OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ada/] [uintp.adb] - Blame information for rev 768

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 706 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                                U I N T P                                 --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2010, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17
--                                                                          --
18
-- As a special exception under Section 7 of GPL version 3, you are granted --
19
-- additional permissions described in the GCC Runtime Library Exception,   --
20
-- version 3.1, as published by the Free Software Foundation.               --
21
--                                                                          --
22
-- You should have received a copy of the GNU General Public License and    --
23
-- a copy of the GCC Runtime Library Exception along with this program;     --
24
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
27
-- GNAT was originally developed  by the GNAT team at  New York University. --
28
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29
--                                                                          --
30
------------------------------------------------------------------------------
31
 
32
with Output;  use Output;
33
with Tree_IO; use Tree_IO;
34
 
35
with GNAT.HTable; use GNAT.HTable;
36
 
37
package body Uintp is
38
 
39
   ------------------------
40
   -- Local Declarations --
41
   ------------------------
42
 
43
   Uint_Int_First : Uint := Uint_0;
44
   --  Uint value containing Int'First value, set by Initialize. The initial
45
   --  value of Uint_0 is used for an assertion check that ensures that this
46
   --  value is not used before it is initialized. This value is used in the
47
   --  UI_Is_In_Int_Range predicate, and it is right that this is a host value,
48
   --  since the issue is host representation of integer values.
49
 
50
   Uint_Int_Last : Uint;
51
   --  Uint value containing Int'Last value set by Initialize
52
 
53
   UI_Power_2 : array (Int range 0 .. 64) of Uint;
54
   --  This table is used to memoize exponentiations by powers of 2. The Nth
55
   --  entry, if set, contains the Uint value 2 ** N. Initially UI_Power_2_Set
56
   --  is zero and only the 0'th entry is set, the invariant being that all
57
   --  entries in the range 0 .. UI_Power_2_Set are initialized.
58
 
59
   UI_Power_2_Set : Nat;
60
   --  Number of entries set in UI_Power_2;
61
 
62
   UI_Power_10 : array (Int range 0 .. 64) of Uint;
63
   --  This table is used to memoize exponentiations by powers of 10 in the
64
   --  same manner as described above for UI_Power_2.
65
 
66
   UI_Power_10_Set : Nat;
67
   --  Number of entries set in UI_Power_10;
68
 
69
   Uints_Min   : Uint;
70
   Udigits_Min : Int;
71
   --  These values are used to make sure that the mark/release mechanism does
72
   --  not destroy values saved in the U_Power tables or in the hash table used
73
   --  by UI_From_Int. Whenever an entry is made in either of these tables,
74
   --  Uints_Min and Udigits_Min are updated to protect the entry, and Release
75
   --  never cuts back beyond these minimum values.
76
 
77
   Int_0 : constant Int := 0;
78
   Int_1 : constant Int := 1;
79
   Int_2 : constant Int := 2;
80
   --  These values are used in some cases where the use of numeric literals
81
   --  would cause ambiguities (integer vs Uint).
82
 
83
   ----------------------------
84
   -- UI_From_Int Hash Table --
85
   ----------------------------
86
 
87
   --  UI_From_Int uses a hash table to avoid duplicating entries and wasting
88
   --  storage. This is particularly important for complex cases of back
89
   --  annotation.
90
 
91
   subtype Hnum is Nat range 0 .. 1022;
92
 
93
   function Hash_Num (F : Int) return Hnum;
94
   --  Hashing function
95
 
96
   package UI_Ints is new Simple_HTable (
97
     Header_Num => Hnum,
98
     Element    => Uint,
99
     No_Element => No_Uint,
100
     Key        => Int,
101
     Hash       => Hash_Num,
102
     Equal      => "=");
103
 
104
   -----------------------
105
   -- Local Subprograms --
106
   -----------------------
107
 
108
   function Direct (U : Uint) return Boolean;
109
   pragma Inline (Direct);
110
   --  Returns True if U is represented directly
111
 
112
   function Direct_Val (U : Uint) return Int;
113
   --  U is a Uint for is represented directly. The returned result is the
114
   --  value represented.
115
 
116
   function GCD (Jin, Kin : Int) return Int;
117
   --  Compute GCD of two integers. Assumes that Jin >= Kin >= 0
118
 
119
   procedure Image_Out
120
     (Input     : Uint;
121
      To_Buffer : Boolean;
122
      Format    : UI_Format);
123
   --  Common processing for UI_Image and UI_Write, To_Buffer is set True for
124
   --  UI_Image, and false for UI_Write, and Format is copied from the Format
125
   --  parameter to UI_Image or UI_Write.
126
 
127
   procedure Init_Operand (UI : Uint; Vec : out UI_Vector);
128
   pragma Inline (Init_Operand);
129
   --  This procedure puts the value of UI into the vector in canonical
130
   --  multiple precision format. The parameter should be of the correct size
131
   --  as determined by a previous call to N_Digits (UI). The first digit of
132
   --  Vec contains the sign, all other digits are always non-negative. Note
133
   --  that the input may be directly represented, and in this case Vec will
134
   --  contain the corresponding one or two digit value. The low bound of Vec
135
   --  is always 1.
136
 
137
   function Least_Sig_Digit (Arg : Uint) return Int;
138
   pragma Inline (Least_Sig_Digit);
139
   --  Returns the Least Significant Digit of Arg quickly. When the given Uint
140
   --  is less than 2**15, the value returned is the input value, in this case
141
   --  the result may be negative. It is expected that any use will mask off
142
   --  unnecessary bits. This is used for finding Arg mod B where B is a power
143
   --  of two. Hence the actual base is irrelevant as long as it is a power of
144
   --  two.
145
 
146
   procedure Most_Sig_2_Digits
147
     (Left      : Uint;
148
      Right     : Uint;
149
      Left_Hat  : out Int;
150
      Right_Hat : out Int);
151
   --  Returns leading two significant digits from the given pair of Uint's.
152
   --  Mathematically: returns Left / (Base ** K) and Right / (Base ** K) where
153
   --  K is as small as possible S.T. Right_Hat < Base * Base. It is required
154
   --  that Left > Right for the algorithm to work.
155
 
156
   function N_Digits (Input : Uint) return Int;
157
   pragma Inline (N_Digits);
158
   --  Returns number of "digits" in a Uint
159
 
160
   function Sum_Digits (Left : Uint; Sign : Int) return Int;
161
   --  If Sign = 1 return the sum of the "digits" of Abs (Left). If the total
162
   --  has more then one digit then return Sum_Digits of total.
163
 
164
   function Sum_Double_Digits (Left : Uint; Sign : Int) return Int;
165
   --  Same as above but work in New_Base = Base * Base
166
 
167
   procedure UI_Div_Rem
168
     (Left, Right       : Uint;
169
      Quotient          : out Uint;
170
      Remainder         : out Uint;
171
      Discard_Quotient  : Boolean := False;
172
      Discard_Remainder : Boolean := False);
173
   --  Compute Euclidean division of Left by Right. If Discard_Quotient is
174
   --  False then the quotient is returned in Quotient (otherwise Quotient is
175
   --  set to No_Uint). If Discard_Remainder is False, then the remainder is
176
   --  returned in Remainder (otherwise Remainder is set to No_Uint).
177
   --
178
   --  If Discard_Quotient is True, Quotient is set to No_Uint
179
   --  If Discard_Remainder is True, Remainder is set to No_Uint
180
 
181
   function Vector_To_Uint
182
     (In_Vec   : UI_Vector;
183
      Negative : Boolean) return Uint;
184
   --  Functions that calculate values in UI_Vectors, call this function to
185
   --  create and return the Uint value. In_Vec contains the multiple precision
186
   --  (Base) representation of a non-negative value. Leading zeroes are
187
   --  permitted. Negative is set if the desired result is the negative of the
188
   --  given value. The result will be either the appropriate directly
189
   --  represented value, or a table entry in the proper canonical format is
190
   --  created and returned.
191
   --
192
   --  Note that Init_Operand puts a signed value in the result vector, but
193
   --  Vector_To_Uint is always presented with a non-negative value. The
194
   --  processing of signs is something that is done by the caller before
195
   --  calling Vector_To_Uint.
196
 
197
   ------------
198
   -- Direct --
199
   ------------
200
 
201
   function Direct (U : Uint) return Boolean is
202
   begin
203
      return Int (U) <= Int (Uint_Direct_Last);
204
   end Direct;
205
 
206
   ----------------
207
   -- Direct_Val --
208
   ----------------
209
 
210
   function Direct_Val (U : Uint) return Int is
211
   begin
212
      pragma Assert (Direct (U));
213
      return Int (U) - Int (Uint_Direct_Bias);
214
   end Direct_Val;
215
 
216
   ---------
217
   -- GCD --
218
   ---------
219
 
220
   function GCD (Jin, Kin : Int) return Int is
221
      J, K, Tmp : Int;
222
 
223
   begin
224
      pragma Assert (Jin >= Kin);
225
      pragma Assert (Kin >= Int_0);
226
 
227
      J := Jin;
228
      K := Kin;
229
      while K /= Uint_0 loop
230
         Tmp := J mod K;
231
         J := K;
232
         K := Tmp;
233
      end loop;
234
 
235
      return J;
236
   end GCD;
237
 
238
   --------------
239
   -- Hash_Num --
240
   --------------
241
 
242
   function Hash_Num (F : Int) return Hnum is
243
   begin
244
      return Types."mod" (F, Hnum'Range_Length);
245
   end Hash_Num;
246
 
247
   ---------------
248
   -- Image_Out --
249
   ---------------
250
 
251
   procedure Image_Out
252
     (Input     : Uint;
253
      To_Buffer : Boolean;
254
      Format    : UI_Format)
255
   is
256
      Marks  : constant Uintp.Save_Mark := Uintp.Mark;
257
      Base   : Uint;
258
      Ainput : Uint;
259
 
260
      Digs_Output : Natural := 0;
261
      --  Counts digits output. In hex mode, but not in decimal mode, we
262
      --  put an underline after every four hex digits that are output.
263
 
264
      Exponent : Natural := 0;
265
      --  If the number is too long to fit in the buffer, we switch to an
266
      --  approximate output format with an exponent. This variable records
267
      --  the exponent value.
268
 
269
      function Better_In_Hex return Boolean;
270
      --  Determines if it is better to generate digits in base 16 (result
271
      --  is true) or base 10 (result is false). The choice is purely a
272
      --  matter of convenience and aesthetics, so it does not matter which
273
      --  value is returned from a correctness point of view.
274
 
275
      procedure Image_Char (C : Character);
276
      --  Internal procedure to output one character
277
 
278
      procedure Image_Exponent (N : Natural);
279
      --  Output non-zero exponent. Note that we only use the exponent form in
280
      --  the buffer case, so we know that To_Buffer is true.
281
 
282
      procedure Image_Uint (U : Uint);
283
      --  Internal procedure to output characters of non-negative Uint
284
 
285
      -------------------
286
      -- Better_In_Hex --
287
      -------------------
288
 
289
      function Better_In_Hex return Boolean is
290
         T16 : constant Uint := Uint_2 ** Int'(16);
291
         A   : Uint;
292
 
293
      begin
294
         A := UI_Abs (Input);
295
 
296
         --  Small values up to 2**16 can always be in decimal
297
 
298
         if A < T16 then
299
            return False;
300
         end if;
301
 
302
         --  Otherwise, see if we are a power of 2 or one less than a power
303
         --  of 2. For the moment these are the only cases printed in hex.
304
 
305
         if A mod Uint_2 = Uint_1 then
306
            A := A + Uint_1;
307
         end if;
308
 
309
         loop
310
            if A mod T16 /= Uint_0 then
311
               return False;
312
 
313
            else
314
               A := A / T16;
315
            end if;
316
 
317
            exit when A < T16;
318
         end loop;
319
 
320
         while A > Uint_2 loop
321
            if A mod Uint_2 /= Uint_0 then
322
               return False;
323
 
