OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [sem_util.ads] - Blame information for rev 750

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                             S E M _ U T I L                              --
6
--                                                                          --
7
--                                 S p e c                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2011, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17
-- for  more details.  You should have  received  a copy of the GNU General --
18
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19
-- http://www.gnu.org/licenses for a complete copy of the license.          --
20
--                                                                          --
21
-- GNAT was originally developed  by the GNAT team at  New York University. --
22
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23
--                                                                          --
24
------------------------------------------------------------------------------
25
 
26
--  Package containing utility procedures used throughout the semantics
27
 
28
with Einfo;   use Einfo;
29
with Exp_Tss; use Exp_Tss;
30
with Namet;   use Namet;
31
with Nmake;   use Nmake;
32
with Snames;  use Snames;
33
with Types;   use Types;
34
with Uintp;   use Uintp;
35
with Urealp;  use Urealp;
36
 
37
package Sem_Util is
38
 
39
   function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
40
   --  Given a type that implements interfaces look for its associated
41
   --  definition node and return its list of interfaces.
42
 
43
   procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
44
   --  Add A to the list of access types to process when expanding the
45
   --  freeze node of E.
46
 
47
   procedure Add_Global_Declaration (N : Node_Id);
48
   --  These procedures adds a declaration N at the library level, to be
49
   --  elaborated before any other code in the unit. It is used for example
50
   --  for the entity that marks whether a unit has been elaborated. The
51
   --  declaration is added to the Declarations list of the Aux_Decls_Node
52
   --  for the current unit. The declarations are added in the current scope,
53
   --  so the caller should push a new scope as required before the call.
54
 
55
   function Addressable (V : Uint) return Boolean;
56
   function Addressable (V : Int)  return Boolean;
57
   pragma Inline (Addressable);
58
   --  Returns True if the value of V is the word size of an addressable
59
   --  factor of the word size (typically 8, 16, 32 or 64).
60
 
61
   function Alignment_In_Bits (E : Entity_Id) return Uint;
62
   --  If the alignment of the type or object E is currently known to the
63
   --  compiler, then this function returns the alignment value in bits.
64
   --  Otherwise Uint_0 is returned, indicating that the alignment of the
65
   --  entity is not yet known to the compiler.
66
 
67
   procedure Apply_Compile_Time_Constraint_Error
68
     (N      : Node_Id;
69
      Msg    : String;
70
      Reason : RT_Exception_Code;
71
      Ent    : Entity_Id  := Empty;
72
      Typ    : Entity_Id  := Empty;
73
      Loc    : Source_Ptr := No_Location;
74
      Rep    : Boolean    := True;
75
      Warn   : Boolean    := False);
76
   --  N is a subexpression which will raise constraint error when evaluated
77
   --  at runtime. Msg is a message that explains the reason for raising the
78
   --  exception. The last character is ? if the message is always a warning,
79
   --  even in Ada 95, and is not a ? if the message represents an illegality
80
   --  (because of violation of static expression rules) in Ada 95 (but not
81
   --  in Ada 83). Typically this routine posts all messages at the Sloc of
82
   --  node N. However, if Loc /= No_Location, Loc is the Sloc used to output
83
   --  the message. After posting the appropriate message, and if the flag
84
   --  Rep is set, this routine replaces the expression with an appropriate
85
   --  N_Raise_Constraint_Error node using the given Reason code. This node
86
   --  is then marked as being static if the original node is static, but
87
   --  sets the flag Raises_Constraint_Error, preventing further evaluation.
88
   --  The error message may contain a } or & insertion character. This
89
   --  normally references Etype (N), unless the Ent argument is given
90
   --  explicitly, in which case it is used instead. The type of the raise
91
   --  node that is built is normally Etype (N), but if the Typ parameter
92
   --  is present, this is used instead. Warn is normally False. If it is
93
   --  True then the message is treated as a warning even though it does
94
   --  not end with a ? (this is used when the caller wants to parameterize
95
   --  whether an error or warning is given.
96
 
97
   function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
98
   --  If at the point of declaration an array type has a private or limited
99
   --  component, several array operations are not avaiable on the type, and
100
   --  the array type is flagged accordingly. If in the immediate scope of
101
   --  the array type the component becomes non-private or non-limited, these
102
   --  operations become avaiable. This can happen if the scopes of both types
103
   --  are open, and the scope of the array is not outside the scope of the
104
   --  component.
105
 
106
   procedure Bad_Predicated_Subtype_Use
107
     (Msg : String;
108
      N   : Node_Id;
109
      Typ : Entity_Id);
110
   --  This is called when Typ, a predicated subtype, is used in a context
111
   --  which does not allow the use of a predicated subtype. Msg is passed
112
   --  to Error_Msg_FE to output an appropriate message using N as the
113
   --  location, and Typ as the entity. The caller must set up any insertions
114
   --  other than the & for the type itself. Note that if Typ is a generic
115
   --  actual type, then the message will be output as a warning, and a
116
   --  raise Program_Error is inserted using Insert_Action with node N as
117
   --  the insertion point. Node N also supplies the source location for
118
   --  construction of the raise node. If Typ is NOT a type with predicates
119
   --  this call has no effect.
120
 
121
   function Build_Actual_Subtype
122
     (T : Entity_Id;
123
      N : Node_Or_Entity_Id) return Node_Id;
124
   --  Build an anonymous subtype for an entity or expression, using the
125
   --  bounds of the entity or the discriminants of the enclosing record.
126
   --  T is the type for which the actual subtype is required, and N is either
127
   --  a defining identifier, or any subexpression.
128
 
129
   function Build_Actual_Subtype_Of_Component
130
     (T : Entity_Id;
131
      N : Node_Id) return Node_Id;
132
   --  Determine whether a selected component has a type that depends on
133
   --  discriminants, and build actual subtype for it if so.
134
 
135
   function Build_Default_Subtype
136
     (T : Entity_Id;
137
      N : Node_Id) return Entity_Id;
138
   --  If T is an unconstrained type with defaulted discriminants, build a
139
   --  subtype constrained by the default values, insert the subtype
140
   --  declaration in the tree before N, and return the entity of that
141
   --  subtype. Otherwise, simply return T.
142
 
143
   function Build_Discriminal_Subtype_Of_Component
144
     (T : Entity_Id) return Node_Id;
145
   --  Determine whether a record component has a type that depends on
146
   --  discriminants, and build actual subtype for it if so.
147
 
148
   procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
149
   --  Given a compilation unit node N, allocate an elaboration counter for
150
   --  the compilation unit, and install it in the Elaboration_Entity field
151
   --  of Spec_Id, the entity for the compilation unit.
152
 
153
      procedure Build_Explicit_Dereference
154
        (Expr : Node_Id;
155
         Disc : Entity_Id);
156
      --  AI05-139: Names with implicit dereference. If the expression N is a
157
      --  reference type and the context imposes the corresponding designated
158
      --  type, convert N into N.Disc.all. Such expressions are always over-
159
      --  loaded with both interpretations, and the dereference interpretation
160
      --  carries the name of the reference discriminant.
161
 
162
   function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
163
   --  Returns True if the expression cannot possibly raise Constraint_Error.
164
   --  The response is conservative in the sense that a result of False does
165
   --  not necessarily mean that CE could be raised, but a response of True
166
   --  means that for sure CE cannot be raised.
167
 
168
   procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id);
169
   --  AI05-139-2: Accessors and iterators for containers. This procedure
170
   --  checks whether T is a reference type, and if so it adds an interprettion
171
   --  to Expr whose type is the designated type of the reference_discriminant.
172
 
173
   procedure Check_Later_Vs_Basic_Declarations
174
     (Decls          : List_Id;
175
      During_Parsing : Boolean);
176
   --  If During_Parsing is True, check for misplacement of later vs basic
177
   --  declarations in Ada 83. If During_Parsing is False, and the SPARK
178
   --  restriction is set, do the same: although SPARK 95 removes the
179
   --  distinction between initial and later declarative items, the distinction
180
   --  remains in the Examiner (JB01-005). Note that the Examiner does not
181
   --  count package declarations in later declarative items.
182
 
183
   procedure Check_Dynamically_Tagged_Expression
184
     (Expr        : Node_Id;
185
      Typ         : Entity_Id;
186
      Related_Nod : Node_Id);
187
   --  Check wrong use of dynamically tagged expression
188
 
189
   procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
190
   --  Verify that the full declaration of type T has been seen. If not, place
191
   --  error message on node N. Used in object declarations, type conversions
192
   --  and qualified expressions.
193
 
194
   procedure Check_Nested_Access (Ent : Entity_Id);
195
   --  Check whether Ent denotes an entity declared in an uplevel scope, which
196
   --  is accessed inside a nested procedure, and set Has_Up_Level_Access flag
197
   --  accordingly. This is currently only enabled for VM_Target /= No_VM.
198
 
199
   procedure Check_Order_Dependence;
200
   --  Examine the actuals in a top-level call to determine whether aliasing
201
   --  between two actuals, one of which is writable, can make the call
202
   --  order-dependent.
203
 
