OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [sem_ch6.adb] - Blame information for rev 720

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                              S E M _ C H 6                               --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17
-- for  more details.  You should have  received  a copy of the GNU General --
18
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19
-- http://www.gnu.org/licenses for a complete copy of the license.          --
20
--                                                                          --
21
-- GNAT was originally developed  by the GNAT team at  New York University. --
22
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23
--                                                                          --
24
------------------------------------------------------------------------------
25
 
26
with Atree;    use Atree;
27
with Checks;   use Checks;
28
with Debug;    use Debug;
29
with Einfo;    use Einfo;
30
with Elists;   use Elists;
31
with Errout;   use Errout;
32
with Expander; use Expander;
33
with Exp_Ch6;  use Exp_Ch6;
34
with Exp_Ch7;  use Exp_Ch7;
35
with Exp_Ch9;  use Exp_Ch9;
36
with Exp_Disp; use Exp_Disp;
37
with Exp_Tss;  use Exp_Tss;
38
with Exp_Util; use Exp_Util;
39
with Fname;    use Fname;
40
with Freeze;   use Freeze;
41
with Itypes;   use Itypes;
42
with Lib.Xref; use Lib.Xref;
43
with Layout;   use Layout;
44
with Namet;    use Namet;
45
with Lib;      use Lib;
46
with Nlists;   use Nlists;
47
with Nmake;    use Nmake;
48
with Opt;      use Opt;
49
with Output;   use Output;
50
with Restrict; use Restrict;
51
with Rident;   use Rident;
52
with Rtsfind;  use Rtsfind;
53
with Sem;      use Sem;
54
with Sem_Aux;  use Sem_Aux;
55
with Sem_Cat;  use Sem_Cat;
56
with Sem_Ch3;  use Sem_Ch3;
57
with Sem_Ch4;  use Sem_Ch4;
58
with Sem_Ch5;  use Sem_Ch5;
59
with Sem_Ch8;  use Sem_Ch8;
60
with Sem_Ch10; use Sem_Ch10;
61
with Sem_Ch12; use Sem_Ch12;
62
with Sem_Ch13; use Sem_Ch13;
63
with Sem_Dim;  use Sem_Dim;
64
with Sem_Disp; use Sem_Disp;
65
with Sem_Dist; use Sem_Dist;
66
with Sem_Elim; use Sem_Elim;
67
with Sem_Eval; use Sem_Eval;
68
with Sem_Mech; use Sem_Mech;
69
with Sem_Prag; use Sem_Prag;
70
with Sem_Res;  use Sem_Res;
71
with Sem_Util; use Sem_Util;
72
with Sem_Type; use Sem_Type;
73
with Sem_Warn; use Sem_Warn;
74
with Sinput;   use Sinput;
75
with Stand;    use Stand;
76
with Sinfo;    use Sinfo;
77
with Sinfo.CN; use Sinfo.CN;
78
with Snames;   use Snames;
79
with Stringt;  use Stringt;
80
with Style;
81
with Stylesw;  use Stylesw;
82
with Targparm; use Targparm;
83
with Tbuild;   use Tbuild;
84
with Uintp;    use Uintp;
85
with Urealp;   use Urealp;
86
with Validsw;  use Validsw;
87
 
88
package body Sem_Ch6 is
89
 
90
   May_Hide_Profile : Boolean := False;
91
   --  This flag is used to indicate that two formals in two subprograms being
92
   --  checked for conformance differ only in that one is an access parameter
93
   --  while the other is of a general access type with the same designated
94
   --  type. In this case, if the rest of the signatures match, a call to
95
   --  either subprogram may be ambiguous, which is worth a warning. The flag
96
   --  is set in Compatible_Types, and the warning emitted in
97
   --  New_Overloaded_Entity.
98
 
99
   -----------------------
100
   -- Local Subprograms --
101
   -----------------------
102
 
103
   procedure Analyze_Return_Statement (N : Node_Id);
104
   --  Common processing for simple and extended return statements
105
 
106
   procedure Analyze_Function_Return (N : Node_Id);
107
   --  Subsidiary to Analyze_Return_Statement. Called when the return statement
108
   --  applies to a [generic] function.
109
 
110
   procedure Analyze_Return_Type (N : Node_Id);
111
   --  Subsidiary to Process_Formals: analyze subtype mark in function
112
   --  specification in a context where the formals are visible and hide
113
   --  outer homographs.
114
 
115
   procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
116
   --  Does all the real work of Analyze_Subprogram_Body. This is split out so
117
   --  that we can use RETURN but not skip the debug output at the end.
118
 
119
   procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
120
   --  Analyze a generic subprogram body. N is the body to be analyzed, and
121
   --  Gen_Id is the defining entity Id for the corresponding spec.
122
 
123
   procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
124
   --  If a subprogram has pragma Inline and inlining is active, use generic
125
   --  machinery to build an unexpanded body for the subprogram. This body is
126
   --  subsequently used for inline expansions at call sites. If subprogram can
127
   --  be inlined (depending on size and nature of local declarations) this
128
   --  function returns true. Otherwise subprogram body is treated normally.
129
   --  If proper warnings are enabled and the subprogram contains a construct
130
   --  that cannot be inlined, the offending construct is flagged accordingly.
131
 
132
   function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133
   --  Returns true if Subp can override a predefined operator.
134
 
135
   procedure Check_Conformance
136
     (New_Id                   : Entity_Id;
137
      Old_Id                   : Entity_Id;
138
      Ctype                    : Conformance_Type;
139
      Errmsg                   : Boolean;
140
      Conforms                 : out Boolean;
141
      Err_Loc                  : Node_Id := Empty;
142
      Get_Inst                 : Boolean := False;
143
      Skip_Controlling_Formals : Boolean := False);
144
   --  Given two entities, this procedure checks that the profiles associated
145
   --  with these entities meet the conformance criterion given by the third
146
   --  parameter. If they conform, Conforms is set True and control returns
147
   --  to the caller. If they do not conform, Conforms is set to False, and
148
   --  in addition, if Errmsg is True on the call, proper messages are output
149
   --  to complain about the conformance failure. If Err_Loc is non_Empty
150
   --  the error messages are placed on Err_Loc, if Err_Loc is empty, then
151
   --  error messages are placed on the appropriate part of the construct
152
   --  denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153
   --  against a formal access-to-subprogram type so Get_Instance_Of must
154
   --  be called.
155
 
156
   procedure Check_Subprogram_Order (N : Node_Id);
157
   --  N is the N_Subprogram_Body node for a subprogram. This routine applies
158
   --  the alpha ordering rule for N if this ordering requirement applicable.
159
 
160
   procedure Check_Returns
161
     (HSS  : Node_Id;
162
      Mode : Character;
163
      Err  : out Boolean;
164
      Proc : Entity_Id := Empty);
165
   --  Called to check for missing return statements in a function body, or for
166
   --  returns present in a procedure body which has No_Return set. HSS is the
167
   --  handled statement sequence for the subprogram body. This procedure
168
   --  checks all flow paths to make sure they either have return (Mode = 'F',
169
   --  used for functions) or do not have a return (Mode = 'P', used for
170
   --  No_Return procedures). The flag Err is set if there are any control
171
   --  paths not explicitly terminated by a return in the function case, and is
172
   --  True otherwise. Proc is the entity for the procedure case and is used
173
   --  in posting the warning message.
174
 
175
   procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
176
   --  In Ada 2012, a primitive equality operator on an untagged record type
177
   --  must appear before the type is frozen, and have the same visibility as
178
   --  that of the type. This procedure checks that this rule is met, and
179
   --  otherwise emits an error on the subprogram declaration and a warning
180
   --  on the earlier freeze point if it is easy to locate.
181
 
182
   procedure Enter_Overloaded_Entity (S : Entity_Id);
183
   --  This procedure makes S, a new overloaded entity, into the first visible
184
   --  entity with that name.
185
 
186
   function Is_Non_Overriding_Operation
187
     (Prev_E : Entity_Id;
188
      New_E  : Entity_Id) return Boolean;
189
   --  Enforce the rule given in 12.3(18): a private operation in an instance
190
   --  overrides an inherited operation only if the corresponding operation
191
   --  was overriding in the generic. This needs to be checked for primitive
192
   --  operations of types derived (in the generic unit) from formal private
193
   --  or formal derived types.
194
 
195
   procedure Make_Inequality_Operator (S : Entity_Id);
196
   --  Create the declaration for an inequality operator that is implicitly
197
   --  created by a user-defined equality operator that yields a boolean.
198
 
199
   procedure May_Need_Actuals (Fun : Entity_Id);
200
   --  Flag functions that can be called without parameters, i.e. those that
201
   --  have no parameters, or those for which defaults exist for all parameters
202
 
203
   procedure Process_PPCs
204
     (N       : Node_Id;
205
      Spec_Id : Entity_Id;
206
      Body_Id : Entity_Id);
207
   --  Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
208
   --  conditions for the body and assembling and inserting the _postconditions
209
   --  procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
210
   --  the entities for the body and separate spec (if there is no separate
211
   --  spec, Spec_Id is Empty). Note that invariants and predicates may also
212
   --  provide postconditions, and are also handled in this procedure.
213
 
214
   procedure Set_Formal_Validity (Formal_Id : Entity_Id);
215
   --  Formal_Id is an formal parameter entity. This procedure deals with
216
   --  setting the proper validity status for this entity, which depends on
217
   --  the kind of parameter and the validity checking mode.
218
 
219
   ---------------------------------------------
220
   -- Analyze_Abstract_Subprogram_Declaration --
221
   ---------------------------------------------
222
 
223
   procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
224
      Designator : constant Entity_Id :=
225
                     Analyze_Subprogram_Specification (Specification (N));
226
      Scop       : constant Entity_Id := Current_Scope;
227
 
228
   begin
229
      Check_SPARK_Restriction ("abstract subprogram is not allowed", N);
230
 
231
      Generate_Definition (Designator);
232
      Set_Contract (Designator, Make_Contract (Sloc (Designator)));
233
      Set_Is_Abstract_Subprogram (Designator);
234
      New_Overloaded_Entity (Designator);
235
      Check_Delayed_Subprogram (Designator);
236
 
237
      Set_Categorization_From_Scope (Designator, Scop);
238
 
239
      if Ekind (Scope (Designator)) = E_Protected_Type then
240
         Error_Msg_N
241
           ("abstract subprogram not allowed in protected type", N);
242
 
243
      --  Issue a warning if the abstract subprogram is neither a dispatching
244
      --  operation nor an operation that overrides an inherited subprogram or
245
      --  predefined operator, since this most likely indicates a mistake.
246
 
247
      elsif Warn_On_Redundant_Constructs
248
        and then not Is_Dispatching_Operation (Designator)
249
        and then not Present (Overridden_Operation (Designator))
250
        and then (not Is_Operator_Symbol_Name (Chars (Designator))
251
                   or else Scop /= Scope (Etype (First_Formal (Designator))))
252
      then
253
         Error_Msg_N
254
           ("?abstract subprogram is not dispatching or overriding", N);
255
      end if;
256
 
257
      Generate_Reference_To_Formals (Designator);
258
      Check_Eliminated (Designator);
259
 
260
      if Has_Aspects (N) then
261
         Analyze_Aspect_Specifications (N, Designator);
262
      end if;
263
   end Analyze_Abstract_Subprogram_Declaration;
264
 
265
   ---------------------------------
266
   -- Analyze_Expression_Function --
267
   ---------------------------------
268
 
269
   procedure Analyze_Expression_Function (N : Node_Id) is
270
      Loc      : constant Source_Ptr := Sloc (N);
271
      LocX     : constant Source_Ptr := Sloc (Expression (N));
272
      Expr     : constant Node_Id    := Expression (N);
273
      Spec     : constant Node_Id    := Specification (N);
274
 
275
      Def_Id :  Entity_Id;
276
 
277
      Prev :  Entity_Id;
278
      --  If the expression is a completion, Prev is the entity whose
279
      --  declaration is completed. Def_Id is needed to analyze the spec.
280
 
281
      New_Body : Node_Id;
282
      New_Decl : Node_Id;
283
      New_Spec : Node_Id;
284
      Ret      : Node_Id;
285
 
286
   begin
287
      --  This is one of the occasions on which we transform the tree during
288
      --  semantic analysis. If this is a completion, transform the expression
289
      --  function into an equivalent subprogram body, and analyze it.
290
 
291
      --  Expression functions are inlined unconditionally. The back-end will
292
      --  determine whether this is possible.
293
 
294
      Inline_Processing_Required := True;
295
 
296
      --  Create a specification for the generated body. Types and defauts in
297
      --  the profile are copies of the spec, but new entities must be created
298
      --  for the unit name and the formals.
299
 
300
      New_Spec := New_Copy_Tree (Spec);
301
      Set_Defining_Unit_Name (New_Spec,
302
        Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
303
          Chars (Defining_Unit_Name (Spec))));
304
 
305
      if Present (Parameter_Specifications (New_Spec)) then
306
         declare
307
            Formal_Spec : Node_Id;
308
         begin
309
            Formal_Spec := First (Parameter_Specifications (New_Spec));
310
            while Present (Formal_Spec) loop
311
               Set_Defining_Identifier
312
                 (Formal_Spec,
313
                  Make_Defining_Identifier (Sloc (Formal_Spec),
314
                    Chars => Chars (Defining_Identifier (Formal_Spec))));
315
               Next (Formal_Spec);
316
            end loop;
317
         end;
318
      end if;
319
 
320
      Prev     := Current_Entity_In_Scope (Defining_Entity (Spec));
321
 
322
      --  If there are previous overloadable entities with the same name,
323
      --  check whether any of them is completed by the expression function.
324
 
325
      if Present (Prev) and then Is_Overloadable (Prev) then
326
         Def_Id   := Analyze_Subprogram_Specification (Spec);
327
         Prev     := Find_Corresponding_Spec (N);
328
      end if;
329
 
330
      Ret := Make_Simple_Return_Statement (LocX, Expression (N));
331
 
332
      New_Body :=
333
        Make_Subprogram_Body (Loc,
334
          Specification              => New_Spec,
335
          Declarations               => Empty_List,
336
          Handled_Statement_Sequence =>
337
            Make_Handled_Sequence_Of_Statements (LocX,
338
              Statements => New_List (Ret)));
339
 
340
      if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
341
 
342
         --  If the expression completes a generic subprogram, we must create a
343
         --  separate node for the body, because at instantiation the original
344
         --  node of the generic copy must be a generic subprogram body, and
345
         --  cannot be a expression function. Otherwise we just rewrite the
346
         --  expression with the non-generic body.
347
 
348
         Insert_After (N, New_Body);
349
         Rewrite (N, Make_Null_Statement (Loc));
350
         Set_Has_Completion (Prev, False);
351
         Analyze (N);
352
         Analyze (New_Body);
353
         Set_Is_Inlined (Prev);
354
 
355
      elsif Present (Prev)
356
        and then Comes_From_Source (Prev)
357
      then
358
         Set_Has_Completion (Prev, False);
359
 
360
         --  For navigation purposes, indicate that the function is a body
361
 
362
         Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
363
         Rewrite (N, New_Body);
364
         Analyze (N);
365
 
366
         --  Prev is the previous entity with the same name, but it is can
367
         --  be an unrelated spec that is not completed by the expression
368
         --  function. In that case the relevant entity is the one in the body.
369
         --  Not clear that the backend can inline it in this case ???
370
 
371
         if Has_Completion (Prev) then
372
            Set_Is_Inlined (Prev);
373
 
374
            --  The formals of the expression function are body formals,
375
            --  and do not appear in the ali file, which will only contain
376
            --  references to the formals of the original subprogram spec.
377
 
378
            declare
379
               F1 : Entity_Id;
380
               F2 : Entity_Id;
381
 
382
            begin
383
               F1 := First_Formal (Def_Id);
384
               F2 := First_Formal (Prev);
385
 
386
               while Present (F1) loop
387
                  Set_Spec_Entity (F1, F2);
388
                  Next_Formal (F1);
389
                  Next_Formal (F2);
390
               end loop;
391
            end;
392
 
393
         else
394
            Set_Is_Inlined (Defining_Entity (New_Body));
395
         end if;
396
 
397
      --  If this is not a completion, create both a declaration and a body, so
398
      --  that the expression can be inlined whenever possible.
399
 
400
      else
401
         New_Decl :=
402
           Make_Subprogram_Declaration (Loc, Specification => Spec);
403
 
404
         Rewrite (N, New_Decl);
405
         Analyze (N);
406
         Set_Is_Inlined (Defining_Entity (New_Decl));
407
 
408
         --  To prevent premature freeze action, insert the new body at the end
409
         --  of the current declarations, or at the end of the package spec.
410
         --  However, resolve usage names now, to prevent spurious visibility
411
         --  on later entities.
412
 
413
         declare
414
            Decls : List_Id            := List_Containing (N);
415
            Par   : constant Node_Id   := Parent (Decls);
416
            Id    : constant Entity_Id := Defining_Entity (New_Decl);
417
 
418
         begin
419
            if Nkind (Par) = N_Package_Specification
420
               and then Decls = Visible_Declarations (Par)
421
               and then Present (Private_Declarations (Par))
422
               and then not Is_Empty_List (Private_Declarations (Par))
423
            then
424
               Decls := Private_Declarations (Par);
425
            end if;
426
 
427
            Insert_After (Last (Decls), New_Body);
428
            Push_Scope (Id);
429
            Install_Formals (Id);
430
            Preanalyze_Spec_Expression (Expression  (Ret), Etype (Id));
431
            End_Scope;
432
         end;
433
      end if;
434
 
435
      --  If the return expression is a static constant, we suppress warning
436
      --  messages on unused formals, which in most cases will be noise.
437
 
438
      Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
439
        Is_OK_Static_Expression (Expr));
440
   end Analyze_Expression_Function;
441
 
442
   ----------------------------------------
443
   -- Analyze_Extended_Return_Statement  --
444
   ----------------------------------------
445
 
446
   procedure Analyze_Extended_Return_Statement (N : Node_Id) is
447
   begin
448
      Analyze_Return_Statement (N);
449
   end Analyze_Extended_Return_Statement;
450
 
451
   ----------------------------
452
   -- Analyze_Function_Call  --
453
   ----------------------------
454
 
455
   procedure Analyze_Function_Call (N : Node_Id) is
456
      P       : constant Node_Id := Name (N);
457
      Actuals : constant List_Id := Parameter_Associations (N);
458
      Actual  : Node_Id;
459
 
460
   begin
461
      Analyze (P);
462
 
463
      --  A call of the form A.B (X) may be an Ada 2005 call, which is
464
      --  rewritten as B (A, X). If the rewriting is successful, the call
465
      --  has been analyzed and we just return.
466
 
467
      if Nkind (P) = N_Selected_Component
468
        and then Name (N) /= P
469
        and then Is_Rewrite_Substitution (N)
470
        and then Present (Etype (N))
471
      then
472
         return;
473
      end if;
474
 
475
      --  If error analyzing name, then set Any_Type as result type and return
476
 
477
      if Etype (P) = Any_Type then
478
         Set_Etype (N, Any_Type);
479
         return;
480
      end if;
481
 
482
      --  Otherwise analyze the parameters
483
 
484
      if Present (Actuals) then
485
         Actual := First (Actuals);
486
         while Present (Actual) loop
487
            Analyze (Actual);
488
            Check_Parameterless_Call (Actual);
489
            Next (Actual);
490
         end loop;
491
      end if;
492
 
493
      Analyze_Call (N);
494
   end Analyze_Function_Call;
495
 
496
   -----------------------------
497
   -- Analyze_Function_Return --
498
   -----------------------------
499
 
500
   procedure Analyze_Function_Return (N : Node_Id) is
501
      Loc        : constant Source_Ptr  := Sloc (N);
502
      Stm_Entity : constant Entity_Id   := Return_Statement_Entity (N);
503
      Scope_Id   : constant Entity_Id   := Return_Applies_To (Stm_Entity);
504
 
505
      R_Type : constant Entity_Id := Etype (Scope_Id);
506
      --  Function result subtype
507
 
508
      procedure Check_Limited_Return (Expr : Node_Id);
509
      --  Check the appropriate (Ada 95 or Ada 2005) rules for returning
510
      --  limited types. Used only for simple return statements.
511
      --  Expr is the expression returned.
512
 
513
      procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
514
      --  Check that the return_subtype_indication properly matches the result
515
      --  subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
516
 
517
      --------------------------
518
      -- Check_Limited_Return --
519
      --------------------------
520
 
521
      procedure Check_Limited_Return (Expr : Node_Id) is
522
      begin
523
         --  Ada 2005 (AI-318-02): Return-by-reference types have been
524
         --  removed and replaced by anonymous access results. This is an
525
         --  incompatibility with Ada 95. Not clear whether this should be
526
         --  enforced yet or perhaps controllable with special switch. ???
527
 
528
         --  A limited interface that is not immutably limited is OK.
529
 
530
         if Is_Limited_Interface (R_Type)
531
           and then
532
             not (Is_Task_Interface (R_Type)
533
                   or else Is_Protected_Interface (R_Type)
534
                   or else Is_Synchronized_Interface (R_Type))
535
         then
536
            null;
537
 
538
         elsif Is_Limited_Type (R_Type)
539
           and then not Is_Interface (R_Type)
540
           and then Comes_From_Source (N)
541
           and then not In_Instance_Body
542
           and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
543
         then
544
            --  Error in Ada 2005
545
 
546
            if Ada_Version >= Ada_2005
547
              and then not Debug_Flag_Dot_L
548
              and then not GNAT_Mode
549
            then
550
               Error_Msg_N
551
                 ("(Ada 2005) cannot copy object of a limited type " &
552
                  "(RM-2005 6.5(5.5/2))", Expr);
553
 
554
               if Is_Immutably_Limited_Type (R_Type) then
555
                  Error_Msg_N
556
                    ("\return by reference not permitted in Ada 2005", Expr);
557
               end if;
558
 
559
            --  Warn in Ada 95 mode, to give folks a heads up about this
560
            --  incompatibility.
561
 
562
            --  In GNAT mode, this is just a warning, to allow it to be
563
            --  evilly turned off. Otherwise it is a real error.
564
 
565
            --  In a generic context, simplify the warning because it makes
566
            --  no sense to discuss pass-by-reference or copy.
567
 
568
            elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
569
               if Inside_A_Generic then
570
                  Error_Msg_N
571
                    ("return of limited object not permitted in Ada 2005 "
572
                     & "(RM-2005 6.5(5.5/2))?", Expr);
573
 
574
               elsif Is_Immutably_Limited_Type (R_Type) then
575
                  Error_Msg_N
576
                    ("return by reference not permitted in Ada 2005 "
577
                     & "(RM-2005 6.5(5.5/2))?", Expr);
578
               else
579
                  Error_Msg_N
580
                    ("cannot copy object of a limited type in Ada 2005 "
581
                     & "(RM-2005 6.5(5.5/2))?", Expr);
582
               end if;
583
 
584
            --  Ada 95 mode, compatibility warnings disabled
585
 
586
            else
587
               return; --  skip continuation messages below
588
            end if;
589
 
590
            if not Inside_A_Generic then
591
               Error_Msg_N
592
                 ("\consider switching to return of access type", Expr);
593
               Explain_Limited_Type (R_Type, Expr);
594
            end if;
595
         end if;
596
      end Check_Limited_Return;
597
 
598
      -------------------------------------
599
      -- Check_Return_Subtype_Indication --
600
      -------------------------------------
601
 
602
      procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
603
         Return_Obj : constant Node_Id   := Defining_Identifier (Obj_Decl);
604
 
605
         R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
606
         --  Subtype given in the extended return statement (must match R_Type)
607
 
608
         Subtype_Ind : constant Node_Id :=
609
                         Object_Definition (Original_Node (Obj_Decl));
610
 
611
         R_Type_Is_Anon_Access :
612
           constant Boolean :=
613
             Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
614
               or else
615
             Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
616
               or else
617
             Ekind (R_Type) = E_Anonymous_Access_Type;
618
         --  True if return type of the function is an anonymous access type
619
         --  Can't we make Is_Anonymous_Access_Type in einfo ???
620
 
621
         R_Stm_Type_Is_Anon_Access :
622
           constant Boolean :=
623
             Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
624
               or else
625
             Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
626
               or else
627
             Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
628
         --  True if type of the return object is an anonymous access type
629
 
630
      begin
631
         --  First, avoid cascaded errors
632
 
633
         if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
634
            return;
635
         end if;
636
 
637
         --  "return access T" case; check that the return statement also has
638
         --  "access T", and that the subtypes statically match:
639
         --   if this is an access to subprogram the signatures must match.
640
 
641
         if R_Type_Is_Anon_Access then
642
            if R_Stm_Type_Is_Anon_Access then
643
               if
644
                 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
645
               then
646
                  if Base_Type (Designated_Type (R_Stm_Type)) /=
647
                     Base_Type (Designated_Type (R_Type))
648
                    or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
649
                  then
650
                     Error_Msg_N
651
                      ("subtype must statically match function result subtype",
652
                       Subtype_Mark (Subtype_Ind));
653
                  end if;
654
 
655
               else
656
                  --  For two anonymous access to subprogram types, the
657
                  --  types themselves must be type conformant.
658
 
659
                  if not Conforming_Types
660
                    (R_Stm_Type, R_Type, Fully_Conformant)
661
                  then
662
                     Error_Msg_N
663
                      ("subtype must statically match function result subtype",
664
                         Subtype_Ind);
665
                  end if;
666
               end if;
667
 
668
            else
669
               Error_Msg_N ("must use anonymous access type", Subtype_Ind);
670
            end if;
671
 
672
         --  If the return object is of an anonymous access type, then report
673
         --  an error if the function's result type is not also anonymous.
674
 
675
         elsif R_Stm_Type_Is_Anon_Access
676
           and then not R_Type_Is_Anon_Access
677
         then
678
            Error_Msg_N ("anonymous access not allowed for function with " &
679
                         "named access result", Subtype_Ind);
680
 
681
         --  Subtype indication case: check that the return object's type is
682
         --  covered by the result type, and that the subtypes statically match
683
         --  when the result subtype is constrained. Also handle record types
684
         --  with unknown discriminants for which we have built the underlying
685
         --  record view. Coverage is needed to allow specific-type return
686
         --  objects when the result type is class-wide (see AI05-32).
687
 
688
         elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
689
           or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
690
                     and then
691
                       Covers
692
                         (Base_Type (R_Type),
693
                          Underlying_Record_View (Base_Type (R_Stm_Type))))
694
         then
695
            --  A null exclusion may be present on the return type, on the
696
            --  function specification, on the object declaration or on the
697
            --  subtype itself.
698
 
699
            if Is_Access_Type (R_Type)
700
              and then
701
               (Can_Never_Be_Null (R_Type)
702
                 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
703
                                              Can_Never_Be_Null (R_Stm_Type)
704
            then
705
               Error_Msg_N
706
                 ("subtype must statically match function result subtype",
707
                  Subtype_Ind);
708
            end if;
709
 
710
            --  AI05-103: for elementary types, subtypes must statically match
711
 
712
            if Is_Constrained (R_Type)
713
              or else Is_Access_Type (R_Type)
714
            then
715
               if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
716
                  Error_Msg_N
717
                    ("subtype must statically match function result subtype",
718
                     Subtype_Ind);
719
               end if;
720
            end if;
721
 
722
         elsif Etype (Base_Type (R_Type)) = R_Stm_Type
723
           and then Is_Null_Extension (Base_Type (R_Type))
724
         then
725
            null;
726
 
727
         else
728
            Error_Msg_N
729
              ("wrong type for return_subtype_indication", Subtype_Ind);
730
         end if;
731
      end Check_Return_Subtype_Indication;
732
 
733
      ---------------------
734
      -- Local Variables --
735
      ---------------------
736
 
737
      Expr : Node_Id;
738
 
739
   --  Start of processing for Analyze_Function_Return
740
 
741
   begin
742
      Set_Return_Present (Scope_Id);
743
 
744
      if Nkind (N) = N_Simple_Return_Statement then
745
         Expr := Expression (N);
746
 
747
         --  Guard against a malformed expression. The parser may have tried to
748
         --  recover but the node is not analyzable.
749
 
750
         if Nkind (Expr) = N_Error then
751
            Set_Etype (Expr, Any_Type);
752
            Expander_Mode_Save_And_Set (False);
753
            return;
754
 
755
         else
756
            --  The resolution of a controlled [extension] aggregate associated
757
            --  with a return statement creates a temporary which needs to be
758
            --  finalized on function exit. Wrap the return statement inside a
759
            --  block so that the finalization machinery can detect this case.
760
            --  This early expansion is done only when the return statement is
761
            --  not part of a handled sequence of statements.
762
 
763
            if Nkind_In (Expr, N_Aggregate,
764
                               N_Extension_Aggregate)
765
              and then Needs_Finalization (R_Type)
766
              and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
767
            then
768
               Rewrite (N,
769
                 Make_Block_Statement (Loc,
770
                   Handled_Statement_Sequence =>
771
                     Make_Handled_Sequence_Of_Statements (Loc,
772
                       Statements => New_List (Relocate_Node (N)))));
773
 
774
               Analyze (N);
775
               return;
776
            end if;
777
 
778
            Analyze_And_Resolve (Expr, R_Type);
779
            Check_Limited_Return (Expr);
780
         end if;
781
 
782
         --  RETURN only allowed in SPARK as the last statement in function
783
 
784
         if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
785
           and then
786
             (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
787
               or else Present (Next (N)))
788
         then
789
            Check_SPARK_Restriction
790
              ("RETURN should be the last statement in function", N);
791
         end if;
792
 
793
      else
794
         Check_SPARK_Restriction ("extended RETURN is not allowed", N);
795
 
796
         --  Analyze parts specific to extended_return_statement:
797
 
798
         declare
799
            Obj_Decl : constant Node_Id :=
800
                         Last (Return_Object_Declarations (N));
801
 
802
            HSS : constant Node_Id := Handled_Statement_Sequence (N);
803
 
804
         begin
805
            Expr := Expression (Obj_Decl);
806
 
807
            --  Note: The check for OK_For_Limited_Init will happen in
808
            --  Analyze_Object_Declaration; we treat it as a normal
809
            --  object declaration.
810
 
811
            Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
812
            Analyze (Obj_Decl);
813
 
814
            Check_Return_Subtype_Indication (Obj_Decl);
815
 
816
            if Present (HSS) then
817
               Analyze (HSS);
818
 
819
               if Present (Exception_Handlers (HSS)) then
820
 
821
                  --  ???Has_Nested_Block_With_Handler needs to be set.
822
                  --  Probably by creating an actual N_Block_Statement.
823
                  --  Probably in Expand.
824
 
825
                  null;
826
               end if;
827
            end if;
828
 
829
            --  Mark the return object as referenced, since the return is an
830
            --  implicit reference of the object.
831
 
832
            Set_Referenced (Defining_Identifier (Obj_Decl));
833
 
834
            Check_References (Stm_Entity);
835
         end;
836
      end if;
837
 
838
      --  Case of Expr present
839
 
840
      if Present (Expr)
841
 
842
         --  Defend against previous errors
843
 
844
        and then Nkind (Expr) /= N_Empty
845
        and then Present (Etype (Expr))
846
      then
847
         --  Apply constraint check. Note that this is done before the implicit
848
         --  conversion of the expression done for anonymous access types to
849
         --  ensure correct generation of the null-excluding check associated
850
         --  with null-excluding expressions found in return statements.
851
 
852
         Apply_Constraint_Check (Expr, R_Type);
853
 
854
         --  Ada 2005 (AI-318-02): When the result type is an anonymous access
855
         --  type, apply an implicit conversion of the expression to that type
856
         --  to force appropriate static and run-time accessibility checks.
857
 
858
         if Ada_Version >= Ada_2005
859
           and then Ekind (R_Type) = E_Anonymous_Access_Type
860
         then
861
            Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
862
            Analyze_And_Resolve (Expr, R_Type);
863
         end if;
864
 
865
         --  If the result type is class-wide, then check that the return
866
         --  expression's type is not declared at a deeper level than the
867
         --  function (RM05-6.5(5.6/2)).
868
 
869
         if Ada_Version >= Ada_2005
870
           and then Is_Class_Wide_Type (R_Type)
871
         then
872
            if Type_Access_Level (Etype (Expr)) >
873
                 Subprogram_Access_Level (Scope_Id)
874
            then
875
               Error_Msg_N
876
                 ("level of return expression type is deeper than " &
877
                  "class-wide function!", Expr);
878
            end if;
879
         end if;
880
 
881
         --  Check incorrect use of dynamically tagged expression
882
 
883
         if Is_Tagged_Type (R_Type) then
884
            Check_Dynamically_Tagged_Expression
885
              (Expr => Expr,
886
               Typ  => R_Type,
887
               Related_Nod => N);
888
         end if;
889
 
890
         --  ??? A real run-time accessibility check is needed in cases
891
         --  involving dereferences of access parameters. For now we just
892
         --  check the static cases.
893
 
894
         if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
895
           and then Is_Immutably_Limited_Type (Etype (Scope_Id))
896
           and then Object_Access_Level (Expr) >
897
                      Subprogram_Access_Level (Scope_Id)
898
         then
899
 
900
            --  Suppress the message in a generic, where the rewriting
901
            --  is irrelevant.
902
 
903
            if Inside_A_Generic then
904
               null;
905
 
906
            else
907
               Rewrite (N,
908
                 Make_Raise_Program_Error (Loc,
909
                   Reason => PE_Accessibility_Check_Failed));
910
               Analyze (N);
911
 
912
               Error_Msg_N
913
                 ("cannot return a local value by reference?", N);
914
               Error_Msg_NE
915
                 ("\& will be raised at run time?",
916
                   N, Standard_Program_Error);
917
            end if;
918
         end if;
919
 
920
         if Known_Null (Expr)
921
           and then Nkind (Parent (Scope_Id)) = N_Function_Specification
922
           and then Null_Exclusion_Present (Parent (Scope_Id))
923
         then
924
            Apply_Compile_Time_Constraint_Error
925
              (N      => Expr,
926
               Msg    => "(Ada 2005) null not allowed for "
927
                         & "null-excluding return?",
928
               Reason => CE_Null_Not_Allowed);
929
         end if;
930
 
931
         --  Apply checks suggested by AI05-0144 (dangerous order dependence)
932
 
933
         Check_Order_Dependence;
934
      end if;
935
   end Analyze_Function_Return;
936
 
937
   -------------------------------------
938
   -- Analyze_Generic_Subprogram_Body --
939
   -------------------------------------
940
 
941
   procedure Analyze_Generic_Subprogram_Body
942
     (N      : Node_Id;
943
      Gen_Id : Entity_Id)
944
   is
945
      Gen_Decl : constant Node_Id     := Unit_Declaration_Node (Gen_Id);
946
      Kind     : constant Entity_Kind := Ekind (Gen_Id);
947
      Body_Id  : Entity_Id;
948
      New_N    : Node_Id;
949
      Spec     : Node_Id;
950
 
951
   begin
952
      --  Copy body and disable expansion while analyzing the generic For a
953
      --  stub, do not copy the stub (which would load the proper body), this
954
      --  will be done when the proper body is analyzed.
955
 
956
      if Nkind (N) /= N_Subprogram_Body_Stub then
957
         New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
958
         Rewrite (N, New_N);
959
         Start_Generic;
960
      end if;
961
 
962
      Spec := Specification (N);
963
 
964
      --  Within the body of the generic, the subprogram is callable, and
965
      --  behaves like the corresponding non-generic unit.
966
 
967
      Body_Id := Defining_Entity (Spec);
968
 
969
      if Kind = E_Generic_Procedure
970
        and then Nkind (Spec) /= N_Procedure_Specification
971
      then
972
         Error_Msg_N ("invalid body for generic procedure ", Body_Id);
973
         return;
974
 
975
      elsif Kind = E_Generic_Function
976
        and then Nkind (Spec) /= N_Function_Specification
977
      then
978
         Error_Msg_N ("invalid body for generic function ", Body_Id);
979
         return;
980
      end if;
981
 
982
      Set_Corresponding_Body (Gen_Decl, Body_Id);
983
 
984
      if Has_Completion (Gen_Id)
985
        and then Nkind (Parent (N)) /= N_Subunit
986
      then
987
         Error_Msg_N ("duplicate generic body", N);
988
         return;
989
      else
990
         Set_Has_Completion (Gen_Id);
991
      end if;
992
 
993
      if Nkind (N) = N_Subprogram_Body_Stub then
994
         Set_Ekind (Defining_Entity (Specification (N)), Kind);
995
      else
996
         Set_Corresponding_Spec (N, Gen_Id);
997
      end if;
998
 
999
      if Nkind (Parent (N)) = N_Compilation_Unit then
1000
         Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1001
      end if;
1002
 
1003
      --  Make generic parameters immediately visible in the body. They are
1004
      --  needed to process the formals declarations. Then make the formals
1005
      --  visible in a separate step.
1006
 
1007
      Push_Scope (Gen_Id);
1008
 
1009
      declare
1010
         E         : Entity_Id;
1011
         First_Ent : Entity_Id;
1012
 
1013
      begin
1014
         First_Ent := First_Entity (Gen_Id);
1015
 
1016
         E := First_Ent;
1017
         while Present (E) and then not Is_Formal (E) loop
1018
            Install_Entity (E);
1019
            Next_Entity (E);
1020
         end loop;
1021
 
1022
         Set_Use (Generic_Formal_Declarations (Gen_Decl));
1023
 
1024
         --  Now generic formals are visible, and the specification can be
1025
         --  analyzed, for subsequent conformance check.
1026
 
1027
         Body_Id := Analyze_Subprogram_Specification (Spec);
1028
 
1029
         --  Make formal parameters visible
1030
 
1031
         if Present (E) then
1032
 
1033
            --  E is the first formal parameter, we loop through the formals
1034
            --  installing them so that they will be visible.
1035
 
1036
            Set_First_Entity (Gen_Id, E);
1037
            while Present (E) loop
1038
               Install_Entity (E);
1039
               Next_Formal (E);
1040
            end loop;
1041
         end if;
1042
 
1043
         --  Visible generic entity is callable within its own body
1044
 
1045
         Set_Ekind          (Gen_Id,  Ekind (Body_Id));
1046
         Set_Ekind          (Body_Id, E_Subprogram_Body);
1047
         Set_Convention     (Body_Id, Convention (Gen_Id));
1048
         Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1049
         Set_Scope          (Body_Id, Scope (Gen_Id));
1050
         Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1051
 
1052
         if Nkind (N) = N_Subprogram_Body_Stub then
1053
 
1054
            --  No body to analyze, so restore state of generic unit
1055
 
1056
            Set_Ekind (Gen_Id, Kind);
1057
            Set_Ekind (Body_Id, Kind);
1058
 
1059
            if Present (First_Ent) then
1060
               Set_First_Entity (Gen_Id, First_Ent);
1061
            end if;
1062
 
1063
            End_Scope;
1064
            return;
1065
         end if;
1066
 
1067
         --  If this is a compilation unit, it must be made visible explicitly,
1068
         --  because the compilation of the declaration, unlike other library
1069
         --  unit declarations, does not. If it is not a unit, the following
1070
         --  is redundant but harmless.
1071
 
1072
         Set_Is_Immediately_Visible (Gen_Id);
1073
         Reference_Body_Formals (Gen_Id, Body_Id);
1074
 
1075
         if Is_Child_Unit (Gen_Id) then
1076
            Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1077
         end if;
1078
 
1079
         Set_Actual_Subtypes (N, Current_Scope);
1080
 
1081
         --  Deal with preconditions and postconditions. In formal verification
1082
         --  mode, we keep pre- and postconditions attached to entities rather
1083
         --  than inserted in the code, in order to facilitate a distinct
1084
         --  treatment for them.
1085
 
1086
         if not Alfa_Mode then
1087
            Process_PPCs (N, Gen_Id, Body_Id);
1088
         end if;
1089
 
1090
         --  If the generic unit carries pre- or post-conditions, copy them
1091
         --  to the original generic tree, so that they are properly added
1092
         --  to any instantiation.
1093
 
1094
         declare
1095
            Orig : constant Node_Id := Original_Node (N);
1096
            Cond : Node_Id;
1097
 
1098
         begin
1099
            Cond := First (Declarations (N));
1100
            while Present (Cond) loop
1101
               if Nkind (Cond) = N_Pragma
1102
                 and then Pragma_Name (Cond) = Name_Check
1103
               then
1104
                  Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1105
 
1106
               elsif Nkind (Cond) = N_Pragma
1107
                 and then Pragma_Name (Cond) = Name_Postcondition
1108
               then
1109
                  Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
1110
                  Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1111
               else
1112
                  exit;
1113
               end if;
1114
 
1115
               Next (Cond);
1116
            end loop;
1117
         end;
1118
 
1119
         Analyze_Declarations (Declarations (N));
1120
         Check_Completion;
1121
         Analyze (Handled_Statement_Sequence (N));
1122
 
1123
         Save_Global_References (Original_Node (N));
1124
 
1125
         --  Prior to exiting the scope, include generic formals again (if any
1126
         --  are present) in the set of local entities.
1127
 
1128
         if Present (First_Ent) then
1129
            Set_First_Entity (Gen_Id, First_Ent);
1130
         end if;
1131
 
1132
         Check_References (Gen_Id);
1133
      end;
1134
 
1135
      Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1136
      End_Scope;
1137
      Check_Subprogram_Order (N);
1138
 
1139
      --  Outside of its body, unit is generic again
1140
 
1141
      Set_Ekind (Gen_Id, Kind);
1142
      Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1143
 
1144
      if Style_Check then
1145
         Style.Check_Identifier (Body_Id, Gen_Id);
1146
      end if;
1147
 
1148
      End_Generic;
1149
   end Analyze_Generic_Subprogram_Body;
1150
 
1151
   -----------------------------
1152
   -- Analyze_Operator_Symbol --
1153
   -----------------------------
1154
 
1155
   --  An operator symbol such as "+" or "and" may appear in context where the
1156
   --  literal denotes an entity name, such as "+"(x, y) or in context when it
1157
   --  is just a string, as in (conjunction = "or"). In these cases the parser
1158
   --  generates this node, and the semantics does the disambiguation. Other
1159
   --  such case are actuals in an instantiation, the generic unit in an
1160
   --  instantiation, and pragma arguments.
1161
 
1162
   procedure Analyze_Operator_Symbol (N : Node_Id) is
1163
      Par : constant Node_Id := Parent (N);
1164
 
1165
   begin
1166
      if        (Nkind (Par) = N_Function_Call
1167
                   and then N = Name (Par))
1168
        or else  Nkind (Par) = N_Function_Instantiation
1169
        or else (Nkind (Par) = N_Indexed_Component
1170
                   and then N = Prefix (Par))
1171
        or else (Nkind (Par) = N_Pragma_Argument_Association
1172
                   and then not Is_Pragma_String_Literal (Par))
1173
        or else  Nkind (Par) = N_Subprogram_Renaming_Declaration
1174
        or else (Nkind (Par) = N_Attribute_Reference
1175
                  and then Attribute_Name (Par) /= Name_Value)
1176
      then
1177
         Find_Direct_Name (N);
1178
 
1179
      else
1180
         Change_Operator_Symbol_To_String_Literal (N);
1181
         Analyze (N);
1182
      end if;
1183
   end Analyze_Operator_Symbol;
1184
 
1185
   -----------------------------------
1186
   -- Analyze_Parameter_Association --
1187
   -----------------------------------
1188
 
1189
   procedure Analyze_Parameter_Association (N : Node_Id) is
1190
   begin
1191
      Analyze (Explicit_Actual_Parameter (N));
1192
   end Analyze_Parameter_Association;
1193
 
1194
   ----------------------------
1195
   -- Analyze_Procedure_Call --
1196
   ----------------------------
1197
 
1198
   procedure Analyze_Procedure_Call (N : Node_Id) is
1199
      Loc     : constant Source_Ptr := Sloc (N);
1200
      P       : constant Node_Id    := Name (N);
1201
      Actuals : constant List_Id    := Parameter_Associations (N);
1202
      Actual  : Node_Id;
1203
      New_N   : Node_Id;
1204
 
1205
      procedure Analyze_Call_And_Resolve;
1206
      --  Do Analyze and Resolve calls for procedure call
1207
      --  At end, check illegal order dependence.
1208
 
1209
      ------------------------------
1210
      -- Analyze_Call_And_Resolve --
1211
      ------------------------------
1212
 
1213
      procedure Analyze_Call_And_Resolve is
1214
      begin
1215
         if Nkind (N) = N_Procedure_Call_Statement then
1216
            Analyze_Call (N);
1217
            Resolve (N, Standard_Void_Type);
1218
 
1219
            --  Apply checks suggested by AI05-0144
1220
 
1221
            Check_Order_Dependence;
1222
 
1223
         else
1224
            Analyze (N);
1225
         end if;
1226
      end Analyze_Call_And_Resolve;
1227
 
1228
   --  Start of processing for Analyze_Procedure_Call
1229
 
1230
   begin
1231
      --  The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1232
      --  a procedure call or an entry call. The prefix may denote an access
1233
      --  to subprogram type, in which case an implicit dereference applies.
1234
      --  If the prefix is an indexed component (without implicit dereference)
1235
      --  then the construct denotes a call to a member of an entire family.
1236
      --  If the prefix is a simple name, it may still denote a call to a
1237
      --  parameterless member of an entry family. Resolution of these various
1238
      --  interpretations is delicate.
1239
 
1240
      Analyze (P);
1241
 
1242
      --  If this is a call of the form Obj.Op, the call may have been
1243
      --  analyzed and possibly rewritten into a block, in which case
1244
      --  we are done.
1245
 
1246
      if Analyzed (N) then
1247
         return;
1248
      end if;
1249
 
1250
      --  If there is an error analyzing the name (which may have been
1251
      --  rewritten if the original call was in prefix notation) then error
1252
      --  has been emitted already, mark node and return.
1253
 
1254
      if Error_Posted (N)
1255
        or else Etype (Name (N)) = Any_Type
1256
      then
1257
         Set_Etype (N, Any_Type);
1258
         return;
1259
      end if;
1260
 
1261
      --  Otherwise analyze the parameters
1262
 
1263
      if Present (Actuals) then
1264
         Actual := First (Actuals);
1265
 
1266
         while Present (Actual) loop
1267
            Analyze (Actual);
1268
            Check_Parameterless_Call (Actual);
1269
            Next (Actual);
1270
         end loop;
1271
      end if;
1272
 
1273
      --  Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1274
 
1275
      if Nkind (P) = N_Attribute_Reference
1276
        and then (Attribute_Name (P) = Name_Elab_Spec
1277
                   or else Attribute_Name (P) = Name_Elab_Body
1278
                   or else Attribute_Name (P) = Name_Elab_Subp_Body)
1279
      then
1280
         if Present (Actuals) then
1281
            Error_Msg_N
1282
              ("no parameters allowed for this call", First (Actuals));
1283
            return;
1284
         end if;
1285
 
1286
         Set_Etype (N, Standard_Void_Type);
1287
         Set_Analyzed (N);
1288
 
1289
      elsif Is_Entity_Name (P)
1290
        and then Is_Record_Type (Etype (Entity (P)))
1291
        and then Remote_AST_I_Dereference (P)
1292
      then
1293
         return;
1294
 
1295
      elsif Is_Entity_Name (P)
1296
        and then Ekind (Entity (P)) /= E_Entry_Family
1297
      then
1298
         if Is_Access_Type (Etype (P))
1299
           and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1300
           and then No (Actuals)
1301
           and then Comes_From_Source (N)
1302
         then
1303
            Error_Msg_N ("missing explicit dereference in call", N);
1304
         end if;
1305
 
1306
         Analyze_Call_And_Resolve;
1307
 
1308
      --  If the prefix is the simple name of an entry family, this is
1309
      --  a parameterless call from within the task body itself.
1310
 
1311
      elsif Is_Entity_Name (P)
1312
        and then Nkind (P) = N_Identifier
1313
        and then Ekind (Entity (P)) = E_Entry_Family
1314
        and then Present (Actuals)
1315
        and then No (Next (First (Actuals)))
1316
      then
1317
         --  Can be call to parameterless entry family. What appears to be the
1318
         --  sole argument is in fact the entry index. Rewrite prefix of node
1319
         --  accordingly. Source representation is unchanged by this
1320
         --  transformation.
1321
 
1322
         New_N :=
1323
           Make_Indexed_Component (Loc,
1324
             Prefix =>
1325
               Make_Selected_Component (Loc,
1326
                 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1327
                 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1328
             Expressions => Actuals);
1329
         Set_Name (N, New_N);
1330
         Set_Etype (New_N, Standard_Void_Type);
1331
         Set_Parameter_Associations (N, No_List);
1332
         Analyze_Call_And_Resolve;
1333
 
1334
      elsif Nkind (P) = N_Explicit_Dereference then
1335
         if Ekind (Etype (P)) = E_Subprogram_Type then
1336
            Analyze_Call_And_Resolve;
1337
         else
1338
            Error_Msg_N ("expect access to procedure in call", P);
1339
         end if;
1340
 
