1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- S E M _ C H 5 --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Aspects; use Aspects;
|
27 |
|
|
with Atree; use Atree;
|
28 |
|
|
with Checks; use Checks;
|
29 |
|
|
with Einfo; use Einfo;
|
30 |
|
|
with Errout; use Errout;
|
31 |
|
|
with Expander; use Expander;
|
32 |
|
|
with Exp_Ch6; use Exp_Ch6;
|
33 |
|
|
with Exp_Util; use Exp_Util;
|
34 |
|
|
with Freeze; use Freeze;
|
35 |
|
|
with Lib; use Lib;
|
36 |
|
|
with Lib.Xref; use Lib.Xref;
|
37 |
|
|
with Namet; use Namet;
|
38 |
|
|
with Nlists; use Nlists;
|
39 |
|
|
with Nmake; use Nmake;
|
40 |
|
|
with Opt; use Opt;
|
41 |
|
|
with Restrict; use Restrict;
|
42 |
|
|
with Rident; use Rident;
|
43 |
|
|
with Rtsfind; use Rtsfind;
|
44 |
|
|
with Sem; use Sem;
|
45 |
|
|
with Sem_Aux; use Sem_Aux;
|
46 |
|
|
with Sem_Case; use Sem_Case;
|
47 |
|
|
with Sem_Ch3; use Sem_Ch3;
|
48 |
|
|
with Sem_Ch6; use Sem_Ch6;
|
49 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
50 |
|
|
with Sem_Dim; use Sem_Dim;
|
51 |
|
|
with Sem_Disp; use Sem_Disp;
|
52 |
|
|
with Sem_Elab; use Sem_Elab;
|
53 |
|
|
with Sem_Eval; use Sem_Eval;
|
54 |
|
|
with Sem_Res; use Sem_Res;
|
55 |
|
|
with Sem_Type; use Sem_Type;
|
56 |
|
|
with Sem_Util; use Sem_Util;
|
57 |
|
|
with Sem_Warn; use Sem_Warn;
|
58 |
|
|
with Snames; use Snames;
|
59 |
|
|
with Stand; use Stand;
|
60 |
|
|
with Sinfo; use Sinfo;
|
61 |
|
|
with Targparm; use Targparm;
|
62 |
|
|
with Tbuild; use Tbuild;
|
63 |
|
|
with Uintp; use Uintp;
|
64 |
|
|
|
65 |
|
|
package body Sem_Ch5 is
|
66 |
|
|
|
67 |
|
|
Unblocked_Exit_Count : Nat := 0;
|
68 |
|
|
-- This variable is used when processing if statements, case statements,
|
69 |
|
|
-- and block statements. It counts the number of exit points that are not
|
70 |
|
|
-- blocked by unconditional transfer instructions: for IF and CASE, these
|
71 |
|
|
-- are the branches of the conditional; for a block, they are the statement
|
72 |
|
|
-- sequence of the block, and the statement sequences of any exception
|
73 |
|
|
-- handlers that are part of the block. When processing is complete, if
|
74 |
|
|
-- this count is zero, it means that control cannot fall through the IF,
|
75 |
|
|
-- CASE or block statement. This is used for the generation of warning
|
76 |
|
|
-- messages. This variable is recursively saved on entry to processing the
|
77 |
|
|
-- construct, and restored on exit.
|
78 |
|
|
|
79 |
|
|
procedure Pre_Analyze_Range (R_Copy : Node_Id);
|
80 |
|
|
-- Determine expected type of range or domain of iteration of Ada 2012
|
81 |
|
|
-- loop by analyzing separate copy. Do the analysis and resolution of the
|
82 |
|
|
-- copy of the bound(s) with expansion disabled, to prevent the generation
|
83 |
|
|
-- of finalization actions. This prevents memory leaks when the bounds
|
84 |
|
|
-- contain calls to functions returning controlled arrays or when the
|
85 |
|
|
-- domain of iteration is a container.
|
86 |
|
|
|
87 |
|
|
------------------------
|
88 |
|
|
-- Analyze_Assignment --
|
89 |
|
|
------------------------
|
90 |
|
|
|
91 |
|
|
procedure Analyze_Assignment (N : Node_Id) is
|
92 |
|
|
Lhs : constant Node_Id := Name (N);
|
93 |
|
|
Rhs : constant Node_Id := Expression (N);
|
94 |
|
|
T1 : Entity_Id;
|
95 |
|
|
T2 : Entity_Id;
|
96 |
|
|
Decl : Node_Id;
|
97 |
|
|
|
98 |
|
|
procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
|
99 |
|
|
-- N is the node for the left hand side of an assignment, and it is not
|
100 |
|
|
-- a variable. This routine issues an appropriate diagnostic.
|
101 |
|
|
|
102 |
|
|
procedure Kill_Lhs;
|
103 |
|
|
-- This is called to kill current value settings of a simple variable
|
104 |
|
|
-- on the left hand side. We call it if we find any error in analyzing
|
105 |
|
|
-- the assignment, and at the end of processing before setting any new
|
106 |
|
|
-- current values in place.
|
107 |
|
|
|
108 |
|
|
procedure Set_Assignment_Type
|
109 |
|
|
(Opnd : Node_Id;
|
110 |
|
|
Opnd_Type : in out Entity_Id);
|
111 |
|
|
-- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
|
112 |
|
|
-- nominal subtype. This procedure is used to deal with cases where the
|
113 |
|
|
-- nominal subtype must be replaced by the actual subtype.
|
114 |
|
|
|
115 |
|
|
-------------------------------
|
116 |
|
|
-- Diagnose_Non_Variable_Lhs --
|
117 |
|
|
-------------------------------
|
118 |
|
|
|
119 |
|
|
procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
|
120 |
|
|
begin
|
121 |
|
|
-- Not worth posting another error if left hand side already flagged
|
122 |
|
|
-- as being illegal in some respect.
|
123 |
|
|
|
124 |
|
|
if Error_Posted (N) then
|
125 |
|
|
return;
|
126 |
|
|
|
127 |
|
|
-- Some special bad cases of entity names
|
128 |
|
|
|
129 |
|
|
elsif Is_Entity_Name (N) then
|
130 |
|
|
declare
|
131 |
|
|
Ent : constant Entity_Id := Entity (N);
|
132 |
|
|
|
133 |
|
|
begin
|
134 |
|
|
if Ekind (Ent) = E_In_Parameter then
|
135 |
|
|
Error_Msg_N
|
136 |
|
|
("assignment to IN mode parameter not allowed", N);
|
137 |
|
|
|
138 |
|
|
-- Renamings of protected private components are turned into
|
139 |
|
|
-- constants when compiling a protected function. In the case
|
140 |
|
|
-- of single protected types, the private component appears
|
141 |
|
|
-- directly.
|
142 |
|
|
|
143 |
|
|
elsif (Is_Prival (Ent)
|
144 |
|
|
and then
|
145 |
|
|
(Ekind (Current_Scope) = E_Function
|
146 |
|
|
or else Ekind (Enclosing_Dynamic_Scope
|
147 |
|
|
(Current_Scope)) = E_Function))
|
148 |
|
|
or else
|
149 |
|
|
(Ekind (Ent) = E_Component
|
150 |
|
|
and then Is_Protected_Type (Scope (Ent)))
|
151 |
|
|
then
|
152 |
|
|
Error_Msg_N
|
153 |
|
|
("protected function cannot modify protected object", N);
|
154 |
|
|
|
155 |
|
|
elsif Ekind (Ent) = E_Loop_Parameter then
|
156 |
|
|
Error_Msg_N
|
157 |
|
|
("assignment to loop parameter not allowed", N);
|
158 |
|
|
|
159 |
|
|
else
|
160 |
|
|
Error_Msg_N
|
161 |
|
|
("left hand side of assignment must be a variable", N);
|
162 |
|
|
end if;
|
163 |
|
|
end;
|
164 |
|
|
|
165 |
|
|
-- For indexed components or selected components, test prefix
|
166 |
|
|
|
167 |
|
|
elsif Nkind (N) = N_Indexed_Component then
|
168 |
|
|
Diagnose_Non_Variable_Lhs (Prefix (N));
|
169 |
|
|
|
170 |
|
|
-- Another special case for assignment to discriminant
|
171 |
|
|
|
172 |
|
|
elsif Nkind (N) = N_Selected_Component then
|
173 |
|
|
if Present (Entity (Selector_Name (N)))
|
174 |
|
|
and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
|
175 |
|
|
then
|
176 |
|
|
Error_Msg_N
|
177 |
|
|
("assignment to discriminant not allowed", N);
|
178 |
|
|
else
|
179 |
|
|
Diagnose_Non_Variable_Lhs (Prefix (N));
|
180 |
|
|
end if;
|
181 |
|
|
|
182 |
|
|
else
|
183 |
|
|
-- If we fall through, we have no special message to issue!
|
184 |
|
|
|
185 |
|
|
Error_Msg_N ("left hand side of assignment must be a variable", N);
|
186 |
|
|
end if;
|
187 |
|
|
end Diagnose_Non_Variable_Lhs;
|
188 |
|
|
|
189 |
|
|
--------------
|
190 |
|
|
-- Kill_LHS --
|
191 |
|
|
--------------
|
192 |
|
|
|
193 |
|
|
procedure Kill_Lhs is
|
194 |
|
|
begin
|
195 |
|
|
if Is_Entity_Name (Lhs) then
|
196 |
|
|
declare
|
197 |
|
|
Ent : constant Entity_Id := Entity (Lhs);
|
198 |
|
|
begin
|
199 |
|
|
if Present (Ent) then
|
200 |
|
|
Kill_Current_Values (Ent);
|
201 |
|
|
end if;
|
202 |
|
|
end;
|
203 |
|
|
end if;
|
204 |
|
|
end Kill_Lhs;
|
205 |
|
|
|
206 |
|
|
-------------------------
|
207 |
|
|
-- Set_Assignment_Type --
|
208 |
|
|
-------------------------
|
209 |
|
|
|
210 |
|
|
procedure Set_Assignment_Type
|
211 |
|
|
(Opnd : Node_Id;
|
212 |
|
|
Opnd_Type : in out Entity_Id)
|
213 |
|
|
is
|
214 |
|
|
begin
|
215 |
|
|
Require_Entity (Opnd);
|
216 |
|
|
|
217 |
|
|
-- If the assignment operand is an in-out or out parameter, then we
|
218 |
|
|
-- get the actual subtype (needed for the unconstrained case). If the
|
219 |
|
|
-- operand is the actual in an entry declaration, then within the
|
220 |
|
|
-- accept statement it is replaced with a local renaming, which may
|
221 |
|
|
-- also have an actual subtype.
|
222 |
|
|
|
223 |
|
|
if Is_Entity_Name (Opnd)
|
224 |
|
|
and then (Ekind (Entity (Opnd)) = E_Out_Parameter
|
225 |
|
|
or else Ekind (Entity (Opnd)) =
|
226 |
|
|
E_In_Out_Parameter
|
227 |
|
|
or else Ekind (Entity (Opnd)) =
|
228 |
|
|
E_Generic_In_Out_Parameter
|
229 |
|
|
or else
|
230 |
|
|
(Ekind (Entity (Opnd)) = E_Variable
|
231 |
|
|
and then Nkind (Parent (Entity (Opnd))) =
|
232 |
|
|
N_Object_Renaming_Declaration
|
233 |
|
|
and then Nkind (Parent (Parent (Entity (Opnd)))) =
|
234 |
|
|
N_Accept_Statement))
|
235 |
|
|
then
|
236 |
|
|
Opnd_Type := Get_Actual_Subtype (Opnd);
|
237 |
|
|
|
238 |
|
|
-- If assignment operand is a component reference, then we get the
|
239 |
|
|
-- actual subtype of the component for the unconstrained case.
|
240 |
|
|
|
241 |
|
|
elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
|
242 |
|
|
and then not Is_Unchecked_Union (Opnd_Type)
|
243 |
|
|
then
|
244 |
|
|
Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
|
245 |
|
|
|
246 |
|
|
if Present (Decl) then
|
247 |
|
|
Insert_Action (N, Decl);
|
248 |
|
|
Mark_Rewrite_Insertion (Decl);
|
249 |
|
|
Analyze (Decl);
|
250 |
|
|
Opnd_Type := Defining_Identifier (Decl);
|
251 |
|
|
Set_Etype (Opnd, Opnd_Type);
|
252 |
|
|
Freeze_Itype (Opnd_Type, N);
|
253 |
|
|
|
254 |
|
|
elsif Is_Constrained (Etype (Opnd)) then
|
255 |
|
|
Opnd_Type := Etype (Opnd);
|
256 |
|
|
end if;
|
257 |
|
|
|
258 |
|
|
-- For slice, use the constrained subtype created for the slice
|
259 |
|
|
|
260 |
|
|
elsif Nkind (Opnd) = N_Slice then
|
261 |
|
|
Opnd_Type := Etype (Opnd);
|
262 |
|
|
end if;
|
263 |
|
|
end Set_Assignment_Type;
|
264 |
|
|
|
265 |
|
|
-- Start of processing for Analyze_Assignment
|
266 |
|
|
|
267 |
|
|
begin
|
268 |
|
|
Mark_Coextensions (N, Rhs);
|
269 |
|
|
|
270 |
|
|
Analyze (Rhs);
|
271 |
|
|
Analyze (Lhs);
|
272 |
|
|
|
273 |
|
|
-- Ensure that we never do an assignment on a variable marked as
|
274 |
|
|
-- as Safe_To_Reevaluate.
|
275 |
|
|
|
276 |
|
|
pragma Assert (not Is_Entity_Name (Lhs)
|
277 |
|
|
or else Ekind (Entity (Lhs)) /= E_Variable
|
278 |
|
|
or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
|
279 |
|
|
|
280 |
|
|
-- Start type analysis for assignment
|
281 |
|
|
|
282 |
|
|
T1 := Etype (Lhs);
|
283 |
|
|
|
284 |
|
|
-- In the most general case, both Lhs and Rhs can be overloaded, and we
|
285 |
|
|
-- must compute the intersection of the possible types on each side.
|
286 |
|
|
|
287 |
|
|
if Is_Overloaded (Lhs) then
|
288 |
|
|
declare
|
289 |
|
|
I : Interp_Index;
|
290 |
|
|
It : Interp;
|
291 |
|
|
|
292 |
|
|
begin
|
293 |
|
|
T1 := Any_Type;
|
294 |
|
|
Get_First_Interp (Lhs, I, It);
|
295 |
|
|
|
296 |
|
|
while Present (It.Typ) loop
|
297 |
|
|
if Has_Compatible_Type (Rhs, It.Typ) then
|
298 |
|
|
if T1 /= Any_Type then
|
299 |
|
|
|
300 |
|
|
-- An explicit dereference is overloaded if the prefix
|
301 |
|
|
-- is. Try to remove the ambiguity on the prefix, the
|
302 |
|
|
-- error will be posted there if the ambiguity is real.
|
303 |
|
|
|
304 |
|
|
if Nkind (Lhs) = N_Explicit_Dereference then
|
305 |
|
|
declare
|
306 |
|
|
PI : Interp_Index;
|
307 |
|
|
PI1 : Interp_Index := 0;
|
308 |
|
|
PIt : Interp;
|
309 |
|
|
Found : Boolean;
|
310 |
|
|
|
311 |
|
|
begin
|
312 |
|
|
Found := False;
|
313 |
|
|
Get_First_Interp (Prefix (Lhs), PI, PIt);
|
314 |
|
|
|
315 |
|
|
while Present (PIt.Typ) loop
|
316 |
|
|
if Is_Access_Type (PIt.Typ)
|
317 |
|
|
and then Has_Compatible_Type
|
318 |
|
|
(Rhs, Designated_Type (PIt.Typ))
|
319 |
|
|
then
|
320 |
|
|
if Found then
|
321 |
|
|
PIt :=
|
322 |
|
|
Disambiguate (Prefix (Lhs),
|
323 |
|
|
PI1, PI, Any_Type);
|
324 |
|
|
|
325 |
|
|
if PIt = No_Interp then
|
326 |
|
|
Error_Msg_N
|
327 |
|
|
("ambiguous left-hand side"
|
328 |
|
|
& " in assignment", Lhs);
|
329 |
|
|
exit;
|
330 |
|
|
else
|
331 |
|
|
Resolve (Prefix (Lhs), PIt.Typ);
|
332 |
|
|
end if;
|
333 |
|
|
|
334 |
|
|
exit;
|
335 |
|
|
else
|
336 |
|
|
Found := True;
|
337 |
|
|
PI1 := PI;
|
338 |
|
|
end if;
|
339 |
|
|
end if;
|
340 |
|
|
|
341 |
|
|
Get_Next_Interp (PI, PIt);
|
342 |
|
|
end loop;
|
343 |
|
|
end;
|
344 |
|
|
|
345 |
|
|
else
|
346 |
|
|
Error_Msg_N
|
347 |
|
|
("ambiguous left-hand side in assignment", Lhs);
|
348 |
|
|
exit;
|
349 |
|
|
end if;
|
350 |
|
|
else
|
351 |
|
|
T1 := It.Typ;
|
352 |
|
|
end if;
|
353 |
|
|
end if;
|
354 |
|
|
|
355 |
|
|
Get_Next_Interp (I, It);
|
356 |
|
|
end loop;
|
357 |
|
|
end;
|
358 |
|
|
|
359 |
|
|
if T1 = Any_Type then
|
360 |
|
|
Error_Msg_N
|
361 |
|
|
("no valid types for left-hand side for assignment", Lhs);
|
362 |
|
|
Kill_Lhs;
|
363 |
|
|
return;
|
364 |
|
|
end if;
|
365 |
|
|
end if;
|
366 |
|
|
|
367 |
|
|
-- The resulting assignment type is T1, so now we will resolve the left
|
368 |
|
|
-- hand side of the assignment using this determined type.
|
369 |
|
|
|
370 |
|
|
Resolve (Lhs, T1);
|
371 |
|
|
|
372 |
|
|
-- Cases where Lhs is not a variable
|
373 |
|
|
|
374 |
|
|
if not Is_Variable (Lhs) then
|
375 |
|
|
|
376 |
|
|
-- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
|
377 |
|
|
-- protected object.
|
378 |
|
|
|
379 |
|
|
declare
|
380 |
|
|
Ent : Entity_Id;
|
381 |
|
|
S : Entity_Id;
|
382 |
|
|
|
383 |
|
|
begin
|
384 |
|
|
if Ada_Version >= Ada_2005 then
|
385 |
|
|
|
386 |
|
|
-- Handle chains of renamings
|
387 |
|
|
|
388 |
|
|
Ent := Lhs;
|
389 |
|
|
while Nkind (Ent) in N_Has_Entity
|
390 |
|
|
and then Present (Entity (Ent))
|
391 |
|
|
and then Present (Renamed_Object (Entity (Ent)))
|
392 |
|
|
loop
|
393 |
|
|
Ent := Renamed_Object (Entity (Ent));
|
394 |
|
|
end loop;
|
395 |
|
|
|
396 |
|
|
if (Nkind (Ent) = N_Attribute_Reference
|
397 |
|
|
and then Attribute_Name (Ent) = Name_Priority)
|
398 |
|
|
|
399 |
|
|
-- Renamings of the attribute Priority applied to protected
|
400 |
|
|
-- objects have been previously expanded into calls to the
|
401 |
|
|
-- Get_Ceiling run-time subprogram.