204
   procedure Check_Potentially_Blocking_Operation (N : Node_Id);
205
   --  N is one of the statement forms that is a potentially blocking
206
   --  operation. If it appears within a protected action, emit warning.
207
 
208
   procedure Check_Unprotected_Access
209
     (Context : Node_Id;
210
      Expr    : Node_Id);
211
   --  Check whether the expression is a pointer to a protected component,
212
   --  and the context is external to the protected operation, to warn against
213
   --  a possible unlocked access to data.
214
 
215
   procedure Check_VMS (Construct : Node_Id);
216
   --  Check that this the target is OpenVMS, and if so, return with no effect,
217
   --  otherwise post an error noting this can only be used with OpenVMS ports.
218
   --  The argument is the construct in question and is used to post the error
219
   --  message.
220
 
221
   procedure Collect_Interfaces
222
     (T               : Entity_Id;
223
      Ifaces_List     : out Elist_Id;
224
      Exclude_Parents : Boolean := False;
225
      Use_Full_View   : Boolean := True);
226
   --  Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
227
   --  directly or indirectly implemented by T. Exclude_Parents is used to
228
   --  avoid the addition of inherited interfaces to the generated list.
229
   --  Use_Full_View is used to collect the interfaces using the full-view
230
   --  (if available).
231
 
232
   procedure Collect_Interface_Components
233
     (Tagged_Type     : Entity_Id;
234
      Components_List : out Elist_Id);
235
   --  Ada 2005 (AI-251): Collect all the tag components associated with the
236
   --  secondary dispatch tables of a tagged type.
237
 
238
   procedure Collect_Interfaces_Info
239
     (T               : Entity_Id;
240
      Ifaces_List     : out Elist_Id;
241
      Components_List : out Elist_Id;
242
      Tags_List       : out Elist_Id);
243
   --  Ada 2005 (AI-251): Collect all the interfaces associated with T plus
244
   --  the record component and tag associated with each of these interfaces.
245
   --  On exit Ifaces_List, Components_List and Tags_List have the same number
246
   --  of elements, and elements at the same position on these tables provide
247
   --  information on the same interface type.
248
 
249
   procedure Collect_Parents
250
     (T             : Entity_Id;
251
      List          : out Elist_Id;
252
      Use_Full_View : Boolean := True);
253
   --  Collect all the parents of Typ. Use_Full_View is used to collect them
254
   --  using the full-view of private parents (if available).
255
 
256
   function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
257
   --  Called upon type derivation and extension. We scan the declarative part
258
   --  in which the type appears, and collect subprograms that have one
259
   --  subsidiary subtype of the type. These subprograms can only appear after
260
   --  the type itself.
261
 
262
   function Compile_Time_Constraint_Error
263
     (N    : Node_Id;
264
      Msg  : String;
265
      Ent  : Entity_Id  := Empty;
266
      Loc  : Source_Ptr := No_Location;
267
      Warn : Boolean    := False) return Node_Id;
268
   --  This is similar to Apply_Compile_Time_Constraint_Error in that it
269
   --  generates a warning (or error) message in the same manner, but it does
270
   --  not replace any nodes. For convenience, the function always returns its
271
   --  first argument. The message is a warning if the message ends with ?, or
272
   --  we are operating in Ada 83 mode, or the Warn parameter is set to True.
273
 
274
   procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
275
   --  Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
276
   --  Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
277
 
278
   function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
279
   --  Utility to create a parameter profile for a new subprogram spec, when
280
   --  the subprogram has a body that acts as spec. This is done for some cases
281
   --  of inlining, and for private protected ops. Also used to create bodies
282
   --  for stubbed subprograms.
283
 
284
   function Copy_Component_List
285
     (R_Typ : Entity_Id;
286
      Loc   : Source_Ptr) return List_Id;
287
   --  Copy components from record type R_Typ that come from source. Used to
288
   --  create a new compatible record type. Loc is the source location assigned
289
   --  to the created nodes.
290
 
291
   function Current_Entity (N : Node_Id) return Entity_Id;
292
   pragma Inline (Current_Entity);
293
   --  Find the currently visible definition for a given identifier, that is to
294
   --  say the first entry in the visibility chain for the Chars of N.
295
 
296
   function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
297
   --  Find whether there is a previous definition for identifier N in the
298
   --  current scope. Because declarations for a scope are not necessarily
299
   --  contiguous (e.g. for packages) the first entry on the visibility chain
300
   --  for N is not necessarily in the current scope.
301
 
302
   function Current_Scope return Entity_Id;
303
   --  Get entity representing current scope
304
 
305
   function Current_Subprogram return Entity_Id;
306
   --  Returns current enclosing subprogram. If Current_Scope is a subprogram,
307
   --  then that is what is returned, otherwise the Enclosing_Subprogram of the
308
   --  Current_Scope is returned. The returned value is Empty if this is called
309
   --  from a library package which is not within any subprogram.
310
 
311
   function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
312
   --  Same as Type_Access_Level, except that if the type is the type of an Ada
313
   --  2012 stand-alone object of an anonymous access type, then return the
314
   --  static accesssibility level of the object. In that case, the dynamic
315
   --  accessibility level of the object may take on values in a range. The low
316
   --  bound of of that range is returned by Type_Access_Level; this function
317
   --  yields the high bound of that range. Also differs from Type_Access_Level
318
   --  in the case of a descendant of a generic formal type (returns Int'Last
319
   --  instead of 0).
320
 
321
   function Defining_Entity (N : Node_Id) return Entity_Id;
322
   --  Given a declaration N, returns the associated defining entity. If the
323
   --  declaration has a specification, the entity is obtained from the
324
   --  specification. If the declaration has a defining unit name, then the
325
   --  defining entity is obtained from the defining unit name ignoring any
326
   --  child unit prefixes.
327
 
328
   function Denotes_Discriminant
329
     (N                : Node_Id;
330
      Check_Concurrent : Boolean := False) return Boolean;
331
   --  Returns True if node N is an Entity_Name node for a discriminant. If the
332
   --  flag Check_Concurrent is true, function also returns true when N denotes
333
   --  the discriminal of the discriminant of a concurrent type. This is needed
334
   --  to disable some optimizations on private components of protected types,
335
   --  and constraint checks on entry families constrained by discriminants.
336
 
337
   function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
338
   function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
339
   --  Functions to detect suspicious overlapping between actuals in a call,
340
   --  when one of them is writable. The predicates are those proposed in
341
   --  AI05-0144, to detect dangerous order dependence in complex calls.
342
   --  I would add a parameter Warn which enables more extensive testing of
343
   --  cases as we find appropriate when we are only warning ??? Or perhaps
344
   --  return an indication of (Error, Warn, OK) ???
345
 
346
   function Denotes_Variable (N : Node_Id) return Boolean;
347
   --  Returns True if node N denotes a single variable without parentheses
348
 
349
   function Depends_On_Discriminant (N : Node_Id) return Boolean;
350
   --  Returns True if N denotes a discriminant or if N is a range, a subtype
351
   --  indication or a scalar subtype where one of the bounds is a
352
   --  discriminant.
353
 
354
   function Designate_Same_Unit
355
     (Name1 : Node_Id;
356
      Name2 : Node_Id) return  Boolean;
357
   --  Return true if Name1 and Name2 designate the same unit name; each of
358
   --  these names is supposed to be a selected component name, an expanded
359
   --  name, a defining program unit name or an identifier.
360
 
361
   function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
362
   --  Expr should be an expression of an access type. Builds an integer
363
   --  literal except in cases involving anonymous access types where
364
   --  accessibility levels are tracked at runtime (access parameters and Ada
365
   --  2012 stand-alone objects).
366
 
367
   function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
368
   --  Same as Einfo.Extra_Accessibility except thtat object renames
369
   --  are looked through.
370
 
371
   function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
372
   --  Returns the closest ancestor of Typ that is a CPP type.
373
 
374
   function Enclosing_Generic_Body
375
     (N : Node_Id) return Node_Id;
376
   --  Returns the Node_Id associated with the innermost enclosing generic
377
   --  body, if any. If none, then returns Empty.
378
 
379
   function Enclosing_Generic_Unit
380
     (N : Node_Id) return Node_Id;
381
   --  Returns the Node_Id associated with the innermost enclosing generic
382
   --  unit, if any. If none, then returns Empty.
383
 
384
   function Enclosing_Lib_Unit_Entity return Entity_Id;
385
   --  Returns the entity of enclosing N_Compilation_Unit Node which is the
386
   --  root of the current scope (which must not be Standard_Standard, and the
387
   --  caller is responsible for ensuring this condition).
388
 
389
   function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
390
   --  Returns the enclosing N_Compilation_Unit Node that is the root of a
391
   --  subtree containing N.
392
 
393
   function Enclosing_Package (E : Entity_Id) return Entity_Id;
394
   --  Utility function to return the Ada entity of the package enclosing
395
   --  the entity E, if any. Returns Empty if no enclosing package.
396
 
397
   function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
398
   --  Utility function to return the Ada entity of the subprogram enclosing
399
   --  the entity E, if any. Returns Empty if no enclosing subprogram.
400
 