1341
      --  The name can be a selected component or an indexed component that
1342
      --  yields an access to subprogram. Such a prefix is legal if the call
1343
      --  has parameter associations.
1344
 
1345
      elsif Is_Access_Type (Etype (P))
1346
        and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1347
      then
1348
         if Present (Actuals) then
1349
            Analyze_Call_And_Resolve;
1350
         else
1351
            Error_Msg_N ("missing explicit dereference in call ", N);
1352
         end if;
1353
 
1354
      --  If not an access to subprogram, then the prefix must resolve to the
1355
      --  name of an entry, entry family, or protected operation.
1356
 
1357
      --  For the case of a simple entry call, P is a selected component where
1358
      --  the prefix is the task and the selector name is the entry. A call to
1359
      --  a protected procedure will have the same syntax. If the protected
1360
      --  object contains overloaded operations, the entity may appear as a
1361
      --  function, the context will select the operation whose type is Void.
1362
 
1363
      elsif Nkind (P) = N_Selected_Component
1364
        and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1365
                    or else
1366
                  Ekind (Entity (Selector_Name (P))) = E_Procedure
1367
                    or else
1368
                  Ekind (Entity (Selector_Name (P))) = E_Function)
1369
      then
1370
         Analyze_Call_And_Resolve;
1371
 
1372
      elsif Nkind (P) = N_Selected_Component
1373
        and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1374
        and then Present (Actuals)
1375
        and then No (Next (First (Actuals)))
1376
      then
1377
         --  Can be call to parameterless entry family. What appears to be the
1378
         --  sole argument is in fact the entry index. Rewrite prefix of node
1379
         --  accordingly. Source representation is unchanged by this
1380
         --  transformation.
1381
 
1382
         New_N :=
1383
           Make_Indexed_Component (Loc,
1384
             Prefix => New_Copy (P),
1385
             Expressions => Actuals);
1386
         Set_Name (N, New_N);
1387
         Set_Etype (New_N, Standard_Void_Type);
1388
         Set_Parameter_Associations (N, No_List);
1389
         Analyze_Call_And_Resolve;
1390
 
1391
      --  For the case of a reference to an element of an entry family, P is
1392
      --  an indexed component whose prefix is a selected component (task and
1393
      --  entry family), and whose index is the entry family index.
1394
 
1395
      elsif Nkind (P) = N_Indexed_Component
1396
        and then Nkind (Prefix (P)) = N_Selected_Component
1397
        and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1398
      then
1399
         Analyze_Call_And_Resolve;
1400
 
1401
      --  If the prefix is the name of an entry family, it is a call from
1402
      --  within the task body itself.
1403
 
1404
      elsif Nkind (P) = N_Indexed_Component
1405
        and then Nkind (Prefix (P)) = N_Identifier
1406
        and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1407
      then
1408
         New_N :=
1409
           Make_Selected_Component (Loc,
1410
             Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1411
             Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1412
         Rewrite (Prefix (P), New_N);
1413
         Analyze (P);
1414
         Analyze_Call_And_Resolve;
1415
 
1416
      --  In Ada 2012. a qualified expression is a name, but it cannot be a
1417
      --  procedure name, so the construct can only be a qualified expression.
1418
 
1419
      elsif Nkind (P) = N_Qualified_Expression
1420
        and then Ada_Version >= Ada_2012
1421
      then
1422
         Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1423
         Analyze (N);
1424
 
1425
      --  Anything else is an error
1426
 
1427
      else
1428
         Error_Msg_N ("invalid procedure or entry call", N);
1429
      end if;
1430
   end Analyze_Procedure_Call;
1431
 
1432
   ------------------------------
1433
   -- Analyze_Return_Statement --
1434
   ------------------------------
1435
 
1436
   procedure Analyze_Return_Statement (N : Node_Id) is
1437
 
1438
      pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1439
                                  N_Extended_Return_Statement));
1440
 
1441
      Returns_Object : constant Boolean :=
1442
                         Nkind (N) = N_Extended_Return_Statement
1443
                           or else
1444
                            (Nkind (N) = N_Simple_Return_Statement
1445
                              and then Present (Expression (N)));
1446
      --  True if we're returning something; that is, "return <expression>;"
1447
      --  or "return Result : T [:= ...]". False for "return;". Used for error
1448
      --  checking: If Returns_Object is True, N should apply to a function
1449
      --  body; otherwise N should apply to a procedure body, entry body,
1450
      --  accept statement, or extended return statement.
1451
 
1452
      function Find_What_It_Applies_To return Entity_Id;
1453
      --  Find the entity representing the innermost enclosing body, accept
1454
      --  statement, or extended return statement. If the result is a callable
1455
      --  construct or extended return statement, then this will be the value
1456
      --  of the Return_Applies_To attribute. Otherwise, the program is
1457
      --  illegal. See RM-6.5(4/2).
1458
 
1459
      -----------------------------
1460
      -- Find_What_It_Applies_To --
1461
      -----------------------------
1462
 
1463
      function Find_What_It_Applies_To return Entity_Id is
1464
         Result : Entity_Id := Empty;
1465
 
1466
      begin
1467
         --  Loop outward through the Scope_Stack, skipping blocks, loops,
1468
         --  and postconditions.
1469
 
1470
         for J in reverse 0 .. Scope_Stack.Last loop
1471
            Result := Scope_Stack.Table (J).Entity;
1472
            exit when not Ekind_In (Result, E_Block, E_Loop)
1473
              and then Chars (Result) /= Name_uPostconditions;
1474
         end loop;
1475
 
1476
         pragma Assert (Present (Result));
1477
         return Result;
1478
      end Find_What_It_Applies_To;
1479
 
1480
      --  Local declarations
1481
 
1482
      Scope_Id   : constant Entity_Id   := Find_What_It_Applies_To;
1483
      Kind       : constant Entity_Kind := Ekind (Scope_Id);
1484
      Loc        : constant Source_Ptr  := Sloc (N);
1485
      Stm_Entity : constant Entity_Id   :=
1486
                     New_Internal_Entity
1487
                       (E_Return_Statement, Current_Scope, Loc, 'R');
1488
 
1489
   --  Start of processing for Analyze_Return_Statement
1490
 
1491
   begin
1492
      Set_Return_Statement_Entity (N, Stm_Entity);
1493
 
1494
      Set_Etype (Stm_Entity, Standard_Void_Type);
1495
      Set_Return_Applies_To (Stm_Entity, Scope_Id);
1496
 
1497
      --  Place Return entity on scope stack, to simplify enforcement of 6.5
1498
      --  (4/2): an inner return statement will apply to this extended return.
1499
 
1500
      if Nkind (N) = N_Extended_Return_Statement then
1501
         Push_Scope (Stm_Entity);
1502
      end if;
1503
 
1504
      --  Check that pragma No_Return is obeyed. Don't complain about the
1505
      --  implicitly-generated return that is placed at the end.
1506
 
1507
      if No_Return (Scope_Id) and then Comes_From_Source (N) then
1508
         Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1509
      end if;
1510
 
1511
      --  Warn on any unassigned OUT parameters if in procedure
1512
 
1513
      if Ekind (Scope_Id) = E_Procedure then
1514
         Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1515
      end if;
1516
 
1517
      --  Check that functions return objects, and other things do not
1518
 
1519
      if Kind = E_Function or else Kind = E_Generic_Function then
1520
         if not Returns_Object then
1521
            Error_Msg_N ("missing expression in return from function", N);
1522
         end if;
1523
 
1524
      elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1525
         if Returns_Object then
1526
            Error_Msg_N ("procedure cannot return value (use function)", N);
1527
         end if;
1528
 
1529
      elsif Kind = E_Entry or else Kind = E_Entry_Family then
1530
         if Returns_Object then
1531
            if Is_Protected_Type (Scope (Scope_Id)) then
1532
               Error_Msg_N ("entry body cannot return value", N);
1533
            else
1534
               Error_Msg_N ("accept statement cannot return value", N);
1535
            end if;
1536
         end if;
1537
 
1538
      elsif Kind = E_Return_Statement then
1539
 
1540
         --  We are nested within another return statement, which must be an
1541
         --  extended_return_statement.
1542
 
1543
         if Returns_Object then
1544
            if Nkind (N) = N_Extended_Return_Statement then
1545
               Error_Msg_N
1546
                 ("extended return statement cannot be nested (use `RETURN;`)",
1547
                  N);
1548
 
1549
            --  Case of a simple return statement with a value inside extended
1550
            --  return statement.
1551
 
1552
            else
1553
               Error_Msg_N
1554
                 ("return nested in extended return statement cannot return " &
1555
                  "value (use `RETURN;`)", N);
1556
            end if;
1557
         end if;
1558
 
1559
      else
1560
         Error_Msg_N ("illegal context for return statement", N);
1561
      end if;
1562
 
1563
      if Ekind_In (Kind, E_Function, E_Generic_Function) then
1564
         Analyze_Function_Return (N);
1565
 
1566
      elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1567
         Set_Return_Present (Scope_Id);
1568
      end if;
1569
 
1570
      if Nkind (N) = N_Extended_Return_Statement then
1571
         End_Scope;
1572
      end if;
1573
 
1574
      Kill_Current_Values (Last_Assignment_Only => True);
1575
      Check_Unreachable_Code (N);
1576
 
1577
      Analyze_Dimension (N);
1578
   end Analyze_Return_Statement;
1579
 
1580
   -------------------------------------
1581
   -- Analyze_Simple_Return_Statement --
1582
   -------------------------------------
1583
 
1584
   procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1585
   begin
1586
      if Present (Expression (N)) then
1587
         Mark_Coextensions (N, Expression (N));
1588
      end if;
1589
 
1590
      Analyze_Return_Statement (N);
1591
   end Analyze_Simple_Return_Statement;
1592
 
1593
   -------------------------
1594
   -- Analyze_Return_Type --
1595
   -------------------------
1596
 
1597
   procedure Analyze_Return_Type (N : Node_Id) is
1598
      Designator : constant Entity_Id := Defining_Entity (N);
1599
      Typ        : Entity_Id := Empty;
1600
 
1601
   begin
1602
      --  Normal case where result definition does not indicate an error
1603
 
1604
      if Result_Definition (N) /= Error then
1605
         if Nkind (Result_Definition (N)) = N_Access_Definition then
1606
            Check_SPARK_Restriction
1607
              ("access result is not allowed", Result_Definition (N));
1608
 
1609
            --  Ada 2005 (AI-254): Handle anonymous access to subprograms
1610
 
1611
            declare
1612
               AD : constant Node_Id :=
1613
                      Access_To_Subprogram_Definition (Result_Definition (N));
1614
            begin
1615
               if Present (AD) and then Protected_Present (AD) then
1616
                  Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1617
               else
1618
                  Typ := Access_Definition (N, Result_Definition (N));
1619
               end if;
1620
            end;
1621
 
1622
            Set_Parent (Typ, Result_Definition (N));
1623
            Set_Is_Local_Anonymous_Access (Typ);
1624
            Set_Etype (Designator, Typ);
1625
 
1626
            --  Ada 2005 (AI-231): Ensure proper usage of null exclusion
1627
 
1628
            Null_Exclusion_Static_Checks (N);
1629
 
1630
         --  Subtype_Mark case
1631
 
1632
         else
1633
            Find_Type (Result_Definition (N));
1634
            Typ := Entity (Result_Definition (N));
1635
            Set_Etype (Designator, Typ);
1636
 
1637
            --  Unconstrained array as result is not allowed in SPARK
1638
 
1639
            if Is_Array_Type (Typ)
1640
              and then not Is_Constrained (Typ)
1641
            then
1642
               Check_SPARK_Restriction
1643
                 ("returning an unconstrained array is not allowed",
1644
                  Result_Definition (N));
1645
            end if;
1646
 
1647
            --  Ada 2005 (AI-231): Ensure proper usage of null exclusion
1648
 
1649
            Null_Exclusion_Static_Checks (N);
1650
 
1651
            --  If a null exclusion is imposed on the result type, then create
1652
            --  a null-excluding itype (an access subtype) and use it as the
1653
            --  function's Etype. Note that the null exclusion checks are done
1654
            --  right before this, because they don't get applied to types that
1655
            --  do not come from source.
1656
 
1657
            if Is_Access_Type (Typ)
1658
              and then Null_Exclusion_Present (N)
1659
            then
1660
               Set_Etype  (Designator,
1661
                 Create_Null_Excluding_Itype
1662
                  (T           => Typ,
1663
                   Related_Nod => N,
1664
                   Scope_Id    => Scope (Current_Scope)));
1665
 
1666
               --  The new subtype must be elaborated before use because
1667
               --  it is visible outside of the function. However its base
1668
               --  type may not be frozen yet, so the reference that will
1669
               --  force elaboration must be attached to the freezing of
1670
               --  the base type.
1671
 
1672
               --  If the return specification appears on a proper body,
1673
               --  the subtype will have been created already on the spec.
1674
 
1675
               if Is_Frozen (Typ) then
1676
                  if Nkind (Parent (N)) = N_Subprogram_Body
1677
                    and then Nkind (Parent (Parent (N))) = N_Subunit
1678
                  then
1679
                     null;
1680
                  else
1681
                     Build_Itype_Reference (Etype (Designator), Parent (N));
1682
                  end if;
1683
 
1684
               else
1685
                  Ensure_Freeze_Node (Typ);
1686
 
1687
                  declare
1688
                     IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
1689
                  begin
1690
                     Set_Itype (IR, Etype (Designator));
1691
                     Append_Freeze_Actions (Typ, New_List (IR));
1692
                  end;
1693
               end if;
1694
 
1695
            else
1696
               Set_Etype (Designator, Typ);
1697
            end if;
1698
 
1699
            if Ekind (Typ) = E_Incomplete_Type
1700
              and then Is_Value_Type (Typ)
1701
            then
1702
               null;
1703
 
1704
            elsif Ekind (Typ) = E_Incomplete_Type
1705
              or else (Is_Class_Wide_Type (Typ)
1706
                         and then
1707
                           Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1708
            then
1709
               --  AI05-0151: Tagged incomplete types are allowed in all formal
1710
               --  parts. Untagged incomplete types are not allowed in bodies.
1711
 
1712
               if Ada_Version >= Ada_2012 then
1713
                  if Is_Tagged_Type (Typ) then
1714
                     null;
1715
 
1716
                  elsif Nkind_In (Parent (Parent (N)),
1717
                     N_Accept_Statement,
1718
                     N_Entry_Body,
1719
                     N_Subprogram_Body)
1720
                  then
1721
                     Error_Msg_NE
1722
                       ("invalid use of untagged incomplete type&",
1723
                          Designator, Typ);
1724
                  end if;
1725
 
1726
                  --  The type must be completed in the current package. This
1727
                  --  is checked at the end of the package declaraton, when
1728
                  --  Taft-amendment types are identified. If the return type
1729
                  --  is class-wide, there is no required check, the type can
1730
                  --  be a bona fide TAT.
1731
 
1732
                  if Ekind (Scope (Current_Scope)) = E_Package
1733
                    and then In_Private_Part (Scope (Current_Scope))
1734
                    and then not Is_Class_Wide_Type (Typ)
1735
                  then
1736
                     Append_Elmt (Designator, Private_Dependents (Typ));
1737
                  end if;
1738
 
1739
               else
1740
                  Error_Msg_NE
1741
                    ("invalid use of incomplete type&", Designator, Typ);
1742
               end if;
1743
            end if;
1744
         end if;
1745
 
1746
      --  Case where result definition does indicate an error
1747
 
1748
      else
1749
         Set_Etype (Designator, Any_Type);
1750
      end if;
1751
   end Analyze_Return_Type;
1752
 
1753
   -----------------------------
1754
   -- Analyze_Subprogram_Body --
1755
   -----------------------------
1756
 
1757
   procedure Analyze_Subprogram_Body (N : Node_Id) is
1758
      Loc       : constant Source_Ptr := Sloc (N);
1759
      Body_Spec : constant Node_Id    := Specification (N);
1760
      Body_Id   : constant Entity_Id  := Defining_Entity (Body_Spec);
1761
 
1762
   begin
1763
      if Debug_Flag_C then
1764
         Write_Str ("==> subprogram body ");
1765
         Write_Name (Chars (Body_Id));
1766
         Write_Str (" from ");
1767
         Write_Location (Loc);
1768
         Write_Eol;
1769
         Indent;
1770
      end if;
1771
 
1772
      Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1773
 
1774
      --  The real work is split out into the helper, so it can do "return;"
1775
      --  without skipping the debug output:
1776
 
1777
      Analyze_Subprogram_Body_Helper (N);
1778
 
1779
      if Debug_Flag_C then
1780
         Outdent;
1781
         Write_Str ("<== subprogram body ");
1782
         Write_Name (Chars (Body_Id));
1783
         Write_Str (" from ");
1784
         Write_Location (Loc);
1785
         Write_Eol;
1786
      end if;
1787
   end Analyze_Subprogram_Body;
1788
 
1789
   ------------------------------------
1790
   -- Analyze_Subprogram_Body_Helper --
1791
   ------------------------------------
1792
 
1793
   --  This procedure is called for regular subprogram bodies, generic bodies,
1794
   --  and for subprogram stubs of both kinds. In the case of stubs, only the
1795
   --  specification matters, and is used to create a proper declaration for
1796
   --  the subprogram, or to perform conformance checks.
1797
 
1798
   procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
1799
      Loc          : constant Source_Ptr := Sloc (N);
1800
      Body_Deleted : constant Boolean    := False;
1801
      Body_Spec    : constant Node_Id    := Specification (N);
1802
      Body_Id      : Entity_Id           := Defining_Entity (Body_Spec);
1803
      Prev_Id      : constant Entity_Id  := Current_Entity_In_Scope (Body_Id);
1804
      Conformant   : Boolean;
1805
      HSS          : Node_Id;
1806
      P_Ent        : Entity_Id;
1807
      Prot_Typ     : Entity_Id := Empty;
1808
      Spec_Id      : Entity_Id;
1809
      Spec_Decl    : Node_Id   := Empty;
1810
 
1811
      Last_Real_Spec_Entity : Entity_Id := Empty;
1812
      --  When we analyze a separate spec, the entity chain ends up containing
1813
      --  the formals, as well as any itypes generated during analysis of the
1814
      --  default expressions for parameters, or the arguments of associated
1815
      --  precondition/postcondition pragmas (which are analyzed in the context
1816
      --  of the spec since they have visibility on formals).
1817
      --
1818
      --  These entities belong with the spec and not the body. However we do
1819
      --  the analysis of the body in the context of the spec (again to obtain
1820
      --  visibility to the formals), and all the entities generated during
1821
      --  this analysis end up also chained to the entity chain of the spec.
1822
      --  But they really belong to the body, and there is circuitry to move
1823
      --  them from the spec to the body.
1824
      --
1825
      --  However, when we do this move, we don't want to move the real spec
1826
      --  entities (first para above) to the body. The Last_Real_Spec_Entity
1827
      --  variable points to the last real spec entity, so we only move those
1828
      --  chained beyond that point. It is initialized to Empty to deal with
1829
      --  the case where there is no separate spec.
1830
 
1831
      procedure Check_Anonymous_Return;
1832
      --  Ada 2005: if a function returns an access type that denotes a task,
1833
      --  or a type that contains tasks, we must create a master entity for
1834
      --  the anonymous type, which typically will be used in an allocator
1835
      --  in the body of the function.
1836
 
1837
      procedure Check_Inline_Pragma (Spec : in out Node_Id);
1838
      --  Look ahead to recognize a pragma that may appear after the body.
1839
      --  If there is a previous spec, check that it appears in the same
1840
      --  declarative part. If the pragma is Inline_Always, perform inlining
1841
      --  unconditionally, otherwise only if Front_End_Inlining is requested.
1842
      --  If the body acts as a spec, and inlining is required, we create a
1843
      --  subprogram declaration for it, in order to attach the body to inline.
1844
      --  If pragma does not appear after the body, check whether there is
1845
      --  an inline pragma before any local declarations.
1846
 
1847
      procedure Check_Missing_Return;
1848
      --  Checks for a function with a no return statements, and also performs
1849
      --  the warning checks implemented by Check_Returns. In formal mode, also
1850
      --  verify that a function ends with a RETURN and that a procedure does
1851
      --  not contain any RETURN.
1852
 
1853
      function Disambiguate_Spec return Entity_Id;
1854
      --  When a primitive is declared between the private view and the full
1855
      --  view of a concurrent type which implements an interface, a special
1856
      --  mechanism is used to find the corresponding spec of the primitive
1857
      --  body.
1858
 
1859
      procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
1860
      --  Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
1861
      --  incomplete types coming from a limited context and swap their limited
1862
      --  views with the non-limited ones.
1863
 
1864
      function Is_Private_Concurrent_Primitive
1865
        (Subp_Id : Entity_Id) return Boolean;
1866
      --  Determine whether subprogram Subp_Id is a primitive of a concurrent
1867
      --  type that implements an interface and has a private view.
1868
 
1869
      procedure Set_Trivial_Subprogram (N : Node_Id);
1870
      --  Sets the Is_Trivial_Subprogram flag in both spec and body of the
1871
      --  subprogram whose body is being analyzed. N is the statement node
1872
      --  causing the flag to be set, if the following statement is a return
1873
      --  of an entity, we mark the entity as set in source to suppress any
1874
      --  warning on the stylized use of function stubs with a dummy return.
1875
 
1876
      procedure Verify_Overriding_Indicator;
1877
      --  If there was a previous spec, the entity has been entered in the
1878
      --  current scope previously. If the body itself carries an overriding
1879
      --  indicator, check that it is consistent with the known status of the
1880
      --  entity.
1881
 
1882
      ----------------------------
1883
      -- Check_Anonymous_Return --
1884
      ----------------------------
1885
 
1886
      procedure Check_Anonymous_Return is
1887
         Decl : Node_Id;
1888
         Par  : Node_Id;
1889
         Scop : Entity_Id;
1890
 
1891
      begin
1892
         if Present (Spec_Id) then
1893
            Scop := Spec_Id;
1894
         else
1895
            Scop := Body_Id;
1896
         end if;
1897
 
1898
         if Ekind (Scop) = E_Function
1899
           and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
1900
           and then not Is_Thunk (Scop)
1901
           and then (Has_Task (Designated_Type (Etype (Scop)))
1902
                      or else
1903
                       (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
1904
                          and then
1905
                        Is_Limited_Record (Designated_Type (Etype (Scop)))))
1906
           and then Expander_Active
1907
 
1908
            --  Avoid cases with no tasking support
1909
 
1910
           and then RTE_Available (RE_Current_Master)
1911
           and then not Restriction_Active (No_Task_Hierarchy)
1912
         then
1913
            Decl :=
1914
              Make_Object_Declaration (Loc,
1915
                Defining_Identifier =>
1916
                  Make_Defining_Identifier (Loc, Name_uMaster),
1917
                Constant_Present => True,
1918
                Object_Definition =>
1919
                  New_Reference_To (RTE (RE_Master_Id), Loc),
1920
                Expression =>
1921
                  Make_Explicit_Dereference (Loc,
1922
                    New_Reference_To (RTE (RE_Current_Master), Loc)));
1923
 
1924
            if Present (Declarations (N)) then
1925
               Prepend (Decl, Declarations (N));
1926
            else
1927
               Set_Declarations (N, New_List (Decl));
1928
            end if;
1929
 
1930
            Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1931
            Set_Has_Master_Entity (Scop);
1932
 
1933
            --  Now mark the containing scope as a task master
1934
 
1935
            Par := N;
1936
            while Nkind (Par) /= N_Compilation_Unit loop
1937
               Par := Parent (Par);
1938
               pragma Assert (Present (Par));
1939
 
1940
               --  If we fall off the top, we are at the outer level, and
1941
               --  the environment task is our effective master, so nothing
1942
               --  to mark.
1943
 
1944
               if Nkind_In
1945
                   (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
1946
               then
1947
                  Set_Is_Task_Master (Par, True);
1948
                  exit;
1949
               end if;
1950
            end loop;
1951
         end if;
1952
      end Check_Anonymous_Return;
1953
 
1954
      -------------------------
1955
      -- Check_Inline_Pragma --
1956
      -------------------------
1957
 
1958
      procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1959
         Prag  : Node_Id;
1960
         Plist : List_Id;
1961
 
1962
         function Is_Inline_Pragma (N : Node_Id) return Boolean;
1963
         --  True when N is a pragma Inline or Inline_Always that applies
1964
         --  to this subprogram.
1965
 
1966
         -----------------------
1967
         --  Is_Inline_Pragma --
1968
         -----------------------
1969
 
1970
         function Is_Inline_Pragma (N : Node_Id) return Boolean is
1971
         begin
1972
            return
1973
              Nkind (N) = N_Pragma
1974
                and then
1975
                   (Pragma_Name (N) = Name_Inline_Always
1976
                     or else
1977
                      (Front_End_Inlining
1978
                        and then Pragma_Name (N) = Name_Inline))
1979
                and then
1980
                   Chars
1981
                     (Expression (First (Pragma_Argument_Associations (N))))
1982
                        = Chars (Body_Id);
1983
         end Is_Inline_Pragma;
1984
 
1985
      --  Start of processing for Check_Inline_Pragma
1986
 
1987
      begin
1988
         if not Expander_Active then
1989
            return;
1990
         end if;
1991
 
1992
         if Is_List_Member (N)
1993
           and then Present (Next (N))
1994
           and then Is_Inline_Pragma (Next (N))
1995
         then
1996
            Prag := Next (N);
1997
 
1998
         elsif Nkind (N) /= N_Subprogram_Body_Stub
1999
           and then Present (Declarations (N))
2000
           and then Is_Inline_Pragma (First (Declarations (N)))
2001
         then
2002
            Prag := First (Declarations (N));
2003
 
2004
         else
2005
            Prag := Empty;
2006
         end if;
2007
 
2008
         if Present (Prag) then
2009
            if Present (Spec_Id) then
2010
               if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
2011
                  Analyze (Prag);
2012
               end if;
2013
 
2014
            else
2015
               --  Create a subprogram declaration, to make treatment uniform
2016
 
2017
               declare
2018
                  Subp : constant Entity_Id :=
2019
                           Make_Defining_Identifier (Loc, Chars (Body_Id));
2020
                  Decl : constant Node_Id :=
2021
                           Make_Subprogram_Declaration (Loc,
2022
                             Specification =>
2023
                               New_Copy_Tree (Specification (N)));
2024
 
2025
               begin
2026
                  Set_Defining_Unit_Name (Specification (Decl), Subp);
2027
 
2028
                  if Present (First_Formal (Body_Id)) then
2029
                     Plist := Copy_Parameter_List (Body_Id);
2030
                     Set_Parameter_Specifications
2031
                       (Specification (Decl), Plist);
2032
                  end if;
2033
 
2034
                  Insert_Before (N, Decl);
2035
                  Analyze (Decl);
2036
                  Analyze (Prag);
2037
                  Set_Has_Pragma_Inline (Subp);
2038
 
2039
                  if Pragma_Name (Prag) = Name_Inline_Always then
2040
                     Set_Is_Inlined (Subp);
2041
                     Set_Has_Pragma_Inline_Always (Subp);
2042
                  end if;
2043
 
2044
                  Spec := Subp;
2045
               end;
2046
            end if;
2047
         end if;
2048
      end Check_Inline_Pragma;
2049
 
2050
      --------------------------
2051
      -- Check_Missing_Return --
2052
      --------------------------
2053
 
2054
      procedure Check_Missing_Return is
2055
         Id          : Entity_Id;
2056
         Missing_Ret : Boolean;
2057
 
2058
      begin
2059
         if Nkind (Body_Spec) = N_Function_Specification then
2060
            if Present (Spec_Id) then
2061
               Id := Spec_Id;
2062
            else
2063
               Id := Body_Id;
2064
            end if;
2065
 
2066
            if Return_Present (Id) then
2067
               Check_Returns (HSS, 'F', Missing_Ret);
2068
 
2069
               if Missing_Ret then
2070
                  Set_Has_Missing_Return (Id);
2071
               end if;
2072
 
2073
            elsif (Is_Generic_Subprogram (Id)
2074
                     or else not Is_Machine_Code_Subprogram (Id))
2075
              and then not Body_Deleted
2076
            then
2077
               Error_Msg_N ("missing RETURN statement in function body", N);
2078
            end if;
2079
 
2080
         --  If procedure with No_Return, check returns
2081
 
2082
         elsif Nkind (Body_Spec) = N_Procedure_Specification
2083
           and then Present (Spec_Id)
2084
           and then No_Return (Spec_Id)
2085
         then
2086
            Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2087
         end if;
2088
 
2089
         --  Special checks in SPARK mode
2090
 
2091
         if Nkind (Body_Spec) = N_Function_Specification then
2092
 
2093
            --  In SPARK mode, last statement of a function should be a return
2094
 
2095
            declare
2096
               Stat : constant Node_Id := Last_Source_Statement (HSS);
2097
            begin
2098
               if Present (Stat)
2099
                 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2100
                                              N_Extended_Return_Statement)
2101
               then
2102
                  Check_SPARK_Restriction
2103
                    ("last statement in function should be RETURN", Stat);
2104
               end if;
2105
            end;
2106
 
2107
         --  In SPARK mode, verify that a procedure has no return
2108
 
2109
         elsif Nkind (Body_Spec) = N_Procedure_Specification then
2110
            if Present (Spec_Id) then
2111
               Id := Spec_Id;
2112
            else
2113
               Id := Body_Id;
2114
            end if;
2115
 
2116
            --  Would be nice to point to return statement here, can we
2117
            --  borrow the Check_Returns procedure here ???
2118
 
2119
            if Return_Present (Id) then
2120
               Check_SPARK_Restriction
2121
                 ("procedure should not have RETURN", N);
2122
            end if;
2123
         end if;
2124
      end Check_Missing_Return;
2125
 
2126
      -----------------------
2127
      -- Disambiguate_Spec --
2128
      -----------------------
2129
 
2130
      function Disambiguate_Spec return Entity_Id is
2131
         Priv_Spec : Entity_Id;
2132
         Spec_N    : Entity_Id;
2133
 
2134
         procedure Replace_Types (To_Corresponding : Boolean);
2135
         --  Depending on the flag, replace the type of formal parameters of
2136
         --  Body_Id if it is a concurrent type implementing interfaces with
2137
         --  the corresponding record type or the other way around.
2138
 
2139
         procedure Replace_Types (To_Corresponding : Boolean) is
2140
            Formal     : Entity_Id;
2141
            Formal_Typ : Entity_Id;
2142
 
2143
         begin
2144
            Formal := First_Formal (Body_Id);
2145
            while Present (Formal) loop
2146
               Formal_Typ := Etype (Formal);
2147
 
2148
               if Is_Class_Wide_Type (Formal_Typ) then
2149
                  Formal_Typ := Root_Type (Formal_Typ);
2150
               end if;
2151
 
2152
               --  From concurrent type to corresponding record
2153
 
2154
               if To_Corresponding then
2155
                  if Is_Concurrent_Type (Formal_Typ)
2156
                    and then Present (Corresponding_Record_Type (Formal_Typ))
2157
                    and then Present (Interfaces (
2158
                               Corresponding_Record_Type (Formal_Typ)))
2159
                  then
2160
                     Set_Etype (Formal,
2161
                       Corresponding_Record_Type (Formal_Typ));
2162
                  end if;
2163
 
2164
               --  From corresponding record to concurrent type
2165
 
2166
               else
2167
                  if Is_Concurrent_Record_Type (Formal_Typ)
2168
                    and then Present (Interfaces (Formal_Typ))
2169
                  then
2170
                     Set_Etype (Formal,
2171
                       Corresponding_Concurrent_Type (Formal_Typ));
2172
                  end if;
2173
               end if;
2174
 
2175
               Next_Formal (Formal);
2176
            end loop;
2177
         end Replace_Types;
2178
 
2179
      --  Start of processing for Disambiguate_Spec
2180
 
2181
      begin
2182
         --  Try to retrieve the specification of the body as is. All error
2183
         --  messages are suppressed because the body may not have a spec in
2184
         --  its current state.
2185
 
2186
         Spec_N := Find_Corresponding_Spec (N, False);
2187
 
2188
         --  It is possible that this is the body of a primitive declared
2189
         --  between a private and a full view of a concurrent type. The
2190
         --  controlling parameter of the spec carries the concurrent type,
2191
         --  not the corresponding record type as transformed by Analyze_
2192
         --  Subprogram_Specification. In such cases, we undo the change
2193
         --  made by the analysis of the specification and try to find the
2194
         --  spec again.
2195
 
2196
         --  Note that wrappers already have their corresponding specs and
2197
         --  bodies set during their creation, so if the candidate spec is
2198
         --  a wrapper, then we definitely need to swap all types to their
2199
         --  original concurrent status.
2200
 
2201
         if No (Spec_N)
2202
           or else Is_Primitive_Wrapper (Spec_N)
2203
         then
2204
            --  Restore all references of corresponding record types to the
2205
            --  original concurrent types.
2206
 
2207
            Replace_Types (To_Corresponding => False);
2208
            Priv_Spec := Find_Corresponding_Spec (N, False);
2209
 
2210
            --  The current body truly belongs to a primitive declared between
2211
            --  a private and a full view. We leave the modified body as is,
2212
            --  and return the true spec.
2213
 
2214
            if Present (Priv_Spec)
2215
              and then Is_Private_Primitive (Priv_Spec)
2216
            then
2217
               return Priv_Spec;
2218
            end if;
2219
 
2220
            --  In case that this is some sort of error, restore the original
2221
            --  state of the body.
2222
 
2223
            Replace_Types (To_Corresponding => True);
2224
         end if;
2225
 
2226
         return Spec_N;
2227
      end Disambiguate_Spec;
2228
 
2229
      ----------------------------
2230
      -- Exchange_Limited_Views --
2231
      ----------------------------
2232
 
2233
      procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2234
         procedure Detect_And_Exchange (Id : Entity_Id);
2235
         --  Determine whether Id's type denotes an incomplete type associated
2236
         --  with a limited with clause and exchange the limited view with the
2237
         --  non-limited one.
2238
 
2239
         -------------------------
2240
         -- Detect_And_Exchange --
2241
         -------------------------
2242
 
2243
         procedure Detect_And_Exchange (Id : Entity_Id) is
2244
            Typ : constant Entity_Id := Etype (Id);
2245
 
2246
         begin
2247
            if Ekind (Typ) = E_Incomplete_Type
2248
              and then From_With_Type (Typ)
2249
              and then Present (Non_Limited_View (Typ))
2250
            then
2251
               Set_Etype (Id, Non_Limited_View (Typ));
2252
            end if;
2253
         end Detect_And_Exchange;
2254
 
2255
         --  Local variables
2256
 
2257
         Formal : Entity_Id;
2258
 
2259
      --  Start of processing for Exchange_Limited_Views
2260
 
2261
      begin
2262
         if No (Subp_Id) then
2263
            return;
2264
 
2265
         --  Do not process subprogram bodies as they already use the non-
2266
         --  limited view of types.
2267
 
2268
         elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2269
            return;
2270
         end if;
2271
 
2272
         --  Examine all formals and swap views when applicable
2273
 
2274
         Formal := First_Formal (Subp_Id);
2275
         while Present (Formal) loop
2276
            Detect_And_Exchange (Formal);
2277
 
2278
            Next_Formal (Formal);
2279
         end loop;
2280
 
2281
         --  Process the return type of a function
2282
 
2283
         if Ekind (Subp_Id) = E_Function then
2284
            Detect_And_Exchange (Subp_Id);
2285
         end if;
2286
      end Exchange_Limited_Views;
2287
 
2288
      -------------------------------------
2289
      -- Is_Private_Concurrent_Primitive --
2290
      -------------------------------------
2291
 
2292
      function Is_Private_Concurrent_Primitive
2293
        (Subp_Id : Entity_Id) return Boolean
2294
      is
2295
         Formal_Typ : Entity_Id;
2296
 
2297
      begin
2298
         if Present (First_Formal (Subp_Id)) then
2299
            Formal_Typ := Etype (First_Formal (Subp_Id));
2300
 
2301
            if Is_Concurrent_Record_Type (Formal_Typ) then
2302
               if Is_Class_Wide_Type (Formal_Typ) then
2303
                  Formal_Typ := Root_Type (Formal_Typ);
2304
               end if;
2305
 
2306
               Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2307
            end if;
2308
 
2309
            --  The type of the first formal is a concurrent tagged type with
2310
            --  a private view.
2311
 
2312
            return
2313
              Is_Concurrent_Type (Formal_Typ)
2314
                and then Is_Tagged_Type (Formal_Typ)
2315
                and then Has_Private_Declaration (Formal_Typ);
2316
         end if;
2317
 
2318
         return False;
2319
      end Is_Private_Concurrent_Primitive;
2320
 
2321
      ----------------------------
2322
      -- Set_Trivial_Subprogram --
2323
      ----------------------------
2324
 
2325
      procedure Set_Trivial_Subprogram (N : Node_Id) is
2326
         Nxt : constant Node_Id := Next (N);
2327
 
2328
      begin
2329
         Set_Is_Trivial_Subprogram (Body_Id);
2330
 
2331
         if Present (Spec_Id) then
2332
            Set_Is_Trivial_Subprogram (Spec_Id);
2333
         end if;
2334
 
2335
         if Present (Nxt)
2336
           and then Nkind (Nxt) = N_Simple_Return_Statement
2337
           and then No (Next (Nxt))
2338
           and then Present (Expression (Nxt))
2339
           and then Is_Entity_Name (Expression (Nxt))
2340
         then
2341
            Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2342
         end if;
2343
      end Set_Trivial_Subprogram;
2344
 
2345
      ---------------------------------
2346
      -- Verify_Overriding_Indicator --
2347
      ---------------------------------
2348
 
2349
      procedure Verify_Overriding_Indicator is
2350
      begin
2351
         if Must_Override (Body_Spec) then
2352
            if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2353
              and then  Operator_Matches_Spec (Spec_Id, Spec_Id)
2354
            then
2355
               null;
2356
 
2357
            elsif not Present (Overridden_Operation (Spec_Id)) then
2358
               Error_Msg_NE
2359
                 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2360
            end if;
2361
 
2362
         elsif Must_Not_Override (Body_Spec) then
2363
            if Present (Overridden_Operation (Spec_Id)) then
2364
               Error_Msg_NE
2365
                 ("subprogram& overrides inherited operation",
2366
                  Body_Spec, Spec_Id);
2367
 
2368
            elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
2369
              and then  Operator_Matches_Spec (Spec_Id, Spec_Id)
2370
            then
2371
               Error_Msg_NE
2372
                 ("subprogram & overrides predefined operator ",
2373
                    Body_Spec, Spec_Id);
2374
 
2375
            --  If this is not a primitive operation or protected subprogram,
2376
            --  then the overriding indicator is altogether illegal.
2377
 
2378
            elsif not Is_Primitive (Spec_Id)
2379
              and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
2380
            then
2381
               Error_Msg_N
2382
                 ("overriding indicator only allowed " &
2383
                  "if subprogram is primitive",
2384
                  Body_Spec);
2385
            end if;
2386
 
2387
         elsif Style_Check
2388
           and then Present (Overridden_Operation (Spec_Id))
2389
         then
2390
            pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2391
            Style.Missing_Overriding (N, Body_Id);
2392
 
2393
         elsif Style_Check
2394
           and then Can_Override_Operator (Spec_Id)
2395
           and then not Is_Predefined_File_Name
2396
                          (Unit_File_Name (Get_Source_Unit (Spec_Id)))
2397
         then
2398
            pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2399
            Style.Missing_Overriding (N, Body_Id);
2400
         end if;
2401
      end Verify_Overriding_Indicator;
2402
 
2403
   --  Start of processing for Analyze_Subprogram_Body_Helper
2404
 
2405
   begin
2406
      --  Generic subprograms are handled separately. They always have a
2407
      --  generic specification. Determine whether current scope has a
2408
      --  previous declaration.
2409
 
2410
      --  If the subprogram body is defined within an instance of the same
2411
      --  name, the instance appears as a package renaming, and will be hidden
2412
      --  within the subprogram.
2413
 
2414
      if Present (Prev_Id)
2415
        and then not Is_Overloadable (Prev_Id)
2416
        and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
2417
                   or else Comes_From_Source (Prev_Id))
2418
      then
2419
         if Is_Generic_Subprogram (Prev_Id) then
2420
            Spec_Id := Prev_Id;
2421
            Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2422
            Set_Is_Child_Unit       (Body_Id, Is_Child_Unit       (Spec_Id));
2423
 
2424
            Analyze_Generic_Subprogram_Body (N, Spec_Id);
2425
 
2426
            if Nkind (N) = N_Subprogram_Body then
2427
               HSS := Handled_Statement_Sequence (N);
2428
               Check_Missing_Return;
2429
            end if;
2430
 
2431
            return;
2432
 
2433
         else
2434
            --  Previous entity conflicts with subprogram name. Attempting to
2435
            --  enter name will post error.
2436
 
2437
            Enter_Name (Body_Id);
2438
            return;
2439
         end if;
2440
 
2441
      --  Non-generic case, find the subprogram declaration, if one was seen,
2442
      --  or enter new overloaded entity in the current scope. If the
2443
      --  Current_Entity is the Body_Id itself, the unit is being analyzed as
2444
      --  part of the context of one of its subunits. No need to redo the
2445
      --  analysis.
2446
 
2447
      elsif Prev_Id = Body_Id
2448
        and then Has_Completion (Body_Id)
2449
      then
2450
         return;
2451
 
2452
      else
2453
         Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2454
 
2455
         if Nkind (N) = N_Subprogram_Body_Stub
2456
           or else No (Corresponding_Spec (N))
2457
         then
2458
            if Is_Private_Concurrent_Primitive (Body_Id) then
2459
               Spec_Id := Disambiguate_Spec;
2460
            else
2461
               Spec_Id := Find_Corresponding_Spec (N);
2462
            end if;
2463
 
2464
            --  If this is a duplicate body, no point in analyzing it
2465
 
2466
            if Error_Posted (N) then
2467
               return;
2468
            end if;
2469
 
2470
            --  A subprogram body should cause freezing of its own declaration,
2471
            --  but if there was no previous explicit declaration, then the
2472
            --  subprogram will get frozen too late (there may be code within
2473
            --  the body that depends on the subprogram having been frozen,
2474
            --  such as uses of extra formals), so we force it to be frozen
2475
            --  here. Same holds if the body and spec are compilation units.
2476
            --  Finally, if the return type is an anonymous access to protected
2477
            --  subprogram, it must be frozen before the body because its
2478
            --  expansion has generated an equivalent type that is used when
2479
            --  elaborating the body.
2480
 
2481
            --  An exception in the case of Ada 2012, AI05-177: The bodies
2482
            --  created for expression functions do not freeze.
2483
 
2484
            if No (Spec_Id)
2485
              and then Nkind (Original_Node (N)) /= N_Expression_Function
2486
            then
2487
               Freeze_Before (N, Body_Id);
2488
 
2489
            elsif Nkind (Parent (N)) = N_Compilation_Unit then
2490
               Freeze_Before (N, Spec_Id);
2491
 
2492
            elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
2493
               Freeze_Before (N, Etype (Body_Id));
2494
            end if;
2495
 
2496
         else
2497
            Spec_Id := Corresponding_Spec (N);
2498
         end if;
2499
      end if;
2500
 
2501
      --  Do not inline any subprogram that contains nested subprograms, since
2502
      --  the backend inlining circuit seems to generate uninitialized
2503
      --  references in this case. We know this happens in the case of front
2504
      --  end ZCX support, but it also appears it can happen in other cases as
2505
      --  well. The backend often rejects attempts to inline in the case of
2506
      --  nested procedures anyway, so little if anything is lost by this.
2507
      --  Note that this is test is for the benefit of the back-end. There is
2508
      --  a separate test for front-end inlining that also rejects nested
2509
      --  subprograms.
2510
 
2511
      --  Do not do this test if errors have been detected, because in some
2512
      --  error cases, this code blows up, and we don't need it anyway if
2513
      --  there have been errors, since we won't get to the linker anyway.
2514
 
2515
      if Comes_From_Source (Body_Id)
2516
        and then Serious_Errors_Detected = 0
2517
      then
2518
         P_Ent := Body_Id;
2519
         loop
2520
            P_Ent := Scope (P_Ent);
2521
            exit when No (P_Ent) or else P_Ent = Standard_Standard;
2522
 
2523
            if Is_Subprogram (P_Ent) then
2524
               Set_Is_Inlined (P_Ent, False);
2525
 
2526
               if Comes_From_Source (P_Ent)
2527
                 and then Has_Pragma_Inline (P_Ent)
2528
               then
2529
                  Cannot_Inline
2530
                    ("cannot inline& (nested subprogram)?",
2531
                     N, P_Ent);
2532
               end if;
2533
            end if;
2534
         end loop;
2535
      end if;
2536
 
2537
      Check_Inline_Pragma (Spec_Id);
2538
 
2539
      --  Deal with special case of a fully private operation in the body of
2540
      --  the protected type. We must create a declaration for the subprogram,
2541
      --  in order to attach the protected subprogram that will be used in
2542
      --  internal calls. We exclude compiler generated bodies from the
2543
      --  expander since the issue does not arise for those cases.
2544
 
2545
      if No (Spec_Id)
2546
        and then Comes_From_Source (N)
2547
        and then Is_Protected_Type (Current_Scope)
2548
      then
2549
         Spec_Id := Build_Private_Protected_Declaration (N);
2550
      end if;
2551
 
2552
      --  If a separate spec is present, then deal with freezing issues
2553
 
2554
      if Present (Spec_Id) then
2555
         Spec_Decl := Unit_Declaration_Node (Spec_Id);
2556
         Verify_Overriding_Indicator;
2557
 
2558
         --  In general, the spec will be frozen when we start analyzing the
2559
         --  body. However, for internally generated operations, such as
2560
         --  wrapper functions for inherited operations with controlling
2561
         --  results, the spec may not have been frozen by the time we expand
2562
         --  the freeze actions that include the bodies. In particular, extra
2563
         --  formals for accessibility or for return-in-place may need to be
2564
         --  generated. Freeze nodes, if any, are inserted before the current
2565
         --  body. These freeze actions are also needed in ASIS mode to enable
2566
         --  the proper back-annotations.
2567
 
2568
         if not Is_Frozen (Spec_Id)
2569
           and then (Expander_Active or ASIS_Mode)
2570
         then
2571
            --  Force the generation of its freezing node to ensure proper
2572
            --  management of access types in the backend.
2573
 
2574
            --  This is definitely needed for some cases, but it is not clear
2575
            --  why, to be investigated further???
2576
 
2577
            Set_Has_Delayed_Freeze (Spec_Id);
2578
            Freeze_Before (N, Spec_Id);
2579
         end if;
2580
      end if;
2581
 
2582
      --  Mark presence of postcondition procedure in current scope and mark
2583
      --  the procedure itself as needing debug info. The latter is important
2584
      --  when analyzing decision coverage (for example, for MC/DC coverage).
2585
 
2586
      if Chars (Body_Id) = Name_uPostconditions then
2587
         Set_Has_Postconditions (Current_Scope);
2588
         Set_Debug_Info_Needed (Body_Id);
2589
      end if;
2590
 
2591
      --  Place subprogram on scope stack, and make formals visible. If there
2592
      --  is a spec, the visible entity remains that of the spec.
2593
 
2594
      if Present (Spec_Id) then
2595
         Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
2596
 
2597
         if Is_Child_Unit (Spec_Id) then
2598
            Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
2599
         end if;
2600
 
2601
         if Style_Check then
2602
            Style.Check_Identifier (Body_Id, Spec_Id);
2603
         end if;
2604
 
2605
         Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2606
         Set_Is_Child_Unit       (Body_Id, Is_Child_Unit       (Spec_Id));
2607
 
2608
         if Is_Abstract_Subprogram (Spec_Id) then
2609
            Error_Msg_N ("an abstract subprogram cannot have a body", N);
2610
            return;
2611
 
2612
         else
2613
            Set_Convention (Body_Id, Convention (Spec_Id));
2614
            Set_Has_Completion (Spec_Id);
2615
 
2616
            if Is_Protected_Type (Scope (Spec_Id)) then
2617
               Prot_Typ := Scope (Spec_Id);
2618
            end if;
2619
 
2620
            --  If this is a body generated for a renaming, do not check for
2621
            --  full conformance. The check is redundant, because the spec of
2622
            --  the body is a copy of the spec in the renaming declaration,
2623
            --  and the test can lead to spurious errors on nested defaults.
2624
 
2625
            if Present (Spec_Decl)
2626
              and then not Comes_From_Source (N)
2627
              and then
2628
                (Nkind (Original_Node (Spec_Decl)) =
2629
                                        N_Subprogram_Renaming_Declaration
2630
                   or else (Present (Corresponding_Body (Spec_Decl))
2631
                              and then
2632
                                Nkind (Unit_Declaration_Node
2633
                                        (Corresponding_Body (Spec_Decl))) =
2634
                                           N_Subprogram_Renaming_Declaration))
2635
            then
2636
               Conformant := True;
2637
 
2638
            --  Conversely, the spec may have been generated for specless body
2639
            --  with an inline pragma.
2640
 
