1 |
706 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- S E M _ E V A L --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Checks; use Checks;
|
28 |
|
|
with Debug; use Debug;
|
29 |
|
|
with Einfo; use Einfo;
|
30 |
|
|
with Elists; use Elists;
|
31 |
|
|
with Errout; use Errout;
|
32 |
|
|
with Eval_Fat; use Eval_Fat;
|
33 |
|
|
with Exp_Util; use Exp_Util;
|
34 |
|
|
with Freeze; use Freeze;
|
35 |
|
|
with Lib; use Lib;
|
36 |
|
|
with Namet; use Namet;
|
37 |
|
|
with Nmake; use Nmake;
|
38 |
|
|
with Nlists; use Nlists;
|
39 |
|
|
with Opt; use Opt;
|
40 |
|
|
with Sem; use Sem;
|
41 |
|
|
with Sem_Aux; use Sem_Aux;
|
42 |
|
|
with Sem_Cat; use Sem_Cat;
|
43 |
|
|
with Sem_Ch6; use Sem_Ch6;
|
44 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
45 |
|
|
with Sem_Res; use Sem_Res;
|
46 |
|
|
with Sem_Util; use Sem_Util;
|
47 |
|
|
with Sem_Type; use Sem_Type;
|
48 |
|
|
with Sem_Warn; use Sem_Warn;
|
49 |
|
|
with Sinfo; use Sinfo;
|
50 |
|
|
with Snames; use Snames;
|
51 |
|
|
with Stand; use Stand;
|
52 |
|
|
with Stringt; use Stringt;
|
53 |
|
|
with Tbuild; use Tbuild;
|
54 |
|
|
|
55 |
|
|
package body Sem_Eval is
|
56 |
|
|
|
57 |
|
|
-----------------------------------------
|
58 |
|
|
-- Handling of Compile Time Evaluation --
|
59 |
|
|
-----------------------------------------
|
60 |
|
|
|
61 |
|
|
-- The compile time evaluation of expressions is distributed over several
|
62 |
|
|
-- Eval_xxx procedures. These procedures are called immediately after
|
63 |
|
|
-- a subexpression is resolved and is therefore accomplished in a bottom
|
64 |
|
|
-- up fashion. The flags are synthesized using the following approach.
|
65 |
|
|
|
66 |
|
|
-- Is_Static_Expression is determined by following the detailed rules
|
67 |
|
|
-- in RM 4.9(4-14). This involves testing the Is_Static_Expression
|
68 |
|
|
-- flag of the operands in many cases.
|
69 |
|
|
|
70 |
|
|
-- Raises_Constraint_Error is set if any of the operands have the flag
|
71 |
|
|
-- set or if an attempt to compute the value of the current expression
|
72 |
|
|
-- results in detection of a runtime constraint error.
|
73 |
|
|
|
74 |
|
|
-- As described in the spec, the requirement is that Is_Static_Expression
|
75 |
|
|
-- be accurately set, and in addition for nodes for which this flag is set,
|
76 |
|
|
-- Raises_Constraint_Error must also be set. Furthermore a node which has
|
77 |
|
|
-- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
|
78 |
|
|
-- requirement is that the expression value must be precomputed, and the
|
79 |
|
|
-- node is either a literal, or the name of a constant entity whose value
|
80 |
|
|
-- is a static expression.
|
81 |
|
|
|
82 |
|
|
-- The general approach is as follows. First compute Is_Static_Expression.
|
83 |
|
|
-- If the node is not static, then the flag is left off in the node and
|
84 |
|
|
-- we are all done. Otherwise for a static node, we test if any of the
|
85 |
|
|
-- operands will raise constraint error, and if so, propagate the flag
|
86 |
|
|
-- Raises_Constraint_Error to the result node and we are done (since the
|
87 |
|
|
-- error was already posted at a lower level).
|
88 |
|
|
|
89 |
|
|
-- For the case of a static node whose operands do not raise constraint
|
90 |
|
|
-- error, we attempt to evaluate the node. If this evaluation succeeds,
|
91 |
|
|
-- then the node is replaced by the result of this computation. If the
|
92 |
|
|
-- evaluation raises constraint error, then we rewrite the node with
|
93 |
|
|
-- Apply_Compile_Time_Constraint_Error to raise the exception and also
|
94 |
|
|
-- to post appropriate error messages.
|
95 |
|
|
|
96 |
|
|
----------------
|
97 |
|
|
-- Local Data --
|
98 |
|
|
----------------
|
99 |
|
|
|
100 |
|
|
type Bits is array (Nat range <>) of Boolean;
|
101 |
|
|
-- Used to convert unsigned (modular) values for folding logical ops
|
102 |
|
|
|
103 |
|
|
-- The following definitions are used to maintain a cache of nodes that
|
104 |
|
|
-- have compile time known values. The cache is maintained only for
|
105 |
|
|
-- discrete types (the most common case), and is populated by calls to
|
106 |
|
|
-- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
|
107 |
|
|
-- since it is possible for the status to change (in particular it is
|
108 |
|
|
-- possible for a node to get replaced by a constraint error node).
|
109 |
|
|
|
110 |
|
|
CV_Bits : constant := 5;
|
111 |
|
|
-- Number of low order bits of Node_Id value used to reference entries
|
112 |
|
|
-- in the cache table.
|
113 |
|
|
|
114 |
|
|
CV_Cache_Size : constant Nat := 2 ** CV_Bits;
|
115 |
|
|
-- Size of cache for compile time values
|
116 |
|
|
|
117 |
|
|
subtype CV_Range is Nat range 0 .. CV_Cache_Size;
|
118 |
|
|
|
119 |
|
|
type CV_Entry is record
|
120 |
|
|
N : Node_Id;
|
121 |
|
|
V : Uint;
|
122 |
|
|
end record;
|
123 |
|
|
|
124 |
|
|
type CV_Cache_Array is array (CV_Range) of CV_Entry;
|
125 |
|
|
|
126 |
|
|
CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
|
127 |
|
|
-- This is the actual cache, with entries consisting of node/value pairs,
|
128 |
|
|
-- and the impossible value Node_High_Bound used for unset entries.
|
129 |
|
|
|
130 |
|
|
type Range_Membership is (In_Range, Out_Of_Range, Unknown);
|
131 |
|
|
-- Range membership may either be statically known to be in range or out
|
132 |
|
|
-- of range, or not statically known. Used for Test_In_Range below.
|
133 |
|
|
|
134 |
|
|
-----------------------
|
135 |
|
|
-- Local Subprograms --
|
136 |
|
|
-----------------------
|
137 |
|
|
|
138 |
|
|
function From_Bits (B : Bits; T : Entity_Id) return Uint;
|
139 |
|
|
-- Converts a bit string of length B'Length to a Uint value to be used
|
140 |
|
|
-- for a target of type T, which is a modular type. This procedure
|
141 |
|
|
-- includes the necessary reduction by the modulus in the case of a
|
142 |
|
|
-- non-binary modulus (for a binary modulus, the bit string is the
|
143 |
|
|
-- right length any way so all is well).
|
144 |
|
|
|
145 |
|
|
function Get_String_Val (N : Node_Id) return Node_Id;
|
146 |
|
|
-- Given a tree node for a folded string or character value, returns
|
147 |
|
|
-- the corresponding string literal or character literal (one of the
|
148 |
|
|
-- two must be available, or the operand would not have been marked
|
149 |
|
|
-- as foldable in the earlier analysis of the operation).
|
150 |
|
|
|
151 |
|
|
function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
|
152 |
|
|
-- Bits represents the number of bits in an integer value to be computed
|
153 |
|
|
-- (but the value has not been computed yet). If this value in Bits is
|
154 |
|
|
-- reasonable, a result of True is returned, with the implication that
|
155 |
|
|
-- the caller should go ahead and complete the calculation. If the value
|
156 |
|
|
-- in Bits is unreasonably large, then an error is posted on node N, and
|
157 |
|
|
-- False is returned (and the caller skips the proposed calculation).
|
158 |
|
|
|
159 |
|
|
procedure Out_Of_Range (N : Node_Id);
|
160 |
|
|
-- This procedure is called if it is determined that node N, which
|
161 |
|
|
-- appears in a non-static context, is a compile time known value
|
162 |
|
|
-- which is outside its range, i.e. the range of Etype. This is used
|
163 |
|
|
-- in contexts where this is an illegality if N is static, and should
|
164 |
|
|
-- generate a warning otherwise.
|
165 |
|
|
|
166 |
|
|
procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
|
167 |
|
|
-- N and Exp are nodes representing an expression, Exp is known
|
168 |
|
|
-- to raise CE. N is rewritten in term of Exp in the optimal way.
|
169 |
|
|
|
170 |
|
|
function String_Type_Len (Stype : Entity_Id) return Uint;
|
171 |
|
|
-- Given a string type, determines the length of the index type, or,
|
172 |
|
|
-- if this index type is non-static, the length of the base type of
|
173 |
|
|
-- this index type. Note that if the string type is itself static,
|
174 |
|
|
-- then the index type is static, so the second case applies only
|
175 |
|
|
-- if the string type passed is non-static.
|
176 |
|
|
|
177 |
|
|
function Test (Cond : Boolean) return Uint;
|
178 |
|
|
pragma Inline (Test);
|
179 |
|
|
-- This function simply returns the appropriate Boolean'Pos value
|
180 |
|
|
-- corresponding to the value of Cond as a universal integer. It is
|
181 |
|
|
-- used for producing the result of the static evaluation of the
|
182 |
|
|
-- logical operators
|
183 |
|
|
|
184 |
|
|
function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
|
185 |
|
|
-- Check whether an arithmetic operation with universal operands which
|
186 |
|
|
-- is a rewritten function call with an explicit scope indication is
|
187 |
|
|
-- ambiguous: P."+" (1, 2) will be ambiguous if there is more than one
|
188 |
|
|
-- visible numeric type declared in P and the context does not impose a
|
189 |
|
|
-- type on the result (e.g. in the expression of a type conversion).
|
190 |
|
|
-- If ambiguous, emit an error and return Empty, else return the result
|
191 |
|
|
-- type of the operator.
|
192 |
|
|
|
193 |
|
|
procedure Test_Expression_Is_Foldable
|
194 |
|
|
(N : Node_Id;
|
195 |
|
|
Op1 : Node_Id;
|
196 |
|
|
Stat : out Boolean;
|
197 |
|
|
Fold : out Boolean);
|
198 |
|
|
-- Tests to see if expression N whose single operand is Op1 is foldable,
|
199 |
|
|
-- i.e. the operand value is known at compile time. If the operation is
|
200 |
|
|
-- foldable, then Fold is True on return, and Stat indicates whether
|
201 |
|
|
-- the result is static (i.e. both operands were static). Note that it
|
202 |
|
|
-- is quite possible for Fold to be True, and Stat to be False, since
|
203 |
|
|
-- there are cases in which we know the value of an operand even though
|
204 |
|
|
-- it is not technically static (e.g. the static lower bound of a range
|
205 |
|
|
-- whose upper bound is non-static).
|
206 |
|
|
--
|
207 |
|
|
-- If Stat is set False on return, then Test_Expression_Is_Foldable makes a
|
208 |
|
|
-- call to Check_Non_Static_Context on the operand. If Fold is False on
|
209 |
|
|
-- return, then all processing is complete, and the caller should
|
210 |
|
|
-- return, since there is nothing else to do.
|
211 |
|
|
--
|
212 |
|
|
-- If Stat is set True on return, then Is_Static_Expression is also set
|
213 |
|
|
-- true in node N. There are some cases where this is over-enthusiastic,
|
214 |
|
|
-- e.g. in the two operand case below, for string comparison, the result
|
215 |
|
|
-- is not static even though the two operands are static. In such cases,
|
216 |
|
|
-- the caller must reset the Is_Static_Expression flag in N.
|
217 |
|
|
|
218 |
|
|
procedure Test_Expression_Is_Foldable
|
219 |
|
|
(N : Node_Id;
|
220 |
|
|
Op1 : Node_Id;
|
221 |
|
|
Op2 : Node_Id;
|
222 |
|
|
Stat : out Boolean;
|
223 |
|
|
Fold : out Boolean);
|
224 |
|
|
-- Same processing, except applies to an expression N with two operands
|
225 |
|
|
-- Op1 and Op2.
|
226 |
|
|
|
227 |
|
|
function Test_In_Range
|
228 |
|
|
(N : Node_Id;
|
229 |
|
|
Typ : Entity_Id;
|
230 |
|
|
Assume_Valid : Boolean;
|
231 |
|
|
Fixed_Int : Boolean;
|
232 |
|
|
Int_Real : Boolean) return Range_Membership;
|
233 |
|
|
-- Common processing for Is_In_Range and Is_Out_Of_Range:
|
234 |
|
|
-- Returns In_Range or Out_Of_Range if it can be guaranteed at compile time
|
235 |
|
|
-- that expression N is known to be in or out of range of the subtype Typ.
|
236 |
|
|
-- If not compile time known, Unknown is returned.
|
237 |
|
|
-- See documentation of Is_In_Range for complete description of parameters.
|
238 |
|
|
|
239 |
|
|
procedure To_Bits (U : Uint; B : out Bits);
|
240 |
|
|
-- Converts a Uint value to a bit string of length B'Length
|
241 |
|
|
|
242 |
|
|
------------------------------
|
243 |
|
|
-- Check_Non_Static_Context --
|
244 |
|
|
------------------------------
|
245 |
|
|
|
246 |
|
|
procedure Check_Non_Static_Context (N : Node_Id) is
|
247 |
|
|
T : constant Entity_Id := Etype (N);
|
248 |
|
|
Checks_On : constant Boolean :=
|
249 |
|
|
not Index_Checks_Suppressed (T)
|
250 |
|
|
and not Range_Checks_Suppressed (T);
|
251 |
|
|
|
252 |
|
|
begin
|
253 |
|
|
-- Ignore cases of non-scalar types, error types, or universal real
|
254 |
|
|
-- types that have no usable bounds.
|
255 |
|
|
|
256 |
|
|
if T = Any_Type
|
257 |
|
|
or else not Is_Scalar_Type (T)
|
258 |
|
|
or else T = Universal_Fixed
|
259 |
|
|
or else T = Universal_Real
|
260 |
|
|
then
|
261 |
|
|
return;
|
262 |
|
|
end if;
|
263 |
|
|
|
264 |
|
|
-- At this stage we have a scalar type. If we have an expression that
|
265 |
|
|
-- raises CE, then we already issued a warning or error msg so there
|
266 |
|
|
-- is nothing more to be done in this routine.
|
267 |
|
|
|
268 |
|
|
if Raises_Constraint_Error (N) then
|
269 |
|
|
return;
|
270 |
|
|
end if;
|
271 |
|
|
|
272 |
|
|
-- Now we have a scalar type which is not marked as raising a constraint
|
273 |
|
|
-- error exception. The main purpose of this routine is to deal with
|
274 |
|
|
-- static expressions appearing in a non-static context. That means
|
275 |
|
|
-- that if we do not have a static expression then there is not much
|
276 |
|
|
-- to do. The one case that we deal with here is that if we have a
|
277 |
|
|
-- floating-point value that is out of range, then we post a warning
|
278 |
|
|
-- that an infinity will result.
|
279 |
|
|
|
280 |
|
|
if not Is_Static_Expression (N) then
|
281 |
|
|
if Is_Floating_Point_Type (T)
|
282 |
|
|
and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
|
283 |
|
|
then
|
284 |
|
|
Error_Msg_N
|
285 |
|
|
("?float value out of range, infinity will be generated", N);
|
286 |
|
|
end if;
|
287 |
|
|
|
288 |
|
|
return;
|
289 |
|
|
end if;
|
290 |
|
|
|
291 |
|
|
-- Here we have the case of outer level static expression of scalar
|
292 |
|
|
-- type, where the processing of this procedure is needed.
|
293 |
|
|
|
294 |
|
|
-- For real types, this is where we convert the value to a machine
|
295 |
|
|
-- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
|
296 |
|
|
-- need to do this if the parent is a constant declaration, since in
|
297 |
|
|
-- other cases, gigi should do the necessary conversion correctly, but
|
298 |
|
|
-- experimentation shows that this is not the case on all machines, in
|
299 |
|
|
-- particular if we do not convert all literals to machine values in
|
300 |
|
|
-- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
|
301 |
|
|
-- and SGI/Irix.
|
302 |
|
|
|
303 |
|
|
if Nkind (N) = N_Real_Literal
|
304 |
|
|
and then not Is_Machine_Number (N)
|
305 |
|
|
and then not Is_Generic_Type (Etype (N))
|
306 |
|
|
and then Etype (N) /= Universal_Real
|
307 |
|
|
then
|
308 |
|
|
-- Check that value is in bounds before converting to machine
|
309 |
|
|
-- number, so as not to lose case where value overflows in the
|
310 |
|
|
-- least significant bit or less. See B490001.
|
311 |
|
|
|
312 |
|
|
if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
|
313 |
|
|
Out_Of_Range (N);
|
314 |
|
|
return;
|
315 |
|
|
end if;
|
316 |
|
|
|
317 |
|
|
-- Note: we have to copy the node, to avoid problems with conformance
|
318 |
|
|
-- of very similar numbers (see ACVC tests B4A010C and B63103A).
|
319 |
|
|
|
320 |
|
|
Rewrite (N, New_Copy (N));
|
321 |
|
|
|
322 |
|
|
if not Is_Floating_Point_Type (T) then
|
323 |
|
|
Set_Realval
|
324 |
|
|
(N, Corresponding_Integer_Value (N) * Small_Value (T));
|
325 |
|
|
|
326 |
|
|
elsif not UR_Is_Zero (Realval (N)) then
|
327 |
|
|
|
328 |
|
|
-- Note: even though RM 4.9(38) specifies biased rounding, this
|
329 |
|
|
-- has been modified by AI-100 in order to prevent confusing
|
330 |
|
|
-- differences in rounding between static and non-static
|
331 |
|
|
-- expressions. AI-100 specifies that the effect of such rounding
|
332 |
|
|
-- is implementation dependent, and in GNAT we round to nearest
|
333 |
|
|
-- even to match the run-time behavior.
|
334 |
|
|
|
335 |
|
|
Set_Realval
|
336 |
|
|
(N, Machine (Base_Type (T), Realval (N), Round_Even, N));
|
337 |
|
|
end if;
|
338 |
|
|
|
339 |
|
|
Set_Is_Machine_Number (N);
|
340 |
|
|
end if;
|
341 |
|
|
|
342 |
|
|
-- Check for out of range universal integer. This is a non-static
|
343 |
|
|
-- context, so the integer value must be in range of the runtime
|
344 |
|
|
-- representation of universal integers.
|
345 |
|
|
|
346 |
|
|
-- We do this only within an expression, because that is the only
|
347 |
|
|
-- case in which non-static universal integer values can occur, and
|
348 |
|
|
-- furthermore, Check_Non_Static_Context is currently (incorrectly???)
|
349 |
|
|
-- called in contexts like the expression of a number declaration where
|
350 |
|
|
-- we certainly want to allow out of range values.
|
351 |
|
|
|
352 |
|
|
if Etype (N) = Universal_Integer
|
353 |
|
|
and then Nkind (N) = N_Integer_Literal
|
354 |
|
|
and then Nkind (Parent (N)) in N_Subexpr
|
355 |
|
|
and then
|
356 |
|
|
(Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
|
357 |
|
|
or else
|
358 |
|
|
Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
|
359 |
|
|
then
|
360 |
|
|
Apply_Compile_Time_Constraint_Error
|
361 |
|
|
(N, "non-static universal integer value out of range?",
|
362 |
|
|
CE_Range_Check_Failed);
|
363 |
|
|
|
364 |
|
|
-- Check out of range of base type
|
365 |
|
|
|
366 |
|
|
elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
|
367 |
|
|
Out_Of_Range (N);
|
368 |
|
|
|
369 |
|
|
-- Give warning if outside subtype (where one or both of the bounds of
|
370 |
|
|
-- the subtype is static). This warning is omitted if the expression
|
371 |
|
|
-- appears in a range that could be null (warnings are handled elsewhere
|
372 |
|
|
-- for this case).
|
373 |
|
|
|
374 |
|
|
elsif T /= Base_Type (T)
|
375 |
|
|
and then Nkind (Parent (N)) /= N_Range
|
376 |
|
|
then
|
377 |
|
|
if Is_In_Range (N, T, Assume_Valid => True) then
|
378 |
|
|
null;
|
379 |
|
|
|
380 |
|
|
elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
|
381 |
|
|
Apply_Compile_Time_Constraint_Error
|
382 |
|
|
(N, "value not in range of}?", CE_Range_Check_Failed);
|
383 |
|
|
|
384 |
|
|
elsif Checks_On then
|
385 |
|
|
Enable_Range_Check (N);
|
386 |
|
|
|
387 |
|
|
else
|
388 |
|
|
Set_Do_Range_Check (N, False);
|
389 |
|
|
end if;
|
390 |
|
|
end if;
|
391 |
|
|
end Check_Non_Static_Context;
|
392 |
|
|
|
393 |
|
|
---------------------------------
|
394 |
|
|
-- Check_String_Literal_Length --
|
395 |
|
|
---------------------------------
|
396 |
|
|
|
397 |
|
|
procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
|
398 |
|
|
begin
|
399 |
|
|
if not Raises_Constraint_Error (N)
|
400 |
|
|
and then Is_Constrained (Ttype)
|
401 |
|
|
then
|
402 |
|
|
if
|
403 |
|
|
UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
|
404 |
|
|
then
|
405 |
|
|
Apply_Compile_Time_Constraint_Error
|
406 |
|
|
(N, "string length wrong for}?",
|
407 |
|
|
CE_Length_Check_Failed,
|
408 |
|
|
Ent => Ttype,
|
409 |
|
|
Typ => Ttype);
|
410 |
|
|
end if;
|
411 |
|
|
end if;
|
412 |
|
|
end Check_String_Literal_Length;
|
413 |
|
|
|
414 |
|
|
--------------------------
|
415 |
|
|
-- Compile_Time_Compare --
|
416 |
|
|
--------------------------
|
417 |
|
|
|
418 |
|
|
function Compile_Time_Compare
|
419 |
|
|
(L, R : Node_Id;
|
420 |
|
|
Assume_Valid : Boolean) return Compare_Result
|
421 |
|
|
is
|
422 |
|
|
Discard : aliased Uint;
|
423 |
|
|
begin
|
424 |
|
|
return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
|
425 |
|
|
end Compile_Time_Compare;
|
426 |
|
|
|
427 |
|
|
function Compile_Time_Compare
|
428 |
|
|
(L, R : Node_Id;
|
429 |
|
|
Diff : access Uint;
|
430 |
|
|
Assume_Valid : Boolean;
|
431 |
|
|
Rec : Boolean := False) return Compare_Result
|
432 |
|
|
is
|
433 |
|
|
Ltyp : Entity_Id := Underlying_Type (Etype (L));
|
434 |
|
|
Rtyp : Entity_Id := Underlying_Type (Etype (R));
|
435 |
|
|
-- These get reset to the base type for the case of entities where
|
436 |
|
|
-- Is_Known_Valid is not set. This takes care of handling possible
|
437 |
|
|
-- invalid representations using the value of the base type, in
|
438 |
|
|
-- accordance with RM 13.9.1(10).
|
439 |
|
|
|
440 |
|
|
Discard : aliased Uint;
|
441 |
|
|
|
442 |
|
|
procedure Compare_Decompose
|
443 |
|
|
(N : Node_Id;
|
444 |
|
|
R : out Node_Id;
|
445 |
|
|
V : out Uint);
|
446 |
|
|
-- This procedure decomposes the node N into an expression node and a
|
447 |
|
|
-- signed offset, so that the value of N is equal to the value of R plus
|
448 |
|
|
-- the value V (which may be negative). If no such decomposition is
|
449 |
|
|
-- possible, then on return R is a copy of N, and V is set to zero.
|
450 |
|
|
|
451 |
|
|
function Compare_Fixup (N : Node_Id) return Node_Id;
|
452 |
|
|
-- This function deals with replacing 'Last and 'First references with
|
453 |
|
|
-- their corresponding type bounds, which we then can compare. The
|
454 |
|
|
-- argument is the original node, the result is the identity, unless we
|
455 |
|
|
-- have a 'Last/'First reference in which case the value returned is the
|
456 |
|
|
-- appropriate type bound.
|
457 |
|
|
|
458 |
|
|
function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
|
459 |
|
|
-- Even if the context does not assume that values are valid, some
|
460 |
|
|
-- simple cases can be recognized.
|
461 |
|
|
|
462 |
|
|
function Is_Same_Value (L, R : Node_Id) return Boolean;
|
463 |
|
|
-- Returns True iff L and R represent expressions that definitely have
|
464 |
|
|
-- identical (but not necessarily compile time known) values Indeed the
|
465 |
|
|
-- caller is expected to have already dealt with the cases of compile
|
466 |
|
|
-- time known values, so these are not tested here.
|
467 |
|
|
|
468 |
|
|
-----------------------
|
469 |
|
|
-- Compare_Decompose --
|
470 |
|
|
-----------------------
|
471 |
|
|
|
472 |
|
|
procedure Compare_Decompose
|
473 |
|
|
(N : Node_Id;
|
474 |
|
|
R : out Node_Id;
|
475 |
|
|
V : out Uint)
|
476 |
|
|
is
|
477 |
|
|
begin
|
478 |
|
|
if Nkind (N) = N_Op_Add
|
479 |
|
|
and then Nkind (Right_Opnd (N)) = N_Integer_Literal
|
480 |
|
|
then
|
481 |
|
|
R := Left_Opnd (N);
|
482 |
|
|
V := Intval (Right_Opnd (N));
|
483 |
|
|
return;
|
484 |
|
|
|
485 |
|
|
elsif Nkind (N) = N_Op_Subtract
|
486 |
|
|
and then Nkind (Right_Opnd (N)) = N_Integer_Literal
|
487 |
|
|
then
|
488 |
|
|
R := Left_Opnd (N);
|
489 |
|
|
V := UI_Negate (Intval (Right_Opnd (N)));
|
490 |
|
|
return;
|
491 |
|
|
|
492 |
|
|
elsif Nkind (N) = N_Attribute_Reference then
|
493 |
|
|
if Attribute_Name (N) = Name_Succ then
|
494 |
|
|
R := First (Expressions (N));
|
495 |
|
|
V := Uint_1;
|
496 |
|
|
return;
|
497 |
|
|
|
498 |
|
|
elsif Attribute_Name (N) = Name_Pred then
|
499 |
|
|
R := First (Expressions (N));
|
500 |
|
|
V := Uint_Minus_1;
|
501 |
|
|
return;
|
502 |
|
|
end if;
|
503 |
|
|
end if;
|
504 |
|
|
|
505 |
|
|
R := N;
|
506 |
|
|
V := Uint_0;
|
507 |
|
|
end Compare_Decompose;
|
508 |
|
|
|
509 |
|
|
-------------------
|
510 |
|
|
-- Compare_Fixup --
|
511 |
|
|
-------------------
|
512 |
|
|
|
513 |
|
|
function Compare_Fixup (N : Node_Id) return Node_Id is
|
514 |
|
|
Indx : Node_Id;
|
515 |
|
|
Xtyp : Entity_Id;
|
516 |
|
|
Subs : Nat;
|
517 |
|
|
|
518 |
|
|
begin
|
519 |
|
|
if Nkind (N) = N_Attribute_Reference
|
520 |
|
|
and then (Attribute_Name (N) = Name_First
|
521 |
|
|
or else
|
522 |
|
|
Attribute_Name (N) = Name_Last)
|
523 |
|
|
then
|
524 |
|
|
Xtyp := Etype (Prefix (N));
|
525 |
|
|
|
526 |
|
|
-- If we have no type, then just abandon the attempt to do
|
527 |
|
|
-- a fixup, this is probably the result of some other error.
|
528 |
|
|
|
529 |
|
|
if No (Xtyp) then
|
530 |
|
|
return N;
|
531 |
|
|
end if;
|
532 |
|
|
|
533 |
|
|
-- Dereference an access type
|
534 |
|
|
|
535 |
|
|
if Is_Access_Type (Xtyp) then
|
536 |
|
|
Xtyp := Designated_Type (Xtyp);
|
537 |
|
|
end if;
|
538 |
|
|
|
539 |
|
|
-- If we don't have an array type at this stage, something
|
540 |
|
|
-- is peculiar, e.g. another error, and we abandon the attempt
|
541 |
|
|
-- at a fixup.
|
542 |
|
|
|
543 |
|
|
if not Is_Array_Type (Xtyp) then
|
544 |
|
|
return N;
|
545 |
|
|
end if;
|
546 |
|
|
|
547 |
|
|
-- Ignore unconstrained array, since bounds are not meaningful
|
548 |
|
|
|
549 |
|
|
if not Is_Constrained (Xtyp) then
|
550 |
|
|
return N;
|
551 |
|
|
end if;
|
552 |
|
|
|
553 |
|
|
if Ekind (Xtyp) = E_String_Literal_Subtype then
|
554 |
|
|
if Attribute_Name (N) = Name_First then
|
555 |
|
|
return String_Literal_Low_Bound (Xtyp);
|
556 |
|
|
|
557 |
|
|
else -- Attribute_Name (N) = Name_Last
|
558 |
|
|
return Make_Integer_Literal (Sloc (N),
|
559 |
|
|
Intval => Intval (String_Literal_Low_Bound (Xtyp))
|
560 |
|
|
+ String_Literal_Length (Xtyp));
|
561 |
|
|
end if;
|
562 |
|
|
end if;
|
563 |
|
|
|
564 |
|
|
-- Find correct index type
|
565 |
|
|
|
566 |
|
|
Indx := First_Index (Xtyp);
|
567 |
|
|
|
568 |
|
|
if Present (Expressions (N)) then
|
569 |
|
|
Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
|
570 |
|
|
|
571 |
|
|
for J in 2 .. Subs loop
|
572 |
|
|
Indx := Next_Index (Indx);
|
573 |
|
|
end loop;
|
574 |
|
|
end if;
|
575 |
|
|
|
576 |
|
|
Xtyp := Etype (Indx);
|
577 |
|
|
|
578 |
|
|
if Attribute_Name (N) = Name_First then
|
579 |
|
|
return Type_Low_Bound (Xtyp);
|
580 |
|
|
|
581 |
|
|
else -- Attribute_Name (N) = Name_Last
|
582 |
|
|
return Type_High_Bound (Xtyp);
|
583 |
|
|
end if;
|
584 |
|
|
end if;
|
585 |
|
|
|
586 |
|
|
return N;
|
587 |
|
|
end Compare_Fixup;
|
588 |
|
|
|
589 |
|
|
----------------------------
|
590 |
|
|
-- Is_Known_Valid_Operand --
|
591 |
|
|
----------------------------
|
592 |
|
|
|
593 |
|
|
function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
|
594 |
|
|
begin
|
595 |
|
|
return (Is_Entity_Name (Opnd)
|
596 |
|
|
and then
|
597 |
|
|
(Is_Known_Valid (Entity (Opnd))
|
598 |
|
|
or else Ekind (Entity (Opnd)) = E_In_Parameter
|
599 |
|
|
or else
|
600 |
|
|
(Ekind (Entity (Opnd)) in Object_Kind
|
601 |
|
|
and then Present (Current_Value (Entity (Opnd))))))
|
602 |
|
|
or else Is_OK_Static_Expression (Opnd);
|
603 |
|
|
end Is_Known_Valid_Operand;
|
604 |
|
|
|
605 |
|
|
-------------------
|
606 |
|
|
-- Is_Same_Value --
|
607 |
|
|
-------------------
|
608 |
|
|
|
609 |
|
|
function Is_Same_Value (L, R : Node_Id) return Boolean is
|
610 |
|
|
Lf : constant Node_Id := Compare_Fixup (L);
|
611 |
|
|
Rf : constant Node_Id := Compare_Fixup (R);
|
612 |
|
|
|
613 |
|
|
function Is_Same_Subscript (L, R : List_Id) return Boolean;
|
614 |
|
|
-- L, R are the Expressions values from two attribute nodes for First
|
615 |
|
|
-- or Last attributes. Either may be set to No_List if no expressions
|
616 |
|
|
-- are present (indicating subscript 1). The result is True if both
|
617 |
|
|
-- expressions represent the same subscript (note one case is where
|
618 |
|
|
-- one subscript is missing and the other is explicitly set to 1).
|
619 |
|
|
|
620 |
|
|
-----------------------
|
621 |
|
|
-- Is_Same_Subscript --
|
622 |
|
|
-----------------------
|
623 |
|
|
|
624 |
|
|
function Is_Same_Subscript (L, R : List_Id) return Boolean is
|
625 |
|
|
begin
|
626 |
|
|
if L = No_List then
|
627 |
|
|
if R = No_List then
|
628 |
|
|
return True;
|
629 |
|
|
else
|
630 |
|
|
return Expr_Value (First (R)) = Uint_1;
|
631 |
|
|
end if;
|
632 |
|
|
|
633 |
|
|
else
|
634 |
|
|
if R = No_List then
|
635 |
|
|
return Expr_Value (First (L)) = Uint_1;
|
636 |
|
|
else
|
637 |
|
|
return Expr_Value (First (L)) = Expr_Value (First (R));
|
638 |
|
|
end if;
|
639 |
|
|
end if;
|
640 |
|
|
end Is_Same_Subscript;
|
641 |
|
|
|
642 |
|
|
-- Start of processing for Is_Same_Value
|
643 |
|
|
|
644 |
|
|
begin
|
645 |
|
|
-- Values are the same if they refer to the same entity and the
|
646 |
|
|
-- entity is non-volatile. This does not however apply to Float
|
647 |
|
|
-- types, since we may have two NaN values and they should never
|
648 |
|
|
-- compare equal.
|
649 |
|
|
|
650 |
|
|
-- If the entity is a discriminant, the two expressions may be bounds
|
651 |
|
|
-- of components of objects of the same discriminated type. The
|
652 |
|
|
-- values of the discriminants are not static, and therefore the
|
653 |
|
|
-- result is unknown.
|
654 |
|
|
|
655 |
|
|
-- It would be better to comment individual branches of this test ???
