| 1 |
684 |
jeremybenn |
/* Basic block reordering routines for the GNU compiler.
|
| 2 |
|
|
Copyright (C) 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011,
|
| 3 |
|
|
2012 Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 8 |
|
|
under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 10 |
|
|
any later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| 14 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
| 15 |
|
|
License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
/* This (greedy) algorithm constructs traces in several rounds.
|
| 22 |
|
|
The construction starts from "seeds". The seed for the first round
|
| 23 |
|
|
is the entry point of function. When there are more than one seed
|
| 24 |
|
|
that one is selected first that has the lowest key in the heap
|
| 25 |
|
|
(see function bb_to_key). Then the algorithm repeatedly adds the most
|
| 26 |
|
|
probable successor to the end of a trace. Finally it connects the traces.
|
| 27 |
|
|
|
| 28 |
|
|
There are two parameters: Branch Threshold and Exec Threshold.
|
| 29 |
|
|
If the edge to a successor of the actual basic block is lower than
|
| 30 |
|
|
Branch Threshold or the frequency of the successor is lower than
|
| 31 |
|
|
Exec Threshold the successor will be the seed in one of the next rounds.
|
| 32 |
|
|
Each round has these parameters lower than the previous one.
|
| 33 |
|
|
The last round has to have these parameters set to zero
|
| 34 |
|
|
so that the remaining blocks are picked up.
|
| 35 |
|
|
|
| 36 |
|
|
The algorithm selects the most probable successor from all unvisited
|
| 37 |
|
|
successors and successors that have been added to this trace.
|
| 38 |
|
|
The other successors (that has not been "sent" to the next round) will be
|
| 39 |
|
|
other seeds for this round and the secondary traces will start in them.
|
| 40 |
|
|
If the successor has not been visited in this trace it is added to the trace
|
| 41 |
|
|
(however, there is some heuristic for simple branches).
|
| 42 |
|
|
If the successor has been visited in this trace the loop has been found.
|
| 43 |
|
|
If the loop has many iterations the loop is rotated so that the
|
| 44 |
|
|
source block of the most probable edge going out from the loop
|
| 45 |
|
|
is the last block of the trace.
|
| 46 |
|
|
If the loop has few iterations and there is no edge from the last block of
|
| 47 |
|
|
the loop going out from loop the loop header is duplicated.
|
| 48 |
|
|
Finally, the construction of the trace is terminated.
|
| 49 |
|
|
|
| 50 |
|
|
When connecting traces it first checks whether there is an edge from the
|
| 51 |
|
|
last block of one trace to the first block of another trace.
|
| 52 |
|
|
When there are still some unconnected traces it checks whether there exists
|
| 53 |
|
|
a basic block BB such that BB is a successor of the last bb of one trace
|
| 54 |
|
|
and BB is a predecessor of the first block of another trace. In this case,
|
| 55 |
|
|
BB is duplicated and the traces are connected through this duplicate.
|
| 56 |
|
|
The rest of traces are simply connected so there will be a jump to the
|
| 57 |
|
|
beginning of the rest of trace.
|
| 58 |
|
|
|
| 59 |
|
|
|
| 60 |
|
|
References:
|
| 61 |
|
|
|
| 62 |
|
|
"Software Trace Cache"
|
| 63 |
|
|
A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
|
| 64 |
|
|
http://citeseer.nj.nec.com/15361.html
|
| 65 |
|
|
|
| 66 |
|
|
*/
|
| 67 |
|
|
|
| 68 |
|
|
#include "config.h"
|
| 69 |
|
|
#include "system.h"
|
| 70 |
|
|
#include "coretypes.h"
|
| 71 |
|
|
#include "tm.h"
|
| 72 |
|
|
#include "rtl.h"
|
| 73 |
|
|
#include "regs.h"
|
| 74 |
|
|
#include "flags.h"
|
| 75 |
|
|
#include "timevar.h"
|
| 76 |
|
|
#include "output.h"
|
| 77 |
|
|
#include "cfglayout.h"
|
| 78 |
|
|
#include "fibheap.h"
|
| 79 |
|
|
#include "target.h"
|
| 80 |
|
|
#include "function.h"
|
| 81 |
|
|
#include "tm_p.h"
|
| 82 |
|
|
#include "obstack.h"
|
| 83 |
|
|
#include "expr.h"
|
| 84 |
|
|
#include "params.h"
|
| 85 |
|
|
#include "diagnostic-core.h"
|
| 86 |
|
|
#include "toplev.h" /* user_defined_section_attribute */
|
| 87 |
|
|
#include "tree-pass.h"
|
| 88 |
|
|
#include "df.h"
|
| 89 |
|
|
#include "bb-reorder.h"
|
| 90 |
|
|
#include "except.h"
|
| 91 |
|
|
|
| 92 |
|
|
/* The number of rounds. In most cases there will only be 4 rounds, but
|
| 93 |
|
|
when partitioning hot and cold basic blocks into separate sections of
|
| 94 |
|
|
the .o file there will be an extra round.*/
|
| 95 |
|
|
#define N_ROUNDS 5
|
| 96 |
|
|
|
| 97 |
|
|
/* Stubs in case we don't have a return insn.
