
15321 |
|
|
return Any_Type;
|
15322 |
|
|
|
15323 |
|
|
else
|
15324 |
|
|
Find_Type (S);
|
15325 |
|
|
Typ := Entity (S);
|
15326 |
|
|
end if;
|
15327 |
|
|
|
15328 |
|
|
-- Check No_Wide_Characters restriction
|
15329 |
|
|
|
15330 |
|
|
Check_Wide_Character_Restriction (Typ, S);
|
15331 |
|
|
|
15332 |
|
|
return Typ;
|
15333 |
|
|
end Find_Type_Of_Subtype_Indic;
|
15334 |
|
|
|
15335 |
|
|
-------------------------------------
|
15336 |
|
|
-- Floating_Point_Type_Declaration --
|
15337 |
|
|
-------------------------------------
|
15338 |
|
|
|
15339 |
|
|
procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
|
15340 |
|
|
Digs : constant Node_Id := Digits_Expression (Def);
|
15341 |
|
|
Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
|
15342 |
|
|
Digs_Val : Uint;
|
15343 |
|
|
Base_Typ : Entity_Id;
|
15344 |
|
|
Implicit_Base : Entity_Id;
|
15345 |
|
|
Bound : Node_Id;
|
15346 |
|
|
|
15347 |
|
|
function Can_Derive_From (E : Entity_Id) return Boolean;
|
15348 |
|
|
-- Find if given digits value, and possibly a specified range, allows
|
15349 |
|
|
-- derivation from specified type
|
15350 |
|
|
|
15351 |
|
|
function Find_Base_Type return Entity_Id;
|
15352 |
|
|
-- Find a predefined base type that Def can derive from, or generate
|
15353 |
|
|
-- an error and substitute Long_Long_Float if none exists.
|
15354 |
|
|
|
15355 |
|
|
---------------------
|
15356 |
|
|
-- Can_Derive_From --
|
15357 |
|
|
---------------------
|
15358 |
|
|
|
15359 |
|
|
function Can_Derive_From (E : Entity_Id) return Boolean is
|
15360 |
|
|
Spec : constant Entity_Id := Real_Range_Specification (Def);
|
15361 |
|
|
|
15362 |
|
|
begin
|
15363 |
|
|
-- Check specified "digits" constraint
|
15364 |
|
|
|
15365 |
|
|
if Digs_Val > Digits_Value (E) then
|
15366 |
|
|
return False;
|
15367 |
|
|
end if;
|
15368 |
|
|
|
15369 |
|
|
-- Avoid types not matching pragma Float_Representation, if present
|
15370 |
|
|
|
15371 |
|
|
if (Opt.Float_Format = 'I' and then Float_Rep (E) /= IEEE_Binary)
|
15372 |
|
|
or else
|
15373 |
|
|
(Opt.Float_Format = 'V' and then Float_Rep (E) /= VAX_Native)
|
15374 |
|
|
then
|
15375 |
|
|
return False;
|
15376 |
|
|
end if;
|
15377 |
|
|
|
15378 |
|
|
-- Check for matching range, if specified
|
15379 |
|
|
|
15380 |
|
|
if Present (Spec) then
|
15381 |
|
|
if Expr_Value_R (Type_Low_Bound (E)) >
|
15382 |
|
|
Expr_Value_R (Low_Bound (Spec))
|
15383 |
|
|
then
|
15384 |
|
|
return False;
|
15385 |
|
|
end if;
|
15386 |
|
|
|
15387 |
|
|
if Expr_Value_R (Type_High_Bound (E)) <
|
15388 |
|
|
Expr_Value_R (High_Bound (Spec))
|
15389 |
|
|
then
|
15390 |
|
|
return False;
|
15391 |
|
|
end if;
|
15392 |
|
|
end if;
|
15393 |
|
|
|
15394 |
|
|
return True;
|
15395 |
|
|
end Can_Derive_From;
|
15396 |
|
|
|
15397 |
|
|
--------------------
|
15398 |
|
|
-- Find_Base_Type --
|
15399 |
|
|
--------------------
|
15400 |
|
|
|
15401 |
|
|
function Find_Base_Type return Entity_Id is
|
15402 |
|
|
Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
|
15403 |
|
|
|
15404 |
|
|
begin
|
15405 |
|
|
-- Iterate over the predefined types in order, returning the first
|
15406 |
|
|
-- one that Def can derive from.
|
15407 |
|
|
|
15408 |
|
|
while Present (Choice) loop
|
15409 |
|
|
if Can_Derive_From (Node (Choice)) then
|
15410 |
|
|
return Node (Choice);
|
15411 |
|
|
end if;
|
15412 |
|
|
|
15413 |
|
|
Next_Elmt (Choice);
|
15414 |
|
|
end loop;
|
15415 |
|
|
|
15416 |
|
|
-- If we can't derive from any existing type, use Long_Long_Float
|
15417 |
|
|
-- and give appropriate message explaining the problem.
|
15418 |
|
|
|
15419 |
|
|
if Digs_Val > Max_Digs_Val then
|
15420 |
|
|
-- It might be the case that there is a type with the requested
|
15421 |
|
|
-- range, just not the combination of digits and range.
|
15422 |
|
|
|
15423 |
|
|
Error_Msg_N
|
15424 |
|
|
("no predefined type has requested range and precision",
|
15425 |
|
|
Real_Range_Specification (Def));
|
15426 |
|
|
|
15427 |
|
|
else
|
15428 |
|
|
Error_Msg_N
|
15429 |
|
|
("range too large for any predefined type",
|
15430 |
|
|
Real_Range_Specification (Def));
|
15431 |
|
|
end if;
|
15432 |
|
|
|
15433 |
|
|
return Standard_Long_Long_Float;
|
15434 |
|
|
end Find_Base_Type;
|
15435 |
|
|
|
15436 |
|
|
-- Start of processing for Floating_Point_Type_Declaration
|
15437 |
|
|
|
15438 |
|
|
begin
|
15439 |
|
|
Check_Restriction (No_Floating_Point, Def);
|
15440 |
|
|
|
15441 |
|
|
-- Create an implicit base type
|
15442 |
|
|
|
15443 |
|
|
Implicit_Base :=
|
15444 |
|
|
Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
|
15445 |
|
|
|
15446 |
|
|
-- Analyze and verify digits value
|
15447 |
|
|
|
15448 |
|
|
Analyze_And_Resolve (Digs, Any_Integer);
|
15449 |
|
|
Check_Digits_Expression (Digs);
|
15450 |
|
|
Digs_Val := Expr_Value (Digs);
|
15451 |
|
|
|
15452 |
|
|
-- Process possible range spec and find correct type to derive from
|
15453 |
|
|
|
15454 |
|
|
Process_Real_Range_Specification (Def);
|
15455 |
|
|
|
15456 |
|
|
-- Check that requested number of digits is not too high.
|
15457 |
|
|
|
15458 |
|
|
if Digs_Val > Max_Digs_Val then
|
15459 |
|
|
-- The check for Max_Base_Digits may be somewhat expensive, as it
|
15460 |
|
|
-- requires reading System, so only do it when necessary.
|
15461 |
|
|
|
15462 |
|
|
declare
|
15463 |
|
|
Max_Base_Digits : constant Uint :=
|
15464 |
|
|
Expr_Value
|
15465 |
|
|
(Expression
|
15466 |
|
|
(Parent (RTE (RE_Max_Base_Digits))));
|
15467 |
|
|
|
15468 |
|
|
begin
|
15469 |
|
|
if Digs_Val > Max_Base_Digits then
|
15470 |
|
|
Error_Msg_Uint_1 := Max_Base_Digits;
|
15471 |
|
|
Error_Msg_N ("digits value out of range, maximum is ^", Digs);
|
15472 |
|
|
|
15473 |
|
|
elsif No (Real_Range_Specification (Def)) then
|
15474 |
|
|
Error_Msg_Uint_1 := Max_Digs_Val;
|
15475 |
|
|
Error_Msg_N ("types with more than ^ digits need range spec "
|
15476 |
|
|
& "(RM 3.5.7(6))", Digs);
|
15477 |
|
|
end if;
|
15478 |
|
|
end;
|
15479 |
|
|
end if;
|
15480 |
|
|
|
15481 |
|
|
-- Find a suitable type to derive from or complain and use a substitute
|
15482 |
|
|
|
15483 |
|
|
Base_Typ := Find_Base_Type;
|
15484 |
|
|
|
15485 |
|
|
-- If there are bounds given in the declaration use them as the bounds
|
15486 |
|
|
-- of the type, otherwise use the bounds of the predefined base type
|
15487 |
|
|
-- that was chosen based on the Digits value.
|
15488 |
|
|
|
15489 |
|
|
if Present (Real_Range_Specification (Def)) then
|
15490 |
|
|
Set_Scalar_Range (T, Real_Range_Specification (Def));
|
15491 |
|
|
Set_Is_Constrained (T);
|
15492 |
|
|
|
15493 |
|
|
-- The bounds of this range must be converted to machine numbers
|
15494 |
|
|
-- in accordance with RM 4.9(38).
|
15495 |
|
|
|
15496 |
|
|
Bound := Type_Low_Bound (T);
|
15497 |
|
|
|
15498 |
|
|
if Nkind (Bound) = N_Real_Literal then
|
15499 |
|
|
Set_Realval
|
15500 |
|
|
(Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
|
15501 |
|
|
Set_Is_Machine_Number (Bound);
|
15502 |
|
|
end if;
|
15503 |
|
|
|
15504 |
|
|
Bound := Type_High_Bound (T);
|
15505 |
|
|
|
15506 |
|
|
if Nkind (Bound) = N_Real_Literal then
|
15507 |
|
|
Set_Realval
|
15508 |
|
|
(Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
|
15509 |
|
|
Set_Is_Machine_Number (Bound);
|
15510 |
|
|
end if;
|
15511 |
|
|
|
15512 |
|
|
else
|
15513 |
|
|
Set_Scalar_Range (T, Scalar_Range (Base_Typ));
|
15514 |
|
|
end if;
|
15515 |
|
|
|
15516 |
|
|
-- Complete definition of implicit base and declared first subtype
|
15517 |
|
|
|
15518 |
|
|
Set_Etype (Implicit_Base, Base_Typ);
|
15519 |
|
|
|
15520 |
|
|
Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
|
15521 |
|
|
Set_Size_Info (Implicit_Base, (Base_Typ));
|
15522 |
|
|
Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
|
15523 |
|
|
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
|
15524 |
|
|
Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
|
15525 |
|
|
Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
|
15526 |
|
|
|
15527 |
|
|
Set_Ekind (T, E_Floating_Point_Subtype);
|
15528 |
|
|
Set_Etype (T, Implicit_Base);
|
15529 |
|
|
|
15530 |
|
|
Set_Size_Info (T, (Implicit_Base));
|
15531 |
|
|
Set_RM_Size (T, RM_Size (Implicit_Base));
|
15532 |
|
|
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
|
15533 |
|
|
Set_Digits_Value (T, Digs_Val);
|
15534 |
|
|
end Floating_Point_Type_Declaration;
|
15535 |
|
|
|
15536 |
|
|
----------------------------
|
15537 |
|
|
-- Get_Discriminant_Value --
|
15538 |
|
|
----------------------------
|
15539 |
|
|
|
15540 |
|
|
-- This is the situation:
|
15541 |
|
|
|
15542 |
|
|
-- There is a non-derived type
|
15543 |
|
|
|
15544 |
|
|
-- type T0 (Dx, Dy, Dz...)
|
15545 |
|
|
|
15546 |
|
|
-- There are zero or more levels of derivation, with each derivation
|
15547 |
|
|
-- either purely inheriting the discriminants, or defining its own.
|
15548 |
|
|
|
15549 |
|
|
-- type Ti is new Ti-1
|
15550 |
|
|
-- or
|
15551 |
|
|
-- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
|
15552 |
|
|
-- or
|
15553 |
|
|
-- subtype Ti is ...
|
15554 |
|
|
|
15555 |
|
|
-- The subtype issue is avoided by the use of Original_Record_Component,
|
15556 |
|
|
-- and the fact that derived subtypes also derive the constraints.
|
15557 |
|
|
|
15558 |
|
|
-- This chain leads back from
|
15559 |
|
|
|
15560 |
|
|
-- Typ_For_Constraint
|
15561 |
|
|
|
15562 |
|
|
-- Typ_For_Constraint has discriminants, and the value for each
|
15563 |
|
|
-- discriminant is given by its corresponding Elmt of Constraints.
|
15564 |
|
|
|
15565 |
|
|
-- Discriminant is some discriminant in this hierarchy
|
15566 |
|
|
|
15567 |
|
|
-- We need to return its value
|
15568 |
|
|
|
15569 |
|
|
-- We do this by recursively searching each level, and looking for
|
15570 |
|
|
-- Discriminant. Once we get to the bottom, we start backing up
|
15571 |
|
|
-- returning the value for it which may in turn be a discriminant
|
15572 |
|
|
-- further up, so on the backup we continue the substitution.
|
15573 |
|
|
|
15574 |
|
|
function Get_Discriminant_Value
|
15575 |
|
|
(Discriminant : Entity_Id;
|
15576 |
|
|
Typ_For_Constraint : Entity_Id;
|
15577 |
|
|
Constraint : Elist_Id) return Node_Id
|
15578 |
|
|
is
|
15579 |
|
|
function Search_Derivation_Levels
|
15580 |
|
|
(Ti : Entity_Id;
|
15581 |
|
|
Discrim_Values : Elist_Id;
|
15582 |
|
|
Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
|
15583 |
|
|
-- This is the routine that performs the recursive search of levels
|
15584 |
|
|
-- as described above.
|
15585 |
|
|
|
15586 |
|
|
------------------------------
|
15587 |
|
|
-- Search_Derivation_Levels --
|
15588 |
|
|
------------------------------
|
15589 |
|
|
|
15590 |
|
|
function Search_Derivation_Levels
|
15591 |
|
|
(Ti : Entity_Id;
|
15592 |
|
|
Discrim_Values : Elist_Id;
|
15593 |
|
|
Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
|
15594 |
|
|
is
|
15595 |
|
|
Assoc : Elmt_Id;
|
15596 |
|
|
Disc : Entity_Id;
|
15597 |
|
|
Result : Node_Or_Entity_Id;
|
15598 |
|
|
Result_Entity : Node_Id;
|
15599 |
|
|
|
15600 |
|
|
begin
|
15601 |
|
|
-- If inappropriate type, return Error, this happens only in
|
15602 |
|
|
-- cascaded error situations, and we want to avoid a blow up.
|
15603 |
|
|
|
15604 |
|
|
if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
|
15605 |
|
|
return Error;
|
15606 |
|
|
end if;
|
15607 |
|
|
|
15608 |
|
|
-- Look deeper if possible. Use Stored_Constraints only for
|
15609 |
|
|
-- untagged types. For tagged types use the given constraint.
|
15610 |
|
|
-- This asymmetry needs explanation???
|
15611 |
|
|
|
15612 |
|
|
if not Stored_Discrim_Values
|
15613 |
|
|
and then Present (Stored_Constraint (Ti))
|
15614 |
|
|
and then not Is_Tagged_Type (Ti)
|
15615 |
|
|
then
|
15616 |
|
|
Result :=
|
15617 |
|
|
Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
|
15618 |
|
|
else
|
15619 |
|
|
declare
|
15620 |
|
|
Td : constant Entity_Id := Etype (Ti);
|
15621 |
|
|
|
15622 |
|
|
begin
|
15623 |
|
|
if Td = Ti then
|
15624 |
|
|
Result := Discriminant;
|
15625 |
|
|
|
15626 |
|
|
else
|
15627 |
|
|
if Present (Stored_Constraint (Ti)) then
|
15628 |
|
|
Result :=
|
15629 |
|
|
Search_Derivation_Levels
|
15630 |
|
|
(Td, Stored_Constraint (Ti), True);
|
15631 |
|
|
else
|
15632 |
|
|
Result :=
|
15633 |
|
|
Search_Derivation_Levels
|
15634 |
|
|
(Td, Discrim_Values, Stored_Discrim_Values);
|
15635 |
|
|
end if;
|
15636 |
|
|
end if;
|
15637 |
|
|
end;
|
15638 |
|
|
end if;
|
15639 |
|
|
|
15640 |
|
|
-- Extra underlying places to search, if not found above. For
|
15641 |
|
|
-- concurrent types, the relevant discriminant appears in the
|
15642 |
|
|
-- corresponding record. For a type derived from a private type
|
15643 |
|
|
-- without discriminant, the full view inherits the discriminants
|
15644 |
|
|
-- of the full view of the parent.
|
15645 |
|
|
|
15646 |
|
|
if Result = Discriminant then
|
15647 |
|
|
if Is_Concurrent_Type (Ti)
|
15648 |
|
|
and then Present (Corresponding_Record_Type (Ti))
|
15649 |
|
|
then
|
15650 |
|
|
Result :=
|
15651 |
|
|
Search_Derivation_Levels (
|
15652 |
|
|
Corresponding_Record_Type (Ti),
|
15653 |
|
|
Discrim_Values,
|
15654 |
|
|
Stored_Discrim_Values);
|
15655 |
|
|
|
15656 |
|
|
elsif Is_Private_Type (Ti)
|
15657 |
|
|
and then not Has_Discriminants (Ti)
|
15658 |
|
|
and then Present (Full_View (Ti))
|
15659 |
|
|
and then Etype (Full_View (Ti)) /= Ti
|
15660 |
|
|
then
|
15661 |
|
|
Result :=
|
15662 |
|
|
Search_Derivation_Levels (
|
15663 |
|
|
Full_View (Ti),
|
15664 |
|
|
Discrim_Values,
|
15665 |
|
|
Stored_Discrim_Values);
|
15666 |
|
|
end if;
|
15667 |
|
|
end if;
|
15668 |
|
|
|
15669 |
|
|
-- If Result is not a (reference to a) discriminant, return it,
|
15670 |
|
|
-- otherwise set Result_Entity to the discriminant.
|
15671 |
|
|
|
15672 |
|
|
if Nkind (Result) = N_Defining_Identifier then
|
15673 |
|
|
pragma Assert (Result = Discriminant);
|
15674 |
|
|
Result_Entity := Result;
|
15675 |
|
|
|
15676 |
|
|
else
|
15677 |
|
|
if not Denotes_Discriminant (Result) then
|
15678 |
|
|
return Result;
|
15679 |
|
|
end if;
|
15680 |
|
|
|
15681 |
|
|
Result_Entity := Entity (Result);
|
15682 |
|
|
end if;
|
15683 |
|
|
|
15684 |
|
|
-- See if this level of derivation actually has discriminants
|
15685 |
|
|
-- because tagged derivations can add them, hence the lower
|
15686 |
|
|
-- levels need not have any.
|
15687 |
|
|
|
15688 |
|
|
if not Has_Discriminants (Ti) then
|
15689 |
|
|
return Result;
|
15690 |
|
|
end if;
|
15691 |
|
|
|
15692 |
|
|
-- Scan Ti's discriminants for Result_Entity,
|
15693 |
|
|
-- and return its corresponding value, if any.
|
15694 |
|
|
|
15695 |
|
|
Result_Entity := Original_Record_Component (Result_Entity);
|
15696 |
|
|
|
15697 |
|
|
Assoc := First_Elmt (Discrim_Values);
|
15698 |
|
|
|
15699 |
|
|
if Stored_Discrim_Values then
|
15700 |
|
|
Disc := First_Stored_Discriminant (Ti);
|
15701 |
|
|
else
|
15702 |
|
|
Disc := First_Discriminant (Ti);
|
15703 |
|
|
end if;
|
15704 |
|
|
|
15705 |
|
|
while Present (Disc) loop
|
15706 |
|
|
pragma Assert (Present (Assoc));
|
15707 |
|
|
|
15708 |
|
|
if Original_Record_Component (Disc) = Result_Entity then
|
15709 |
|
|
return Node (Assoc);
|
15710 |
|
|
end if;
|
15711 |
|
|
|
15712 |
|
|
Next_Elmt (Assoc);
|
15713 |
|
|
|
15714 |
|
|
if Stored_Discrim_Values then
|
15715 |
|
|
Next_Stored_Discriminant (Disc);
|
15716 |
|
|
else
|
15717 |
|
|
Next_Discriminant (Disc);
|
15718 |
|
|
end if;
|
15719 |
|
|
end loop;
|
15720 |
|
|
|
15721 |
|
|
-- Could not find it
|
15722 |
|
|
--
|
15723 |
|
|
return Result;
|
15724 |
|
|
end Search_Derivation_Levels;
|
15725 |
|
|
|
15726 |
|
|
-- Local Variables
|
15727 |
|
|
|
15728 |
|
|
Result : Node_Or_Entity_Id;
|
15729 |
|
|
|
15730 |
|
|
-- Start of processing for Get_Discriminant_Value
|
15731 |
|
|
|
15732 |
|
|
begin
|
15733 |
|
|
-- ??? This routine is a gigantic mess and will be deleted. For the
|
15734 |
|
|
-- time being just test for the trivial case before calling recurse.
|
15735 |
|
|
|
15736 |
|
|
if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
|
15737 |
|
|
declare
|
15738 |
|
|
D : Entity_Id;
|
15739 |
|
|
E : Elmt_Id;
|
15740 |
|
|
|
15741 |
|
|
begin
|
15742 |
|
|
D := First_Discriminant (Typ_For_Constraint);
|
15743 |
|
|
E := First_Elmt (Constraint);
|
15744 |
|
|
while Present (D) loop
|
15745 |
|
|
if Chars (D) = Chars (Discriminant) then
|
15746 |
|
|
return Node (E);
|
15747 |
|
|
end if;
|
15748 |
|
|
|
15749 |
|
|
Next_Discriminant (D);
|
15750 |
|
|
Next_Elmt (E);
|
15751 |
|
|
end loop;
|
15752 |
|
|
end;
|
15753 |
|
|
end if;
|
15754 |
|
|
|
15755 |
|
|
Result := Search_Derivation_Levels
|
15756 |
|
|
(Typ_For_Constraint, Constraint, False);
|
15757 |
|
|
|
15758 |
|
|
-- ??? hack to disappear when this routine is gone
|
15759 |
|
|
|
15760 |
|
|
if Nkind (Result) = N_Defining_Identifier then
|
15761 |
|
|
declare
|
15762 |
|
|
D : Entity_Id;
|
15763 |
|
|
E : Elmt_Id;
|
15764 |
|
|
|
15765 |
|
|
begin
|
15766 |
|
|
D := First_Discriminant (Typ_For_Constraint);
|
15767 |
|
|
E := First_Elmt (Constraint);
|
15768 |
|
|
while Present (D) loop
|
15769 |
|
|
if Corresponding_Discriminant (D) = Discriminant then
|
15770 |
|
|
return Node (E);
|
15771 |
|
|
end if;
|
15772 |
|
|
|
15773 |
|
|
Next_Discriminant (D);
|
15774 |
|
|
Next_Elmt (E);
|
15775 |
|
|
end loop;
|
15776 |
|
|
end;
|
15777 |
|
|
end if;
|
15778 |
|
|
|
15779 |
|
|
pragma Assert (Nkind (Result) /= N_Defining_Identifier);
|
15780 |
|
|
return Result;
|
15781 |
|
|
end Get_Discriminant_Value;
|
15782 |
|
|
|
15783 |
|
|
--------------------------
|
15784 |
|
|
-- Has_Range_Constraint --
|
15785 |
|
|
--------------------------
|
15786 |
|
|
|
15787 |
|
|
function Has_Range_Constraint (N : Node_Id) return Boolean is
|
15788 |
|
|
C : constant Node_Id := Constraint (N);
|
15789 |
|
|
|
15790 |
|
|
begin
|
15791 |
|
|
if Nkind (C) = N_Range_Constraint then
|
15792 |
|
|
return True;
|
15793 |
|
|
|
15794 |
|
|
elsif Nkind (C) = N_Digits_Constraint then
|
15795 |
|
|
return
|
15796 |
|
|
Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
|
15797 |
|
|
or else
|
15798 |
|
|
Present (Range_Constraint (C));
|
15799 |
|
|
|
15800 |
|
|
elsif Nkind (C) = N_Delta_Constraint then
|
15801 |
|
|
return Present (Range_Constraint (C));
|
15802 |
|
|
|
15803 |
|
|
else
|
15804 |
|
|
return False;
|
15805 |
|
|
end if;
|
15806 |
|
|
end Has_Range_Constraint;
|
15807 |
|
|
|
15808 |
|
|
------------------------
|
15809 |
|
|
-- Inherit_Components --
|
15810 |
|
|
------------------------
|
15811 |
|
|
|
15812 |
|
|
function Inherit_Components
|
15813 |
|
|
(N : Node_Id;
|
15814 |
|
|
Parent_Base : Entity_Id;
|
15815 |
|
|
Derived_Base : Entity_Id;
|
15816 |
|
|
Is_Tagged : Boolean;
|
15817 |
|
|
Inherit_Discr : Boolean;
|
15818 |
|
|
Discs : Elist_Id) return Elist_Id
|
15819 |
|
|
is
|
15820 |
|
|
Assoc_List : constant Elist_Id := New_Elmt_List;
|
15821 |
|
|
|
15822 |
|
|
procedure Inherit_Component
|
15823 |
|
|
(Old_C : Entity_Id;
|
15824 |
|
|
Plain_Discrim : Boolean := False;
|
15825 |
|
|
Stored_Discrim : Boolean := False);
|
15826 |
|
|
-- Inherits component Old_C from Parent_Base to the Derived_Base. If
|
15827 |
|
|
-- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
|
15828 |
|
|
-- True, Old_C is a stored discriminant. If they are both false then
|
15829 |
|
|
-- Old_C is a regular component.
|
15830 |
|
|
|
15831 |
|
|
-----------------------
|
15832 |
|
|
-- Inherit_Component --
|
15833 |
|
|
-----------------------
|
15834 |
|
|
|
15835 |
|
|
procedure Inherit_Component
|
15836 |
|
|
(Old_C : Entity_Id;
|
15837 |
|
|
Plain_Discrim : Boolean := False;
|
15838 |
|
|
Stored_Discrim : Boolean := False)
|
15839 |
|
|
is
|
15840 |
|
|
procedure Set_Anonymous_Type (Id : Entity_Id);
|
15841 |
|
|
-- Id denotes the entity of an access discriminant or anonymous
|
15842 |
|
|
-- access component. Set the type of Id to either the same type of
|
15843 |
|
|
-- Old_C or create a new one depending on whether the parent and
|
15844 |
|
|
-- the child types are in the same scope.
|
15845 |
|
|
|
15846 |
|
|
------------------------
|
15847 |
|
|
-- Set_Anonymous_Type --
|
15848 |
|
|
------------------------
|
15849 |
|
|
|
15850 |
|
|
procedure Set_Anonymous_Type (Id : Entity_Id) is
|
15851 |
|
|
Old_Typ : constant Entity_Id := Etype (Old_C);
|
15852 |
|
|
|
15853 |
|
|
begin
|
15854 |
|
|
if Scope (Parent_Base) = Scope (Derived_Base) then
|
15855 |
|
|
Set_Etype (Id, Old_Typ);
|
15856 |
|
|
|
15857 |
|
|
-- The parent and the derived type are in two different scopes.
|
15858 |
|
|
-- Reuse the type of the original discriminant / component by
|
15859 |
|
|
-- copying it in order to preserve all attributes.
|
15860 |
|
|
|
15861 |
|
|
else
|
15862 |
|
|
declare
|
15863 |
|
|
Typ : constant Entity_Id := New_Copy (Old_Typ);
|
15864 |
|
|
|
15865 |
|
|
begin
|
15866 |
|
|
Set_Etype (Id, Typ);
|
15867 |
|
|
|
15868 |
|
|
-- Since we do not generate component declarations for
|
15869 |
|
|
-- inherited components, associate the itype with the
|
15870 |
|
|
-- derived type.
|
15871 |
|
|
|
15872 |
|
|
Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
|
15873 |
|
|
Set_Scope (Typ, Derived_Base);
|
15874 |
|
|
end;
|
15875 |
|
|
end if;
|
15876 |
|
|
end Set_Anonymous_Type;
|
15877 |
|
|
|
15878 |
|
|
-- Local variables and constants
|
15879 |
|
|
|
15880 |
|
|
New_C : constant Entity_Id := New_Copy (Old_C);
|
15881 |
|
|
|
15882 |
|
|
Corr_Discrim : Entity_Id;
|
15883 |
|
|
Discrim : Entity_Id;
|
15884 |
|
|
|
15885 |
|
|
-- Start of processing for Inherit_Component
|
15886 |
|
|
|
15887 |
|
|
begin
|
15888 |
|
|
pragma Assert (not Is_Tagged or else not Stored_Discrim);
|
15889 |
|
|
|
15890 |
|
|
Set_Parent (New_C, Parent (Old_C));
|
15891 |
|
|
|
15892 |
|
|
-- Regular discriminants and components must be inserted in the scope
|
15893 |
|
|
-- of the Derived_Base. Do it here.
|
15894 |
|
|
|
15895 |
|
|
if not Stored_Discrim then
|
15896 |
|
|
Enter_Name (New_C);
|
15897 |
|
|
end if;
|
15898 |
|
|
|
15899 |
|
|
-- For tagged types the Original_Record_Component must point to
|
15900 |
|
|
-- whatever this field was pointing to in the parent type. This has
|
15901 |
|
|
-- already been achieved by the call to New_Copy above.
|
15902 |
|
|
|
15903 |
|
|
if not Is_Tagged then
|
15904 |
|
|
Set_Original_Record_Component (New_C, New_C);
|
15905 |
|
|
end if;
|
15906 |
|
|
|
15907 |
|
|
-- Set the proper type of an access discriminant
|
15908 |
|
|
|
15909 |
|
|
if Ekind (New_C) = E_Discriminant
|
15910 |
|
|
and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
|
15911 |
|
|
then
|
15912 |
|
|
Set_Anonymous_Type (New_C);
|
15913 |
|
|
end if;
|
15914 |
|
|
|
15915 |
|
|
-- If we have inherited a component then see if its Etype contains
|
15916 |
|
|
-- references to Parent_Base discriminants. In this case, replace
|
15917 |
|
|
-- these references with the constraints given in Discs. We do not
|
15918 |
|
|
-- do this for the partial view of private types because this is
|
15919 |
|
|
-- not needed (only the components of the full view will be used
|
15920 |
|
|
-- for code generation) and cause problem. We also avoid this
|
15921 |
|
|
-- transformation in some error situations.
|
15922 |
|
|
|
15923 |
|
|
if Ekind (New_C) = E_Component then
|
15924 |
|
|
|
15925 |
|
|
-- Set the proper type of an anonymous access component
|
15926 |
|
|
|
15927 |
|
|
if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
|
15928 |
|
|
Set_Anonymous_Type (New_C);
|
15929 |
|
|
|
15930 |
|
|
elsif (Is_Private_Type (Derived_Base)
|
15931 |
|
|
and then not Is_Generic_Type (Derived_Base))
|
15932 |
|
|
or else (Is_Empty_Elmt_List (Discs)
|
15933 |
|
|
and then not Expander_Active)
|
15934 |
|
|
then
|
15935 |
|
|
Set_Etype (New_C, Etype (Old_C));
|
15936 |
|
|
|
15937 |
|
|
else
|
15938 |
|
|
-- The current component introduces a circularity of the
|
15939 |
|
|
-- following kind:
|
15940 |
|
|
|
15941 |
|
|
-- limited with Pack_2;
|
15942 |
|
|
-- package Pack_1 is
|
15943 |
|
|
-- type T_1 is tagged record
|
15944 |
|
|
-- Comp : access Pack_2.T_2;
|
15945 |
|
|
-- ...