324
            else
325
               A := A / Uint_2;
326
            end if;
327
         end loop;
328
 
329
         return True;
330
      end Better_In_Hex;
331
 
332
      ----------------
333
      -- Image_Char --
334
      ----------------
335
 
336
      procedure Image_Char (C : Character) is
337
      begin
338
         if To_Buffer then
339
            if UI_Image_Length + 6 > UI_Image_Max then
340
               Exponent := Exponent + 1;
341
            else
342
               UI_Image_Length := UI_Image_Length + 1;
343
               UI_Image_Buffer (UI_Image_Length) := C;
344
            end if;
345
         else
346
            Write_Char (C);
347
         end if;
348
      end Image_Char;
349
 
350
      --------------------
351
      -- Image_Exponent --
352
      --------------------
353
 
354
      procedure Image_Exponent (N : Natural) is
355
      begin
356
         if N >= 10 then
357
            Image_Exponent (N / 10);
358
         end if;
359
 
360
         UI_Image_Length := UI_Image_Length + 1;
361
         UI_Image_Buffer (UI_Image_Length) :=
362
           Character'Val (Character'Pos ('0') + N mod 10);
363
      end Image_Exponent;
364
 
365
      ----------------
366
      -- Image_Uint --
367
      ----------------
368
 
369
      procedure Image_Uint (U : Uint) is
370
         H : constant array (Int range 0 .. 15) of Character :=
371
               "0123456789ABCDEF";
372
 
373
      begin
374
         if U >= Base then
375
            Image_Uint (U / Base);
376
         end if;
377
 
378
         if Digs_Output = 4 and then Base = Uint_16 then
379
            Image_Char ('_');
380
            Digs_Output := 0;
381
         end if;
382
 
383
         Image_Char (H (UI_To_Int (U rem Base)));
384
 
385
         Digs_Output := Digs_Output + 1;
386
      end Image_Uint;
387
 
388
   --  Start of processing for Image_Out
389
 
390
   begin
391
      if Input = No_Uint then
392
         Image_Char ('?');
393
         return;
394
      end if;
395
 
396
      UI_Image_Length := 0;
397
 
398
      if Input < Uint_0 then
399
         Image_Char ('-');
400
         Ainput := -Input;
401
      else
402
         Ainput := Input;
403
      end if;
404
 
405
      if Format = Hex
406
        or else (Format = Auto and then Better_In_Hex)
407
      then
408
         Base := Uint_16;
409
         Image_Char ('1');
410
         Image_Char ('6');
411
         Image_Char ('#');
412
         Image_Uint (Ainput);
413
         Image_Char ('#');
414
 
415
      else
416
         Base := Uint_10;
417
         Image_Uint (Ainput);
418
      end if;
419
 
420
      if Exponent /= 0 then
421
         UI_Image_Length := UI_Image_Length + 1;
422
         UI_Image_Buffer (UI_Image_Length) := 'E';
423
         Image_Exponent (Exponent);
424
      end if;
425
 
426
      Uintp.Release (Marks);
427
   end Image_Out;
428
 
429
   -------------------
430
   -- Init_Operand --
431
   -------------------
432
 
433
   procedure Init_Operand (UI : Uint; Vec : out UI_Vector) is
434
      Loc : Int;
435
 
436
      pragma Assert (Vec'First = Int'(1));
437
 
438
   begin
439
      if Direct (UI) then
440
         Vec (1) := Direct_Val (UI);
441
 
442
         if Vec (1) >= Base then
443
            Vec (2) := Vec (1) rem Base;
444
            Vec (1) := Vec (1) / Base;
445
         end if;
446
 
447
      else
448
         Loc := Uints.Table (UI).Loc;
449
 
450
         for J in 1 .. Uints.Table (UI).Length loop
451
            Vec (J) := Udigits.Table (Loc + J - 1);
452
         end loop;
453
      end if;
454
   end Init_Operand;
455
 
456
   ----------------
457
   -- Initialize --
458
   ----------------
459
 
460
   procedure Initialize is
461
   begin
462
      Uints.Init;
463
      Udigits.Init;
464
 
465
      Uint_Int_First := UI_From_Int (Int'First);
466
      Uint_Int_Last  := UI_From_Int (Int'Last);
467
 
468
      UI_Power_2 (0) := Uint_1;
469
      UI_Power_2_Set := 0;
470
 
471
      UI_Power_10 (0) := Uint_1;
472
      UI_Power_10_Set := 0;
473
 
474
      Uints_Min := Uints.Last;
475
      Udigits_Min := Udigits.Last;
476
 
477
      UI_Ints.Reset;
478
   end Initialize;
479
 
480
   ---------------------
481
   -- Least_Sig_Digit --
482
   ---------------------
483
 
484
   function Least_Sig_Digit (Arg : Uint) return Int is
485
      V : Int;
486
 
487
   begin
488
      if Direct (Arg) then
489
         V := Direct_Val (Arg);
490
 
491
         if V >= Base then
492
            V := V mod Base;
493
         end if;
494
 
495
         --  Note that this result may be negative
496
 
497
         return V;
498
 
499
      else
500
         return
501
           Udigits.Table
502
            (Uints.Table (Arg).Loc + Uints.Table (Arg).Length - 1);
503
      end if;
504
   end Least_Sig_Digit;
505
 
506
   ----------
507
   -- Mark --
508
   ----------
509
 
510
   function Mark return Save_Mark is
511
   begin
512
      return (Save_Uint => Uints.Last, Save_Udigit => Udigits.Last);
513
   end Mark;
514
 
515
   -----------------------
516
   -- Most_Sig_2_Digits --
517
   -----------------------
518
 
519
   procedure Most_Sig_2_Digits
520
     (Left      : Uint;
521
      Right     : Uint;
522
      Left_Hat  : out Int;
523
      Right_Hat : out Int)
524
   is
525
   begin
526
      pragma Assert (Left >= Right);
527
 
528
      if Direct (Left) then
529
         Left_Hat  := Direct_Val (Left);
530
         Right_Hat := Direct_Val (Right);
531
         return;
532
 
533
      else
534
         declare
535
            L1 : constant Int :=
536
                   Udigits.Table (Uints.Table (Left).Loc);
537
            L2 : constant Int :=
538
                   Udigits.Table (Uints.Table (Left).Loc + 1);
539
 
540
         begin
541
            --  It is not so clear what to return when Arg is negative???
542
 
543
            Left_Hat := abs (L1) * Base + L2;
544
         end;
545
      end if;
546
 
547
      declare
548
         Length_L : constant Int := Uints.Table (Left).Length;
549
         Length_R : Int;
550
         R1 : Int;
551
         R2 : Int;
552
         T  : Int;
553
 
554
      begin
555
         if Direct (Right) then
556
            T := Direct_Val (Left);
557
            R1 := abs (T / Base);
558
            R2 := T rem Base;
559
            Length_R := 2;
560
 
561
         else
562
            R1 := abs (Udigits.Table (Uints.Table (Right).Loc));
563
            R2 := Udigits.Table (Uints.Table (Right).Loc + 1);
564
            Length_R := Uints.Table (Right).Length;
565
         end if;
566
 
567
         if Length_L = Length_R then
568
            Right_Hat := R1 * Base + R2;
569
         elsif Length_L = Length_R + Int_1 then
570
            Right_Hat := R1;
571
         else
572
            Right_Hat := 0;
573
         end if;
574
      end;
575
   end Most_Sig_2_Digits;
576
 
577
   ---------------
578
   -- N_Digits --
579
   ---------------
580
 
581
   --  Note: N_Digits returns 1 for No_Uint
582
 
583
   function N_Digits (Input : Uint) return Int is
584
   begin
585
      if Direct (Input) then
586
         if Direct_Val (Input) >= Base then
587
            return 2;
588
         else
589
            return 1;
590
         end if;
591
 
592
      else
593
         return Uints.Table (Input).Length;
594
      end if;
595
   end N_Digits;
596
 
597
   --------------
598
   -- Num_Bits --
599
   --------------
600
 
601
   function Num_Bits (Input : Uint) return Nat is
602
      Bits : Nat;
603
      Num  : Nat;
604
 
605
   begin
606
      --  Largest negative number has to be handled specially, since it is in
607
      --  Int_Range, but we cannot take the absolute value.
608
 
609
      if Input = Uint_Int_First then
610
         return Int'Size;
611
 
612
      --  For any other number in Int_Range, get absolute value of number
613
 
614
      elsif UI_Is_In_Int_Range (Input) then
615
         Num := abs (UI_To_Int (Input));
616
         Bits := 0;
617
 
618
      --  If not in Int_Range then initialize bit count for all low order
619
      --  words, and set number to high order digit.
620
 
621
      else
622
         Bits := Base_Bits * (Uints.Table (Input).Length - 1);
623
         Num  := abs (Udigits.Table (Uints.Table (Input).Loc));
624
      end if;
625
 
626
      --  Increase bit count for remaining value in Num
627
 
628
      while Types.">" (Num, 0) loop
629
         Num := Num / 2;
630
         Bits := Bits + 1;
631
      end loop;
632
 
633
      return Bits;
634
   end Num_Bits;
635
 
636
   ---------
637
   -- pid --
638
   ---------
639
 
640
   procedure pid (Input : Uint) is
641
   begin
642
      UI_Write (Input, Decimal);
643
      Write_Eol;
644
   end pid;
645
 
646
   ---------
647
   -- pih --
648
   ---------
649
 
650
   procedure pih (Input : Uint) is
651
   begin
652
      UI_Write (Input, Hex);
653
      Write_Eol;
654
   end pih;
655
 
656
   -------------
657
   -- Release --
658
   -------------
659
 
660
   procedure Release (M : Save_Mark) is
661
   begin
662
      Uints.Set_Last   (Uint'Max (M.Save_Uint,   Uints_Min));
663
      Udigits.Set_Last (Int'Max  (M.Save_Udigit, Udigits_Min));
664
   end Release;
665
 
666
   ----------------------
667
   -- Release_And_Save --
668
   ----------------------
669
 
670
   procedure Release_And_Save (M : Save_Mark; UI : in out Uint) is
671
   begin
672
      if Direct (UI) then
673
         Release (M);
674
 
675
      else
676
         declare
677
            UE_Len : constant Pos := Uints.Table (UI).Length;
678
            UE_Loc : constant Int := Uints.Table (UI).Loc;
679
 
680
            UD : constant Udigits.Table_Type (1 .. UE_Len) :=
681
                   Udigits.Table (UE_Loc .. UE_Loc + UE_Len - 1);
682
 
683
         begin
684
            Release (M);
685
 
686
            Uints.Append ((Length => UE_Len, Loc => Udigits.Last + 1));
687
            UI := Uints.Last;
688
 
689
            for J in 1 .. UE_Len loop
690
               Udigits.Append (UD (J));
691
            end loop;
692
         end;
693
      end if;
694
   end Release_And_Save;
695
 
696
   procedure Release_And_Save (M : Save_Mark; UI1, UI2 : in out Uint) is
697
   begin
698
      if Direct (UI1) then
699
         Release_And_Save (M, UI2);
700
 
701
      elsif Direct (UI2) then
702
         Release_And_Save (M, UI1);
703
 
704
      else
705
         declare
706
            UE1_Len : constant Pos := Uints.Table (UI1).Length;
707
            UE1_Loc : constant Int := Uints.Table (UI1).Loc;
708
 
709
            UD1 : constant Udigits.Table_Type (1 .. UE1_Len) :=
710
                    Udigits.Table (UE1_Loc .. UE1_Loc + UE1_Len - 1);
711
 
712
            UE2_Len : constant Pos := Uints.Table (UI2).Length;
713
            UE2_Loc : constant Int := Uints.Table (UI2).Loc;
714
 
715
            UD2 : constant Udigits.Table_Type (1 .. UE2_Len) :=
716
                    Udigits.Table (UE2_Loc .. UE2_Loc + UE2_Len - 1);
717
 
