1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- S E M _ D I S P --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Debug; use Debug;
|
28 |
|
|
with Elists; use Elists;
|
29 |
|
|
with Einfo; use Einfo;
|
30 |
|
|
with Exp_Disp; use Exp_Disp;
|
31 |
|
|
with Exp_Util; use Exp_Util;
|
32 |
|
|
with Exp_Ch7; use Exp_Ch7;
|
33 |
|
|
with Exp_Tss; use Exp_Tss;
|
34 |
|
|
with Errout; use Errout;
|
35 |
|
|
with Lib.Xref; use Lib.Xref;
|
36 |
|
|
with Namet; use Namet;
|
37 |
|
|
with Nlists; use Nlists;
|
38 |
|
|
with Nmake; use Nmake;
|
39 |
|
|
with Opt; use Opt;
|
40 |
|
|
with Output; use Output;
|
41 |
|
|
with Restrict; use Restrict;
|
42 |
|
|
with Rident; use Rident;
|
43 |
|
|
with Sem; use Sem;
|
44 |
|
|
with Sem_Aux; use Sem_Aux;
|
45 |
|
|
with Sem_Ch3; use Sem_Ch3;
|
46 |
|
|
with Sem_Ch6; use Sem_Ch6;
|
47 |
|
|
with Sem_Eval; use Sem_Eval;
|
48 |
|
|
with Sem_Type; use Sem_Type;
|
49 |
|
|
with Sem_Util; use Sem_Util;
|
50 |
|
|
with Snames; use Snames;
|
51 |
|
|
with Sinfo; use Sinfo;
|
52 |
|
|
with Targparm; use Targparm;
|
53 |
|
|
with Tbuild; use Tbuild;
|
54 |
|
|
with Uintp; use Uintp;
|
55 |
|
|
|
56 |
|
|
package body Sem_Disp is
|
57 |
|
|
|
58 |
|
|
-----------------------
|
59 |
|
|
-- Local Subprograms --
|
60 |
|
|
-----------------------
|
61 |
|
|
|
62 |
|
|
procedure Add_Dispatching_Operation
|
63 |
|
|
(Tagged_Type : Entity_Id;
|
64 |
|
|
New_Op : Entity_Id);
|
65 |
|
|
-- Add New_Op in the list of primitive operations of Tagged_Type
|
66 |
|
|
|
67 |
|
|
function Check_Controlling_Type
|
68 |
|
|
(T : Entity_Id;
|
69 |
|
|
Subp : Entity_Id) return Entity_Id;
|
70 |
|
|
-- T is the tagged type of a formal parameter or the result of Subp.
|
71 |
|
|
-- If the subprogram has a controlling parameter or result that matches
|
72 |
|
|
-- the type, then returns the tagged type of that parameter or result
|
73 |
|
|
-- (returning the designated tagged type in the case of an access
|
74 |
|
|
-- parameter); otherwise returns empty.
|
75 |
|
|
|
76 |
|
|
function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id;
|
77 |
|
|
-- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
|
78 |
|
|
-- type of S that has the same name of S, a type-conformant profile, an
|
79 |
|
|
-- original corresponding operation O that is a primitive of a visible
|
80 |
|
|
-- ancestor of the dispatching type of S and O is visible at the point of
|
81 |
|
|
-- of declaration of S. If the entity is found the Alias of S is set to the
|
82 |
|
|
-- original corresponding operation S and its Overridden_Operation is set
|
83 |
|
|
-- to the found entity; otherwise return Empty.
|
84 |
|
|
--
|
85 |
|
|
-- This routine does not search for non-hidden primitives since they are
|
86 |
|
|
-- covered by the normal Ada 2005 rules.
|
87 |
|
|
|
88 |
|
|
-------------------------------
|
89 |
|
|
-- Add_Dispatching_Operation --
|
90 |
|
|
-------------------------------
|
91 |
|
|
|
92 |
|
|
procedure Add_Dispatching_Operation
|
93 |
|
|
(Tagged_Type : Entity_Id;
|
94 |
|
|
New_Op : Entity_Id)
|
95 |
|
|
is
|
96 |
|
|
List : constant Elist_Id := Primitive_Operations (Tagged_Type);
|
97 |
|
|
|
98 |
|
|
begin
|
99 |
|
|
-- The dispatching operation may already be on the list, if it is the
|
100 |
|
|
-- wrapper for an inherited function of a null extension (see Exp_Ch3
|
101 |
|
|
-- for the construction of function wrappers). The list of primitive
|
102 |
|
|
-- operations must not contain duplicates.
|
103 |
|
|
|
104 |
|
|
Append_Unique_Elmt (New_Op, List);
|
105 |
|
|
end Add_Dispatching_Operation;
|
106 |
|
|
|
107 |
|
|
---------------------------
|
108 |
|
|
-- Covers_Some_Interface --
|
109 |
|
|
---------------------------
|
110 |
|
|
|
111 |
|
|
function Covers_Some_Interface (Prim : Entity_Id) return Boolean is
|
112 |
|
|
Tagged_Type : constant Entity_Id := Find_Dispatching_Type (Prim);
|
113 |
|
|
Elmt : Elmt_Id;
|
114 |
|
|
E : Entity_Id;
|
115 |
|
|
|
116 |
|
|
begin
|
117 |
|
|
pragma Assert (Is_Dispatching_Operation (Prim));
|
118 |
|
|
|
119 |
|
|
-- Although this is a dispatching primitive we must check if its
|
120 |
|
|
-- dispatching type is available because it may be the primitive
|
121 |
|
|
-- of a private type not defined as tagged in its partial view.
|
122 |
|
|
|
123 |
|
|
if Present (Tagged_Type) and then Has_Interfaces (Tagged_Type) then
|
124 |
|
|
|
125 |
|
|
-- If the tagged type is frozen then the internal entities associated
|
126 |
|
|
-- with interfaces are available in the list of primitives of the
|
127 |
|
|
-- tagged type and can be used to speed up this search.
|
128 |
|
|
|
129 |
|
|
if Is_Frozen (Tagged_Type) then
|
130 |
|
|
Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
|
131 |
|
|
while Present (Elmt) loop
|
132 |
|
|
E := Node (Elmt);
|
133 |
|
|
|
134 |
|
|
if Present (Interface_Alias (E))
|
135 |
|
|
and then Alias (E) = Prim
|
136 |
|
|
then
|
137 |
|
|
return True;
|
138 |
|
|
end if;
|
139 |
|
|
|
140 |
|
|
Next_Elmt (Elmt);
|
141 |
|
|
end loop;
|
142 |
|
|
|
143 |
|
|
-- Otherwise we must collect all the interface primitives and check
|
144 |
|
|
-- if the Prim will override some interface primitive.
|
145 |
|
|
|
146 |
|
|
else
|
147 |
|
|
declare
|
148 |
|
|
Ifaces_List : Elist_Id;
|
149 |
|
|
Iface_Elmt : Elmt_Id;
|
150 |
|
|
Iface : Entity_Id;
|
151 |
|
|
Iface_Prim : Entity_Id;
|
152 |
|
|
|
153 |
|
|
begin
|
154 |
|
|
Collect_Interfaces (Tagged_Type, Ifaces_List);
|
155 |
|
|
Iface_Elmt := First_Elmt (Ifaces_List);
|
156 |
|
|
while Present (Iface_Elmt) loop
|
157 |
|
|
Iface := Node (Iface_Elmt);
|
158 |
|
|
|
159 |
|
|
Elmt := First_Elmt (Primitive_Operations (Iface));
|
160 |
|
|
while Present (Elmt) loop
|
161 |
|
|
Iface_Prim := Node (Elmt);
|
162 |
|
|
|
163 |
|
|
if Chars (Iface) = Chars (Prim)
|
164 |
|
|
and then Is_Interface_Conformant
|
165 |
|
|
(Tagged_Type, Iface_Prim, Prim)
|
166 |
|
|
then
|
167 |
|
|
return True;
|
168 |
|
|
end if;
|
169 |
|
|
|
170 |
|
|
Next_Elmt (Elmt);
|
171 |
|
|
end loop;
|
172 |
|
|
|
173 |
|
|
Next_Elmt (Iface_Elmt);
|
174 |
|
|
end loop;
|
175 |
|
|
end;
|
176 |
|
|
end if;
|
177 |
|
|
end if;
|
178 |
|
|
|
179 |
|
|
return False;
|
180 |
|
|
end Covers_Some_Interface;
|
181 |
|
|
|
182 |
|
|
-------------------------------
|
183 |
|
|
-- Check_Controlling_Formals --
|
184 |
|
|
-------------------------------
|
185 |
|
|
|
186 |
|
|
procedure Check_Controlling_Formals
|
187 |
|
|
(Typ : Entity_Id;
|
188 |
|
|
Subp : Entity_Id)
|
189 |
|
|
is
|
190 |
|
|
Formal : Entity_Id;
|
191 |
|
|
Ctrl_Type : Entity_Id;
|
192 |
|
|
|
193 |
|
|
begin
|
194 |
|
|
Formal := First_Formal (Subp);
|
195 |
|
|
while Present (Formal) loop
|
196 |
|
|
Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
|
197 |
|
|
|
198 |
|
|
if Present (Ctrl_Type) then
|
199 |
|
|
|
200 |
|
|
-- When controlling type is concurrent and declared within a
|
201 |
|
|
-- generic or inside an instance use corresponding record type.
|
202 |
|
|
|
203 |
|
|
if Is_Concurrent_Type (Ctrl_Type)
|
204 |
|
|
and then Present (Corresponding_Record_Type (Ctrl_Type))
|
205 |
|
|
then
|
206 |
|
|
Ctrl_Type := Corresponding_Record_Type (Ctrl_Type);
|
207 |
|
|
end if;
|
208 |
|
|
|
209 |
|
|
if Ctrl_Type = Typ then
|
210 |
|
|
Set_Is_Controlling_Formal (Formal);
|
211 |
|
|
|
212 |
|
|
-- Ada 2005 (AI-231): Anonymous access types that are used in
|
213 |
|
|
-- controlling parameters exclude null because it is necessary
|
214 |
|
|
-- to read the tag to dispatch, and null has no tag.
|
215 |
|
|
|
216 |
|
|
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
|
217 |
|
|
Set_Can_Never_Be_Null (Etype (Formal));
|
218 |
|
|
Set_Is_Known_Non_Null (Etype (Formal));
|
219 |
|
|
end if;
|
220 |
|
|
|
221 |
|
|
-- Check that the parameter's nominal subtype statically
|
222 |
|
|
-- matches the first subtype.
|
223 |
|
|
|
224 |
|
|
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
|
225 |
|
|
if not Subtypes_Statically_Match
|
226 |
|
|
(Typ, Designated_Type (Etype (Formal)))
|
227 |
|
|
then
|
228 |
|
|
Error_Msg_N
|
229 |
|
|
("parameter subtype does not match controlling type",
|
230 |
|
|
Formal);
|
231 |
|
|
end if;
|
232 |
|
|
|
233 |
|
|
elsif not Subtypes_Statically_Match (Typ, Etype (Formal)) then
|
234 |
|
|
Error_Msg_N
|
235 |
|
|
("parameter subtype does not match controlling type",
|
236 |
|
|
Formal);
|
237 |
|
|
end if;
|
238 |
|
|
|
239 |
|
|
if Present (Default_Value (Formal)) then
|
240 |
|
|
|
241 |
|
|
-- In Ada 2005, access parameters can have defaults
|
242 |
|
|
|
243 |
|
|
if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
|
244 |
|
|
and then Ada_Version < Ada_2005
|
245 |
|
|
then
|
246 |
|
|
Error_Msg_N
|
247 |
|
|
("default not allowed for controlling access parameter",
|
248 |
|
|
Default_Value (Formal));
|
249 |
|
|
|
250 |
|
|
elsif not Is_Tag_Indeterminate (Default_Value (Formal)) then
|
251 |
|
|
Error_Msg_N
|
252 |
|
|
("default expression must be a tag indeterminate" &
|
253 |
|
|
" function call", Default_Value (Formal));
|
254 |
|
|
end if;
|
255 |
|
|
end if;
|
256 |
|
|
|
257 |
|
|
elsif Comes_From_Source (Subp) then
|
258 |
|
|
Error_Msg_N
|
259 |
|
|
("operation can be dispatching in only one type", Subp);
|
260 |
|
|
end if;
|
261 |
|
|
end if;
|
262 |
|
|
|
263 |
|
|
Next_Formal (Formal);
|
264 |
|
|
end loop;
|
265 |
|
|
|
266 |
|
|
if Ekind_In (Subp, E_Function, E_Generic_Function) then
|
267 |
|
|
Ctrl_Type := Check_Controlling_Type (Etype (Subp), Subp);
|
268 |
|
|
|
269 |
|
|
if Present (Ctrl_Type) then
|
270 |
|
|
if Ctrl_Type = Typ then
|
271 |
|
|
Set_Has_Controlling_Result (Subp);
|
272 |
|
|
|
273 |
|
|
-- Check that result subtype statically matches first subtype
|
274 |
|
|
-- (Ada 2005): Subp may have a controlling access result.
|
275 |
|
|
|
276 |
|
|
if Subtypes_Statically_Match (Typ, Etype (Subp))
|
277 |
|
|
or else (Ekind (Etype (Subp)) = E_Anonymous_Access_Type
|
278 |
|
|
and then
|
279 |
|
|
Subtypes_Statically_Match
|
280 |
|
|
(Typ, Designated_Type (Etype (Subp))))
|
281 |
|
|
then
|
282 |
|
|
null;
|
283 |
|
|
|
284 |
|
|
else
|
285 |
|
|
Error_Msg_N
|
286 |
|
|
("result subtype does not match controlling type", Subp);
|
287 |
|
|
end if;
|
288 |
|
|
|
289 |
|
|
elsif Comes_From_Source (Subp) then
|
290 |
|
|
Error_Msg_N
|
291 |
|
|
("operation can be dispatching in only one type", Subp);
|
292 |
|
|
end if;
|
293 |
|
|
end if;
|
294 |
|
|
end if;
|
295 |
|
|
end Check_Controlling_Formals;
|
296 |
|
|
|
297 |
|
|
----------------------------
|
298 |
|
|
-- Check_Controlling_Type --
|
299 |
|
|
----------------------------
|
300 |
|
|
|
301 |
|
|
function Check_Controlling_Type
|
302 |
|
|
(T : Entity_Id;
|
303 |
|
|
Subp : Entity_Id) return Entity_Id
|
304 |
|
|
is
|
305 |
|
|
Tagged_Type : Entity_Id := Empty;
|
306 |
|
|
|
307 |
|
|
begin
|
308 |
|
|
if Is_Tagged_Type (T) then
|
309 |
|
|
if Is_First_Subtype (T) then
|
310 |
|
|
Tagged_Type := T;
|
311 |
|
|
else
|
312 |
|
|
Tagged_Type := Base_Type (T);
|
313 |
|
|
end if;
|
314 |
|
|
|
315 |
|
|
elsif Ekind (T) = E_Anonymous_Access_Type
|
316 |
|
|
and then Is_Tagged_Type (Designated_Type (T))
|
317 |
|
|
then
|
318 |
|
|
if Ekind (Designated_Type (T)) /= E_Incomplete_Type then
|
319 |
|
|
if Is_First_Subtype (Designated_Type (T)) then
|
320 |
|
|
Tagged_Type := Designated_Type (T);
|
321 |
|
|
else
|
322 |
|
|
Tagged_Type := Base_Type (Designated_Type (T));
|
323 |
|
|
end if;
|
324 |
|
|
|
325 |
|
|
-- Ada 2005: an incomplete type can be tagged. An operation with an
|
326 |
|
|
-- access parameter of the type is dispatching.