401
   procedure Ensure_Freeze_Node (E : Entity_Id);
402
   --  Make sure a freeze node is allocated for entity E. If necessary, build
403
   --  and initialize a new freeze node and set Has_Delayed_Freeze True for E.
404
 
405
   procedure Enter_Name (Def_Id : Entity_Id);
406
   --  Insert new name in symbol table of current scope with check for
407
   --  duplications (error message is issued if a conflict is found).
408
   --  Note: Enter_Name is not used for overloadable entities, instead these
409
   --  are entered using Sem_Ch6.Enter_Overloadable_Entity.
410
 
411
   procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
412
   --  This procedure is called after issuing a message complaining about an
413
   --  inappropriate use of limited type T. If useful, it adds additional
414
   --  continuation lines to the message explaining why type T is limited.
415
   --  Messages are placed at node N.
416
 
417
   procedure Find_Actual
418
     (N      : Node_Id;
419
      Formal : out Entity_Id;
420
      Call   : out Node_Id);
421
   --  Determines if the node N is an actual parameter of a function of a
422
   --  procedure call. If so, then Formal points to the entity for the formal
423
   --  (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
424
   --  Call is set to the node for the corresponding call. If the node N is not
425
   --  an actual parameter then Formal and Call are set to Empty.
426
 
427
   function Find_Corresponding_Discriminant
428
     (Id   : Node_Id;
429
      Typ  : Entity_Id) return Entity_Id;
430
   --  Because discriminants may have different names in a generic unit and in
431
   --  an instance, they are resolved positionally when possible. A reference
432
   --  to a discriminant carries the discriminant that it denotes when it is
433
   --  analyzed. Subsequent uses of this id on a different type denotes the
434
   --  discriminant at the same position in this new type.
435
 
436
   procedure Find_Overlaid_Entity
437
     (N : Node_Id;
438
      Ent : out Entity_Id;
439
      Off : out Boolean);
440
   --  The node N should be an address representation clause. Determines if
441
   --  the target expression is the address of an entity with an optional
442
   --  offset. If so, set Ent to the entity and, if there is an offset, set
443
   --  Off to True, otherwise to False. If N is not an address representation
444
   --  clause, or if it is not possible to determine that the address is of
445
   --  this form, then set Ent to Empty.
446
 
447
   function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
448
   --  Return the type of formal parameter Param as determined by its
449
   --  specification.
450
 
451
   function Find_Static_Alternative (N : Node_Id) return Node_Id;
452
   --  N is a case statement whose expression is a compile-time value.
453
   --  Determine the alternative chosen, so that the code of non-selected
454
   --  alternatives, and the warnings that may apply to them, are removed.
455
 
456
   function Find_Body_Discriminal
457
     (Spec_Discriminant : Entity_Id) return Entity_Id;
458
   --  Given a discriminant of the record type that implements a task or
459
   --  protected type, return the discriminal of the corresponding discriminant
460
   --  of the actual concurrent type.
461
 
462
   function First_Actual (Node : Node_Id) return Node_Id;
463
   --  Node is an N_Function_Call or N_Procedure_Call_Statement node. The
464
   --  result returned is the first actual parameter in declaration order
465
   --  (not the order of parameters as they appeared in the source, which
466
   --  can be quite different as a result of the use of named parameters).
467
   --  Empty is returned for a call with no parameters. The procedure for
468
   --  iterating through the actuals in declaration order is to use this
469
   --  function to find the first actual, and then use Next_Actual to obtain
470
   --  the next actual in declaration order. Note that the value returned
471
   --  is always the expression (not the N_Parameter_Association nodes,
472
   --  even if named association is used).
473
 
474
   procedure Gather_Components
475
     (Typ           : Entity_Id;
476
      Comp_List     : Node_Id;
477
      Governed_By   : List_Id;
478
      Into          : Elist_Id;
479
      Report_Errors : out Boolean);
480
   --  The purpose of this procedure is to gather the valid components in a
481
   --  record type according to the values of its discriminants, in order to
482
   --  validate the components of a record aggregate.
483
   --
484
   --    Typ is the type of the aggregate when its constrained discriminants
485
   --      need to be collected, otherwise it is Empty.
486
   --
487
   --    Comp_List is an N_Component_List node.
488
   --
489
   --    Governed_By is a list of N_Component_Association nodes, where each
490
   --     choice list contains the name of a discriminant and the expression
491
   --     field gives its value. The values of the discriminants governing
492
   --     the (possibly nested) variant parts in Comp_List are found in this
493
   --     Component_Association List.
494
   --
495
   --    Into is the list where the valid components are appended. Note that
496
   --     Into need not be an Empty list. If it's not, components are attached
497
   --     to its tail.
498
   --
499
   --    Report_Errors is set to True if the values of the discriminants are
500
   --     non-static.
501
   --
502
   --  This procedure is also used when building a record subtype. If the
503
   --  discriminant constraint of the subtype is static, the components of the
504
   --  subtype are only those of the variants selected by the values of the
505
   --  discriminants. Otherwise all components of the parent must be included
506
   --  in the subtype for semantic analysis.
507
 
508
   function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
509
   --  Given a node for an expression, obtain the actual subtype of the
510
   --  expression. In the case of a parameter where the formal is an
511
   --  unconstrained array or discriminated type, this will be the previously
512
   --  constructed subtype of the actual. Note that this is not quite the
513
   --  "Actual Subtype" of the RM, since it is always a constrained type, i.e.
514
   --  it is the subtype of the value of the actual. The actual subtype is also
515
   --  returned in other cases where it has already been constructed for an
516
   --  object. Otherwise the expression type is returned unchanged, except for
517
   --  the case of an unconstrained array type, where an actual subtype is
518
   --  created, using Insert_Actions if necessary to insert any associated
519
   --  actions.
520
 
521
   function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
522
   --  This is like Get_Actual_Subtype, except that it never constructs an
523
   --  actual subtype. If an actual subtype is already available, i.e. the
524
   --  Actual_Subtype field of the corresponding entity is set, then it is
525
   --  returned. Otherwise the Etype of the node is returned.
526
 
527
   function Get_Body_From_Stub (N : Node_Id) return Node_Id;
528
   --  Return the body node for a stub (subprogram or package)
529
 
530
   function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
531
   --  This is used to construct the string literal node representing a
532
   --  default external name, i.e. one that is constructed from the name of an
533
   --  entity, or (in the case of extended DEC import/export pragmas, an
534
   --  identifier provided as the external name. Letters in the name are
535
   --  according to the setting of Opt.External_Name_Default_Casing.
536
 
537
   function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
538
   --  If expression N references a part of an object, return this object.
539
   --  Otherwise return Empty. Expression N should have been resolved already.
540
 
541
   function Get_Ensures_From_Test_Case_Pragma (N : Node_Id) return Node_Id;
542
   --  Return the Ensures component of Test_Case pragma N, or Empty otherwise
543
 
544
   function Get_Generic_Entity (N : Node_Id) return Entity_Id;
545
   --  Returns the true generic entity in an instantiation. If the name in the
546
   --  instantiation is a renaming, the function returns the renamed generic.
547
 
548
   procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
549
   --  This procedure assigns to L and H respectively the values of the low and
550
   --  high bounds of node N, which must be a range, subtype indication, or the
551
   --  name of a scalar subtype. The result in L, H may be set to Error if
552
   --  there was an earlier error in the range.
553
 
554
   function Get_Enum_Lit_From_Pos
555
     (T   : Entity_Id;
556
      Pos : Uint;
557
      Loc : Source_Ptr) return Node_Id;
558
   --  This function returns an identifier denoting the E_Enumeration_Literal
559
   --  entity for the specified value from the enumeration type or subtype T.
560
   --  The second argument is the Pos value, which is assumed to be in range.
561
   --  The third argument supplies a source location for constructed nodes
562
   --  returned by this function.
563
 
564
   procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
565
   --  Retrieve the fully expanded name of the library unit declared by
566
   --  Decl_Node into the name buffer.
567
 
568
   function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
569
   pragma Inline (Get_Name_Entity_Id);
570
   --  An entity value is associated with each name in the name table. The
571
   --  Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
572
   --  is the innermost visible entity with the given name. See the body of
573
   --  Sem_Ch8 for further details on handling of entity visibility.
574
 
575
   function Get_Name_From_Test_Case_Pragma (N : Node_Id) return String_Id;
576
   --  Return the Name component of Test_Case pragma N
577
 
578
   function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
579
   pragma Inline (Get_Pragma_Id);
580
   --  Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
581
 
582
   function Get_Referenced_Object (N : Node_Id) return Node_Id;
583
   --  Given a node, return the renamed object if the node represents a renamed
584
   --  object, otherwise return the node unchanged. The node may represent an
585
   --  arbitrary expression.
586
 
587
   function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
588
   --  Given an entity for an exception, package, subprogram or generic unit,
589
   --  returns the ultimately renamed entity if this is a renaming. If this is
590
   --  not a renamed entity, returns its argument. It is an error to call this
591
   --  with any other kind of entity.
592
 