|
15946 |
|
|
-- end record;
|
15947 |
|
|
-- end Pack_1;
|
15948 |
|
|
|
15949 |
|
|
-- with Pack_1;
|
15950 |
|
|
-- package Pack_2 is
|
15951 |
|
|
-- type T_2 is new Pack_1.T_1 with ...;
|
15952 |
|
|
-- end Pack_2;
|
15953 |
|
|
|
15954 |
|
|
Set_Etype
|
15955 |
|
|
(New_C,
|
15956 |
|
|
Constrain_Component_Type
|
15957 |
|
|
(Old_C, Derived_Base, N, Parent_Base, Discs));
|
15958 |
|
|
end if;
|
15959 |
|
|
end if;
|
15960 |
|
|
|
15961 |
|
|
-- In derived tagged types it is illegal to reference a non
|
15962 |
|
|
-- discriminant component in the parent type. To catch this, mark
|
15963 |
|
|
-- these components with an Ekind of E_Void. This will be reset in
|
15964 |
|
|
-- Record_Type_Definition after processing the record extension of
|
15965 |
|
|
-- the derived type.
|
15966 |
|
|
|
15967 |
|
|
-- If the declaration is a private extension, there is no further
|
15968 |
|
|
-- record extension to process, and the components retain their
|
15969 |
|
|
-- current kind, because they are visible at this point.
|
15970 |
|
|
|
15971 |
|
|
if Is_Tagged and then Ekind (New_C) = E_Component
|
15972 |
|
|
and then Nkind (N) /= N_Private_Extension_Declaration
|
15973 |
|
|
then
|
15974 |
|
|
Set_Ekind (New_C, E_Void);
|
15975 |
|
|
end if;
|
15976 |
|
|
|
15977 |
|
|
if Plain_Discrim then
|
15978 |
|
|
Set_Corresponding_Discriminant (New_C, Old_C);
|
15979 |
|
|
Build_Discriminal (New_C);
|
15980 |
|
|
|
15981 |
|
|
-- If we are explicitly inheriting a stored discriminant it will be
|
15982 |
|
|
-- completely hidden.
|
15983 |
|
|
|
15984 |
|
|
elsif Stored_Discrim then
|
15985 |
|
|
Set_Corresponding_Discriminant (New_C, Empty);
|
15986 |
|
|
Set_Discriminal (New_C, Empty);
|
15987 |
|
|
Set_Is_Completely_Hidden (New_C);
|
15988 |
|
|
|
15989 |
|
|
-- Set the Original_Record_Component of each discriminant in the
|
15990 |
|
|
-- derived base to point to the corresponding stored that we just
|
15991 |
|
|
-- created.
|
15992 |
|
|
|
15993 |
|
|
Discrim := First_Discriminant (Derived_Base);
|
15994 |
|
|
while Present (Discrim) loop
|
15995 |
|
|
Corr_Discrim := Corresponding_Discriminant (Discrim);
|
15996 |
|
|
|
15997 |
|
|
-- Corr_Discrim could be missing in an error situation
|
15998 |
|
|
|
15999 |
|
|
if Present (Corr_Discrim)
|
16000 |
|
|
and then Original_Record_Component (Corr_Discrim) = Old_C
|
16001 |
|
|
then
|
16002 |
|
|
Set_Original_Record_Component (Discrim, New_C);
|
16003 |
|
|
end if;
|
16004 |
|
|
|
16005 |
|
|
Next_Discriminant (Discrim);
|
16006 |
|
|
end loop;
|
16007 |
|
|
|
16008 |
|
|
Append_Entity (New_C, Derived_Base);
|
16009 |
|
|
end if;
|
16010 |
|
|
|
16011 |
|
|
if not Is_Tagged then
|
16012 |
|
|
Append_Elmt (Old_C, Assoc_List);
|
16013 |
|
|
Append_Elmt (New_C, Assoc_List);
|
16014 |
|
|
end if;
|
16015 |
|
|
end Inherit_Component;
|
16016 |
|
|
|
16017 |
|
|
-- Variables local to Inherit_Component
|
16018 |
|
|
|
16019 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
16020 |
|
|
|
16021 |
|
|
Parent_Discrim : Entity_Id;
|
16022 |
|
|
Stored_Discrim : Entity_Id;
|
16023 |
|
|
D : Entity_Id;
|
16024 |
|
|
Component : Entity_Id;
|
16025 |
|
|
|
16026 |
|
|
-- Start of processing for Inherit_Components
|
16027 |
|
|
|
16028 |
|
|
begin
|
16029 |
|
|
if not Is_Tagged then
|
16030 |
|
|
Append_Elmt (Parent_Base, Assoc_List);
|
16031 |
|
|
Append_Elmt (Derived_Base, Assoc_List);
|
16032 |
|
|
end if;
|
16033 |
|
|
|
16034 |
|
|
-- Inherit parent discriminants if needed
|
16035 |
|
|
|
16036 |
|
|
if Inherit_Discr then
|
16037 |
|
|
Parent_Discrim := First_Discriminant (Parent_Base);
|
16038 |
|
|
while Present (Parent_Discrim) loop
|
16039 |
|
|
Inherit_Component (Parent_Discrim, Plain_Discrim => True);
|
16040 |
|
|
Next_Discriminant (Parent_Discrim);
|
16041 |
|
|
end loop;
|
16042 |
|
|
end if;
|
16043 |
|
|
|
16044 |
|
|
-- Create explicit stored discrims for untagged types when necessary
|
16045 |
|
|
|
16046 |
|
|
if not Has_Unknown_Discriminants (Derived_Base)
|
16047 |
|
|
and then Has_Discriminants (Parent_Base)
|
16048 |
|
|
and then not Is_Tagged
|
16049 |
|
|
and then
|
16050 |
|
|
(not Inherit_Discr
|
16051 |
|
|
or else First_Discriminant (Parent_Base) /=
|
16052 |
|
|
First_Stored_Discriminant (Parent_Base))
|
16053 |
|
|
then
|
16054 |
|
|
Stored_Discrim := First_Stored_Discriminant (Parent_Base);
|
16055 |
|
|
while Present (Stored_Discrim) loop
|
16056 |
|
|
Inherit_Component (Stored_Discrim, Stored_Discrim => True);
|
16057 |
|
|
Next_Stored_Discriminant (Stored_Discrim);
|
16058 |
|
|
end loop;
|
16059 |
|
|
end if;
|
16060 |
|
|
|
16061 |
|
|
-- See if we can apply the second transformation for derived types, as
|
16062 |
|
|
-- explained in point 6. in the comments above Build_Derived_Record_Type
|
16063 |
|
|
-- This is achieved by appending Derived_Base discriminants into Discs,
|
16064 |
|
|
-- which has the side effect of returning a non empty Discs list to the
|
16065 |
|
|
-- caller of Inherit_Components, which is what we want. This must be
|
16066 |
|
|
-- done for private derived types if there are explicit stored
|
16067 |
|
|
-- discriminants, to ensure that we can retrieve the values of the
|
16068 |
|
|
-- constraints provided in the ancestors.
|
16069 |
|
|
|
16070 |
|
|
if Inherit_Discr
|
16071 |
|
|
and then Is_Empty_Elmt_List (Discs)
|
16072 |
|
|
and then Present (First_Discriminant (Derived_Base))
|
16073 |
|
|
and then
|
16074 |
|
|
(not Is_Private_Type (Derived_Base)
|
16075 |
|
|
or else Is_Completely_Hidden
|
16076 |
|
|
(First_Stored_Discriminant (Derived_Base))
|
16077 |
|
|
or else Is_Generic_Type (Derived_Base))
|
16078 |
|
|
then
|
16079 |
|
|
D := First_Discriminant (Derived_Base);
|
16080 |
|
|
while Present (D) loop
|
16081 |
|
|
Append_Elmt (New_Reference_To (D, Loc), Discs);
|
16082 |
|
|
Next_Discriminant (D);
|
16083 |
|
|
end loop;
|
16084 |
|
|
end if;
|
16085 |
|
|
|
16086 |
|
|
-- Finally, inherit non-discriminant components unless they are not
|
16087 |
|
|
-- visible because defined or inherited from the full view of the
|
16088 |
|
|
-- parent. Don't inherit the _parent field of the parent type.
|
16089 |
|
|
|
16090 |
|
|
Component := First_Entity (Parent_Base);
|
16091 |
|
|
while Present (Component) loop
|
16092 |
|
|
|
16093 |
|
|
-- Ada 2005 (AI-251): Do not inherit components associated with
|
16094 |
|
|
-- secondary tags of the parent.
|
16095 |
|
|
|
16096 |
|
|
if Ekind (Component) = E_Component
|
16097 |
|
|
and then Present (Related_Type (Component))
|
16098 |
|
|
then
|
16099 |
|
|
null;
|
16100 |
|
|
|
16101 |
|
|
elsif Ekind (Component) /= E_Component
|
16102 |
|
|
or else Chars (Component) = Name_uParent
|
16103 |
|
|
then
|
16104 |
|
|
null;
|
16105 |
|
|
|
16106 |
|
|
-- If the derived type is within the parent type's declarative
|
16107 |
|
|
-- region, then the components can still be inherited even though
|
16108 |
|
|
-- they aren't visible at this point. This can occur for cases
|
16109 |
|
|
-- such as within public child units where the components must
|
16110 |
|
|
-- become visible upon entering the child unit's private part.
|
16111 |
|
|
|
16112 |
|
|
elsif not Is_Visible_Component (Component)
|
16113 |
|
|
and then not In_Open_Scopes (Scope (Parent_Base))
|
16114 |
|
|
then
|
16115 |
|
|
null;
|
16116 |
|
|
|
16117 |
|
|
elsif Ekind_In (Derived_Base, E_Private_Type,
|
16118 |
|
|
E_Limited_Private_Type)
|
16119 |
|
|
then
|
16120 |
|
|
null;
|
16121 |
|
|
|
16122 |
|
|
else
|
16123 |
|
|
Inherit_Component (Component);
|
16124 |
|
|
end if;
|
16125 |
|
|
|
16126 |
|
|
Next_Entity (Component);
|
16127 |
|
|
end loop;
|
16128 |
|
|
|
16129 |
|
|
-- For tagged derived types, inherited discriminants cannot be used in
|
16130 |
|
|
-- component declarations of the record extension part. To achieve this
|
16131 |
|
|
-- we mark the inherited discriminants as not visible.
|
16132 |
|
|
|
16133 |
|
|
if Is_Tagged and then Inherit_Discr then
|
16134 |
|
|
D := First_Discriminant (Derived_Base);
|
16135 |
|
|
while Present (D) loop
|
16136 |
|
|
Set_Is_Immediately_Visible (D, False);
|
16137 |
|
|
Next_Discriminant (D);
|
16138 |
|
|
end loop;
|
16139 |
|
|
end if;
|
16140 |
|
|
|
16141 |
|
|
return Assoc_List;
|
16142 |
|
|
end Inherit_Components;
|
16143 |
|
|
|
16144 |
|
|
-----------------------
|
16145 |
|
|
-- Is_Constant_Bound --
|
16146 |
|
|
-----------------------
|
16147 |
|
|
|
16148 |
|
|
function Is_Constant_Bound (Exp : Node_Id) return Boolean is
|
16149 |
|
|
begin
|
16150 |
|
|
if Compile_Time_Known_Value (Exp) then
|
16151 |
|
|
return True;
|
16152 |
|
|
|
16153 |
|
|
elsif Is_Entity_Name (Exp)
|
16154 |
|
|
and then Present (Entity (Exp))
|
16155 |
|
|
then
|
16156 |
|
|
return Is_Constant_Object (Entity (Exp))
|
16157 |
|
|
or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
|
16158 |
|
|
|
16159 |
|
|
elsif Nkind (Exp) in N_Binary_Op then
|
16160 |
|
|
return Is_Constant_Bound (Left_Opnd (Exp))
|
16161 |
|
|
and then Is_Constant_Bound (Right_Opnd (Exp))
|
16162 |
|
|
and then Scope (Entity (Exp)) = Standard_Standard;
|
16163 |
|
|
|
16164 |
|
|
else
|
16165 |
|
|
return False;
|
16166 |
|
|
end if;
|
16167 |
|
|
end Is_Constant_Bound;
|
16168 |
|
|
|
16169 |
|
|
-----------------------
|
16170 |
|
|
-- Is_Null_Extension --
|
16171 |
|
|
-----------------------
|
16172 |
|
|
|
16173 |
|
|
function Is_Null_Extension (T : Entity_Id) return Boolean is
|
16174 |
|
|
Type_Decl : constant Node_Id := Parent (Base_Type (T));
|
16175 |
|
|
Comp_List : Node_Id;
|
16176 |
|
|
Comp : Node_Id;
|
16177 |
|
|
|
16178 |
|
|
begin
|
16179 |
|
|
if Nkind (Type_Decl) /= N_Full_Type_Declaration
|
16180 |
|
|
or else not Is_Tagged_Type (T)
|
16181 |
|
|
or else Nkind (Type_Definition (Type_Decl)) /=
|
16182 |
|
|
N_Derived_Type_Definition
|
16183 |
|
|
or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
|
16184 |
|
|
then
|
16185 |
|
|
return False;
|
16186 |
|
|
end if;
|
16187 |
|
|
|
16188 |
|
|
Comp_List :=
|
16189 |
|
|
Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
|
16190 |
|
|
|
16191 |
|
|
if Present (Discriminant_Specifications (Type_Decl)) then
|
16192 |
|
|
return False;
|
16193 |
|
|
|
16194 |
|
|
elsif Present (Comp_List)
|
16195 |
|
|
and then Is_Non_Empty_List (Component_Items (Comp_List))
|
16196 |
|
|
then
|
16197 |
|
|
Comp := First (Component_Items (Comp_List));
|
16198 |
|
|
|
16199 |
|
|
-- Only user-defined components are relevant. The component list
|
16200 |
|
|
-- may also contain a parent component and internal components
|
16201 |
|
|
-- corresponding to secondary tags, but these do not determine
|
16202 |
|
|
-- whether this is a null extension.
|
16203 |
|
|
|
16204 |
|
|
while Present (Comp) loop
|
16205 |
|
|
if Comes_From_Source (Comp) then
|
16206 |
|
|
return False;
|
16207 |
|
|
end if;
|
16208 |
|
|
|
16209 |
|
|
Next (Comp);
|
16210 |
|
|
end loop;
|
16211 |
|
|
|
16212 |
|
|
return True;
|
16213 |
|
|
else
|
16214 |
|
|
return True;
|
16215 |
|
|
end if;
|
16216 |
|
|
end Is_Null_Extension;
|
16217 |
|
|
|
16218 |
|
|
------------------------------
|
16219 |
|
|
-- Is_Valid_Constraint_Kind --
|
16220 |
|
|
------------------------------
|
16221 |
|
|
|
16222 |
|
|
function Is_Valid_Constraint_Kind
|
16223 |
|
|
(T_Kind : Type_Kind;
|
16224 |
|
|
Constraint_Kind : Node_Kind) return Boolean
|
16225 |
|
|
is
|
16226 |
|
|
begin
|
16227 |
|
|
case T_Kind is
|
16228 |
|
|
when Enumeration_Kind |
|
16229 |
|
|
Integer_Kind =>
|
16230 |
|
|
return Constraint_Kind = N_Range_Constraint;
|
16231 |
|
|
|
16232 |
|
|
when Decimal_Fixed_Point_Kind =>
|
16233 |
|
|
return Nkind_In (Constraint_Kind, N_Digits_Constraint,
|
16234 |
|
|
N_Range_Constraint);
|
16235 |
|
|
|
16236 |
|
|
when Ordinary_Fixed_Point_Kind =>
|
16237 |
|
|
return Nkind_In (Constraint_Kind, N_Delta_Constraint,
|
16238 |
|
|
N_Range_Constraint);
|
16239 |
|
|
|
16240 |
|
|
when Float_Kind =>
|
16241 |
|
|
return Nkind_In (Constraint_Kind, N_Digits_Constraint,
|
16242 |
|
|
N_Range_Constraint);
|
16243 |
|
|
|
16244 |
|
|
when Access_Kind |
|
16245 |
|
|
Array_Kind |
|
16246 |
|
|
E_Record_Type |
|
16247 |
|
|
E_Record_Subtype |
|
16248 |
|
|
Class_Wide_Kind |
|
16249 |
|
|
E_Incomplete_Type |
|
16250 |
|
|
Private_Kind |
|
16251 |
|
|
Concurrent_Kind =>
|
16252 |
|
|
return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
|
16253 |
|
|
|
16254 |
|
|
when others =>
|
16255 |
|
|
return True; -- Error will be detected later
|
16256 |
|
|
end case;
|
16257 |
|
|
end Is_Valid_Constraint_Kind;
|
16258 |
|
|
|
16259 |
|
|
--------------------------
|
16260 |
|
|
-- Is_Visible_Component --
|
16261 |
|
|
--------------------------
|
16262 |
|
|
|
16263 |
|
|
function Is_Visible_Component (C : Entity_Id) return Boolean is
|
16264 |
|
|
Original_Comp : Entity_Id := Empty;
|
16265 |
|
|
Original_Scope : Entity_Id;
|
16266 |
|
|
Type_Scope : Entity_Id;
|
16267 |
|
|
|
16268 |
|
|
function Is_Local_Type (Typ : Entity_Id) return Boolean;
|
16269 |
|
|
-- Check whether parent type of inherited component is declared locally,
|
16270 |
|
|
-- possibly within a nested package or instance. The current scope is
|
16271 |
|
|
-- the derived record itself.
|
16272 |
|
|
|
16273 |
|
|
-------------------
|
16274 |
|
|
-- Is_Local_Type --
|
16275 |
|
|
-------------------
|
16276 |
|
|
|
16277 |
|
|
function Is_Local_Type (Typ : Entity_Id) return Boolean is
|
16278 |
|
|
Scop : Entity_Id;
|
16279 |
|
|
|
16280 |
|
|
begin
|
16281 |
|
|
Scop := Scope (Typ);
|
16282 |
|
|
while Present (Scop)
|
16283 |
|
|
and then Scop /= Standard_Standard
|
16284 |
|
|
loop
|
16285 |
|
|
if Scop = Scope (Current_Scope) then
|
16286 |
|
|
return True;
|
16287 |
|
|
end if;
|
16288 |
|
|
|
16289 |
|
|
Scop := Scope (Scop);
|
16290 |
|
|
end loop;
|
16291 |
|
|
|
16292 |
|
|
return False;
|
16293 |
|
|
end Is_Local_Type;
|
16294 |
|
|
|
16295 |
|
|
-- Start of processing for Is_Visible_Component
|
16296 |
|
|
|
16297 |
|
|
begin
|
16298 |
|
|
if Ekind_In (C, E_Component, E_Discriminant) then
|
16299 |
|
|
Original_Comp := Original_Record_Component (C);
|
16300 |
|
|
end if;
|
16301 |
|
|
|
16302 |
|
|
if No (Original_Comp) then
|
16303 |
|
|
|
16304 |
|
|
-- Premature usage, or previous error
|
16305 |
|
|
|
16306 |
|
|
return False;
|
16307 |
|
|
|
16308 |
|
|
else
|
16309 |
|
|
Original_Scope := Scope (Original_Comp);
|
16310 |
|
|
Type_Scope := Scope (Base_Type (Scope (C)));
|
16311 |
|
|
end if;
|
16312 |
|
|
|
16313 |
|
|
-- This test only concerns tagged types
|
16314 |
|
|
|
16315 |
|
|
if not Is_Tagged_Type (Original_Scope) then
|
16316 |
|
|
return True;
|
16317 |
|
|
|
16318 |
|
|
-- If it is _Parent or _Tag, there is no visibility issue
|
16319 |
|
|
|
16320 |
|
|
elsif not Comes_From_Source (Original_Comp) then
|
16321 |
|
|
return True;
|
16322 |
|
|
|
16323 |
|
|
-- Discriminants are always visible
|
16324 |
|
|
|
16325 |
|
|
elsif Ekind (Original_Comp) = E_Discriminant
|
16326 |
|
|
and then not Has_Unknown_Discriminants (Original_Scope)
|
16327 |
|
|
then
|
16328 |
|
|
return True;
|
16329 |
|
|
|
16330 |
|
|
-- In the body of an instantiation, no need to check for the visibility
|
16331 |
|
|
-- of a component.
|
16332 |
|
|
|
16333 |
|
|
elsif In_Instance_Body then
|
16334 |
|
|
return True;
|
16335 |
|
|
|
16336 |
|
|
-- If the component has been declared in an ancestor which is currently
|
16337 |
|
|
-- a private type, then it is not visible. The same applies if the
|
16338 |
|
|
-- component's containing type is not in an open scope and the original
|
16339 |
|
|
-- component's enclosing type is a visible full view of a private type
|
16340 |
|
|
-- (which can occur in cases where an attempt is being made to reference
|
16341 |
|
|
-- a component in a sibling package that is inherited from a visible
|
16342 |
|
|
-- component of a type in an ancestor package; the component in the
|
16343 |
|
|
-- sibling package should not be visible even though the component it
|
16344 |
|
|
-- inherited from is visible). This does not apply however in the case
|
16345 |
|
|
-- where the scope of the type is a private child unit, or when the
|
16346 |
|
|
-- parent comes from a local package in which the ancestor is currently
|
16347 |
|
|
-- visible. The latter suppression of visibility is needed for cases
|
16348 |
|
|
-- that are tested in B730006.
|
16349 |
|
|
|
16350 |
|
|
elsif Is_Private_Type (Original_Scope)
|
16351 |
|
|
or else
|
16352 |
|
|
(not Is_Private_Descendant (Type_Scope)
|
16353 |
|
|
and then not In_Open_Scopes (Type_Scope)
|
16354 |
|
|
and then Has_Private_Declaration (Original_Scope))
|
16355 |
|
|
then
|
16356 |
|
|
-- If the type derives from an entity in a formal package, there
|
16357 |
|
|
-- are no additional visible components.
|
16358 |
|
|
|
16359 |
|
|
if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
|
16360 |
|
|
N_Formal_Package_Declaration
|
16361 |
|
|
then
|
16362 |
|
|
return False;
|
16363 |
|
|
|
16364 |
|
|
-- if we are not in the private part of the current package, there
|
16365 |
|
|
-- are no additional visible components.
|
16366 |
|
|
|
16367 |
|
|
elsif Ekind (Scope (Current_Scope)) = E_Package
|
16368 |
|
|
and then not In_Private_Part (Scope (Current_Scope))
|
16369 |
|
|
then
|
16370 |
|
|
return False;
|
16371 |
|
|
else
|
16372 |
|
|
return
|
16373 |
|
|
Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
|
16374 |
|
|
and then In_Open_Scopes (Scope (Original_Scope))
|
16375 |
|
|
and then Is_Local_Type (Type_Scope);
|
16376 |
|
|
end if;
|
16377 |
|
|
|
16378 |
|
|
-- There is another weird way in which a component may be invisible
|
16379 |
|
|
-- when the private and the full view are not derived from the same
|
16380 |
|
|
-- ancestor. Here is an example :
|
16381 |
|
|
|
16382 |
|
|
-- type A1 is tagged record F1 : integer; end record;
|
16383 |
|
|
-- type A2 is new A1 with record F2 : integer; end record;
|
16384 |
|
|
-- type T is new A1 with private;
|
16385 |
|
|
-- private
|
16386 |
|
|
-- type T is new A2 with null record;
|
16387 |
|
|
|
16388 |
|
|
-- In this case, the full view of T inherits F1 and F2 but the private
|
16389 |
|
|
-- view inherits only F1
|
16390 |
|
|
|
16391 |
|
|
else
|
16392 |
|
|
declare
|
16393 |
|
|
Ancestor : Entity_Id := Scope (C);
|
16394 |
|
|
|
16395 |
|
|
begin
|
16396 |
|
|
loop
|
16397 |
|
|
if Ancestor = Original_Scope then
|
16398 |
|
|
return True;
|
16399 |
|
|
elsif Ancestor = Etype (Ancestor) then
|
16400 |
|
|
return False;
|
16401 |
|
|
end if;
|
16402 |
|
|
|
16403 |
|
|
Ancestor := Etype (Ancestor);
|
16404 |
|
|
end loop;
|
16405 |
|
|
end;
|
16406 |
|
|
end if;
|
16407 |
|
|
end Is_Visible_Component;
|
16408 |
|
|
|
16409 |
|
|
--------------------------
|
16410 |
|
|
-- Make_Class_Wide_Type --
|
16411 |
|
|
--------------------------
|
16412 |
|
|
|
16413 |
|
|
procedure Make_Class_Wide_Type (T : Entity_Id) is
|
16414 |
|
|
CW_Type : Entity_Id;
|
16415 |
|
|
CW_Name : Name_Id;
|
16416 |
|
|
Next_E : Entity_Id;
|
16417 |
|
|
|
16418 |
|
|
begin
|
16419 |
|
|
if Present (Class_Wide_Type (T)) then
|
16420 |
|
|
|
16421 |
|
|
-- The class-wide type is a partially decorated entity created for a
|
16422 |
|
|
-- unanalyzed tagged type referenced through a limited with clause.
|
16423 |
|
|
-- When the tagged type is analyzed, its class-wide type needs to be
|
16424 |
|
|
-- redecorated. Note that we reuse the entity created by Decorate_
|
16425 |
|
|
-- Tagged_Type in order to preserve all links.
|
16426 |
|
|
|
16427 |
|
|
if Materialize_Entity (Class_Wide_Type (T)) then
|
16428 |
|
|
CW_Type := Class_Wide_Type (T);
|
16429 |
|
|
Set_Materialize_Entity (CW_Type, False);
|
16430 |
|
|
|
16431 |
|
|
-- The class wide type can have been defined by the partial view, in
|
16432 |
|
|
-- which case everything is already done.
|
16433 |
|
|
|
16434 |
|
|
else
|
16435 |
|
|
return;
|
16436 |
|
|
end if;
|
16437 |
|
|
|
16438 |
|
|
-- Default case, we need to create a new class-wide type
|
16439 |
|
|
|
16440 |
|
|
else
|
16441 |
|
|
CW_Type :=
|
16442 |
|
|
New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
|
16443 |
|
|
end if;
|
16444 |
|
|
|
16445 |
|
|
-- Inherit root type characteristics
|
16446 |
|
|
|
16447 |
|
|
CW_Name := Chars (CW_Type);
|
16448 |
|
|
Next_E := Next_Entity (CW_Type);
|
16449 |
|
|
Copy_Node (T, CW_Type);
|
16450 |
|
|
Set_Comes_From_Source (CW_Type, False);
|
16451 |
|
|
Set_Chars (CW_Type, CW_Name);
|
16452 |
|
|
Set_Parent (CW_Type, Parent (T));
|
16453 |
|
|
Set_Next_Entity (CW_Type, Next_E);
|
16454 |
|
|
|
16455 |
|
|
-- Ensure we have a new freeze node for the class-wide type. The partial
|
16456 |
|
|
-- view may have freeze action of its own, requiring a proper freeze
|
16457 |
|
|
-- node, and the same freeze node cannot be shared between the two
|
16458 |
|
|
-- types.
|
16459 |
|
|
|
16460 |
|
|
Set_Has_Delayed_Freeze (CW_Type);
|
16461 |
|
|
Set_Freeze_Node (CW_Type, Empty);
|
16462 |
|
|
|
16463 |
|
|
-- Customize the class-wide type: It has no prim. op., it cannot be
|
16464 |
|
|
-- abstract and its Etype points back to the specific root type.
|
16465 |
|
|
|
16466 |
|
|
Set_Ekind (CW_Type, E_Class_Wide_Type);
|
16467 |
|
|
Set_Is_Tagged_Type (CW_Type, True);
|
16468 |
|
|
Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
|
16469 |
|
|
Set_Is_Abstract_Type (CW_Type, False);
|
16470 |
|
|
Set_Is_Constrained (CW_Type, False);
|
16471 |
|
|
Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
|
16472 |
|
|
|
16473 |
|
|
if Ekind (T) = E_Class_Wide_Subtype then
|
16474 |
|
|
Set_Etype (CW_Type, Etype (Base_Type (T)));
|
16475 |
|
|
else
|
16476 |
|
|
Set_Etype (CW_Type, T);
|
16477 |
|
|
end if;
|
16478 |
|
|
|
16479 |
|
|
-- If this is the class_wide type of a constrained subtype, it does
|
16480 |
|
|
-- not have discriminants.
|
16481 |
|
|
|
16482 |
|
|
Set_Has_Discriminants (CW_Type,
|
16483 |
|
|
Has_Discriminants (T) and then not Is_Constrained (T));
|
16484 |
|
|
|
16485 |
|
|
Set_Has_Unknown_Discriminants (CW_Type, True);
|
16486 |
|
|
Set_Class_Wide_Type (T, CW_Type);
|
16487 |
|
|
Set_Equivalent_Type (CW_Type, Empty);
|
16488 |
|
|
|
16489 |
|
|
-- The class-wide type of a class-wide type is itself (RM 3.9(14))
|
16490 |
|
|
|
16491 |
|
|
Set_Class_Wide_Type (CW_Type, CW_Type);
|
16492 |
|
|
end Make_Class_Wide_Type;
|
16493 |
|
|
|
16494 |
|
|
----------------
|
16495 |
|
|
-- Make_Index --
|
16496 |
|
|
----------------
|
16497 |
|
|
|
16498 |
|
|
procedure Make_Index
|
16499 |
|
|
(I : Node_Id;
|
16500 |
|
|
Related_Nod : Node_Id;
|
16501 |
|
|
Related_Id : Entity_Id := Empty;
|
16502 |
|
|
Suffix_Index : Nat := 1;
|
16503 |
|
|
In_Iter_Schm : Boolean := False)
|
16504 |
|
|
is
|
16505 |
|
|
R : Node_Id;
|
16506 |
|
|
T : Entity_Id;
|
16507 |
|
|
Def_Id : Entity_Id := Empty;
|
16508 |
|
|
Found : Boolean := False;
|
16509 |
|
|
|
16510 |
|
|
begin
|
16511 |
|
|
-- For a discrete range used in a constrained array definition and
|
16512 |
|
|
-- defined by a range, an implicit conversion to the predefined type
|
16513 |
|
|
-- INTEGER is assumed if each bound is either a numeric literal, a named
|
16514 |
|
|
-- number, or an attribute, and the type of both bounds (prior to the
|
16515 |
|
|
-- implicit conversion) is the type universal_integer. Otherwise, both
|
16516 |
|
|
-- bounds must be of the same discrete type, other than universal
|
16517 |
|
|
-- integer; this type must be determinable independently of the
|
16518 |
|
|
-- context, but using the fact that the type must be discrete and that
|
16519 |
|
|
-- both bounds must have the same type.
|
16520 |
|
|
|
16521 |
|
|
-- Character literals also have a universal type in the absence of
|
16522 |
|
|
-- of additional context, and are resolved to Standard_Character.
|
16523 |
|
|
|
16524 |
|
|
if Nkind (I) = N_Range then
|
16525 |
|
|
|
16526 |
|
|
-- The index is given by a range constraint. The bounds are known
|
16527 |
|
|
-- to be of a consistent type.