|
327 |
|
|
|
328 |
|
|
elsif Scope (Designated_Type (T)) = Current_Scope then
|
329 |
|
|
Tagged_Type := Designated_Type (T);
|
330 |
|
|
|
331 |
|
|
-- Ada 2005 (AI-50217)
|
332 |
|
|
|
333 |
|
|
elsif From_With_Type (Designated_Type (T))
|
334 |
|
|
and then Present (Non_Limited_View (Designated_Type (T)))
|
335 |
|
|
then
|
336 |
|
|
if Is_First_Subtype (Non_Limited_View (Designated_Type (T))) then
|
337 |
|
|
Tagged_Type := Non_Limited_View (Designated_Type (T));
|
338 |
|
|
else
|
339 |
|
|
Tagged_Type := Base_Type (Non_Limited_View
|
340 |
|
|
(Designated_Type (T)));
|
341 |
|
|
end if;
|
342 |
|
|
end if;
|
343 |
|
|
end if;
|
344 |
|
|
|
345 |
|
|
if No (Tagged_Type) or else Is_Class_Wide_Type (Tagged_Type) then
|
346 |
|
|
return Empty;
|
347 |
|
|
|
348 |
|
|
-- The dispatching type and the primitive operation must be defined in
|
349 |
|
|
-- the same scope, except in the case of internal operations and formal
|
350 |
|
|
-- abstract subprograms.
|
351 |
|
|
|
352 |
|
|
elsif ((Scope (Subp) = Scope (Tagged_Type) or else Is_Internal (Subp))
|
353 |
|
|
and then (not Is_Generic_Type (Tagged_Type)
|
354 |
|
|
or else not Comes_From_Source (Subp)))
|
355 |
|
|
or else
|
356 |
|
|
(Is_Formal_Subprogram (Subp) and then Is_Abstract_Subprogram (Subp))
|
357 |
|
|
or else
|
358 |
|
|
(Nkind (Parent (Parent (Subp))) = N_Subprogram_Renaming_Declaration
|
359 |
|
|
and then
|
360 |
|
|
Present (Corresponding_Formal_Spec (Parent (Parent (Subp))))
|
361 |
|
|
and then
|
362 |
|
|
Is_Abstract_Subprogram (Subp))
|
363 |
|
|
then
|
364 |
|
|
return Tagged_Type;
|
365 |
|
|
|
366 |
|
|
else
|
367 |
|
|
return Empty;
|
368 |
|
|
end if;
|
369 |
|
|
end Check_Controlling_Type;
|
370 |
|
|
|
371 |
|
|
----------------------------
|
372 |
|
|
-- Check_Dispatching_Call --
|
373 |
|
|
----------------------------
|
374 |
|
|
|
375 |
|
|
procedure Check_Dispatching_Call (N : Node_Id) is
|
376 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
377 |
|
|
Actual : Node_Id;
|
378 |
|
|
Formal : Entity_Id;
|
379 |
|
|
Control : Node_Id := Empty;
|
380 |
|
|
Func : Entity_Id;
|
381 |
|
|
Subp_Entity : Entity_Id;
|
382 |
|
|
Indeterm_Ancestor_Call : Boolean := False;
|
383 |
|
|
Indeterm_Ctrl_Type : Entity_Id;
|
384 |
|
|
|
385 |
|
|
Static_Tag : Node_Id := Empty;
|
386 |
|
|
-- If a controlling formal has a statically tagged actual, the tag of
|
387 |
|
|
-- this actual is to be used for any tag-indeterminate actual.
|
388 |
|
|
|
389 |
|
|
procedure Check_Direct_Call;
|
390 |
|
|
-- In the case when the controlling actual is a class-wide type whose
|
391 |
|
|
-- root type's completion is a task or protected type, the call is in
|
392 |
|
|
-- fact direct. This routine detects the above case and modifies the
|
393 |
|
|
-- call accordingly.
|
394 |
|
|
|
395 |
|
|
procedure Check_Dispatching_Context;
|
396 |
|
|
-- If the call is tag-indeterminate and the entity being called is
|
397 |
|
|
-- abstract, verify that the context is a call that will eventually
|
398 |
|
|
-- provide a tag for dispatching, or has provided one already.
|
399 |
|
|
|
400 |
|
|
-----------------------
|
401 |
|
|
-- Check_Direct_Call --
|
402 |
|
|
-----------------------
|
403 |
|
|
|
404 |
|
|
procedure Check_Direct_Call is
|
405 |
|
|
Typ : Entity_Id := Etype (Control);
|
406 |
|
|
|
407 |
|
|
function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
|
408 |
|
|
-- Determine whether an entity denotes a user-defined equality
|
409 |
|
|
|
410 |
|
|
------------------------------
|
411 |
|
|
-- Is_User_Defined_Equality --
|
412 |
|
|
------------------------------
|
413 |
|
|
|
414 |
|
|
function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
|
415 |
|
|
begin
|
416 |
|
|
return
|
417 |
|
|
Ekind (Id) = E_Function
|
418 |
|
|
and then Chars (Id) = Name_Op_Eq
|
419 |
|
|
and then Comes_From_Source (Id)
|
420 |
|
|
|
421 |
|
|
-- Internally generated equalities have a full type declaration
|
422 |
|
|
-- as their parent.
|
423 |
|
|
|
424 |
|
|
and then Nkind (Parent (Id)) = N_Function_Specification;
|
425 |
|
|
end Is_User_Defined_Equality;
|
426 |
|
|
|
427 |
|
|
-- Start of processing for Check_Direct_Call
|
428 |
|
|
|
429 |
|
|
begin
|
430 |
|
|
-- Predefined primitives do not receive wrappers since they are built
|
431 |
|
|
-- from scratch for the corresponding record of synchronized types.
|
432 |
|
|
-- Equality is in general predefined, but is excluded from the check
|
433 |
|
|
-- when it is user-defined.
|
434 |
|
|
|
435 |
|
|
if Is_Predefined_Dispatching_Operation (Subp_Entity)
|
436 |
|
|
and then not Is_User_Defined_Equality (Subp_Entity)
|
437 |
|
|
then
|
438 |
|
|
return;
|
439 |
|
|
end if;
|
440 |
|
|
|
441 |
|
|
if Is_Class_Wide_Type (Typ) then
|
442 |
|
|
Typ := Root_Type (Typ);
|
443 |
|
|
end if;
|
444 |
|
|
|
445 |
|
|
if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
|
446 |
|
|
Typ := Full_View (Typ);
|
447 |
|
|
end if;
|
448 |
|
|
|
449 |
|
|
if Is_Concurrent_Type (Typ)
|
450 |
|
|
and then
|
451 |
|
|
Present (Corresponding_Record_Type (Typ))
|
452 |
|
|
then
|
453 |
|
|
Typ := Corresponding_Record_Type (Typ);
|
454 |
|
|
|
455 |
|
|
-- The concurrent record's list of primitives should contain a
|
456 |
|
|
-- wrapper for the entity of the call, retrieve it.
|
457 |
|
|
|
458 |
|
|
declare
|
459 |
|
|
Prim : Entity_Id;
|
460 |
|
|
Prim_Elmt : Elmt_Id;
|
461 |
|
|
Wrapper_Found : Boolean := False;
|
462 |
|
|
|
463 |
|
|
begin
|
464 |
|
|
Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
|
465 |
|
|
while Present (Prim_Elmt) loop
|
466 |
|
|
Prim := Node (Prim_Elmt);
|
467 |
|
|
|
468 |
|
|
if Is_Primitive_Wrapper (Prim)
|
469 |
|
|
and then Wrapped_Entity (Prim) = Subp_Entity
|
470 |
|
|
then
|
471 |
|
|
Wrapper_Found := True;
|
472 |
|
|
exit;
|
473 |
|
|
end if;
|
474 |
|
|
|
475 |
|
|
Next_Elmt (Prim_Elmt);
|
476 |
|
|
end loop;
|
477 |
|
|
|
478 |
|
|
-- A primitive declared between two views should have a
|
479 |
|
|
-- corresponding wrapper.
|
480 |
|
|
|
481 |
|
|
pragma Assert (Wrapper_Found);
|
482 |
|
|
|
483 |
|
|
-- Modify the call by setting the proper entity
|
484 |
|
|
|
485 |
|
|
Set_Entity (Name (N), Prim);
|
486 |
|
|
end;
|
487 |
|
|
end if;
|
488 |
|
|
end Check_Direct_Call;
|
489 |
|
|
|
490 |
|
|
-------------------------------
|
491 |
|
|
-- Check_Dispatching_Context --
|
492 |
|
|
-------------------------------
|
493 |
|
|
|
494 |
|
|
procedure Check_Dispatching_Context is
|
495 |
|
|
Subp : constant Entity_Id := Entity (Name (N));
|
496 |
|
|
Par : Node_Id;
|
497 |
|
|
|
498 |
|
|
begin
|
499 |
|
|
if Is_Abstract_Subprogram (Subp)
|
500 |
|
|
and then No (Controlling_Argument (N))
|
501 |
|
|
then
|
502 |
|
|
if Present (Alias (Subp))
|
503 |
|
|
and then not Is_Abstract_Subprogram (Alias (Subp))
|
504 |
|
|
and then No (DTC_Entity (Subp))
|
505 |
|
|
then
|
506 |
|
|
-- Private overriding of inherited abstract operation, call is
|
507 |
|
|
-- legal.
|
508 |
|
|
|
509 |
|
|
Set_Entity (Name (N), Alias (Subp));
|
510 |
|
|
return;
|
511 |
|
|
|
512 |
|
|
else
|
513 |
|
|
Par := Parent (N);
|
514 |
|
|
while Present (Par) loop
|
515 |
|
|
if Nkind_In (Par, N_Function_Call,
|
516 |
|
|
N_Procedure_Call_Statement,
|
517 |
|
|
N_Assignment_Statement,
|
518 |
|
|
N_Op_Eq,
|
519 |
|
|
N_Op_Ne)
|
520 |
|
|
and then Is_Tagged_Type (Etype (Subp))
|
521 |
|
|
then
|
522 |
|
|
return;
|
523 |
|
|
|
524 |
|
|
elsif Nkind (Par) = N_Qualified_Expression
|
525 |
|
|
or else Nkind (Par) = N_Unchecked_Type_Conversion
|
526 |
|
|
then
|
527 |
|
|
Par := Parent (Par);
|
528 |
|
|
|
529 |
|
|
else
|
530 |
|
|
if Ekind (Subp) = E_Function then
|
531 |
|
|
Error_Msg_N
|
532 |
|
|
("call to abstract function must be dispatching", N);
|
533 |
|
|
|
534 |
|
|
-- This error can occur for a procedure in the case of a
|
535 |
|
|
-- call to an abstract formal procedure with a statically
|
536 |
|
|
-- tagged operand.
|
537 |
|
|
|
538 |
|
|
else
|
539 |
|
|
Error_Msg_N
|
540 |
|
|
("call to abstract procedure must be dispatching",
|
541 |
|
|
N);
|
542 |
|
|
end if;
|
543 |
|
|
|
544 |
|
|
return;
|
545 |
|
|
end if;
|
546 |
|
|
end loop;
|
547 |
|
|
end if;
|
548 |
|
|
end if;
|
549 |
|
|
end Check_Dispatching_Context;
|
550 |
|
|
|
551 |
|
|
-- Start of processing for Check_Dispatching_Call
|
552 |
|
|
|
553 |
|
|
begin
|
554 |
|
|
-- Find a controlling argument, if any
|
555 |
|
|
|
556 |
|
|
if Present (Parameter_Associations (N)) then
|
557 |
|
|
Subp_Entity := Entity (Name (N));
|
558 |
|
|
|
559 |
|
|
Actual := First_Actual (N);
|
560 |
|
|
Formal := First_Formal (Subp_Entity);
|
561 |
|
|
while Present (Actual) loop
|
562 |
|
|
Control := Find_Controlling_Arg (Actual);
|
563 |
|
|
exit when Present (Control);
|
564 |
|
|
|
565 |
|
|
-- Check for the case where the actual is a tag-indeterminate call
|
566 |
|
|
-- whose result type is different than the tagged type associated
|
567 |
|
|
-- with the containing call, but is an ancestor of the type.
|
568 |
|
|
|
569 |
|
|
if Is_Controlling_Formal (Formal)
|
570 |
|
|
and then Is_Tag_Indeterminate (Actual)
|
571 |
|
|
and then Base_Type (Etype (Actual)) /= Base_Type (Etype (Formal))
|
572 |
|
|
and then Is_Ancestor (Etype (Actual), Etype (Formal))
|
573 |
|
|
then
|
574 |
|
|
Indeterm_Ancestor_Call := True;
|
575 |
|
|
Indeterm_Ctrl_Type := Etype (Formal);
|
576 |
|
|
|
577 |
|
|
-- If the formal is controlling but the actual is not, the type
|
578 |
|
|
-- of the actual is statically known, and may be used as the
|
579 |
|
|
-- controlling tag for some other tag-indeterminate actual.
|
580 |
|
|
|
581 |
|
|
elsif Is_Controlling_Formal (Formal)
|
582 |
|
|
and then Is_Entity_Name (Actual)
|
583 |
|
|
and then Is_Tagged_Type (Etype (Actual))
|
584 |
|
|
then
|
585 |
|
|
Static_Tag := Actual;
|
586 |
|
|
end if;
|
587 |
|
|
|
588 |
|
|
Next_Actual (Actual);
|
589 |
|
|
Next_Formal (Formal);
|
590 |
|
|
end loop;
|
591 |
|
|
|
592 |
|
|
-- If the call doesn't have a controlling actual but does have an
|
593 |
|
|
-- indeterminate actual that requires dispatching treatment, then an
|
594 |
|
|
-- object is needed that will serve as the controlling argument for a
|
595 |
|
|
-- dispatching call on the indeterminate actual. This can only occur
|
596 |
|
|
-- in the unusual situation of a default actual given by a
|
597 |
|
|
-- tag-indeterminate call and where the type of the call is an
|
598 |
|
|
-- ancestor of the type associated with a containing call to an
|
599 |
|
|
-- inherited operation (see AI-239).
|
600 |
|
|
|
601 |
|
|
-- Rather than create an object of the tagged type, which would be
|
602 |
|
|
-- problematic for various reasons (default initialization,
|
603 |
|
|
-- discriminants), the tag of the containing call's associated tagged
|
604 |
|
|
-- type is directly used to control the dispatching.
|
605 |
|
|
|
606 |
|
|
if No (Control)
|
607 |
|
|
and then Indeterm_Ancestor_Call
|
608 |
|
|
and then No (Static_Tag)
|
609 |
|
|
then
|
610 |
|
|
Control :=
|
611 |
|
|
Make_Attribute_Reference (Loc,
|
612 |
|
|
Prefix => New_Occurrence_Of (Indeterm_Ctrl_Type, Loc),
|
613 |
|
|
Attribute_Name => Name_Tag);
|
614 |
|
|
|
615 |
|
|
Analyze (Control);
|
616 |
|
|
end if;
|
617 |
|
|
|
618 |
|
|
if Present (Control) then
|
619 |
|
|
|
620 |
|
|
-- Verify that no controlling arguments are statically tagged
|
621 |
|
|
|
622 |
|
|
if Debug_Flag_E then
|
623 |
|
|
Write_Str ("Found Dispatching call");
|
624 |
|
|
Write_Int (Int (N));
|
625 |
|
|
Write_Eol;
|
626 |
|
|
end if;
|
627 |
|
|
|
628 |
|
|
Actual := First_Actual (N);
|
629 |
|
|
while Present (Actual) loop
|
630 |
|
|
if Actual /= Control then
|
631 |
|
|
|
632 |
|
|
if not Is_Controlling_Actual (Actual) then
|
633 |
|
|
null; -- Can be anything
|
634 |
|
|
|
635 |
|
|
elsif Is_Dynamically_Tagged (Actual) then
|
636 |
|
|
null; -- Valid parameter
|
637 |
|
|
|
638 |
|
|
elsif Is_Tag_Indeterminate (Actual) then
|
639 |
|
|
|
640 |
|
|
-- The tag is inherited from the enclosing call (the node
|
641 |
|
|
-- we are currently analyzing). Explicitly expand the
|
642 |
|
|
-- actual, since the previous call to Expand (from
|
643 |
|
|
-- Resolve_Call) had no way of knowing about the required
|
644 |
|
|
-- dispatching.