593
   function Get_Requires_From_Test_Case_Pragma (N : Node_Id) return Node_Id;
594
   --  Return the Requires component of Test_Case pragma N, or Empty otherwise
595
 
596
   function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
597
   --  Nod is either a procedure call statement, or a function call, or an
598
   --  accept statement node. This procedure finds the Entity_Id of the related
599
   --  subprogram or entry and returns it, or if no subprogram can be found,
600
   --  returns Empty.
601
 
602
   function Get_Subprogram_Body (E : Entity_Id) return Node_Id;
603
   --  Given the entity for a subprogram (E_Function or E_Procedure), return
604
   --  the corresponding N_Subprogram_Body node. If the corresponding body
605
   --  is missing (as for an imported subprogram), return Empty.
606
 
607
   function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
608
   pragma Inline (Get_Task_Body_Procedure);
609
   --  Given an entity for a task type or subtype, retrieves the
610
   --  Task_Body_Procedure field from the corresponding task type declaration.
611
 
612
   function Has_Access_Values (T : Entity_Id) return Boolean;
613
   --  Returns true if type or subtype T is an access type, or has a component
614
   --  (at any recursive level) that is an access type. This is a conservative
615
   --  predicate, if it is not known whether or not T contains access values
616
   --  (happens for generic formals in some cases), then False is returned.
617
   --  Note that tagged types return False. Even though the tag is implemented
618
   --  as an access type internally, this function tests only for access types
619
   --  known to the programmer. See also Has_Tagged_Component.
620
 
621
   type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
622
   --  Result of Has_Compatible_Alignment test, description found below. Note
623
   --  that the values are arranged in increasing order of problematicness.
624
 
625
   function Has_Compatible_Alignment
626
     (Obj  : Entity_Id;
627
      Expr : Node_Id) return Alignment_Result;
628
   --  Obj is an object entity, and expr is a node for an object reference. If
629
   --  the alignment of the object referenced by Expr is known to be compatible
630
   --  with the alignment of Obj (i.e. is larger or the same), then the result
631
   --  is Known_Compatible. If the alignment of the object referenced by Expr
632
   --  is known to be less than the alignment of Obj, then Known_Incompatible
633
   --  is returned. If neither condition can be reliably established at compile
634
   --  time, then Unknown is returned. This is used to determine if alignment
635
   --  checks are required for address clauses, and also whether copies must
636
   --  be made when objects are passed by reference.
637
   --
638
   --  Note: Known_Incompatible does not mean that at run time the alignment
639
   --  of Expr is known to be wrong for Obj, just that it can be determined
640
   --  that alignments have been explicitly or implicitly specified which are
641
   --  incompatible (whereas Unknown means that even this is not known). The
642
   --  appropriate reaction of a caller to Known_Incompatible is to treat it as
643
   --  Unknown, but issue a warning that there may be an alignment error.
644
 
645
   function Has_Declarations (N : Node_Id) return Boolean;
646
   --  Determines if the node can have declarations
647
 
648
   function Has_Discriminant_Dependent_Constraint
649
     (Comp : Entity_Id) return Boolean;
650
   --  Returns True if and only if Comp has a constrained subtype that depends
651
   --  on a discriminant.
652
 
653
   function Has_Infinities (E : Entity_Id) return Boolean;
654
   --  Determines if the range of the floating-point type E includes
655
   --  infinities. Returns False if E is not a floating-point type.
656
 
657
   function Has_Interfaces
658
     (T             : Entity_Id;
659
      Use_Full_View : Boolean := True) return Boolean;
660
   --  Where T is a concurrent type or a record type, returns true if T covers
661
   --  any abstract interface types. In case of private types the argument
662
   --  Use_Full_View controls if the check is done using its full view (if
663
   --  available).
664
 
665
   function Has_Null_Exclusion (N : Node_Id) return Boolean;
666
   --  Determine whether node N has a null exclusion
667
 
668
   function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
669
   --  Predicate to determine whether a controlled type has a user-defined
670
   --  Initialize primitive (and, in Ada 2012, whether that primitive is
671
   --  non-null), which causes the type to not have preelaborable
672
   --  initialization.
673
 
674
   function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
675
   --  Return True iff type E has preelaborable initialization as defined in
676
   --  Ada 2005 (see AI-161 for details of the definition of this attribute).
677
 
678
   function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
679
   --  Check if a type has a (sub)component of a private type that has not
680
   --  yet received a full declaration.
681
 
682
   function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
683
   --  Return whether an array type has static bounds
684
 
685
   function Has_Stream (T : Entity_Id) return Boolean;
686
   --  Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
687
   --  case of a composite type, has a component for which this predicate is
688
   --  True, and if so returns True. Otherwise a result of False means that
689
   --  there is no Stream type in sight. For a private type, the test is
690
   --  applied to the underlying type (or returns False if there is no
691
   --  underlying type).
692
 
693
   function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
694
   --  Returns true if the last character of E is Suffix. Used in Assertions.
695
 
696
   function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
697
   --  Returns the name of E adding Suffix
698
 
699
   function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
700
   --  Returns the name of E without Suffix
701
 
702
   function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
703
   --  Returns True if Typ is a composite type (array or record) which is
704
   --  either itself a tagged type, or has a component (recursively) which is
705
   --  a tagged type. Returns False for non-composite type, or if no tagged
706
   --  component is present. This function is used to check if "=" has to be
707
   --  expanded into a bunch component comparisons.
708
 
709
   function Implementation_Kind (Subp : Entity_Id) return Name_Id;
710
   --  Subp is a subprogram marked with pragma Implemented. Return the specific
711
   --  implementation requirement which the pragma imposes. The return value is
712
   --  either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
713
 
714
   function Implements_Interface
715
     (Typ_Ent         : Entity_Id;
716
      Iface_Ent       : Entity_Id;
717
      Exclude_Parents : Boolean := False) return Boolean;
718
   --  Returns true if the Typ_Ent implements interface Iface_Ent
719
 
720
   function In_Instance return Boolean;
721
   --  Returns True if the current scope is within a generic instance
722
 
723
   function In_Instance_Body return Boolean;
724
   --  Returns True if current scope is within the body of an instance, where
725
   --  several semantic checks (e.g. accessibility checks) are relaxed.
726
 
727
   function In_Instance_Not_Visible return Boolean;
728
   --  Returns True if current scope is with the private part or the body of
729
   --  an instance. Other semantic checks are suppressed in this context.
730
 
731
   function In_Instance_Visible_Part return Boolean;
732
   --  Returns True if current scope is within the visible part of a package
733
   --  instance, where several additional semantic checks apply.
734
 
735
   function In_Package_Body return Boolean;
736
   --  Returns True if current scope is within a package body
737
 
738
   function In_Parameter_Specification (N : Node_Id) return Boolean;
739
   --  Returns True if node N belongs to a parameter specification
740
 
741
   function In_Subprogram_Or_Concurrent_Unit return Boolean;
742
   --  Determines if the current scope is within a subprogram compilation unit
743
   --  (inside a subprogram declaration, subprogram body, or generic
744
   --  subprogram declaration) or within a task or protected body. The test is
745
   --  for appearing anywhere within such a construct (that is it does not need
746
   --  to be directly within).
747
 
748
   function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
749
   --  Determine whether a declaration occurs within the visible part of a
750
   --  package specification. The package must be on the scope stack, and the
751
   --  corresponding private part must not.
752
 
753
   function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id;
754
   --  Given the entity of a type, retrieve the incomplete or private view of
755
   --  the same type. Note that Typ may not have a partial view to begin with,
756
   --  in that case the function returns Empty.
757
 
758
   procedure Insert_Explicit_Dereference (N : Node_Id);
759
   --  In a context that requires a composite or subprogram type and where a
760
   --  prefix is an access type, rewrite the access type node N (which is the
761
   --  prefix, e.g. of an indexed component) as an explicit dereference.
762
 
763
   procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
764
   --  Examine all deferred constants in the declaration list Decls and check
765
   --  whether they have been completed by a full constant declaration or an
766
   --  Import pragma. Emit the error message if that is not the case.
767
 
768
   function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
769
   --  Determines if N is an actual parameter of out mode in a subprogram call
770
 
771
   function Is_Actual_Parameter (N : Node_Id) return Boolean;
772
   --  Determines if N is an actual parameter in a subprogram call
773
 
774
   function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
775
   --  Determines if N is an actual parameter of a formal of tagged type in a
776
   --  subprogram call.
777
 
778
   function Is_Aliased_View (Obj : Node_Id) return Boolean;
779
   --  Determine if Obj is an aliased view, i.e. the name of an object to which
780
   --  'Access or 'Unchecked_Access can apply. Note that this routine uses the
781
   --  rules of the language, it does not take into account the restriction
782
   --  No_Implicit_Aliasing, so it can return True if the restriction is active
783
   --  and Obj violates the restriction. The caller is responsible for calling
784
   --  Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
785
   --  requirement for obeying the restriction in the call context.
786
 