|
| 98 |
|
|
We have to check at runtime too, not only compiletime. */
|
| 99 |
|
|
|
| 100 |
|
|
#ifndef HAVE_return
|
| 101 |
|
|
#define HAVE_return 0
|
| 102 |
|
|
#define gen_return() NULL_RTX
|
| 103 |
|
|
#endif
|
| 104 |
|
|
|
| 105 |
|
|
|
| 106 |
|
|
struct target_bb_reorder default_target_bb_reorder;
|
| 107 |
|
|
#if SWITCHABLE_TARGET
|
| 108 |
|
|
struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
|
| 109 |
|
|
#endif
|
| 110 |
|
|
|
| 111 |
|
|
#define uncond_jump_length \
|
| 112 |
|
|
(this_target_bb_reorder->x_uncond_jump_length)
|
| 113 |
|
|
|
| 114 |
|
|
/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
|
| 115 |
|
|
static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
|
| 116 |
|
|
|
| 117 |
|
|
/* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
|
| 118 |
|
|
static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
|
| 119 |
|
|
|
| 120 |
|
|
/* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
|
| 121 |
|
|
block the edge destination is not duplicated while connecting traces. */
|
| 122 |
|
|
#define DUPLICATION_THRESHOLD 100
|
| 123 |
|
|
|
| 124 |
|
|
/* Structure to hold needed information for each basic block. */
|
| 125 |
|
|
typedef struct bbro_basic_block_data_def
|
| 126 |
|
|
{
|
| 127 |
|
|
/* Which trace is the bb start of (-1 means it is not a start of a trace). */
|
| 128 |
|
|
int start_of_trace;
|
| 129 |
|
|
|
| 130 |
|
|
/* Which trace is the bb end of (-1 means it is not an end of a trace). */
|
| 131 |
|
|
int end_of_trace;
|
| 132 |
|
|
|
| 133 |
|
|
/* Which trace is the bb in? */
|
| 134 |
|
|
int in_trace;
|
| 135 |
|
|
|
| 136 |
|
|
/* Which heap is BB in (if any)? */
|
| 137 |
|
|
fibheap_t heap;
|
| 138 |
|
|
|
| 139 |
|
|
/* Which heap node is BB in (if any)? */
|
| 140 |
|
|
fibnode_t node;
|
| 141 |
|
|
} bbro_basic_block_data;
|
| 142 |
|
|
|
| 143 |
|
|
/* The current size of the following dynamic array. */
|
| 144 |
|
|
static int array_size;
|
| 145 |
|
|
|
| 146 |
|
|
/* The array which holds needed information for basic blocks. */
|
| 147 |
|
|
static bbro_basic_block_data *bbd;
|
| 148 |
|
|
|
| 149 |
|
|
/* To avoid frequent reallocation the size of arrays is greater than needed,
|
| 150 |
|
|
the number of elements is (not less than) 1.25 * size_wanted. */
|
| 151 |
|
|
#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
|
| 152 |
|
|
|
| 153 |
|
|
/* Free the memory and set the pointer to NULL. */
|
| 154 |
|
|
#define FREE(P) (gcc_assert (P), free (P), P = 0)
|
| 155 |
|
|
|
| 156 |
|
|
/* Structure for holding information about a trace. */
|
| 157 |
|
|
struct trace
|
| 158 |
|
|
{
|
| 159 |
|
|
/* First and last basic block of the trace. */
|
| 160 |
|
|
basic_block first, last;
|
| 161 |
|
|
|
| 162 |
|
|
/* The round of the STC creation which this trace was found in. */
|
| 163 |
|
|
int round;
|
| 164 |
|
|
|
| 165 |
|
|
/* The length (i.e. the number of basic blocks) of the trace. */
|
| 166 |
|
|
int length;
|
| 167 |
|
|
};
|
| 168 |
|
|
|
| 169 |
|
|
/* Maximum frequency and count of one of the entry blocks. */
|
| 170 |
|
|
static int max_entry_frequency;
|
| 171 |
|
|
static gcov_type max_entry_count;
|
| 172 |
|
|
|
| 173 |
|
|
/* Local function prototypes. */
|
| 174 |
|
|
static void find_traces (int *, struct trace *);
|
| 175 |
|
|
static basic_block rotate_loop (edge, struct trace *, int);
|
| 176 |
|
|
static void mark_bb_visited (basic_block, int);
|
| 177 |
|
|
static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
|
| 178 |
|
|
int, fibheap_t *, int);
|
| 179 |
|
|
static basic_block copy_bb (basic_block, edge, basic_block, int);
|
| 180 |
|
|
static fibheapkey_t bb_to_key (basic_block);
|
| 181 |
|
|
static bool better_edge_p (const_basic_block, const_edge, int, int, int, int, const_edge);
|
| 182 |
|
|
static void connect_traces (int, struct trace *);
|
| 183 |
|
|
static bool copy_bb_p (const_basic_block, int);
|
| 184 |
|
|
static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
|
| 185 |
|
|
|
| 186 |
|
|
/* Check to see if bb should be pushed into the next round of trace
|
| 187 |
|
|
collections or not. Reasons for pushing the block forward are 1).