|
645 |
|
|
|
646 |
|
|
Propagate_Tag (Control, Actual);
|
647 |
|
|
|
648 |
|
|
else
|
649 |
|
|
Error_Msg_N
|
650 |
|
|
("controlling argument is not dynamically tagged",
|
651 |
|
|
Actual);
|
652 |
|
|
return;
|
653 |
|
|
end if;
|
654 |
|
|
end if;
|
655 |
|
|
|
656 |
|
|
Next_Actual (Actual);
|
657 |
|
|
end loop;
|
658 |
|
|
|
659 |
|
|
-- Mark call as a dispatching call
|
660 |
|
|
|
661 |
|
|
Set_Controlling_Argument (N, Control);
|
662 |
|
|
Check_Restriction (No_Dispatching_Calls, N);
|
663 |
|
|
|
664 |
|
|
-- The dispatching call may need to be converted into a direct
|
665 |
|
|
-- call in certain cases.
|
666 |
|
|
|
667 |
|
|
Check_Direct_Call;
|
668 |
|
|
|
669 |
|
|
-- If there is a statically tagged actual and a tag-indeterminate
|
670 |
|
|
-- call to a function of the ancestor (such as that provided by a
|
671 |
|
|
-- default), then treat this as a dispatching call and propagate
|
672 |
|
|
-- the tag to the tag-indeterminate call(s).
|
673 |
|
|
|
674 |
|
|
elsif Present (Static_Tag) and then Indeterm_Ancestor_Call then
|
675 |
|
|
Control :=
|
676 |
|
|
Make_Attribute_Reference (Loc,
|
677 |
|
|
Prefix =>
|
678 |
|
|
New_Occurrence_Of (Etype (Static_Tag), Loc),
|
679 |
|
|
Attribute_Name => Name_Tag);
|
680 |
|
|
|
681 |
|
|
Analyze (Control);
|
682 |
|
|
|
683 |
|
|
Actual := First_Actual (N);
|
684 |
|
|
Formal := First_Formal (Subp_Entity);
|
685 |
|
|
while Present (Actual) loop
|
686 |
|
|
if Is_Tag_Indeterminate (Actual)
|
687 |
|
|
and then Is_Controlling_Formal (Formal)
|
688 |
|
|
then
|
689 |
|
|
Propagate_Tag (Control, Actual);
|
690 |
|
|
end if;
|
691 |
|
|
|
692 |
|
|
Next_Actual (Actual);
|
693 |
|
|
Next_Formal (Formal);
|
694 |
|
|
end loop;
|
695 |
|
|
|
696 |
|
|
Check_Dispatching_Context;
|
697 |
|
|
|
698 |
|
|
else
|
699 |
|
|
-- The call is not dispatching, so check that there aren't any
|
700 |
|
|
-- tag-indeterminate abstract calls left.
|
701 |
|
|
|
702 |
|
|
Actual := First_Actual (N);
|
703 |
|
|
while Present (Actual) loop
|
704 |
|
|
if Is_Tag_Indeterminate (Actual) then
|
705 |
|
|
|
706 |
|
|
-- Function call case
|
707 |
|
|
|
708 |
|
|
if Nkind (Original_Node (Actual)) = N_Function_Call then
|
709 |
|
|
Func := Entity (Name (Original_Node (Actual)));
|
710 |
|
|
|
711 |
|
|
-- If the actual is an attribute then it can't be abstract
|
712 |
|
|
-- (the only current case of a tag-indeterminate attribute
|
713 |
|
|
-- is the stream Input attribute).
|
714 |
|
|
|
715 |
|
|
elsif
|
716 |
|
|
Nkind (Original_Node (Actual)) = N_Attribute_Reference
|
717 |
|
|
then
|
718 |
|
|
Func := Empty;
|
719 |
|
|
|
720 |
|
|
-- Only other possibility is a qualified expression whose
|
721 |
|
|
-- constituent expression is itself a call.
|
722 |
|
|
|
723 |
|
|
else
|
724 |
|
|
Func :=
|
725 |
|
|
Entity (Name
|
726 |
|
|
(Original_Node
|
727 |
|
|
(Expression (Original_Node (Actual)))));
|
728 |
|
|
end if;
|
729 |
|
|
|
730 |
|
|
if Present (Func) and then Is_Abstract_Subprogram (Func) then
|
731 |
|
|
Error_Msg_N
|
732 |
|
|
("call to abstract function must be dispatching", N);
|
733 |
|
|
end if;
|
734 |
|
|
end if;
|
735 |
|
|
|
736 |
|
|
Next_Actual (Actual);
|
737 |
|
|
end loop;
|
738 |
|
|
|
739 |
|
|
Check_Dispatching_Context;
|
740 |
|
|
end if;
|
741 |
|
|
|
742 |
|
|
else
|
743 |
|
|
-- If dispatching on result, the enclosing call, if any, will
|
744 |
|
|
-- determine the controlling argument. Otherwise this is the
|
745 |
|
|
-- primitive operation of the root type.
|
746 |
|
|
|
747 |
|
|
Check_Dispatching_Context;
|
748 |
|
|
end if;
|
749 |
|
|
end Check_Dispatching_Call;
|
750 |
|
|
|
751 |
|
|
---------------------------------
|
752 |
|
|
-- Check_Dispatching_Operation --
|
753 |
|
|
---------------------------------
|
754 |
|
|
|
755 |
|
|
procedure Check_Dispatching_Operation (Subp, Old_Subp : Entity_Id) is
|
756 |
|
|
Tagged_Type : Entity_Id;
|
757 |
|
|
Has_Dispatching_Parent : Boolean := False;
|
758 |
|
|
Body_Is_Last_Primitive : Boolean := False;
|
759 |
|
|
Ovr_Subp : Entity_Id := Empty;
|
760 |
|
|
|
761 |
|
|
begin
|
762 |
|
|
if not Ekind_In (Subp, E_Procedure, E_Function) then
|
763 |
|
|
return;
|
764 |
|
|
end if;
|
765 |
|
|
|
766 |
|
|
Set_Is_Dispatching_Operation (Subp, False);
|
767 |
|
|
Tagged_Type := Find_Dispatching_Type (Subp);
|
768 |
|
|
|
769 |
|
|
-- Ada 2005 (AI-345): Use the corresponding record (if available).
|
770 |
|
|
-- Required because primitives of concurrent types are be attached
|
771 |
|
|
-- to the corresponding record (not to the concurrent type).
|
772 |
|
|
|
773 |
|
|
if Ada_Version >= Ada_2005
|
774 |
|
|
and then Present (Tagged_Type)
|
775 |
|
|
and then Is_Concurrent_Type (Tagged_Type)
|
776 |
|
|
and then Present (Corresponding_Record_Type (Tagged_Type))
|
777 |
|
|
then
|
778 |
|
|
Tagged_Type := Corresponding_Record_Type (Tagged_Type);
|
779 |
|
|
end if;
|
780 |
|
|
|
781 |
|
|
-- (AI-345): The task body procedure is not a primitive of the tagged
|
782 |
|
|
-- type
|
783 |
|
|
|
784 |
|
|
if Present (Tagged_Type)
|
785 |
|
|
and then Is_Concurrent_Record_Type (Tagged_Type)
|
786 |
|
|
and then Present (Corresponding_Concurrent_Type (Tagged_Type))
|
787 |
|
|
and then Is_Task_Type (Corresponding_Concurrent_Type (Tagged_Type))
|
788 |
|
|
and then Subp = Get_Task_Body_Procedure
|
789 |
|
|
(Corresponding_Concurrent_Type (Tagged_Type))
|
790 |
|
|
then
|
791 |
|
|
return;
|
792 |
|
|
end if;
|
793 |
|
|
|
794 |
|
|
-- If Subp is derived from a dispatching operation then it should
|
795 |
|
|
-- always be treated as dispatching. In this case various checks
|
796 |
|
|
-- below will be bypassed. Makes sure that late declarations for
|
797 |
|
|
-- inherited private subprograms are treated as dispatching, even
|
798 |
|
|
-- if the associated tagged type is already frozen.
|
799 |
|
|
|
800 |
|
|
Has_Dispatching_Parent :=
|
801 |
|
|
Present (Alias (Subp))
|
802 |
|
|
and then Is_Dispatching_Operation (Alias (Subp));
|
803 |
|
|
|
804 |
|
|
if No (Tagged_Type) then
|
805 |
|
|
|
806 |
|
|
-- Ada 2005 (AI-251): Check that Subp is not a primitive associated
|
807 |
|
|
-- with an abstract interface type unless the interface acts as a
|
808 |
|
|
-- parent type in a derivation. If the interface type is a formal
|
809 |
|
|
-- type then the operation is not primitive and therefore legal.
|
810 |
|
|
|
811 |
|
|
declare
|
812 |
|
|
E : Entity_Id;
|
813 |
|
|
Typ : Entity_Id;
|
814 |
|
|
|
815 |
|
|
begin
|
816 |
|
|
E := First_Entity (Subp);
|
817 |
|
|
while Present (E) loop
|
818 |
|
|
|
819 |
|
|
-- For an access parameter, check designated type
|
820 |
|
|
|
821 |
|
|
if Ekind (Etype (E)) = E_Anonymous_Access_Type then
|
822 |
|
|
Typ := Designated_Type (Etype (E));
|
823 |
|
|
else
|
824 |
|
|
Typ := Etype (E);
|
825 |
|
|
end if;
|
826 |
|
|
|
827 |
|
|
if Comes_From_Source (Subp)
|
828 |
|
|
and then Is_Interface (Typ)
|
829 |
|
|
and then not Is_Class_Wide_Type (Typ)
|
830 |
|
|
and then not Is_Derived_Type (Typ)
|
831 |
|
|
and then not Is_Generic_Type (Typ)
|
832 |
|
|
and then not In_Instance
|
833 |
|
|
then
|
834 |
|
|
Error_Msg_N ("?declaration of& is too late!", Subp);
|
835 |
|
|
Error_Msg_NE -- CODEFIX??
|
836 |
|
|
("\spec should appear immediately after declaration of &!",
|
837 |
|
|
Subp, Typ);
|
838 |
|
|
exit;
|
839 |
|
|
end if;
|
840 |
|
|
|
841 |
|
|
Next_Entity (E);
|
842 |
|
|
end loop;
|
843 |
|
|
|
844 |
|
|
-- In case of functions check also the result type
|
845 |
|
|
|
846 |
|
|
if Ekind (Subp) = E_Function then
|
847 |
|
|
if Is_Access_Type (Etype (Subp)) then
|
848 |
|
|
Typ := Designated_Type (Etype (Subp));
|
849 |
|
|
else
|
850 |
|
|
Typ := Etype (Subp);
|
851 |
|
|
end if;
|
852 |
|
|
|
853 |
|
|
-- The following should be better commented, especially since
|
854 |
|
|
-- we just added several new conditions here ???
|
855 |
|
|
|
856 |
|
|
if Comes_From_Source (Subp)
|
857 |
|
|
and then Is_Interface (Typ)
|
858 |
|
|
and then not Is_Class_Wide_Type (Typ)
|
859 |
|
|
and then not Is_Derived_Type (Typ)
|
860 |
|
|
and then not Is_Generic_Type (Typ)
|
861 |
|
|
and then not In_Instance
|
862 |
|
|
then
|
863 |
|
|
Error_Msg_N ("?declaration of& is too late!", Subp);
|
864 |
|
|
Error_Msg_NE
|
865 |
|
|
("\spec should appear immediately after declaration of &!",
|
866 |
|
|
Subp, Typ);
|
867 |
|
|
end if;
|
868 |
|
|
end if;
|
869 |
|
|
end;
|
870 |
|
|
|
871 |
|
|
return;
|
872 |
|
|
|
873 |
|
|
-- The subprograms build internally after the freezing point (such as
|
874 |
|
|
-- init procs, interface thunks, type support subprograms, and Offset
|
875 |
|
|
-- to top functions for accessing interface components in variable
|
876 |
|
|
-- size tagged types) are not primitives.
|
877 |
|
|
|
878 |
|
|
elsif Is_Frozen (Tagged_Type)
|
879 |
|
|
and then not Comes_From_Source (Subp)
|
880 |
|
|
and then not Has_Dispatching_Parent
|
881 |
|
|
then
|
882 |
|
|
-- Complete decoration of internally built subprograms that override
|
883 |
|
|
-- a dispatching primitive. These entities correspond with the
|
884 |
|
|
-- following cases:
|
885 |
|
|
|
886 |
|
|
-- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
|
887 |
|
|
-- to override functions of nonabstract null extensions. These
|
888 |
|
|
-- primitives were added to the list of primitives of the tagged
|
889 |
|
|
-- type by Make_Controlling_Function_Wrappers. However, attribute
|
890 |
|
|
-- Is_Dispatching_Operation must be set to true.
|
891 |
|
|
|
892 |
|
|
-- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
|
893 |
|
|
-- primitives.
|
894 |
|
|
|
895 |
|
|
-- 3. Subprograms associated with stream attributes (built by
|
896 |
|
|
-- New_Stream_Subprogram)
|
897 |
|
|
|
898 |
|
|
if Present (Old_Subp)
|
899 |
|
|
and then Present (Overridden_Operation (Subp))
|
900 |
|
|
and then Is_Dispatching_Operation (Old_Subp)
|
901 |
|
|
then
|
902 |
|
|
pragma Assert
|
903 |
|
|
((Ekind (Subp) = E_Function
|
904 |
|
|
and then Is_Dispatching_Operation (Old_Subp)
|
905 |
|
|
and then Is_Null_Extension (Base_Type (Etype (Subp))))
|
906 |
|
|
or else
|
907 |
|
|
(Ekind (Subp) = E_Procedure
|
908 |
|
|
and then Is_Dispatching_Operation (Old_Subp)
|
909 |
|
|
and then Present (Alias (Old_Subp))
|
910 |
|
|
and then Is_Null_Interface_Primitive
|
911 |
|
|
(Ultimate_Alias (Old_Subp)))
|
912 |
|
|
or else Get_TSS_Name (Subp) = TSS_Stream_Read
|
913 |
|
|
or else Get_TSS_Name (Subp) = TSS_Stream_Write);
|
914 |
|
|
|
915 |
|
|
Check_Controlling_Formals (Tagged_Type, Subp);
|
916 |
|
|
Override_Dispatching_Operation (Tagged_Type, Old_Subp, Subp);
|
917 |
|
|
Set_Is_Dispatching_Operation (Subp);
|
918 |
|
|
end if;
|
919 |
|
|
|
920 |
|
|
return;
|
921 |
|
|
|
922 |
|
|
-- The operation may be a child unit, whose scope is the defining
|
923 |
|
|
-- package, but which is not a primitive operation of the type.
|
924 |
|
|
|
925 |
|
|
elsif Is_Child_Unit (Subp) then
|
926 |
|
|
return;
|
927 |
|
|
|
928 |
|
|
-- If the subprogram is not defined in a package spec, the only case
|
929 |
|
|
-- where it can be a dispatching op is when it overrides an operation
|
930 |
|
|
-- before the freezing point of the type.