|
656 |
|
|
|
657 |
|
|
if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
|
658 |
|
|
and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
|
659 |
|
|
and then Entity (Lf) = Entity (Rf)
|
660 |
|
|
and then Ekind (Entity (Lf)) /= E_Discriminant
|
661 |
|
|
and then Present (Entity (Lf))
|
662 |
|
|
and then not Is_Floating_Point_Type (Etype (L))
|
663 |
|
|
and then not Is_Volatile_Reference (L)
|
664 |
|
|
and then not Is_Volatile_Reference (R)
|
665 |
|
|
then
|
666 |
|
|
return True;
|
667 |
|
|
|
668 |
|
|
-- Or if they are compile time known and identical
|
669 |
|
|
|
670 |
|
|
elsif Compile_Time_Known_Value (Lf)
|
671 |
|
|
and then
|
672 |
|
|
Compile_Time_Known_Value (Rf)
|
673 |
|
|
and then Expr_Value (Lf) = Expr_Value (Rf)
|
674 |
|
|
then
|
675 |
|
|
return True;
|
676 |
|
|
|
677 |
|
|
-- False if Nkind of the two nodes is different for remaining cases
|
678 |
|
|
|
679 |
|
|
elsif Nkind (Lf) /= Nkind (Rf) then
|
680 |
|
|
return False;
|
681 |
|
|
|
682 |
|
|
-- True if both 'First or 'Last values applying to the same entity
|
683 |
|
|
-- (first and last don't change even if value does). Note that we
|
684 |
|
|
-- need this even with the calls to Compare_Fixup, to handle the
|
685 |
|
|
-- case of unconstrained array attributes where Compare_Fixup
|
686 |
|
|
-- cannot find useful bounds.
|
687 |
|
|
|
688 |
|
|
elsif Nkind (Lf) = N_Attribute_Reference
|
689 |
|
|
and then Attribute_Name (Lf) = Attribute_Name (Rf)
|
690 |
|
|
and then (Attribute_Name (Lf) = Name_First
|
691 |
|
|
or else
|
692 |
|
|
Attribute_Name (Lf) = Name_Last)
|
693 |
|
|
and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
|
694 |
|
|
and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
|
695 |
|
|
and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
|
696 |
|
|
and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
|
697 |
|
|
then
|
698 |
|
|
return True;
|
699 |
|
|
|
700 |
|
|
-- True if the same selected component from the same record
|
701 |
|
|
|
702 |
|
|
elsif Nkind (Lf) = N_Selected_Component
|
703 |
|
|
and then Selector_Name (Lf) = Selector_Name (Rf)
|
704 |
|
|
and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
|
705 |
|
|
then
|
706 |
|
|
return True;
|
707 |
|
|
|
708 |
|
|
-- True if the same unary operator applied to the same operand
|
709 |
|
|
|
710 |
|
|
elsif Nkind (Lf) in N_Unary_Op
|
711 |
|
|
and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
|
712 |
|
|
then
|
713 |
|
|
return True;
|
714 |
|
|
|
715 |
|
|
-- True if the same binary operator applied to the same operands
|
716 |
|
|
|
717 |
|
|
elsif Nkind (Lf) in N_Binary_Op
|
718 |
|
|
and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
|
719 |
|
|
and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
|
720 |
|
|
then
|
721 |
|
|
return True;
|
722 |
|
|
|
723 |
|
|
-- All other cases, we can't tell, so return False
|
724 |
|
|
|
725 |
|
|
else
|
726 |
|
|
return False;
|
727 |
|
|
end if;
|
728 |
|
|
end Is_Same_Value;
|
729 |
|
|
|
730 |
|
|
-- Start of processing for Compile_Time_Compare
|
731 |
|
|
|
732 |
|
|
begin
|
733 |
|
|
Diff.all := No_Uint;
|
734 |
|
|
|
735 |
|
|
-- If either operand could raise constraint error, then we cannot
|
736 |
|
|
-- know the result at compile time (since CE may be raised!)
|
737 |
|
|
|
738 |
|
|
if not (Cannot_Raise_Constraint_Error (L)
|
739 |
|
|
and then
|
740 |
|
|
Cannot_Raise_Constraint_Error (R))
|
741 |
|
|
then
|
742 |
|
|
return Unknown;
|
743 |
|
|
end if;
|
744 |
|
|
|
745 |
|
|
-- Identical operands are most certainly equal
|
746 |
|
|
|
747 |
|
|
if L = R then
|
748 |
|
|
return EQ;
|
749 |
|
|
|
750 |
|
|
-- If expressions have no types, then do not attempt to determine if
|
751 |
|
|
-- they are the same, since something funny is going on. One case in
|
752 |
|
|
-- which this happens is during generic template analysis, when bounds
|
753 |
|
|
-- are not fully analyzed.
|
754 |
|
|
|
755 |
|
|
elsif No (Ltyp) or else No (Rtyp) then
|
756 |
|
|
return Unknown;
|
757 |
|
|
|
758 |
|
|
-- We do not attempt comparisons for packed arrays arrays represented as
|
759 |
|
|
-- modular types, where the semantics of comparison is quite different.
|
760 |
|
|
|
761 |
|
|
elsif Is_Packed_Array_Type (Ltyp)
|
762 |
|
|
and then Is_Modular_Integer_Type (Ltyp)
|
763 |
|
|
then
|
764 |
|
|
return Unknown;
|
765 |
|
|
|
766 |
|
|
-- For access types, the only time we know the result at compile time
|
767 |
|
|
-- (apart from identical operands, which we handled already) is if we
|
768 |
|
|
-- know one operand is null and the other is not, or both operands are
|
769 |
|
|
-- known null.
|
770 |
|
|
|
771 |
|
|
elsif Is_Access_Type (Ltyp) then
|
772 |
|
|
if Known_Null (L) then
|
773 |
|
|
if Known_Null (R) then
|
774 |
|
|
return EQ;
|
775 |
|
|
elsif Known_Non_Null (R) then
|
776 |
|
|
return NE;
|
777 |
|
|
else
|
778 |
|
|
return Unknown;
|
779 |
|
|
end if;
|
780 |
|
|
|
781 |
|
|
elsif Known_Non_Null (L) and then Known_Null (R) then
|
782 |
|
|
return NE;
|
783 |
|
|
|
784 |
|
|
else
|
785 |
|
|
return Unknown;
|
786 |
|
|
end if;
|
787 |
|
|
|
788 |
|
|
-- Case where comparison involves two compile time known values
|
789 |
|
|
|
790 |
|
|
elsif Compile_Time_Known_Value (L)
|
791 |
|
|
and then Compile_Time_Known_Value (R)
|
792 |
|
|
then
|
793 |
|
|
-- For the floating-point case, we have to be a little careful, since
|
794 |
|
|
-- at compile time we are dealing with universal exact values, but at
|
795 |
|
|
-- runtime, these will be in non-exact target form. That's why the
|
796 |
|
|
-- returned results are LE and GE below instead of LT and GT.
|
797 |
|
|
|
798 |
|
|
if Is_Floating_Point_Type (Ltyp)
|
799 |
|
|
or else
|
800 |
|
|
Is_Floating_Point_Type (Rtyp)
|
801 |
|
|
then
|
802 |
|
|
declare
|
803 |
|
|
Lo : constant Ureal := Expr_Value_R (L);
|
804 |
|
|
Hi : constant Ureal := Expr_Value_R (R);
|
805 |
|
|
|
806 |
|
|
begin
|
807 |
|
|
if Lo < Hi then
|
808 |
|
|
return LE;
|
809 |
|
|
elsif Lo = Hi then
|
810 |
|
|
return EQ;
|
811 |
|
|
else
|
812 |
|
|
return GE;
|
813 |
|
|
end if;
|
814 |
|
|
end;
|
815 |
|
|
|
816 |
|
|
-- For string types, we have two string literals and we proceed to
|
817 |
|
|
-- compare them using the Ada style dictionary string comparison.
|
818 |
|
|
|
819 |
|
|
elsif not Is_Scalar_Type (Ltyp) then
|
820 |
|
|
declare
|
821 |
|
|
Lstring : constant String_Id := Strval (Expr_Value_S (L));
|
822 |
|
|
Rstring : constant String_Id := Strval (Expr_Value_S (R));
|
823 |
|
|
Llen : constant Nat := String_Length (Lstring);
|
824 |
|
|
Rlen : constant Nat := String_Length (Rstring);
|
825 |
|
|
|
826 |
|
|
begin
|
827 |
|
|
for J in 1 .. Nat'Min (Llen, Rlen) loop
|
828 |
|
|
declare
|
829 |
|
|
LC : constant Char_Code := Get_String_Char (Lstring, J);
|
830 |
|
|
RC : constant Char_Code := Get_String_Char (Rstring, J);
|
831 |
|
|
begin
|
832 |
|
|
if LC < RC then
|
833 |
|
|
return LT;
|
834 |
|
|
elsif LC > RC then
|
835 |
|
|
return GT;
|
836 |
|
|
end if;
|
837 |
|
|
end;
|
838 |
|
|
end loop;
|
839 |
|
|
|
840 |
|
|
if Llen < Rlen then
|
841 |
|
|
return LT;
|
842 |
|
|
elsif Llen > Rlen then
|
843 |
|
|
return GT;
|
844 |
|
|
else
|
845 |
|
|
return EQ;
|
846 |
|
|
end if;
|
847 |
|
|
end;
|
848 |
|
|
|
849 |
|
|
-- For remaining scalar cases we know exactly (note that this does
|
850 |
|
|
-- include the fixed-point case, where we know the run time integer
|
851 |
|
|
-- values now).
|
852 |
|
|
|
853 |
|
|
else
|
854 |
|
|
declare
|
855 |
|
|
Lo : constant Uint := Expr_Value (L);
|
856 |
|
|
Hi : constant Uint := Expr_Value (R);
|
857 |
|
|
|
858 |
|
|
begin
|
859 |
|
|
if Lo < Hi then
|
860 |
|
|
Diff.all := Hi - Lo;
|
861 |
|
|
return LT;
|
862 |
|
|
|
863 |
|
|
elsif Lo = Hi then
|
864 |
|
|
return EQ;
|
865 |
|
|
|
866 |
|
|
else
|
867 |
|
|
Diff.all := Lo - Hi;
|
868 |
|
|
return GT;
|
869 |
|
|
end if;
|
870 |
|
|
end;
|
871 |
|
|
end if;
|
872 |
|
|
|
873 |
|
|
-- Cases where at least one operand is not known at compile time
|
874 |
|
|
|
875 |
|
|
else
|
876 |
|
|
-- Remaining checks apply only for discrete types
|
877 |
|
|
|
878 |
|
|
if not Is_Discrete_Type (Ltyp)
|
879 |
|
|
or else not Is_Discrete_Type (Rtyp)
|
880 |
|
|
then
|
881 |
|
|
return Unknown;
|
882 |
|
|
end if;
|
883 |
|
|
|
884 |
|
|
-- Defend against generic types, or actually any expressions that
|
885 |
|
|
-- contain a reference to a generic type from within a generic
|
886 |
|
|
-- template. We don't want to do any range analysis of such
|
887 |
|
|
-- expressions for two reasons. First, the bounds of a generic type
|
888 |
|
|
-- itself are junk and cannot be used for any kind of analysis.
|
889 |
|
|
-- Second, we may have a case where the range at run time is indeed
|
890 |
|
|
-- known, but we don't want to do compile time analysis in the
|
891 |
|
|
-- template based on that range since in an instance the value may be
|
892 |
|
|
-- static, and able to be elaborated without reference to the bounds
|
893 |
|
|
-- of types involved. As an example, consider:
|
894 |
|
|
|
895 |
|
|
-- (F'Pos (F'Last) + 1) > Integer'Last
|
896 |
|
|
|
897 |
|
|
-- The expression on the left side of > is Universal_Integer and thus
|
898 |
|
|
-- acquires the type Integer for evaluation at run time, and at run
|
899 |
|
|
-- time it is true that this condition is always False, but within
|
900 |
|
|
-- an instance F may be a type with a static range greater than the
|
901 |
|
|
-- range of Integer, and the expression statically evaluates to True.
|
902 |
|
|
|
903 |
|
|
if References_Generic_Formal_Type (L)
|
904 |
|
|
or else
|
905 |
|
|
References_Generic_Formal_Type (R)
|
906 |
|
|
then
|
907 |
|
|
return Unknown;
|
908 |
|
|
end if;
|
909 |
|
|
|
910 |
|
|
-- Replace types by base types for the case of entities which are
|
911 |
|
|
-- not known to have valid representations. This takes care of
|
912 |
|
|
-- properly dealing with invalid representations.
|
913 |
|
|
|
914 |
|
|
if not Assume_Valid and then not Assume_No_Invalid_Values then
|
915 |
|
|
if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
|
916 |
|
|
Ltyp := Underlying_Type (Base_Type (Ltyp));
|
917 |
|
|
end if;
|
918 |
|
|
|
919 |
|
|
if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
|
920 |
|
|
Rtyp := Underlying_Type (Base_Type (Rtyp));
|
921 |
|
|
end if;
|
922 |
|
|
end if;
|
923 |
|
|
|
924 |
|
|
-- Try range analysis on variables and see if ranges are disjoint
|
925 |
|
|
|
926 |
|
|
declare
|
927 |
|
|
LOK, ROK : Boolean;
|
928 |
|
|
LLo, LHi : Uint;
|
929 |
|
|
RLo, RHi : Uint;
|
930 |
|
|
|
931 |
|
|
begin
|
932 |
|
|
Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
|
933 |
|
|
Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
|
934 |
|
|
|
935 |
|
|
if LOK and ROK then
|
936 |
|
|
if LHi < RLo then
|
937 |
|
|
return LT;
|
938 |
|
|
|
939 |
|
|
elsif RHi < LLo then
|
940 |
|
|
return GT;
|
941 |
|
|
|
942 |
|
|
elsif LLo = LHi
|
943 |
|
|
and then RLo = RHi
|
944 |
|
|
and then LLo = RLo
|
945 |
|
|
then
|
946 |
|
|
|
947 |
|
|
-- If the range includes a single literal and we can assume
|
948 |
|
|
-- validity then the result is known even if an operand is
|
949 |
|
|
-- not static.
|
950 |
|
|
|
951 |
|
|
if Assume_Valid then
|
952 |
|
|
return EQ;
|
953 |
|
|
else
|
954 |
|
|
return Unknown;
|
955 |
|
|
end if;
|
956 |
|
|
|
957 |
|
|
elsif LHi = RLo then
|
958 |
|
|
return LE;
|
959 |
|
|
|
960 |
|
|
elsif RHi = LLo then
|
961 |
|
|
return GE;
|
962 |
|
|
|
963 |
|
|
elsif not Is_Known_Valid_Operand (L)
|
964 |
|
|
and then not Assume_Valid
|
965 |
|
|
then
|
966 |
|
|
if Is_Same_Value (L, R) then
|
967 |
|
|
return EQ;
|
968 |
|
|
else
|
969 |
|
|
return Unknown;
|
970 |
|
|
end if;
|
971 |
|
|
end if;
|
972 |
|
|
|
973 |
|
|
-- If the range of either operand cannot be determined, nothing
|
974 |
|
|
-- further can be inferred.
|
975 |
|
|
|
976 |
|
|
else
|
977 |
|
|
return Unknown;
|
978 |
|
|
end if;
|
979 |
|
|
end;
|
980 |
|
|
|
981 |
|
|
-- Here is where we check for comparisons against maximum bounds of
|
982 |
|
|
-- types, where we know that no value can be outside the bounds of
|
983 |
|
|
-- the subtype. Note that this routine is allowed to assume that all
|
984 |
|
|
-- expressions are within their subtype bounds. Callers wishing to
|
985 |
|
|
-- deal with possibly invalid values must in any case take special
|
986 |
|
|
-- steps (e.g. conversions to larger types) to avoid this kind of
|
987 |
|
|
-- optimization, which is always considered to be valid. We do not
|
988 |
|
|
-- attempt this optimization with generic types, since the type
|
989 |
|
|
-- bounds may not be meaningful in this case.
|
990 |
|
|
|
991 |
|
|
-- We are in danger of an infinite recursion here. It does not seem
|
992 |
|
|
-- useful to go more than one level deep, so the parameter Rec is
|
993 |
|
|
-- used to protect ourselves against this infinite recursion.
|
994 |
|
|
|
995 |
|
|
if not Rec then
|
996 |
|
|
|
997 |
|
|
-- See if we can get a decisive check against one operand and
|
998 |
|
|
-- a bound of the other operand (four possible tests here).
|
999 |
|
|
-- Note that we avoid testing junk bounds of a generic type.
|
1000 |
|
|
|
1001 |
|
|
if not Is_Generic_Type (Rtyp) then
|
1002 |
|
|
case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
|
1003 |
|
|
Discard'Access,
|
1004 |
|
|
Assume_Valid, Rec => True)
|
1005 |
|
|
is
|
1006 |
|
|
when LT => return LT;
|
1007 |
|
|
when LE => return LE;
|
1008 |
|
|
when EQ => return LE;
|
1009 |
|
|
when others => null;
|
1010 |
|
|
end case;
|
1011 |
|
|
|
1012 |
|
|
case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
|
1013 |
|
|
Discard'Access,
|
1014 |
|
|
Assume_Valid, Rec => True)
|
1015 |
|
|
is
|
1016 |
|
|
when GT => return GT;
|
1017 |
|
|
when GE => return GE;
|
1018 |
|
|
when EQ => return GE;
|
1019 |
|
|
when others => null;
|
1020 |
|
|
end case;
|
1021 |
|
|
end if;
|
1022 |
|
|
|
1023 |
|
|
if not Is_Generic_Type (Ltyp) then
|
1024 |
|
|
case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
|
1025 |
|
|
Discard'Access,
|
1026 |
|
|
Assume_Valid, Rec => True)
|
1027 |
|
|
is
|
1028 |
|
|
when GT => return GT;
|
1029 |
|
|
when GE => return GE;
|
1030 |
|
|
when EQ => return GE;
|
1031 |
|
|
when others => null;
|
1032 |
|
|
end case;
|
1033 |
|
|
|
1034 |
|
|
case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
|
1035 |
|
|
Discard'Access,
|
1036 |
|
|
Assume_Valid, Rec => True)
|
1037 |
|
|
is
|
1038 |
|
|
when LT => return LT;
|
1039 |
|
|
when LE => return LE;
|
1040 |
|
|
when EQ => return LE;
|
1041 |
|
|
when others => null;
|
1042 |
|
|
end case;
|
1043 |
|
|
end if;
|
1044 |
|
|
end if;
|
1045 |
|
|
|
1046 |
|
|
-- Next attempt is to decompose the expressions to extract
|
1047 |
|
|
-- a constant offset resulting from the use of any of the forms:
|
1048 |
|
|
|
1049 |
|
|
-- expr + literal
|
1050 |
|
|
-- expr - literal
|
1051 |
|
|
-- typ'Succ (expr)
|
1052 |
|
|
-- typ'Pred (expr)
|
1053 |
|
|
|
1054 |
|
|
-- Then we see if the two expressions are the same value, and if so
|
1055 |
|
|
-- the result is obtained by comparing the offsets.
|
1056 |
|
|
|
1057 |
|
|
declare
|
1058 |
|
|
Lnode : Node_Id;
|
1059 |
|
|
Loffs : Uint;
|
1060 |
|
|
Rnode : Node_Id;
|
1061 |
|
|
Roffs : Uint;
|
1062 |
|
|
|
1063 |
|
|
begin
|
1064 |
|
|
Compare_Decompose (L, Lnode, Loffs);
|
1065 |
|
|
Compare_Decompose (R, Rnode, Roffs);
|
1066 |
|
|
|
1067 |
|
|
if Is_Same_Value (Lnode, Rnode) then
|
1068 |
|
|
if Loffs = Roffs then
|
1069 |
|
|
return EQ;
|
1070 |
|
|
|
1071 |
|
|
elsif Loffs < Roffs then
|
1072 |
|
|
Diff.all := Roffs - Loffs;
|
1073 |
|
|
return LT;
|
1074 |
|
|
|
1075 |
|
|
else
|
1076 |
|
|
Diff.all := Loffs - Roffs;
|
1077 |
|
|
return GT;
|
1078 |
|
|
end if;
|
1079 |
|
|
end if;
|
1080 |
|
|
end;
|
1081 |
|
|
|
1082 |
|
|
-- Next attempt is to see if we have an entity compared with a
|
1083 |
|
|
-- compile time known value, where there is a current value
|
1084 |
|
|
-- conditional for the entity which can tell us the result.
|
1085 |
|
|
|
1086 |
|
|
declare
|
1087 |
|
|
Var : Node_Id;
|
1088 |
|
|
-- Entity variable (left operand)
|
1089 |
|
|
|
1090 |
|
|
Val : Uint;
|
1091 |
|
|
-- Value (right operand)
|
1092 |
|
|
|
1093 |
|
|
Inv : Boolean;
|
1094 |
|
|
-- If False, we have reversed the operands
|
1095 |
|
|
|
1096 |
|
|
Op : Node_Kind;
|
1097 |
|
|
-- Comparison operator kind from Get_Current_Value_Condition call
|
1098 |
|
|
|
1099 |
|
|
Opn : Node_Id;
|
1100 |
|
|
-- Value from Get_Current_Value_Condition call
|
1101 |
|
|
|
1102 |
|
|
Opv : Uint;
|
1103 |
|
|
-- Value of Opn
|
1104 |
|
|
|
1105 |
|
|
Result : Compare_Result;
|
1106 |
|
|
-- Known result before inversion
|
1107 |
|
|
|
1108 |
|
|
begin
|
1109 |
|
|
if Is_Entity_Name (L)
|
1110 |
|
|
and then Compile_Time_Known_Value (R)
|
1111 |
|
|
then
|
1112 |
|
|
Var := L;
|
1113 |
|
|
Val := Expr_Value (R);
|
1114 |
|
|
Inv := False;
|
1115 |
|
|
|
1116 |
|
|
elsif Is_Entity_Name (R)
|
1117 |
|
|
and then Compile_Time_Known_Value (L)
|
1118 |
|
|
then
|
1119 |
|
|
Var := R;
|
1120 |
|
|
Val := Expr_Value (L);
|
1121 |
|
|
Inv := True;
|
1122 |
|
|
|
1123 |
|
|
-- That was the last chance at finding a compile time result
|
1124 |
|
|
|
1125 |
|
|
else
|
1126 |
|
|
return Unknown;
|
1127 |
|
|
end if;
|
1128 |
|
|
|
1129 |
|
|
Get_Current_Value_Condition (Var, Op, Opn);
|
1130 |
|
|
|
1131 |
|
|
-- That was the last chance, so if we got nothing return
|
1132 |
|
|
|
1133 |
|
|
if No (Opn) then
|
1134 |
|
|
return Unknown;
|
1135 |
|
|
end if;
|
1136 |
|
|
|
1137 |
|
|
Opv := Expr_Value (Opn);
|
1138 |
|
|
|
1139 |
|
|
-- We got a comparison, so we might have something interesting
|
1140 |
|
|
|
1141 |
|
|
-- Convert LE to LT and GE to GT, just so we have fewer cases
|
1142 |
|
|
|
1143 |
|
|
if Op = N_Op_Le then
|
1144 |
|
|
Op := N_Op_Lt;
|
1145 |
|
|
Opv := Opv + 1;
|
1146 |
|
|
|
1147 |
|
|
elsif Op = N_Op_Ge then
|
1148 |
|
|
Op := N_Op_Gt;
|
1149 |
|
|
Opv := Opv - 1;
|
1150 |
|
|
end if;
|
1151 |
|
|
|
1152 |
|
|
-- Deal with equality case
|
1153 |
|
|
|
1154 |
|
|
if Op = N_Op_Eq then
|
1155 |
|
|
if Val = Opv then
|
1156 |
|
|
Result := EQ;
|
1157 |
|
|
elsif Opv < Val then
|
1158 |
|
|
Result := LT;
|
1159 |
|
|
else
|
1160 |
|
|
Result := GT;
|
1161 |
|
|
end if;
|
1162 |
|
|
|
1163 |
|
|
-- Deal with inequality case
|
1164 |
|
|
|
1165 |
|
|
elsif Op = N_Op_Ne then
|
1166 |
|
|
if Val = Opv then
|
1167 |
|
|
Result := NE;
|
1168 |
|
|
else
|
1169 |
|
|
return Unknown;
|
1170 |
|
|
end if;
|
1171 |
|
|
|
1172 |
|
|
-- Deal with greater than case
|
1173 |
|
|
|
1174 |
|
|
elsif Op = N_Op_Gt then
|
1175 |
|
|
if Opv >= Val then
|
1176 |
|
|
Result := GT;
|
1177 |
|
|
elsif Opv = Val - 1 then
|
1178 |
|
|
Result := GE;
|
1179 |
|
|
else
|
1180 |
|
|
return Unknown;
|
1181 |
|
|
end if;
|
1182 |
|
|
|
1183 |
|
|
-- Deal with less than case
|
1184 |
|
|
|
1185 |
|
|
else pragma Assert (Op = N_Op_Lt);
|
1186 |
|
|
if Opv <= Val then
|
1187 |
|
|
Result := LT;
|
1188 |
|
|
elsif Opv = Val + 1 then
|
1189 |
|
|
Result := LE;
|
1190 |
|
|
else
|
1191 |
|
|
return Unknown;
|
1192 |
|
|
end if;
|
1193 |
|
|
end if;
|
1194 |
|
|
|
1195 |
|
|
-- Deal with inverting result
|
1196 |
|
|
|
1197 |
|
|
if Inv then
|
1198 |
|
|
case Result is
|
1199 |
|
|
when GT => return LT;
|
1200 |
|
|
when GE => return LE;
|
1201 |
|
|
when LT => return GT;
|
1202 |
|
|
when LE => return GE;
|
1203 |
|
|
when others => return Result;
|
1204 |
|
|
end case;
|
1205 |
|
|
end if;
|
1206 |
|
|
|
1207 |
|
|
return Result;
|
1208 |
|
|
end;
|
1209 |
|
|
end if;
|
1210 |
|
|
end Compile_Time_Compare;
|
1211 |
|
|
|
1212 |
|
|
-------------------------------
|
1213 |
|
|
-- Compile_Time_Known_Bounds --
|
1214 |
|
|
-------------------------------
|
1215 |
|
|
|
1216 |
|
|
function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
|
1217 |
|
|
Indx : Node_Id;
|
1218 |
|
|
Typ : Entity_Id;
|
1219 |
|
|
|
1220 |
|
|
begin
|
1221 |
|
|
if not Is_Array_Type (T) then
|
1222 |
|
|
return False;
|
1223 |
|
|
end if;
|
1224 |
|
|
|
1225 |
|
|
Indx := First_Index (T);
|
1226 |
|
|
while Present (Indx) loop
|
1227 |
|
|
Typ := Underlying_Type (Etype (Indx));
|
1228 |
|
|
|
1229 |
|
|
-- Never look at junk bounds of a generic type
|
1230 |
|
|
|
1231 |
|
|
if Is_Generic_Type (Typ) then
|
1232 |
|
|
return False;
|
1233 |
|
|
end if;
|
1234 |
|
|
|
1235 |
|
|
-- Otherwise check bounds for compile time known
|
1236 |
|
|
|
1237 |
|
|
if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
|
1238 |
|
|
return False;
|
1239 |
|
|
elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
|
1240 |
|
|
return False;
|
1241 |
|
|
else
|
1242 |
|
|
Next_Index (Indx);
|
1243 |
|
|
end if;
|
1244 |
|
|
end loop;
|
1245 |
|
|
|
1246 |
|
|
return True;
|
1247 |
|
|
end Compile_Time_Known_Bounds;
|
1248 |
|
|
|
1249 |
|
|
------------------------------
|
1250 |
|
|
-- Compile_Time_Known_Value --
|
1251 |
|
|
------------------------------
|
1252 |
|
|
|
1253 |
|
|
function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
|
1254 |
|
|
K : constant Node_Kind := Nkind (Op);
|
1255 |
|
|
CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
|
1256 |
|
|
|
1257 |
|
|
begin
|
1258 |
|
|
-- Never known at compile time if bad type or raises constraint error
|
1259 |
|
|
-- or empty (latter case occurs only as a result of a previous error)
|
1260 |
|
|
|
1261 |
|
|
if No (Op)
|
1262 |
|
|
or else Op = Error
|
1263 |
|
|
or else Etype (Op) = Any_Type
|
1264 |
|
|
or else Raises_Constraint_Error (Op)
|
1265 |
|
|
then
|
1266 |
|
|
return False;
|
1267 |
|
|
end if;
|
1268 |
|
|
|
1269 |
|
|
-- If this is not a static expression or a null literal, and we are in
|
1270 |
|
|
-- configurable run-time mode, then we consider it not known at compile
|
1271 |
|
|
-- time. This avoids anomalies where whether something is allowed with a
|
1272 |
|
|
-- given configurable run-time library depends on how good the compiler
|
1273 |
|
|
-- is at optimizing and knowing that things are constant when they are
|
1274 |
|
|
-- nonstatic.
|
1275 |
|
|
|
1276 |
|
|
if Configurable_Run_Time_Mode
|
1277 |
|
|
and then K /= N_Null
|
1278 |
|
|
and then not Is_Static_Expression (Op)
|
1279 |
|
|
then
|
1280 |
|
|
return False;
|
1281 |
|
|
end if;
|
1282 |
|
|
|
1283 |
|
|
-- If we have an entity name, then see if it is the name of a constant
|
1284 |
|
|
-- and if so, test the corresponding constant value, or the name of
|
1285 |
|
|
-- an enumeration literal, which is always a constant.
|
1286 |
|
|
|
1287 |
|
|
if Present (Etype (Op)) and then Is_Entity_Name (Op) then
|
1288 |
|
|
declare
|
1289 |
|
|
E : constant Entity_Id := Entity (Op);
|
1290 |
|
|
V : Node_Id;
|
1291 |
|
|
|
1292 |
|
|
begin
|
1293 |
|
|
-- Never known at compile time if it is a packed array value.
|
1294 |
|
|
-- We might want to try to evaluate these at compile time one
|
1295 |
|
|
-- day, but we do not make that attempt now.
|
1296 |
|
|
|
1297 |
|
|
if Is_Packed_Array_Type (Etype (Op)) then
|
1298 |
|
|
return False;
|
1299 |
|
|
end if;
|
1300 |
|
|
|
1301 |
|
|
if Ekind (E) = E_Enumeration_Literal then
|
1302 |
|
|
return True;
|
1303 |
|
|
|
1304 |
|
|
elsif Ekind (E) = E_Constant then
|
1305 |
|
|
V := Constant_Value (E);
|
1306 |
|
|
return Present (V) and then Compile_Time_Known_Value (V);
|
1307 |
|
|
end if;
|
1308 |
|
|
end;
|
1309 |
|
|
|
1310 |
|
|
-- We have a value, see if it is compile time known
|
1311 |
|
|
|
1312 |
|
|
else
|
1313 |
|
|
-- Integer literals are worth storing in the cache
|
1314 |
|
|
|
1315 |
|
|
if K = N_Integer_Literal then
|
1316 |
|
|
CV_Ent.N := Op;
|
1317 |
|
|
CV_Ent.V := Intval (Op);
|
1318 |
|
|
return True;
|
1319 |
|
|
|
1320 |
|
|
-- Other literals and NULL are known at compile time
|
1321 |
|
|
|
1322 |
|
|
elsif
|
1323 |
|
|
K = N_Character_Literal
|
1324 |
|
|
or else
|
1325 |
|
|
K = N_Real_Literal
|
1326 |
|
|
or else
|
1327 |
|
|
K = N_String_Literal
|
1328 |
|
|
or else
|
1329 |
|
|
K = N_Null
|
1330 |
|
|
then
|
1331 |
|
|
return True;
|
1332 |
|
|
|
1333 |
|
|
-- Any reference to Null_Parameter is known at compile time. No
|
1334 |
|
|
-- other attribute references (that have not already been folded)
|
1335 |
|
|
-- are known at compile time.
|
1336 |
|
|
|
1337 |
|
|
elsif K = N_Attribute_Reference then
|
1338 |
|
|
return Attribute_Name (Op) = Name_Null_Parameter;
|
1339 |
|
|
end if;
|
1340 |
|
|
end if;
|
1341 |
|
|
|
1342 |
|
|
-- If we fall through, not known at compile time
|
1343 |
|
|
|
1344 |
|
|
return False;
|
1345 |
|
|
|
1346 |
|
|
-- If we get an exception while trying to do this test, then some error
|
1347 |
|
|
-- has occurred, and we simply say that the value is not known after all
|
1348 |
|
|
|
1349 |
|
|
exception
|
1350 |
|
|
when others =>
|
1351 |
|
|
return False;
|
1352 |
|
|
end Compile_Time_Known_Value;
|
1353 |
|
|
|
1354 |
|
|
--------------------------------------
|
1355 |
|
|
-- Compile_Time_Known_Value_Or_Aggr --
|
1356 |
|
|
--------------------------------------
|
1357 |
|
|
|
1358 |
|
|
function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
|
1359 |
|
|
begin
|
1360 |
|
|
-- If we have an entity name, then see if it is the name of a constant
|
1361 |
|
|
-- and if so, test the corresponding constant value, or the name of
|
1362 |
|
|
-- an enumeration literal, which is always a constant.