|
| 188 |
|
|
If the block is cold, we are doing partitioning, and there will be
|
| 189 |
|
|
another round (cold partition blocks are not supposed to be
|
| 190 |
|
|
collected into traces until the very last round); or 2). There will
|
| 191 |
|
|
be another round, and the basic block is not "hot enough" for the
|
| 192 |
|
|
current round of trace collection. */
|
| 193 |
|
|
|
| 194 |
|
|
static bool
|
| 195 |
|
|
push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
|
| 196 |
|
|
int exec_th, gcov_type count_th)
|
| 197 |
|
|
{
|
| 198 |
|
|
bool there_exists_another_round;
|
| 199 |
|
|
bool block_not_hot_enough;
|
| 200 |
|
|
|
| 201 |
|
|
there_exists_another_round = round < number_of_rounds - 1;
|
| 202 |
|
|
|
| 203 |
|
|
block_not_hot_enough = (bb->frequency < exec_th
|
| 204 |
|
|
|| bb->count < count_th
|
| 205 |
|
|
|| probably_never_executed_bb_p (bb));
|
| 206 |
|
|
|
| 207 |
|
|
if (there_exists_another_round
|
| 208 |
|
|
&& block_not_hot_enough)
|
| 209 |
|
|
return true;
|
| 210 |
|
|
else
|
| 211 |
|
|
return false;
|
| 212 |
|
|
}
|
| 213 |
|
|
|
| 214 |
|
|
/* Find the traces for Software Trace Cache. Chain each trace through
|
| 215 |
|
|
RBI()->next. Store the number of traces to N_TRACES and description of
|
| 216 |
|
|
traces to TRACES. */
|
| 217 |
|
|
|
| 218 |
|
|
static void
|
| 219 |
|
|
find_traces (int *n_traces, struct trace *traces)
|
| 220 |
|
|
{
|
| 221 |
|
|
int i;
|
| 222 |
|
|
int number_of_rounds;
|
| 223 |
|
|
edge e;
|
| 224 |
|
|
edge_iterator ei;
|
| 225 |
|
|
fibheap_t heap;
|
| 226 |
|
|
|
| 227 |
|
|
/* Add one extra round of trace collection when partitioning hot/cold
|
| 228 |
|
|
basic blocks into separate sections. The last round is for all the
|
| 229 |
|
|
cold blocks (and ONLY the cold blocks). */
|
| 230 |
|
|
|
| 231 |
|
|
number_of_rounds = N_ROUNDS - 1;
|
| 232 |
|
|
|
| 233 |
|
|
/* Insert entry points of function into heap. */
|
| 234 |
|
|
heap = fibheap_new ();
|
| 235 |
|
|
max_entry_frequency = 0;
|
| 236 |
|
|
max_entry_count = 0;
|
| 237 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
| 238 |
|
|
{
|
| 239 |
|
|
bbd[e->dest->index].heap = heap;
|
| 240 |
|
|
bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
|
| 241 |
|
|
e->dest);
|
| 242 |
|
|
if (e->dest->frequency > max_entry_frequency)
|
| 243 |
|
|
max_entry_frequency = e->dest->frequency;
|
| 244 |
|
|
if (e->dest->count > max_entry_count)
|
| 245 |
|
|
max_entry_count = e->dest->count;
|
| 246 |
|
|
}
|
| 247 |
|
|
|
| 248 |
|
|
/* Find the traces. */
|
| 249 |
|
|
for (i = 0; i < number_of_rounds; i++)
|
| 250 |
|
|
{
|
| 251 |
|
|
gcov_type count_threshold;
|
| 252 |
|
|
|
| 253 |
|
|
if (dump_file)
|
| 254 |
|
|
fprintf (dump_file, "STC - round %d\n", i + 1);
|
| 255 |
|
|
|
| 256 |
|
|
if (max_entry_count < INT_MAX / 1000)
|
| 257 |
|
|
count_threshold = max_entry_count * exec_threshold[i] / 1000;
|
| 258 |
|
|
else
|
| 259 |
|
|
count_threshold = max_entry_count / 1000 * exec_threshold[i];
|
| 260 |
|
|
|
| 261 |
|
|
find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
|
| 262 |
|
|
max_entry_frequency * exec_threshold[i] / 1000,
|
| 263 |
|
|
count_threshold, traces, n_traces, i, &heap,
|
| 264 |
|
|
number_of_rounds);
|
| 265 |
|
|
}
|
| 266 |
|
|
fibheap_delete (heap);
|
| 267 |
|
|
|
| 268 |
|
|
if (dump_file)
|
| 269 |
|
|
{
|
| 270 |
|
|
for (i = 0; i < *n_traces; i++)
|
| 271 |
|
|
{
|
| 272 |
|
|
basic_block bb;
|
| 273 |
|
|
fprintf (dump_file, "Trace %d (round %d): ", i + 1,
|
| 274 |
|
|
traces[i].round + 1);
|
| 275 |
|
|
for (bb = traces[i].first; bb != traces[i].last; bb = (basic_block) bb->aux)
|
| 276 |
|
|
fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
|
| 277 |
|
|
fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
|
| 278 |
|
|
}
|
| 279 |
|
|
fflush (dump_file);
|
| 280 |
|
|
}
|
| 281 |
|
|
}
|
| 282 |
|
|
|
| 283 |
|
|
/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
|
| 284 |
|
|
(with sequential number TRACE_N). */
|
| 285 |
|
|
|
| 286 |
|
|
static basic_block
|
| 287 |
|
|
rotate_loop (edge back_edge, struct trace *trace, int trace_n)
|
| 288 |
|
|
{
|
| 289 |
|
|
basic_block bb;
|
| 290 |
|
|
|
| 291 |
|
|
/* Information about the best end (end after rotation) of the loop. */
|
| 292 |
|
|
basic_block best_bb = NULL;
|
| 293 |
|
|
edge best_edge = NULL;
|
| 294 |
|
|
int best_freq = -1;
|
| 295 |
|
|
gcov_type best_count = -1;
|
| 296 |
|
|
/* The best edge is preferred when its destination is not visited yet