|
402 |
|
|
|
403 |
|
|
or else
|
404 |
|
|
(Nkind (Ent) = N_Function_Call
|
405 |
|
|
and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
|
406 |
|
|
or else
|
407 |
|
|
Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
|
408 |
|
|
then
|
409 |
|
|
-- The enclosing subprogram cannot be a protected function
|
410 |
|
|
|
411 |
|
|
S := Current_Scope;
|
412 |
|
|
while not (Is_Subprogram (S)
|
413 |
|
|
and then Convention (S) = Convention_Protected)
|
414 |
|
|
and then S /= Standard_Standard
|
415 |
|
|
loop
|
416 |
|
|
S := Scope (S);
|
417 |
|
|
end loop;
|
418 |
|
|
|
419 |
|
|
if Ekind (S) = E_Function
|
420 |
|
|
and then Convention (S) = Convention_Protected
|
421 |
|
|
then
|
422 |
|
|
Error_Msg_N
|
423 |
|
|
("protected function cannot modify protected object",
|
424 |
|
|
Lhs);
|
425 |
|
|
end if;
|
426 |
|
|
|
427 |
|
|
-- Changes of the ceiling priority of the protected object
|
428 |
|
|
-- are only effective if the Ceiling_Locking policy is in
|
429 |
|
|
-- effect (AARM D.5.2 (5/2)).
|
430 |
|
|
|
431 |
|
|
if Locking_Policy /= 'C' then
|
432 |
|
|
Error_Msg_N ("assignment to the attribute PRIORITY has " &
|
433 |
|
|
"no effect?", Lhs);
|
434 |
|
|
Error_Msg_N ("\since no Locking_Policy has been " &
|
435 |
|
|
"specified", Lhs);
|
436 |
|
|
end if;
|
437 |
|
|
|
438 |
|
|
return;
|
439 |
|
|
end if;
|
440 |
|
|
end if;
|
441 |
|
|
end;
|
442 |
|
|
|
443 |
|
|
Diagnose_Non_Variable_Lhs (Lhs);
|
444 |
|
|
return;
|
445 |
|
|
|
446 |
|
|
-- Error of assigning to limited type. We do however allow this in
|
447 |
|
|
-- certain cases where the front end generates the assignments.
|
448 |
|
|
|
449 |
|
|
elsif Is_Limited_Type (T1)
|
450 |
|
|
and then not Assignment_OK (Lhs)
|
451 |
|
|
and then not Assignment_OK (Original_Node (Lhs))
|
452 |
|
|
and then not Is_Value_Type (T1)
|
453 |
|
|
then
|
454 |
|
|
-- CPP constructors can only be called in declarations
|
455 |
|
|
|
456 |
|
|
if Is_CPP_Constructor_Call (Rhs) then
|
457 |
|
|
Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
|
458 |
|
|
else
|
459 |
|
|
Error_Msg_N
|
460 |
|
|
("left hand of assignment must not be limited type", Lhs);
|
461 |
|
|
Explain_Limited_Type (T1, Lhs);
|
462 |
|
|
end if;
|
463 |
|
|
return;
|
464 |
|
|
|
465 |
|
|
-- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
|
466 |
|
|
-- abstract. This is only checked when the assignment Comes_From_Source,
|
467 |
|
|
-- because in some cases the expander generates such assignments (such
|
468 |
|
|
-- in the _assign operation for an abstract type).
|
469 |
|
|
|
470 |
|
|
elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
|
471 |
|
|
Error_Msg_N
|
472 |
|
|
("target of assignment operation must not be abstract", Lhs);
|
473 |
|
|
end if;
|
474 |
|
|
|
475 |
|
|
-- Resolution may have updated the subtype, in case the left-hand side
|
476 |
|
|
-- is a private protected component. Use the correct subtype to avoid
|
477 |
|
|
-- scoping issues in the back-end.
|
478 |
|
|
|
479 |
|
|
T1 := Etype (Lhs);
|
480 |
|
|
|
481 |
|
|
-- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
|
482 |
|
|
-- type. For example:
|
483 |
|
|
|
484 |
|
|
-- limited with P;
|
485 |
|
|
-- package Pkg is
|
486 |
|
|
-- type Acc is access P.T;
|
487 |
|
|
-- end Pkg;
|
488 |
|
|
|
489 |
|
|
-- with Pkg; use Acc;
|
490 |
|
|
-- procedure Example is
|
491 |
|
|
-- A, B : Acc;
|
492 |
|
|
-- begin
|
493 |
|
|
-- A.all := B.all; -- ERROR
|
494 |
|
|
-- end Example;
|
495 |
|
|
|
496 |
|
|
if Nkind (Lhs) = N_Explicit_Dereference
|
497 |
|
|
and then Ekind (T1) = E_Incomplete_Type
|
498 |
|
|
then
|
499 |
|
|
Error_Msg_N ("invalid use of incomplete type", Lhs);
|
500 |
|
|
Kill_Lhs;
|
501 |
|
|
return;
|
502 |
|
|
end if;
|
503 |
|
|
|
504 |
|
|
-- Now we can complete the resolution of the right hand side
|
505 |
|
|
|
506 |
|
|
Set_Assignment_Type (Lhs, T1);
|
507 |
|
|
Resolve (Rhs, T1);
|
508 |
|
|
|
509 |
|
|
-- This is the point at which we check for an unset reference
|
510 |
|
|
|
511 |
|
|
Check_Unset_Reference (Rhs);
|
512 |
|
|
Check_Unprotected_Access (Lhs, Rhs);
|
513 |
|
|
|
514 |
|
|
-- Remaining steps are skipped if Rhs was syntactically in error
|
515 |
|
|
|
516 |
|
|
if Rhs = Error then
|
517 |
|
|
Kill_Lhs;
|
518 |
|
|
return;
|
519 |
|
|
end if;
|
520 |
|
|
|
521 |
|
|
T2 := Etype (Rhs);
|
522 |
|
|
|
523 |
|
|
if not Covers (T1, T2) then
|
524 |
|
|
Wrong_Type (Rhs, Etype (Lhs));
|
525 |
|
|
Kill_Lhs;
|
526 |
|
|
return;
|
527 |
|
|
end if;
|
528 |
|
|
|
529 |
|
|
-- Ada 2005 (AI-326): In case of explicit dereference of incomplete
|
530 |
|
|
-- types, use the non-limited view if available
|
531 |
|
|
|
532 |
|
|
if Nkind (Rhs) = N_Explicit_Dereference
|
533 |
|
|
and then Ekind (T2) = E_Incomplete_Type
|
534 |
|
|
and then Is_Tagged_Type (T2)
|
535 |
|
|
and then Present (Non_Limited_View (T2))
|
536 |
|
|
then
|
537 |
|
|
T2 := Non_Limited_View (T2);
|
538 |
|
|
end if;
|
539 |
|
|
|
540 |
|
|
Set_Assignment_Type (Rhs, T2);
|
541 |
|
|
|
542 |
|
|
if Total_Errors_Detected /= 0 then
|
543 |
|
|
if No (T1) then
|
544 |
|
|
T1 := Any_Type;
|
545 |
|
|
end if;
|
546 |
|
|
|
547 |
|
|
if No (T2) then
|
548 |
|
|
T2 := Any_Type;
|
549 |
|
|
end if;
|
550 |
|
|
end if;
|
551 |
|
|
|
552 |
|
|
if T1 = Any_Type or else T2 = Any_Type then
|
553 |
|
|
Kill_Lhs;
|
554 |
|
|
return;
|
555 |
|
|
end if;
|
556 |
|
|
|
557 |
|
|
-- If the rhs is class-wide or dynamically tagged, then require the lhs
|
558 |
|
|
-- to be class-wide. The case where the rhs is a dynamically tagged call
|
559 |
|
|
-- to a dispatching operation with a controlling access result is
|
560 |
|
|
-- excluded from this check, since the target has an access type (and
|
561 |
|
|
-- no tag propagation occurs in that case).
|
562 |
|
|
|
563 |
|
|
if (Is_Class_Wide_Type (T2)
|
564 |
|
|
or else (Is_Dynamically_Tagged (Rhs)
|
565 |
|
|
and then not Is_Access_Type (T1)))
|
566 |
|
|
and then not Is_Class_Wide_Type (T1)
|
567 |
|
|
then
|
568 |
|
|
Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
|
569 |
|
|
|
570 |
|
|
elsif Is_Class_Wide_Type (T1)
|
571 |
|
|
and then not Is_Class_Wide_Type (T2)
|
572 |
|
|
and then not Is_Tag_Indeterminate (Rhs)
|
573 |
|
|
and then not Is_Dynamically_Tagged (Rhs)
|
574 |
|
|
then
|
575 |
|
|
Error_Msg_N ("dynamically tagged expression required!", Rhs);
|
576 |
|
|
end if;
|
577 |
|
|
|
578 |
|
|
-- Propagate the tag from a class-wide target to the rhs when the rhs
|
579 |
|
|
-- is a tag-indeterminate call.
|
580 |
|
|
|
581 |
|
|
if Is_Tag_Indeterminate (Rhs) then
|
582 |
|
|
if Is_Class_Wide_Type (T1) then
|
583 |
|
|
Propagate_Tag (Lhs, Rhs);
|
584 |
|
|
|
585 |
|
|
elsif Nkind (Rhs) = N_Function_Call
|
586 |
|
|
and then Is_Entity_Name (Name (Rhs))
|
587 |
|
|
and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
|
588 |
|
|
then
|
589 |
|
|
Error_Msg_N
|
590 |
|
|
("call to abstract function must be dispatching", Name (Rhs));
|
591 |
|
|
|
592 |
|
|
elsif Nkind (Rhs) = N_Qualified_Expression
|
593 |
|
|
and then Nkind (Expression (Rhs)) = N_Function_Call
|
594 |
|
|
and then Is_Entity_Name (Name (Expression (Rhs)))
|
595 |
|
|
and then
|
596 |
|
|
Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
|
597 |
|
|
then
|
598 |
|
|
Error_Msg_N
|
599 |
|
|
("call to abstract function must be dispatching",
|
600 |
|
|
Name (Expression (Rhs)));
|
601 |
|
|
end if;
|
602 |
|
|
end if;
|
603 |
|
|
|
604 |
|
|
-- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
|
605 |
|
|
-- apply an implicit conversion of the rhs to that type to force
|
606 |
|
|
-- appropriate static and run-time accessibility checks. This applies
|
607 |
|
|
-- as well to anonymous access-to-subprogram types that are component
|
608 |
|
|
-- subtypes or formal parameters.
|
609 |
|
|
|
610 |
|
|
if Ada_Version >= Ada_2005
|
611 |
|
|
and then Is_Access_Type (T1)
|
612 |
|
|
then
|
613 |
|
|
if Is_Local_Anonymous_Access (T1)
|
614 |
|
|
or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
|
615 |
|
|
|
616 |
|
|
-- Handle assignment to an Ada 2012 stand-alone object
|
617 |
|
|
-- of an anonymous access type.
|
618 |
|
|
|
619 |
|
|
or else (Ekind (T1) = E_Anonymous_Access_Type
|
620 |
|
|
and then Nkind (Associated_Node_For_Itype (T1)) =
|
621 |
|
|
N_Object_Declaration)
|
622 |
|
|
|
623 |
|
|
then
|
624 |
|
|
Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
|
625 |
|
|
Analyze_And_Resolve (Rhs, T1);
|
626 |
|
|
end if;
|
627 |
|
|
end if;
|
628 |
|
|
|
629 |
|
|
-- Ada 2005 (AI-231): Assignment to not null variable
|
630 |
|
|
|
631 |
|
|
if Ada_Version >= Ada_2005
|
632 |
|
|
and then Can_Never_Be_Null (T1)
|
633 |
|
|
and then not Assignment_OK (Lhs)
|
634 |
|
|
then
|
635 |
|
|
-- Case where we know the right hand side is null
|
636 |
|
|
|
637 |
|
|
if Known_Null (Rhs) then
|
638 |
|
|
Apply_Compile_Time_Constraint_Error
|
639 |
|
|
(N => Rhs,
|
640 |
|
|
Msg => "(Ada 2005) null not allowed in null-excluding objects?",
|
641 |
|
|
Reason => CE_Null_Not_Allowed);
|
642 |
|
|
|
643 |
|
|
-- We still mark this as a possible modification, that's necessary
|
644 |
|
|
-- to reset Is_True_Constant, and desirable for xref purposes.
|
645 |
|
|
|
646 |
|
|
Note_Possible_Modification (Lhs, Sure => True);
|
647 |
|
|
return;
|
648 |
|
|
|
649 |
|
|
-- If we know the right hand side is non-null, then we convert to the
|
650 |
|
|
-- target type, since we don't need a run time check in that case.
|
651 |
|
|
|
652 |
|
|
elsif not Can_Never_Be_Null (T2) then
|
653 |
|
|
Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
|
654 |
|
|
Analyze_And_Resolve (Rhs, T1);
|
655 |
|
|
end if;
|
656 |
|
|
end if;
|
657 |
|
|
|
658 |
|
|
if Is_Scalar_Type (T1) then
|
659 |
|
|
Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
|
660 |
|
|
|
661 |
|
|
-- For array types, verify that lengths match. If the right hand side
|
662 |
|
|
-- is a function call that has been inlined, the assignment has been
|
663 |
|
|
-- rewritten as a block, and the constraint check will be applied to the
|
664 |
|
|
-- assignment within the block.
|
665 |
|
|
|
666 |
|
|
elsif Is_Array_Type (T1)
|
667 |
|
|
and then
|
668 |
|
|
(Nkind (Rhs) /= N_Type_Conversion
|
669 |
|
|
or else Is_Constrained (Etype (Rhs)))
|
670 |
|
|
and then
|
671 |
|
|
(Nkind (Rhs) /= N_Function_Call
|
672 |
|
|
or else Nkind (N) /= N_Block_Statement)
|
673 |
|
|
then
|
674 |
|
|
-- Assignment verifies that the length of the Lsh and Rhs are equal,
|
675 |
|
|
-- but of course the indexes do not have to match. If the right-hand
|
676 |
|
|
-- side is a type conversion to an unconstrained type, a length check
|
677 |
|
|
-- is performed on the expression itself during expansion. In rare
|
678 |
|
|
-- cases, the redundant length check is computed on an index type
|
679 |
|
|
-- with a different representation, triggering incorrect code in the
|
680 |
|
|
-- back end.
|
681 |
|
|
|
682 |
|
|
Apply_Length_Check (Rhs, Etype (Lhs));
|
683 |
|
|
|
684 |
|
|
else
|
685 |
|
|
-- Discriminant checks are applied in the course of expansion
|
686 |
|
|
|
687 |
|
|
null;
|
688 |
|
|
end if;
|
689 |
|
|
|
690 |
|
|
-- Note: modifications of the Lhs may only be recorded after
|
691 |
|
|
-- checks have been applied.
|
692 |
|
|
|
693 |
|
|
Note_Possible_Modification (Lhs, Sure => True);
|
694 |
|
|
Check_Order_Dependence;
|
695 |
|
|
|
696 |
|
|
-- ??? a real accessibility check is needed when ???
|
697 |
|
|
|
698 |
|
|
-- Post warning for redundant assignment or variable to itself
|
699 |
|
|
|
700 |
|
|
if Warn_On_Redundant_Constructs
|
701 |
|
|
|
702 |
|
|
-- We only warn for source constructs
|
703 |
|
|
|
704 |
|
|
and then Comes_From_Source (N)
|
705 |
|
|
|
706 |
|
|
-- Where the object is the same on both sides
|
707 |
|
|
|
708 |
|
|
and then Same_Object (Lhs, Original_Node (Rhs))
|
709 |
|
|
|
710 |
|
|
-- But exclude the case where the right side was an operation that
|
711 |
|
|
-- got rewritten (e.g. JUNK + K, where K was known to be zero). We
|
712 |
|
|
-- don't want to warn in such a case, since it is reasonable to write
|
713 |
|
|
-- such expressions especially when K is defined symbolically in some
|
714 |
|
|
-- other package.
|
715 |
|
|
|
716 |
|
|
and then Nkind (Original_Node (Rhs)) not in N_Op
|
717 |
|
|
then
|
718 |
|
|
if Nkind (Lhs) in N_Has_Entity then
|
719 |
|
|
Error_Msg_NE -- CODEFIX
|
720 |
|
|
("?useless assignment of & to itself!", N, Entity (Lhs));
|
721 |
|
|
else
|
722 |
|
|
Error_Msg_N -- CODEFIX
|
723 |
|
|
("?useless assignment of object to itself!", N);
|
724 |
|
|
end if;
|
725 |
|
|
end if;
|
726 |
|
|
|
727 |
|
|
-- Check for non-allowed composite assignment
|
728 |
|
|
|
729 |
|
|
if not Support_Composite_Assign_On_Target
|
730 |
|
|
and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
|
731 |
|
|
and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
|
732 |
|
|
then
|
733 |
|
|
Error_Msg_CRT ("composite assignment", N);
|
734 |
|
|
end if;
|
735 |
|
|
|
736 |
|
|
-- Check elaboration warning for left side if not in elab code
|
737 |
|
|
|
738 |
|
|
if not In_Subprogram_Or_Concurrent_Unit then
|
739 |
|
|
Check_Elab_Assign (Lhs);
|
740 |
|
|
end if;
|
741 |
|
|
|
742 |
|
|
-- Set Referenced_As_LHS if appropriate. We only set this flag if the
|
743 |
|
|
-- assignment is a source assignment in the extended main source unit.
|
744 |
|
|
-- We are not interested in any reference information outside this
|
745 |
|
|
-- context, or in compiler generated assignment statements.
|
746 |
|
|
|
747 |
|
|
if Comes_From_Source (N)
|
748 |
|
|
and then In_Extended_Main_Source_Unit (Lhs)
|
749 |
|
|
then
|
750 |
|
|
Set_Referenced_Modified (Lhs, Out_Param => False);
|
751 |
|
|
end if;
|
752 |
|
|
|
753 |
|
|
-- Final step. If left side is an entity, then we may be able to reset
|
754 |
|
|
-- the current tracked values to new safe values. We only have something
|
755 |
|
|
-- to do if the left side is an entity name, and expansion has not
|
756 |
|
|
-- modified the node into something other than an assignment, and of
|
757 |
|
|
-- course we only capture values if it is safe to do so.
|
758 |
|
|
|
759 |
|
|
if Is_Entity_Name (Lhs)
|
760 |
|
|
and then Nkind (N) = N_Assignment_Statement
|
761 |
|
|
then
|
762 |
|
|
declare
|
763 |
|
|
Ent : constant Entity_Id := Entity (Lhs);
|
764 |
|
|
|
765 |
|
|
begin
|
766 |
|
|
if Safe_To_Capture_Value (N, Ent) then
|
767 |
|
|
|
768 |
|
|
-- If simple variable on left side, warn if this assignment
|
769 |
|
|
-- blots out another one (rendering it useless). We only do
|
770 |
|
|
-- this for source assignments, otherwise we can generate bogus
|
771 |
|
|
-- warnings when an assignment is rewritten as another
|
772 |
|
|
-- assignment, and gets tied up with itself.