|
1363 |
|
|
|
1364 |
|
|
if Is_Entity_Name (Op) then
|
1365 |
|
|
declare
|
1366 |
|
|
E : constant Entity_Id := Entity (Op);
|
1367 |
|
|
V : Node_Id;
|
1368 |
|
|
|
1369 |
|
|
begin
|
1370 |
|
|
if Ekind (E) = E_Enumeration_Literal then
|
1371 |
|
|
return True;
|
1372 |
|
|
|
1373 |
|
|
elsif Ekind (E) /= E_Constant then
|
1374 |
|
|
return False;
|
1375 |
|
|
|
1376 |
|
|
else
|
1377 |
|
|
V := Constant_Value (E);
|
1378 |
|
|
return Present (V)
|
1379 |
|
|
and then Compile_Time_Known_Value_Or_Aggr (V);
|
1380 |
|
|
end if;
|
1381 |
|
|
end;
|
1382 |
|
|
|
1383 |
|
|
-- We have a value, see if it is compile time known
|
1384 |
|
|
|
1385 |
|
|
else
|
1386 |
|
|
if Compile_Time_Known_Value (Op) then
|
1387 |
|
|
return True;
|
1388 |
|
|
|
1389 |
|
|
elsif Nkind (Op) = N_Aggregate then
|
1390 |
|
|
|
1391 |
|
|
if Present (Expressions (Op)) then
|
1392 |
|
|
declare
|
1393 |
|
|
Expr : Node_Id;
|
1394 |
|
|
|
1395 |
|
|
begin
|
1396 |
|
|
Expr := First (Expressions (Op));
|
1397 |
|
|
while Present (Expr) loop
|
1398 |
|
|
if not Compile_Time_Known_Value_Or_Aggr (Expr) then
|
1399 |
|
|
return False;
|
1400 |
|
|
end if;
|
1401 |
|
|
|
1402 |
|
|
Next (Expr);
|
1403 |
|
|
end loop;
|
1404 |
|
|
end;
|
1405 |
|
|
end if;
|
1406 |
|
|
|
1407 |
|
|
if Present (Component_Associations (Op)) then
|
1408 |
|
|
declare
|
1409 |
|
|
Cass : Node_Id;
|
1410 |
|
|
|
1411 |
|
|
begin
|
1412 |
|
|
Cass := First (Component_Associations (Op));
|
1413 |
|
|
while Present (Cass) loop
|
1414 |
|
|
if not
|
1415 |
|
|
Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
|
1416 |
|
|
then
|
1417 |
|
|
return False;
|
1418 |
|
|
end if;
|
1419 |
|
|
|
1420 |
|
|
Next (Cass);
|
1421 |
|
|
end loop;
|
1422 |
|
|
end;
|
1423 |
|
|
end if;
|
1424 |
|
|
|
1425 |
|
|
return True;
|
1426 |
|
|
|
1427 |
|
|
-- All other types of values are not known at compile time
|
1428 |
|
|
|
1429 |
|
|
else
|
1430 |
|
|
return False;
|
1431 |
|
|
end if;
|
1432 |
|
|
|
1433 |
|
|
end if;
|
1434 |
|
|
end Compile_Time_Known_Value_Or_Aggr;
|
1435 |
|
|
|
1436 |
|
|
-----------------
|
1437 |
|
|
-- Eval_Actual --
|
1438 |
|
|
-----------------
|
1439 |
|
|
|
1440 |
|
|
-- This is only called for actuals of functions that are not predefined
|
1441 |
|
|
-- operators (which have already been rewritten as operators at this
|
1442 |
|
|
-- stage), so the call can never be folded, and all that needs doing for
|
1443 |
|
|
-- the actual is to do the check for a non-static context.
|
1444 |
|
|
|
1445 |
|
|
procedure Eval_Actual (N : Node_Id) is
|
1446 |
|
|
begin
|
1447 |
|
|
Check_Non_Static_Context (N);
|
1448 |
|
|
end Eval_Actual;
|
1449 |
|
|
|
1450 |
|
|
--------------------
|
1451 |
|
|
-- Eval_Allocator --
|
1452 |
|
|
--------------------
|
1453 |
|
|
|
1454 |
|
|
-- Allocators are never static, so all we have to do is to do the
|
1455 |
|
|
-- check for a non-static context if an expression is present.
|
1456 |
|
|
|
1457 |
|
|
procedure Eval_Allocator (N : Node_Id) is
|
1458 |
|
|
Expr : constant Node_Id := Expression (N);
|
1459 |
|
|
|
1460 |
|
|
begin
|
1461 |
|
|
if Nkind (Expr) = N_Qualified_Expression then
|
1462 |
|
|
Check_Non_Static_Context (Expression (Expr));
|
1463 |
|
|
end if;
|
1464 |
|
|
end Eval_Allocator;
|
1465 |
|
|
|
1466 |
|
|
------------------------
|
1467 |
|
|
-- Eval_Arithmetic_Op --
|
1468 |
|
|
------------------------
|
1469 |
|
|
|
1470 |
|
|
-- Arithmetic operations are static functions, so the result is static
|
1471 |
|
|
-- if both operands are static (RM 4.9(7), 4.9(20)).
|
1472 |
|
|
|
1473 |
|
|
procedure Eval_Arithmetic_Op (N : Node_Id) is
|
1474 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
1475 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
1476 |
|
|
Ltype : constant Entity_Id := Etype (Left);
|
1477 |
|
|
Rtype : constant Entity_Id := Etype (Right);
|
1478 |
|
|
Otype : Entity_Id := Empty;
|
1479 |
|
|
Stat : Boolean;
|
1480 |
|
|
Fold : Boolean;
|
1481 |
|
|
|
1482 |
|
|
begin
|
1483 |
|
|
-- If not foldable we are done
|
1484 |
|
|
|
1485 |
|
|
Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
|
1486 |
|
|
|
1487 |
|
|
if not Fold then
|
1488 |
|
|
return;
|
1489 |
|
|
end if;
|
1490 |
|
|
|
1491 |
|
|
if Is_Universal_Numeric_Type (Etype (Left))
|
1492 |
|
|
and then
|
1493 |
|
|
Is_Universal_Numeric_Type (Etype (Right))
|
1494 |
|
|
then
|
1495 |
|
|
Otype := Find_Universal_Operator_Type (N);
|
1496 |
|
|
end if;
|
1497 |
|
|
|
1498 |
|
|
-- Fold for cases where both operands are of integer type
|
1499 |
|
|
|
1500 |
|
|
if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
|
1501 |
|
|
declare
|
1502 |
|
|
Left_Int : constant Uint := Expr_Value (Left);
|
1503 |
|
|
Right_Int : constant Uint := Expr_Value (Right);
|
1504 |
|
|
Result : Uint;
|
1505 |
|
|
|
1506 |
|
|
begin
|
1507 |
|
|
case Nkind (N) is
|
1508 |
|
|
|
1509 |
|
|
when N_Op_Add =>
|
1510 |
|
|
Result := Left_Int + Right_Int;
|
1511 |
|
|
|
1512 |
|
|
when N_Op_Subtract =>
|
1513 |
|
|
Result := Left_Int - Right_Int;
|
1514 |
|
|
|
1515 |
|
|
when N_Op_Multiply =>
|
1516 |
|
|
if OK_Bits
|
1517 |
|
|
(N, UI_From_Int
|
1518 |
|
|
(Num_Bits (Left_Int) + Num_Bits (Right_Int)))
|
1519 |
|
|
then
|
1520 |
|
|
Result := Left_Int * Right_Int;
|
1521 |
|
|
else
|
1522 |
|
|
Result := Left_Int;
|
1523 |
|
|
end if;
|
1524 |
|
|
|
1525 |
|
|
when N_Op_Divide =>
|
1526 |
|
|
|
1527 |
|
|
-- The exception Constraint_Error is raised by integer
|
1528 |
|
|
-- division, rem and mod if the right operand is zero.
|
1529 |
|
|
|
1530 |
|
|
if Right_Int = 0 then
|
1531 |
|
|
Apply_Compile_Time_Constraint_Error
|
1532 |
|
|
(N, "division by zero",
|
1533 |
|
|
CE_Divide_By_Zero,
|
1534 |
|
|
Warn => not Stat);
|
1535 |
|
|
return;
|
1536 |
|
|
|
1537 |
|
|
else
|
1538 |
|
|
Result := Left_Int / Right_Int;
|
1539 |
|
|
end if;
|
1540 |
|
|
|
1541 |
|
|
when N_Op_Mod =>
|
1542 |
|
|
|
1543 |
|
|
-- The exception Constraint_Error is raised by integer
|
1544 |
|
|
-- division, rem and mod if the right operand is zero.
|
1545 |
|
|
|
1546 |
|
|
if Right_Int = 0 then
|
1547 |
|
|
Apply_Compile_Time_Constraint_Error
|
1548 |
|
|
(N, "mod with zero divisor",
|
1549 |
|
|
CE_Divide_By_Zero,
|
1550 |
|
|
Warn => not Stat);
|
1551 |
|
|
return;
|
1552 |
|
|
else
|
1553 |
|
|
Result := Left_Int mod Right_Int;
|
1554 |
|
|
end if;
|
1555 |
|
|
|
1556 |
|
|
when N_Op_Rem =>
|
1557 |
|
|
|
1558 |
|
|
-- The exception Constraint_Error is raised by integer
|
1559 |
|
|
-- division, rem and mod if the right operand is zero.
|
1560 |
|
|
|
1561 |
|
|
if Right_Int = 0 then
|
1562 |
|
|
Apply_Compile_Time_Constraint_Error
|
1563 |
|
|
(N, "rem with zero divisor",
|
1564 |
|
|
CE_Divide_By_Zero,
|
1565 |
|
|
Warn => not Stat);
|
1566 |
|
|
return;
|
1567 |
|
|
|
1568 |
|
|
else
|
1569 |
|
|
Result := Left_Int rem Right_Int;
|
1570 |
|
|
end if;
|
1571 |
|
|
|
1572 |
|
|
when others =>
|
1573 |
|
|
raise Program_Error;
|
1574 |
|
|
end case;
|
1575 |
|
|
|
1576 |
|
|
-- Adjust the result by the modulus if the type is a modular type
|
1577 |
|
|
|
1578 |
|
|
if Is_Modular_Integer_Type (Ltype) then
|
1579 |
|
|
Result := Result mod Modulus (Ltype);
|
1580 |
|
|
|
1581 |
|
|
-- For a signed integer type, check non-static overflow
|
1582 |
|
|
|
1583 |
|
|
elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
|
1584 |
|
|
declare
|
1585 |
|
|
BT : constant Entity_Id := Base_Type (Ltype);
|
1586 |
|
|
Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
|
1587 |
|
|
Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
|
1588 |
|
|
begin
|
1589 |
|
|
if Result < Lo or else Result > Hi then
|
1590 |
|
|
Apply_Compile_Time_Constraint_Error
|
1591 |
|
|
(N, "value not in range of }?",
|
1592 |
|
|
CE_Overflow_Check_Failed,
|
1593 |
|
|
Ent => BT);
|
1594 |
|
|
return;
|
1595 |
|
|
end if;
|
1596 |
|
|
end;
|
1597 |
|
|
end if;
|
1598 |
|
|
|
1599 |
|
|
-- If we get here we can fold the result
|
1600 |
|
|
|
1601 |
|
|
Fold_Uint (N, Result, Stat);
|
1602 |
|
|
end;
|
1603 |
|
|
|
1604 |
|
|
-- Cases where at least one operand is a real. We handle the cases of
|
1605 |
|
|
-- both reals, or mixed/real integer cases (the latter happen only for
|
1606 |
|
|
-- divide and multiply, and the result is always real).
|
1607 |
|
|
|
1608 |
|
|
elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
|
1609 |
|
|
declare
|
1610 |
|
|
Left_Real : Ureal;
|
1611 |
|
|
Right_Real : Ureal;
|
1612 |
|
|
Result : Ureal;
|
1613 |
|
|
|
1614 |
|
|
begin
|
1615 |
|
|
if Is_Real_Type (Ltype) then
|
1616 |
|
|
Left_Real := Expr_Value_R (Left);
|
1617 |
|
|
else
|
1618 |
|
|
Left_Real := UR_From_Uint (Expr_Value (Left));
|
1619 |
|
|
end if;
|
1620 |
|
|
|
1621 |
|
|
if Is_Real_Type (Rtype) then
|
1622 |
|
|
Right_Real := Expr_Value_R (Right);
|
1623 |
|
|
else
|
1624 |
|
|
Right_Real := UR_From_Uint (Expr_Value (Right));
|
1625 |
|
|
end if;
|
1626 |
|
|
|
1627 |
|
|
if Nkind (N) = N_Op_Add then
|
1628 |
|
|
Result := Left_Real + Right_Real;
|
1629 |
|
|
|
1630 |
|
|
elsif Nkind (N) = N_Op_Subtract then
|
1631 |
|
|
Result := Left_Real - Right_Real;
|
1632 |
|
|
|
1633 |
|
|
elsif Nkind (N) = N_Op_Multiply then
|
1634 |
|
|
Result := Left_Real * Right_Real;
|
1635 |
|
|
|
1636 |
|
|
else pragma Assert (Nkind (N) = N_Op_Divide);
|
1637 |
|
|
if UR_Is_Zero (Right_Real) then
|
1638 |
|
|
Apply_Compile_Time_Constraint_Error
|
1639 |
|
|
(N, "division by zero", CE_Divide_By_Zero);
|
1640 |
|
|
return;
|
1641 |
|
|
end if;
|
1642 |
|
|
|
1643 |
|
|
Result := Left_Real / Right_Real;
|
1644 |
|
|
end if;
|
1645 |
|
|
|
1646 |
|
|
Fold_Ureal (N, Result, Stat);
|
1647 |
|
|
end;
|
1648 |
|
|
end if;
|
1649 |
|
|
|
1650 |
|
|
-- If the operator was resolved to a specific type, make sure that type
|
1651 |
|
|
-- is frozen even if the expression is folded into a literal (which has
|
1652 |
|
|
-- a universal type).
|
1653 |
|
|
|
1654 |
|
|
if Present (Otype) then
|
1655 |
|
|
Freeze_Before (N, Otype);
|
1656 |
|
|
end if;
|
1657 |
|
|
end Eval_Arithmetic_Op;
|
1658 |
|
|
|
1659 |
|
|
----------------------------
|
1660 |
|
|
-- Eval_Character_Literal --
|
1661 |
|
|
----------------------------
|
1662 |
|
|
|
1663 |
|
|
-- Nothing to be done!
|
1664 |
|
|
|
1665 |
|
|
procedure Eval_Character_Literal (N : Node_Id) is
|
1666 |
|
|
pragma Warnings (Off, N);
|
1667 |
|
|
begin
|
1668 |
|
|
null;
|
1669 |
|
|
end Eval_Character_Literal;
|
1670 |
|
|
|
1671 |
|
|
---------------
|
1672 |
|
|
-- Eval_Call --
|
1673 |
|
|
---------------
|
1674 |
|
|
|
1675 |
|
|
-- Static function calls are either calls to predefined operators
|
1676 |
|
|
-- with static arguments, or calls to functions that rename a literal.
|
1677 |
|
|
-- Only the latter case is handled here, predefined operators are
|
1678 |
|
|
-- constant-folded elsewhere.
|
1679 |
|
|
|
1680 |
|
|
-- If the function is itself inherited (see 7423-001) the literal of
|
1681 |
|
|
-- the parent type must be explicitly converted to the return type
|
1682 |
|
|
-- of the function.
|
1683 |
|
|
|
1684 |
|
|
procedure Eval_Call (N : Node_Id) is
|
1685 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1686 |
|
|
Typ : constant Entity_Id := Etype (N);
|
1687 |
|
|
Lit : Entity_Id;
|
1688 |
|
|
|
1689 |
|
|
begin
|
1690 |
|
|
if Nkind (N) = N_Function_Call
|
1691 |
|
|
and then No (Parameter_Associations (N))
|
1692 |
|
|
and then Is_Entity_Name (Name (N))
|
1693 |
|
|
and then Present (Alias (Entity (Name (N))))
|
1694 |
|
|
and then Is_Enumeration_Type (Base_Type (Typ))
|
1695 |
|
|
then
|
1696 |
|
|
Lit := Ultimate_Alias (Entity (Name (N)));
|
1697 |
|
|
|
1698 |
|
|
if Ekind (Lit) = E_Enumeration_Literal then
|
1699 |
|
|
if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
|
1700 |
|
|
Rewrite
|
1701 |
|
|
(N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
|
1702 |
|
|
else
|
1703 |
|
|
Rewrite (N, New_Occurrence_Of (Lit, Loc));
|
1704 |
|
|
end if;
|
1705 |
|
|
|
1706 |
|
|
Resolve (N, Typ);
|
1707 |
|
|
end if;
|
1708 |
|
|
end if;
|
1709 |
|
|
end Eval_Call;
|
1710 |
|
|
|
1711 |
|
|
--------------------------
|
1712 |
|
|
-- Eval_Case_Expression --
|
1713 |
|
|
--------------------------
|
1714 |
|
|
|
1715 |
|
|
-- Right now we do not attempt folding of any case expressions, and the
|
1716 |
|
|
-- language does not require it, so the only required processing is to
|
1717 |
|
|
-- do the check for all expressions appearing in the case expression.
|
1718 |
|
|
|
1719 |
|
|
procedure Eval_Case_Expression (N : Node_Id) is
|
1720 |
|
|
Alt : Node_Id;
|
1721 |
|
|
|
1722 |
|
|
begin
|
1723 |
|
|
Check_Non_Static_Context (Expression (N));
|
1724 |
|
|
|
1725 |
|
|
Alt := First (Alternatives (N));
|
1726 |
|
|
while Present (Alt) loop
|
1727 |
|
|
Check_Non_Static_Context (Expression (Alt));
|
1728 |
|
|
Next (Alt);
|
1729 |
|
|
end loop;
|
1730 |
|
|
end Eval_Case_Expression;
|
1731 |
|
|
|
1732 |
|
|
------------------------
|
1733 |
|
|
-- Eval_Concatenation --
|
1734 |
|
|
------------------------
|
1735 |
|
|
|
1736 |
|
|
-- Concatenation is a static function, so the result is static if both
|
1737 |
|
|
-- operands are static (RM 4.9(7), 4.9(21)).
|
1738 |
|
|
|
1739 |
|
|
procedure Eval_Concatenation (N : Node_Id) is
|
1740 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
1741 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
1742 |
|
|
C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
|
1743 |
|
|
Stat : Boolean;
|
1744 |
|
|
Fold : Boolean;
|
1745 |
|
|
|
1746 |
|
|
begin
|
1747 |
|
|
-- Concatenation is never static in Ada 83, so if Ada 83 check operand
|
1748 |
|
|
-- non-static context.
|
1749 |
|
|
|
1750 |
|
|
if Ada_Version = Ada_83
|
1751 |
|
|
and then Comes_From_Source (N)
|
1752 |
|
|
then
|
1753 |
|
|
Check_Non_Static_Context (Left);
|
1754 |
|
|
Check_Non_Static_Context (Right);
|
1755 |
|
|
return;
|
1756 |
|
|
end if;
|
1757 |
|
|
|
1758 |
|
|
-- If not foldable we are done. In principle concatenation that yields
|
1759 |
|
|
-- any string type is static (i.e. an array type of character types).
|
1760 |
|
|
-- However, character types can include enumeration literals, and
|
1761 |
|
|
-- concatenation in that case cannot be described by a literal, so we
|
1762 |
|
|
-- only consider the operation static if the result is an array of
|
1763 |
|
|
-- (a descendant of) a predefined character type.
|
1764 |
|
|
|
1765 |
|
|
Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
|
1766 |
|
|
|
1767 |
|
|
if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
|
1768 |
|
|
Set_Is_Static_Expression (N, False);
|
1769 |
|
|
return;
|
1770 |
|
|
end if;
|
1771 |
|
|
|
1772 |
|
|
-- Compile time string concatenation
|
1773 |
|
|
|
1774 |
|
|
-- ??? Note that operands that are aggregates can be marked as static,
|
1775 |
|
|
-- so we should attempt at a later stage to fold concatenations with
|
1776 |
|
|
-- such aggregates.
|
1777 |
|
|
|
1778 |
|
|
declare
|
1779 |
|
|
Left_Str : constant Node_Id := Get_String_Val (Left);
|
1780 |
|
|
Left_Len : Nat;
|
1781 |
|
|
Right_Str : constant Node_Id := Get_String_Val (Right);
|
1782 |
|
|
Folded_Val : String_Id;
|
1783 |
|
|
|
1784 |
|
|
begin
|
1785 |
|
|
-- Establish new string literal, and store left operand. We make
|
1786 |
|
|
-- sure to use the special Start_String that takes an operand if
|
1787 |
|
|
-- the left operand is a string literal. Since this is optimized
|
1788 |
|
|
-- in the case where that is the most recently created string
|
1789 |
|
|
-- literal, we ensure efficient time/space behavior for the
|
1790 |
|
|
-- case of a concatenation of a series of string literals.
|
1791 |
|
|
|
1792 |
|
|
if Nkind (Left_Str) = N_String_Literal then
|
1793 |
|
|
Left_Len := String_Length (Strval (Left_Str));
|
1794 |
|
|
|
1795 |
|
|
-- If the left operand is the empty string, and the right operand
|
1796 |
|
|
-- is a string literal (the case of "" & "..."), the result is the
|
1797 |
|
|
-- value of the right operand. This optimization is important when
|
1798 |
|
|
-- Is_Folded_In_Parser, to avoid copying an enormous right
|
1799 |
|
|
-- operand.
|
1800 |
|
|
|
1801 |
|
|
if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
|
1802 |
|
|
Folded_Val := Strval (Right_Str);
|
1803 |
|
|
else
|
1804 |
|
|
Start_String (Strval (Left_Str));
|
1805 |
|
|
end if;
|
1806 |
|
|
|
1807 |
|
|
else
|
1808 |
|
|
Start_String;
|
1809 |
|
|
Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
|
1810 |
|
|
Left_Len := 1;
|
1811 |
|
|
end if;
|
1812 |
|
|
|
1813 |
|
|
-- Now append the characters of the right operand, unless we
|
1814 |
|
|
-- optimized the "" & "..." case above.
|
1815 |
|
|
|
1816 |
|
|
if Nkind (Right_Str) = N_String_Literal then
|
1817 |
|
|
if Left_Len /= 0 then
|
1818 |
|
|
Store_String_Chars (Strval (Right_Str));
|
1819 |
|
|
Folded_Val := End_String;
|
1820 |
|
|
end if;
|
1821 |
|
|
else
|
1822 |
|
|
Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
|
1823 |
|
|
Folded_Val := End_String;
|
1824 |
|
|
end if;
|
1825 |
|
|
|
1826 |
|
|
Set_Is_Static_Expression (N, Stat);
|
1827 |
|
|
|
1828 |
|
|
if Stat then
|
1829 |
|
|
|
1830 |
|
|
-- If left operand is the empty string, the result is the
|
1831 |
|
|
-- right operand, including its bounds if anomalous.
|
1832 |
|
|
|
1833 |
|
|
if Left_Len = 0
|
1834 |
|
|
and then Is_Array_Type (Etype (Right))
|
1835 |
|
|
and then Etype (Right) /= Any_String
|
1836 |
|
|
then
|
1837 |
|
|
Set_Etype (N, Etype (Right));
|
1838 |
|
|
end if;
|
1839 |
|
|
|
1840 |
|
|
Fold_Str (N, Folded_Val, Static => True);
|
1841 |
|
|
end if;
|
1842 |
|
|
end;
|
1843 |
|
|
end Eval_Concatenation;
|
1844 |
|
|
|
1845 |
|
|
---------------------------------
|
1846 |
|
|
-- Eval_Conditional_Expression --
|
1847 |
|
|
---------------------------------
|
1848 |
|
|
|
1849 |
|
|
-- We can fold to a static expression if the condition and both constituent
|
1850 |
|
|
-- expressions are static. Otherwise, the only required processing is to do
|
1851 |
|
|
-- the check for non-static context for the then and else expressions.
|
1852 |
|
|
|
1853 |
|
|
procedure Eval_Conditional_Expression (N : Node_Id) is
|
1854 |
|
|
Condition : constant Node_Id := First (Expressions (N));
|
1855 |
|
|
Then_Expr : constant Node_Id := Next (Condition);
|
1856 |
|
|
Else_Expr : constant Node_Id := Next (Then_Expr);
|
1857 |
|
|
Result : Node_Id;
|
1858 |
|
|
Non_Result : Node_Id;
|
1859 |
|
|
|
1860 |
|
|
Rstat : constant Boolean :=
|
1861 |
|
|
Is_Static_Expression (Condition)
|
1862 |
|
|
and then
|
1863 |
|
|
Is_Static_Expression (Then_Expr)
|
1864 |
|
|
and then
|
1865 |
|
|
Is_Static_Expression (Else_Expr);
|
1866 |
|
|
|
1867 |
|
|
begin
|
1868 |
|
|
-- If any operand is Any_Type, just propagate to result and do not try
|
1869 |
|
|
-- to fold, this prevents cascaded errors.
|
1870 |
|
|
|
1871 |
|
|
if Etype (Condition) = Any_Type or else
|
1872 |
|
|
Etype (Then_Expr) = Any_Type or else
|
1873 |
|
|
Etype (Else_Expr) = Any_Type
|
1874 |
|
|
then
|
1875 |
|
|
Set_Etype (N, Any_Type);
|
1876 |
|
|
Set_Is_Static_Expression (N, False);
|
1877 |
|
|
return;
|
1878 |
|
|
|
1879 |
|
|
-- Static case where we can fold. Note that we don't try to fold cases
|
1880 |
|
|
-- where the condition is known at compile time, but the result is
|
1881 |
|
|
-- non-static. This avoids possible cases of infinite recursion where
|
1882 |
|
|
-- the expander puts in a redundant test and we remove it. Instead we
|
1883 |
|
|
-- deal with these cases in the expander.
|
1884 |
|
|
|
1885 |
|
|
elsif Rstat then
|
1886 |
|
|
|
1887 |
|
|
-- Select result operand
|
1888 |
|
|
|
1889 |
|
|
if Is_True (Expr_Value (Condition)) then
|
1890 |
|
|
Result := Then_Expr;
|
1891 |
|
|
Non_Result := Else_Expr;
|
1892 |
|
|
else
|
1893 |
|
|
Result := Else_Expr;
|
1894 |
|
|
Non_Result := Then_Expr;
|
1895 |
|
|
end if;
|
1896 |
|
|
|
1897 |
|
|
-- Note that it does not matter if the non-result operand raises a
|
1898 |
|
|
-- Constraint_Error, but if the result raises constraint error then
|
1899 |
|
|
-- we replace the node with a raise constraint error. This will
|
1900 |
|
|
-- properly propagate Raises_Constraint_Error since this flag is
|
1901 |
|
|
-- set in Result.
|
1902 |
|
|
|
1903 |
|
|
if Raises_Constraint_Error (Result) then
|
1904 |
|
|
Rewrite_In_Raise_CE (N, Result);
|
1905 |
|
|
Check_Non_Static_Context (Non_Result);
|
1906 |
|
|
|
1907 |
|
|
-- Otherwise the result operand replaces the original node
|
1908 |
|
|
|
1909 |
|
|
else
|
1910 |
|
|
Rewrite (N, Relocate_Node (Result));
|
1911 |
|
|
end if;
|
1912 |
|
|
|
1913 |
|
|
-- Case of condition not known at compile time
|
1914 |
|
|
|
1915 |
|
|
else
|
1916 |
|
|
Check_Non_Static_Context (Condition);
|
1917 |
|
|
Check_Non_Static_Context (Then_Expr);
|
1918 |
|
|
Check_Non_Static_Context (Else_Expr);
|
1919 |
|
|
end if;
|
1920 |
|
|
|
1921 |
|
|
Set_Is_Static_Expression (N, Rstat);
|
1922 |
|
|
end Eval_Conditional_Expression;
|
1923 |
|
|
|
1924 |
|
|
----------------------
|
1925 |
|
|
-- Eval_Entity_Name --
|
1926 |
|
|
----------------------
|
1927 |
|
|
|
1928 |
|
|
-- This procedure is used for identifiers and expanded names other than
|
1929 |
|
|
-- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
|
1930 |
|
|
-- static if they denote a static constant (RM 4.9(6)) or if the name
|
1931 |
|
|
-- denotes an enumeration literal (RM 4.9(22)).
|
1932 |
|
|
|
1933 |
|
|
procedure Eval_Entity_Name (N : Node_Id) is
|
1934 |
|
|
Def_Id : constant Entity_Id := Entity (N);
|
1935 |
|
|
Val : Node_Id;
|
1936 |
|
|
|
1937 |
|
|
begin
|
1938 |
|
|
-- Enumeration literals are always considered to be constants
|
1939 |
|
|
-- and cannot raise constraint error (RM 4.9(22)).
|
1940 |
|
|
|
1941 |
|
|
if Ekind (Def_Id) = E_Enumeration_Literal then
|
1942 |
|
|
Set_Is_Static_Expression (N);
|
1943 |
|
|
return;
|
1944 |
|
|
|
1945 |
|
|
-- A name is static if it denotes a static constant (RM 4.9(5)), and
|
1946 |
|
|
-- we also copy Raise_Constraint_Error. Notice that even if non-static,
|
1947 |
|
|
-- it does not violate 10.2.1(8) here, since this is not a variable.
|
1948 |
|
|
|
1949 |
|
|
elsif Ekind (Def_Id) = E_Constant then
|
1950 |
|
|
|
1951 |
|
|
-- Deferred constants must always be treated as nonstatic
|
1952 |
|
|
-- outside the scope of their full view.
|
1953 |
|
|
|
1954 |
|
|
if Present (Full_View (Def_Id))
|
1955 |
|
|
and then not In_Open_Scopes (Scope (Def_Id))
|
1956 |
|
|
then
|
1957 |
|
|
Val := Empty;
|
1958 |
|
|
else
|
1959 |
|
|
Val := Constant_Value (Def_Id);
|
1960 |
|
|
end if;
|
1961 |
|
|
|
1962 |
|
|
if Present (Val) then
|
1963 |
|
|
Set_Is_Static_Expression
|
1964 |
|
|
(N, Is_Static_Expression (Val)
|
1965 |
|
|
and then Is_Static_Subtype (Etype (Def_Id)));
|
1966 |
|
|
Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
|
1967 |
|
|
|
1968 |
|
|
if not Is_Static_Expression (N)
|
1969 |
|
|
and then not Is_Generic_Type (Etype (N))
|
1970 |
|
|
then
|
1971 |
|
|
Validate_Static_Object_Name (N);
|
1972 |
|
|
end if;
|
1973 |
|
|
|
1974 |
|
|
return;
|
1975 |
|
|
end if;
|
1976 |
|
|
end if;
|
1977 |
|
|
|
1978 |
|
|
-- Fall through if the name is not static
|
1979 |
|
|
|
1980 |
|
|
Validate_Static_Object_Name (N);
|
1981 |
|
|
end Eval_Entity_Name;
|
1982 |
|
|
|
1983 |
|
|
----------------------------
|
1984 |
|
|
-- Eval_Indexed_Component --
|
1985 |
|
|
----------------------------
|
1986 |
|
|
|
1987 |
|
|
-- Indexed components are never static, so we need to perform the check
|
1988 |
|
|
-- for non-static context on the index values. Then, we check if the
|
1989 |
|
|
-- value can be obtained at compile time, even though it is non-static.
|
1990 |
|
|
|
1991 |
|
|
procedure Eval_Indexed_Component (N : Node_Id) is
|
1992 |
|
|
Expr : Node_Id;
|
1993 |
|
|
|
1994 |
|
|
begin
|
1995 |
|
|
-- Check for non-static context on index values
|
1996 |
|
|
|
1997 |
|
|
Expr := First (Expressions (N));
|
1998 |
|
|
while Present (Expr) loop
|
1999 |
|
|
Check_Non_Static_Context (Expr);
|
2000 |
|
|
Next (Expr);
|
2001 |
|
|
end loop;
|
2002 |
|
|
|
2003 |
|
|
-- If the indexed component appears in an object renaming declaration
|
2004 |
|
|
-- then we do not want to try to evaluate it, since in this case we
|
2005 |
|
|
-- need the identity of the array element.
|
2006 |
|
|
|
2007 |
|
|
if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
|
2008 |
|
|
return;
|
2009 |
|
|
|
2010 |
|
|
-- Similarly if the indexed component appears as the prefix of an
|
2011 |
|
|
-- attribute we don't want to evaluate it, because at least for
|
2012 |
|
|
-- some cases of attributes we need the identify (e.g. Access, Size)
|
2013 |
|
|
|
2014 |
|
|
elsif Nkind (Parent (N)) = N_Attribute_Reference then
|
2015 |
|
|
return;
|
2016 |
|
|
end if;
|
2017 |
|
|
|
2018 |
|
|
-- Note: there are other cases, such as the left side of an assignment,
|
2019 |
|
|
-- or an OUT parameter for a call, where the replacement results in the
|
2020 |
|
|
-- illegal use of a constant, But these cases are illegal in the first
|
2021 |
|
|
-- place, so the replacement, though silly, is harmless.
|
2022 |
|
|
|
2023 |
|
|
-- Now see if this is a constant array reference
|
2024 |
|
|
|
2025 |
|
|
if List_Length (Expressions (N)) = 1
|
2026 |
|
|
and then Is_Entity_Name (Prefix (N))
|
2027 |
|
|
and then Ekind (Entity (Prefix (N))) = E_Constant
|
2028 |
|
|
and then Present (Constant_Value (Entity (Prefix (N))))
|
2029 |
|
|
then
|
2030 |
|
|
declare
|
2031 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2032 |
|
|
Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
|
2033 |
|
|
Sub : constant Node_Id := First (Expressions (N));
|
2034 |
|
|
|
2035 |
|
|
Atyp : Entity_Id;
|
2036 |
|
|
-- Type of array
|
2037 |
|
|
|
2038 |
|
|
Lin : Nat;
|
2039 |
|
|
-- Linear one's origin subscript value for array reference
|
2040 |
|
|
|
2041 |
|
|
Lbd : Node_Id;
|
2042 |
|
|
-- Lower bound of the first array index
|
2043 |
|
|
|
2044 |
|
|
Elm : Node_Id;
|
2045 |
|
|
-- Value from constant array
|
2046 |
|
|
|
2047 |
|
|
begin
|
2048 |
|
|
Atyp := Etype (Arr);
|
2049 |
|
|
|
2050 |
|
|
if Is_Access_Type (Atyp) then
|
2051 |
|
|
Atyp := Designated_Type (Atyp);
|
2052 |
|
|
end if;
|
2053 |
|
|
|
2054 |
|
|
-- If we have an array type (we should have but perhaps there are
|
2055 |
|
|
-- error cases where this is not the case), then see if we can do
|
2056 |
|
|
-- a constant evaluation of the array reference.