|
| 297 |
|
|
or is a start block of some trace. */
|
| 298 |
|
|
bool is_preferred = false;
|
| 299 |
|
|
|
| 300 |
|
|
/* Find the most frequent edge that goes out from current trace. */
|
| 301 |
|
|
bb = back_edge->dest;
|
| 302 |
|
|
do
|
| 303 |
|
|
{
|
| 304 |
|
|
edge e;
|
| 305 |
|
|
edge_iterator ei;
|
| 306 |
|
|
|
| 307 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 308 |
|
|
if (e->dest != EXIT_BLOCK_PTR
|
| 309 |
|
|
&& e->dest->il.rtl->visited != trace_n
|
| 310 |
|
|
&& (e->flags & EDGE_CAN_FALLTHRU)
|
| 311 |
|
|
&& !(e->flags & EDGE_COMPLEX))
|
| 312 |
|
|
{
|
| 313 |
|
|
if (is_preferred)
|
| 314 |
|
|
{
|
| 315 |
|
|
/* The best edge is preferred. */
|
| 316 |
|
|
if (!e->dest->il.rtl->visited
|
| 317 |
|
|
|| bbd[e->dest->index].start_of_trace >= 0)
|
| 318 |
|
|
{
|
| 319 |
|
|
/* The current edge E is also preferred. */
|
| 320 |
|
|
int freq = EDGE_FREQUENCY (e);
|
| 321 |
|
|
if (freq > best_freq || e->count > best_count)
|
| 322 |
|
|
{
|
| 323 |
|
|
best_freq = freq;
|
| 324 |
|
|
best_count = e->count;
|
| 325 |
|
|
best_edge = e;
|
| 326 |
|
|
best_bb = bb;
|
| 327 |
|
|
}
|
| 328 |
|
|
}
|
| 329 |
|
|
}
|
| 330 |
|
|
else
|
| 331 |
|
|
{
|
| 332 |
|
|
if (!e->dest->il.rtl->visited
|
| 333 |
|
|
|| bbd[e->dest->index].start_of_trace >= 0)
|
| 334 |
|
|
{
|
| 335 |
|
|
/* The current edge E is preferred. */
|
| 336 |
|
|
is_preferred = true;
|
| 337 |
|
|
best_freq = EDGE_FREQUENCY (e);
|
| 338 |
|
|
best_count = e->count;
|
| 339 |
|
|
best_edge = e;
|
| 340 |
|
|
best_bb = bb;
|
| 341 |
|
|
}
|
| 342 |
|
|
else
|
| 343 |
|
|
{
|
| 344 |
|
|
int freq = EDGE_FREQUENCY (e);
|
| 345 |
|
|
if (!best_edge || freq > best_freq || e->count > best_count)
|
| 346 |
|
|
{
|
| 347 |
|
|
best_freq = freq;
|
| 348 |
|
|
best_count = e->count;
|
| 349 |
|
|
best_edge = e;
|
| 350 |
|
|
best_bb = bb;
|
| 351 |
|
|
}
|
| 352 |
|
|
}
|
| 353 |
|
|
}
|
| 354 |
|
|
}
|
| 355 |
|
|
bb = (basic_block) bb->aux;
|
| 356 |
|
|
}
|
| 357 |
|
|
while (bb != back_edge->dest);
|
| 358 |
|
|
|
| 359 |
|
|
if (best_bb)
|
| 360 |
|
|
{
|
| 361 |
|
|
/* Rotate the loop so that the BEST_EDGE goes out from the last block of
|
| 362 |
|
|
the trace. */
|
| 363 |
|
|
if (back_edge->dest == trace->first)
|
| 364 |
|
|
{
|
| 365 |
|
|
trace->first = (basic_block) best_bb->aux;
|
| 366 |
|
|
}
|
| 367 |
|
|
else
|
| 368 |
|
|
{
|
| 369 |
|
|
basic_block prev_bb;
|
| 370 |
|
|
|
| 371 |
|
|
for (prev_bb = trace->first;
|
| 372 |
|
|
prev_bb->aux != back_edge->dest;
|
| 373 |
|
|
prev_bb = (basic_block) prev_bb->aux)
|
| 374 |
|
|
;
|
| 375 |
|
|
prev_bb->aux = best_bb->aux;
|
| 376 |
|
|
|
| 377 |
|
|
/* Try to get rid of uncond jump to cond jump. */
|
| 378 |
|
|
if (single_succ_p (prev_bb))
|
| 379 |
|
|
{
|
| 380 |
|
|
basic_block header = single_succ (prev_bb);
|
| 381 |
|
|
|
| 382 |
|
|
/* Duplicate HEADER if it is a small block containing cond jump
|
| 383 |
|
|
in the end. */
|
| 384 |
|
|
if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
|
| 385 |
|
|
&& !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
|
| 386 |
|
|
NULL_RTX))
|
| 387 |
|
|
copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
|
| 388 |
|
|
}
|
| 389 |
|
|
}
|
| 390 |
|
|
}
|
| 391 |
|
|
else
|
| 392 |
|
|
{
|
| 393 |
|
|
/* We have not found suitable loop tail so do no rotation. */
|
| 394 |
|
|
best_bb = back_edge->src;
|
| 395 |
|
|
}
|
| 396 |
|
|
best_bb->aux = NULL;
|
| 397 |
|
|
return best_bb;
|
| 398 |
|
|
}
|
| 399 |
|
|
|
| 400 |
|
|
/* This function marks BB that it was visited in trace number TRACE. */
|
| 401 |
|
|
|
| 402 |
|
|
static void
|
| 403 |
|
|
mark_bb_visited (basic_block bb, int trace)
|
| 404 |
|
|
{
|
| 405 |
|
|
bb->il.rtl->visited = trace;
|
| 406 |
|
|
if (bbd[bb->index].heap)
|
| 407 |
|
|
{
|
| 408 |
|
|
fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
|
| 409 |
|
|
bbd[bb->index].heap = NULL;
|
| 410 |
|
|
bbd[bb->index].node = NULL;
|
| 411 |
|
|
}
|
| 412 |
|
|
}
|
| 413 |
|
|
|
| 414 |
|
|
/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
|
| 415 |
|
|
not include basic blocks their probability is lower than BRANCH_TH or their
|
| 416 |
|
|
frequency is lower than EXEC_TH into traces (or count is lower than
|
| 417 |
|
|
COUNT_TH). It stores the new traces into TRACES and modifies the number of
|
| 418 |
|
|
traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
|
| 419 |
|
|
expects that starting basic blocks are in *HEAP and at the end it deletes