|
773 |
|
|
|
774 |
|
|
if Warn_On_Modified_Unread
|
775 |
|
|
and then Is_Assignable (Ent)
|
776 |
|
|
and then Comes_From_Source (N)
|
777 |
|
|
and then In_Extended_Main_Source_Unit (Ent)
|
778 |
|
|
then
|
779 |
|
|
Warn_On_Useless_Assignment (Ent, N);
|
780 |
|
|
end if;
|
781 |
|
|
|
782 |
|
|
-- If we are assigning an access type and the left side is an
|
783 |
|
|
-- entity, then make sure that the Is_Known_[Non_]Null flags
|
784 |
|
|
-- properly reflect the state of the entity after assignment.
|
785 |
|
|
|
786 |
|
|
if Is_Access_Type (T1) then
|
787 |
|
|
if Known_Non_Null (Rhs) then
|
788 |
|
|
Set_Is_Known_Non_Null (Ent, True);
|
789 |
|
|
|
790 |
|
|
elsif Known_Null (Rhs)
|
791 |
|
|
and then not Can_Never_Be_Null (Ent)
|
792 |
|
|
then
|
793 |
|
|
Set_Is_Known_Null (Ent, True);
|
794 |
|
|
|
795 |
|
|
else
|
796 |
|
|
Set_Is_Known_Null (Ent, False);
|
797 |
|
|
|
798 |
|
|
if not Can_Never_Be_Null (Ent) then
|
799 |
|
|
Set_Is_Known_Non_Null (Ent, False);
|
800 |
|
|
end if;
|
801 |
|
|
end if;
|
802 |
|
|
|
803 |
|
|
-- For discrete types, we may be able to set the current value
|
804 |
|
|
-- if the value is known at compile time.
|
805 |
|
|
|
806 |
|
|
elsif Is_Discrete_Type (T1)
|
807 |
|
|
and then Compile_Time_Known_Value (Rhs)
|
808 |
|
|
then
|
809 |
|
|
Set_Current_Value (Ent, Rhs);
|
810 |
|
|
else
|
811 |
|
|
Set_Current_Value (Ent, Empty);
|
812 |
|
|
end if;
|
813 |
|
|
|
814 |
|
|
-- If not safe to capture values, kill them
|
815 |
|
|
|
816 |
|
|
else
|
817 |
|
|
Kill_Lhs;
|
818 |
|
|
end if;
|
819 |
|
|
end;
|
820 |
|
|
end if;
|
821 |
|
|
|
822 |
|
|
-- If assigning to an object in whole or in part, note location of
|
823 |
|
|
-- assignment in case no one references value. We only do this for
|
824 |
|
|
-- source assignments, otherwise we can generate bogus warnings when an
|
825 |
|
|
-- assignment is rewritten as another assignment, and gets tied up with
|
826 |
|
|
-- itself.
|
827 |
|
|
|
828 |
|
|
declare
|
829 |
|
|
Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
|
830 |
|
|
begin
|
831 |
|
|
if Present (Ent)
|
832 |
|
|
and then Safe_To_Capture_Value (N, Ent)
|
833 |
|
|
and then Nkind (N) = N_Assignment_Statement
|
834 |
|
|
and then Warn_On_Modified_Unread
|
835 |
|
|
and then Is_Assignable (Ent)
|
836 |
|
|
and then Comes_From_Source (N)
|
837 |
|
|
and then In_Extended_Main_Source_Unit (Ent)
|
838 |
|
|
then
|
839 |
|
|
Set_Last_Assignment (Ent, Lhs);
|
840 |
|
|
end if;
|
841 |
|
|
end;
|
842 |
|
|
|
843 |
|
|
Analyze_Dimension (N);
|
844 |
|
|
end Analyze_Assignment;
|
845 |
|
|
|
846 |
|
|
-----------------------------
|
847 |
|
|
-- Analyze_Block_Statement --
|
848 |
|
|
-----------------------------
|
849 |
|
|
|
850 |
|
|
procedure Analyze_Block_Statement (N : Node_Id) is
|
851 |
|
|
procedure Install_Return_Entities (Scop : Entity_Id);
|
852 |
|
|
-- Install all entities of return statement scope Scop in the visibility
|
853 |
|
|
-- chain except for the return object since its entity is reused in a
|
854 |
|
|
-- renaming.
|
855 |
|
|
|
856 |
|
|
-----------------------------
|
857 |
|
|
-- Install_Return_Entities --
|
858 |
|
|
-----------------------------
|
859 |
|
|
|
860 |
|
|
procedure Install_Return_Entities (Scop : Entity_Id) is
|
861 |
|
|
Id : Entity_Id;
|
862 |
|
|
|
863 |
|
|
begin
|
864 |
|
|
Id := First_Entity (Scop);
|
865 |
|
|
while Present (Id) loop
|
866 |
|
|
|
867 |
|
|
-- Do not install the return object
|
868 |
|
|
|
869 |
|
|
if not Ekind_In (Id, E_Constant, E_Variable)
|
870 |
|
|
or else not Is_Return_Object (Id)
|
871 |
|
|
then
|
872 |
|
|
Install_Entity (Id);
|
873 |
|
|
end if;
|
874 |
|
|
|
875 |
|
|
Next_Entity (Id);
|
876 |
|
|
end loop;
|
877 |
|
|
end Install_Return_Entities;
|
878 |
|
|
|
879 |
|
|
-- Local constants and variables
|
880 |
|
|
|
881 |
|
|
Decls : constant List_Id := Declarations (N);
|
882 |
|
|
Id : constant Node_Id := Identifier (N);
|
883 |
|
|
HSS : constant Node_Id := Handled_Statement_Sequence (N);
|
884 |
|
|
|
885 |
|
|
Is_BIP_Return_Statement : Boolean;
|
886 |
|
|
|
887 |
|
|
-- Start of processing for Analyze_Block_Statement
|
888 |
|
|
|
889 |
|
|
begin
|
890 |
|
|
-- In SPARK mode, we reject block statements. Note that the case of
|
891 |
|
|
-- block statements generated by the expander is fine.
|
892 |
|
|
|
893 |
|
|
if Nkind (Original_Node (N)) = N_Block_Statement then
|
894 |
|
|
Check_SPARK_Restriction ("block statement is not allowed", N);
|
895 |
|
|
end if;
|
896 |
|
|
|
897 |
|
|
-- If no handled statement sequence is present, things are really messed
|
898 |
|
|
-- up, and we just return immediately (defence against previous errors).
|
899 |
|
|
|
900 |
|
|
if No (HSS) then
|
901 |
|
|
return;
|
902 |
|
|
end if;
|
903 |
|
|
|
904 |
|
|
-- Detect whether the block is actually a rewritten return statement of
|
905 |
|
|
-- a build-in-place function.
|
906 |
|
|
|
907 |
|
|
Is_BIP_Return_Statement :=
|
908 |
|
|
Present (Id)
|
909 |
|
|
and then Present (Entity (Id))
|
910 |
|
|
and then Ekind (Entity (Id)) = E_Return_Statement
|
911 |
|
|
and then Is_Build_In_Place_Function
|
912 |
|
|
(Return_Applies_To (Entity (Id)));
|
913 |
|
|
|
914 |
|
|
-- Normal processing with HSS present
|
915 |
|
|
|
916 |
|
|
declare
|
917 |
|
|
EH : constant List_Id := Exception_Handlers (HSS);
|
918 |
|
|
Ent : Entity_Id := Empty;
|
919 |
|
|
S : Entity_Id;
|
920 |
|
|
|
921 |
|
|
Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
|
922 |
|
|
-- Recursively save value of this global, will be restored on exit
|
923 |
|
|
|
924 |
|
|
begin
|
925 |
|
|
-- Initialize unblocked exit count for statements of begin block
|
926 |
|
|
-- plus one for each exception handler that is present.
|
927 |
|
|
|
928 |
|
|
Unblocked_Exit_Count := 1;
|
929 |
|
|
|
930 |
|
|
if Present (EH) then
|
931 |
|
|
Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
|
932 |
|
|
end if;
|
933 |
|
|
|
934 |
|
|
-- If a label is present analyze it and mark it as referenced
|
935 |
|
|
|
936 |
|
|
if Present (Id) then
|
937 |
|
|
Analyze (Id);
|
938 |
|
|
Ent := Entity (Id);
|
939 |
|
|
|
940 |
|
|
-- An error defense. If we have an identifier, but no entity, then
|
941 |
|
|
-- something is wrong. If previous errors, then just remove the
|
942 |
|
|
-- identifier and continue, otherwise raise an exception.
|
943 |
|
|
|
944 |
|
|
if No (Ent) then
|
945 |
|
|
if Total_Errors_Detected /= 0 then
|
946 |
|
|
Set_Identifier (N, Empty);
|
947 |
|
|
else
|
948 |
|
|
raise Program_Error;
|
949 |
|
|
end if;
|
950 |
|
|
|
951 |
|
|
else
|
952 |
|
|
Set_Ekind (Ent, E_Block);
|
953 |
|
|
Generate_Reference (Ent, N, ' ');
|
954 |
|
|
Generate_Definition (Ent);
|
955 |
|
|
|
956 |
|
|
if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
|
957 |
|
|
Set_Label_Construct (Parent (Ent), N);
|
958 |
|
|
end if;
|
959 |
|
|
end if;
|
960 |
|
|
end if;
|
961 |
|
|
|
962 |
|
|
-- If no entity set, create a label entity
|
963 |
|
|
|
964 |
|
|
if No (Ent) then
|
965 |
|
|
Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
|
966 |
|
|
Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
|
967 |
|
|
Set_Parent (Ent, N);
|
968 |
|
|
end if;
|
969 |
|
|
|
970 |
|
|
Set_Etype (Ent, Standard_Void_Type);
|
971 |
|
|
Set_Block_Node (Ent, Identifier (N));
|
972 |
|
|
Push_Scope (Ent);
|
973 |
|
|
|
974 |
|
|
-- The block served as an extended return statement. Ensure that any
|
975 |
|
|
-- entities created during the analysis and expansion of the return
|
976 |
|
|
-- object declaration are once again visible.
|
977 |
|
|
|
978 |
|
|
if Is_BIP_Return_Statement then
|
979 |
|
|
Install_Return_Entities (Ent);
|
980 |
|
|
end if;
|
981 |
|
|
|
982 |
|
|
if Present (Decls) then
|
983 |
|
|
Analyze_Declarations (Decls);
|
984 |
|
|
Check_Completion;
|
985 |
|
|
Inspect_Deferred_Constant_Completion (Decls);
|
986 |
|
|
end if;
|
987 |
|
|
|
988 |
|
|
Analyze (HSS);
|
989 |
|
|
Process_End_Label (HSS, 'e', Ent);
|
990 |
|
|
|
991 |
|
|
-- If exception handlers are present, then we indicate that enclosing
|
992 |
|
|
-- scopes contain a block with handlers. We only need to mark non-
|
993 |
|
|
-- generic scopes.
|
994 |
|
|
|
995 |
|
|
if Present (EH) then
|
996 |
|
|
S := Scope (Ent);
|
997 |
|
|
loop
|
998 |
|
|
Set_Has_Nested_Block_With_Handler (S);
|
999 |
|
|
exit when Is_Overloadable (S)
|
1000 |
|
|
or else Ekind (S) = E_Package
|
1001 |
|
|
or else Is_Generic_Unit (S);
|
1002 |
|
|
S := Scope (S);
|
1003 |
|
|
end loop;
|
1004 |
|
|
end if;
|
1005 |
|
|
|
1006 |
|
|
Check_References (Ent);
|
1007 |
|
|
Warn_On_Useless_Assignments (Ent);
|
1008 |
|
|
End_Scope;
|
1009 |
|
|
|
1010 |
|
|
if Unblocked_Exit_Count = 0 then
|
1011 |
|
|
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
|
1012 |
|
|
Check_Unreachable_Code (N);
|
1013 |
|
|
else
|
1014 |
|
|
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
|
1015 |
|
|
end if;
|
1016 |
|
|
end;
|
1017 |
|
|
end Analyze_Block_Statement;
|
1018 |
|
|
|
1019 |
|
|
----------------------------
|
1020 |
|
|
-- Analyze_Case_Statement --
|
1021 |
|
|
----------------------------
|
1022 |
|
|
|
1023 |
|
|
procedure Analyze_Case_Statement (N : Node_Id) is
|
1024 |
|
|
Exp : Node_Id;
|
1025 |
|
|
Exp_Type : Entity_Id;
|
1026 |
|
|
Exp_Btype : Entity_Id;
|
1027 |
|
|
Last_Choice : Nat;
|
1028 |
|
|
Dont_Care : Boolean;
|
1029 |
|
|
Others_Present : Boolean;
|
1030 |
|
|
|
1031 |
|
|
pragma Warnings (Off, Last_Choice);
|
1032 |
|
|
pragma Warnings (Off, Dont_Care);
|
1033 |
|
|
-- Don't care about assigned values
|
1034 |
|
|
|
1035 |
|
|
Statements_Analyzed : Boolean := False;
|
1036 |
|
|
-- Set True if at least some statement sequences get analyzed. If False
|
1037 |
|
|
-- on exit, means we had a serious error that prevented full analysis of
|
1038 |
|
|
-- the case statement, and as a result it is not a good idea to output
|
1039 |
|
|
-- warning messages about unreachable code.
|
1040 |
|
|
|
1041 |
|
|
Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
|
1042 |
|
|
-- Recursively save value of this global, will be restored on exit
|
1043 |
|
|
|
1044 |
|
|
procedure Non_Static_Choice_Error (Choice : Node_Id);
|
1045 |
|
|
-- Error routine invoked by the generic instantiation below when the
|
1046 |
|
|
-- case statement has a non static choice.
|
1047 |
|
|
|
1048 |
|
|
procedure Process_Statements (Alternative : Node_Id);
|
1049 |
|
|
-- Analyzes all the statements associated with a case alternative.
|
1050 |
|
|
-- Needed by the generic instantiation below.
|
1051 |
|
|
|
1052 |
|
|
package Case_Choices_Processing is new
|
1053 |
|
|
Generic_Choices_Processing
|
1054 |
|
|
(Get_Alternatives => Alternatives,
|
1055 |
|
|
Get_Choices => Discrete_Choices,
|
1056 |
|
|
Process_Empty_Choice => No_OP,
|
1057 |
|
|
Process_Non_Static_Choice => Non_Static_Choice_Error,
|
1058 |
|
|
Process_Associated_Node => Process_Statements);
|
1059 |
|
|
use Case_Choices_Processing;
|
1060 |
|
|
-- Instantiation of the generic choice processing package
|
1061 |
|
|
|
1062 |
|
|
-----------------------------
|
1063 |
|
|
-- Non_Static_Choice_Error --
|
1064 |
|
|
-----------------------------
|
1065 |
|
|
|
1066 |
|
|
procedure Non_Static_Choice_Error (Choice : Node_Id) is
|
1067 |
|
|
begin
|
1068 |
|
|
Flag_Non_Static_Expr
|
1069 |
|
|
("choice given in case statement is not static!", Choice);
|
1070 |
|
|
end Non_Static_Choice_Error;
|
1071 |
|
|
|
1072 |
|
|
------------------------
|
1073 |
|
|
-- Process_Statements --
|
1074 |
|
|
------------------------
|
1075 |
|
|
|
1076 |
|
|
procedure Process_Statements (Alternative : Node_Id) is
|
1077 |
|
|
Choices : constant List_Id := Discrete_Choices (Alternative);
|
1078 |
|
|
Ent : Entity_Id;
|
1079 |
|
|
|
1080 |
|
|
begin
|
1081 |
|
|
Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
|
1082 |
|
|
Statements_Analyzed := True;
|
1083 |
|
|
|
1084 |
|
|
-- An interesting optimization. If the case statement expression
|
1085 |
|
|
-- is a simple entity, then we can set the current value within an
|
1086 |
|
|
-- alternative if the alternative has one possible value.
|
1087 |
|
|
|
1088 |
|
|
-- case N is
|
1089 |
|
|
-- when 1 => alpha
|
1090 |
|
|
-- when 2 | 3 => beta
|
1091 |
|
|
-- when others => gamma
|
1092 |
|
|
|
1093 |
|
|
-- Here we know that N is initially 1 within alpha, but for beta and
|
1094 |
|
|
-- gamma, we do not know anything more about the initial value.
|
1095 |
|
|
|
1096 |
|
|
if Is_Entity_Name (Exp) then
|
1097 |
|
|
Ent := Entity (Exp);
|
1098 |
|
|
|
1099 |
|
|
if Ekind_In (Ent, E_Variable,
|
1100 |
|
|
E_In_Out_Parameter,
|
1101 |
|
|
E_Out_Parameter)
|
1102 |
|
|
then
|
1103 |
|
|
if List_Length (Choices) = 1
|
1104 |
|
|
and then Nkind (First (Choices)) in N_Subexpr
|
1105 |
|
|
and then Compile_Time_Known_Value (First (Choices))
|
1106 |
|
|
then
|
1107 |
|
|
Set_Current_Value (Entity (Exp), First (Choices));
|
1108 |
|
|
end if;
|
1109 |
|
|
|
1110 |
|
|
Analyze_Statements (Statements (Alternative));
|
1111 |
|
|
|
1112 |
|
|
-- After analyzing the case, set the current value to empty
|
1113 |
|
|
-- since we won't know what it is for the next alternative
|
1114 |
|
|
-- (unless reset by this same circuit), or after the case.
|
1115 |
|
|
|
1116 |
|
|
Set_Current_Value (Entity (Exp), Empty);
|
1117 |
|
|
return;
|
1118 |
|
|
end if;
|
1119 |
|
|
end if;
|
1120 |
|
|
|
1121 |
|
|
-- Case where expression is not an entity name of a variable
|
1122 |
|
|
|
1123 |
|
|
Analyze_Statements (Statements (Alternative));
|
1124 |
|
|
end Process_Statements;
|
1125 |
|
|
|
1126 |
|
|
-- Start of processing for Analyze_Case_Statement
|
1127 |
|
|
|
1128 |
|
|
begin
|
1129 |
|
|
Unblocked_Exit_Count := 0;
|
1130 |
|
|
Exp := Expression (N);
|
1131 |
|
|
Analyze (Exp);
|
1132 |
|
|
|
1133 |
|
|
-- The expression must be of any discrete type. In rare cases, the
|
1134 |
|
|
-- expander constructs a case statement whose expression has a private
|
1135 |
|
|
-- type whose full view is discrete. This can happen when generating
|
1136 |
|
|
-- a stream operation for a variant type after the type is frozen,
|
1137 |
|
|
-- when the partial of view of the type of the discriminant is private.
|
1138 |
|
|
-- In that case, use the full view to analyze case alternatives.
|
1139 |
|
|
|
1140 |
|
|
if not Is_Overloaded (Exp)
|
1141 |
|
|
and then not Comes_From_Source (N)
|
1142 |
|
|
and then Is_Private_Type (Etype (Exp))
|
1143 |
|
|
and then Present (Full_View (Etype (Exp)))
|
1144 |
|
|
and then Is_Discrete_Type (Full_View (Etype (Exp)))
|
1145 |
|
|
then
|
1146 |
|
|
Resolve (Exp, Etype (Exp));
|
1147 |
|
|
Exp_Type := Full_View (Etype (Exp));
|
1148 |
|
|
|
1149 |
|
|
else
|
1150 |
|
|
Analyze_And_Resolve (Exp, Any_Discrete);
|
1151 |
|
|
Exp_Type := Etype (Exp);
|
1152 |
|
|
end if;
|
1153 |
|
|
|
1154 |
|
|
Check_Unset_Reference (Exp);
|
1155 |
|
|
Exp_Btype := Base_Type (Exp_Type);
|
1156 |
|
|
|
1157 |
|
|
-- The expression must be of a discrete type which must be determinable
|
1158 |
|
|
-- independently of the context in which the expression occurs, but
|
1159 |
|
|
-- using the fact that the expression must be of a discrete type.