|
2057 |
|
|
|
2058 |
|
|
if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
|
2059 |
|
|
if Ekind (Atyp) = E_String_Literal_Subtype then
|
2060 |
|
|
Lbd := String_Literal_Low_Bound (Atyp);
|
2061 |
|
|
else
|
2062 |
|
|
Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
|
2063 |
|
|
end if;
|
2064 |
|
|
|
2065 |
|
|
if Compile_Time_Known_Value (Sub)
|
2066 |
|
|
and then Nkind (Arr) = N_Aggregate
|
2067 |
|
|
and then Compile_Time_Known_Value (Lbd)
|
2068 |
|
|
and then Is_Discrete_Type (Component_Type (Atyp))
|
2069 |
|
|
then
|
2070 |
|
|
Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
|
2071 |
|
|
|
2072 |
|
|
if List_Length (Expressions (Arr)) >= Lin then
|
2073 |
|
|
Elm := Pick (Expressions (Arr), Lin);
|
2074 |
|
|
|
2075 |
|
|
-- If the resulting expression is compile time known,
|
2076 |
|
|
-- then we can rewrite the indexed component with this
|
2077 |
|
|
-- value, being sure to mark the result as non-static.
|
2078 |
|
|
-- We also reset the Sloc, in case this generates an
|
2079 |
|
|
-- error later on (e.g. 136'Access).
|
2080 |
|
|
|
2081 |
|
|
if Compile_Time_Known_Value (Elm) then
|
2082 |
|
|
Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
|
2083 |
|
|
Set_Is_Static_Expression (N, False);
|
2084 |
|
|
Set_Sloc (N, Loc);
|
2085 |
|
|
end if;
|
2086 |
|
|
end if;
|
2087 |
|
|
|
2088 |
|
|
-- We can also constant-fold if the prefix is a string literal.
|
2089 |
|
|
-- This will be useful in an instantiation or an inlining.
|
2090 |
|
|
|
2091 |
|
|
elsif Compile_Time_Known_Value (Sub)
|
2092 |
|
|
and then Nkind (Arr) = N_String_Literal
|
2093 |
|
|
and then Compile_Time_Known_Value (Lbd)
|
2094 |
|
|
and then Expr_Value (Lbd) = 1
|
2095 |
|
|
and then Expr_Value (Sub) <=
|
2096 |
|
|
String_Literal_Length (Etype (Arr))
|
2097 |
|
|
then
|
2098 |
|
|
declare
|
2099 |
|
|
C : constant Char_Code :=
|
2100 |
|
|
Get_String_Char (Strval (Arr),
|
2101 |
|
|
UI_To_Int (Expr_Value (Sub)));
|
2102 |
|
|
begin
|
2103 |
|
|
Set_Character_Literal_Name (C);
|
2104 |
|
|
|
2105 |
|
|
Elm :=
|
2106 |
|
|
Make_Character_Literal (Loc,
|
2107 |
|
|
Chars => Name_Find,
|
2108 |
|
|
Char_Literal_Value => UI_From_CC (C));
|
2109 |
|
|
Set_Etype (Elm, Component_Type (Atyp));
|
2110 |
|
|
Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
|
2111 |
|
|
Set_Is_Static_Expression (N, False);
|
2112 |
|
|
end;
|
2113 |
|
|
end if;
|
2114 |
|
|
end if;
|
2115 |
|
|
end;
|
2116 |
|
|
end if;
|
2117 |
|
|
end Eval_Indexed_Component;
|
2118 |
|
|
|
2119 |
|
|
--------------------------
|
2120 |
|
|
-- Eval_Integer_Literal --
|
2121 |
|
|
--------------------------
|
2122 |
|
|
|
2123 |
|
|
-- Numeric literals are static (RM 4.9(1)), and have already been marked
|
2124 |
|
|
-- as static by the analyzer. The reason we did it that early is to allow
|
2125 |
|
|
-- the possibility of turning off the Is_Static_Expression flag after
|
2126 |
|
|
-- analysis, but before resolution, when integer literals are generated in
|
2127 |
|
|
-- the expander that do not correspond to static expressions.
|
2128 |
|
|
|
2129 |
|
|
procedure Eval_Integer_Literal (N : Node_Id) is
|
2130 |
|
|
T : constant Entity_Id := Etype (N);
|
2131 |
|
|
|
2132 |
|
|
function In_Any_Integer_Context return Boolean;
|
2133 |
|
|
-- If the literal is resolved with a specific type in a context where
|
2134 |
|
|
-- the expected type is Any_Integer, there are no range checks on the
|
2135 |
|
|
-- literal. By the time the literal is evaluated, it carries the type
|
2136 |
|
|
-- imposed by the enclosing expression, and we must recover the context
|
2137 |
|
|
-- to determine that Any_Integer is meant.
|
2138 |
|
|
|
2139 |
|
|
----------------------------
|
2140 |
|
|
-- In_Any_Integer_Context --
|
2141 |
|
|
----------------------------
|
2142 |
|
|
|
2143 |
|
|
function In_Any_Integer_Context return Boolean is
|
2144 |
|
|
Par : constant Node_Id := Parent (N);
|
2145 |
|
|
K : constant Node_Kind := Nkind (Par);
|
2146 |
|
|
|
2147 |
|
|
begin
|
2148 |
|
|
-- Any_Integer also appears in digits specifications for real types,
|
2149 |
|
|
-- but those have bounds smaller that those of any integer base type,
|
2150 |
|
|
-- so we can safely ignore these cases.
|
2151 |
|
|
|
2152 |
|
|
return K = N_Number_Declaration
|
2153 |
|
|
or else K = N_Attribute_Reference
|
2154 |
|
|
or else K = N_Attribute_Definition_Clause
|
2155 |
|
|
or else K = N_Modular_Type_Definition
|
2156 |
|
|
or else K = N_Signed_Integer_Type_Definition;
|
2157 |
|
|
end In_Any_Integer_Context;
|
2158 |
|
|
|
2159 |
|
|
-- Start of processing for Eval_Integer_Literal
|
2160 |
|
|
|
2161 |
|
|
begin
|
2162 |
|
|
|
2163 |
|
|
-- If the literal appears in a non-expression context, then it is
|
2164 |
|
|
-- certainly appearing in a non-static context, so check it. This is
|
2165 |
|
|
-- actually a redundant check, since Check_Non_Static_Context would
|
2166 |
|
|
-- check it, but it seems worth while avoiding the call.
|
2167 |
|
|
|
2168 |
|
|
if Nkind (Parent (N)) not in N_Subexpr
|
2169 |
|
|
and then not In_Any_Integer_Context
|
2170 |
|
|
then
|
2171 |
|
|
Check_Non_Static_Context (N);
|
2172 |
|
|
end if;
|
2173 |
|
|
|
2174 |
|
|
-- Modular integer literals must be in their base range
|
2175 |
|
|
|
2176 |
|
|
if Is_Modular_Integer_Type (T)
|
2177 |
|
|
and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
|
2178 |
|
|
then
|
2179 |
|
|
Out_Of_Range (N);
|
2180 |
|
|
end if;
|
2181 |
|
|
end Eval_Integer_Literal;
|
2182 |
|
|
|
2183 |
|
|
---------------------
|
2184 |
|
|
-- Eval_Logical_Op --
|
2185 |
|
|
---------------------
|
2186 |
|
|
|
2187 |
|
|
-- Logical operations are static functions, so the result is potentially
|
2188 |
|
|
-- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
|
2189 |
|
|
|
2190 |
|
|
procedure Eval_Logical_Op (N : Node_Id) is
|
2191 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
2192 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
2193 |
|
|
Stat : Boolean;
|
2194 |
|
|
Fold : Boolean;
|
2195 |
|
|
|
2196 |
|
|
begin
|
2197 |
|
|
-- If not foldable we are done
|
2198 |
|
|
|
2199 |
|
|
Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
|
2200 |
|
|
|
2201 |
|
|
if not Fold then
|
2202 |
|
|
return;
|
2203 |
|
|
end if;
|
2204 |
|
|
|
2205 |
|
|
-- Compile time evaluation of logical operation
|
2206 |
|
|
|
2207 |
|
|
declare
|
2208 |
|
|
Left_Int : constant Uint := Expr_Value (Left);
|
2209 |
|
|
Right_Int : constant Uint := Expr_Value (Right);
|
2210 |
|
|
|
2211 |
|
|
begin
|
2212 |
|
|
-- VMS includes bitwise operations on signed types
|
2213 |
|
|
|
2214 |
|
|
if Is_Modular_Integer_Type (Etype (N))
|
2215 |
|
|
or else Is_VMS_Operator (Entity (N))
|
2216 |
|
|
then
|
2217 |
|
|
declare
|
2218 |
|
|
Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
|
2219 |
|
|
Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
|
2220 |
|
|
|
2221 |
|
|
begin
|
2222 |
|
|
To_Bits (Left_Int, Left_Bits);
|
2223 |
|
|
To_Bits (Right_Int, Right_Bits);
|
2224 |
|
|
|
2225 |
|
|
-- Note: should really be able to use array ops instead of
|
2226 |
|
|
-- these loops, but they weren't working at the time ???
|
2227 |
|
|
|
2228 |
|
|
if Nkind (N) = N_Op_And then
|
2229 |
|
|
for J in Left_Bits'Range loop
|
2230 |
|
|
Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
|
2231 |
|
|
end loop;
|
2232 |
|
|
|
2233 |
|
|
elsif Nkind (N) = N_Op_Or then
|
2234 |
|
|
for J in Left_Bits'Range loop
|
2235 |
|
|
Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
|
2236 |
|
|
end loop;
|
2237 |
|
|
|
2238 |
|
|
else
|
2239 |
|
|
pragma Assert (Nkind (N) = N_Op_Xor);
|
2240 |
|
|
|
2241 |
|
|
for J in Left_Bits'Range loop
|
2242 |
|
|
Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
|
2243 |
|
|
end loop;
|
2244 |
|
|
end if;
|
2245 |
|
|
|
2246 |
|
|
Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
|
2247 |
|
|
end;
|
2248 |
|
|
|
2249 |
|
|
else
|
2250 |
|
|
pragma Assert (Is_Boolean_Type (Etype (N)));
|
2251 |
|
|
|
2252 |
|
|
if Nkind (N) = N_Op_And then
|
2253 |
|
|
Fold_Uint (N,
|
2254 |
|
|
Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
|
2255 |
|
|
|
2256 |
|
|
elsif Nkind (N) = N_Op_Or then
|
2257 |
|
|
Fold_Uint (N,
|
2258 |
|
|
Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
|
2259 |
|
|
|
2260 |
|
|
else
|
2261 |
|
|
pragma Assert (Nkind (N) = N_Op_Xor);
|
2262 |
|
|
Fold_Uint (N,
|
2263 |
|
|
Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
|
2264 |
|
|
end if;
|
2265 |
|
|
end if;
|
2266 |
|
|
end;
|
2267 |
|
|
end Eval_Logical_Op;
|
2268 |
|
|
|
2269 |
|
|
------------------------
|
2270 |
|
|
-- Eval_Membership_Op --
|
2271 |
|
|
------------------------
|
2272 |
|
|
|
2273 |
|
|
-- A membership test is potentially static if the expression is static, and
|
2274 |
|
|
-- the range is a potentially static range, or is a subtype mark denoting a
|
2275 |
|
|
-- static subtype (RM 4.9(12)).
|
2276 |
|
|
|
2277 |
|
|
procedure Eval_Membership_Op (N : Node_Id) is
|
2278 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
2279 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
2280 |
|
|
Def_Id : Entity_Id;
|
2281 |
|
|
Lo : Node_Id;
|
2282 |
|
|
Hi : Node_Id;
|
2283 |
|
|
Result : Boolean;
|
2284 |
|
|
Stat : Boolean;
|
2285 |
|
|
Fold : Boolean;
|
2286 |
|
|
|
2287 |
|
|
begin
|
2288 |
|
|
-- Ignore if error in either operand, except to make sure that Any_Type
|
2289 |
|
|
-- is properly propagated to avoid junk cascaded errors.
|
2290 |
|
|
|
2291 |
|
|
if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
|
2292 |
|
|
Set_Etype (N, Any_Type);
|
2293 |
|
|
return;
|
2294 |
|
|
end if;
|
2295 |
|
|
|
2296 |
|
|
-- Ignore if types involved have predicates
|
2297 |
|
|
|
2298 |
|
|
if Present (Predicate_Function (Etype (Left)))
|
2299 |
|
|
or else
|
2300 |
|
|
Present (Predicate_Function (Etype (Right)))
|
2301 |
|
|
then
|
2302 |
|
|
return;
|
2303 |
|
|
end if;
|
2304 |
|
|
|
2305 |
|
|
-- Case of right operand is a subtype name
|
2306 |
|
|
|
2307 |
|
|
if Is_Entity_Name (Right) then
|
2308 |
|
|
Def_Id := Entity (Right);
|
2309 |
|
|
|
2310 |
|
|
if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
|
2311 |
|
|
and then Is_OK_Static_Subtype (Def_Id)
|
2312 |
|
|
then
|
2313 |
|
|
Test_Expression_Is_Foldable (N, Left, Stat, Fold);
|
2314 |
|
|
|
2315 |
|
|
if not Fold or else not Stat then
|
2316 |
|
|
return;
|
2317 |
|
|
end if;
|
2318 |
|
|
else
|
2319 |
|
|
Check_Non_Static_Context (Left);
|
2320 |
|
|
return;
|
2321 |
|
|
end if;
|
2322 |
|
|
|
2323 |
|
|
-- For string membership tests we will check the length further on
|
2324 |
|
|
|
2325 |
|
|
if not Is_String_Type (Def_Id) then
|
2326 |
|
|
Lo := Type_Low_Bound (Def_Id);
|
2327 |
|
|
Hi := Type_High_Bound (Def_Id);
|
2328 |
|
|
|
2329 |
|
|
else
|
2330 |
|
|
Lo := Empty;
|
2331 |
|
|
Hi := Empty;
|
2332 |
|
|
end if;
|
2333 |
|
|
|
2334 |
|
|
-- Case of right operand is a range
|
2335 |
|
|
|
2336 |
|
|
else
|
2337 |
|
|
if Is_Static_Range (Right) then
|
2338 |
|
|
Test_Expression_Is_Foldable (N, Left, Stat, Fold);
|
2339 |
|
|
|
2340 |
|
|
if not Fold or else not Stat then
|
2341 |
|
|
return;
|
2342 |
|
|
|
2343 |
|
|
-- If one bound of range raises CE, then don't try to fold
|
2344 |
|
|
|
2345 |
|
|
elsif not Is_OK_Static_Range (Right) then
|
2346 |
|
|
Check_Non_Static_Context (Left);
|
2347 |
|
|
return;
|
2348 |
|
|
end if;
|
2349 |
|
|
|
2350 |
|
|
else
|
2351 |
|
|
Check_Non_Static_Context (Left);
|
2352 |
|
|
return;
|
2353 |
|
|
end if;
|
2354 |
|
|
|
2355 |
|
|
-- Here we know range is an OK static range
|
2356 |
|
|
|
2357 |
|
|
Lo := Low_Bound (Right);
|
2358 |
|
|
Hi := High_Bound (Right);
|
2359 |
|
|
end if;
|
2360 |
|
|
|
2361 |
|
|
-- For strings we check that the length of the string expression is
|
2362 |
|
|
-- compatible with the string subtype if the subtype is constrained,
|
2363 |
|
|
-- or if unconstrained then the test is always true.
|
2364 |
|
|
|
2365 |
|
|
if Is_String_Type (Etype (Right)) then
|
2366 |
|
|
if not Is_Constrained (Etype (Right)) then
|
2367 |
|
|
Result := True;
|
2368 |
|
|
|
2369 |
|
|
else
|
2370 |
|
|
declare
|
2371 |
|
|
Typlen : constant Uint := String_Type_Len (Etype (Right));
|
2372 |
|
|
Strlen : constant Uint :=
|
2373 |
|
|
UI_From_Int
|
2374 |
|
|
(String_Length (Strval (Get_String_Val (Left))));
|
2375 |
|
|
begin
|
2376 |
|
|
Result := (Typlen = Strlen);
|
2377 |
|
|
end;
|
2378 |
|
|
end if;
|
2379 |
|
|
|
2380 |
|
|
-- Fold the membership test. We know we have a static range and Lo and
|
2381 |
|
|
-- Hi are set to the expressions for the end points of this range.
|
2382 |
|
|
|
2383 |
|
|
elsif Is_Real_Type (Etype (Right)) then
|
2384 |
|
|
declare
|
2385 |
|
|
Leftval : constant Ureal := Expr_Value_R (Left);
|
2386 |
|
|
|
2387 |
|
|
begin
|
2388 |
|
|
Result := Expr_Value_R (Lo) <= Leftval
|
2389 |
|
|
and then Leftval <= Expr_Value_R (Hi);
|
2390 |
|
|
end;
|
2391 |
|
|
|
2392 |
|
|
else
|
2393 |
|
|
declare
|
2394 |
|
|
Leftval : constant Uint := Expr_Value (Left);
|
2395 |
|
|
|
2396 |
|
|
begin
|
2397 |
|
|
Result := Expr_Value (Lo) <= Leftval
|
2398 |
|
|
and then Leftval <= Expr_Value (Hi);
|
2399 |
|
|
end;
|
2400 |
|
|
end if;
|
2401 |
|
|
|
2402 |
|
|
if Nkind (N) = N_Not_In then
|
2403 |
|
|
Result := not Result;
|
2404 |
|
|
end if;
|
2405 |
|
|
|
2406 |
|
|
Fold_Uint (N, Test (Result), True);
|
2407 |
|
|
|
2408 |
|
|
Warn_On_Known_Condition (N);
|
2409 |
|
|
end Eval_Membership_Op;
|
2410 |
|
|
|
2411 |
|
|
------------------------
|
2412 |
|
|
-- Eval_Named_Integer --
|
2413 |
|
|
------------------------
|
2414 |
|
|
|
2415 |
|
|
procedure Eval_Named_Integer (N : Node_Id) is
|
2416 |
|
|
begin
|
2417 |
|
|
Fold_Uint (N,
|
2418 |
|
|
Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
|
2419 |
|
|
end Eval_Named_Integer;
|
2420 |
|
|
|
2421 |
|
|
---------------------
|
2422 |
|
|
-- Eval_Named_Real --
|
2423 |
|
|
---------------------
|
2424 |
|
|
|
2425 |
|
|
procedure Eval_Named_Real (N : Node_Id) is
|
2426 |
|
|
begin
|
2427 |
|
|
Fold_Ureal (N,
|
2428 |
|
|
Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
|
2429 |
|
|
end Eval_Named_Real;
|
2430 |
|
|
|
2431 |
|
|
-------------------
|
2432 |
|
|
-- Eval_Op_Expon --
|
2433 |
|
|
-------------------
|
2434 |
|
|
|
2435 |
|
|
-- Exponentiation is a static functions, so the result is potentially
|
2436 |
|
|
-- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
|
2437 |
|
|
|
2438 |
|
|
procedure Eval_Op_Expon (N : Node_Id) is
|
2439 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
2440 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
2441 |
|
|
Stat : Boolean;
|
2442 |
|
|
Fold : Boolean;
|
2443 |
|
|
|
2444 |
|
|
begin
|
2445 |
|
|
-- If not foldable we are done
|
2446 |
|
|
|
2447 |
|
|
Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
|
2448 |
|
|
|
2449 |
|
|
if not Fold then
|
2450 |
|
|
return;
|
2451 |
|
|
end if;
|
2452 |
|
|
|
2453 |
|
|
-- Fold exponentiation operation
|
2454 |
|
|
|
2455 |
|
|
declare
|
2456 |
|
|
Right_Int : constant Uint := Expr_Value (Right);
|
2457 |
|
|
|
2458 |
|
|
begin
|
2459 |
|
|
-- Integer case
|
2460 |
|
|
|
2461 |
|
|
if Is_Integer_Type (Etype (Left)) then
|
2462 |
|
|
declare
|
2463 |
|
|
Left_Int : constant Uint := Expr_Value (Left);
|
2464 |
|
|
Result : Uint;
|
2465 |
|
|
|
2466 |
|
|
begin
|
2467 |
|
|
-- Exponentiation of an integer raises Constraint_Error for a
|
2468 |
|
|
-- negative exponent (RM 4.5.6).
|
2469 |
|
|
|
2470 |
|
|
if Right_Int < 0 then
|
2471 |
|
|
Apply_Compile_Time_Constraint_Error
|
2472 |
|
|
(N, "integer exponent negative",
|
2473 |
|
|
CE_Range_Check_Failed,
|
2474 |
|
|
Warn => not Stat);
|
2475 |
|
|
return;
|
2476 |
|
|
|
2477 |
|
|
else
|
2478 |
|
|
if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
|
2479 |
|
|
Result := Left_Int ** Right_Int;
|
2480 |
|
|
else
|
2481 |
|
|
Result := Left_Int;
|
2482 |
|
|
end if;
|
2483 |
|
|
|
2484 |
|
|
if Is_Modular_Integer_Type (Etype (N)) then
|
2485 |
|
|
Result := Result mod Modulus (Etype (N));
|
2486 |
|
|
end if;
|
2487 |
|
|
|
2488 |
|
|
Fold_Uint (N, Result, Stat);
|
2489 |
|
|
end if;
|
2490 |
|
|
end;
|
2491 |
|
|
|
2492 |
|
|
-- Real case
|
2493 |
|
|
|
2494 |
|
|
else
|
2495 |
|
|
declare
|
2496 |
|
|
Left_Real : constant Ureal := Expr_Value_R (Left);
|
2497 |
|
|
|
2498 |
|
|
begin
|
2499 |
|
|
-- Cannot have a zero base with a negative exponent
|
2500 |
|
|
|
2501 |
|
|
if UR_Is_Zero (Left_Real) then
|
2502 |
|
|
|
2503 |
|
|
if Right_Int < 0 then
|
2504 |
|
|
Apply_Compile_Time_Constraint_Error
|
2505 |
|
|
(N, "zero ** negative integer",
|
2506 |
|
|
CE_Range_Check_Failed,
|
2507 |
|
|
Warn => not Stat);
|
2508 |
|
|
return;
|
2509 |
|
|
else
|
2510 |
|
|
Fold_Ureal (N, Ureal_0, Stat);
|
2511 |
|
|
end if;
|
2512 |
|
|
|
2513 |
|
|
else
|
2514 |
|
|
Fold_Ureal (N, Left_Real ** Right_Int, Stat);
|
2515 |
|
|
end if;
|
2516 |
|
|
end;
|
2517 |
|
|
end if;
|
2518 |
|
|
end;
|
2519 |
|
|
end Eval_Op_Expon;
|
2520 |
|
|
|
2521 |
|
|
-----------------
|
2522 |
|
|
-- Eval_Op_Not --
|
2523 |
|
|
-----------------
|
2524 |
|
|
|
2525 |
|
|
-- The not operation is a static functions, so the result is potentially
|
2526 |
|
|
-- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
|
2527 |
|
|
|
2528 |
|
|
procedure Eval_Op_Not (N : Node_Id) is
|
2529 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
2530 |
|
|
Stat : Boolean;
|
2531 |
|
|
Fold : Boolean;
|
2532 |
|
|
|
2533 |
|
|
begin
|
2534 |
|
|
-- If not foldable we are done
|
2535 |
|
|
|
2536 |
|
|
Test_Expression_Is_Foldable (N, Right, Stat, Fold);
|
2537 |
|
|
|
2538 |
|
|
if not Fold then
|
2539 |
|
|
return;
|
2540 |
|
|
end if;
|
2541 |
|
|
|
2542 |
|
|
-- Fold not operation
|
2543 |
|
|
|
2544 |
|
|
declare
|
2545 |
|
|
Rint : constant Uint := Expr_Value (Right);
|
2546 |
|
|
Typ : constant Entity_Id := Etype (N);
|
2547 |
|
|
|
2548 |
|
|
begin
|
2549 |
|
|
-- Negation is equivalent to subtracting from the modulus minus one.
|
2550 |
|
|
-- For a binary modulus this is equivalent to the ones-complement of
|
2551 |
|
|
-- the original value. For non-binary modulus this is an arbitrary
|
2552 |
|
|
-- but consistent definition.
|
2553 |
|
|
|
2554 |
|
|
if Is_Modular_Integer_Type (Typ) then
|
2555 |
|
|
Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
|
2556 |
|
|
|
2557 |
|
|
else
|
2558 |
|
|
pragma Assert (Is_Boolean_Type (Typ));
|
2559 |
|
|
Fold_Uint (N, Test (not Is_True (Rint)), Stat);
|
2560 |
|
|
end if;
|
2561 |
|
|
|
2562 |
|
|
Set_Is_Static_Expression (N, Stat);
|
2563 |
|
|
end;
|
2564 |
|
|
end Eval_Op_Not;
|
2565 |
|
|
|
2566 |
|
|
-------------------------------
|
2567 |
|
|
-- Eval_Qualified_Expression --
|
2568 |
|
|
-------------------------------
|
2569 |
|
|
|
2570 |
|
|
-- A qualified expression is potentially static if its subtype mark denotes
|
2571 |
|
|
-- a static subtype and its expression is potentially static (RM 4.9 (11)).
|
2572 |
|
|
|
2573 |
|
|
procedure Eval_Qualified_Expression (N : Node_Id) is
|
2574 |
|
|
Operand : constant Node_Id := Expression (N);
|
2575 |
|
|
Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
|
2576 |
|
|
|
2577 |
|
|
Stat : Boolean;
|
2578 |
|
|
Fold : Boolean;
|
2579 |
|
|
Hex : Boolean;
|
2580 |
|
|
|
2581 |
|
|
begin
|
2582 |
|
|
-- Can only fold if target is string or scalar and subtype is static.
|
2583 |
|
|
-- Also, do not fold if our parent is an allocator (this is because the
|
2584 |
|
|
-- qualified expression is really part of the syntactic structure of an
|
2585 |
|
|
-- allocator, and we do not want to end up with something that
|
2586 |
|
|
-- corresponds to "new 1" where the 1 is the result of folding a
|
2587 |
|
|
-- qualified expression).
|
2588 |
|
|
|
2589 |
|
|
if not Is_Static_Subtype (Target_Type)
|
2590 |
|
|
or else Nkind (Parent (N)) = N_Allocator
|
2591 |
|
|
then
|
2592 |
|
|
Check_Non_Static_Context (Operand);
|
2593 |
|
|
|
2594 |
|
|
-- If operand is known to raise constraint_error, set the flag on the
|
2595 |
|
|
-- expression so it does not get optimized away.
|
2596 |
|
|
|
2597 |
|
|
if Nkind (Operand) = N_Raise_Constraint_Error then
|
2598 |
|
|
Set_Raises_Constraint_Error (N);
|
2599 |
|
|
end if;
|
2600 |
|
|
|
2601 |
|
|
return;
|
2602 |
|
|
end if;
|
2603 |
|
|
|
2604 |
|
|
-- If not foldable we are done
|
2605 |
|
|
|
2606 |
|
|
Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
|
2607 |
|
|
|
2608 |
|
|
if not Fold then
|
2609 |
|
|
return;
|
2610 |
|
|
|
2611 |
|
|
-- Don't try fold if target type has constraint error bounds
|
2612 |
|
|
|
2613 |
|
|
elsif not Is_OK_Static_Subtype (Target_Type) then
|
2614 |
|
|
Set_Raises_Constraint_Error (N);
|
2615 |
|
|
return;
|
2616 |
|
|
end if;
|
2617 |
|
|
|
2618 |
|
|
-- Here we will fold, save Print_In_Hex indication
|
2619 |
|
|
|
2620 |
|
|
Hex := Nkind (Operand) = N_Integer_Literal
|
2621 |
|
|
and then Print_In_Hex (Operand);
|
2622 |
|
|
|
2623 |
|
|
-- Fold the result of qualification
|
2624 |
|
|
|
2625 |
|
|
if Is_Discrete_Type (Target_Type) then
|
2626 |
|
|
Fold_Uint (N, Expr_Value (Operand), Stat);
|
2627 |
|
|
|
2628 |
|
|
-- Preserve Print_In_Hex indication
|
2629 |
|
|
|
2630 |
|
|
if Hex and then Nkind (N) = N_Integer_Literal then
|
2631 |
|
|
Set_Print_In_Hex (N);
|
2632 |
|
|
end if;
|
2633 |
|
|
|
2634 |
|
|
elsif Is_Real_Type (Target_Type) then
|
2635 |
|
|
Fold_Ureal (N, Expr_Value_R (Operand), Stat);
|
2636 |
|
|
|
2637 |
|
|
else
|
2638 |
|
|
Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
|
2639 |
|
|
|
2640 |
|
|
if not Stat then
|
2641 |
|
|
Set_Is_Static_Expression (N, False);
|
2642 |
|
|
else
|
2643 |
|
|
Check_String_Literal_Length (N, Target_Type);
|
2644 |
|
|
end if;
|
2645 |
|
|
|
2646 |
|
|
return;
|
2647 |
|
|
end if;
|
2648 |
|
|
|
2649 |
|
|
-- The expression may be foldable but not static
|
2650 |
|
|
|
2651 |
|
|
Set_Is_Static_Expression (N, Stat);
|
2652 |
|
|
|
2653 |
|
|
if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
|
2654 |
|
|
Out_Of_Range (N);
|
2655 |
|
|
end if;
|
2656 |
|
|
end Eval_Qualified_Expression;
|
2657 |
|
|
|
2658 |
|
|
-----------------------
|
2659 |
|
|
-- Eval_Real_Literal --
|
2660 |
|
|
-----------------------
|
2661 |
|
|
|
2662 |
|
|
-- Numeric literals are static (RM 4.9(1)), and have already been marked
|
2663 |
|
|
-- as static by the analyzer. The reason we did it that early is to allow
|
2664 |
|
|
-- the possibility of turning off the Is_Static_Expression flag after
|
2665 |
|
|
-- analysis, but before resolution, when integer literals are generated
|
2666 |
|
|
-- in the expander that do not correspond to static expressions.
|
2667 |
|
|
|
2668 |
|
|
procedure Eval_Real_Literal (N : Node_Id) is
|
2669 |
|
|
PK : constant Node_Kind := Nkind (Parent (N));
|
2670 |
|
|
|
2671 |
|
|
begin
|
2672 |
|
|
-- If the literal appears in a non-expression context and not as part of
|
2673 |
|
|
-- a number declaration, then it is appearing in a non-static context,
|
2674 |
|
|
-- so check it.
|
2675 |
|
|
|
2676 |
|
|
if PK not in N_Subexpr and then PK /= N_Number_Declaration then
|
2677 |
|
|
Check_Non_Static_Context (N);
|
2678 |
|
|
end if;
|
2679 |
|
|
end Eval_Real_Literal;
|
2680 |
|
|
|
2681 |
|
|
------------------------
|
2682 |
|
|
-- Eval_Relational_Op --
|
2683 |
|
|
------------------------
|
2684 |
|
|
|
2685 |
|
|
-- Relational operations are static functions, so the result is static if
|
2686 |
|
|
-- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
|
2687 |
|
|
-- the result is never static, even if the operands are.
|
2688 |
|
|
|
2689 |
|
|
procedure Eval_Relational_Op (N : Node_Id) is
|
2690 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
2691 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
2692 |
|
|
Typ : constant Entity_Id := Etype (Left);
|
2693 |
|
|
Otype : Entity_Id := Empty;
|
2694 |
|
|
Result : Boolean;
|
2695 |
|
|
Stat : Boolean;
|
2696 |
|
|
Fold : Boolean;
|
2697 |
|
|
|
2698 |
|
|
begin
|
2699 |
|
|
-- One special case to deal with first. If we can tell that the result
|
2700 |
|
|
-- will be false because the lengths of one or more index subtypes are
|
2701 |
|
|
-- compile time known and different, then we can replace the entire
|
2702 |
|
|
-- result by False. We only do this for one dimensional arrays, because
|
2703 |
|
|
-- the case of multi-dimensional arrays is rare and too much trouble! If
|
2704 |
|
|
-- one of the operands is an illegal aggregate, its type might still be
|
2705 |
|
|
-- an arbitrary composite type, so nothing to do.
|
2706 |
|
|
|
2707 |
|
|
if Is_Array_Type (Typ)
|
2708 |
|
|
and then Typ /= Any_Composite
|
2709 |
|
|
and then Number_Dimensions (Typ) = 1
|
2710 |
|
|
and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
|
2711 |
|
|
then
|
2712 |
|
|
if Raises_Constraint_Error (Left)
|
2713 |
|
|
or else Raises_Constraint_Error (Right)
|
2714 |
|
|
then
|
2715 |
|
|
return;
|
2716 |
|
|
end if;
|
2717 |
|
|
|
2718 |
|
|
-- OK, we have the case where we may be able to do this fold
|
2719 |
|
|
|
2720 |
|
|
Length_Mismatch : declare
|
2721 |
|
|
procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
|
2722 |
|
|
-- If Op is an expression for a constrained array with a known at
|
2723 |
|
|
-- compile time length, then Len is set to this (non-negative
|
2724 |
|
|
-- length). Otherwise Len is set to minus 1.
|
2725 |
|
|
|
2726 |
|
|
-----------------------
|
2727 |
|
|
-- Get_Static_Length --
|
2728 |
|
|
-----------------------
|
2729 |
|
|
|
2730 |
|
|
procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
|
2731 |
|
|
T : Entity_Id;
|
2732 |
|
|
|
2733 |
|
|
begin
|
2734 |
|
|
-- First easy case string literal
|
2735 |
|
|
|
2736 |
|
|
if Nkind (Op) = N_String_Literal then
|
2737 |
|
|
Len := UI_From_Int (String_Length (Strval (Op)));
|
2738 |
|
|
return;
|
2739 |
|
|
end if;
|
2740 |
|
|
|
2741 |
|
|
-- Second easy case, not constrained subtype, so no length
|
2742 |
|
|
|
2743 |
|
|
if not Is_Constrained (Etype (Op)) then
|
2744 |
|
|
Len := Uint_Minus_1;
|
2745 |
|
|
return;
|
2746 |
|
|
end if;
|
2747 |
|
|
|
2748 |
|
|
-- General case
|
2749 |
|
|
|
2750 |
|
|
T := Etype (First_Index (Etype (Op)));
|
2751 |
|
|
|
2752 |
|
|
-- The simple case, both bounds are known at compile time
|
2753 |
|
|
|
2754 |
|
|
if Is_Discrete_Type (T)
|
2755 |
|
|
and then
|
2756 |
|
|
Compile_Time_Known_Value (Type_Low_Bound (T))
|
2757 |
|
|
and then
|
2758 |
|
|
Compile_Time_Known_Value (Type_High_Bound (T))
|
2759 |
|
|
then
|
2760 |
|
|
Len := UI_Max (Uint_0,
|
2761 |
|
|
Expr_Value (Type_High_Bound (T)) -
|
2762 |
|
|
Expr_Value (Type_Low_Bound (T)) + 1);
|
2763 |
|
|
return;
|
2764 |
|
|
end if;
|
2765 |
|
|
|
2766 |
|
|
-- A more complex case, where the bounds are of the form
|
2767 |
|
|
-- X [+/- K1] .. X [+/- K2]), where X is an expression that is
|
2768 |
|
|
-- either A'First or A'Last (with A an entity name), or X is an
|
2769 |
|
|
-- entity name, and the two X's are the same and K1 and K2 are
|
2770 |
|
|
-- known at compile time, in this case, the length can also be
|
2771 |
|
|
-- computed at compile time, even though the bounds are not
|
2772 |
|
|
-- known. A common case of this is e.g. (X'First .. X'First+5).