|
| 420 |
|
|
*HEAP and stores starting points for the next round into new *HEAP. */
|
| 421 |
|
|
|
| 422 |
|
|
static void
|
| 423 |
|
|
find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
|
| 424 |
|
|
struct trace *traces, int *n_traces, int round,
|
| 425 |
|
|
fibheap_t *heap, int number_of_rounds)
|
| 426 |
|
|
{
|
| 427 |
|
|
/* Heap for discarded basic blocks which are possible starting points for
|
| 428 |
|
|
the next round. */
|
| 429 |
|
|
fibheap_t new_heap = fibheap_new ();
|
| 430 |
|
|
|
| 431 |
|
|
while (!fibheap_empty (*heap))
|
| 432 |
|
|
{
|
| 433 |
|
|
basic_block bb;
|
| 434 |
|
|
struct trace *trace;
|
| 435 |
|
|
edge best_edge, e;
|
| 436 |
|
|
fibheapkey_t key;
|
| 437 |
|
|
edge_iterator ei;
|
| 438 |
|
|
|
| 439 |
|
|
bb = (basic_block) fibheap_extract_min (*heap);
|
| 440 |
|
|
bbd[bb->index].heap = NULL;
|
| 441 |
|
|
bbd[bb->index].node = NULL;
|
| 442 |
|
|
|
| 443 |
|
|
if (dump_file)
|
| 444 |
|
|
fprintf (dump_file, "Getting bb %d\n", bb->index);
|
| 445 |
|
|
|
| 446 |
|
|
/* If the BB's frequency is too low send BB to the next round. When
|
| 447 |
|
|
partitioning hot/cold blocks into separate sections, make sure all
|
| 448 |
|
|
the cold blocks (and ONLY the cold blocks) go into the (extra) final
|
| 449 |
|
|
round. */
|
| 450 |
|
|
|
| 451 |
|
|
if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
|
| 452 |
|
|
count_th))
|
| 453 |
|
|
{
|
| 454 |
|
|
int key = bb_to_key (bb);
|
| 455 |
|
|
bbd[bb->index].heap = new_heap;
|
| 456 |
|
|
bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
|
| 457 |
|
|
|
| 458 |
|
|
if (dump_file)
|
| 459 |
|
|
fprintf (dump_file,
|
| 460 |
|
|
" Possible start point of next round: %d (key: %d)\n",
|
| 461 |
|
|
bb->index, key);
|
| 462 |
|
|
continue;
|
| 463 |
|
|
}
|
| 464 |
|
|
|
| 465 |
|
|
trace = traces + *n_traces;
|
| 466 |
|
|
trace->first = bb;
|
| 467 |
|
|
trace->round = round;
|
| 468 |
|
|
trace->length = 0;
|
| 469 |
|
|
bbd[bb->index].in_trace = *n_traces;
|
| 470 |
|
|
(*n_traces)++;
|
| 471 |
|
|
|
| 472 |
|
|
do
|
| 473 |
|
|
{
|
| 474 |
|
|
int prob, freq;
|
| 475 |
|
|
bool ends_in_call;
|
| 476 |
|
|
|
| 477 |
|
|
/* The probability and frequency of the best edge. */
|
| 478 |
|
|
int best_prob = INT_MIN / 2;
|
| 479 |
|
|
int best_freq = INT_MIN / 2;
|
| 480 |
|
|
|
| 481 |
|
|
best_edge = NULL;
|
| 482 |
|
|
mark_bb_visited (bb, *n_traces);
|
| 483 |
|
|
trace->length++;
|
| 484 |
|
|
|
| 485 |
|
|
if (dump_file)
|
| 486 |
|
|
fprintf (dump_file, "Basic block %d was visited in trace %d\n",
|
| 487 |
|
|
bb->index, *n_traces - 1);
|
| 488 |
|
|
|
| 489 |
|
|
ends_in_call = block_ends_with_call_p (bb);
|
| 490 |
|
|
|
| 491 |
|
|
/* Select the successor that will be placed after BB. */
|
| 492 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 493 |
|
|
{
|
| 494 |
|
|
gcc_assert (!(e->flags & EDGE_FAKE));
|
| 495 |
|
|
|
| 496 |
|
|
if (e->dest == EXIT_BLOCK_PTR)
|
| 497 |
|
|
continue;
|
| 498 |
|
|
|
| 499 |
|
|
if (e->dest->il.rtl->visited
|
| 500 |
|
|
&& e->dest->il.rtl->visited != *n_traces)
|
| 501 |
|
|
continue;
|
| 502 |
|
|
|
| 503 |
|
|
if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
|
| 504 |
|
|
continue;
|
| 505 |
|
|
|
| 506 |
|
|
prob = e->probability;
|
| 507 |
|
|
freq = e->dest->frequency;
|
| 508 |
|
|
|
| 509 |
|
|
/* The only sensible preference for a call instruction is the
|
| 510 |
|
|
fallthru edge. Don't bother selecting anything else. */
|
| 511 |
|
|
if (ends_in_call)
|
| 512 |
|
|
{
|
| 513 |
|
|
if (e->flags & EDGE_CAN_FALLTHRU)
|
| 514 |
|
|
{
|
| 515 |
|
|
best_edge = e;
|
| 516 |
|
|
best_prob = prob;
|
| 517 |
|
|
best_freq = freq;
|
| 518 |
|
|
}
|
| 519 |
|
|
continue;
|
| 520 |
|
|
}
|
| 521 |
|
|
|
| 522 |
|
|
/* Edge that cannot be fallthru or improbable or infrequent
|
| 523 |
|
|
successor (i.e. it is unsuitable successor). */
|
| 524 |
|
|
if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
|
| 525 |
|
|
|| prob < branch_th || EDGE_FREQUENCY (e) < exec_th
|
| 526 |
|
|
|| e->count < count_th)
|
| 527 |
|
|
continue;
|
| 528 |
|
|
|
| 529 |
|
|
/* If partitioning hot/cold basic blocks, don't consider edges
|
| 530 |
|
|
that cross section boundaries. */
|
| 531 |
|
|
|
| 532 |
|
|
if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
|
| 533 |
|
|
best_edge))
|
| 534 |
|
|
{
|
| 535 |
|
|
best_edge = e;
|
| 536 |
|
|
best_prob = prob;
|
| 537 |
|
|
best_freq = freq;
|
| 538 |
|
|
}
|
| 539 |
|
|
}
|
| 540 |
|
|
|