718
         begin
719
            Release (M);
720
 
721
            Uints.Append ((Length => UE1_Len, Loc => Udigits.Last + 1));
722
            UI1 := Uints.Last;
723
 
724
            for J in 1 .. UE1_Len loop
725
               Udigits.Append (UD1 (J));
726
            end loop;
727
 
728
            Uints.Append ((Length => UE2_Len, Loc => Udigits.Last + 1));
729
            UI2 := Uints.Last;
730
 
731
            for J in 1 .. UE2_Len loop
732
               Udigits.Append (UD2 (J));
733
            end loop;
734
         end;
735
      end if;
736
   end Release_And_Save;
737
 
738
   ----------------
739
   -- Sum_Digits --
740
   ----------------
741
 
742
   --  This is done in one pass
743
 
744
   --  Mathematically: assume base congruent to 1 and compute an equivalent
745
   --  integer to Left.
746
 
747
   --  If Sign = -1 return the alternating sum of the "digits"
748
 
749
   --     D1 - D2 + D3 - D4 + D5 ...
750
 
751
   --  (where D1 is Least Significant Digit)
752
 
753
   --  Mathematically: assume base congruent to -1 and compute an equivalent
754
   --  integer to Left.
755
 
756
   --  This is used in Rem and Base is assumed to be 2 ** 15
757
 
758
   --  Note: The next two functions are very similar, any style changes made
759
   --  to one should be reflected in both.  These would be simpler if we
760
   --  worked base 2 ** 32.
761
 
762
   function Sum_Digits (Left : Uint; Sign : Int) return Int is
763
   begin
764
      pragma Assert (Sign = Int_1 or else Sign = Int (-1));
765
 
766
      --  First try simple case;
767
 
768
      if Direct (Left) then
769
         declare
770
            Tmp_Int : Int := Direct_Val (Left);
771
 
772
         begin
773
            if Tmp_Int >= Base then
774
               Tmp_Int := (Tmp_Int / Base) +
775
                  Sign * (Tmp_Int rem Base);
776
 
777
                  --  Now Tmp_Int is in [-(Base - 1) .. 2 * (Base - 1)]
778
 
779
               if Tmp_Int >= Base then
780
 
781
                  --  Sign must be 1
782
 
783
                  Tmp_Int := (Tmp_Int / Base) + 1;
784
 
785
               end if;
786
 
787
               --  Now Tmp_Int is in [-(Base - 1) .. (Base - 1)]
788
 
789
            end if;
790
 
791
            return Tmp_Int;
792
         end;
793
 
794
      --  Otherwise full circuit is needed
795
 
796
      else
797
         declare
798
            L_Length : constant Int := N_Digits (Left);
799
            L_Vec    : UI_Vector (1 .. L_Length);
800
            Tmp_Int  : Int;
801
            Carry    : Int;
802
            Alt      : Int;
803
 
804
         begin
805
            Init_Operand (Left, L_Vec);
806
            L_Vec (1) := abs L_Vec (1);
807
            Tmp_Int := 0;
808
            Carry := 0;
809
            Alt := 1;
810
 
811
            for J in reverse 1 .. L_Length loop
812
               Tmp_Int := Tmp_Int + Alt * (L_Vec (J) + Carry);
813
 
814
               --  Tmp_Int is now between [-2 * Base + 1 .. 2 * Base - 1],
815
               --  since old Tmp_Int is between [-(Base - 1) .. Base - 1]
816
               --  and L_Vec is in [0 .. Base - 1] and Carry in [-1 .. 1]
817
 
818
               if Tmp_Int >= Base then
819
                  Tmp_Int := Tmp_Int - Base;
820
                  Carry := 1;
821
 
822
               elsif Tmp_Int <= -Base then
823
                  Tmp_Int := Tmp_Int + Base;
824
                  Carry := -1;
825
 
826
               else
827
                  Carry := 0;
828
               end if;
829
 
830
               --  Tmp_Int is now between [-Base + 1 .. Base - 1]
831
 
832
               Alt := Alt * Sign;
833
            end loop;
834
 
835
            Tmp_Int := Tmp_Int + Alt * Carry;
836
 
837
            --  Tmp_Int is now between [-Base .. Base]
838
 
839
            if Tmp_Int >= Base then
840
               Tmp_Int := Tmp_Int - Base + Alt * Sign * 1;
841
 
842
            elsif Tmp_Int <= -Base then
843
               Tmp_Int := Tmp_Int + Base + Alt * Sign * (-1);
844
            end if;
845
 
846
            --  Now Tmp_Int is in [-(Base - 1) .. (Base - 1)]
847
 
848
            return Tmp_Int;
849
         end;
850
      end if;
851
   end Sum_Digits;
852
 
853
   -----------------------
854
   -- Sum_Double_Digits --
855
   -----------------------
856
 
857
   --  Note: This is used in Rem, Base is assumed to be 2 ** 15
858
 
859
   function Sum_Double_Digits (Left : Uint; Sign : Int) return Int is
860
   begin
861
      --  First try simple case;
862
 
863
      pragma Assert (Sign = Int_1 or else Sign = Int (-1));
864
 
865
      if Direct (Left) then
866
         return Direct_Val (Left);
867
 
868
      --  Otherwise full circuit is needed
869
 
870
      else
871
         declare
872
            L_Length      : constant Int := N_Digits (Left);
873
            L_Vec         : UI_Vector (1 .. L_Length);
874
            Most_Sig_Int  : Int;
875
            Least_Sig_Int : Int;
876
            Carry         : Int;
877
            J             : Int;
878
            Alt           : Int;
879
 
880
         begin
881
            Init_Operand (Left, L_Vec);
882
            L_Vec (1) := abs L_Vec (1);
883
            Most_Sig_Int := 0;
884
            Least_Sig_Int := 0;
885
            Carry := 0;
886
            Alt := 1;
887
            J := L_Length;
888
 
889
            while J > Int_1 loop
890
               Least_Sig_Int := Least_Sig_Int + Alt * (L_Vec (J) + Carry);
891
 
892
               --  Least is in [-2 Base + 1 .. 2 * Base - 1]
893
               --  Since L_Vec in [0 .. Base - 1] and Carry in [-1 .. 1]
894
               --  and old Least in [-Base + 1 .. Base - 1]
895
 
896
               if Least_Sig_Int >= Base then
897
                  Least_Sig_Int := Least_Sig_Int - Base;
898
                  Carry := 1;
899
 
900
               elsif Least_Sig_Int <= -Base then
901
                  Least_Sig_Int := Least_Sig_Int + Base;
902
                  Carry := -1;
903
 
904
               else
905
                  Carry := 0;
906
               end if;
907
 
908
               --  Least is now in [-Base + 1 .. Base - 1]
909
 
910
               Most_Sig_Int := Most_Sig_Int + Alt * (L_Vec (J - 1) + Carry);
911
 
912
               --  Most is in [-2 Base + 1 .. 2 * Base - 1]
913
               --  Since L_Vec in [0 ..  Base - 1] and Carry in  [-1 .. 1]
914
               --  and old Most in [-Base + 1 .. Base - 1]
915
 
916
               if Most_Sig_Int >= Base then
917
                  Most_Sig_Int := Most_Sig_Int - Base;
918
                  Carry := 1;
919
 
920
               elsif Most_Sig_Int <= -Base then
921
                  Most_Sig_Int := Most_Sig_Int + Base;
922
                  Carry := -1;
923
               else
924
                  Carry := 0;
925
               end if;
926
 
927
               --  Most is now in [-Base + 1 .. Base - 1]
928
 
929
               J := J - 2;
930
               Alt := Alt * Sign;
931
            end loop;
932
 
933
            if J = Int_1 then
934
               Least_Sig_Int := Least_Sig_Int + Alt * (L_Vec (J) + Carry);
935
            else
936
               Least_Sig_Int := Least_Sig_Int + Alt * Carry;
937
            end if;
938
 
939
            if Least_Sig_Int >= Base then
940
               Least_Sig_Int := Least_Sig_Int - Base;
941
               Most_Sig_Int := Most_Sig_Int + Alt * 1;
942
 
943
            elsif Least_Sig_Int <= -Base then
944
               Least_Sig_Int := Least_Sig_Int + Base;
945
               Most_Sig_Int := Most_Sig_Int + Alt * (-1);
946
            end if;
947
 
948
            if Most_Sig_Int >= Base then
949
               Most_Sig_Int := Most_Sig_Int - Base;
950
               Alt := Alt * Sign;
951
               Least_Sig_Int :=
952
                 Least_Sig_Int + Alt * 1; -- cannot overflow again
953
 
954
            elsif Most_Sig_Int <= -Base then
955
               Most_Sig_Int := Most_Sig_Int + Base;
956
               Alt := Alt * Sign;
957
               Least_Sig_Int :=
958
                 Least_Sig_Int + Alt * (-1); --  cannot overflow again.
959
            end if;
960
 
961
            return Most_Sig_Int * Base + Least_Sig_Int;
962
         end;
963
      end if;
964
   end Sum_Double_Digits;
965
 
966
   ---------------
967
   -- Tree_Read --
968
   ---------------
969
 
970
   procedure Tree_Read is
971
   begin
972
      Uints.Tree_Read;
973
      Udigits.Tree_Read;
974
 
975
      Tree_Read_Int (Int (Uint_Int_First));
976
      Tree_Read_Int (Int (Uint_Int_Last));
977
      Tree_Read_Int (UI_Power_2_Set);
978
      Tree_Read_Int (UI_Power_10_Set);
979
      Tree_Read_Int (Int (Uints_Min));
980
      Tree_Read_Int (Udigits_Min);
981
 
982
      for J in 0 .. UI_Power_2_Set loop
983
         Tree_Read_Int (Int (UI_Power_2 (J)));
984
      end loop;
985
 
986
      for J in 0 .. UI_Power_10_Set loop
987
         Tree_Read_Int (Int (UI_Power_10 (J)));
988
      end loop;
989
 
990
   end Tree_Read;
991
 
992
   ----------------
993
   -- Tree_Write --
994
   ----------------
995
 
996
   procedure Tree_Write is
997
   begin
998
      Uints.Tree_Write;
999
      Udigits.Tree_Write;
1000
 
1001
      Tree_Write_Int (Int (Uint_Int_First));
1002
      Tree_Write_Int (Int (Uint_Int_Last));
1003
      Tree_Write_Int (UI_Power_2_Set);
1004
      Tree_Write_Int (UI_Power_10_Set);
1005
      Tree_Write_Int (Int (Uints_Min));
1006
      Tree_Write_Int (Udigits_Min);
1007
 
1008
      for J in 0 .. UI_Power_2_Set loop
1009
         Tree_Write_Int (Int (UI_Power_2 (J)));
1010
      end loop;
1011
 
1012
      for J in 0 .. UI_Power_10_Set loop
1013
         Tree_Write_Int (Int (UI_Power_10 (J)));
1014
      end loop;
1015
 
1016
   end Tree_Write;
1017
 
1018
   -------------
1019
   -- UI_Abs --
1020
   -------------
1021
 
1022
   function UI_Abs (Right : Uint) return Uint is
1023
   begin
1024
      if Right < Uint_0 then
1025
         return -Right;
1026
      else
1027
         return Right;
1028
      end if;
1029
   end UI_Abs;
1030
 
1031
   -------------
1032
   -- UI_Add --
1033
   -------------
1034
 
1035
   function UI_Add (Left : Int; Right : Uint) return Uint is
1036
   begin
1037
      return UI_Add (UI_From_Int (Left), Right);
1038
   end UI_Add;
1039
 
1040
   function UI_Add (Left : Uint; Right : Int) return Uint is
1041
   begin
1042
      return UI_Add (Left, UI_From_Int (Right));
1043
   end UI_Add;
1044
 
1045
   function UI_Add (Left : Uint; Right : Uint) return Uint is
1046
   begin
1047
      --  Simple cases of direct operands and addition of zero
1048
 