|
2773 |
|
|
|
2774 |
|
|
Extract_Length : declare
|
2775 |
|
|
procedure Decompose_Expr
|
2776 |
|
|
(Expr : Node_Id;
|
2777 |
|
|
Ent : out Entity_Id;
|
2778 |
|
|
Kind : out Character;
|
2779 |
|
|
Cons : out Uint);
|
2780 |
|
|
-- Given an expression, see if is of the form above,
|
2781 |
|
|
-- X [+/- K]. If so Ent is set to the entity in X,
|
2782 |
|
|
-- Kind is 'F','L','E' for 'First/'Last/simple entity,
|
2783 |
|
|
-- and Cons is the value of K. If the expression is
|
2784 |
|
|
-- not of the required form, Ent is set to Empty.
|
2785 |
|
|
|
2786 |
|
|
--------------------
|
2787 |
|
|
-- Decompose_Expr --
|
2788 |
|
|
--------------------
|
2789 |
|
|
|
2790 |
|
|
procedure Decompose_Expr
|
2791 |
|
|
(Expr : Node_Id;
|
2792 |
|
|
Ent : out Entity_Id;
|
2793 |
|
|
Kind : out Character;
|
2794 |
|
|
Cons : out Uint)
|
2795 |
|
|
is
|
2796 |
|
|
Exp : Node_Id;
|
2797 |
|
|
|
2798 |
|
|
begin
|
2799 |
|
|
if Nkind (Expr) = N_Op_Add
|
2800 |
|
|
and then Compile_Time_Known_Value (Right_Opnd (Expr))
|
2801 |
|
|
then
|
2802 |
|
|
Exp := Left_Opnd (Expr);
|
2803 |
|
|
Cons := Expr_Value (Right_Opnd (Expr));
|
2804 |
|
|
|
2805 |
|
|
elsif Nkind (Expr) = N_Op_Subtract
|
2806 |
|
|
and then Compile_Time_Known_Value (Right_Opnd (Expr))
|
2807 |
|
|
then
|
2808 |
|
|
Exp := Left_Opnd (Expr);
|
2809 |
|
|
Cons := -Expr_Value (Right_Opnd (Expr));
|
2810 |
|
|
|
2811 |
|
|
-- If the bound is a constant created to remove side
|
2812 |
|
|
-- effects, recover original expression to see if it has
|
2813 |
|
|
-- one of the recognizable forms.
|
2814 |
|
|
|
2815 |
|
|
elsif Nkind (Expr) = N_Identifier
|
2816 |
|
|
and then not Comes_From_Source (Entity (Expr))
|
2817 |
|
|
and then Ekind (Entity (Expr)) = E_Constant
|
2818 |
|
|
and then
|
2819 |
|
|
Nkind (Parent (Entity (Expr))) = N_Object_Declaration
|
2820 |
|
|
then
|
2821 |
|
|
Exp := Expression (Parent (Entity (Expr)));
|
2822 |
|
|
Decompose_Expr (Exp, Ent, Kind, Cons);
|
2823 |
|
|
|
2824 |
|
|
-- If original expression includes an entity, create a
|
2825 |
|
|
-- reference to it for use below.
|
2826 |
|
|
|
2827 |
|
|
if Present (Ent) then
|
2828 |
|
|
Exp := New_Occurrence_Of (Ent, Sloc (Ent));
|
2829 |
|
|
end if;
|
2830 |
|
|
|
2831 |
|
|
else
|
2832 |
|
|
Exp := Expr;
|
2833 |
|
|
Cons := Uint_0;
|
2834 |
|
|
end if;
|
2835 |
|
|
|
2836 |
|
|
-- At this stage Exp is set to the potential X
|
2837 |
|
|
|
2838 |
|
|
if Nkind (Exp) = N_Attribute_Reference then
|
2839 |
|
|
if Attribute_Name (Exp) = Name_First then
|
2840 |
|
|
Kind := 'F';
|
2841 |
|
|
|
2842 |
|
|
elsif Attribute_Name (Exp) = Name_Last then
|
2843 |
|
|
Kind := 'L';
|
2844 |
|
|
|
2845 |
|
|
else
|
2846 |
|
|
Ent := Empty;
|
2847 |
|
|
return;
|
2848 |
|
|
end if;
|
2849 |
|
|
|
2850 |
|
|
Exp := Prefix (Exp);
|
2851 |
|
|
|
2852 |
|
|
else
|
2853 |
|
|
Kind := 'E';
|
2854 |
|
|
end if;
|
2855 |
|
|
|
2856 |
|
|
if Is_Entity_Name (Exp)
|
2857 |
|
|
and then Present (Entity (Exp))
|
2858 |
|
|
then
|
2859 |
|
|
Ent := Entity (Exp);
|
2860 |
|
|
else
|
2861 |
|
|
Ent := Empty;
|
2862 |
|
|
end if;
|
2863 |
|
|
end Decompose_Expr;
|
2864 |
|
|
|
2865 |
|
|
-- Local Variables
|
2866 |
|
|
|
2867 |
|
|
Ent1, Ent2 : Entity_Id;
|
2868 |
|
|
Kind1, Kind2 : Character;
|
2869 |
|
|
Cons1, Cons2 : Uint;
|
2870 |
|
|
|
2871 |
|
|
-- Start of processing for Extract_Length
|
2872 |
|
|
|
2873 |
|
|
begin
|
2874 |
|
|
Decompose_Expr
|
2875 |
|
|
(Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
|
2876 |
|
|
Decompose_Expr
|
2877 |
|
|
(Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
|
2878 |
|
|
|
2879 |
|
|
if Present (Ent1)
|
2880 |
|
|
and then Kind1 = Kind2
|
2881 |
|
|
and then Ent1 = Ent2
|
2882 |
|
|
then
|
2883 |
|
|
Len := Cons2 - Cons1 + 1;
|
2884 |
|
|
else
|
2885 |
|
|
Len := Uint_Minus_1;
|
2886 |
|
|
end if;
|
2887 |
|
|
end Extract_Length;
|
2888 |
|
|
end Get_Static_Length;
|
2889 |
|
|
|
2890 |
|
|
-- Local Variables
|
2891 |
|
|
|
2892 |
|
|
Len_L : Uint;
|
2893 |
|
|
Len_R : Uint;
|
2894 |
|
|
|
2895 |
|
|
-- Start of processing for Length_Mismatch
|
2896 |
|
|
|
2897 |
|
|
begin
|
2898 |
|
|
Get_Static_Length (Left, Len_L);
|
2899 |
|
|
Get_Static_Length (Right, Len_R);
|
2900 |
|
|
|
2901 |
|
|
if Len_L /= Uint_Minus_1
|
2902 |
|
|
and then Len_R /= Uint_Minus_1
|
2903 |
|
|
and then Len_L /= Len_R
|
2904 |
|
|
then
|
2905 |
|
|
Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
|
2906 |
|
|
Warn_On_Known_Condition (N);
|
2907 |
|
|
return;
|
2908 |
|
|
end if;
|
2909 |
|
|
end Length_Mismatch;
|
2910 |
|
|
end if;
|
2911 |
|
|
|
2912 |
|
|
-- Test for expression being foldable
|
2913 |
|
|
|
2914 |
|
|
Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
|
2915 |
|
|
|
2916 |
|
|
-- Only comparisons of scalars can give static results. In particular,
|
2917 |
|
|
-- comparisons of strings never yield a static result, even if both
|
2918 |
|
|
-- operands are static strings.
|
2919 |
|
|
|
2920 |
|
|
if not Is_Scalar_Type (Typ) then
|
2921 |
|
|
Stat := False;
|
2922 |
|
|
Set_Is_Static_Expression (N, False);
|
2923 |
|
|
end if;
|
2924 |
|
|
|
2925 |
|
|
-- For operators on universal numeric types called as functions with
|
2926 |
|
|
-- an explicit scope, determine appropriate specific numeric type, and
|
2927 |
|
|
-- diagnose possible ambiguity.
|
2928 |
|
|
|
2929 |
|
|
if Is_Universal_Numeric_Type (Etype (Left))
|
2930 |
|
|
and then
|
2931 |
|
|
Is_Universal_Numeric_Type (Etype (Right))
|
2932 |
|
|
then
|
2933 |
|
|
Otype := Find_Universal_Operator_Type (N);
|
2934 |
|
|
end if;
|
2935 |
|
|
|
2936 |
|
|
-- For static real type expressions, we cannot use Compile_Time_Compare
|
2937 |
|
|
-- since it worries about run-time results which are not exact.
|
2938 |
|
|
|
2939 |
|
|
if Stat and then Is_Real_Type (Typ) then
|
2940 |
|
|
declare
|
2941 |
|
|
Left_Real : constant Ureal := Expr_Value_R (Left);
|
2942 |
|
|
Right_Real : constant Ureal := Expr_Value_R (Right);
|
2943 |
|
|
|
2944 |
|
|
begin
|
2945 |
|
|
case Nkind (N) is
|
2946 |
|
|
when N_Op_Eq => Result := (Left_Real = Right_Real);
|
2947 |
|
|
when N_Op_Ne => Result := (Left_Real /= Right_Real);
|
2948 |
|
|
when N_Op_Lt => Result := (Left_Real < Right_Real);
|
2949 |
|
|
when N_Op_Le => Result := (Left_Real <= Right_Real);
|
2950 |
|
|
when N_Op_Gt => Result := (Left_Real > Right_Real);
|
2951 |
|
|
when N_Op_Ge => Result := (Left_Real >= Right_Real);
|
2952 |
|
|
|
2953 |
|
|
when others =>
|
2954 |
|
|
raise Program_Error;
|
2955 |
|
|
end case;
|
2956 |
|
|
|
2957 |
|
|
Fold_Uint (N, Test (Result), True);
|
2958 |
|
|
end;
|
2959 |
|
|
|
2960 |
|
|
-- For all other cases, we use Compile_Time_Compare to do the compare
|
2961 |
|
|
|
2962 |
|
|
else
|
2963 |
|
|
declare
|
2964 |
|
|
CR : constant Compare_Result :=
|
2965 |
|
|
Compile_Time_Compare (Left, Right, Assume_Valid => False);
|
2966 |
|
|
|
2967 |
|
|
begin
|
2968 |
|
|
if CR = Unknown then
|
2969 |
|
|
return;
|
2970 |
|
|
end if;
|
2971 |
|
|
|
2972 |
|
|
case Nkind (N) is
|
2973 |
|
|
when N_Op_Eq =>
|
2974 |
|
|
if CR = EQ then
|
2975 |
|
|
Result := True;
|
2976 |
|
|
elsif CR = NE or else CR = GT or else CR = LT then
|
2977 |
|
|
Result := False;
|
2978 |
|
|
else
|
2979 |
|
|
return;
|
2980 |
|
|
end if;
|
2981 |
|
|
|
2982 |
|
|
when N_Op_Ne =>
|
2983 |
|
|
if CR = NE or else CR = GT or else CR = LT then
|
2984 |
|
|
Result := True;
|
2985 |
|
|
elsif CR = EQ then
|
2986 |
|
|
Result := False;
|
2987 |
|
|
else
|
2988 |
|
|
return;
|
2989 |
|
|
end if;
|
2990 |
|
|
|
2991 |
|
|
when N_Op_Lt =>
|
2992 |
|
|
if CR = LT then
|
2993 |
|
|
Result := True;
|
2994 |
|
|
elsif CR = EQ or else CR = GT or else CR = GE then
|
2995 |
|
|
Result := False;
|
2996 |
|
|
else
|
2997 |
|
|
return;
|
2998 |
|
|
end if;
|
2999 |
|
|
|
3000 |
|
|
when N_Op_Le =>
|
3001 |
|
|
if CR = LT or else CR = EQ or else CR = LE then
|
3002 |
|
|
Result := True;
|
3003 |
|
|
elsif CR = GT then
|
3004 |
|
|
Result := False;
|
3005 |
|
|
else
|
3006 |
|
|
return;
|
3007 |
|
|
end if;
|
3008 |
|
|
|
3009 |
|
|
when N_Op_Gt =>
|
3010 |
|
|
if CR = GT then
|
3011 |
|
|
Result := True;
|
3012 |
|
|
elsif CR = EQ or else CR = LT or else CR = LE then
|
3013 |
|
|
Result := False;
|
3014 |
|
|
else
|
3015 |
|
|
return;
|
3016 |
|
|
end if;
|
3017 |
|
|
|
3018 |
|
|
when N_Op_Ge =>
|
3019 |
|
|
if CR = GT or else CR = EQ or else CR = GE then
|
3020 |
|
|
Result := True;
|
3021 |
|
|
elsif CR = LT then
|
3022 |
|
|
Result := False;
|
3023 |
|
|
else
|
3024 |
|
|
return;
|
3025 |
|
|
end if;
|
3026 |
|
|
|
3027 |
|
|
when others =>
|
3028 |
|
|
raise Program_Error;
|
3029 |
|
|
end case;
|
3030 |
|
|
end;
|
3031 |
|
|
|
3032 |
|
|
Fold_Uint (N, Test (Result), Stat);
|
3033 |
|
|
end if;
|
3034 |
|
|
|
3035 |
|
|
-- For the case of a folded relational operator on a specific numeric
|
3036 |
|
|
-- type, freeze operand type now.
|
3037 |
|
|
|
3038 |
|
|
if Present (Otype) then
|
3039 |
|
|
Freeze_Before (N, Otype);
|
3040 |
|
|
end if;
|
3041 |
|
|
|
3042 |
|
|
Warn_On_Known_Condition (N);
|
3043 |
|
|
end Eval_Relational_Op;
|
3044 |
|
|
|
3045 |
|
|
----------------
|
3046 |
|
|
-- Eval_Shift --
|
3047 |
|
|
----------------
|
3048 |
|
|
|
3049 |
|
|
-- Shift operations are intrinsic operations that can never be static, so
|
3050 |
|
|
-- the only processing required is to perform the required check for a non
|
3051 |
|
|
-- static context for the two operands.
|
3052 |
|
|
|
3053 |
|
|
-- Actually we could do some compile time evaluation here some time ???
|
3054 |
|
|
|
3055 |
|
|
procedure Eval_Shift (N : Node_Id) is
|
3056 |
|
|
begin
|
3057 |
|
|
Check_Non_Static_Context (Left_Opnd (N));
|
3058 |
|
|
Check_Non_Static_Context (Right_Opnd (N));
|
3059 |
|
|
end Eval_Shift;
|
3060 |
|
|
|
3061 |
|
|
------------------------
|
3062 |
|
|
-- Eval_Short_Circuit --
|
3063 |
|
|
------------------------
|
3064 |
|
|
|
3065 |
|
|
-- A short circuit operation is potentially static if both operands are
|
3066 |
|
|
-- potentially static (RM 4.9 (13)).
|
3067 |
|
|
|
3068 |
|
|
procedure Eval_Short_Circuit (N : Node_Id) is
|
3069 |
|
|
Kind : constant Node_Kind := Nkind (N);
|
3070 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
3071 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
3072 |
|
|
Left_Int : Uint;
|
3073 |
|
|
|
3074 |
|
|
Rstat : constant Boolean :=
|
3075 |
|
|
Is_Static_Expression (Left)
|
3076 |
|
|
and then
|
3077 |
|
|
Is_Static_Expression (Right);
|
3078 |
|
|
|
3079 |
|
|
begin
|
3080 |
|
|
-- Short circuit operations are never static in Ada 83
|
3081 |
|
|
|
3082 |
|
|
if Ada_Version = Ada_83 and then Comes_From_Source (N) then
|
3083 |
|
|
Check_Non_Static_Context (Left);
|
3084 |
|
|
Check_Non_Static_Context (Right);
|
3085 |
|
|
return;
|
3086 |
|
|
end if;
|
3087 |
|
|
|
3088 |
|
|
-- Now look at the operands, we can't quite use the normal call to
|
3089 |
|
|
-- Test_Expression_Is_Foldable here because short circuit operations
|
3090 |
|
|
-- are a special case, they can still be foldable, even if the right
|
3091 |
|
|
-- operand raises constraint error.
|
3092 |
|
|
|
3093 |
|
|
-- If either operand is Any_Type, just propagate to result and do not
|
3094 |
|
|
-- try to fold, this prevents cascaded errors.
|
3095 |
|
|
|
3096 |
|
|
if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
|
3097 |
|
|
Set_Etype (N, Any_Type);
|
3098 |
|
|
return;
|
3099 |
|
|
|
3100 |
|
|
-- If left operand raises constraint error, then replace node N with
|
3101 |
|
|
-- the raise constraint error node, and we are obviously not foldable.
|
3102 |
|
|
-- Is_Static_Expression is set from the two operands in the normal way,
|
3103 |
|
|
-- and we check the right operand if it is in a non-static context.
|
3104 |
|
|
|
3105 |
|
|
elsif Raises_Constraint_Error (Left) then
|
3106 |
|
|
if not Rstat then
|
3107 |
|
|
Check_Non_Static_Context (Right);
|
3108 |
|
|
end if;
|
3109 |
|
|
|
3110 |
|
|
Rewrite_In_Raise_CE (N, Left);
|
3111 |
|
|
Set_Is_Static_Expression (N, Rstat);
|
3112 |
|
|
return;
|
3113 |
|
|
|
3114 |
|
|
-- If the result is not static, then we won't in any case fold
|
3115 |
|
|
|
3116 |
|
|
elsif not Rstat then
|
3117 |
|
|
Check_Non_Static_Context (Left);
|
3118 |
|
|
Check_Non_Static_Context (Right);
|
3119 |
|
|
return;
|
3120 |
|
|
end if;
|
3121 |
|
|
|
3122 |
|
|
-- Here the result is static, note that, unlike the normal processing
|
3123 |
|
|
-- in Test_Expression_Is_Foldable, we did *not* check above to see if
|
3124 |
|
|
-- the right operand raises constraint error, that's because it is not
|
3125 |
|
|
-- significant if the left operand is decisive.
|
3126 |
|
|
|
3127 |
|
|
Set_Is_Static_Expression (N);
|
3128 |
|
|
|
3129 |
|
|
-- It does not matter if the right operand raises constraint error if
|
3130 |
|
|
-- it will not be evaluated. So deal specially with the cases where
|
3131 |
|
|
-- the right operand is not evaluated. Note that we will fold these
|
3132 |
|
|
-- cases even if the right operand is non-static, which is fine, but
|
3133 |
|
|
-- of course in these cases the result is not potentially static.
|
3134 |
|
|
|
3135 |
|
|
Left_Int := Expr_Value (Left);
|
3136 |
|
|
|
3137 |
|
|
if (Kind = N_And_Then and then Is_False (Left_Int))
|
3138 |
|
|
or else
|
3139 |
|
|
(Kind = N_Or_Else and then Is_True (Left_Int))
|
3140 |
|
|
then
|
3141 |
|
|
Fold_Uint (N, Left_Int, Rstat);
|
3142 |
|
|
return;
|
3143 |
|
|
end if;
|
3144 |
|
|
|
3145 |
|
|
-- If first operand not decisive, then it does matter if the right
|
3146 |
|
|
-- operand raises constraint error, since it will be evaluated, so
|
3147 |
|
|
-- we simply replace the node with the right operand. Note that this
|
3148 |
|
|
-- properly propagates Is_Static_Expression and Raises_Constraint_Error
|
3149 |
|
|
-- (both are set to True in Right).
|
3150 |
|
|
|
3151 |
|
|
if Raises_Constraint_Error (Right) then
|
3152 |
|
|
Rewrite_In_Raise_CE (N, Right);
|
3153 |
|
|
Check_Non_Static_Context (Left);
|
3154 |
|
|
return;
|
3155 |
|
|
end if;
|
3156 |
|
|
|
3157 |
|
|
-- Otherwise the result depends on the right operand
|
3158 |
|
|
|
3159 |
|
|
Fold_Uint (N, Expr_Value (Right), Rstat);
|
3160 |
|
|
return;
|
3161 |
|
|
end Eval_Short_Circuit;
|
3162 |
|
|
|
3163 |
|
|
----------------
|
3164 |
|
|
-- Eval_Slice --
|
3165 |
|
|
----------------
|
3166 |
|
|
|
3167 |
|
|
-- Slices can never be static, so the only processing required is to check
|
3168 |
|
|
-- for non-static context if an explicit range is given.
|
3169 |
|
|
|
3170 |
|
|
procedure Eval_Slice (N : Node_Id) is
|
3171 |
|
|
Drange : constant Node_Id := Discrete_Range (N);
|
3172 |
|
|
begin
|
3173 |
|
|
if Nkind (Drange) = N_Range then
|
3174 |
|
|
Check_Non_Static_Context (Low_Bound (Drange));
|
3175 |
|
|
Check_Non_Static_Context (High_Bound (Drange));
|
3176 |
|
|
end if;
|
3177 |
|
|
|
3178 |
|
|
-- A slice of the form A (subtype), when the subtype is the index of
|
3179 |
|
|
-- the type of A, is redundant, the slice can be replaced with A, and
|
3180 |
|
|
-- this is worth a warning.
|
3181 |
|
|
|
3182 |
|
|
if Is_Entity_Name (Prefix (N)) then
|
3183 |
|
|
declare
|
3184 |
|
|
E : constant Entity_Id := Entity (Prefix (N));
|
3185 |
|
|
T : constant Entity_Id := Etype (E);
|
3186 |
|
|
begin
|
3187 |
|
|
if Ekind (E) = E_Constant
|
3188 |
|
|
and then Is_Array_Type (T)
|
3189 |
|
|
and then Is_Entity_Name (Drange)
|
3190 |
|
|
then
|
3191 |
|
|
if Is_Entity_Name (Original_Node (First_Index (T)))
|
3192 |
|
|
and then Entity (Original_Node (First_Index (T)))
|
3193 |
|
|
= Entity (Drange)
|
3194 |
|
|
then
|
3195 |
|
|
if Warn_On_Redundant_Constructs then
|
3196 |
|
|
Error_Msg_N ("redundant slice denotes whole array?", N);
|
3197 |
|
|
end if;
|
3198 |
|
|
|
3199 |
|
|
-- The following might be a useful optimization????
|
3200 |
|
|
|
3201 |
|
|
-- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
|
3202 |
|
|
end if;
|
3203 |
|
|
end if;
|
3204 |
|
|
end;
|
3205 |
|
|
end if;
|
3206 |
|
|
end Eval_Slice;
|
3207 |
|
|
|
3208 |
|
|
-------------------------
|
3209 |
|
|
-- Eval_String_Literal --
|
3210 |
|
|
-------------------------
|
3211 |
|
|
|
3212 |
|
|
procedure Eval_String_Literal (N : Node_Id) is
|
3213 |
|
|
Typ : constant Entity_Id := Etype (N);
|
3214 |
|
|
Bas : constant Entity_Id := Base_Type (Typ);
|
3215 |
|
|
Xtp : Entity_Id;
|
3216 |
|
|
Len : Nat;
|
3217 |
|
|
Lo : Node_Id;
|
3218 |
|
|
|
3219 |
|
|
begin
|
3220 |
|
|
-- Nothing to do if error type (handles cases like default expressions
|
3221 |
|
|
-- or generics where we have not yet fully resolved the type).
|
3222 |
|
|
|
3223 |
|
|
if Bas = Any_Type or else Bas = Any_String then
|
3224 |
|
|
return;
|
3225 |
|
|
end if;
|
3226 |
|
|
|
3227 |
|
|
-- String literals are static if the subtype is static (RM 4.9(2)), so
|
3228 |
|
|
-- reset the static expression flag (it was set unconditionally in
|
3229 |
|
|
-- Analyze_String_Literal) if the subtype is non-static. We tell if
|
3230 |
|
|
-- the subtype is static by looking at the lower bound.
|
3231 |
|
|
|
3232 |
|
|
if Ekind (Typ) = E_String_Literal_Subtype then
|
3233 |
|
|
if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
|
3234 |
|
|
Set_Is_Static_Expression (N, False);
|
3235 |
|
|
return;
|
3236 |
|
|
end if;
|
3237 |
|
|
|
3238 |
|
|
-- Here if Etype of string literal is normal Etype (not yet possible,
|
3239 |
|
|
-- but may be possible in future).
|
3240 |
|
|
|
3241 |
|
|
elsif not Is_OK_Static_Expression
|
3242 |
|
|
(Type_Low_Bound (Etype (First_Index (Typ))))
|
3243 |
|
|
then
|
3244 |
|
|
Set_Is_Static_Expression (N, False);
|
3245 |
|
|
return;
|
3246 |
|
|
end if;
|
3247 |
|
|
|
3248 |
|
|
-- If original node was a type conversion, then result if non-static
|
3249 |
|
|
|
3250 |
|
|
if Nkind (Original_Node (N)) = N_Type_Conversion then
|
3251 |
|
|
Set_Is_Static_Expression (N, False);
|
3252 |
|
|
return;
|
3253 |
|
|
end if;
|
3254 |
|
|
|
3255 |
|
|
-- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
|
3256 |
|
|
-- if its bounds are outside the index base type and this index type is
|
3257 |
|
|
-- static. This can happen in only two ways. Either the string literal
|
3258 |
|
|
-- is too long, or it is null, and the lower bound is type'First. In
|
3259 |
|
|
-- either case it is the upper bound that is out of range of the index
|
3260 |
|
|
-- type.
|
3261 |
|
|
|
3262 |
|
|
if Ada_Version >= Ada_95 then
|
3263 |
|
|
if Root_Type (Bas) = Standard_String
|
3264 |
|
|
or else
|
3265 |
|
|
Root_Type (Bas) = Standard_Wide_String
|
3266 |
|
|
then
|
3267 |
|
|
Xtp := Standard_Positive;
|
3268 |
|
|
else
|
3269 |
|
|
Xtp := Etype (First_Index (Bas));
|
3270 |
|
|
end if;
|
3271 |
|
|
|
3272 |
|
|
if Ekind (Typ) = E_String_Literal_Subtype then
|
3273 |
|
|
Lo := String_Literal_Low_Bound (Typ);
|
3274 |
|
|
else
|
3275 |
|
|
Lo := Type_Low_Bound (Etype (First_Index (Typ)));
|
3276 |
|
|
end if;
|
3277 |
|
|
|
3278 |
|
|
Len := String_Length (Strval (N));
|
3279 |
|
|
|
3280 |
|
|
if UI_From_Int (Len) > String_Type_Len (Bas) then
|
3281 |
|
|
Apply_Compile_Time_Constraint_Error
|
3282 |
|
|
(N, "string literal too long for}", CE_Length_Check_Failed,
|
3283 |
|
|
Ent => Bas,
|
3284 |
|
|
Typ => First_Subtype (Bas));
|
3285 |
|
|
|
3286 |
|
|
elsif Len = 0
|
3287 |
|
|
and then not Is_Generic_Type (Xtp)
|
3288 |
|
|
and then
|
3289 |
|
|
Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
|
3290 |
|
|
then
|
3291 |
|
|
Apply_Compile_Time_Constraint_Error
|
3292 |
|
|
(N, "null string literal not allowed for}",
|
3293 |
|
|
CE_Length_Check_Failed,
|
3294 |
|
|
Ent => Bas,
|
3295 |
|
|
Typ => First_Subtype (Bas));
|
3296 |
|
|
end if;
|
3297 |
|
|
end if;
|
3298 |
|
|
end Eval_String_Literal;
|
3299 |
|
|
|
3300 |
|
|
--------------------------
|
3301 |
|
|
-- Eval_Type_Conversion --
|
3302 |
|
|
--------------------------
|
3303 |
|
|
|
3304 |
|
|
-- A type conversion is potentially static if its subtype mark is for a
|
3305 |
|
|
-- static scalar subtype, and its operand expression is potentially static
|
3306 |
|
|
-- (RM 4.9(10)).
|
3307 |
|
|
|
3308 |
|
|
procedure Eval_Type_Conversion (N : Node_Id) is
|
3309 |
|
|
Operand : constant Node_Id := Expression (N);
|
3310 |
|
|
Source_Type : constant Entity_Id := Etype (Operand);
|
3311 |
|
|
Target_Type : constant Entity_Id := Etype (N);
|
3312 |
|
|
|
3313 |
|
|
Stat : Boolean;
|
3314 |
|
|
Fold : Boolean;
|
3315 |
|
|
|
3316 |
|
|
function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
|
3317 |
|
|
-- Returns true if type T is an integer type, or if it is a fixed-point
|
3318 |
|
|
-- type to be treated as an integer (i.e. the flag Conversion_OK is set
|
3319 |
|
|
-- on the conversion node).
|
3320 |
|
|
|
3321 |
|
|
function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
|
3322 |
|
|
-- Returns true if type T is a floating-point type, or if it is a
|
3323 |
|
|
-- fixed-point type that is not to be treated as an integer (i.e. the
|
3324 |
|
|
-- flag Conversion_OK is not set on the conversion node).
|
3325 |
|
|
|
3326 |
|
|
------------------------------
|
3327 |
|
|
-- To_Be_Treated_As_Integer --
|
3328 |
|
|
------------------------------
|
3329 |
|
|
|
3330 |
|
|
function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
|
3331 |
|
|
begin
|
3332 |
|
|
return
|
3333 |
|
|
Is_Integer_Type (T)
|
3334 |
|
|
or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
|
3335 |
|
|
end To_Be_Treated_As_Integer;
|
3336 |
|
|
|
3337 |
|
|
---------------------------
|
3338 |
|
|
-- To_Be_Treated_As_Real --
|
3339 |
|
|
---------------------------
|
3340 |
|
|
|
3341 |
|
|
function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
|
3342 |
|
|
begin
|
3343 |
|
|
return
|
3344 |
|
|
Is_Floating_Point_Type (T)
|
3345 |
|
|
or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
|
3346 |
|
|
end To_Be_Treated_As_Real;
|
3347 |
|
|
|
3348 |
|
|
-- Start of processing for Eval_Type_Conversion
|
3349 |
|
|
|
3350 |
|
|
begin
|
3351 |
|
|
-- Cannot fold if target type is non-static or if semantic error
|
3352 |
|
|
|
3353 |
|
|
if not Is_Static_Subtype (Target_Type) then
|
3354 |
|
|
Check_Non_Static_Context (Operand);
|
3355 |
|
|
return;
|
3356 |
|
|
|
3357 |
|
|
elsif Error_Posted (N) then
|
3358 |
|
|
return;
|
3359 |
|
|
end if;
|
3360 |
|
|
|
3361 |
|
|
-- If not foldable we are done
|
3362 |
|
|
|
3363 |
|
|
Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
|
3364 |
|
|
|
3365 |
|
|
if not Fold then
|
3366 |
|
|
return;
|
3367 |
|
|
|
3368 |
|
|
-- Don't try fold if target type has constraint error bounds
|
3369 |
|
|
|
3370 |
|
|
elsif not Is_OK_Static_Subtype (Target_Type) then
|
3371 |
|
|
Set_Raises_Constraint_Error (N);
|
3372 |
|
|
return;
|
3373 |
|
|
end if;
|
3374 |
|
|
|
3375 |
|
|
-- Remaining processing depends on operand types. Note that in the
|
3376 |
|
|
-- following type test, fixed-point counts as real unless the flag
|
3377 |
|
|
-- Conversion_OK is set, in which case it counts as integer.
|
3378 |
|
|
|
3379 |
|
|
-- Fold conversion, case of string type. The result is not static
|
3380 |
|
|
|
3381 |
|
|
if Is_String_Type (Target_Type) then
|
3382 |
|
|
Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
|
3383 |
|
|
|
3384 |
|
|
return;
|
3385 |
|
|
|
3386 |
|
|
-- Fold conversion, case of integer target type
|
3387 |
|
|
|
3388 |
|
|
elsif To_Be_Treated_As_Integer (Target_Type) then
|
3389 |
|
|
declare
|
3390 |
|
|
Result : Uint;
|
3391 |
|
|
|
3392 |
|
|
begin
|
3393 |
|
|
-- Integer to integer conversion
|
3394 |
|
|
|
3395 |
|
|
if To_Be_Treated_As_Integer (Source_Type) then
|
3396 |
|
|
Result := Expr_Value (Operand);
|
3397 |
|
|
|
3398 |
|
|
-- Real to integer conversion
|
3399 |
|
|
|
3400 |
|
|
else
|
3401 |
|
|
Result := UR_To_Uint (Expr_Value_R (Operand));
|
3402 |
|
|
end if;
|
3403 |
|
|
|
3404 |
|
|
-- If fixed-point type (Conversion_OK must be set), then the
|
3405 |
|
|
-- result is logically an integer, but we must replace the
|
3406 |
|
|
-- conversion with the corresponding real literal, since the
|
3407 |
|
|
-- type from a semantic point of view is still fixed-point.