2641
            elsif Comes_From_Source (N)
2642
              and then not Comes_From_Source (Spec_Id)
2643
              and then Has_Pragma_Inline (Spec_Id)
2644
            then
2645
               Conformant := True;
2646
 
2647
            else
2648
               Check_Conformance
2649
                 (Body_Id, Spec_Id,
2650
                  Fully_Conformant, True, Conformant, Body_Id);
2651
            end if;
2652
 
2653
            --  If the body is not fully conformant, we have to decide if we
2654
            --  should analyze it or not. If it has a really messed up profile
2655
            --  then we probably should not analyze it, since we will get too
2656
            --  many bogus messages.
2657
 
2658
            --  Our decision is to go ahead in the non-fully conformant case
2659
            --  only if it is at least mode conformant with the spec. Note
2660
            --  that the call to Check_Fully_Conformant has issued the proper
2661
            --  error messages to complain about the lack of conformance.
2662
 
2663
            if not Conformant
2664
              and then not Mode_Conformant (Body_Id, Spec_Id)
2665
            then
2666
               return;
2667
            end if;
2668
         end if;
2669
 
2670
         if Spec_Id /= Body_Id then
2671
            Reference_Body_Formals (Spec_Id, Body_Id);
2672
         end if;
2673
 
2674
         if Nkind (N) /= N_Subprogram_Body_Stub then
2675
            Set_Corresponding_Spec (N, Spec_Id);
2676
 
2677
            --  Ada 2005 (AI-345): If the operation is a primitive operation
2678
            --  of a concurrent type, the type of the first parameter has been
2679
            --  replaced with the corresponding record, which is the proper
2680
            --  run-time structure to use. However, within the body there may
2681
            --  be uses of the formals that depend on primitive operations
2682
            --  of the type (in particular calls in prefixed form) for which
2683
            --  we need the original concurrent type. The operation may have
2684
            --  several controlling formals, so the replacement must be done
2685
            --  for all of them.
2686
 
2687
            if Comes_From_Source (Spec_Id)
2688
              and then Present (First_Entity (Spec_Id))
2689
              and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2690
              and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
2691
              and then
2692
                Present (Interfaces (Etype (First_Entity (Spec_Id))))
2693
              and then
2694
                Present
2695
                  (Corresponding_Concurrent_Type
2696
                     (Etype (First_Entity (Spec_Id))))
2697
            then
2698
               declare
2699
                  Typ  : constant Entity_Id := Etype (First_Entity (Spec_Id));
2700
                  Form : Entity_Id;
2701
 
2702
               begin
2703
                  Form := First_Formal (Spec_Id);
2704
                  while Present (Form) loop
2705
                     if Etype (Form) = Typ then
2706
                        Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2707
                     end if;
2708
 
2709
                     Next_Formal (Form);
2710
                  end loop;
2711
               end;
2712
            end if;
2713
 
2714
            --  Make the formals visible, and place subprogram on scope stack.
2715
            --  This is also the point at which we set Last_Real_Spec_Entity
2716
            --  to mark the entities which will not be moved to the body.
2717
 
2718
            Install_Formals (Spec_Id);
2719
            Last_Real_Spec_Entity := Last_Entity (Spec_Id);
2720
            Push_Scope (Spec_Id);
2721
 
2722
            --  Make sure that the subprogram is immediately visible. For
2723
            --  child units that have no separate spec this is indispensable.
2724
            --  Otherwise it is safe albeit redundant.
2725
 
2726
            Set_Is_Immediately_Visible (Spec_Id);
2727
         end if;
2728
 
2729
         Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2730
         Set_Ekind (Body_Id, E_Subprogram_Body);
2731
         Set_Scope (Body_Id, Scope (Spec_Id));
2732
         Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
2733
 
2734
      --  Case of subprogram body with no previous spec
2735
 
2736
      else
2737
         --  Check for style warning required
2738
 
2739
         if Style_Check
2740
 
2741
           --  Only apply check for source level subprograms for which checks
2742
           --  have not been suppressed.
2743
 
2744
           and then Comes_From_Source (Body_Id)
2745
           and then not Suppress_Style_Checks (Body_Id)
2746
 
2747
           --  No warnings within an instance
2748
 
2749
           and then not In_Instance
2750
 
2751
           --  No warnings for expression functions
2752
 
2753
           and then Nkind (Original_Node (N)) /= N_Expression_Function
2754
         then
2755
            Style.Body_With_No_Spec (N);
2756
         end if;
2757
 
2758
         New_Overloaded_Entity (Body_Id);
2759
 
2760
         if Nkind (N) /= N_Subprogram_Body_Stub then
2761
            Set_Acts_As_Spec (N);
2762
            Generate_Definition (Body_Id);
2763
            Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
2764
            Generate_Reference
2765
              (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
2766
            Install_Formals (Body_Id);
2767
            Push_Scope (Body_Id);
2768
         end if;
2769
 
2770
         --  For stubs and bodies with no previous spec, generate references to
2771
         --  formals.
2772
 
2773
         Generate_Reference_To_Formals (Body_Id);
2774
      end if;
2775
 
2776
      --  If the return type is an anonymous access type whose designated type
2777
      --  is the limited view of a class-wide type and the non-limited view is
2778
      --  available, update the return type accordingly.
2779
 
2780
      if Ada_Version >= Ada_2005
2781
        and then Comes_From_Source (N)
2782
      then
2783
         declare
2784
            Etyp : Entity_Id;
2785
            Rtyp : Entity_Id;
2786
 
2787
         begin
2788
            Rtyp := Etype (Current_Scope);
2789
 
2790
            if Ekind (Rtyp) = E_Anonymous_Access_Type then
2791
               Etyp := Directly_Designated_Type (Rtyp);
2792
 
2793
               if Is_Class_Wide_Type (Etyp)
2794
                 and then From_With_Type (Etyp)
2795
               then
2796
                  Set_Directly_Designated_Type
2797
                    (Etype (Current_Scope), Available_View (Etyp));
2798
               end if;
2799
            end if;
2800
         end;
2801
      end if;
2802
 
2803
      --  If this is the proper body of a stub, we must verify that the stub
2804
      --  conforms to the body, and to the previous spec if one was present.
2805
      --  We know already that the body conforms to that spec. This test is
2806
      --  only required for subprograms that come from source.
2807
 
2808
      if Nkind (Parent (N)) = N_Subunit
2809
        and then Comes_From_Source (N)
2810
        and then not Error_Posted (Body_Id)
2811
        and then Nkind (Corresponding_Stub (Parent (N))) =
2812
                                                N_Subprogram_Body_Stub
2813
      then
2814
         declare
2815
            Old_Id : constant Entity_Id :=
2816
                       Defining_Entity
2817
                         (Specification (Corresponding_Stub (Parent (N))));
2818
 
2819
            Conformant : Boolean := False;
2820
 
2821
         begin
2822
            if No (Spec_Id) then
2823
               Check_Fully_Conformant (Body_Id, Old_Id);
2824
 
2825
            else
2826
               Check_Conformance
2827
                 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
2828
 
2829
               if not Conformant then
2830
 
2831
                  --  The stub was taken to be a new declaration. Indicate that
2832
                  --  it lacks a body.
2833
 
2834
                  Set_Has_Completion (Old_Id, False);
2835
               end if;
2836
            end if;
2837
         end;
2838
      end if;
2839
 
2840
      Set_Has_Completion (Body_Id);
2841
      Check_Eliminated (Body_Id);
2842
 
2843
      if Nkind (N) = N_Subprogram_Body_Stub then
2844
         return;
2845
 
2846
      elsif Present (Spec_Id)
2847
        and then Expander_Active
2848
        and then
2849
          (Has_Pragma_Inline_Always (Spec_Id)
2850
             or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
2851
      then
2852
         Build_Body_To_Inline (N, Spec_Id);
2853
      end if;
2854
 
2855
      --  Ada 2005 (AI-262): In library subprogram bodies, after the analysis
2856
      --  of the specification we have to install the private withed units.
2857
      --  This holds for child units as well.
2858
 
2859
      if Is_Compilation_Unit (Body_Id)
2860
        or else Nkind (Parent (N)) = N_Compilation_Unit
2861
      then
2862
         Install_Private_With_Clauses (Body_Id);
2863
      end if;
2864
 
2865
      Check_Anonymous_Return;
2866
 
2867
      --  Set the Protected_Formal field of each extra formal of the protected
2868
      --  subprogram to reference the corresponding extra formal of the
2869
      --  subprogram that implements it. For regular formals this occurs when
2870
      --  the protected subprogram's declaration is expanded, but the extra
2871
      --  formals don't get created until the subprogram is frozen. We need to
2872
      --  do this before analyzing the protected subprogram's body so that any
2873
      --  references to the original subprogram's extra formals will be changed
2874
      --  refer to the implementing subprogram's formals (see Expand_Formal).
2875
 
2876
      if Present (Spec_Id)
2877
        and then Is_Protected_Type (Scope (Spec_Id))
2878
        and then Present (Protected_Body_Subprogram (Spec_Id))
2879
      then
2880
         declare
2881
            Impl_Subp       : constant Entity_Id :=
2882
                                Protected_Body_Subprogram (Spec_Id);
2883
            Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
2884
            Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
2885
         begin
2886
            while Present (Prot_Ext_Formal) loop
2887
               pragma Assert (Present (Impl_Ext_Formal));
2888
               Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
2889
               Next_Formal_With_Extras (Prot_Ext_Formal);
2890
               Next_Formal_With_Extras (Impl_Ext_Formal);
2891
            end loop;
2892
         end;
2893
      end if;
2894
 
2895
      --  Now we can go on to analyze the body
2896
 
2897
      HSS := Handled_Statement_Sequence (N);
2898
      Set_Actual_Subtypes (N, Current_Scope);
2899
 
2900
      --  Deal with preconditions and postconditions. In formal verification
2901
      --  mode, we keep pre- and postconditions attached to entities rather
2902
      --  than inserted in the code, in order to facilitate a distinct
2903
      --  treatment for them.
2904
 
2905
      if not Alfa_Mode then
2906
         Process_PPCs (N, Spec_Id, Body_Id);
2907
      end if;
2908
 
2909
      --  Add a declaration for the Protection object, renaming declarations
2910
      --  for discriminals and privals and finally a declaration for the entry
2911
      --  family index (if applicable). This form of early expansion is done
2912
      --  when the Expander is active because Install_Private_Data_Declarations
2913
      --  references entities which were created during regular expansion. The
2914
      --  body may be the rewritting of an expression function, and we need to
2915
      --  verify that the original node is in the source.
2916
 
2917
      if Full_Expander_Active
2918
        and then Comes_From_Source (Original_Node (N))
2919
        and then Present (Prot_Typ)
2920
        and then Present (Spec_Id)
2921
        and then not Is_Eliminated (Spec_Id)
2922
      then
2923
         Install_Private_Data_Declarations
2924
           (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
2925
      end if;
2926
 
2927
      --  Ada 2012 (AI05-0151): Incomplete types coming from a limited context
2928
      --  may now appear in parameter and result profiles. Since the analysis
2929
      --  of a subprogram body may use the parameter and result profile of the
2930
      --  spec, swap any limited views with their non-limited counterpart.
2931
 
2932
      if Ada_Version >= Ada_2012 then
2933
         Exchange_Limited_Views (Spec_Id);
2934
      end if;
2935
 
2936
      --  Analyze the declarations (this call will analyze the precondition
2937
      --  Check pragmas we prepended to the list, as well as the declaration
2938
      --  of the _Postconditions procedure).
2939
 
2940
      Analyze_Declarations (Declarations (N));
2941
 
2942
      --  Check completion, and analyze the statements
2943
 
2944
      Check_Completion;
2945
      Inspect_Deferred_Constant_Completion (Declarations (N));
2946
      Analyze (HSS);
2947
 
2948
      --  Deal with end of scope processing for the body
2949
 
2950
      Process_End_Label (HSS, 't', Current_Scope);
2951
      End_Scope;
2952
      Check_Subprogram_Order (N);
2953
      Set_Analyzed (Body_Id);
2954
 
2955
      --  If we have a separate spec, then the analysis of the declarations
2956
      --  caused the entities in the body to be chained to the spec id, but
2957
      --  we want them chained to the body id. Only the formal parameters
2958
      --  end up chained to the spec id in this case.
2959
 
2960
      if Present (Spec_Id) then
2961
 
2962
         --  We must conform to the categorization of our spec
2963
 
2964
         Validate_Categorization_Dependency (N, Spec_Id);
2965
 
2966
         --  And if this is a child unit, the parent units must conform
2967
 
2968
         if Is_Child_Unit (Spec_Id) then
2969
            Validate_Categorization_Dependency
2970
              (Unit_Declaration_Node (Spec_Id), Spec_Id);
2971
         end if;
2972
 
2973
         --  Here is where we move entities from the spec to the body
2974
 
2975
         --  Case where there are entities that stay with the spec
2976
 
2977
         if Present (Last_Real_Spec_Entity) then
2978
 
2979
            --  No body entities (happens when the only real spec entities come
2980
            --  from precondition and postcondition pragmas).
2981
 
2982
            if No (Last_Entity (Body_Id)) then
2983
               Set_First_Entity
2984
                 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
2985
 
2986
            --  Body entities present (formals), so chain stuff past them
2987
 
2988
            else
2989
               Set_Next_Entity
2990
                 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
2991
            end if;
2992
 
2993
            Set_Next_Entity (Last_Real_Spec_Entity, Empty);
2994
            Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2995
            Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
2996
 
2997
         --  Case where there are no spec entities, in this case there can be
2998
         --  no body entities either, so just move everything.
2999
 
3000
         else
3001
            pragma Assert (No (Last_Entity (Body_Id)));
3002
            Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3003
            Set_Last_Entity  (Body_Id, Last_Entity (Spec_Id));
3004
            Set_First_Entity (Spec_Id, Empty);
3005
            Set_Last_Entity  (Spec_Id, Empty);
3006
         end if;
3007
      end if;
3008
 
3009
      Check_Missing_Return;
3010
 
3011
      --  Now we are going to check for variables that are never modified in
3012
      --  the body of the procedure. But first we deal with a special case
3013
      --  where we want to modify this check. If the body of the subprogram
3014
      --  starts with a raise statement or its equivalent, or if the body
3015
      --  consists entirely of a null statement, then it is pretty obvious
3016
      --  that it is OK to not reference the parameters. For example, this
3017
      --  might be the following common idiom for a stubbed function:
3018
      --  statement of the procedure raises an exception. In particular this
3019
      --  deals with the common idiom of a stubbed function, which might
3020
      --  appear as something like:
3021
 
3022
      --     function F (A : Integer) return Some_Type;
3023
      --        X : Some_Type;
3024
      --     begin
3025
      --        raise Program_Error;
3026
      --        return X;
3027
      --     end F;
3028
 
3029
      --  Here the purpose of X is simply to satisfy the annoying requirement
3030
      --  in Ada that there be at least one return, and we certainly do not
3031
      --  want to go posting warnings on X that it is not initialized! On
3032
      --  the other hand, if X is entirely unreferenced that should still
3033
      --  get a warning.
3034
 
3035
      --  What we do is to detect these cases, and if we find them, flag the
3036
      --  subprogram as being Is_Trivial_Subprogram and then use that flag to
3037
      --  suppress unwanted warnings. For the case of the function stub above
3038
      --  we have a special test to set X as apparently assigned to suppress
3039
      --  the warning.
3040
 
3041
      declare
3042
         Stm : Node_Id;
3043
 
3044
      begin
3045
         --  Skip initial labels (for one thing this occurs when we are in
3046
         --  front end ZCX mode, but in any case it is irrelevant), and also
3047
         --  initial Push_xxx_Error_Label nodes, which are also irrelevant.
3048
 
3049
         Stm := First (Statements (HSS));
3050
         while Nkind (Stm) = N_Label
3051
           or else Nkind (Stm) in N_Push_xxx_Label
3052
         loop
3053
            Next (Stm);
3054
         end loop;
3055
 
3056
         --  Do the test on the original statement before expansion
3057
 
3058
         declare
3059
            Ostm : constant Node_Id := Original_Node (Stm);
3060
 
3061
         begin
3062
            --  If explicit raise statement, turn on flag
3063
 
3064
            if Nkind (Ostm) = N_Raise_Statement then
3065
               Set_Trivial_Subprogram (Stm);
3066
 
3067
            --  If null statement, and no following statements, turn on flag
3068
 
3069
            elsif Nkind (Stm) = N_Null_Statement
3070
              and then Comes_From_Source (Stm)
3071
              and then No (Next (Stm))
3072
            then
3073
               Set_Trivial_Subprogram (Stm);
3074
 
3075
            --  Check for explicit call cases which likely raise an exception
3076
 
3077
            elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3078
               if Is_Entity_Name (Name (Ostm)) then
3079
                  declare
3080
                     Ent : constant Entity_Id := Entity (Name (Ostm));
3081
 
3082
                  begin
3083
                     --  If the procedure is marked No_Return, then likely it
3084
                     --  raises an exception, but in any case it is not coming
3085
                     --  back here, so turn on the flag.
3086
 
3087
                     if Present (Ent)
3088
                       and then Ekind (Ent) = E_Procedure
3089
                       and then No_Return (Ent)
3090
                     then
3091
                        Set_Trivial_Subprogram (Stm);
3092
                     end if;
3093
                  end;
3094
               end if;
3095
            end if;
3096
         end;
3097
      end;
3098
 
3099
      --  Check for variables that are never modified
3100
 
3101
      declare
3102
         E1, E2 : Entity_Id;
3103
 
3104
      begin
3105
         --  If there is a separate spec, then transfer Never_Set_In_Source
3106
         --  flags from out parameters to the corresponding entities in the
3107
         --  body. The reason we do that is we want to post error flags on
3108
         --  the body entities, not the spec entities.
3109
 
3110
         if Present (Spec_Id) then
3111
            E1 := First_Entity (Spec_Id);
3112
            while Present (E1) loop
3113
               if Ekind (E1) = E_Out_Parameter then
3114
                  E2 := First_Entity (Body_Id);
3115
                  while Present (E2) loop
3116
                     exit when Chars (E1) = Chars (E2);
3117
                     Next_Entity (E2);
3118
                  end loop;
3119
 
3120
                  if Present (E2) then
3121
                     Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
3122
                  end if;
3123
               end if;
3124
 
3125
               Next_Entity (E1);
3126
            end loop;
3127
         end if;
3128
 
3129
         --  Check references in body unless it was deleted. Note that the
3130
         --  check of Body_Deleted here is not just for efficiency, it is
3131
         --  necessary to avoid junk warnings on formal parameters.
3132
 
3133
         if not Body_Deleted then
3134
            Check_References (Body_Id);
3135
         end if;
3136
      end;
3137
   end Analyze_Subprogram_Body_Helper;
3138
 
3139
   ------------------------------------
3140
   -- Analyze_Subprogram_Declaration --
3141
   ------------------------------------
3142
 
3143
   procedure Analyze_Subprogram_Declaration (N : Node_Id) is
3144
      Loc        : constant Source_Ptr := Sloc (N);
3145
      Scop       : constant Entity_Id  := Current_Scope;
3146
      Designator : Entity_Id;
3147
      Form       : Node_Id;
3148
      Null_Body  : Node_Id := Empty;
3149
 
3150
   --  Start of processing for Analyze_Subprogram_Declaration
3151
 
3152
   begin
3153
      --  Null procedures are not allowed in SPARK
3154
 
3155
      if Nkind (Specification (N)) = N_Procedure_Specification
3156
        and then Null_Present (Specification (N))
3157
      then
3158
         Check_SPARK_Restriction ("null procedure is not allowed", N);
3159
      end if;
3160
 
3161
      --  For a null procedure, capture the profile before analysis, for
3162
      --  expansion at the freeze point and at each point of call. The body
3163
      --  will only be used if the procedure has preconditions. In that case
3164
      --  the body is analyzed at the freeze point.
3165
 
3166
      if Nkind (Specification (N)) = N_Procedure_Specification
3167
        and then Null_Present (Specification (N))
3168
        and then Expander_Active
3169
      then
3170
         Null_Body :=
3171
           Make_Subprogram_Body (Loc,
3172
             Specification =>
3173
               New_Copy_Tree (Specification (N)),
3174
             Declarations =>
3175
               New_List,
3176
             Handled_Statement_Sequence =>
3177
               Make_Handled_Sequence_Of_Statements (Loc,
3178
                 Statements => New_List (Make_Null_Statement (Loc))));
3179
 
3180
         --  Create new entities for body and formals
3181
 
3182
         Set_Defining_Unit_Name (Specification (Null_Body),
3183
           Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
3184
 
3185
         Form := First (Parameter_Specifications (Specification (Null_Body)));
3186
         while Present (Form) loop
3187
            Set_Defining_Identifier (Form,
3188
              Make_Defining_Identifier (Loc,
3189
                Chars (Defining_Identifier (Form))));
3190
 
3191
            --  Resolve the types of the formals now, because the freeze point
3192
            --  may appear in a different context, e.g. an instantiation.
3193
 
3194
            if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
3195
               Find_Type (Parameter_Type (Form));
3196
 
3197
            elsif
3198
              No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
3199
            then
3200
               Find_Type (Subtype_Mark (Parameter_Type (Form)));
3201
 
3202
            else
3203
 
3204
               --  the case of a null procedure with a formal that is an
3205
               --  access_to_subprogram type, and that is used as an actual
3206
               --  in an instantiation is left to the enthusiastic reader.
3207
 
3208
               null;
3209
            end if;
3210
 
3211
            Next (Form);
3212
         end loop;
3213
 
3214
         if Is_Protected_Type (Current_Scope) then
3215
            Error_Msg_N ("protected operation cannot be a null procedure", N);
3216
         end if;
3217
      end if;
3218
 
3219
      Designator := Analyze_Subprogram_Specification (Specification (N));
3220
 
3221
      --  A reference may already have been generated for the unit name, in
3222
      --  which case the following call is redundant. However it is needed for
3223
      --  declarations that are the rewriting of an expression function.
3224
 
3225
      Generate_Definition (Designator);
3226
 
3227
      if Debug_Flag_C then
3228
         Write_Str ("==> subprogram spec ");
3229
         Write_Name (Chars (Designator));
3230
         Write_Str (" from ");
3231
         Write_Location (Sloc (N));
3232
         Write_Eol;
3233
         Indent;
3234
      end if;
3235
 
3236
      if Nkind (Specification (N)) = N_Procedure_Specification
3237
        and then Null_Present (Specification (N))
3238
      then
3239
         Set_Has_Completion (Designator);
3240
 
3241
         --  Null procedures are always inlined, but generic formal subprograms
3242
         --  which appear as such in the internal instance of formal packages,
3243
         --  need no completion and are not marked Inline.
3244
 
3245
         if Present (Null_Body)
3246
           and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
3247
         then
3248
            Set_Corresponding_Body (N, Defining_Entity (Null_Body));
3249
            Set_Body_To_Inline (N, Null_Body);
3250
            Set_Is_Inlined (Designator);
3251
         end if;
3252
      end if;
3253
 
3254
      Validate_RCI_Subprogram_Declaration (N);
3255
      New_Overloaded_Entity (Designator);
3256
      Check_Delayed_Subprogram (Designator);
3257
 
3258
      --  If the type of the first formal of the current subprogram is a
3259
      --  nongeneric tagged private type, mark the subprogram as being a
3260
      --  private primitive. Ditto if this is a function with controlling
3261
      --  result, and the return type is currently private. In both cases,
3262
      --  the type of the controlling argument or result must be in the
3263
      --  current scope for the operation to be primitive.
3264
 
3265
      if Has_Controlling_Result (Designator)
3266
        and then Is_Private_Type (Etype (Designator))
3267
        and then Scope (Etype (Designator)) = Current_Scope
3268
        and then not Is_Generic_Actual_Type (Etype (Designator))
3269
      then
3270
         Set_Is_Private_Primitive (Designator);
3271
 
3272
      elsif Present (First_Formal (Designator)) then
3273
         declare
3274
            Formal_Typ : constant Entity_Id :=
3275
                           Etype (First_Formal (Designator));
3276
         begin
3277
            Set_Is_Private_Primitive (Designator,
3278
              Is_Tagged_Type (Formal_Typ)
3279
                and then Scope (Formal_Typ) = Current_Scope
3280
                and then Is_Private_Type (Formal_Typ)
3281
                and then not Is_Generic_Actual_Type (Formal_Typ));
3282
         end;
3283
      end if;
3284
 
3285
      --  Ada 2005 (AI-251): Abstract interface primitives must be abstract
3286
      --  or null.
3287
 
3288
      if Ada_Version >= Ada_2005
3289
        and then Comes_From_Source (N)
3290
        and then Is_Dispatching_Operation (Designator)
3291
      then
3292
         declare
3293
            E    : Entity_Id;
3294
            Etyp : Entity_Id;
3295
 
3296
         begin
3297
            if Has_Controlling_Result (Designator) then
3298
               Etyp := Etype (Designator);
3299
 
3300
            else
3301
               E := First_Entity (Designator);
3302
               while Present (E)
3303
                 and then Is_Formal (E)
3304
                 and then not Is_Controlling_Formal (E)
3305
               loop
3306
                  Next_Entity (E);
3307
               end loop;
3308
 
3309
               Etyp := Etype (E);
3310
            end if;
3311
 
3312
            if Is_Access_Type (Etyp) then
3313
               Etyp := Directly_Designated_Type (Etyp);
3314
            end if;
3315
 
3316
            if Is_Interface (Etyp)
3317
              and then not Is_Abstract_Subprogram (Designator)
3318
              and then not (Ekind (Designator) = E_Procedure
3319
                              and then Null_Present (Specification (N)))
3320
            then
3321
               Error_Msg_Name_1 := Chars (Defining_Entity (N));
3322
 
3323
               --  Specialize error message based on procedures vs. functions,
3324
               --  since functions can't be null subprograms.
3325
 
3326
               if Ekind (Designator) = E_Procedure then
3327
                  Error_Msg_N
3328
                    ("interface procedure % must be abstract or null", N);
3329
               else
3330
                  Error_Msg_N ("interface function % must be abstract", N);
3331
               end if;
3332
            end if;
3333
         end;
3334
      end if;
3335
 
3336
      --  What is the following code for, it used to be
3337
 
3338
      --  ???   Set_Suppress_Elaboration_Checks
3339
      --  ???     (Designator, Elaboration_Checks_Suppressed (Designator));
3340
 
3341
      --  The following seems equivalent, but a bit dubious
3342
 
3343
      if Elaboration_Checks_Suppressed (Designator) then
3344
         Set_Kill_Elaboration_Checks (Designator);
3345
      end if;
3346
 
3347
      if Scop /= Standard_Standard
3348
        and then not Is_Child_Unit (Designator)
3349
      then
3350
         Set_Categorization_From_Scope (Designator, Scop);
3351
      else
3352
         --  For a compilation unit, check for library-unit pragmas
3353
 
3354
         Push_Scope (Designator);
3355
         Set_Categorization_From_Pragmas (N);
3356
         Validate_Categorization_Dependency (N, Designator);
3357
         Pop_Scope;
3358
      end if;
3359
 
3360
      --  For a compilation unit, set body required. This flag will only be
3361
      --  reset if a valid Import or Interface pragma is processed later on.
3362
 
3363
      if Nkind (Parent (N)) = N_Compilation_Unit then
3364
         Set_Body_Required (Parent (N), True);
3365
 
3366
         if Ada_Version >= Ada_2005
3367
           and then Nkind (Specification (N)) = N_Procedure_Specification
3368
           and then Null_Present (Specification (N))
3369
         then
3370
            Error_Msg_N
3371
              ("null procedure cannot be declared at library level", N);
3372
         end if;
3373
      end if;
3374
 
3375
      Generate_Reference_To_Formals (Designator);
3376
      Check_Eliminated (Designator);
3377
 
3378
      if Debug_Flag_C then
3379
         Outdent;
3380
         Write_Str ("<== subprogram spec ");
3381
         Write_Name (Chars (Designator));
3382
         Write_Str (" from ");
3383
         Write_Location (Sloc (N));
3384
         Write_Eol;
3385
      end if;
3386
 
3387
      if Is_Protected_Type (Current_Scope) then
3388
 
3389
         --  Indicate that this is a protected operation, because it may be
3390
         --  used in subsequent declarations within the protected type.
3391
 
3392
         Set_Convention (Designator, Convention_Protected);
3393
      end if;
3394
 
3395
      List_Inherited_Pre_Post_Aspects (Designator);
3396
 
3397
      if Has_Aspects (N) then
3398
         Analyze_Aspect_Specifications (N, Designator);
3399
      end if;
3400
   end Analyze_Subprogram_Declaration;
3401
 
3402
   --------------------------------------
3403
   -- Analyze_Subprogram_Specification --
3404
   --------------------------------------
3405
 
3406
   --  Reminder: N here really is a subprogram specification (not a subprogram
3407
   --  declaration). This procedure is called to analyze the specification in
3408
   --  both subprogram bodies and subprogram declarations (specs).
3409
 
3410
   function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
3411
      Designator : constant Entity_Id := Defining_Entity (N);
3412
      Formals    : constant List_Id   := Parameter_Specifications (N);
3413
 
3414
   --  Start of processing for Analyze_Subprogram_Specification
3415
 
3416
   begin
3417
      --  User-defined operator is not allowed in SPARK, except as a renaming
3418
 
3419
      if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
3420
        and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
3421
      then
3422
         Check_SPARK_Restriction ("user-defined operator is not allowed", N);
3423
      end if;
3424
 
3425
      --  Proceed with analysis. Do not emit a cross-reference entry if the
3426
      --  specification comes from an expression function, because it may be
3427
      --  the completion of a previous declaration. It is is not, the cross-
3428
      --  reference entry will be emitted for the new subprogram declaration.
3429
 
3430
      if Nkind (Parent (N)) /= N_Expression_Function then
3431
         Generate_Definition (Designator);
3432
      end if;
3433
 
3434
      Set_Contract (Designator, Make_Contract (Sloc (Designator)));
3435
 
3436
      if Nkind (N) = N_Function_Specification then
3437
         Set_Ekind (Designator, E_Function);
3438
         Set_Mechanism (Designator, Default_Mechanism);
3439
      else
3440
         Set_Ekind (Designator, E_Procedure);
3441
         Set_Etype (Designator, Standard_Void_Type);
3442
      end if;
3443
 
3444
      --  Introduce new scope for analysis of the formals and the return type
3445
 
3446
      Set_Scope (Designator, Current_Scope);
3447
 
3448
      if Present (Formals) then
3449
         Push_Scope (Designator);
3450
         Process_Formals (Formals, N);
3451
 
3452
         --  Ada 2005 (AI-345): If this is an overriding operation of an
3453
         --  inherited interface operation, and the controlling type is
3454
         --  a synchronized type, replace the type with its corresponding
3455
         --  record, to match the proper signature of an overriding operation.
3456
         --  Same processing for an access parameter whose designated type is
3457
         --  derived from a synchronized interface.
3458
 
3459
         if Ada_Version >= Ada_2005 then
3460
            declare
3461
               Formal     : Entity_Id;
3462
               Formal_Typ : Entity_Id;
3463
               Rec_Typ    : Entity_Id;
3464
               Desig_Typ  : Entity_Id;
3465
 
3466
            begin
3467
               Formal := First_Formal (Designator);
3468
               while Present (Formal) loop
3469
                  Formal_Typ := Etype (Formal);
3470
 
3471
                  if Is_Concurrent_Type (Formal_Typ)
3472
                    and then Present (Corresponding_Record_Type (Formal_Typ))
3473
                  then
3474
                     Rec_Typ := Corresponding_Record_Type (Formal_Typ);
3475
 
3476
                     if Present (Interfaces (Rec_Typ)) then
3477
                        Set_Etype (Formal, Rec_Typ);
3478
                     end if;
3479
 
3480
                  elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
3481
                     Desig_Typ := Designated_Type (Formal_Typ);
3482
 
3483
                     if Is_Concurrent_Type (Desig_Typ)
3484
                       and then Present (Corresponding_Record_Type (Desig_Typ))
3485
                     then
3486
                        Rec_Typ := Corresponding_Record_Type (Desig_Typ);
3487
 
3488
                        if Present (Interfaces (Rec_Typ)) then
3489
                           Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
3490
                        end if;
3491
                     end if;
3492
                  end if;
3493
 
3494
                  Next_Formal (Formal);
3495
               end loop;
3496
            end;
3497
         end if;
3498
 
3499
         End_Scope;
3500
 
3501
      --  The subprogram scope is pushed and popped around the processing of
3502
      --  the return type for consistency with call above to Process_Formals
3503
      --  (which itself can call Analyze_Return_Type), and to ensure that any
3504
      --  itype created for the return type will be associated with the proper
3505
      --  scope.
3506
 
3507
      elsif Nkind (N) = N_Function_Specification then
3508
         Push_Scope (Designator);
3509
         Analyze_Return_Type (N);
3510
         End_Scope;
3511
      end if;
3512
 
3513
      --  Function case
3514
 
3515
      if Nkind (N) = N_Function_Specification then
3516
 
3517
         --  Deal with operator symbol case
3518
 
3519
         if Nkind (Designator) = N_Defining_Operator_Symbol then
3520
            Valid_Operator_Definition (Designator);
3521
         end if;
3522
 
3523
         May_Need_Actuals (Designator);
3524
 
3525
         --  Ada 2005 (AI-251): If the return type is abstract, verify that
3526
         --  the subprogram is abstract also. This does not apply to renaming
3527
         --  declarations, where abstractness is inherited, and to subprogram
3528
         --  bodies generated for stream operations, which become renamings as
3529
         --  bodies.
3530
 
3531
         --  In case of primitives associated with abstract interface types
3532
         --  the check is applied later (see Analyze_Subprogram_Declaration).
3533
 
3534
         if not Nkind_In (Original_Node (Parent (N)),
3535
                            N_Subprogram_Renaming_Declaration,
3536
                            N_Abstract_Subprogram_Declaration,
3537
                            N_Formal_Abstract_Subprogram_Declaration)
3538
         then
3539
            if Is_Abstract_Type (Etype (Designator))
3540
              and then not Is_Interface (Etype (Designator))
3541
            then
3542
               Error_Msg_N
3543
                 ("function that returns abstract type must be abstract", N);
3544
 
3545
            --  Ada 2012 (AI-0073): Extend this test to subprograms with an
3546
            --  access result whose designated type is abstract.
3547
 
3548
            elsif Nkind (Result_Definition (N)) = N_Access_Definition
3549
              and then
3550
                not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
3551
              and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
3552
              and then Ada_Version >= Ada_2012
3553
            then
3554
               Error_Msg_N ("function whose access result designates "
3555
                 & "abstract type must be abstract", N);
3556
            end if;
3557
         end if;
3558
      end if;
3559
 
3560
      return Designator;
3561
   end Analyze_Subprogram_Specification;
3562
 
3563
   --------------------------
3564
   -- Build_Body_To_Inline --
3565
   --------------------------
3566
 
3567
   procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
3568
      Decl            : constant Node_Id := Unit_Declaration_Node (Subp);
3569
      Original_Body   : Node_Id;
3570
      Body_To_Analyze : Node_Id;
3571
      Max_Size        : constant := 10;
3572
      Stat_Count      : Integer := 0;
3573
 
3574
      function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
3575
      --  Check for declarations that make inlining not worthwhile
3576
 
3577
      function Has_Excluded_Statement   (Stats : List_Id) return Boolean;
3578
      --  Check for statements that make inlining not worthwhile: any tasking
3579
      --  statement, nested at any level. Keep track of total number of
3580
      --  elementary statements, as a measure of acceptable size.
3581
 
3582
      function Has_Pending_Instantiation return Boolean;
3583
      --  If some enclosing body contains instantiations that appear before the
3584
      --  corresponding generic body, the enclosing body has a freeze node so
3585
      --  that it can be elaborated after the generic itself. This might
3586
      --  conflict with subsequent inlinings, so that it is unsafe to try to
3587
      --  inline in such a case.
3588
 
3589
      function Has_Single_Return return Boolean;
3590
      --  In general we cannot inline functions that return unconstrained type.
3591
      --  However, we can handle such functions if all return statements return
3592
      --  a local variable that is the only declaration in the body of the
3593
      --  function. In that case the call can be replaced by that local
3594
      --  variable as is done for other inlined calls.
3595
 
3596
      procedure Remove_Pragmas;
3597
      --  A pragma Unreferenced or pragma Unmodified that mentions a formal
3598
      --  parameter has no meaning when the body is inlined and the formals
3599
      --  are rewritten. Remove it from body to inline. The analysis of the
3600
      --  non-inlined body will handle the pragma properly.
3601
 
3602
      function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
3603
      --  If the body of the subprogram includes a call that returns an
3604
      --  unconstrained type, the secondary stack is involved, and it
3605
      --  is not worth inlining.
3606
 
3607
      ------------------------------
3608
      -- Has_Excluded_Declaration --
3609
      ------------------------------
3610
 
3611
      function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
3612
         D : Node_Id;
3613
 
3614
         function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3615
         --  Nested subprograms make a given body ineligible for inlining, but
3616
         --  we make an exception for instantiations of unchecked conversion.
3617
         --  The body has not been analyzed yet, so check the name, and verify
3618
         --  that the visible entity with that name is the predefined unit.
3619
 
3620
         -----------------------------
3621
         -- Is_Unchecked_Conversion --
3622
         -----------------------------
3623
 
3624
         function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3625
            Id   : constant Node_Id := Name (D);
3626
            Conv : Entity_Id;
3627
 
3628
         begin
3629
            if Nkind (Id) = N_Identifier
3630
              and then Chars (Id) = Name_Unchecked_Conversion
3631
            then
3632
               Conv := Current_Entity (Id);
3633
 
3634
            elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3635
              and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3636
            then
3637
               Conv := Current_Entity (Selector_Name (Id));
3638
            else
3639
               return False;
3640
            end if;
3641
 
3642
            return Present (Conv)
3643
              and then Is_Predefined_File_Name
3644
                         (Unit_File_Name (Get_Source_Unit (Conv)))
3645
              and then Is_Intrinsic_Subprogram (Conv);
3646
         end Is_Unchecked_Conversion;
3647
 
3648
      --  Start of processing for Has_Excluded_Declaration
3649
 
3650
      begin
3651
         D := First (Decls);
3652
         while Present (D) loop
3653
            if (Nkind (D) = N_Function_Instantiation
3654
                  and then not Is_Unchecked_Conversion (D))
3655
              or else Nkind_In (D, N_Protected_Type_Declaration,
3656
                                   N_Package_Declaration,
3657
                                   N_Package_Instantiation,
3658
                                   N_Subprogram_Body,
3659
                                   N_Procedure_Instantiation,
3660
                                   N_Task_Type_Declaration)
3661
            then
3662
               Cannot_Inline
3663
                 ("cannot inline & (non-allowed declaration)?", D, Subp);
3664
               return True;
3665
            end if;
3666
 
3667
            Next (D);
3668
         end loop;
3669
 
3670
         return False;
3671
      end Has_Excluded_Declaration;
3672
 
3673
      ----------------------------
3674
      -- Has_Excluded_Statement --
3675
      ----------------------------
3676
 
3677
      function Has_Excluded_Statement (Stats : List_Id) return Boolean is
3678
         S : Node_Id;
3679
         E : Node_Id;
3680
 
3681
      begin
3682
         S := First (Stats);
3683
         while Present (S) loop
3684
            Stat_Count := Stat_Count + 1;
3685
 
3686
            if Nkind_In (S, N_Abort_Statement,
3687
                            N_Asynchronous_Select,
3688
                            N_Conditional_Entry_Call,
3689
                            N_Delay_Relative_Statement,
3690
                            N_Delay_Until_Statement,
3691
                            N_Selective_Accept,
3692
                            N_Timed_Entry_Call)
3693
            then
3694
               Cannot_Inline
3695
                 ("cannot inline & (non-allowed statement)?", S, Subp);
3696
               return True;
3697
 
3698
            elsif Nkind (S) = N_Block_Statement then
3699
               if Present (Declarations (S))
3700
                 and then Has_Excluded_Declaration (Declarations (S))
3701
               then
3702
                  return True;
3703
 
3704
               elsif Present (Handled_Statement_Sequence (S))
3705
                  and then
3706
                    (Present
3707
                      (Exception_Handlers (Handled_Statement_Sequence (S)))
3708
                     or else
3709
                       Has_Excluded_Statement
3710
                         (Statements (Handled_Statement_Sequence (S))))
3711
               then
3712
                  return True;
3713
               end if;
3714
 
3715
            elsif Nkind (S) = N_Case_Statement then
3716
               E := First (Alternatives (S));
3717
               while Present (E) loop
3718
                  if Has_Excluded_Statement (Statements (E)) then
3719
                     return True;
3720
                  end if;
3721
 
3722
                  Next (E);
3723
               end loop;
3724
 
3725
            elsif Nkind (S) = N_If_Statement then
3726
               if Has_Excluded_Statement (Then_Statements (S)) then
3727
                  return True;
3728
               end if;
3729
 
3730
               if Present (Elsif_Parts (S)) then
3731
                  E := First (Elsif_Parts (S));
3732
                  while Present (E) loop
3733
                     if Has_Excluded_Statement (Then_Statements (E)) then
3734
                        return True;
3735
                     end if;
3736
                     Next (E);
3737
                  end loop;
3738
               end if;
3739
 
3740
               if Present (Else_Statements (S))
3741
                 and then Has_Excluded_Statement (Else_Statements (S))
3742
               then
3743
                  return True;
3744
               end if;
3745
 
3746
            elsif Nkind (S) = N_Loop_Statement
3747
              and then Has_Excluded_Statement (Statements (S))
3748
            then
3749
               return True;
3750
 
3751
            elsif Nkind (S) = N_Extended_Return_Statement then
3752
               if Has_Excluded_Statement
3753
                  (Statements (Handled_Statement_Sequence (S)))
3754
                 or else Present
3755
                   (Exception_Handlers (Handled_Statement_Sequence (S)))
3756
               then
3757
                  return True;
3758
               end if;
3759
            end if;
3760
 
3761
            Next (S);
3762
         end loop;
3763
 
3764
         return False;
3765
      end Has_Excluded_Statement;
3766
 
3767
      -------------------------------
3768
      -- Has_Pending_Instantiation --
3769
      -------------------------------
3770
 
3771
      function Has_Pending_Instantiation return Boolean is
3772
         S : Entity_Id;
3773
 
3774
      begin
3775
         S := Current_Scope;
3776
         while Present (S) loop
3777
            if Is_Compilation_Unit (S)
3778
              or else Is_Child_Unit (S)
3779
            then
3780
               return False;
3781
 
3782
            elsif Ekind (S) = E_Package
3783
              and then Has_Forward_Instantiation (S)
3784
            then
3785
               return True;
3786
            end if;
3787
 
3788
            S := Scope (S);
3789
         end loop;
3790
 
3791
         return False;
3792
      end Has_Pending_Instantiation;
3793
 
3794
      ------------------------
3795
      --  Has_Single_Return --
3796
      ------------------------
3797
 
3798
      function Has_Single_Return return Boolean is
3799
         Return_Statement : Node_Id := Empty;
3800
 
3801
         function Check_Return (N : Node_Id) return Traverse_Result;
3802
 
3803
         ------------------
3804
         -- Check_Return --
3805
         ------------------
3806
 
3807
         function Check_Return (N : Node_Id) return Traverse_Result is
3808
         begin
3809
            if Nkind (N) = N_Simple_Return_Statement then
3810
               if Present (Expression (N))
3811
                 and then Is_Entity_Name (Expression (N))
3812
               then
3813
                  if No (Return_Statement) then
3814
                     Return_Statement := N;
3815
                     return OK;
3816
 
3817
                  elsif Chars (Expression (N)) =
3818
                        Chars (Expression (Return_Statement))
3819
                  then
3820
                     return OK;
3821
 
3822
                  else
3823
                     return Abandon;
3824
                  end if;
3825
 
3826
               --  A return statement within an extended return is a noop
3827
               --  after inlining.
3828
 
3829
               elsif No (Expression (N))
3830
                 and then Nkind (Parent (Parent (N))) =
3831
                 N_Extended_Return_Statement
3832
               then
3833
                  return OK;
3834
 
3835
               else
3836
                  --  Expression has wrong form
3837
 
3838
                  return Abandon;
3839
               end if;
3840
 
3841
            --  We can only inline a build-in-place function if
3842
            --  it has a single extended return.
3843
 
3844
            elsif Nkind (N) = N_Extended_Return_Statement then
3845
               if No (Return_Statement) then
3846
                  Return_Statement := N;
3847
                  return OK;
3848
 
3849
               else
3850
                  return Abandon;
3851
               end if;
3852
 
3853
            else
3854
               return OK;
3855
            end if;
3856
         end Check_Return;
3857
 
3858
         function Check_All_Returns is new Traverse_Func (Check_Return);
3859
 
3860
      --  Start of processing for Has_Single_Return
3861
 
3862
      begin
3863
         if Check_All_Returns (N) /= OK then
3864
            return False;
3865
 
3866
         elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3867
            return True;
3868
 
3869
         else
3870
            return Present (Declarations (N))
3871
              and then Present (First (Declarations (N)))
3872
              and then Chars (Expression (Return_Statement)) =
3873
                 Chars (Defining_Identifier (First (Declarations (N))));
3874
         end if;
3875
      end Has_Single_Return;
3876
 
3877
      --------------------
3878
      -- Remove_Pragmas --
3879
      --------------------
3880
 
3881
      procedure Remove_Pragmas is
3882
         Decl : Node_Id;
3883
         Nxt  : Node_Id;
3884
 
3885
      begin
3886
         Decl := First (Declarations (Body_To_Analyze));
3887
         while Present (Decl) loop
3888
            Nxt := Next (Decl);
3889
 
3890
            if Nkind (Decl) = N_Pragma
3891
              and then (Pragma_Name (Decl) = Name_Unreferenced
3892
                          or else
3893
                        Pragma_Name (Decl) = Name_Unmodified)
3894
            then
3895
               Remove (Decl);
3896
            end if;
3897
 
3898
            Decl := Nxt;
3899
         end loop;
3900
      end Remove_Pragmas;
3901
 
3902
      --------------------------
3903
      -- Uses_Secondary_Stack --
3904
      --------------------------
3905
 
3906
      function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
3907
         function Check_Call (N : Node_Id) return Traverse_Result;
3908
         --  Look for function calls that return an unconstrained type
3909
 
3910
         ----------------
3911
         -- Check_Call --
3912
         ----------------
3913
 
3914
         function Check_Call (N : Node_Id) return Traverse_Result is
3915
         begin
3916
            if Nkind (N) = N_Function_Call
3917
              and then Is_Entity_Name (Name (N))
3918
              and then Is_Composite_Type (Etype (Entity (Name (N))))
3919
              and then not Is_Constrained (Etype (Entity (Name (N))))
3920
            then
3921
               Cannot_Inline
3922
                 ("cannot inline & (call returns unconstrained type)?",
3923
                    N, Subp);
3924
               return Abandon;
3925
            else
3926
               return OK;
3927
            end if;
3928
         end Check_Call;
3929
 
3930
         function Check_Calls is new Traverse_Func (Check_Call);
3931
 
3932
      begin
3933
         return Check_Calls (Bod) = Abandon;
3934
      end Uses_Secondary_Stack;
3935
 
3936
   --  Start of processing for Build_Body_To_Inline
3937
 
3938
   begin
3939
      --  Return immediately if done already
3940
 
3941
      if Nkind (Decl) = N_Subprogram_Declaration
3942
        and then Present (Body_To_Inline (Decl))
3943
      then
3944
         return;
3945
 
3946
      --  Functions that return unconstrained composite types require
3947
      --  secondary stack handling, and cannot currently be inlined, unless
3948
      --  all return statements return a local variable that is the first
3949
      --  local declaration in the body.
3950
 
3951
      elsif Ekind (Subp) = E_Function
3952
        and then not Is_Scalar_Type (Etype (Subp))
3953
        and then not Is_Access_Type (Etype (Subp))
3954
        and then not Is_Constrained (Etype (Subp))
3955
      then
3956
         if not Has_Single_Return then
3957
            Cannot_Inline
3958
              ("cannot inline & (unconstrained return type)?", N, Subp);
3959
            return;
3960
         end if;
3961
 
3962
      --  Ditto for functions that return controlled types, where controlled
3963
      --  actions interfere in complex ways with inlining.
3964
 
3965
      elsif Ekind (Subp) = E_Function
3966
        and then Needs_Finalization (Etype (Subp))
3967
      then
3968
         Cannot_Inline
3969
           ("cannot inline & (controlled return type)?", N, Subp);
3970
         return;
3971
      end if;
3972
 
3973
      if Present (Declarations (N))
3974
        and then Has_Excluded_Declaration (Declarations (N))
3975
      then
3976
         return;
3977
      end if;
3978
 
3979
      if Present (Handled_Statement_Sequence (N)) then
3980
         if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
3981
            Cannot_Inline
3982
              ("cannot inline& (exception handler)?",
3983
               First (Exception_Handlers (Handled_Statement_Sequence (N))),
3984
               Subp);
3985
            return;
3986
         elsif
3987
           Has_Excluded_Statement
3988
             (Statements (Handled_Statement_Sequence (N)))
3989
         then
3990
            return;
3991
         end if;
3992
      end if;
3993
 