1049
      if Direct (Left) then
1050
         if Direct (Right) then
1051
            return UI_From_Int (Direct_Val (Left) + Direct_Val (Right));
1052
 
1053
         elsif Int (Left) = Int (Uint_0) then
1054
            return Right;
1055
         end if;
1056
 
1057
      elsif Direct (Right) and then Int (Right) = Int (Uint_0) then
1058
         return Left;
1059
      end if;
1060
 
1061
      --  Otherwise full circuit is needed
1062
 
1063
      declare
1064
         L_Length   : constant Int := N_Digits (Left);
1065
         R_Length   : constant Int := N_Digits (Right);
1066
         L_Vec      : UI_Vector (1 .. L_Length);
1067
         R_Vec      : UI_Vector (1 .. R_Length);
1068
         Sum_Length : Int;
1069
         Tmp_Int    : Int;
1070
         Carry      : Int;
1071
         Borrow     : Int;
1072
         X_Bigger   : Boolean := False;
1073
         Y_Bigger   : Boolean := False;
1074
         Result_Neg : Boolean := False;
1075
 
1076
      begin
1077
         Init_Operand (Left, L_Vec);
1078
         Init_Operand (Right, R_Vec);
1079
 
1080
         --  At least one of the two operands is in multi-digit form.
1081
         --  Calculate the number of digits sufficient to hold result.
1082
 
1083
         if L_Length > R_Length then
1084
            Sum_Length := L_Length + 1;
1085
            X_Bigger := True;
1086
         else
1087
            Sum_Length := R_Length + 1;
1088
 
1089
            if R_Length > L_Length then
1090
               Y_Bigger := True;
1091
            end if;
1092
         end if;
1093
 
1094
         --  Make copies of the absolute values of L_Vec and R_Vec into X and Y
1095
         --  both with lengths equal to the maximum possibly needed. This makes
1096
         --  looping over the digits much simpler.
1097
 
1098
         declare
1099
            X      : UI_Vector (1 .. Sum_Length);
1100
            Y      : UI_Vector (1 .. Sum_Length);
1101
            Tmp_UI : UI_Vector (1 .. Sum_Length);
1102
 
1103
         begin
1104
            for J in 1 .. Sum_Length - L_Length loop
1105
               X (J) := 0;
1106
            end loop;
1107
 
1108
            X (Sum_Length - L_Length + 1) := abs L_Vec (1);
1109
 
1110
            for J in 2 .. L_Length loop
1111
               X (J + (Sum_Length - L_Length)) := L_Vec (J);
1112
            end loop;
1113
 
1114
            for J in 1 .. Sum_Length - R_Length loop
1115
               Y (J) := 0;
1116
            end loop;
1117
 
1118
            Y (Sum_Length - R_Length + 1) := abs R_Vec (1);
1119
 
1120
            for J in 2 .. R_Length loop
1121
               Y (J + (Sum_Length - R_Length)) := R_Vec (J);
1122
            end loop;
1123
 
1124
            if (L_Vec (1) < Int_0) = (R_Vec (1) < Int_0) then
1125
 
1126
               --  Same sign so just add
1127
 
1128
               Carry := 0;
1129
               for J in reverse 1 .. Sum_Length loop
1130
                  Tmp_Int := X (J) + Y (J) + Carry;
1131
 
1132
                  if Tmp_Int >= Base then
1133
                     Tmp_Int := Tmp_Int - Base;
1134
                     Carry := 1;
1135
                  else
1136
                     Carry := 0;
1137
                  end if;
1138
 
1139
                  X (J) := Tmp_Int;
1140
               end loop;
1141
 
1142
               return Vector_To_Uint (X, L_Vec (1) < Int_0);
1143
 
1144
            else
1145
               --  Find which one has bigger magnitude
1146
 
1147
               if not (X_Bigger or Y_Bigger) then
1148
                  for J in L_Vec'Range loop
1149
                     if abs L_Vec (J) > abs R_Vec (J) then
1150
                        X_Bigger := True;
1151
                        exit;
1152
                     elsif abs R_Vec (J) > abs L_Vec (J) then
1153
                        Y_Bigger := True;
1154
                        exit;
1155
                     end if;
1156
                  end loop;
1157
               end if;
1158
 
1159
               --  If they have identical magnitude, just return 0, else swap
1160
               --  if necessary so that X had the bigger magnitude. Determine
1161
               --  if result is negative at this time.
1162
 
1163
               Result_Neg := False;
1164
 
1165
               if not (X_Bigger or Y_Bigger) then
1166
                  return Uint_0;
1167
 
1168
               elsif Y_Bigger then
1169
                  if R_Vec (1) < Int_0 then
1170
                     Result_Neg := True;
1171
                  end if;
1172
 
1173
                  Tmp_UI := X;
1174
                  X := Y;
1175
                  Y := Tmp_UI;
1176
 
1177
               else
1178
                  if L_Vec (1) < Int_0 then
1179
                     Result_Neg := True;
1180
                  end if;
1181
               end if;
1182
 
1183
               --  Subtract Y from the bigger X
1184
 
1185
               Borrow := 0;
1186
 
1187
               for J in reverse 1 .. Sum_Length loop
1188
                  Tmp_Int := X (J) - Y (J) + Borrow;
1189
 
1190
                  if Tmp_Int < Int_0 then
1191
                     Tmp_Int := Tmp_Int + Base;
1192
                     Borrow := -1;
1193
                  else
1194
                     Borrow := 0;
1195
                  end if;
1196
 
1197
                  X (J) := Tmp_Int;
1198
               end loop;
1199
 
1200
               return Vector_To_Uint (X, Result_Neg);
1201
 
1202
            end if;
1203
         end;
1204
      end;
1205
   end UI_Add;
1206
 
1207
   --------------------------
1208
   -- UI_Decimal_Digits_Hi --
1209
   --------------------------
1210
 
1211
   function UI_Decimal_Digits_Hi (U : Uint) return Nat is
1212
   begin
1213
      --  The maximum value of a "digit" is 32767, which is 5 decimal digits,
1214
      --  so an N_Digit number could take up to 5 times this number of digits.
1215
      --  This is certainly too high for large numbers but it is not worth
1216
      --  worrying about.
1217
 
1218
      return 5 * N_Digits (U);
1219
   end UI_Decimal_Digits_Hi;
1220
 
1221
   --------------------------
1222
   -- UI_Decimal_Digits_Lo --
1223
   --------------------------
1224
 
1225
   function UI_Decimal_Digits_Lo (U : Uint) return Nat is
1226
   begin
1227
      --  The maximum value of a "digit" is 32767, which is more than four
1228
      --  decimal digits, but not a full five digits. The easily computed
1229
      --  minimum number of decimal digits is thus 1 + 4 * the number of
1230
      --  digits. This is certainly too low for large numbers but it is not
1231
      --  worth worrying about.
1232
 
1233
      return 1 + 4 * (N_Digits (U) - 1);
1234
   end UI_Decimal_Digits_Lo;
1235
 
1236
   ------------
1237
   -- UI_Div --
1238
   ------------
1239
 
1240
   function UI_Div (Left : Int; Right : Uint) return Uint is
1241
   begin
1242
      return UI_Div (UI_From_Int (Left), Right);
1243
   end UI_Div;
1244
 
1245
   function UI_Div (Left : Uint; Right : Int) return Uint is
1246
   begin
1247
      return UI_Div (Left, UI_From_Int (Right));
1248
   end UI_Div;
1249
 
1250
   function UI_Div (Left, Right : Uint) return Uint is
1251
      Quotient  : Uint;
1252
      Remainder : Uint;
1253
      pragma Warnings (Off, Remainder);
1254
   begin
1255
      UI_Div_Rem
1256
        (Left, Right,
1257
         Quotient, Remainder,
1258
         Discard_Remainder => True);
1259
      return Quotient;
1260
   end UI_Div;
1261
 
1262
   ----------------
1263
   -- UI_Div_Rem --
1264
   ----------------
1265
 
1266
   procedure UI_Div_Rem
1267
     (Left, Right       : Uint;
1268
      Quotient          : out Uint;
1269
      Remainder         : out Uint;
1270
      Discard_Quotient  : Boolean := False;
1271
      Discard_Remainder : Boolean := False)
1272
   is
1273
      pragma Warnings (Off, Quotient);
1274
      pragma Warnings (Off, Remainder);
1275
   begin
1276
      pragma Assert (Right /= Uint_0);
1277
 
1278
      Quotient  := No_Uint;
1279
      Remainder := No_Uint;
1280
 
1281
      --  Cases where both operands are represented directly
1282
 
1283
      if Direct (Left) and then Direct (Right) then
1284
         declare
1285
            DV_Left  : constant Int := Direct_Val (Left);
1286
            DV_Right : constant Int := Direct_Val (Right);
1287
 
1288
         begin
1289
            if not Discard_Quotient then
1290
               Quotient := UI_From_Int (DV_Left / DV_Right);
1291
            end if;
1292
 
1293
            if not Discard_Remainder then
1294
               Remainder := UI_From_Int (DV_Left rem DV_Right);
1295
            end if;
1296
 
1297
            return;
1298
         end;
1299
      end if;
1300
 
1301
      declare
1302
         L_Length    : constant Int := N_Digits (Left);
1303
         R_Length    : constant Int := N_Digits (Right);
1304
         Q_Length    : constant Int := L_Length - R_Length + 1;
1305
         L_Vec       : UI_Vector (1 .. L_Length);
1306
         R_Vec       : UI_Vector (1 .. R_Length);
1307
         D           : Int;
1308
         Remainder_I : Int;
1309
         Tmp_Divisor : Int;
1310
         Carry       : Int;
1311
         Tmp_Int     : Int;
1312
         Tmp_Dig     : Int;
1313
 
1314
         procedure UI_Div_Vector
1315
           (L_Vec     : UI_Vector;
1316
            R_Int     : Int;
1317
            Quotient  : out UI_Vector;
1318
            Remainder : out Int);
1319
         pragma Inline (UI_Div_Vector);
1320
         --  Specialised variant for case where the divisor is a single digit
1321
 
1322
         procedure UI_Div_Vector
1323
           (L_Vec     : UI_Vector;
1324
            R_Int     : Int;
1325
            Quotient  : out UI_Vector;
1326
            Remainder : out Int)
1327
         is
1328
            Tmp_Int : Int;
1329
 
1330
         begin
1331
            Remainder := 0;
1332
            for J in L_Vec'Range loop
1333
               Tmp_Int := Remainder * Base + abs L_Vec (J);
1334
               Quotient (Quotient'First + J - L_Vec'First) := Tmp_Int / R_Int;
1335
               Remainder := Tmp_Int rem R_Int;
1336
            end loop;
1337
 
1338
            if L_Vec (L_Vec'First) < Int_0 then
1339
               Remainder := -Remainder;
1340
            end if;
1341
         end UI_Div_Vector;
1342
 
1343
      --  Start of processing for UI_Div_Rem
1344
 
1345
      begin
1346
         --  Result is zero if left operand is shorter than right
1347
 
1348
         if L_Length < R_Length then
1349
            if not Discard_Quotient then
1350
               Quotient := Uint_0;
1351
            end if;
1352
 
1353
            if not Discard_Remainder then
1354
               Remainder := Left;
1355
            end if;
1356
 
1357
            return;
1358
         end if;
1359
 
1360
         Init_Operand (Left, L_Vec);
1361
         Init_Operand (Right, R_Vec);
1362
 
1363
         --  Case of right operand is single digit. Here we can simply divide
1364
         --  each digit of the left operand by the divisor, from most to least
1365
         --  significant, carrying the remainder to the next digit (just like
1366
         --  ordinary long division by hand).
1367
 
1368
         if R_Length = Int_1 then
1369
            Tmp_Divisor := abs R_Vec (1);
1370
 
1371
            declare
1372
               Quotient_V : UI_Vector (1 .. L_Length);
1373
 
1374
            begin
1375
               UI_Div_Vector (L_Vec, Tmp_Divisor, Quotient_V, Remainder_I);
1376
 