|
3408 |
|
|
|
3409 |
|
|
if Is_Fixed_Point_Type (Target_Type) then
|
3410 |
|
|
Fold_Ureal
|
3411 |
|
|
(N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
|
3412 |
|
|
|
3413 |
|
|
-- Otherwise result is integer literal
|
3414 |
|
|
|
3415 |
|
|
else
|
3416 |
|
|
Fold_Uint (N, Result, Stat);
|
3417 |
|
|
end if;
|
3418 |
|
|
end;
|
3419 |
|
|
|
3420 |
|
|
-- Fold conversion, case of real target type
|
3421 |
|
|
|
3422 |
|
|
elsif To_Be_Treated_As_Real (Target_Type) then
|
3423 |
|
|
declare
|
3424 |
|
|
Result : Ureal;
|
3425 |
|
|
|
3426 |
|
|
begin
|
3427 |
|
|
if To_Be_Treated_As_Real (Source_Type) then
|
3428 |
|
|
Result := Expr_Value_R (Operand);
|
3429 |
|
|
else
|
3430 |
|
|
Result := UR_From_Uint (Expr_Value (Operand));
|
3431 |
|
|
end if;
|
3432 |
|
|
|
3433 |
|
|
Fold_Ureal (N, Result, Stat);
|
3434 |
|
|
end;
|
3435 |
|
|
|
3436 |
|
|
-- Enumeration types
|
3437 |
|
|
|
3438 |
|
|
else
|
3439 |
|
|
Fold_Uint (N, Expr_Value (Operand), Stat);
|
3440 |
|
|
end if;
|
3441 |
|
|
|
3442 |
|
|
if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
|
3443 |
|
|
Out_Of_Range (N);
|
3444 |
|
|
end if;
|
3445 |
|
|
|
3446 |
|
|
end Eval_Type_Conversion;
|
3447 |
|
|
|
3448 |
|
|
-------------------
|
3449 |
|
|
-- Eval_Unary_Op --
|
3450 |
|
|
-------------------
|
3451 |
|
|
|
3452 |
|
|
-- Predefined unary operators are static functions (RM 4.9(20)) and thus
|
3453 |
|
|
-- are potentially static if the operand is potentially static (RM 4.9(7)).
|
3454 |
|
|
|
3455 |
|
|
procedure Eval_Unary_Op (N : Node_Id) is
|
3456 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
3457 |
|
|
Otype : Entity_Id := Empty;
|
3458 |
|
|
Stat : Boolean;
|
3459 |
|
|
Fold : Boolean;
|
3460 |
|
|
|
3461 |
|
|
begin
|
3462 |
|
|
-- If not foldable we are done
|
3463 |
|
|
|
3464 |
|
|
Test_Expression_Is_Foldable (N, Right, Stat, Fold);
|
3465 |
|
|
|
3466 |
|
|
if not Fold then
|
3467 |
|
|
return;
|
3468 |
|
|
end if;
|
3469 |
|
|
|
3470 |
|
|
if Etype (Right) = Universal_Integer
|
3471 |
|
|
or else
|
3472 |
|
|
Etype (Right) = Universal_Real
|
3473 |
|
|
then
|
3474 |
|
|
Otype := Find_Universal_Operator_Type (N);
|
3475 |
|
|
end if;
|
3476 |
|
|
|
3477 |
|
|
-- Fold for integer case
|
3478 |
|
|
|
3479 |
|
|
if Is_Integer_Type (Etype (N)) then
|
3480 |
|
|
declare
|
3481 |
|
|
Rint : constant Uint := Expr_Value (Right);
|
3482 |
|
|
Result : Uint;
|
3483 |
|
|
|
3484 |
|
|
begin
|
3485 |
|
|
-- In the case of modular unary plus and abs there is no need
|
3486 |
|
|
-- to adjust the result of the operation since if the original
|
3487 |
|
|
-- operand was in bounds the result will be in the bounds of the
|
3488 |
|
|
-- modular type. However, in the case of modular unary minus the
|
3489 |
|
|
-- result may go out of the bounds of the modular type and needs
|
3490 |
|
|
-- adjustment.
|
3491 |
|
|
|
3492 |
|
|
if Nkind (N) = N_Op_Plus then
|
3493 |
|
|
Result := Rint;
|
3494 |
|
|
|
3495 |
|
|
elsif Nkind (N) = N_Op_Minus then
|
3496 |
|
|
if Is_Modular_Integer_Type (Etype (N)) then
|
3497 |
|
|
Result := (-Rint) mod Modulus (Etype (N));
|
3498 |
|
|
else
|
3499 |
|
|
Result := (-Rint);
|
3500 |
|
|
end if;
|
3501 |
|
|
|
3502 |
|
|
else
|
3503 |
|
|
pragma Assert (Nkind (N) = N_Op_Abs);
|
3504 |
|
|
Result := abs Rint;
|
3505 |
|
|
end if;
|
3506 |
|
|
|
3507 |
|
|
Fold_Uint (N, Result, Stat);
|
3508 |
|
|
end;
|
3509 |
|
|
|
3510 |
|
|
-- Fold for real case
|
3511 |
|
|
|
3512 |
|
|
elsif Is_Real_Type (Etype (N)) then
|
3513 |
|
|
declare
|
3514 |
|
|
Rreal : constant Ureal := Expr_Value_R (Right);
|
3515 |
|
|
Result : Ureal;
|
3516 |
|
|
|
3517 |
|
|
begin
|
3518 |
|
|
if Nkind (N) = N_Op_Plus then
|
3519 |
|
|
Result := Rreal;
|
3520 |
|
|
|
3521 |
|
|
elsif Nkind (N) = N_Op_Minus then
|
3522 |
|
|
Result := UR_Negate (Rreal);
|
3523 |
|
|
|
3524 |
|
|
else
|
3525 |
|
|
pragma Assert (Nkind (N) = N_Op_Abs);
|
3526 |
|
|
Result := abs Rreal;
|
3527 |
|
|
end if;
|
3528 |
|
|
|
3529 |
|
|
Fold_Ureal (N, Result, Stat);
|
3530 |
|
|
end;
|
3531 |
|
|
end if;
|
3532 |
|
|
|
3533 |
|
|
-- If the operator was resolved to a specific type, make sure that type
|
3534 |
|
|
-- is frozen even if the expression is folded into a literal (which has
|
3535 |
|
|
-- a universal type).
|
3536 |
|
|
|
3537 |
|
|
if Present (Otype) then
|
3538 |
|
|
Freeze_Before (N, Otype);
|
3539 |
|
|
end if;
|
3540 |
|
|
end Eval_Unary_Op;
|
3541 |
|
|
|
3542 |
|
|
-------------------------------
|
3543 |
|
|
-- Eval_Unchecked_Conversion --
|
3544 |
|
|
-------------------------------
|
3545 |
|
|
|
3546 |
|
|
-- Unchecked conversions can never be static, so the only required
|
3547 |
|
|
-- processing is to check for a non-static context for the operand.
|
3548 |
|
|
|
3549 |
|
|
procedure Eval_Unchecked_Conversion (N : Node_Id) is
|
3550 |
|
|
begin
|
3551 |
|
|
Check_Non_Static_Context (Expression (N));
|
3552 |
|
|
end Eval_Unchecked_Conversion;
|
3553 |
|
|
|
3554 |
|
|
--------------------
|
3555 |
|
|
-- Expr_Rep_Value --
|
3556 |
|
|
--------------------
|
3557 |
|
|
|
3558 |
|
|
function Expr_Rep_Value (N : Node_Id) return Uint is
|
3559 |
|
|
Kind : constant Node_Kind := Nkind (N);
|
3560 |
|
|
Ent : Entity_Id;
|
3561 |
|
|
|
3562 |
|
|
begin
|
3563 |
|
|
if Is_Entity_Name (N) then
|
3564 |
|
|
Ent := Entity (N);
|
3565 |
|
|
|
3566 |
|
|
-- An enumeration literal that was either in the source or created
|
3567 |
|
|
-- as a result of static evaluation.
|
3568 |
|
|
|
3569 |
|
|
if Ekind (Ent) = E_Enumeration_Literal then
|
3570 |
|
|
return Enumeration_Rep (Ent);
|
3571 |
|
|
|
3572 |
|
|
-- A user defined static constant
|
3573 |
|
|
|
3574 |
|
|
else
|
3575 |
|
|
pragma Assert (Ekind (Ent) = E_Constant);
|
3576 |
|
|
return Expr_Rep_Value (Constant_Value (Ent));
|
3577 |
|
|
end if;
|
3578 |
|
|
|
3579 |
|
|
-- An integer literal that was either in the source or created as a
|
3580 |
|
|
-- result of static evaluation.
|
3581 |
|
|
|
3582 |
|
|
elsif Kind = N_Integer_Literal then
|
3583 |
|
|
return Intval (N);
|
3584 |
|
|
|
3585 |
|
|
-- A real literal for a fixed-point type. This must be the fixed-point
|
3586 |
|
|
-- case, either the literal is of a fixed-point type, or it is a bound
|
3587 |
|
|
-- of a fixed-point type, with type universal real. In either case we
|
3588 |
|
|
-- obtain the desired value from Corresponding_Integer_Value.
|
3589 |
|
|
|
3590 |
|
|
elsif Kind = N_Real_Literal then
|
3591 |
|
|
pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
|
3592 |
|
|
return Corresponding_Integer_Value (N);
|
3593 |
|
|
|
3594 |
|
|
-- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
|
3595 |
|
|
|
3596 |
|
|
elsif Kind = N_Attribute_Reference
|
3597 |
|
|
and then Attribute_Name (N) = Name_Null_Parameter
|
3598 |
|
|
then
|
3599 |
|
|
return Uint_0;
|
3600 |
|
|
|
3601 |
|
|
-- Otherwise must be character literal
|
3602 |
|
|
|
3603 |
|
|
else
|
3604 |
|
|
pragma Assert (Kind = N_Character_Literal);
|
3605 |
|
|
Ent := Entity (N);
|
3606 |
|
|
|
3607 |
|
|
-- Since Character literals of type Standard.Character don't have any
|
3608 |
|
|
-- defining character literals built for them, they do not have their
|
3609 |
|
|
-- Entity set, so just use their Char code. Otherwise for user-
|
3610 |
|
|
-- defined character literals use their Pos value as usual which is
|
3611 |
|
|
-- the same as the Rep value.
|
3612 |
|
|
|
3613 |
|
|
if No (Ent) then
|
3614 |
|
|
return Char_Literal_Value (N);
|
3615 |
|
|
else
|
3616 |
|
|
return Enumeration_Rep (Ent);
|
3617 |
|
|
end if;
|
3618 |
|
|
end if;
|
3619 |
|
|
end Expr_Rep_Value;
|
3620 |
|
|
|
3621 |
|
|
----------------
|
3622 |
|
|
-- Expr_Value --
|
3623 |
|
|
----------------
|
3624 |
|
|
|
3625 |
|
|
function Expr_Value (N : Node_Id) return Uint is
|
3626 |
|
|
Kind : constant Node_Kind := Nkind (N);
|
3627 |
|
|
CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
|
3628 |
|
|
Ent : Entity_Id;
|
3629 |
|
|
Val : Uint;
|
3630 |
|
|
|
3631 |
|
|
begin
|
3632 |
|
|
-- If already in cache, then we know it's compile time known and we can
|
3633 |
|
|
-- return the value that was previously stored in the cache since
|
3634 |
|
|
-- compile time known values cannot change.
|
3635 |
|
|
|
3636 |
|
|
if CV_Ent.N = N then
|
3637 |
|
|
return CV_Ent.V;
|
3638 |
|
|
end if;
|
3639 |
|
|
|
3640 |
|
|
-- Otherwise proceed to test value
|
3641 |
|
|
|
3642 |
|
|
if Is_Entity_Name (N) then
|
3643 |
|
|
Ent := Entity (N);
|
3644 |
|
|
|
3645 |
|
|
-- An enumeration literal that was either in the source or created as
|
3646 |
|
|
-- a result of static evaluation.
|
3647 |
|
|
|
3648 |
|
|
if Ekind (Ent) = E_Enumeration_Literal then
|
3649 |
|
|
Val := Enumeration_Pos (Ent);
|
3650 |
|
|
|
3651 |
|
|
-- A user defined static constant
|
3652 |
|
|
|
3653 |
|
|
else
|
3654 |
|
|
pragma Assert (Ekind (Ent) = E_Constant);
|
3655 |
|
|
Val := Expr_Value (Constant_Value (Ent));
|
3656 |
|
|
end if;
|
3657 |
|
|
|
3658 |
|
|
-- An integer literal that was either in the source or created as a
|
3659 |
|
|
-- result of static evaluation.
|
3660 |
|
|
|
3661 |
|
|
elsif Kind = N_Integer_Literal then
|
3662 |
|
|
Val := Intval (N);
|
3663 |
|
|
|
3664 |
|
|
-- A real literal for a fixed-point type. This must be the fixed-point
|
3665 |
|
|
-- case, either the literal is of a fixed-point type, or it is a bound
|
3666 |
|
|
-- of a fixed-point type, with type universal real. In either case we
|
3667 |
|
|
-- obtain the desired value from Corresponding_Integer_Value.
|
3668 |
|
|
|
3669 |
|
|
elsif Kind = N_Real_Literal then
|
3670 |
|
|
|
3671 |
|
|
pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
|
3672 |
|
|
Val := Corresponding_Integer_Value (N);
|
3673 |
|
|
|
3674 |
|
|
-- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
|
3675 |
|
|
|
3676 |
|
|
elsif Kind = N_Attribute_Reference
|
3677 |
|
|
and then Attribute_Name (N) = Name_Null_Parameter
|
3678 |
|
|
then
|
3679 |
|
|
Val := Uint_0;
|
3680 |
|
|
|
3681 |
|
|
-- Otherwise must be character literal
|
3682 |
|
|
|
3683 |
|
|
else
|
3684 |
|
|
pragma Assert (Kind = N_Character_Literal);
|
3685 |
|
|
Ent := Entity (N);
|
3686 |
|
|
|
3687 |
|
|
-- Since Character literals of type Standard.Character don't
|
3688 |
|
|
-- have any defining character literals built for them, they
|
3689 |
|
|
-- do not have their Entity set, so just use their Char
|
3690 |
|
|
-- code. Otherwise for user-defined character literals use
|
3691 |
|
|
-- their Pos value as usual.
|
3692 |
|
|
|
3693 |
|
|
if No (Ent) then
|
3694 |
|
|
Val := Char_Literal_Value (N);
|
3695 |
|
|
else
|
3696 |
|
|
Val := Enumeration_Pos (Ent);
|
3697 |
|
|
end if;
|
3698 |
|
|
end if;
|
3699 |
|
|
|
3700 |
|
|
-- Come here with Val set to value to be returned, set cache
|
3701 |
|
|
|
3702 |
|
|
CV_Ent.N := N;
|
3703 |
|
|
CV_Ent.V := Val;
|
3704 |
|
|
return Val;
|
3705 |
|
|
end Expr_Value;
|
3706 |
|
|
|
3707 |
|
|
------------------
|
3708 |
|
|
-- Expr_Value_E --
|
3709 |
|
|
------------------
|
3710 |
|
|
|
3711 |
|
|
function Expr_Value_E (N : Node_Id) return Entity_Id is
|
3712 |
|
|
Ent : constant Entity_Id := Entity (N);
|
3713 |
|
|
|
3714 |
|
|
begin
|
3715 |
|
|
if Ekind (Ent) = E_Enumeration_Literal then
|
3716 |
|
|
return Ent;
|
3717 |
|
|
else
|
3718 |
|
|
pragma Assert (Ekind (Ent) = E_Constant);
|
3719 |
|
|
return Expr_Value_E (Constant_Value (Ent));
|
3720 |
|
|
end if;
|
3721 |
|
|
end Expr_Value_E;
|
3722 |
|
|
|
3723 |
|
|
------------------
|
3724 |
|
|
-- Expr_Value_R --
|
3725 |
|
|
------------------
|
3726 |
|
|
|
3727 |
|
|
function Expr_Value_R (N : Node_Id) return Ureal is
|
3728 |
|
|
Kind : constant Node_Kind := Nkind (N);
|
3729 |
|
|
Ent : Entity_Id;
|
3730 |
|
|
Expr : Node_Id;
|
3731 |
|
|
|
3732 |
|
|
begin
|
3733 |
|
|
if Kind = N_Real_Literal then
|
3734 |
|
|
return Realval (N);
|
3735 |
|
|
|
3736 |
|
|
elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
|
3737 |
|
|
Ent := Entity (N);
|
3738 |
|
|
pragma Assert (Ekind (Ent) = E_Constant);
|
3739 |
|
|
return Expr_Value_R (Constant_Value (Ent));
|
3740 |
|
|
|
3741 |
|
|
elsif Kind = N_Integer_Literal then
|
3742 |
|
|
return UR_From_Uint (Expr_Value (N));
|
3743 |
|
|
|
3744 |
|
|
-- Strange case of VAX literals, which are at this stage transformed
|
3745 |
|
|
-- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
|
3746 |
|
|
-- Exp_Vfpt for further details.
|
3747 |
|
|
|
3748 |
|
|
elsif Vax_Float (Etype (N))
|
3749 |
|
|
and then Nkind (N) = N_Unchecked_Type_Conversion
|
3750 |
|
|
then
|
3751 |
|
|
Expr := Expression (N);
|
3752 |
|
|
|
3753 |
|
|
if Nkind (Expr) = N_Function_Call
|
3754 |
|
|
and then Present (Parameter_Associations (Expr))
|
3755 |
|
|
then
|
3756 |
|
|
Expr := First (Parameter_Associations (Expr));
|
3757 |
|
|
|
3758 |
|
|
if Nkind (Expr) = N_Real_Literal then
|
3759 |
|
|
return Realval (Expr);
|
3760 |
|
|
end if;
|
3761 |
|
|
end if;
|
3762 |
|
|
|
3763 |
|
|
-- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
|
3764 |
|
|
|
3765 |
|
|
elsif Kind = N_Attribute_Reference
|
3766 |
|
|
and then Attribute_Name (N) = Name_Null_Parameter
|
3767 |
|
|
then
|
3768 |
|
|
return Ureal_0;
|
3769 |
|
|
end if;
|
3770 |
|
|
|
3771 |
|
|
-- If we fall through, we have a node that cannot be interpreted as a
|
3772 |
|
|
-- compile time constant. That is definitely an error.
|
3773 |
|
|
|
3774 |
|
|
raise Program_Error;
|
3775 |
|
|
end Expr_Value_R;
|
3776 |
|
|
|
3777 |
|
|
------------------
|
3778 |
|
|
-- Expr_Value_S --
|
3779 |
|
|
------------------
|
3780 |
|
|
|
3781 |
|
|
function Expr_Value_S (N : Node_Id) return Node_Id is
|
3782 |
|
|
begin
|
3783 |
|
|
if Nkind (N) = N_String_Literal then
|
3784 |
|
|
return N;
|
3785 |
|
|
else
|
3786 |
|
|
pragma Assert (Ekind (Entity (N)) = E_Constant);
|
3787 |
|
|
return Expr_Value_S (Constant_Value (Entity (N)));
|
3788 |
|
|
end if;
|
3789 |
|
|
end Expr_Value_S;
|
3790 |
|
|
|
3791 |
|
|
----------------------------------
|
3792 |
|
|
-- Find_Universal_Operator_Type --
|
3793 |
|
|
----------------------------------
|
3794 |
|
|
|
3795 |
|
|
function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
|
3796 |
|
|
PN : constant Node_Id := Parent (N);
|
3797 |
|
|
Call : constant Node_Id := Original_Node (N);
|
3798 |
|
|
Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
|
3799 |
|
|
|
3800 |
|
|
Is_Fix : constant Boolean :=
|
3801 |
|
|
Nkind (N) in N_Binary_Op
|
3802 |
|
|
and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
|
3803 |
|
|
-- A mixed-mode operation in this context indicates the presence of
|
3804 |
|
|
-- fixed-point type in the designated package.
|
3805 |
|
|
|
3806 |
|
|
Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
|
3807 |
|
|
-- Case where N is a relational (or membership) operator (else it is an
|
3808 |
|
|
-- arithmetic one).
|
3809 |
|
|
|
3810 |
|
|
In_Membership : constant Boolean :=
|
3811 |
|
|
Nkind (PN) in N_Membership_Test
|
3812 |
|
|
and then
|
3813 |
|
|
Nkind (Right_Opnd (PN)) = N_Range
|
3814 |
|
|
and then
|
3815 |
|
|
Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
|
3816 |
|
|
and then
|
3817 |
|
|
Is_Universal_Numeric_Type
|
3818 |
|
|
(Etype (Low_Bound (Right_Opnd (PN))))
|
3819 |
|
|
and then
|
3820 |
|
|
Is_Universal_Numeric_Type
|
3821 |
|
|
(Etype (High_Bound (Right_Opnd (PN))));
|
3822 |
|
|
-- Case where N is part of a membership test with a universal range
|
3823 |
|
|
|
3824 |
|
|
E : Entity_Id;
|
3825 |
|
|
Pack : Entity_Id;
|
3826 |
|
|
Typ1 : Entity_Id := Empty;
|
3827 |
|
|
Priv_E : Entity_Id;
|
3828 |
|
|
|
3829 |
|
|
function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
|
3830 |
|
|
-- Check whether one operand is a mixed-mode operation that requires the
|
3831 |
|
|
-- presence of a fixed-point type. Given that all operands are universal
|
3832 |
|
|
-- and have been constant-folded, retrieve the original function call.
|
3833 |
|
|
|
3834 |
|
|
---------------------------
|
3835 |
|
|
-- Is_Mixed_Mode_Operand --
|
3836 |
|
|
---------------------------
|
3837 |
|
|
|
3838 |
|
|
function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
|
3839 |
|
|
Onod : constant Node_Id := Original_Node (Op);
|
3840 |
|
|
begin
|
3841 |
|
|
return Nkind (Onod) = N_Function_Call
|
3842 |
|
|
and then Present (Next_Actual (First_Actual (Onod)))
|
3843 |
|
|
and then Etype (First_Actual (Onod)) /=
|
3844 |
|
|
Etype (Next_Actual (First_Actual (Onod)));
|
3845 |
|
|
end Is_Mixed_Mode_Operand;
|
3846 |
|
|
|
3847 |
|
|
-- Start of processing for Find_Universal_Operator_Type
|
3848 |
|
|
|
3849 |
|
|
begin
|
3850 |
|
|
if Nkind (Call) /= N_Function_Call
|
3851 |
|
|
or else Nkind (Name (Call)) /= N_Expanded_Name
|
3852 |
|
|
then
|
3853 |
|
|
return Empty;
|
3854 |
|
|
|
3855 |
|
|
-- There are several cases where the context does not imply the type of
|
3856 |
|
|
-- the operands:
|
3857 |
|
|
-- - the universal expression appears in a type conversion;
|
3858 |
|
|
-- - the expression is a relational operator applied to universal
|
3859 |
|
|
-- operands;
|
3860 |
|
|
-- - the expression is a membership test with a universal operand
|
3861 |
|
|
-- and a range with universal bounds.
|
3862 |
|
|
|
3863 |
|
|
elsif Nkind (Parent (N)) = N_Type_Conversion
|
3864 |
|
|
or else Is_Relational
|
3865 |
|
|
or else In_Membership
|
3866 |
|
|
then
|
3867 |
|
|
Pack := Entity (Prefix (Name (Call)));
|
3868 |
|
|
|
3869 |
|
|
-- If the prefix is a package declared elsewhere, iterate over its
|
3870 |
|
|
-- visible entities, otherwise iterate over all declarations in the
|
3871 |
|
|
-- designated scope.
|
3872 |
|
|
|
3873 |
|
|
if Ekind (Pack) = E_Package
|
3874 |
|
|
and then not In_Open_Scopes (Pack)
|
3875 |
|
|
then
|
3876 |
|
|
Priv_E := First_Private_Entity (Pack);
|
3877 |
|
|
else
|
3878 |
|
|
Priv_E := Empty;
|
3879 |
|
|
end if;
|
3880 |
|
|
|
3881 |
|
|
Typ1 := Empty;
|
3882 |
|
|
E := First_Entity (Pack);
|
3883 |
|
|
while Present (E) and then E /= Priv_E loop
|
3884 |
|
|
if Is_Numeric_Type (E)
|
3885 |
|
|
and then Nkind (Parent (E)) /= N_Subtype_Declaration
|
3886 |
|
|
and then Comes_From_Source (E)
|
3887 |
|
|
and then Is_Integer_Type (E) = Is_Int
|
3888 |
|
|
and then
|
3889 |
|
|
(Nkind (N) in N_Unary_Op
|
3890 |
|
|
or else Is_Relational
|
3891 |
|
|
or else Is_Fixed_Point_Type (E) = Is_Fix)
|
3892 |
|
|
then
|
3893 |
|
|
if No (Typ1) then
|
3894 |
|
|
Typ1 := E;
|
3895 |
|
|
|
3896 |
|
|
-- Before emitting an error, check for the presence of a
|
3897 |
|
|
-- mixed-mode operation that specifies a fixed point type.
|
3898 |
|
|
|
3899 |
|
|
elsif Is_Relational
|
3900 |
|
|
and then
|
3901 |
|
|
(Is_Mixed_Mode_Operand (Left_Opnd (N))
|
3902 |
|
|
or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
|
3903 |
|
|
and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
|
3904 |
|
|
|
3905 |
|
|
then
|
3906 |
|
|
if Is_Fixed_Point_Type (E) then
|
3907 |
|
|
Typ1 := E;
|
3908 |
|
|
end if;
|
3909 |
|
|
|
3910 |
|
|
else
|
3911 |
|
|
-- More than one type of the proper class declared in P
|
3912 |
|
|
|
3913 |
|
|
Error_Msg_N ("ambiguous operation", N);
|
3914 |
|
|
Error_Msg_Sloc := Sloc (Typ1);
|
3915 |
|
|
Error_Msg_N ("\possible interpretation (inherited)#", N);
|
3916 |
|
|
Error_Msg_Sloc := Sloc (E);
|
3917 |
|
|
Error_Msg_N ("\possible interpretation (inherited)#", N);
|
3918 |
|
|
return Empty;
|
3919 |
|
|
end if;
|
3920 |
|
|
end if;
|
3921 |
|
|
|
3922 |
|
|
Next_Entity (E);
|
3923 |
|
|
end loop;
|
3924 |
|
|
end if;
|
3925 |
|
|
|
3926 |
|
|
return Typ1;
|
3927 |
|
|
end Find_Universal_Operator_Type;
|
3928 |
|
|
|
3929 |
|
|
--------------------------
|
3930 |
|
|
-- Flag_Non_Static_Expr --
|
3931 |
|
|
--------------------------
|
3932 |
|
|
|
3933 |
|
|
procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
|
3934 |
|
|
begin
|
3935 |
|
|
if Error_Posted (Expr) and then not All_Errors_Mode then
|
3936 |
|
|
return;
|
3937 |
|
|
else
|
3938 |
|
|
Error_Msg_F (Msg, Expr);
|
3939 |
|
|
Why_Not_Static (Expr);
|
3940 |
|
|
end if;
|
3941 |
|
|
end Flag_Non_Static_Expr;
|
3942 |
|
|
|
3943 |
|
|
--------------
|
3944 |
|
|
-- Fold_Str --
|
3945 |
|
|
--------------
|
3946 |
|
|
|
3947 |
|
|
procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
|
3948 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3949 |
|
|
Typ : constant Entity_Id := Etype (N);
|
3950 |
|
|
|
3951 |
|
|
begin
|
3952 |
|
|
Rewrite (N, Make_String_Literal (Loc, Strval => Val));
|
3953 |
|
|
|
3954 |
|
|
-- We now have the literal with the right value, both the actual type
|
3955 |
|
|
-- and the expected type of this literal are taken from the expression
|
3956 |
|
|
-- that was evaluated.
|
3957 |
|
|
|
3958 |
|
|
Analyze (N);
|
3959 |
|
|
Set_Is_Static_Expression (N, Static);
|
3960 |
|
|
Set_Etype (N, Typ);
|
3961 |
|
|
Resolve (N);
|
3962 |
|
|
end Fold_Str;
|
3963 |
|
|
|
3964 |
|
|
---------------
|
3965 |
|
|
-- Fold_Uint --
|
3966 |
|
|
---------------
|
3967 |
|
|
|
3968 |
|
|
procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
|
3969 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3970 |
|
|
Typ : Entity_Id := Etype (N);
|
3971 |
|
|
Ent : Entity_Id;
|
3972 |
|
|
|
3973 |
|
|
begin
|
3974 |
|
|
-- If we are folding a named number, retain the entity in the literal,
|
3975 |
|
|
-- for ASIS use.
|
3976 |
|
|
|
3977 |
|
|
if Is_Entity_Name (N)
|
3978 |
|
|
and then Ekind (Entity (N)) = E_Named_Integer
|
3979 |
|
|
then
|
3980 |
|
|
Ent := Entity (N);
|
3981 |
|
|
else
|
3982 |
|
|
Ent := Empty;
|
3983 |
|
|
end if;
|
3984 |
|
|
|
3985 |
|
|
if Is_Private_Type (Typ) then
|
3986 |
|
|
Typ := Full_View (Typ);
|
3987 |
|
|
end if;
|
3988 |
|
|
|
3989 |
|
|
-- For a result of type integer, substitute an N_Integer_Literal node
|
3990 |
|
|
-- for the result of the compile time evaluation of the expression.
|
3991 |
|
|
-- For ASIS use, set a link to the original named number when not in
|
3992 |
|
|
-- a generic context.
|
3993 |
|
|
|
3994 |
|
|
if Is_Integer_Type (Typ) then
|
3995 |
|
|
Rewrite (N, Make_Integer_Literal (Loc, Val));
|
3996 |
|
|
|
3997 |
|
|
Set_Original_Entity (N, Ent);
|
3998 |
|
|
|
3999 |
|
|
-- Otherwise we have an enumeration type, and we substitute either
|
4000 |
|
|
-- an N_Identifier or N_Character_Literal to represent the enumeration
|
4001 |
|
|
-- literal corresponding to the given value, which must always be in
|
4002 |
|
|
-- range, because appropriate tests have already been made for this.
|
4003 |
|
|
|
4004 |
|
|
else pragma Assert (Is_Enumeration_Type (Typ));
|
4005 |
|
|
Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
|
4006 |
|
|
end if;
|
4007 |
|
|
|
4008 |
|
|
-- We now have the literal with the right value, both the actual type
|
4009 |
|
|
-- and the expected type of this literal are taken from the expression
|
4010 |
|
|
-- that was evaluated.
|
4011 |
|
|
|
4012 |
|
|
Analyze (N);
|
4013 |
|
|
Set_Is_Static_Expression (N, Static);
|
4014 |
|
|
Set_Etype (N, Typ);
|
4015 |
|
|
Resolve (N);
|
4016 |
|
|
end Fold_Uint;
|
4017 |
|
|
|
4018 |
|
|
----------------
|
4019 |
|
|
-- Fold_Ureal --
|
4020 |
|
|
----------------
|
4021 |
|
|
|
4022 |
|
|
procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
|
4023 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
4024 |
|
|
Typ : constant Entity_Id := Etype (N);
|
4025 |
|
|
Ent : Entity_Id;
|
4026 |
|
|
|
4027 |
|
|
begin
|
4028 |
|
|
-- If we are folding a named number, retain the entity in the literal,
|
4029 |
|
|
-- for ASIS use.
|
4030 |
|
|
|
4031 |
|
|
if Is_Entity_Name (N)
|
4032 |
|
|
and then Ekind (Entity (N)) = E_Named_Real
|
4033 |
|
|
then
|
4034 |
|
|
Ent := Entity (N);
|
4035 |
|
|
else
|
4036 |
|
|
Ent := Empty;
|
4037 |
|
|
end if;
|
4038 |
|
|
|
4039 |
|
|
Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
|
4040 |
|
|
|
4041 |
|
|
-- Set link to original named number, for ASIS use
|
4042 |
|
|
|
4043 |
|
|
Set_Original_Entity (N, Ent);
|
4044 |
|
|
|
4045 |
|
|
-- Both the actual and expected type comes from the original expression
|
4046 |
|
|
|
4047 |
|
|
Analyze (N);
|
4048 |
|
|
Set_Is_Static_Expression (N, Static);
|
4049 |
|
|
Set_Etype (N, Typ);
|
4050 |
|
|
Resolve (N);
|
4051 |
|
|
end Fold_Ureal;
|
4052 |
|
|
|
4053 |
|
|
---------------
|
4054 |
|
|
-- From_Bits --
|
4055 |
|
|
---------------
|
4056 |
|
|
|
4057 |
|
|
function From_Bits (B : Bits; T : Entity_Id) return Uint is
|
4058 |
|
|
V : Uint := Uint_0;
|
4059 |
|
|
|
4060 |
|
|
begin
|
4061 |
|
|
for J in 0 .. B'Last loop
|
4062 |
|
|
if B (J) then
|
4063 |
|
|
V := V + 2 ** J;
|
4064 |
|
|
end if;
|
4065 |
|
|
end loop;
|
4066 |
|
|
|
4067 |
|
|
if Non_Binary_Modulus (T) then
|
4068 |
|
|
V := V mod Modulus (T);
|
4069 |
|
|
end if;
|
4070 |
|
|
|
4071 |
|
|
return V;
|
4072 |
|
|
end From_Bits;
|
4073 |
|
|
|
4074 |
|
|
--------------------
|
4075 |
|
|
-- Get_String_Val --
|
4076 |
|
|
--------------------
|
4077 |
|
|
|
4078 |
|
|
function Get_String_Val (N : Node_Id) return Node_Id is
|
4079 |
|
|
begin
|
4080 |
|
|
if Nkind (N) = N_String_Literal then
|
4081 |
|
|
return N;
|
4082 |
|
|
|
4083 |
|
|
elsif Nkind (N) = N_Character_Literal then
|
4084 |
|
|
return N;
|
4085 |
|
|
|
4086 |
|
|
else
|
4087 |
|
|
pragma Assert (Is_Entity_Name (N));
|
4088 |
|
|
return Get_String_Val (Constant_Value (Entity (N)));
|
4089 |
|
|
end if;
|
4090 |
|
|
end Get_String_Val;
|
4091 |
|
|
|
4092 |
|
|
----------------
|
4093 |
|
|
-- Initialize --
|
4094 |
|
|
----------------
|
4095 |
|
|
|
4096 |
|
|
procedure Initialize is
|
4097 |
|
|
begin
|
4098 |
|
|
CV_Cache := (others => (Node_High_Bound, Uint_0));
|
4099 |
|
|
end Initialize;
|
4100 |
|
|
|
4101 |
|
|
--------------------
|
4102 |
|
|
-- In_Subrange_Of --
|
4103 |
|
|
--------------------
|
4104 |
|
|
|
4105 |
|
|
function In_Subrange_Of
|
4106 |
|
|
(T1 : Entity_Id;
|
4107 |
|
|
T2 : Entity_Id;
|
4108 |
|
|
Fixed_Int : Boolean := False) return Boolean
|
4109 |
|
|
is
|
4110 |
|
|
L1 : Node_Id;
|
4111 |
|
|
H1 : Node_Id;
|
4112 |
|
|
|
4113 |
|
|
L2 : Node_Id;
|
4114 |
|
|
H2 : Node_Id;
|
4115 |
|
|
|
4116 |
|
|
begin
|
4117 |
|
|
if T1 = T2 or else Is_Subtype_Of (T1, T2) then
|
4118 |
|
|
return True;
|
4119 |
|
|
|
4120 |
|
|
-- Never in range if both types are not scalar. Don't know if this can
|
4121 |
|
|
-- actually happen, but just in case.