|
16528 |
|
|
|
16529 |
|
|
if not Is_Overloaded (I) then
|
16530 |
|
|
T := Etype (I);
|
16531 |
|
|
|
16532 |
|
|
-- For universal bounds, choose the specific predefined type
|
16533 |
|
|
|
16534 |
|
|
if T = Universal_Integer then
|
16535 |
|
|
T := Standard_Integer;
|
16536 |
|
|
|
16537 |
|
|
elsif T = Any_Character then
|
16538 |
|
|
Ambiguous_Character (Low_Bound (I));
|
16539 |
|
|
|
16540 |
|
|
T := Standard_Character;
|
16541 |
|
|
end if;
|
16542 |
|
|
|
16543 |
|
|
-- The node may be overloaded because some user-defined operators
|
16544 |
|
|
-- are available, but if a universal interpretation exists it is
|
16545 |
|
|
-- also the selected one.
|
16546 |
|
|
|
16547 |
|
|
elsif Universal_Interpretation (I) = Universal_Integer then
|
16548 |
|
|
T := Standard_Integer;
|
16549 |
|
|
|
16550 |
|
|
else
|
16551 |
|
|
T := Any_Type;
|
16552 |
|
|
|
16553 |
|
|
declare
|
16554 |
|
|
Ind : Interp_Index;
|
16555 |
|
|
It : Interp;
|
16556 |
|
|
|
16557 |
|
|
begin
|
16558 |
|
|
Get_First_Interp (I, Ind, It);
|
16559 |
|
|
while Present (It.Typ) loop
|
16560 |
|
|
if Is_Discrete_Type (It.Typ) then
|
16561 |
|
|
|
16562 |
|
|
if Found
|
16563 |
|
|
and then not Covers (It.Typ, T)
|
16564 |
|
|
and then not Covers (T, It.Typ)
|
16565 |
|
|
then
|
16566 |
|
|
Error_Msg_N ("ambiguous bounds in discrete range", I);
|
16567 |
|
|
exit;
|
16568 |
|
|
else
|
16569 |
|
|
T := It.Typ;
|
16570 |
|
|
Found := True;
|
16571 |
|
|
end if;
|
16572 |
|
|
end if;
|
16573 |
|
|
|
16574 |
|
|
Get_Next_Interp (Ind, It);
|
16575 |
|
|
end loop;
|
16576 |
|
|
|
16577 |
|
|
if T = Any_Type then
|
16578 |
|
|
Error_Msg_N ("discrete type required for range", I);
|
16579 |
|
|
Set_Etype (I, Any_Type);
|
16580 |
|
|
return;
|
16581 |
|
|
|
16582 |
|
|
elsif T = Universal_Integer then
|
16583 |
|
|
T := Standard_Integer;
|
16584 |
|
|
end if;
|
16585 |
|
|
end;
|
16586 |
|
|
end if;
|
16587 |
|
|
|
16588 |
|
|
if not Is_Discrete_Type (T) then
|
16589 |
|
|
Error_Msg_N ("discrete type required for range", I);
|
16590 |
|
|
Set_Etype (I, Any_Type);
|
16591 |
|
|
return;
|
16592 |
|
|
end if;
|
16593 |
|
|
|
16594 |
|
|
if Nkind (Low_Bound (I)) = N_Attribute_Reference
|
16595 |
|
|
and then Attribute_Name (Low_Bound (I)) = Name_First
|
16596 |
|
|
and then Is_Entity_Name (Prefix (Low_Bound (I)))
|
16597 |
|
|
and then Is_Type (Entity (Prefix (Low_Bound (I))))
|
16598 |
|
|
and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
|
16599 |
|
|
then
|
16600 |
|
|
-- The type of the index will be the type of the prefix, as long
|
16601 |
|
|
-- as the upper bound is 'Last of the same type.
|
16602 |
|
|
|
16603 |
|
|
Def_Id := Entity (Prefix (Low_Bound (I)));
|
16604 |
|
|
|
16605 |
|
|
if Nkind (High_Bound (I)) /= N_Attribute_Reference
|
16606 |
|
|
or else Attribute_Name (High_Bound (I)) /= Name_Last
|
16607 |
|
|
or else not Is_Entity_Name (Prefix (High_Bound (I)))
|
16608 |
|
|
or else Entity (Prefix (High_Bound (I))) /= Def_Id
|
16609 |
|
|
then
|
16610 |
|
|
Def_Id := Empty;
|
16611 |
|
|
end if;
|
16612 |
|
|
end if;
|
16613 |
|
|
|
16614 |
|
|
R := I;
|
16615 |
|
|
Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
|
16616 |
|
|
|
16617 |
|
|
elsif Nkind (I) = N_Subtype_Indication then
|
16618 |
|
|
|
16619 |
|
|
-- The index is given by a subtype with a range constraint
|
16620 |
|
|
|
16621 |
|
|
T := Base_Type (Entity (Subtype_Mark (I)));
|
16622 |
|
|
|
16623 |
|
|
if not Is_Discrete_Type (T) then
|
16624 |
|
|
Error_Msg_N ("discrete type required for range", I);
|
16625 |
|
|
Set_Etype (I, Any_Type);
|
16626 |
|
|
return;
|
16627 |
|
|
end if;
|
16628 |
|
|
|
16629 |
|
|
R := Range_Expression (Constraint (I));
|
16630 |
|
|
|
16631 |
|
|
Resolve (R, T);
|
16632 |
|
|
Process_Range_Expr_In_Decl
|
16633 |
|
|
(R, Entity (Subtype_Mark (I)), In_Iter_Schm => In_Iter_Schm);
|
16634 |
|
|
|
16635 |
|
|
elsif Nkind (I) = N_Attribute_Reference then
|
16636 |
|
|
|
16637 |
|
|
-- The parser guarantees that the attribute is a RANGE attribute
|
16638 |
|
|
|
16639 |
|
|
-- If the node denotes the range of a type mark, that is also the
|
16640 |
|
|
-- resulting type, and we do no need to create an Itype for it.
|
16641 |
|
|
|
16642 |
|
|
if Is_Entity_Name (Prefix (I))
|
16643 |
|
|
and then Comes_From_Source (I)
|
16644 |
|
|
and then Is_Type (Entity (Prefix (I)))
|
16645 |
|
|
and then Is_Discrete_Type (Entity (Prefix (I)))
|
16646 |
|
|
then
|
16647 |
|
|
Def_Id := Entity (Prefix (I));
|
16648 |
|
|
end if;
|
16649 |
|
|
|
16650 |
|
|
Analyze_And_Resolve (I);
|
16651 |
|
|
T := Etype (I);
|
16652 |
|
|
R := I;
|
16653 |
|
|
|
16654 |
|
|
-- If none of the above, must be a subtype. We convert this to a
|
16655 |
|
|
-- range attribute reference because in the case of declared first
|
16656 |
|
|
-- named subtypes, the types in the range reference can be different
|
16657 |
|
|
-- from the type of the entity. A range attribute normalizes the
|
16658 |
|
|
-- reference and obtains the correct types for the bounds.
|
16659 |
|
|
|
16660 |
|
|
-- This transformation is in the nature of an expansion, is only
|
16661 |
|
|
-- done if expansion is active. In particular, it is not done on
|
16662 |
|
|
-- formal generic types, because we need to retain the name of the
|
16663 |
|
|
-- original index for instantiation purposes.
|
16664 |
|
|
|
16665 |
|
|
else
|
16666 |
|
|
if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
|
16667 |
|
|
Error_Msg_N ("invalid subtype mark in discrete range ", I);
|
16668 |
|
|
Set_Etype (I, Any_Integer);
|
16669 |
|
|
return;
|
16670 |
|
|
|
16671 |
|
|
else
|
16672 |
|
|
-- The type mark may be that of an incomplete type. It is only
|
16673 |
|
|
-- now that we can get the full view, previous analysis does
|
16674 |
|
|
-- not look specifically for a type mark.
|
16675 |
|
|
|
16676 |
|
|
Set_Entity (I, Get_Full_View (Entity (I)));
|
16677 |
|
|
Set_Etype (I, Entity (I));
|
16678 |
|
|
Def_Id := Entity (I);
|
16679 |
|
|
|
16680 |
|
|
if not Is_Discrete_Type (Def_Id) then
|
16681 |
|
|
Error_Msg_N ("discrete type required for index", I);
|
16682 |
|
|
Set_Etype (I, Any_Type);
|
16683 |
|
|
return;
|
16684 |
|
|
end if;
|
16685 |
|
|
end if;
|
16686 |
|
|
|
16687 |
|
|
if Expander_Active then
|
16688 |
|
|
Rewrite (I,
|
16689 |
|
|
Make_Attribute_Reference (Sloc (I),
|
16690 |
|
|
Attribute_Name => Name_Range,
|
16691 |
|
|
Prefix => Relocate_Node (I)));
|
16692 |
|
|
|
16693 |
|
|
-- The original was a subtype mark that does not freeze. This
|
16694 |
|
|
-- means that the rewritten version must not freeze either.
|
16695 |
|
|
|
16696 |
|
|
Set_Must_Not_Freeze (I);
|
16697 |
|
|
Set_Must_Not_Freeze (Prefix (I));
|
16698 |
|
|
|
16699 |
|
|
-- Is order critical??? if so, document why, if not
|
16700 |
|
|
-- use Analyze_And_Resolve
|
16701 |
|
|
|
16702 |
|
|
Analyze_And_Resolve (I);
|
16703 |
|
|
T := Etype (I);
|
16704 |
|
|
R := I;
|
16705 |
|
|
|
16706 |
|
|
-- If expander is inactive, type is legal, nothing else to construct
|
16707 |
|
|
|
16708 |
|
|
else
|
16709 |
|
|
return;
|
16710 |
|
|
end if;
|
16711 |
|
|
end if;
|
16712 |
|
|
|
16713 |
|
|
if not Is_Discrete_Type (T) then
|
16714 |
|
|
Error_Msg_N ("discrete type required for range", I);
|
16715 |
|
|
Set_Etype (I, Any_Type);
|
16716 |
|
|
return;
|
16717 |
|
|
|
16718 |
|
|
elsif T = Any_Type then
|
16719 |
|
|
Set_Etype (I, Any_Type);
|
16720 |
|
|
return;
|
16721 |
|
|
end if;
|
16722 |
|
|
|
16723 |
|
|
-- We will now create the appropriate Itype to describe the range, but
|
16724 |
|
|
-- first a check. If we originally had a subtype, then we just label
|
16725 |
|
|
-- the range with this subtype. Not only is there no need to construct
|
16726 |
|
|
-- a new subtype, but it is wrong to do so for two reasons:
|
16727 |
|
|
|
16728 |
|
|
-- 1. A legality concern, if we have a subtype, it must not freeze,
|
16729 |
|
|
-- and the Itype would cause freezing incorrectly
|
16730 |
|
|
|
16731 |
|
|
-- 2. An efficiency concern, if we created an Itype, it would not be
|
16732 |
|
|
-- recognized as the same type for the purposes of eliminating
|
16733 |
|
|
-- checks in some circumstances.
|
16734 |
|
|
|
16735 |
|
|
-- We signal this case by setting the subtype entity in Def_Id
|
16736 |
|
|
|
16737 |
|
|
if No (Def_Id) then
|
16738 |
|
|
Def_Id :=
|
16739 |
|
|
Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
|
16740 |
|
|
Set_Etype (Def_Id, Base_Type (T));
|
16741 |
|
|
|
16742 |
|
|
if Is_Signed_Integer_Type (T) then
|
16743 |
|
|
Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
|
16744 |
|
|
|
16745 |
|
|
elsif Is_Modular_Integer_Type (T) then
|
16746 |
|
|
Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
|
16747 |
|
|
|
16748 |
|
|
else
|
16749 |
|
|
Set_Ekind (Def_Id, E_Enumeration_Subtype);
|
16750 |
|
|
Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
|
16751 |
|
|
Set_First_Literal (Def_Id, First_Literal (T));
|
16752 |
|
|
end if;
|
16753 |
|
|
|
16754 |
|
|
Set_Size_Info (Def_Id, (T));
|
16755 |
|
|
Set_RM_Size (Def_Id, RM_Size (T));
|
16756 |
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
16757 |
|
|
|
16758 |
|
|
Set_Scalar_Range (Def_Id, R);
|
16759 |
|
|
Conditional_Delay (Def_Id, T);
|
16760 |
|
|
|
16761 |
|
|
-- In the subtype indication case, if the immediate parent of the
|
16762 |
|
|
-- new subtype is non-static, then the subtype we create is non-
|
16763 |
|
|
-- static, even if its bounds are static.
|
16764 |
|
|
|
16765 |
|
|
if Nkind (I) = N_Subtype_Indication
|
16766 |
|
|
and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
|
16767 |
|
|
then
|
16768 |
|
|
Set_Is_Non_Static_Subtype (Def_Id);
|
16769 |
|
|
end if;
|
16770 |
|
|
end if;
|
16771 |
|
|
|
16772 |
|
|
-- Final step is to label the index with this constructed type
|
16773 |
|
|
|
16774 |
|
|
Set_Etype (I, Def_Id);
|
16775 |
|
|
end Make_Index;
|
16776 |
|
|
|
16777 |
|
|
------------------------------
|
16778 |
|
|
-- Modular_Type_Declaration --
|
16779 |
|
|
------------------------------
|
16780 |
|
|
|
16781 |
|
|
procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
|
16782 |
|
|
Mod_Expr : constant Node_Id := Expression (Def);
|
16783 |
|
|
M_Val : Uint;
|
16784 |
|
|
|
16785 |
|
|
procedure Set_Modular_Size (Bits : Int);
|
16786 |
|
|
-- Sets RM_Size to Bits, and Esize to normal word size above this
|
16787 |
|
|
|
16788 |
|
|
----------------------
|
16789 |
|
|
-- Set_Modular_Size --
|
16790 |
|
|
----------------------
|
16791 |
|
|
|
16792 |
|
|
procedure Set_Modular_Size (Bits : Int) is
|
16793 |
|
|
begin
|
16794 |
|
|
Set_RM_Size (T, UI_From_Int (Bits));
|
16795 |
|
|
|
16796 |
|
|
if Bits <= 8 then
|
16797 |
|
|
Init_Esize (T, 8);
|
16798 |
|
|
|
16799 |
|
|
elsif Bits <= 16 then
|
16800 |
|
|
Init_Esize (T, 16);
|
16801 |
|
|
|
16802 |
|
|
elsif Bits <= 32 then
|
16803 |
|
|
Init_Esize (T, 32);
|
16804 |
|
|
|
16805 |
|
|
else
|
16806 |
|
|
Init_Esize (T, System_Max_Binary_Modulus_Power);
|
16807 |
|
|
end if;
|
16808 |
|
|
|
16809 |
|
|
if not Non_Binary_Modulus (T)
|
16810 |
|
|
and then Esize (T) = RM_Size (T)
|
16811 |
|
|
then
|
16812 |
|
|
Set_Is_Known_Valid (T);
|
16813 |
|
|
end if;
|
16814 |
|
|
end Set_Modular_Size;
|
16815 |
|
|
|
16816 |
|
|
-- Start of processing for Modular_Type_Declaration
|
16817 |
|
|
|
16818 |
|
|
begin
|
16819 |
|
|
-- If the mod expression is (exactly) 2 * literal, where literal is
|
16820 |
|
|
-- 64 or less,then almost certainly the * was meant to be **. Warn!
|
16821 |
|
|
|
16822 |
|
|
if Warn_On_Suspicious_Modulus_Value
|
16823 |
|
|
and then Nkind (Mod_Expr) = N_Op_Multiply
|
16824 |
|
|
and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
|
16825 |
|
|
and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
|
16826 |
|
|
and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
|
16827 |
|
|
and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
|
16828 |
|
|
then
|
16829 |
|
|
Error_Msg_N ("suspicious MOD value, was '*'* intended'??", Mod_Expr);
|
16830 |
|
|
end if;
|
16831 |
|
|
|
16832 |
|
|
-- Proceed with analysis of mod expression
|
16833 |
|
|
|
16834 |
|
|
Analyze_And_Resolve (Mod_Expr, Any_Integer);
|
16835 |
|
|
Set_Etype (T, T);
|
16836 |
|
|
Set_Ekind (T, E_Modular_Integer_Type);
|
16837 |
|
|
Init_Alignment (T);
|
16838 |
|
|
Set_Is_Constrained (T);
|
16839 |
|
|
|
16840 |
|
|
if not Is_OK_Static_Expression (Mod_Expr) then
|
16841 |
|
|
Flag_Non_Static_Expr
|
16842 |
|
|
("non-static expression used for modular type bound!", Mod_Expr);
|
16843 |
|
|
M_Val := 2 ** System_Max_Binary_Modulus_Power;
|
16844 |
|
|
else
|
16845 |
|
|
M_Val := Expr_Value (Mod_Expr);
|
16846 |
|
|
end if;
|
16847 |
|
|
|
16848 |
|
|
if M_Val < 1 then
|
16849 |
|
|
Error_Msg_N ("modulus value must be positive", Mod_Expr);
|
16850 |
|
|
M_Val := 2 ** System_Max_Binary_Modulus_Power;
|
16851 |
|
|
end if;
|
16852 |
|
|
|
16853 |
|
|
Set_Modulus (T, M_Val);
|
16854 |
|
|
|
16855 |
|
|
-- Create bounds for the modular type based on the modulus given in
|
16856 |
|
|
-- the type declaration and then analyze and resolve those bounds.
|
16857 |
|
|
|
16858 |
|
|
Set_Scalar_Range (T,
|
16859 |
|
|
Make_Range (Sloc (Mod_Expr),
|
16860 |
|
|
Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
|
16861 |
|
|
High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
|
16862 |
|
|
|
16863 |
|
|
-- Properly analyze the literals for the range. We do this manually
|
16864 |
|
|
-- because we can't go calling Resolve, since we are resolving these
|
16865 |
|
|
-- bounds with the type, and this type is certainly not complete yet!
|
16866 |
|
|
|
16867 |
|
|
Set_Etype (Low_Bound (Scalar_Range (T)), T);
|
16868 |
|
|
Set_Etype (High_Bound (Scalar_Range (T)), T);
|
16869 |
|
|
Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
|
16870 |
|
|
Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
|
16871 |
|
|
|
16872 |
|
|
-- Loop through powers of two to find number of bits required
|
16873 |
|
|
|
16874 |
|
|
for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
|
16875 |
|
|
|
16876 |
|
|
-- Binary case
|
16877 |
|
|
|
16878 |
|
|
if M_Val = 2 ** Bits then
|
16879 |
|
|
Set_Modular_Size (Bits);
|
16880 |
|
|
return;
|
16881 |
|
|
|
16882 |
|
|
-- Non-binary case
|
16883 |
|
|
|
16884 |
|
|
elsif M_Val < 2 ** Bits then
|
16885 |
|
|
Check_SPARK_Restriction ("modulus should be a power of 2", T);
|
16886 |
|
|
Set_Non_Binary_Modulus (T);
|
16887 |
|
|
|
16888 |
|
|
if Bits > System_Max_Nonbinary_Modulus_Power then
|
16889 |
|
|
Error_Msg_Uint_1 :=
|
16890 |
|
|
UI_From_Int (System_Max_Nonbinary_Modulus_Power);
|
16891 |
|
|
Error_Msg_F
|
16892 |
|
|
("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
|
16893 |
|
|
Set_Modular_Size (System_Max_Binary_Modulus_Power);
|
16894 |
|
|
return;
|
16895 |
|
|
|
16896 |
|
|
else
|
16897 |
|
|
-- In the non-binary case, set size as per RM 13.3(55)
|
16898 |
|
|
|
16899 |
|
|
Set_Modular_Size (Bits);
|
16900 |
|
|
return;
|
16901 |
|
|
end if;
|
16902 |
|
|
end if;
|
16903 |
|
|
|
16904 |
|
|
end loop;
|
16905 |
|
|
|
16906 |
|
|
-- If we fall through, then the size exceed System.Max_Binary_Modulus
|
16907 |
|
|
-- so we just signal an error and set the maximum size.
|
16908 |
|
|
|
16909 |
|
|
Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
|
16910 |
|
|
Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
|
16911 |
|
|
|
16912 |
|
|
Set_Modular_Size (System_Max_Binary_Modulus_Power);
|
16913 |
|
|
Init_Alignment (T);
|
16914 |
|
|
|
16915 |
|
|
end Modular_Type_Declaration;
|
16916 |
|
|
|
16917 |
|
|
--------------------------
|
16918 |
|
|
-- New_Concatenation_Op --
|
16919 |
|
|
--------------------------
|
16920 |
|
|
|
16921 |
|
|
procedure New_Concatenation_Op (Typ : Entity_Id) is
|
16922 |
|
|
Loc : constant Source_Ptr := Sloc (Typ);
|
16923 |
|
|
Op : Entity_Id;
|
16924 |
|
|
|
16925 |
|
|
function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
|
16926 |
|
|
-- Create abbreviated declaration for the formal of a predefined
|
16927 |
|
|
-- Operator 'Op' of type 'Typ'
|
16928 |
|
|
|
16929 |
|
|
--------------------
|
16930 |
|
|
-- Make_Op_Formal --
|
16931 |
|
|
--------------------
|
16932 |
|
|
|
16933 |
|
|
function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
|
16934 |
|
|
Formal : Entity_Id;
|
16935 |
|
|
begin
|
16936 |
|
|
Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
|
16937 |
|
|
Set_Etype (Formal, Typ);
|
16938 |
|
|
Set_Mechanism (Formal, Default_Mechanism);
|
16939 |
|
|
return Formal;
|
16940 |
|
|
end Make_Op_Formal;
|
16941 |
|
|
|
16942 |
|
|
-- Start of processing for New_Concatenation_Op
|
16943 |
|
|
|
16944 |
|
|
begin
|
16945 |
|
|
Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
|
16946 |
|
|
|
16947 |
|
|
Set_Ekind (Op, E_Operator);
|
16948 |
|
|
Set_Scope (Op, Current_Scope);
|
16949 |
|
|
Set_Etype (Op, Typ);
|
16950 |
|
|
Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
|
16951 |
|
|
Set_Is_Immediately_Visible (Op);
|
16952 |
|
|
Set_Is_Intrinsic_Subprogram (Op);
|
16953 |
|
|
Set_Has_Completion (Op);
|
16954 |
|
|
Append_Entity (Op, Current_Scope);
|
16955 |
|
|
|
16956 |
|
|
Set_Name_Entity_Id (Name_Op_Concat, Op);
|
16957 |
|
|
|
16958 |
|
|
Append_Entity (Make_Op_Formal (Typ, Op), Op);
|
16959 |
|
|
Append_Entity (Make_Op_Formal (Typ, Op), Op);
|
16960 |
|
|
end New_Concatenation_Op;
|
16961 |
|
|
|
16962 |
|
|
-------------------------
|
16963 |
|
|
-- OK_For_Limited_Init --
|
16964 |
|
|
-------------------------
|
16965 |
|
|
|
16966 |
|
|
-- ???Check all calls of this, and compare the conditions under which it's
|
16967 |
|
|
-- called.
|
16968 |
|
|
|
16969 |
|
|
function OK_For_Limited_Init
|
16970 |
|
|
(Typ : Entity_Id;
|
16971 |
|
|
Exp : Node_Id) return Boolean
|
16972 |
|
|
is
|
16973 |
|
|
begin
|
16974 |
|
|
return Is_CPP_Constructor_Call (Exp)
|
16975 |
|
|
or else (Ada_Version >= Ada_2005
|
16976 |
|
|
and then not Debug_Flag_Dot_L
|
16977 |
|
|
and then OK_For_Limited_Init_In_05 (Typ, Exp));
|
16978 |
|
|
end OK_For_Limited_Init;
|
16979 |
|
|
|
16980 |
|
|
-------------------------------
|
16981 |
|
|
-- OK_For_Limited_Init_In_05 --
|
16982 |
|
|
-------------------------------
|
16983 |
|
|
|
16984 |
|
|
function OK_For_Limited_Init_In_05
|
16985 |
|
|
(Typ : Entity_Id;
|
16986 |
|
|
Exp : Node_Id) return Boolean
|
16987 |
|
|
is
|
16988 |
|
|
begin
|
16989 |
|
|
-- An object of a limited interface type can be initialized with any
|
16990 |
|
|
-- expression of a nonlimited descendant type.
|
16991 |
|
|
|
16992 |
|
|
if Is_Class_Wide_Type (Typ)
|
16993 |
|
|
and then Is_Limited_Interface (Typ)
|
16994 |
|
|
and then not Is_Limited_Type (Etype (Exp))
|
16995 |
|
|
then
|
16996 |
|
|
return True;
|
16997 |
|
|
end if;
|
16998 |
|
|
|
16999 |
|
|
-- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
|
17000 |
|
|
-- case of limited aggregates (including extension aggregates), and
|
17001 |
|
|
-- function calls. The function call may have been given in prefixed
|
17002 |
|
|
-- notation, in which case the original node is an indexed component.
|
17003 |
|
|
-- If the function is parameterless, the original node was an explicit
|
17004 |
|
|
-- dereference. The function may also be parameterless, in which case
|
17005 |
|
|
-- the source node is just an identifier.
|
17006 |
|
|
|
17007 |
|
|
case Nkind (Original_Node (Exp)) is
|
17008 |
|
|
when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
|
17009 |
|
|
return True;
|
17010 |
|
|
|
17011 |
|
|
when N_Identifier =>
|
17012 |
|
|
return Present (Entity (Original_Node (Exp)))
|
17013 |
|
|
and then Ekind (Entity (Original_Node (Exp))) = E_Function;
|
17014 |
|
|
|
17015 |
|
|
when N_Qualified_Expression =>
|
17016 |
|
|
return
|
17017 |
|
|
OK_For_Limited_Init_In_05
|
17018 |
|
|
(Typ, Expression (Original_Node (Exp)));
|
17019 |
|
|
|
17020 |
|
|
-- Ada 2005 (AI-251): If a class-wide interface object is initialized
|
17021 |
|
|
-- with a function call, the expander has rewritten the call into an
|
17022 |
|
|
-- N_Type_Conversion node to force displacement of the pointer to
|
17023 |
|
|
-- reference the component containing the secondary dispatch table.
|
17024 |
|
|
-- Otherwise a type conversion is not a legal context.
|
17025 |
|
|
-- A return statement for a build-in-place function returning a
|
17026 |
|
|
-- synchronized type also introduces an unchecked conversion.
|
17027 |
|
|
|
17028 |
|
|
when N_Type_Conversion |
|
17029 |
|
|
N_Unchecked_Type_Conversion =>
|
17030 |
|
|
return not Comes_From_Source (Exp)
|
17031 |
|
|
and then
|
17032 |
|
|
OK_For_Limited_Init_In_05
|
17033 |
|
|
(Typ, Expression (Original_Node (Exp)));
|
17034 |
|
|
|
17035 |
|
|
when N_Indexed_Component |
|
17036 |
|
|
N_Selected_Component |
|
17037 |
|
|
N_Explicit_Dereference =>
|
17038 |
|
|
return Nkind (Exp) = N_Function_Call;
|
17039 |
|
|
|
17040 |
|
|
-- A use of 'Input is a function call, hence allowed. Normally the
|
17041 |
|
|
-- attribute will be changed to a call, but the attribute by itself
|
17042 |
|
|
-- can occur with -gnatc.
|
17043 |
|
|
|
17044 |
|
|
when N_Attribute_Reference =>
|
17045 |
|
|
return Attribute_Name (Original_Node (Exp)) = Name_Input;
|
17046 |
|
|
|
17047 |
|
|
-- For a conditional expression, all dependent expressions must be
|
17048 |
|
|
-- legal constructs.
|
17049 |
|
|
|
17050 |
|
|
when N_Conditional_Expression =>
|
17051 |
|
|
declare
|
17052 |
|
|
Then_Expr : constant Node_Id :=
|
17053 |
|
|
Next (First (Expressions (Original_Node (Exp))));
|
17054 |
|
|
Else_Expr : constant Node_Id := Next (Then_Expr);
|
17055 |
|
|
begin
|
17056 |
|
|
return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
|
17057 |
|
|
and then OK_For_Limited_Init_In_05 (Typ, Else_Expr);
|
17058 |
|
|
end;
|
17059 |
|
|
|
17060 |
|
|
when N_Case_Expression =>
|
17061 |
|
|
declare
|
17062 |
|
|
Alt : Node_Id;
|
17063 |
|
|
|
17064 |
|
|
begin
|
17065 |
|
|
Alt := First (Alternatives (Original_Node (Exp)));
|
17066 |
|
|
while Present (Alt) loop
|
17067 |
|
|
if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
|
17068 |
|
|
return False;
|
17069 |
|
|
end if;
|
17070 |
|
|
|
17071 |
|
|
Next (Alt);
|
17072 |
|
|
end loop;
|
17073 |
|
|
|
17074 |
|
|
return True;
|
17075 |
|
|
end;
|
17076 |
|
|
|
17077 |
|
|
when others =>
|
17078 |
|
|
return False;
|
17079 |
|
|
end case;
|
17080 |
|
|
end OK_For_Limited_Init_In_05;
|
17081 |
|
|
|
17082 |
|
|
-------------------------------------------
|
17083 |
|
|
-- Ordinary_Fixed_Point_Type_Declaration --
|
17084 |
|
|
-------------------------------------------
|
17085 |
|
|
|
17086 |
|
|
procedure Ordinary_Fixed_Point_Type_Declaration
|
17087 |
|
|
(T : Entity_Id;
|
17088 |
|
|
Def : Node_Id)
|
17089 |
|
|
is
|
17090 |
|
|
Loc : constant Source_Ptr := Sloc (Def);
|
17091 |
|
|
Delta_Expr : constant Node_Id := Delta_Expression (Def);
|
17092 |
|
|
RRS : constant Node_Id := Real_Range_Specification (Def);
|
17093 |
|
|
Implicit_Base : Entity_Id;
|
17094 |
|
|
Delta_Val : Ureal;
|
17095 |
|
|
Small_Val : Ureal;
|
17096 |
|
|
Low_Val : Ureal;
|
17097 |
|
|
High_Val : Ureal;
|
17098 |
|
|
|
17099 |
|
|
begin
|
17100 |
|
|
Check_Restriction (No_Fixed_Point, Def);
|
17101 |
|
|
|
17102 |
|
|
-- Create implicit base type
|
17103 |
|
|
|
17104 |
|
|
Implicit_Base :=
|
17105 |
|
|
Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
|
17106 |
|
|
Set_Etype (Implicit_Base, Implicit_Base);
|
17107 |
|
|
|
17108 |
|
|
-- Analyze and process delta expression
|
17109 |
|
|
|
17110 |
|
|
Analyze_And_Resolve (Delta_Expr, Any_Real);
|
17111 |
|
|
|
17112 |
|
|
Check_Delta_Expression (Delta_Expr);
|
17113 |
|
|
Delta_Val := Expr_Value_R (Delta_Expr);
|
17114 |
|
|
|
17115 |
|
|
Set_Delta_Value (Implicit_Base, Delta_Val);
|
17116 |
|
|
|
17117 |
|
|
-- Compute default small from given delta, which is the largest power
|
17118 |
|
|
-- of two that does not exceed the given delta value.