3994
      --  We do not inline a subprogram  that is too large, unless it is
3995
      --  marked Inline_Always. This pragma does not suppress the other
3996
      --  checks on inlining (forbidden declarations, handlers, etc).
3997
 
3998
      if Stat_Count > Max_Size
3999
        and then not Has_Pragma_Inline_Always (Subp)
4000
      then
4001
         Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
4002
         return;
4003
      end if;
4004
 
4005
      if Has_Pending_Instantiation then
4006
         Cannot_Inline
4007
           ("cannot inline& (forward instance within enclosing body)?",
4008
             N, Subp);
4009
         return;
4010
      end if;
4011
 
4012
      --  Within an instance, the body to inline must be treated as a nested
4013
      --  generic, so that the proper global references are preserved.
4014
 
4015
      --  Note that we do not do this at the library level, because it is not
4016
      --  needed, and furthermore this causes trouble if front end inlining
4017
      --  is activated (-gnatN).
4018
 
4019
      if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
4020
         Save_Env (Scope (Current_Scope), Scope (Current_Scope));
4021
         Original_Body := Copy_Generic_Node (N, Empty, True);
4022
      else
4023
         Original_Body := Copy_Separate_Tree (N);
4024
      end if;
4025
 
4026
      --  We need to capture references to the formals in order to substitute
4027
      --  the actuals at the point of inlining, i.e. instantiation. To treat
4028
      --  the formals as globals to the body to inline, we nest it within
4029
      --  a dummy parameterless subprogram, declared within the real one.
4030
      --  To avoid generating an internal name (which is never public, and
4031
      --  which affects serial numbers of other generated names), we use
4032
      --  an internal symbol that cannot conflict with user declarations.
4033
 
4034
      Set_Parameter_Specifications (Specification (Original_Body), No_List);
4035
      Set_Defining_Unit_Name
4036
        (Specification (Original_Body),
4037
          Make_Defining_Identifier (Sloc (N), Name_uParent));
4038
      Set_Corresponding_Spec (Original_Body, Empty);
4039
 
4040
      Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
4041
 
4042
      --  Set return type of function, which is also global and does not need
4043
      --  to be resolved.
4044
 
4045
      if Ekind (Subp) = E_Function then
4046
         Set_Result_Definition (Specification (Body_To_Analyze),
4047
           New_Occurrence_Of (Etype (Subp), Sloc (N)));
4048
      end if;
4049
 
4050
      if No (Declarations (N)) then
4051
         Set_Declarations (N, New_List (Body_To_Analyze));
4052
      else
4053
         Append (Body_To_Analyze, Declarations (N));
4054
      end if;
4055
 
4056
      Expander_Mode_Save_And_Set (False);
4057
      Remove_Pragmas;
4058
 
4059
      Analyze (Body_To_Analyze);
4060
      Push_Scope (Defining_Entity (Body_To_Analyze));
4061
      Save_Global_References (Original_Body);
4062
      End_Scope;
4063
      Remove (Body_To_Analyze);
4064
 
4065
      Expander_Mode_Restore;
4066
 
4067
      --  Restore environment if previously saved
4068
 
4069
      if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
4070
         Restore_Env;
4071
      end if;
4072
 
4073
      --  If secondary stk used there is no point in inlining. We have
4074
      --  already issued the warning in this case, so nothing to do.
4075
 
4076
      if Uses_Secondary_Stack (Body_To_Analyze) then
4077
         return;
4078
      end if;
4079
 
4080
      Set_Body_To_Inline (Decl, Original_Body);
4081
      Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
4082
      Set_Is_Inlined (Subp);
4083
   end Build_Body_To_Inline;
4084
 
4085
   -------------------
4086
   -- Cannot_Inline --
4087
   -------------------
4088
 
4089
   procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
4090
   begin
4091
      --  Do not emit warning if this is a predefined unit which is not the
4092
      --  main unit. With validity checks enabled, some predefined subprograms
4093
      --  may contain nested subprograms and become ineligible for inlining.
4094
 
4095
      if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
4096
        and then not In_Extended_Main_Source_Unit (Subp)
4097
      then
4098
         null;
4099
 
4100
      elsif Has_Pragma_Inline_Always (Subp) then
4101
 
4102
         --  Remove last character (question mark) to make this into an error,
4103
         --  because the Inline_Always pragma cannot be obeyed.
4104
 
4105
         Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
4106
 
4107
      elsif Ineffective_Inline_Warnings then
4108
         Error_Msg_NE (Msg, N, Subp);
4109
      end if;
4110
   end Cannot_Inline;
4111
 
4112
   -----------------------
4113
   -- Check_Conformance --
4114
   -----------------------
4115
 
4116
   procedure Check_Conformance
4117
     (New_Id                   : Entity_Id;
4118
      Old_Id                   : Entity_Id;
4119
      Ctype                    : Conformance_Type;
4120
      Errmsg                   : Boolean;
4121
      Conforms                 : out Boolean;
4122
      Err_Loc                  : Node_Id := Empty;
4123
      Get_Inst                 : Boolean := False;
4124
      Skip_Controlling_Formals : Boolean := False)
4125
   is
4126
      procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4127
      --  Sets Conforms to False. If Errmsg is False, then that's all it does.
4128
      --  If Errmsg is True, then processing continues to post an error message
4129
      --  for conformance error on given node. Two messages are output. The
4130
      --  first message points to the previous declaration with a general "no
4131
      --  conformance" message. The second is the detailed reason, supplied as
4132
      --  Msg. The parameter N provide information for a possible & insertion
4133
      --  in the message, and also provides the location for posting the
4134
      --  message in the absence of a specified Err_Loc location.
4135
 
4136
      -----------------------
4137
      -- Conformance_Error --
4138
      -----------------------
4139
 
4140
      procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4141
         Enode : Node_Id;
4142
 
4143
      begin
4144
         Conforms := False;
4145
 
4146
         if Errmsg then
4147
            if No (Err_Loc) then
4148
               Enode := N;
4149
            else
4150
               Enode := Err_Loc;
4151
            end if;
4152
 
4153
            Error_Msg_Sloc := Sloc (Old_Id);
4154
 
4155
            case Ctype is
4156
               when Type_Conformant =>
4157
                  Error_Msg_N -- CODEFIX
4158
                    ("not type conformant with declaration#!", Enode);
4159
 
4160
               when Mode_Conformant =>
4161
                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4162
                     Error_Msg_N
4163
                       ("not mode conformant with operation inherited#!",
4164
                         Enode);
4165
                  else
4166
                     Error_Msg_N
4167
                       ("not mode conformant with declaration#!", Enode);
4168
                  end if;
4169
 
4170
               when Subtype_Conformant =>
4171
                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4172
                     Error_Msg_N
4173
                       ("not subtype conformant with operation inherited#!",
4174
                         Enode);
4175
                  else
4176
                     Error_Msg_N
4177
                       ("not subtype conformant with declaration#!", Enode);
4178
                  end if;
4179
 
4180
               when Fully_Conformant =>
4181
                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4182
                     Error_Msg_N -- CODEFIX
4183
                       ("not fully conformant with operation inherited#!",
4184
                         Enode);
4185
                  else
4186
                     Error_Msg_N -- CODEFIX
4187
                       ("not fully conformant with declaration#!", Enode);
4188
                  end if;
4189
            end case;
4190
 
4191
            Error_Msg_NE (Msg, Enode, N);
4192
         end if;
4193
      end Conformance_Error;
4194
 
4195
      --  Local Variables
4196
 
4197
      Old_Type           : constant Entity_Id := Etype (Old_Id);
4198
      New_Type           : constant Entity_Id := Etype (New_Id);
4199
      Old_Formal         : Entity_Id;
4200
      New_Formal         : Entity_Id;
4201
      Access_Types_Match : Boolean;
4202
      Old_Formal_Base    : Entity_Id;
4203
      New_Formal_Base    : Entity_Id;
4204
 
4205
   --  Start of processing for Check_Conformance
4206
 
4207
   begin
4208
      Conforms := True;
4209
 
4210
      --  We need a special case for operators, since they don't appear
4211
      --  explicitly.
4212
 
4213
      if Ctype = Type_Conformant then
4214
         if Ekind (New_Id) = E_Operator
4215
           and then Operator_Matches_Spec (New_Id, Old_Id)
4216
         then
4217
            return;
4218
         end if;
4219
      end if;
4220
 
4221
      --  If both are functions/operators, check return types conform
4222
 
4223
      if Old_Type /= Standard_Void_Type
4224
        and then New_Type /= Standard_Void_Type
4225
      then
4226
 
4227
         --  If we are checking interface conformance we omit controlling
4228
         --  arguments and result, because we are only checking the conformance
4229
         --  of the remaining parameters.
4230
 
4231
         if Has_Controlling_Result (Old_Id)
4232
           and then Has_Controlling_Result (New_Id)
4233
           and then Skip_Controlling_Formals
4234
         then
4235
            null;
4236
 
4237
         elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
4238
            Conformance_Error ("\return type does not match!", New_Id);
4239
            return;
4240
         end if;
4241
 
4242
         --  Ada 2005 (AI-231): In case of anonymous access types check the
4243
         --  null-exclusion and access-to-constant attributes match.
4244
 
4245
         if Ada_Version >= Ada_2005
4246
           and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4247
           and then
4248
             (Can_Never_Be_Null (Old_Type)
4249
                /= Can_Never_Be_Null (New_Type)
4250
              or else Is_Access_Constant (Etype (Old_Type))
4251
                        /= Is_Access_Constant (Etype (New_Type)))
4252
         then
4253
            Conformance_Error ("\return type does not match!", New_Id);
4254
            return;
4255
         end if;
4256
 
4257
      --  If either is a function/operator and the other isn't, error
4258
 
4259
      elsif Old_Type /= Standard_Void_Type
4260
        or else New_Type /= Standard_Void_Type
4261
      then
4262
         Conformance_Error ("\functions can only match functions!", New_Id);
4263
         return;
4264
      end if;
4265
 
4266
      --  In subtype conformant case, conventions must match (RM 6.3.1(16)).
4267
      --  If this is a renaming as body, refine error message to indicate that
4268
      --  the conflict is with the original declaration. If the entity is not
4269
      --  frozen, the conventions don't have to match, the one of the renamed
4270
      --  entity is inherited.
4271
 
4272
      if Ctype >= Subtype_Conformant then
4273
         if Convention (Old_Id) /= Convention (New_Id) then
4274
 
4275
            if not Is_Frozen (New_Id) then
4276
               null;
4277
 
4278
            elsif Present (Err_Loc)
4279
              and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4280
              and then Present (Corresponding_Spec (Err_Loc))
4281
            then
4282
               Error_Msg_Name_1 := Chars (New_Id);
4283
               Error_Msg_Name_2 :=
4284
                 Name_Ada + Convention_Id'Pos (Convention (New_Id));
4285
               Conformance_Error ("\prior declaration for% has convention %!");
4286
 
4287
            else
4288
               Conformance_Error ("\calling conventions do not match!");
4289
            end if;
4290
 
4291
            return;
4292
 
4293
         elsif Is_Formal_Subprogram (Old_Id)
4294
           or else Is_Formal_Subprogram (New_Id)
4295
         then
4296
            Conformance_Error ("\formal subprograms not allowed!");
4297
            return;
4298
         end if;
4299
      end if;
4300
 
4301
      --  Deal with parameters
4302
 
4303
      --  Note: we use the entity information, rather than going directly
4304
      --  to the specification in the tree. This is not only simpler, but
4305
      --  absolutely necessary for some cases of conformance tests between
4306
      --  operators, where the declaration tree simply does not exist!
4307
 
4308
      Old_Formal := First_Formal (Old_Id);
4309
      New_Formal := First_Formal (New_Id);
4310
      while Present (Old_Formal) and then Present (New_Formal) loop
4311
         if Is_Controlling_Formal (Old_Formal)
4312
           and then Is_Controlling_Formal (New_Formal)
4313
           and then Skip_Controlling_Formals
4314
         then
4315
            --  The controlling formals will have different types when
4316
            --  comparing an interface operation with its match, but both
4317
            --  or neither must be access parameters.
4318
 
4319
            if Is_Access_Type (Etype (Old_Formal))
4320
                 =
4321
               Is_Access_Type (Etype (New_Formal))
4322
            then
4323
               goto Skip_Controlling_Formal;
4324
            else
4325
               Conformance_Error
4326
                 ("\access parameter does not match!", New_Formal);
4327
            end if;
4328
         end if;
4329
 
4330
         if Ctype = Fully_Conformant then
4331
 
4332
            --  Names must match. Error message is more accurate if we do
4333
            --  this before checking that the types of the formals match.
4334
 
4335
            if Chars (Old_Formal) /= Chars (New_Formal) then
4336
               Conformance_Error ("\name & does not match!", New_Formal);
4337
 
4338
               --  Set error posted flag on new formal as well to stop
4339
               --  junk cascaded messages in some cases.
4340
 
4341
               Set_Error_Posted (New_Formal);
4342
               return;
4343
            end if;
4344
 
4345
            --  Null exclusion must match
4346
 
4347
            if Null_Exclusion_Present (Parent (Old_Formal))
4348
                 /=
4349
               Null_Exclusion_Present (Parent (New_Formal))
4350
            then
4351
               --  Only give error if both come from source. This should be
4352
               --  investigated some time, since it should not be needed ???
4353
 
4354
               if Comes_From_Source (Old_Formal)
4355
                    and then
4356
                  Comes_From_Source (New_Formal)
4357
               then
4358
                  Conformance_Error
4359
                    ("\null exclusion for & does not match", New_Formal);
4360
 
4361
                  --  Mark error posted on the new formal to avoid duplicated
4362
                  --  complaint about types not matching.
4363
 
4364
                  Set_Error_Posted (New_Formal);
4365
               end if;
4366
            end if;
4367
         end if;
4368
 
4369
         --  Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4370
         --  case occurs whenever a subprogram is being renamed and one of its
4371
         --  parameters imposes a null exclusion. For example:
4372
 
4373
         --     type T is null record;
4374
         --     type Acc_T is access T;
4375
         --     subtype Acc_T_Sub is Acc_T;
4376
 
4377
         --     procedure P     (Obj : not null Acc_T_Sub);  --  itype
4378
         --     procedure Ren_P (Obj :          Acc_T_Sub)   --  subtype
4379
         --       renames P;
4380
 
4381
         Old_Formal_Base := Etype (Old_Formal);
4382
         New_Formal_Base := Etype (New_Formal);
4383
 
4384
         if Get_Inst then
4385
            Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4386
            New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4387
         end if;
4388
 
4389
         Access_Types_Match := Ada_Version >= Ada_2005
4390
 
4391
            --  Ensure that this rule is only applied when New_Id is a
4392
            --  renaming of Old_Id.
4393
 
4394
           and then Nkind (Parent (Parent (New_Id))) =
4395
                      N_Subprogram_Renaming_Declaration
4396
           and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4397
           and then Present (Entity (Name (Parent (Parent (New_Id)))))
4398
           and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4399
 
4400
            --  Now handle the allowed access-type case
4401
 
4402
           and then Is_Access_Type (Old_Formal_Base)
4403
           and then Is_Access_Type (New_Formal_Base)
4404
 
4405
            --  The type kinds must match. The only exception occurs with
4406
            --  multiple generics of the form:
4407
 
4408
            --   generic                    generic
4409
            --     type F is private;         type A is private;
4410
            --     type F_Ptr is access F;    type A_Ptr is access A;
4411
            --     with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4412
            --   package F_Pack is ...      package A_Pack is
4413
            --                                package F_Inst is
4414
            --                                  new F_Pack (A, A_Ptr, A_P);
4415
 
4416
            --  When checking for conformance between the parameters of A_P
4417
            --  and F_P, the type kinds of F_Ptr and A_Ptr will not match
4418
            --  because the compiler has transformed A_Ptr into a subtype of
4419
            --  F_Ptr. We catch this case in the code below.
4420
 
4421
           and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4422
                  or else
4423
                    (Is_Generic_Type (Old_Formal_Base)
4424
                       and then Is_Generic_Type (New_Formal_Base)
4425
                       and then Is_Internal (New_Formal_Base)
4426
                       and then Etype (Etype (New_Formal_Base)) =
4427
                                  Old_Formal_Base))
4428
           and then Directly_Designated_Type (Old_Formal_Base) =
4429
                      Directly_Designated_Type (New_Formal_Base)
4430
           and then ((Is_Itype (Old_Formal_Base)
4431
                       and then Can_Never_Be_Null (Old_Formal_Base))
4432
                    or else
4433
                     (Is_Itype (New_Formal_Base)
4434
                       and then Can_Never_Be_Null (New_Formal_Base)));
4435
 
4436
         --  Types must always match. In the visible part of an instance,
4437
         --  usual overloading rules for dispatching operations apply, and
4438
         --  we check base types (not the actual subtypes).
4439
 
4440
         if In_Instance_Visible_Part
4441
           and then Is_Dispatching_Operation (New_Id)
4442
         then
4443
            if not Conforming_Types
4444
                     (T1       => Base_Type (Etype (Old_Formal)),
4445
                      T2       => Base_Type (Etype (New_Formal)),
4446
                      Ctype    => Ctype,
4447
                      Get_Inst => Get_Inst)
4448
               and then not Access_Types_Match
4449
            then
4450
               Conformance_Error ("\type of & does not match!", New_Formal);
4451
               return;
4452
            end if;
4453
 
4454
         elsif not Conforming_Types
4455
                     (T1       => Old_Formal_Base,
4456
                      T2       => New_Formal_Base,
4457
                      Ctype    => Ctype,
4458
                      Get_Inst => Get_Inst)
4459
           and then not Access_Types_Match
4460
         then
4461
            --  Don't give error message if old type is Any_Type. This test
4462
            --  avoids some cascaded errors, e.g. in case of a bad spec.
4463
 
4464
            if Errmsg and then Old_Formal_Base = Any_Type then
4465
               Conforms := False;
4466
            else
4467
               Conformance_Error ("\type of & does not match!", New_Formal);
4468
            end if;
4469
 
4470
            return;
4471
         end if;
4472
 
4473
         --  For mode conformance, mode must match
4474
 
4475
         if Ctype >= Mode_Conformant then
4476
            if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
4477
               if not Ekind_In (New_Id, E_Function, E_Procedure)
4478
                 or else not Is_Primitive_Wrapper (New_Id)
4479
               then
4480
                  Conformance_Error ("\mode of & does not match!", New_Formal);
4481
 
4482
               else
4483
                  declare
4484
                     T : constant  Entity_Id := Find_Dispatching_Type (New_Id);
4485
                  begin
4486
                     if Is_Protected_Type
4487
                          (Corresponding_Concurrent_Type (T))
4488
                     then
4489
                        Error_Msg_PT (T, New_Id);
4490
                     else
4491
                        Conformance_Error
4492
                          ("\mode of & does not match!", New_Formal);
4493
                     end if;
4494
                  end;
4495
               end if;
4496
 
4497
               return;
4498
 
4499
            --  Part of mode conformance for access types is having the same
4500
            --  constant modifier.
4501
 
4502
            elsif Access_Types_Match
4503
              and then Is_Access_Constant (Old_Formal_Base) /=
4504
                       Is_Access_Constant (New_Formal_Base)
4505
            then
4506
               Conformance_Error
4507
                 ("\constant modifier does not match!", New_Formal);
4508
               return;
4509
            end if;
4510
         end if;
4511
 
4512
         if Ctype >= Subtype_Conformant then
4513
 
4514
            --  Ada 2005 (AI-231): In case of anonymous access types check
4515
            --  the null-exclusion and access-to-constant attributes must
4516
            --  match. For null exclusion, we test the types rather than the
4517
            --  formals themselves, since the attribute is only set reliably
4518
            --  on the formals in the Ada 95 case, and we exclude the case
4519
            --  where Old_Formal is marked as controlling, to avoid errors
4520
            --  when matching completing bodies with dispatching declarations
4521
            --  (access formals in the bodies aren't marked Can_Never_Be_Null).
4522
 
4523
            if Ada_Version >= Ada_2005
4524
              and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
4525
              and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
4526
              and then
4527
                ((Can_Never_Be_Null (Etype (Old_Formal)) /=
4528
                  Can_Never_Be_Null (Etype (New_Formal))
4529
                    and then
4530
                      not Is_Controlling_Formal (Old_Formal))
4531
                   or else
4532
                 Is_Access_Constant (Etype (Old_Formal)) /=
4533
                 Is_Access_Constant (Etype (New_Formal)))
4534
 
4535
              --  Do not complain if error already posted on New_Formal. This
4536
              --  avoids some redundant error messages.
4537
 
4538
              and then not Error_Posted (New_Formal)
4539
            then
4540
               --  It is allowed to omit the null-exclusion in case of stream
4541
               --  attribute subprograms. We recognize stream subprograms
4542
               --  through their TSS-generated suffix.
4543
 
4544
               declare
4545
                  TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
4546
               begin
4547
                  if TSS_Name /= TSS_Stream_Read
4548
                    and then TSS_Name /= TSS_Stream_Write
4549
                    and then TSS_Name /= TSS_Stream_Input
4550
                    and then TSS_Name /= TSS_Stream_Output
4551
                  then
4552
                     Conformance_Error
4553
                       ("\type of & does not match!", New_Formal);
4554
                     return;
4555
                  end if;
4556
               end;
4557
            end if;
4558
         end if;
4559
 
4560
         --  Full conformance checks
4561
 
4562
         if Ctype = Fully_Conformant then
4563
 
4564
            --  We have checked already that names match
4565
 
4566
            if Parameter_Mode (Old_Formal) = E_In_Parameter then
4567
 
4568
               --  Check default expressions for in parameters
4569
 
4570
               declare
4571
                  NewD : constant Boolean :=
4572
                           Present (Default_Value (New_Formal));
4573
                  OldD : constant Boolean :=
4574
                           Present (Default_Value (Old_Formal));
4575
               begin
4576
                  if NewD or OldD then
4577
 
4578
                     --  The old default value has been analyzed because the
4579
                     --  current full declaration will have frozen everything
4580
                     --  before. The new default value has not been analyzed,
4581
                     --  so analyze it now before we check for conformance.
4582
 
4583
                     if NewD then
4584
                        Push_Scope (New_Id);
4585
                        Preanalyze_Spec_Expression
4586
                          (Default_Value (New_Formal), Etype (New_Formal));
4587
                        End_Scope;
4588
                     end if;
4589
 
4590
                     if not (NewD and OldD)
4591
                       or else not Fully_Conformant_Expressions
4592
                                    (Default_Value (Old_Formal),
4593
                                     Default_Value (New_Formal))
4594
                     then
4595
                        Conformance_Error
4596
                          ("\default expression for & does not match!",
4597
                           New_Formal);
4598
                        return;
4599
                     end if;
4600
                  end if;
4601
               end;
4602
            end if;
4603
         end if;
4604
 
4605
         --  A couple of special checks for Ada 83 mode. These checks are
4606
         --  skipped if either entity is an operator in package Standard,
4607
         --  or if either old or new instance is not from the source program.
4608
 
4609
         if Ada_Version = Ada_83
4610
           and then Sloc (Old_Id) > Standard_Location
4611
           and then Sloc (New_Id) > Standard_Location
4612
           and then Comes_From_Source (Old_Id)
4613
           and then Comes_From_Source (New_Id)
4614
         then
4615
            declare
4616
               Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
4617
               New_Param : constant Node_Id := Declaration_Node (New_Formal);
4618
 
4619
            begin
4620
               --  Explicit IN must be present or absent in both cases. This
4621
               --  test is required only in the full conformance case.
4622
 
4623
               if In_Present (Old_Param) /= In_Present (New_Param)
4624
                 and then Ctype = Fully_Conformant
4625
               then
4626
                  Conformance_Error
4627
                    ("\(Ada 83) IN must appear in both declarations",
4628
                     New_Formal);
4629
                  return;
4630
               end if;
4631
 
4632
               --  Grouping (use of comma in param lists) must be the same
4633
               --  This is where we catch a misconformance like:
4634
 
4635
               --    A, B : Integer
4636
               --    A : Integer; B : Integer
4637
 
4638
               --  which are represented identically in the tree except
4639
               --  for the setting of the flags More_Ids and Prev_Ids.
4640
 
4641
               if More_Ids (Old_Param) /= More_Ids (New_Param)
4642
                 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
4643
               then
4644
                  Conformance_Error
4645
                    ("\grouping of & does not match!", New_Formal);
4646
                  return;
4647
               end if;
4648
            end;
4649
         end if;
4650
 
4651
         --  This label is required when skipping controlling formals
4652
 
4653
         <<Skip_Controlling_Formal>>
4654
 
4655
         Next_Formal (Old_Formal);
4656
         Next_Formal (New_Formal);
4657
      end loop;
4658
 
4659
      if Present (Old_Formal) then
4660
         Conformance_Error ("\too few parameters!");
4661
         return;
4662
 
4663
      elsif Present (New_Formal) then
4664
         Conformance_Error ("\too many parameters!", New_Formal);
4665
         return;
4666
      end if;
4667
   end Check_Conformance;
4668
 
4669
   -----------------------
4670
   -- Check_Conventions --
4671
   -----------------------
4672
 
4673
   procedure Check_Conventions (Typ : Entity_Id) is
4674
      Ifaces_List : Elist_Id;
4675
 
4676
      procedure Check_Convention (Op : Entity_Id);
4677
      --  Verify that the convention of inherited dispatching operation Op is
4678
      --  consistent among all subprograms it overrides. In order to minimize
4679
      --  the search, Search_From is utilized to designate a specific point in
4680
      --  the list rather than iterating over the whole list once more.
4681
 
4682
      ----------------------
4683
      -- Check_Convention --
4684
      ----------------------
4685
 
4686
      procedure Check_Convention (Op : Entity_Id) is
4687
         Iface_Elmt      : Elmt_Id;
4688
         Iface_Prim_Elmt : Elmt_Id;
4689
         Iface_Prim      : Entity_Id;
4690
 
4691
      begin
4692
         Iface_Elmt := First_Elmt (Ifaces_List);
4693
         while Present (Iface_Elmt) loop
4694
            Iface_Prim_Elmt :=
4695
               First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
4696
            while Present (Iface_Prim_Elmt) loop
4697
               Iface_Prim := Node (Iface_Prim_Elmt);
4698
 
4699
               if Is_Interface_Conformant (Typ, Iface_Prim, Op)
4700
                 and then Convention (Iface_Prim) /= Convention (Op)
4701
               then
4702
                  Error_Msg_N
4703
                    ("inconsistent conventions in primitive operations", Typ);
4704
 
4705
                  Error_Msg_Name_1 := Chars (Op);
4706
                  Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
4707
                  Error_Msg_Sloc   := Sloc (Op);
4708
 
4709
                  if Comes_From_Source (Op) or else No (Alias (Op)) then
4710
                     if not Present (Overridden_Operation (Op)) then
4711
                        Error_Msg_N ("\\primitive % defined #", Typ);
4712
                     else
4713
                        Error_Msg_N
4714
                          ("\\overriding operation % with " &
4715
                           "convention % defined #", Typ);
4716
                     end if;
4717
 
4718
                  else pragma Assert (Present (Alias (Op)));
4719
                     Error_Msg_Sloc := Sloc (Alias (Op));
4720
                     Error_Msg_N
4721
                       ("\\inherited operation % with " &
4722
                        "convention % defined #", Typ);
4723
                  end if;
4724
 
4725
                  Error_Msg_Name_1 := Chars (Op);
4726
                  Error_Msg_Name_2 :=
4727
                    Get_Convention_Name (Convention (Iface_Prim));
4728
                  Error_Msg_Sloc := Sloc (Iface_Prim);
4729
                  Error_Msg_N
4730
                    ("\\overridden operation % with " &
4731
                     "convention % defined #", Typ);
4732
 
4733
                  --  Avoid cascading errors
4734
 
4735
                  return;
4736
               end if;
4737
 
4738
               Next_Elmt (Iface_Prim_Elmt);
4739
            end loop;
4740
 
4741
            Next_Elmt (Iface_Elmt);
4742
         end loop;
4743
      end Check_Convention;
4744
 
4745
      --  Local variables
4746
 
4747
      Prim_Op      : Entity_Id;
4748
      Prim_Op_Elmt : Elmt_Id;
4749
 
4750
   --  Start of processing for Check_Conventions
4751
 
4752
   begin
4753
      if not Has_Interfaces (Typ) then
4754
         return;
4755
      end if;
4756
 
4757
      Collect_Interfaces (Typ, Ifaces_List);
4758
 
4759
      --  The algorithm checks every overriding dispatching operation against
4760
      --  all the corresponding overridden dispatching operations, detecting
4761
      --  differences in conventions.
4762
 
4763
      Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
4764
      while Present (Prim_Op_Elmt) loop
4765
         Prim_Op := Node (Prim_Op_Elmt);
4766
 
4767
         --  A small optimization: skip the predefined dispatching operations
4768
         --  since they always have the same convention.
4769
 
4770
         if not Is_Predefined_Dispatching_Operation (Prim_Op) then
4771
            Check_Convention (Prim_Op);
4772
         end if;
4773
 
4774
         Next_Elmt (Prim_Op_Elmt);
4775
      end loop;
4776
   end Check_Conventions;
4777
 
4778
   ------------------------------
4779
   -- Check_Delayed_Subprogram --
4780
   ------------------------------
4781
 
4782
   procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
4783
      F : Entity_Id;
4784
 
4785
      procedure Possible_Freeze (T : Entity_Id);
4786
      --  T is the type of either a formal parameter or of the return type.
4787
      --  If T is not yet frozen and needs a delayed freeze, then the
4788
      --  subprogram itself must be delayed. If T is the limited view of an
4789
      --  incomplete type the subprogram must be frozen as well, because
4790
      --  T may depend on local types that have not been frozen yet.
4791
 
4792
      ---------------------
4793
      -- Possible_Freeze --
4794
      ---------------------
4795
 
4796
      procedure Possible_Freeze (T : Entity_Id) is
4797
      begin
4798
         if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
4799
            Set_Has_Delayed_Freeze (Designator);
4800
 
4801
         elsif Is_Access_Type (T)
4802
           and then Has_Delayed_Freeze (Designated_Type (T))
4803
           and then not Is_Frozen (Designated_Type (T))
4804
         then
4805
            Set_Has_Delayed_Freeze (Designator);
4806
 
4807
         elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
4808
            Set_Has_Delayed_Freeze (Designator);
4809
 
4810
         --  AI05-0151: In Ada 2012, Incomplete types can appear in the profile
4811
         --  of a subprogram or entry declaration.
4812
 
4813
         elsif Ekind (T) = E_Incomplete_Type
4814
           and then Ada_Version >= Ada_2012
4815
         then
4816
            Set_Has_Delayed_Freeze (Designator);
4817
         end if;
4818
 
4819
      end Possible_Freeze;
4820
 
4821
   --  Start of processing for Check_Delayed_Subprogram
4822
 
4823
   begin
4824
      --  All subprograms, including abstract subprograms, may need a freeze
4825
      --  node if some formal type or the return type needs one.
4826
 
4827
      Possible_Freeze (Etype (Designator));
4828
      Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
4829
 
4830
      --  Need delayed freeze if any of the formal types themselves need
4831
      --  a delayed freeze and are not yet frozen.
4832
 
4833
      F := First_Formal (Designator);
4834
      while Present (F) loop
4835
         Possible_Freeze (Etype (F));
4836
         Possible_Freeze (Base_Type (Etype (F))); -- needed ???
4837
         Next_Formal (F);
4838
      end loop;
4839
 
4840
      --  Mark functions that return by reference. Note that it cannot be
4841
      --  done for delayed_freeze subprograms because the underlying
4842
      --  returned type may not be known yet (for private types)
4843
 
4844
      if not Has_Delayed_Freeze (Designator)
4845
        and then Expander_Active
4846
      then
4847
         declare
4848
            Typ  : constant Entity_Id := Etype (Designator);
4849
            Utyp : constant Entity_Id := Underlying_Type (Typ);
4850
 
4851
         begin
4852
            if Is_Immutably_Limited_Type (Typ) then
4853
               Set_Returns_By_Ref (Designator);
4854
 
4855
            elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
4856
               Set_Returns_By_Ref (Designator);
4857
            end if;
4858
         end;
4859
      end if;
4860
   end Check_Delayed_Subprogram;
4861
 
4862
   ------------------------------------
4863
   -- Check_Discriminant_Conformance --
4864
   ------------------------------------
4865
 
4866
   procedure Check_Discriminant_Conformance
4867
     (N        : Node_Id;
4868
      Prev     : Entity_Id;
4869
      Prev_Loc : Node_Id)
4870
   is
4871
      Old_Discr      : Entity_Id := First_Discriminant (Prev);
4872
      New_Discr      : Node_Id   := First (Discriminant_Specifications (N));
4873
      New_Discr_Id   : Entity_Id;
4874
      New_Discr_Type : Entity_Id;
4875
 
4876
      procedure Conformance_Error (Msg : String; N : Node_Id);
4877
      --  Post error message for conformance error on given node. Two messages
4878
      --  are output. The first points to the previous declaration with a
4879
      --  general "no conformance" message. The second is the detailed reason,
4880
      --  supplied as Msg. The parameter N provide information for a possible
4881
      --  & insertion in the message.
4882
 
4883
      -----------------------
4884
      -- Conformance_Error --
4885
      -----------------------
4886
 
4887
      procedure Conformance_Error (Msg : String; N : Node_Id) is
4888
      begin
4889
         Error_Msg_Sloc := Sloc (Prev_Loc);
4890
         Error_Msg_N -- CODEFIX
4891
           ("not fully conformant with declaration#!", N);
4892
         Error_Msg_NE (Msg, N, N);
4893
      end Conformance_Error;
4894
 
4895
   --  Start of processing for Check_Discriminant_Conformance
4896
 
4897
   begin
4898
      while Present (Old_Discr) and then Present (New_Discr) loop
4899
 
4900
         New_Discr_Id := Defining_Identifier (New_Discr);
4901
 
4902
         --  The subtype mark of the discriminant on the full type has not
4903
         --  been analyzed so we do it here. For an access discriminant a new
4904
         --  type is created.
4905
 
4906
         if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
4907
            New_Discr_Type :=
4908
              Access_Definition (N, Discriminant_Type (New_Discr));
4909
 
4910
         else
4911
            Analyze (Discriminant_Type (New_Discr));
4912
            New_Discr_Type := Etype (Discriminant_Type (New_Discr));
4913
 
4914
            --  Ada 2005: if the discriminant definition carries a null
4915
            --  exclusion, create an itype to check properly for consistency
4916
            --  with partial declaration.
4917
 
4918
            if Is_Access_Type (New_Discr_Type)
4919
                 and then Null_Exclusion_Present (New_Discr)
4920
            then
4921
               New_Discr_Type :=
4922
                 Create_Null_Excluding_Itype
4923
                   (T           => New_Discr_Type,
4924
                    Related_Nod => New_Discr,
4925
                    Scope_Id    => Current_Scope);
4926
            end if;
4927
         end if;
4928
 
4929
         if not Conforming_Types
4930
                  (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
4931
         then
4932
            Conformance_Error ("type of & does not match!", New_Discr_Id);
4933
            return;
4934
         else
4935
            --  Treat the new discriminant as an occurrence of the old one,
4936
            --  for navigation purposes, and fill in some semantic
4937
            --  information, for completeness.
4938
 
4939
            Generate_Reference (Old_Discr, New_Discr_Id, 'r');
4940
            Set_Etype (New_Discr_Id, Etype (Old_Discr));
4941
            Set_Scope (New_Discr_Id, Scope (Old_Discr));
4942
         end if;
4943
 
4944
         --  Names must match
4945
 
4946
         if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
4947
            Conformance_Error ("name & does not match!", New_Discr_Id);
4948
            return;
4949
         end if;
4950
 
4951
         --  Default expressions must match
4952
 
4953
         declare
4954
            NewD : constant Boolean :=
4955
                     Present (Expression (New_Discr));
4956
            OldD : constant Boolean :=
4957
                     Present (Expression (Parent (Old_Discr)));
4958
 
4959
         begin
4960
            if NewD or OldD then
4961
 
4962
               --  The old default value has been analyzed and expanded,
4963
               --  because the current full declaration will have frozen
4964
               --  everything before. The new default values have not been
4965
               --  expanded, so expand now to check conformance.
4966
 
4967
               if NewD then
4968
                  Preanalyze_Spec_Expression
4969
                    (Expression (New_Discr), New_Discr_Type);
4970
               end if;
4971
 
4972
               if not (NewD and OldD)
4973
                 or else not Fully_Conformant_Expressions
4974
                              (Expression (Parent (Old_Discr)),
4975
                               Expression (New_Discr))
4976
 
4977
               then
4978
                  Conformance_Error
4979
                    ("default expression for & does not match!",
4980
                     New_Discr_Id);
4981
                  return;
4982
               end if;
4983
            end if;
4984
         end;
4985
 
4986
         --  In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
4987
 
4988
         if Ada_Version = Ada_83 then
4989
            declare
4990
               Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
4991
 
4992
            begin
4993
               --  Grouping (use of comma in param lists) must be the same
4994
               --  This is where we catch a misconformance like:
4995
 
4996
               --    A, B : Integer
4997
               --    A : Integer; B : Integer
4998
 
4999
               --  which are represented identically in the tree except
5000
               --  for the setting of the flags More_Ids and Prev_Ids.
5001
 
5002
               if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5003
                 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5004
               then
5005
                  Conformance_Error
5006
                    ("grouping of & does not match!", New_Discr_Id);
5007
                  return;
5008
               end if;
5009
            end;
5010
         end if;
5011
 
5012
         Next_Discriminant (Old_Discr);
5013
         Next (New_Discr);
5014
      end loop;
5015
 
5016
      if Present (Old_Discr) then
5017
         Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5018
         return;
5019
 
5020
      elsif Present (New_Discr) then
5021
         Conformance_Error
5022
           ("too many discriminants!", Defining_Identifier (New_Discr));
5023
         return;
5024
      end if;
5025
   end Check_Discriminant_Conformance;
5026
 
5027
   ----------------------------
5028
   -- Check_Fully_Conformant --
5029
   ----------------------------
5030
 
5031
   procedure Check_Fully_Conformant
5032
     (New_Id  : Entity_Id;
5033
      Old_Id  : Entity_Id;
5034
      Err_Loc : Node_Id := Empty)
5035
   is
5036
      Result : Boolean;
5037
      pragma Warnings (Off, Result);
5038
   begin
5039
      Check_Conformance
5040
        (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5041
   end Check_Fully_Conformant;
5042
 
5043
   ---------------------------
5044
   -- Check_Mode_Conformant --
5045
   ---------------------------
5046
 
5047
   procedure Check_Mode_Conformant
5048
     (New_Id   : Entity_Id;
5049
      Old_Id   : Entity_Id;
5050
      Err_Loc  : Node_Id := Empty;
5051
      Get_Inst : Boolean := False)
5052
   is
5053
      Result : Boolean;
5054
      pragma Warnings (Off, Result);
5055
   begin
5056
      Check_Conformance
5057
        (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5058
   end Check_Mode_Conformant;
5059
 
5060
   --------------------------------
5061
   -- Check_Overriding_Indicator --
5062
   --------------------------------
5063
 
5064
   procedure Check_Overriding_Indicator
5065
     (Subp            : Entity_Id;
5066
      Overridden_Subp : Entity_Id;
5067
      Is_Primitive    : Boolean)
5068
   is
5069
      Decl : Node_Id;
5070
      Spec : Node_Id;
5071
 
5072
   begin
5073
      --  No overriding indicator for literals
5074
 
5075
      if Ekind (Subp) = E_Enumeration_Literal then
5076
         return;
5077
 
5078
      elsif Ekind (Subp) = E_Entry then
5079
         Decl := Parent (Subp);
5080
 
5081
         --  No point in analyzing a malformed operator
5082
 
5083
      elsif Nkind (Subp) = N_Defining_Operator_Symbol
5084
        and then Error_Posted (Subp)
5085
      then
5086
         return;
5087
 
5088
      else
5089
         Decl := Unit_Declaration_Node (Subp);
5090
      end if;
5091
 
5092
      if Nkind_In (Decl, N_Subprogram_Body,
5093
                         N_Subprogram_Body_Stub,
5094
                         N_Subprogram_Declaration,
5095
                         N_Abstract_Subprogram_Declaration,
5096
                         N_Subprogram_Renaming_Declaration)
5097
      then
5098
         Spec := Specification (Decl);
5099
 
5100
      elsif Nkind (Decl) = N_Entry_Declaration then
5101
         Spec := Decl;
5102
 
5103
      else
5104
         return;
5105
      end if;
5106
 
5107
      --  The overriding operation is type conformant with the overridden one,
5108
      --  but the names of the formals are not required to match. If the names
5109
      --  appear permuted in the overriding operation, this is a possible
5110
      --  source of confusion that is worth diagnosing. Controlling formals
5111
      --  often carry names that reflect the type, and it is not worthwhile
5112
      --  requiring that their names match.
5113
 
5114
      if Present (Overridden_Subp)
5115
        and then Nkind (Subp) /= N_Defining_Operator_Symbol
5116
      then
5117
         declare
5118
            Form1 : Entity_Id;
5119
            Form2 : Entity_Id;
5120
 
5121
         begin
5122
            Form1 := First_Formal (Subp);
5123
            Form2 := First_Formal (Overridden_Subp);
5124
 
5125
            --  If the overriding operation is a synchronized operation, skip
5126
            --  the first parameter of the overridden operation, which is
5127
            --  implicit in the new one. If the operation is declared in the
5128
            --  body it is not primitive and all formals must match.
5129
 
5130
            if Is_Concurrent_Type (Scope (Subp))
5131
              and then Is_Tagged_Type (Scope (Subp))
5132
              and then not Has_Completion (Scope (Subp))
5133
            then
5134
               Form2 := Next_Formal (Form2);
5135
            end if;
5136
 
5137
            if Present (Form1) then
5138
               Form1 := Next_Formal (Form1);
5139
               Form2 := Next_Formal (Form2);
5140
            end if;
5141
 
5142
            while Present (Form1) loop
5143
               if not Is_Controlling_Formal (Form1)
5144
                 and then Present (Next_Formal (Form2))
5145
                 and then Chars (Form1) = Chars (Next_Formal (Form2))
5146
               then
5147
                  Error_Msg_Node_2 := Alias (Overridden_Subp);
5148
                  Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
5149
                  Error_Msg_NE
5150
                    ("& does not match corresponding formal of&#",
5151
                     Form1, Form1);
5152
                  exit;
5153
               end if;
5154
 
5155
               Next_Formal (Form1);
5156
               Next_Formal (Form2);
5157
            end loop;
5158
         end;
5159
      end if;
5160
 
5161
      --  If there is an overridden subprogram, then check that there is no
5162
      --  "not overriding" indicator, and mark the subprogram as overriding.
5163
      --  This is not done if the overridden subprogram is marked as hidden,
5164
      --  which can occur for the case of inherited controlled operations
5165
      --  (see Derive_Subprogram), unless the inherited subprogram's parent
5166
      --  subprogram is not itself hidden. (Note: This condition could probably
5167
      --  be simplified, leaving out the testing for the specific controlled
5168
      --  cases, but it seems safer and clearer this way, and echoes similar
5169
      --  special-case tests of this kind in other places.)
5170
 
5171
      if Present (Overridden_Subp)
5172
        and then (not Is_Hidden (Overridden_Subp)
5173
                   or else
5174
                     ((Chars (Overridden_Subp) = Name_Initialize
5175
                         or else
5176
                       Chars (Overridden_Subp) = Name_Adjust
5177
                         or else
5178
                       Chars (Overridden_Subp) = Name_Finalize)
5179
                      and then Present (Alias (Overridden_Subp))
5180
                      and then not Is_Hidden (Alias (Overridden_Subp))))
5181
      then
5182
         if Must_Not_Override (Spec) then
5183
            Error_Msg_Sloc := Sloc (Overridden_Subp);
5184
 
5185
            if Ekind (Subp) = E_Entry then
5186
               Error_Msg_NE
5187
                 ("entry & overrides inherited operation #", Spec, Subp);
5188
            else
5189
               Error_Msg_NE
5190
                 ("subprogram & overrides inherited operation #", Spec, Subp);
5191
            end if;
5192
 
5193
         --  Special-case to fix a GNAT oddity: Limited_Controlled is declared
5194
         --  as an extension of Root_Controlled, and thus has a useless Adjust
5195
         --  operation. This operation should not be inherited by other limited
5196
         --  controlled types. An explicit Adjust for them is not overriding.
5197
 
5198
         elsif Must_Override (Spec)
5199
           and then Chars (Overridden_Subp) = Name_Adjust
5200
           and then Is_Limited_Type (Etype (First_Formal (Subp)))
5201
           and then Present (Alias (Overridden_Subp))
5202
           and then
5203
             Is_Predefined_File_Name
5204
               (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
5205
         then
5206
            Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5207
 
5208
         elsif Is_Subprogram (Subp) then
5209
            if Is_Init_Proc (Subp) then
5210
               null;
5211
 
5212
            elsif No (Overridden_Operation (Subp)) then
5213
 
5214
               --  For entities generated by Derive_Subprograms the overridden
5215
               --  operation is the inherited primitive (which is available
5216
               --  through the attribute alias)
5217
 
5218
               if (Is_Dispatching_Operation (Subp)
5219
                    or else Is_Dispatching_Operation (Overridden_Subp))
5220
                 and then not Comes_From_Source (Overridden_Subp)
5221
                 and then Find_Dispatching_Type (Overridden_Subp) =
5222
                          Find_Dispatching_Type (Subp)
5223
                 and then Present (Alias (Overridden_Subp))
5224
                 and then Comes_From_Source (Alias (Overridden_Subp))
5225
               then
5226
                  Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5227
 
5228
               else
5229
                  Set_Overridden_Operation (Subp, Overridden_Subp);
5230
               end if;
5231
            end if;
5232
         end if;
5233
 
5234
         --  If primitive flag is set or this is a protected operation, then
5235
         --  the operation is overriding at the point of its declaration, so
5236
         --  warn if necessary. Otherwise it may have been declared before the
5237
         --  operation it overrides and no check is required.
5238
 
5239
         if Style_Check
5240
           and then not Must_Override (Spec)
5241
           and then (Is_Primitive
5242
                      or else Ekind (Scope (Subp)) = E_Protected_Type)
5243
         then
5244
            Style.Missing_Overriding (Decl, Subp);
5245
         end if;
5246
 
5247
      --  If Subp is an operator, it may override a predefined operation, if
5248
      --  it is defined in the same scope as the type to which it applies.
5249
      --  In that case Overridden_Subp is empty because of our implicit
5250
      --  representation for predefined operators. We have to check whether the
5251
      --  signature of Subp matches that of a predefined operator. Note that
5252
      --  first argument provides the name of the operator, and the second
5253
      --  argument the signature that may match that of a standard operation.
5254
      --  If the indicator is overriding, then the operator must match a
5255
      --  predefined signature, because we know already that there is no
5256
      --  explicit overridden operation.
5257
 
5258
      elsif Nkind (Subp) = N_Defining_Operator_Symbol then
5259
         if Must_Not_Override (Spec) then
5260
 
5261
            --  If this is not a primitive or a protected subprogram, then
5262
            --  "not overriding" is illegal.
5263
 
5264
            if not Is_Primitive
5265
              and then Ekind (Scope (Subp)) /= E_Protected_Type
5266
            then
5267
               Error_Msg_N
5268
                 ("overriding indicator only allowed "
5269
                  & "if subprogram is primitive", Subp);
5270
 
5271
            elsif Can_Override_Operator (Subp) then
5272
               Error_Msg_NE
5273
                 ("subprogram& overrides predefined operator ", Spec, Subp);
5274
            end if;
5275
 
5276
         elsif Must_Override (Spec) then
5277
            if No (Overridden_Operation (Subp))
5278
              and then not Can_Override_Operator (Subp)
5279
            then
5280
               Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5281
            end if;
5282
 
5283
         elsif not Error_Posted (Subp)
5284
           and then Style_Check
5285
           and then Can_Override_Operator (Subp)
5286
           and then
5287
             not Is_Predefined_File_Name
5288
                   (Unit_File_Name (Get_Source_Unit (Subp)))
5289
         then
5290
            --  If style checks are enabled, indicate that the indicator is
5291
            --  missing. However, at the point of declaration, the type of
5292
            --  which this is a primitive operation may be private, in which
5293
            --  case the indicator would be premature.
5294
 
5295
            if Has_Private_Declaration (Etype (Subp))
5296
              or else Has_Private_Declaration (Etype (First_Formal (Subp)))
5297
            then
5298
               null;
5299
            else
5300
               Style.Missing_Overriding (Decl, Subp);
5301
            end if;
5302
         end if;
5303
 
5304
      elsif Must_Override (Spec) then
5305
         if Ekind (Subp) = E_Entry then
5306
            Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5307
         else
5308
            Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5309
         end if;
5310
 