|
4122 |
|
|
|
4123 |
|
|
elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
|
4124 |
|
|
return False;
|
4125 |
|
|
|
4126 |
|
|
-- If T1 has infinities but T2 doesn't have infinities, then T1 is
|
4127 |
|
|
-- definitely not compatible with T2.
|
4128 |
|
|
|
4129 |
|
|
elsif Is_Floating_Point_Type (T1)
|
4130 |
|
|
and then Has_Infinities (T1)
|
4131 |
|
|
and then Is_Floating_Point_Type (T2)
|
4132 |
|
|
and then not Has_Infinities (T2)
|
4133 |
|
|
then
|
4134 |
|
|
return False;
|
4135 |
|
|
|
4136 |
|
|
else
|
4137 |
|
|
L1 := Type_Low_Bound (T1);
|
4138 |
|
|
H1 := Type_High_Bound (T1);
|
4139 |
|
|
|
4140 |
|
|
L2 := Type_Low_Bound (T2);
|
4141 |
|
|
H2 := Type_High_Bound (T2);
|
4142 |
|
|
|
4143 |
|
|
-- Check bounds to see if comparison possible at compile time
|
4144 |
|
|
|
4145 |
|
|
if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
|
4146 |
|
|
and then
|
4147 |
|
|
Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
|
4148 |
|
|
then
|
4149 |
|
|
return True;
|
4150 |
|
|
end if;
|
4151 |
|
|
|
4152 |
|
|
-- If bounds not comparable at compile time, then the bounds of T2
|
4153 |
|
|
-- must be compile time known or we cannot answer the query.
|
4154 |
|
|
|
4155 |
|
|
if not Compile_Time_Known_Value (L2)
|
4156 |
|
|
or else not Compile_Time_Known_Value (H2)
|
4157 |
|
|
then
|
4158 |
|
|
return False;
|
4159 |
|
|
end if;
|
4160 |
|
|
|
4161 |
|
|
-- If the bounds of T1 are know at compile time then use these
|
4162 |
|
|
-- ones, otherwise use the bounds of the base type (which are of
|
4163 |
|
|
-- course always static).
|
4164 |
|
|
|
4165 |
|
|
if not Compile_Time_Known_Value (L1) then
|
4166 |
|
|
L1 := Type_Low_Bound (Base_Type (T1));
|
4167 |
|
|
end if;
|
4168 |
|
|
|
4169 |
|
|
if not Compile_Time_Known_Value (H1) then
|
4170 |
|
|
H1 := Type_High_Bound (Base_Type (T1));
|
4171 |
|
|
end if;
|
4172 |
|
|
|
4173 |
|
|
-- Fixed point types should be considered as such only if
|
4174 |
|
|
-- flag Fixed_Int is set to False.
|
4175 |
|
|
|
4176 |
|
|
if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
|
4177 |
|
|
or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
|
4178 |
|
|
or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
|
4179 |
|
|
then
|
4180 |
|
|
return
|
4181 |
|
|
Expr_Value_R (L2) <= Expr_Value_R (L1)
|
4182 |
|
|
and then
|
4183 |
|
|
Expr_Value_R (H2) >= Expr_Value_R (H1);
|
4184 |
|
|
|
4185 |
|
|
else
|
4186 |
|
|
return
|
4187 |
|
|
Expr_Value (L2) <= Expr_Value (L1)
|
4188 |
|
|
and then
|
4189 |
|
|
Expr_Value (H2) >= Expr_Value (H1);
|
4190 |
|
|
|
4191 |
|
|
end if;
|
4192 |
|
|
end if;
|
4193 |
|
|
|
4194 |
|
|
-- If any exception occurs, it means that we have some bug in the compiler
|
4195 |
|
|
-- possibly triggered by a previous error, or by some unforeseen peculiar
|
4196 |
|
|
-- occurrence. However, this is only an optimization attempt, so there is
|
4197 |
|
|
-- really no point in crashing the compiler. Instead we just decide, too
|
4198 |
|
|
-- bad, we can't figure out the answer in this case after all.
|
4199 |
|
|
|
4200 |
|
|
exception
|
4201 |
|
|
when others =>
|
4202 |
|
|
|
4203 |
|
|
-- Debug flag K disables this behavior (useful for debugging)
|
4204 |
|
|
|
4205 |
|
|
if Debug_Flag_K then
|
4206 |
|
|
raise;
|
4207 |
|
|
else
|
4208 |
|
|
return False;
|
4209 |
|
|
end if;
|
4210 |
|
|
end In_Subrange_Of;
|
4211 |
|
|
|
4212 |
|
|
-----------------
|
4213 |
|
|
-- Is_In_Range --
|
4214 |
|
|
-----------------
|
4215 |
|
|
|
4216 |
|
|
function Is_In_Range
|
4217 |
|
|
(N : Node_Id;
|
4218 |
|
|
Typ : Entity_Id;
|
4219 |
|
|
Assume_Valid : Boolean := False;
|
4220 |
|
|
Fixed_Int : Boolean := False;
|
4221 |
|
|
Int_Real : Boolean := False) return Boolean
|
4222 |
|
|
is
|
4223 |
|
|
begin
|
4224 |
|
|
return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
|
4225 |
|
|
= In_Range;
|
4226 |
|
|
end Is_In_Range;
|
4227 |
|
|
|
4228 |
|
|
-------------------
|
4229 |
|
|
-- Is_Null_Range --
|
4230 |
|
|
-------------------
|
4231 |
|
|
|
4232 |
|
|
function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
|
4233 |
|
|
Typ : constant Entity_Id := Etype (Lo);
|
4234 |
|
|
|
4235 |
|
|
begin
|
4236 |
|
|
if not Compile_Time_Known_Value (Lo)
|
4237 |
|
|
or else not Compile_Time_Known_Value (Hi)
|
4238 |
|
|
then
|
4239 |
|
|
return False;
|
4240 |
|
|
end if;
|
4241 |
|
|
|
4242 |
|
|
if Is_Discrete_Type (Typ) then
|
4243 |
|
|
return Expr_Value (Lo) > Expr_Value (Hi);
|
4244 |
|
|
|
4245 |
|
|
else
|
4246 |
|
|
pragma Assert (Is_Real_Type (Typ));
|
4247 |
|
|
return Expr_Value_R (Lo) > Expr_Value_R (Hi);
|
4248 |
|
|
end if;
|
4249 |
|
|
end Is_Null_Range;
|
4250 |
|
|
|
4251 |
|
|
-----------------------------
|
4252 |
|
|
-- Is_OK_Static_Expression --
|
4253 |
|
|
-----------------------------
|
4254 |
|
|
|
4255 |
|
|
function Is_OK_Static_Expression (N : Node_Id) return Boolean is
|
4256 |
|
|
begin
|
4257 |
|
|
return Is_Static_Expression (N)
|
4258 |
|
|
and then not Raises_Constraint_Error (N);
|
4259 |
|
|
end Is_OK_Static_Expression;
|
4260 |
|
|
|
4261 |
|
|
------------------------
|
4262 |
|
|
-- Is_OK_Static_Range --
|
4263 |
|
|
------------------------
|
4264 |
|
|
|
4265 |
|
|
-- A static range is a range whose bounds are static expressions, or a
|
4266 |
|
|
-- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
|
4267 |
|
|
-- We have already converted range attribute references, so we get the
|
4268 |
|
|
-- "or" part of this rule without needing a special test.
|
4269 |
|
|
|
4270 |
|
|
function Is_OK_Static_Range (N : Node_Id) return Boolean is
|
4271 |
|
|
begin
|
4272 |
|
|
return Is_OK_Static_Expression (Low_Bound (N))
|
4273 |
|
|
and then Is_OK_Static_Expression (High_Bound (N));
|
4274 |
|
|
end Is_OK_Static_Range;
|
4275 |
|
|
|
4276 |
|
|
--------------------------
|
4277 |
|
|
-- Is_OK_Static_Subtype --
|
4278 |
|
|
--------------------------
|
4279 |
|
|
|
4280 |
|
|
-- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
|
4281 |
|
|
-- neither bound raises constraint error when evaluated.
|
4282 |
|
|
|
4283 |
|
|
function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
|
4284 |
|
|
Base_T : constant Entity_Id := Base_Type (Typ);
|
4285 |
|
|
Anc_Subt : Entity_Id;
|
4286 |
|
|
|
4287 |
|
|
begin
|
4288 |
|
|
-- First a quick check on the non static subtype flag. As described
|
4289 |
|
|
-- in further detail in Einfo, this flag is not decisive in all cases,
|
4290 |
|
|
-- but if it is set, then the subtype is definitely non-static.
|
4291 |
|
|
|
4292 |
|
|
if Is_Non_Static_Subtype (Typ) then
|
4293 |
|
|
return False;
|
4294 |
|
|
end if;
|
4295 |
|
|
|
4296 |
|
|
Anc_Subt := Ancestor_Subtype (Typ);
|
4297 |
|
|
|
4298 |
|
|
if Anc_Subt = Empty then
|
4299 |
|
|
Anc_Subt := Base_T;
|
4300 |
|
|
end if;
|
4301 |
|
|
|
4302 |
|
|
if Is_Generic_Type (Root_Type (Base_T))
|
4303 |
|
|
or else Is_Generic_Actual_Type (Base_T)
|
4304 |
|
|
then
|
4305 |
|
|
return False;
|
4306 |
|
|
|
4307 |
|
|
-- String types
|
4308 |
|
|
|
4309 |
|
|
elsif Is_String_Type (Typ) then
|
4310 |
|
|
return
|
4311 |
|
|
Ekind (Typ) = E_String_Literal_Subtype
|
4312 |
|
|
or else
|
4313 |
|
|
(Is_OK_Static_Subtype (Component_Type (Typ))
|
4314 |
|
|
and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
|
4315 |
|
|
|
4316 |
|
|
-- Scalar types
|
4317 |
|
|
|
4318 |
|
|
elsif Is_Scalar_Type (Typ) then
|
4319 |
|
|
if Base_T = Typ then
|
4320 |
|
|
return True;
|
4321 |
|
|
|
4322 |
|
|
else
|
4323 |
|
|
-- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
|
4324 |
|
|
-- Get_Type_{Low,High}_Bound.
|
4325 |
|
|
|
4326 |
|
|
return Is_OK_Static_Subtype (Anc_Subt)
|
4327 |
|
|
and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
|
4328 |
|
|
and then Is_OK_Static_Expression (Type_High_Bound (Typ));
|
4329 |
|
|
end if;
|
4330 |
|
|
|
4331 |
|
|
-- Types other than string and scalar types are never static
|
4332 |
|
|
|
4333 |
|
|
else
|
4334 |
|
|
return False;
|
4335 |
|
|
end if;
|
4336 |
|
|
end Is_OK_Static_Subtype;
|
4337 |
|
|
|
4338 |
|
|
---------------------
|
4339 |
|
|
-- Is_Out_Of_Range --
|
4340 |
|
|
---------------------
|
4341 |
|
|
|
4342 |
|
|
function Is_Out_Of_Range
|
4343 |
|
|
(N : Node_Id;
|
4344 |
|
|
Typ : Entity_Id;
|
4345 |
|
|
Assume_Valid : Boolean := False;
|
4346 |
|
|
Fixed_Int : Boolean := False;
|
4347 |
|
|
Int_Real : Boolean := False) return Boolean
|
4348 |
|
|
is
|
4349 |
|
|
begin
|
4350 |
|
|
return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
|
4351 |
|
|
= Out_Of_Range;
|
4352 |
|
|
end Is_Out_Of_Range;
|
4353 |
|
|
|
4354 |
|
|
---------------------
|
4355 |
|
|
-- Is_Static_Range --
|
4356 |
|
|
---------------------
|
4357 |
|
|
|
4358 |
|
|
-- A static range is a range whose bounds are static expressions, or a
|
4359 |
|
|
-- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
|
4360 |
|
|
-- We have already converted range attribute references, so we get the
|
4361 |
|
|
-- "or" part of this rule without needing a special test.
|
4362 |
|
|
|
4363 |
|
|
function Is_Static_Range (N : Node_Id) return Boolean is
|
4364 |
|
|
begin
|
4365 |
|
|
return Is_Static_Expression (Low_Bound (N))
|
4366 |
|
|
and then Is_Static_Expression (High_Bound (N));
|
4367 |
|
|
end Is_Static_Range;
|
4368 |
|
|
|
4369 |
|
|
-----------------------
|
4370 |
|
|
-- Is_Static_Subtype --
|
4371 |
|
|
-----------------------
|
4372 |
|
|
|
4373 |
|
|
-- Determines if Typ is a static subtype as defined in (RM 4.9(26))
|
4374 |
|
|
|
4375 |
|
|
function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
|
4376 |
|
|
Base_T : constant Entity_Id := Base_Type (Typ);
|
4377 |
|
|
Anc_Subt : Entity_Id;
|
4378 |
|
|
|
4379 |
|
|
begin
|
4380 |
|
|
-- First a quick check on the non static subtype flag. As described
|
4381 |
|
|
-- in further detail in Einfo, this flag is not decisive in all cases,
|
4382 |
|
|
-- but if it is set, then the subtype is definitely non-static.
|
4383 |
|
|
|
4384 |
|
|
if Is_Non_Static_Subtype (Typ) then
|
4385 |
|
|
return False;
|
4386 |
|
|
end if;
|
4387 |
|
|
|
4388 |
|
|
Anc_Subt := Ancestor_Subtype (Typ);
|
4389 |
|
|
|
4390 |
|
|
if Anc_Subt = Empty then
|
4391 |
|
|
Anc_Subt := Base_T;
|
4392 |
|
|
end if;
|
4393 |
|
|
|
4394 |
|
|
if Is_Generic_Type (Root_Type (Base_T))
|
4395 |
|
|
or else Is_Generic_Actual_Type (Base_T)
|
4396 |
|
|
then
|
4397 |
|
|
return False;
|
4398 |
|
|
|
4399 |
|
|
-- String types
|
4400 |
|
|
|
4401 |
|
|
elsif Is_String_Type (Typ) then
|
4402 |
|
|
return
|
4403 |
|
|
Ekind (Typ) = E_String_Literal_Subtype
|
4404 |
|
|
or else
|
4405 |
|
|
(Is_Static_Subtype (Component_Type (Typ))
|
4406 |
|
|
and then Is_Static_Subtype (Etype (First_Index (Typ))));
|
4407 |
|
|
|
4408 |
|
|
-- Scalar types
|
4409 |
|
|
|
4410 |
|
|
elsif Is_Scalar_Type (Typ) then
|
4411 |
|
|
if Base_T = Typ then
|
4412 |
|
|
return True;
|
4413 |
|
|
|
4414 |
|
|
else
|
4415 |
|
|
return Is_Static_Subtype (Anc_Subt)
|
4416 |
|
|
and then Is_Static_Expression (Type_Low_Bound (Typ))
|
4417 |
|
|
and then Is_Static_Expression (Type_High_Bound (Typ));
|
4418 |
|
|
end if;
|
4419 |
|
|
|
4420 |
|
|
-- Types other than string and scalar types are never static
|
4421 |
|
|
|
4422 |
|
|
else
|
4423 |
|
|
return False;
|
4424 |
|
|
end if;
|
4425 |
|
|
end Is_Static_Subtype;
|
4426 |
|
|
|
4427 |
|
|
--------------------
|
4428 |
|
|
-- Not_Null_Range --
|
4429 |
|
|
--------------------
|
4430 |
|
|
|
4431 |
|
|
function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
|
4432 |
|
|
Typ : constant Entity_Id := Etype (Lo);
|
4433 |
|
|
|
4434 |
|
|
begin
|
4435 |
|
|
if not Compile_Time_Known_Value (Lo)
|
4436 |
|
|
or else not Compile_Time_Known_Value (Hi)
|
4437 |
|
|
then
|
4438 |
|
|
return False;
|
4439 |
|
|
end if;
|
4440 |
|
|
|
4441 |
|
|
if Is_Discrete_Type (Typ) then
|
4442 |
|
|
return Expr_Value (Lo) <= Expr_Value (Hi);
|
4443 |
|
|
|
4444 |
|
|
else
|
4445 |
|
|
pragma Assert (Is_Real_Type (Typ));
|
4446 |
|
|
|
4447 |
|
|
return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
|
4448 |
|
|
end if;
|
4449 |
|
|
end Not_Null_Range;
|
4450 |
|
|
|
4451 |
|
|
-------------
|
4452 |
|
|
-- OK_Bits --
|
4453 |
|
|
-------------
|
4454 |
|
|
|
4455 |
|
|
function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
|
4456 |
|
|
begin
|
4457 |
|
|
-- We allow a maximum of 500,000 bits which seems a reasonable limit
|
4458 |
|
|
|
4459 |
|
|
if Bits < 500_000 then
|
4460 |
|
|
return True;
|
4461 |
|
|
|
4462 |
|
|
else
|
4463 |
|
|
Error_Msg_N ("static value too large, capacity exceeded", N);
|
4464 |
|
|
return False;
|
4465 |
|
|
end if;
|
4466 |
|
|
end OK_Bits;
|
4467 |
|
|
|
4468 |
|
|
------------------
|
4469 |
|
|
-- Out_Of_Range --
|
4470 |
|
|
------------------
|
4471 |
|
|
|
4472 |
|
|
procedure Out_Of_Range (N : Node_Id) is
|
4473 |
|
|
begin
|
4474 |
|
|
-- If we have the static expression case, then this is an illegality
|
4475 |
|
|
-- in Ada 95 mode, except that in an instance, we never generate an
|
4476 |
|
|
-- error (if the error is legitimate, it was already diagnosed in the
|
4477 |
|
|
-- template). The expression to compute the length of a packed array is
|
4478 |
|
|
-- attached to the array type itself, and deserves a separate message.
|
4479 |
|
|
|
4480 |
|
|
if Is_Static_Expression (N)
|
4481 |
|
|
and then not In_Instance
|
4482 |
|
|
and then not In_Inlined_Body
|
4483 |
|
|
and then Ada_Version >= Ada_95
|
4484 |
|
|
then
|
4485 |
|
|
if Nkind (Parent (N)) = N_Defining_Identifier
|
4486 |
|
|
and then Is_Array_Type (Parent (N))
|
4487 |
|
|
and then Present (Packed_Array_Type (Parent (N)))
|
4488 |
|
|
and then Present (First_Rep_Item (Parent (N)))
|
4489 |
|
|
then
|
4490 |
|
|
Error_Msg_N
|
4491 |
|
|
("length of packed array must not exceed Integer''Last",
|
4492 |
|
|
First_Rep_Item (Parent (N)));
|
4493 |
|
|
Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
|
4494 |
|
|
|
4495 |
|
|
else
|
4496 |
|
|
Apply_Compile_Time_Constraint_Error
|
4497 |
|
|
(N, "value not in range of}", CE_Range_Check_Failed);
|
4498 |
|
|
end if;
|
4499 |
|
|
|
4500 |
|
|
-- Here we generate a warning for the Ada 83 case, or when we are in an
|
4501 |
|
|
-- instance, or when we have a non-static expression case.
|
4502 |
|
|
|
4503 |
|
|
else
|
4504 |
|
|
Apply_Compile_Time_Constraint_Error
|
4505 |
|
|
(N, "value not in range of}?", CE_Range_Check_Failed);
|
4506 |
|
|
end if;
|
4507 |
|
|
end Out_Of_Range;
|
4508 |
|
|
|
4509 |
|
|
-------------------------
|
4510 |
|
|
-- Rewrite_In_Raise_CE --
|
4511 |
|
|
-------------------------
|
4512 |
|
|
|
4513 |
|
|
procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
|
4514 |
|
|
Typ : constant Entity_Id := Etype (N);
|
4515 |
|
|
|
4516 |
|
|
begin
|
4517 |
|
|
-- If we want to raise CE in the condition of a N_Raise_CE node
|
4518 |
|
|
-- we may as well get rid of the condition.
|
4519 |
|
|
|
4520 |
|
|
if Present (Parent (N))
|
4521 |
|
|
and then Nkind (Parent (N)) = N_Raise_Constraint_Error
|
4522 |
|
|
then
|
4523 |
|
|
Set_Condition (Parent (N), Empty);
|
4524 |
|
|
|
4525 |
|
|
-- If the expression raising CE is a N_Raise_CE node, we can use that
|
4526 |
|
|
-- one. We just preserve the type of the context.
|
4527 |
|
|
|
4528 |
|
|
elsif Nkind (Exp) = N_Raise_Constraint_Error then
|
4529 |
|
|
Rewrite (N, Exp);
|
4530 |
|
|
Set_Etype (N, Typ);
|
4531 |
|
|
|
4532 |
|
|
-- Else build an explcit N_Raise_CE
|
4533 |
|
|
|
4534 |
|
|
else
|
4535 |
|
|
Rewrite (N,
|
4536 |
|
|
Make_Raise_Constraint_Error (Sloc (Exp),
|
4537 |
|
|
Reason => CE_Range_Check_Failed));
|
4538 |
|
|
Set_Raises_Constraint_Error (N);
|
4539 |
|
|
Set_Etype (N, Typ);
|
4540 |
|
|
end if;
|
4541 |
|
|
end Rewrite_In_Raise_CE;
|
4542 |
|
|
|
4543 |
|
|
---------------------
|
4544 |
|
|
-- String_Type_Len --
|
4545 |
|
|
---------------------
|
4546 |
|
|
|
4547 |
|
|
function String_Type_Len (Stype : Entity_Id) return Uint is
|
4548 |
|
|
NT : constant Entity_Id := Etype (First_Index (Stype));
|
4549 |
|
|
T : Entity_Id;
|
4550 |
|
|
|
4551 |
|
|
begin
|
4552 |
|
|
if Is_OK_Static_Subtype (NT) then
|
4553 |
|
|
T := NT;
|
4554 |
|
|
else
|
4555 |
|
|
T := Base_Type (NT);
|
4556 |
|
|
end if;
|
4557 |
|
|
|
4558 |
|
|
return Expr_Value (Type_High_Bound (T)) -
|
4559 |
|
|
Expr_Value (Type_Low_Bound (T)) + 1;
|
4560 |
|
|
end String_Type_Len;
|
4561 |
|
|
|
4562 |
|
|
------------------------------------
|
4563 |
|
|
-- Subtypes_Statically_Compatible --
|
4564 |
|
|
------------------------------------
|
4565 |
|
|
|
4566 |
|
|
function Subtypes_Statically_Compatible
|
4567 |
|
|
(T1 : Entity_Id;
|
4568 |
|
|
T2 : Entity_Id) return Boolean
|
4569 |
|
|
is
|
4570 |
|
|
begin
|
4571 |
|
|
-- Scalar types
|
4572 |
|
|
|
4573 |
|
|
if Is_Scalar_Type (T1) then
|
4574 |
|
|
|
4575 |
|
|
-- Definitely compatible if we match
|
4576 |
|
|
|
4577 |
|
|
if Subtypes_Statically_Match (T1, T2) then
|
4578 |
|
|
return True;
|
4579 |
|
|
|
4580 |
|
|
-- If either subtype is nonstatic then they're not compatible
|
4581 |
|
|
|
4582 |
|
|
elsif not Is_Static_Subtype (T1)
|
4583 |
|
|
or else not Is_Static_Subtype (T2)
|
4584 |
|
|
then
|
4585 |
|
|
return False;
|
4586 |
|
|
|
4587 |
|
|
-- If either type has constraint error bounds, then consider that
|
4588 |
|
|
-- they match to avoid junk cascaded errors here.
|
4589 |
|
|
|
4590 |
|
|
elsif not Is_OK_Static_Subtype (T1)
|
4591 |
|
|
or else not Is_OK_Static_Subtype (T2)
|
4592 |
|
|
then
|
4593 |
|
|
return True;
|
4594 |
|
|
|
4595 |
|
|
-- Base types must match, but we don't check that (should we???) but
|
4596 |
|
|
-- we do at least check that both types are real, or both types are
|
4597 |
|
|
-- not real.
|
4598 |
|
|
|
4599 |
|
|
elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
|
4600 |
|
|
return False;
|
4601 |
|
|
|
4602 |
|
|
-- Here we check the bounds
|
4603 |
|
|
|
4604 |
|
|
else
|
4605 |
|
|
declare
|
4606 |
|
|
LB1 : constant Node_Id := Type_Low_Bound (T1);
|
4607 |
|
|
HB1 : constant Node_Id := Type_High_Bound (T1);
|
4608 |
|
|
LB2 : constant Node_Id := Type_Low_Bound (T2);
|
4609 |
|
|
HB2 : constant Node_Id := Type_High_Bound (T2);
|
4610 |
|
|
|
4611 |
|
|
begin
|
4612 |
|
|
if Is_Real_Type (T1) then
|
4613 |
|
|
return
|
4614 |
|
|
(Expr_Value_R (LB1) > Expr_Value_R (HB1))
|
4615 |
|
|
or else
|
4616 |
|
|
(Expr_Value_R (LB2) <= Expr_Value_R (LB1)
|
4617 |
|
|
and then
|
4618 |
|
|
Expr_Value_R (HB1) <= Expr_Value_R (HB2));
|
4619 |
|
|
|
4620 |
|
|
else
|
4621 |
|
|
return
|
4622 |
|
|
(Expr_Value (LB1) > Expr_Value (HB1))
|
4623 |
|
|
or else
|
4624 |
|
|
(Expr_Value (LB2) <= Expr_Value (LB1)
|
4625 |
|
|
and then
|
4626 |
|
|
Expr_Value (HB1) <= Expr_Value (HB2));
|
4627 |
|
|
end if;
|
4628 |
|
|
end;
|
4629 |
|
|
end if;
|
4630 |
|
|
|
4631 |
|
|
-- Access types
|
4632 |
|
|
|
4633 |
|
|
elsif Is_Access_Type (T1) then
|
4634 |
|
|
return (not Is_Constrained (T2)
|
4635 |
|
|
or else (Subtypes_Statically_Match
|
4636 |
|
|
(Designated_Type (T1), Designated_Type (T2))))
|
4637 |
|
|
and then not (Can_Never_Be_Null (T2)
|
4638 |
|
|
and then not Can_Never_Be_Null (T1));
|
4639 |
|
|
|
4640 |
|
|
-- All other cases
|
4641 |
|
|
|
4642 |
|
|
else
|
4643 |
|
|
return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
|
4644 |
|
|
or else Subtypes_Statically_Match (T1, T2);
|
4645 |
|
|
end if;
|
4646 |
|
|
end Subtypes_Statically_Compatible;
|
4647 |
|
|
|
4648 |
|
|
-------------------------------
|
4649 |
|
|
-- Subtypes_Statically_Match --
|
4650 |
|
|
-------------------------------
|
4651 |
|
|
|
4652 |
|
|
-- Subtypes statically match if they have statically matching constraints
|
4653 |
|
|
-- (RM 4.9.1(2)). Constraints statically match if there are none, or if
|
4654 |
|
|
-- they are the same identical constraint, or if they are static and the
|
4655 |
|
|
-- values match (RM 4.9.1(1)).
|
4656 |
|
|
|
4657 |
|
|
function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
|
4658 |
|
|
begin
|
4659 |
|
|
-- A type always statically matches itself
|
4660 |
|
|
|
4661 |
|
|
if T1 = T2 then
|
4662 |
|
|
return True;
|
4663 |
|
|
|
4664 |
|
|
-- Scalar types
|
4665 |
|
|
|
4666 |
|
|
elsif Is_Scalar_Type (T1) then
|
4667 |
|
|
|
4668 |
|
|
-- Base types must be the same
|
4669 |
|
|
|
4670 |
|
|
if Base_Type (T1) /= Base_Type (T2) then
|
4671 |
|
|
return False;
|
4672 |
|
|
end if;
|
4673 |
|
|
|
4674 |
|
|
-- A constrained numeric subtype never matches an unconstrained
|
4675 |
|
|
-- subtype, i.e. both types must be constrained or unconstrained.
|
4676 |
|
|
|
4677 |
|
|
-- To understand the requirement for this test, see RM 4.9.1(1).
|
4678 |
|
|
-- As is made clear in RM 3.5.4(11), type Integer, for example is
|
4679 |
|
|
-- a constrained subtype with constraint bounds matching the bounds
|
4680 |
|
|
-- of its corresponding unconstrained base type. In this situation,
|
4681 |
|
|
-- Integer and Integer'Base do not statically match, even though
|
4682 |
|
|
-- they have the same bounds.
|
4683 |
|
|
|
4684 |
|
|
-- We only apply this test to types in Standard and types that appear
|
4685 |
|
|
-- in user programs. That way, we do not have to be too careful about
|
4686 |
|
|
-- setting Is_Constrained right for Itypes.
|
4687 |
|
|
|
4688 |
|
|
if Is_Numeric_Type (T1)
|
4689 |
|
|
and then (Is_Constrained (T1) /= Is_Constrained (T2))
|
4690 |
|
|
and then (Scope (T1) = Standard_Standard
|
4691 |
|
|
or else Comes_From_Source (T1))
|
4692 |
|
|
and then (Scope (T2) = Standard_Standard
|
4693 |
|
|
or else Comes_From_Source (T2))
|
4694 |
|
|
then
|
4695 |
|
|
return False;
|
4696 |
|
|
|
4697 |
|
|
-- A generic scalar type does not statically match its base type
|
4698 |
|
|
-- (AI-311). In this case we make sure that the formals, which are
|
4699 |
|
|
-- first subtypes of their bases, are constrained.
|
4700 |
|
|
|
4701 |
|
|
elsif Is_Generic_Type (T1)
|
4702 |
|
|
and then Is_Generic_Type (T2)
|
4703 |
|
|
and then (Is_Constrained (T1) /= Is_Constrained (T2))
|
4704 |
|
|
then
|
4705 |
|
|
return False;
|
4706 |
|
|
end if;
|
4707 |
|
|
|
4708 |
|
|
-- If there was an error in either range, then just assume the types
|
4709 |
|
|
-- statically match to avoid further junk errors.
|
4710 |
|
|
|
4711 |
|
|
if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
|
4712 |
|
|
or else Error_Posted (Scalar_Range (T1))
|
4713 |
|
|
or else Error_Posted (Scalar_Range (T2))
|
4714 |
|
|
then
|
4715 |
|
|
return True;
|
4716 |
|
|
end if;
|
4717 |
|
|
|
4718 |
|
|
-- Otherwise both types have bound that can be compared
|
4719 |
|
|
|
4720 |
|
|
declare
|
4721 |
|
|
LB1 : constant Node_Id := Type_Low_Bound (T1);
|
4722 |
|
|
HB1 : constant Node_Id := Type_High_Bound (T1);
|
4723 |
|
|
LB2 : constant Node_Id := Type_Low_Bound (T2);
|
4724 |
|
|
HB2 : constant Node_Id := Type_High_Bound (T2);
|
4725 |
|
|
|
4726 |
|
|
begin
|
4727 |
|
|
-- If the bounds are the same tree node, then match
|
4728 |
|
|
|
4729 |
|
|
if LB1 = LB2 and then HB1 = HB2 then
|
4730 |
|
|
return True;
|
4731 |
|
|
|
4732 |
|
|
-- Otherwise bounds must be static and identical value
|
4733 |
|
|
|
4734 |
|
|
else
|
4735 |
|
|
if not Is_Static_Subtype (T1)
|
4736 |
|
|
or else not Is_Static_Subtype (T2)
|
4737 |
|
|
then
|
4738 |
|
|
return False;
|
4739 |
|
|
|
4740 |
|
|
-- If either type has constraint error bounds, then say that
|
4741 |
|
|
-- they match to avoid junk cascaded errors here.
|
4742 |
|
|
|
4743 |
|
|
elsif not Is_OK_Static_Subtype (T1)
|
4744 |
|
|
or else not Is_OK_Static_Subtype (T2)
|
4745 |
|
|
then
|
4746 |
|
|
return True;
|
4747 |
|
|
|
4748 |
|
|
elsif Is_Real_Type (T1) then
|
4749 |
|
|
return
|
4750 |
|
|
(Expr_Value_R (LB1) = Expr_Value_R (LB2))
|
4751 |
|
|
and then
|
4752 |
|
|
(Expr_Value_R (HB1) = Expr_Value_R (HB2));
|
4753 |
|
|
|
4754 |
|
|
else
|
4755 |
|
|
return
|
4756 |
|
|
Expr_Value (LB1) = Expr_Value (LB2)
|
4757 |
|
|
and then
|
4758 |
|
|
Expr_Value (HB1) = Expr_Value (HB2);
|
4759 |
|
|
end if;
|
4760 |
|
|
end if;
|
4761 |
|
|
end;
|
4762 |
|
|
|
4763 |
|
|
-- Type with discriminants
|
4764 |
|
|
|
4765 |
|
|
elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
|
4766 |
|
|
|
4767 |
|
|
-- Because of view exchanges in multiple instantiations, conformance
|
4768 |
|
|
-- checking might try to match a partial view of a type with no
|
4769 |
|
|
-- discriminants with a full view that has defaulted discriminants.