|
17119 |
|
|
|
17120 |
|
|
declare
|
17121 |
|
|
Tmp : Ureal;
|
17122 |
|
|
Scale : Int;
|
17123 |
|
|
|
17124 |
|
|
begin
|
17125 |
|
|
Tmp := Ureal_1;
|
17126 |
|
|
Scale := 0;
|
17127 |
|
|
|
17128 |
|
|
if Delta_Val < Ureal_1 then
|
17129 |
|
|
while Delta_Val < Tmp loop
|
17130 |
|
|
Tmp := Tmp / Ureal_2;
|
17131 |
|
|
Scale := Scale + 1;
|
17132 |
|
|
end loop;
|
17133 |
|
|
|
17134 |
|
|
else
|
17135 |
|
|
loop
|
17136 |
|
|
Tmp := Tmp * Ureal_2;
|
17137 |
|
|
exit when Tmp > Delta_Val;
|
17138 |
|
|
Scale := Scale - 1;
|
17139 |
|
|
end loop;
|
17140 |
|
|
end if;
|
17141 |
|
|
|
17142 |
|
|
Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
|
17143 |
|
|
end;
|
17144 |
|
|
|
17145 |
|
|
Set_Small_Value (Implicit_Base, Small_Val);
|
17146 |
|
|
|
17147 |
|
|
-- If no range was given, set a dummy range
|
17148 |
|
|
|
17149 |
|
|
if RRS <= Empty_Or_Error then
|
17150 |
|
|
Low_Val := -Small_Val;
|
17151 |
|
|
High_Val := Small_Val;
|
17152 |
|
|
|
17153 |
|
|
-- Otherwise analyze and process given range
|
17154 |
|
|
|
17155 |
|
|
else
|
17156 |
|
|
declare
|
17157 |
|
|
Low : constant Node_Id := Low_Bound (RRS);
|
17158 |
|
|
High : constant Node_Id := High_Bound (RRS);
|
17159 |
|
|
|
17160 |
|
|
begin
|
17161 |
|
|
Analyze_And_Resolve (Low, Any_Real);
|
17162 |
|
|
Analyze_And_Resolve (High, Any_Real);
|
17163 |
|
|
Check_Real_Bound (Low);
|
17164 |
|
|
Check_Real_Bound (High);
|
17165 |
|
|
|
17166 |
|
|
-- Obtain and set the range
|
17167 |
|
|
|
17168 |
|
|
Low_Val := Expr_Value_R (Low);
|
17169 |
|
|
High_Val := Expr_Value_R (High);
|
17170 |
|
|
|
17171 |
|
|
if Low_Val > High_Val then
|
17172 |
|
|
Error_Msg_NE ("?fixed point type& has null range", Def, T);
|
17173 |
|
|
end if;
|
17174 |
|
|
end;
|
17175 |
|
|
end if;
|
17176 |
|
|
|
17177 |
|
|
-- The range for both the implicit base and the declared first subtype
|
17178 |
|
|
-- cannot be set yet, so we use the special routine Set_Fixed_Range to
|
17179 |
|
|
-- set a temporary range in place. Note that the bounds of the base
|
17180 |
|
|
-- type will be widened to be symmetrical and to fill the available
|
17181 |
|
|
-- bits when the type is frozen.
|
17182 |
|
|
|
17183 |
|
|
-- We could do this with all discrete types, and probably should, but
|
17184 |
|
|
-- we absolutely have to do it for fixed-point, since the end-points
|
17185 |
|
|
-- of the range and the size are determined by the small value, which
|
17186 |
|
|
-- could be reset before the freeze point.
|
17187 |
|
|
|
17188 |
|
|
Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
|
17189 |
|
|
Set_Fixed_Range (T, Loc, Low_Val, High_Val);
|
17190 |
|
|
|
17191 |
|
|
-- Complete definition of first subtype
|
17192 |
|
|
|
17193 |
|
|
Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
|
17194 |
|
|
Set_Etype (T, Implicit_Base);
|
17195 |
|
|
Init_Size_Align (T);
|
17196 |
|
|
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
|
17197 |
|
|
Set_Small_Value (T, Small_Val);
|
17198 |
|
|
Set_Delta_Value (T, Delta_Val);
|
17199 |
|
|
Set_Is_Constrained (T);
|
17200 |
|
|
|
17201 |
|
|
end Ordinary_Fixed_Point_Type_Declaration;
|
17202 |
|
|
|
17203 |
|
|
----------------------------------------
|
17204 |
|
|
-- Prepare_Private_Subtype_Completion --
|
17205 |
|
|
----------------------------------------
|
17206 |
|
|
|
17207 |
|
|
procedure Prepare_Private_Subtype_Completion
|
17208 |
|
|
(Id : Entity_Id;
|
17209 |
|
|
Related_Nod : Node_Id)
|
17210 |
|
|
is
|
17211 |
|
|
Id_B : constant Entity_Id := Base_Type (Id);
|
17212 |
|
|
Full_B : constant Entity_Id := Full_View (Id_B);
|
17213 |
|
|
Full : Entity_Id;
|
17214 |
|
|
|
17215 |
|
|
begin
|
17216 |
|
|
if Present (Full_B) then
|
17217 |
|
|
|
17218 |
|
|
-- The Base_Type is already completed, we can complete the subtype
|
17219 |
|
|
-- now. We have to create a new entity with the same name, Thus we
|
17220 |
|
|
-- can't use Create_Itype.
|
17221 |
|
|
|
17222 |
|
|
-- This is messy, should be fixed ???
|
17223 |
|
|
|
17224 |
|
|
Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
|
17225 |
|
|
Set_Is_Itype (Full);
|
17226 |
|
|
Set_Associated_Node_For_Itype (Full, Related_Nod);
|
17227 |
|
|
Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
|
17228 |
|
|
end if;
|
17229 |
|
|
|
17230 |
|
|
-- The parent subtype may be private, but the base might not, in some
|
17231 |
|
|
-- nested instances. In that case, the subtype does not need to be
|
17232 |
|
|
-- exchanged. It would still be nice to make private subtypes and their
|
17233 |
|
|
-- bases consistent at all times ???
|
17234 |
|
|
|
17235 |
|
|
if Is_Private_Type (Id_B) then
|
17236 |
|
|
Append_Elmt (Id, Private_Dependents (Id_B));
|
17237 |
|
|
end if;
|
17238 |
|
|
|
17239 |
|
|
end Prepare_Private_Subtype_Completion;
|
17240 |
|
|
|
17241 |
|
|
---------------------------
|
17242 |
|
|
-- Process_Discriminants --
|
17243 |
|
|
---------------------------
|
17244 |
|
|
|
17245 |
|
|
procedure Process_Discriminants
|
17246 |
|
|
(N : Node_Id;
|
17247 |
|
|
Prev : Entity_Id := Empty)
|
17248 |
|
|
is
|
17249 |
|
|
Elist : constant Elist_Id := New_Elmt_List;
|
17250 |
|
|
Id : Node_Id;
|
17251 |
|
|
Discr : Node_Id;
|
17252 |
|
|
Discr_Number : Uint;
|
17253 |
|
|
Discr_Type : Entity_Id;
|
17254 |
|
|
Default_Present : Boolean := False;
|
17255 |
|
|
Default_Not_Present : Boolean := False;
|
17256 |
|
|
|
17257 |
|
|
begin
|
17258 |
|
|
-- A composite type other than an array type can have discriminants.
|
17259 |
|
|
-- On entry, the current scope is the composite type.
|
17260 |
|
|
|
17261 |
|
|
-- The discriminants are initially entered into the scope of the type
|
17262 |
|
|
-- via Enter_Name with the default Ekind of E_Void to prevent premature
|
17263 |
|
|
-- use, as explained at the end of this procedure.
|
17264 |
|
|
|
17265 |
|
|
Discr := First (Discriminant_Specifications (N));
|
17266 |
|
|
while Present (Discr) loop
|
17267 |
|
|
Enter_Name (Defining_Identifier (Discr));
|
17268 |
|
|
|
17269 |
|
|
-- For navigation purposes we add a reference to the discriminant
|
17270 |
|
|
-- in the entity for the type. If the current declaration is a
|
17271 |
|
|
-- completion, place references on the partial view. Otherwise the
|
17272 |
|
|
-- type is the current scope.
|
17273 |
|
|
|
17274 |
|
|
if Present (Prev) then
|
17275 |
|
|
|
17276 |
|
|
-- The references go on the partial view, if present. If the
|
17277 |
|
|
-- partial view has discriminants, the references have been
|
17278 |
|
|
-- generated already.
|
17279 |
|
|
|
17280 |
|
|
if not Has_Discriminants (Prev) then
|
17281 |
|
|
Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
|
17282 |
|
|
end if;
|
17283 |
|
|
else
|
17284 |
|
|
Generate_Reference
|
17285 |
|
|
(Current_Scope, Defining_Identifier (Discr), 'd');
|
17286 |
|
|
end if;
|
17287 |
|
|
|
17288 |
|
|
if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
|
17289 |
|
|
Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
|
17290 |
|
|
|
17291 |
|
|
-- Ada 2005 (AI-254)
|
17292 |
|
|
|
17293 |
|
|
if Present (Access_To_Subprogram_Definition
|
17294 |
|
|
(Discriminant_Type (Discr)))
|
17295 |
|
|
and then Protected_Present (Access_To_Subprogram_Definition
|
17296 |
|
|
(Discriminant_Type (Discr)))
|
17297 |
|
|
then
|
17298 |
|
|
Discr_Type :=
|
17299 |
|
|
Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
|
17300 |
|
|
end if;
|
17301 |
|
|
|
17302 |
|
|
else
|
17303 |
|
|
Find_Type (Discriminant_Type (Discr));
|
17304 |
|
|
Discr_Type := Etype (Discriminant_Type (Discr));
|
17305 |
|
|
|
17306 |
|
|
if Error_Posted (Discriminant_Type (Discr)) then
|
17307 |
|
|
Discr_Type := Any_Type;
|
17308 |
|
|
end if;
|
17309 |
|
|
end if;
|
17310 |
|
|
|
17311 |
|
|
if Is_Access_Type (Discr_Type) then
|
17312 |
|
|
|
17313 |
|
|
-- Ada 2005 (AI-230): Access discriminant allowed in non-limited
|
17314 |
|
|
-- record types
|
17315 |
|
|
|
17316 |
|
|
if Ada_Version < Ada_2005 then
|
17317 |
|
|
Check_Access_Discriminant_Requires_Limited
|
17318 |
|
|
(Discr, Discriminant_Type (Discr));
|
17319 |
|
|
end if;
|
17320 |
|
|
|
17321 |
|
|
if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
|
17322 |
|
|
Error_Msg_N
|
17323 |
|
|
("(Ada 83) access discriminant not allowed", Discr);
|
17324 |
|
|
end if;
|
17325 |
|
|
|
17326 |
|
|
elsif not Is_Discrete_Type (Discr_Type) then
|
17327 |
|
|
Error_Msg_N ("discriminants must have a discrete or access type",
|
17328 |
|
|
Discriminant_Type (Discr));
|
17329 |
|
|
end if;
|
17330 |
|
|
|
17331 |
|
|
Set_Etype (Defining_Identifier (Discr), Discr_Type);
|
17332 |
|
|
|
17333 |
|
|
-- If a discriminant specification includes the assignment compound
|
17334 |
|
|
-- delimiter followed by an expression, the expression is the default
|
17335 |
|
|
-- expression of the discriminant; the default expression must be of
|
17336 |
|
|
-- the type of the discriminant. (RM 3.7.1) Since this expression is
|
17337 |
|
|
-- a default expression, we do the special preanalysis, since this
|
17338 |
|
|
-- expression does not freeze (see "Handling of Default and Per-
|
17339 |
|
|
-- Object Expressions" in spec of package Sem).
|
17340 |
|
|
|
17341 |
|
|
if Present (Expression (Discr)) then
|
17342 |
|
|
Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
|
17343 |
|
|
|
17344 |
|
|
if Nkind (N) = N_Formal_Type_Declaration then
|
17345 |
|
|
Error_Msg_N
|
17346 |
|
|
("discriminant defaults not allowed for formal type",
|
17347 |
|
|
Expression (Discr));
|
17348 |
|
|
|
17349 |
|
|
-- Flag an error for a tagged type with defaulted discriminants,
|
17350 |
|
|
-- excluding limited tagged types when compiling for Ada 2012
|
17351 |
|
|
-- (see AI05-0214).
|
17352 |
|
|
|
17353 |
|
|
elsif Is_Tagged_Type (Current_Scope)
|
17354 |
|
|
and then (not Is_Limited_Type (Current_Scope)
|
17355 |
|
|
or else Ada_Version < Ada_2012)
|
17356 |
|
|
and then Comes_From_Source (N)
|
17357 |
|
|
then
|
17358 |
|
|
-- Note: see similar test in Check_Or_Process_Discriminants, to
|
17359 |
|
|
-- handle the (illegal) case of the completion of an untagged
|
17360 |
|
|
-- view with discriminants with defaults by a tagged full view.
|
17361 |
|
|
-- We skip the check if Discr does not come from source, to
|
17362 |
|
|
-- account for the case of an untagged derived type providing
|
17363 |
|
|
-- defaults for a renamed discriminant from a private untagged
|
17364 |
|
|
-- ancestor with a tagged full view (ACATS B460006).
|
17365 |
|
|
|
17366 |
|
|
if Ada_Version >= Ada_2012 then
|
17367 |
|
|
Error_Msg_N
|
17368 |
|
|
("discriminants of nonlimited tagged type cannot have"
|
17369 |
|
|
& " defaults",
|
17370 |
|
|
Expression (Discr));
|
17371 |
|
|
else
|
17372 |
|
|
Error_Msg_N
|
17373 |
|
|
("discriminants of tagged type cannot have defaults",
|
17374 |
|
|
Expression (Discr));
|
17375 |
|
|
end if;
|
17376 |
|
|
|
17377 |
|
|
else
|
17378 |
|
|
Default_Present := True;
|
17379 |
|
|
Append_Elmt (Expression (Discr), Elist);
|
17380 |
|
|
|
17381 |
|
|
-- Tag the defining identifiers for the discriminants with
|
17382 |
|
|
-- their corresponding default expressions from the tree.
|
17383 |
|
|
|
17384 |
|
|
Set_Discriminant_Default_Value
|
17385 |
|
|
(Defining_Identifier (Discr), Expression (Discr));
|
17386 |
|
|
end if;
|
17387 |
|
|
|
17388 |
|
|
else
|
17389 |
|
|
Default_Not_Present := True;
|
17390 |
|
|
end if;
|
17391 |
|
|
|
17392 |
|
|
-- Ada 2005 (AI-231): Create an Itype that is a duplicate of
|
17393 |
|
|
-- Discr_Type but with the null-exclusion attribute
|
17394 |
|
|
|
17395 |
|
|
if Ada_Version >= Ada_2005 then
|
17396 |
|
|
|
17397 |
|
|
-- Ada 2005 (AI-231): Static checks
|
17398 |
|
|
|
17399 |
|
|
if Can_Never_Be_Null (Discr_Type) then
|
17400 |
|
|
Null_Exclusion_Static_Checks (Discr);
|
17401 |
|
|
|
17402 |
|
|
elsif Is_Access_Type (Discr_Type)
|
17403 |
|
|
and then Null_Exclusion_Present (Discr)
|
17404 |
|
|
|
17405 |
|
|
-- No need to check itypes because in their case this check
|
17406 |
|
|
-- was done at their point of creation
|
17407 |
|
|
|
17408 |
|
|
and then not Is_Itype (Discr_Type)
|
17409 |
|
|
then
|
17410 |
|
|
if Can_Never_Be_Null (Discr_Type) then
|
17411 |
|
|
Error_Msg_NE
|
17412 |
|
|
("`NOT NULL` not allowed (& already excludes null)",
|
17413 |
|
|
Discr,
|
17414 |
|
|
Discr_Type);
|
17415 |
|
|
end if;
|
17416 |
|
|
|
17417 |
|
|
Set_Etype (Defining_Identifier (Discr),
|
17418 |
|
|
Create_Null_Excluding_Itype
|
17419 |
|
|
(T => Discr_Type,
|
17420 |
|
|
Related_Nod => Discr));
|
17421 |
|
|
|
17422 |
|
|
-- Check for improper null exclusion if the type is otherwise
|
17423 |
|
|
-- legal for a discriminant.
|
17424 |
|
|
|
17425 |
|
|
elsif Null_Exclusion_Present (Discr)
|
17426 |
|
|
and then Is_Discrete_Type (Discr_Type)
|
17427 |
|
|
then
|
17428 |
|
|
Error_Msg_N
|
17429 |
|
|
("null exclusion can only apply to an access type", Discr);
|
17430 |
|
|
end if;
|
17431 |
|
|
|
17432 |
|
|
-- Ada 2005 (AI-402): access discriminants of nonlimited types
|
17433 |
|
|
-- can't have defaults. Synchronized types, or types that are
|
17434 |
|
|
-- explicitly limited are fine, but special tests apply to derived
|
17435 |
|
|
-- types in generics: in a generic body we have to assume the
|
17436 |
|
|
-- worst, and therefore defaults are not allowed if the parent is
|
17437 |
|
|
-- a generic formal private type (see ACATS B370001).
|
17438 |
|
|
|
17439 |
|
|
if Is_Access_Type (Discr_Type) and then Default_Present then
|
17440 |
|
|
if Ekind (Discr_Type) /= E_Anonymous_Access_Type
|
17441 |
|
|
or else Is_Limited_Record (Current_Scope)
|
17442 |
|
|
or else Is_Concurrent_Type (Current_Scope)
|
17443 |
|
|
or else Is_Concurrent_Record_Type (Current_Scope)
|
17444 |
|
|
or else Ekind (Current_Scope) = E_Limited_Private_Type
|
17445 |
|
|
then
|
17446 |
|
|
if not Is_Derived_Type (Current_Scope)
|
17447 |
|
|
or else not Is_Generic_Type (Etype (Current_Scope))
|
17448 |
|
|
or else not In_Package_Body (Scope (Etype (Current_Scope)))
|
17449 |
|
|
or else Limited_Present
|
17450 |
|
|
(Type_Definition (Parent (Current_Scope)))
|
17451 |
|
|
then
|
17452 |
|
|
null;
|
17453 |
|
|
|
17454 |
|
|
else
|
17455 |
|
|
Error_Msg_N ("access discriminants of nonlimited types",
|
17456 |
|
|
Expression (Discr));
|
17457 |
|
|
Error_Msg_N ("\cannot have defaults", Expression (Discr));
|
17458 |
|
|
end if;
|
17459 |
|
|
|
17460 |
|
|
elsif Present (Expression (Discr)) then
|
17461 |
|
|
Error_Msg_N
|
17462 |
|
|
("(Ada 2005) access discriminants of nonlimited types",
|
17463 |
|
|
Expression (Discr));
|
17464 |
|
|
Error_Msg_N ("\cannot have defaults", Expression (Discr));
|
17465 |
|
|
end if;
|
17466 |
|
|
end if;
|
17467 |
|
|
end if;
|
17468 |
|
|
|
17469 |
|
|
Next (Discr);
|
17470 |
|
|
end loop;
|
17471 |
|
|
|
17472 |
|
|
-- An element list consisting of the default expressions of the
|
17473 |
|
|
-- discriminants is constructed in the above loop and used to set
|
17474 |
|
|
-- the Discriminant_Constraint attribute for the type. If an object
|
17475 |
|
|
-- is declared of this (record or task) type without any explicit
|
17476 |
|
|
-- discriminant constraint given, this element list will form the
|
17477 |
|
|
-- actual parameters for the corresponding initialization procedure
|
17478 |
|
|
-- for the type.
|
17479 |
|
|
|
17480 |
|
|
Set_Discriminant_Constraint (Current_Scope, Elist);
|
17481 |
|
|
Set_Stored_Constraint (Current_Scope, No_Elist);
|
17482 |
|
|
|
17483 |
|
|
-- Default expressions must be provided either for all or for none
|
17484 |
|
|
-- of the discriminants of a discriminant part. (RM 3.7.1)
|
17485 |
|
|
|
17486 |
|
|
if Default_Present and then Default_Not_Present then
|
17487 |
|
|
Error_Msg_N
|
17488 |
|
|
("incomplete specification of defaults for discriminants", N);
|
17489 |
|
|
end if;
|
17490 |
|
|
|
17491 |
|
|
-- The use of the name of a discriminant is not allowed in default
|
17492 |
|
|
-- expressions of a discriminant part if the specification of the
|
17493 |
|
|
-- discriminant is itself given in the discriminant part. (RM 3.7.1)
|
17494 |
|
|
|
17495 |
|
|
-- To detect this, the discriminant names are entered initially with an
|
17496 |
|
|
-- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
|
17497 |
|
|
-- attempt to use a void entity (for example in an expression that is
|
17498 |
|
|
-- type-checked) produces the error message: premature usage. Now after
|
17499 |
|
|
-- completing the semantic analysis of the discriminant part, we can set
|
17500 |
|
|
-- the Ekind of all the discriminants appropriately.
|
17501 |
|
|
|
17502 |
|
|
Discr := First (Discriminant_Specifications (N));
|
17503 |
|
|
Discr_Number := Uint_1;
|
17504 |
|
|
while Present (Discr) loop
|
17505 |
|
|
Id := Defining_Identifier (Discr);
|
17506 |
|
|
Set_Ekind (Id, E_Discriminant);
|
17507 |
|
|
Init_Component_Location (Id);
|
17508 |
|
|
Init_Esize (Id);
|
17509 |
|
|
Set_Discriminant_Number (Id, Discr_Number);
|
17510 |
|
|
|
17511 |
|
|
-- Make sure this is always set, even in illegal programs
|
17512 |
|
|
|
17513 |
|
|
Set_Corresponding_Discriminant (Id, Empty);
|
17514 |
|
|
|
17515 |
|
|
-- Initialize the Original_Record_Component to the entity itself.
|
17516 |
|
|
-- Inherit_Components will propagate the right value to
|
17517 |
|
|
-- discriminants in derived record types.
|
17518 |
|
|
|
17519 |
|
|
Set_Original_Record_Component (Id, Id);
|
17520 |
|
|
|
17521 |
|
|
-- Create the discriminal for the discriminant
|
17522 |
|
|
|
17523 |
|
|
Build_Discriminal (Id);
|
17524 |
|
|
|
17525 |
|
|
Next (Discr);
|
17526 |
|
|
Discr_Number := Discr_Number + 1;
|
17527 |
|
|
end loop;
|
17528 |
|
|
|
17529 |
|
|
Set_Has_Discriminants (Current_Scope);
|
17530 |
|
|
end Process_Discriminants;
|
17531 |
|
|
|
17532 |
|
|
-----------------------
|
17533 |
|
|
-- Process_Full_View --
|
17534 |
|
|
-----------------------
|
17535 |
|
|
|
17536 |
|
|
procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
|
17537 |
|
|
Priv_Parent : Entity_Id;
|
17538 |
|
|
Full_Parent : Entity_Id;
|
17539 |
|
|
Full_Indic : Node_Id;
|
17540 |
|
|
|
17541 |
|
|
procedure Collect_Implemented_Interfaces
|
17542 |
|
|
(Typ : Entity_Id;
|
17543 |
|
|
Ifaces : Elist_Id);
|
17544 |
|
|
-- Ada 2005: Gather all the interfaces that Typ directly or
|
17545 |
|
|
-- inherently implements. Duplicate entries are not added to
|
17546 |
|
|
-- the list Ifaces.
|
17547 |
|
|
|
17548 |
|
|
------------------------------------
|
17549 |
|
|
-- Collect_Implemented_Interfaces --
|
17550 |
|
|
------------------------------------
|
17551 |
|
|
|
17552 |
|
|
procedure Collect_Implemented_Interfaces
|
17553 |
|
|
(Typ : Entity_Id;
|
17554 |
|
|
Ifaces : Elist_Id)
|
17555 |
|
|
is
|
17556 |
|
|
Iface : Entity_Id;
|
17557 |
|
|
Iface_Elmt : Elmt_Id;
|
17558 |
|
|
|
17559 |
|
|
begin
|
17560 |
|
|
-- Abstract interfaces are only associated with tagged record types
|
17561 |
|
|
|
17562 |
|
|
if not Is_Tagged_Type (Typ)
|
17563 |
|
|
or else not Is_Record_Type (Typ)
|
17564 |
|
|
then
|
17565 |
|
|
return;
|
17566 |
|
|
end if;
|
17567 |
|
|
|
17568 |
|
|
-- Recursively climb to the ancestors
|
17569 |
|
|
|
17570 |
|
|
if Etype (Typ) /= Typ
|
17571 |
|
|
|
17572 |
|
|
-- Protect the frontend against wrong cyclic declarations like:
|
17573 |
|
|
|
17574 |
|
|
-- type B is new A with private;
|
17575 |
|
|
-- type C is new A with private;
|
17576 |
|
|
-- private
|
17577 |
|
|
-- type B is new C with null record;
|
17578 |
|
|
-- type C is new B with null record;
|
17579 |
|
|
|
17580 |
|
|
and then Etype (Typ) /= Priv_T
|
17581 |
|
|
and then Etype (Typ) /= Full_T
|
17582 |
|
|
then
|
17583 |
|
|
-- Keep separate the management of private type declarations
|
17584 |
|
|
|
17585 |
|
|
if Ekind (Typ) = E_Record_Type_With_Private then
|
17586 |
|
|
|
17587 |
|
|
-- Handle the following erroneous case:
|
17588 |
|
|
-- type Private_Type is tagged private;
|
17589 |
|
|
-- private
|
17590 |
|
|
-- type Private_Type is new Type_Implementing_Iface;
|
17591 |
|
|
|
17592 |
|
|
if Present (Full_View (Typ))
|
17593 |
|
|
and then Etype (Typ) /= Full_View (Typ)
|
17594 |
|
|
then
|
17595 |
|
|
if Is_Interface (Etype (Typ)) then
|
17596 |
|
|
Append_Unique_Elmt (Etype (Typ), Ifaces);
|
17597 |
|
|
end if;
|
17598 |
|
|
|
17599 |
|
|
Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
|
17600 |
|
|
end if;
|
17601 |
|
|
|
17602 |
|
|
-- Non-private types
|
17603 |
|
|
|
17604 |
|
|
else
|
17605 |
|
|
if Is_Interface (Etype (Typ)) then
|
17606 |
|
|
Append_Unique_Elmt (Etype (Typ), Ifaces);
|
17607 |
|
|
end if;
|
17608 |
|
|
|
17609 |
|
|
Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
|
17610 |
|
|
end if;
|
17611 |
|
|
end if;
|
17612 |
|
|
|
17613 |
|
|
-- Handle entities in the list of abstract interfaces
|
17614 |
|
|
|
17615 |
|
|
if Present (Interfaces (Typ)) then
|
17616 |
|
|
Iface_Elmt := First_Elmt (Interfaces (Typ));
|
17617 |
|
|
while Present (Iface_Elmt) loop
|
17618 |
|
|
Iface := Node (Iface_Elmt);
|
17619 |
|
|
|
17620 |
|
|
pragma Assert (Is_Interface (Iface));
|
17621 |
|
|
|
17622 |
|
|
if not Contain_Interface (Iface, Ifaces) then
|
17623 |
|
|
Append_Elmt (Iface, Ifaces);
|
17624 |
|
|
Collect_Implemented_Interfaces (Iface, Ifaces);
|
17625 |
|
|
end if;
|
17626 |
|
|
|
17627 |
|
|
Next_Elmt (Iface_Elmt);
|
17628 |
|
|
end loop;
|
17629 |
|
|
end if;
|
17630 |
|
|
end Collect_Implemented_Interfaces;
|
17631 |
|
|
|
17632 |
|
|
-- Start of processing for Process_Full_View
|
17633 |
|
|
|
17634 |
|
|
begin
|
17635 |
|
|
-- First some sanity checks that must be done after semantic
|
17636 |
|
|
-- decoration of the full view and thus cannot be placed with other
|
17637 |
|
|
-- similar checks in Find_Type_Name
|
17638 |
|
|
|
17639 |
|
|
if not Is_Limited_Type (Priv_T)
|
17640 |
|
|
and then (Is_Limited_Type (Full_T)
|
17641 |
|
|
or else Is_Limited_Composite (Full_T))
|
17642 |
|
|
then
|
17643 |
|
|
if In_Instance then
|
17644 |
|
|
null;
|
17645 |
|
|
else
|
17646 |
|
|
Error_Msg_N
|
17647 |
|
|
("completion of nonlimited type cannot be limited", Full_T);
|
17648 |
|
|
Explain_Limited_Type (Full_T, Full_T);
|
17649 |
|
|
end if;
|
17650 |
|
|
|
17651 |
|
|
elsif Is_Abstract_Type (Full_T)
|
17652 |
|
|
and then not Is_Abstract_Type (Priv_T)
|
17653 |
|
|
then
|
17654 |
|
|
Error_Msg_N
|
17655 |
|
|
("completion of nonabstract type cannot be abstract", Full_T);
|
17656 |
|
|
|
17657 |
|
|
elsif Is_Tagged_Type (Priv_T)
|
17658 |
|
|
and then Is_Limited_Type (Priv_T)
|
17659 |
|
|
and then not Is_Limited_Type (Full_T)
|
17660 |
|
|
then
|
17661 |
|
|
-- If pragma CPP_Class was applied to the private declaration
|
17662 |
|
|
-- propagate the limitedness to the full-view
|
17663 |
|
|
|
17664 |
|
|
if Is_CPP_Class (Priv_T) then
|
17665 |
|
|
Set_Is_Limited_Record (Full_T);
|
17666 |
|
|
|
17667 |
|
|
-- GNAT allow its own definition of Limited_Controlled to disobey
|
17668 |
|
|
-- this rule in order in ease the implementation. This test is safe
|
17669 |
|
|
-- because Root_Controlled is defined in a child of System that
|
17670 |
|
|
-- normal programs are not supposed to use.
|
17671 |
|
|
|
17672 |
|
|
elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
|
17673 |
|
|
Set_Is_Limited_Composite (Full_T);
|
17674 |
|
|
else
|
17675 |
|
|
Error_Msg_N
|
17676 |
|
|
("completion of limited tagged type must be limited", Full_T);
|
17677 |
|
|
end if;
|
17678 |
|
|
|
17679 |
|
|
elsif Is_Generic_Type (Priv_T) then
|
17680 |
|
|
Error_Msg_N ("generic type cannot have a completion", Full_T);
|
17681 |
|
|
end if;
|
17682 |
|
|
|
17683 |
|
|
-- Check that ancestor interfaces of private and full views are
|
17684 |
|
|
-- consistent. We omit this check for synchronized types because
|
17685 |
|
|
-- they are performed on the corresponding record type when frozen.
|
17686 |
|
|
|
17687 |
|
|
if Ada_Version >= Ada_2005
|
17688 |
|
|
and then Is_Tagged_Type (Priv_T)
|
17689 |
|
|
and then Is_Tagged_Type (Full_T)
|
17690 |
|
|
and then not Is_Concurrent_Type (Full_T)
|
17691 |
|
|
then
|
17692 |
|
|
declare
|
17693 |
|
|
Iface : Entity_Id;
|
17694 |
|
|
Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
|
17695 |
|
|
Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
|
17696 |
|
|
|
17697 |
|
|
begin
|
17698 |
|
|
Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
|
17699 |
|
|
Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
|
17700 |
|
|
|
17701 |
|
|
-- Ada 2005 (AI-251): The partial view shall be a descendant of
|
17702 |
|
|
-- an interface type if and only if the full type is descendant
|
17703 |
|
|
-- of the interface type (AARM 7.3 (7.3/2)).