|
1160 |
|
|
-- Moreover, the type this expression must not be a character literal
|
1161 |
|
|
-- (which is always ambiguous) or, for Ada-83, a generic formal type.
|
1162 |
|
|
|
1163 |
|
|
-- If error already reported by Resolve, nothing more to do
|
1164 |
|
|
|
1165 |
|
|
if Exp_Btype = Any_Discrete
|
1166 |
|
|
or else Exp_Btype = Any_Type
|
1167 |
|
|
then
|
1168 |
|
|
return;
|
1169 |
|
|
|
1170 |
|
|
elsif Exp_Btype = Any_Character then
|
1171 |
|
|
Error_Msg_N
|
1172 |
|
|
("character literal as case expression is ambiguous", Exp);
|
1173 |
|
|
return;
|
1174 |
|
|
|
1175 |
|
|
elsif Ada_Version = Ada_83
|
1176 |
|
|
and then (Is_Generic_Type (Exp_Btype)
|
1177 |
|
|
or else Is_Generic_Type (Root_Type (Exp_Btype)))
|
1178 |
|
|
then
|
1179 |
|
|
Error_Msg_N
|
1180 |
|
|
("(Ada 83) case expression cannot be of a generic type", Exp);
|
1181 |
|
|
return;
|
1182 |
|
|
end if;
|
1183 |
|
|
|
1184 |
|
|
-- If the case expression is a formal object of mode in out, then treat
|
1185 |
|
|
-- it as having a nonstatic subtype by forcing use of the base type
|
1186 |
|
|
-- (which has to get passed to Check_Case_Choices below). Also use base
|
1187 |
|
|
-- type when the case expression is parenthesized.
|
1188 |
|
|
|
1189 |
|
|
if Paren_Count (Exp) > 0
|
1190 |
|
|
or else (Is_Entity_Name (Exp)
|
1191 |
|
|
and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
|
1192 |
|
|
then
|
1193 |
|
|
Exp_Type := Exp_Btype;
|
1194 |
|
|
end if;
|
1195 |
|
|
|
1196 |
|
|
-- Call instantiated Analyze_Choices which does the rest of the work
|
1197 |
|
|
|
1198 |
|
|
Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
|
1199 |
|
|
|
1200 |
|
|
-- A case statement with a single OTHERS alternative is not allowed
|
1201 |
|
|
-- in SPARK.
|
1202 |
|
|
|
1203 |
|
|
if Others_Present
|
1204 |
|
|
and then List_Length (Alternatives (N)) = 1
|
1205 |
|
|
then
|
1206 |
|
|
Check_SPARK_Restriction
|
1207 |
|
|
("OTHERS as unique case alternative is not allowed", N);
|
1208 |
|
|
end if;
|
1209 |
|
|
|
1210 |
|
|
if Exp_Type = Universal_Integer and then not Others_Present then
|
1211 |
|
|
Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
|
1212 |
|
|
end if;
|
1213 |
|
|
|
1214 |
|
|
-- If all our exits were blocked by unconditional transfers of control,
|
1215 |
|
|
-- then the entire CASE statement acts as an unconditional transfer of
|
1216 |
|
|
-- control, so treat it like one, and check unreachable code. Skip this
|
1217 |
|
|
-- test if we had serious errors preventing any statement analysis.
|
1218 |
|
|
|
1219 |
|
|
if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
|
1220 |
|
|
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
|
1221 |
|
|
Check_Unreachable_Code (N);
|
1222 |
|
|
else
|
1223 |
|
|
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
|
1224 |
|
|
end if;
|
1225 |
|
|
|
1226 |
|
|
if not Expander_Active
|
1227 |
|
|
and then Compile_Time_Known_Value (Expression (N))
|
1228 |
|
|
and then Serious_Errors_Detected = 0
|
1229 |
|
|
then
|
1230 |
|
|
declare
|
1231 |
|
|
Chosen : constant Node_Id := Find_Static_Alternative (N);
|
1232 |
|
|
Alt : Node_Id;
|
1233 |
|
|
|
1234 |
|
|
begin
|
1235 |
|
|
Alt := First (Alternatives (N));
|
1236 |
|
|
while Present (Alt) loop
|
1237 |
|
|
if Alt /= Chosen then
|
1238 |
|
|
Remove_Warning_Messages (Statements (Alt));
|
1239 |
|
|
end if;
|
1240 |
|
|
|
1241 |
|
|
Next (Alt);
|
1242 |
|
|
end loop;
|
1243 |
|
|
end;
|
1244 |
|
|
end if;
|
1245 |
|
|
end Analyze_Case_Statement;
|
1246 |
|
|
|
1247 |
|
|
----------------------------
|
1248 |
|
|
-- Analyze_Exit_Statement --
|
1249 |
|
|
----------------------------
|
1250 |
|
|
|
1251 |
|
|
-- If the exit includes a name, it must be the name of a currently open
|
1252 |
|
|
-- loop. Otherwise there must be an innermost open loop on the stack, to
|
1253 |
|
|
-- which the statement implicitly refers.
|
1254 |
|
|
|
1255 |
|
|
-- Additionally, in SPARK mode:
|
1256 |
|
|
|
1257 |
|
|
-- The exit can only name the closest enclosing loop;
|
1258 |
|
|
|
1259 |
|
|
-- An exit with a when clause must be directly contained in a loop;
|
1260 |
|
|
|
1261 |
|
|
-- An exit without a when clause must be directly contained in an
|
1262 |
|
|
-- if-statement with no elsif or else, which is itself directly contained
|
1263 |
|
|
-- in a loop. The exit must be the last statement in the if-statement.
|
1264 |
|
|
|
1265 |
|
|
procedure Analyze_Exit_Statement (N : Node_Id) is
|
1266 |
|
|
Target : constant Node_Id := Name (N);
|
1267 |
|
|
Cond : constant Node_Id := Condition (N);
|
1268 |
|
|
Scope_Id : Entity_Id;
|
1269 |
|
|
U_Name : Entity_Id;
|
1270 |
|
|
Kind : Entity_Kind;
|
1271 |
|
|
|
1272 |
|
|
begin
|
1273 |
|
|
if No (Cond) then
|
1274 |
|
|
Check_Unreachable_Code (N);
|
1275 |
|
|
end if;
|
1276 |
|
|
|
1277 |
|
|
if Present (Target) then
|
1278 |
|
|
Analyze (Target);
|
1279 |
|
|
U_Name := Entity (Target);
|
1280 |
|
|
|
1281 |
|
|
if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
|
1282 |
|
|
Error_Msg_N ("invalid loop name in exit statement", N);
|
1283 |
|
|
return;
|
1284 |
|
|
|
1285 |
|
|
else
|
1286 |
|
|
if Has_Loop_In_Inner_Open_Scopes (U_Name) then
|
1287 |
|
|
Check_SPARK_Restriction
|
1288 |
|
|
("exit label must name the closest enclosing loop", N);
|
1289 |
|
|
end if;
|
1290 |
|
|
|
1291 |
|
|
Set_Has_Exit (U_Name);
|
1292 |
|
|
end if;
|
1293 |
|
|
|
1294 |
|
|
else
|
1295 |
|
|
U_Name := Empty;
|
1296 |
|
|
end if;
|
1297 |
|
|
|
1298 |
|
|
for J in reverse 0 .. Scope_Stack.Last loop
|
1299 |
|
|
Scope_Id := Scope_Stack.Table (J).Entity;
|
1300 |
|
|
Kind := Ekind (Scope_Id);
|
1301 |
|
|
|
1302 |
|
|
if Kind = E_Loop
|
1303 |
|
|
and then (No (Target) or else Scope_Id = U_Name)
|
1304 |
|
|
then
|
1305 |
|
|
Set_Has_Exit (Scope_Id);
|
1306 |
|
|
exit;
|
1307 |
|
|
|
1308 |
|
|
elsif Kind = E_Block
|
1309 |
|
|
or else Kind = E_Loop
|
1310 |
|
|
or else Kind = E_Return_Statement
|
1311 |
|
|
then
|
1312 |
|
|
null;
|
1313 |
|
|
|
1314 |
|
|
else
|
1315 |
|
|
Error_Msg_N
|
1316 |
|
|
("cannot exit from program unit or accept statement", N);
|
1317 |
|
|
return;
|
1318 |
|
|
end if;
|
1319 |
|
|
end loop;
|
1320 |
|
|
|
1321 |
|
|
-- Verify that if present the condition is a Boolean expression
|
1322 |
|
|
|
1323 |
|
|
if Present (Cond) then
|
1324 |
|
|
Analyze_And_Resolve (Cond, Any_Boolean);
|
1325 |
|
|
Check_Unset_Reference (Cond);
|
1326 |
|
|
end if;
|
1327 |
|
|
|
1328 |
|
|
-- In SPARK mode, verify that the exit statement respects the SPARK
|
1329 |
|
|
-- restrictions.
|
1330 |
|
|
|
1331 |
|
|
if Present (Cond) then
|
1332 |
|
|
if Nkind (Parent (N)) /= N_Loop_Statement then
|
1333 |
|
|
Check_SPARK_Restriction
|
1334 |
|
|
("exit with when clause must be directly in loop", N);
|
1335 |
|
|
end if;
|
1336 |
|
|
|
1337 |
|
|
else
|
1338 |
|
|
if Nkind (Parent (N)) /= N_If_Statement then
|
1339 |
|
|
if Nkind (Parent (N)) = N_Elsif_Part then
|
1340 |
|
|
Check_SPARK_Restriction
|
1341 |
|
|
("exit must be in IF without ELSIF", N);
|
1342 |
|
|
else
|
1343 |
|
|
Check_SPARK_Restriction ("exit must be directly in IF", N);
|
1344 |
|
|
end if;
|
1345 |
|
|
|
1346 |
|
|
elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
|
1347 |
|
|
Check_SPARK_Restriction
|
1348 |
|
|
("exit must be in IF directly in loop", N);
|
1349 |
|
|
|
1350 |
|
|
-- First test the presence of ELSE, so that an exit in an ELSE leads
|
1351 |
|
|
-- to an error mentioning the ELSE.
|
1352 |
|
|
|
1353 |
|
|
elsif Present (Else_Statements (Parent (N))) then
|
1354 |
|
|
Check_SPARK_Restriction ("exit must be in IF without ELSE", N);
|
1355 |
|
|
|
1356 |
|
|
-- An exit in an ELSIF does not reach here, as it would have been
|
1357 |
|
|
-- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
|
1358 |
|
|
|
1359 |
|
|
elsif Present (Elsif_Parts (Parent (N))) then
|
1360 |
|
|
Check_SPARK_Restriction ("exit must be in IF without ELSIF", N);
|
1361 |
|
|
end if;
|
1362 |
|
|
end if;
|
1363 |
|
|
|
1364 |
|
|
-- Chain exit statement to associated loop entity
|
1365 |
|
|
|
1366 |
|
|
Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
|
1367 |
|
|
Set_First_Exit_Statement (Scope_Id, N);
|
1368 |
|
|
|
1369 |
|
|
-- Since the exit may take us out of a loop, any previous assignment
|
1370 |
|
|
-- statement is not useless, so clear last assignment indications. It
|
1371 |
|
|
-- is OK to keep other current values, since if the exit statement
|
1372 |
|
|
-- does not exit, then the current values are still valid.
|
1373 |
|
|
|
1374 |
|
|
Kill_Current_Values (Last_Assignment_Only => True);
|
1375 |
|
|
end Analyze_Exit_Statement;
|
1376 |
|
|
|
1377 |
|
|
----------------------------
|
1378 |
|
|
-- Analyze_Goto_Statement --
|
1379 |
|
|
----------------------------
|
1380 |
|
|
|
1381 |
|
|
procedure Analyze_Goto_Statement (N : Node_Id) is
|
1382 |
|
|
Label : constant Node_Id := Name (N);
|
1383 |
|
|
Scope_Id : Entity_Id;
|
1384 |
|
|
Label_Scope : Entity_Id;
|
1385 |
|
|
Label_Ent : Entity_Id;
|
1386 |
|
|
|
1387 |
|
|
begin
|
1388 |
|
|
Check_SPARK_Restriction ("goto statement is not allowed", N);
|
1389 |
|
|
|
1390 |
|
|
-- Actual semantic checks
|
1391 |
|
|
|
1392 |
|
|
Check_Unreachable_Code (N);
|
1393 |
|
|
Kill_Current_Values (Last_Assignment_Only => True);
|
1394 |
|
|
|
1395 |
|
|
Analyze (Label);
|
1396 |
|
|
Label_Ent := Entity (Label);
|
1397 |
|
|
|
1398 |
|
|
-- Ignore previous error
|
1399 |
|
|
|
1400 |
|
|
if Label_Ent = Any_Id then
|
1401 |
|
|
return;
|
1402 |
|
|
|
1403 |
|
|
-- We just have a label as the target of a goto
|
1404 |
|
|
|
1405 |
|
|
elsif Ekind (Label_Ent) /= E_Label then
|
1406 |
|
|
Error_Msg_N ("target of goto statement must be a label", Label);
|
1407 |
|
|
return;
|
1408 |
|
|
|
1409 |
|
|
-- Check that the target of the goto is reachable according to Ada
|
1410 |
|
|
-- scoping rules. Note: the special gotos we generate for optimizing
|
1411 |
|
|
-- local handling of exceptions would violate these rules, but we mark
|
1412 |
|
|
-- such gotos as analyzed when built, so this code is never entered.
|
1413 |
|
|
|
1414 |
|
|
elsif not Reachable (Label_Ent) then
|
1415 |
|
|
Error_Msg_N ("target of goto statement is not reachable", Label);
|
1416 |
|
|
return;
|
1417 |
|
|
end if;
|
1418 |
|
|
|
1419 |
|
|
-- Here if goto passes initial validity checks
|
1420 |
|
|
|
1421 |
|
|
Label_Scope := Enclosing_Scope (Label_Ent);
|
1422 |
|
|
|
1423 |
|
|
for J in reverse 0 .. Scope_Stack.Last loop
|
1424 |
|
|
Scope_Id := Scope_Stack.Table (J).Entity;
|
1425 |
|
|
|
1426 |
|
|
if Label_Scope = Scope_Id
|
1427 |
|
|
or else (Ekind (Scope_Id) /= E_Block
|
1428 |
|
|
and then Ekind (Scope_Id) /= E_Loop
|
1429 |
|
|
and then Ekind (Scope_Id) /= E_Return_Statement)
|
1430 |
|
|
then
|
1431 |
|
|
if Scope_Id /= Label_Scope then
|
1432 |
|
|
Error_Msg_N
|
1433 |
|
|
("cannot exit from program unit or accept statement", N);
|
1434 |
|
|
end if;
|
1435 |
|
|
|
1436 |
|
|
return;
|
1437 |
|
|
end if;
|
1438 |
|
|
end loop;
|
1439 |
|
|
|
1440 |
|
|
raise Program_Error;
|
1441 |
|
|
end Analyze_Goto_Statement;
|
1442 |
|
|
|
1443 |
|
|
--------------------------
|
1444 |
|
|
-- Analyze_If_Statement --
|
1445 |
|
|
--------------------------
|
1446 |
|
|
|
1447 |
|
|
-- A special complication arises in the analysis of if statements
|
1448 |
|
|
|
1449 |
|
|
-- The expander has circuitry to completely delete code that it can tell
|
1450 |
|
|
-- will not be executed (as a result of compile time known conditions). In
|
1451 |
|
|
-- the analyzer, we ensure that code that will be deleted in this manner is
|
1452 |
|
|
-- analyzed but not expanded. This is obviously more efficient, but more
|
1453 |
|
|
-- significantly, difficulties arise if code is expanded and then
|
1454 |
|
|
-- eliminated (e.g. exception table entries disappear). Similarly, itypes
|
1455 |
|
|
-- generated in deleted code must be frozen from start, because the nodes
|
1456 |
|
|
-- on which they depend will not be available at the freeze point.
|
1457 |
|
|
|
1458 |
|
|
procedure Analyze_If_Statement (N : Node_Id) is
|
1459 |
|
|
E : Node_Id;
|
1460 |
|
|
|
1461 |
|
|
Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
|
1462 |
|
|
-- Recursively save value of this global, will be restored on exit
|
1463 |
|
|
|
1464 |
|
|
Save_In_Deleted_Code : Boolean;
|
1465 |
|
|
|
1466 |
|
|
Del : Boolean := False;
|
1467 |
|
|
-- This flag gets set True if a True condition has been found, which
|
1468 |
|
|
-- means that remaining ELSE/ELSIF parts are deleted.
|
1469 |
|
|
|
1470 |
|
|
procedure Analyze_Cond_Then (Cnode : Node_Id);
|
1471 |
|
|
-- This is applied to either the N_If_Statement node itself or to an
|
1472 |
|
|
-- N_Elsif_Part node. It deals with analyzing the condition and the THEN
|
1473 |
|
|
-- statements associated with it.
|
1474 |
|
|
|
1475 |
|
|
-----------------------
|
1476 |
|
|
-- Analyze_Cond_Then --
|
1477 |
|
|
-----------------------
|
1478 |
|
|
|
1479 |
|
|
procedure Analyze_Cond_Then (Cnode : Node_Id) is
|
1480 |
|
|
Cond : constant Node_Id := Condition (Cnode);
|
1481 |
|
|
Tstm : constant List_Id := Then_Statements (Cnode);
|
1482 |
|
|
|
1483 |
|
|
begin
|
1484 |
|
|
Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
|
1485 |
|
|
Analyze_And_Resolve (Cond, Any_Boolean);
|
1486 |
|
|
Check_Unset_Reference (Cond);
|
1487 |
|
|
Set_Current_Value_Condition (Cnode);
|
1488 |
|
|
|
1489 |
|
|
-- If already deleting, then just analyze then statements
|
1490 |
|
|
|
1491 |
|
|
if Del then
|
1492 |
|
|
Analyze_Statements (Tstm);
|
1493 |
|
|
|
1494 |
|
|
-- Compile time known value, not deleting yet
|
1495 |
|
|
|
1496 |
|
|
elsif Compile_Time_Known_Value (Cond) then
|
1497 |
|
|
Save_In_Deleted_Code := In_Deleted_Code;
|
1498 |
|
|
|
1499 |
|
|
-- If condition is True, then analyze the THEN statements and set
|
1500 |
|
|
-- no expansion for ELSE and ELSIF parts.