|
4770 |
|
|
-- In such a case, use the discriminant constraint of the full view,
|
4771 |
|
|
-- which must exist because we know that the two subtypes have the
|
4772 |
|
|
-- same base type.
|
4773 |
|
|
|
4774 |
|
|
if Has_Discriminants (T1) /= Has_Discriminants (T2) then
|
4775 |
|
|
if In_Instance then
|
4776 |
|
|
if Is_Private_Type (T2)
|
4777 |
|
|
and then Present (Full_View (T2))
|
4778 |
|
|
and then Has_Discriminants (Full_View (T2))
|
4779 |
|
|
then
|
4780 |
|
|
return Subtypes_Statically_Match (T1, Full_View (T2));
|
4781 |
|
|
|
4782 |
|
|
elsif Is_Private_Type (T1)
|
4783 |
|
|
and then Present (Full_View (T1))
|
4784 |
|
|
and then Has_Discriminants (Full_View (T1))
|
4785 |
|
|
then
|
4786 |
|
|
return Subtypes_Statically_Match (Full_View (T1), T2);
|
4787 |
|
|
|
4788 |
|
|
else
|
4789 |
|
|
return False;
|
4790 |
|
|
end if;
|
4791 |
|
|
else
|
4792 |
|
|
return False;
|
4793 |
|
|
end if;
|
4794 |
|
|
end if;
|
4795 |
|
|
|
4796 |
|
|
declare
|
4797 |
|
|
DL1 : constant Elist_Id := Discriminant_Constraint (T1);
|
4798 |
|
|
DL2 : constant Elist_Id := Discriminant_Constraint (T2);
|
4799 |
|
|
|
4800 |
|
|
DA1 : Elmt_Id;
|
4801 |
|
|
DA2 : Elmt_Id;
|
4802 |
|
|
|
4803 |
|
|
begin
|
4804 |
|
|
if DL1 = DL2 then
|
4805 |
|
|
return True;
|
4806 |
|
|
elsif Is_Constrained (T1) /= Is_Constrained (T2) then
|
4807 |
|
|
return False;
|
4808 |
|
|
end if;
|
4809 |
|
|
|
4810 |
|
|
-- Now loop through the discriminant constraints
|
4811 |
|
|
|
4812 |
|
|
-- Note: the guard here seems necessary, since it is possible at
|
4813 |
|
|
-- least for DL1 to be No_Elist. Not clear this is reasonable ???
|
4814 |
|
|
|
4815 |
|
|
if Present (DL1) and then Present (DL2) then
|
4816 |
|
|
DA1 := First_Elmt (DL1);
|
4817 |
|
|
DA2 := First_Elmt (DL2);
|
4818 |
|
|
while Present (DA1) loop
|
4819 |
|
|
declare
|
4820 |
|
|
Expr1 : constant Node_Id := Node (DA1);
|
4821 |
|
|
Expr2 : constant Node_Id := Node (DA2);
|
4822 |
|
|
|
4823 |
|
|
begin
|
4824 |
|
|
if not Is_Static_Expression (Expr1)
|
4825 |
|
|
or else not Is_Static_Expression (Expr2)
|
4826 |
|
|
then
|
4827 |
|
|
return False;
|
4828 |
|
|
|
4829 |
|
|
-- If either expression raised a constraint error,
|
4830 |
|
|
-- consider the expressions as matching, since this
|
4831 |
|
|
-- helps to prevent cascading errors.
|
4832 |
|
|
|
4833 |
|
|
elsif Raises_Constraint_Error (Expr1)
|
4834 |
|
|
or else Raises_Constraint_Error (Expr2)
|
4835 |
|
|
then
|
4836 |
|
|
null;
|
4837 |
|
|
|
4838 |
|
|
elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
|
4839 |
|
|
return False;
|
4840 |
|
|
end if;
|
4841 |
|
|
end;
|
4842 |
|
|
|
4843 |
|
|
Next_Elmt (DA1);
|
4844 |
|
|
Next_Elmt (DA2);
|
4845 |
|
|
end loop;
|
4846 |
|
|
end if;
|
4847 |
|
|
end;
|
4848 |
|
|
|
4849 |
|
|
return True;
|
4850 |
|
|
|
4851 |
|
|
-- A definite type does not match an indefinite or classwide type.
|
4852 |
|
|
-- However, a generic type with unknown discriminants may be
|
4853 |
|
|
-- instantiated with a type with no discriminants, and conformance
|
4854 |
|
|
-- checking on an inherited operation may compare the actual with the
|
4855 |
|
|
-- subtype that renames it in the instance.
|
4856 |
|
|
|
4857 |
|
|
elsif
|
4858 |
|
|
Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
|
4859 |
|
|
then
|
4860 |
|
|
return
|
4861 |
|
|
Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
|
4862 |
|
|
|
4863 |
|
|
-- Array type
|
4864 |
|
|
|
4865 |
|
|
elsif Is_Array_Type (T1) then
|
4866 |
|
|
|
4867 |
|
|
-- If either subtype is unconstrained then both must be, and if both
|
4868 |
|
|
-- are unconstrained then no further checking is needed.
|
4869 |
|
|
|
4870 |
|
|
if not Is_Constrained (T1) or else not Is_Constrained (T2) then
|
4871 |
|
|
return not (Is_Constrained (T1) or else Is_Constrained (T2));
|
4872 |
|
|
end if;
|
4873 |
|
|
|
4874 |
|
|
-- Both subtypes are constrained, so check that the index subtypes
|
4875 |
|
|
-- statically match.
|
4876 |
|
|
|
4877 |
|
|
declare
|
4878 |
|
|
Index1 : Node_Id := First_Index (T1);
|
4879 |
|
|
Index2 : Node_Id := First_Index (T2);
|
4880 |
|
|
|
4881 |
|
|
begin
|
4882 |
|
|
while Present (Index1) loop
|
4883 |
|
|
if not
|
4884 |
|
|
Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
|
4885 |
|
|
then
|
4886 |
|
|
return False;
|
4887 |
|
|
end if;
|
4888 |
|
|
|
4889 |
|
|
Next_Index (Index1);
|
4890 |
|
|
Next_Index (Index2);
|
4891 |
|
|
end loop;
|
4892 |
|
|
|
4893 |
|
|
return True;
|
4894 |
|
|
end;
|
4895 |
|
|
|
4896 |
|
|
elsif Is_Access_Type (T1) then
|
4897 |
|
|
if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
|
4898 |
|
|
return False;
|
4899 |
|
|
|
4900 |
|
|
elsif Ekind_In (T1, E_Access_Subprogram_Type,
|
4901 |
|
|
E_Anonymous_Access_Subprogram_Type)
|
4902 |
|
|
then
|
4903 |
|
|
return
|
4904 |
|
|
Subtype_Conformant
|
4905 |
|
|
(Designated_Type (T1),
|
4906 |
|
|
Designated_Type (T2));
|
4907 |
|
|
else
|
4908 |
|
|
return
|
4909 |
|
|
Subtypes_Statically_Match
|
4910 |
|
|
(Designated_Type (T1),
|
4911 |
|
|
Designated_Type (T2))
|
4912 |
|
|
and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
|
4913 |
|
|
end if;
|
4914 |
|
|
|
4915 |
|
|
-- All other types definitely match
|
4916 |
|
|
|
4917 |
|
|
else
|
4918 |
|
|
return True;
|
4919 |
|
|
end if;
|
4920 |
|
|
end Subtypes_Statically_Match;
|
4921 |
|
|
|
4922 |
|
|
----------
|
4923 |
|
|
-- Test --
|
4924 |
|
|
----------
|
4925 |
|
|
|
4926 |
|
|
function Test (Cond : Boolean) return Uint is
|
4927 |
|
|
begin
|
4928 |
|
|
if Cond then
|
4929 |
|
|
return Uint_1;
|
4930 |
|
|
else
|
4931 |
|
|
return Uint_0;
|
4932 |
|
|
end if;
|
4933 |
|
|
end Test;
|
4934 |
|
|
|
4935 |
|
|
---------------------------------
|
4936 |
|
|
-- Test_Expression_Is_Foldable --
|
4937 |
|
|
---------------------------------
|
4938 |
|
|
|
4939 |
|
|
-- One operand case
|
4940 |
|
|
|
4941 |
|
|
procedure Test_Expression_Is_Foldable
|
4942 |
|
|
(N : Node_Id;
|
4943 |
|
|
Op1 : Node_Id;
|
4944 |
|
|
Stat : out Boolean;
|
4945 |
|
|
Fold : out Boolean)
|
4946 |
|
|
is
|
4947 |
|
|
begin
|
4948 |
|
|
Stat := False;
|
4949 |
|
|
Fold := False;
|
4950 |
|
|
|
4951 |
|
|
if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
|
4952 |
|
|
return;
|
4953 |
|
|
end if;
|
4954 |
|
|
|
4955 |
|
|
-- If operand is Any_Type, just propagate to result and do not
|
4956 |
|
|
-- try to fold, this prevents cascaded errors.
|
4957 |
|
|
|
4958 |
|
|
if Etype (Op1) = Any_Type then
|
4959 |
|
|
Set_Etype (N, Any_Type);
|
4960 |
|
|
return;
|
4961 |
|
|
|
4962 |
|
|
-- If operand raises constraint error, then replace node N with the
|
4963 |
|
|
-- raise constraint error node, and we are obviously not foldable.
|
4964 |
|
|
-- Note that this replacement inherits the Is_Static_Expression flag
|
4965 |
|
|
-- from the operand.
|
4966 |
|
|
|
4967 |
|
|
elsif Raises_Constraint_Error (Op1) then
|
4968 |
|
|
Rewrite_In_Raise_CE (N, Op1);
|
4969 |
|
|
return;
|
4970 |
|
|
|
4971 |
|
|
-- If the operand is not static, then the result is not static, and
|
4972 |
|
|
-- all we have to do is to check the operand since it is now known
|
4973 |
|
|
-- to appear in a non-static context.
|
4974 |
|
|
|
4975 |
|
|
elsif not Is_Static_Expression (Op1) then
|
4976 |
|
|
Check_Non_Static_Context (Op1);
|
4977 |
|
|
Fold := Compile_Time_Known_Value (Op1);
|
4978 |
|
|
return;
|
4979 |
|
|
|
4980 |
|
|
-- An expression of a formal modular type is not foldable because
|
4981 |
|
|
-- the modulus is unknown.
|
4982 |
|
|
|
4983 |
|
|
elsif Is_Modular_Integer_Type (Etype (Op1))
|
4984 |
|
|
and then Is_Generic_Type (Etype (Op1))
|
4985 |
|
|
then
|
4986 |
|
|
Check_Non_Static_Context (Op1);
|
4987 |
|
|
return;
|
4988 |
|
|
|
4989 |
|
|
-- Here we have the case of an operand whose type is OK, which is
|
4990 |
|
|
-- static, and which does not raise constraint error, we can fold.
|
4991 |
|
|
|
4992 |
|
|
else
|
4993 |
|
|
Set_Is_Static_Expression (N);
|
4994 |
|
|
Fold := True;
|
4995 |
|
|
Stat := True;
|
4996 |
|
|
end if;
|
4997 |
|
|
end Test_Expression_Is_Foldable;
|
4998 |
|
|
|
4999 |
|
|
-- Two operand case
|
5000 |
|
|
|
5001 |
|
|
procedure Test_Expression_Is_Foldable
|
5002 |
|
|
(N : Node_Id;
|
5003 |
|
|
Op1 : Node_Id;
|
5004 |
|
|
Op2 : Node_Id;
|
5005 |
|
|
Stat : out Boolean;
|
5006 |
|
|
Fold : out Boolean)
|
5007 |
|
|
is
|
5008 |
|
|
Rstat : constant Boolean := Is_Static_Expression (Op1)
|
5009 |
|
|
and then Is_Static_Expression (Op2);
|
5010 |
|
|
|
5011 |
|
|
begin
|
5012 |
|
|
Stat := False;
|
5013 |
|
|
Fold := False;
|
5014 |
|
|
|
5015 |
|
|
if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
|
5016 |
|
|
return;
|
5017 |
|
|
end if;
|
5018 |
|
|
|
5019 |
|
|
-- If either operand is Any_Type, just propagate to result and
|
5020 |
|
|
-- do not try to fold, this prevents cascaded errors.
|
5021 |
|
|
|
5022 |
|
|
if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
|
5023 |
|
|
Set_Etype (N, Any_Type);
|
5024 |
|
|
return;
|
5025 |
|
|
|
5026 |
|
|
-- If left operand raises constraint error, then replace node N with the
|
5027 |
|
|
-- Raise_Constraint_Error node, and we are obviously not foldable.
|
5028 |
|
|
-- Is_Static_Expression is set from the two operands in the normal way,
|
5029 |
|
|
-- and we check the right operand if it is in a non-static context.
|
5030 |
|
|
|
5031 |
|
|
elsif Raises_Constraint_Error (Op1) then
|
5032 |
|
|
if not Rstat then
|
5033 |
|
|
Check_Non_Static_Context (Op2);
|
5034 |
|
|
end if;
|
5035 |
|
|
|
5036 |
|
|
Rewrite_In_Raise_CE (N, Op1);
|
5037 |
|
|
Set_Is_Static_Expression (N, Rstat);
|
5038 |
|
|
return;
|
5039 |
|
|
|
5040 |
|
|
-- Similar processing for the case of the right operand. Note that we
|
5041 |
|
|
-- don't use this routine for the short-circuit case, so we do not have
|
5042 |
|
|
-- to worry about that special case here.
|
5043 |
|
|
|
5044 |
|
|
elsif Raises_Constraint_Error (Op2) then
|
5045 |
|
|
if not Rstat then
|
5046 |
|
|
Check_Non_Static_Context (Op1);
|
5047 |
|
|
end if;
|
5048 |
|
|
|
5049 |
|
|
Rewrite_In_Raise_CE (N, Op2);
|
5050 |
|
|
Set_Is_Static_Expression (N, Rstat);
|
5051 |
|
|
return;
|
5052 |
|
|
|
5053 |
|
|
-- Exclude expressions of a generic modular type, as above
|
5054 |
|
|
|
5055 |
|
|
elsif Is_Modular_Integer_Type (Etype (Op1))
|
5056 |
|
|
and then Is_Generic_Type (Etype (Op1))
|
5057 |
|
|
then
|
5058 |
|
|
Check_Non_Static_Context (Op1);
|
5059 |
|
|
return;
|
5060 |
|
|
|
5061 |
|
|
-- If result is not static, then check non-static contexts on operands
|
5062 |
|
|
-- since one of them may be static and the other one may not be static.
|
5063 |
|
|
|
5064 |
|
|
elsif not Rstat then
|
5065 |
|
|
Check_Non_Static_Context (Op1);
|
5066 |
|
|
Check_Non_Static_Context (Op2);
|
5067 |
|
|
Fold := Compile_Time_Known_Value (Op1)
|
5068 |
|
|
and then Compile_Time_Known_Value (Op2);
|
5069 |
|
|
return;
|
5070 |
|
|
|
5071 |
|
|
-- Else result is static and foldable. Both operands are static, and
|
5072 |
|
|
-- neither raises constraint error, so we can definitely fold.
|
5073 |
|
|
|
5074 |
|
|
else
|
5075 |
|
|
Set_Is_Static_Expression (N);
|
5076 |
|
|
Fold := True;
|
5077 |
|
|
Stat := True;
|
5078 |
|
|
return;
|
5079 |
|
|
end if;
|
5080 |
|
|
end Test_Expression_Is_Foldable;
|
5081 |
|
|
|
5082 |
|
|
-------------------
|
5083 |
|
|
-- Test_In_Range --
|
5084 |
|
|
-------------------
|
5085 |
|
|
|
5086 |
|
|
function Test_In_Range
|
5087 |
|
|
(N : Node_Id;
|
5088 |
|
|
Typ : Entity_Id;
|
5089 |
|
|
Assume_Valid : Boolean;
|
5090 |
|
|
Fixed_Int : Boolean;
|
5091 |
|
|
Int_Real : Boolean) return Range_Membership
|
5092 |
|
|
is
|
5093 |
|
|
Val : Uint;
|
5094 |
|
|
Valr : Ureal;
|
5095 |
|
|
|
5096 |
|
|
pragma Warnings (Off, Assume_Valid);
|
5097 |
|
|
-- For now Assume_Valid is unreferenced since the current implementation
|
5098 |
|
|
-- always returns Unknown if N is not a compile time known value, but we
|
5099 |
|
|
-- keep the parameter to allow for future enhancements in which we try
|
5100 |
|
|
-- to get the information in the variable case as well.
|
5101 |
|
|
|
5102 |
|
|
begin
|
5103 |
|
|
-- Universal types have no range limits, so always in range
|
5104 |
|
|
|
5105 |
|
|
if Typ = Universal_Integer or else Typ = Universal_Real then
|
5106 |
|
|
return In_Range;
|
5107 |
|
|
|
5108 |
|
|
-- Never known if not scalar type. Don't know if this can actually
|
5109 |
|
|
-- happen, but our spec allows it, so we must check!
|
5110 |
|
|
|
5111 |
|
|
elsif not Is_Scalar_Type (Typ) then
|
5112 |
|
|
return Unknown;
|
5113 |
|
|
|
5114 |
|
|
-- Never known if this is a generic type, since the bounds of generic
|
5115 |
|
|
-- types are junk. Note that if we only checked for static expressions
|
5116 |
|
|
-- (instead of compile time known values) below, we would not need this
|
5117 |
|
|
-- check, because values of a generic type can never be static, but they
|
5118 |
|
|
-- can be known at compile time.
|
5119 |
|
|
|
5120 |
|
|
elsif Is_Generic_Type (Typ) then
|
5121 |
|
|
return Unknown;
|
5122 |
|
|
|
5123 |
|
|
-- Never known unless we have a compile time known value
|
5124 |
|
|
|
5125 |
|
|
elsif not Compile_Time_Known_Value (N) then
|
5126 |
|
|
return Unknown;
|
5127 |
|
|
|
5128 |
|
|
-- General processing with a known compile time value
|
5129 |
|
|
|
5130 |
|
|
else
|
5131 |
|
|
declare
|
5132 |
|
|
Lo : Node_Id;
|
5133 |
|
|
Hi : Node_Id;
|
5134 |
|
|
|
5135 |
|
|
LB_Known : Boolean;
|
5136 |
|
|
HB_Known : Boolean;
|
5137 |
|
|
|
5138 |
|
|
begin
|
5139 |
|
|
Lo := Type_Low_Bound (Typ);
|
5140 |
|
|
Hi := Type_High_Bound (Typ);
|
5141 |
|
|
|
5142 |
|
|
LB_Known := Compile_Time_Known_Value (Lo);
|
5143 |
|
|
HB_Known := Compile_Time_Known_Value (Hi);
|
5144 |
|
|
|
5145 |
|
|
-- Fixed point types should be considered as such only if flag
|
5146 |
|
|
-- Fixed_Int is set to False.
|
5147 |
|
|
|
5148 |
|
|
if Is_Floating_Point_Type (Typ)
|
5149 |
|
|
or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
|
5150 |
|
|
or else Int_Real
|
5151 |
|
|
then
|
5152 |
|
|
Valr := Expr_Value_R (N);
|
5153 |
|
|
|
5154 |
|
|
if LB_Known and HB_Known then
|
5155 |
|
|
if Valr >= Expr_Value_R (Lo)
|
5156 |
|
|
and then
|
5157 |
|
|
Valr <= Expr_Value_R (Hi)
|
5158 |
|
|
then
|
5159 |
|
|
return In_Range;
|
5160 |
|
|
else
|
5161 |
|
|
return Out_Of_Range;
|
5162 |
|
|
end if;
|
5163 |
|
|
|
5164 |
|
|
elsif (LB_Known and then Valr < Expr_Value_R (Lo))
|
5165 |
|
|
or else
|
5166 |
|
|
(HB_Known and then Valr > Expr_Value_R (Hi))
|
5167 |
|
|
then
|
5168 |
|
|
return Out_Of_Range;
|
5169 |
|
|
|
5170 |
|
|
else
|
5171 |
|
|
return Unknown;
|
5172 |
|
|
end if;
|
5173 |
|
|
|
5174 |
|
|
else
|
5175 |
|
|
Val := Expr_Value (N);
|
5176 |
|
|
|
5177 |
|
|
if LB_Known and HB_Known then
|
5178 |
|
|
if Val >= Expr_Value (Lo)
|
5179 |
|
|
and then
|
5180 |
|
|
Val <= Expr_Value (Hi)
|
5181 |
|
|
then
|
5182 |
|
|
return In_Range;
|
5183 |
|
|
else
|
5184 |
|
|
return Out_Of_Range;
|
5185 |
|
|
end if;
|
5186 |
|
|
|
5187 |
|
|
elsif (LB_Known and then Val < Expr_Value (Lo))
|
5188 |
|
|
or else
|
5189 |
|
|
(HB_Known and then Val > Expr_Value (Hi))
|
5190 |
|
|
then
|
5191 |
|
|
return Out_Of_Range;
|
5192 |
|
|
|
5193 |
|
|
else
|
5194 |
|
|
return Unknown;
|
5195 |
|
|
end if;
|
5196 |
|
|
end if;
|
5197 |
|
|
end;
|
5198 |
|
|
end if;
|
5199 |
|
|
end Test_In_Range;
|
5200 |
|
|
|
5201 |
|
|
--------------
|
5202 |
|
|
-- To_Bits --
|
5203 |
|
|
--------------
|
5204 |
|
|
|
5205 |
|
|
procedure To_Bits (U : Uint; B : out Bits) is
|
5206 |
|
|
begin
|
5207 |
|
|
for J in 0 .. B'Last loop
|
5208 |
|
|
B (J) := (U / (2 ** J)) mod 2 /= 0;
|
5209 |
|
|
end loop;
|
5210 |
|
|
end To_Bits;
|
5211 |
|
|
|
5212 |
|
|
--------------------
|
5213 |
|
|
-- Why_Not_Static --
|
5214 |
|
|
--------------------
|
5215 |
|
|
|
5216 |
|
|
procedure Why_Not_Static (Expr : Node_Id) is
|
5217 |
|
|
N : constant Node_Id := Original_Node (Expr);
|
5218 |
|
|
Typ : Entity_Id;
|
5219 |
|
|
E : Entity_Id;
|
5220 |
|
|
|
5221 |
|
|
procedure Why_Not_Static_List (L : List_Id);
|
5222 |
|
|
-- A version that can be called on a list of expressions. Finds all
|
5223 |
|
|
-- non-static violations in any element of the list.
|
5224 |
|
|
|
5225 |
|
|
-------------------------
|
5226 |
|
|
-- Why_Not_Static_List --
|
5227 |
|
|
-------------------------
|
5228 |
|
|
|
5229 |
|
|
procedure Why_Not_Static_List (L : List_Id) is
|
5230 |
|
|
N : Node_Id;
|
5231 |
|
|
|
5232 |
|
|
begin
|
5233 |
|
|
if Is_Non_Empty_List (L) then
|
5234 |
|
|
N := First (L);
|
5235 |
|
|
while Present (N) loop
|
5236 |
|
|
Why_Not_Static (N);
|
5237 |
|
|
Next (N);
|
5238 |
|
|
end loop;
|
5239 |
|
|
end if;
|
5240 |
|
|
end Why_Not_Static_List;
|
5241 |
|
|
|
5242 |
|
|
-- Start of processing for Why_Not_Static
|
5243 |
|
|
|
5244 |
|
|
begin
|
5245 |
|
|
-- If in ACATS mode (debug flag 2), then suppress all these messages,
|
5246 |
|
|
-- this avoids massive updates to the ACATS base line.
|
5247 |
|
|
|
5248 |
|
|
if Debug_Flag_2 then
|
5249 |
|
|
return;
|
5250 |
|
|
end if;
|
5251 |
|
|
|
5252 |
|
|
-- Ignore call on error or empty node
|
5253 |
|
|
|
5254 |
|
|
if No (Expr) or else Nkind (Expr) = N_Error then
|
5255 |
|
|
return;
|
5256 |
|
|
end if;
|
5257 |
|
|
|
5258 |
|
|
-- Preprocessing for sub expressions
|
5259 |
|
|
|
5260 |
|
|
if Nkind (Expr) in N_Subexpr then
|
5261 |
|
|
|
5262 |
|
|
-- Nothing to do if expression is static
|
5263 |
|
|
|
5264 |
|
|
if Is_OK_Static_Expression (Expr) then
|
5265 |
|
|
return;
|
5266 |
|
|
end if;
|
5267 |
|
|
|
5268 |
|
|
-- Test for constraint error raised
|
5269 |
|
|
|
5270 |
|
|
if Raises_Constraint_Error (Expr) then
|
5271 |
|
|
Error_Msg_N
|
5272 |
|
|
("expression raises exception, cannot be static " &
|
5273 |
|
|
"(RM 4.9(34))!", N);
|
5274 |
|
|
return;
|
5275 |
|
|
end if;
|
5276 |
|
|
|
5277 |
|
|
-- If no type, then something is pretty wrong, so ignore
|
5278 |
|
|
|
5279 |
|
|
Typ := Etype (Expr);
|
5280 |
|
|
|
5281 |
|
|
if No (Typ) then
|
5282 |
|
|
return;
|
5283 |
|
|
end if;
|
5284 |
|
|
|
5285 |
|
|
-- Type must be scalar or string type
|
5286 |
|
|
|
5287 |
|
|
if not Is_Scalar_Type (Typ)
|
5288 |
|
|
and then not Is_String_Type (Typ)
|
5289 |
|
|
then
|
5290 |
|
|
Error_Msg_N
|
5291 |
|
|
("static expression must have scalar or string type " &
|
5292 |
|
|
"(RM 4.9(2))!", N);
|
5293 |
|
|
return;
|
5294 |
|
|
end if;
|
5295 |
|
|
end if;
|
5296 |
|
|
|
5297 |
|
|
-- If we got through those checks, test particular node kind
|
5298 |
|
|
|
5299 |
|
|
case Nkind (N) is
|
5300 |
|
|
when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
|
5301 |
|
|
E := Entity (N);
|
5302 |
|
|
|
5303 |
|
|
if Is_Named_Number (E) then
|
5304 |
|
|
null;
|
5305 |
|
|
|
5306 |
|
|
elsif Ekind (E) = E_Constant then
|
5307 |
|
|
if not Is_Static_Expression (Constant_Value (E)) then
|
5308 |
|
|
Error_Msg_NE
|
5309 |
|
|
("& is not a static constant (RM 4.9(5))!", N, E);
|
5310 |
|
|
end if;
|
5311 |
|
|
|
5312 |
|
|
else
|
5313 |
|
|
Error_Msg_NE
|
5314 |
|
|
("& is not static constant or named number " &
|
5315 |
|
|
"(RM 4.9(5))!", N, E);
|
5316 |
|
|
end if;
|
5317 |
|
|
|
5318 |
|
|
when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
|
5319 |
|
|
if Nkind (N) in N_Op_Shift then
|
5320 |
|
|
Error_Msg_N
|
5321 |
|
|
("shift functions are never static (RM 4.9(6,18))!", N);
|
5322 |
|
|
|
5323 |
|
|
else
|
5324 |
|
|
Why_Not_Static (Left_Opnd (N));
|
5325 |
|
|
Why_Not_Static (Right_Opnd (N));
|
5326 |
|
|
end if;
|
5327 |
|
|
|
5328 |
|
|
when N_Unary_Op =>
|
5329 |
|
|
Why_Not_Static (Right_Opnd (N));
|
5330 |
|
|
|
5331 |
|
|
when N_Attribute_Reference =>
|
5332 |
|
|
Why_Not_Static_List (Expressions (N));
|
5333 |
|
|
|
5334 |
|
|
E := Etype (Prefix (N));
|
5335 |
|
|
|
5336 |
|
|
if E = Standard_Void_Type then
|
5337 |
|
|
return;
|
5338 |
|
|
end if;
|
5339 |
|
|
|
5340 |
|
|
-- Special case non-scalar'Size since this is a common error
|
5341 |
|
|
|
5342 |
|
|
if Attribute_Name (N) = Name_Size then
|
5343 |
|
|
Error_Msg_N
|
5344 |
|
|
("size attribute is only static for static scalar type " &
|
5345 |
|
|
"(RM 4.9(7,8))", N);
|
5346 |
|
|
|
5347 |
|
|
-- Flag array cases
|
5348 |
|
|
|
5349 |
|
|
elsif Is_Array_Type (E) then
|
5350 |
|
|
if Attribute_Name (N) /= Name_First
|
5351 |
|
|
and then
|
5352 |
|
|
Attribute_Name (N) /= Name_Last
|
5353 |
|
|
and then
|
5354 |
|
|
Attribute_Name (N) /= Name_Length
|
5355 |
|
|
then
|
5356 |
|
|
Error_Msg_N
|
5357 |
|
|
("static array attribute must be Length, First, or Last " &
|
5358 |
|
|
"(RM 4.9(8))!", N);
|
5359 |
|
|
|
5360 |
|
|
-- Since we know the expression is not-static (we already
|
5361 |
|
|
-- tested for this, must mean array is not static).
|
5362 |
|
|
|
5363 |
|
|
else
|
5364 |
|
|
Error_Msg_N
|
5365 |
|
|
("prefix is non-static array (RM 4.9(8))!", Prefix (N));
|
5366 |
|
|
end if;
|
5367 |
|
|
|
5368 |
|
|
return;
|
5369 |
|
|
|
5370 |
|
|
-- Special case generic types, since again this is a common source
|
5371 |
|
|
-- of confusion.
|
5372 |
|
|
|
5373 |
|
|
elsif Is_Generic_Actual_Type (E)
|
5374 |
|
|
or else
|
5375 |
|
|
Is_Generic_Type (E)
|
5376 |
|
|
then
|
5377 |
|
|
Error_Msg_N
|
5378 |
|
|
("attribute of generic type is never static " &
|
5379 |
|
|
"(RM 4.9(7,8))!", N);
|
5380 |
|
|
|
5381 |
|
|
elsif Is_Static_Subtype (E) then
|
5382 |
|
|
null;
|
5383 |
|
|
|
5384 |
|
|
elsif Is_Scalar_Type (E) then
|
5385 |
|
|
Error_Msg_N
|
5386 |
|
|
("prefix type for attribute is not static scalar subtype " &
|
5387 |
|
|
"(RM 4.9(7))!", N);
|
5388 |
|
|
|
5389 |
|
|
else
|
5390 |
|
|
Error_Msg_N
|
5391 |
|
|
("static attribute must apply to array/scalar type " &
|
5392 |
|
|
"(RM 4.9(7,8))!", N);
|
5393 |
|
|
end if;
|
5394 |
|
|
|
5395 |
|
|
when N_String_Literal =>
|
5396 |
|
|
Error_Msg_N
|
5397 |
|
|
("subtype of string literal is non-static (RM 4.9(4))!", N);
|
5398 |
|
|
|
5399 |
|
|
when N_Explicit_Dereference =>
|
5400 |
|
|
Error_Msg_N
|
5401 |
|
|
("explicit dereference is never static (RM 4.9)!", N);
|
5402 |
|
|
|
5403 |
|
|
when N_Function_Call =>
|
5404 |
|
|
Why_Not_Static_List (Parameter_Associations (N));
|
5405 |
|
|
Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
|
5406 |
|
|
|
5407 |
|
|
when N_Parameter_Association =>
|
5408 |
|
|
Why_Not_Static (Explicit_Actual_Parameter (N));
|
5409 |
|
|
|
5410 |
|
|
when N_Indexed_Component =>
|
5411 |
|
|
Error_Msg_N
|
5412 |
|
|
("indexed component is never static (RM 4.9)!", N);
|
5413 |
|
|
|
5414 |
|
|
when N_Procedure_Call_Statement =>
|
5415 |
|
|
Error_Msg_N
|
5416 |
|
|
("procedure call is never static (RM 4.9)!", N);
|
5417 |
|
|
|
5418 |
|
|
when N_Qualified_Expression =>
|
5419 |
|
|
Why_Not_Static (Expression (N));
|
5420 |
|
|
|
5421 |
|
|
when N_Aggregate | N_Extension_Aggregate =>
|
5422 |
|
|
Error_Msg_N
|
5423 |
|
|
("an aggregate is never static (RM 4.9)!", N);
|
5424 |
|
|
|
5425 |
|
|
when N_Range =>
|
5426 |
|
|
Why_Not_Static (Low_Bound (N));
|
5427 |
|
|
Why_Not_Static (High_Bound (N));
|
5428 |
|
|
|
5429 |
|
|
when N_Range_Constraint =>
|
5430 |
|
|
Why_Not_Static (Range_Expression (N));
|
5431 |
|
|
|
5432 |
|
|
when N_Subtype_Indication =>
|
5433 |
|
|
Why_Not_Static (Constraint (N));
|
5434 |
|
|
|
5435 |
|
|
when N_Selected_Component =>
|
5436 |
|
|
Error_Msg_N
|
5437 |
|
|
("selected component is never static (RM 4.9)!", N);
|
5438 |
|
|
|
5439 |
|
|
when N_Slice =>
|
5440 |
|
|
Error_Msg_N
|
5441 |
|
|
("slice is never static (RM 4.9)!", N);
|
5442 |
|
|
|
5443 |
|
|
when N_Type_Conversion =>
|
5444 |
|
|
Why_Not_Static (Expression (N));
|
5445 |
|
|
|
5446 |
|
|
if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
|
5447 |
|
|
or else not Is_Static_Subtype (Entity (Subtype_Mark (N)))
|
5448 |
|
|
then
|
5449 |
|
|
Error_Msg_N
|
5450 |
|
|
("static conversion requires static scalar subtype result " &
|
5451 |
|
|
"(RM 4.9(9))!", N);
|
5452 |
|
|
end if;
|
5453 |
|
|
|
5454 |
|
|
when N_Unchecked_Type_Conversion =>
|
5455 |
|
|
Error_Msg_N
|
5456 |
|
|
("unchecked type conversion is never static (RM 4.9)!", N);
|
5457 |
|
|
|
5458 |
|
|
when others =>
|
5459 |
|
|
null;
|
5460 |
|
|
|
5461 |
|
|
end case;
|
5462 |
|
|
end Why_Not_Static;
|
5463 |
|
|
|
5464 |
|
|
end Sem_Eval;
|