|
931 |
|
|
|
932 |
|
|
elsif ((not Is_Package_Or_Generic_Package (Scope (Subp)))
|
933 |
|
|
or else In_Package_Body (Scope (Subp)))
|
934 |
|
|
and then not Has_Dispatching_Parent
|
935 |
|
|
then
|
936 |
|
|
if not Comes_From_Source (Subp)
|
937 |
|
|
or else (Present (Old_Subp) and then not Is_Frozen (Tagged_Type))
|
938 |
|
|
then
|
939 |
|
|
null;
|
940 |
|
|
|
941 |
|
|
-- If the type is already frozen, the overriding is not allowed
|
942 |
|
|
-- except when Old_Subp is not a dispatching operation (which can
|
943 |
|
|
-- occur when Old_Subp was inherited by an untagged type). However,
|
944 |
|
|
-- a body with no previous spec freezes the type *after* its
|
945 |
|
|
-- declaration, and therefore is a legal overriding (unless the type
|
946 |
|
|
-- has already been frozen). Only the first such body is legal.
|
947 |
|
|
|
948 |
|
|
elsif Present (Old_Subp)
|
949 |
|
|
and then Is_Dispatching_Operation (Old_Subp)
|
950 |
|
|
then
|
951 |
|
|
if Comes_From_Source (Subp)
|
952 |
|
|
and then
|
953 |
|
|
(Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Body
|
954 |
|
|
or else Nkind (Unit_Declaration_Node (Subp)) in N_Body_Stub)
|
955 |
|
|
then
|
956 |
|
|
declare
|
957 |
|
|
Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
|
958 |
|
|
Decl_Item : Node_Id;
|
959 |
|
|
|
960 |
|
|
begin
|
961 |
|
|
-- ??? The checks here for whether the type has been
|
962 |
|
|
-- frozen prior to the new body are not complete. It's
|
963 |
|
|
-- not simple to check frozenness at this point since
|
964 |
|
|
-- the body has already caused the type to be prematurely
|
965 |
|
|
-- frozen in Analyze_Declarations, but we're forced to
|
966 |
|
|
-- recheck this here because of the odd rule interpretation
|
967 |
|
|
-- that allows the overriding if the type wasn't frozen
|
968 |
|
|
-- prior to the body. The freezing action should probably
|
969 |
|
|
-- be delayed until after the spec is seen, but that's
|
970 |
|
|
-- a tricky change to the delicate freezing code.
|
971 |
|
|
|
972 |
|
|
-- Look at each declaration following the type up until the
|
973 |
|
|
-- new subprogram body. If any of the declarations is a body
|
974 |
|
|
-- then the type has been frozen already so the overriding
|
975 |
|
|
-- primitive is illegal.
|
976 |
|
|
|
977 |
|
|
Decl_Item := Next (Parent (Tagged_Type));
|
978 |
|
|
while Present (Decl_Item)
|
979 |
|
|
and then (Decl_Item /= Subp_Body)
|
980 |
|
|
loop
|
981 |
|
|
if Comes_From_Source (Decl_Item)
|
982 |
|
|
and then (Nkind (Decl_Item) in N_Proper_Body
|
983 |
|
|
or else Nkind (Decl_Item) in N_Body_Stub)
|
984 |
|
|
then
|
985 |
|
|
Error_Msg_N ("overriding of& is too late!", Subp);
|
986 |
|
|
Error_Msg_N
|
987 |
|
|
("\spec should appear immediately after the type!",
|
988 |
|
|
Subp);
|
989 |
|
|
exit;
|
990 |
|
|
end if;
|
991 |
|
|
|
992 |
|
|
Next (Decl_Item);
|
993 |
|
|
end loop;
|
994 |
|
|
|
995 |
|
|
-- If the subprogram doesn't follow in the list of
|
996 |
|
|
-- declarations including the type then the type has
|
997 |
|
|
-- definitely been frozen already and the body is illegal.
|
998 |
|
|
|
999 |
|
|
if No (Decl_Item) then
|
1000 |
|
|
Error_Msg_N ("overriding of& is too late!", Subp);
|
1001 |
|
|
Error_Msg_N
|
1002 |
|
|
("\spec should appear immediately after the type!",
|
1003 |
|
|
Subp);
|
1004 |
|
|
|
1005 |
|
|
elsif Is_Frozen (Subp) then
|
1006 |
|
|
|
1007 |
|
|
-- The subprogram body declares a primitive operation.
|
1008 |
|
|
-- if the subprogram is already frozen, we must update
|
1009 |
|
|
-- its dispatching information explicitly here. The
|
1010 |
|
|
-- information is taken from the overridden subprogram.
|
1011 |
|
|
-- We must also generate a cross-reference entry because
|
1012 |
|
|
-- references to other primitives were already created
|
1013 |
|
|
-- when type was frozen.
|
1014 |
|
|
|
1015 |
|
|
Body_Is_Last_Primitive := True;
|
1016 |
|
|
|
1017 |
|
|
if Present (DTC_Entity (Old_Subp)) then
|
1018 |
|
|
Set_DTC_Entity (Subp, DTC_Entity (Old_Subp));
|
1019 |
|
|
Set_DT_Position (Subp, DT_Position (Old_Subp));
|
1020 |
|
|
|
1021 |
|
|
if not Restriction_Active (No_Dispatching_Calls) then
|
1022 |
|
|
if Building_Static_DT (Tagged_Type) then
|
1023 |
|
|
|
1024 |
|
|
-- If the static dispatch table has not been
|
1025 |
|
|
-- built then there is nothing else to do now;
|
1026 |
|
|
-- otherwise we notify that we cannot build the
|
1027 |
|
|
-- static dispatch table.
|
1028 |
|
|
|
1029 |
|
|
if Has_Dispatch_Table (Tagged_Type) then
|
1030 |
|
|
Error_Msg_N
|
1031 |
|
|
("overriding of& is too late for building" &
|
1032 |
|
|
" static dispatch tables!", Subp);
|
1033 |
|
|
Error_Msg_N
|
1034 |
|
|
("\spec should appear immediately after" &
|
1035 |
|
|
" the type!", Subp);
|
1036 |
|
|
end if;
|
1037 |
|
|
|
1038 |
|
|
-- No code required to register primitives in VM
|
1039 |
|
|
-- targets
|
1040 |
|
|
|
1041 |
|
|
elsif VM_Target /= No_VM then
|
1042 |
|
|
null;
|
1043 |
|
|
|
1044 |
|
|
else
|
1045 |
|
|
Insert_Actions_After (Subp_Body,
|
1046 |
|
|
Register_Primitive (Sloc (Subp_Body),
|
1047 |
|
|
Prim => Subp));
|
1048 |
|
|
end if;
|
1049 |
|
|
|
1050 |
|
|
-- Indicate that this is an overriding operation,
|
1051 |
|
|
-- and replace the overridden entry in the list of
|
1052 |
|
|
-- primitive operations, which is used for xref
|
1053 |
|
|
-- generation subsequently.
|
1054 |
|
|
|
1055 |
|
|
Generate_Reference (Tagged_Type, Subp, 'P', False);
|
1056 |
|
|
Override_Dispatching_Operation
|
1057 |
|
|
(Tagged_Type, Old_Subp, Subp);
|
1058 |
|
|
end if;
|
1059 |
|
|
end if;
|
1060 |
|
|
end if;
|
1061 |
|
|
end;
|
1062 |
|
|
|
1063 |
|
|
else
|
1064 |
|
|
Error_Msg_N ("overriding of& is too late!", Subp);
|
1065 |
|
|
Error_Msg_N
|
1066 |
|
|
("\subprogram spec should appear immediately after the type!",
|
1067 |
|
|
Subp);
|
1068 |
|
|
end if;
|
1069 |
|
|
|
1070 |
|
|
-- If the type is not frozen yet and we are not in the overriding
|
1071 |
|
|
-- case it looks suspiciously like an attempt to define a primitive
|
1072 |
|
|
-- operation, which requires the declaration to be in a package spec
|
1073 |
|
|
-- (3.2.3(6)). Only report cases where the type and subprogram are
|
1074 |
|
|
-- in the same declaration list (by checking the enclosing parent
|
1075 |
|
|
-- declarations), to avoid spurious warnings on subprograms in
|
1076 |
|
|
-- instance bodies when the type is declared in the instance spec but
|
1077 |
|
|
-- hasn't been frozen by the instance body.
|
1078 |
|
|
|
1079 |
|
|
elsif not Is_Frozen (Tagged_Type)
|
1080 |
|
|
and then In_Same_List (Parent (Tagged_Type), Parent (Parent (Subp)))
|
1081 |
|
|
then
|
1082 |
|
|
Error_Msg_N
|
1083 |
|
|
("?not dispatching (must be defined in a package spec)", Subp);
|
1084 |
|
|
return;
|
1085 |
|
|
|
1086 |
|
|
-- When the type is frozen, it is legitimate to define a new
|
1087 |
|
|
-- non-primitive operation.
|
1088 |
|
|
|
1089 |
|
|
else
|
1090 |
|
|
return;
|
1091 |
|
|
end if;
|
1092 |
|
|
|
1093 |
|
|
-- Now, we are sure that the scope is a package spec. If the subprogram
|
1094 |
|
|
-- is declared after the freezing point of the type that's an error
|
1095 |
|
|
|
1096 |
|
|
elsif Is_Frozen (Tagged_Type) and then not Has_Dispatching_Parent then
|
1097 |
|
|
Error_Msg_N ("this primitive operation is declared too late", Subp);
|
1098 |
|
|
Error_Msg_NE
|
1099 |
|
|
("?no primitive operations for& after this line",
|
1100 |
|
|
Freeze_Node (Tagged_Type),
|
1101 |
|
|
Tagged_Type);
|
1102 |
|
|
return;
|
1103 |
|
|
end if;
|
1104 |
|
|
|
1105 |
|
|
Check_Controlling_Formals (Tagged_Type, Subp);
|
1106 |
|
|
|
1107 |
|
|
Ovr_Subp := Old_Subp;
|
1108 |
|
|
|
1109 |
|
|
-- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
|
1110 |
|
|
-- overridden by Subp
|
1111 |
|
|
|
1112 |
|
|
if No (Ovr_Subp)
|
1113 |
|
|
and then Ada_Version >= Ada_2012
|
1114 |
|
|
then
|
1115 |
|
|
Ovr_Subp := Find_Hidden_Overridden_Primitive (Subp);
|
1116 |
|
|
end if;
|
1117 |
|
|
|
1118 |
|
|
-- Now it should be a correct primitive operation, put it in the list
|
1119 |
|
|
|
1120 |
|
|
if Present (Ovr_Subp) then
|
1121 |
|
|
|
1122 |
|
|
-- If the type has interfaces we complete this check after we set
|
1123 |
|
|
-- attribute Is_Dispatching_Operation.
|
1124 |
|
|
|
1125 |
|
|
Check_Subtype_Conformant (Subp, Ovr_Subp);
|
1126 |
|
|
|
1127 |
|
|
if (Chars (Subp) = Name_Initialize
|
1128 |
|
|
or else Chars (Subp) = Name_Adjust
|
1129 |
|
|
or else Chars (Subp) = Name_Finalize)
|
1130 |
|
|
and then Is_Controlled (Tagged_Type)
|
1131 |
|
|
and then not Is_Visibly_Controlled (Tagged_Type)
|
1132 |
|
|
then
|
1133 |
|
|
Set_Overridden_Operation (Subp, Empty);
|
1134 |
|
|
|
1135 |
|
|
-- If the subprogram specification carries an overriding
|
1136 |
|
|
-- indicator, no need for the warning: it is either redundant,
|
1137 |
|
|
-- or else an error will be reported.
|
1138 |
|
|
|
1139 |
|
|
if Nkind (Parent (Subp)) = N_Procedure_Specification
|
1140 |
|
|
and then
|
1141 |
|
|
(Must_Override (Parent (Subp))
|
1142 |
|
|
or else Must_Not_Override (Parent (Subp)))
|
1143 |
|
|
then
|
1144 |
|
|
null;
|
1145 |
|
|
|
1146 |
|
|
-- Here we need the warning
|
1147 |
|
|
|
1148 |
|
|
else
|
1149 |
|
|
Error_Msg_NE
|
1150 |
|
|
("operation does not override inherited&?", Subp, Subp);
|
1151 |
|
|
end if;
|
1152 |
|
|
|
1153 |
|
|
else
|
1154 |
|
|
Override_Dispatching_Operation (Tagged_Type, Ovr_Subp, Subp);
|
1155 |
|
|
|
1156 |
|
|
-- Ada 2005 (AI-251): In case of late overriding of a primitive
|
1157 |
|
|
-- that covers abstract interface subprograms we must register it
|
1158 |
|
|
-- in all the secondary dispatch tables associated with abstract
|
1159 |
|
|
-- interfaces. We do this now only if not building static tables,
|
1160 |
|
|
-- nor when the expander is inactive (we avoid trying to register
|
1161 |
|
|
-- primitives in semantics-only mode, since the type may not have
|
1162 |
|
|
-- an associated dispatch table). Otherwise the patch code is
|
1163 |
|
|
-- emitted after those tables are built, to prevent access before
|
1164 |
|
|
-- elaboration in gigi.
|
1165 |
|
|
|
1166 |
|
|
if Body_Is_Last_Primitive and then Full_Expander_Active then
|
1167 |
|
|
declare
|
1168 |
|
|
Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
|
1169 |
|
|
Elmt : Elmt_Id;
|
1170 |
|
|
Prim : Node_Id;
|
1171 |
|
|
|
1172 |
|
|
begin
|
1173 |
|
|
Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
|
1174 |
|
|
while Present (Elmt) loop
|
1175 |
|
|
Prim := Node (Elmt);
|
1176 |
|
|
|
1177 |
|
|
-- No code required to register primitives in VM targets
|
1178 |
|
|
|
1179 |
|
|
if Present (Alias (Prim))
|
1180 |
|
|
and then Present (Interface_Alias (Prim))
|
1181 |
|
|
and then Alias (Prim) = Subp
|
1182 |
|
|
and then not Building_Static_DT (Tagged_Type)
|
1183 |
|
|
and then VM_Target = No_VM
|
1184 |
|
|
then
|
1185 |
|
|
Insert_Actions_After (Subp_Body,
|
1186 |
|
|
Register_Primitive (Sloc (Subp_Body), Prim => Prim));
|
1187 |
|
|
end if;
|
1188 |
|
|
|
1189 |
|
|
Next_Elmt (Elmt);
|
1190 |
|
|
end loop;
|
1191 |
|
|
|
1192 |
|
|
-- Redisplay the contents of the updated dispatch table
|
1193 |
|
|
|
1194 |
|
|
if Debug_Flag_ZZ then
|
1195 |
|
|
Write_Str ("Late overriding: ");
|
1196 |
|
|
Write_DT (Tagged_Type);
|
1197 |
|
|
end if;
|
1198 |
|
|
end;
|
1199 |
|
|
end if;
|
1200 |
|
|
end if;
|
1201 |
|
|
|
1202 |
|
|
-- If the tagged type is a concurrent type then we must be compiling
|
1203 |
|
|
-- with no code generation (we are either compiling a generic unit or
|
1204 |
|
|
-- compiling under -gnatc mode) because we have previously tested that
|
1205 |
|
|
-- no serious errors has been reported. In this case we do not add the
|
1206 |
|
|
-- primitive to the list of primitives of Tagged_Type but we leave the
|
1207 |
|
|
-- primitive decorated as a dispatching operation to be able to analyze
|
1208 |
|
|
-- and report errors associated with the Object.Operation notation.
|
1209 |
|
|
|
1210 |
|
|
elsif Is_Concurrent_Type (Tagged_Type) then
|
1211 |
|
|
pragma Assert (not Expander_Active);
|
1212 |
|
|
null;
|
1213 |
|
|
|
1214 |
|
|
-- If no old subprogram, then we add this as a dispatching operation,
|
1215 |
|
|
-- but we avoid doing this if an error was posted, to prevent annoying
|
1216 |
|
|
-- cascaded errors.