1377
               if not Discard_Quotient then
1378
                  Quotient :=
1379
                    Vector_To_Uint
1380
                      (Quotient_V, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
1381
               end if;
1382
 
1383
               if not Discard_Remainder then
1384
                  Remainder := UI_From_Int (Remainder_I);
1385
               end if;
1386
 
1387
               return;
1388
            end;
1389
         end if;
1390
 
1391
         --  The possible simple cases have been exhausted. Now turn to the
1392
         --  algorithm D from the section of Knuth mentioned at the top of
1393
         --  this package.
1394
 
1395
         Algorithm_D : declare
1396
            Dividend     : UI_Vector (1 .. L_Length + 1);
1397
            Divisor      : UI_Vector (1 .. R_Length);
1398
            Quotient_V   : UI_Vector (1 .. Q_Length);
1399
            Divisor_Dig1 : Int;
1400
            Divisor_Dig2 : Int;
1401
            Q_Guess      : Int;
1402
 
1403
         begin
1404
            --  [ NORMALIZE ] (step D1 in the algorithm). First calculate the
1405
            --  scale d, and then multiply Left and Right (u and v in the book)
1406
            --  by d to get the dividend and divisor to work with.
1407
 
1408
            D := Base / (abs R_Vec (1) + 1);
1409
 
1410
            Dividend (1) := 0;
1411
            Dividend (2) := abs L_Vec (1);
1412
 
1413
            for J in 3 .. L_Length + Int_1 loop
1414
               Dividend (J) := L_Vec (J - 1);
1415
            end loop;
1416
 
1417
            Divisor (1) := abs R_Vec (1);
1418
 
1419
            for J in Int_2 .. R_Length loop
1420
               Divisor (J) := R_Vec (J);
1421
            end loop;
1422
 
1423
            if D > Int_1 then
1424
 
1425
               --  Multiply Dividend by D
1426
 
1427
               Carry := 0;
1428
               for J in reverse Dividend'Range loop
1429
                  Tmp_Int      := Dividend (J) * D + Carry;
1430
                  Dividend (J) := Tmp_Int rem Base;
1431
                  Carry        := Tmp_Int / Base;
1432
               end loop;
1433
 
1434
               --  Multiply Divisor by d
1435
 
1436
               Carry := 0;
1437
               for J in reverse Divisor'Range loop
1438
                  Tmp_Int      := Divisor (J) * D + Carry;
1439
                  Divisor (J)  := Tmp_Int rem Base;
1440
                  Carry        := Tmp_Int / Base;
1441
               end loop;
1442
            end if;
1443
 
1444
            --  Main loop of long division algorithm
1445
 
1446
            Divisor_Dig1 := Divisor (1);
1447
            Divisor_Dig2 := Divisor (2);
1448
 
1449
            for J in Quotient_V'Range loop
1450
 
1451
               --  [ CALCULATE Q (hat) ] (step D3 in the algorithm)
1452
 
1453
               Tmp_Int := Dividend (J) * Base + Dividend (J + 1);
1454
 
1455
               --  Initial guess
1456
 
1457
               if Dividend (J) = Divisor_Dig1 then
1458
                  Q_Guess := Base - 1;
1459
               else
1460
                  Q_Guess := Tmp_Int / Divisor_Dig1;
1461
               end if;
1462
 
1463
               --  Refine the guess
1464
 
1465
               while Divisor_Dig2 * Q_Guess >
1466
                     (Tmp_Int - Q_Guess * Divisor_Dig1) * Base +
1467
                                                          Dividend (J + 2)
1468
               loop
1469
                  Q_Guess := Q_Guess - 1;
1470
               end loop;
1471
 
1472
               --  [ MULTIPLY & SUBTRACT ] (step D4). Q_Guess * Divisor is
1473
               --  subtracted from the remaining dividend.
1474
 
1475
               Carry := 0;
1476
               for K in reverse Divisor'Range loop
1477
                  Tmp_Int := Dividend (J + K) - Q_Guess * Divisor (K) + Carry;
1478
                  Tmp_Dig := Tmp_Int rem Base;
1479
                  Carry   := Tmp_Int / Base;
1480
 
1481
                  if Tmp_Dig < Int_0 then
1482
                     Tmp_Dig := Tmp_Dig + Base;
1483
                     Carry   := Carry - 1;
1484
                  end if;
1485
 
1486
                  Dividend (J + K) := Tmp_Dig;
1487
               end loop;
1488
 
1489
               Dividend (J) := Dividend (J) + Carry;
1490
 
1491
               --  [ TEST REMAINDER ] & [ ADD BACK ] (steps D5 and D6)
1492
 
1493
               --  Here there is a slight difference from the book: the last
1494
               --  carry is always added in above and below (cancelling each
1495
               --  other). In fact the dividend going negative is used as
1496
               --  the test.
1497
 
1498
               --  If the Dividend went negative, then Q_Guess was off by
1499
               --  one, so it is decremented, and the divisor is added back
1500
               --  into the relevant portion of the dividend.
1501
 
1502
               if Dividend (J) < Int_0 then
1503
                  Q_Guess := Q_Guess - 1;
1504
 
1505
                  Carry := 0;
1506
                  for K in reverse Divisor'Range loop
1507
                     Tmp_Int := Dividend (J + K) + Divisor (K) + Carry;
1508
 
1509
                     if Tmp_Int >= Base then
1510
                        Tmp_Int := Tmp_Int - Base;
1511
                        Carry := 1;
1512
                     else
1513
                        Carry := 0;
1514
                     end if;
1515
 
1516
                     Dividend (J + K) := Tmp_Int;
1517
                  end loop;
1518
 
1519
                  Dividend (J) := Dividend (J) + Carry;
1520
               end if;
1521
 
1522
               --  Finally we can get the next quotient digit
1523
 
1524
               Quotient_V (J) := Q_Guess;
1525
            end loop;
1526
 
1527
            --  [ UNNORMALIZE ] (step D8)
1528
 
1529
            if not Discard_Quotient then
1530
               Quotient := Vector_To_Uint
1531
                 (Quotient_V, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
1532
            end if;
1533
 
1534
            if not Discard_Remainder then
1535
               declare
1536
                  Remainder_V : UI_Vector (1 .. R_Length);
1537
                  Discard_Int : Int;
1538
                  pragma Warnings (Off, Discard_Int);
1539
               begin
1540
                  UI_Div_Vector
1541
                    (Dividend (Dividend'Last - R_Length + 1 .. Dividend'Last),
1542
                     D,
1543
                     Remainder_V, Discard_Int);
1544
                  Remainder := Vector_To_Uint (Remainder_V, L_Vec (1) < Int_0);
1545
               end;
1546
            end if;
1547
         end Algorithm_D;
1548
      end;
1549
   end UI_Div_Rem;
1550
 
1551
   ------------
1552
   -- UI_Eq --
1553
   ------------
1554
 
1555
   function UI_Eq (Left : Int; Right : Uint) return Boolean is
1556
   begin
1557
      return not UI_Ne (UI_From_Int (Left), Right);
1558
   end UI_Eq;
1559
 
1560
   function UI_Eq (Left : Uint; Right : Int) return Boolean is
1561
   begin
1562
      return not UI_Ne (Left, UI_From_Int (Right));
1563
   end UI_Eq;
1564
 
1565
   function UI_Eq (Left : Uint; Right : Uint) return Boolean is
1566
   begin
1567
      return not UI_Ne (Left, Right);
1568
   end UI_Eq;
1569
 
1570
   --------------
1571
   -- UI_Expon --
1572
   --------------
1573
 
1574
   function UI_Expon (Left : Int; Right : Uint) return Uint is
1575
   begin
1576
      return UI_Expon (UI_From_Int (Left), Right);
1577
   end UI_Expon;
1578
 
1579
   function UI_Expon (Left : Uint; Right : Int) return Uint is
1580
   begin
1581
      return UI_Expon (Left, UI_From_Int (Right));
1582
   end UI_Expon;
1583
 
1584
   function UI_Expon (Left : Int; Right : Int) return Uint is
1585
   begin
1586
      return UI_Expon (UI_From_Int (Left), UI_From_Int (Right));
1587
   end UI_Expon;
1588
 
1589
   function UI_Expon (Left : Uint; Right : Uint) return Uint is
1590
   begin
1591
      pragma Assert (Right >= Uint_0);
1592
 
1593
      --  Any value raised to power of 0 is 1
1594
 
1595
      if Right = Uint_0 then
1596
         return Uint_1;
1597
 
1598
      --  0 to any positive power is 0
1599
 
1600
      elsif Left = Uint_0 then
1601
         return Uint_0;
1602
 
1603
      --  1 to any power is 1
1604
 
1605
      elsif Left = Uint_1 then
1606
         return Uint_1;
1607
 
1608
      --  Any value raised to power of 1 is that value
1609
 
1610
      elsif Right = Uint_1 then
1611
         return Left;
1612
 
1613
      --  Cases which can be done by table lookup
1614
 
1615
      elsif Right <= Uint_64 then
1616
 
1617
         --  2 ** N for N in 2 .. 64
1618
 
1619
         if Left = Uint_2 then
1620
            declare
1621
               Right_Int : constant Int := Direct_Val (Right);
1622
 
1623
            begin
1624
               if Right_Int > UI_Power_2_Set then
1625
                  for J in UI_Power_2_Set + Int_1 .. Right_Int loop
1626
                     UI_Power_2 (J) := UI_Power_2 (J - Int_1) * Int_2;
1627
                     Uints_Min := Uints.Last;
1628
                     Udigits_Min := Udigits.Last;
1629
                  end loop;
1630
 
1631
                  UI_Power_2_Set := Right_Int;
1632
               end if;
1633
 
1634
               return UI_Power_2 (Right_Int);
1635
            end;
1636
 
1637
         --  10 ** N for N in 2 .. 64
1638
 
1639
         elsif Left = Uint_10 then
1640
            declare
1641
               Right_Int : constant Int := Direct_Val (Right);
1642
 
1643
            begin
1644
               if Right_Int > UI_Power_10_Set then
1645
                  for J in UI_Power_10_Set + Int_1 .. Right_Int loop
1646
                     UI_Power_10 (J) := UI_Power_10 (J - Int_1) * Int (10);
1647
                     Uints_Min := Uints.Last;
1648
                     Udigits_Min := Udigits.Last;
1649
                  end loop;
1650
 
1651
                  UI_Power_10_Set := Right_Int;
1652
               end if;
1653
 
1654
               return UI_Power_10 (Right_Int);
1655
            end;
1656
         end if;
1657
      end if;
1658
 
1659
      --  If we fall through, then we have the general case (see Knuth 4.6.3)
1660
 
1661
      declare
1662
         N       : Uint := Right;
1663
         Squares : Uint := Left;
1664
         Result  : Uint := Uint_1;
1665
         M       : constant Uintp.Save_Mark := Uintp.Mark;
1666
 
1667
      begin
1668
         loop
1669
            if (Least_Sig_Digit (N) mod Int_2) = Int_1 then
1670
               Result := Result * Squares;
1671
            end if;
1672
 
1673
            N := N / Uint_2;
1674
            exit when N = Uint_0;
1675
            Squares := Squares *  Squares;
1676
         end loop;
1677
 
1678
         Uintp.Release_And_Save (M, Result);
1679
         return Result;
1680
      end;
1681
   end UI_Expon;
1682
 
1683
   ----------------
1684
   -- UI_From_CC --
1685
   ----------------
1686
 
1687
   function UI_From_CC (Input : Char_Code) return Uint is
1688
   begin
1689
      return UI_From_Int (Int (Input));
1690
   end UI_From_CC;
1691
 
1692
   -----------------
1693
   -- UI_From_Int --
1694
   -----------------
1695
 
1696
   function UI_From_Int (Input : Int) return Uint is
1697
      U : Uint;
1698
 
1699
   begin
1700
      if Min_Direct <= Input and then Input <= Max_Direct then
1701
         return Uint (Int (Uint_Direct_Bias) + Input);
1702
      end if;
1703
 