787
   function Is_Ancestor_Package
788
     (E1 : Entity_Id;
789
      E2 : Entity_Id) return Boolean;
790
   --  Determine whether package E1 is an ancestor of E2
791
 
792
   function Is_Atomic_Object (N : Node_Id) return Boolean;
793
   --  Determines if the given node denotes an atomic object in the sense of
794
   --  the legality checks described in RM C.6(12).
795
 
796
   function Is_Controlling_Limited_Procedure
797
     (Proc_Nam : Entity_Id) return Boolean;
798
   --  Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
799
   --  of a limited interface with a controlling first parameter.
800
 
801
   function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
802
   --  Returns True if N is a call to a CPP constructor
803
 
804
   function Is_Dependent_Component_Of_Mutable_Object
805
     (Object : Node_Id) return Boolean;
806
   --  Returns True if Object is the name of a subcomponent that depends on
807
   --  discriminants of a variable whose nominal subtype is unconstrained and
808
   --  not indefinite, and the variable is not aliased. Otherwise returns
809
   --  False. The nodes passed to this function are assumed to denote objects.
810
 
811
   function Is_Dereferenced (N : Node_Id) return Boolean;
812
   --  N is a subexpression node of an access type. This function returns true
813
   --  if N appears as the prefix of a node that does a dereference of the
814
   --  access value (selected/indexed component, explicit dereference or a
815
   --  slice), and false otherwise.
816
 
817
   function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
818
   --  Returns True if type T1 is a descendent of type T2, and false otherwise.
819
   --  This is the RM definition, a type is a descendent of another type if it
820
   --  is the same type or is derived from a descendent of the other type.
821
 
822
   function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
823
   --  First determine whether type T is an interface and then check whether
824
   --  it is of protected, synchronized or task kind.
825
 
826
   function Is_Expression_Function (Subp : Entity_Id) return Boolean;
827
   --  Predicate to determine whether a function entity comes from a rewritten
828
   --  expression function, and should be inlined unconditionally.
829
 
830
   function Is_False (U : Uint) return Boolean;
831
   pragma Inline (Is_False);
832
   --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
833
   --  operand (i.e. is either 0 for False, or 1 for True). This function tests
834
   --  if it is False (i.e. zero).
835
 
836
   function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
837
   --  Returns True iff the number U is a model number of the fixed-point type
838
   --  T, i.e. if it is an exact multiple of Small.
839
 
840
   function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
841
   --  Typ is a type entity. This function returns true if this type is fully
842
   --  initialized, meaning that an object of the type is fully initialized.
843
   --  Note that initialization resulting from use of pragma Normalized_Scalars
844
   --  does not count. Note that this is only used for the purpose of issuing
845
   --  warnings for objects that are potentially referenced uninitialized. This
846
   --  means that the result returned is not crucial, but should err on the
847
   --  side of thinking things are fully initialized if it does not know.
848
 
849
   function Is_Inherited_Operation (E : Entity_Id) return Boolean;
850
   --  E is a subprogram. Return True is E is an implicit operation inherited
851
   --  by a derived type declaration.
852
 
853
   function Is_Inherited_Operation_For_Type
854
     (E   : Entity_Id;
855
      Typ : Entity_Id) return Boolean;
856
   --  E is a subprogram. Return True is E is an implicit operation inherited
857
   --  by the derived type declaration for type Typ.
858
 
859
   function Is_Iterator (Typ : Entity_Id) return Boolean;
860
   --  AI05-0139-2: Check whether Typ is one of the predefined interfaces in
861
   --  Ada.Iterator_Interfaces, or it is derived from one.
862
 
863
   function Is_LHS (N : Node_Id) return Boolean;
864
   --  Returns True iff N is used as Name in an assignment statement
865
 
866
   function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
867
   --  A library-level declaration is one that is accessible from Standard,
868
   --  i.e. a library unit or an entity declared in a library package.
869
 
870
   function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
871
   --  Determine whether a given arbitrary type is a limited class-wide type
872
 
873
   function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
874
   --  Determines whether Expr is a reference to a variable or IN OUT mode
875
   --  parameter of the current enclosing subprogram.
876
   --  Why are OUT parameters not considered here ???
877
 
878
   function Is_Object_Reference (N : Node_Id) return Boolean;
879
   --  Determines if the tree referenced by N represents an object. Both
880
   --  variable and constant objects return True (compare Is_Variable).
881
 
882
   function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
883
   --  Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
884
   --  Note that the Is_Variable function is not quite the right test because
885
   --  this is a case in which conversions whose expression is a variable (in
886
   --  the Is_Variable sense) with a non-tagged type target are considered view
887
   --  conversions and hence variables.
888
 
889
   function Is_Partially_Initialized_Type
890
     (Typ              : Entity_Id;
891
      Include_Implicit : Boolean := True) return Boolean;
892
   --  Typ is a type entity. This function returns true if this type is partly
893
   --  initialized, meaning that an object of the type is at least partly
894
   --  initialized (in particular in the record case, that at least one
895
   --  component has an initialization expression). Note that initialization
896
   --  resulting from the use of pragma Normalized_Scalars does not count.
897
   --  Include_Implicit controls whether implicit initialization of access
898
   --  values to null, and of discriminant values, is counted as making the
899
   --  type be partially initialized. For the default setting of True, these
900
   --  implicit cases do count, and discriminated types or types containing
901
   --  access values not explicitly initialized will return True. Otherwise
902
   --  if Include_Implicit is False, these cases do not count as making the
903
   --  type be partially initialized.
904
 
905
   function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
906
   --  Determines if type T is a potentially persistent type. A potentially
907
   --  persistent type is defined (recursively) as a scalar type, a non-tagged
908
   --  record whose components are all of a potentially persistent type, or an
909
   --  array with all static constraints whose component type is potentially
910
   --  persistent. A private type is potentially persistent if the full type
911
   --  is potentially persistent.
912
 
913
   function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
914
   --  Return True if node N denotes a protected type name which represents
915
   --  the current instance of a protected object according to RM 9.4(21/2).
916
 
917
   function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
918
   --  Return True if a compilation unit is the specification or the
919
   --  body of a remote call interface package.
920
 
921
   function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
922
   --  Return True if E is a remote access-to-class-wide type
923
 
924
   function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
925
   --  Return True if E is a remote access to subprogram type
926
 
927
   function Is_Remote_Call (N : Node_Id) return Boolean;
928
   --  Return True if N denotes a potentially remote call
929
 
930
   function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
931
   --  Return True if Proc_Nam is a procedure renaming of an entry
932
 
933
   function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
934
   --  AI05-0139-2: Check whether Typ is derived from the predefined interface
935
   --  Ada.Iterator_Interfaces.Reversible_Iterator.
936
 
937
   function Is_Selector_Name (N : Node_Id) return Boolean;
938
   --  Given an N_Identifier node N, determines if it is a Selector_Name.
939
   --  As described in Sinfo, Selector_Names are special because they
940
   --  represent use of the N_Identifier node for a true identifier, when
941
   --  normally such nodes represent a direct name.
942
 
943
   function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean;
944
   --  Determines if the tree referenced by N represents an initialization
945
   --  expression in SPARK, suitable for initializing an object in an object
946
   --  declaration.
947
 
948
   function Is_SPARK_Object_Reference (N : Node_Id) return Boolean;
949
   --  Determines if the tree referenced by N represents an object in SPARK
950
 
951
   function Is_Statement (N : Node_Id) return Boolean;
952
   pragma Inline (Is_Statement);
953
   --  Check if the node N is a statement node. Note that this includes
954
   --  the case of procedure call statements (unlike the direct use of
955
   --  the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
956
   --  Note that a label is *not* a statement, and will return False.
957
 
958
   function Is_Subprogram_Stub_Without_Prior_Declaration
959
     (N : Node_Id) return Boolean;
960
   --  Return True if N is a subprogram stub with no prior subprogram
961
   --  declaration.
962
 
963
   function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
964
   --  Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
965
 
966
   function Is_Transfer (N : Node_Id) return Boolean;
967
   --  Returns True if the node N is a statement which is known to cause an
968
   --  unconditional transfer of control at runtime, i.e. the following
969
   --  statement definitely will not be executed.
970
 
971
   function Is_True (U : Uint) return Boolean;
972
   pragma Inline (Is_True);
973
   --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
974
   --  operand (i.e. is either 0 for False, or 1 for True). This function tests
975
   --  if it is True (i.e. non-zero).
976
 
977
   function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
978
   pragma Inline (Is_Universal_Numeric_Type);
979
   --  True if T is Universal_Integer or Universal_Real
980
 
981
   function Is_Value_Type (T : Entity_Id) return Boolean;
982
   --  Returns true if type T represents a value type. This is only relevant to
983
   --  CIL, will always return false for other targets. A value type is a CIL
984
   --  object that is accessed directly, as opposed to the other CIL objects
985
   --  that are accessed through managed pointers.
986
 
987
   function Is_VMS_Operator (Op : Entity_Id) return Boolean;
988
   --  Determine whether an operator is one of the intrinsics defined
989
   --  in the DEC system extension.
990
 