|
1501 |
|
|
|
1502 |
|
|
if Is_True (Expr_Value (Cond)) then
|
1503 |
|
|
Analyze_Statements (Tstm);
|
1504 |
|
|
Del := True;
|
1505 |
|
|
Expander_Mode_Save_And_Set (False);
|
1506 |
|
|
In_Deleted_Code := True;
|
1507 |
|
|
|
1508 |
|
|
-- If condition is False, analyze THEN with expansion off
|
1509 |
|
|
|
1510 |
|
|
else -- Is_False (Expr_Value (Cond))
|
1511 |
|
|
Expander_Mode_Save_And_Set (False);
|
1512 |
|
|
In_Deleted_Code := True;
|
1513 |
|
|
Analyze_Statements (Tstm);
|
1514 |
|
|
Expander_Mode_Restore;
|
1515 |
|
|
In_Deleted_Code := Save_In_Deleted_Code;
|
1516 |
|
|
end if;
|
1517 |
|
|
|
1518 |
|
|
-- Not known at compile time, not deleting, normal analysis
|
1519 |
|
|
|
1520 |
|
|
else
|
1521 |
|
|
Analyze_Statements (Tstm);
|
1522 |
|
|
end if;
|
1523 |
|
|
end Analyze_Cond_Then;
|
1524 |
|
|
|
1525 |
|
|
-- Start of Analyze_If_Statement
|
1526 |
|
|
|
1527 |
|
|
begin
|
1528 |
|
|
-- Initialize exit count for else statements. If there is no else part,
|
1529 |
|
|
-- this count will stay non-zero reflecting the fact that the uncovered
|
1530 |
|
|
-- else case is an unblocked exit.
|
1531 |
|
|
|
1532 |
|
|
Unblocked_Exit_Count := 1;
|
1533 |
|
|
Analyze_Cond_Then (N);
|
1534 |
|
|
|
1535 |
|
|
-- Now to analyze the elsif parts if any are present
|
1536 |
|
|
|
1537 |
|
|
if Present (Elsif_Parts (N)) then
|
1538 |
|
|
E := First (Elsif_Parts (N));
|
1539 |
|
|
while Present (E) loop
|
1540 |
|
|
Analyze_Cond_Then (E);
|
1541 |
|
|
Next (E);
|
1542 |
|
|
end loop;
|
1543 |
|
|
end if;
|
1544 |
|
|
|
1545 |
|
|
if Present (Else_Statements (N)) then
|
1546 |
|
|
Analyze_Statements (Else_Statements (N));
|
1547 |
|
|
end if;
|
1548 |
|
|
|
1549 |
|
|
-- If all our exits were blocked by unconditional transfers of control,
|
1550 |
|
|
-- then the entire IF statement acts as an unconditional transfer of
|
1551 |
|
|
-- control, so treat it like one, and check unreachable code.
|
1552 |
|
|
|
1553 |
|
|
if Unblocked_Exit_Count = 0 then
|
1554 |
|
|
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
|
1555 |
|
|
Check_Unreachable_Code (N);
|
1556 |
|
|
else
|
1557 |
|
|
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
|
1558 |
|
|
end if;
|
1559 |
|
|
|
1560 |
|
|
if Del then
|
1561 |
|
|
Expander_Mode_Restore;
|
1562 |
|
|
In_Deleted_Code := Save_In_Deleted_Code;
|
1563 |
|
|
end if;
|
1564 |
|
|
|
1565 |
|
|
if not Expander_Active
|
1566 |
|
|
and then Compile_Time_Known_Value (Condition (N))
|
1567 |
|
|
and then Serious_Errors_Detected = 0
|
1568 |
|
|
then
|
1569 |
|
|
if Is_True (Expr_Value (Condition (N))) then
|
1570 |
|
|
Remove_Warning_Messages (Else_Statements (N));
|
1571 |
|
|
|
1572 |
|
|
if Present (Elsif_Parts (N)) then
|
1573 |
|
|
E := First (Elsif_Parts (N));
|
1574 |
|
|
while Present (E) loop
|
1575 |
|
|
Remove_Warning_Messages (Then_Statements (E));
|
1576 |
|
|
Next (E);
|
1577 |
|
|
end loop;
|
1578 |
|
|
end if;
|
1579 |
|
|
|
1580 |
|
|
else
|
1581 |
|
|
Remove_Warning_Messages (Then_Statements (N));
|
1582 |
|
|
end if;
|
1583 |
|
|
end if;
|
1584 |
|
|
end Analyze_If_Statement;
|
1585 |
|
|
|
1586 |
|
|
----------------------------------------
|
1587 |
|
|
-- Analyze_Implicit_Label_Declaration --
|
1588 |
|
|
----------------------------------------
|
1589 |
|
|
|
1590 |
|
|
-- An implicit label declaration is generated in the innermost enclosing
|
1591 |
|
|
-- declarative part. This is done for labels, and block and loop names.
|
1592 |
|
|
|
1593 |
|
|
-- Note: any changes in this routine may need to be reflected in
|
1594 |
|
|
-- Analyze_Label_Entity.
|
1595 |
|
|
|
1596 |
|
|
procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
|
1597 |
|
|
Id : constant Node_Id := Defining_Identifier (N);
|
1598 |
|
|
begin
|
1599 |
|
|
Enter_Name (Id);
|
1600 |
|
|
Set_Ekind (Id, E_Label);
|
1601 |
|
|
Set_Etype (Id, Standard_Void_Type);
|
1602 |
|
|
Set_Enclosing_Scope (Id, Current_Scope);
|
1603 |
|
|
end Analyze_Implicit_Label_Declaration;
|
1604 |
|
|
|
1605 |
|
|
------------------------------
|
1606 |
|
|
-- Analyze_Iteration_Scheme --
|
1607 |
|
|
------------------------------
|
1608 |
|
|
|
1609 |
|
|
procedure Analyze_Iteration_Scheme (N : Node_Id) is
|
1610 |
|
|
|
1611 |
|
|
procedure Process_Bounds (R : Node_Id);
|
1612 |
|
|
-- If the iteration is given by a range, create temporaries and
|
1613 |
|
|
-- assignment statements block to capture the bounds and perform
|
1614 |
|
|
-- required finalization actions in case a bound includes a function
|
1615 |
|
|
-- call that uses the temporary stack. We first pre-analyze a copy of
|
1616 |
|
|
-- the range in order to determine the expected type, and analyze and
|
1617 |
|
|
-- resolve the original bounds.
|
1618 |
|
|
|
1619 |
|
|
procedure Check_Controlled_Array_Attribute (DS : Node_Id);
|
1620 |
|
|
-- If the bounds are given by a 'Range reference on a function call
|
1621 |
|
|
-- that returns a controlled array, introduce an explicit declaration
|
1622 |
|
|
-- to capture the bounds, so that the function result can be finalized
|
1623 |
|
|
-- in timely fashion.
|
1624 |
|
|
|
1625 |
|
|
function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
|
1626 |
|
|
-- N is the node for an arbitrary construct. This function searches the
|
1627 |
|
|
-- construct N to see if any expressions within it contain function
|
1628 |
|
|
-- calls that use the secondary stack, returning True if any such call
|
1629 |
|
|
-- is found, and False otherwise.
|
1630 |
|
|
|
1631 |
|
|
--------------------
|
1632 |
|
|
-- Process_Bounds --
|
1633 |
|
|
--------------------
|
1634 |
|
|
|
1635 |
|
|
procedure Process_Bounds (R : Node_Id) is
|
1636 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1637 |
|
|
R_Copy : constant Node_Id := New_Copy_Tree (R);
|
1638 |
|
|
Lo : constant Node_Id := Low_Bound (R);
|
1639 |
|
|
Hi : constant Node_Id := High_Bound (R);
|
1640 |
|
|
New_Lo_Bound : Node_Id;
|
1641 |
|
|
New_Hi_Bound : Node_Id;
|
1642 |
|
|
Typ : Entity_Id;
|
1643 |
|
|
|
1644 |
|
|
function One_Bound
|
1645 |
|
|
(Original_Bound : Node_Id;
|
1646 |
|
|
Analyzed_Bound : Node_Id) return Node_Id;
|
1647 |
|
|
-- Capture value of bound and return captured value
|
1648 |
|
|
|
1649 |
|
|
---------------
|
1650 |
|
|
-- One_Bound --
|
1651 |
|
|
---------------
|
1652 |
|
|
|
1653 |
|
|
function One_Bound
|
1654 |
|
|
(Original_Bound : Node_Id;
|
1655 |
|
|
Analyzed_Bound : Node_Id) return Node_Id
|
1656 |
|
|
is
|
1657 |
|
|
Assign : Node_Id;
|
1658 |
|
|
Id : Entity_Id;
|
1659 |
|
|
Decl : Node_Id;
|
1660 |
|
|
|
1661 |
|
|
begin
|
1662 |
|
|
-- If the bound is a constant or an object, no need for a separate
|
1663 |
|
|
-- declaration. If the bound is the result of previous expansion
|
1664 |
|
|
-- it is already analyzed and should not be modified. Note that
|
1665 |
|
|
-- the Bound will be resolved later, if needed, as part of the
|
1666 |
|
|
-- call to Make_Index (literal bounds may need to be resolved to
|
1667 |
|
|
-- type Integer).
|
1668 |
|
|
|
1669 |
|
|
if Analyzed (Original_Bound) then
|
1670 |
|
|
return Original_Bound;
|
1671 |
|
|
|
1672 |
|
|
elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
|
1673 |
|
|
N_Character_Literal)
|
1674 |
|
|
or else Is_Entity_Name (Analyzed_Bound)
|
1675 |
|
|
then
|
1676 |
|
|
Analyze_And_Resolve (Original_Bound, Typ);
|
1677 |
|
|
return Original_Bound;
|
1678 |
|
|
end if;
|
1679 |
|
|
|
1680 |
|
|
-- Here we need to capture the value
|
1681 |
|
|
|
1682 |
|
|
Analyze_And_Resolve (Original_Bound, Typ);
|
1683 |
|
|
|
1684 |
|
|
-- Normally, the best approach is simply to generate a constant
|
1685 |
|
|
-- declaration that captures the bound. However, there is a nasty
|
1686 |
|
|
-- case where this is wrong. If the bound is complex, and has a
|
1687 |
|
|
-- possible use of the secondary stack, we need to generate a
|
1688 |
|
|
-- separate assignment statement to ensure the creation of a block
|
1689 |
|
|
-- which will release the secondary stack.
|
1690 |
|
|
|
1691 |
|
|
-- We prefer the constant declaration, since it leaves us with a
|
1692 |
|
|
-- proper trace of the value, useful in optimizations that get rid
|
1693 |
|
|
-- of junk range checks.
|
1694 |
|
|
|
1695 |
|
|
if not Has_Call_Using_Secondary_Stack (Original_Bound) then
|
1696 |
|
|
Force_Evaluation (Original_Bound);
|
1697 |
|
|
return Original_Bound;
|
1698 |
|
|
end if;
|
1699 |
|
|
|
1700 |
|
|
Id := Make_Temporary (Loc, 'R', Original_Bound);
|
1701 |
|
|
|
1702 |
|
|
-- Here we make a declaration with a separate assignment
|
1703 |
|
|
-- statement, and insert before loop header.
|
1704 |
|
|
|
1705 |
|
|
Decl :=
|
1706 |
|
|
Make_Object_Declaration (Loc,
|
1707 |
|
|
Defining_Identifier => Id,
|
1708 |
|
|
Object_Definition => New_Occurrence_Of (Typ, Loc));
|
1709 |
|
|
|
1710 |
|
|
Assign :=
|
1711 |
|
|
Make_Assignment_Statement (Loc,
|
1712 |
|
|
Name => New_Occurrence_Of (Id, Loc),
|
1713 |
|
|
Expression => Relocate_Node (Original_Bound));
|
1714 |
|
|
|
1715 |
|
|
-- We must recursively clean in the relocated expression the flag
|
1716 |
|
|
-- analyzed to ensure that the expression is reanalyzed. Required
|
1717 |
|
|
-- to ensure that the transient scope is established now (because
|
1718 |
|
|
-- Establish_Transient_Scope discarded generating transient scopes
|
1719 |
|
|
-- in the analysis of the iteration scheme).
|
1720 |
|
|
|
1721 |
|
|
Reset_Analyzed_Flags (Expression (Assign));
|
1722 |
|
|
|
1723 |
|
|
Insert_Actions (Parent (N), New_List (Decl, Assign));
|
1724 |
|
|
|
1725 |
|
|
-- Now that this temporary variable is initialized we decorate it
|
1726 |
|
|
-- as safe-to-reevaluate to inform to the backend that no further
|
1727 |
|
|
-- asignment will be issued and hence it can be handled as side
|
1728 |
|
|
-- effect free. Note that this decoration must be done when the
|
1729 |
|
|
-- assignment has been analyzed because otherwise it will be
|
1730 |
|
|
-- rejected (see Analyze_Assignment).
|
1731 |
|
|
|
1732 |
|
|
Set_Is_Safe_To_Reevaluate (Id);
|
1733 |
|
|
|
1734 |
|
|
Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
|
1735 |
|
|
|
1736 |
|
|
if Nkind (Assign) = N_Assignment_Statement then
|
1737 |
|
|
return Expression (Assign);
|
1738 |
|
|
else
|
1739 |
|
|
return Original_Bound;
|
1740 |
|
|
end if;
|
1741 |
|
|
end One_Bound;
|
1742 |
|
|
|
1743 |
|
|
-- Start of processing for Process_Bounds
|
1744 |
|
|
|
1745 |
|
|
begin
|
1746 |
|
|
Set_Parent (R_Copy, Parent (R));
|
1747 |
|
|
Pre_Analyze_Range (R_Copy);
|
1748 |
|
|
Typ := Etype (R_Copy);
|
1749 |
|
|
|
1750 |
|
|
-- If the type of the discrete range is Universal_Integer, then the
|
1751 |
|
|
-- bound's type must be resolved to Integer, and any object used to
|
1752 |
|
|
-- hold the bound must also have type Integer, unless the literal
|
1753 |
|
|
-- bounds are constant-folded expressions with a user-defined type.
|
1754 |
|
|
|
1755 |
|
|
if Typ = Universal_Integer then
|
1756 |
|
|
if Nkind (Lo) = N_Integer_Literal
|
1757 |
|
|
and then Present (Etype (Lo))
|
1758 |
|
|
and then Scope (Etype (Lo)) /= Standard_Standard
|
1759 |
|
|
then
|
1760 |
|
|
Typ := Etype (Lo);
|
1761 |
|
|
|
1762 |
|
|
elsif Nkind (Hi) = N_Integer_Literal
|
1763 |
|
|
and then Present (Etype (Hi))
|
1764 |
|
|
and then Scope (Etype (Hi)) /= Standard_Standard
|
1765 |
|
|
then
|
1766 |
|
|
Typ := Etype (Hi);
|
1767 |
|
|
|
1768 |
|
|
else
|
1769 |
|
|
Typ := Standard_Integer;
|
1770 |
|
|
end if;
|
1771 |
|
|
end if;
|
1772 |
|
|
|
1773 |
|
|
Set_Etype (R, Typ);
|
1774 |
|
|
|
1775 |
|
|
New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
|
1776 |
|
|
New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
|
1777 |
|
|
|
1778 |
|
|
-- Propagate staticness to loop range itself, in case the
|
1779 |
|
|
-- corresponding subtype is static.
|
1780 |
|
|
|
1781 |
|
|
if New_Lo_Bound /= Lo
|
1782 |
|
|
and then Is_Static_Expression (New_Lo_Bound)
|
1783 |
|
|
then
|
1784 |
|
|
Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
|
1785 |
|
|
end if;
|
1786 |
|
|
|
1787 |
|
|
if New_Hi_Bound /= Hi
|
1788 |
|
|
and then Is_Static_Expression (New_Hi_Bound)
|
1789 |
|
|
then
|
1790 |
|
|
Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
|
1791 |
|
|
end if;
|
1792 |
|
|
end Process_Bounds;
|
1793 |
|
|
|
1794 |
|
|
--------------------------------------
|
1795 |
|
|
-- Check_Controlled_Array_Attribute --
|
1796 |
|
|
--------------------------------------
|
1797 |
|
|
|
1798 |
|
|
procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
|
1799 |
|
|
begin
|
1800 |
|
|
if Nkind (DS) = N_Attribute_Reference
|
1801 |
|
|
and then Is_Entity_Name (Prefix (DS))
|
1802 |
|
|
and then Ekind (Entity (Prefix (DS))) = E_Function
|
1803 |
|
|
and then Is_Array_Type (Etype (Entity (Prefix (DS))))
|
1804 |
|
|
and then
|
1805 |
|
|
Is_Controlled (
|
1806 |
|
|
Component_Type (Etype (Entity (Prefix (DS)))))
|
1807 |
|
|
and then Expander_Active
|
1808 |
|
|
then
|
1809 |
|
|
declare
|
1810 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1811 |
|
|
Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
|
1812 |
|
|
Indx : constant Entity_Id :=
|
1813 |
|
|
Base_Type (Etype (First_Index (Arr)));
|
1814 |
|
|
Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
|
1815 |
|
|
Decl : Node_Id;
|
1816 |
|
|
|
1817 |
|
|
begin
|
1818 |
|
|
Decl :=
|
1819 |
|
|
Make_Subtype_Declaration (Loc,
|
1820 |
|
|
Defining_Identifier => Subt,
|
1821 |
|
|
Subtype_Indication =>
|
1822 |
|
|
Make_Subtype_Indication (Loc,
|
1823 |
|
|
Subtype_Mark => New_Reference_To (Indx, Loc),
|
1824 |
|
|
Constraint =>
|
1825 |
|
|
Make_Range_Constraint (Loc,
|
1826 |
|
|
Relocate_Node (DS))));
|
1827 |
|
|
Insert_Before (Parent (N), Decl);
|
1828 |
|
|
Analyze (Decl);
|
1829 |
|
|
|
1830 |
|
|
Rewrite (DS,
|
1831 |
|
|
Make_Attribute_Reference (Loc,
|
1832 |
|
|
Prefix => New_Reference_To (Subt, Loc),
|
1833 |
|
|
Attribute_Name => Attribute_Name (DS)));
|
1834 |
|
|
Analyze (DS);
|
1835 |
|
|
end;
|
1836 |
|
|
end if;
|
1837 |
|
|
end Check_Controlled_Array_Attribute;
|
1838 |
|
|
|
1839 |
|
|
------------------------------------
|
1840 |
|
|
-- Has_Call_Using_Secondary_Stack --
|
1841 |
|
|
------------------------------------
|
1842 |
|
|
|
1843 |
|
|
function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
|
1844 |
|
|
|
1845 |
|
|
function Check_Call (N : Node_Id) return Traverse_Result;
|
1846 |
|
|
-- Check if N is a function call which uses the secondary stack
|
1847 |
|
|
|
1848 |
|
|
----------------
|
1849 |
|
|
-- Check_Call --
|
1850 |
|
|
----------------
|
1851 |
|
|
|
1852 |
|
|
function Check_Call (N : Node_Id) return Traverse_Result is
|
1853 |
|
|
Nam : Node_Id;
|
1854 |
|
|
Subp : Entity_Id;
|
1855 |
|
|
Return_Typ : Entity_Id;
|
1856 |
|
|
|
1857 |
|
|
begin
|
1858 |
|
|
if Nkind (N) = N_Function_Call then
|
1859 |
|
|
Nam := Name (N);
|
1860 |
|
|
|
1861 |
|
|
-- Call using access to subprogram with explicit dereference
|
1862 |
|
|
|
1863 |
|
|
if Nkind (Nam) = N_Explicit_Dereference then
|
1864 |
|
|
Subp := Etype (Nam);
|
1865 |
|
|
|
1866 |
|
|
-- Normal case
|
1867 |
|
|
|
1868 |
|
|
else
|
1869 |
|
|
Subp := Entity (Nam);
|
1870 |
|
|
end if;
|
1871 |
|
|
|
1872 |
|
|
Return_Typ := Etype (Subp);
|
1873 |
|
|
|
1874 |
|
|
if Is_Composite_Type (Return_Typ)
|
1875 |
|
|
and then not Is_Constrained (Return_Typ)
|
1876 |
|
|
then
|
1877 |
|
|
return Abandon;
|
1878 |
|
|
|
1879 |
|
|
elsif Sec_Stack_Needed_For_Return (Subp) then
|
1880 |
|
|
return Abandon;
|
1881 |
|
|
end if;
|
1882 |
|
|
end if;
|
1883 |
|
|
|
1884 |
|
|
-- Continue traversing the tree
|
1885 |
|
|
|
1886 |
|
|
return OK;
|
1887 |
|
|
end Check_Call;
|
1888 |
|
|
|
1889 |
|
|
function Check_Calls is new Traverse_Func (Check_Call);
|
1890 |
|
|
|
1891 |
|
|
-- Start of processing for Has_Call_Using_Secondary_Stack
|
1892 |
|
|
|
1893 |
|
|
begin
|
1894 |
|
|
return Check_Calls (N) = Abandon;
|
1895 |
|
|
end Has_Call_Using_Secondary_Stack;
|
1896 |
|
|
|
1897 |
|
|
-- Start of processing for Analyze_Iteration_Scheme
|
1898 |
|
|
|
1899 |
|
|
begin
|
1900 |
|
|
-- If this is a rewritten quantified expression, the iteration scheme
|
1901 |
|
|
-- has been analyzed already. Do no repeat analysis because the loop
|
1902 |
|
|
-- variable is already declared.