1704
      --  If already in the hash table, return entry
1705
 
1706
      U := UI_Ints.Get (Input);
1707
 
1708
      if U /= No_Uint then
1709
         return U;
1710
      end if;
1711
 
1712
      --  For values of larger magnitude, compute digits into a vector and call
1713
      --  Vector_To_Uint.
1714
 
1715
      declare
1716
         Max_For_Int : constant := 3;
1717
         --  Base is defined so that 3 Uint digits is sufficient to hold the
1718
         --  largest possible Int value.
1719
 
1720
         V : UI_Vector (1 .. Max_For_Int);
1721
 
1722
         Temp_Integer : Int := Input;
1723
 
1724
      begin
1725
         for J in reverse V'Range loop
1726
            V (J) := abs (Temp_Integer rem Base);
1727
            Temp_Integer := Temp_Integer / Base;
1728
         end loop;
1729
 
1730
         U := Vector_To_Uint (V, Input < Int_0);
1731
         UI_Ints.Set (Input, U);
1732
         Uints_Min := Uints.Last;
1733
         Udigits_Min := Udigits.Last;
1734
         return U;
1735
      end;
1736
   end UI_From_Int;
1737
 
1738
   ------------
1739
   -- UI_GCD --
1740
   ------------
1741
 
1742
   --  Lehmer's algorithm for GCD
1743
 
1744
   --  The idea is to avoid using multiple precision arithmetic wherever
1745
   --  possible, substituting Int arithmetic instead. See Knuth volume II,
1746
   --  Algorithm L (page 329).
1747
 
1748
   --  We use the same notation as Knuth (U_Hat standing for the obvious!)
1749
 
1750
   function UI_GCD (Uin, Vin : Uint) return Uint is
1751
      U, V : Uint;
1752
      --  Copies of Uin and Vin
1753
 
1754
      U_Hat, V_Hat : Int;
1755
      --  The most Significant digits of U,V
1756
 
1757
      A, B, C, D, T, Q, Den1, Den2 : Int;
1758
 
1759
      Tmp_UI : Uint;
1760
      Marks  : constant Uintp.Save_Mark := Uintp.Mark;
1761
      Iterations : Integer := 0;
1762
 
1763
   begin
1764
      pragma Assert (Uin >= Vin);
1765
      pragma Assert (Vin >= Uint_0);
1766
 
1767
      U := Uin;
1768
      V := Vin;
1769
 
1770
      loop
1771
         Iterations := Iterations + 1;
1772
 
1773
         if Direct (V) then
1774
            if V = Uint_0 then
1775
               return U;
1776
            else
1777
               return
1778
                 UI_From_Int (GCD (Direct_Val (V), UI_To_Int (U rem V)));
1779
            end if;
1780
         end if;
1781
 
1782
         Most_Sig_2_Digits (U, V, U_Hat, V_Hat);
1783
         A := 1;
1784
         B := 0;
1785
         C := 0;
1786
         D := 1;
1787
 
1788
         loop
1789
            --  We might overflow and get division by zero here. This just
1790
            --  means we cannot take the single precision step
1791
 
1792
            Den1 := V_Hat + C;
1793
            Den2 := V_Hat + D;
1794
            exit when Den1 = Int_0 or else Den2 = Int_0;
1795
 
1796
            --  Compute Q, the trial quotient
1797
 
1798
            Q := (U_Hat + A) / Den1;
1799
 
1800
            exit when Q /= ((U_Hat + B) / Den2);
1801
 
1802
            --  A single precision step Euclid step will give same answer as a
1803
            --  multiprecision one.
1804
 
1805
            T := A - (Q * C);
1806
            A := C;
1807
            C := T;
1808
 
1809
            T := B - (Q * D);
1810
            B := D;
1811
            D := T;
1812
 
1813
            T := U_Hat - (Q * V_Hat);
1814
            U_Hat := V_Hat;
1815
            V_Hat := T;
1816
 
1817
         end loop;
1818
 
1819
         --  Take a multiprecision Euclid step
1820
 
1821
         if B = Int_0 then
1822
 
1823
            --  No single precision steps take a regular Euclid step
1824
 
1825
            Tmp_UI := U rem V;
1826
            U := V;
1827
            V := Tmp_UI;
1828
 
1829
         else
1830
            --  Use prior single precision steps to compute this Euclid step
1831
 
1832
            --  For constructs such as:
1833
            --  sqrt_2: constant :=  1.41421_35623_73095_04880_16887_24209_698;
1834
            --  sqrt_eps: constant long_float := long_float( 1.0 / sqrt_2)
1835
            --    ** long_float'machine_mantissa;
1836
            --
1837
            --  we spend 80% of our time working on this step. Perhaps we need
1838
            --  a special case Int / Uint dot product to speed things up. ???
1839
 
1840
            --  Alternatively we could increase the single precision iterations
1841
            --  to handle Uint's of some small size ( <5 digits?). Then we
1842
            --  would have more iterations on small Uint. On the code above, we
1843
            --  only get 5 (on average) single precision iterations per large
1844
            --  iteration. ???
1845
 
1846
            Tmp_UI := (UI_From_Int (A) * U) + (UI_From_Int (B) * V);
1847
            V := (UI_From_Int (C) * U) + (UI_From_Int (D) * V);
1848
            U := Tmp_UI;
1849
         end if;
1850
 
1851
         --  If the operands are very different in magnitude, the loop will
1852
         --  generate large amounts of short-lived data, which it is worth
1853
         --  removing periodically.
1854
 
1855
         if Iterations > 100 then
1856
            Release_And_Save (Marks, U, V);
1857
            Iterations := 0;
1858
         end if;
1859
      end loop;
1860
   end UI_GCD;
1861
 
1862
   ------------
1863
   -- UI_Ge --
1864
   ------------
1865
 
1866
   function UI_Ge (Left : Int; Right : Uint) return Boolean is
1867
   begin
1868
      return not UI_Lt (UI_From_Int (Left), Right);
1869
   end UI_Ge;
1870
 
1871
   function UI_Ge (Left : Uint; Right : Int) return Boolean is
1872
   begin
1873
      return not UI_Lt (Left, UI_From_Int (Right));
1874
   end UI_Ge;
1875
 
1876
   function UI_Ge (Left : Uint; Right : Uint) return Boolean is
1877
   begin
1878
      return not UI_Lt (Left, Right);
1879
   end UI_Ge;
1880
 
1881
   ------------
1882
   -- UI_Gt --
1883
   ------------
1884
 
1885
   function UI_Gt (Left : Int; Right : Uint) return Boolean is
1886
   begin
1887
      return UI_Lt (Right, UI_From_Int (Left));
1888
   end UI_Gt;
1889
 
1890
   function UI_Gt (Left : Uint; Right : Int) return Boolean is
1891
   begin
1892
      return UI_Lt (UI_From_Int (Right), Left);
1893
   end UI_Gt;
1894
 
1895
   function UI_Gt (Left : Uint; Right : Uint) return Boolean is
1896
   begin
1897
      return UI_Lt (Left => Right, Right => Left);
1898
   end UI_Gt;
1899
 
1900
   ---------------
1901
   -- UI_Image --
1902
   ---------------
1903
 
1904
   procedure UI_Image (Input : Uint; Format : UI_Format := Auto) is
1905
   begin
1906
      Image_Out (Input, True, Format);
1907
   end UI_Image;
1908
 
1909
   -------------------------
1910
   -- UI_Is_In_Int_Range --
1911
   -------------------------
1912
 
1913
   function UI_Is_In_Int_Range (Input : Uint) return Boolean is
1914
   begin
1915
      --  Make sure we don't get called before Initialize
1916
 
1917
      pragma Assert (Uint_Int_First /= Uint_0);
1918
 
1919
      if Direct (Input) then
1920
         return True;
1921
      else
1922
         return Input >= Uint_Int_First
1923
           and then Input <= Uint_Int_Last;
1924
      end if;
1925
   end UI_Is_In_Int_Range;
1926
 
1927
   ------------
1928
   -- UI_Le --
1929
   ------------
1930
 
1931
   function UI_Le (Left : Int; Right : Uint) return Boolean is
1932
   begin
1933
      return not UI_Lt (Right, UI_From_Int (Left));
1934
   end UI_Le;
1935
 
1936
   function UI_Le (Left : Uint; Right : Int) return Boolean is
1937
   begin
1938
      return not UI_Lt (UI_From_Int (Right), Left);
1939
   end UI_Le;
1940
 
1941
   function UI_Le (Left : Uint; Right : Uint) return Boolean is
1942
   begin
1943
      return not UI_Lt (Left => Right, Right => Left);
1944
   end UI_Le;
1945
 
1946
   ------------
1947
   -- UI_Lt --
1948
   ------------
1949
 
1950
   function UI_Lt (Left : Int; Right : Uint) return Boolean is
1951
   begin
1952
      return UI_Lt (UI_From_Int (Left), Right);
1953
   end UI_Lt;
1954
 
1955
   function UI_Lt (Left : Uint; Right : Int) return Boolean is
1956
   begin
1957
      return UI_Lt (Left, UI_From_Int (Right));
1958
   end UI_Lt;
1959
 
1960
   function UI_Lt (Left : Uint; Right : Uint) return Boolean is
1961
   begin
1962
      --  Quick processing for identical arguments
1963
 
1964
      if Int (Left) = Int (Right) then
1965
         return False;
1966
 
1967
      --  Quick processing for both arguments directly represented
1968
 
1969
      elsif Direct (Left) and then Direct (Right) then
1970
         return Int (Left) < Int (Right);
1971
 
1972
      --  At least one argument is more than one digit long
1973
 
1974
      else
1975
         declare
1976
            L_Length : constant Int := N_Digits (Left);
1977
            R_Length : constant Int := N_Digits (Right);
1978
 
1979
            L_Vec : UI_Vector (1 .. L_Length);
1980
            R_Vec : UI_Vector (1 .. R_Length);
1981
 
1982
         begin
1983
            Init_Operand (Left, L_Vec);
1984
            Init_Operand (Right, R_Vec);
1985
 
1986
            if L_Vec (1) < Int_0 then
1987
 
1988
               --  First argument negative, second argument non-negative
1989
 
1990
               if R_Vec (1) >= Int_0 then
1991
                  return True;
1992
 
1993
               --  Both arguments negative
1994
 
1995
               else
1996
                  if L_Length /= R_Length then
1997
                     return L_Length > R_Length;
1998
 
1999
                  elsif L_Vec (1) /= R_Vec (1) then
2000
                     return L_Vec (1) < R_Vec (1);
2001
 
2002
                  else
2003
                     for J in 2 .. L_Vec'Last loop
2004
                        if L_Vec (J) /= R_Vec (J) then
2005
                           return L_Vec (J) > R_Vec (J);
2006
                        end if;
2007
                     end loop;
2008
 
2009
                     return False;
2010
                  end if;
2011
               end if;
2012
 
2013
            else
2014
               --  First argument non-negative, second argument negative
2015
 
2016
               if R_Vec (1) < Int_0 then
2017
                  return False;
2018
 
2019
               --  Both arguments non-negative
2020
 
2021
               else
2022
                  if L_Length /= R_Length then
2023
                     return L_Length < R_Length;
2024
                  else
2025
                     for J in L_Vec'Range loop
2026
                        if L_Vec (J) /= R_Vec (J) then
2027
                           return L_Vec (J) < R_Vec (J);
2028
                        end if;
2029
                     end loop;
2030
 
2031
                     return False;
2032
                  end if;
2033
               end if;
2034
            end if;
2035
         end;
2036
      end if;
2037
   end UI_Lt;
2038
 
2039
   ------------
2040
   -- UI_Max --
2041
   ------------
2042
 
2043
   function UI_Max (Left : Int; Right : Uint) return Uint is
2044
   begin
2045
      return UI_Max (UI_From_Int (Left), Right);
2046
   end UI_Max;
2047
 