|
1217 |
|
|
|
1218 |
|
|
elsif not Error_Posted (Subp) then
|
1219 |
|
|
Add_Dispatching_Operation (Tagged_Type, Subp);
|
1220 |
|
|
end if;
|
1221 |
|
|
|
1222 |
|
|
Set_Is_Dispatching_Operation (Subp, True);
|
1223 |
|
|
|
1224 |
|
|
-- Ada 2005 (AI-251): If the type implements interfaces we must check
|
1225 |
|
|
-- subtype conformance against all the interfaces covered by this
|
1226 |
|
|
-- primitive.
|
1227 |
|
|
|
1228 |
|
|
if Present (Ovr_Subp)
|
1229 |
|
|
and then Has_Interfaces (Tagged_Type)
|
1230 |
|
|
then
|
1231 |
|
|
declare
|
1232 |
|
|
Ifaces_List : Elist_Id;
|
1233 |
|
|
Iface_Elmt : Elmt_Id;
|
1234 |
|
|
Iface_Prim_Elmt : Elmt_Id;
|
1235 |
|
|
Iface_Prim : Entity_Id;
|
1236 |
|
|
Ret_Typ : Entity_Id;
|
1237 |
|
|
|
1238 |
|
|
begin
|
1239 |
|
|
Collect_Interfaces (Tagged_Type, Ifaces_List);
|
1240 |
|
|
|
1241 |
|
|
Iface_Elmt := First_Elmt (Ifaces_List);
|
1242 |
|
|
while Present (Iface_Elmt) loop
|
1243 |
|
|
if not Is_Ancestor (Node (Iface_Elmt), Tagged_Type) then
|
1244 |
|
|
Iface_Prim_Elmt :=
|
1245 |
|
|
First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
|
1246 |
|
|
while Present (Iface_Prim_Elmt) loop
|
1247 |
|
|
Iface_Prim := Node (Iface_Prim_Elmt);
|
1248 |
|
|
|
1249 |
|
|
if Is_Interface_Conformant
|
1250 |
|
|
(Tagged_Type, Iface_Prim, Subp)
|
1251 |
|
|
then
|
1252 |
|
|
-- Handle procedures, functions whose return type
|
1253 |
|
|
-- matches, or functions not returning interfaces
|
1254 |
|
|
|
1255 |
|
|
if Ekind (Subp) = E_Procedure
|
1256 |
|
|
or else Etype (Iface_Prim) = Etype (Subp)
|
1257 |
|
|
or else not Is_Interface (Etype (Iface_Prim))
|
1258 |
|
|
then
|
1259 |
|
|
Check_Subtype_Conformant
|
1260 |
|
|
(New_Id => Subp,
|
1261 |
|
|
Old_Id => Iface_Prim,
|
1262 |
|
|
Err_Loc => Subp,
|
1263 |
|
|
Skip_Controlling_Formals => True);
|
1264 |
|
|
|
1265 |
|
|
-- Handle functions returning interfaces
|
1266 |
|
|
|
1267 |
|
|
elsif Implements_Interface
|
1268 |
|
|
(Etype (Subp), Etype (Iface_Prim))
|
1269 |
|
|
then
|
1270 |
|
|
-- Temporarily force both entities to return the
|
1271 |
|
|
-- same type. Required because Subtype_Conformant
|
1272 |
|
|
-- does not handle this case.
|
1273 |
|
|
|
1274 |
|
|
Ret_Typ := Etype (Iface_Prim);
|
1275 |
|
|
Set_Etype (Iface_Prim, Etype (Subp));
|
1276 |
|
|
|
1277 |
|
|
Check_Subtype_Conformant
|
1278 |
|
|
(New_Id => Subp,
|
1279 |
|
|
Old_Id => Iface_Prim,
|
1280 |
|
|
Err_Loc => Subp,
|
1281 |
|
|
Skip_Controlling_Formals => True);
|
1282 |
|
|
|
1283 |
|
|
Set_Etype (Iface_Prim, Ret_Typ);
|
1284 |
|
|
end if;
|
1285 |
|
|
end if;
|
1286 |
|
|
|
1287 |
|
|
Next_Elmt (Iface_Prim_Elmt);
|
1288 |
|
|
end loop;
|
1289 |
|
|
end if;
|
1290 |
|
|
|
1291 |
|
|
Next_Elmt (Iface_Elmt);
|
1292 |
|
|
end loop;
|
1293 |
|
|
end;
|
1294 |
|
|
end if;
|
1295 |
|
|
|
1296 |
|
|
if not Body_Is_Last_Primitive then
|
1297 |
|
|
Set_DT_Position (Subp, No_Uint);
|
1298 |
|
|
|
1299 |
|
|
elsif Has_Controlled_Component (Tagged_Type)
|
1300 |
|
|
and then
|
1301 |
|
|
(Chars (Subp) = Name_Initialize or else
|
1302 |
|
|
Chars (Subp) = Name_Adjust or else
|
1303 |
|
|
Chars (Subp) = Name_Finalize or else
|
1304 |
|
|
Chars (Subp) = Name_Finalize_Address)
|
1305 |
|
|
then
|
1306 |
|
|
declare
|
1307 |
|
|
F_Node : constant Node_Id := Freeze_Node (Tagged_Type);
|
1308 |
|
|
Decl : Node_Id;
|
1309 |
|
|
Old_P : Entity_Id;
|
1310 |
|
|
Old_Bod : Node_Id;
|
1311 |
|
|
Old_Spec : Entity_Id;
|
1312 |
|
|
|
1313 |
|
|
C_Names : constant array (1 .. 4) of Name_Id :=
|
1314 |
|
|
(Name_Initialize,
|
1315 |
|
|
Name_Adjust,
|
1316 |
|
|
Name_Finalize,
|
1317 |
|
|
Name_Finalize_Address);
|
1318 |
|
|
|
1319 |
|
|
D_Names : constant array (1 .. 4) of TSS_Name_Type :=
|
1320 |
|
|
(TSS_Deep_Initialize,
|
1321 |
|
|
TSS_Deep_Adjust,
|
1322 |
|
|
TSS_Deep_Finalize,
|
1323 |
|
|
TSS_Finalize_Address);
|
1324 |
|
|
|
1325 |
|
|
begin
|
1326 |
|
|
-- Remove previous controlled function which was constructed and
|
1327 |
|
|
-- analyzed when the type was frozen. This requires removing the
|
1328 |
|
|
-- body of the redefined primitive, as well as its specification
|
1329 |
|
|
-- if needed (there is no spec created for Deep_Initialize, see
|
1330 |
|
|
-- exp_ch3.adb). We must also dismantle the exception information
|
1331 |
|
|
-- that may have been generated for it when front end zero-cost
|
1332 |
|
|
-- tables are enabled.
|
1333 |
|
|
|
1334 |
|
|
for J in D_Names'Range loop
|
1335 |
|
|
Old_P := TSS (Tagged_Type, D_Names (J));
|
1336 |
|
|
|
1337 |
|
|
if Present (Old_P)
|
1338 |
|
|
and then Chars (Subp) = C_Names (J)
|
1339 |
|
|
then
|
1340 |
|
|
Old_Bod := Unit_Declaration_Node (Old_P);
|
1341 |
|
|
Remove (Old_Bod);
|
1342 |
|
|
Set_Is_Eliminated (Old_P);
|
1343 |
|
|
Set_Scope (Old_P, Scope (Current_Scope));
|
1344 |
|
|
|
1345 |
|
|
if Nkind (Old_Bod) = N_Subprogram_Body
|
1346 |
|
|
and then Present (Corresponding_Spec (Old_Bod))
|
1347 |
|
|
then
|
1348 |
|
|
Old_Spec := Corresponding_Spec (Old_Bod);
|
1349 |
|
|
Set_Has_Completion (Old_Spec, False);
|
1350 |
|
|
end if;
|
1351 |
|
|
end if;
|
1352 |
|
|
end loop;
|
1353 |
|
|
|
1354 |
|
|
Build_Late_Proc (Tagged_Type, Chars (Subp));
|
1355 |
|
|
|
1356 |
|
|
-- The new operation is added to the actions of the freeze node
|
1357 |
|
|
-- for the type, but this node has already been analyzed, so we
|
1358 |
|
|
-- must retrieve and analyze explicitly the new body.
|
1359 |
|
|
|
1360 |
|
|
if Present (F_Node)
|
1361 |
|
|
and then Present (Actions (F_Node))
|
1362 |
|
|
then
|
1363 |
|
|
Decl := Last (Actions (F_Node));
|
1364 |
|
|
Analyze (Decl);
|
1365 |
|
|
end if;
|
1366 |
|
|
end;
|
1367 |
|
|
end if;
|
1368 |
|
|
end Check_Dispatching_Operation;
|
1369 |
|
|
|
1370 |
|
|
------------------------------------------
|
1371 |
|
|
-- Check_Operation_From_Incomplete_Type --
|
1372 |
|
|
------------------------------------------
|
1373 |
|
|
|
1374 |
|
|
procedure Check_Operation_From_Incomplete_Type
|
1375 |
|
|
(Subp : Entity_Id;
|
1376 |
|
|
Typ : Entity_Id)
|
1377 |
|
|
is
|
1378 |
|
|
Full : constant Entity_Id := Full_View (Typ);
|
1379 |
|
|
Parent_Typ : constant Entity_Id := Etype (Full);
|
1380 |
|
|
Old_Prim : constant Elist_Id := Primitive_Operations (Parent_Typ);
|
1381 |
|
|
New_Prim : constant Elist_Id := Primitive_Operations (Full);
|
1382 |
|
|
Op1, Op2 : Elmt_Id;
|
1383 |
|
|
Prev : Elmt_Id := No_Elmt;
|
1384 |
|
|
|
1385 |
|
|
function Derives_From (Parent_Subp : Entity_Id) return Boolean;
|
1386 |
|
|
-- Check that Subp has profile of an operation derived from Parent_Subp.
|
1387 |
|
|
-- Subp must have a parameter or result type that is Typ or an access
|
1388 |
|
|
-- parameter or access result type that designates Typ.
|
1389 |
|
|
|
1390 |
|
|
------------------
|
1391 |
|
|
-- Derives_From --
|
1392 |
|
|
------------------
|
1393 |
|
|
|
1394 |
|
|
function Derives_From (Parent_Subp : Entity_Id) return Boolean is
|
1395 |
|
|
F1, F2 : Entity_Id;
|
1396 |
|
|
|
1397 |
|
|
begin
|
1398 |
|
|
if Chars (Parent_Subp) /= Chars (Subp) then
|
1399 |
|
|
return False;
|
1400 |
|
|
end if;
|
1401 |
|
|
|
1402 |
|
|
-- Check that the type of controlling formals is derived from the
|
1403 |
|
|
-- parent subprogram's controlling formal type (or designated type
|
1404 |
|
|
-- if the formal type is an anonymous access type).
|
1405 |
|
|
|
1406 |
|
|
F1 := First_Formal (Parent_Subp);
|
1407 |
|
|
F2 := First_Formal (Subp);
|
1408 |
|
|
while Present (F1) and then Present (F2) loop
|
1409 |
|
|
if Ekind (Etype (F1)) = E_Anonymous_Access_Type then
|
1410 |
|
|
if Ekind (Etype (F2)) /= E_Anonymous_Access_Type then
|
1411 |
|
|
return False;
|
1412 |
|
|
elsif Designated_Type (Etype (F1)) = Parent_Typ
|
1413 |
|
|
and then Designated_Type (Etype (F2)) /= Full
|
1414 |
|
|
then
|
1415 |
|
|
return False;
|
1416 |
|
|
end if;
|
1417 |
|
|
|
1418 |
|
|
elsif Ekind (Etype (F2)) = E_Anonymous_Access_Type then
|
1419 |
|
|
return False;
|
1420 |
|
|
|
1421 |
|
|
elsif Etype (F1) = Parent_Typ and then Etype (F2) /= Full then
|
1422 |
|
|
return False;
|
1423 |
|
|
end if;
|
1424 |
|
|
|
1425 |
|
|
Next_Formal (F1);
|
1426 |
|
|
Next_Formal (F2);
|
1427 |
|
|
end loop;
|
1428 |
|
|
|
1429 |
|
|
-- Check that a controlling result type is derived from the parent
|
1430 |
|
|
-- subprogram's result type (or designated type if the result type
|
1431 |
|
|
-- is an anonymous access type).
|
1432 |
|
|
|
1433 |
|
|
if Ekind (Parent_Subp) = E_Function then
|
1434 |
|
|
if Ekind (Subp) /= E_Function then
|
1435 |
|
|
return False;
|
1436 |
|
|
|
1437 |
|
|
elsif Ekind (Etype (Parent_Subp)) = E_Anonymous_Access_Type then
|
1438 |
|
|
if Ekind (Etype (Subp)) /= E_Anonymous_Access_Type then
|
1439 |
|
|
return False;
|
1440 |
|
|
|
1441 |
|
|
elsif Designated_Type (Etype (Parent_Subp)) = Parent_Typ
|
1442 |
|
|
and then Designated_Type (Etype (Subp)) /= Full
|
1443 |
|
|
then
|
1444 |
|
|
return False;
|
1445 |
|
|
end if;
|
1446 |
|
|
|
1447 |
|
|
elsif Ekind (Etype (Subp)) = E_Anonymous_Access_Type then
|
1448 |
|
|
return False;
|
1449 |
|
|
|
1450 |
|
|
elsif Etype (Parent_Subp) = Parent_Typ
|
1451 |
|
|
and then Etype (Subp) /= Full
|
1452 |
|
|
then
|
1453 |
|
|
return False;
|
1454 |
|
|
end if;
|
1455 |
|
|
|
1456 |
|
|
elsif Ekind (Subp) = E_Function then
|
1457 |
|
|
return False;
|
1458 |
|
|
end if;
|
1459 |
|
|
|
1460 |
|
|
return No (F1) and then No (F2);
|
1461 |
|
|
end Derives_From;
|
1462 |
|
|
|
1463 |
|
|
-- Start of processing for Check_Operation_From_Incomplete_Type
|
1464 |
|
|
|
1465 |
|
|
begin
|
1466 |
|
|
-- The operation may override an inherited one, or may be a new one
|
1467 |
|
|
-- altogether. The inherited operation will have been hidden by the
|
1468 |
|
|
-- current one at the point of the type derivation, so it does not
|
1469 |
|
|
-- appear in the list of primitive operations of the type. We have to
|
1470 |
|
|
-- find the proper place of insertion in the list of primitive opera-
|
1471 |
|
|
-- tions by iterating over the list for the parent type.
|
1472 |
|
|
|
1473 |
|
|
Op1 := First_Elmt (Old_Prim);
|
1474 |
|
|
Op2 := First_Elmt (New_Prim);
|
1475 |
|
|
while Present (Op1) and then Present (Op2) loop
|
1476 |
|
|
if Derives_From (Node (Op1)) then
|
1477 |
|
|
if No (Prev) then
|
1478 |
|
|
|
1479 |
|
|
-- Avoid adding it to the list of primitives if already there!