| 541 |
|
|
/* If the best destination has multiple predecessors, and can be
|
| 542 |
|
|
duplicated cheaper than a jump, don't allow it to be added
|
| 543 |
|
|
to a trace. We'll duplicate it when connecting traces. */
|
| 544 |
|
|
if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
|
| 545 |
|
|
&& copy_bb_p (best_edge->dest, 0))
|
| 546 |
|
|
best_edge = NULL;
|
| 547 |
|
|
|
| 548 |
|
|
/* Add all non-selected successors to the heaps. */
|
| 549 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 550 |
|
|
{
|
| 551 |
|
|
if (e == best_edge
|
| 552 |
|
|
|| e->dest == EXIT_BLOCK_PTR
|
| 553 |
|
|
|| e->dest->il.rtl->visited)
|
| 554 |
|
|
continue;
|
| 555 |
|
|
|
| 556 |
|
|
key = bb_to_key (e->dest);
|
| 557 |
|
|
|
| 558 |
|
|
if (bbd[e->dest->index].heap)
|
| 559 |
|
|
{
|
| 560 |
|
|
/* E->DEST is already in some heap. */
|
| 561 |
|
|
if (key != bbd[e->dest->index].node->key)
|
| 562 |
|
|
{
|
| 563 |
|
|
if (dump_file)
|
| 564 |
|
|
{
|
| 565 |
|
|
fprintf (dump_file,
|
| 566 |
|
|
"Changing key for bb %d from %ld to %ld.\n",
|
| 567 |
|
|
e->dest->index,
|
| 568 |
|
|
(long) bbd[e->dest->index].node->key,
|
| 569 |
|
|
key);
|
| 570 |
|
|
}
|
| 571 |
|
|
fibheap_replace_key (bbd[e->dest->index].heap,
|
| 572 |
|
|
bbd[e->dest->index].node, key);
|
| 573 |
|
|
}
|
| 574 |
|
|
}
|
| 575 |
|
|
else
|
| 576 |
|
|
{
|
| 577 |
|
|
fibheap_t which_heap = *heap;
|
| 578 |
|
|
|
| 579 |
|
|
prob = e->probability;
|
| 580 |
|
|
freq = EDGE_FREQUENCY (e);
|
| 581 |
|
|
|
| 582 |
|
|
if (!(e->flags & EDGE_CAN_FALLTHRU)
|
| 583 |
|
|
|| (e->flags & EDGE_COMPLEX)
|
| 584 |
|
|
|| prob < branch_th || freq < exec_th
|
| 585 |
|
|
|| e->count < count_th)
|
| 586 |
|
|
{
|
| 587 |
|
|
/* When partitioning hot/cold basic blocks, make sure
|
| 588 |
|
|
the cold blocks (and only the cold blocks) all get
|
| 589 |
|
|
pushed to the last round of trace collection. */
|
| 590 |
|
|
|
| 591 |
|
|
if (push_to_next_round_p (e->dest, round,
|
| 592 |
|
|
number_of_rounds,
|
| 593 |
|
|
exec_th, count_th))
|
| 594 |
|
|
which_heap = new_heap;
|
| 595 |
|
|
}
|
| 596 |
|
|
|
| 597 |
|
|
bbd[e->dest->index].heap = which_heap;
|
| 598 |
|
|
bbd[e->dest->index].node = fibheap_insert (which_heap,
|
| 599 |
|
|
key, e->dest);
|
| 600 |
|
|
|
| 601 |
|
|
if (dump_file)
|
| 602 |
|
|
{
|
| 603 |
|
|
fprintf (dump_file,
|
| 604 |
|
|
" Possible start of %s round: %d (key: %ld)\n",
|
| 605 |
|
|
(which_heap == new_heap) ? "next" : "this",
|
| 606 |
|
|
e->dest->index, (long) key);
|
| 607 |
|
|
}
|
| 608 |
|
|
|
| 609 |
|
|
}
|
| 610 |
|
|
}
|
| 611 |
|
|
|
| 612 |
|
|
if (best_edge) /* Suitable successor was found. */
|
| 613 |
|
|
{
|
| 614 |
|
|
if (best_edge->dest->il.rtl->visited == *n_traces)
|
| 615 |
|
|
{
|
| 616 |
|
|
/* We do nothing with one basic block loops. */
|
| 617 |
|
|
if (best_edge->dest != bb)
|
| 618 |
|
|
{
|
| 619 |
|
|
if (EDGE_FREQUENCY (best_edge)
|
| 620 |
|
|
> 4 * best_edge->dest->frequency / 5)
|
| 621 |
|
|
{
|
| 622 |
|
|
/* The loop has at least 4 iterations. If the loop
|
| 623 |
|
|
header is not the first block of the function
|
| 624 |
|
|
we can rotate the loop. */
|
| 625 |
|
|
|
| 626 |
|
|
if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
|
| 627 |
|
|
{
|
| 628 |
|
|
if (dump_file)
|
| 629 |
|
|
{
|
| 630 |
|
|
fprintf (dump_file,
|
| 631 |
|
|
"Rotating loop %d - %d\n",
|
| 632 |
|
|
best_edge->dest->index, bb->index);
|
| 633 |
|
|
}
|
| 634 |
|
|
bb->aux = best_edge->dest;
|
| 635 |
|
|
bbd[best_edge->dest->index].in_trace =
|
| 636 |
|
|
(*n_traces) - 1;
|
| 637 |
|
|
bb = rotate_loop (best_edge, trace, *n_traces);
|
| 638 |
|
|
}
|
| 639 |
|
|
}
|
| 640 |
|
|
else
|
| 641 |
|
|
{
|
| 642 |
|
|
/* The loop has less than 4 iterations. */
|
| 643 |
|
|
|
| 644 |
|
|
if (single_succ_p (bb)
|
| 645 |
|
|
&& copy_bb_p (best_edge->dest,
|
| 646 |
|
|
optimize_edge_for_speed_p (best_edge)))
|
| 647 |
|
|
{
|
| 648 |
|
|
bb = copy_bb (best_edge->dest, best_edge, bb,
|
| 649 |
|
|
*n_traces);
|
| 650 |
|
|
trace->length++;
|
| 651 |
|
|
}
|
| 652 |
|
|
}
|
| 653 |
|
|
}
|
| 654 |
|
|
|
| 655 |
|
|
/* Terminate the trace. */
|
| 656 |
|
|
break;
|
| 657 |
|
|
}
|
| 658 |
|
|
else
|
| 659 |
|
|
{
|
| 660 |
|
|
/* Check for a situation
|
| 661 |
|
|
|
| 662 |
|
|
A
|
| 663 |
|
|
/|
|
| 664 |
|
|
B |
|
| 665 |
|
|
\|
|
| 666 |
|
|
C
|
| 667 |
|
|
|
| 668 |
|
|
where
|
| 669 |
|
|
EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
|
| 670 |
|
|
>= EDGE_FREQUENCY (AC).