2048
   function UI_Max (Left : Uint; Right : Int) return Uint is
2049
   begin
2050
      return UI_Max (Left, UI_From_Int (Right));
2051
   end UI_Max;
2052
 
2053
   function UI_Max (Left : Uint; Right : Uint) return Uint is
2054
   begin
2055
      if Left >= Right then
2056
         return Left;
2057
      else
2058
         return Right;
2059
      end if;
2060
   end UI_Max;
2061
 
2062
   ------------
2063
   -- UI_Min --
2064
   ------------
2065
 
2066
   function UI_Min (Left : Int; Right : Uint) return Uint is
2067
   begin
2068
      return UI_Min (UI_From_Int (Left), Right);
2069
   end UI_Min;
2070
 
2071
   function UI_Min (Left : Uint; Right : Int) return Uint is
2072
   begin
2073
      return UI_Min (Left, UI_From_Int (Right));
2074
   end UI_Min;
2075
 
2076
   function UI_Min (Left : Uint; Right : Uint) return Uint is
2077
   begin
2078
      if Left <= Right then
2079
         return Left;
2080
      else
2081
         return Right;
2082
      end if;
2083
   end UI_Min;
2084
 
2085
   -------------
2086
   -- UI_Mod --
2087
   -------------
2088
 
2089
   function UI_Mod (Left : Int; Right : Uint) return Uint is
2090
   begin
2091
      return UI_Mod (UI_From_Int (Left), Right);
2092
   end UI_Mod;
2093
 
2094
   function UI_Mod (Left : Uint; Right : Int) return Uint is
2095
   begin
2096
      return UI_Mod (Left, UI_From_Int (Right));
2097
   end UI_Mod;
2098
 
2099
   function UI_Mod (Left : Uint; Right : Uint) return Uint is
2100
      Urem : constant Uint := Left rem Right;
2101
 
2102
   begin
2103
      if (Left < Uint_0) = (Right < Uint_0)
2104
        or else Urem = Uint_0
2105
      then
2106
         return Urem;
2107
      else
2108
         return Right + Urem;
2109
      end if;
2110
   end UI_Mod;
2111
 
2112
   -------------------------------
2113
   -- UI_Modular_Exponentiation --
2114
   -------------------------------
2115
 
2116
   function UI_Modular_Exponentiation
2117
     (B      : Uint;
2118
      E      : Uint;
2119
      Modulo : Uint) return Uint
2120
   is
2121
      M : constant Save_Mark := Mark;
2122
 
2123
      Result   : Uint := Uint_1;
2124
      Base     : Uint := B;
2125
      Exponent : Uint := E;
2126
 
2127
   begin
2128
      while Exponent /= Uint_0 loop
2129
         if Least_Sig_Digit (Exponent) rem Int'(2) = Int'(1) then
2130
            Result := (Result * Base) rem Modulo;
2131
         end if;
2132
 
2133
         Exponent := Exponent / Uint_2;
2134
         Base := (Base * Base) rem Modulo;
2135
      end loop;
2136
 
2137
      Release_And_Save (M, Result);
2138
      return Result;
2139
   end UI_Modular_Exponentiation;
2140
 
2141
   ------------------------
2142
   -- UI_Modular_Inverse --
2143
   ------------------------
2144
 
2145
   function UI_Modular_Inverse (N : Uint; Modulo : Uint) return Uint is
2146
      M : constant Save_Mark := Mark;
2147
      U : Uint;
2148
      V : Uint;
2149
      Q : Uint;
2150
      R : Uint;
2151
      X : Uint;
2152
      Y : Uint;
2153
      T : Uint;
2154
      S : Int := 1;
2155
 
2156
   begin
2157
      U := Modulo;
2158
      V := N;
2159
 
2160
      X := Uint_1;
2161
      Y := Uint_0;
2162
 
2163
      loop
2164
         UI_Div_Rem (U, V, Quotient => Q, Remainder => R);
2165
 
2166
         U := V;
2167
         V := R;
2168
 
2169
         T := X;
2170
         X := Y + Q * X;
2171
         Y := T;
2172
         S := -S;
2173
 
2174
         exit when R = Uint_1;
2175
      end loop;
2176
 
2177
      if S = Int'(-1) then
2178
         X := Modulo - X;
2179
      end if;
2180
 
2181
      Release_And_Save (M, X);
2182
      return X;
2183
   end UI_Modular_Inverse;
2184
 
2185
   ------------
2186
   -- UI_Mul --
2187
   ------------
2188
 
2189
   function UI_Mul (Left : Int; Right : Uint) return Uint is
2190
   begin
2191
      return UI_Mul (UI_From_Int (Left), Right);
2192
   end UI_Mul;
2193
 
2194
   function UI_Mul (Left : Uint; Right : Int) return Uint is
2195
   begin
2196
      return UI_Mul (Left, UI_From_Int (Right));
2197
   end UI_Mul;
2198
 
2199
   function UI_Mul (Left : Uint; Right : Uint) return Uint is
2200
   begin
2201
      --  Case where product fits in the range of a 32-bit integer
2202
 
2203
      if Int (Left)  <= Int (Uint_Max_Simple_Mul)
2204
           and then
2205
         Int (Right) <= Int (Uint_Max_Simple_Mul)
2206
      then
2207
         return UI_From_Int (Direct_Val (Left) * Direct_Val (Right));
2208
      end if;
2209
 
2210
      --  Otherwise we have the general case (Algorithm M in Knuth)
2211
 
2212
      declare
2213
         L_Length : constant Int := N_Digits (Left);
2214
         R_Length : constant Int := N_Digits (Right);
2215
         L_Vec    : UI_Vector (1 .. L_Length);
2216
         R_Vec    : UI_Vector (1 .. R_Length);
2217
         Neg      : Boolean;
2218
 
2219
      begin
2220
         Init_Operand (Left, L_Vec);
2221
         Init_Operand (Right, R_Vec);
2222
         Neg := (L_Vec (1) < Int_0) xor (R_Vec (1) < Int_0);
2223
         L_Vec (1) := abs (L_Vec (1));
2224
         R_Vec (1) := abs (R_Vec (1));
2225
 
2226
         Algorithm_M : declare
2227
            Product : UI_Vector (1 .. L_Length + R_Length);
2228
            Tmp_Sum : Int;
2229
            Carry   : Int;
2230
 
2231
         begin
2232
            for J in Product'Range loop
2233
               Product (J) := 0;
2234
            end loop;
2235
 
2236
            for J in reverse R_Vec'Range loop
2237
               Carry := 0;
2238
               for K in reverse L_Vec'Range loop
2239
                  Tmp_Sum :=
2240
                    L_Vec (K) * R_Vec (J) + Product (J + K) + Carry;
2241
                  Product (J + K) := Tmp_Sum rem Base;
2242
                  Carry := Tmp_Sum / Base;
2243
               end loop;
2244
 
2245
               Product (J) := Carry;
2246
            end loop;
2247
 
2248
            return Vector_To_Uint (Product, Neg);
2249
         end Algorithm_M;
2250
      end;
2251
   end UI_Mul;
2252
 
2253
   ------------
2254
   -- UI_Ne --
2255
   ------------
2256
 
2257
   function UI_Ne (Left : Int; Right : Uint) return Boolean is
2258
   begin
2259
      return UI_Ne (UI_From_Int (Left), Right);
2260
   end UI_Ne;
2261
 
2262
   function UI_Ne (Left : Uint; Right : Int) return Boolean is
2263
   begin
2264
      return UI_Ne (Left, UI_From_Int (Right));
2265
   end UI_Ne;
2266
 
2267
   function UI_Ne (Left : Uint; Right : Uint) return Boolean is
2268
   begin
2269
      --  Quick processing for identical arguments. Note that this takes
2270
      --  care of the case of two No_Uint arguments.
2271
 
2272
      if Int (Left) = Int (Right) then
2273
         return False;
2274
      end if;
2275
 
2276
      --  See if left operand directly represented
2277
 
2278
      if Direct (Left) then
2279
 
2280
         --  If right operand directly represented then compare
2281
 
2282
         if Direct (Right) then
2283
            return Int (Left) /= Int (Right);
2284
 
2285
         --  Left operand directly represented, right not, must be unequal
2286
 
2287
         else
2288
            return True;
2289
         end if;
2290
 
2291
      --  Right operand directly represented, left not, must be unequal
2292
 
2293
      elsif Direct (Right) then
2294
         return True;
2295
      end if;
2296
 
2297
      --  Otherwise both multi-word, do comparison
2298
 
2299
      declare
2300
         Size      : constant Int := N_Digits (Left);
2301
         Left_Loc  : Int;
2302
         Right_Loc : Int;
2303
 
2304
      begin
2305
         if Size /= N_Digits (Right) then
2306
            return True;
2307
         end if;
2308
 
2309
         Left_Loc  := Uints.Table (Left).Loc;
2310
         Right_Loc := Uints.Table (Right).Loc;
2311
 
2312
         for J in Int_0 .. Size - Int_1 loop
2313
            if Udigits.Table (Left_Loc + J) /=
2314
               Udigits.Table (Right_Loc + J)
2315
            then
2316
               return True;
2317
            end if;
2318
         end loop;
2319
 
2320
         return False;
2321
      end;
2322
   end UI_Ne;
2323
 
2324
   ----------------
2325
   -- UI_Negate --
2326
   ----------------
2327
 
2328
   function UI_Negate (Right : Uint) return Uint is
2329
   begin
2330
      --  Case where input is directly represented. Note that since the range
2331
      --  of Direct values is non-symmetrical, the result may not be directly
2332
      --  represented, this is taken care of in UI_From_Int.
2333
 
2334
      if Direct (Right) then
2335
         return UI_From_Int (-Direct_Val (Right));
2336
 
2337
      --  Full processing for multi-digit case. Note that we cannot just copy
2338
      --  the value to the end of the table negating the first digit, since the
2339
      --  range of Direct values is non-symmetrical, so we can have a negative
2340
      --  value that is not Direct whose negation can be represented directly.
2341
 
2342
      else
2343
         declare
2344
            R_Length : constant Int := N_Digits (Right);
2345
            R_Vec    : UI_Vector (1 .. R_Length);
2346
            Neg      : Boolean;
2347
 
2348
         begin
2349
            Init_Operand (Right, R_Vec);
2350
            Neg := R_Vec (1) > Int_0;
2351
            R_Vec (1) := abs R_Vec (1);
2352
            return Vector_To_Uint (R_Vec, Neg);
2353
         end;
2354
      end if;
2355
   end UI_Negate;
2356
 
2357
   -------------
2358
   -- UI_Rem --
2359
   -------------
2360
 
2361
   function UI_Rem (Left : Int; Right : Uint) return Uint is
2362
   begin
2363
      return UI_Rem (UI_From_Int (Left), Right);
2364
   end UI_Rem;
2365
 
2366
   function UI_Rem (Left : Uint; Right : Int) return Uint is
2367
   begin
2368
      return UI_Rem (Left, UI_From_Int (Right));
2369
   end UI_Rem;
2370
 
2371
   function UI_Rem (Left, Right : Uint) return Uint is
2372
      Sign : Int;
2373
      Tmp  : Int;
2374
 
2375
      subtype Int1_12 is Integer range 1 .. 12;
2376
 
2377
   begin
2378
      pragma Assert (Right /= Uint_0);
2379
 
2380
      if Direct (Right) then
2381
         if Direct (Left) then
2382
            return UI_From_Int (Direct_Val (Left) rem Direct_Val (Right));
2383
 
2384
         else
2385
 
2386
            --  Special cases when Right is less than 13 and Left is larger
2387
            --  larger than one digit. All of these algorithms depend on the
2388
            --  base being 2 ** 15 We work with Abs (Left) and Abs(Right)
2389
            --  then multiply result by Sign (Left)
2390
 
2391
            if (Right <= Uint_12) and then (Right >= Uint_Minus_12) then
2392
 