991
   function Is_Delegate (T : Entity_Id) return Boolean;
992
   --  Returns true if type T represents a delegate. A Delegate is the CIL
993
   --  object used to represent access-to-subprogram types. This is only
994
   --  relevant to CIL, will always return false for other targets.
995
 
996
   function Is_Variable
997
     (N                 : Node_Id;
998
      Use_Original_Node : Boolean := True) return Boolean;
999
   --  Determines if the tree referenced by N represents a variable, i.e. can
1000
   --  appear on the left side of an assignment. There is one situation (formal
1001
   --  parameters) in which non-tagged type conversions are also considered
1002
   --  variables, but Is_Variable returns False for such cases, since it has
1003
   --  no knowledge of the context. Note that this is the point at which
1004
   --  Assignment_OK is checked, and True is returned for any tree thus marked.
1005
   --  Use_Original_Node is used to perform the test on Original_Node (N). By
1006
   --  default is True since this routine is commonly invoked as part of the
1007
   --  semantic analysis and it must not be disturbed by the rewriten nodes.
1008
 
1009
   function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1010
   --  Check whether T is derived from a visibly controlled type. This is true
1011
   --  if the root type is declared in Ada.Finalization. If T is derived
1012
   --  instead from a private type whose full view is controlled, an explicit
1013
   --  Initialize/Adjust/Finalize subprogram does not override the inherited
1014
   --  one.
1015
 
1016
   function Is_Volatile_Object (N : Node_Id) return Boolean;
1017
   --  Determines if the given node denotes an volatile object in the sense of
1018
   --  the legality checks described in RM C.6(12). Note that the test here is
1019
   --  for something actually declared as volatile, not for an object that gets
1020
   --  treated as volatile (see Einfo.Treat_As_Volatile).
1021
 
1022
   function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1023
   --  Applies to Itypes. True if the Itype is attached to a declaration for
1024
   --  the type through its Parent field, which may or not be present in the
1025
   --  tree.
1026
 
1027
   procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1028
   --  This procedure is called to clear all constant indications from all
1029
   --  entities in the current scope and in any parent scopes if the current
1030
   --  scope is a block or a package (and that recursion continues to the top
1031
   --  scope that is not a block or a package). This is used when the
1032
   --  sequential flow-of-control assumption is violated (occurrence of a
1033
   --  label, head of a loop, or start of an exception handler). The effect of
1034
   --  the call is to clear the Constant_Value field (but we do not need to
1035
   --  clear the Is_True_Constant flag, since that only gets reset if there
1036
   --  really is an assignment somewhere in the entity scope). This procedure
1037
   --  also calls Kill_All_Checks, since this is a special case of needing to
1038
   --  forget saved values. This procedure also clears the Is_Known_Null and
1039
   --  Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1040
   --  parameters since these are also not known to be trustable any more.
1041
   --
1042
   --  The Last_Assignment_Only flag is set True to clear only Last_Assignment
1043
   --  fields and leave other fields unchanged. This is used when we encounter
1044
   --  an unconditional flow of control change (return, goto, raise). In such
1045
   --  cases we don't need to clear the current values, since it may be that
1046
   --  the flow of control change occurs in a conditional context, and if it
1047
   --  is not taken, then it is just fine to keep the current values. But the
1048
   --  Last_Assignment field is different, if we have a sequence assign-to-v,
1049
   --  conditional-return, assign-to-v, we do not want to complain that the
1050
   --  second assignment clobbers the first.
1051
 
1052
   procedure Kill_Current_Values
1053
     (Ent                  : Entity_Id;
1054
      Last_Assignment_Only : Boolean := False);
1055
   --  This performs the same processing as described above for the form with
1056
   --  no argument, but for the specific entity given. The call has no effect
1057
   --  if the entity Ent is not for an object. Last_Assignment_Only has the
1058
   --  same meaning as for the call with no Ent.
1059
 
1060
   procedure Kill_Size_Check_Code (E : Entity_Id);
1061
   --  Called when an address clause or pragma Import is applied to an entity.
1062
   --  If the entity is a variable or a constant, and size check code is
1063
   --  present, this size check code is killed, since the object will not be
1064
   --  allocated by the program.
1065
 
1066
   function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1067
   --  The node N is an entity reference. This function determines whether the
1068
   --  reference is for sure an assignment of the entity, returning True if
1069
   --  so. This differs from May_Be_Lvalue in that it defaults in the other
1070
   --  direction. Cases which may possibly be assignments but are not known to
1071
   --  be may return True from May_Be_Lvalue, but False from this function.
1072
 
1073
   function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1074
   --  HSS is a handled statement sequence. This function returns the last
1075
   --  statement in Statements (HSS) that has Comes_From_Source set. If no
1076
   --  such statement exists, Empty is returned.
1077
 
1078
   function Make_Simple_Return_Statement
1079
     (Sloc       : Source_Ptr;
1080
      Expression : Node_Id := Empty) return Node_Id
1081
     renames Make_Return_Statement;
1082
   --  See Sinfo. We rename Make_Return_Statement to the correct Ada 2005
1083
   --  terminology here. Clients should use Make_Simple_Return_Statement.
1084
 
1085
   function Matching_Static_Array_Bounds
1086
     (L_Typ : Node_Id;
1087
      R_Typ : Node_Id) return Boolean;
1088
   --  L_Typ and R_Typ are two array types. Returns True when they have the
1089
   --  same number of dimensions, and the same static bounds for each index
1090
   --  position.
1091
 
1092
   Make_Return_Statement : constant := -2 ** 33;
1093
   --  Attempt to prevent accidental uses of Make_Return_Statement. If this
1094
   --  and the one in Nmake are both potentially use-visible, it will cause
1095
   --  a compilation error. Note that type and value are irrelevant.
1096
 
1097
   N_Return_Statement : constant := -2**33;
1098
   --  Attempt to prevent accidental uses of N_Return_Statement; similar to
1099
   --  Make_Return_Statement above.
1100
 
1101
   procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1102
   --  Given a node which designates the context of analysis and an origin in
1103
   --  the tree, traverse from Root_Nod and mark all allocators as either
1104
   --  dynamic or static depending on Context_Nod. Any erroneous marking is
1105
   --  cleaned up during resolution.
1106
 
1107
   function May_Be_Lvalue (N : Node_Id) return Boolean;
1108
   --  Determines if N could be an lvalue (e.g. an assignment left hand side).
1109
   --  An lvalue is defined as any expression which appears in a context where
1110
   --  a name is required by the syntax, and the identity, rather than merely
1111
   --  the value of the node is needed (for example, the prefix of an Access
1112
   --  attribute is in this category). Note that, as implied by the name, this
1113
   --  test is conservative. If it cannot be sure that N is NOT an lvalue, then
1114
   --  it returns True. It tries hard to get the answer right, but it is hard
1115
   --  to guarantee this in all cases. Note that it is more possible to give
1116
   --  correct answer if the tree is fully analyzed.
1117
 
1118
   function Needs_One_Actual (E : Entity_Id) return Boolean;
1119
   --  Returns True if a function has defaults for all but its first
1120
   --  formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1121
   --  results from an indexing of a function call written in prefix form.
1122
 
1123
   function New_Copy_List_Tree (List : List_Id) return List_Id;
1124
   --  Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1125
   --  below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1126
   --  nodes (entities) either directly or indirectly using this function.
1127
 
1128
   function New_Copy_Tree
1129
     (Source    : Node_Id;
1130
      Map       : Elist_Id   := No_Elist;
1131
      New_Sloc  : Source_Ptr := No_Location;
1132
      New_Scope : Entity_Id  := Empty) return Node_Id;
1133
   --  Given a node that is the root of a subtree, Copy_Tree copies the entire
1134
   --  syntactic subtree, including recursively any descendents whose parent
1135
   --  field references a copied node (descendents not linked to a copied node
1136
   --  by the parent field are not copied, instead the copied tree references
1137
   --  the same descendent as the original in this case, which is appropriate
1138
   --  for non-syntactic fields such as Etype). The parent pointers in the
1139
   --  copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1140
   --  The one exception to the rule of not copying semantic fields is that
1141
   --  any implicit types attached to the subtree are duplicated, so that
1142
   --  the copy contains a distinct set of implicit type entities. Thus this
1143
   --  function is used when it is necessary to duplicate an analyzed tree,
1144
   --  declared in the same or some other compilation unit. This function is
1145
   --  declared here rather than in atree because it uses semantic information
1146
   --  in particular concerning the structure of itypes and the generation of
1147
   --  public symbols.
1148
 