|
1480 |
|
|
|
1481 |
|
|
if Node (Op2) /= Subp then
|
1482 |
|
|
Prepend_Elmt (Subp, New_Prim);
|
1483 |
|
|
end if;
|
1484 |
|
|
|
1485 |
|
|
else
|
1486 |
|
|
Insert_Elmt_After (Subp, Prev);
|
1487 |
|
|
end if;
|
1488 |
|
|
|
1489 |
|
|
return;
|
1490 |
|
|
end if;
|
1491 |
|
|
|
1492 |
|
|
Prev := Op2;
|
1493 |
|
|
Next_Elmt (Op1);
|
1494 |
|
|
Next_Elmt (Op2);
|
1495 |
|
|
end loop;
|
1496 |
|
|
|
1497 |
|
|
-- Operation is a new primitive
|
1498 |
|
|
|
1499 |
|
|
Append_Elmt (Subp, New_Prim);
|
1500 |
|
|
end Check_Operation_From_Incomplete_Type;
|
1501 |
|
|
|
1502 |
|
|
---------------------------------------
|
1503 |
|
|
-- Check_Operation_From_Private_View --
|
1504 |
|
|
---------------------------------------
|
1505 |
|
|
|
1506 |
|
|
procedure Check_Operation_From_Private_View (Subp, Old_Subp : Entity_Id) is
|
1507 |
|
|
Tagged_Type : Entity_Id;
|
1508 |
|
|
|
1509 |
|
|
begin
|
1510 |
|
|
if Is_Dispatching_Operation (Alias (Subp)) then
|
1511 |
|
|
Set_Scope (Subp, Current_Scope);
|
1512 |
|
|
Tagged_Type := Find_Dispatching_Type (Subp);
|
1513 |
|
|
|
1514 |
|
|
-- Add Old_Subp to primitive operations if not already present
|
1515 |
|
|
|
1516 |
|
|
if Present (Tagged_Type) and then Is_Tagged_Type (Tagged_Type) then
|
1517 |
|
|
Append_Unique_Elmt (Old_Subp, Primitive_Operations (Tagged_Type));
|
1518 |
|
|
|
1519 |
|
|
-- If Old_Subp isn't already marked as dispatching then this is
|
1520 |
|
|
-- the case of an operation of an untagged private type fulfilled
|
1521 |
|
|
-- by a tagged type that overrides an inherited dispatching
|
1522 |
|
|
-- operation, so we set the necessary dispatching attributes here.
|
1523 |
|
|
|
1524 |
|
|
if not Is_Dispatching_Operation (Old_Subp) then
|
1525 |
|
|
|
1526 |
|
|
-- If the untagged type has no discriminants, and the full
|
1527 |
|
|
-- view is constrained, there will be a spurious mismatch of
|
1528 |
|
|
-- subtypes on the controlling arguments, because the tagged
|
1529 |
|
|
-- type is the internal base type introduced in the derivation.
|
1530 |
|
|
-- Use the original type to verify conformance, rather than the
|
1531 |
|
|
-- base type.
|
1532 |
|
|
|
1533 |
|
|
if not Comes_From_Source (Tagged_Type)
|
1534 |
|
|
and then Has_Discriminants (Tagged_Type)
|
1535 |
|
|
then
|
1536 |
|
|
declare
|
1537 |
|
|
Formal : Entity_Id;
|
1538 |
|
|
|
1539 |
|
|
begin
|
1540 |
|
|
Formal := First_Formal (Old_Subp);
|
1541 |
|
|
while Present (Formal) loop
|
1542 |
|
|
if Tagged_Type = Base_Type (Etype (Formal)) then
|
1543 |
|
|
Tagged_Type := Etype (Formal);
|
1544 |
|
|
end if;
|
1545 |
|
|
|
1546 |
|
|
Next_Formal (Formal);
|
1547 |
|
|
end loop;
|
1548 |
|
|
end;
|
1549 |
|
|
|
1550 |
|
|
if Tagged_Type = Base_Type (Etype (Old_Subp)) then
|
1551 |
|
|
Tagged_Type := Etype (Old_Subp);
|
1552 |
|
|
end if;
|
1553 |
|
|
end if;
|
1554 |
|
|
|
1555 |
|
|
Check_Controlling_Formals (Tagged_Type, Old_Subp);
|
1556 |
|
|
Set_Is_Dispatching_Operation (Old_Subp, True);
|
1557 |
|
|
Set_DT_Position (Old_Subp, No_Uint);
|
1558 |
|
|
end if;
|
1559 |
|
|
|
1560 |
|
|
-- If the old subprogram is an explicit renaming of some other
|
1561 |
|
|
-- entity, it is not overridden by the inherited subprogram.
|
1562 |
|
|
-- Otherwise, update its alias and other attributes.
|
1563 |
|
|
|
1564 |
|
|
if Present (Alias (Old_Subp))
|
1565 |
|
|
and then Nkind (Unit_Declaration_Node (Old_Subp)) /=
|
1566 |
|
|
N_Subprogram_Renaming_Declaration
|
1567 |
|
|
then
|
1568 |
|
|
Set_Alias (Old_Subp, Alias (Subp));
|
1569 |
|
|
|
1570 |
|
|
-- The derived subprogram should inherit the abstractness
|
1571 |
|
|
-- of the parent subprogram (except in the case of a function
|
1572 |
|
|
-- returning the type). This sets the abstractness properly
|
1573 |
|
|
-- for cases where a private extension may have inherited
|
1574 |
|
|
-- an abstract operation, but the full type is derived from
|
1575 |
|
|
-- a descendant type and inherits a nonabstract version.
|
1576 |
|
|
|
1577 |
|
|
if Etype (Subp) /= Tagged_Type then
|
1578 |
|
|
Set_Is_Abstract_Subprogram
|
1579 |
|
|
(Old_Subp, Is_Abstract_Subprogram (Alias (Subp)));
|
1580 |
|
|
end if;
|
1581 |
|
|
end if;
|
1582 |
|
|
end if;
|
1583 |
|
|
end if;
|
1584 |
|
|
end Check_Operation_From_Private_View;
|
1585 |
|
|
|
1586 |
|
|
--------------------------
|
1587 |
|
|
-- Find_Controlling_Arg --
|
1588 |
|
|
--------------------------
|
1589 |
|
|
|
1590 |
|
|
function Find_Controlling_Arg (N : Node_Id) return Node_Id is
|
1591 |
|
|
Orig_Node : constant Node_Id := Original_Node (N);
|
1592 |
|
|
Typ : Entity_Id;
|
1593 |
|
|
|
1594 |
|
|
begin
|
1595 |
|
|
if Nkind (Orig_Node) = N_Qualified_Expression then
|
1596 |
|
|
return Find_Controlling_Arg (Expression (Orig_Node));
|
1597 |
|
|
end if;
|
1598 |
|
|
|
1599 |
|
|
-- Dispatching on result case. If expansion is disabled, the node still
|
1600 |
|
|
-- has the structure of a function call. However, if the function name
|
1601 |
|
|
-- is an operator and the call was given in infix form, the original
|
1602 |
|
|
-- node has no controlling result and we must examine the current node.
|
1603 |
|
|
|
1604 |
|
|
if Nkind (N) = N_Function_Call
|
1605 |
|
|
and then Present (Controlling_Argument (N))
|
1606 |
|
|
and then Has_Controlling_Result (Entity (Name (N)))
|
1607 |
|
|
then
|
1608 |
|
|
return Controlling_Argument (N);
|
1609 |
|
|
|
1610 |
|
|
-- If expansion is enabled, the call may have been transformed into
|
1611 |
|
|
-- an indirect call, and we need to recover the original node.
|
1612 |
|
|
|
1613 |
|
|
elsif Nkind (Orig_Node) = N_Function_Call
|
1614 |
|
|
and then Present (Controlling_Argument (Orig_Node))
|
1615 |
|
|
and then Has_Controlling_Result (Entity (Name (Orig_Node)))
|
1616 |
|
|
then
|
1617 |
|
|
return Controlling_Argument (Orig_Node);
|
1618 |
|
|
|
1619 |
|
|
-- Type conversions are dynamically tagged if the target type, or its
|
1620 |
|
|
-- designated type, are classwide. An interface conversion expands into
|
1621 |
|
|
-- a dereference, so test must be performed on the original node.
|
1622 |
|
|
|
1623 |
|
|
elsif Nkind (Orig_Node) = N_Type_Conversion
|
1624 |
|
|
and then Nkind (N) = N_Explicit_Dereference
|
1625 |
|
|
and then Is_Controlling_Actual (N)
|
1626 |
|
|
then
|
1627 |
|
|
declare
|
1628 |
|
|
Target_Type : constant Entity_Id :=
|
1629 |
|
|
Entity (Subtype_Mark (Orig_Node));
|
1630 |
|
|
|
1631 |
|
|
begin
|
1632 |
|
|
if Is_Class_Wide_Type (Target_Type) then
|
1633 |
|
|
return N;
|
1634 |
|
|
|
1635 |
|
|
elsif Is_Access_Type (Target_Type)
|
1636 |
|
|
and then Is_Class_Wide_Type (Designated_Type (Target_Type))
|
1637 |
|
|
then
|
1638 |
|
|
return N;
|
1639 |
|
|
|
1640 |
|
|
else
|
1641 |
|
|
return Empty;
|
1642 |
|
|
end if;
|
1643 |
|
|
end;
|
1644 |
|
|
|
1645 |
|
|
-- Normal case
|
1646 |
|
|
|
1647 |
|
|
elsif Is_Controlling_Actual (N)
|
1648 |
|
|
or else
|
1649 |
|
|
(Nkind (Parent (N)) = N_Qualified_Expression
|
1650 |
|
|
and then Is_Controlling_Actual (Parent (N)))
|
1651 |
|
|
then
|
1652 |
|
|
Typ := Etype (N);
|
1653 |
|
|
|
1654 |
|
|
if Is_Access_Type (Typ) then
|
1655 |
|
|
|
1656 |
|
|
-- In the case of an Access attribute, use the type of the prefix,
|
1657 |
|
|
-- since in the case of an actual for an access parameter, the
|
1658 |
|
|
-- attribute's type may be of a specific designated type, even
|
1659 |
|
|
-- though the prefix type is class-wide.
|
1660 |
|
|
|
1661 |
|
|
if Nkind (N) = N_Attribute_Reference then
|
1662 |
|
|
Typ := Etype (Prefix (N));
|
1663 |
|
|
|
1664 |
|
|
-- An allocator is dispatching if the type of qualified expression
|
1665 |
|
|
-- is class_wide, in which case this is the controlling type.
|
1666 |
|
|
|
1667 |
|
|
elsif Nkind (Orig_Node) = N_Allocator
|
1668 |
|
|
and then Nkind (Expression (Orig_Node)) = N_Qualified_Expression
|
1669 |
|
|
then
|
1670 |
|
|
Typ := Etype (Expression (Orig_Node));
|
1671 |
|
|
else
|
1672 |
|
|
Typ := Designated_Type (Typ);
|
1673 |
|
|
end if;
|
1674 |
|
|
end if;
|
1675 |
|
|
|
1676 |
|
|
if Is_Class_Wide_Type (Typ)
|
1677 |
|
|
or else
|
1678 |
|
|
(Nkind (Parent (N)) = N_Qualified_Expression
|
1679 |
|
|
and then Is_Access_Type (Etype (N))
|
1680 |
|
|
and then Is_Class_Wide_Type (Designated_Type (Etype (N))))
|
1681 |
|
|
then
|
1682 |
|
|
return N;
|
1683 |
|
|
end if;
|
1684 |
|
|
end if;
|
1685 |
|
|
|
1686 |
|
|
return Empty;
|
1687 |
|
|
end Find_Controlling_Arg;
|
1688 |
|
|
|
1689 |
|
|
---------------------------
|
1690 |
|
|
-- Find_Dispatching_Type --
|
1691 |
|
|
---------------------------
|
1692 |
|
|
|
1693 |
|
|
function Find_Dispatching_Type (Subp : Entity_Id) return Entity_Id is
|
1694 |
|
|
A_Formal : Entity_Id;
|
1695 |
|
|
Formal : Entity_Id;
|
1696 |
|
|
Ctrl_Type : Entity_Id;
|
1697 |
|
|
|
1698 |
|
|
begin
|
1699 |
|
|
if Present (DTC_Entity (Subp)) then
|
1700 |
|
|
return Scope (DTC_Entity (Subp));
|
1701 |
|
|
|
1702 |
|
|
-- For subprograms internally generated by derivations of tagged types
|
1703 |
|
|
-- use the alias subprogram as a reference to locate the dispatching
|
1704 |
|
|
-- type of Subp.
|
1705 |
|
|
|
1706 |
|
|
elsif not Comes_From_Source (Subp)
|
1707 |
|
|
and then Present (Alias (Subp))
|
1708 |
|
|
and then Is_Dispatching_Operation (Alias (Subp))
|
1709 |
|
|
then
|
1710 |
|
|
if Ekind (Alias (Subp)) = E_Function
|
1711 |
|
|
and then Has_Controlling_Result (Alias (Subp))
|
1712 |
|
|
then
|
1713 |
|
|
return Check_Controlling_Type (Etype (Subp), Subp);
|
1714 |
|
|
|
1715 |
|
|
else
|
1716 |
|
|
Formal := First_Formal (Subp);
|
1717 |
|
|
A_Formal := First_Formal (Alias (Subp));
|
1718 |
|
|
while Present (A_Formal) loop
|
1719 |
|
|
if Is_Controlling_Formal (A_Formal) then
|
1720 |
|
|
return Check_Controlling_Type (Etype (Formal), Subp);
|
1721 |
|
|
end if;
|
1722 |
|
|
|
1723 |
|
|
Next_Formal (Formal);
|
1724 |
|
|
Next_Formal (A_Formal);
|
1725 |
|
|
end loop;
|
1726 |
|
|
|
1727 |
|
|
pragma Assert (False);
|
1728 |
|
|
return Empty;
|
1729 |
|
|
end if;
|
1730 |
|
|
|
1731 |
|
|
-- General case
|
1732 |
|
|
|
1733 |
|
|
else
|
1734 |
|
|
Formal := First_Formal (Subp);
|
1735 |
|
|
while Present (Formal) loop
|
1736 |
|
|
Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
|
1737 |
|
|
|
1738 |
|
|
if Present (Ctrl_Type) then
|
1739 |
|
|
return Ctrl_Type;
|
1740 |
|
|
end if;
|
1741 |
|
|
|
1742 |
|
|
Next_Formal (Formal);
|
1743 |
|
|
end loop;
|
1744 |
|
|
|
1745 |
|
|
-- The subprogram may also be dispatching on result
|
1746 |
|
|
|
1747 |
|
|
if Present (Etype (Subp)) then
|
1748 |
|
|
return Check_Controlling_Type (Etype (Subp), Subp);
|
1749 |
|
|
end if;
|
1750 |
|
|
end if;
|
1751 |
|
|
|
1752 |
|
|
pragma Assert (not Is_Dispatching_Operation (Subp));
|
1753 |
|
|
return Empty;
|
1754 |
|
|
end Find_Dispatching_Type;
|
1755 |
|
|
|
1756 |
|
|
--------------------------------------
|
1757 |
|
|
-- Find_Hidden_Overridden_Primitive --
|
1758 |
|
|
--------------------------------------
|
1759 |
|
|
|
1760 |
|
|
function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id
|
1761 |
|
|
is
|
1762 |
|
|
Tag_Typ : constant Entity_Id := Find_Dispatching_Type (S);
|
1763 |
|
|
Elmt : Elmt_Id;
|
1764 |
|
|
Orig_Prim : Entity_Id;
|
1765 |
|
|
Prim : Entity_Id;
|
1766 |
|
|
Vis_List : Elist_Id;
|
1767 |
|
|
|
1768 |
|
|
begin
|
1769 |
|
|
-- This Ada 2012 rule is valid only for type extensions or private
|
1770 |
|
|
-- extensions.
|
1771 |
|
|
|
1772 |
|
|
if No (Tag_Typ)
|
1773 |
|
|
or else not Is_Record_Type (Tag_Typ)
|
1774 |
|
|
or else Etype (Tag_Typ) = Tag_Typ
|
1775 |
|
|
then
|
1776 |
|
|
return Empty;
|
1777 |
|
|
end if;
|
1778 |
|
|
|
1779 |
|
|
-- Collect the list of visible ancestor of the tagged type
|
1780 |
|
|
|
1781 |
|
|
Vis_List := Visible_Ancestors (Tag_Typ);
|
1782 |
|
|
|
1783 |
|
|
Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
|
1784 |
|
|
while Present (Elmt) loop
|
1785 |
|
|
Prim := Node (Elmt);
|
1786 |
|
|
|
1787 |
|
|
-- Find an inherited hidden dispatching primitive with the name of S
|
1788 |
|
|
-- and a type-conformant profile.