2393
               if Left < Uint_0 then
2394
                  Sign := -1;
2395
               else
2396
                  Sign := 1;
2397
               end if;
2398
 
2399
               --  All cases are listed, grouped by mathematical method It is
2400
               --  not inefficient to do have this case list out of order since
2401
               --  GCC sorts the cases we list.
2402
 
2403
               case Int1_12 (abs (Direct_Val (Right))) is
2404
 
2405
                  when 1 =>
2406
                     return Uint_0;
2407
 
2408
                  --  Powers of two are simple AND's with LS Left Digit GCC
2409
                  --  will recognise these constants as powers of 2 and replace
2410
                  --  the rem with simpler operations where possible.
2411
 
2412
                  --  Least_Sig_Digit might return Negative numbers
2413
 
2414
                  when 2 =>
2415
                     return UI_From_Int (
2416
                        Sign * (Least_Sig_Digit (Left) mod 2));
2417
 
2418
                  when 4 =>
2419
                     return UI_From_Int (
2420
                        Sign * (Least_Sig_Digit (Left) mod 4));
2421
 
2422
                  when 8 =>
2423
                     return UI_From_Int (
2424
                        Sign * (Least_Sig_Digit (Left) mod 8));
2425
 
2426
                  --  Some number theoretical tricks:
2427
 
2428
                  --    If B Rem Right = 1 then
2429
                  --    Left Rem Right = Sum_Of_Digits_Base_B (Left) Rem Right
2430
 
2431
                  --  Note: 2^32 mod 3 = 1
2432
 
2433
                  when 3 =>
2434
                     return UI_From_Int (
2435
                        Sign * (Sum_Double_Digits (Left, 1) rem Int (3)));
2436
 
2437
                  --  Note: 2^15 mod 7 = 1
2438
 
2439
                  when 7 =>
2440
                     return UI_From_Int (
2441
                        Sign * (Sum_Digits (Left, 1) rem Int (7)));
2442
 
2443
                  --  Note: 2^32 mod 5 = -1
2444
 
2445
                  --  Alternating sums might be negative, but rem is always
2446
                  --  positive hence we must use mod here.
2447
 
2448
                  when 5 =>
2449
                     Tmp := Sum_Double_Digits (Left, -1) mod Int (5);
2450
                     return UI_From_Int (Sign * Tmp);
2451
 
2452
                  --  Note: 2^15 mod 9 = -1
2453
 
2454
                  --  Alternating sums might be negative, but rem is always
2455
                  --  positive hence we must use mod here.
2456
 
2457
                  when 9  =>
2458
                     Tmp := Sum_Digits (Left, -1) mod Int (9);
2459
                     return UI_From_Int (Sign * Tmp);
2460
 
2461
                  --  Note: 2^15 mod 11 = -1
2462
 
2463
                  --  Alternating sums might be negative, but rem is always
2464
                  --  positive hence we must use mod here.
2465
 
2466
                  when 11 =>
2467
                     Tmp := Sum_Digits (Left, -1) mod Int (11);
2468
                     return UI_From_Int (Sign * Tmp);
2469
 
2470
                  --  Now resort to Chinese Remainder theorem to reduce 6, 10,
2471
                  --  12 to previous special cases
2472
 
2473
                  --  There is no reason we could not add more cases like these
2474
                  --  if it proves useful.
2475
 
2476
                  --  Perhaps we should go up to 16, however we have no "trick"
2477
                  --  for 13.
2478
 
2479
                  --  To find u mod m we:
2480
 
2481
                  --  Pick m1, m2 S.T.
2482
                  --     GCD(m1, m2) = 1 AND m = (m1 * m2).
2483
 
2484
                  --  Next we pick (Basis) M1, M2 small S.T.
2485
                  --     (M1 mod m1) = (M2 mod m2) = 1 AND
2486
                  --     (M1 mod m2) = (M2 mod m1) = 0
2487
 
2488
                  --  So u mod m = (u1 * M1 + u2 * M2) mod m Where u1 = (u mod
2489
                  --  m1) AND u2 = (u mod m2); Under typical circumstances the
2490
                  --  last mod m can be done with a (possible) single
2491
                  --  subtraction.
2492
 
2493
                  --  m1 = 2; m2 = 3; M1 = 3; M2 = 4;
2494
 
2495
                  when 6  =>
2496
                     Tmp := 3 * (Least_Sig_Digit (Left) rem 2) +
2497
                              4 * (Sum_Double_Digits (Left, 1) rem 3);
2498
                     return UI_From_Int (Sign * (Tmp rem 6));
2499
 
2500
                  --  m1 = 2; m2 = 5; M1 = 5; M2 = 6;
2501
 
2502
                  when 10 =>
2503
                     Tmp := 5 * (Least_Sig_Digit (Left) rem 2) +
2504
                              6 * (Sum_Double_Digits (Left, -1) mod 5);
2505
                     return UI_From_Int (Sign * (Tmp rem 10));
2506
 
2507
                  --  m1 = 3; m2 = 4; M1 = 4; M2 = 9;
2508
 
2509
                  when 12 =>
2510
                     Tmp := 4 * (Sum_Double_Digits (Left, 1) rem 3) +
2511
                              9 * (Least_Sig_Digit (Left) rem 4);
2512
                     return UI_From_Int (Sign * (Tmp rem 12));
2513
               end case;
2514
 
2515
            end if;
2516
 
2517
            --  Else fall through to general case
2518
 
2519
            --  The special case Length (Left) = Length (Right) = 1 in Div
2520
            --  looks slow. It uses UI_To_Int when Int should suffice. ???
2521
         end if;
2522
      end if;
2523
 
2524
      declare
2525
         Remainder : Uint;
2526
         Quotient  : Uint;
2527
         pragma Warnings (Off, Quotient);
2528
      begin
2529
         UI_Div_Rem
2530
           (Left, Right, Quotient, Remainder, Discard_Quotient  => True);
2531
         return Remainder;
2532
      end;
2533
   end UI_Rem;
2534
 
2535
   ------------
2536
   -- UI_Sub --
2537
   ------------
2538
 
2539
   function UI_Sub (Left : Int; Right : Uint) return Uint is
2540
   begin
2541
      return UI_Add (Left, -Right);
2542
   end UI_Sub;
2543
 
2544
   function UI_Sub (Left : Uint; Right : Int) return Uint is
2545
   begin
2546
      return UI_Add (Left, -Right);
2547
   end UI_Sub;
2548
 
2549
   function UI_Sub (Left : Uint; Right : Uint) return Uint is
2550
   begin
2551
      if Direct (Left) and then Direct (Right) then
2552
         return UI_From_Int (Direct_Val (Left) - Direct_Val (Right));
2553
      else
2554
         return UI_Add (Left, -Right);
2555
      end if;
2556
   end UI_Sub;
2557
 
2558
   --------------
2559
   -- UI_To_CC --
2560
   --------------
2561
 
2562
   function UI_To_CC (Input : Uint) return Char_Code is
2563
   begin
2564
      if Direct (Input) then
2565
         return Char_Code (Direct_Val (Input));
2566
 
2567
      --  Case of input is more than one digit
2568
 
2569
      else
2570
         declare
2571
            In_Length : constant Int := N_Digits (Input);
2572
            In_Vec    : UI_Vector (1 .. In_Length);
2573
            Ret_CC    : Char_Code;
2574
 
2575
         begin
2576
            Init_Operand (Input, In_Vec);
2577
 
2578
            --  We assume value is positive
2579
 
2580
            Ret_CC := 0;
2581
            for Idx in In_Vec'Range loop
2582
               Ret_CC := Ret_CC * Char_Code (Base) +
2583
                                  Char_Code (abs In_Vec (Idx));
2584
            end loop;
2585
 
2586
            return Ret_CC;
2587
         end;
2588
      end if;
2589
   end UI_To_CC;
2590
 
2591
   ----------------
2592
   -- UI_To_Int --
2593
   ----------------
2594
 
2595
   function UI_To_Int (Input : Uint) return Int is
2596
   begin
2597
      if Direct (Input) then
2598
         return Direct_Val (Input);
2599
 
2600
      --  Case of input is more than one digit
2601
 
2602
      else
2603
         declare
2604
            In_Length : constant Int := N_Digits (Input);
2605
            In_Vec    : UI_Vector (1 .. In_Length);
2606
            Ret_Int   : Int;
2607
 
2608
         begin
2609
            --  Uints of more than one digit could be outside the range for
2610
            --  Ints. Caller should have checked for this if not certain.
2611
            --  Fatal error to attempt to convert from value outside Int'Range.
2612
 
2613
            pragma Assert (UI_Is_In_Int_Range (Input));
2614
 
2615
            --  Otherwise, proceed ahead, we are OK
2616
 
2617
            Init_Operand (Input, In_Vec);
2618
            Ret_Int := 0;
2619
 
2620
            --  Calculate -|Input| and then negates if value is positive. This
2621
            --  handles our current definition of Int (based on 2s complement).
2622
            --  Is it secure enough???
2623
 
2624
            for Idx in In_Vec'Range loop
2625
               Ret_Int := Ret_Int * Base - abs In_Vec (Idx);
2626
            end loop;
2627
 
2628
            if In_Vec (1) < Int_0 then
2629
               return Ret_Int;
2630
            else
2631
               return -Ret_Int;
2632
            end if;
2633
         end;
2634
      end if;
2635
   end UI_To_Int;
2636
 
2637
   --------------
2638
   -- UI_Write --
2639
   --------------
2640
 
2641
   procedure UI_Write (Input : Uint; Format : UI_Format := Auto) is
2642
   begin
2643
      Image_Out (Input, False, Format);
2644
   end UI_Write;
2645
 
2646
   ---------------------
2647
   -- Vector_To_Uint --
2648
   ---------------------
2649
 
2650
   function Vector_To_Uint
2651
     (In_Vec   : UI_Vector;
2652
      Negative : Boolean)
2653
      return     Uint
2654
   is
2655
      Size : Int;
2656
      Val  : Int;
2657
 
2658
   begin
2659
      --  The vector can contain leading zeros. These are not stored in the
2660
      --  table, so loop through the vector looking for first non-zero digit
2661
 
2662
      for J in In_Vec'Range loop
2663
         if In_Vec (J) /= Int_0 then
2664
 
2665
            --  The length of the value is the length of the rest of the vector
2666
 
2667
            Size := In_Vec'Last - J + 1;
2668
 
2669
            --  One digit value can always be represented directly
2670
 
2671
            if Size = Int_1 then
2672
               if Negative then
2673
                  return Uint (Int (Uint_Direct_Bias) - In_Vec (J));
2674
               else
2675
                  return Uint (Int (Uint_Direct_Bias) + In_Vec (J));
2676
               end if;
2677
 
2678
            --  Positive two digit values may be in direct representation range
2679
 
2680
            elsif Size = Int_2 and then not Negative then
2681
               Val := In_Vec (J) * Base + In_Vec (J + 1);
2682
 
2683
               if Val <= Max_Direct then
2684
                  return Uint (Int (Uint_Direct_Bias) + Val);
2685
               end if;
2686
            end if;
2687
 
2688
            --  The value is outside the direct representation range and must
2689
            --  therefore be stored in the table. Expand the table to contain
2690
            --  the count and digits. The index of the new table entry will be
2691
            --  returned as the result.
2692
 
2693
            Uints.Append ((Length => Size, Loc => Udigits.Last + 1));
2694
 
2695
            if Negative then
2696
               Val := -In_Vec (J);
2697
            else
2698
               Val := +In_Vec (J);
2699
            end if;
2700
 
2701
            Udigits.Append (Val);
2702
 
2703
            for K in 2 .. Size loop
2704
               Udigits.Append (In_Vec (J + K - 1));
2705
            end loop;
2706
 
2707
            return Uints.Last;
2708
         end if;
2709
      end loop;
2710
 
2711
      --  Dropped through loop only if vector contained all zeros
2712
 
2713
      return Uint_0;
2714
   end Vector_To_Uint;
2715
 
2716
end Uintp;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.