|
1903 |
|
|
|
1904 |
|
|
if Analyzed (N) then
|
1905 |
|
|
return;
|
1906 |
|
|
end if;
|
1907 |
|
|
|
1908 |
|
|
-- For an infinite loop, there is no iteration scheme
|
1909 |
|
|
|
1910 |
|
|
if No (N) then
|
1911 |
|
|
return;
|
1912 |
|
|
end if;
|
1913 |
|
|
|
1914 |
|
|
-- Iteration scheme is present
|
1915 |
|
|
|
1916 |
|
|
declare
|
1917 |
|
|
Cond : constant Node_Id := Condition (N);
|
1918 |
|
|
|
1919 |
|
|
begin
|
1920 |
|
|
-- For WHILE loop, verify that the condition is a Boolean expression
|
1921 |
|
|
-- and resolve and check it.
|
1922 |
|
|
|
1923 |
|
|
if Present (Cond) then
|
1924 |
|
|
Analyze_And_Resolve (Cond, Any_Boolean);
|
1925 |
|
|
Check_Unset_Reference (Cond);
|
1926 |
|
|
Set_Current_Value_Condition (N);
|
1927 |
|
|
return;
|
1928 |
|
|
|
1929 |
|
|
-- For an iterator specification with "of", pre-analyze range to
|
1930 |
|
|
-- capture function calls that may require finalization actions.
|
1931 |
|
|
|
1932 |
|
|
elsif Present (Iterator_Specification (N)) then
|
1933 |
|
|
Pre_Analyze_Range (Name (Iterator_Specification (N)));
|
1934 |
|
|
Analyze_Iterator_Specification (Iterator_Specification (N));
|
1935 |
|
|
|
1936 |
|
|
-- Else we have a FOR loop
|
1937 |
|
|
|
1938 |
|
|
else
|
1939 |
|
|
declare
|
1940 |
|
|
LP : constant Node_Id := Loop_Parameter_Specification (N);
|
1941 |
|
|
Id : constant Entity_Id := Defining_Identifier (LP);
|
1942 |
|
|
DS : constant Node_Id := Discrete_Subtype_Definition (LP);
|
1943 |
|
|
|
1944 |
|
|
D_Copy : Node_Id;
|
1945 |
|
|
|
1946 |
|
|
begin
|
1947 |
|
|
Enter_Name (Id);
|
1948 |
|
|
|
1949 |
|
|
-- We always consider the loop variable to be referenced, since
|
1950 |
|
|
-- the loop may be used just for counting purposes.
|
1951 |
|
|
|
1952 |
|
|
Generate_Reference (Id, N, ' ');
|
1953 |
|
|
|
1954 |
|
|
-- Check for the case of loop variable hiding a local variable
|
1955 |
|
|
-- (used later on to give a nice warning if the hidden variable
|
1956 |
|
|
-- is never assigned).
|
1957 |
|
|
|
1958 |
|
|
declare
|
1959 |
|
|
H : constant Entity_Id := Homonym (Id);
|
1960 |
|
|
begin
|
1961 |
|
|
if Present (H)
|
1962 |
|
|
and then Enclosing_Dynamic_Scope (H) =
|
1963 |
|
|
Enclosing_Dynamic_Scope (Id)
|
1964 |
|
|
and then Ekind (H) = E_Variable
|
1965 |
|
|
and then Is_Discrete_Type (Etype (H))
|
1966 |
|
|
then
|
1967 |
|
|
Set_Hiding_Loop_Variable (H, Id);
|
1968 |
|
|
end if;
|
1969 |
|
|
end;
|
1970 |
|
|
|
1971 |
|
|
-- Loop parameter specification must include subtype mark in
|
1972 |
|
|
-- SPARK.
|
1973 |
|
|
|
1974 |
|
|
if Nkind (DS) = N_Range then
|
1975 |
|
|
Check_SPARK_Restriction
|
1976 |
|
|
("loop parameter specification must include subtype mark",
|
1977 |
|
|
N);
|
1978 |
|
|
end if;
|
1979 |
|
|
|
1980 |
|
|
-- Now analyze the subtype definition. If it is a range, create
|
1981 |
|
|
-- temporaries for bounds.
|
1982 |
|
|
|
1983 |
|
|
if Nkind (DS) = N_Range
|
1984 |
|
|
and then Expander_Active
|
1985 |
|
|
then
|
1986 |
|
|
Process_Bounds (DS);
|
1987 |
|
|
|
1988 |
|
|
-- Expander not active or else range of iteration is a subtype
|
1989 |
|
|
-- indication, an entity, or a function call that yields an
|
1990 |
|
|
-- aggregate or a container.
|
1991 |
|
|
|
1992 |
|
|
else
|
1993 |
|
|
D_Copy := New_Copy_Tree (DS);
|
1994 |
|
|
Set_Parent (D_Copy, Parent (DS));
|
1995 |
|
|
Pre_Analyze_Range (D_Copy);
|
1996 |
|
|
|
1997 |
|
|
-- Ada 2012: If the domain of iteration is a function call,
|
1998 |
|
|
-- it is the new iterator form.
|
1999 |
|
|
|
2000 |
|
|
-- We have also implemented the shorter form : for X in S
|
2001 |
|
|
-- for Alfa use. In this case, 'Old and 'Result must be
|
2002 |
|
|
-- treated as entity names over which iterators are legal.
|
2003 |
|
|
|
2004 |
|
|
if Nkind (D_Copy) = N_Function_Call
|
2005 |
|
|
or else
|
2006 |
|
|
(Alfa_Mode
|
2007 |
|
|
and then (Nkind (D_Copy) = N_Attribute_Reference
|
2008 |
|
|
and then
|
2009 |
|
|
(Attribute_Name (D_Copy) = Name_Result
|
2010 |
|
|
or else Attribute_Name (D_Copy) = Name_Old)))
|
2011 |
|
|
or else
|
2012 |
|
|
(Is_Entity_Name (D_Copy)
|
2013 |
|
|
and then not Is_Type (Entity (D_Copy)))
|
2014 |
|
|
then
|
2015 |
|
|
-- This is an iterator specification. Rewrite as such
|
2016 |
|
|
-- and analyze, to capture function calls that may
|
2017 |
|
|
-- require finalization actions.
|
2018 |
|
|
|
2019 |
|
|
declare
|
2020 |
|
|
I_Spec : constant Node_Id :=
|
2021 |
|
|
Make_Iterator_Specification (Sloc (LP),
|
2022 |
|
|
Defining_Identifier =>
|
2023 |
|
|
Relocate_Node (Id),
|
2024 |
|
|
Name => D_Copy,
|
2025 |
|
|
Subtype_Indication => Empty,
|
2026 |
|
|
Reverse_Present =>
|
2027 |
|
|
Reverse_Present (LP));
|
2028 |
|
|
begin
|
2029 |
|
|
Set_Iterator_Specification (N, I_Spec);
|
2030 |
|
|
Set_Loop_Parameter_Specification (N, Empty);
|
2031 |
|
|
Analyze_Iterator_Specification (I_Spec);
|
2032 |
|
|
|
2033 |
|
|
-- In a generic context, analyze the original domain
|
2034 |
|
|
-- of iteration, for name capture.
|
2035 |
|
|
|
2036 |
|
|
if not Expander_Active then
|
2037 |
|
|
Analyze (DS);
|
2038 |
|
|
end if;
|
2039 |
|
|
|
2040 |
|
|
-- Set kind of loop parameter, which may be used in
|
2041 |
|
|
-- the subsequent analysis of the condition in a
|
2042 |
|
|
-- quantified expression.
|
2043 |
|
|
|
2044 |
|
|
Set_Ekind (Id, E_Loop_Parameter);
|
2045 |
|
|
return;
|
2046 |
|
|
end;
|
2047 |
|
|
|
2048 |
|
|
-- Domain of iteration is not a function call, and is
|
2049 |
|
|
-- side-effect free.
|
2050 |
|
|
|
2051 |
|
|
else
|
2052 |
|
|
Analyze (DS);
|
2053 |
|
|
end if;
|
2054 |
|
|
end if;
|
2055 |
|
|
|
2056 |
|
|
if DS = Error then
|
2057 |
|
|
return;
|
2058 |
|
|
end if;
|
2059 |
|
|
|
2060 |
|
|
-- Some additional checks if we are iterating through a type
|
2061 |
|
|
|
2062 |
|
|
if Is_Entity_Name (DS)
|
2063 |
|
|
and then Present (Entity (DS))
|
2064 |
|
|
and then Is_Type (Entity (DS))
|
2065 |
|
|
then
|
2066 |
|
|
-- The subtype indication may denote the completion of an
|
2067 |
|
|
-- incomplete type declaration.
|
2068 |
|
|
|
2069 |
|
|
if Ekind (Entity (DS)) = E_Incomplete_Type then
|
2070 |
|
|
Set_Entity (DS, Get_Full_View (Entity (DS)));
|
2071 |
|
|
Set_Etype (DS, Entity (DS));
|
2072 |
|
|
end if;
|
2073 |
|
|
|
2074 |
|
|
-- Attempt to iterate through non-static predicate
|
2075 |
|
|
|
2076 |
|
|
if Is_Discrete_Type (Entity (DS))
|
2077 |
|
|
and then Present (Predicate_Function (Entity (DS)))
|
2078 |
|
|
and then No (Static_Predicate (Entity (DS)))
|
2079 |
|
|
then
|
2080 |
|
|
Bad_Predicated_Subtype_Use
|
2081 |
|
|
("cannot use subtype& with non-static "
|
2082 |
|
|
& "predicate for loop iteration", DS, Entity (DS));
|
2083 |
|
|
end if;
|
2084 |
|
|
end if;
|
2085 |
|
|
|
2086 |
|
|
-- Error if not discrete type
|
2087 |
|
|
|
2088 |
|
|
if not Is_Discrete_Type (Etype (DS)) then
|
2089 |
|
|
Wrong_Type (DS, Any_Discrete);
|
2090 |
|
|
Set_Etype (DS, Any_Type);
|
2091 |
|
|
end if;
|
2092 |
|
|
|
2093 |
|
|
Check_Controlled_Array_Attribute (DS);
|
2094 |
|
|
|
2095 |
|
|
Make_Index (DS, LP, In_Iter_Schm => True);
|
2096 |
|
|
|
2097 |
|
|
Set_Ekind (Id, E_Loop_Parameter);
|
2098 |
|
|
|
2099 |
|
|
-- If the loop is part of a predicate or precondition, it may
|
2100 |
|
|
-- be analyzed twice, once in the source and once on the copy
|
2101 |
|
|
-- used to check conformance. Preserve the original itype
|
2102 |
|
|
-- because the second one may be created in a different scope,
|
2103 |
|
|
-- e.g. a precondition procedure, leading to a crash in GIGI.
|
2104 |
|
|
|
2105 |
|
|
if No (Etype (Id)) or else Etype (Id) = Any_Type then
|
2106 |
|
|
Set_Etype (Id, Etype (DS));
|
2107 |
|
|
end if;
|
2108 |
|
|
|
2109 |
|
|
-- Treat a range as an implicit reference to the type, to
|
2110 |
|
|
-- inhibit spurious warnings.
|
2111 |
|
|
|
2112 |
|
|
Generate_Reference (Base_Type (Etype (DS)), N, ' ');
|
2113 |
|
|
Set_Is_Known_Valid (Id, True);
|
2114 |
|
|
|
2115 |
|
|
-- The loop is not a declarative part, so the only entity
|
2116 |
|
|
-- declared "within" must be frozen explicitly.
|
2117 |
|
|
|
2118 |
|
|
declare
|
2119 |
|
|
Flist : constant List_Id := Freeze_Entity (Id, N);
|
2120 |
|
|
begin
|
2121 |
|
|
if Is_Non_Empty_List (Flist) then
|
2122 |
|
|
Insert_Actions (N, Flist);
|
2123 |
|
|
end if;
|
2124 |
|
|
end;
|
2125 |
|
|
|
2126 |
|
|
-- Check for null or possibly null range and issue warning. We
|
2127 |
|
|
-- suppress such messages in generic templates and instances,
|
2128 |
|
|
-- because in practice they tend to be dubious in these cases.
|
2129 |
|
|
|
2130 |
|
|
if Nkind (DS) = N_Range and then Comes_From_Source (N) then
|
2131 |
|
|
declare
|
2132 |
|
|
L : constant Node_Id := Low_Bound (DS);
|
2133 |
|
|
H : constant Node_Id := High_Bound (DS);
|
2134 |
|
|
|
2135 |
|
|
begin
|
2136 |
|
|
-- If range of loop is null, issue warning
|
2137 |
|
|
|
2138 |
|
|
if Compile_Time_Compare
|
2139 |
|
|
(L, H, Assume_Valid => True) = GT
|
2140 |
|
|
then
|
2141 |
|
|
-- Suppress the warning if inside a generic template
|
2142 |
|
|
-- or instance, since in practice they tend to be
|
2143 |
|
|
-- dubious in these cases since they can result from
|
2144 |
|
|
-- intended parametrization.
|
2145 |
|
|
|
2146 |
|
|
if not Inside_A_Generic
|
2147 |
|
|
and then not In_Instance
|
2148 |
|
|
then
|
2149 |
|
|
-- Specialize msg if invalid values could make the
|
2150 |
|
|
-- loop non-null after all.
|
2151 |
|
|
|
2152 |
|
|
if Compile_Time_Compare
|
2153 |
|
|
(L, H, Assume_Valid => False) = GT
|
2154 |
|
|
then
|
2155 |
|
|
Error_Msg_N
|
2156 |
|
|
("?loop range is null, loop will not execute",
|
2157 |
|
|
DS);
|
2158 |
|
|
|
2159 |
|
|
-- Since we know the range of the loop is null,
|
2160 |
|
|
-- set the appropriate flag to remove the loop
|
2161 |
|
|
-- entirely during expansion.
|
2162 |
|
|
|
2163 |
|
|
Set_Is_Null_Loop (Parent (N));
|
2164 |
|
|
|
2165 |
|
|
-- Here is where the loop could execute because
|
2166 |
|
|
-- of invalid values, so issue appropriate
|
2167 |
|
|
-- message and in this case we do not set the
|
2168 |
|
|
-- Is_Null_Loop flag since the loop may execute.
|
2169 |
|
|
|
2170 |
|
|
else
|
2171 |
|
|
Error_Msg_N
|
2172 |
|
|
("?loop range may be null, "
|
2173 |
|
|
& "loop may not execute",
|
2174 |
|
|
DS);
|
2175 |
|
|
Error_Msg_N
|
2176 |
|
|
("?can only execute if invalid values "
|
2177 |
|
|
& "are present",
|
2178 |
|
|
DS);
|
2179 |
|
|
end if;
|
2180 |
|
|
end if;
|
2181 |
|
|
|
2182 |
|
|
-- In either case, suppress warnings in the body of
|
2183 |
|
|
-- the loop, since it is likely that these warnings
|
2184 |
|
|
-- will be inappropriate if the loop never actually
|
2185 |
|
|
-- executes, which is likely.
|
2186 |
|
|
|
2187 |
|
|
Set_Suppress_Loop_Warnings (Parent (N));
|
2188 |
|
|
|
2189 |
|
|
-- The other case for a warning is a reverse loop
|
2190 |
|
|
-- where the upper bound is the integer literal zero
|
2191 |
|
|
-- or one, and the lower bound can be positive.
|
2192 |
|
|
|
2193 |
|
|
-- For example, we have
|
2194 |
|
|
|
2195 |
|
|
-- for J in reverse N .. 1 loop
|
2196 |
|
|
|
2197 |
|
|
-- In practice, this is very likely to be a case of
|
2198 |
|
|
-- reversing the bounds incorrectly in the range.
|
2199 |
|
|
|
2200 |
|
|
elsif Reverse_Present (LP)
|
2201 |
|
|
and then Nkind (Original_Node (H)) =
|
2202 |
|
|
N_Integer_Literal
|
2203 |
|
|
and then (Intval (Original_Node (H)) = Uint_0
|
2204 |
|
|
or else
|
2205 |
|
|
Intval (Original_Node (H)) = Uint_1)
|
2206 |
|
|
then
|
2207 |
|
|
Error_Msg_N ("?loop range may be null", DS);
|
2208 |
|
|
Error_Msg_N ("\?bounds may be wrong way round", DS);
|
2209 |
|
|
end if;
|
2210 |
|
|
end;
|
2211 |
|
|
end if;
|
2212 |
|
|
end;
|
2213 |
|
|
end if;
|
2214 |
|
|
end;
|
2215 |
|
|
end Analyze_Iteration_Scheme;
|
2216 |
|
|
|
2217 |
|
|
-------------------------------------
|
2218 |
|
|
-- Analyze_Iterator_Specification --
|
2219 |
|
|
-------------------------------------
|
2220 |
|
|
|
2221 |
|
|
procedure Analyze_Iterator_Specification (N : Node_Id) is
|
2222 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2223 |
|
|
Def_Id : constant Node_Id := Defining_Identifier (N);
|
2224 |
|
|
Subt : constant Node_Id := Subtype_Indication (N);
|
2225 |
|
|
Iter_Name : constant Node_Id := Name (N);
|
2226 |
|
|
|
2227 |
|
|
Ent : Entity_Id;
|
2228 |
|
|
Typ : Entity_Id;
|
2229 |
|
|
|
2230 |
|
|
begin
|
2231 |
|
|
-- In semantics/Alfa modes, we won't be further expanding the loop, so
|
2232 |
|
|
-- introduce loop variable so that loop body can be properly analyzed.
|
2233 |
|
|
-- Otherwise this happens after expansion.