|
| 671 |
|
|
(i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
|
| 672 |
|
|
Best ordering is then A B C.
|
| 673 |
|
|
|
| 674 |
|
|
This situation is created for example by:
|
| 675 |
|
|
|
| 676 |
|
|
if (A) B;
|
| 677 |
|
|
C;
|
| 678 |
|
|
|
| 679 |
|
|
*/
|
| 680 |
|
|
|
| 681 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 682 |
|
|
if (e != best_edge
|
| 683 |
|
|
&& (e->flags & EDGE_CAN_FALLTHRU)
|
| 684 |
|
|
&& !(e->flags & EDGE_COMPLEX)
|
| 685 |
|
|
&& !e->dest->il.rtl->visited
|
| 686 |
|
|
&& single_pred_p (e->dest)
|
| 687 |
|
|
&& !(e->flags & EDGE_CROSSING)
|
| 688 |
|
|
&& single_succ_p (e->dest)
|
| 689 |
|
|
&& (single_succ_edge (e->dest)->flags
|
| 690 |
|
|
& EDGE_CAN_FALLTHRU)
|
| 691 |
|
|
&& !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
|
| 692 |
|
|
&& single_succ (e->dest) == best_edge->dest
|
| 693 |
|
|
&& 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
|
| 694 |
|
|
{
|
| 695 |
|
|
best_edge = e;
|
| 696 |
|
|
if (dump_file)
|
| 697 |
|
|
fprintf (dump_file, "Selecting BB %d\n",
|
| 698 |
|
|
best_edge->dest->index);
|
| 699 |
|
|
break;
|
| 700 |
|
|
}
|
| 701 |
|
|
|
| 702 |
|
|
bb->aux = best_edge->dest;
|
| 703 |
|
|
bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
|
| 704 |
|
|
bb = best_edge->dest;
|
| 705 |
|
|
}
|
| 706 |
|
|
}
|
| 707 |
|
|
}
|
| 708 |
|
|
while (best_edge);
|
| 709 |
|
|
trace->last = bb;
|
| 710 |
|
|
bbd[trace->first->index].start_of_trace = *n_traces - 1;
|
| 711 |
|
|
bbd[trace->last->index].end_of_trace = *n_traces - 1;
|
| 712 |
|
|
|
| 713 |
|
|
/* The trace is terminated so we have to recount the keys in heap
|
| 714 |
|
|
(some block can have a lower key because now one of its predecessors
|
| 715 |
|
|
is an end of the trace). */
|
| 716 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 717 |
|
|
{
|
| 718 |
|
|
if (e->dest == EXIT_BLOCK_PTR
|
| 719 |
|
|
|| e->dest->il.rtl->visited)
|
| 720 |
|
|
continue;
|
| 721 |
|
|
|
| 722 |
|
|
if (bbd[e->dest->index].heap)
|
| 723 |
|
|
{
|
| 724 |
|
|
key = bb_to_key (e->dest);
|
| 725 |
|
|
if (key != bbd[e->dest->index].node->key)
|
| 726 |
|
|
{
|
| 727 |
|
|
if (dump_file)
|
| 728 |
|
|
{
|
| 729 |
|
|
fprintf (dump_file,
|
| 730 |
|
|
"Changing key for bb %d from %ld to %ld.\n",
|
| 731 |
|
|
e->dest->index,
|
| 732 |
|
|
(long) bbd[e->dest->index].node->key, key);
|
| 733 |
|
|
}
|
| 734 |
|
|
fibheap_replace_key (bbd[e->dest->index].heap,
|
| 735 |
|
|
bbd[e->dest->index].node,
|
| 736 |
|
|
key);
|
| 737 |
|
|
}
|
| 738 |
|
|
}
|
| 739 |
|
|
}
|
| 740 |
|
|
}
|
| 741 |
|
|
|
| 742 |
|
|
fibheap_delete (*heap);
|
| 743 |
|
|
|
| 744 |
|
|
/* "Return" the new heap. */
|
| 745 |
|
|
*heap = new_heap;
|
| 746 |
|
|
}
|
| 747 |
|
|
|
| 748 |
|
|
/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
|
| 749 |
|
|
it to trace after BB, mark OLD_BB visited and update pass' data structures
|
| 750 |
|
|
(TRACE is a number of trace which OLD_BB is duplicated to). */
|
| 751 |
|
|
|
| 752 |
|
|
static basic_block
|
| 753 |
|
|
copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
|
| 754 |
|
|
{
|
| 755 |
|
|
basic_block new_bb;
|
| 756 |
|
|
|
| 757 |
|
|
new_bb = duplicate_block (old_bb, e, bb);
|
| 758 |
|
|
BB_COPY_PARTITION (new_bb, old_bb);
|
| 759 |
|
|
|
| 760 |
|
|
gcc_assert (e->dest == new_bb);
|
| 761 |
|
|
gcc_assert (!e->dest->il.rtl->visited);
|
| 762 |
|
|
|
| 763 |
|
|
if (dump_file)
|
| 764 |
|
|
fprintf (dump_file,
|
| 765 |
|
|
"Duplicated bb %d (created bb %d)\n",
|
| 766 |
|
|
old_bb->index, new_bb->index);
|
| 767 |
|
|
new_bb->il.rtl->visited = trace;
|
| 768 |
|
|
new_bb->aux = bb->aux;
|
| 769 |
|
|
bb->aux = new_bb;
|