1149
   --  The Map argument, if set to a non-empty Elist, specifies a set of
1150
   --  mappings to be applied to entities in the tree. The map has the form:
1151
   --
1152
   --     old entity 1
1153
   --     new entity to replace references to entity 1
1154
   --     old entity 2
1155
   --     new entity to replace references to entity 2
1156
   --     ...
1157
   --
1158
   --  The call destroys the contents of Map in this case
1159
   --
1160
   --  The parameter New_Sloc, if set to a value other than No_Location, is
1161
   --  used as the Sloc value for all nodes in the new copy. If New_Sloc is
1162
   --  set to its default value No_Location, then the Sloc values of the
1163
   --  nodes in the copy are simply copied from the corresponding original.
1164
   --
1165
   --  The Comes_From_Source indication is unchanged if New_Sloc is set to
1166
   --  the default No_Location value, but is reset if New_Sloc is given, since
1167
   --  in this case the result clearly is neither a source node or an exact
1168
   --  copy of a source node.
1169
   --
1170
   --  The parameter New_Scope, if set to a value other than Empty, is the
1171
   --  value to use as the Scope for any Itypes that are copied. The most
1172
   --  typical value for this parameter, if given, is Current_Scope.
1173
 
1174
   function New_External_Entity
1175
     (Kind         : Entity_Kind;
1176
      Scope_Id     : Entity_Id;
1177
      Sloc_Value   : Source_Ptr;
1178
      Related_Id   : Entity_Id;
1179
      Suffix       : Character;
1180
      Suffix_Index : Nat := 0;
1181
      Prefix       : Character := ' ') return Entity_Id;
1182
   --  This function creates an N_Defining_Identifier node for an internal
1183
   --  created entity, such as an implicit type or subtype, or a record
1184
   --  initialization procedure. The entity name is constructed with a call
1185
   --  to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1186
   --  that the generated name may be referenced as a public entry, and the
1187
   --  Is_Public flag is set if needed (using Set_Public_Status). If the
1188
   --  entity is for a type or subtype, the size/align fields are initialized
1189
   --  to unknown (Uint_0).
1190
 
1191
   function New_Internal_Entity
1192
     (Kind       : Entity_Kind;
1193
      Scope_Id   : Entity_Id;
1194
      Sloc_Value : Source_Ptr;
1195
      Id_Char    : Character) return Entity_Id;
1196
   --  This function is similar to New_External_Entity, except that the
1197
   --  name is constructed by New_Internal_Name (Id_Char). This is used
1198
   --  when the resulting entity does not have to be referenced as a
1199
   --  public entity (and in this case Is_Public is not set).
1200
 
1201
   procedure Next_Actual (Actual_Id : in out Node_Id);
1202
   pragma Inline (Next_Actual);
1203
   --  Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1204
   --  inline this procedural form, but not the functional form that follows.
1205
 
1206
   function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1207
   --  Find next actual parameter in declaration order. As described for
1208
   --  First_Actual, this is the next actual in the declaration order, not
1209
   --  the call order, so this does not correspond to simply taking the
1210
   --  next entry of the Parameter_Associations list. The argument is an
1211
   --  actual previously returned by a call to First_Actual or Next_Actual.
1212
   --  Note that the result produced is always an expression, not a parameter
1213
   --  association node, even if named notation was used.
1214
 
1215
   procedure Normalize_Actuals
1216
     (N       : Node_Id;
1217
      S       : Entity_Id;
1218
      Report  : Boolean;
1219
      Success : out Boolean);
1220
   --  Reorders lists of actuals according to names of formals, value returned
1221
   --  in Success indicates success of reordering. For more details, see body.
1222
   --  Errors are reported only if Report is set to True.
1223
 
1224
   procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1225
   --  This routine is called if the sub-expression N maybe the target of
1226
   --  an assignment (e.g. it is the left side of an assignment, used as
1227
   --  an out parameters, or used as prefixes of access attributes). It
1228
   --  sets May_Be_Modified in the associated entity if there is one,
1229
   --  taking into account the rule that in the case of renamed objects,
1230
   --  it is the flag in the renamed object that must be set.
1231
   --
1232
   --  The parameter Sure is set True if the modification is sure to occur
1233
   --  (e.g. target of assignment, or out parameter), and to False if the
1234
   --  modification is only potential (e.g. address of entity taken).
1235
 
1236
   function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1237
   --  [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1238
   --  or overrides an inherited dispatching primitive S2, the original
1239
   --  corresponding operation of S is the original corresponding operation of
1240
   --  S2. Otherwise, it is S itself.
1241
 
1242
   function Object_Access_Level (Obj : Node_Id) return Uint;
1243
   --  Return the accessibility level of the view of the object Obj.
1244
   --  For convenience, qualified expressions applied to object names
1245
   --  are also allowed as actuals for this function.
1246
 
1247
   function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1248
   --  Returns True if the names of both entities correspond with matching
1249
   --  primitives. This routine includes support for the case in which one
1250
   --  or both entities correspond with entities built by Derive_Subprogram
1251
   --  with a special name to avoid being overridden (i.e. return true in case
1252
   --  of entities with names "nameP" and "name" or vice versa).
1253
 
1254
   function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1255
   --  Returns some private component (if any) of the given Type_Id.
1256
   --  Used to enforce the rules on visibility of operations on composite
1257
   --  types, that depend on the full view of the component type. For a
1258
   --  record type there may be several such components, we just return
1259
   --  the first one.
1260
 
1261
   procedure Process_End_Label
1262
     (N   : Node_Id;
1263
      Typ : Character;
1264
      Ent : Entity_Id);
1265
   --  N is a node whose End_Label is to be processed, generating all
1266
   --  appropriate cross-reference entries, and performing style checks
1267
   --  for any identifier references in the end label. Typ is either
1268
   --  'e' or 't indicating the type of the cross-reference entity
1269
   --  (e for spec, t for body, see Lib.Xref spec for details). The
1270
   --  parameter Ent gives the entity to which the End_Label refers,
1271
   --  and to which cross-references are to be generated.
1272
 
1273
   function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1274
   --  Returns True if the expression Expr contains any references to a
1275
   --  generic type. This can only happen within a generic template.
1276
 
1277
   procedure Remove_Homonym (E : Entity_Id);
1278
   --  Removes E from the homonym chain
1279
 
1280
   function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1281
   --  This is used to construct the second argument in a call to Rep_To_Pos
1282
   --  which is Standard_True if range checks are enabled (E is an entity to
1283
   --  which the Range_Checks_Suppressed test is applied), and Standard_False
1284
   --  if range checks are suppressed. Loc is the location for the node that
1285
   --  is returned (which is a New_Occurrence of the appropriate entity).
1286
   --
1287
   --  Note: one might think that it would be fine to always use True and
1288
   --  to ignore the suppress in this case, but it is generally better to
1289
   --  believe a request to suppress exceptions if possible, and further
1290
   --  more there is at least one case in the generated code (the code for
1291
   --  array assignment in a loop) that depends on this suppression.
1292
 
1293
   procedure Require_Entity (N : Node_Id);
1294
   --  N is a node which should have an entity value if it is an entity name.
1295
   --  If not, then check if there were previous errors. If so, just fill
1296
   --  in with Any_Id and ignore. Otherwise signal a program error exception.
1297
   --  This is used as a defense mechanism against ill-formed trees caused by
1298
   --  previous errors (particularly in -gnatq mode).
1299
 
1300
   function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1301
   --  Id is a type entity. The result is True when temporaries of this type
1302
   --  need to be wrapped in a transient scope to be reclaimed properly when a
1303
   --  secondary stack is in use. Examples of types requiring such wrapping are
1304
   --  controlled types and variable-sized types including unconstrained
1305
   --  arrays.
1306
 
1307
   procedure Reset_Analyzed_Flags (N : Node_Id);
1308
   --  Reset the Analyzed flags in all nodes of the tree whose root is N
1309
 
1310
   function Safe_To_Capture_Value
1311
     (N    : Node_Id;
1312
      Ent  : Entity_Id;
1313
      Cond : Boolean := False) return Boolean;
1314
   --  The caller is interested in capturing a value (either the current value,
1315
   --  or an indication that the value is non-null) for the given entity Ent.
1316
   --  This value can only be captured if sequential execution semantics can be
1317
   --  properly guaranteed so that a subsequent reference will indeed be sure
1318
   --  that this current value indication is correct. The node N is the
1319
   --  construct which resulted in the possible capture of the value (this
1320
   --  is used to check if we are in a conditional).
1321
   --
1322
   --  Cond is used to skip the test for being inside a conditional. It is used
1323
   --  in the case of capturing values from if/while tests, which already do a
1324
   --  proper job of handling scoping issues without this help.
1325
   --
1326
   --  The only entities whose values can be captured are OUT and IN OUT formal
1327
   --  parameters, and variables unless Cond is True, in which case we also
1328
   --  allow IN formals, loop parameters and constants, where we cannot ever
1329
   --  capture actual value information, but we can capture conditional tests.
1330
 
1331
   function Same_Name (N1, N2 : Node_Id) return Boolean;
1332
   --  Determine if two (possibly expanded) names are the same name. This is
1333
   --  a purely syntactic test, and N1 and N2 need not be analyzed.
1334
 
1335
   function Same_Object (Node1, Node2 : Node_Id) return Boolean;
1336
   --  Determine if Node1 and Node2 are known to designate the same object.
1337
   --  This is a semantic test and both nodes must be fully analyzed. A result
1338
   --  of True is decisively correct. A result of False does not necessarily
1339
   --  mean that different objects are designated, just that this could not
1340
   --  be reliably determined at compile time.
1341
 