|
17704 |
|
|
|
17705 |
|
|
Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
|
17706 |
|
|
|
17707 |
|
|
if Present (Iface) then
|
17708 |
|
|
Error_Msg_NE
|
17709 |
|
|
("interface & not implemented by full type " &
|
17710 |
|
|
"(RM-2005 7.3 (7.3/2))", Priv_T, Iface);
|
17711 |
|
|
end if;
|
17712 |
|
|
|
17713 |
|
|
Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
|
17714 |
|
|
|
17715 |
|
|
if Present (Iface) then
|
17716 |
|
|
Error_Msg_NE
|
17717 |
|
|
("interface & not implemented by partial view " &
|
17718 |
|
|
"(RM-2005 7.3 (7.3/2))", Full_T, Iface);
|
17719 |
|
|
end if;
|
17720 |
|
|
end;
|
17721 |
|
|
end if;
|
17722 |
|
|
|
17723 |
|
|
if Is_Tagged_Type (Priv_T)
|
17724 |
|
|
and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
|
17725 |
|
|
and then Is_Derived_Type (Full_T)
|
17726 |
|
|
then
|
17727 |
|
|
Priv_Parent := Etype (Priv_T);
|
17728 |
|
|
|
17729 |
|
|
-- The full view of a private extension may have been transformed
|
17730 |
|
|
-- into an unconstrained derived type declaration and a subtype
|
17731 |
|
|
-- declaration (see build_derived_record_type for details).
|
17732 |
|
|
|
17733 |
|
|
if Nkind (N) = N_Subtype_Declaration then
|
17734 |
|
|
Full_Indic := Subtype_Indication (N);
|
17735 |
|
|
Full_Parent := Etype (Base_Type (Full_T));
|
17736 |
|
|
else
|
17737 |
|
|
Full_Indic := Subtype_Indication (Type_Definition (N));
|
17738 |
|
|
Full_Parent := Etype (Full_T);
|
17739 |
|
|
end if;
|
17740 |
|
|
|
17741 |
|
|
-- Check that the parent type of the full type is a descendant of
|
17742 |
|
|
-- the ancestor subtype given in the private extension. If either
|
17743 |
|
|
-- entity has an Etype equal to Any_Type then we had some previous
|
17744 |
|
|
-- error situation [7.3(8)].
|
17745 |
|
|
|
17746 |
|
|
if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
|
17747 |
|
|
return;
|
17748 |
|
|
|
17749 |
|
|
-- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
|
17750 |
|
|
-- any order. Therefore we don't have to check that its parent must
|
17751 |
|
|
-- be a descendant of the parent of the private type declaration.
|
17752 |
|
|
|
17753 |
|
|
elsif Is_Interface (Priv_Parent)
|
17754 |
|
|
and then Is_Interface (Full_Parent)
|
17755 |
|
|
then
|
17756 |
|
|
null;
|
17757 |
|
|
|
17758 |
|
|
-- Ada 2005 (AI-251): If the parent of the private type declaration
|
17759 |
|
|
-- is an interface there is no need to check that it is an ancestor
|
17760 |
|
|
-- of the associated full type declaration. The required tests for
|
17761 |
|
|
-- this case are performed by Build_Derived_Record_Type.
|
17762 |
|
|
|
17763 |
|
|
elsif not Is_Interface (Base_Type (Priv_Parent))
|
17764 |
|
|
and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
|
17765 |
|
|
then
|
17766 |
|
|
Error_Msg_N
|
17767 |
|
|
("parent of full type must descend from parent"
|
17768 |
|
|
& " of private extension", Full_Indic);
|
17769 |
|
|
|
17770 |
|
|
-- First check a formal restriction, and then proceed with checking
|
17771 |
|
|
-- Ada rules. Since the formal restriction is not a serious error, we
|
17772 |
|
|
-- don't prevent further error detection for this check, hence the
|
17773 |
|
|
-- ELSE.
|
17774 |
|
|
|
17775 |
|
|
else
|
17776 |
|
|
|
17777 |
|
|
-- In formal mode, when completing a private extension the type
|
17778 |
|
|
-- named in the private part must be exactly the same as that
|
17779 |
|
|
-- named in the visible part.
|
17780 |
|
|
|
17781 |
|
|
if Priv_Parent /= Full_Parent then
|
17782 |
|
|
Error_Msg_Name_1 := Chars (Priv_Parent);
|
17783 |
|
|
Check_SPARK_Restriction ("% expected", Full_Indic);
|
17784 |
|
|
end if;
|
17785 |
|
|
|
17786 |
|
|
-- Check the rules of 7.3(10): if the private extension inherits
|
17787 |
|
|
-- known discriminants, then the full type must also inherit those
|
17788 |
|
|
-- discriminants from the same (ancestor) type, and the parent
|
17789 |
|
|
-- subtype of the full type must be constrained if and only if
|
17790 |
|
|
-- the ancestor subtype of the private extension is constrained.
|
17791 |
|
|
|
17792 |
|
|
if No (Discriminant_Specifications (Parent (Priv_T)))
|
17793 |
|
|
and then not Has_Unknown_Discriminants (Priv_T)
|
17794 |
|
|
and then Has_Discriminants (Base_Type (Priv_Parent))
|
17795 |
|
|
then
|
17796 |
|
|
declare
|
17797 |
|
|
Priv_Indic : constant Node_Id :=
|
17798 |
|
|
Subtype_Indication (Parent (Priv_T));
|
17799 |
|
|
|
17800 |
|
|
Priv_Constr : constant Boolean :=
|
17801 |
|
|
Is_Constrained (Priv_Parent)
|
17802 |
|
|
or else
|
17803 |
|
|
Nkind (Priv_Indic) = N_Subtype_Indication
|
17804 |
|
|
or else
|
17805 |
|
|
Is_Constrained (Entity (Priv_Indic));
|
17806 |
|
|
|
17807 |
|
|
Full_Constr : constant Boolean :=
|
17808 |
|
|
Is_Constrained (Full_Parent)
|
17809 |
|
|
or else
|
17810 |
|
|
Nkind (Full_Indic) = N_Subtype_Indication
|
17811 |
|
|
or else
|
17812 |
|
|
Is_Constrained (Entity (Full_Indic));
|
17813 |
|
|
|
17814 |
|
|
Priv_Discr : Entity_Id;
|
17815 |
|
|
Full_Discr : Entity_Id;
|
17816 |
|
|
|
17817 |
|
|
begin
|
17818 |
|
|
Priv_Discr := First_Discriminant (Priv_Parent);
|
17819 |
|
|
Full_Discr := First_Discriminant (Full_Parent);
|
17820 |
|
|
while Present (Priv_Discr) and then Present (Full_Discr) loop
|
17821 |
|
|
if Original_Record_Component (Priv_Discr) =
|
17822 |
|
|
Original_Record_Component (Full_Discr)
|
17823 |
|
|
or else
|
17824 |
|
|
Corresponding_Discriminant (Priv_Discr) =
|
17825 |
|
|
Corresponding_Discriminant (Full_Discr)
|
17826 |
|
|
then
|
17827 |
|
|
null;
|
17828 |
|
|
else
|
17829 |
|
|
exit;
|
17830 |
|
|
end if;
|
17831 |
|
|
|
17832 |
|
|
Next_Discriminant (Priv_Discr);
|
17833 |
|
|
Next_Discriminant (Full_Discr);
|
17834 |
|
|
end loop;
|
17835 |
|
|
|
17836 |
|
|
if Present (Priv_Discr) or else Present (Full_Discr) then
|
17837 |
|
|
Error_Msg_N
|
17838 |
|
|
("full view must inherit discriminants of the parent"
|
17839 |
|
|
& " type used in the private extension", Full_Indic);
|
17840 |
|
|
|
17841 |
|
|
elsif Priv_Constr and then not Full_Constr then
|
17842 |
|
|
Error_Msg_N
|
17843 |
|
|
("parent subtype of full type must be constrained",
|
17844 |
|
|
Full_Indic);
|
17845 |
|
|
|
17846 |
|
|
elsif Full_Constr and then not Priv_Constr then
|
17847 |
|
|
Error_Msg_N
|
17848 |
|
|
("parent subtype of full type must be unconstrained",
|
17849 |
|
|
Full_Indic);
|
17850 |
|
|
end if;
|
17851 |
|
|
end;
|
17852 |
|
|
|
17853 |
|
|
-- Check the rules of 7.3(12): if a partial view has neither
|
17854 |
|
|
-- known or unknown discriminants, then the full type
|
17855 |
|
|
-- declaration shall define a definite subtype.
|
17856 |
|
|
|
17857 |
|
|
elsif not Has_Unknown_Discriminants (Priv_T)
|
17858 |
|
|
and then not Has_Discriminants (Priv_T)
|
17859 |
|
|
and then not Is_Constrained (Full_T)
|
17860 |
|
|
then
|
17861 |
|
|
Error_Msg_N
|
17862 |
|
|
("full view must define a constrained type if partial view"
|
17863 |
|
|
& " has no discriminants", Full_T);
|
17864 |
|
|
end if;
|
17865 |
|
|
|
17866 |
|
|
-- ??????? Do we implement the following properly ?????
|
17867 |
|
|
-- If the ancestor subtype of a private extension has constrained
|
17868 |
|
|
-- discriminants, then the parent subtype of the full view shall
|
17869 |
|
|
-- impose a statically matching constraint on those discriminants
|
17870 |
|
|
-- [7.3(13)].
|
17871 |
|
|
end if;
|
17872 |
|
|
|
17873 |
|
|
else
|
17874 |
|
|
-- For untagged types, verify that a type without discriminants
|
17875 |
|
|
-- is not completed with an unconstrained type.
|
17876 |
|
|
|
17877 |
|
|
if not Is_Indefinite_Subtype (Priv_T)
|
17878 |
|
|
and then Is_Indefinite_Subtype (Full_T)
|
17879 |
|
|
then
|
17880 |
|
|
Error_Msg_N ("full view of type must be definite subtype", Full_T);
|
17881 |
|
|
end if;
|
17882 |
|
|
end if;
|
17883 |
|
|
|
17884 |
|
|
-- AI-419: verify that the use of "limited" is consistent
|
17885 |
|
|
|
17886 |
|
|
declare
|
17887 |
|
|
Orig_Decl : constant Node_Id := Original_Node (N);
|
17888 |
|
|
|
17889 |
|
|
begin
|
17890 |
|
|
if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
|
17891 |
|
|
and then not Limited_Present (Parent (Priv_T))
|
17892 |
|
|
and then not Synchronized_Present (Parent (Priv_T))
|
17893 |
|
|
and then Nkind (Orig_Decl) = N_Full_Type_Declaration
|
17894 |
|
|
and then Nkind
|
17895 |
|
|
(Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
|
17896 |
|
|
and then Limited_Present (Type_Definition (Orig_Decl))
|
17897 |
|
|
then
|
17898 |
|
|
Error_Msg_N
|
17899 |
|
|
("full view of non-limited extension cannot be limited", N);
|
17900 |
|
|
end if;
|
17901 |
|
|
end;
|
17902 |
|
|
|
17903 |
|
|
-- Ada 2005 (AI-443): A synchronized private extension must be
|
17904 |
|
|
-- completed by a task or protected type.
|
17905 |
|
|
|
17906 |
|
|
if Ada_Version >= Ada_2005
|
17907 |
|
|
and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
|
17908 |
|
|
and then Synchronized_Present (Parent (Priv_T))
|
17909 |
|
|
and then not Is_Concurrent_Type (Full_T)
|
17910 |
|
|
then
|
17911 |
|
|
Error_Msg_N ("full view of synchronized extension must " &
|
17912 |
|
|
"be synchronized type", N);
|
17913 |
|
|
end if;
|
17914 |
|
|
|
17915 |
|
|
-- Ada 2005 AI-363: if the full view has discriminants with
|
17916 |
|
|
-- defaults, it is illegal to declare constrained access subtypes
|
17917 |
|
|
-- whose designated type is the current type. This allows objects
|
17918 |
|
|
-- of the type that are declared in the heap to be unconstrained.
|
17919 |
|
|
|
17920 |
|
|
if not Has_Unknown_Discriminants (Priv_T)
|
17921 |
|
|
and then not Has_Discriminants (Priv_T)
|
17922 |
|
|
and then Has_Discriminants (Full_T)
|
17923 |
|
|
and then
|
17924 |
|
|
Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
|
17925 |
|
|
then
|
17926 |
|
|
Set_Has_Constrained_Partial_View (Full_T);
|
17927 |
|
|
Set_Has_Constrained_Partial_View (Priv_T);
|
17928 |
|
|
end if;
|
17929 |
|
|
|
17930 |
|
|
-- Create a full declaration for all its subtypes recorded in
|
17931 |
|
|
-- Private_Dependents and swap them similarly to the base type. These
|
17932 |
|
|
-- are subtypes that have been define before the full declaration of
|
17933 |
|
|
-- the private type. We also swap the entry in Private_Dependents list
|
17934 |
|
|
-- so we can properly restore the private view on exit from the scope.
|
17935 |
|
|
|
17936 |
|
|
declare
|
17937 |
|
|
Priv_Elmt : Elmt_Id;
|
17938 |
|
|
Priv : Entity_Id;
|
17939 |
|
|
Full : Entity_Id;
|
17940 |
|
|
|
17941 |
|
|
begin
|
17942 |
|
|
Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
|
17943 |
|
|
while Present (Priv_Elmt) loop
|
17944 |
|
|
Priv := Node (Priv_Elmt);
|
17945 |
|
|
|
17946 |
|
|
if Ekind_In (Priv, E_Private_Subtype,
|
17947 |
|
|
E_Limited_Private_Subtype,
|
17948 |
|
|
E_Record_Subtype_With_Private)
|
17949 |
|
|
then
|
17950 |
|
|
Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
|
17951 |
|
|
Set_Is_Itype (Full);
|
17952 |
|
|
Set_Parent (Full, Parent (Priv));
|
17953 |
|
|
Set_Associated_Node_For_Itype (Full, N);
|
17954 |
|
|
|
17955 |
|
|
-- Now we need to complete the private subtype, but since the
|
17956 |
|
|
-- base type has already been swapped, we must also swap the
|
17957 |
|
|
-- subtypes (and thus, reverse the arguments in the call to
|
17958 |
|
|
-- Complete_Private_Subtype).
|
17959 |
|
|
|
17960 |
|
|
Copy_And_Swap (Priv, Full);
|
17961 |
|
|
Complete_Private_Subtype (Full, Priv, Full_T, N);
|
17962 |
|
|
Replace_Elmt (Priv_Elmt, Full);
|
17963 |
|
|
end if;
|
17964 |
|
|
|
17965 |
|
|
Next_Elmt (Priv_Elmt);
|
17966 |
|
|
end loop;
|
17967 |
|
|
end;
|
17968 |
|
|
|
17969 |
|
|
-- If the private view was tagged, copy the new primitive operations
|
17970 |
|
|
-- from the private view to the full view.
|
17971 |
|
|
|
17972 |
|
|
if Is_Tagged_Type (Full_T) then
|
17973 |
|
|
declare
|
17974 |
|
|
Disp_Typ : Entity_Id;
|
17975 |
|
|
Full_List : Elist_Id;
|
17976 |
|
|
Prim : Entity_Id;
|
17977 |
|
|
Prim_Elmt : Elmt_Id;
|
17978 |
|
|
Priv_List : Elist_Id;
|
17979 |
|
|
|
17980 |
|
|
function Contains
|
17981 |
|
|
(E : Entity_Id;
|
17982 |
|
|
L : Elist_Id) return Boolean;
|
17983 |
|
|
-- Determine whether list L contains element E
|
17984 |
|
|
|
17985 |
|
|
--------------
|
17986 |
|
|
-- Contains --
|
17987 |
|
|
--------------
|
17988 |
|
|
|
17989 |
|
|
function Contains
|
17990 |
|
|
(E : Entity_Id;
|
17991 |
|
|
L : Elist_Id) return Boolean
|
17992 |
|
|
is
|
17993 |
|
|
List_Elmt : Elmt_Id;
|
17994 |
|
|
|
17995 |
|
|
begin
|
17996 |
|
|
List_Elmt := First_Elmt (L);
|
17997 |
|
|
while Present (List_Elmt) loop
|
17998 |
|
|
if Node (List_Elmt) = E then
|
17999 |
|
|
return True;
|
18000 |
|
|
end if;
|
18001 |
|
|
|
18002 |
|
|
Next_Elmt (List_Elmt);
|
18003 |
|
|
end loop;
|
18004 |
|
|
|
18005 |
|
|
return False;
|
18006 |
|
|
end Contains;
|
18007 |
|
|
|
18008 |
|
|
-- Start of processing
|
18009 |
|
|
|
18010 |
|
|
begin
|
18011 |
|
|
if Is_Tagged_Type (Priv_T) then
|
18012 |
|
|
Priv_List := Primitive_Operations (Priv_T);
|
18013 |
|
|
Prim_Elmt := First_Elmt (Priv_List);
|
18014 |
|
|
|
18015 |
|
|
-- In the case of a concurrent type completing a private tagged
|
18016 |
|
|
-- type, primitives may have been declared in between the two
|
18017 |
|
|
-- views. These subprograms need to be wrapped the same way
|
18018 |
|
|
-- entries and protected procedures are handled because they
|
18019 |
|
|
-- cannot be directly shared by the two views.
|
18020 |
|
|
|
18021 |
|
|
if Is_Concurrent_Type (Full_T) then
|
18022 |
|
|
declare
|
18023 |
|
|
Conc_Typ : constant Entity_Id :=
|
18024 |
|
|
Corresponding_Record_Type (Full_T);
|
18025 |
|
|
Curr_Nod : Node_Id := Parent (Conc_Typ);
|
18026 |
|
|
Wrap_Spec : Node_Id;
|
18027 |
|
|
|
18028 |
|
|
begin
|
18029 |
|
|
while Present (Prim_Elmt) loop
|
18030 |
|
|
Prim := Node (Prim_Elmt);
|
18031 |
|
|
|
18032 |
|
|
if Comes_From_Source (Prim)
|
18033 |
|
|
and then not Is_Abstract_Subprogram (Prim)
|
18034 |
|
|
then
|
18035 |
|
|
Wrap_Spec :=
|
18036 |
|
|
Make_Subprogram_Declaration (Sloc (Prim),
|
18037 |
|
|
Specification =>
|
18038 |
|
|
Build_Wrapper_Spec
|
18039 |
|
|
(Subp_Id => Prim,
|
18040 |
|
|
Obj_Typ => Conc_Typ,
|
18041 |
|
|
Formals =>
|
18042 |
|
|
Parameter_Specifications (
|
18043 |
|
|
Parent (Prim))));
|
18044 |
|
|
|
18045 |
|
|
Insert_After (Curr_Nod, Wrap_Spec);
|
18046 |
|
|
Curr_Nod := Wrap_Spec;
|
18047 |
|
|
|
18048 |
|
|
Analyze (Wrap_Spec);
|
18049 |
|
|
end if;
|
18050 |
|
|
|
18051 |
|
|
Next_Elmt (Prim_Elmt);
|
18052 |
|
|
end loop;
|
18053 |
|
|
|
18054 |
|
|
return;
|
18055 |
|
|
end;
|
18056 |
|
|
|
18057 |
|
|
-- For non-concurrent types, transfer explicit primitives, but
|
18058 |
|
|
-- omit those inherited from the parent of the private view
|
18059 |
|
|
-- since they will be re-inherited later on.
|
18060 |
|
|
|
18061 |
|
|
else
|
18062 |
|
|
Full_List := Primitive_Operations (Full_T);
|
18063 |
|
|
|
18064 |
|
|
while Present (Prim_Elmt) loop
|
18065 |
|
|
Prim := Node (Prim_Elmt);
|
18066 |
|
|
|
18067 |
|
|
if Comes_From_Source (Prim)
|
18068 |
|
|
and then not Contains (Prim, Full_List)
|
18069 |
|
|
then
|
18070 |
|
|
Append_Elmt (Prim, Full_List);
|
18071 |
|
|
end if;
|
18072 |
|
|
|
18073 |
|
|
Next_Elmt (Prim_Elmt);
|
18074 |
|
|
end loop;
|
18075 |
|
|
end if;
|
18076 |
|
|
|
18077 |
|
|
-- Untagged private view
|
18078 |
|
|
|
18079 |
|
|
else
|
18080 |
|
|
Full_List := Primitive_Operations (Full_T);
|
18081 |
|
|
|
18082 |
|
|
-- In this case the partial view is untagged, so here we locate
|
18083 |
|
|
-- all of the earlier primitives that need to be treated as
|
18084 |
|
|
-- dispatching (those that appear between the two views). Note
|
18085 |
|
|
-- that these additional operations must all be new operations
|
18086 |
|
|
-- (any earlier operations that override inherited operations
|
18087 |
|
|
-- of the full view will already have been inserted in the
|
18088 |
|
|
-- primitives list, marked by Check_Operation_From_Private_View
|
18089 |
|
|
-- as dispatching. Note that implicit "/=" operators are
|
18090 |
|
|
-- excluded from being added to the primitives list since they
|
18091 |
|
|
-- shouldn't be treated as dispatching (tagged "/=" is handled
|
18092 |
|
|
-- specially).
|
18093 |
|
|
|
18094 |
|
|
Prim := Next_Entity (Full_T);
|
18095 |
|
|
while Present (Prim) and then Prim /= Priv_T loop
|
18096 |
|
|
if Ekind_In (Prim, E_Procedure, E_Function) then
|
18097 |
|
|
Disp_Typ := Find_Dispatching_Type (Prim);
|
18098 |
|
|
|
18099 |
|
|
if Disp_Typ = Full_T
|
18100 |
|
|
and then (Chars (Prim) /= Name_Op_Ne
|
18101 |
|
|
or else Comes_From_Source (Prim))
|
18102 |
|
|
then
|
18103 |
|
|
Check_Controlling_Formals (Full_T, Prim);
|
18104 |
|
|
|
18105 |
|
|
if not Is_Dispatching_Operation (Prim) then
|
18106 |
|
|
Append_Elmt (Prim, Full_List);
|
18107 |
|
|
Set_Is_Dispatching_Operation (Prim, True);
|
18108 |
|
|
Set_DT_Position (Prim, No_Uint);
|
18109 |
|
|
end if;
|
18110 |
|
|
|
18111 |
|
|
elsif Is_Dispatching_Operation (Prim)
|
18112 |
|
|
and then Disp_Typ /= Full_T
|
18113 |
|
|
then
|
18114 |
|
|
|
18115 |
|
|
-- Verify that it is not otherwise controlled by a
|
18116 |
|
|
-- formal or a return value of type T.
|
18117 |
|
|
|
18118 |
|
|
Check_Controlling_Formals (Disp_Typ, Prim);
|
18119 |
|
|
end if;
|
18120 |
|
|
end if;
|
18121 |
|
|
|
18122 |
|
|
Next_Entity (Prim);
|
18123 |
|
|
end loop;
|
18124 |
|
|
end if;
|
18125 |
|
|
|
18126 |
|
|
-- For the tagged case, the two views can share the same primitive
|
18127 |
|
|
-- operations list and the same class-wide type. Update attributes
|
18128 |
|
|
-- of the class-wide type which depend on the full declaration.
|
18129 |
|
|
|
18130 |
|
|
if Is_Tagged_Type (Priv_T) then
|
18131 |
|
|
Set_Direct_Primitive_Operations (Priv_T, Full_List);
|
18132 |
|
|
Set_Class_Wide_Type
|
18133 |
|
|
(Base_Type (Full_T), Class_Wide_Type (Priv_T));
|
18134 |
|
|
|
18135 |
|
|
Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
|
18136 |
|
|
end if;
|
18137 |
|
|
end;
|
18138 |
|
|
end if;
|
18139 |
|
|
|
18140 |
|
|
-- Ada 2005 AI 161: Check preelaboratable initialization consistency
|
18141 |
|
|
|
18142 |
|
|
if Known_To_Have_Preelab_Init (Priv_T) then
|
18143 |
|
|
|
18144 |
|
|
-- Case where there is a pragma Preelaborable_Initialization. We
|
18145 |
|
|
-- always allow this in predefined units, which is a bit of a kludge,
|
18146 |
|
|
-- but it means we don't have to struggle to meet the requirements in
|
18147 |
|
|
-- the RM for having Preelaborable Initialization. Otherwise we
|
18148 |
|
|
-- require that the type meets the RM rules. But we can't check that
|
18149 |
|
|
-- yet, because of the rule about overriding Initialize, so we simply
|
18150 |
|
|
-- set a flag that will be checked at freeze time.
|
18151 |
|
|
|
18152 |
|
|
if not In_Predefined_Unit (Full_T) then
|
18153 |
|
|
Set_Must_Have_Preelab_Init (Full_T);
|
18154 |
|
|
end if;
|
18155 |
|
|
end if;
|
18156 |
|
|
|
18157 |
|
|
-- If pragma CPP_Class was applied to the private type declaration,
|
18158 |
|
|
-- propagate it now to the full type declaration.
|
18159 |
|
|
|
18160 |
|
|
if Is_CPP_Class (Priv_T) then
|
18161 |
|
|
Set_Is_CPP_Class (Full_T);
|
18162 |
|
|
Set_Convention (Full_T, Convention_CPP);
|
18163 |
|
|
|
18164 |
|
|
-- Check that components of imported CPP types do not have default
|
18165 |
|
|
-- expressions.
|
18166 |
|
|
|
18167 |
|
|
Check_CPP_Type_Has_No_Defaults (Full_T);
|
18168 |
|
|
end if;
|
18169 |
|
|
|
18170 |
|
|
-- If the private view has user specified stream attributes, then so has
|
18171 |
|
|
-- the full view.
|
18172 |
|
|
|
18173 |
|
|
-- Why the test, how could these flags be already set in Full_T ???
|
18174 |
|
|
|
18175 |
|
|
if Has_Specified_Stream_Read (Priv_T) then
|
18176 |
|
|
Set_Has_Specified_Stream_Read (Full_T);
|
18177 |
|
|
end if;
|
18178 |
|
|
|
18179 |
|
|
if Has_Specified_Stream_Write (Priv_T) then
|
18180 |
|
|
Set_Has_Specified_Stream_Write (Full_T);
|
18181 |
|
|
end if;
|
18182 |
|
|
|
18183 |
|
|
if Has_Specified_Stream_Input (Priv_T) then
|
18184 |
|
|
Set_Has_Specified_Stream_Input (Full_T);
|
18185 |
|
|
end if;
|
18186 |
|
|
|
18187 |
|
|
if Has_Specified_Stream_Output (Priv_T) then
|
18188 |
|
|
Set_Has_Specified_Stream_Output (Full_T);
|
18189 |
|
|
end if;
|
18190 |
|
|
|
18191 |
|
|
-- Propagate invariants to full type
|
18192 |
|
|
|
18193 |
|
|
if Has_Invariants (Priv_T) then
|
18194 |
|
|
Set_Has_Invariants (Full_T);
|
18195 |
|
|
Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
|
18196 |
|
|
end if;
|
18197 |
|
|
|
18198 |
|
|
if Has_Inheritable_Invariants (Priv_T) then
|
18199 |
|
|
Set_Has_Inheritable_Invariants (Full_T);
|
18200 |
|
|
end if;
|
18201 |
|
|
|
18202 |
|
|
-- Propagate predicates to full type
|
18203 |
|
|
|
18204 |
|
|
if Has_Predicates (Priv_T) then
|
18205 |
|
|
Set_Predicate_Function (Priv_T, Predicate_Function (Full_T));
|
18206 |
|
|
Set_Has_Predicates (Full_T);
|
18207 |
|
|
end if;
|
18208 |
|
|
end Process_Full_View;
|
18209 |
|
|
|
18210 |
|
|
-----------------------------------
|
18211 |
|
|
-- Process_Incomplete_Dependents --
|
18212 |
|
|
-----------------------------------
|
18213 |
|
|
|
18214 |
|
|
procedure Process_Incomplete_Dependents
|
18215 |
|
|
(N : Node_Id;
|
18216 |
|
|
Full_T : Entity_Id;
|
18217 |
|
|
Inc_T : Entity_Id)
|
18218 |
|
|
is
|
18219 |
|
|
Inc_Elmt : Elmt_Id;
|
18220 |
|
|
Priv_Dep : Entity_Id;
|
18221 |
|
|
New_Subt : Entity_Id;
|
18222 |
|
|
|
18223 |
|
|
Disc_Constraint : Elist_Id;
|
18224 |
|
|
|
18225 |
|
|
begin
|
18226 |
|
|
if No (Private_Dependents (Inc_T)) then
|
18227 |
|
|
return;
|
18228 |
|
|
end if;
|
18229 |
|
|
|
18230 |
|
|
-- Itypes that may be generated by the completion of an incomplete
|
18231 |
|
|
-- subtype are not used by the back-end and not attached to the tree.
|
18232 |
|
|
-- They are created only for constraint-checking purposes.
|
18233 |
|
|
|
18234 |
|
|
Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
|
18235 |
|
|
while Present (Inc_Elmt) loop
|
18236 |
|
|
Priv_Dep := Node (Inc_Elmt);
|
18237 |
|
|
|
18238 |
|
|
if Ekind (Priv_Dep) = E_Subprogram_Type then
|
18239 |
|
|
|
18240 |
|
|
-- An Access_To_Subprogram type may have a return type or a
|
18241 |
|
|
-- parameter type that is incomplete. Replace with the full view.
|
18242 |
|
|
|
18243 |
|
|
if Etype (Priv_Dep) = Inc_T then
|
18244 |
|
|
Set_Etype (Priv_Dep, Full_T);
|
18245 |
|
|
end if;
|
18246 |
|
|
|
18247 |
|
|
declare
|
18248 |
|
|
Formal : Entity_Id;
|
18249 |
|
|
|
18250 |
|
|
begin
|
18251 |
|
|
Formal := First_Formal (Priv_Dep);
|
18252 |
|
|
while Present (Formal) loop
|
18253 |
|
|
if Etype (Formal) = Inc_T then
|
18254 |
|
|
Set_Etype (Formal, Full_T);
|
18255 |
|
|
end if;
|
18256 |
|
|
|
18257 |
|
|
Next_Formal (Formal);
|
18258 |
|
|
end loop;
|
18259 |
|
|
end;
|
18260 |
|
|
|
18261 |
|
|
elsif Is_Overloadable (Priv_Dep) then
|
18262 |
|
|
|
18263 |
|
|
-- If a subprogram in the incomplete dependents list is primitive
|
18264 |
|
|
-- for a tagged full type then mark it as a dispatching operation,
|
18265 |
|
|
-- check whether it overrides an inherited subprogram, and check
|
18266 |
|
|
-- restrictions on its controlling formals. Note that a protected
|
18267 |
|
|
-- operation is never dispatching: only its wrapper operation
|
18268 |
|
|
-- (which has convention Ada) is.
|
18269 |
|
|
|
18270 |
|
|
if Is_Tagged_Type (Full_T)
|
18271 |
|
|
and then Is_Primitive (Priv_Dep)
|
18272 |
|
|
and then Convention (Priv_Dep) /= Convention_Protected
|
18273 |
|
|
then
|
18274 |
|
|
Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
|
18275 |
|
|
Set_Is_Dispatching_Operation (Priv_Dep);
|
18276 |
|
|
Check_Controlling_Formals (Full_T, Priv_Dep);
|
18277 |
|
|
end if;
|
18278 |
|
|
|
18279 |
|
|
elsif Ekind (Priv_Dep) = E_Subprogram_Body then
|
18280 |
|
|
|
18281 |
|
|
-- Can happen during processing of a body before the completion
|
18282 |
|
|
-- of a TA type. Ignore, because spec is also on dependent list.
|
18283 |
|
|
|
18284 |
|
|
return;
|
18285 |
|
|
|
18286 |
|
|
-- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
|
18287 |
|
|
-- corresponding subtype of the full view.