|
2234 |
|
|
|
2235 |
|
|
if Operating_Mode = Check_Semantics
|
2236 |
|
|
or else Alfa_Mode
|
2237 |
|
|
then
|
2238 |
|
|
Enter_Name (Def_Id);
|
2239 |
|
|
end if;
|
2240 |
|
|
|
2241 |
|
|
Set_Ekind (Def_Id, E_Variable);
|
2242 |
|
|
|
2243 |
|
|
if Present (Subt) then
|
2244 |
|
|
Analyze (Subt);
|
2245 |
|
|
end if;
|
2246 |
|
|
|
2247 |
|
|
-- If domain of iteration is an expression, create a declaration for
|
2248 |
|
|
-- it, so that finalization actions are introduced outside of the loop.
|
2249 |
|
|
-- The declaration must be a renaming because the body of the loop may
|
2250 |
|
|
-- assign to elements.
|
2251 |
|
|
|
2252 |
|
|
if not Is_Entity_Name (Iter_Name) then
|
2253 |
|
|
declare
|
2254 |
|
|
Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
|
2255 |
|
|
Decl : Node_Id;
|
2256 |
|
|
|
2257 |
|
|
begin
|
2258 |
|
|
Typ := Etype (Iter_Name);
|
2259 |
|
|
|
2260 |
|
|
-- The name in the renaming declaration may be a function call.
|
2261 |
|
|
-- Indicate that it does not come from source, to suppress
|
2262 |
|
|
-- spurious warnings on renamings of parameterless functions,
|
2263 |
|
|
-- a common enough idiom in user-defined iterators.
|
2264 |
|
|
|
2265 |
|
|
Decl :=
|
2266 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
2267 |
|
|
Defining_Identifier => Id,
|
2268 |
|
|
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
|
2269 |
|
|
Name =>
|
2270 |
|
|
New_Copy_Tree (Iter_Name, New_Sloc => Loc));
|
2271 |
|
|
|
2272 |
|
|
Insert_Actions (Parent (Parent (N)), New_List (Decl));
|
2273 |
|
|
Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
|
2274 |
|
|
Set_Etype (Id, Typ);
|
2275 |
|
|
Set_Etype (Name (N), Typ);
|
2276 |
|
|
end;
|
2277 |
|
|
|
2278 |
|
|
-- Container is an entity or an array with uncontrolled components, or
|
2279 |
|
|
-- else it is a container iterator given by a function call, typically
|
2280 |
|
|
-- called Iterate in the case of predefined containers, even though
|
2281 |
|
|
-- Iterate is not a reserved name. What matter is that the return type
|
2282 |
|
|
-- of the function is an iterator type.
|
2283 |
|
|
|
2284 |
|
|
else
|
2285 |
|
|
Analyze (Iter_Name);
|
2286 |
|
|
|
2287 |
|
|
if Nkind (Iter_Name) = N_Function_Call then
|
2288 |
|
|
declare
|
2289 |
|
|
C : constant Node_Id := Name (Iter_Name);
|
2290 |
|
|
I : Interp_Index;
|
2291 |
|
|
It : Interp;
|
2292 |
|
|
|
2293 |
|
|
begin
|
2294 |
|
|
if not Is_Overloaded (Iter_Name) then
|
2295 |
|
|
Resolve (Iter_Name, Etype (C));
|
2296 |
|
|
|
2297 |
|
|
else
|
2298 |
|
|
Get_First_Interp (C, I, It);
|
2299 |
|
|
while It.Typ /= Empty loop
|
2300 |
|
|
if Reverse_Present (N) then
|
2301 |
|
|
if Is_Reversible_Iterator (It.Typ) then
|
2302 |
|
|
Resolve (Iter_Name, It.Typ);
|
2303 |
|
|
exit;
|
2304 |
|
|
end if;
|
2305 |
|
|
|
2306 |
|
|
elsif Is_Iterator (It.Typ) then
|
2307 |
|
|
Resolve (Iter_Name, It.Typ);
|
2308 |
|
|
exit;
|
2309 |
|
|
end if;
|
2310 |
|
|
|
2311 |
|
|
Get_Next_Interp (I, It);
|
2312 |
|
|
end loop;
|
2313 |
|
|
end if;
|
2314 |
|
|
end;
|
2315 |
|
|
|
2316 |
|
|
-- Domain of iteration is not overloaded
|
2317 |
|
|
|
2318 |
|
|
else
|
2319 |
|
|
Resolve (Iter_Name, Etype (Iter_Name));
|
2320 |
|
|
end if;
|
2321 |
|
|
end if;
|
2322 |
|
|
|
2323 |
|
|
Typ := Etype (Iter_Name);
|
2324 |
|
|
|
2325 |
|
|
if Is_Array_Type (Typ) then
|
2326 |
|
|
if Of_Present (N) then
|
2327 |
|
|
Set_Etype (Def_Id, Component_Type (Typ));
|
2328 |
|
|
|
2329 |
|
|
-- Here we have a missing Range attribute
|
2330 |
|
|
|
2331 |
|
|
else
|
2332 |
|
|
Error_Msg_N
|
2333 |
|
|
("missing Range attribute in iteration over an array", N);
|
2334 |
|
|
|
2335 |
|
|
-- In Ada 2012 mode, this may be an attempt at an iterator
|
2336 |
|
|
|
2337 |
|
|
if Ada_Version >= Ada_2012 then
|
2338 |
|
|
Error_Msg_NE
|
2339 |
|
|
("\if& is meant to designate an element of the array, use OF",
|
2340 |
|
|
N, Def_Id);
|
2341 |
|
|
end if;
|
2342 |
|
|
|
2343 |
|
|
-- Prevent cascaded errors
|
2344 |
|
|
|
2345 |
|
|
Set_Ekind (Def_Id, E_Loop_Parameter);
|
2346 |
|
|
Set_Etype (Def_Id, Etype (First_Index (Typ)));
|
2347 |
|
|
end if;
|
2348 |
|
|
|
2349 |
|
|
-- Check for type error in iterator
|
2350 |
|
|
|
2351 |
|
|
elsif Typ = Any_Type then
|
2352 |
|
|
return;
|
2353 |
|
|
|
2354 |
|
|
-- Iteration over a container
|
2355 |
|
|
|
2356 |
|
|
else
|
2357 |
|
|
Set_Ekind (Def_Id, E_Loop_Parameter);
|
2358 |
|
|
|
2359 |
|
|
if Of_Present (N) then
|
2360 |
|
|
|
2361 |
|
|
-- The type of the loop variable is the Iterator_Element aspect of
|
2362 |
|
|
-- the container type.
|
2363 |
|
|
|
2364 |
|
|
declare
|
2365 |
|
|
Element : constant Entity_Id :=
|
2366 |
|
|
Find_Aspect (Typ, Aspect_Iterator_Element);
|
2367 |
|
|
begin
|
2368 |
|
|
if No (Element) then
|
2369 |
|
|
Error_Msg_NE ("cannot iterate over&", N, Typ);
|
2370 |
|
|
return;
|
2371 |
|
|
else
|
2372 |
|
|
Set_Etype (Def_Id, Entity (Element));
|
2373 |
|
|
end if;
|
2374 |
|
|
end;
|
2375 |
|
|
|
2376 |
|
|
else
|
2377 |
|
|
-- For an iteration of the form IN, the name must denote an
|
2378 |
|
|
-- iterator, typically the result of a call to Iterate. Give a
|
2379 |
|
|
-- useful error message when the name is a container by itself.
|
2380 |
|
|
|
2381 |
|
|
if Is_Entity_Name (Original_Node (Name (N)))
|
2382 |
|
|
and then not Is_Iterator (Typ)
|
2383 |
|
|
then
|
2384 |
|
|
if No (Find_Aspect (Typ, Aspect_Iterator_Element)) then
|
2385 |
|
|
Error_Msg_NE
|
2386 |
|
|
("cannot iterate over&", Name (N), Typ);
|
2387 |
|
|
else
|
2388 |
|
|
Error_Msg_N
|
2389 |
|
|
("name must be an iterator, not a container", Name (N));
|
2390 |
|
|
end if;
|
2391 |
|
|
|
2392 |
|
|
Error_Msg_NE
|
2393 |
|
|
("\to iterate directly over the elements of a container, " &
|
2394 |
|
|
"write `of &`", Name (N), Original_Node (Name (N)));
|
2395 |
|
|
end if;
|
2396 |
|
|
|
2397 |
|
|
-- The result type of Iterate function is the classwide type of
|
2398 |
|
|
-- the interface parent. We need the specific Cursor type defined
|
2399 |
|
|
-- in the container package.
|
2400 |
|
|
|
2401 |
|
|
Ent := First_Entity (Scope (Typ));
|
2402 |
|
|
while Present (Ent) loop
|
2403 |
|
|
if Chars (Ent) = Name_Cursor then
|
2404 |
|
|
Set_Etype (Def_Id, Etype (Ent));
|
2405 |
|
|
exit;
|
2406 |
|
|
end if;
|
2407 |
|
|
|
2408 |
|
|
Next_Entity (Ent);
|
2409 |
|
|
end loop;
|
2410 |
|
|
end if;
|
2411 |
|
|
end if;
|
2412 |
|
|
end Analyze_Iterator_Specification;
|
2413 |
|
|
|
2414 |
|
|
-------------------
|
2415 |
|
|
-- Analyze_Label --
|
2416 |
|
|
-------------------
|
2417 |
|
|
|
2418 |
|
|
-- Note: the semantic work required for analyzing labels (setting them as
|
2419 |
|
|
-- reachable) was done in a prepass through the statements in the block,
|
2420 |
|
|
-- so that forward gotos would be properly handled. See Analyze_Statements
|
2421 |
|
|
-- for further details. The only processing required here is to deal with
|
2422 |
|
|
-- optimizations that depend on an assumption of sequential control flow,
|
2423 |
|
|
-- since of course the occurrence of a label breaks this assumption.
|
2424 |
|
|
|
2425 |
|
|
procedure Analyze_Label (N : Node_Id) is
|
2426 |
|
|
pragma Warnings (Off, N);
|
2427 |
|
|
begin
|
2428 |
|
|
Kill_Current_Values;
|
2429 |
|
|
end Analyze_Label;
|
2430 |
|
|
|
2431 |
|
|
--------------------------
|
2432 |
|
|
-- Analyze_Label_Entity --
|
2433 |
|
|
--------------------------
|
2434 |
|
|
|
2435 |
|
|
procedure Analyze_Label_Entity (E : Entity_Id) is
|
2436 |
|
|
begin
|
2437 |
|
|
Set_Ekind (E, E_Label);
|
2438 |
|
|
Set_Etype (E, Standard_Void_Type);
|
2439 |
|
|
Set_Enclosing_Scope (E, Current_Scope);
|
2440 |
|
|
Set_Reachable (E, True);
|
2441 |
|
|
end Analyze_Label_Entity;
|
2442 |
|
|
|
2443 |
|
|
----------------------------
|
2444 |
|
|
-- Analyze_Loop_Statement --
|
2445 |
|
|
----------------------------
|
2446 |
|
|
|
2447 |
|
|
procedure Analyze_Loop_Statement (N : Node_Id) is
|
2448 |
|
|
|
2449 |
|
|
function Is_Container_Iterator (Iter : Node_Id) return Boolean;
|
2450 |
|
|
-- Given a loop iteration scheme, determine whether it is an Ada 2012
|
2451 |
|
|
-- container iteration.
|
2452 |
|
|
|
2453 |
|
|
function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
|
2454 |
|
|
-- Determine whether node N is the sole statement of a block
|
2455 |
|
|
|
2456 |
|
|
---------------------------
|
2457 |
|
|
-- Is_Container_Iterator --
|
2458 |
|
|
---------------------------
|
2459 |
|
|
|
2460 |
|
|
function Is_Container_Iterator (Iter : Node_Id) return Boolean is
|
2461 |
|
|
begin
|
2462 |
|
|
-- Infinite loop
|
2463 |
|
|
|
2464 |
|
|
if No (Iter) then
|
2465 |
|
|
return False;
|
2466 |
|
|
|
2467 |
|
|
-- While loop
|
2468 |
|
|
|
2469 |
|
|
elsif Present (Condition (Iter)) then
|
2470 |
|
|
return False;
|
2471 |
|
|
|
2472 |
|
|
-- for Def_Id in [reverse] Name loop
|
2473 |
|
|
-- for Def_Id [: Subtype_Indication] of [reverse] Name loop
|
2474 |
|
|
|
2475 |
|
|
elsif Present (Iterator_Specification (Iter)) then
|
2476 |
|
|
declare
|
2477 |
|
|
Nam : constant Node_Id := Name (Iterator_Specification (Iter));
|
2478 |
|
|
Nam_Copy : Node_Id;
|
2479 |
|
|
|
2480 |
|
|
begin
|
2481 |
|
|
Nam_Copy := New_Copy_Tree (Nam);
|
2482 |
|
|
Set_Parent (Nam_Copy, Parent (Nam));
|
2483 |
|
|
Pre_Analyze_Range (Nam_Copy);
|
2484 |
|
|
|
2485 |
|
|
-- The only two options here are iteration over a container or
|
2486 |
|
|
-- an array.
|
2487 |
|
|
|
2488 |
|
|
return not Is_Array_Type (Etype (Nam_Copy));
|
2489 |
|
|
end;
|
2490 |
|
|
|
2491 |
|
|
-- for Def_Id in [reverse] Discrete_Subtype_Definition loop
|
2492 |
|
|
|
2493 |
|
|
else
|
2494 |
|
|
declare
|
2495 |
|
|
LP : constant Node_Id := Loop_Parameter_Specification (Iter);
|
2496 |
|
|
DS : constant Node_Id := Discrete_Subtype_Definition (LP);
|
2497 |
|
|
DS_Copy : Node_Id;
|
2498 |
|
|
|
2499 |
|
|
begin
|
2500 |
|
|
DS_Copy := New_Copy_Tree (DS);
|
2501 |
|
|
Set_Parent (DS_Copy, Parent (DS));
|
2502 |
|
|
Pre_Analyze_Range (DS_Copy);
|
2503 |
|
|
|
2504 |
|
|
-- Check for a call to Iterate ()
|
2505 |
|
|
|
2506 |
|
|
return
|
2507 |
|
|
Nkind (DS_Copy) = N_Function_Call
|
2508 |
|
|
and then Needs_Finalization (Etype (DS_Copy));
|
2509 |
|
|
end;
|
2510 |
|
|
end if;
|
2511 |
|
|
end Is_Container_Iterator;
|
2512 |
|
|
|
2513 |
|
|
-------------------------
|
2514 |
|
|
-- Is_Wrapped_In_Block --
|
2515 |
|
|
-------------------------
|
2516 |
|
|
|
2517 |
|
|
function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
|
2518 |
|
|
HSS : constant Node_Id := Parent (N);
|
2519 |
|
|
|
2520 |
|
|
begin
|
2521 |
|
|
return
|
2522 |
|
|
Nkind (HSS) = N_Handled_Sequence_Of_Statements
|
2523 |
|
|
and then Nkind (Parent (HSS)) = N_Block_Statement
|
2524 |
|
|
and then First (Statements (HSS)) = N
|
2525 |
|
|
and then No (Next (First (Statements (HSS))));
|
2526 |
|
|
end Is_Wrapped_In_Block;
|
2527 |
|
|
|
2528 |
|
|
-- Local declarations
|
2529 |
|
|
|
2530 |
|
|
Id : constant Node_Id := Identifier (N);
|
2531 |
|
|
Iter : constant Node_Id := Iteration_Scheme (N);
|
2532 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2533 |
|
|
Ent : Entity_Id;
|
2534 |
|
|
|
2535 |
|
|
-- Start of processing for Analyze_Loop_Statement
|
2536 |
|
|
|
2537 |
|
|
begin
|
2538 |
|
|
if Present (Id) then
|
2539 |
|
|
|
2540 |
|
|
-- Make name visible, e.g. for use in exit statements. Loop labels
|
2541 |
|
|
-- are always considered to be referenced.
|
2542 |
|
|
|
2543 |
|
|
Analyze (Id);
|
2544 |
|
|
Ent := Entity (Id);
|
2545 |
|
|
|
2546 |
|
|
-- Guard against serious error (typically, a scope mismatch when
|
2547 |
|
|
-- semantic analysis is requested) by creating loop entity to
|
2548 |
|
|
-- continue analysis.
|
2549 |
|
|
|
2550 |
|
|
if No (Ent) then
|
2551 |
|
|
if Total_Errors_Detected /= 0 then
|
2552 |
|
|
Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
|
2553 |
|
|
else
|
2554 |
|
|
raise Program_Error;
|
2555 |
|
|
end if;
|
2556 |
|
|
|
2557 |
|
|
else
|
2558 |
|
|
Generate_Reference (Ent, N, ' ');
|
2559 |
|
|
Generate_Definition (Ent);
|
2560 |
|
|
|
2561 |
|
|
-- If we found a label, mark its type. If not, ignore it, since it
|
2562 |
|
|
-- means we have a conflicting declaration, which would already
|
2563 |
|
|
-- have been diagnosed at declaration time. Set Label_Construct
|
2564 |
|
|
-- of the implicit label declaration, which is not created by the
|
2565 |
|
|
-- parser for generic units.
|
2566 |
|
|
|
2567 |
|
|
if Ekind (Ent) = E_Label then
|
2568 |
|
|
Set_Ekind (Ent, E_Loop);
|
2569 |
|
|
|
2570 |
|
|
if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
|
2571 |
|
|
Set_Label_Construct (Parent (Ent), N);
|
2572 |
|
|
end if;
|
2573 |
|
|
end if;
|
2574 |
|
|
end if;
|
2575 |
|
|
|
2576 |
|
|
-- Case of no identifier present
|
2577 |
|
|
|
2578 |
|
|
else
|
2579 |
|
|
Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
|
2580 |
|
|
Set_Etype (Ent, Standard_Void_Type);
|
2581 |
|
|
Set_Parent (Ent, N);
|
2582 |
|
|
end if;
|
2583 |
|
|
|
2584 |
|
|
-- Iteration over a container in Ada 2012 involves the creation of a
|
2585 |
|
|
-- controlled iterator object. Wrap the loop in a block to ensure the
|
2586 |
|
|
-- timely finalization of the iterator and release of container locks.
|
2587 |
|
|
|
2588 |
|
|
if Ada_Version >= Ada_2012
|
2589 |
|
|
and then Is_Container_Iterator (Iter)
|
2590 |
|
|
and then not Is_Wrapped_In_Block (N)
|
2591 |
|
|
then
|
2592 |
|
|
Rewrite (N,
|
2593 |
|
|
Make_Block_Statement (Loc,
|
2594 |
|
|
Declarations => New_List,
|
2595 |
|
|
Handled_Statement_Sequence =>
|
2596 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
2597 |
|
|
Statements => New_List (Relocate_Node (N)))));
|
2598 |
|
|
|
2599 |
|
|
Analyze (N);
|
2600 |
|
|
return;
|
2601 |
|
|
end if;
|
2602 |
|
|
|
2603 |
|
|
-- Kill current values on entry to loop, since statements in the body of
|
2604 |
|
|
-- the loop may have been executed before the loop is entered. Similarly
|
2605 |
|
|
-- we kill values after the loop, since we do not know that the body of
|
2606 |
|
|
-- the loop was executed.