5311
      --  If the operation is marked "not overriding" and it's not primitive
5312
      --  then an error is issued, unless this is an operation of a task or
5313
      --  protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5314
      --  has been specified have already been checked above.
5315
 
5316
      elsif Must_Not_Override (Spec)
5317
        and then not Is_Primitive
5318
        and then Ekind (Subp) /= E_Entry
5319
        and then Ekind (Scope (Subp)) /= E_Protected_Type
5320
      then
5321
         Error_Msg_N
5322
           ("overriding indicator only allowed if subprogram is primitive",
5323
            Subp);
5324
         return;
5325
      end if;
5326
   end Check_Overriding_Indicator;
5327
 
5328
   -------------------
5329
   -- Check_Returns --
5330
   -------------------
5331
 
5332
   --  Note: this procedure needs to know far too much about how the expander
5333
   --  messes with exceptions. The use of the flag Exception_Junk and the
5334
   --  incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5335
   --  works, but is not very clean. It would be better if the expansion
5336
   --  routines would leave Original_Node working nicely, and we could use
5337
   --  Original_Node here to ignore all the peculiar expander messing ???
5338
 
5339
   procedure Check_Returns
5340
     (HSS  : Node_Id;
5341
      Mode : Character;
5342
      Err  : out Boolean;
5343
      Proc : Entity_Id := Empty)
5344
   is
5345
      Handler : Node_Id;
5346
 
5347
      procedure Check_Statement_Sequence (L : List_Id);
5348
      --  Internal recursive procedure to check a list of statements for proper
5349
      --  termination by a return statement (or a transfer of control or a
5350
      --  compound statement that is itself internally properly terminated).
5351
 
5352
      ------------------------------
5353
      -- Check_Statement_Sequence --
5354
      ------------------------------
5355
 
5356
      procedure Check_Statement_Sequence (L : List_Id) is
5357
         Last_Stm : Node_Id;
5358
         Stm      : Node_Id;
5359
         Kind     : Node_Kind;
5360
 
5361
         Raise_Exception_Call : Boolean;
5362
         --  Set True if statement sequence terminated by Raise_Exception call
5363
         --  or a Reraise_Occurrence call.
5364
 
5365
      begin
5366
         Raise_Exception_Call := False;
5367
 
5368
         --  Get last real statement
5369
 
5370
         Last_Stm := Last (L);
5371
 
5372
         --  Deal with digging out exception handler statement sequences that
5373
         --  have been transformed by the local raise to goto optimization.
5374
         --  See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5375
         --  optimization has occurred, we are looking at something like:
5376
 
5377
         --  begin
5378
         --     original stmts in block
5379
 
5380
         --  exception            \
5381
         --     when excep1 =>     |
5382
         --        goto L1;        | omitted if No_Exception_Propagation
5383
         --     when excep2 =>     |
5384
         --        goto L2;       /
5385
         --  end;
5386
 
5387
         --  goto L3;      -- skip handler when exception not raised
5388
 
5389
         --  <<L1>>        -- target label for local exception
5390
         --     begin
5391
         --        estmts1
5392
         --     end;
5393
 
5394
         --     goto L3;
5395
 
5396
         --  <<L2>>
5397
         --     begin
5398
         --        estmts2
5399
         --     end;
5400
 
5401
         --  <<L3>>
5402
 
5403
         --  and what we have to do is to dig out the estmts1 and estmts2
5404
         --  sequences (which were the original sequences of statements in
5405
         --  the exception handlers) and check them.
5406
 
5407
         if Nkind (Last_Stm) = N_Label
5408
           and then Exception_Junk (Last_Stm)
5409
         then
5410
            Stm := Last_Stm;
5411
            loop
5412
               Prev (Stm);
5413
               exit when No (Stm);
5414
               exit when Nkind (Stm) /= N_Block_Statement;
5415
               exit when not Exception_Junk (Stm);
5416
               Prev (Stm);
5417
               exit when No (Stm);
5418
               exit when Nkind (Stm) /= N_Label;
5419
               exit when not Exception_Junk (Stm);
5420
               Check_Statement_Sequence
5421
                 (Statements (Handled_Statement_Sequence (Next (Stm))));
5422
 
5423
               Prev (Stm);
5424
               Last_Stm := Stm;
5425
               exit when No (Stm);
5426
               exit when Nkind (Stm) /= N_Goto_Statement;
5427
               exit when not Exception_Junk (Stm);
5428
            end loop;
5429
         end if;
5430
 
5431
         --  Don't count pragmas
5432
 
5433
         while Nkind (Last_Stm) = N_Pragma
5434
 
5435
         --  Don't count call to SS_Release (can happen after Raise_Exception)
5436
 
5437
           or else
5438
             (Nkind (Last_Stm) = N_Procedure_Call_Statement
5439
                and then
5440
              Nkind (Name (Last_Stm)) = N_Identifier
5441
                and then
5442
              Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
5443
 
5444
         --  Don't count exception junk
5445
 
5446
           or else
5447
             (Nkind_In (Last_Stm, N_Goto_Statement,
5448
                                   N_Label,
5449
                                   N_Object_Declaration)
5450
                and then Exception_Junk (Last_Stm))
5451
           or else Nkind (Last_Stm) in N_Push_xxx_Label
5452
           or else Nkind (Last_Stm) in N_Pop_xxx_Label
5453
         loop
5454
            Prev (Last_Stm);
5455
         end loop;
5456
 
5457
         --  Here we have the "real" last statement
5458
 
5459
         Kind := Nkind (Last_Stm);
5460
 
5461
         --  Transfer of control, OK. Note that in the No_Return procedure
5462
         --  case, we already diagnosed any explicit return statements, so
5463
         --  we can treat them as OK in this context.
5464
 
5465
         if Is_Transfer (Last_Stm) then
5466
            return;
5467
 
5468
         --  Check cases of explicit non-indirect procedure calls
5469
 
5470
         elsif Kind = N_Procedure_Call_Statement
5471
           and then Is_Entity_Name (Name (Last_Stm))
5472
         then
5473
            --  Check call to Raise_Exception procedure which is treated
5474
            --  specially, as is a call to Reraise_Occurrence.
5475
 
5476
            --  We suppress the warning in these cases since it is likely that
5477
            --  the programmer really does not expect to deal with the case
5478
            --  of Null_Occurrence, and thus would find a warning about a
5479
            --  missing return curious, and raising Program_Error does not
5480
            --  seem such a bad behavior if this does occur.
5481
 
5482
            --  Note that in the Ada 2005 case for Raise_Exception, the actual
5483
            --  behavior will be to raise Constraint_Error (see AI-329).
5484
 
5485
            if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
5486
                 or else
5487
               Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
5488
            then
5489
               Raise_Exception_Call := True;
5490
 
5491
               --  For Raise_Exception call, test first argument, if it is
5492
               --  an attribute reference for a 'Identity call, then we know
5493
               --  that the call cannot possibly return.
5494
 
5495
               declare
5496
                  Arg : constant Node_Id :=
5497
                          Original_Node (First_Actual (Last_Stm));
5498
               begin
5499
                  if Nkind (Arg) = N_Attribute_Reference
5500
                    and then Attribute_Name (Arg) = Name_Identity
5501
                  then
5502
                     return;
5503
                  end if;
5504
               end;
5505
            end if;
5506
 
5507
         --  If statement, need to look inside if there is an else and check
5508
         --  each constituent statement sequence for proper termination.
5509
 
5510
         elsif Kind = N_If_Statement
5511
           and then Present (Else_Statements (Last_Stm))
5512
         then
5513
            Check_Statement_Sequence (Then_Statements (Last_Stm));
5514
            Check_Statement_Sequence (Else_Statements (Last_Stm));
5515
 
5516
            if Present (Elsif_Parts (Last_Stm)) then
5517
               declare
5518
                  Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
5519
 
5520
               begin
5521
                  while Present (Elsif_Part) loop
5522
                     Check_Statement_Sequence (Then_Statements (Elsif_Part));
5523
                     Next (Elsif_Part);
5524
                  end loop;
5525
               end;
5526
            end if;
5527
 
5528
            return;
5529
 
5530
         --  Case statement, check each case for proper termination
5531
 
5532
         elsif Kind = N_Case_Statement then
5533
            declare
5534
               Case_Alt : Node_Id;
5535
            begin
5536
               Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
5537
               while Present (Case_Alt) loop
5538
                  Check_Statement_Sequence (Statements (Case_Alt));
5539
                  Next_Non_Pragma (Case_Alt);
5540
               end loop;
5541
            end;
5542
 
5543
            return;
5544
 
5545
         --  Block statement, check its handled sequence of statements
5546
 
5547
         elsif Kind = N_Block_Statement then
5548
            declare
5549
               Err1 : Boolean;
5550
 
5551
            begin
5552
               Check_Returns
5553
                 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
5554
 
5555
               if Err1 then
5556
                  Err := True;
5557
               end if;
5558
 
5559
               return;
5560
            end;
5561
 
5562
         --  Loop statement. If there is an iteration scheme, we can definitely
5563
         --  fall out of the loop. Similarly if there is an exit statement, we
5564
         --  can fall out. In either case we need a following return.
5565
 
5566
         elsif Kind = N_Loop_Statement then
5567
            if Present (Iteration_Scheme (Last_Stm))
5568
              or else Has_Exit (Entity (Identifier (Last_Stm)))
5569
            then
5570
               null;
5571
 
5572
            --  A loop with no exit statement or iteration scheme is either
5573
            --  an infinite loop, or it has some other exit (raise/return).
5574
            --  In either case, no warning is required.
5575
 
5576
            else
5577
               return;
5578
            end if;
5579
 
5580
         --  Timed entry call, check entry call and delay alternatives
5581
 
5582
         --  Note: in expanded code, the timed entry call has been converted
5583
         --  to a set of expanded statements on which the check will work
5584
         --  correctly in any case.
5585
 
5586
         elsif Kind = N_Timed_Entry_Call then
5587
            declare
5588
               ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
5589
               DCA : constant Node_Id := Delay_Alternative      (Last_Stm);
5590
 
5591
            begin
5592
               --  If statement sequence of entry call alternative is missing,
5593
               --  then we can definitely fall through, and we post the error
5594
               --  message on the entry call alternative itself.
5595
 
5596
               if No (Statements (ECA)) then
5597
                  Last_Stm := ECA;
5598
 
5599
               --  If statement sequence of delay alternative is missing, then
5600
               --  we can definitely fall through, and we post the error
5601
               --  message on the delay alternative itself.
5602
 
5603
               --  Note: if both ECA and DCA are missing the return, then we
5604
               --  post only one message, should be enough to fix the bugs.
5605
               --  If not we will get a message next time on the DCA when the
5606
               --  ECA is fixed!
5607
 
5608
               elsif No (Statements (DCA)) then
5609
                  Last_Stm := DCA;
5610
 
5611
               --  Else check both statement sequences
5612
 
5613
               else
5614
                  Check_Statement_Sequence (Statements (ECA));
5615
                  Check_Statement_Sequence (Statements (DCA));
5616
                  return;
5617
               end if;
5618
            end;
5619
 
5620
         --  Conditional entry call, check entry call and else part
5621
 
5622
         --  Note: in expanded code, the conditional entry call has been
5623
         --  converted to a set of expanded statements on which the check
5624
         --  will work correctly in any case.
5625
 
5626
         elsif Kind = N_Conditional_Entry_Call then
5627
            declare
5628
               ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
5629
 
5630
            begin
5631
               --  If statement sequence of entry call alternative is missing,
5632
               --  then we can definitely fall through, and we post the error
5633
               --  message on the entry call alternative itself.
5634
 
5635
               if No (Statements (ECA)) then
5636
                  Last_Stm := ECA;
5637
 
5638
               --  Else check statement sequence and else part
5639
 
5640
               else
5641
                  Check_Statement_Sequence (Statements (ECA));
5642
                  Check_Statement_Sequence (Else_Statements (Last_Stm));
5643
                  return;
5644
               end if;
5645
            end;
5646
         end if;
5647
 
5648
         --  If we fall through, issue appropriate message
5649
 
5650
         if Mode = 'F' then
5651
            if not Raise_Exception_Call then
5652
               Error_Msg_N
5653
                 ("?RETURN statement missing following this statement!",
5654
                  Last_Stm);
5655
               Error_Msg_N
5656
                 ("\?Program_Error may be raised at run time!",
5657
                  Last_Stm);
5658
            end if;
5659
 
5660
            --  Note: we set Err even though we have not issued a warning
5661
            --  because we still have a case of a missing return. This is
5662
            --  an extremely marginal case, probably will never be noticed
5663
            --  but we might as well get it right.
5664
 
5665
            Err := True;
5666
 
5667
         --  Otherwise we have the case of a procedure marked No_Return
5668
 
5669
         else
5670
            if not Raise_Exception_Call then
5671
               Error_Msg_N
5672
                 ("?implied return after this statement " &
5673
                  "will raise Program_Error",
5674
                  Last_Stm);
5675
               Error_Msg_NE
5676
                 ("\?procedure & is marked as No_Return!",
5677
                  Last_Stm, Proc);
5678
            end if;
5679
 
5680
            declare
5681
               RE : constant Node_Id :=
5682
                      Make_Raise_Program_Error (Sloc (Last_Stm),
5683
                        Reason => PE_Implicit_Return);
5684
            begin
5685
               Insert_After (Last_Stm, RE);
5686
               Analyze (RE);
5687
            end;
5688
         end if;
5689
      end Check_Statement_Sequence;
5690
 
5691
   --  Start of processing for Check_Returns
5692
 
5693
   begin
5694
      Err := False;
5695
      Check_Statement_Sequence (Statements (HSS));
5696
 
5697
      if Present (Exception_Handlers (HSS)) then
5698
         Handler := First_Non_Pragma (Exception_Handlers (HSS));
5699
         while Present (Handler) loop
5700
            Check_Statement_Sequence (Statements (Handler));
5701
            Next_Non_Pragma (Handler);
5702
         end loop;
5703
      end if;
5704
   end Check_Returns;
5705
 
5706
   -------------------------------
5707
   -- Check_Subprogram_Contract --
5708
   -------------------------------
5709
 
5710
   procedure Check_Subprogram_Contract (Spec_Id : Entity_Id) is
5711
 
5712
      --  Code is currently commented out as, in some cases, it causes crashes
5713
      --  because Direct_Primitive_Operations is not available for a private
5714
      --  type. This may cause more warnings to be issued than necessary. See
5715
      --  below for the intended use of this variable. ???
5716
 
5717
--        Inherited : constant Subprogram_List :=
5718
--                      Inherited_Subprograms (Spec_Id);
5719
--        --  List of subprograms inherited by this subprogram
5720
 
5721
      Last_Postcondition : Node_Id := Empty;
5722
      --  Last postcondition on the subprogram, or else Empty if either no
5723
      --  postcondition or only inherited postconditions.
5724
 
5725
      Attribute_Result_Mentioned : Boolean := False;
5726
      --  Whether attribute 'Result is mentioned in a postcondition
5727
 
5728
      Post_State_Mentioned : Boolean := False;
5729
      --  Whether some expression mentioned in a postcondition can have a
5730
      --  different value in the post-state than in the pre-state.
5731
 
5732
      function Check_Attr_Result (N : Node_Id) return Traverse_Result;
5733
      --  Check if N is a reference to the attribute 'Result, and if so set
5734
      --  Attribute_Result_Mentioned and return Abandon. Otherwise return OK.
5735
 
5736
      function Check_Post_State (N : Node_Id) return Traverse_Result;
5737
      --  Check whether the value of evaluating N can be different in the
5738
      --  post-state, compared to the same evaluation in the pre-state, and
5739
      --  if so set Post_State_Mentioned and return Abandon. Return Skip on
5740
      --  reference to attribute 'Old, in order to ignore its prefix, which
5741
      --  is precisely evaluated in the pre-state. Otherwise return OK.
5742
 
5743
      procedure Process_Post_Conditions (Spec : Node_Id; Class : Boolean);
5744
      --  This processes the Spec_PPC_List from Spec, processing any
5745
      --  postconditions from the list. If Class is True, then only
5746
      --  postconditions marked with Class_Present are considered. The
5747
      --  caller has checked that Spec_PPC_List is non-Empty.
5748
 
5749
      function Find_Attribute_Result is new Traverse_Func (Check_Attr_Result);
5750
 
5751
      function Find_Post_State is new Traverse_Func (Check_Post_State);
5752
 
5753
      -----------------------
5754
      -- Check_Attr_Result --
5755
      -----------------------
5756
 
5757
      function Check_Attr_Result (N : Node_Id) return Traverse_Result is
5758
      begin
5759
         if Nkind (N) = N_Attribute_Reference
5760
           and then Get_Attribute_Id (Attribute_Name (N)) = Attribute_Result
5761
         then
5762
            Attribute_Result_Mentioned := True;
5763
            return Abandon;
5764
         else
5765
            return OK;
5766
         end if;
5767
      end Check_Attr_Result;
5768
 
5769
      ----------------------
5770
      -- Check_Post_State --
5771
      ----------------------
5772
 
5773
      function Check_Post_State (N : Node_Id) return Traverse_Result is
5774
         Found : Boolean := False;
5775
 
5776
      begin
5777
         case Nkind (N) is
5778
            when N_Function_Call        |
5779
                 N_Explicit_Dereference =>
5780
               Found := True;
5781
 
5782
            when N_Identifier    |
5783
                 N_Expanded_Name =>
5784
 
5785
               declare
5786
                  E : constant Entity_Id := Entity (N);
5787
 
5788
               begin
5789
                  --  ???Quantified expressions get analyzed later, so E can
5790
                  --  be empty at this point. In this case, we suppress the
5791
                  --  warning, just in case E is assignable. It seems better to
5792
                  --  have false negatives than false positives. At some point,
5793
                  --  we should make the warning more accurate, either by
5794
                  --  analyzing quantified expressions earlier, or moving
5795
                  --  this processing later.
5796
 
5797
                  if No (E)
5798
                    or else
5799
                      (Is_Entity_Name (N)
5800
                        and then Ekind (E) in Assignable_Kind)
5801
                  then
5802
                     Found := True;
5803
                  end if;
5804
               end;
5805
 
5806
            when N_Attribute_Reference =>
5807
               case Get_Attribute_Id (Attribute_Name (N)) is
5808
                  when Attribute_Old =>
5809
                     return Skip;
5810
                  when Attribute_Result =>
5811
                     Found := True;
5812
                  when others =>
5813
                     null;
5814
               end case;
5815
 
5816
            when others =>
5817
               null;
5818
         end case;
5819
 
5820
         if Found then
5821
            Post_State_Mentioned := True;
5822
            return Abandon;
5823
         else
5824
            return OK;
5825
         end if;
5826
      end Check_Post_State;
5827
 
5828
      -----------------------------
5829
      -- Process_Post_Conditions --
5830
      -----------------------------
5831
 
5832
      procedure Process_Post_Conditions
5833
        (Spec  : Node_Id;
5834
         Class : Boolean)
5835
      is
5836
         Prag    : Node_Id;
5837
         Arg     : Node_Id;
5838
         Ignored : Traverse_Final_Result;
5839
         pragma Unreferenced (Ignored);
5840
 
5841
      begin
5842
         Prag := Spec_PPC_List (Contract (Spec));
5843
 
5844
         loop
5845
            Arg := First (Pragma_Argument_Associations (Prag));
5846
 
5847
            --  Since pre- and post-conditions are listed in reverse order, the
5848
            --  first postcondition in the list is the last in the source.
5849
 
5850
            if Pragma_Name (Prag) = Name_Postcondition
5851
              and then not Class
5852
              and then No (Last_Postcondition)
5853
            then
5854
               Last_Postcondition := Prag;
5855
            end if;
5856
 
5857
            --  For functions, look for presence of 'Result in postcondition
5858
 
5859
            if Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
5860
               Ignored := Find_Attribute_Result (Arg);
5861
            end if;
5862
 
5863
            --  For each individual non-inherited postcondition, look for
5864
            --  presence of an expression that could be evaluated differently
5865
            --  in post-state.
5866
 
5867
            if Pragma_Name (Prag) = Name_Postcondition
5868
              and then not Class
5869
            then
5870
               Post_State_Mentioned := False;
5871
               Ignored := Find_Post_State (Arg);
5872
 
5873
               if not Post_State_Mentioned then
5874
                  Error_Msg_N ("?postcondition refers only to pre-state",
5875
                               Prag);
5876
               end if;
5877
            end if;
5878
 
5879
            Prag := Next_Pragma (Prag);
5880
            exit when No (Prag);
5881
         end loop;
5882
      end Process_Post_Conditions;
5883
 
5884
   --  Start of processing for Check_Subprogram_Contract
5885
 
5886
   begin
5887
      if not Warn_On_Suspicious_Contract then
5888
         return;
5889
      end if;
5890
 
5891
      if Present (Spec_PPC_List (Contract (Spec_Id))) then
5892
         Process_Post_Conditions (Spec_Id, Class => False);
5893
      end if;
5894
 
5895
      --  Process inherited postconditions
5896
 
5897
      --  Code is currently commented out as, in some cases, it causes crashes
5898
      --  because Direct_Primitive_Operations is not available for a private
5899
      --  type. This may cause more warnings to be issued than necessary. ???
5900
 
5901
--        for J in Inherited'Range loop
5902
--           if Present (Spec_PPC_List (Contract (Inherited (J)))) then
5903
--              Process_Post_Conditions (Inherited (J), Class => True);
5904
--           end if;
5905
--        end loop;
5906
 
5907
      --  Issue warning for functions whose postcondition does not mention
5908
      --  'Result after all postconditions have been processed.
5909
 
5910
      if Ekind_In (Spec_Id, E_Function, E_Generic_Function)
5911
        and then Present (Last_Postcondition)
5912
        and then not Attribute_Result_Mentioned
5913
      then
5914
         Error_Msg_N ("?function postcondition does not mention result",
5915
                      Last_Postcondition);
5916
      end if;
5917
   end Check_Subprogram_Contract;
5918
 
5919
   ----------------------------
5920
   -- Check_Subprogram_Order --
5921
   ----------------------------
5922
 
5923
   procedure Check_Subprogram_Order (N : Node_Id) is
5924
 
5925
      function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
5926
      --  This is used to check if S1 > S2 in the sense required by this test,
5927
      --  for example nameab < namec, but name2 < name10.
5928
 
5929
      -----------------------------
5930
      -- Subprogram_Name_Greater --
5931
      -----------------------------
5932
 
5933
      function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
5934
         L1, L2 : Positive;
5935
         N1, N2 : Natural;
5936
 
5937
      begin
5938
         --  Remove trailing numeric parts
5939
 
5940
         L1 := S1'Last;
5941
         while S1 (L1) in '0' .. '9' loop
5942
            L1 := L1 - 1;
5943
         end loop;
5944
 
5945
         L2 := S2'Last;
5946
         while S2 (L2) in '0' .. '9' loop
5947
            L2 := L2 - 1;
5948
         end loop;
5949
 
5950
         --  If non-numeric parts non-equal, that's decisive
5951
 
5952
         if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
5953
            return False;
5954
 
5955
         elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
5956
            return True;
5957
 
5958
         --  If non-numeric parts equal, compare suffixed numeric parts. Note
5959
         --  that a missing suffix is treated as numeric zero in this test.
5960
 
5961
         else
5962
            N1 := 0;
5963
            while L1 < S1'Last loop
5964
               L1 := L1 + 1;
5965
               N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
5966
            end loop;
5967
 
5968
            N2 := 0;
5969
            while L2 < S2'Last loop
5970
               L2 := L2 + 1;
5971
               N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
5972
            end loop;
5973
 
5974
            return N1 > N2;
5975
         end if;
5976
      end Subprogram_Name_Greater;
5977
 
5978
   --  Start of processing for Check_Subprogram_Order
5979
 
5980
   begin
5981
      --  Check body in alpha order if this is option
5982
 
5983
      if Style_Check
5984
        and then Style_Check_Order_Subprograms
5985
        and then Nkind (N) = N_Subprogram_Body
5986
        and then Comes_From_Source (N)
5987
        and then In_Extended_Main_Source_Unit (N)
5988
      then
5989
         declare
5990
            LSN : String_Ptr
5991
                    renames Scope_Stack.Table
5992
                              (Scope_Stack.Last).Last_Subprogram_Name;
5993
 
5994
            Body_Id : constant Entity_Id :=
5995
                        Defining_Entity (Specification (N));
5996
 
5997
         begin
5998
            Get_Decoded_Name_String (Chars (Body_Id));
5999
 
6000
            if LSN /= null then
6001
               if Subprogram_Name_Greater
6002
                    (LSN.all, Name_Buffer (1 .. Name_Len))
6003
               then
6004
                  Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6005
               end if;
6006
 
6007
               Free (LSN);
6008
            end if;
6009
 
6010
            LSN := new String'(Name_Buffer (1 .. Name_Len));
6011
         end;
6012
      end if;
6013
   end Check_Subprogram_Order;
6014
 
6015
   ------------------------------
6016
   -- Check_Subtype_Conformant --
6017
   ------------------------------
6018
 
6019
   procedure Check_Subtype_Conformant
6020
     (New_Id                   : Entity_Id;
6021
      Old_Id                   : Entity_Id;
6022
      Err_Loc                  : Node_Id := Empty;
6023
      Skip_Controlling_Formals : Boolean := False)
6024
   is
6025
      Result : Boolean;
6026
      pragma Warnings (Off, Result);
6027
   begin
6028
      Check_Conformance
6029
        (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6030
         Skip_Controlling_Formals => Skip_Controlling_Formals);
6031
   end Check_Subtype_Conformant;
6032
 
6033
   ---------------------------
6034
   -- Check_Type_Conformant --
6035
   ---------------------------
6036
 
6037
   procedure Check_Type_Conformant
6038
     (New_Id  : Entity_Id;
6039
      Old_Id  : Entity_Id;
6040
      Err_Loc : Node_Id := Empty)
6041
   is
6042
      Result : Boolean;
6043
      pragma Warnings (Off, Result);
6044
   begin
6045
      Check_Conformance
6046
        (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6047
   end Check_Type_Conformant;
6048
 
6049
   ---------------------------
6050
   -- Can_Override_Operator --
6051
   ---------------------------
6052
 
6053
   function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6054
      Typ : Entity_Id;
6055
   begin
6056
      if Nkind (Subp) /= N_Defining_Operator_Symbol then
6057
         return False;
6058
 
6059
      else
6060
         Typ := Base_Type (Etype (First_Formal (Subp)));
6061
 
6062
         return Operator_Matches_Spec (Subp, Subp)
6063
           and then Scope (Subp) = Scope (Typ)
6064
           and then not Is_Class_Wide_Type (Typ);
6065
      end if;
6066
   end Can_Override_Operator;
6067
 
6068
   ----------------------
6069
   -- Conforming_Types --
6070
   ----------------------
6071
 
6072
   function Conforming_Types
6073
     (T1       : Entity_Id;
6074
      T2       : Entity_Id;
6075
      Ctype    : Conformance_Type;
6076
      Get_Inst : Boolean := False) return Boolean
6077
   is
6078
      Type_1 : Entity_Id := T1;
6079
      Type_2 : Entity_Id := T2;
6080
      Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6081
 
6082
      function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6083
      --  If neither T1 nor T2 are generic actual types, or if they are in
6084
      --  different scopes (e.g. parent and child instances), then verify that
6085
      --  the base types are equal. Otherwise T1 and T2 must be on the same
6086
      --  subtype chain. The whole purpose of this procedure is to prevent
6087
      --  spurious ambiguities in an instantiation that may arise if two
6088
      --  distinct generic types are instantiated with the same actual.
6089
 
6090
      function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6091
      --  An access parameter can designate an incomplete type. If the
6092
      --  incomplete type is the limited view of a type from a limited_
6093
      --  with_clause, check whether the non-limited view is available. If
6094
      --  it is a (non-limited) incomplete type, get the full view.
6095
 
6096
      function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6097
      --  Returns True if and only if either T1 denotes a limited view of T2
6098
      --  or T2 denotes a limited view of T1. This can arise when the limited
6099
      --  with view of a type is used in a subprogram declaration and the
6100
      --  subprogram body is in the scope of a regular with clause for the
6101
      --  same unit. In such a case, the two type entities can be considered
6102
      --  identical for purposes of conformance checking.
6103
 
6104
      ----------------------
6105
      -- Base_Types_Match --
6106
      ----------------------
6107
 
6108
      function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6109
      begin
6110
         if T1 = T2 then
6111
            return True;
6112
 
6113
         elsif Base_Type (T1) = Base_Type (T2) then
6114
 
6115
            --  The following is too permissive. A more precise test should
6116
            --  check that the generic actual is an ancestor subtype of the
6117
            --  other ???.
6118
 
6119
            return not Is_Generic_Actual_Type (T1)
6120
              or else not Is_Generic_Actual_Type (T2)
6121
              or else Scope (T1) /= Scope (T2);
6122
 
6123
         else
6124
            return False;
6125
         end if;
6126
      end Base_Types_Match;
6127
 
6128
      --------------------------
6129
      -- Find_Designated_Type --
6130
      --------------------------
6131
 
6132
      function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6133
         Desig : Entity_Id;
6134
 
6135
      begin
6136
         Desig := Directly_Designated_Type (T);
6137
 
6138
         if Ekind (Desig) = E_Incomplete_Type then
6139
 
6140
            --  If regular incomplete type, get full view if available
6141
 
6142
            if Present (Full_View (Desig)) then
6143
               Desig := Full_View (Desig);
6144
 
6145
            --  If limited view of a type, get non-limited view if available,
6146
            --  and check again for a regular incomplete type.
6147
 
6148
            elsif Present (Non_Limited_View (Desig)) then
6149
               Desig := Get_Full_View (Non_Limited_View (Desig));
6150
            end if;
6151
         end if;
6152
 
6153
         return Desig;
6154
      end Find_Designated_Type;
6155
 
6156
      -------------------------------
6157
      -- Matches_Limited_With_View --
6158
      -------------------------------
6159
 
6160
      function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6161
      begin
6162
         --  In some cases a type imported through a limited_with clause, and
6163
         --  its nonlimited view are both visible, for example in an anonymous
6164
         --  access-to-class-wide type in a formal. Both entities designate the
6165
         --  same type.
6166
 
6167
         if From_With_Type (T1)
6168
           and then T2 = Available_View (T1)
6169
         then
6170
            return True;
6171
 
6172
         elsif From_With_Type (T2)
6173
           and then T1 = Available_View (T2)
6174
         then
6175
            return True;
6176
 
6177
         elsif From_With_Type (T1)
6178
           and then From_With_Type (T2)
6179
           and then Available_View (T1) = Available_View (T2)
6180
         then
6181
            return True;
6182
 
6183
         else
6184
            return False;
6185
         end if;
6186
      end Matches_Limited_With_View;
6187
 
6188
   --  Start of processing for Conforming_Types
6189
 
6190
   begin
6191
      --  The context is an instance association for a formal
6192
      --  access-to-subprogram type; the formal parameter types require
6193
      --  mapping because they may denote other formal parameters of the
6194
      --  generic unit.
6195
 
6196
      if Get_Inst then
6197
         Type_1 := Get_Instance_Of (T1);
6198
         Type_2 := Get_Instance_Of (T2);
6199
      end if;
6200
 
6201
      --  If one of the types is a view of the other introduced by a limited
6202
      --  with clause, treat these as conforming for all purposes.
6203
 
6204
      if Matches_Limited_With_View (T1, T2) then
6205
         return True;
6206
 
6207
      elsif Base_Types_Match (Type_1, Type_2) then
6208
         return Ctype <= Mode_Conformant
6209
           or else Subtypes_Statically_Match (Type_1, Type_2);
6210
 
6211
      elsif Is_Incomplete_Or_Private_Type (Type_1)
6212
        and then Present (Full_View (Type_1))
6213
        and then Base_Types_Match (Full_View (Type_1), Type_2)
6214
      then
6215
         return Ctype <= Mode_Conformant
6216
           or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6217
 
6218
      elsif Ekind (Type_2) = E_Incomplete_Type
6219
        and then Present (Full_View (Type_2))
6220
        and then Base_Types_Match (Type_1, Full_View (Type_2))
6221
      then
6222
         return Ctype <= Mode_Conformant
6223
           or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6224
 
6225
      elsif Is_Private_Type (Type_2)
6226
        and then In_Instance
6227
        and then Present (Full_View (Type_2))
6228
        and then Base_Types_Match (Type_1, Full_View (Type_2))
6229
      then
6230
         return Ctype <= Mode_Conformant
6231
           or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6232
      end if;
6233
 
6234
      --  Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6235
      --  treated recursively because they carry a signature.
6236
 
6237
      Are_Anonymous_Access_To_Subprogram_Types :=
6238
        Ekind (Type_1) = Ekind (Type_2)
6239
          and then
6240
            (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
6241
             or else
6242
               Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
6243
 
6244
      --  Test anonymous access type case. For this case, static subtype
6245
      --  matching is required for mode conformance (RM 6.3.1(15)). We check
6246
      --  the base types because we may have built internal subtype entities
6247
      --  to handle null-excluding types (see Process_Formals).
6248
 
6249
      if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6250
            and then
6251
          Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6252
        or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
6253
      then
6254
         declare
6255
            Desig_1 : Entity_Id;
6256
            Desig_2 : Entity_Id;
6257
 
6258
         begin
6259
            --  In Ada 2005, access constant indicators must match for
6260
            --  subtype conformance.
6261
 
6262
            if Ada_Version >= Ada_2005
6263
              and then Ctype >= Subtype_Conformant
6264
              and then
6265
                Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6266
            then
6267
               return False;
6268
            end if;
6269
 
6270
            Desig_1 := Find_Designated_Type (Type_1);
6271
            Desig_2 := Find_Designated_Type (Type_2);
6272
 
6273
            --  If the context is an instance association for a formal
6274
            --  access-to-subprogram type; formal access parameter designated
6275
            --  types require mapping because they may denote other formal
6276
            --  parameters of the generic unit.
6277
 
6278
            if Get_Inst then
6279
               Desig_1 := Get_Instance_Of (Desig_1);
6280
               Desig_2 := Get_Instance_Of (Desig_2);
6281
            end if;
6282
 
6283
            --  It is possible for a Class_Wide_Type to be introduced for an
6284
            --  incomplete type, in which case there is a separate class_ wide
6285
            --  type for the full view. The types conform if their Etypes
6286
            --  conform, i.e. one may be the full view of the other. This can
6287
            --  only happen in the context of an access parameter, other uses
6288
            --  of an incomplete Class_Wide_Type are illegal.
6289
 
6290
            if Is_Class_Wide_Type (Desig_1)
6291
                 and then
6292
               Is_Class_Wide_Type (Desig_2)
6293
            then
6294
               return
6295
                 Conforming_Types
6296
                   (Etype (Base_Type (Desig_1)),
6297
                    Etype (Base_Type (Desig_2)), Ctype);
6298
 
6299
            elsif Are_Anonymous_Access_To_Subprogram_Types then
6300
               if Ada_Version < Ada_2005 then
6301
                  return Ctype = Type_Conformant
6302
                    or else
6303
                      Subtypes_Statically_Match (Desig_1, Desig_2);
6304
 
6305
               --  We must check the conformance of the signatures themselves
6306
 
6307
               else
6308
                  declare
6309
                     Conformant : Boolean;
6310
                  begin
6311
                     Check_Conformance
6312
                       (Desig_1, Desig_2, Ctype, False, Conformant);
6313
                     return Conformant;
6314
                  end;
6315
               end if;
6316
 
6317
            else
6318
               return Base_Type (Desig_1) = Base_Type (Desig_2)
6319
                and then (Ctype = Type_Conformant
6320
                            or else
6321
                          Subtypes_Statically_Match (Desig_1, Desig_2));
6322
            end if;
6323
         end;
6324
 
6325
      --  Otherwise definitely no match
6326
 
6327
      else
6328
         if ((Ekind (Type_1) = E_Anonymous_Access_Type
6329
               and then Is_Access_Type (Type_2))
6330
            or else (Ekind (Type_2) = E_Anonymous_Access_Type
6331
                       and then Is_Access_Type (Type_1)))
6332
           and then
6333
             Conforming_Types
6334
               (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6335
         then
6336
            May_Hide_Profile := True;
6337
         end if;
6338
 
6339
         return False;
6340
      end if;
6341
   end Conforming_Types;
6342
 
6343
   --------------------------
6344
   -- Create_Extra_Formals --
6345
   --------------------------
6346
 
6347
   procedure Create_Extra_Formals (E : Entity_Id) is
6348
      Formal      : Entity_Id;
6349
      First_Extra : Entity_Id := Empty;
6350
      Last_Extra  : Entity_Id;
6351
      Formal_Type : Entity_Id;
6352
      P_Formal    : Entity_Id := Empty;
6353
 
6354
      function Add_Extra_Formal
6355
        (Assoc_Entity : Entity_Id;
6356
         Typ          : Entity_Id;
6357
         Scope        : Entity_Id;
6358
         Suffix       : String) return Entity_Id;
6359
      --  Add an extra formal to the current list of formals and extra formals.
6360
      --  The extra formal is added to the end of the list of extra formals,
6361
      --  and also returned as the result. These formals are always of mode IN.
6362
      --  The new formal has the type Typ, is declared in Scope, and its name
6363
      --  is given by a concatenation of the name of Assoc_Entity and Suffix.
6364
      --  The following suffixes are currently used. They should not be changed
6365
      --  without coordinating with CodePeer, which makes use of these to
6366
      --  provide better messages.
6367
 
6368
      --  O denotes the Constrained bit.
6369
      --  L denotes the accessibility level.
6370
      --  BIP_xxx denotes an extra formal for a build-in-place function. See
6371
      --  the full list in exp_ch6.BIP_Formal_Kind.
6372
 
6373
      ----------------------
6374
      -- Add_Extra_Formal --
6375
      ----------------------
6376
 
6377
      function Add_Extra_Formal
6378
        (Assoc_Entity : Entity_Id;
6379
         Typ          : Entity_Id;
6380
         Scope        : Entity_Id;
6381
         Suffix       : String) return Entity_Id
6382
      is
6383
         EF : constant Entity_Id :=
6384
                Make_Defining_Identifier (Sloc (Assoc_Entity),
6385
                  Chars  => New_External_Name (Chars (Assoc_Entity),
6386
                                               Suffix => Suffix));
6387
 
6388
      begin
6389
         --  A little optimization. Never generate an extra formal for the
6390
         --  _init operand of an initialization procedure, since it could
6391
         --  never be used.
6392
 
6393
         if Chars (Formal) = Name_uInit then
6394
            return Empty;
6395
         end if;
6396
 
6397
         Set_Ekind           (EF, E_In_Parameter);
6398
         Set_Actual_Subtype  (EF, Typ);
6399
         Set_Etype           (EF, Typ);
6400
         Set_Scope           (EF, Scope);
6401
         Set_Mechanism       (EF, Default_Mechanism);
6402
         Set_Formal_Validity (EF);
6403
 
6404
         if No (First_Extra) then
6405
            First_Extra := EF;
6406
            Set_Extra_Formals (Scope, First_Extra);
6407
         end if;
6408
 
6409
         if Present (Last_Extra) then
6410
            Set_Extra_Formal (Last_Extra, EF);
6411
         end if;
6412
 
6413
         Last_Extra := EF;
6414
 
6415
         return EF;
6416
      end Add_Extra_Formal;
6417
 
6418
   --  Start of processing for Create_Extra_Formals
6419
 
6420
   begin
6421
      --  We never generate extra formals if expansion is not active
6422
      --  because we don't need them unless we are generating code.
6423
 
6424
      if not Expander_Active then
6425
         return;
6426
      end if;
6427
 
6428
      --  If this is a derived subprogram then the subtypes of the parent
6429
      --  subprogram's formal parameters will be used to determine the need
6430
      --  for extra formals.
6431
 
6432
      if Is_Overloadable (E) and then Present (Alias (E)) then
6433
         P_Formal := First_Formal (Alias (E));
6434
      end if;
6435
 
6436
      Last_Extra := Empty;
6437
      Formal := First_Formal (E);
6438
      while Present (Formal) loop
6439
         Last_Extra := Formal;
6440
         Next_Formal (Formal);
6441
      end loop;
6442
 
6443
      --  If Extra_formals were already created, don't do it again. This
6444
      --  situation may arise for subprogram types created as part of
6445
      --  dispatching calls (see Expand_Dispatching_Call)
6446
 
6447
      if Present (Last_Extra) and then
6448
        Present (Extra_Formal (Last_Extra))
6449
      then
6450
         return;
6451
      end if;
6452
 
6453
      --  If the subprogram is a predefined dispatching subprogram then don't
6454
      --  generate any extra constrained or accessibility level formals. In
6455
      --  general we suppress these for internal subprograms (by not calling
6456
      --  Freeze_Subprogram and Create_Extra_Formals at all), but internally
6457
      --  generated stream attributes do get passed through because extra
6458
      --  build-in-place formals are needed in some cases (limited 'Input).
6459
 
6460
      if Is_Predefined_Internal_Operation (E) then
6461
         goto Test_For_Func_Result_Extras;
6462
      end if;
6463
 
6464
      Formal := First_Formal (E);
6465
      while Present (Formal) loop
6466
 
6467
         --  Create extra formal for supporting the attribute 'Constrained.
6468
         --  The case of a private type view without discriminants also
6469
         --  requires the extra formal if the underlying type has defaulted
6470
         --  discriminants.
6471
 
6472
         if Ekind (Formal) /= E_In_Parameter then
6473
            if Present (P_Formal) then
6474
               Formal_Type := Etype (P_Formal);
6475
            else
6476
               Formal_Type := Etype (Formal);
6477
            end if;
6478
 
6479
            --  Do not produce extra formals for Unchecked_Union parameters.
6480
            --  Jump directly to the end of the loop.
6481
 
6482
            if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6483
               goto Skip_Extra_Formal_Generation;
6484
            end if;
6485
 
6486
            if not Has_Discriminants (Formal_Type)
6487
              and then Ekind (Formal_Type) in Private_Kind
6488
              and then Present (Underlying_Type (Formal_Type))
6489
            then
6490
               Formal_Type := Underlying_Type (Formal_Type);
6491
            end if;
6492
 
6493
            --  Suppress the extra formal if formal's subtype is constrained or
6494
            --  indefinite, or we're compiling for Ada 2012 and the underlying
6495
            --  type is tagged and limited. In Ada 2012, a limited tagged type
6496
            --  can have defaulted discriminants, but 'Constrained is required
6497
            --  to return True, so the formal is never needed (see AI05-0214).
6498
            --  Note that this ensures consistency of calling sequences for
6499
            --  dispatching operations when some types in a class have defaults
6500
            --  on discriminants and others do not (and requiring the extra
6501
            --  formal would introduce distributed overhead).
6502
 
6503
            if Has_Discriminants (Formal_Type)
6504
              and then not Is_Constrained (Formal_Type)
6505
              and then not Is_Indefinite_Subtype (Formal_Type)
6506
              and then (Ada_Version < Ada_2012
6507
                         or else
6508
                           not (Is_Tagged_Type (Underlying_Type (Formal_Type))
6509
                                 and then Is_Limited_Type (Formal_Type)))
6510
            then
6511
               Set_Extra_Constrained
6512
                 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
6513
            end if;
6514
         end if;
6515
 
6516
         --  Create extra formal for supporting accessibility checking. This
6517
         --  is done for both anonymous access formals and formals of named
6518
         --  access types that are marked as controlling formals. The latter
6519
         --  case can occur when Expand_Dispatching_Call creates a subprogram
6520
         --  type and substitutes the types of access-to-class-wide actuals
6521
         --  for the anonymous access-to-specific-type of controlling formals.
6522
         --  Base_Type is applied because in cases where there is a null
6523
         --  exclusion the formal may have an access subtype.
6524
 
6525
         --  This is suppressed if we specifically suppress accessibility
6526
         --  checks at the package level for either the subprogram, or the
6527
         --  package in which it resides. However, we do not suppress it
6528
         --  simply if the scope has accessibility checks suppressed, since
6529
         --  this could cause trouble when clients are compiled with a
6530
         --  different suppression setting. The explicit checks at the
6531
         --  package level are safe from this point of view.
6532
 
6533
         if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
6534
              or else (Is_Controlling_Formal (Formal)
6535
                        and then Is_Access_Type (Base_Type (Etype (Formal)))))
6536
           and then not
6537
             (Explicit_Suppress (E, Accessibility_Check)
6538
               or else
6539
              Explicit_Suppress (Scope (E), Accessibility_Check))
6540
           and then
6541
             (No (P_Formal)
6542
               or else Present (Extra_Accessibility (P_Formal)))
6543
         then
6544
            Set_Extra_Accessibility
6545
              (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
6546
         end if;
6547
 
6548
         --  This label is required when skipping extra formal generation for
6549
         --  Unchecked_Union parameters.
6550
 
6551
         <<Skip_Extra_Formal_Generation>>
6552
 
6553
         if Present (P_Formal) then
6554
            Next_Formal (P_Formal);
6555
         end if;
6556
 
6557
         Next_Formal (Formal);
6558
      end loop;
6559
 
6560
      <<Test_For_Func_Result_Extras>>
6561
 
6562
      --  Ada 2012 (AI05-234): "the accessibility level of the result of a
6563
      --  function call is ... determined by the point of call ...".
6564
 
6565
      if Needs_Result_Accessibility_Level (E) then
6566
         Set_Extra_Accessibility_Of_Result
6567
           (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
6568
      end if;
6569
 
6570
      --  Ada 2005 (AI-318-02): In the case of build-in-place functions, add
6571
      --  appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
6572
 
6573
      if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
6574
         declare
6575
            Result_Subt : constant Entity_Id := Etype (E);
6576
            Full_Subt   : constant Entity_Id := Available_View (Result_Subt);
6577
            Formal_Typ  : Entity_Id;
6578
 
6579
            Discard : Entity_Id;
6580
            pragma Warnings (Off, Discard);
6581
 
6582
         begin
6583
            --  In the case of functions with unconstrained result subtypes,
6584
            --  add a 4-state formal indicating whether the return object is
6585
            --  allocated by the caller (1), or should be allocated by the
6586
            --  callee on the secondary stack (2), in the global heap (3), or
6587
            --  in a user-defined storage pool (4). For the moment we just use
6588
            --  Natural for the type of this formal. Note that this formal
6589
            --  isn't usually needed in the case where the result subtype is
6590
            --  constrained, but it is needed when the function has a tagged
6591
            --  result, because generally such functions can be called in a
6592
            --  dispatching context and such calls must be handled like calls
6593
            --  to a class-wide function.
6594
 
6595
            if Needs_BIP_Alloc_Form (E) then
6596
               Discard :=
6597
                 Add_Extra_Formal
6598
                   (E, Standard_Natural,
6599
                    E, BIP_Formal_Suffix (BIP_Alloc_Form));
6600
 
6601
               --  Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
6602
               --  use a user-defined pool. This formal is not added on
6603
               --  .NET/JVM/ZFP as those targets do not support pools.
6604
 
6605
               if VM_Target = No_VM
6606
                 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
6607
               then
6608
                  Discard :=
6609
                    Add_Extra_Formal
6610
                      (E, RTE (RE_Root_Storage_Pool_Ptr),
6611
                       E, BIP_Formal_Suffix (BIP_Storage_Pool));
6612
               end if;
6613
            end if;
6614
 
6615
            --  In the case of functions whose result type needs finalization,
6616
            --  add an extra formal which represents the finalization master.
6617
 
6618
            if Needs_BIP_Finalization_Master (E) then
6619
               Discard :=
6620
                 Add_Extra_Formal
6621
                   (E, RTE (RE_Finalization_Master_Ptr),
6622
                    E, BIP_Formal_Suffix (BIP_Finalization_Master));
6623
            end if;
6624
 
6625
            --  When the result type contains tasks, add two extra formals: the
6626
            --  master of the tasks to be created, and the caller's activation
6627
            --  chain.
6628
 
6629
            if Has_Task (Full_Subt) then
6630
               Discard :=
6631
                 Add_Extra_Formal
6632
                   (E, RTE (RE_Master_Id),
6633
                    E, BIP_Formal_Suffix (BIP_Task_Master));
6634
               Discard :=
6635
                 Add_Extra_Formal
6636
                   (E, RTE (RE_Activation_Chain_Access),
6637
                    E, BIP_Formal_Suffix (BIP_Activation_Chain));
6638
            end if;
6639
 
6640
            --  All build-in-place functions get an extra formal that will be
6641
            --  passed the address of the return object within the caller.
6642
 
6643
            Formal_Typ :=
6644
              Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
6645
 
6646
            Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
6647
            Set_Etype (Formal_Typ, Formal_Typ);
6648
            Set_Depends_On_Private
6649
              (Formal_Typ, Has_Private_Component (Formal_Typ));
6650
            Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
6651
            Set_Is_Access_Constant (Formal_Typ, False);
6652
 
6653
            --  Ada 2005 (AI-50217): Propagate the attribute that indicates
6654
            --  the designated type comes from the limited view (for back-end
6655
            --  purposes).
6656
 