|
1789 |
|
|
|
1790 |
|
|
if Present (Alias (Prim))
|
1791 |
|
|
and then Is_Hidden (Alias (Prim))
|
1792 |
|
|
and then Find_Dispatching_Type (Alias (Prim)) /= Tag_Typ
|
1793 |
|
|
and then Primitive_Names_Match (S, Prim)
|
1794 |
|
|
and then Type_Conformant (S, Prim)
|
1795 |
|
|
then
|
1796 |
|
|
declare
|
1797 |
|
|
Vis_Ancestor : Elmt_Id;
|
1798 |
|
|
Elmt : Elmt_Id;
|
1799 |
|
|
|
1800 |
|
|
begin
|
1801 |
|
|
-- The original corresponding operation of Prim must be an
|
1802 |
|
|
-- operation of a visible ancestor of the dispatching type S,
|
1803 |
|
|
-- and the original corresponding operation of S2 must be
|
1804 |
|
|
-- visible.
|
1805 |
|
|
|
1806 |
|
|
Orig_Prim := Original_Corresponding_Operation (Prim);
|
1807 |
|
|
|
1808 |
|
|
if Orig_Prim /= Prim
|
1809 |
|
|
and then Is_Immediately_Visible (Orig_Prim)
|
1810 |
|
|
then
|
1811 |
|
|
Vis_Ancestor := First_Elmt (Vis_List);
|
1812 |
|
|
while Present (Vis_Ancestor) loop
|
1813 |
|
|
Elmt :=
|
1814 |
|
|
First_Elmt (Primitive_Operations (Node (Vis_Ancestor)));
|
1815 |
|
|
while Present (Elmt) loop
|
1816 |
|
|
if Node (Elmt) = Orig_Prim then
|
1817 |
|
|
Set_Overridden_Operation (S, Prim);
|
1818 |
|
|
Set_Alias (Prim, Orig_Prim);
|
1819 |
|
|
return Prim;
|
1820 |
|
|
end if;
|
1821 |
|
|
|
1822 |
|
|
Next_Elmt (Elmt);
|
1823 |
|
|
end loop;
|
1824 |
|
|
|
1825 |
|
|
Next_Elmt (Vis_Ancestor);
|
1826 |
|
|
end loop;
|
1827 |
|
|
end if;
|
1828 |
|
|
end;
|
1829 |
|
|
end if;
|
1830 |
|
|
|
1831 |
|
|
Next_Elmt (Elmt);
|
1832 |
|
|
end loop;
|
1833 |
|
|
|
1834 |
|
|
return Empty;
|
1835 |
|
|
end Find_Hidden_Overridden_Primitive;
|
1836 |
|
|
|
1837 |
|
|
---------------------------------------
|
1838 |
|
|
-- Find_Primitive_Covering_Interface --
|
1839 |
|
|
---------------------------------------
|
1840 |
|
|
|
1841 |
|
|
function Find_Primitive_Covering_Interface
|
1842 |
|
|
(Tagged_Type : Entity_Id;
|
1843 |
|
|
Iface_Prim : Entity_Id) return Entity_Id
|
1844 |
|
|
is
|
1845 |
|
|
E : Entity_Id;
|
1846 |
|
|
El : Elmt_Id;
|
1847 |
|
|
|
1848 |
|
|
begin
|
1849 |
|
|
pragma Assert (Is_Interface (Find_Dispatching_Type (Iface_Prim))
|
1850 |
|
|
or else (Present (Alias (Iface_Prim))
|
1851 |
|
|
and then
|
1852 |
|
|
Is_Interface
|
1853 |
|
|
(Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
|
1854 |
|
|
|
1855 |
|
|
-- Search in the homonym chain. Done to speed up locating visible
|
1856 |
|
|
-- entities and required to catch primitives associated with the partial
|
1857 |
|
|
-- view of private types when processing the corresponding full view.
|
1858 |
|
|
|
1859 |
|
|
E := Current_Entity (Iface_Prim);
|
1860 |
|
|
while Present (E) loop
|
1861 |
|
|
if Is_Subprogram (E)
|
1862 |
|
|
and then Is_Dispatching_Operation (E)
|
1863 |
|
|
and then Is_Interface_Conformant (Tagged_Type, Iface_Prim, E)
|
1864 |
|
|
then
|
1865 |
|
|
return E;
|
1866 |
|
|
end if;
|
1867 |
|
|
|
1868 |
|
|
E := Homonym (E);
|
1869 |
|
|
end loop;
|
1870 |
|
|
|
1871 |
|
|
-- Search in the list of primitives of the type. Required to locate the
|
1872 |
|
|
-- covering primitive if the covering primitive is not visible (for
|
1873 |
|
|
-- example, non-visible inherited primitive of private type).
|
1874 |
|
|
|
1875 |
|
|
El := First_Elmt (Primitive_Operations (Tagged_Type));
|
1876 |
|
|
while Present (El) loop
|
1877 |
|
|
E := Node (El);
|
1878 |
|
|
|
1879 |
|
|
-- Keep separate the management of internal entities that link
|
1880 |
|
|
-- primitives with interface primitives from tagged type primitives.
|
1881 |
|
|
|
1882 |
|
|
if No (Interface_Alias (E)) then
|
1883 |
|
|
if Present (Alias (E)) then
|
1884 |
|
|
|
1885 |
|
|
-- This interface primitive has not been covered yet
|
1886 |
|
|
|
1887 |
|
|
if Alias (E) = Iface_Prim then
|
1888 |
|
|
return E;
|
1889 |
|
|
|
1890 |
|
|
-- The covering primitive was inherited
|
1891 |
|
|
|
1892 |
|
|
elsif Overridden_Operation (Ultimate_Alias (E))
|
1893 |
|
|
= Iface_Prim
|
1894 |
|
|
then
|
1895 |
|
|
return E;
|
1896 |
|
|
end if;
|
1897 |
|
|
end if;
|
1898 |
|
|
|
1899 |
|
|
-- Check if E covers the interface primitive (includes case in
|
1900 |
|
|
-- which E is an inherited private primitive).
|
1901 |
|
|
|
1902 |
|
|
if Is_Interface_Conformant (Tagged_Type, Iface_Prim, E) then
|
1903 |
|
|
return E;
|
1904 |
|
|
end if;
|
1905 |
|
|
|
1906 |
|
|
-- Use the internal entity that links the interface primitive with
|
1907 |
|
|
-- the covering primitive to locate the entity.
|
1908 |
|
|
|
1909 |
|
|
elsif Interface_Alias (E) = Iface_Prim then
|
1910 |
|
|
return Alias (E);
|
1911 |
|
|
end if;
|
1912 |
|
|
|
1913 |
|
|
Next_Elmt (El);
|
1914 |
|
|
end loop;
|
1915 |
|
|
|
1916 |
|
|
-- Not found
|
1917 |
|
|
|
1918 |
|
|
return Empty;
|
1919 |
|
|
end Find_Primitive_Covering_Interface;
|
1920 |
|
|
|
1921 |
|
|
---------------------------
|
1922 |
|
|
-- Inherited_Subprograms --
|
1923 |
|
|
---------------------------
|
1924 |
|
|
|
1925 |
|
|
function Inherited_Subprograms (S : Entity_Id) return Subprogram_List is
|
1926 |
|
|
Result : Subprogram_List (1 .. 6000);
|
1927 |
|
|
-- 6000 here is intended to be infinity. We could use an expandable
|
1928 |
|
|
-- table, but it would be awfully heavy, and there is no way that we
|
1929 |
|
|
-- could reasonably exceed this value.
|
1930 |
|
|
|
1931 |
|
|
N : Int := 0;
|
1932 |
|
|
-- Number of entries in Result
|
1933 |
|
|
|
1934 |
|
|
Parent_Op : Entity_Id;
|
1935 |
|
|
-- Traverses the Overridden_Operation chain
|
1936 |
|
|
|
1937 |
|
|
procedure Store_IS (E : Entity_Id);
|
1938 |
|
|
-- Stores E in Result if not already stored
|
1939 |
|
|
|
1940 |
|
|
--------------
|
1941 |
|
|
-- Store_IS --
|
1942 |
|
|
--------------
|
1943 |
|
|
|
1944 |
|
|
procedure Store_IS (E : Entity_Id) is
|
1945 |
|
|
begin
|
1946 |
|
|
for J in 1 .. N loop
|
1947 |
|
|
if E = Result (J) then
|
1948 |
|
|
return;
|
1949 |
|
|
end if;
|
1950 |
|
|
end loop;
|
1951 |
|
|
|
1952 |
|
|
N := N + 1;
|
1953 |
|
|
Result (N) := E;
|
1954 |
|
|
end Store_IS;
|
1955 |
|
|
|
1956 |
|
|
-- Start of processing for Inherited_Subprograms
|
1957 |
|
|
|
1958 |
|
|
begin
|
1959 |
|
|
if Present (S) and then Is_Dispatching_Operation (S) then
|
1960 |
|
|
|
1961 |
|
|
-- Deal with direct inheritance
|
1962 |
|
|
|
1963 |
|
|
Parent_Op := S;
|
1964 |
|
|
loop
|
1965 |
|
|
Parent_Op := Overridden_Operation (Parent_Op);
|
1966 |
|
|
exit when No (Parent_Op);
|
1967 |
|
|
|
1968 |
|
|
if Is_Subprogram (Parent_Op)
|
1969 |
|
|
or else Is_Generic_Subprogram (Parent_Op)
|
1970 |
|
|
then
|
1971 |
|
|
Store_IS (Parent_Op);
|
1972 |
|
|
end if;
|
1973 |
|
|
end loop;
|
1974 |
|
|
|
1975 |
|
|
-- Now deal with interfaces
|
1976 |
|
|
|
1977 |
|
|
declare
|
1978 |
|
|
Tag_Typ : Entity_Id;
|
1979 |
|
|
Prim : Entity_Id;
|
1980 |
|
|
Elmt : Elmt_Id;
|
1981 |
|
|
|
1982 |
|
|
begin
|
1983 |
|
|
Tag_Typ := Find_Dispatching_Type (S);
|
1984 |
|
|
|
1985 |
|
|
if Is_Concurrent_Type (Tag_Typ) then
|
1986 |
|
|
Tag_Typ := Corresponding_Record_Type (Tag_Typ);
|
1987 |
|
|
end if;
|
1988 |
|
|
|
1989 |
|
|
-- Search primitive operations of dispatching type
|
1990 |
|
|
|
1991 |
|
|
if Present (Tag_Typ)
|
1992 |
|
|
and then Present (Primitive_Operations (Tag_Typ))
|
1993 |
|
|
then
|
1994 |
|
|
Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
|
1995 |
|
|
while Present (Elmt) loop
|
1996 |
|
|
Prim := Node (Elmt);
|
1997 |
|
|
|
1998 |
|
|
-- The following test eliminates some odd cases in which
|
1999 |
|
|
-- Ekind (Prim) is Void, to be investigated further ???
|
2000 |
|
|
|
2001 |
|
|
if not (Is_Subprogram (Prim)
|
2002 |
|
|
or else
|
2003 |
|
|
Is_Generic_Subprogram (Prim))
|
2004 |
|
|
then
|
2005 |
|
|
null;
|
2006 |
|
|
|
2007 |
|
|
-- For [generic] subprogram, look at interface alias
|
2008 |
|
|
|
2009 |
|
|
elsif Present (Interface_Alias (Prim))
|
2010 |
|
|
and then Alias (Prim) = S
|
2011 |
|
|
then
|
2012 |
|
|
-- We have found a primitive covered by S
|
2013 |
|
|
|
2014 |
|
|
Store_IS (Interface_Alias (Prim));
|
2015 |
|
|
end if;
|
2016 |
|
|
|
2017 |
|
|
Next_Elmt (Elmt);
|
2018 |
|
|
end loop;
|
2019 |
|
|
end if;
|
2020 |
|
|
end;
|
2021 |
|
|
end if;
|
2022 |
|
|
|
2023 |
|
|
return Result (1 .. N);
|
2024 |
|
|
end Inherited_Subprograms;
|
2025 |
|
|
|
2026 |
|
|
---------------------------
|
2027 |
|
|
-- Is_Dynamically_Tagged --
|
2028 |
|
|
---------------------------
|
2029 |
|
|
|
2030 |
|
|
function Is_Dynamically_Tagged (N : Node_Id) return Boolean is
|
2031 |
|
|
begin
|
2032 |
|
|
if Nkind (N) = N_Error then
|
2033 |
|
|
return False;
|
2034 |
|
|
else
|
2035 |
|
|
return Find_Controlling_Arg (N) /= Empty;
|
2036 |
|
|
end if;
|
2037 |
|
|
end Is_Dynamically_Tagged;
|
2038 |
|
|
|
2039 |
|
|
---------------------------------
|
2040 |
|
|
-- Is_Null_Interface_Primitive --
|
2041 |
|
|
---------------------------------
|
2042 |
|
|
|
2043 |
|
|
function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
|
2044 |
|
|
begin
|
2045 |
|
|
return Comes_From_Source (E)
|
2046 |
|
|
and then Is_Dispatching_Operation (E)
|
2047 |
|
|
and then Ekind (E) = E_Procedure
|
2048 |
|
|
and then Null_Present (Parent (E))
|
2049 |
|
|
and then Is_Interface (Find_Dispatching_Type (E));
|
2050 |
|
|
end Is_Null_Interface_Primitive;
|
2051 |
|
|
|
2052 |
|
|
--------------------------
|
2053 |
|
|
-- Is_Tag_Indeterminate --
|
2054 |
|
|
--------------------------
|
2055 |
|
|
|
2056 |
|
|
function Is_Tag_Indeterminate (N : Node_Id) return Boolean is
|
2057 |
|
|
Nam : Entity_Id;
|
2058 |
|
|
Actual : Node_Id;
|
2059 |
|
|
Orig_Node : constant Node_Id := Original_Node (N);
|
2060 |
|
|
|
2061 |
|
|
begin
|
2062 |
|
|
if Nkind (Orig_Node) = N_Function_Call
|
2063 |
|
|
and then Is_Entity_Name (Name (Orig_Node))
|
2064 |
|
|
then
|
2065 |
|
|
Nam := Entity (Name (Orig_Node));
|
2066 |
|
|
|
2067 |
|
|
if not Has_Controlling_Result (Nam) then
|
2068 |
|
|
return False;
|
2069 |
|
|
|
2070 |
|
|
-- The function may have a controlling result, but if the return type
|
2071 |
|
|
-- is not visibly tagged, then this is not tag-indeterminate.
|
2072 |
|
|
|
2073 |
|
|
elsif Is_Access_Type (Etype (Nam))
|
2074 |
|
|
and then not Is_Tagged_Type (Designated_Type (Etype (Nam)))
|
2075 |
|
|
then
|
2076 |
|
|
return False;
|
2077 |
|
|
|
2078 |
|
|
-- An explicit dereference means that the call has already been
|
2079 |
|
|
-- expanded and there is no tag to propagate.
|
2080 |
|
|
|
2081 |
|
|
elsif Nkind (N) = N_Explicit_Dereference then
|
2082 |
|
|
return False;
|
2083 |
|
|
|
2084 |
|
|
-- If there are no actuals, the call is tag-indeterminate
|
2085 |
|
|
|
2086 |
|
|
elsif No (Parameter_Associations (Orig_Node)) then
|
2087 |
|
|
return True;
|
2088 |
|
|
|
2089 |
|
|
else
|
2090 |
|
|
Actual := First_Actual (Orig_Node);
|
2091 |
|
|
while Present (Actual) loop
|
2092 |
|
|
if Is_Controlling_Actual (Actual)
|
2093 |
|
|
and then not Is_Tag_Indeterminate (Actual)
|
2094 |
|
|
then
|
2095 |
|
|
-- One operand is dispatching
|
2096 |
|
|
|
2097 |
|
|
return False;
|
2098 |
|
|
end if;
|
2099 |
|
|
|
2100 |
|
|
Next_Actual (Actual);
|
2101 |
|
|
end loop;
|
2102 |
|
|
|
2103 |
|
|
return True;
|
2104 |
|
|
end if;
|
2105 |
|
|
|
2106 |
|
|
elsif Nkind (Orig_Node) = N_Qualified_Expression then
|
2107 |
|
|
return Is_Tag_Indeterminate (Expression (Orig_Node));
|
2108 |
|
|
|
2109 |
|
|
-- Case of a call to the Input attribute (possibly rewritten), which is
|
2110 |
|
|
-- always tag-indeterminate except when its prefix is a Class attribute.