|
2607 |
|
|
|
2608 |
|
|
Kill_Current_Values;
|
2609 |
|
|
Push_Scope (Ent);
|
2610 |
|
|
Analyze_Iteration_Scheme (Iter);
|
2611 |
|
|
|
2612 |
|
|
-- Analyze the statements of the body except in the case of an Ada 2012
|
2613 |
|
|
-- iterator with the expander active. In this case the expander will do
|
2614 |
|
|
-- a rewrite of the loop into a while loop. We will then analyze the
|
2615 |
|
|
-- loop body when we analyze this while loop.
|
2616 |
|
|
|
2617 |
|
|
-- We need to do this delay because if the container is for indefinite
|
2618 |
|
|
-- types the actual subtype of the components will only be determined
|
2619 |
|
|
-- when the cursor declaration is analyzed.
|
2620 |
|
|
|
2621 |
|
|
-- If the expander is not active, then we want to analyze the loop body
|
2622 |
|
|
-- now even in the Ada 2012 iterator case, since the rewriting will not
|
2623 |
|
|
-- be done. Insert the loop variable in the current scope, if not done
|
2624 |
|
|
-- when analysing the iteration scheme.
|
2625 |
|
|
|
2626 |
|
|
if No (Iter)
|
2627 |
|
|
or else No (Iterator_Specification (Iter))
|
2628 |
|
|
or else not Expander_Active
|
2629 |
|
|
then
|
2630 |
|
|
if Present (Iter)
|
2631 |
|
|
and then Present (Iterator_Specification (Iter))
|
2632 |
|
|
then
|
2633 |
|
|
declare
|
2634 |
|
|
Id : constant Entity_Id :=
|
2635 |
|
|
Defining_Identifier (Iterator_Specification (Iter));
|
2636 |
|
|
begin
|
2637 |
|
|
if Scope (Id) /= Current_Scope then
|
2638 |
|
|
Enter_Name (Id);
|
2639 |
|
|
end if;
|
2640 |
|
|
end;
|
2641 |
|
|
end if;
|
2642 |
|
|
|
2643 |
|
|
Analyze_Statements (Statements (N));
|
2644 |
|
|
end if;
|
2645 |
|
|
|
2646 |
|
|
-- Finish up processing for the loop. We kill all current values, since
|
2647 |
|
|
-- in general we don't know if the statements in the loop have been
|
2648 |
|
|
-- executed. We could do a bit better than this with a loop that we
|
2649 |
|
|
-- know will execute at least once, but it's not worth the trouble and
|
2650 |
|
|
-- the front end is not in the business of flow tracing.
|
2651 |
|
|
|
2652 |
|
|
Process_End_Label (N, 'e', Ent);
|
2653 |
|
|
End_Scope;
|
2654 |
|
|
Kill_Current_Values;
|
2655 |
|
|
|
2656 |
|
|
-- Check for infinite loop. Skip check for generated code, since it
|
2657 |
|
|
-- justs waste time and makes debugging the routine called harder.
|
2658 |
|
|
|
2659 |
|
|
-- Note that we have to wait till the body of the loop is fully analyzed
|
2660 |
|
|
-- before making this call, since Check_Infinite_Loop_Warning relies on
|
2661 |
|
|
-- being able to use semantic visibility information to find references.
|
2662 |
|
|
|
2663 |
|
|
if Comes_From_Source (N) then
|
2664 |
|
|
Check_Infinite_Loop_Warning (N);
|
2665 |
|
|
end if;
|
2666 |
|
|
|
2667 |
|
|
-- Code after loop is unreachable if the loop has no WHILE or FOR and
|
2668 |
|
|
-- contains no EXIT statements within the body of the loop.
|
2669 |
|
|
|
2670 |
|
|
if No (Iter) and then not Has_Exit (Ent) then
|
2671 |
|
|
Check_Unreachable_Code (N);
|
2672 |
|
|
end if;
|
2673 |
|
|
end Analyze_Loop_Statement;
|
2674 |
|
|
|
2675 |
|
|
----------------------------
|
2676 |
|
|
-- Analyze_Null_Statement --
|
2677 |
|
|
----------------------------
|
2678 |
|
|
|
2679 |
|
|
-- Note: the semantics of the null statement is implemented by a single
|
2680 |
|
|
-- null statement, too bad everything isn't as simple as this!
|
2681 |
|
|
|
2682 |
|
|
procedure Analyze_Null_Statement (N : Node_Id) is
|
2683 |
|
|
pragma Warnings (Off, N);
|
2684 |
|
|
begin
|
2685 |
|
|
null;
|
2686 |
|
|
end Analyze_Null_Statement;
|
2687 |
|
|
|
2688 |
|
|
------------------------
|
2689 |
|
|
-- Analyze_Statements --
|
2690 |
|
|
------------------------
|
2691 |
|
|
|
2692 |
|
|
procedure Analyze_Statements (L : List_Id) is
|
2693 |
|
|
S : Node_Id;
|
2694 |
|
|
Lab : Entity_Id;
|
2695 |
|
|
|
2696 |
|
|
begin
|
2697 |
|
|
-- The labels declared in the statement list are reachable from
|
2698 |
|
|
-- statements in the list. We do this as a prepass so that any goto
|
2699 |
|
|
-- statement will be properly flagged if its target is not reachable.
|
2700 |
|
|
-- This is not required, but is nice behavior!
|
2701 |
|
|
|
2702 |
|
|
S := First (L);
|
2703 |
|
|
while Present (S) loop
|
2704 |
|
|
if Nkind (S) = N_Label then
|
2705 |
|
|
Analyze (Identifier (S));
|
2706 |
|
|
Lab := Entity (Identifier (S));
|
2707 |
|
|
|
2708 |
|
|
-- If we found a label mark it as reachable
|
2709 |
|
|
|
2710 |
|
|
if Ekind (Lab) = E_Label then
|
2711 |
|
|
Generate_Definition (Lab);
|
2712 |
|
|
Set_Reachable (Lab);
|
2713 |
|
|
|
2714 |
|
|
if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
|
2715 |
|
|
Set_Label_Construct (Parent (Lab), S);
|
2716 |
|
|
end if;
|
2717 |
|
|
|
2718 |
|
|
-- If we failed to find a label, it means the implicit declaration
|
2719 |
|
|
-- of the label was hidden. A for-loop parameter can do this to
|
2720 |
|
|
-- a label with the same name inside the loop, since the implicit
|
2721 |
|
|
-- label declaration is in the innermost enclosing body or block
|
2722 |
|
|
-- statement.
|
2723 |
|
|
|
2724 |
|
|
else
|
2725 |
|
|
Error_Msg_Sloc := Sloc (Lab);
|
2726 |
|
|
Error_Msg_N
|
2727 |
|
|
("implicit label declaration for & is hidden#",
|
2728 |
|
|
Identifier (S));
|
2729 |
|
|
end if;
|
2730 |
|
|
end if;
|
2731 |
|
|
|
2732 |
|
|
Next (S);
|
2733 |
|
|
end loop;
|
2734 |
|
|
|
2735 |
|
|
-- Perform semantic analysis on all statements
|
2736 |
|
|
|
2737 |
|
|
Conditional_Statements_Begin;
|
2738 |
|
|
|
2739 |
|
|
S := First (L);
|
2740 |
|
|
while Present (S) loop
|
2741 |
|
|
Analyze (S);
|
2742 |
|
|
|
2743 |
|
|
-- Remove dimension in all statements
|
2744 |
|
|
|
2745 |
|
|
Remove_Dimension_In_Statement (S);
|
2746 |
|
|
Next (S);
|
2747 |
|
|
end loop;
|
2748 |
|
|
|
2749 |
|
|
Conditional_Statements_End;
|
2750 |
|
|
|
2751 |
|
|
-- Make labels unreachable. Visibility is not sufficient, because labels
|
2752 |
|
|
-- in one if-branch for example are not reachable from the other branch,
|
2753 |
|
|
-- even though their declarations are in the enclosing declarative part.
|
2754 |
|
|
|
2755 |
|
|
S := First (L);
|
2756 |
|
|
while Present (S) loop
|
2757 |
|
|
if Nkind (S) = N_Label then
|
2758 |
|
|
Set_Reachable (Entity (Identifier (S)), False);
|
2759 |
|
|
end if;
|
2760 |
|
|
|
2761 |
|
|
Next (S);
|
2762 |
|
|
end loop;
|
2763 |
|
|
end Analyze_Statements;
|
2764 |
|
|
|
2765 |
|
|
----------------------------
|
2766 |
|
|
-- Check_Unreachable_Code --
|
2767 |
|
|
----------------------------
|
2768 |
|
|
|
2769 |
|
|
procedure Check_Unreachable_Code (N : Node_Id) is
|
2770 |
|
|
Error_Node : Node_Id;
|
2771 |
|
|
P : Node_Id;
|
2772 |
|
|
|
2773 |
|
|
begin
|
2774 |
|
|
if Is_List_Member (N)
|
2775 |
|
|
and then Comes_From_Source (N)
|
2776 |
|
|
then
|
2777 |
|
|
declare
|
2778 |
|
|
Nxt : Node_Id;
|
2779 |
|
|
|
2780 |
|
|
begin
|
2781 |
|
|
Nxt := Original_Node (Next (N));
|
2782 |
|
|
|
2783 |
|
|
-- If a label follows us, then we never have dead code, since
|
2784 |
|
|
-- someone could branch to the label, so we just ignore it, unless
|
2785 |
|
|
-- we are in formal mode where goto statements are not allowed.
|
2786 |
|
|
|
2787 |
|
|
if Nkind (Nxt) = N_Label
|
2788 |
|
|
and then not Restriction_Check_Required (SPARK)
|
2789 |
|
|
then
|
2790 |
|
|
return;
|
2791 |
|
|
|
2792 |
|
|
-- Otherwise see if we have a real statement following us
|
2793 |
|
|
|
2794 |
|
|
elsif Present (Nxt)
|
2795 |
|
|
and then Comes_From_Source (Nxt)
|
2796 |
|
|
and then Is_Statement (Nxt)
|
2797 |
|
|
then
|
2798 |
|
|
-- Special very annoying exception. If we have a return that
|
2799 |
|
|
-- follows a raise, then we allow it without a warning, since
|
2800 |
|
|
-- the Ada RM annoyingly requires a useless return here!
|
2801 |
|
|
|
2802 |
|
|
if Nkind (Original_Node (N)) /= N_Raise_Statement
|
2803 |
|
|
or else Nkind (Nxt) /= N_Simple_Return_Statement
|
2804 |
|
|
then
|
2805 |
|
|
-- The rather strange shenanigans with the warning message
|
2806 |
|
|
-- here reflects the fact that Kill_Dead_Code is very good
|
2807 |
|
|
-- at removing warnings in deleted code, and this is one
|
2808 |
|
|
-- warning we would prefer NOT to have removed.
|
2809 |
|
|
|
2810 |
|
|
Error_Node := Nxt;
|
2811 |
|
|
|
2812 |
|
|
-- If we have unreachable code, analyze and remove the
|
2813 |
|
|
-- unreachable code, since it is useless and we don't
|
2814 |
|
|
-- want to generate junk warnings.
|
2815 |
|
|
|
2816 |
|
|
-- We skip this step if we are not in code generation mode.
|
2817 |
|
|
-- This is the one case where we remove dead code in the
|
2818 |
|
|
-- semantics as opposed to the expander, and we do not want
|
2819 |
|
|
-- to remove code if we are not in code generation mode,
|
2820 |
|
|
-- since this messes up the ASIS trees.
|
2821 |
|
|
|
2822 |
|
|
-- Note that one might react by moving the whole circuit to
|
2823 |
|
|
-- exp_ch5, but then we lose the warning in -gnatc mode.
|
2824 |
|
|
|
2825 |
|
|
if Operating_Mode = Generate_Code then
|
2826 |
|
|
loop
|
2827 |
|
|
Nxt := Next (N);
|
2828 |
|
|
|
2829 |
|
|
-- Quit deleting when we have nothing more to delete
|
2830 |
|
|
-- or if we hit a label (since someone could transfer
|
2831 |
|
|
-- control to a label, so we should not delete it).
|
2832 |
|
|
|
2833 |
|
|
exit when No (Nxt) or else Nkind (Nxt) = N_Label;
|
2834 |
|
|
|
2835 |
|
|
-- Statement/declaration is to be deleted
|
2836 |
|
|
|
2837 |
|
|
Analyze (Nxt);
|
2838 |
|
|
Remove (Nxt);
|
2839 |
|
|
Kill_Dead_Code (Nxt);
|
2840 |
|
|
end loop;
|
2841 |
|
|
end if;
|
2842 |
|
|
|
2843 |
|
|
-- Now issue the warning (or error in formal mode)
|
2844 |
|
|
|
2845 |
|
|
if Restriction_Check_Required (SPARK) then
|
2846 |
|
|
Check_SPARK_Restriction
|
2847 |
|
|
("unreachable code is not allowed", Error_Node);
|
2848 |
|
|
else
|
2849 |
|
|
Error_Msg ("?unreachable code!", Sloc (Error_Node));
|
2850 |
|
|
end if;
|
2851 |
|
|
end if;
|
2852 |
|
|
|
2853 |
|
|
-- If the unconditional transfer of control instruction is the
|
2854 |
|
|
-- last statement of a sequence, then see if our parent is one of
|
2855 |
|
|
-- the constructs for which we count unblocked exits, and if so,
|
2856 |
|
|
-- adjust the count.
|
2857 |
|
|
|
2858 |
|
|
else
|
2859 |
|
|
P := Parent (N);
|
2860 |
|
|
|
2861 |
|
|
-- Statements in THEN part or ELSE part of IF statement
|
2862 |
|
|
|
2863 |
|
|
if Nkind (P) = N_If_Statement then
|
2864 |
|
|
null;
|
2865 |
|
|
|
2866 |
|
|
-- Statements in ELSIF part of an IF statement
|
2867 |
|
|
|
2868 |
|
|
elsif Nkind (P) = N_Elsif_Part then
|
2869 |
|
|
P := Parent (P);
|
2870 |
|
|
pragma Assert (Nkind (P) = N_If_Statement);
|
2871 |
|
|
|
2872 |
|
|
-- Statements in CASE statement alternative
|
2873 |
|
|
|
2874 |
|
|
elsif Nkind (P) = N_Case_Statement_Alternative then
|
2875 |
|
|
P := Parent (P);
|
2876 |
|
|
pragma Assert (Nkind (P) = N_Case_Statement);
|
2877 |
|
|
|
2878 |
|
|
-- Statements in body of block
|
2879 |
|
|
|
2880 |
|
|
elsif Nkind (P) = N_Handled_Sequence_Of_Statements
|
2881 |
|
|
and then Nkind (Parent (P)) = N_Block_Statement
|
2882 |
|
|
then
|
2883 |
|
|
null;
|
2884 |
|
|
|
2885 |
|
|
-- Statements in exception handler in a block
|
2886 |
|
|
|
2887 |
|
|
elsif Nkind (P) = N_Exception_Handler
|
2888 |
|
|
and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
|
2889 |
|
|
and then Nkind (Parent (Parent (P))) = N_Block_Statement
|
2890 |
|
|
then
|
2891 |
|
|
null;
|
2892 |
|
|
|
2893 |
|
|
-- None of these cases, so return
|
2894 |
|
|
|
2895 |
|
|
else
|
2896 |
|
|
return;
|
2897 |
|
|
end if;
|
2898 |
|
|
|
2899 |
|
|
-- This was one of the cases we are looking for (i.e. the
|
2900 |
|
|
-- parent construct was IF, CASE or block) so decrement count.
|
2901 |
|
|
|
2902 |
|
|
Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
|
2903 |
|
|
end if;
|
2904 |
|
|
end;
|
2905 |
|
|
end if;
|
2906 |
|
|
end Check_Unreachable_Code;
|
2907 |
|
|
|
2908 |
|
|
-----------------------
|
2909 |
|
|
-- Pre_Analyze_Range --
|
2910 |
|
|
-----------------------
|
2911 |
|
|
|
2912 |
|
|
procedure Pre_Analyze_Range (R_Copy : Node_Id) is
|
2913 |
|
|
Save_Analysis : constant Boolean := Full_Analysis;
|
2914 |
|
|
|
2915 |
|
|
begin
|
2916 |
|
|
Full_Analysis := False;
|
2917 |
|
|
Expander_Mode_Save_And_Set (False);
|
2918 |
|
|
|
2919 |
|
|
Analyze (R_Copy);
|
2920 |
|
|
|
2921 |
|
|
if Nkind (R_Copy) in N_Subexpr
|
2922 |
|
|
and then Is_Overloaded (R_Copy)
|
2923 |
|
|
then
|
2924 |
|
|
-- Apply preference rules for range of predefined integer types, or
|
2925 |
|
|
-- diagnose true ambiguity.
|
2926 |
|
|
|
2927 |
|
|
declare
|
2928 |
|
|
I : Interp_Index;
|
2929 |
|
|
It : Interp;
|
2930 |
|
|
Found : Entity_Id := Empty;
|
2931 |
|
|
|
2932 |
|
|
begin
|
2933 |
|
|
Get_First_Interp (R_Copy, I, It);
|
2934 |
|
|
while Present (It.Typ) loop
|
2935 |
|
|
if Is_Discrete_Type (It.Typ) then
|
2936 |
|
|
if No (Found) then
|
2937 |
|
|
Found := It.Typ;
|
2938 |
|
|
else
|
2939 |
|
|
if Scope (Found) = Standard_Standard then
|
2940 |
|
|
null;
|
2941 |
|
|
|
2942 |
|
|
elsif Scope (It.Typ) = Standard_Standard then
|
2943 |
|
|
Found := It.Typ;
|
2944 |
|
|
|
2945 |
|
|
else
|
2946 |
|
|
-- Both of them are user-defined
|
2947 |
|
|
|
2948 |
|
|
Error_Msg_N
|
2949 |
|
|
("ambiguous bounds in range of iteration", R_Copy);
|
2950 |
|
|
Error_Msg_N ("\possible interpretations:", R_Copy);
|
2951 |
|
|
Error_Msg_NE ("\\} ", R_Copy, Found);
|
2952 |
|
|
Error_Msg_NE ("\\} ", R_Copy, It.Typ);
|
2953 |
|
|
exit;
|
2954 |
|
|
end if;
|
2955 |
|
|
end if;
|
2956 |
|
|
end if;
|
2957 |
|
|
|
2958 |
|
|
Get_Next_Interp (I, It);
|
2959 |
|
|
end loop;
|
2960 |
|
|
end;
|
2961 |
|
|
end if;
|
2962 |
|
|
|
2963 |
|
|
-- Subtype mark in iteration scheme
|
2964 |
|
|
|
2965 |
|
|
if Is_Entity_Name (R_Copy)
|
2966 |
|
|
and then Is_Type (Entity (R_Copy))
|
2967 |
|
|
then
|
2968 |
|
|
null;
|
2969 |
|
|
|
2970 |
|
|
-- Expression in range, or Ada 2012 iterator
|
2971 |
|
|
|
2972 |
|
|
elsif Nkind (R_Copy) in N_Subexpr then
|
2973 |
|
|
Resolve (R_Copy);
|
2974 |
|
|
end if;
|
2975 |
|
|
|
2976 |
|
|
Expander_Mode_Restore;
|
2977 |
|
|
Full_Analysis := Save_Analysis;
|
2978 |
|
|
end Pre_Analyze_Range;
|
2979 |
|
|
|
2980 |
|
|
end Sem_Ch5;
|