1342
   function Same_Type (T1, T2 : Entity_Id) return Boolean;
1343
   --  Determines if T1 and T2 represent exactly the same type. Two types
1344
   --  are the same if they are identical, or if one is an unconstrained
1345
   --  subtype of the other, or they are both common subtypes of the same
1346
   --  type with identical constraints. The result returned is conservative.
1347
   --  It is True if the types are known to be the same, but a result of
1348
   --  False is indecisive (e.g. the compiler may not be able to tell that
1349
   --  two constraints are identical).
1350
 
1351
   function Same_Value (Node1, Node2 : Node_Id) return Boolean;
1352
   --  Determines if Node1 and Node2 are known to be the same value, which is
1353
   --  true if they are both compile time known values and have the same value,
1354
   --  or if they are the same object (in the sense of function Same_Object).
1355
   --  A result of False does not necessarily mean they have different values,
1356
   --  just that it is not possible to determine they have the same value.
1357
 
1358
   function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
1359
   --  Determines if the entity Scope1 is the same as Scope2, or if it is
1360
   --  inside it, where both entities represent scopes. Note that scopes
1361
   --  are only partially ordered, so Scope_Within_Or_Same (A,B) and
1362
   --  Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1363
 
1364
   procedure Save_Actual (N : Node_Id; Writable : Boolean := False);
1365
   --  Enter an actual in a call in a table global, for subsequent check of
1366
   --  possible order dependence in the presence of IN OUT parameters for
1367
   --  functions in Ada 2012 (or access parameters in older language versions).
1368
 
1369
   function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
1370
   --  Like Scope_Within_Or_Same, except that this function returns
1371
   --  False in the case where Scope1 and Scope2 are the same scope.
1372
 
1373
   procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
1374
   --  Same as Basic_Set_Convention, but with an extra check for access types.
1375
   --  In particular, if E is an access-to-subprogram type, and Val is a
1376
   --  foreign convention, then we set Can_Use_Internal_Rep to False on E.
1377
 
1378
   procedure Set_Current_Entity (E : Entity_Id);
1379
   pragma Inline (Set_Current_Entity);
1380
   --  Establish the entity E as the currently visible definition of its
1381
   --  associated name (i.e. the Node_Id associated with its name).
1382
 
1383
   procedure Set_Debug_Info_Needed (T : Entity_Id);
1384
   --  Sets the Debug_Info_Needed flag on entity T , and also on any entities
1385
   --  that are needed by T (for an object, the type of the object is needed,
1386
   --  and for a type, various subsidiary types are needed -- see body for
1387
   --  details). Never has any effect on T if the Debug_Info_Off flag is set.
1388
   --  This routine should always be used instead of Set_Needs_Debug_Info to
1389
   --  ensure that subsidiary entities are properly handled.
1390
 
1391
   procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id);
1392
   --  This procedure has the same calling sequence as Set_Entity, but
1393
   --  if Style_Check is set, then it calls a style checking routine which
1394
   --  can check identifier spelling style.
1395
 
1396
   procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
1397
   pragma Inline (Set_Name_Entity_Id);
1398
   --  Sets the Entity_Id value associated with the given name, which is the
1399
   --  Id of the innermost visible entity with the given name. See the body
1400
   --  of package Sem_Ch8 for further details on the handling of visibility.
1401
 
1402
   procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
1403
   --  The arguments may be parameter associations, whose descendants
1404
   --  are the optional formal name and the actual parameter. Positional
1405
   --  parameters are already members of a list, and do not need to be
1406
   --  chained separately. See also First_Actual and Next_Actual.
1407
 
1408
   procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
1409
   pragma Inline (Set_Optimize_Alignment_Flags);
1410
   --  Sets Optimize_Alignment_Space/Time flags in E from current settings
1411
 
1412
   procedure Set_Public_Status (Id : Entity_Id);
1413
   --  If an entity (visible or otherwise) is defined in a library
1414
   --  package, or a package that is itself public, then this subprogram
1415
   --  labels the entity public as well.
1416
 
1417
   procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
1418
   --  N is the node for either a left hand side (Out_Param set to False),
1419
   --  or an Out or In_Out parameter (Out_Param set to True). If there is
1420
   --  an assignable entity being referenced, then the appropriate flag
1421
   --  (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1422
   --  if Out_Param is True) is set True, and the other flag set False.
1423
 
1424
   procedure Set_Scope_Is_Transient (V : Boolean := True);
1425
   --  Set the flag Is_Transient of the current scope
1426
 
1427
   procedure Set_Size_Info (T1, T2 : Entity_Id);
1428
   pragma Inline (Set_Size_Info);
1429
   --  Copies the Esize field and Has_Biased_Representation flag from sub(type)
1430
   --  entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1431
   --  in the fixed-point and discrete cases, and also copies the alignment
1432
   --  value from T2 to T1. It does NOT copy the RM_Size field, which must be
1433
   --  separately set if this is required to be copied also.
1434
 
1435
   function Scope_Is_Transient return Boolean;
1436
   --  True if the current scope is transient
1437
 
1438
   function Static_Boolean (N : Node_Id) return Uint;
1439
   --  This function analyzes the given expression node and then resolves it
1440
   --  as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1441
   --  returned corresponding to the value, otherwise an error message is
1442
   --  output and No_Uint is returned.
1443
 
1444
   function Static_Integer (N : Node_Id) return Uint;
1445
   --  This function analyzes the given expression node and then resolves it
1446
   --  as any integer type. If the result is static, then the value of the
1447
   --  universal expression is returned, otherwise an error message is output
1448
   --  and a value of No_Uint is returned.
1449
 
1450
   function Statically_Different (E1, E2 : Node_Id) return Boolean;
1451
   --  Return True if it can be statically determined that the Expressions
1452
   --  E1 and E2 refer to different objects
1453
 
1454
   function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
1455
   --  Return the accessibility level of the view denoted by Subp
1456
 
1457
   procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
1458
   --  Print debugging information on entry to each unit being analyzed
1459
 
1460
   procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
1461
   --  Move a list of entities from one scope to another, and recompute
1462
   --  Is_Public based upon the new scope.
1463
 
1464
   function Type_Access_Level (Typ : Entity_Id) return Uint;
1465
   --  Return the accessibility level of Typ
1466
 
1467
   function Type_Without_Stream_Operation
1468
     (T  : Entity_Id;
1469
      Op : TSS_Name_Type := TSS_Null) return Entity_Id;
1470
   --  AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
1471
   --  is active then we cannot generate stream subprograms for composite types
1472
   --  with elementary subcomponents that lack user-defined stream subprograms.
1473
   --  This predicate determines whether a type has such an elementary
1474
   --  subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
1475
   --  prevents the construction of a composite stream operation. If Op is
1476
   --  specified we check only for the given stream operation.
1477
 
1478
   function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
1479
   --  Return the entity which represents declaration N, so that different
1480
   --  views of the same entity have the same unique defining entity:
1481
   --  * package spec and body;
1482
   --  * subprogram declaration, subprogram stub and subprogram body;
1483
   --  * private view and full view of a type;
1484
   --  * private view and full view of a deferred constant.
1485
   --  In other cases, return the defining entity for N.
1486
 
1487
   function Unique_Entity (E : Entity_Id) return Entity_Id;
1488
   --  Return the unique entity for entity E, which would be returned by
1489
   --  Unique_Defining_Entity if applied to the enclosing declaration of E.
1490
 
1491
   function Unique_Name (E : Entity_Id) return String;
1492
   --  Return a unique name for entity E, which could be used to identify E
1493
   --  across compilation units.
1494
 
1495
   function Unit_Is_Visible (U : Entity_Id) return Boolean;
1496
   --  Determine whether a compilation unit is visible in the current context,
1497
   --  because there is a with_clause that makes the unit available. Used to
1498
   --  provide better messages on common visiblity errors on operators.
1499
 
1500
   function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
1501
   --  Yields Universal_Integer or Universal_Real if this is a candidate
1502
 
1503
   function Unqualify (Expr : Node_Id) return Node_Id;
1504
   pragma Inline (Unqualify);
1505
   --  Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
1506
   --  returns X. If Expr is not a qualified expression, returns Expr.
1507
 
1508
   function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
1509
   --  [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
1510
   --  of a type extension or private extension declaration. If the full-view
1511
   --  of private parents and progenitors is available then it is used to
1512
   --  generate the list of visible ancestors; otherwise their partial
1513
   --  view is added to the resulting list.
1514
 
1515
   function Within_Init_Proc return Boolean;
1516
   --  Determines if Current_Scope is within an init proc
1517
 
1518
   procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
1519
   --  Output error message for incorrectly typed expression. Expr is the node
1520
   --  for the incorrectly typed construct (Etype (Expr) is the type found),
1521
   --  and Expected_Type is the entity for the expected type. Note that Expr
1522
   --  does not have to be a subexpression, anything with an Etype field may
1523
   --  be used.
1524
 
1525
end Sem_Util;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.