|
18288 |
|
|
|
18289 |
|
|
elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
|
18290 |
|
|
Set_Subtype_Indication
|
18291 |
|
|
(Parent (Priv_Dep), New_Reference_To (Full_T, Sloc (Priv_Dep)));
|
18292 |
|
|
Set_Etype (Priv_Dep, Full_T);
|
18293 |
|
|
Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
|
18294 |
|
|
Set_Analyzed (Parent (Priv_Dep), False);
|
18295 |
|
|
|
18296 |
|
|
-- Reanalyze the declaration, suppressing the call to
|
18297 |
|
|
-- Enter_Name to avoid duplicate names.
|
18298 |
|
|
|
18299 |
|
|
Analyze_Subtype_Declaration
|
18300 |
|
|
(N => Parent (Priv_Dep),
|
18301 |
|
|
Skip => True);
|
18302 |
|
|
|
18303 |
|
|
-- Dependent is a subtype
|
18304 |
|
|
|
18305 |
|
|
else
|
18306 |
|
|
-- We build a new subtype indication using the full view of the
|
18307 |
|
|
-- incomplete parent. The discriminant constraints have been
|
18308 |
|
|
-- elaborated already at the point of the subtype declaration.
|
18309 |
|
|
|
18310 |
|
|
New_Subt := Create_Itype (E_Void, N);
|
18311 |
|
|
|
18312 |
|
|
if Has_Discriminants (Full_T) then
|
18313 |
|
|
Disc_Constraint := Discriminant_Constraint (Priv_Dep);
|
18314 |
|
|
else
|
18315 |
|
|
Disc_Constraint := No_Elist;
|
18316 |
|
|
end if;
|
18317 |
|
|
|
18318 |
|
|
Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
|
18319 |
|
|
Set_Full_View (Priv_Dep, New_Subt);
|
18320 |
|
|
end if;
|
18321 |
|
|
|
18322 |
|
|
Next_Elmt (Inc_Elmt);
|
18323 |
|
|
end loop;
|
18324 |
|
|
end Process_Incomplete_Dependents;
|
18325 |
|
|
|
18326 |
|
|
--------------------------------
|
18327 |
|
|
-- Process_Range_Expr_In_Decl --
|
18328 |
|
|
--------------------------------
|
18329 |
|
|
|
18330 |
|
|
procedure Process_Range_Expr_In_Decl
|
18331 |
|
|
(R : Node_Id;
|
18332 |
|
|
T : Entity_Id;
|
18333 |
|
|
Check_List : List_Id := Empty_List;
|
18334 |
|
|
R_Check_Off : Boolean := False;
|
18335 |
|
|
In_Iter_Schm : Boolean := False)
|
18336 |
|
|
is
|
18337 |
|
|
Lo, Hi : Node_Id;
|
18338 |
|
|
R_Checks : Check_Result;
|
18339 |
|
|
Insert_Node : Node_Id;
|
18340 |
|
|
Def_Id : Entity_Id;
|
18341 |
|
|
|
18342 |
|
|
begin
|
18343 |
|
|
Analyze_And_Resolve (R, Base_Type (T));
|
18344 |
|
|
|
18345 |
|
|
if Nkind (R) = N_Range then
|
18346 |
|
|
|
18347 |
|
|
-- In SPARK, all ranges should be static, with the exception of the
|
18348 |
|
|
-- discrete type definition of a loop parameter specification.
|
18349 |
|
|
|
18350 |
|
|
if not In_Iter_Schm
|
18351 |
|
|
and then not Is_Static_Range (R)
|
18352 |
|
|
then
|
18353 |
|
|
Check_SPARK_Restriction ("range should be static", R);
|
18354 |
|
|
end if;
|
18355 |
|
|
|
18356 |
|
|
Lo := Low_Bound (R);
|
18357 |
|
|
Hi := High_Bound (R);
|
18358 |
|
|
|
18359 |
|
|
-- We need to ensure validity of the bounds here, because if we
|
18360 |
|
|
-- go ahead and do the expansion, then the expanded code will get
|
18361 |
|
|
-- analyzed with range checks suppressed and we miss the check.
|
18362 |
|
|
|
18363 |
|
|
Validity_Check_Range (R);
|
18364 |
|
|
|
18365 |
|
|
-- If there were errors in the declaration, try and patch up some
|
18366 |
|
|
-- common mistakes in the bounds. The cases handled are literals
|
18367 |
|
|
-- which are Integer where the expected type is Real and vice versa.
|
18368 |
|
|
-- These corrections allow the compilation process to proceed further
|
18369 |
|
|
-- along since some basic assumptions of the format of the bounds
|
18370 |
|
|
-- are guaranteed.
|
18371 |
|
|
|
18372 |
|
|
if Etype (R) = Any_Type then
|
18373 |
|
|
|
18374 |
|
|
if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
|
18375 |
|
|
Rewrite (Lo,
|
18376 |
|
|
Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
|
18377 |
|
|
|
18378 |
|
|
elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
|
18379 |
|
|
Rewrite (Hi,
|
18380 |
|
|
Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
|
18381 |
|
|
|
18382 |
|
|
elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
|
18383 |
|
|
Rewrite (Lo,
|
18384 |
|
|
Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
|
18385 |
|
|
|
18386 |
|
|
elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
|
18387 |
|
|
Rewrite (Hi,
|
18388 |
|
|
Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
|
18389 |
|
|
end if;
|
18390 |
|
|
|
18391 |
|
|
Set_Etype (Lo, T);
|
18392 |
|
|
Set_Etype (Hi, T);
|
18393 |
|
|
end if;
|
18394 |
|
|
|
18395 |
|
|
-- If the bounds of the range have been mistakenly given as string
|
18396 |
|
|
-- literals (perhaps in place of character literals), then an error
|
18397 |
|
|
-- has already been reported, but we rewrite the string literal as a
|
18398 |
|
|
-- bound of the range's type to avoid blowups in later processing
|
18399 |
|
|
-- that looks at static values.
|
18400 |
|
|
|
18401 |
|
|
if Nkind (Lo) = N_String_Literal then
|
18402 |
|
|
Rewrite (Lo,
|
18403 |
|
|
Make_Attribute_Reference (Sloc (Lo),
|
18404 |
|
|
Attribute_Name => Name_First,
|
18405 |
|
|
Prefix => New_Reference_To (T, Sloc (Lo))));
|
18406 |
|
|
Analyze_And_Resolve (Lo);
|
18407 |
|
|
end if;
|
18408 |
|
|
|
18409 |
|
|
if Nkind (Hi) = N_String_Literal then
|
18410 |
|
|
Rewrite (Hi,
|
18411 |
|
|
Make_Attribute_Reference (Sloc (Hi),
|
18412 |
|
|
Attribute_Name => Name_First,
|
18413 |
|
|
Prefix => New_Reference_To (T, Sloc (Hi))));
|
18414 |
|
|
Analyze_And_Resolve (Hi);
|
18415 |
|
|
end if;
|
18416 |
|
|
|
18417 |
|
|
-- If bounds aren't scalar at this point then exit, avoiding
|
18418 |
|
|
-- problems with further processing of the range in this procedure.
|
18419 |
|
|
|
18420 |
|
|
if not Is_Scalar_Type (Etype (Lo)) then
|
18421 |
|
|
return;
|
18422 |
|
|
end if;
|
18423 |
|
|
|
18424 |
|
|
-- Resolve (actually Sem_Eval) has checked that the bounds are in
|
18425 |
|
|
-- then range of the base type. Here we check whether the bounds
|
18426 |
|
|
-- are in the range of the subtype itself. Note that if the bounds
|
18427 |
|
|
-- represent the null range the Constraint_Error exception should
|
18428 |
|
|
-- not be raised.
|
18429 |
|
|
|
18430 |
|
|
-- ??? The following code should be cleaned up as follows
|
18431 |
|
|
|
18432 |
|
|
-- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
|
18433 |
|
|
-- is done in the call to Range_Check (R, T); below
|
18434 |
|
|
|
18435 |
|
|
-- 2. The use of R_Check_Off should be investigated and possibly
|
18436 |
|
|
-- removed, this would clean up things a bit.
|
18437 |
|
|
|
18438 |
|
|
if Is_Null_Range (Lo, Hi) then
|
18439 |
|
|
null;
|
18440 |
|
|
|
18441 |
|
|
else
|
18442 |
|
|
-- Capture values of bounds and generate temporaries for them
|
18443 |
|
|
-- if needed, before applying checks, since checks may cause
|
18444 |
|
|
-- duplication of the expression without forcing evaluation.
|
18445 |
|
|
|
18446 |
|
|
-- The forced evaluation removes side effects from expressions,
|
18447 |
|
|
-- which should occur also in Alfa mode. Otherwise, we end up with
|
18448 |
|
|
-- unexpected insertions of actions at places where this is not
|
18449 |
|
|
-- supposed to occur, e.g. on default parameters of a call.
|
18450 |
|
|
|
18451 |
|
|
if Expander_Active then
|
18452 |
|
|
Force_Evaluation (Lo);
|
18453 |
|
|
Force_Evaluation (Hi);
|
18454 |
|
|
end if;
|
18455 |
|
|
|
18456 |
|
|
-- We use a flag here instead of suppressing checks on the
|
18457 |
|
|
-- type because the type we check against isn't necessarily
|
18458 |
|
|
-- the place where we put the check.
|
18459 |
|
|
|
18460 |
|
|
if not R_Check_Off then
|
18461 |
|
|
R_Checks := Get_Range_Checks (R, T);
|
18462 |
|
|
|
18463 |
|
|
-- Look up tree to find an appropriate insertion point. We
|
18464 |
|
|
-- can't just use insert_actions because later processing
|
18465 |
|
|
-- depends on the insertion node. Prior to Ada 2012 the
|
18466 |
|
|
-- insertion point could only be a declaration or a loop, but
|
18467 |
|
|
-- quantified expressions can appear within any context in an
|
18468 |
|
|
-- expression, and the insertion point can be any statement,
|
18469 |
|
|
-- pragma, or declaration.
|
18470 |
|
|
|
18471 |
|
|
Insert_Node := Parent (R);
|
18472 |
|
|
while Present (Insert_Node) loop
|
18473 |
|
|
exit when
|
18474 |
|
|
Nkind (Insert_Node) in N_Declaration
|
18475 |
|
|
and then
|
18476 |
|
|
not Nkind_In
|
18477 |
|
|
(Insert_Node, N_Component_Declaration,
|
18478 |
|
|
N_Loop_Parameter_Specification,
|
18479 |
|
|
N_Function_Specification,
|
18480 |
|
|
N_Procedure_Specification);
|
18481 |
|
|
|
18482 |
|
|
exit when Nkind (Insert_Node) in N_Later_Decl_Item
|
18483 |
|
|
or else Nkind (Insert_Node) in
|
18484 |
|
|
N_Statement_Other_Than_Procedure_Call
|
18485 |
|
|
or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
|
18486 |
|
|
N_Pragma);
|
18487 |
|
|
|
18488 |
|
|
Insert_Node := Parent (Insert_Node);
|
18489 |
|
|
end loop;
|
18490 |
|
|
|
18491 |
|
|
-- Why would Type_Decl not be present??? Without this test,
|
18492 |
|
|
-- short regression tests fail.
|
18493 |
|
|
|
18494 |
|
|
if Present (Insert_Node) then
|
18495 |
|
|
|
18496 |
|
|
-- Case of loop statement. Verify that the range is part
|
18497 |
|
|
-- of the subtype indication of the iteration scheme.
|
18498 |
|
|
|
18499 |
|
|
if Nkind (Insert_Node) = N_Loop_Statement then
|
18500 |
|
|
declare
|
18501 |
|
|
Indic : Node_Id;
|
18502 |
|
|
|
18503 |
|
|
begin
|
18504 |
|
|
Indic := Parent (R);
|
18505 |
|
|
while Present (Indic)
|
18506 |
|
|
and then Nkind (Indic) /= N_Subtype_Indication
|
18507 |
|
|
loop
|
18508 |
|
|
Indic := Parent (Indic);
|
18509 |
|
|
end loop;
|
18510 |
|
|
|
18511 |
|
|
if Present (Indic) then
|
18512 |
|
|
Def_Id := Etype (Subtype_Mark (Indic));
|
18513 |
|
|
|
18514 |
|
|
Insert_Range_Checks
|
18515 |
|
|
(R_Checks,
|
18516 |
|
|
Insert_Node,
|
18517 |
|
|
Def_Id,
|
18518 |
|
|
Sloc (Insert_Node),
|
18519 |
|
|
R,
|
18520 |
|
|
Do_Before => True);
|
18521 |
|
|
end if;
|
18522 |
|
|
end;
|
18523 |
|
|
|
18524 |
|
|
-- Insertion before a declaration. If the declaration
|
18525 |
|
|
-- includes discriminants, the list of applicable checks
|
18526 |
|
|
-- is given by the caller.
|
18527 |
|
|
|
18528 |
|
|
elsif Nkind (Insert_Node) in N_Declaration then
|
18529 |
|
|
Def_Id := Defining_Identifier (Insert_Node);
|
18530 |
|
|
|
18531 |
|
|
if (Ekind (Def_Id) = E_Record_Type
|
18532 |
|
|
and then Depends_On_Discriminant (R))
|
18533 |
|
|
or else
|
18534 |
|
|
(Ekind (Def_Id) = E_Protected_Type
|
18535 |
|
|
and then Has_Discriminants (Def_Id))
|
18536 |
|
|
then
|
18537 |
|
|
Append_Range_Checks
|
18538 |
|
|
(R_Checks,
|
18539 |
|
|
Check_List, Def_Id, Sloc (Insert_Node), R);
|
18540 |
|
|
|
18541 |
|
|
else
|
18542 |
|
|
Insert_Range_Checks
|
18543 |
|
|
(R_Checks,
|
18544 |
|
|
Insert_Node, Def_Id, Sloc (Insert_Node), R);
|
18545 |
|
|
|
18546 |
|
|
end if;
|
18547 |
|
|
|
18548 |
|
|
-- Insertion before a statement. Range appears in the
|
18549 |
|
|
-- context of a quantified expression. Insertion will
|
18550 |
|
|
-- take place when expression is expanded.
|
18551 |
|
|
|
18552 |
|
|
else
|
18553 |
|
|
null;
|
18554 |
|
|
end if;
|
18555 |
|
|
end if;
|
18556 |
|
|
end if;
|
18557 |
|
|
end if;
|
18558 |
|
|
|
18559 |
|
|
-- Case of other than an explicit N_Range node
|
18560 |
|
|
|
18561 |
|
|
-- The forced evaluation removes side effects from expressions, which
|
18562 |
|
|
-- should occur also in Alfa mode. Otherwise, we end up with unexpected
|
18563 |
|
|
-- insertions of actions at places where this is not supposed to occur,
|
18564 |
|
|
-- e.g. on default parameters of a call.
|
18565 |
|
|
|
18566 |
|
|
elsif Expander_Active then
|
18567 |
|
|
Get_Index_Bounds (R, Lo, Hi);
|
18568 |
|
|
Force_Evaluation (Lo);
|
18569 |
|
|
Force_Evaluation (Hi);
|
18570 |
|
|
end if;
|
18571 |
|
|
end Process_Range_Expr_In_Decl;
|
18572 |
|
|
|
18573 |
|
|
--------------------------------------
|
18574 |
|
|
-- Process_Real_Range_Specification --
|
18575 |
|
|
--------------------------------------
|
18576 |
|
|
|
18577 |
|
|
procedure Process_Real_Range_Specification (Def : Node_Id) is
|
18578 |
|
|
Spec : constant Node_Id := Real_Range_Specification (Def);
|
18579 |
|
|
Lo : Node_Id;
|
18580 |
|
|
Hi : Node_Id;
|
18581 |
|
|
Err : Boolean := False;
|
18582 |
|
|
|
18583 |
|
|
procedure Analyze_Bound (N : Node_Id);
|
18584 |
|
|
-- Analyze and check one bound
|
18585 |
|
|
|
18586 |
|
|
-------------------
|
18587 |
|
|
-- Analyze_Bound --
|
18588 |
|
|
-------------------
|
18589 |
|
|
|
18590 |
|
|
procedure Analyze_Bound (N : Node_Id) is
|
18591 |
|
|
begin
|
18592 |
|
|
Analyze_And_Resolve (N, Any_Real);
|
18593 |
|
|
|
18594 |
|
|
if not Is_OK_Static_Expression (N) then
|
18595 |
|
|
Flag_Non_Static_Expr
|
18596 |
|
|
("bound in real type definition is not static!", N);
|
18597 |
|
|
Err := True;
|
18598 |
|
|
end if;
|
18599 |
|
|
end Analyze_Bound;
|
18600 |
|
|
|
18601 |
|
|
-- Start of processing for Process_Real_Range_Specification
|
18602 |
|
|
|
18603 |
|
|
begin
|
18604 |
|
|
if Present (Spec) then
|
18605 |
|
|
Lo := Low_Bound (Spec);
|
18606 |
|
|
Hi := High_Bound (Spec);
|
18607 |
|
|
Analyze_Bound (Lo);
|
18608 |
|
|
Analyze_Bound (Hi);
|
18609 |
|
|
|
18610 |
|
|
-- If error, clear away junk range specification
|
18611 |
|
|
|
18612 |
|
|
if Err then
|
18613 |
|
|
Set_Real_Range_Specification (Def, Empty);
|
18614 |
|
|
end if;
|
18615 |
|
|
end if;
|
18616 |
|
|
end Process_Real_Range_Specification;
|
18617 |
|
|
|
18618 |
|
|
---------------------
|
18619 |
|
|
-- Process_Subtype --
|
18620 |
|
|
---------------------
|
18621 |
|
|
|
18622 |
|
|
function Process_Subtype
|
18623 |
|
|
(S : Node_Id;
|
18624 |
|
|
Related_Nod : Node_Id;
|
18625 |
|
|
Related_Id : Entity_Id := Empty;
|
18626 |
|
|
Suffix : Character := ' ') return Entity_Id
|
18627 |
|
|
is
|
18628 |
|
|
P : Node_Id;
|
18629 |
|
|
Def_Id : Entity_Id;
|
18630 |
|
|
Error_Node : Node_Id;
|
18631 |
|
|
Full_View_Id : Entity_Id;
|
18632 |
|
|
Subtype_Mark_Id : Entity_Id;
|
18633 |
|
|
|
18634 |
|
|
May_Have_Null_Exclusion : Boolean;
|
18635 |
|
|
|
18636 |
|
|
procedure Check_Incomplete (T : Entity_Id);
|
18637 |
|
|
-- Called to verify that an incomplete type is not used prematurely
|
18638 |
|
|
|
18639 |
|
|
----------------------
|
18640 |
|
|
-- Check_Incomplete --
|
18641 |
|
|
----------------------
|
18642 |
|
|
|
18643 |
|
|
procedure Check_Incomplete (T : Entity_Id) is
|
18644 |
|
|
begin
|
18645 |
|
|
-- Ada 2005 (AI-412): Incomplete subtypes are legal
|
18646 |
|
|
|
18647 |
|
|
if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
|
18648 |
|
|
and then
|
18649 |
|
|
not (Ada_Version >= Ada_2005
|
18650 |
|
|
and then
|
18651 |
|
|
(Nkind (Parent (T)) = N_Subtype_Declaration
|
18652 |
|
|
or else
|
18653 |
|
|
(Nkind (Parent (T)) = N_Subtype_Indication
|
18654 |
|
|
and then Nkind (Parent (Parent (T))) =
|
18655 |
|
|
N_Subtype_Declaration)))
|
18656 |
|
|
then
|
18657 |
|
|
Error_Msg_N ("invalid use of type before its full declaration", T);
|
18658 |
|
|
end if;
|
18659 |
|
|
end Check_Incomplete;
|
18660 |
|
|
|
18661 |
|
|
-- Start of processing for Process_Subtype
|
18662 |
|
|
|
18663 |
|
|
begin
|
18664 |
|
|
-- Case of no constraints present
|
18665 |
|
|
|
18666 |
|
|
if Nkind (S) /= N_Subtype_Indication then
|
18667 |
|
|
Find_Type (S);
|
18668 |
|
|
Check_Incomplete (S);
|
18669 |
|
|
P := Parent (S);
|
18670 |
|
|
|
18671 |
|
|
-- Ada 2005 (AI-231): Static check
|
18672 |
|
|
|
18673 |
|
|
if Ada_Version >= Ada_2005
|
18674 |
|
|
and then Present (P)
|
18675 |
|
|
and then Null_Exclusion_Present (P)
|
18676 |
|
|
and then Nkind (P) /= N_Access_To_Object_Definition
|
18677 |
|
|
and then not Is_Access_Type (Entity (S))
|
18678 |
|
|
then
|
18679 |
|
|
Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
|
18680 |
|
|
end if;
|
18681 |
|
|
|
18682 |
|
|
-- The following is ugly, can't we have a range or even a flag???
|
18683 |
|
|
|
18684 |
|
|
May_Have_Null_Exclusion :=
|
18685 |
|
|
Nkind_In (P, N_Access_Definition,
|
18686 |
|
|
N_Access_Function_Definition,
|
18687 |
|
|
N_Access_Procedure_Definition,
|
18688 |
|
|
N_Access_To_Object_Definition,
|
18689 |
|
|
N_Allocator,
|
18690 |
|
|
N_Component_Definition)
|
18691 |
|
|
or else
|
18692 |
|
|
Nkind_In (P, N_Derived_Type_Definition,
|
18693 |
|
|
N_Discriminant_Specification,
|
18694 |
|
|
N_Formal_Object_Declaration,
|
18695 |
|
|
N_Object_Declaration,
|
18696 |
|
|
N_Object_Renaming_Declaration,
|
18697 |
|
|
N_Parameter_Specification,
|
18698 |
|
|
N_Subtype_Declaration);
|
18699 |
|
|
|
18700 |
|
|
-- Create an Itype that is a duplicate of Entity (S) but with the
|
18701 |
|
|
-- null-exclusion attribute.
|
18702 |
|
|
|
18703 |
|
|
if May_Have_Null_Exclusion
|
18704 |
|
|
and then Is_Access_Type (Entity (S))
|
18705 |
|
|
and then Null_Exclusion_Present (P)
|
18706 |
|
|
|
18707 |
|
|
-- No need to check the case of an access to object definition.
|
18708 |
|
|
-- It is correct to define double not-null pointers.
|
18709 |
|
|
|
18710 |
|
|
-- Example:
|
18711 |
|
|
-- type Not_Null_Int_Ptr is not null access Integer;
|
18712 |
|
|
-- type Acc is not null access Not_Null_Int_Ptr;
|
18713 |
|
|
|
18714 |
|
|
and then Nkind (P) /= N_Access_To_Object_Definition
|
18715 |
|
|
then
|
18716 |
|
|
if Can_Never_Be_Null (Entity (S)) then
|
18717 |
|
|
case Nkind (Related_Nod) is
|
18718 |
|
|
when N_Full_Type_Declaration =>
|
18719 |
|
|
if Nkind (Type_Definition (Related_Nod))
|
18720 |
|
|
in N_Array_Type_Definition
|
18721 |
|
|
then
|
18722 |
|
|
Error_Node :=
|
18723 |
|
|
Subtype_Indication
|
18724 |
|
|
(Component_Definition
|
18725 |
|
|
(Type_Definition (Related_Nod)));
|
18726 |
|
|
else
|
18727 |
|
|
Error_Node :=
|
18728 |
|
|
Subtype_Indication (Type_Definition (Related_Nod));
|
18729 |
|
|
end if;
|
18730 |
|
|
|
18731 |
|
|
when N_Subtype_Declaration =>
|
18732 |
|
|
Error_Node := Subtype_Indication (Related_Nod);
|
18733 |
|
|
|
18734 |
|
|
when N_Object_Declaration =>
|
18735 |
|
|
Error_Node := Object_Definition (Related_Nod);
|
18736 |
|
|
|
18737 |
|
|
when N_Component_Declaration =>
|
18738 |
|
|
Error_Node :=
|
18739 |
|
|
Subtype_Indication (Component_Definition (Related_Nod));
|
18740 |
|
|
|
18741 |
|
|
when N_Allocator =>
|
18742 |
|
|
Error_Node := Expression (Related_Nod);
|
18743 |
|
|
|
18744 |
|
|
when others =>
|
18745 |
|
|
pragma Assert (False);
|
18746 |
|
|
Error_Node := Related_Nod;
|
18747 |
|
|
end case;
|
18748 |
|
|
|
18749 |
|
|
Error_Msg_NE
|
18750 |
|
|
("`NOT NULL` not allowed (& already excludes null)",
|
18751 |
|
|
Error_Node,
|
18752 |
|
|
Entity (S));
|
18753 |
|
|
end if;
|
18754 |
|
|
|
18755 |
|
|
Set_Etype (S,
|
18756 |
|
|
Create_Null_Excluding_Itype
|
18757 |
|
|
(T => Entity (S),
|
18758 |
|
|
Related_Nod => P));
|
18759 |
|
|
Set_Entity (S, Etype (S));
|
18760 |
|
|
end if;
|
18761 |
|
|
|
18762 |
|
|
return Entity (S);
|
18763 |
|
|
|
18764 |
|
|
-- Case of constraint present, so that we have an N_Subtype_Indication
|
18765 |
|
|
-- node (this node is created only if constraints are present).
|
18766 |
|
|
|
18767 |
|
|
else
|
18768 |
|
|
Find_Type (Subtype_Mark (S));
|
18769 |
|
|
|
18770 |
|
|
if Nkind (Parent (S)) /= N_Access_To_Object_Definition
|
18771 |
|
|
and then not
|
18772 |
|
|
(Nkind (Parent (S)) = N_Subtype_Declaration
|
18773 |
|
|
and then Is_Itype (Defining_Identifier (Parent (S))))
|
18774 |
|
|
then
|
18775 |
|
|
Check_Incomplete (Subtype_Mark (S));
|
18776 |
|
|
end if;
|
18777 |
|
|
|
18778 |
|
|
P := Parent (S);
|
18779 |
|
|
Subtype_Mark_Id := Entity (Subtype_Mark (S));
|
18780 |
|
|
|
18781 |
|
|
-- Explicit subtype declaration case
|
18782 |
|
|
|
18783 |
|
|
if Nkind (P) = N_Subtype_Declaration then
|
18784 |
|
|
Def_Id := Defining_Identifier (P);
|
18785 |
|
|
|
18786 |
|
|
-- Explicit derived type definition case
|
18787 |
|
|
|
18788 |
|
|
elsif Nkind (P) = N_Derived_Type_Definition then
|
18789 |
|
|
Def_Id := Defining_Identifier (Parent (P));
|
18790 |
|
|
|
18791 |
|
|
-- Implicit case, the Def_Id must be created as an implicit type.
|
18792 |
|
|
-- The one exception arises in the case of concurrent types, array
|
18793 |
|
|
-- and access types, where other subsidiary implicit types may be
|
18794 |
|
|
-- created and must appear before the main implicit type. In these
|
18795 |
|
|
-- cases we leave Def_Id set to Empty as a signal that Create_Itype
|
18796 |
|
|
-- has not yet been called to create Def_Id.
|
18797 |
|
|
|
18798 |
|
|
else
|
18799 |
|
|
if Is_Array_Type (Subtype_Mark_Id)
|
18800 |
|
|
or else Is_Concurrent_Type (Subtype_Mark_Id)
|
18801 |
|
|
or else Is_Access_Type (Subtype_Mark_Id)
|
18802 |
|
|
then
|
18803 |
|
|
Def_Id := Empty;
|
18804 |
|
|
|
18805 |
|
|
-- For the other cases, we create a new unattached Itype,
|
18806 |
|
|
-- and set the indication to ensure it gets attached later.
|
18807 |
|
|
|
18808 |
|
|
else
|
18809 |
|
|
Def_Id :=
|
18810 |
|
|
Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
|
18811 |
|
|
end if;
|
18812 |
|
|
end if;
|
18813 |
|
|
|
18814 |
|
|
-- If the kind of constraint is invalid for this kind of type,
|
18815 |
|
|
-- then give an error, and then pretend no constraint was given.
|
18816 |
|
|
|
18817 |
|
|
if not Is_Valid_Constraint_Kind
|
18818 |
|
|
(Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
|
18819 |
|
|
then
|
18820 |
|
|
Error_Msg_N
|
18821 |
|
|
("incorrect constraint for this kind of type", Constraint (S));
|
18822 |
|
|
|
18823 |
|
|
Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
|
18824 |
|
|
|
18825 |
|
|
-- Set Ekind of orphan itype, to prevent cascaded errors
|
18826 |
|
|
|
18827 |
|
|
if Present (Def_Id) then
|
18828 |
|
|
Set_Ekind (Def_Id, Ekind (Any_Type));
|
18829 |
|
|
end if;
|
18830 |
|
|
|
18831 |
|
|
-- Make recursive call, having got rid of the bogus constraint
|
18832 |
|
|
|
18833 |
|
|
return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
|
18834 |
|
|
end if;
|
18835 |
|
|
|
18836 |
|
|
-- Remaining processing depends on type. Select on Base_Type kind to
|
18837 |
|
|
-- ensure getting to the concrete type kind in the case of a private
|
18838 |
|
|
-- subtype (needed when only doing semantic analysis).
|
18839 |
|
|
|
18840 |
|
|
case Ekind (Base_Type (Subtype_Mark_Id)) is
|
18841 |
|
|
when Access_Kind =>
|
18842 |
|
|
Constrain_Access (Def_Id, S, Related_Nod);
|
18843 |
|
|
|
18844 |
|
|
if Expander_Active
|
18845 |
|
|
and then Is_Itype (Designated_Type (Def_Id))
|
18846 |
|
|
and then Nkind (Related_Nod) = N_Subtype_Declaration
|
18847 |
|
|
and then not Is_Incomplete_Type (Designated_Type (Def_Id))
|
18848 |
|
|
then
|
18849 |
|
|
Build_Itype_Reference
|
18850 |
|
|
(Designated_Type (Def_Id), Related_Nod);
|
18851 |
|
|
end if;
|
18852 |
|
|
|
18853 |
|
|
when Array_Kind =>
|
18854 |
|
|
Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
|
18855 |
|
|
|
18856 |
|
|
when Decimal_Fixed_Point_Kind =>
|
18857 |
|
|
Constrain_Decimal (Def_Id, S);
|
18858 |
|
|
|
18859 |
|
|
when Enumeration_Kind =>
|
18860 |
|
|
Constrain_Enumeration (Def_Id, S);
|
18861 |
|
|
|
18862 |
|
|
when Ordinary_Fixed_Point_Kind =>
|
18863 |
|
|
Constrain_Ordinary_Fixed (Def_Id, S);
|
18864 |
|
|
|
18865 |
|
|
when Float_Kind =>
|
18866 |
|
|
Constrain_Float (Def_Id, S);
|
18867 |
|
|
|
18868 |
|
|
when Integer_Kind =>
|
18869 |
|
|
Constrain_Integer (Def_Id, S);
|
18870 |
|
|
|
18871 |
|
|
when E_Record_Type |
|
18872 |
|
|
E_Record_Subtype |
|
18873 |
|
|
Class_Wide_Kind |
|
18874 |
|
|
E_Incomplete_Type =>
|
18875 |
|
|
Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
|
18876 |
|
|
|
18877 |
|
|
if Ekind (Def_Id) = E_Incomplete_Type then
|
18878 |
|
|
Set_Private_Dependents (Def_Id, New_Elmt_List);
|
18879 |
|
|
end if;
|
18880 |
|
|
|
18881 |
|
|
when Private_Kind =>
|
18882 |
|
|
Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
|
18883 |
|
|
Set_Private_Dependents (Def_Id, New_Elmt_List);
|
18884 |
|
|
|
18885 |
|
|
-- In case of an invalid constraint prevent further processing
|
18886 |
|
|
-- since the type constructed is missing expected fields.