6657
            Set_From_With_Type (Formal_Typ, From_With_Type (Result_Subt));
6658
 
6659
            Layout_Type (Formal_Typ);
6660
 
6661
            Discard :=
6662
              Add_Extra_Formal
6663
                (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
6664
         end;
6665
      end if;
6666
   end Create_Extra_Formals;
6667
 
6668
   -----------------------------
6669
   -- Enter_Overloaded_Entity --
6670
   -----------------------------
6671
 
6672
   procedure Enter_Overloaded_Entity (S : Entity_Id) is
6673
      E   : Entity_Id := Current_Entity_In_Scope (S);
6674
      C_E : Entity_Id := Current_Entity (S);
6675
 
6676
   begin
6677
      if Present (E) then
6678
         Set_Has_Homonym (E);
6679
         Set_Has_Homonym (S);
6680
      end if;
6681
 
6682
      Set_Is_Immediately_Visible (S);
6683
      Set_Scope (S, Current_Scope);
6684
 
6685
      --  Chain new entity if front of homonym in current scope, so that
6686
      --  homonyms are contiguous.
6687
 
6688
      if Present (E)
6689
        and then E /= C_E
6690
      then
6691
         while Homonym (C_E) /= E loop
6692
            C_E := Homonym (C_E);
6693
         end loop;
6694
 
6695
         Set_Homonym (C_E, S);
6696
 
6697
      else
6698
         E := C_E;
6699
         Set_Current_Entity (S);
6700
      end if;
6701
 
6702
      Set_Homonym (S, E);
6703
 
6704
      Append_Entity (S, Current_Scope);
6705
      Set_Public_Status (S);
6706
 
6707
      if Debug_Flag_E then
6708
         Write_Str ("New overloaded entity chain: ");
6709
         Write_Name (Chars (S));
6710
 
6711
         E := S;
6712
         while Present (E) loop
6713
            Write_Str (" "); Write_Int (Int (E));
6714
            E := Homonym (E);
6715
         end loop;
6716
 
6717
         Write_Eol;
6718
      end if;
6719
 
6720
      --  Generate warning for hiding
6721
 
6722
      if Warn_On_Hiding
6723
        and then Comes_From_Source (S)
6724
        and then In_Extended_Main_Source_Unit (S)
6725
      then
6726
         E := S;
6727
         loop
6728
            E := Homonym (E);
6729
            exit when No (E);
6730
 
6731
            --  Warn unless genuine overloading. Do not emit warning on
6732
            --  hiding predefined operators in Standard (these are either an
6733
            --  (artifact of our implicit declarations, or simple noise) but
6734
            --  keep warning on a operator defined on a local subtype, because
6735
            --  of the real danger that different operators may be applied in
6736
            --  various parts of the program.
6737
 
6738
            --  Note that if E and S have the same scope, there is never any
6739
            --  hiding. Either the two conflict, and the program is illegal,
6740
            --  or S is overriding an implicit inherited subprogram.
6741
 
6742
            if Scope (E) /= Scope (S)
6743
                  and then (not Is_Overloadable (E)
6744
                             or else Subtype_Conformant (E, S))
6745
                  and then (Is_Immediately_Visible (E)
6746
                              or else
6747
                            Is_Potentially_Use_Visible (S))
6748
            then
6749
               if Scope (E) /= Standard_Standard then
6750
                  Error_Msg_Sloc := Sloc (E);
6751
                  Error_Msg_N ("declaration of & hides one#?", S);
6752
 
6753
               elsif Nkind (S) = N_Defining_Operator_Symbol
6754
                 and then
6755
                   Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
6756
               then
6757
                  Error_Msg_N
6758
                    ("declaration of & hides predefined operator?", S);
6759
               end if;
6760
            end if;
6761
         end loop;
6762
      end if;
6763
   end Enter_Overloaded_Entity;
6764
 
6765
   -----------------------------
6766
   -- Check_Untagged_Equality --
6767
   -----------------------------
6768
 
6769
   procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
6770
      Typ      : constant Entity_Id := Etype (First_Formal (Eq_Op));
6771
      Decl     : constant Node_Id   := Unit_Declaration_Node (Eq_Op);
6772
      Obj_Decl : Node_Id;
6773
 
6774
   begin
6775
      if Nkind (Decl) = N_Subprogram_Declaration
6776
        and then Is_Record_Type (Typ)
6777
        and then not Is_Tagged_Type (Typ)
6778
      then
6779
         --  If the type is not declared in a package, or if we are in the
6780
         --  body of the package or in some other scope, the new operation is
6781
         --  not primitive, and therefore legal, though suspicious. If the
6782
         --  type is a generic actual (sub)type, the operation is not primitive
6783
         --  either because the base type is declared elsewhere.
6784
 
6785
         if Is_Frozen (Typ) then
6786
            if Ekind (Scope (Typ)) /= E_Package
6787
              or else Scope (Typ) /= Current_Scope
6788
            then
6789
               null;
6790
 
6791
            elsif Is_Generic_Actual_Type (Typ) then
6792
               null;
6793
 
6794
            elsif In_Package_Body (Scope (Typ)) then
6795
               Error_Msg_NE
6796
                 ("equality operator must be declared "
6797
                   & "before type& is frozen", Eq_Op, Typ);
6798
               Error_Msg_N
6799
                 ("\move declaration to package spec", Eq_Op);
6800
 
6801
            else
6802
               Error_Msg_NE
6803
                 ("equality operator must be declared "
6804
                   & "before type& is frozen", Eq_Op, Typ);
6805
 
6806
               Obj_Decl := Next (Parent (Typ));
6807
               while Present (Obj_Decl)
6808
                 and then Obj_Decl /= Decl
6809
               loop
6810
                  if Nkind (Obj_Decl) = N_Object_Declaration
6811
                    and then Etype (Defining_Identifier (Obj_Decl)) = Typ
6812
                  then
6813
                     Error_Msg_NE ("type& is frozen by declaration?",
6814
                        Obj_Decl, Typ);
6815
                     Error_Msg_N
6816
                       ("\an equality operator cannot be declared after this "
6817
                         & "point (RM 4.5.2 (9.8)) (Ada 2012))?", Obj_Decl);
6818
                     exit;
6819
                  end if;
6820
 
6821
                  Next (Obj_Decl);
6822
               end loop;
6823
            end if;
6824
 
6825
         elsif not In_Same_List (Parent (Typ), Decl)
6826
           and then not Is_Limited_Type (Typ)
6827
         then
6828
 
6829
            --  This makes it illegal to have a primitive equality declared in
6830
            --  the private part if the type is visible.
6831
 
6832
            Error_Msg_N ("equality operator appears too late", Eq_Op);
6833
         end if;
6834
      end if;
6835
   end Check_Untagged_Equality;
6836
 
6837
   -----------------------------
6838
   -- Find_Corresponding_Spec --
6839
   -----------------------------
6840
 
6841
   function Find_Corresponding_Spec
6842
     (N          : Node_Id;
6843
      Post_Error : Boolean := True) return Entity_Id
6844
   is
6845
      Spec       : constant Node_Id   := Specification (N);
6846
      Designator : constant Entity_Id := Defining_Entity (Spec);
6847
 
6848
      E : Entity_Id;
6849
 
6850
   begin
6851
      E := Current_Entity (Designator);
6852
      while Present (E) loop
6853
 
6854
         --  We are looking for a matching spec. It must have the same scope,
6855
         --  and the same name, and either be type conformant, or be the case
6856
         --  of a library procedure spec and its body (which belong to one
6857
         --  another regardless of whether they are type conformant or not).
6858
 
6859
         if Scope (E) = Current_Scope then
6860
            if Current_Scope = Standard_Standard
6861
              or else (Ekind (E) = Ekind (Designator)
6862
                         and then Type_Conformant (E, Designator))
6863
            then
6864
               --  Within an instantiation, we know that spec and body are
6865
               --  subtype conformant, because they were subtype conformant
6866
               --  in the generic. We choose the subtype-conformant entity
6867
               --  here as well, to resolve spurious ambiguities in the
6868
               --  instance that were not present in the generic (i.e. when
6869
               --  two different types are given the same actual). If we are
6870
               --  looking for a spec to match a body, full conformance is
6871
               --  expected.
6872
 
6873
               if In_Instance then
6874
                  Set_Convention (Designator, Convention (E));
6875
 
6876
                  --  Skip past subprogram bodies and subprogram renamings that
6877
                  --  may appear to have a matching spec, but that aren't fully
6878
                  --  conformant with it. That can occur in cases where an
6879
                  --  actual type causes unrelated homographs in the instance.
6880
 
6881
                  if Nkind_In (N, N_Subprogram_Body,
6882
                                  N_Subprogram_Renaming_Declaration)
6883
                    and then Present (Homonym (E))
6884
                    and then not Fully_Conformant (Designator, E)
6885
                  then
6886
                     goto Next_Entity;
6887
 
6888
                  elsif not Subtype_Conformant (Designator, E) then
6889
                     goto Next_Entity;
6890
                  end if;
6891
               end if;
6892
 
6893
               --  Ada 2012 (AI05-0165): For internally generated bodies of
6894
               --  null procedures locate the internally generated spec. We
6895
               --  enforce mode conformance since a tagged type may inherit
6896
               --  from interfaces several null primitives which differ only
6897
               --  in the mode of the formals.
6898
 
6899
               if not (Comes_From_Source (E))
6900
                 and then Is_Null_Procedure (E)
6901
                 and then not Mode_Conformant (Designator, E)
6902
               then
6903
                  null;
6904
 
6905
               elsif not Has_Completion (E) then
6906
                  if Nkind (N) /= N_Subprogram_Body_Stub then
6907
                     Set_Corresponding_Spec (N, E);
6908
                  end if;
6909
 
6910
                  Set_Has_Completion (E);
6911
                  return E;
6912
 
6913
               elsif Nkind (Parent (N)) = N_Subunit then
6914
 
6915
                  --  If this is the proper body of a subunit, the completion
6916
                  --  flag is set when analyzing the stub.
6917
 
6918
                  return E;
6919
 
6920
               --  If E is an internal function with a controlling result
6921
               --  that was created for an operation inherited by a null
6922
               --  extension, it may be overridden by a body without a previous
6923
               --  spec (one more reason why these should be shunned). In that
6924
               --  case remove the generated body if present, because the
6925
               --  current one is the explicit overriding.
6926
 
6927
               elsif Ekind (E) = E_Function
6928
                 and then Ada_Version >= Ada_2005
6929
                 and then not Comes_From_Source (E)
6930
                 and then Has_Controlling_Result (E)
6931
                 and then Is_Null_Extension (Etype (E))
6932
                 and then Comes_From_Source (Spec)
6933
               then
6934
                  Set_Has_Completion (E, False);
6935
 
6936
                  if Expander_Active
6937
                    and then Nkind (Parent (E)) = N_Function_Specification
6938
                  then
6939
                     Remove
6940
                       (Unit_Declaration_Node
6941
                          (Corresponding_Body (Unit_Declaration_Node (E))));
6942
 
6943
                     return E;
6944
 
6945
                  --  If expansion is disabled, or if the wrapper function has
6946
                  --  not been generated yet, this a late body overriding an
6947
                  --  inherited operation, or it is an overriding by some other
6948
                  --  declaration before the controlling result is frozen. In
6949
                  --  either case this is a declaration of a new entity.
6950
 
6951
                  else
6952
                     return Empty;
6953
                  end if;
6954
 
6955
               --  If the body already exists, then this is an error unless
6956
               --  the previous declaration is the implicit declaration of a
6957
               --  derived subprogram. It is also legal for an instance to
6958
               --  contain type conformant overloadable declarations (but the
6959
               --  generic declaration may not), per 8.3(26/2).
6960
 
6961
               elsif No (Alias (E))
6962
                 and then not Is_Intrinsic_Subprogram (E)
6963
                 and then not In_Instance
6964
                 and then Post_Error
6965
               then
6966
                  Error_Msg_Sloc := Sloc (E);
6967
 
6968
                  if Is_Imported (E) then
6969
                     Error_Msg_NE
6970
                      ("body not allowed for imported subprogram & declared#",
6971
                        N, E);
6972
                  else
6973
                     Error_Msg_NE ("duplicate body for & declared#", N, E);
6974
                  end if;
6975
               end if;
6976
 
6977
            --  Child units cannot be overloaded, so a conformance mismatch
6978
            --  between body and a previous spec is an error.
6979
 
6980
            elsif Is_Child_Unit (E)
6981
              and then
6982
                Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
6983
              and then
6984
                Nkind (Parent (Unit_Declaration_Node (Designator))) =
6985
                  N_Compilation_Unit
6986
              and then Post_Error
6987
            then
6988
               Error_Msg_N
6989
                 ("body of child unit does not match previous declaration", N);
6990
            end if;
6991
         end if;
6992
 
6993
         <<Next_Entity>>
6994
            E := Homonym (E);
6995
      end loop;
6996
 
6997
      --  On exit, we know that no previous declaration of subprogram exists
6998
 
6999
      return Empty;
7000
   end Find_Corresponding_Spec;
7001
 
7002
   ----------------------
7003
   -- Fully_Conformant --
7004
   ----------------------
7005
 
7006
   function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7007
      Result : Boolean;
7008
   begin
7009
      Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7010
      return Result;
7011
   end Fully_Conformant;
7012
 
7013
   ----------------------------------
7014
   -- Fully_Conformant_Expressions --
7015
   ----------------------------------
7016
 
7017
   function Fully_Conformant_Expressions
7018
     (Given_E1 : Node_Id;
7019
      Given_E2 : Node_Id) return Boolean
7020
   is
7021
      E1 : constant Node_Id := Original_Node (Given_E1);
7022
      E2 : constant Node_Id := Original_Node (Given_E2);
7023
      --  We always test conformance on original nodes, since it is possible
7024
      --  for analysis and/or expansion to make things look as though they
7025
      --  conform when they do not, e.g. by converting 1+2 into 3.
7026
 
7027
      function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7028
        renames Fully_Conformant_Expressions;
7029
 
7030
      function FCL (L1, L2 : List_Id) return Boolean;
7031
      --  Compare elements of two lists for conformance. Elements have to
7032
      --  be conformant, and actuals inserted as default parameters do not
7033
      --  match explicit actuals with the same value.
7034
 
7035
      function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
7036
      --  Compare an operator node with a function call
7037
 
7038
      ---------
7039
      -- FCL --
7040
      ---------
7041
 
7042
      function FCL (L1, L2 : List_Id) return Boolean is
7043
         N1, N2 : Node_Id;
7044
 
7045
      begin
7046
         if L1 = No_List then
7047
            N1 := Empty;
7048
         else
7049
            N1 := First (L1);
7050
         end if;
7051
 
7052
         if L2 = No_List then
7053
            N2 := Empty;
7054
         else
7055
            N2 := First (L2);
7056
         end if;
7057
 
7058
         --  Compare two lists, skipping rewrite insertions (we want to
7059
         --  compare the original trees, not the expanded versions!)
7060
 
7061
         loop
7062
            if Is_Rewrite_Insertion (N1) then
7063
               Next (N1);
7064
            elsif Is_Rewrite_Insertion (N2) then
7065
               Next (N2);
7066
            elsif No (N1) then
7067
               return No (N2);
7068
            elsif No (N2) then
7069
               return False;
7070
            elsif not FCE (N1, N2) then
7071
               return False;
7072
            else
7073
               Next (N1);
7074
               Next (N2);
7075
            end if;
7076
         end loop;
7077
      end FCL;
7078
 
7079
      ---------
7080
      -- FCO --
7081
      ---------
7082
 
7083
      function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7084
         Actuals : constant List_Id := Parameter_Associations (Call_Node);
7085
         Act     : Node_Id;
7086
 
7087
      begin
7088
         if No (Actuals)
7089
            or else Entity (Op_Node) /= Entity (Name (Call_Node))
7090
         then
7091
            return False;
7092
 
7093
         else
7094
            Act := First (Actuals);
7095
 
7096
            if Nkind (Op_Node) in N_Binary_Op then
7097
               if not FCE (Left_Opnd (Op_Node), Act) then
7098
                  return False;
7099
               end if;
7100
 
7101
               Next (Act);
7102
            end if;
7103
 
7104
            return Present (Act)
7105
              and then FCE (Right_Opnd (Op_Node), Act)
7106
              and then No (Next (Act));
7107
         end if;
7108
      end FCO;
7109
 
7110
   --  Start of processing for Fully_Conformant_Expressions
7111
 
7112
   begin
7113
      --  Non-conformant if paren count does not match. Note: if some idiot
7114
      --  complains that we don't do this right for more than 3 levels of
7115
      --  parentheses, they will be treated with the respect they deserve!
7116
 
7117
      if Paren_Count (E1) /= Paren_Count (E2) then
7118
         return False;
7119
 
7120
      --  If same entities are referenced, then they are conformant even if
7121
      --  they have different forms (RM 8.3.1(19-20)).
7122
 
7123
      elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7124
         if Present (Entity (E1)) then
7125
            return Entity (E1) = Entity (E2)
7126
              or else (Chars (Entity (E1)) = Chars (Entity (E2))
7127
                        and then Ekind (Entity (E1)) = E_Discriminant
7128
                        and then Ekind (Entity (E2)) = E_In_Parameter);
7129
 
7130
         elsif Nkind (E1) = N_Expanded_Name
7131
           and then Nkind (E2) = N_Expanded_Name
7132
           and then Nkind (Selector_Name (E1)) = N_Character_Literal
7133
           and then Nkind (Selector_Name (E2)) = N_Character_Literal
7134
         then
7135
            return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7136
 
7137
         else
7138
            --  Identifiers in component associations don't always have
7139
            --  entities, but their names must conform.
7140
 
7141
            return Nkind  (E1) = N_Identifier
7142
              and then Nkind (E2) = N_Identifier
7143
              and then Chars (E1) = Chars (E2);
7144
         end if;
7145
 
7146
      elsif Nkind (E1) = N_Character_Literal
7147
        and then Nkind (E2) = N_Expanded_Name
7148
      then
7149
         return Nkind (Selector_Name (E2)) = N_Character_Literal
7150
           and then Chars (E1) = Chars (Selector_Name (E2));
7151
 
7152
      elsif Nkind (E2) = N_Character_Literal
7153
        and then Nkind (E1) = N_Expanded_Name
7154
      then
7155
         return Nkind (Selector_Name (E1)) = N_Character_Literal
7156
           and then Chars (E2) = Chars (Selector_Name (E1));
7157
 
7158
      elsif Nkind (E1) in N_Op
7159
        and then Nkind (E2) = N_Function_Call
7160
      then
7161
         return FCO (E1, E2);
7162
 
7163
      elsif Nkind (E2) in N_Op
7164
        and then Nkind (E1) = N_Function_Call
7165
      then
7166
         return FCO (E2, E1);
7167
 
7168
      --  Otherwise we must have the same syntactic entity
7169
 
7170
      elsif Nkind (E1) /= Nkind (E2) then
7171
         return False;
7172
 
7173
      --  At this point, we specialize by node type
7174
 
7175
      else
7176
         case Nkind (E1) is
7177
 
7178
            when N_Aggregate =>
7179
               return
7180
                 FCL (Expressions (E1), Expressions (E2))
7181
                   and then
7182
                 FCL (Component_Associations (E1),
7183
                      Component_Associations (E2));
7184
 
7185
            when N_Allocator =>
7186
               if Nkind (Expression (E1)) = N_Qualified_Expression
7187
                    or else
7188
                  Nkind (Expression (E2)) = N_Qualified_Expression
7189
               then
7190
                  return FCE (Expression (E1), Expression (E2));
7191
 
7192
               --  Check that the subtype marks and any constraints
7193
               --  are conformant
7194
 
7195
               else
7196
                  declare
7197
                     Indic1 : constant Node_Id := Expression (E1);
7198
                     Indic2 : constant Node_Id := Expression (E2);
7199
                     Elt1   : Node_Id;
7200
                     Elt2   : Node_Id;
7201
 
7202
                  begin
7203
                     if Nkind (Indic1) /= N_Subtype_Indication then
7204
                        return
7205
                          Nkind (Indic2) /= N_Subtype_Indication
7206
                            and then Entity (Indic1) = Entity (Indic2);
7207
 
7208
                     elsif Nkind (Indic2) /= N_Subtype_Indication then
7209
                        return
7210
                          Nkind (Indic1) /= N_Subtype_Indication
7211
                            and then Entity (Indic1) = Entity (Indic2);
7212
 
7213
                     else
7214
                        if Entity (Subtype_Mark (Indic1)) /=
7215
                          Entity (Subtype_Mark (Indic2))
7216
                        then
7217
                           return False;
7218
                        end if;
7219
 
7220
                        Elt1 := First (Constraints (Constraint (Indic1)));
7221
                        Elt2 := First (Constraints (Constraint (Indic2)));
7222
                        while Present (Elt1) and then Present (Elt2) loop
7223
                           if not FCE (Elt1, Elt2) then
7224
                              return False;
7225
                           end if;
7226
 
7227
                           Next (Elt1);
7228
                           Next (Elt2);
7229
                        end loop;
7230
 
7231
                        return True;
7232
                     end if;
7233
                  end;
7234
               end if;
7235
 
7236
            when N_Attribute_Reference =>
7237
               return
7238
                 Attribute_Name (E1) = Attribute_Name (E2)
7239
                   and then FCL (Expressions (E1), Expressions (E2));
7240
 
7241
            when N_Binary_Op =>
7242
               return
7243
                 Entity (E1) = Entity (E2)
7244
                   and then FCE (Left_Opnd  (E1), Left_Opnd  (E2))
7245
                   and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7246
 
7247
            when N_Short_Circuit | N_Membership_Test =>
7248
               return
7249
                 FCE (Left_Opnd  (E1), Left_Opnd  (E2))
7250
                   and then
7251
                 FCE (Right_Opnd (E1), Right_Opnd (E2));
7252
 
7253
            when N_Case_Expression =>
7254
               declare
7255
                  Alt1 : Node_Id;
7256
                  Alt2 : Node_Id;
7257
 
7258
               begin
7259
                  if not FCE (Expression (E1), Expression (E2)) then
7260
                     return False;
7261
 
7262
                  else
7263
                     Alt1 := First (Alternatives (E1));
7264
                     Alt2 := First (Alternatives (E2));
7265
                     loop
7266
                        if Present (Alt1) /= Present (Alt2) then
7267
                           return False;
7268
                        elsif No (Alt1) then
7269
                           return True;
7270
                        end if;
7271
 
7272
                        if not FCE (Expression (Alt1), Expression (Alt2))
7273
                          or else not FCL (Discrete_Choices (Alt1),
7274
                                           Discrete_Choices (Alt2))
7275
                        then
7276
                           return False;
7277
                        end if;
7278
 
7279
                        Next (Alt1);
7280
                        Next (Alt2);
7281
                     end loop;
7282
                  end if;
7283
               end;
7284
 
7285
            when N_Character_Literal =>
7286
               return
7287
                 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7288
 
7289
            when N_Component_Association =>
7290
               return
7291
                 FCL (Choices (E1), Choices (E2))
7292
                   and then
7293
                 FCE (Expression (E1), Expression (E2));
7294
 
7295
            when N_Conditional_Expression =>
7296
               return
7297
                 FCL (Expressions (E1), Expressions (E2));
7298
 
7299
            when N_Explicit_Dereference =>
7300
               return
7301
                 FCE (Prefix (E1), Prefix (E2));
7302
 
7303
            when N_Extension_Aggregate =>
7304
               return
7305
                 FCL (Expressions (E1), Expressions (E2))
7306
                   and then Null_Record_Present (E1) =
7307
                            Null_Record_Present (E2)
7308
                   and then FCL (Component_Associations (E1),
7309
                               Component_Associations (E2));
7310
 
7311
            when N_Function_Call =>
7312
               return
7313
                 FCE (Name (E1), Name (E2))
7314
                   and then
7315
                 FCL (Parameter_Associations (E1),
7316
                      Parameter_Associations (E2));
7317
 
7318
            when N_Indexed_Component =>
7319
               return
7320
                 FCE (Prefix (E1), Prefix (E2))
7321
                   and then
7322
                 FCL (Expressions (E1), Expressions (E2));
7323
 
7324
            when N_Integer_Literal =>
7325
               return (Intval (E1) = Intval (E2));
7326
 
7327
            when N_Null =>
7328
               return True;
7329
 
7330
            when N_Operator_Symbol =>
7331
               return
7332
                 Chars (E1) = Chars (E2);
7333
 
7334
            when N_Others_Choice =>
7335
               return True;
7336
 
7337
            when N_Parameter_Association =>
7338
               return
7339
                 Chars (Selector_Name (E1))  = Chars (Selector_Name (E2))
7340
                   and then FCE (Explicit_Actual_Parameter (E1),
7341
                                 Explicit_Actual_Parameter (E2));
7342
 
7343
            when N_Qualified_Expression =>
7344
               return
7345
                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7346
                   and then
7347
                 FCE (Expression (E1), Expression (E2));
7348
 
7349
            when N_Quantified_Expression =>
7350
               if not FCE (Condition (E1), Condition (E2)) then
7351
                  return False;
7352
               end if;
7353
 
7354
               if Present (Loop_Parameter_Specification (E1))
7355
                 and then Present (Loop_Parameter_Specification (E2))
7356
               then
7357
                  declare
7358
                     L1 : constant Node_Id :=
7359
                       Loop_Parameter_Specification (E1);
7360
                     L2 : constant Node_Id :=
7361
                       Loop_Parameter_Specification (E2);
7362
 
7363
                  begin
7364
                     return
7365
                       Reverse_Present (L1) = Reverse_Present (L2)
7366
                         and then
7367
                           FCE (Defining_Identifier (L1),
7368
                                Defining_Identifier (L2))
7369
                         and then
7370
                           FCE (Discrete_Subtype_Definition (L1),
7371
                                Discrete_Subtype_Definition (L2));
7372
                  end;
7373
 
7374
               else   --  quantified expression with an iterator
7375
                  declare
7376
                     I1 : constant Node_Id := Iterator_Specification (E1);
7377
                     I2 : constant Node_Id := Iterator_Specification (E2);
7378
 
7379
                  begin
7380
                     return
7381
                       FCE (Defining_Identifier (I1),
7382
                            Defining_Identifier (I2))
7383
                       and then
7384
                         Of_Present (I1) = Of_Present (I2)
7385
                       and then
7386
                         Reverse_Present (I1) = Reverse_Present (I2)
7387
                       and then FCE (Name (I1), Name (I2))
7388
                       and then FCE (Subtype_Indication (I1),
7389
                                      Subtype_Indication (I2));
7390
                  end;
7391
               end if;
7392
 
7393
            when N_Range =>
7394
               return
7395
                 FCE (Low_Bound (E1), Low_Bound (E2))
7396
                   and then
7397
                 FCE (High_Bound (E1), High_Bound (E2));
7398
 
7399
            when N_Real_Literal =>
7400
               return (Realval (E1) = Realval (E2));
7401
 
7402
            when N_Selected_Component =>
7403
               return
7404
                 FCE (Prefix (E1), Prefix (E2))
7405
                   and then
7406
                 FCE (Selector_Name (E1), Selector_Name (E2));
7407
 
7408
            when N_Slice =>
7409
               return
7410
                 FCE (Prefix (E1), Prefix (E2))
7411
                   and then
7412
                 FCE (Discrete_Range (E1), Discrete_Range (E2));
7413
 
7414
            when N_String_Literal =>
7415
               declare
7416
                  S1 : constant String_Id := Strval (E1);
7417
                  S2 : constant String_Id := Strval (E2);
7418
                  L1 : constant Nat       := String_Length (S1);
7419
                  L2 : constant Nat       := String_Length (S2);
7420
 
7421
               begin
7422
                  if L1 /= L2 then
7423
                     return False;
7424
 
7425
                  else
7426
                     for J in 1 .. L1 loop
7427
                        if Get_String_Char (S1, J) /=
7428
                           Get_String_Char (S2, J)
7429
                        then
7430
                           return False;
7431
                        end if;
7432
                     end loop;
7433
 
7434
                     return True;
7435
                  end if;
7436
               end;
7437
 
7438
            when N_Type_Conversion =>
7439
               return
7440
                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7441
                   and then
7442
                 FCE (Expression (E1), Expression (E2));
7443
 
7444
            when N_Unary_Op =>
7445
               return
7446
                 Entity (E1) = Entity (E2)
7447
                   and then
7448
                 FCE (Right_Opnd (E1), Right_Opnd (E2));
7449
 
7450
            when N_Unchecked_Type_Conversion =>
7451
               return
7452
                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7453
                   and then
7454
                 FCE (Expression (E1), Expression (E2));
7455
 
7456
            --  All other node types cannot appear in this context. Strictly
7457
            --  we should raise a fatal internal error. Instead we just ignore
7458
            --  the nodes. This means that if anyone makes a mistake in the
7459
            --  expander and mucks an expression tree irretrievably, the
7460
            --  result will be a failure to detect a (probably very obscure)
7461
            --  case of non-conformance, which is better than bombing on some
7462
            --  case where two expressions do in fact conform.
7463
 
7464
            when others =>
7465
               return True;
7466
 
7467
         end case;
7468
      end if;
7469
   end Fully_Conformant_Expressions;
7470
 
7471
   ----------------------------------------
7472
   -- Fully_Conformant_Discrete_Subtypes --
7473
   ----------------------------------------
7474
 
7475
   function Fully_Conformant_Discrete_Subtypes
7476
     (Given_S1 : Node_Id;
7477
      Given_S2 : Node_Id) return Boolean
7478
   is
7479
      S1 : constant Node_Id := Original_Node (Given_S1);
7480
      S2 : constant Node_Id := Original_Node (Given_S2);
7481
 
7482
      function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
7483
      --  Special-case for a bound given by a discriminant, which in the body
7484
      --  is replaced with the discriminal of the enclosing type.
7485
 
7486
      function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
7487
      --  Check both bounds
7488
 
7489
      -----------------------
7490
      -- Conforming_Bounds --
7491
      -----------------------
7492
 
7493
      function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
7494
      begin
7495
         if Is_Entity_Name (B1)
7496
           and then Is_Entity_Name (B2)
7497
           and then Ekind (Entity (B1)) = E_Discriminant
7498
         then
7499
            return Chars (B1) = Chars (B2);
7500
 
7501
         else
7502
            return Fully_Conformant_Expressions (B1, B2);
7503
         end if;
7504
      end Conforming_Bounds;
7505
 
7506
      -----------------------
7507
      -- Conforming_Ranges --
7508
      -----------------------
7509
 
7510
      function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
7511
      begin
7512
         return
7513
           Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
7514
             and then
7515
           Conforming_Bounds (High_Bound (R1), High_Bound (R2));
7516
      end Conforming_Ranges;
7517
 
7518
   --  Start of processing for Fully_Conformant_Discrete_Subtypes
7519
 
7520
   begin
7521
      if Nkind (S1) /= Nkind (S2) then
7522
         return False;
7523
 
7524
      elsif Is_Entity_Name (S1) then
7525
         return Entity (S1) = Entity (S2);
7526
 
7527
      elsif Nkind (S1) = N_Range then
7528
         return Conforming_Ranges (S1, S2);
7529
 
7530
      elsif Nkind (S1) = N_Subtype_Indication then
7531
         return
7532
            Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
7533
              and then
7534
            Conforming_Ranges
7535
              (Range_Expression (Constraint (S1)),
7536
               Range_Expression (Constraint (S2)));
7537
      else
7538
         return True;
7539
      end if;
7540
   end Fully_Conformant_Discrete_Subtypes;
7541
 
7542
   --------------------
7543
   -- Install_Entity --
7544
   --------------------
7545
 
7546
   procedure Install_Entity (E : Entity_Id) is
7547
      Prev : constant Entity_Id := Current_Entity (E);
7548
   begin
7549
      Set_Is_Immediately_Visible (E);
7550
      Set_Current_Entity (E);
7551
      Set_Homonym (E, Prev);
7552
   end Install_Entity;
7553
 
7554
   ---------------------
7555
   -- Install_Formals --
7556
   ---------------------
7557
 
7558
   procedure Install_Formals (Id : Entity_Id) is
7559
      F : Entity_Id;
7560
   begin
7561
      F := First_Formal (Id);
7562
      while Present (F) loop
7563
         Install_Entity (F);
7564
         Next_Formal (F);
7565
      end loop;
7566
   end Install_Formals;
7567
 
7568
   -----------------------------
7569
   -- Is_Interface_Conformant --
7570
   -----------------------------
7571
 
7572
   function Is_Interface_Conformant
7573
     (Tagged_Type : Entity_Id;
7574
      Iface_Prim  : Entity_Id;
7575
      Prim        : Entity_Id) return Boolean
7576
   is
7577
      Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
7578
      Typ   : constant Entity_Id := Find_Dispatching_Type (Prim);
7579
 
7580
      function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
7581
      --  Return the controlling formal of Prim
7582
 
7583
      ------------------------
7584
      -- Controlling_Formal --
7585
      ------------------------
7586
 
7587
      function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
7588
         E : Entity_Id := First_Entity (Prim);
7589
 
7590
      begin
7591
         while Present (E) loop
7592
            if Is_Formal (E) and then Is_Controlling_Formal (E) then
7593
               return E;
7594
            end if;
7595
 
7596
            Next_Entity (E);
7597
         end loop;
7598
 
7599
         return Empty;
7600
      end Controlling_Formal;
7601
 
7602
      --  Local variables
7603
 
7604
      Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
7605
      Prim_Ctrl_F  : constant Entity_Id := Controlling_Formal (Prim);
7606
 
7607
   --  Start of processing for Is_Interface_Conformant
7608
 
7609
   begin
7610
      pragma Assert (Is_Subprogram (Iface_Prim)
7611
        and then Is_Subprogram (Prim)
7612
        and then Is_Dispatching_Operation (Iface_Prim)
7613
        and then Is_Dispatching_Operation (Prim));
7614
 
7615
      pragma Assert (Is_Interface (Iface)
7616
        or else (Present (Alias (Iface_Prim))
7617
                   and then
7618
                     Is_Interface
7619
                       (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
7620
 
7621
      if Prim = Iface_Prim
7622
        or else not Is_Subprogram (Prim)
7623
        or else Ekind (Prim) /= Ekind (Iface_Prim)
7624
        or else not Is_Dispatching_Operation (Prim)
7625
        or else Scope (Prim) /= Scope (Tagged_Type)
7626
        or else No (Typ)
7627
        or else Base_Type (Typ) /= Tagged_Type
7628
        or else not Primitive_Names_Match (Iface_Prim, Prim)
7629
      then
7630
         return False;
7631
 
7632
      --  The mode of the controlling formals must match
7633
 
7634
      elsif Present (Iface_Ctrl_F)
7635
         and then Present (Prim_Ctrl_F)
7636
         and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
7637
      then
7638
         return False;
7639
 
7640
      --  Case of a procedure, or a function whose result type matches the
7641
      --  result type of the interface primitive, or a function that has no
7642
      --  controlling result (I or access I).
7643
 
7644
      elsif Ekind (Iface_Prim) = E_Procedure
7645
        or else Etype (Prim) = Etype (Iface_Prim)
7646
        or else not Has_Controlling_Result (Prim)
7647
      then
7648
         return Type_Conformant
7649
                  (Iface_Prim, Prim, Skip_Controlling_Formals => True);
7650
 
7651
      --  Case of a function returning an interface, or an access to one.
7652
      --  Check that the return types correspond.
7653
 
7654
      elsif Implements_Interface (Typ, Iface) then
7655
         if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
7656
              /=
7657
            (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
7658
         then
7659
            return False;
7660
         else
7661
            return
7662
              Type_Conformant (Prim, Iface_Prim,
7663
                Skip_Controlling_Formals => True);
7664
         end if;
7665
 
7666
      else
7667
         return False;
7668
      end if;
7669
   end Is_Interface_Conformant;
7670
 
7671
   ---------------------------------
7672
   -- Is_Non_Overriding_Operation --
7673
   ---------------------------------
7674
 
7675
   function Is_Non_Overriding_Operation
7676
     (Prev_E : Entity_Id;
7677
      New_E  : Entity_Id) return Boolean
7678
   is
7679
      Formal : Entity_Id;
7680
      F_Typ  : Entity_Id;
7681
      G_Typ  : Entity_Id := Empty;
7682
 
7683
      function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
7684
      --  If F_Type is a derived type associated with a generic actual subtype,
7685
      --  then return its Generic_Parent_Type attribute, else return Empty.
7686
 
7687
      function Types_Correspond
7688
        (P_Type : Entity_Id;
7689
         N_Type : Entity_Id) return Boolean;
7690
      --  Returns true if and only if the types (or designated types in the
7691
      --  case of anonymous access types) are the same or N_Type is derived
7692
      --  directly or indirectly from P_Type.
7693
 
7694
      -----------------------------
7695
      -- Get_Generic_Parent_Type --
7696
      -----------------------------
7697
 
7698
      function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
7699
         G_Typ : Entity_Id;
7700
         Defn  : Node_Id;
7701
         Indic : Node_Id;
7702
 
7703
      begin
7704
         if Is_Derived_Type (F_Typ)
7705
           and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
7706
         then
7707
            --  The tree must be traversed to determine the parent subtype in
7708
            --  the generic unit, which unfortunately isn't always available
7709
            --  via semantic attributes. ??? (Note: The use of Original_Node
7710
            --  is needed for cases where a full derived type has been
7711
            --  rewritten.)
7712
 
7713
            Defn := Type_Definition (Original_Node (Parent (F_Typ)));
7714
            if Nkind (Defn) = N_Derived_Type_Definition then
7715
               Indic := Subtype_Indication (Defn);
7716
 
7717
               if Nkind (Indic) = N_Subtype_Indication then
7718
                  G_Typ := Entity (Subtype_Mark (Indic));
7719
               else
7720
                  G_Typ := Entity (Indic);
7721
               end if;
7722
 
7723
               if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
7724
                 and then Present (Generic_Parent_Type (Parent (G_Typ)))
7725
               then
7726
                  return Generic_Parent_Type (Parent (G_Typ));
7727
               end if;
7728
            end if;
7729
         end if;
7730
 
7731
         return Empty;
7732
      end Get_Generic_Parent_Type;
7733
 
7734
      ----------------------
7735
      -- Types_Correspond --
7736
      ----------------------
7737
 
7738
      function Types_Correspond
7739
        (P_Type : Entity_Id;
7740
         N_Type : Entity_Id) return Boolean
7741
      is
7742
         Prev_Type : Entity_Id := Base_Type (P_Type);
7743
         New_Type  : Entity_Id := Base_Type (N_Type);
7744
 
7745
      begin
7746
         if Ekind (Prev_Type) = E_Anonymous_Access_Type then
7747
            Prev_Type := Designated_Type (Prev_Type);
7748
         end if;
7749
 
7750
         if Ekind (New_Type) = E_Anonymous_Access_Type then
7751
            New_Type := Designated_Type (New_Type);
7752
         end if;
7753
 
7754
         if Prev_Type = New_Type then
7755
            return True;
7756
 
7757
         elsif not Is_Class_Wide_Type (New_Type) then
7758
            while Etype (New_Type) /= New_Type loop
7759
               New_Type := Etype (New_Type);
7760
               if New_Type = Prev_Type then
7761
                  return True;
7762
               end if;
7763
            end loop;
7764
         end if;
7765
         return False;
7766
      end Types_Correspond;
7767
 
7768
   --  Start of processing for Is_Non_Overriding_Operation
7769
 
7770
   begin
7771
      --  In the case where both operations are implicit derived subprograms
7772
      --  then neither overrides the other. This can only occur in certain
7773
      --  obscure cases (e.g., derivation from homographs created in a generic
7774
      --  instantiation).
7775
 
7776
      if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
7777
         return True;
7778
 
7779
      elsif Ekind (Current_Scope) = E_Package
7780
        and then Is_Generic_Instance (Current_Scope)
7781
        and then In_Private_Part (Current_Scope)
7782
        and then Comes_From_Source (New_E)
7783
      then
7784
         --  We examine the formals and result type of the inherited operation,
7785
         --  to determine whether their type is derived from (the instance of)
7786
         --  a generic type. The first such formal or result type is the one
7787
         --  tested.
7788
 
7789
         Formal := First_Formal (Prev_E);
7790
         while Present (Formal) loop
7791
            F_Typ := Base_Type (Etype (Formal));
7792
 
7793
            if Ekind (F_Typ) = E_Anonymous_Access_Type then
7794
               F_Typ := Designated_Type (F_Typ);
7795
            end if;
7796
 
7797
            G_Typ := Get_Generic_Parent_Type (F_Typ);
7798
            exit when Present (G_Typ);
7799
 
7800
            Next_Formal (Formal);
7801
         end loop;
7802
 
7803
         if No (G_Typ) and then Ekind (Prev_E) = E_Function then
7804
            G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
7805
         end if;
7806
 
7807
         if No (G_Typ) then
7808
            return False;
7809
         end if;
7810
 
7811
         --  If the generic type is a private type, then the original operation
7812
         --  was not overriding in the generic, because there was no primitive
7813
         --  operation to override.
7814
 
7815
         if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
7816
           and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
7817
                      N_Formal_Private_Type_Definition
7818
         then
7819
            return True;
7820
 
7821
         --  The generic parent type is the ancestor of a formal derived
7822
         --  type declaration. We need to check whether it has a primitive
7823
         --  operation that should be overridden by New_E in the generic.
7824
 
7825
         else
7826
            declare
7827
               P_Formal : Entity_Id;
7828
               N_Formal : Entity_Id;
7829
               P_Typ    : Entity_Id;
7830
               N_Typ    : Entity_Id;
7831
               P_Prim   : Entity_Id;
7832
               Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
7833
 
7834
            begin
7835
               while Present (Prim_Elt) loop
7836
                  P_Prim := Node (Prim_Elt);
7837
 
7838
                  if Chars (P_Prim) = Chars (New_E)
7839
                    and then Ekind (P_Prim) = Ekind (New_E)
7840
                  then
7841
                     P_Formal := First_Formal (P_Prim);
7842
                     N_Formal := First_Formal (New_E);
7843
                     while Present (P_Formal) and then Present (N_Formal) loop
7844
                        P_Typ := Etype (P_Formal);
7845
                        N_Typ := Etype (N_Formal);
7846
 
7847
                        if not Types_Correspond (P_Typ, N_Typ) then
7848
                           exit;
7849
                        end if;
7850
 
7851
                        Next_Entity (P_Formal);
7852
                        Next_Entity (N_Formal);
7853
                     end loop;
7854
 
7855
                     --  Found a matching primitive operation belonging to the
7856
                     --  formal ancestor type, so the new subprogram is
7857
                     --  overriding.
7858
 
7859
                     if No (P_Formal)
7860
                       and then No (N_Formal)
7861
                       and then (Ekind (New_E) /= E_Function
7862
                                  or else
7863
                                 Types_Correspond
7864
                                   (Etype (P_Prim), Etype (New_E)))
7865
                     then
7866
                        return False;
7867
                     end if;
7868
                  end if;
7869
 
7870
                  Next_Elmt (Prim_Elt);
7871
               end loop;
7872
 
7873
               --  If no match found, then the new subprogram does not
7874
               --  override in the generic (nor in the instance).
7875
 
7876
               --  If the type in question is not abstract, and the subprogram
7877
               --  is, this will be an error if the new operation is in the
7878
               --  private part of the instance. Emit a warning now, which will
7879
               --  make the subsequent error message easier to understand.
7880
 
7881
               if not Is_Abstract_Type (F_Typ)
7882
                 and then Is_Abstract_Subprogram (Prev_E)
7883
                 and then In_Private_Part (Current_Scope)
7884
               then
7885
                  Error_Msg_Node_2 := F_Typ;
7886
                  Error_Msg_NE
7887
                    ("private operation& in generic unit does not override " &
7888
                     "any primitive operation of& (RM 12.3 (18))?",
7889
                     New_E, New_E);
7890
               end if;
7891
 
7892
               return True;
7893
            end;
7894
         end if;
7895
      else
7896
         return False;
7897
      end if;
7898
   end Is_Non_Overriding_Operation;
7899
 
7900
   -------------------------------------
7901
   -- List_Inherited_Pre_Post_Aspects --
7902
   -------------------------------------
7903
 
7904
   procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
7905
   begin
7906
      if Opt.List_Inherited_Aspects
7907
        and then (Is_Subprogram (E) or else Is_Generic_Subprogram (E))
7908
      then
7909
         declare
7910
            Inherited : constant Subprogram_List :=
7911
                          Inherited_Subprograms (E);
7912
            P         : Node_Id;
7913
 
7914
         begin
7915
            for J in Inherited'Range loop
7916
               P := Spec_PPC_List (Contract (Inherited (J)));
7917
 
7918
               while Present (P) loop
7919
                  Error_Msg_Sloc := Sloc (P);
7920
 
7921
                  if Class_Present (P) and then not Split_PPC (P) then
7922
                     if Pragma_Name (P) = Name_Precondition then
7923
                        Error_Msg_N
7924
                          ("?info: & inherits `Pre''Class` aspect from #", E);
7925
                     else
7926
                        Error_Msg_N
7927
                          ("?info: & inherits `Post''Class` aspect from #", E);
7928
                     end if;
7929
                  end if;
7930
 
7931
                  P := Next_Pragma (P);
7932
               end loop;
7933
            end loop;
7934
         end;
7935
      end if;
7936
   end List_Inherited_Pre_Post_Aspects;
7937
 
7938
   ------------------------------
7939
   -- Make_Inequality_Operator --
7940
   ------------------------------
7941
 
7942
   --  S is the defining identifier of an equality operator. We build a
7943
   --  subprogram declaration with the right signature. This operation is
7944
   --  intrinsic, because it is always expanded as the negation of the
7945
   --  call to the equality function.
7946
 
7947
   procedure Make_Inequality_Operator (S : Entity_Id) is
7948
      Loc     : constant Source_Ptr := Sloc (S);
7949
      Decl    : Node_Id;
7950
      Formals : List_Id;
7951
      Op_Name : Entity_Id;
7952
 
7953
      FF : constant Entity_Id := First_Formal (S);
7954
      NF : constant Entity_Id := Next_Formal (FF);
7955
 
7956
   begin
7957
      --  Check that equality was properly defined, ignore call if not
7958
 
7959
      if No (NF) then
7960
         return;
7961
      end if;
7962
 
7963
      declare
7964
         A : constant Entity_Id :=
7965
               Make_Defining_Identifier (Sloc (FF),
7966
                 Chars => Chars (FF));
7967
 
7968
         B : constant Entity_Id :=
7969
               Make_Defining_Identifier (Sloc (NF),
7970
                 Chars => Chars (NF));
7971
 
7972
      begin
7973
         Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
7974
 
7975
         Formals := New_List (
7976
           Make_Parameter_Specification (Loc,
7977
             Defining_Identifier => A,
7978
             Parameter_Type      =>
7979
               New_Reference_To (Etype (First_Formal (S)),
7980
                 Sloc (Etype (First_Formal (S))))),
7981
 
7982
           Make_Parameter_Specification (Loc,
7983
             Defining_Identifier => B,
7984
             Parameter_Type      =>
7985
               New_Reference_To (Etype (Next_Formal (First_Formal (S))),
7986
                 Sloc (Etype (Next_Formal (First_Formal (S)))))));
7987
 
7988
         Decl :=
7989
           Make_Subprogram_Declaration (Loc,
7990
             Specification =>
7991
               Make_Function_Specification (Loc,
7992
                 Defining_Unit_Name       => Op_Name,
7993
                 Parameter_Specifications => Formals,
7994
                 Result_Definition        =>
7995
                   New_Reference_To (Standard_Boolean, Loc)));
7996
 
7997
         --  Insert inequality right after equality if it is explicit or after
7998
         --  the derived type when implicit. These entities are created only
7999
         --  for visibility purposes, and eventually replaced in the course of
8000
         --  expansion, so they do not need to be attached to the tree and seen
8001
         --  by the back-end. Keeping them internal also avoids spurious
8002
         --  freezing problems. The declaration is inserted in the tree for
8003
         --  analysis, and removed afterwards. If the equality operator comes
8004
         --  from an explicit declaration, attach the inequality immediately
8005
         --  after. Else the equality is inherited from a derived type
8006
         --  declaration, so insert inequality after that declaration.
8007
 
8008
         if No (Alias (S)) then
8009
            Insert_After (Unit_Declaration_Node (S), Decl);
8010
         elsif Is_List_Member (Parent (S)) then
8011
            Insert_After (Parent (S), Decl);
8012
         else
8013
            Insert_After (Parent (Etype (First_Formal (S))), Decl);
8014
         end if;
8015
 
8016
         Mark_Rewrite_Insertion (Decl);
8017
         Set_Is_Intrinsic_Subprogram (Op_Name);
8018
         Analyze (Decl);
8019
         Remove (Decl);
8020
         Set_Has_Completion (Op_Name);
8021
         Set_Corresponding_Equality (Op_Name, S);
8022
         Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
8023
      end;
8024
   end Make_Inequality_Operator;
8025
 
8026
   ----------------------
8027
   -- May_Need_Actuals --
8028
   ----------------------
8029
 