|
2111 |
|
|
|
2112 |
|
|
elsif Nkind (Orig_Node) = N_Attribute_Reference
|
2113 |
|
|
and then
|
2114 |
|
|
Get_Attribute_Id (Attribute_Name (Orig_Node)) = Attribute_Input
|
2115 |
|
|
and then
|
2116 |
|
|
Nkind (Prefix (Orig_Node)) /= N_Attribute_Reference
|
2117 |
|
|
then
|
2118 |
|
|
return True;
|
2119 |
|
|
|
2120 |
|
|
-- In Ada 2005, a function that returns an anonymous access type can be
|
2121 |
|
|
-- dispatching, and the dereference of a call to such a function can
|
2122 |
|
|
-- also be tag-indeterminate if the call itself is.
|
2123 |
|
|
|
2124 |
|
|
elsif Nkind (Orig_Node) = N_Explicit_Dereference
|
2125 |
|
|
and then Ada_Version >= Ada_2005
|
2126 |
|
|
then
|
2127 |
|
|
return Is_Tag_Indeterminate (Prefix (Orig_Node));
|
2128 |
|
|
|
2129 |
|
|
else
|
2130 |
|
|
return False;
|
2131 |
|
|
end if;
|
2132 |
|
|
end Is_Tag_Indeterminate;
|
2133 |
|
|
|
2134 |
|
|
------------------------------------
|
2135 |
|
|
-- Override_Dispatching_Operation --
|
2136 |
|
|
------------------------------------
|
2137 |
|
|
|
2138 |
|
|
procedure Override_Dispatching_Operation
|
2139 |
|
|
(Tagged_Type : Entity_Id;
|
2140 |
|
|
Prev_Op : Entity_Id;
|
2141 |
|
|
New_Op : Entity_Id)
|
2142 |
|
|
is
|
2143 |
|
|
Elmt : Elmt_Id;
|
2144 |
|
|
Prim : Node_Id;
|
2145 |
|
|
|
2146 |
|
|
begin
|
2147 |
|
|
-- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
|
2148 |
|
|
-- we do it unconditionally in Ada 95 now, since this is our pragma!)
|
2149 |
|
|
|
2150 |
|
|
if No_Return (Prev_Op) and then not No_Return (New_Op) then
|
2151 |
|
|
Error_Msg_N ("procedure & must have No_Return pragma", New_Op);
|
2152 |
|
|
Error_Msg_N ("\since overridden procedure has No_Return", New_Op);
|
2153 |
|
|
end if;
|
2154 |
|
|
|
2155 |
|
|
-- If there is no previous operation to override, the type declaration
|
2156 |
|
|
-- was malformed, and an error must have been emitted already.
|
2157 |
|
|
|
2158 |
|
|
Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
|
2159 |
|
|
while Present (Elmt)
|
2160 |
|
|
and then Node (Elmt) /= Prev_Op
|
2161 |
|
|
loop
|
2162 |
|
|
Next_Elmt (Elmt);
|
2163 |
|
|
end loop;
|
2164 |
|
|
|
2165 |
|
|
if No (Elmt) then
|
2166 |
|
|
return;
|
2167 |
|
|
end if;
|
2168 |
|
|
|
2169 |
|
|
-- The location of entities that come from source in the list of
|
2170 |
|
|
-- primitives of the tagged type must follow their order of occurrence
|
2171 |
|
|
-- in the sources to fulfill the C++ ABI. If the overridden entity is a
|
2172 |
|
|
-- primitive of an interface that is not implemented by the parents of
|
2173 |
|
|
-- this tagged type (that is, it is an alias of an interface primitive
|
2174 |
|
|
-- generated by Derive_Interface_Progenitors), then we must append the
|
2175 |
|
|
-- new entity at the end of the list of primitives.
|
2176 |
|
|
|
2177 |
|
|
if Present (Alias (Prev_Op))
|
2178 |
|
|
and then Etype (Tagged_Type) /= Tagged_Type
|
2179 |
|
|
and then Is_Interface (Find_Dispatching_Type (Alias (Prev_Op)))
|
2180 |
|
|
and then not Is_Ancestor (Find_Dispatching_Type (Alias (Prev_Op)),
|
2181 |
|
|
Tagged_Type, Use_Full_View => True)
|
2182 |
|
|
and then not Implements_Interface
|
2183 |
|
|
(Etype (Tagged_Type),
|
2184 |
|
|
Find_Dispatching_Type (Alias (Prev_Op)))
|
2185 |
|
|
then
|
2186 |
|
|
Remove_Elmt (Primitive_Operations (Tagged_Type), Elmt);
|
2187 |
|
|
Append_Elmt (New_Op, Primitive_Operations (Tagged_Type));
|
2188 |
|
|
|
2189 |
|
|
-- The new primitive replaces the overridden entity. Required to ensure
|
2190 |
|
|
-- that overriding primitive is assigned the same dispatch table slot.
|
2191 |
|
|
|
2192 |
|
|
else
|
2193 |
|
|
Replace_Elmt (Elmt, New_Op);
|
2194 |
|
|
end if;
|
2195 |
|
|
|
2196 |
|
|
if Ada_Version >= Ada_2005
|
2197 |
|
|
and then Has_Interfaces (Tagged_Type)
|
2198 |
|
|
then
|
2199 |
|
|
-- Ada 2005 (AI-251): Update the attribute alias of all the aliased
|
2200 |
|
|
-- entities of the overridden primitive to reference New_Op, and also
|
2201 |
|
|
-- propagate the proper value of Is_Abstract_Subprogram. Verify
|
2202 |
|
|
-- that the new operation is subtype conformant with the interface
|
2203 |
|
|
-- operations that it implements (for operations inherited from the
|
2204 |
|
|
-- parent itself, this check is made when building the derived type).
|
2205 |
|
|
|
2206 |
|
|
-- Note: This code is only executed in case of late overriding
|
2207 |
|
|
|
2208 |
|
|
Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
|
2209 |
|
|
while Present (Elmt) loop
|
2210 |
|
|
Prim := Node (Elmt);
|
2211 |
|
|
|
2212 |
|
|
if Prim = New_Op then
|
2213 |
|
|
null;
|
2214 |
|
|
|
2215 |
|
|
-- Note: The check on Is_Subprogram protects the frontend against
|
2216 |
|
|
-- reading attributes in entities that are not yet fully decorated
|
2217 |
|
|
|
2218 |
|
|
elsif Is_Subprogram (Prim)
|
2219 |
|
|
and then Present (Interface_Alias (Prim))
|
2220 |
|
|
and then Alias (Prim) = Prev_Op
|
2221 |
|
|
and then Present (Etype (New_Op))
|
2222 |
|
|
then
|
2223 |
|
|
Set_Alias (Prim, New_Op);
|
2224 |
|
|
Check_Subtype_Conformant (New_Op, Prim);
|
2225 |
|
|
Set_Is_Abstract_Subprogram (Prim,
|
2226 |
|
|
Is_Abstract_Subprogram (New_Op));
|
2227 |
|
|
|
2228 |
|
|
-- Ensure that this entity will be expanded to fill the
|
2229 |
|
|
-- corresponding entry in its dispatch table.
|
2230 |
|
|
|
2231 |
|
|
if not Is_Abstract_Subprogram (Prim) then
|
2232 |
|
|
Set_Has_Delayed_Freeze (Prim);
|
2233 |
|
|
end if;
|
2234 |
|
|
end if;
|
2235 |
|
|
|
2236 |
|
|
Next_Elmt (Elmt);
|
2237 |
|
|
end loop;
|
2238 |
|
|
end if;
|
2239 |
|
|
|
2240 |
|
|
if (not Is_Package_Or_Generic_Package (Current_Scope))
|
2241 |
|
|
or else not In_Private_Part (Current_Scope)
|
2242 |
|
|
then
|
2243 |
|
|
-- Not a private primitive
|
2244 |
|
|
|
2245 |
|
|
null;
|
2246 |
|
|
|
2247 |
|
|
else pragma Assert (Is_Inherited_Operation (Prev_Op));
|
2248 |
|
|
|
2249 |
|
|
-- Make the overriding operation into an alias of the implicit one.
|
2250 |
|
|
-- In this fashion a call from outside ends up calling the new body
|
2251 |
|
|
-- even if non-dispatching, and a call from inside calls the over-
|
2252 |
|
|
-- riding operation because it hides the implicit one. To indicate
|
2253 |
|
|
-- that the body of Prev_Op is never called, set its dispatch table
|
2254 |
|
|
-- entity to Empty. If the overridden operation has a dispatching
|
2255 |
|
|
-- result, so does the overriding one.
|
2256 |
|
|
|
2257 |
|
|
Set_Alias (Prev_Op, New_Op);
|
2258 |
|
|
Set_DTC_Entity (Prev_Op, Empty);
|
2259 |
|
|
Set_Has_Controlling_Result (New_Op, Has_Controlling_Result (Prev_Op));
|
2260 |
|
|
return;
|
2261 |
|
|
end if;
|
2262 |
|
|
end Override_Dispatching_Operation;
|
2263 |
|
|
|
2264 |
|
|
-------------------
|
2265 |
|
|
-- Propagate_Tag --
|
2266 |
|
|
-------------------
|
2267 |
|
|
|
2268 |
|
|
procedure Propagate_Tag (Control : Node_Id; Actual : Node_Id) is
|
2269 |
|
|
Call_Node : Node_Id;
|
2270 |
|
|
Arg : Node_Id;
|
2271 |
|
|
|
2272 |
|
|
begin
|
2273 |
|
|
if Nkind (Actual) = N_Function_Call then
|
2274 |
|
|
Call_Node := Actual;
|
2275 |
|
|
|
2276 |
|
|
elsif Nkind (Actual) = N_Identifier
|
2277 |
|
|
and then Nkind (Original_Node (Actual)) = N_Function_Call
|
2278 |
|
|
then
|
2279 |
|
|
-- Call rewritten as object declaration when stack-checking is
|
2280 |
|
|
-- enabled. Propagate tag to expression in declaration, which is
|
2281 |
|
|
-- original call.
|
2282 |
|
|
|
2283 |
|
|
Call_Node := Expression (Parent (Entity (Actual)));
|
2284 |
|
|
|
2285 |
|
|
-- Ada 2005: If this is a dereference of a call to a function with a
|
2286 |
|
|
-- dispatching access-result, the tag is propagated when the dereference
|
2287 |
|
|
-- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
|
2288 |
|
|
|
2289 |
|
|
elsif Nkind (Actual) = N_Explicit_Dereference
|
2290 |
|
|
and then Nkind (Original_Node (Prefix (Actual))) = N_Function_Call
|
2291 |
|
|
then
|
2292 |
|
|
return;
|
2293 |
|
|
|
2294 |
|
|
-- When expansion is suppressed, an unexpanded call to 'Input can occur,
|
2295 |
|
|
-- and in that case we can simply return.
|
2296 |
|
|
|
2297 |
|
|
elsif Nkind (Actual) = N_Attribute_Reference then
|
2298 |
|
|
pragma Assert (Attribute_Name (Actual) = Name_Input);
|
2299 |
|
|
|
2300 |
|
|
return;
|
2301 |
|
|
|
2302 |
|
|
-- Only other possibilities are parenthesized or qualified expression,
|
2303 |
|
|
-- or an expander-generated unchecked conversion of a function call to
|
2304 |
|
|
-- a stream Input attribute.
|
2305 |
|
|
|
2306 |
|
|
else
|
2307 |
|
|
Call_Node := Expression (Actual);
|
2308 |
|
|
end if;
|
2309 |
|
|
|
2310 |
|
|
-- Do not set the Controlling_Argument if already set. This happens in
|
2311 |
|
|
-- the special case of _Input (see Exp_Attr, case Input).
|
2312 |
|
|
|
2313 |
|
|
if No (Controlling_Argument (Call_Node)) then
|
2314 |
|
|
Set_Controlling_Argument (Call_Node, Control);
|
2315 |
|
|
end if;
|
2316 |
|
|
|
2317 |
|
|
Arg := First_Actual (Call_Node);
|
2318 |
|
|
while Present (Arg) loop
|
2319 |
|
|
if Is_Tag_Indeterminate (Arg) then
|
2320 |
|
|
Propagate_Tag (Control, Arg);
|
2321 |
|
|
end if;
|
2322 |
|
|
|
2323 |
|
|
Next_Actual (Arg);
|
2324 |
|
|
end loop;
|
2325 |
|
|
|
2326 |
|
|
-- Expansion of dispatching calls is suppressed when VM_Target, because
|
2327 |
|
|
-- the VM back-ends directly handle the generation of dispatching calls
|
2328 |
|
|
-- and would have to undo any expansion to an indirect call.
|
2329 |
|
|
|
2330 |
|
|
if Tagged_Type_Expansion then
|
2331 |
|
|
declare
|
2332 |
|
|
Call_Typ : constant Entity_Id := Etype (Call_Node);
|
2333 |
|
|
|
2334 |
|
|
begin
|
2335 |
|
|
Expand_Dispatching_Call (Call_Node);
|
2336 |
|
|
|
2337 |
|
|
-- If the controlling argument is an interface type and the type
|
2338 |
|
|
-- of Call_Node differs then we must add an implicit conversion to
|
2339 |
|
|
-- force displacement of the pointer to the object to reference
|
2340 |
|
|
-- the secondary dispatch table of the interface.
|
2341 |
|
|
|
2342 |
|
|
if Is_Interface (Etype (Control))
|
2343 |
|
|
and then Etype (Control) /= Call_Typ
|
2344 |
|
|
then
|
2345 |
|
|
-- Cannot use Convert_To because the previous call to
|
2346 |
|
|
-- Expand_Dispatching_Call leaves decorated the Call_Node
|
2347 |
|
|
-- with the type of Control.
|
2348 |
|
|
|
2349 |
|
|
Rewrite (Call_Node,
|
2350 |
|
|
Make_Type_Conversion (Sloc (Call_Node),
|
2351 |
|
|
Subtype_Mark =>
|
2352 |
|
|
New_Occurrence_Of (Etype (Control), Sloc (Call_Node)),
|
2353 |
|
|
Expression => Relocate_Node (Call_Node)));
|
2354 |
|
|
Set_Etype (Call_Node, Etype (Control));
|
2355 |
|
|
Set_Analyzed (Call_Node);
|
2356 |
|
|
|
2357 |
|
|
Expand_Interface_Conversion (Call_Node, Is_Static => False);
|
2358 |
|
|
end if;
|
2359 |
|
|
end;
|
2360 |
|
|
|
2361 |
|
|
-- Expansion of a dispatching call results in an indirect call, which in
|
2362 |
|
|
-- turn causes current values to be killed (see Resolve_Call), so on VM
|
2363 |
|
|
-- targets we do the call here to ensure consistent warnings between VM
|
2364 |
|
|
-- and non-VM targets.
|
2365 |
|
|
|
2366 |
|
|
else
|
2367 |
|
|
Kill_Current_Values;
|
2368 |
|
|
end if;
|
2369 |
|
|
end Propagate_Tag;
|
2370 |
|
|
|
2371 |
|
|
end Sem_Disp;
|