|
18887 |
|
|
|
18888 |
|
|
if Etype (Def_Id) = Any_Type then
|
18889 |
|
|
return Def_Id;
|
18890 |
|
|
end if;
|
18891 |
|
|
|
18892 |
|
|
-- If the full view is that of a task with discriminants,
|
18893 |
|
|
-- we must constrain both the concurrent type and its
|
18894 |
|
|
-- corresponding record type. Otherwise we will just propagate
|
18895 |
|
|
-- the constraint to the full view, if available.
|
18896 |
|
|
|
18897 |
|
|
if Present (Full_View (Subtype_Mark_Id))
|
18898 |
|
|
and then Has_Discriminants (Subtype_Mark_Id)
|
18899 |
|
|
and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
|
18900 |
|
|
then
|
18901 |
|
|
Full_View_Id :=
|
18902 |
|
|
Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
|
18903 |
|
|
|
18904 |
|
|
Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
|
18905 |
|
|
Constrain_Concurrent (Full_View_Id, S,
|
18906 |
|
|
Related_Nod, Related_Id, Suffix);
|
18907 |
|
|
Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
|
18908 |
|
|
Set_Full_View (Def_Id, Full_View_Id);
|
18909 |
|
|
|
18910 |
|
|
-- Introduce an explicit reference to the private subtype,
|
18911 |
|
|
-- to prevent scope anomalies in gigi if first use appears
|
18912 |
|
|
-- in a nested context, e.g. a later function body.
|
18913 |
|
|
-- Should this be generated in other contexts than a full
|
18914 |
|
|
-- type declaration?
|
18915 |
|
|
|
18916 |
|
|
if Is_Itype (Def_Id)
|
18917 |
|
|
and then
|
18918 |
|
|
Nkind (Parent (P)) = N_Full_Type_Declaration
|
18919 |
|
|
then
|
18920 |
|
|
Build_Itype_Reference (Def_Id, Parent (P));
|
18921 |
|
|
end if;
|
18922 |
|
|
|
18923 |
|
|
else
|
18924 |
|
|
Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
|
18925 |
|
|
end if;
|
18926 |
|
|
|
18927 |
|
|
when Concurrent_Kind =>
|
18928 |
|
|
Constrain_Concurrent (Def_Id, S,
|
18929 |
|
|
Related_Nod, Related_Id, Suffix);
|
18930 |
|
|
|
18931 |
|
|
when others =>
|
18932 |
|
|
Error_Msg_N ("invalid subtype mark in subtype indication", S);
|
18933 |
|
|
end case;
|
18934 |
|
|
|
18935 |
|
|
-- Size and Convention are always inherited from the base type
|
18936 |
|
|
|
18937 |
|
|
Set_Size_Info (Def_Id, (Subtype_Mark_Id));
|
18938 |
|
|
Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
|
18939 |
|
|
|
18940 |
|
|
return Def_Id;
|
18941 |
|
|
end if;
|
18942 |
|
|
end Process_Subtype;
|
18943 |
|
|
|
18944 |
|
|
---------------------------------------
|
18945 |
|
|
-- Check_Anonymous_Access_Components --
|
18946 |
|
|
---------------------------------------
|
18947 |
|
|
|
18948 |
|
|
procedure Check_Anonymous_Access_Components
|
18949 |
|
|
(Typ_Decl : Node_Id;
|
18950 |
|
|
Typ : Entity_Id;
|
18951 |
|
|
Prev : Entity_Id;
|
18952 |
|
|
Comp_List : Node_Id)
|
18953 |
|
|
is
|
18954 |
|
|
Loc : constant Source_Ptr := Sloc (Typ_Decl);
|
18955 |
|
|
Anon_Access : Entity_Id;
|
18956 |
|
|
Acc_Def : Node_Id;
|
18957 |
|
|
Comp : Node_Id;
|
18958 |
|
|
Comp_Def : Node_Id;
|
18959 |
|
|
Decl : Node_Id;
|
18960 |
|
|
Type_Def : Node_Id;
|
18961 |
|
|
|
18962 |
|
|
procedure Build_Incomplete_Type_Declaration;
|
18963 |
|
|
-- If the record type contains components that include an access to the
|
18964 |
|
|
-- current record, then create an incomplete type declaration for the
|
18965 |
|
|
-- record, to be used as the designated type of the anonymous access.
|
18966 |
|
|
-- This is done only once, and only if there is no previous partial
|
18967 |
|
|
-- view of the type.
|
18968 |
|
|
|
18969 |
|
|
function Designates_T (Subt : Node_Id) return Boolean;
|
18970 |
|
|
-- Check whether a node designates the enclosing record type, or 'Class
|
18971 |
|
|
-- of that type
|
18972 |
|
|
|
18973 |
|
|
function Mentions_T (Acc_Def : Node_Id) return Boolean;
|
18974 |
|
|
-- Check whether an access definition includes a reference to
|
18975 |
|
|
-- the enclosing record type. The reference can be a subtype mark
|
18976 |
|
|
-- in the access definition itself, a 'Class attribute reference, or
|
18977 |
|
|
-- recursively a reference appearing in a parameter specification
|
18978 |
|
|
-- or result definition of an access_to_subprogram definition.
|
18979 |
|
|
|
18980 |
|
|
--------------------------------------
|
18981 |
|
|
-- Build_Incomplete_Type_Declaration --
|
18982 |
|
|
--------------------------------------
|
18983 |
|
|
|
18984 |
|
|
procedure Build_Incomplete_Type_Declaration is
|
18985 |
|
|
Decl : Node_Id;
|
18986 |
|
|
Inc_T : Entity_Id;
|
18987 |
|
|
H : Entity_Id;
|
18988 |
|
|
|
18989 |
|
|
-- Is_Tagged indicates whether the type is tagged. It is tagged if
|
18990 |
|
|
-- it's "is new ... with record" or else "is tagged record ...".
|
18991 |
|
|
|
18992 |
|
|
Is_Tagged : constant Boolean :=
|
18993 |
|
|
(Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
|
18994 |
|
|
and then
|
18995 |
|
|
Present
|
18996 |
|
|
(Record_Extension_Part (Type_Definition (Typ_Decl))))
|
18997 |
|
|
or else
|
18998 |
|
|
(Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
|
18999 |
|
|
and then Tagged_Present (Type_Definition (Typ_Decl)));
|
19000 |
|
|
|
19001 |
|
|
begin
|
19002 |
|
|
-- If there is a previous partial view, no need to create a new one
|
19003 |
|
|
-- If the partial view, given by Prev, is incomplete, If Prev is
|
19004 |
|
|
-- a private declaration, full declaration is flagged accordingly.
|
19005 |
|
|
|
19006 |
|
|
if Prev /= Typ then
|
19007 |
|
|
if Is_Tagged then
|
19008 |
|
|
Make_Class_Wide_Type (Prev);
|
19009 |
|
|
Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
|
19010 |
|
|
Set_Etype (Class_Wide_Type (Typ), Typ);
|
19011 |
|
|
end if;
|
19012 |
|
|
|
19013 |
|
|
return;
|
19014 |
|
|
|
19015 |
|
|
elsif Has_Private_Declaration (Typ) then
|
19016 |
|
|
|
19017 |
|
|
-- If we refer to T'Class inside T, and T is the completion of a
|
19018 |
|
|
-- private type, then we need to make sure the class-wide type
|
19019 |
|
|
-- exists.
|
19020 |
|
|
|
19021 |
|
|
if Is_Tagged then
|
19022 |
|
|
Make_Class_Wide_Type (Typ);
|
19023 |
|
|
end if;
|
19024 |
|
|
|
19025 |
|
|
return;
|
19026 |
|
|
|
19027 |
|
|
-- If there was a previous anonymous access type, the incomplete
|
19028 |
|
|
-- type declaration will have been created already.
|
19029 |
|
|
|
19030 |
|
|
elsif Present (Current_Entity (Typ))
|
19031 |
|
|
and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
|
19032 |
|
|
and then Full_View (Current_Entity (Typ)) = Typ
|
19033 |
|
|
then
|
19034 |
|
|
if Is_Tagged
|
19035 |
|
|
and then Comes_From_Source (Current_Entity (Typ))
|
19036 |
|
|
and then not Is_Tagged_Type (Current_Entity (Typ))
|
19037 |
|
|
then
|
19038 |
|
|
Make_Class_Wide_Type (Typ);
|
19039 |
|
|
Error_Msg_N
|
19040 |
|
|
("incomplete view of tagged type should be declared tagged?",
|
19041 |
|
|
Parent (Current_Entity (Typ)));
|
19042 |
|
|
end if;
|
19043 |
|
|
return;
|
19044 |
|
|
|
19045 |
|
|
else
|
19046 |
|
|
Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
|
19047 |
|
|
Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
|
19048 |
|
|
|
19049 |
|
|
-- Type has already been inserted into the current scope. Remove
|
19050 |
|
|
-- it, and add incomplete declaration for type, so that subsequent
|
19051 |
|
|
-- anonymous access types can use it. The entity is unchained from
|
19052 |
|
|
-- the homonym list and from immediate visibility. After analysis,
|
19053 |
|
|
-- the entity in the incomplete declaration becomes immediately
|
19054 |
|
|
-- visible in the record declaration that follows.
|
19055 |
|
|
|
19056 |
|
|
H := Current_Entity (Typ);
|
19057 |
|
|
|
19058 |
|
|
if H = Typ then
|
19059 |
|
|
Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
|
19060 |
|
|
else
|
19061 |
|
|
while Present (H)
|
19062 |
|
|
and then Homonym (H) /= Typ
|
19063 |
|
|
loop
|
19064 |
|
|
H := Homonym (Typ);
|
19065 |
|
|
end loop;
|
19066 |
|
|
|
19067 |
|
|
Set_Homonym (H, Homonym (Typ));
|
19068 |
|
|
end if;
|
19069 |
|
|
|
19070 |
|
|
Insert_Before (Typ_Decl, Decl);
|
19071 |
|
|
Analyze (Decl);
|
19072 |
|
|
Set_Full_View (Inc_T, Typ);
|
19073 |
|
|
|
19074 |
|
|
if Is_Tagged then
|
19075 |
|
|
|
19076 |
|
|
-- Create a common class-wide type for both views, and set the
|
19077 |
|
|
-- Etype of the class-wide type to the full view.
|
19078 |
|
|
|
19079 |
|
|
Make_Class_Wide_Type (Inc_T);
|
19080 |
|
|
Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
|
19081 |
|
|
Set_Etype (Class_Wide_Type (Typ), Typ);
|
19082 |
|
|
end if;
|
19083 |
|
|
end if;
|
19084 |
|
|
end Build_Incomplete_Type_Declaration;
|
19085 |
|
|
|
19086 |
|
|
------------------
|
19087 |
|
|
-- Designates_T --
|
19088 |
|
|
------------------
|
19089 |
|
|
|
19090 |
|
|
function Designates_T (Subt : Node_Id) return Boolean is
|
19091 |
|
|
Type_Id : constant Name_Id := Chars (Typ);
|
19092 |
|
|
|
19093 |
|
|
function Names_T (Nam : Node_Id) return Boolean;
|
19094 |
|
|
-- The record type has not been introduced in the current scope
|
19095 |
|
|
-- yet, so we must examine the name of the type itself, either
|
19096 |
|
|
-- an identifier T, or an expanded name of the form P.T, where
|
19097 |
|
|
-- P denotes the current scope.
|
19098 |
|
|
|
19099 |
|
|
-------------
|
19100 |
|
|
-- Names_T --
|
19101 |
|
|
-------------
|
19102 |
|
|
|
19103 |
|
|
function Names_T (Nam : Node_Id) return Boolean is
|
19104 |
|
|
begin
|
19105 |
|
|
if Nkind (Nam) = N_Identifier then
|
19106 |
|
|
return Chars (Nam) = Type_Id;
|
19107 |
|
|
|
19108 |
|
|
elsif Nkind (Nam) = N_Selected_Component then
|
19109 |
|
|
if Chars (Selector_Name (Nam)) = Type_Id then
|
19110 |
|
|
if Nkind (Prefix (Nam)) = N_Identifier then
|
19111 |
|
|
return Chars (Prefix (Nam)) = Chars (Current_Scope);
|
19112 |
|
|
|
19113 |
|
|
elsif Nkind (Prefix (Nam)) = N_Selected_Component then
|
19114 |
|
|
return Chars (Selector_Name (Prefix (Nam))) =
|
19115 |
|
|
Chars (Current_Scope);
|
19116 |
|
|
else
|
19117 |
|
|
return False;
|
19118 |
|
|
end if;
|
19119 |
|
|
|
19120 |
|
|
else
|
19121 |
|
|
return False;
|
19122 |
|
|
end if;
|
19123 |
|
|
|
19124 |
|
|
else
|
19125 |
|
|
return False;
|
19126 |
|
|
end if;
|
19127 |
|
|
end Names_T;
|
19128 |
|
|
|
19129 |
|
|
-- Start of processing for Designates_T
|
19130 |
|
|
|
19131 |
|
|
begin
|
19132 |
|
|
if Nkind (Subt) = N_Identifier then
|
19133 |
|
|
return Chars (Subt) = Type_Id;
|
19134 |
|
|
|
19135 |
|
|
-- Reference can be through an expanded name which has not been
|
19136 |
|
|
-- analyzed yet, and which designates enclosing scopes.
|
19137 |
|
|
|
19138 |
|
|
elsif Nkind (Subt) = N_Selected_Component then
|
19139 |
|
|
if Names_T (Subt) then
|
19140 |
|
|
return True;
|
19141 |
|
|
|
19142 |
|
|
-- Otherwise it must denote an entity that is already visible.
|
19143 |
|
|
-- The access definition may name a subtype of the enclosing
|
19144 |
|
|
-- type, if there is a previous incomplete declaration for it.
|
19145 |
|
|
|
19146 |
|
|
else
|
19147 |
|
|
Find_Selected_Component (Subt);
|
19148 |
|
|
return
|
19149 |
|
|
Is_Entity_Name (Subt)
|
19150 |
|
|
and then Scope (Entity (Subt)) = Current_Scope
|
19151 |
|
|
and then
|
19152 |
|
|
(Chars (Base_Type (Entity (Subt))) = Type_Id
|
19153 |
|
|
or else
|
19154 |
|
|
(Is_Class_Wide_Type (Entity (Subt))
|
19155 |
|
|
and then
|
19156 |
|
|
Chars (Etype (Base_Type (Entity (Subt)))) =
|
19157 |
|
|
Type_Id));
|
19158 |
|
|
end if;
|
19159 |
|
|
|
19160 |
|
|
-- A reference to the current type may appear as the prefix of
|
19161 |
|
|
-- a 'Class attribute.
|
19162 |
|
|
|
19163 |
|
|
elsif Nkind (Subt) = N_Attribute_Reference
|
19164 |
|
|
and then Attribute_Name (Subt) = Name_Class
|
19165 |
|
|
then
|
19166 |
|
|
return Names_T (Prefix (Subt));
|
19167 |
|
|
|
19168 |
|
|
else
|
19169 |
|
|
return False;
|
19170 |
|
|
end if;
|
19171 |
|
|
end Designates_T;
|
19172 |
|
|
|
19173 |
|
|
----------------
|
19174 |
|
|
-- Mentions_T --
|
19175 |
|
|
----------------
|
19176 |
|
|
|
19177 |
|
|
function Mentions_T (Acc_Def : Node_Id) return Boolean is
|
19178 |
|
|
Param_Spec : Node_Id;
|
19179 |
|
|
|
19180 |
|
|
Acc_Subprg : constant Node_Id :=
|
19181 |
|
|
Access_To_Subprogram_Definition (Acc_Def);
|
19182 |
|
|
|
19183 |
|
|
begin
|
19184 |
|
|
if No (Acc_Subprg) then
|
19185 |
|
|
return Designates_T (Subtype_Mark (Acc_Def));
|
19186 |
|
|
end if;
|
19187 |
|
|
|
19188 |
|
|
-- Component is an access_to_subprogram: examine its formals,
|
19189 |
|
|
-- and result definition in the case of an access_to_function.
|
19190 |
|
|
|
19191 |
|
|
Param_Spec := First (Parameter_Specifications (Acc_Subprg));
|
19192 |
|
|
while Present (Param_Spec) loop
|
19193 |
|
|
if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
|
19194 |
|
|
and then Mentions_T (Parameter_Type (Param_Spec))
|
19195 |
|
|
then
|
19196 |
|
|
return True;
|
19197 |
|
|
|
19198 |
|
|
elsif Designates_T (Parameter_Type (Param_Spec)) then
|
19199 |
|
|
return True;
|
19200 |
|
|
end if;
|
19201 |
|
|
|
19202 |
|
|
Next (Param_Spec);
|
19203 |
|
|
end loop;
|
19204 |
|
|
|
19205 |
|
|
if Nkind (Acc_Subprg) = N_Access_Function_Definition then
|
19206 |
|
|
if Nkind (Result_Definition (Acc_Subprg)) =
|
19207 |
|
|
N_Access_Definition
|
19208 |
|
|
then
|
19209 |
|
|
return Mentions_T (Result_Definition (Acc_Subprg));
|
19210 |
|
|
else
|
19211 |
|
|
return Designates_T (Result_Definition (Acc_Subprg));
|
19212 |
|
|
end if;
|
19213 |
|
|
end if;
|
19214 |
|
|
|
19215 |
|
|
return False;
|
19216 |
|
|
end Mentions_T;
|
19217 |
|
|
|
19218 |
|
|
-- Start of processing for Check_Anonymous_Access_Components
|
19219 |
|
|
|
19220 |
|
|
begin
|
19221 |
|
|
if No (Comp_List) then
|
19222 |
|
|
return;
|
19223 |
|
|
end if;
|
19224 |
|
|
|
19225 |
|
|
Comp := First (Component_Items (Comp_List));
|
19226 |
|
|
while Present (Comp) loop
|
19227 |
|
|
if Nkind (Comp) = N_Component_Declaration
|
19228 |
|
|
and then Present
|
19229 |
|
|
(Access_Definition (Component_Definition (Comp)))
|
19230 |
|
|
and then
|
19231 |
|
|
Mentions_T (Access_Definition (Component_Definition (Comp)))
|
19232 |
|
|
then
|
19233 |
|
|
Comp_Def := Component_Definition (Comp);
|
19234 |
|
|
Acc_Def :=
|
19235 |
|
|
Access_To_Subprogram_Definition
|
19236 |
|
|
(Access_Definition (Comp_Def));
|
19237 |
|
|
|
19238 |
|
|
Build_Incomplete_Type_Declaration;
|
19239 |
|
|
Anon_Access := Make_Temporary (Loc, 'S');
|
19240 |
|
|
|
19241 |
|
|
-- Create a declaration for the anonymous access type: either
|
19242 |
|
|
-- an access_to_object or an access_to_subprogram.
|
19243 |
|
|
|
19244 |
|
|
if Present (Acc_Def) then
|
19245 |
|
|
if Nkind (Acc_Def) = N_Access_Function_Definition then
|
19246 |
|
|
Type_Def :=
|
19247 |
|
|
Make_Access_Function_Definition (Loc,
|
19248 |
|
|
Parameter_Specifications =>
|
19249 |
|
|
Parameter_Specifications (Acc_Def),
|
19250 |
|
|
Result_Definition => Result_Definition (Acc_Def));
|
19251 |
|
|
else
|
19252 |
|
|
Type_Def :=
|
19253 |
|
|
Make_Access_Procedure_Definition (Loc,
|
19254 |
|
|
Parameter_Specifications =>
|
19255 |
|
|
Parameter_Specifications (Acc_Def));
|
19256 |
|
|
end if;
|
19257 |
|
|
|
19258 |
|
|
else
|
19259 |
|
|
Type_Def :=
|
19260 |
|
|
Make_Access_To_Object_Definition (Loc,
|
19261 |
|
|
Subtype_Indication =>
|
19262 |
|
|
Relocate_Node
|
19263 |
|
|
(Subtype_Mark
|
19264 |
|
|
(Access_Definition (Comp_Def))));
|
19265 |
|
|
|
19266 |
|
|
Set_Constant_Present
|
19267 |
|
|
(Type_Def, Constant_Present (Access_Definition (Comp_Def)));
|
19268 |
|
|
Set_All_Present
|
19269 |
|
|
(Type_Def, All_Present (Access_Definition (Comp_Def)));
|
19270 |
|
|
end if;
|
19271 |
|
|
|
19272 |
|
|
Set_Null_Exclusion_Present
|
19273 |
|
|
(Type_Def,
|
19274 |
|
|
Null_Exclusion_Present (Access_Definition (Comp_Def)));
|
19275 |
|
|
|
19276 |
|
|
Decl :=
|
19277 |
|
|
Make_Full_Type_Declaration (Loc,
|
19278 |
|
|
Defining_Identifier => Anon_Access,
|
19279 |
|
|
Type_Definition => Type_Def);
|
19280 |
|
|
|
19281 |
|
|
Insert_Before (Typ_Decl, Decl);
|
19282 |
|
|
Analyze (Decl);
|
19283 |
|
|
|
19284 |
|
|
-- If an access to subprogram, create the extra formals
|
19285 |
|
|
|
19286 |
|
|
if Present (Acc_Def) then
|
19287 |
|
|
Create_Extra_Formals (Designated_Type (Anon_Access));
|
19288 |
|
|
|
19289 |
|
|
-- If an access to object, preserve entity of designated type,
|
19290 |
|
|
-- for ASIS use, before rewriting the component definition.
|
19291 |
|
|
|
19292 |
|
|
else
|
19293 |
|
|
declare
|
19294 |
|
|
Desig : Entity_Id;
|
19295 |
|
|
|
19296 |
|
|
begin
|
19297 |
|
|
Desig := Entity (Subtype_Indication (Type_Def));
|
19298 |
|
|
|
19299 |
|
|
-- If the access definition is to the current record,
|
19300 |
|
|
-- the visible entity at this point is an incomplete
|
19301 |
|
|
-- type. Retrieve the full view to simplify ASIS queries
|
19302 |
|
|
|
19303 |
|
|
if Ekind (Desig) = E_Incomplete_Type then
|
19304 |
|
|
Desig := Full_View (Desig);
|
19305 |
|
|
end if;
|
19306 |
|
|
|
19307 |
|
|
Set_Entity
|
19308 |
|
|
(Subtype_Mark (Access_Definition (Comp_Def)), Desig);
|
19309 |
|
|
end;
|
19310 |
|
|
end if;
|
19311 |
|
|
|
19312 |
|
|
Rewrite (Comp_Def,
|
19313 |
|
|
Make_Component_Definition (Loc,
|
19314 |
|
|
Subtype_Indication =>
|
19315 |
|
|
New_Occurrence_Of (Anon_Access, Loc)));
|
19316 |
|
|
|
19317 |
|
|
if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
|
19318 |
|
|
Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
|
19319 |
|
|
else
|
19320 |
|
|
Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
|
19321 |
|
|
end if;
|
19322 |
|
|
|
19323 |
|
|
Set_Is_Local_Anonymous_Access (Anon_Access);
|
19324 |
|
|
end if;
|
19325 |
|
|
|
19326 |
|
|
Next (Comp);
|
19327 |
|
|
end loop;
|
19328 |
|
|
|
19329 |
|
|
if Present (Variant_Part (Comp_List)) then
|
19330 |
|
|
declare
|
19331 |
|
|
V : Node_Id;
|
19332 |
|
|
begin
|
19333 |
|
|
V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
|
19334 |
|
|
while Present (V) loop
|
19335 |
|
|
Check_Anonymous_Access_Components
|
19336 |
|
|
(Typ_Decl, Typ, Prev, Component_List (V));
|
19337 |
|
|
Next_Non_Pragma (V);
|
19338 |
|
|
end loop;
|
19339 |
|
|
end;
|
19340 |
|
|
end if;
|
19341 |
|
|
end Check_Anonymous_Access_Components;
|
19342 |
|
|
|
19343 |
|
|
--------------------------------
|
19344 |
|
|
-- Preanalyze_Spec_Expression --
|
19345 |
|
|
--------------------------------
|
19346 |
|
|
|
19347 |
|
|
procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
|
19348 |
|
|
Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
|
19349 |
|
|
begin
|
19350 |
|
|
In_Spec_Expression := True;
|
19351 |
|
|
Preanalyze_And_Resolve (N, T);
|
19352 |
|
|
In_Spec_Expression := Save_In_Spec_Expression;
|
19353 |
|
|
end Preanalyze_Spec_Expression;
|
19354 |
|
|
|
19355 |
|
|
-----------------------------
|
19356 |
|
|
-- Record_Type_Declaration --
|
19357 |
|
|
-----------------------------
|
19358 |
|
|
|
19359 |
|
|
procedure Record_Type_Declaration
|
19360 |
|
|
(T : Entity_Id;
|
19361 |
|
|
N : Node_Id;
|
19362 |
|
|
Prev : Entity_Id)
|
19363 |
|
|
is
|
19364 |
|
|
Def : constant Node_Id := Type_Definition (N);
|
19365 |
|
|
Is_Tagged : Boolean;
|
19366 |
|
|
Tag_Comp : Entity_Id;
|
19367 |
|
|
|
19368 |
|
|
begin
|
19369 |
|
|
-- These flags must be initialized before calling Process_Discriminants
|
19370 |
|
|
-- because this routine makes use of them.
|
19371 |
|
|
|
19372 |
|
|
Set_Ekind (T, E_Record_Type);
|
19373 |
|
|
Set_Etype (T, T);
|
19374 |
|
|
Init_Size_Align (T);
|
19375 |
|
|
Set_Interfaces (T, No_Elist);
|
19376 |
|
|
Set_Stored_Constraint (T, No_Elist);
|
19377 |
|
|
|
19378 |
|
|
-- Normal case
|
19379 |
|
|
|
19380 |
|
|
if Ada_Version < Ada_2005
|
19381 |
|
|
or else not Interface_Present (Def)
|
19382 |
|
|
then
|
19383 |
|
|
if Limited_Present (Def) then
|
19384 |
|
|
Check_SPARK_Restriction ("limited is not allowed", N);
|
19385 |
|
|
end if;
|
19386 |
|
|
|
19387 |
|
|
if Abstract_Present (Def) then
|
19388 |
|
|
Check_SPARK_Restriction ("abstract is not allowed", N);
|
19389 |
|
|
end if;
|
19390 |
|
|
|
19391 |
|
|
-- The flag Is_Tagged_Type might have already been set by
|
19392 |
|
|
-- Find_Type_Name if it detected an error for declaration T. This
|
19393 |
|
|
-- arises in the case of private tagged types where the full view
|
19394 |
|
|
-- omits the word tagged.
|
19395 |
|
|
|
19396 |
|
|
Is_Tagged :=
|
19397 |
|
|
Tagged_Present (Def)
|
19398 |
|
|
or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
|
19399 |
|
|
|
19400 |
|
|
Set_Is_Tagged_Type (T, Is_Tagged);
|
19401 |
|
|
Set_Is_Limited_Record (T, Limited_Present (Def));
|
19402 |
|
|
|
19403 |
|
|
-- Type is abstract if full declaration carries keyword, or if
|
19404 |
|
|
-- previous partial view did.
|
19405 |
|
|
|
19406 |
|
|
Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
|
19407 |
|
|
or else Abstract_Present (Def));
|
19408 |
|
|
|
19409 |
|
|
else
|
19410 |
|
|
Check_SPARK_Restriction ("interface is not allowed", N);
|
19411 |
|
|
|
19412 |
|
|
Is_Tagged := True;
|
19413 |
|
|
Analyze_Interface_Declaration (T, Def);
|
19414 |
|
|
|
19415 |
|
|
if Present (Discriminant_Specifications (N)) then
|
19416 |
|
|
Error_Msg_N
|
19417 |
|
|
("interface types cannot have discriminants",
|
19418 |
|
|
Defining_Identifier
|
19419 |
|
|
(First (Discriminant_Specifications (N))));
|
19420 |
|
|
end if;
|
19421 |
|
|
end if;
|
19422 |
|
|
|
19423 |
|
|
-- First pass: if there are self-referential access components,
|
19424 |
|
|
-- create the required anonymous access type declarations, and if
|
19425 |
|
|
-- need be an incomplete type declaration for T itself.
|
19426 |
|
|
|
19427 |
|
|
Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
|
19428 |
|
|
|
19429 |
|
|
if Ada_Version >= Ada_2005
|
19430 |
|
|
and then Present (Interface_List (Def))
|
19431 |
|
|
then
|
19432 |
|
|
Check_Interfaces (N, Def);
|
19433 |
|
|
|
19434 |
|
|
declare
|
19435 |
|
|
Ifaces_List : Elist_Id;
|
19436 |
|
|
|
19437 |
|
|
begin
|
19438 |
|
|
-- Ada 2005 (AI-251): Collect the list of progenitors that are not
|
19439 |
|
|
-- already in the parents.
|
19440 |
|
|
|
19441 |
|
|
Collect_Interfaces
|
19442 |
|
|
(T => T,
|
19443 |
|
|
Ifaces_List => Ifaces_List,
|
19444 |
|
|
Exclude_Parents => True);
|
19445 |
|
|
|
19446 |
|
|
Set_Interfaces (T, Ifaces_List);
|
19447 |
|
|
end;
|
19448 |
|
|
end if;
|
19449 |
|
|
|
19450 |
|
|
-- Records constitute a scope for the component declarations within.
|
19451 |
|
|
-- The scope is created prior to the processing of these declarations.
|
19452 |
|
|
-- Discriminants are processed first, so that they are visible when
|
19453 |
|
|
-- processing the other components. The Ekind of the record type itself
|
19454 |
|
|
-- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
|
19455 |
|
|
|
19456 |
|
|
-- Enter record scope
|
19457 |
|
|
|
19458 |
|
|
Push_Scope (T);
|
19459 |
|
|
|
19460 |
|
|
-- If an incomplete or private type declaration was already given for
|
19461 |
|
|
-- the type, then this scope already exists, and the discriminants have
|
19462 |
|
|
-- been declared within. We must verify that the full declaration
|
19463 |
|
|
-- matches the incomplete one.
|
19464 |
|
|
|
19465 |
|
|
Check_Or_Process_Discriminants (N, T, Prev);
|
19466 |
|
|
|
19467 |
|
|
Set_Is_Constrained (T, not Has_Discriminants (T));
|
19468 |
|
|
Set_Has_Delayed_Freeze (T, True);
|
19469 |
|
|
|
19470 |
|
|
-- For tagged types add a manually analyzed component corresponding
|
19471 |
|
|
-- to the component _tag, the corresponding piece of tree will be
|
19472 |
|
|
-- expanded as part of the freezing actions if it is not a CPP_Class.
|
19473 |
|
|
|
19474 |
|
|
if Is_Tagged then
|
19475 |
|
|
|
19476 |
|
|
-- Do not add the tag unless we are in expansion mode
|
19477 |
|
|
|
19478 |
|
|
if Expander_Active then
|
19479 |
|
|
Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
|
19480 |
|
|
Enter_Name (Tag_Comp);
|
19481 |
|
|
|
19482 |
|
|
Set_Ekind (Tag_Comp, E_Component);
|
19483 |
|
|
Set_Is_Tag (Tag_Comp);
|
19484 |
|
|
Set_Is_Aliased (Tag_Comp);
|
19485 |
|
|
Set_Etype (Tag_Comp, RTE (RE_Tag));
|
19486 |
|
|
Set_DT_Entry_Count (Tag_Comp, No_Uint);
|
19487 |
|
|
Set_Original_Record_Component (Tag_Comp, Tag_Comp);
|
19488 |
|
|
Init_Component_Location (Tag_Comp);
|
19489 |
|
|
|
19490 |
|
|
-- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
|
19491 |
|
|
-- implemented interfaces.