8030
   procedure May_Need_Actuals (Fun : Entity_Id) is
8031
      F : Entity_Id;
8032
      B : Boolean;
8033
 
8034
   begin
8035
      F := First_Formal (Fun);
8036
      B := True;
8037
      while Present (F) loop
8038
         if No (Default_Value (F)) then
8039
            B := False;
8040
            exit;
8041
         end if;
8042
 
8043
         Next_Formal (F);
8044
      end loop;
8045
 
8046
      Set_Needs_No_Actuals (Fun, B);
8047
   end May_Need_Actuals;
8048
 
8049
   ---------------------
8050
   -- Mode_Conformant --
8051
   ---------------------
8052
 
8053
   function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8054
      Result : Boolean;
8055
   begin
8056
      Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8057
      return Result;
8058
   end Mode_Conformant;
8059
 
8060
   ---------------------------
8061
   -- New_Overloaded_Entity --
8062
   ---------------------------
8063
 
8064
   procedure New_Overloaded_Entity
8065
     (S            : Entity_Id;
8066
      Derived_Type : Entity_Id := Empty)
8067
   is
8068
      Overridden_Subp : Entity_Id := Empty;
8069
      --  Set if the current scope has an operation that is type-conformant
8070
      --  with S, and becomes hidden by S.
8071
 
8072
      Is_Primitive_Subp : Boolean;
8073
      --  Set to True if the new subprogram is primitive
8074
 
8075
      E : Entity_Id;
8076
      --  Entity that S overrides
8077
 
8078
      Prev_Vis : Entity_Id := Empty;
8079
      --  Predecessor of E in Homonym chain
8080
 
8081
      procedure Check_For_Primitive_Subprogram
8082
        (Is_Primitive  : out Boolean;
8083
         Is_Overriding : Boolean := False);
8084
      --  If the subprogram being analyzed is a primitive operation of the type
8085
      --  of a formal or result, set the Has_Primitive_Operations flag on the
8086
      --  type, and set Is_Primitive to True (otherwise set to False). Set the
8087
      --  corresponding flag on the entity itself for later use.
8088
 
8089
      procedure Check_Synchronized_Overriding
8090
        (Def_Id          : Entity_Id;
8091
         Overridden_Subp : out Entity_Id);
8092
      --  First determine if Def_Id is an entry or a subprogram either defined
8093
      --  in the scope of a task or protected type, or is a primitive of such
8094
      --  a type. Check whether Def_Id overrides a subprogram of an interface
8095
      --  implemented by the synchronized type, return the overridden entity
8096
      --  or Empty.
8097
 
8098
      function Is_Private_Declaration (E : Entity_Id) return Boolean;
8099
      --  Check that E is declared in the private part of the current package,
8100
      --  or in the package body, where it may hide a previous declaration.
8101
      --  We can't use In_Private_Part by itself because this flag is also
8102
      --  set when freezing entities, so we must examine the place of the
8103
      --  declaration in the tree, and recognize wrapper packages as well.
8104
 
8105
      function Is_Overriding_Alias
8106
        (Old_E : Entity_Id;
8107
         New_E : Entity_Id) return Boolean;
8108
      --  Check whether new subprogram and old subprogram are both inherited
8109
      --  from subprograms that have distinct dispatch table entries. This can
8110
      --  occur with derivations from instances with accidental homonyms.
8111
      --  The function is conservative given that the converse is only true
8112
      --  within instances that contain accidental overloadings.
8113
 
8114
      ------------------------------------
8115
      -- Check_For_Primitive_Subprogram --
8116
      ------------------------------------
8117
 
8118
      procedure Check_For_Primitive_Subprogram
8119
        (Is_Primitive  : out Boolean;
8120
         Is_Overriding : Boolean := False)
8121
      is
8122
         Formal : Entity_Id;
8123
         F_Typ  : Entity_Id;
8124
         B_Typ  : Entity_Id;
8125
 
8126
         function Visible_Part_Type (T : Entity_Id) return Boolean;
8127
         --  Returns true if T is declared in the visible part of the current
8128
         --  package scope; otherwise returns false. Assumes that T is declared
8129
         --  in a package.
8130
 
8131
         procedure Check_Private_Overriding (T : Entity_Id);
8132
         --  Checks that if a primitive abstract subprogram of a visible
8133
         --  abstract type is declared in a private part, then it must override
8134
         --  an abstract subprogram declared in the visible part. Also checks
8135
         --  that if a primitive function with a controlling result is declared
8136
         --  in a private part, then it must override a function declared in
8137
         --  the visible part.
8138
 
8139
         ------------------------------
8140
         -- Check_Private_Overriding --
8141
         ------------------------------
8142
 
8143
         procedure Check_Private_Overriding (T : Entity_Id) is
8144
         begin
8145
            if Is_Package_Or_Generic_Package (Current_Scope)
8146
              and then In_Private_Part (Current_Scope)
8147
              and then Visible_Part_Type (T)
8148
              and then not In_Instance
8149
            then
8150
               if Is_Abstract_Type (T)
8151
                 and then Is_Abstract_Subprogram (S)
8152
                 and then (not Is_Overriding
8153
                            or else not Is_Abstract_Subprogram (E))
8154
               then
8155
                  Error_Msg_N
8156
                    ("abstract subprograms must be visible "
8157
                     & "(RM 3.9.3(10))!", S);
8158
 
8159
               elsif Ekind (S) = E_Function
8160
                 and then not Is_Overriding
8161
               then
8162
                  if Is_Tagged_Type (T)
8163
                    and then T = Base_Type (Etype (S))
8164
                  then
8165
                     Error_Msg_N
8166
                       ("private function with tagged result must"
8167
                        & " override visible-part function", S);
8168
                     Error_Msg_N
8169
                       ("\move subprogram to the visible part"
8170
                        & " (RM 3.9.3(10))", S);
8171
 
8172
                  --  AI05-0073: extend this test to the case of a function
8173
                  --  with a controlling access result.
8174
 
8175
                  elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8176
                    and then Is_Tagged_Type (Designated_Type (Etype (S)))
8177
                    and then
8178
                      not Is_Class_Wide_Type (Designated_Type (Etype (S)))
8179
                    and then Ada_Version >= Ada_2012
8180
                  then
8181
                     Error_Msg_N
8182
                       ("private function with controlling access result "
8183
                          & "must override visible-part function", S);
8184
                     Error_Msg_N
8185
                       ("\move subprogram to the visible part"
8186
                          & " (RM 3.9.3(10))", S);
8187
                  end if;
8188
               end if;
8189
            end if;
8190
         end Check_Private_Overriding;
8191
 
8192
         -----------------------
8193
         -- Visible_Part_Type --
8194
         -----------------------
8195
 
8196
         function Visible_Part_Type (T : Entity_Id) return Boolean is
8197
            P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8198
            N : Node_Id;
8199
 
8200
         begin
8201
            --  If the entity is a private type, then it must be declared in a
8202
            --  visible part.
8203
 
8204
            if Ekind (T) in Private_Kind then
8205
               return True;
8206
            end if;
8207
 
8208
            --  Otherwise, we traverse the visible part looking for its
8209
            --  corresponding declaration. We cannot use the declaration
8210
            --  node directly because in the private part the entity of a
8211
            --  private type is the one in the full view, which does not
8212
            --  indicate that it is the completion of something visible.
8213
 
8214
            N := First (Visible_Declarations (Specification (P)));
8215
            while Present (N) loop
8216
               if Nkind (N) = N_Full_Type_Declaration
8217
                 and then Present (Defining_Identifier (N))
8218
                 and then T = Defining_Identifier (N)
8219
               then
8220
                  return True;
8221
 
8222
               elsif Nkind_In (N, N_Private_Type_Declaration,
8223
                                  N_Private_Extension_Declaration)
8224
                 and then Present (Defining_Identifier (N))
8225
                 and then T = Full_View (Defining_Identifier (N))
8226
               then
8227
                  return True;
8228
               end if;
8229
 
8230
               Next (N);
8231
            end loop;
8232
 
8233
            return False;
8234
         end Visible_Part_Type;
8235
 
8236
      --  Start of processing for Check_For_Primitive_Subprogram
8237
 
8238
      begin
8239
         Is_Primitive := False;
8240
 
8241
         if not Comes_From_Source (S) then
8242
            null;
8243
 
8244
         --  If subprogram is at library level, it is not primitive operation
8245
 
8246
         elsif Current_Scope = Standard_Standard then
8247
            null;
8248
 
8249
         elsif (Is_Package_Or_Generic_Package (Current_Scope)
8250
                 and then not In_Package_Body (Current_Scope))
8251
           or else Is_Overriding
8252
         then
8253
            --  For function, check return type
8254
 
8255
            if Ekind (S) = E_Function then
8256
               if Ekind (Etype (S)) = E_Anonymous_Access_Type then
8257
                  F_Typ := Designated_Type (Etype (S));
8258
               else
8259
                  F_Typ := Etype (S);
8260
               end if;
8261
 
8262
               B_Typ := Base_Type (F_Typ);
8263
 
8264
               if Scope (B_Typ) = Current_Scope
8265
                 and then not Is_Class_Wide_Type (B_Typ)
8266
                 and then not Is_Generic_Type (B_Typ)
8267
               then
8268
                  Is_Primitive := True;
8269
                  Set_Has_Primitive_Operations (B_Typ);
8270
                  Set_Is_Primitive (S);
8271
                  Check_Private_Overriding (B_Typ);
8272
               end if;
8273
            end if;
8274
 
8275
            --  For all subprograms, check formals
8276
 
8277
            Formal := First_Formal (S);
8278
            while Present (Formal) loop
8279
               if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
8280
                  F_Typ := Designated_Type (Etype (Formal));
8281
               else
8282
                  F_Typ := Etype (Formal);
8283
               end if;
8284
 
8285
               B_Typ := Base_Type (F_Typ);
8286
 
8287
               if Ekind (B_Typ) = E_Access_Subtype then
8288
                  B_Typ := Base_Type (B_Typ);
8289
               end if;
8290
 
8291
               if Scope (B_Typ) = Current_Scope
8292
                 and then not Is_Class_Wide_Type (B_Typ)
8293
                 and then not Is_Generic_Type (B_Typ)
8294
               then
8295
                  Is_Primitive := True;
8296
                  Set_Is_Primitive (S);
8297
                  Set_Has_Primitive_Operations (B_Typ);
8298
                  Check_Private_Overriding (B_Typ);
8299
               end if;
8300
 
8301
               Next_Formal (Formal);
8302
            end loop;
8303
         end if;
8304
      end Check_For_Primitive_Subprogram;
8305
 
8306
      -----------------------------------
8307
      -- Check_Synchronized_Overriding --
8308
      -----------------------------------
8309
 
8310
      procedure Check_Synchronized_Overriding
8311
        (Def_Id          : Entity_Id;
8312
         Overridden_Subp : out Entity_Id)
8313
      is
8314
         Ifaces_List : Elist_Id;
8315
         In_Scope    : Boolean;
8316
         Typ         : Entity_Id;
8317
 
8318
         function Matches_Prefixed_View_Profile
8319
           (Prim_Params  : List_Id;
8320
            Iface_Params : List_Id) return Boolean;
8321
         --  Determine whether a subprogram's parameter profile Prim_Params
8322
         --  matches that of a potentially overridden interface subprogram
8323
         --  Iface_Params. Also determine if the type of first parameter of
8324
         --  Iface_Params is an implemented interface.
8325
 
8326
         -----------------------------------
8327
         -- Matches_Prefixed_View_Profile --
8328
         -----------------------------------
8329
 
8330
         function Matches_Prefixed_View_Profile
8331
           (Prim_Params  : List_Id;
8332
            Iface_Params : List_Id) return Boolean
8333
         is
8334
            Iface_Id     : Entity_Id;
8335
            Iface_Param  : Node_Id;
8336
            Iface_Typ    : Entity_Id;
8337
            Prim_Id      : Entity_Id;
8338
            Prim_Param   : Node_Id;
8339
            Prim_Typ     : Entity_Id;
8340
 
8341
            function Is_Implemented
8342
              (Ifaces_List : Elist_Id;
8343
               Iface       : Entity_Id) return Boolean;
8344
            --  Determine if Iface is implemented by the current task or
8345
            --  protected type.
8346
 
8347
            --------------------
8348
            -- Is_Implemented --
8349
            --------------------
8350
 
8351
            function Is_Implemented
8352
              (Ifaces_List : Elist_Id;
8353
               Iface       : Entity_Id) return Boolean
8354
            is
8355
               Iface_Elmt : Elmt_Id;
8356
 
8357
            begin
8358
               Iface_Elmt := First_Elmt (Ifaces_List);
8359
               while Present (Iface_Elmt) loop
8360
                  if Node (Iface_Elmt) = Iface then
8361
                     return True;
8362
                  end if;
8363
 
8364
                  Next_Elmt (Iface_Elmt);
8365
               end loop;
8366
 
8367
               return False;
8368
            end Is_Implemented;
8369
 
8370
         --  Start of processing for Matches_Prefixed_View_Profile
8371
 
8372
         begin
8373
            Iface_Param := First (Iface_Params);
8374
            Iface_Typ   := Etype (Defining_Identifier (Iface_Param));
8375
 
8376
            if Is_Access_Type (Iface_Typ) then
8377
               Iface_Typ := Designated_Type (Iface_Typ);
8378
            end if;
8379
 
8380
            Prim_Param := First (Prim_Params);
8381
 
8382
            --  The first parameter of the potentially overridden subprogram
8383
            --  must be an interface implemented by Prim.
8384
 
8385
            if not Is_Interface (Iface_Typ)
8386
              or else not Is_Implemented (Ifaces_List, Iface_Typ)
8387
            then
8388
               return False;
8389
            end if;
8390
 
8391
            --  The checks on the object parameters are done, move onto the
8392
            --  rest of the parameters.
8393
 
8394
            if not In_Scope then
8395
               Prim_Param := Next (Prim_Param);
8396
            end if;
8397
 
8398
            Iface_Param := Next (Iface_Param);
8399
            while Present (Iface_Param) and then Present (Prim_Param) loop
8400
               Iface_Id  := Defining_Identifier (Iface_Param);
8401
               Iface_Typ := Find_Parameter_Type (Iface_Param);
8402
 
8403
               Prim_Id  := Defining_Identifier (Prim_Param);
8404
               Prim_Typ := Find_Parameter_Type (Prim_Param);
8405
 
8406
               if Ekind (Iface_Typ) = E_Anonymous_Access_Type
8407
                 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
8408
                 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
8409
               then
8410
                  Iface_Typ := Designated_Type (Iface_Typ);
8411
                  Prim_Typ := Designated_Type (Prim_Typ);
8412
               end if;
8413
 
8414
               --  Case of multiple interface types inside a parameter profile
8415
 
8416
               --     (Obj_Param : in out Iface; ...; Param : Iface)
8417
 
8418
               --  If the interface type is implemented, then the matching type
8419
               --  in the primitive should be the implementing record type.
8420
 
8421
               if Ekind (Iface_Typ) = E_Record_Type
8422
                 and then Is_Interface (Iface_Typ)
8423
                 and then Is_Implemented (Ifaces_List, Iface_Typ)
8424
               then
8425
                  if Prim_Typ /= Typ then
8426
                     return False;
8427
                  end if;
8428
 
8429
               --  The two parameters must be both mode and subtype conformant
8430
 
8431
               elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
8432
                 or else not
8433
                   Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
8434
               then
8435
                  return False;
8436
               end if;
8437
 
8438
               Next (Iface_Param);
8439
               Next (Prim_Param);
8440
            end loop;
8441
 
8442
            --  One of the two lists contains more parameters than the other
8443
 
8444
            if Present (Iface_Param) or else Present (Prim_Param) then
8445
               return False;
8446
            end if;
8447
 
8448
            return True;
8449
         end Matches_Prefixed_View_Profile;
8450
 
8451
      --  Start of processing for Check_Synchronized_Overriding
8452
 
8453
      begin
8454
         Overridden_Subp := Empty;
8455
 
8456
         --  Def_Id must be an entry or a subprogram. We should skip predefined
8457
         --  primitives internally generated by the frontend; however at this
8458
         --  stage predefined primitives are still not fully decorated. As a
8459
         --  minor optimization we skip here internally generated subprograms.
8460
 
8461
         if (Ekind (Def_Id) /= E_Entry
8462
              and then Ekind (Def_Id) /= E_Function
8463
              and then Ekind (Def_Id) /= E_Procedure)
8464
           or else not Comes_From_Source (Def_Id)
8465
         then
8466
            return;
8467
         end if;
8468
 
8469
         --  Search for the concurrent declaration since it contains the list
8470
         --  of all implemented interfaces. In this case, the subprogram is
8471
         --  declared within the scope of a protected or a task type.
8472
 
8473
         if Present (Scope (Def_Id))
8474
           and then Is_Concurrent_Type (Scope (Def_Id))
8475
           and then not Is_Generic_Actual_Type (Scope (Def_Id))
8476
         then
8477
            Typ := Scope (Def_Id);
8478
            In_Scope := True;
8479
 
8480
         --  The enclosing scope is not a synchronized type and the subprogram
8481
         --  has no formals.
8482
 
8483
         elsif No (First_Formal (Def_Id)) then
8484
            return;
8485
 
8486
         --  The subprogram has formals and hence it may be a primitive of a
8487
         --  concurrent type.
8488
 
8489
         else
8490
            Typ := Etype (First_Formal (Def_Id));
8491
 
8492
            if Is_Access_Type (Typ) then
8493
               Typ := Directly_Designated_Type (Typ);
8494
            end if;
8495
 
8496
            if Is_Concurrent_Type (Typ)
8497
              and then not Is_Generic_Actual_Type (Typ)
8498
            then
8499
               In_Scope := False;
8500
 
8501
            --  This case occurs when the concurrent type is declared within
8502
            --  a generic unit. As a result the corresponding record has been
8503
            --  built and used as the type of the first formal, we just have
8504
            --  to retrieve the corresponding concurrent type.
8505
 
8506
            elsif Is_Concurrent_Record_Type (Typ)
8507
              and then not Is_Class_Wide_Type (Typ)
8508
              and then Present (Corresponding_Concurrent_Type (Typ))
8509
            then
8510
               Typ := Corresponding_Concurrent_Type (Typ);
8511
               In_Scope := False;
8512
 
8513
            else
8514
               return;
8515
            end if;
8516
         end if;
8517
 
8518
         --  There is no overriding to check if is an inherited operation in a
8519
         --  type derivation on for a generic actual.
8520
 
8521
         Collect_Interfaces (Typ, Ifaces_List);
8522
 
8523
         if Is_Empty_Elmt_List (Ifaces_List) then
8524
            return;
8525
         end if;
8526
 
8527
         --  Determine whether entry or subprogram Def_Id overrides a primitive
8528
         --  operation that belongs to one of the interfaces in Ifaces_List.
8529
 
8530
         declare
8531
            Candidate : Entity_Id := Empty;
8532
            Hom       : Entity_Id := Empty;
8533
            Iface_Typ : Entity_Id;
8534
            Subp      : Entity_Id := Empty;
8535
 
8536
         begin
8537
            --  Traverse the homonym chain, looking for a potentially
8538
            --  overridden subprogram that belongs to an implemented
8539
            --  interface.
8540
 
8541
            Hom := Current_Entity_In_Scope (Def_Id);
8542
            while Present (Hom) loop
8543
               Subp := Hom;
8544
 
8545
               if Subp = Def_Id
8546
                 or else not Is_Overloadable (Subp)
8547
                 or else not Is_Primitive (Subp)
8548
                 or else not Is_Dispatching_Operation (Subp)
8549
                 or else not Present (Find_Dispatching_Type (Subp))
8550
                 or else not Is_Interface (Find_Dispatching_Type (Subp))
8551
               then
8552
                  null;
8553
 
8554
               --  Entries and procedures can override abstract or null
8555
               --  interface procedures.
8556
 
8557
               elsif (Ekind (Def_Id) = E_Procedure
8558
                        or else Ekind (Def_Id) = E_Entry)
8559
                 and then Ekind (Subp) = E_Procedure
8560
                 and then Matches_Prefixed_View_Profile
8561
                            (Parameter_Specifications (Parent (Def_Id)),
8562
                             Parameter_Specifications (Parent (Subp)))
8563
               then
8564
                  Candidate := Subp;
8565
 
8566
                  --  For an overridden subprogram Subp, check whether the mode
8567
                  --  of its first parameter is correct depending on the kind
8568
                  --  of synchronized type.
8569
 
8570
                  declare
8571
                     Formal : constant Node_Id := First_Formal (Candidate);
8572
 
8573
                  begin
8574
                     --  In order for an entry or a protected procedure to
8575
                     --  override, the first parameter of the overridden
8576
                     --  routine must be of mode "out", "in out" or
8577
                     --  access-to-variable.
8578
 
8579
                     if (Ekind (Candidate) = E_Entry
8580
                         or else Ekind (Candidate) = E_Procedure)
8581
                       and then Is_Protected_Type (Typ)
8582
                       and then Ekind (Formal) /= E_In_Out_Parameter
8583
                       and then Ekind (Formal) /= E_Out_Parameter
8584
                       and then Nkind (Parameter_Type (Parent (Formal)))
8585
                                  /= N_Access_Definition
8586
                     then
8587
                        null;
8588
 
8589
                     --  All other cases are OK since a task entry or routine
8590
                     --  does not have a restriction on the mode of the first
8591
                     --  parameter of the overridden interface routine.
8592
 
8593
                     else
8594
                        Overridden_Subp := Candidate;
8595
                        return;
8596
                     end if;
8597
                  end;
8598
 
8599
               --  Functions can override abstract interface functions
8600
 
8601
               elsif Ekind (Def_Id) = E_Function
8602
                 and then Ekind (Subp) = E_Function
8603
                 and then Matches_Prefixed_View_Profile
8604
                            (Parameter_Specifications (Parent (Def_Id)),
8605
                             Parameter_Specifications (Parent (Subp)))
8606
                 and then Etype (Result_Definition (Parent (Def_Id))) =
8607
                          Etype (Result_Definition (Parent (Subp)))
8608
               then
8609
                  Overridden_Subp := Subp;
8610
                  return;
8611
               end if;
8612
 
8613
               Hom := Homonym (Hom);
8614
            end loop;
8615
 
8616
            --  After examining all candidates for overriding, we are left with
8617
            --  the best match which is a mode incompatible interface routine.
8618
            --  Do not emit an error if the Expander is active since this error
8619
            --  will be detected later on after all concurrent types are
8620
            --  expanded and all wrappers are built. This check is meant for
8621
            --  spec-only compilations.
8622
 
8623
            if Present (Candidate) and then not Expander_Active then
8624
               Iface_Typ :=
8625
                 Find_Parameter_Type (Parent (First_Formal (Candidate)));
8626
 
8627
               --  Def_Id is primitive of a protected type, declared inside the
8628
               --  type, and the candidate is primitive of a limited or
8629
               --  synchronized interface.
8630
 
8631
               if In_Scope
8632
                 and then Is_Protected_Type (Typ)
8633
                 and then
8634
                   (Is_Limited_Interface (Iface_Typ)
8635
                     or else Is_Protected_Interface (Iface_Typ)
8636
                     or else Is_Synchronized_Interface (Iface_Typ)
8637
                     or else Is_Task_Interface (Iface_Typ))
8638
               then
8639
                  Error_Msg_PT (Parent (Typ), Candidate);
8640
               end if;
8641
            end if;
8642
 
8643
            Overridden_Subp := Candidate;
8644
            return;
8645
         end;
8646
      end Check_Synchronized_Overriding;
8647
 
8648
      ----------------------------
8649
      -- Is_Private_Declaration --
8650
      ----------------------------
8651
 
8652
      function Is_Private_Declaration (E : Entity_Id) return Boolean is
8653
         Priv_Decls : List_Id;
8654
         Decl       : constant Node_Id := Unit_Declaration_Node (E);
8655
 
8656
      begin
8657
         if Is_Package_Or_Generic_Package (Current_Scope)
8658
           and then In_Private_Part (Current_Scope)
8659
         then
8660
            Priv_Decls :=
8661
              Private_Declarations
8662
                (Specification (Unit_Declaration_Node (Current_Scope)));
8663
 
8664
            return In_Package_Body (Current_Scope)
8665
              or else
8666
                (Is_List_Member (Decl)
8667
                  and then List_Containing (Decl) = Priv_Decls)
8668
              or else (Nkind (Parent (Decl)) = N_Package_Specification
8669
                        and then not
8670
                          Is_Compilation_Unit
8671
                            (Defining_Entity (Parent (Decl)))
8672
                        and then List_Containing (Parent (Parent (Decl))) =
8673
                                                                Priv_Decls);
8674
         else
8675
            return False;
8676
         end if;
8677
      end Is_Private_Declaration;
8678
 
8679
      --------------------------
8680
      -- Is_Overriding_Alias --
8681
      --------------------------
8682
 
8683
      function Is_Overriding_Alias
8684
        (Old_E : Entity_Id;
8685
         New_E : Entity_Id) return Boolean
8686
      is
8687
         AO : constant Entity_Id := Alias (Old_E);
8688
         AN : constant Entity_Id := Alias (New_E);
8689
 
8690
      begin
8691
         return Scope (AO) /= Scope (AN)
8692
           or else No (DTC_Entity (AO))
8693
           or else No (DTC_Entity (AN))
8694
           or else DT_Position (AO) = DT_Position (AN);
8695
      end Is_Overriding_Alias;
8696
 
8697
   --  Start of processing for New_Overloaded_Entity
8698
 
8699
   begin
8700
      --  We need to look for an entity that S may override. This must be a
8701
      --  homonym in the current scope, so we look for the first homonym of
8702
      --  S in the current scope as the starting point for the search.
8703
 
8704
      E := Current_Entity_In_Scope (S);
8705
 
8706
      --  Ada 2005 (AI-251): Derivation of abstract interface primitives.
8707
      --  They are directly added to the list of primitive operations of
8708
      --  Derived_Type, unless this is a rederivation in the private part
8709
      --  of an operation that was already derived in the visible part of
8710
      --  the current package.
8711
 
8712
      if Ada_Version >= Ada_2005
8713
        and then Present (Derived_Type)
8714
        and then Present (Alias (S))
8715
        and then Is_Dispatching_Operation (Alias (S))
8716
        and then Present (Find_Dispatching_Type (Alias (S)))
8717
        and then Is_Interface (Find_Dispatching_Type (Alias (S)))
8718
      then
8719
         --  For private types, when the full-view is processed we propagate to
8720
         --  the full view the non-overridden entities whose attribute "alias"
8721
         --  references an interface primitive. These entities were added by
8722
         --  Derive_Subprograms to ensure that interface primitives are
8723
         --  covered.
8724
 
8725
         --  Inside_Freeze_Actions is non zero when S corresponds with an
8726
         --  internal entity that links an interface primitive with its
8727
         --  covering primitive through attribute Interface_Alias (see
8728
         --  Add_Internal_Interface_Entities).
8729
 
8730
         if Inside_Freezing_Actions = 0
8731
           and then Is_Package_Or_Generic_Package (Current_Scope)
8732
           and then In_Private_Part (Current_Scope)
8733
           and then Nkind (Parent (E)) = N_Private_Extension_Declaration
8734
           and then Nkind (Parent (S)) = N_Full_Type_Declaration
8735
           and then Full_View (Defining_Identifier (Parent (E)))
8736
                      = Defining_Identifier (Parent (S))
8737
           and then Alias (E) = Alias (S)
8738
         then
8739
            Check_Operation_From_Private_View (S, E);
8740
            Set_Is_Dispatching_Operation (S);
8741
 
8742
         --  Common case
8743
 
8744
         else
8745
            Enter_Overloaded_Entity (S);
8746
            Check_Dispatching_Operation (S, Empty);
8747
            Check_For_Primitive_Subprogram (Is_Primitive_Subp);
8748
         end if;
8749
 
8750
         return;
8751
      end if;
8752
 
8753
      --  If there is no homonym then this is definitely not overriding
8754
 
8755
      if No (E) then
8756
         Enter_Overloaded_Entity (S);
8757
         Check_Dispatching_Operation (S, Empty);
8758
         Check_For_Primitive_Subprogram (Is_Primitive_Subp);
8759
 
8760
         --  If subprogram has an explicit declaration, check whether it
8761
         --  has an overriding indicator.
8762
 
8763
         if Comes_From_Source (S) then
8764
            Check_Synchronized_Overriding (S, Overridden_Subp);
8765
 
8766
            --  (Ada 2012: AI05-0125-1): If S is a dispatching operation then
8767
            --  it may have overridden some hidden inherited primitive. Update
8768
            --  Overridden_Subp to avoid spurious errors when checking the
8769
            --  overriding indicator.
8770
 
8771
            if Ada_Version >= Ada_2012
8772
              and then No (Overridden_Subp)
8773
              and then Is_Dispatching_Operation (S)
8774
              and then Present (Overridden_Operation (S))
8775
            then
8776
               Overridden_Subp := Overridden_Operation (S);
8777
            end if;
8778
 
8779
            Check_Overriding_Indicator
8780
              (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
8781
         end if;
8782
 
8783
      --  If there is a homonym that is not overloadable, then we have an
8784
      --  error, except for the special cases checked explicitly below.
8785
 
8786
      elsif not Is_Overloadable (E) then
8787
 
8788
         --  Check for spurious conflict produced by a subprogram that has the
8789
         --  same name as that of the enclosing generic package. The conflict
8790
         --  occurs within an instance, between the subprogram and the renaming
8791
         --  declaration for the package. After the subprogram, the package
8792
         --  renaming declaration becomes hidden.
8793
 
8794
         if Ekind (E) = E_Package
8795
           and then Present (Renamed_Object (E))
8796
           and then Renamed_Object (E) = Current_Scope
8797
           and then Nkind (Parent (Renamed_Object (E))) =
8798
                                                     N_Package_Specification
8799
           and then Present (Generic_Parent (Parent (Renamed_Object (E))))
8800
         then
8801
            Set_Is_Hidden (E);
8802
            Set_Is_Immediately_Visible (E, False);
8803
            Enter_Overloaded_Entity (S);
8804
            Set_Homonym (S, Homonym (E));
8805
            Check_Dispatching_Operation (S, Empty);
8806
            Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
8807
 
8808
         --  If the subprogram is implicit it is hidden by the previous
8809
         --  declaration. However if it is dispatching, it must appear in the
8810
         --  dispatch table anyway, because it can be dispatched to even if it
8811
         --  cannot be called directly.
8812
 
8813
         elsif Present (Alias (S)) and then not Comes_From_Source (S) then
8814
            Set_Scope (S, Current_Scope);
8815
 
8816
            if Is_Dispatching_Operation (Alias (S)) then
8817
               Check_Dispatching_Operation (S, Empty);
8818
            end if;
8819
 
8820
            return;
8821
 
8822
         else
8823
            Error_Msg_Sloc := Sloc (E);
8824
 
8825
            --  Generate message, with useful additional warning if in generic
8826
 
8827
            if Is_Generic_Unit (E) then
8828
               Error_Msg_N ("previous generic unit cannot be overloaded", S);
8829
               Error_Msg_N ("\& conflicts with declaration#", S);
8830
            else
8831
               Error_Msg_N ("& conflicts with declaration#", S);
8832
            end if;
8833
 
8834
            return;
8835
         end if;
8836
 
8837
      --  E exists and is overloadable
8838
 
8839
      else
8840
         Check_Synchronized_Overriding (S, Overridden_Subp);
8841
 
8842
         --  Loop through E and its homonyms to determine if any of them is
8843
         --  the candidate for overriding by S.
8844
 
8845
         while Present (E) loop
8846
 
8847
            --  Definitely not interesting if not in the current scope
8848
 
8849
            if Scope (E) /= Current_Scope then
8850
               null;
8851
 
8852
            --  Ada 2012 (AI05-0165): For internally generated bodies of
8853
            --  null procedures locate the internally generated spec. We
8854
            --  enforce mode conformance since a tagged type may inherit
8855
            --  from interfaces several null primitives which differ only
8856
            --  in the mode of the formals.
8857
 
8858
            elsif not Comes_From_Source (S)
8859
              and then Is_Null_Procedure (S)
8860
              and then not Mode_Conformant (E, S)
8861
            then
8862
               null;
8863
 
8864
            --  Check if we have type conformance
8865
 
8866
            elsif Type_Conformant (E, S) then
8867
 
8868
               --  If the old and new entities have the same profile and one
8869
               --  is not the body of the other, then this is an error, unless
8870
               --  one of them is implicitly declared.
8871
 
8872
               --  There are some cases when both can be implicit, for example
8873
               --  when both a literal and a function that overrides it are
8874
               --  inherited in a derivation, or when an inherited operation
8875
               --  of a tagged full type overrides the inherited operation of
8876
               --  a private extension. Ada 83 had a special rule for the
8877
               --  literal case. In Ada 95, the later implicit operation hides
8878
               --  the former, and the literal is always the former. In the
8879
               --  odd case where both are derived operations declared at the
8880
               --  same point, both operations should be declared, and in that
8881
               --  case we bypass the following test and proceed to the next
8882
               --  part. This can only occur for certain obscure cases in
8883
               --  instances, when an operation on a type derived from a formal
8884
               --  private type does not override a homograph inherited from
8885
               --  the actual. In subsequent derivations of such a type, the
8886
               --  DT positions of these operations remain distinct, if they
8887
               --  have been set.
8888
 
8889
               if Present (Alias (S))
8890
                 and then (No (Alias (E))
8891
                            or else Comes_From_Source (E)
8892
                            or else Is_Abstract_Subprogram (S)
8893
                            or else
8894
                              (Is_Dispatching_Operation (E)
8895
                                 and then Is_Overriding_Alias (E, S)))
8896
                 and then Ekind (E) /= E_Enumeration_Literal
8897
               then
8898
                  --  When an derived operation is overloaded it may be due to
8899
                  --  the fact that the full view of a private extension
8900
                  --  re-inherits. It has to be dealt with.
8901
 
8902
                  if Is_Package_Or_Generic_Package (Current_Scope)
8903
                    and then In_Private_Part (Current_Scope)
8904
                  then
8905
                     Check_Operation_From_Private_View (S, E);
8906
                  end if;
8907
 
8908
                  --  In any case the implicit operation remains hidden by the
8909
                  --  existing declaration, which is overriding. Indicate that
8910
                  --  E overrides the operation from which S is inherited.
8911
 
8912
                  if Present (Alias (S)) then
8913
                     Set_Overridden_Operation (E, Alias (S));
8914
                  else
8915
                     Set_Overridden_Operation (E, S);
8916
                  end if;
8917
 
8918
                  if Comes_From_Source (E) then
8919
                     Check_Overriding_Indicator (E, S, Is_Primitive => False);
8920
                  end if;
8921
 
8922
                  return;
8923
 
8924
               --  Within an instance, the renaming declarations for actual
8925
               --  subprograms may become ambiguous, but they do not hide each
8926
               --  other.
8927
 
8928
               elsif Ekind (E) /= E_Entry
8929
                 and then not Comes_From_Source (E)
8930
                 and then not Is_Generic_Instance (E)
8931
                 and then (Present (Alias (E))
8932
                            or else Is_Intrinsic_Subprogram (E))
8933
                 and then (not In_Instance
8934
                            or else No (Parent (E))
8935
                            or else Nkind (Unit_Declaration_Node (E)) /=
8936
                                      N_Subprogram_Renaming_Declaration)
8937
               then
8938
                  --  A subprogram child unit is not allowed to override an
8939
                  --  inherited subprogram (10.1.1(20)).
8940
 
8941
                  if Is_Child_Unit (S) then
8942
                     Error_Msg_N
8943
                       ("child unit overrides inherited subprogram in parent",
8944
                        S);
8945
                     return;
8946
                  end if;
8947
 
8948
                  if Is_Non_Overriding_Operation (E, S) then
8949
                     Enter_Overloaded_Entity (S);
8950
 
8951
                     if No (Derived_Type)
8952
                       or else Is_Tagged_Type (Derived_Type)
8953
                     then
8954
                        Check_Dispatching_Operation (S, Empty);
8955
                     end if;
8956
 
8957
                     return;
8958
                  end if;
8959
 
8960
                  --  E is a derived operation or an internal operator which
8961
                  --  is being overridden. Remove E from further visibility.
8962
                  --  Furthermore, if E is a dispatching operation, it must be
8963
                  --  replaced in the list of primitive operations of its type
8964
                  --  (see Override_Dispatching_Operation).
8965
 
8966
                  Overridden_Subp := E;
8967
 
8968
                  declare
8969
                     Prev : Entity_Id;
8970
 
8971
                  begin
8972
                     Prev := First_Entity (Current_Scope);
8973
                     while Present (Prev)
8974
                       and then Next_Entity (Prev) /= E
8975
                     loop
8976
                        Next_Entity (Prev);
8977
                     end loop;
8978
 
8979
                     --  It is possible for E to be in the current scope and
8980
                     --  yet not in the entity chain. This can only occur in a
8981
                     --  generic context where E is an implicit concatenation
8982
                     --  in the formal part, because in a generic body the
8983
                     --  entity chain starts with the formals.
8984
 
8985
                     pragma Assert
8986
                       (Present (Prev) or else Chars (E) = Name_Op_Concat);
8987
 
8988
                     --  E must be removed both from the entity_list of the
8989
                     --  current scope, and from the visibility chain
8990
 
8991
                     if Debug_Flag_E then
8992
                        Write_Str ("Override implicit operation ");
8993
                        Write_Int (Int (E));
8994
                        Write_Eol;
8995
                     end if;
8996
 
8997
                     --  If E is a predefined concatenation, it stands for four
8998
                     --  different operations. As a result, a single explicit
8999
                     --  declaration does not hide it. In a possible ambiguous
9000
                     --  situation, Disambiguate chooses the user-defined op,
9001
                     --  so it is correct to retain the previous internal one.
9002
 
9003
                     if Chars (E) /= Name_Op_Concat
9004
                       or else Ekind (E) /= E_Operator
9005
                     then
9006
                        --  For nondispatching derived operations that are
9007
                        --  overridden by a subprogram declared in the private
9008
                        --  part of a package, we retain the derived subprogram
9009
                        --  but mark it as not immediately visible. If the
9010
                        --  derived operation was declared in the visible part
9011
                        --  then this ensures that it will still be visible
9012
                        --  outside the package with the proper signature
9013
                        --  (calls from outside must also be directed to this
9014
                        --  version rather than the overriding one, unlike the
9015
                        --  dispatching case). Calls from inside the package
9016
                        --  will still resolve to the overriding subprogram
9017
                        --  since the derived one is marked as not visible
9018
                        --  within the package.
9019
 
9020
                        --  If the private operation is dispatching, we achieve
9021
                        --  the overriding by keeping the implicit operation
9022
                        --  but setting its alias to be the overriding one. In
9023
                        --  this fashion the proper body is executed in all
9024
                        --  cases, but the original signature is used outside
9025
                        --  of the package.
9026
 
9027
                        --  If the overriding is not in the private part, we
9028
                        --  remove the implicit operation altogether.
9029
 
9030
                        if Is_Private_Declaration (S) then
9031
                           if not Is_Dispatching_Operation (E) then
9032
                              Set_Is_Immediately_Visible (E, False);
9033
                           else
9034
                              --  Work done in Override_Dispatching_Operation,
9035
                              --  so nothing else needs to be done here.
9036
 
9037
                              null;
9038
                           end if;
9039
 
9040
                        else
9041
                           --  Find predecessor of E in Homonym chain
9042
 
9043
                           if E = Current_Entity (E) then
9044
                              Prev_Vis := Empty;
9045
                           else
9046
                              Prev_Vis := Current_Entity (E);
9047
                              while Homonym (Prev_Vis) /= E loop
9048
                                 Prev_Vis := Homonym (Prev_Vis);
9049
                              end loop;
9050
                           end if;
9051
 
9052
                           if Prev_Vis /= Empty then
9053
 
9054
                              --  Skip E in the visibility chain
9055
 
9056
                              Set_Homonym (Prev_Vis, Homonym (E));
9057
 
9058
                           else
9059
                              Set_Name_Entity_Id (Chars (E), Homonym (E));
9060
                           end if;
9061
 
9062
                           Set_Next_Entity (Prev, Next_Entity (E));
9063
 
9064
                           if No (Next_Entity (Prev)) then
9065
                              Set_Last_Entity (Current_Scope, Prev);
9066
                           end if;
9067
                        end if;
9068
                     end if;
9069
 
9070
                     Enter_Overloaded_Entity (S);
9071
 
9072
                     --  For entities generated by Derive_Subprograms the
9073
                     --  overridden operation is the inherited primitive
9074
                     --  (which is available through the attribute alias).
9075
 
9076
                     if not (Comes_From_Source (E))
9077
                       and then Is_Dispatching_Operation (E)
9078
                       and then Find_Dispatching_Type (E) =
9079
                                Find_Dispatching_Type (S)
9080
                       and then Present (Alias (E))
9081
                       and then Comes_From_Source (Alias (E))
9082
                     then
9083
                        Set_Overridden_Operation (S, Alias (E));
9084
 
9085
                     --  Normal case of setting entity as overridden
9086
 
9087
                     --  Note: Static_Initialization and Overridden_Operation
9088
                     --  attributes use the same field in subprogram entities.
9089
                     --  Static_Initialization is only defined for internal
9090
                     --  initialization procedures, where Overridden_Operation
9091
                     --  is irrelevant. Therefore the setting of this attribute
9092
                     --  must check whether the target is an init_proc.
9093
 
9094
                     elsif not Is_Init_Proc (S) then
9095
                        Set_Overridden_Operation (S, E);
9096
                     end if;
9097
 
9098
                     Check_Overriding_Indicator (S, E, Is_Primitive => True);
9099
 
9100
                     --  If S is a user-defined subprogram or a null procedure
9101
                     --  expanded to override an inherited null procedure, or a
9102
                     --  predefined dispatching primitive then indicate that E
9103
                     --  overrides the operation from which S is inherited.
9104
 
9105
                     if Comes_From_Source (S)
9106
                       or else
9107
                         (Present (Parent (S))
9108
                           and then
9109
                             Nkind (Parent (S)) = N_Procedure_Specification
9110
                           and then
9111
                             Null_Present (Parent (S)))
9112
                       or else
9113
                         (Present (Alias (E))
9114
                           and then
9115
                             Is_Predefined_Dispatching_Operation (Alias (E)))
9116
                     then
9117
                        if Present (Alias (E)) then
9118
                           Set_Overridden_Operation (S, Alias (E));
9119
                        end if;
9120
                     end if;
9121
 
9122
                     if Is_Dispatching_Operation (E) then
9123
 
9124
                        --  An overriding dispatching subprogram inherits the
9125
                        --  convention of the overridden subprogram (AI-117).
9126
 
9127
                        Set_Convention (S, Convention (E));
9128
                        Check_Dispatching_Operation (S, E);
9129
 
9130
                     else
9131
                        Check_Dispatching_Operation (S, Empty);
9132
                     end if;
9133
 
9134
                     Check_For_Primitive_Subprogram
9135
                       (Is_Primitive_Subp, Is_Overriding => True);
9136
                     goto Check_Inequality;
9137
                  end;
9138
 
9139
               --  Apparent redeclarations in instances can occur when two
9140
               --  formal types get the same actual type. The subprograms in
9141
               --  in the instance are legal,  even if not callable from the
9142
               --  outside. Calls from within are disambiguated elsewhere.
9143
               --  For dispatching operations in the visible part, the usual
9144
               --  rules apply, and operations with the same profile are not
9145
               --  legal (B830001).
9146
 
9147
               elsif (In_Instance_Visible_Part
9148
                       and then not Is_Dispatching_Operation (E))
9149
                 or else In_Instance_Not_Visible
9150
               then
9151
                  null;
9152
 
9153
               --  Here we have a real error (identical profile)
9154
 
9155
               else
9156
                  Error_Msg_Sloc := Sloc (E);
9157
 
9158
                  --  Avoid cascaded errors if the entity appears in
9159
                  --  subsequent calls.
9160
 
9161
                  Set_Scope (S, Current_Scope);
9162
 
9163
                  --  Generate error, with extra useful warning for the case
9164
                  --  of a generic instance with no completion.
9165
 
9166
                  if Is_Generic_Instance (S)
9167
                    and then not Has_Completion (E)
9168
                  then
9169
                     Error_Msg_N
9170
                       ("instantiation cannot provide body for&", S);
9171
                     Error_Msg_N ("\& conflicts with declaration#", S);
9172
                  else
9173
                     Error_Msg_N ("& conflicts with declaration#", S);
9174
                  end if;
9175
 
9176
                  return;
9177
               end if;
9178
 
9179
            else
9180
               --  If one subprogram has an access parameter and the other
9181
               --  a parameter of an access type, calls to either might be
9182
               --  ambiguous. Verify that parameters match except for the
9183
               --  access parameter.
9184
 
9185
               if May_Hide_Profile then
9186
                  declare
9187
                     F1 : Entity_Id;
9188
                     F2 : Entity_Id;
9189
 
9190
                  begin
9191
                     F1 := First_Formal (S);
9192
                     F2 := First_Formal (E);
9193
                     while Present (F1) and then Present (F2) loop
9194
                        if Is_Access_Type (Etype (F1)) then
9195
                           if not Is_Access_Type (Etype (F2))
9196
                              or else not Conforming_Types
9197
                                (Designated_Type (Etype (F1)),
9198
                                 Designated_Type (Etype (F2)),
9199
                                 Type_Conformant)
9200
                           then
9201
                              May_Hide_Profile := False;
9202
                           end if;
9203
 
9204
                        elsif
9205
                          not Conforming_Types
9206
                            (Etype (F1), Etype (F2), Type_Conformant)
9207
                        then
9208
                           May_Hide_Profile := False;
9209
                        end if;
9210
 
9211
                        Next_Formal (F1);
9212
                        Next_Formal (F2);
9213
                     end loop;
9214
 
9215
                     if May_Hide_Profile
9216
                       and then No (F1)
9217
                       and then No (F2)
9218
                     then
9219
                        Error_Msg_NE ("calls to& may be ambiguous?", S, S);
9220
                     end if;
9221
                  end;
9222
               end if;
9223
            end if;
9224
 
9225
            E := Homonym (E);
9226
         end loop;
9227
 
9228
         --  On exit, we know that S is a new entity
9229
 
9230
         Enter_Overloaded_Entity (S);
9231
         Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9232
         Check_Overriding_Indicator
9233
           (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9234
 
9235
         --  Overloading is not allowed in SPARK, except for operators
9236
 
9237
         if Nkind (S) /= N_Defining_Operator_Symbol then
9238
            Error_Msg_Sloc := Sloc (Homonym (S));
9239
            Check_SPARK_Restriction
9240
              ("overloading not allowed with entity#", S);
9241
         end if;
9242
 
9243
         --  If S is a derived operation for an untagged type then by
9244
         --  definition it's not a dispatching operation (even if the parent
9245
         --  operation was dispatching), so Check_Dispatching_Operation is not
9246
         --  called in that case.
9247
 
9248
         if No (Derived_Type)
9249
           or else Is_Tagged_Type (Derived_Type)
9250
         then
9251
            Check_Dispatching_Operation (S, Empty);
9252
         end if;
9253
      end if;
9254
 
9255
      --  If this is a user-defined equality operator that is not a derived
9256
      --  subprogram, create the corresponding inequality. If the operation is
9257
      --  dispatching, the expansion is done elsewhere, and we do not create
9258
      --  an explicit inequality operation.
9259
 
9260
      <<Check_Inequality>>
9261
         if Chars (S) = Name_Op_Eq
9262
           and then Etype (S) = Standard_Boolean
9263
           and then Present (Parent (S))
9264
           and then not Is_Dispatching_Operation (S)
9265
         then
9266
            Make_Inequality_Operator (S);
9267
 
9268
            if Ada_Version >= Ada_2012 then
9269
               Check_Untagged_Equality (S);
9270
            end if;
9271
         end if;
9272
   end New_Overloaded_Entity;
9273
 
9274
   ---------------------
9275
   -- Process_Formals --
9276
   ---------------------
9277
 
9278
   procedure Process_Formals
9279
     (T           : List_Id;
9280
      Related_Nod : Node_Id)
9281
   is
9282
      Param_Spec  : Node_Id;
9283
      Formal      : Entity_Id;
9284
      Formal_Type : Entity_Id;
9285
      Default     : Node_Id;
9286
      Ptype       : Entity_Id;
9287
 
9288
      Num_Out_Params  : Nat       := 0;
9289
      First_Out_Param : Entity_Id := Empty;
9290
      --  Used for setting Is_Only_Out_Parameter
9291
 
9292
      function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
9293
      --  Determine whether an access type designates a type coming from a
9294
      --  limited view.
9295
 
9296
      function Is_Class_Wide_Default (D : Node_Id) return Boolean;
9297
      --  Check whether the default has a class-wide type. After analysis the
9298
      --  default has the type of the formal, so we must also check explicitly
9299
      --  for an access attribute.
9300
 
9301
      -------------------------------
9302
      -- Designates_From_With_Type --
9303
      -------------------------------
9304
 