|
19492 |
|
|
|
19493 |
|
|
if Has_Interfaces (T) then
|
19494 |
|
|
Add_Interface_Tag_Components (N, T);
|
19495 |
|
|
end if;
|
19496 |
|
|
end if;
|
19497 |
|
|
|
19498 |
|
|
Make_Class_Wide_Type (T);
|
19499 |
|
|
Set_Direct_Primitive_Operations (T, New_Elmt_List);
|
19500 |
|
|
end if;
|
19501 |
|
|
|
19502 |
|
|
-- We must suppress range checks when processing record components in
|
19503 |
|
|
-- the presence of discriminants, since we don't want spurious checks to
|
19504 |
|
|
-- be generated during their analysis, but Suppress_Range_Checks flags
|
19505 |
|
|
-- must be reset the after processing the record definition.
|
19506 |
|
|
|
19507 |
|
|
-- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
|
19508 |
|
|
-- couldn't we just use the normal range check suppression method here.
|
19509 |
|
|
-- That would seem cleaner ???
|
19510 |
|
|
|
19511 |
|
|
if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
|
19512 |
|
|
Set_Kill_Range_Checks (T, True);
|
19513 |
|
|
Record_Type_Definition (Def, Prev);
|
19514 |
|
|
Set_Kill_Range_Checks (T, False);
|
19515 |
|
|
else
|
19516 |
|
|
Record_Type_Definition (Def, Prev);
|
19517 |
|
|
end if;
|
19518 |
|
|
|
19519 |
|
|
-- Exit from record scope
|
19520 |
|
|
|
19521 |
|
|
End_Scope;
|
19522 |
|
|
|
19523 |
|
|
-- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
|
19524 |
|
|
-- the implemented interfaces and associate them an aliased entity.
|
19525 |
|
|
|
19526 |
|
|
if Is_Tagged
|
19527 |
|
|
and then not Is_Empty_List (Interface_List (Def))
|
19528 |
|
|
then
|
19529 |
|
|
Derive_Progenitor_Subprograms (T, T);
|
19530 |
|
|
end if;
|
19531 |
|
|
end Record_Type_Declaration;
|
19532 |
|
|
|
19533 |
|
|
----------------------------
|
19534 |
|
|
-- Record_Type_Definition --
|
19535 |
|
|
----------------------------
|
19536 |
|
|
|
19537 |
|
|
procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
|
19538 |
|
|
Component : Entity_Id;
|
19539 |
|
|
Ctrl_Components : Boolean := False;
|
19540 |
|
|
Final_Storage_Only : Boolean;
|
19541 |
|
|
T : Entity_Id;
|
19542 |
|
|
|
19543 |
|
|
begin
|
19544 |
|
|
if Ekind (Prev_T) = E_Incomplete_Type then
|
19545 |
|
|
T := Full_View (Prev_T);
|
19546 |
|
|
else
|
19547 |
|
|
T := Prev_T;
|
19548 |
|
|
end if;
|
19549 |
|
|
|
19550 |
|
|
-- In SPARK, tagged types and type extensions may only be declared in
|
19551 |
|
|
-- the specification of library unit packages.
|
19552 |
|
|
|
19553 |
|
|
if Present (Def) and then Is_Tagged_Type (T) then
|
19554 |
|
|
declare
|
19555 |
|
|
Typ : Node_Id;
|
19556 |
|
|
Ctxt : Node_Id;
|
19557 |
|
|
|
19558 |
|
|
begin
|
19559 |
|
|
if Nkind (Parent (Def)) = N_Full_Type_Declaration then
|
19560 |
|
|
Typ := Parent (Def);
|
19561 |
|
|
else
|
19562 |
|
|
pragma Assert
|
19563 |
|
|
(Nkind (Parent (Def)) = N_Derived_Type_Definition);
|
19564 |
|
|
Typ := Parent (Parent (Def));
|
19565 |
|
|
end if;
|
19566 |
|
|
|
19567 |
|
|
Ctxt := Parent (Typ);
|
19568 |
|
|
|
19569 |
|
|
if Nkind (Ctxt) = N_Package_Body
|
19570 |
|
|
and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
|
19571 |
|
|
then
|
19572 |
|
|
Check_SPARK_Restriction
|
19573 |
|
|
("type should be defined in package specification", Typ);
|
19574 |
|
|
|
19575 |
|
|
elsif Nkind (Ctxt) /= N_Package_Specification
|
19576 |
|
|
or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
|
19577 |
|
|
then
|
19578 |
|
|
Check_SPARK_Restriction
|
19579 |
|
|
("type should be defined in library unit package", Typ);
|
19580 |
|
|
end if;
|
19581 |
|
|
end;
|
19582 |
|
|
end if;
|
19583 |
|
|
|
19584 |
|
|
Final_Storage_Only := not Is_Controlled (T);
|
19585 |
|
|
|
19586 |
|
|
-- Ada 2005: check whether an explicit Limited is present in a derived
|
19587 |
|
|
-- type declaration.
|
19588 |
|
|
|
19589 |
|
|
if Nkind (Parent (Def)) = N_Derived_Type_Definition
|
19590 |
|
|
and then Limited_Present (Parent (Def))
|
19591 |
|
|
then
|
19592 |
|
|
Set_Is_Limited_Record (T);
|
19593 |
|
|
end if;
|
19594 |
|
|
|
19595 |
|
|
-- If the component list of a record type is defined by the reserved
|
19596 |
|
|
-- word null and there is no discriminant part, then the record type has
|
19597 |
|
|
-- no components and all records of the type are null records (RM 3.7)
|
19598 |
|
|
-- This procedure is also called to process the extension part of a
|
19599 |
|
|
-- record extension, in which case the current scope may have inherited
|
19600 |
|
|
-- components.
|
19601 |
|
|
|
19602 |
|
|
if No (Def)
|
19603 |
|
|
or else No (Component_List (Def))
|
19604 |
|
|
or else Null_Present (Component_List (Def))
|
19605 |
|
|
then
|
19606 |
|
|
if not Is_Tagged_Type (T) then
|
19607 |
|
|
Check_SPARK_Restriction ("non-tagged record cannot be null", Def);
|
19608 |
|
|
end if;
|
19609 |
|
|
|
19610 |
|
|
else
|
19611 |
|
|
Analyze_Declarations (Component_Items (Component_List (Def)));
|
19612 |
|
|
|
19613 |
|
|
if Present (Variant_Part (Component_List (Def))) then
|
19614 |
|
|
Check_SPARK_Restriction ("variant part is not allowed", Def);
|
19615 |
|
|
Analyze (Variant_Part (Component_List (Def)));
|
19616 |
|
|
end if;
|
19617 |
|
|
end if;
|
19618 |
|
|
|
19619 |
|
|
-- After completing the semantic analysis of the record definition,
|
19620 |
|
|
-- record components, both new and inherited, are accessible. Set their
|
19621 |
|
|
-- kind accordingly. Exclude malformed itypes from illegal declarations,
|
19622 |
|
|
-- whose Ekind may be void.
|
19623 |
|
|
|
19624 |
|
|
Component := First_Entity (Current_Scope);
|
19625 |
|
|
while Present (Component) loop
|
19626 |
|
|
if Ekind (Component) = E_Void
|
19627 |
|
|
and then not Is_Itype (Component)
|
19628 |
|
|
then
|
19629 |
|
|
Set_Ekind (Component, E_Component);
|
19630 |
|
|
Init_Component_Location (Component);
|
19631 |
|
|
end if;
|
19632 |
|
|
|
19633 |
|
|
if Has_Task (Etype (Component)) then
|
19634 |
|
|
Set_Has_Task (T);
|
19635 |
|
|
end if;
|
19636 |
|
|
|
19637 |
|
|
if Ekind (Component) /= E_Component then
|
19638 |
|
|
null;
|
19639 |
|
|
|
19640 |
|
|
-- Do not set Has_Controlled_Component on a class-wide equivalent
|
19641 |
|
|
-- type. See Make_CW_Equivalent_Type.
|
19642 |
|
|
|
19643 |
|
|
elsif not Is_Class_Wide_Equivalent_Type (T)
|
19644 |
|
|
and then (Has_Controlled_Component (Etype (Component))
|
19645 |
|
|
or else (Chars (Component) /= Name_uParent
|
19646 |
|
|
and then Is_Controlled (Etype (Component))))
|
19647 |
|
|
then
|
19648 |
|
|
Set_Has_Controlled_Component (T, True);
|
19649 |
|
|
Final_Storage_Only :=
|
19650 |
|
|
Final_Storage_Only
|
19651 |
|
|
and then Finalize_Storage_Only (Etype (Component));
|
19652 |
|
|
Ctrl_Components := True;
|
19653 |
|
|
end if;
|
19654 |
|
|
|
19655 |
|
|
Next_Entity (Component);
|
19656 |
|
|
end loop;
|
19657 |
|
|
|
19658 |
|
|
-- A Type is Finalize_Storage_Only only if all its controlled components
|
19659 |
|
|
-- are also.
|
19660 |
|
|
|
19661 |
|
|
if Ctrl_Components then
|
19662 |
|
|
Set_Finalize_Storage_Only (T, Final_Storage_Only);
|
19663 |
|
|
end if;
|
19664 |
|
|
|
19665 |
|
|
-- Place reference to end record on the proper entity, which may
|
19666 |
|
|
-- be a partial view.
|
19667 |
|
|
|
19668 |
|
|
if Present (Def) then
|
19669 |
|
|
Process_End_Label (Def, 'e', Prev_T);
|
19670 |
|
|
end if;
|
19671 |
|
|
end Record_Type_Definition;
|
19672 |
|
|
|
19673 |
|
|
------------------------
|
19674 |
|
|
-- Replace_Components --
|
19675 |
|
|
------------------------
|
19676 |
|
|
|
19677 |
|
|
procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
|
19678 |
|
|
function Process (N : Node_Id) return Traverse_Result;
|
19679 |
|
|
|
19680 |
|
|
-------------
|
19681 |
|
|
-- Process --
|
19682 |
|
|
-------------
|
19683 |
|
|
|
19684 |
|
|
function Process (N : Node_Id) return Traverse_Result is
|
19685 |
|
|
Comp : Entity_Id;
|
19686 |
|
|
|
19687 |
|
|
begin
|
19688 |
|
|
if Nkind (N) = N_Discriminant_Specification then
|
19689 |
|
|
Comp := First_Discriminant (Typ);
|
19690 |
|
|
while Present (Comp) loop
|
19691 |
|
|
if Chars (Comp) = Chars (Defining_Identifier (N)) then
|
19692 |
|
|
Set_Defining_Identifier (N, Comp);
|
19693 |
|
|
exit;
|
19694 |
|
|
end if;
|
19695 |
|
|
|
19696 |
|
|
Next_Discriminant (Comp);
|
19697 |
|
|
end loop;
|
19698 |
|
|
|
19699 |
|
|
elsif Nkind (N) = N_Component_Declaration then
|
19700 |
|
|
Comp := First_Component (Typ);
|
19701 |
|
|
while Present (Comp) loop
|
19702 |
|
|
if Chars (Comp) = Chars (Defining_Identifier (N)) then
|
19703 |
|
|
Set_Defining_Identifier (N, Comp);
|
19704 |
|
|
exit;
|
19705 |
|
|
end if;
|
19706 |
|
|
|
19707 |
|
|
Next_Component (Comp);
|
19708 |
|
|
end loop;
|
19709 |
|
|
end if;
|
19710 |
|
|
|
19711 |
|
|
return OK;
|
19712 |
|
|
end Process;
|
19713 |
|
|
|
19714 |
|
|
procedure Replace is new Traverse_Proc (Process);
|
19715 |
|
|
|
19716 |
|
|
-- Start of processing for Replace_Components
|
19717 |
|
|
|
19718 |
|
|
begin
|
19719 |
|
|
Replace (Decl);
|
19720 |
|
|
end Replace_Components;
|
19721 |
|
|
|
19722 |
|
|
-------------------------------
|
19723 |
|
|
-- Set_Completion_Referenced --
|
19724 |
|
|
-------------------------------
|
19725 |
|
|
|
19726 |
|
|
procedure Set_Completion_Referenced (E : Entity_Id) is
|
19727 |
|
|
begin
|
19728 |
|
|
-- If in main unit, mark entity that is a completion as referenced,
|
19729 |
|
|
-- warnings go on the partial view when needed.
|
19730 |
|
|
|
19731 |
|
|
if In_Extended_Main_Source_Unit (E) then
|
19732 |
|
|
Set_Referenced (E);
|
19733 |
|
|
end if;
|
19734 |
|
|
end Set_Completion_Referenced;
|
19735 |
|
|
|
19736 |
|
|
---------------------
|
19737 |
|
|
-- Set_Fixed_Range --
|
19738 |
|
|
---------------------
|
19739 |
|
|
|
19740 |
|
|
-- The range for fixed-point types is complicated by the fact that we
|
19741 |
|
|
-- do not know the exact end points at the time of the declaration. This
|
19742 |
|
|
-- is true for three reasons:
|
19743 |
|
|
|
19744 |
|
|
-- A size clause may affect the fudging of the end-points.
|
19745 |
|
|
-- A small clause may affect the values of the end-points.
|
19746 |
|
|
-- We try to include the end-points if it does not affect the size.
|
19747 |
|
|
|
19748 |
|
|
-- This means that the actual end-points must be established at the
|
19749 |
|
|
-- point when the type is frozen. Meanwhile, we first narrow the range
|
19750 |
|
|
-- as permitted (so that it will fit if necessary in a small specified
|
19751 |
|
|
-- size), and then build a range subtree with these narrowed bounds.
|
19752 |
|
|
-- Set_Fixed_Range constructs the range from real literal values, and
|
19753 |
|
|
-- sets the range as the Scalar_Range of the given fixed-point type entity.
|
19754 |
|
|
|
19755 |
|
|
-- The parent of this range is set to point to the entity so that it is
|
19756 |
|
|
-- properly hooked into the tree (unlike normal Scalar_Range entries for
|
19757 |
|
|
-- other scalar types, which are just pointers to the range in the
|
19758 |
|
|
-- original tree, this would otherwise be an orphan).
|
19759 |
|
|
|
19760 |
|
|
-- The tree is left unanalyzed. When the type is frozen, the processing
|
19761 |
|
|
-- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
|
19762 |
|
|
-- analyzed, and uses this as an indication that it should complete
|
19763 |
|
|
-- work on the range (it will know the final small and size values).
|
19764 |
|
|
|
19765 |
|
|
procedure Set_Fixed_Range
|
19766 |
|
|
(E : Entity_Id;
|
19767 |
|
|
Loc : Source_Ptr;
|
19768 |
|
|
Lo : Ureal;
|
19769 |
|
|
Hi : Ureal)
|
19770 |
|
|
is
|
19771 |
|
|
S : constant Node_Id :=
|
19772 |
|
|
Make_Range (Loc,
|
19773 |
|
|
Low_Bound => Make_Real_Literal (Loc, Lo),
|
19774 |
|
|
High_Bound => Make_Real_Literal (Loc, Hi));
|
19775 |
|
|
begin
|
19776 |
|
|
Set_Scalar_Range (E, S);
|
19777 |
|
|
Set_Parent (S, E);
|
19778 |
|
|
|
19779 |
|
|
-- Before the freeze point, the bounds of a fixed point are universal
|
19780 |
|
|
-- and carry the corresponding type.
|
19781 |
|
|
|
19782 |
|
|
Set_Etype (Low_Bound (S), Universal_Real);
|
19783 |
|
|
Set_Etype (High_Bound (S), Universal_Real);
|
19784 |
|
|
end Set_Fixed_Range;
|
19785 |
|
|
|
19786 |
|
|
----------------------------------
|
19787 |
|
|
-- Set_Scalar_Range_For_Subtype --
|
19788 |
|
|
----------------------------------
|
19789 |
|
|
|
19790 |
|
|
procedure Set_Scalar_Range_For_Subtype
|
19791 |
|
|
(Def_Id : Entity_Id;
|
19792 |
|
|
R : Node_Id;
|
19793 |
|
|
Subt : Entity_Id)
|
19794 |
|
|
is
|
19795 |
|
|
Kind : constant Entity_Kind := Ekind (Def_Id);
|
19796 |
|
|
|
19797 |
|
|
begin
|
19798 |
|
|
-- Defend against previous error
|
19799 |
|
|
|
19800 |
|
|
if Nkind (R) = N_Error then
|
19801 |
|
|
return;
|
19802 |
|
|
end if;
|
19803 |
|
|
|
19804 |
|
|
Set_Scalar_Range (Def_Id, R);
|
19805 |
|
|
|
19806 |
|
|
-- We need to link the range into the tree before resolving it so
|
19807 |
|
|
-- that types that are referenced, including importantly the subtype
|
19808 |
|
|
-- itself, are properly frozen (Freeze_Expression requires that the
|
19809 |
|
|
-- expression be properly linked into the tree). Of course if it is
|
19810 |
|
|
-- already linked in, then we do not disturb the current link.
|
19811 |
|
|
|
19812 |
|
|
if No (Parent (R)) then
|
19813 |
|
|
Set_Parent (R, Def_Id);
|
19814 |
|
|
end if;
|
19815 |
|
|
|
19816 |
|
|
-- Reset the kind of the subtype during analysis of the range, to
|
19817 |
|
|
-- catch possible premature use in the bounds themselves.
|
19818 |
|
|
|
19819 |
|
|
Set_Ekind (Def_Id, E_Void);
|
19820 |
|
|
Process_Range_Expr_In_Decl (R, Subt);
|
19821 |
|
|
Set_Ekind (Def_Id, Kind);
|
19822 |
|
|
end Set_Scalar_Range_For_Subtype;
|
19823 |
|
|
|
19824 |
|
|
--------------------------------------------------------
|
19825 |
|
|
-- Set_Stored_Constraint_From_Discriminant_Constraint --
|
19826 |
|
|
--------------------------------------------------------
|
19827 |
|
|
|
19828 |
|
|
procedure Set_Stored_Constraint_From_Discriminant_Constraint
|
19829 |
|
|
(E : Entity_Id)
|
19830 |
|
|
is
|
19831 |
|
|
begin
|
19832 |
|
|
-- Make sure set if encountered during Expand_To_Stored_Constraint
|
19833 |
|
|
|
19834 |
|
|
Set_Stored_Constraint (E, No_Elist);
|
19835 |
|
|
|
19836 |
|
|
-- Give it the right value
|
19837 |
|
|
|
19838 |
|
|
if Is_Constrained (E) and then Has_Discriminants (E) then
|
19839 |
|
|
Set_Stored_Constraint (E,
|
19840 |
|
|
Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
|
19841 |
|
|
end if;
|
19842 |
|
|
end Set_Stored_Constraint_From_Discriminant_Constraint;
|
19843 |
|
|
|
19844 |
|
|
-------------------------------------
|
19845 |
|
|
-- Signed_Integer_Type_Declaration --
|
19846 |
|
|
-------------------------------------
|
19847 |
|
|
|
19848 |
|
|
procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
|
19849 |
|
|
Implicit_Base : Entity_Id;
|
19850 |
|
|
Base_Typ : Entity_Id;
|
19851 |
|
|
Lo_Val : Uint;
|
19852 |
|
|
Hi_Val : Uint;
|
19853 |
|
|
Errs : Boolean := False;
|
19854 |
|
|
Lo : Node_Id;
|
19855 |
|
|
Hi : Node_Id;
|
19856 |
|
|
|
19857 |
|
|
function Can_Derive_From (E : Entity_Id) return Boolean;
|
19858 |
|
|
-- Determine whether given bounds allow derivation from specified type
|
19859 |
|
|
|
19860 |
|
|
procedure Check_Bound (Expr : Node_Id);
|
19861 |
|
|
-- Check bound to make sure it is integral and static. If not, post
|
19862 |
|
|
-- appropriate error message and set Errs flag
|
19863 |
|
|
|
19864 |
|
|
---------------------
|
19865 |
|
|
-- Can_Derive_From --
|
19866 |
|
|
---------------------
|
19867 |
|
|
|
19868 |
|
|
-- Note we check both bounds against both end values, to deal with
|
19869 |
|
|
-- strange types like ones with a range of 0 .. -12341234.
|
19870 |
|
|
|
19871 |
|
|
function Can_Derive_From (E : Entity_Id) return Boolean is
|
19872 |
|
|
Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
|
19873 |
|
|
Hi : constant Uint := Expr_Value (Type_High_Bound (E));
|
19874 |
|
|
begin
|
19875 |
|
|
return Lo <= Lo_Val and then Lo_Val <= Hi
|
19876 |
|
|
and then
|
19877 |
|
|
Lo <= Hi_Val and then Hi_Val <= Hi;
|
19878 |
|
|
end Can_Derive_From;
|
19879 |
|
|
|
19880 |
|
|
-----------------
|
19881 |
|
|
-- Check_Bound --
|
19882 |
|
|
-----------------
|
19883 |
|
|
|
19884 |
|
|
procedure Check_Bound (Expr : Node_Id) is
|
19885 |
|
|
begin
|
19886 |
|
|
-- If a range constraint is used as an integer type definition, each
|
19887 |
|
|
-- bound of the range must be defined by a static expression of some
|
19888 |
|
|
-- integer type, but the two bounds need not have the same integer
|
19889 |
|
|
-- type (Negative bounds are allowed.) (RM 3.5.4)
|
19890 |
|
|
|
19891 |
|
|
if not Is_Integer_Type (Etype (Expr)) then
|
19892 |
|
|
Error_Msg_N
|
19893 |
|
|
("integer type definition bounds must be of integer type", Expr);
|
19894 |
|
|
Errs := True;
|
19895 |
|
|
|
19896 |
|
|
elsif not Is_OK_Static_Expression (Expr) then
|
19897 |
|
|
Flag_Non_Static_Expr
|
19898 |
|
|
("non-static expression used for integer type bound!", Expr);
|
19899 |
|
|
Errs := True;
|
19900 |
|
|
|
19901 |
|
|
-- The bounds are folded into literals, and we set their type to be
|
19902 |
|
|
-- universal, to avoid typing difficulties: we cannot set the type
|
19903 |
|
|
-- of the literal to the new type, because this would be a forward
|
19904 |
|
|
-- reference for the back end, and if the original type is user-
|
19905 |
|
|
-- defined this can lead to spurious semantic errors (e.g. 2928-003).
|
19906 |
|
|
|
19907 |
|
|
else
|
19908 |
|
|
if Is_Entity_Name (Expr) then
|
19909 |
|
|
Fold_Uint (Expr, Expr_Value (Expr), True);
|
19910 |
|
|
end if;
|
19911 |
|
|
|
19912 |
|
|
Set_Etype (Expr, Universal_Integer);
|
19913 |
|
|
end if;
|
19914 |
|
|
end Check_Bound;
|
19915 |
|
|
|
19916 |
|
|
-- Start of processing for Signed_Integer_Type_Declaration
|
19917 |
|
|
|
19918 |
|
|
begin
|
19919 |
|
|
-- Create an anonymous base type
|
19920 |
|
|
|
19921 |
|
|
Implicit_Base :=
|
19922 |
|
|
Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
|
19923 |
|
|
|
19924 |
|
|
-- Analyze and check the bounds, they can be of any integer type
|
19925 |
|
|
|
19926 |
|
|
Lo := Low_Bound (Def);
|
19927 |
|
|
Hi := High_Bound (Def);
|
19928 |
|
|
|
19929 |
|
|
-- Arbitrarily use Integer as the type if either bound had an error
|
19930 |
|
|
|
19931 |
|
|
if Hi = Error or else Lo = Error then
|
19932 |
|
|
Base_Typ := Any_Integer;
|
19933 |
|
|
Set_Error_Posted (T, True);
|
19934 |
|
|
|
19935 |
|
|
-- Here both bounds are OK expressions
|
19936 |
|
|
|
19937 |
|
|
else
|
19938 |
|
|
Analyze_And_Resolve (Lo, Any_Integer);
|
19939 |
|
|
Analyze_And_Resolve (Hi, Any_Integer);
|
19940 |
|
|
|
19941 |
|
|
Check_Bound (Lo);
|
19942 |
|
|
Check_Bound (Hi);
|
19943 |
|
|
|
19944 |
|
|
if Errs then
|
19945 |
|
|
Hi := Type_High_Bound (Standard_Long_Long_Integer);
|
19946 |
|
|
Lo := Type_Low_Bound (Standard_Long_Long_Integer);
|
19947 |
|
|
end if;
|
19948 |
|
|
|
19949 |
|
|
-- Find type to derive from
|
19950 |
|
|
|
19951 |
|
|
Lo_Val := Expr_Value (Lo);
|
19952 |
|
|
Hi_Val := Expr_Value (Hi);
|
19953 |
|
|
|
19954 |
|
|
if Can_Derive_From (Standard_Short_Short_Integer) then
|
19955 |
|
|
Base_Typ := Base_Type (Standard_Short_Short_Integer);
|
19956 |
|
|
|
19957 |
|
|
elsif Can_Derive_From (Standard_Short_Integer) then
|
19958 |
|
|
Base_Typ := Base_Type (Standard_Short_Integer);
|
19959 |
|
|
|
19960 |
|
|
elsif Can_Derive_From (Standard_Integer) then
|
19961 |
|
|
Base_Typ := Base_Type (Standard_Integer);
|
19962 |
|
|
|
19963 |
|
|
elsif Can_Derive_From (Standard_Long_Integer) then
|
19964 |
|
|
Base_Typ := Base_Type (Standard_Long_Integer);
|
19965 |
|
|
|
19966 |
|
|
elsif Can_Derive_From (Standard_Long_Long_Integer) then
|
19967 |
|
|
Base_Typ := Base_Type (Standard_Long_Long_Integer);
|
19968 |
|
|
|
19969 |
|
|
else
|
19970 |
|
|
Base_Typ := Base_Type (Standard_Long_Long_Integer);
|
19971 |
|
|
Error_Msg_N ("integer type definition bounds out of range", Def);
|
19972 |
|
|
Hi := Type_High_Bound (Standard_Long_Long_Integer);
|
19973 |
|
|
Lo := Type_Low_Bound (Standard_Long_Long_Integer);
|
19974 |
|
|
end if;
|
19975 |
|
|
end if;
|
19976 |
|
|
|
19977 |
|
|
-- Complete both implicit base and declared first subtype entities
|
19978 |
|
|
|
19979 |
|
|
Set_Etype (Implicit_Base, Base_Typ);
|
19980 |
|
|
Set_Size_Info (Implicit_Base, (Base_Typ));
|
19981 |
|
|
Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
|
19982 |
|
|
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
|
19983 |
|
|
|
19984 |
|
|
Set_Ekind (T, E_Signed_Integer_Subtype);
|
19985 |
|
|
Set_Etype (T, Implicit_Base);
|
19986 |
|
|
|
19987 |
|
|
-- In formal verification mode, restrict the base type's range to the
|
19988 |
|
|
-- minimum allowed by RM 3.5.4, namely the smallest symmetric range
|
19989 |
|
|
-- around zero with a possible extra negative value that contains the
|
19990 |
|
|
-- subtype range. Keep Size, RM_Size and First_Rep_Item info, which
|
19991 |
|
|
-- should not be relied upon in formal verification.
|
19992 |
|
|
|
19993 |
|
|
if Strict_Alfa_Mode then
|
19994 |
|
|
declare
|
19995 |
|
|
Sym_Hi_Val : Uint;
|
19996 |
|
|
Sym_Lo_Val : Uint;
|
19997 |
|
|
Dloc : constant Source_Ptr := Sloc (Def);
|
19998 |
|
|
Lbound : Node_Id;
|
19999 |
|
|
Ubound : Node_Id;
|
20000 |
|
|
Bounds : Node_Id;
|
20001 |
|
|
|
20002 |
|
|
begin
|
20003 |
|
|
-- If the subtype range is empty, the smallest base type range
|
20004 |
|
|
-- is the symmetric range around zero containing Lo_Val and
|
20005 |
|
|
-- Hi_Val.
|
20006 |
|
|
|
20007 |
|
|
if UI_Gt (Lo_Val, Hi_Val) then
|
20008 |
|
|
Sym_Hi_Val := UI_Max (UI_Abs (Lo_Val), UI_Abs (Hi_Val));
|
20009 |
|
|
Sym_Lo_Val := UI_Negate (Sym_Hi_Val);
|
20010 |
|
|
|
20011 |
|
|
-- Otherwise, if the subtype range is not empty and Hi_Val has
|
20012 |
|
|
-- the largest absolute value, Hi_Val is non negative and the
|
20013 |
|
|
-- smallest base type range is the symmetric range around zero
|
20014 |
|
|
-- containing Hi_Val.
|
20015 |
|
|
|
20016 |
|
|
elsif UI_Le (UI_Abs (Lo_Val), UI_Abs (Hi_Val)) then
|
20017 |
|
|
Sym_Hi_Val := Hi_Val;
|
20018 |
|
|
Sym_Lo_Val := UI_Negate (Hi_Val);
|
20019 |
|
|
|
20020 |
|
|
-- Otherwise, the subtype range is not empty, Lo_Val has the
|
20021 |
|
|
-- strictly largest absolute value, Lo_Val is negative and the
|
20022 |
|
|
-- smallest base type range is the symmetric range around zero
|
20023 |
|
|
-- with an extra negative value Lo_Val.
|
20024 |
|
|
|
20025 |
|
|
else
|
20026 |
|
|
Sym_Lo_Val := Lo_Val;
|
20027 |
|
|
Sym_Hi_Val := UI_Sub (UI_Negate (Lo_Val), Uint_1);
|
20028 |
|
|
end if;
|
20029 |
|
|
|
20030 |
|
|
Lbound := Make_Integer_Literal (Dloc, Sym_Lo_Val);
|
20031 |
|
|
Ubound := Make_Integer_Literal (Dloc, Sym_Hi_Val);
|
20032 |
|
|
Set_Is_Static_Expression (Lbound);
|
20033 |
|
|
Set_Is_Static_Expression (Ubound);
|
20034 |
|
|
Analyze_And_Resolve (Lbound, Any_Integer);
|
20035 |
|
|
Analyze_And_Resolve (Ubound, Any_Integer);
|
20036 |
|
|
|
20037 |
|
|
Bounds := Make_Range (Dloc, Lbound, Ubound);
|
20038 |
|
|
Set_Etype (Bounds, Base_Typ);
|
20039 |
|
|
|
20040 |
|
|
Set_Scalar_Range (Implicit_Base, Bounds);
|
20041 |
|
|
end;
|
20042 |
|
|
|
20043 |
|
|
else
|
20044 |
|
|
Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
|
20045 |
|
|
end if;
|
20046 |
|
|
|
20047 |
|
|
Set_Size_Info (T, (Implicit_Base));
|
20048 |
|
|
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
|
20049 |
|
|
Set_Scalar_Range (T, Def);
|
20050 |
|
|
Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
|
20051 |
|
|
Set_Is_Constrained (T);
|
20052 |
|
|
end Signed_Integer_Type_Declaration;
|
20053 |
|
|
|
20054 |
|
|
end Sem_Ch3;
|