9305
      function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
9306
         Desig : Entity_Id := Typ;
9307
 
9308
      begin
9309
         if Is_Access_Type (Desig) then
9310
            Desig := Directly_Designated_Type (Desig);
9311
         end if;
9312
 
9313
         if Is_Class_Wide_Type (Desig) then
9314
            Desig := Root_Type (Desig);
9315
         end if;
9316
 
9317
         return
9318
           Ekind (Desig) = E_Incomplete_Type
9319
             and then From_With_Type (Desig);
9320
      end Designates_From_With_Type;
9321
 
9322
      ---------------------------
9323
      -- Is_Class_Wide_Default --
9324
      ---------------------------
9325
 
9326
      function Is_Class_Wide_Default (D : Node_Id) return Boolean is
9327
      begin
9328
         return Is_Class_Wide_Type (Designated_Type (Etype (D)))
9329
           or else (Nkind (D) =  N_Attribute_Reference
9330
                     and then Attribute_Name (D) = Name_Access
9331
                     and then Is_Class_Wide_Type (Etype (Prefix (D))));
9332
      end Is_Class_Wide_Default;
9333
 
9334
   --  Start of processing for Process_Formals
9335
 
9336
   begin
9337
      --  In order to prevent premature use of the formals in the same formal
9338
      --  part, the Ekind is left undefined until all default expressions are
9339
      --  analyzed. The Ekind is established in a separate loop at the end.
9340
 
9341
      Param_Spec := First (T);
9342
      while Present (Param_Spec) loop
9343
         Formal := Defining_Identifier (Param_Spec);
9344
         Set_Never_Set_In_Source (Formal, True);
9345
         Enter_Name (Formal);
9346
 
9347
         --  Case of ordinary parameters
9348
 
9349
         if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
9350
            Find_Type (Parameter_Type (Param_Spec));
9351
            Ptype := Parameter_Type (Param_Spec);
9352
 
9353
            if Ptype = Error then
9354
               goto Continue;
9355
            end if;
9356
 
9357
            Formal_Type := Entity (Ptype);
9358
 
9359
            if Is_Incomplete_Type (Formal_Type)
9360
              or else
9361
               (Is_Class_Wide_Type (Formal_Type)
9362
                  and then Is_Incomplete_Type (Root_Type (Formal_Type)))
9363
            then
9364
               --  Ada 2005 (AI-326): Tagged incomplete types allowed in
9365
               --  primitive operations, as long as their completion is
9366
               --  in the same declarative part. If in the private part
9367
               --  this means that the type cannot be a Taft-amendment type.
9368
               --  Check is done on package exit. For access to subprograms,
9369
               --  the use is legal for Taft-amendment types.
9370
 
9371
               if Is_Tagged_Type (Formal_Type) then
9372
                  if Ekind (Scope (Current_Scope)) = E_Package
9373
                    and then not From_With_Type (Formal_Type)
9374
                    and then not Is_Class_Wide_Type (Formal_Type)
9375
                  then
9376
                     if not Nkind_In
9377
                       (Parent (T), N_Access_Function_Definition,
9378
                                    N_Access_Procedure_Definition)
9379
                     then
9380
                        Append_Elmt
9381
                          (Current_Scope,
9382
                             Private_Dependents (Base_Type (Formal_Type)));
9383
 
9384
                        --  Freezing is delayed to ensure that Register_Prim
9385
                        --  will get called for this operation, which is needed
9386
                        --  in cases where static dispatch tables aren't built.
9387
                        --  (Note that the same is done for controlling access
9388
                        --  parameter cases in function Access_Definition.)
9389
 
9390
                        Set_Has_Delayed_Freeze (Current_Scope);
9391
                     end if;
9392
                  end if;
9393
 
9394
               --  Special handling of Value_Type for CIL case
9395
 
9396
               elsif Is_Value_Type (Formal_Type) then
9397
                  null;
9398
 
9399
               elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
9400
                                               N_Access_Procedure_Definition)
9401
               then
9402
                  --  AI05-0151: Tagged incomplete types are allowed in all
9403
                  --  formal parts. Untagged incomplete types are not allowed
9404
                  --  in bodies.
9405
 
9406
                  if Ada_Version >= Ada_2012 then
9407
                     if Is_Tagged_Type (Formal_Type) then
9408
                        null;
9409
 
9410
                     elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
9411
                                                          N_Entry_Body,
9412
                                                          N_Subprogram_Body)
9413
                     then
9414
                        Error_Msg_NE
9415
                          ("invalid use of untagged incomplete type&",
9416
                           Ptype, Formal_Type);
9417
                     end if;
9418
 
9419
                  else
9420
                     Error_Msg_NE
9421
                       ("invalid use of incomplete type&",
9422
                        Param_Spec, Formal_Type);
9423
 
9424
                     --  Further checks on the legality of incomplete types
9425
                     --  in formal parts are delayed until the freeze point
9426
                     --  of the enclosing subprogram or access to subprogram.
9427
                  end if;
9428
               end if;
9429
 
9430
            elsif Ekind (Formal_Type) = E_Void then
9431
               Error_Msg_NE
9432
                 ("premature use of&",
9433
                  Parameter_Type (Param_Spec), Formal_Type);
9434
            end if;
9435
 
9436
            --  Ada 2012 (AI-142): Handle aliased parameters
9437
 
9438
            if Ada_Version >= Ada_2012
9439
              and then Aliased_Present (Param_Spec)
9440
            then
9441
               Set_Is_Aliased (Formal);
9442
            end if;
9443
 
9444
            --  Ada 2005 (AI-231): Create and decorate an internal subtype
9445
            --  declaration corresponding to the null-excluding type of the
9446
            --  formal in the enclosing scope. Finally, replace the parameter
9447
            --  type of the formal with the internal subtype.
9448
 
9449
            if Ada_Version >= Ada_2005
9450
              and then Null_Exclusion_Present (Param_Spec)
9451
            then
9452
               if not Is_Access_Type (Formal_Type) then
9453
                  Error_Msg_N
9454
                    ("`NOT NULL` allowed only for an access type", Param_Spec);
9455
 
9456
               else
9457
                  if Can_Never_Be_Null (Formal_Type)
9458
                    and then Comes_From_Source (Related_Nod)
9459
                  then
9460
                     Error_Msg_NE
9461
                       ("`NOT NULL` not allowed (& already excludes null)",
9462
                        Param_Spec, Formal_Type);
9463
                  end if;
9464
 
9465
                  Formal_Type :=
9466
                    Create_Null_Excluding_Itype
9467
                      (T           => Formal_Type,
9468
                       Related_Nod => Related_Nod,
9469
                       Scope_Id    => Scope (Current_Scope));
9470
 
9471
                  --  If the designated type of the itype is an itype we
9472
                  --  decorate it with the Has_Delayed_Freeze attribute to
9473
                  --  avoid problems with the backend.
9474
 
9475
                  --  Example:
9476
                  --     type T is access procedure;
9477
                  --     procedure Op (O : not null T);
9478
 
9479
                  if Is_Itype (Directly_Designated_Type (Formal_Type)) then
9480
                     Set_Has_Delayed_Freeze (Formal_Type);
9481
                  end if;
9482
               end if;
9483
            end if;
9484
 
9485
         --  An access formal type
9486
 
9487
         else
9488
            Formal_Type :=
9489
              Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
9490
 
9491
            --  No need to continue if we already notified errors
9492
 
9493
            if not Present (Formal_Type) then
9494
               return;
9495
            end if;
9496
 
9497
            --  Ada 2005 (AI-254)
9498
 
9499
            declare
9500
               AD : constant Node_Id :=
9501
                      Access_To_Subprogram_Definition
9502
                        (Parameter_Type (Param_Spec));
9503
            begin
9504
               if Present (AD) and then Protected_Present (AD) then
9505
                  Formal_Type :=
9506
                    Replace_Anonymous_Access_To_Protected_Subprogram
9507
                      (Param_Spec);
9508
               end if;
9509
            end;
9510
         end if;
9511
 
9512
         Set_Etype (Formal, Formal_Type);
9513
 
9514
         --  Deal with default expression if present
9515
 
9516
         Default := Expression (Param_Spec);
9517
 
9518
         if Present (Default) then
9519
            Check_SPARK_Restriction
9520
              ("default expression is not allowed", Default);
9521
 
9522
            if Out_Present (Param_Spec) then
9523
               Error_Msg_N
9524
                 ("default initialization only allowed for IN parameters",
9525
                  Param_Spec);
9526
            end if;
9527
 
9528
            --  Do the special preanalysis of the expression (see section on
9529
            --  "Handling of Default Expressions" in the spec of package Sem).
9530
 
9531
            Preanalyze_Spec_Expression (Default, Formal_Type);
9532
 
9533
            --  An access to constant cannot be the default for
9534
            --  an access parameter that is an access to variable.
9535
 
9536
            if Ekind (Formal_Type) = E_Anonymous_Access_Type
9537
              and then not Is_Access_Constant (Formal_Type)
9538
              and then Is_Access_Type (Etype (Default))
9539
              and then Is_Access_Constant (Etype (Default))
9540
            then
9541
               Error_Msg_N
9542
                 ("formal that is access to variable cannot be initialized " &
9543
                    "with an access-to-constant expression", Default);
9544
            end if;
9545
 
9546
            --  Check that the designated type of an access parameter's default
9547
            --  is not a class-wide type unless the parameter's designated type
9548
            --  is also class-wide.
9549
 
9550
            if Ekind (Formal_Type) = E_Anonymous_Access_Type
9551
              and then not Designates_From_With_Type (Formal_Type)
9552
              and then Is_Class_Wide_Default (Default)
9553
              and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
9554
            then
9555
               Error_Msg_N
9556
                 ("access to class-wide expression not allowed here", Default);
9557
            end if;
9558
 
9559
            --  Check incorrect use of dynamically tagged expressions
9560
 
9561
            if Is_Tagged_Type (Formal_Type) then
9562
               Check_Dynamically_Tagged_Expression
9563
                 (Expr        => Default,
9564
                  Typ         => Formal_Type,
9565
                  Related_Nod => Default);
9566
            end if;
9567
         end if;
9568
 
9569
         --  Ada 2005 (AI-231): Static checks
9570
 
9571
         if Ada_Version >= Ada_2005
9572
           and then Is_Access_Type (Etype (Formal))
9573
           and then Can_Never_Be_Null (Etype (Formal))
9574
         then
9575
            Null_Exclusion_Static_Checks (Param_Spec);
9576
         end if;
9577
 
9578
      <<Continue>>
9579
         Next (Param_Spec);
9580
      end loop;
9581
 
9582
      --  If this is the formal part of a function specification, analyze the
9583
      --  subtype mark in the context where the formals are visible but not
9584
      --  yet usable, and may hide outer homographs.
9585
 
9586
      if Nkind (Related_Nod) = N_Function_Specification then
9587
         Analyze_Return_Type (Related_Nod);
9588
      end if;
9589
 
9590
      --  Now set the kind (mode) of each formal
9591
 
9592
      Param_Spec := First (T);
9593
      while Present (Param_Spec) loop
9594
         Formal := Defining_Identifier (Param_Spec);
9595
         Set_Formal_Mode (Formal);
9596
 
9597
         if Ekind (Formal) = E_In_Parameter then
9598
            Set_Default_Value (Formal, Expression (Param_Spec));
9599
 
9600
            if Present (Expression (Param_Spec)) then
9601
               Default :=  Expression (Param_Spec);
9602
 
9603
               if Is_Scalar_Type (Etype (Default)) then
9604
                  if Nkind (Parameter_Type (Param_Spec)) /=
9605
                                              N_Access_Definition
9606
                  then
9607
                     Formal_Type := Entity (Parameter_Type (Param_Spec));
9608
                  else
9609
                     Formal_Type :=
9610
                       Access_Definition
9611
                         (Related_Nod, Parameter_Type (Param_Spec));
9612
                  end if;
9613
 
9614
                  Apply_Scalar_Range_Check (Default, Formal_Type);
9615
               end if;
9616
            end if;
9617
 
9618
         elsif Ekind (Formal) = E_Out_Parameter then
9619
            Num_Out_Params := Num_Out_Params + 1;
9620
 
9621
            if Num_Out_Params = 1 then
9622
               First_Out_Param := Formal;
9623
            end if;
9624
 
9625
         elsif Ekind (Formal) = E_In_Out_Parameter then
9626
            Num_Out_Params := Num_Out_Params + 1;
9627
         end if;
9628
 
9629
         --  Skip remaining processing if formal type was in error
9630
 
9631
         if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
9632
            goto Next_Parameter;
9633
         end if;
9634
 
9635
         --  Force call by reference if aliased
9636
 
9637
         if Is_Aliased (Formal) then
9638
            Set_Mechanism (Formal, By_Reference);
9639
 
9640
            --  Warn if user asked this to be passed by copy
9641
 
9642
            if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
9643
               Error_Msg_N
9644
                 ("?cannot pass aliased parameter & by copy", Formal);
9645
            end if;
9646
 
9647
         --  Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
9648
 
9649
         elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
9650
            Set_Mechanism (Formal, By_Copy);
9651
 
9652
         elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
9653
            Set_Mechanism (Formal, By_Reference);
9654
         end if;
9655
 
9656
      <<Next_Parameter>>
9657
         Next (Param_Spec);
9658
      end loop;
9659
 
9660
      if Present (First_Out_Param) and then Num_Out_Params = 1 then
9661
         Set_Is_Only_Out_Parameter (First_Out_Param);
9662
      end if;
9663
   end Process_Formals;
9664
 
9665
   ------------------
9666
   -- Process_PPCs --
9667
   ------------------
9668
 
9669
   procedure Process_PPCs
9670
     (N       : Node_Id;
9671
      Spec_Id : Entity_Id;
9672
      Body_Id : Entity_Id)
9673
   is
9674
      Loc   : constant Source_Ptr := Sloc (N);
9675
      Prag  : Node_Id;
9676
      Parms : List_Id;
9677
 
9678
      Designator : Entity_Id;
9679
      --  Subprogram designator, set from Spec_Id if present, else Body_Id
9680
 
9681
      Precond : Node_Id := Empty;
9682
      --  Set non-Empty if we prepend precondition to the declarations. This
9683
      --  is used to hook up inherited preconditions (adding the condition
9684
      --  expression with OR ELSE, and adding the message).
9685
 
9686
      Inherited_Precond : Node_Id;
9687
      --  Precondition inherited from parent subprogram
9688
 
9689
      Inherited : constant Subprogram_List :=
9690
                     Inherited_Subprograms (Spec_Id);
9691
      --  List of subprograms inherited by this subprogram
9692
 
9693
      Plist : List_Id := No_List;
9694
      --  List of generated postconditions
9695
 
9696
      function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id;
9697
      --  Prag contains an analyzed precondition or postcondition pragma. This
9698
      --  function copies the pragma, changes it to the corresponding Check
9699
      --  pragma and returns the Check pragma as the result. If Pspec is non-
9700
      --  empty, this is the case of inheriting a PPC, where we must change
9701
      --  references to parameters of the inherited subprogram to point to the
9702
      --  corresponding parameters of the current subprogram.
9703
 
9704
      function Invariants_Or_Predicates_Present return Boolean;
9705
      --  Determines if any invariants or predicates are present for any OUT
9706
      --  or IN OUT parameters of the subprogram, or (for a function) if the
9707
      --  return value has an invariant.
9708
 
9709
      function Is_Public_Subprogram_For (T : Entity_Id) return Boolean;
9710
      --  T is the entity for a private type for which invariants are defined.
9711
      --  This function returns True if the procedure corresponding to the
9712
      --  value of Designator is a public procedure from the point of view of
9713
      --  this type (i.e. its spec is in the visible part of the package that
9714
      --  contains the declaration of the private type). A True value means
9715
      --  that an invariant check is required (for an IN OUT parameter, or
9716
      --  the returned value of a function.
9717
 
9718
      --------------
9719
      -- Grab_PPC --
9720
      --------------
9721
 
9722
      function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id is
9723
         Nam : constant Name_Id := Pragma_Name (Prag);
9724
         Map : Elist_Id;
9725
         CP  : Node_Id;
9726
 
9727
      begin
9728
         --  Prepare map if this is the case where we have to map entities of
9729
         --  arguments in the overridden subprogram to corresponding entities
9730
         --  of the current subprogram.
9731
 
9732
         if No (Pspec) then
9733
            Map := No_Elist;
9734
 
9735
         else
9736
            declare
9737
               PF : Entity_Id;
9738
               CF : Entity_Id;
9739
 
9740
            begin
9741
               Map := New_Elmt_List;
9742
               PF := First_Formal (Pspec);
9743
               CF := First_Formal (Designator);
9744
               while Present (PF) loop
9745
                  Append_Elmt (PF, Map);
9746
                  Append_Elmt (CF, Map);
9747
                  Next_Formal (PF);
9748
                  Next_Formal (CF);
9749
               end loop;
9750
            end;
9751
         end if;
9752
 
9753
         --  Now we can copy the tree, doing any required substitutions
9754
 
9755
         CP := New_Copy_Tree (Prag, Map => Map, New_Scope => Current_Scope);
9756
 
9757
         --  Set Analyzed to false, since we want to reanalyze the check
9758
         --  procedure. Note that it is only at the outer level that we
9759
         --  do this fiddling, for the spec cases, the already preanalyzed
9760
         --  parameters are not affected.
9761
 
9762
         Set_Analyzed (CP, False);
9763
 
9764
         --  We also make sure Comes_From_Source is False for the copy
9765
 
9766
         Set_Comes_From_Source (CP, False);
9767
 
9768
         --  For a postcondition pragma within a generic, preserve the pragma
9769
         --  for later expansion.
9770
 
9771
         if Nam = Name_Postcondition
9772
           and then not Expander_Active
9773
         then
9774
            return CP;
9775
         end if;
9776
 
9777
         --  Change copy of pragma into corresponding pragma Check
9778
 
9779
         Prepend_To (Pragma_Argument_Associations (CP),
9780
           Make_Pragma_Argument_Association (Sloc (Prag),
9781
             Expression => Make_Identifier (Loc, Nam)));
9782
         Set_Pragma_Identifier (CP, Make_Identifier (Sloc (Prag), Name_Check));
9783
 
9784
         --  If this is inherited case and the current message starts with
9785
         --  "failed p", we change it to "failed inherited p...".
9786
 
9787
         if Present (Pspec) then
9788
            declare
9789
               Msg : constant Node_Id :=
9790
                       Last (Pragma_Argument_Associations (CP));
9791
 
9792
            begin
9793
               if Chars (Msg) = Name_Message then
9794
                  String_To_Name_Buffer (Strval (Expression (Msg)));
9795
 
9796
                  if Name_Buffer (1 .. 8) = "failed p" then
9797
                     Insert_Str_In_Name_Buffer ("inherited ", 8);
9798
                     Set_Strval
9799
                       (Expression (Last (Pragma_Argument_Associations (CP))),
9800
                        String_From_Name_Buffer);
9801
                  end if;
9802
               end if;
9803
            end;
9804
         end if;
9805
 
9806
         --  Return the check pragma
9807
 
9808
         return CP;
9809
      end Grab_PPC;
9810
 
9811
      --------------------------------------
9812
      -- Invariants_Or_Predicates_Present --
9813
      --------------------------------------
9814
 
9815
      function Invariants_Or_Predicates_Present return Boolean is
9816
         Formal : Entity_Id;
9817
 
9818
      begin
9819
         --  Check function return result
9820
 
9821
         if Ekind (Designator) /= E_Procedure
9822
           and then Has_Invariants (Etype (Designator))
9823
         then
9824
            return True;
9825
         end if;
9826
 
9827
         --  Check parameters
9828
 
9829
         Formal := First_Formal (Designator);
9830
         while Present (Formal) loop
9831
            if Ekind (Formal) /= E_In_Parameter
9832
              and then
9833
                (Has_Invariants (Etype (Formal))
9834
                  or else Present (Predicate_Function (Etype (Formal))))
9835
            then
9836
               return True;
9837
            end if;
9838
 
9839
            Next_Formal (Formal);
9840
         end loop;
9841
 
9842
         return False;
9843
      end Invariants_Or_Predicates_Present;
9844
 
9845
      ------------------------------
9846
      -- Is_Public_Subprogram_For --
9847
      ------------------------------
9848
 
9849
      --  The type T is a private type, its declaration is therefore in
9850
      --  the list of public declarations of some package. The test for a
9851
      --  public subprogram is that its declaration is in this same list
9852
      --  of declarations for the same package (note that all the public
9853
      --  declarations are in one list, and all the private declarations
9854
      --  in another, so this deals with the public/private distinction).
9855
 
9856
      function Is_Public_Subprogram_For (T : Entity_Id) return Boolean is
9857
         DD : constant Node_Id := Unit_Declaration_Node (Designator);
9858
         --  The subprogram declaration for the subprogram in question
9859
 
9860
         TL : constant List_Id :=
9861
                Visible_Declarations
9862
                  (Specification (Unit_Declaration_Node (Scope (T))));
9863
         --  The list of declarations containing the private declaration of
9864
         --  the type. We know it is a private type, so we know its scope is
9865
         --  the package in question, and we know it must be in the visible
9866
         --  declarations of this package.
9867
 
9868
      begin
9869
         --  If the subprogram declaration is not a list member, it must be
9870
         --  an Init_Proc, in which case we want to consider it to be a
9871
         --  public subprogram, since we do get initializations to deal with.
9872
 
9873
         if not Is_List_Member (DD) then
9874
            return True;
9875
 
9876
         --  Otherwise we test whether the subprogram is declared in the
9877
         --  visible declarations of the package containing the type.
9878
 
9879
         else
9880
            return TL = List_Containing (DD);
9881
         end if;
9882
      end Is_Public_Subprogram_For;
9883
 
9884
   --  Start of processing for Process_PPCs
9885
 
9886
   begin
9887
      --  Capture designator from spec if present, else from body
9888
 
9889
      if Present (Spec_Id) then
9890
         Designator := Spec_Id;
9891
      else
9892
         Designator := Body_Id;
9893
      end if;
9894
 
9895
      --  Grab preconditions from spec
9896
 
9897
      if Present (Spec_Id) then
9898
 
9899
         --  Loop through PPC pragmas from spec. Note that preconditions from
9900
         --  the body will be analyzed and converted when we scan the body
9901
         --  declarations below.
9902
 
9903
         Prag := Spec_PPC_List (Contract (Spec_Id));
9904
         while Present (Prag) loop
9905
            if Pragma_Name (Prag) = Name_Precondition then
9906
 
9907
               --  For Pre (or Precondition pragma), we simply prepend the
9908
               --  pragma to the list of declarations right away so that it
9909
               --  will be executed at the start of the procedure. Note that
9910
               --  this processing reverses the order of the list, which is
9911
               --  what we want since new entries were chained to the head of
9912
               --  the list. There can be more than one precondition when we
9913
               --  use pragma Precondition.
9914
 
9915
               if not Class_Present (Prag) then
9916
                  Prepend (Grab_PPC, Declarations (N));
9917
 
9918
               --  For Pre'Class there can only be one pragma, and we save
9919
               --  it in Precond for now. We will add inherited Pre'Class
9920
               --  stuff before inserting this pragma in the declarations.
9921
               else
9922
                  Precond := Grab_PPC;
9923
               end if;
9924
            end if;
9925
 
9926
            Prag := Next_Pragma (Prag);
9927
         end loop;
9928
 
9929
         --  Now deal with inherited preconditions
9930
 
9931
         for J in Inherited'Range loop
9932
            Prag := Spec_PPC_List (Contract (Inherited (J)));
9933
 
9934
            while Present (Prag) loop
9935
               if Pragma_Name (Prag) = Name_Precondition
9936
                 and then Class_Present (Prag)
9937
               then
9938
                  Inherited_Precond := Grab_PPC (Inherited (J));
9939
 
9940
                  --  No precondition so far, so establish this as the first
9941
 
9942
                  if No (Precond) then
9943
                     Precond := Inherited_Precond;
9944
 
9945
                  --  Here we already have a precondition, add inherited one
9946
 
9947
                  else
9948
                     --  Add new precondition to old one using OR ELSE
9949
 
9950
                     declare
9951
                        New_Expr : constant Node_Id :=
9952
                                     Get_Pragma_Arg
9953
                                       (Next
9954
                                         (First
9955
                                           (Pragma_Argument_Associations
9956
                                             (Inherited_Precond))));
9957
                        Old_Expr : constant Node_Id :=
9958
                                     Get_Pragma_Arg
9959
                                       (Next
9960
                                         (First
9961
                                           (Pragma_Argument_Associations
9962
                                             (Precond))));
9963
 
9964
                     begin
9965
                        if Paren_Count (Old_Expr) = 0 then
9966
                           Set_Paren_Count (Old_Expr, 1);
9967
                        end if;
9968
 
9969
                        if Paren_Count (New_Expr) = 0 then
9970
                           Set_Paren_Count (New_Expr, 1);
9971
                        end if;
9972
 
9973
                        Rewrite (Old_Expr,
9974
                          Make_Or_Else (Sloc (Old_Expr),
9975
                            Left_Opnd  => Relocate_Node (Old_Expr),
9976
                            Right_Opnd => New_Expr));
9977
                     end;
9978
 
9979
                     --  Add new message in the form:
9980
 
9981
                     --     failed precondition from bla
9982
                     --       also failed inherited precondition from bla
9983
                     --       ...
9984
 
9985
                     --  Skip this if exception locations are suppressed
9986
 
9987
                     if not Exception_Locations_Suppressed then
9988
                        declare
9989
                           New_Msg : constant Node_Id :=
9990
                                       Get_Pragma_Arg
9991
                                         (Last
9992
                                            (Pragma_Argument_Associations
9993
                                               (Inherited_Precond)));
9994
                           Old_Msg : constant Node_Id :=
9995
                                       Get_Pragma_Arg
9996
                                         (Last
9997
                                            (Pragma_Argument_Associations
9998
                                               (Precond)));
9999
                        begin
10000
                           Start_String (Strval (Old_Msg));
10001
                           Store_String_Chars (ASCII.LF & "  also ");
10002
                           Store_String_Chars (Strval (New_Msg));
10003
                           Set_Strval (Old_Msg, End_String);
10004
                        end;
10005
                     end if;
10006
                  end if;
10007
               end if;
10008
 
10009
               Prag := Next_Pragma (Prag);
10010
            end loop;
10011
         end loop;
10012
 
10013
         --  If we have built a precondition for Pre'Class (including any
10014
         --  Pre'Class aspects inherited from parent subprograms), then we
10015
         --  insert this composite precondition at this stage.
10016
 
10017
         if Present (Precond) then
10018
            Prepend (Precond, Declarations (N));
10019
         end if;
10020
      end if;
10021
 
10022
      --  Build postconditions procedure if needed and prepend the following
10023
      --  declaration to the start of the declarations for the subprogram.
10024
 
10025
      --     procedure _postconditions [(_Result : resulttype)] is
10026
      --     begin
10027
      --        pragma Check (Postcondition, condition [,message]);
10028
      --        pragma Check (Postcondition, condition [,message]);
10029
      --        ...
10030
      --        Invariant_Procedure (_Result) ...
10031
      --        Invariant_Procedure (Arg1)
10032
      --        ...
10033
      --     end;
10034
 
10035
      --  First we deal with the postconditions in the body
10036
 
10037
      if Is_Non_Empty_List (Declarations (N)) then
10038
 
10039
         --  Loop through declarations
10040
 
10041
         Prag := First (Declarations (N));
10042
         while Present (Prag) loop
10043
            if Nkind (Prag) = N_Pragma then
10044
 
10045
               --  If pragma, capture if enabled postcondition, else ignore
10046
 
10047
               if Pragma_Name (Prag) = Name_Postcondition
10048
                 and then Check_Enabled (Name_Postcondition)
10049
               then
10050
                  if Plist = No_List then
10051
                     Plist := Empty_List;
10052
                  end if;
10053
 
10054
                  Analyze (Prag);
10055
 
10056
                  --  If expansion is disabled, as in a generic unit, save
10057
                  --  pragma for later expansion.
10058
 
10059
                  if not Expander_Active then
10060
                     Prepend (Grab_PPC, Declarations (N));
10061
                  else
10062
                     Append (Grab_PPC, Plist);
10063
                  end if;
10064
               end if;
10065
 
10066
               Next (Prag);
10067
 
10068
            --  Not a pragma, if comes from source, then end scan
10069
 
10070
            elsif Comes_From_Source (Prag) then
10071
               exit;
10072
 
10073
            --  Skip stuff not coming from source
10074
 
10075
            else
10076
               Next (Prag);
10077
            end if;
10078
         end loop;
10079
      end if;
10080
 
10081
      --  Now deal with any postconditions from the spec
10082
 
10083
      if Present (Spec_Id) then
10084
         Spec_Postconditions : declare
10085
            procedure Process_Post_Conditions
10086
              (Spec  : Node_Id;
10087
               Class : Boolean);
10088
            --  This processes the Spec_PPC_List from Spec, processing any
10089
            --  postconditions from the list. If Class is True, then only
10090
            --  postconditions marked with Class_Present are considered.
10091
            --  The caller has checked that Spec_PPC_List is non-Empty.
10092
 
10093
            -----------------------------
10094
            -- Process_Post_Conditions --
10095
            -----------------------------
10096
 
10097
            procedure Process_Post_Conditions
10098
              (Spec  : Node_Id;
10099
               Class : Boolean)
10100
            is
10101
               Pspec : Node_Id;
10102
 
10103
            begin
10104
               if Class then
10105
                  Pspec := Spec;
10106
               else
10107
                  Pspec := Empty;
10108
               end if;
10109
 
10110
               --  Loop through PPC pragmas from spec
10111
 
10112
               Prag := Spec_PPC_List (Contract (Spec));
10113
               loop
10114
                  if Pragma_Name (Prag) = Name_Postcondition
10115
                    and then (not Class or else Class_Present (Prag))
10116
                  then
10117
                     if Plist = No_List then
10118
                        Plist := Empty_List;
10119
                     end if;
10120
 
10121
                     if not Expander_Active then
10122
                        Prepend
10123
                          (Grab_PPC (Pspec), Declarations (N));
10124
                     else
10125
                        Append (Grab_PPC (Pspec), Plist);
10126
                     end if;
10127
                  end if;
10128
 
10129
                  Prag := Next_Pragma (Prag);
10130
                  exit when No (Prag);
10131
               end loop;
10132
            end Process_Post_Conditions;
10133
 
10134
         --  Start of processing for Spec_Postconditions
10135
 
10136
         begin
10137
            if Present (Spec_PPC_List (Contract (Spec_Id))) then
10138
               Process_Post_Conditions (Spec_Id, Class => False);
10139
            end if;
10140
 
10141
            --  Process inherited postconditions
10142
 
10143
            for J in Inherited'Range loop
10144
               if Present (Spec_PPC_List (Contract (Inherited (J)))) then
10145
                  Process_Post_Conditions (Inherited (J), Class => True);
10146
               end if;
10147
            end loop;
10148
         end Spec_Postconditions;
10149
      end if;
10150
 
10151
      --  If we had any postconditions and expansion is enabled, or if the
10152
      --  procedure has invariants, then build the _Postconditions procedure.
10153
 
10154
      if (Present (Plist) or else Invariants_Or_Predicates_Present)
10155
        and then Expander_Active
10156
      then
10157
         if No (Plist) then
10158
            Plist := Empty_List;
10159
         end if;
10160
 
10161
         --  Special processing for function case
10162
 
10163
         if Ekind (Designator) /= E_Procedure then
10164
            declare
10165
               Rent : constant Entity_Id :=
10166
                        Make_Defining_Identifier (Loc, Name_uResult);
10167
               Ftyp : constant Entity_Id := Etype (Designator);
10168
 
10169
            begin
10170
               Set_Etype (Rent, Ftyp);
10171
 
10172
               --  Add argument for return
10173
 
10174
               Parms :=
10175
                 New_List (
10176
                   Make_Parameter_Specification (Loc,
10177
                     Parameter_Type      => New_Occurrence_Of (Ftyp, Loc),
10178
                     Defining_Identifier => Rent));
10179
 
10180
               --  Add invariant call if returning type with invariants and
10181
               --  this is a public function, i.e. a function declared in the
10182
               --  visible part of the package defining the private type.
10183
 
10184
               if Has_Invariants (Etype (Rent))
10185
                 and then Present (Invariant_Procedure (Etype (Rent)))
10186
                 and then Is_Public_Subprogram_For (Etype (Rent))
10187
               then
10188
                  Append_To (Plist,
10189
                    Make_Invariant_Call (New_Occurrence_Of (Rent, Loc)));
10190
               end if;
10191
            end;
10192
 
10193
         --  Procedure rather than a function
10194
 
10195
         else
10196
            Parms := No_List;
10197
         end if;
10198
 
10199
         --  Add invariant calls and predicate calls for parameters. Note that
10200
         --  this is done for functions as well, since in Ada 2012 they can
10201
         --  have IN OUT args.
10202
 
10203
         declare
10204
            Formal : Entity_Id;
10205
            Ftype  : Entity_Id;
10206
 
10207
         begin
10208
            Formal := First_Formal (Designator);
10209
            while Present (Formal) loop
10210
               if Ekind (Formal) /= E_In_Parameter then
10211
                  Ftype := Etype (Formal);
10212
 
10213
                  if Has_Invariants (Ftype)
10214
                    and then Present (Invariant_Procedure (Ftype))
10215
                    and then Is_Public_Subprogram_For (Ftype)
10216
                  then
10217
                     Append_To (Plist,
10218
                       Make_Invariant_Call
10219
                         (New_Occurrence_Of (Formal, Loc)));
10220
                  end if;
10221
 
10222
                  if Present (Predicate_Function (Ftype)) then
10223
                     Append_To (Plist,
10224
                       Make_Predicate_Check
10225
                         (Ftype, New_Occurrence_Of (Formal, Loc)));
10226
                  end if;
10227
               end if;
10228
 
10229
               Next_Formal (Formal);
10230
            end loop;
10231
         end;
10232
 
10233
         --  Build and insert postcondition procedure
10234
 
10235
         declare
10236
            Post_Proc : constant Entity_Id :=
10237
                          Make_Defining_Identifier (Loc,
10238
                            Chars => Name_uPostconditions);
10239
            --  The entity for the _Postconditions procedure
10240
 
10241
         begin
10242
            Prepend_To (Declarations (N),
10243
              Make_Subprogram_Body (Loc,
10244
                Specification =>
10245
                  Make_Procedure_Specification (Loc,
10246
                    Defining_Unit_Name => Post_Proc,
10247
                    Parameter_Specifications => Parms),
10248
 
10249
                Declarations => Empty_List,
10250
 
10251
                Handled_Statement_Sequence =>
10252
                  Make_Handled_Sequence_Of_Statements (Loc,
10253
                    Statements => Plist)));
10254
 
10255
            Set_Ekind (Post_Proc, E_Procedure);
10256
 
10257
            --  If this is a procedure, set the Postcondition_Proc attribute on
10258
            --  the proper defining entity for the subprogram.
10259
 
10260
            if Ekind (Designator) = E_Procedure then
10261
               Set_Postcondition_Proc (Designator, Post_Proc);
10262
            end if;
10263
         end;
10264
 
10265
         Set_Has_Postconditions (Designator);
10266
      end if;
10267
   end Process_PPCs;
10268
 
10269
   ----------------------------
10270
   -- Reference_Body_Formals --
10271
   ----------------------------
10272
 
10273
   procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10274
      Fs : Entity_Id;
10275
      Fb : Entity_Id;
10276
 
10277
   begin
10278
      if Error_Posted (Spec) then
10279
         return;
10280
      end if;
10281
 
10282
      --  Iterate over both lists. They may be of different lengths if the two
10283
      --  specs are not conformant.
10284
 
10285
      Fs := First_Formal (Spec);
10286
      Fb := First_Formal (Bod);
10287
      while Present (Fs) and then Present (Fb) loop
10288
         Generate_Reference (Fs, Fb, 'b');
10289
 
10290
         if Style_Check then
10291
            Style.Check_Identifier (Fb, Fs);
10292
         end if;
10293
 
10294
         Set_Spec_Entity (Fb, Fs);
10295
         Set_Referenced (Fs, False);
10296
         Next_Formal (Fs);
10297
         Next_Formal (Fb);
10298
      end loop;
10299
   end Reference_Body_Formals;
10300
 
10301
   -------------------------
10302
   -- Set_Actual_Subtypes --
10303
   -------------------------
10304
 
10305
   procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
10306
      Decl           : Node_Id;
10307
      Formal         : Entity_Id;
10308
      T              : Entity_Id;
10309
      First_Stmt     : Node_Id := Empty;
10310
      AS_Needed      : Boolean;
10311
 
10312
   begin
10313
      --  If this is an empty initialization procedure, no need to create
10314
      --  actual subtypes (small optimization).
10315
 
10316
      if Ekind (Subp) = E_Procedure
10317
        and then Is_Null_Init_Proc (Subp)
10318
      then
10319
         return;
10320
      end if;
10321
 
10322
      Formal := First_Formal (Subp);
10323
      while Present (Formal) loop
10324
         T := Etype (Formal);
10325
 
10326
         --  We never need an actual subtype for a constrained formal
10327
 
10328
         if Is_Constrained (T) then
10329
            AS_Needed := False;
10330
 
10331
         --  If we have unknown discriminants, then we do not need an actual
10332
         --  subtype, or more accurately we cannot figure it out! Note that
10333
         --  all class-wide types have unknown discriminants.
10334
 
10335
         elsif Has_Unknown_Discriminants (T) then
10336
            AS_Needed := False;
10337
 
10338
         --  At this stage we have an unconstrained type that may need an
10339
         --  actual subtype. For sure the actual subtype is needed if we have
10340
         --  an unconstrained array type.
10341
 
10342
         elsif Is_Array_Type (T) then
10343
            AS_Needed := True;
10344
 
10345
         --  The only other case needing an actual subtype is an unconstrained
10346
         --  record type which is an IN parameter (we cannot generate actual
10347
         --  subtypes for the OUT or IN OUT case, since an assignment can
10348
         --  change the discriminant values. However we exclude the case of
10349
         --  initialization procedures, since discriminants are handled very
10350
         --  specially in this context, see the section entitled "Handling of
10351
         --  Discriminants" in Einfo.
10352
 
10353
         --  We also exclude the case of Discrim_SO_Functions (functions used
10354
         --  in front end layout mode for size/offset values), since in such
10355
         --  functions only discriminants are referenced, and not only are such
10356
         --  subtypes not needed, but they cannot always be generated, because
10357
         --  of order of elaboration issues.
10358
 
10359
         elsif Is_Record_Type (T)
10360
           and then Ekind (Formal) = E_In_Parameter
10361
           and then Chars (Formal) /= Name_uInit
10362
           and then not Is_Unchecked_Union (T)
10363
           and then not Is_Discrim_SO_Function (Subp)
10364
         then
10365
            AS_Needed := True;
10366
 
10367
         --  All other cases do not need an actual subtype
10368
 
10369
         else
10370
            AS_Needed := False;
10371
         end if;
10372
 
10373
         --  Generate actual subtypes for unconstrained arrays and
10374
         --  unconstrained discriminated records.
10375
 
10376
         if AS_Needed then
10377
            if Nkind (N) = N_Accept_Statement then
10378
 
10379
               --  If expansion is active, the formal is replaced by a local
10380
               --  variable that renames the corresponding entry of the
10381
               --  parameter block, and it is this local variable that may
10382
               --  require an actual subtype.
10383
 
10384
               if Full_Expander_Active then
10385
                  Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10386
               else
10387
                  Decl := Build_Actual_Subtype (T, Formal);
10388
               end if;
10389
 
10390
               if Present (Handled_Statement_Sequence (N)) then
10391
                  First_Stmt :=
10392
                    First (Statements (Handled_Statement_Sequence (N)));
10393
                  Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10394
                  Mark_Rewrite_Insertion (Decl);
10395
               else
10396
                  --  If the accept statement has no body, there will be no
10397
                  --  reference to the actuals, so no need to compute actual
10398
                  --  subtypes.
10399
 
10400
                  return;
10401
               end if;
10402
 
10403
            else
10404
               Decl := Build_Actual_Subtype (T, Formal);
10405
               Prepend (Decl, Declarations (N));
10406
               Mark_Rewrite_Insertion (Decl);
10407
            end if;
10408
 
10409
            --  The declaration uses the bounds of an existing object, and
10410
            --  therefore needs no constraint checks.
10411
 
10412
            Analyze (Decl, Suppress => All_Checks);
10413
 
10414
            --  We need to freeze manually the generated type when it is
10415
            --  inserted anywhere else than in a declarative part.
10416
 
10417
            if Present (First_Stmt) then
10418
               Insert_List_Before_And_Analyze (First_Stmt,
10419
                 Freeze_Entity (Defining_Identifier (Decl), N));
10420
            end if;
10421
 
10422
            if Nkind (N) = N_Accept_Statement
10423
              and then Full_Expander_Active
10424
            then
10425
               Set_Actual_Subtype (Renamed_Object (Formal),
10426
                 Defining_Identifier (Decl));
10427
            else
10428
               Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10429
            end if;
10430
         end if;
10431
 
10432
         Next_Formal (Formal);
10433
      end loop;
10434
   end Set_Actual_Subtypes;
10435
 
10436
   ---------------------
10437
   -- Set_Formal_Mode --
10438
   ---------------------
10439
 
10440
   procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10441
      Spec : constant Node_Id := Parent (Formal_Id);
10442
 
10443
   begin
10444
      --  Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10445
      --  since we ensure that corresponding actuals are always valid at the
10446
      --  point of the call.
10447
 
10448
      if Out_Present (Spec) then
10449
         if Ekind (Scope (Formal_Id)) = E_Function
10450
           or else Ekind (Scope (Formal_Id)) = E_Generic_Function
10451
         then
10452
            --  [IN] OUT parameters allowed for functions in Ada 2012
10453
 
10454
            if Ada_Version >= Ada_2012 then
10455
               if In_Present (Spec) then
10456
                  Set_Ekind (Formal_Id, E_In_Out_Parameter);
10457
               else
10458
                  Set_Ekind (Formal_Id, E_Out_Parameter);
10459
               end if;
10460
 
10461
            --  But not in earlier versions of Ada
10462
 
10463
            else
10464
               Error_Msg_N ("functions can only have IN parameters", Spec);
10465
               Set_Ekind (Formal_Id, E_In_Parameter);
10466
            end if;
10467
 
10468
         elsif In_Present (Spec) then
10469
            Set_Ekind (Formal_Id, E_In_Out_Parameter);
10470
 
10471
         else
10472
            Set_Ekind               (Formal_Id, E_Out_Parameter);
10473
            Set_Never_Set_In_Source (Formal_Id, True);
10474
            Set_Is_True_Constant    (Formal_Id, False);
10475
            Set_Current_Value       (Formal_Id, Empty);
10476
         end if;
10477
 
10478
      else
10479
         Set_Ekind (Formal_Id, E_In_Parameter);
10480
      end if;
10481
 
10482
      --  Set Is_Known_Non_Null for access parameters since the language
10483
      --  guarantees that access parameters are always non-null. We also set
10484
      --  Can_Never_Be_Null, since there is no way to change the value.
10485
 
10486
      if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
10487
 
10488
         --  Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10489
         --  null; In Ada 2005, only if then null_exclusion is explicit.
10490
 
10491
         if Ada_Version < Ada_2005
10492
           or else Can_Never_Be_Null (Etype (Formal_Id))
10493
         then
10494
            Set_Is_Known_Non_Null (Formal_Id);
10495
            Set_Can_Never_Be_Null (Formal_Id);
10496
         end if;
10497
 
10498
      --  Ada 2005 (AI-231): Null-exclusion access subtype
10499
 
10500
      elsif Is_Access_Type (Etype (Formal_Id))
10501
        and then Can_Never_Be_Null (Etype (Formal_Id))
10502
      then
10503
         Set_Is_Known_Non_Null (Formal_Id);
10504
 
10505
         --  We can also set Can_Never_Be_Null (thus preventing some junk
10506
         --  access checks) for the case of an IN parameter, which cannot
10507
         --  be changed, or for an IN OUT parameter, which can be changed but
10508
         --  not to a null value. But for an OUT parameter, the initial value
10509
         --  passed in can be null, so we can't set this flag in that case.
10510
 
10511
         if Ekind (Formal_Id) /= E_Out_Parameter then
10512
            Set_Can_Never_Be_Null (Formal_Id);
10513
         end if;
10514
      end if;
10515
 
10516
      Set_Mechanism (Formal_Id, Default_Mechanism);
10517
      Set_Formal_Validity (Formal_Id);
10518
   end Set_Formal_Mode;
10519
 
10520
   -------------------------
10521
   -- Set_Formal_Validity --
10522
   -------------------------
10523
 
10524
   procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10525
   begin
10526
      --  If no validity checking, then we cannot assume anything about the
10527
      --  validity of parameters, since we do not know there is any checking
10528
      --  of the validity on the call side.
10529
 
10530
      if not Validity_Checks_On then
10531
         return;
10532
 
10533
      --  If validity checking for parameters is enabled, this means we are
10534
      --  not supposed to make any assumptions about argument values.
10535
 
10536
      elsif Validity_Check_Parameters then
10537
         return;
10538
 
10539
      --  If we are checking in parameters, we will assume that the caller is
10540
      --  also checking parameters, so we can assume the parameter is valid.
10541
 
10542
      elsif Ekind (Formal_Id) = E_In_Parameter
10543
        and then Validity_Check_In_Params
10544
      then
10545
         Set_Is_Known_Valid (Formal_Id, True);
10546
 
10547
      --  Similar treatment for IN OUT parameters
10548
 
10549
      elsif Ekind (Formal_Id) = E_In_Out_Parameter
10550
        and then Validity_Check_In_Out_Params
10551
      then
10552
         Set_Is_Known_Valid (Formal_Id, True);
10553
      end if;
10554
   end Set_Formal_Validity;
10555
 
10556
   ------------------------
10557
   -- Subtype_Conformant --
10558
   ------------------------
10559
 
10560
   function Subtype_Conformant
10561
     (New_Id                   : Entity_Id;
10562
      Old_Id                   : Entity_Id;
10563
      Skip_Controlling_Formals : Boolean := False) return Boolean
10564
   is
10565
      Result : Boolean;
10566
   begin
10567
      Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10568
        Skip_Controlling_Formals => Skip_Controlling_Formals);
10569
      return Result;
10570
   end Subtype_Conformant;
10571
 
10572
   ---------------------
10573
   -- Type_Conformant --
10574
   ---------------------
10575
 
10576
   function Type_Conformant
10577
     (New_Id                   : Entity_Id;
10578
      Old_Id                   : Entity_Id;
10579
      Skip_Controlling_Formals : Boolean := False) return Boolean
10580
   is
10581
      Result : Boolean;
10582
   begin
10583
      May_Hide_Profile := False;
10584
 
10585
      Check_Conformance
10586
        (New_Id, Old_Id, Type_Conformant, False, Result,
10587
         Skip_Controlling_Formals => Skip_Controlling_Formals);
10588
      return Result;
10589
   end Type_Conformant;
10590
 
10591
   -------------------------------
10592
   -- Valid_Operator_Definition --
10593
   -------------------------------
10594
 
10595
   procedure Valid_Operator_Definition (Designator : Entity_Id) is
10596
      N    : Integer := 0;
10597
      F    : Entity_Id;
10598
      Id   : constant Name_Id := Chars (Designator);
10599
      N_OK : Boolean;
10600
 
10601
   begin
10602
      F := First_Formal (Designator);
10603
      while Present (F) loop
10604
         N := N + 1;
10605
 
10606
         if Present (Default_Value (F)) then
10607
            Error_Msg_N
10608
              ("default values not allowed for operator parameters",
10609
               Parent (F));
10610
         end if;
10611
 
10612
         Next_Formal (F);
10613
      end loop;
10614
 
10615
      --  Verify that user-defined operators have proper number of arguments
10616
      --  First case of operators which can only be unary
10617
 
10618
      if Id = Name_Op_Not
10619
        or else Id = Name_Op_Abs
10620
      then
10621
         N_OK := (N = 1);
10622
 
10623
      --  Case of operators which can be unary or binary
10624
 
10625
      elsif Id = Name_Op_Add
10626
        or Id = Name_Op_Subtract
10627
      then
10628
         N_OK := (N in 1 .. 2);
10629
 
10630
      --  All other operators can only be binary
10631
 
10632
      else
10633
         N_OK := (N = 2);
10634
      end if;
10635
 
10636
      if not N_OK then
10637
         Error_Msg_N
10638
           ("incorrect number of arguments for operator", Designator);
10639
      end if;
10640
 
10641
      if Id = Name_Op_Ne
10642
        and then Base_Type (Etype (Designator)) = Standard_Boolean
10643
        and then not Is_Intrinsic_Subprogram (Designator)
10644
      then
10645
         Error_Msg_N
10646
            ("explicit definition of inequality not allowed", Designator);
10647
      end if;
10648
   end Valid_Operator_Definition;
10649
 
10650
end Sem_Ch6;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.