| 770 |
|
|
|
| 771 |
|
|
if (new_bb->index >= array_size || last_basic_block > array_size)
|
| 772 |
|
|
{
|
| 773 |
|
|
int i;
|
| 774 |
|
|
int new_size;
|
| 775 |
|
|
|
| 776 |
|
|
new_size = MAX (last_basic_block, new_bb->index + 1);
|
| 777 |
|
|
new_size = GET_ARRAY_SIZE (new_size);
|
| 778 |
|
|
bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
|
| 779 |
|
|
for (i = array_size; i < new_size; i++)
|
| 780 |
|
|
{
|
| 781 |
|
|
bbd[i].start_of_trace = -1;
|
| 782 |
|
|
bbd[i].in_trace = -1;
|
| 783 |
|
|
bbd[i].end_of_trace = -1;
|
| 784 |
|
|
bbd[i].heap = NULL;
|
| 785 |
|
|
bbd[i].node = NULL;
|
| 786 |
|
|
}
|
| 787 |
|
|
array_size = new_size;
|
| 788 |
|
|
|
| 789 |
|
|
if (dump_file)
|
| 790 |
|
|
{
|
| 791 |
|
|
fprintf (dump_file,
|
| 792 |
|
|
"Growing the dynamic array to %d elements.\n",
|
| 793 |
|
|
array_size);
|
| 794 |
|
|
}
|
| 795 |
|
|
}
|
| 796 |
|
|
|
| 797 |
|
|
bbd[new_bb->index].in_trace = trace;
|
| 798 |
|
|
|
| 799 |
|
|
return new_bb;
|
| 800 |
|
|
}
|
| 801 |
|
|
|
| 802 |
|
|
/* Compute and return the key (for the heap) of the basic block BB. */
|
| 803 |
|
|
|
| 804 |
|
|
static fibheapkey_t
|
| 805 |
|
|
bb_to_key (basic_block bb)
|
| 806 |
|
|
{
|
| 807 |
|
|
edge e;
|
| 808 |
|
|
edge_iterator ei;
|
| 809 |
|
|
int priority = 0;
|
| 810 |
|
|
|
| 811 |
|
|
/* Do not start in probably never executed blocks. */
|
| 812 |
|
|
|
| 813 |
|
|
if (BB_PARTITION (bb) == BB_COLD_PARTITION
|
| 814 |
|
|
|| probably_never_executed_bb_p (bb))
|
| 815 |
|
|
return BB_FREQ_MAX;
|
| 816 |
|
|
|
| 817 |
|
|
/* Prefer blocks whose predecessor is an end of some trace
|
| 818 |
|
|
or whose predecessor edge is EDGE_DFS_BACK. */
|
| 819 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 820 |
|
|
{
|
| 821 |
|
|
if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
|
| 822 |
|
|
|| (e->flags & EDGE_DFS_BACK))
|
| 823 |
|
|
{
|
| 824 |
|
|
int edge_freq = EDGE_FREQUENCY (e);
|
| 825 |
|
|
|
| 826 |
|
|
if (edge_freq > priority)
|
| 827 |
|
|
priority = edge_freq;
|
| 828 |
|
|
}
|
| 829 |
|
|
}
|
| 830 |
|
|
|
| 831 |
|
|
if (priority)
|
| 832 |
|
|
/* The block with priority should have significantly lower key. */
|
| 833 |
|
|
return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
|
| 834 |
|
|
return -bb->frequency;
|
| 835 |
|
|
}
|
| 836 |
|
|
|
| 837 |
|
|
/* Return true when the edge E from basic block BB is better than the temporary
|
| 838 |
|
|
best edge (details are in function). The probability of edge E is PROB. The
|
| 839 |
|
|
frequency of the successor is FREQ. The current best probability is
|
| 840 |
|
|
BEST_PROB, the best frequency is BEST_FREQ.
|
| 841 |
|
|
The edge is considered to be equivalent when PROB does not differ much from
|
| 842 |
|
|
BEST_PROB; similarly for frequency. */
|
| 843 |
|
|
|
| 844 |
|
|
static bool
|
| 845 |
|
|
better_edge_p (const_basic_block bb, const_edge e, int prob, int freq, int best_prob,
|
| 846 |
|
|
int best_freq, const_edge cur_best_edge)
|
| 847 |
|
|
{
|
| 848 |
|
|
bool is_better_edge;
|
| 849 |
|
|
|
| 850 |
|
|
/* The BEST_* values do not have to be best, but can be a bit smaller than
|
| 851 |
|
|
maximum values. */
|
| 852 |
|
|
int diff_prob = best_prob / 10;
|
| 853 |
|
|
int diff_freq = best_freq / 10;
|
| 854 |
|
|
|
| 855 |
|
|
if (prob > best_prob + diff_prob)
|
| 856 |
|
|
/* The edge has higher probability than the temporary best edge. */
|
| 857 |
|
|
is_better_edge = true;
|
| 858 |
|
|
else if (prob < best_prob - diff_prob)
|
| 859 |
|
|
/* The edge has lower probability than the temporary best edge. */
|
| 860 |
|
|
is_better_edge = false;
|
| 861 |
|
|
else if (freq < best_freq - diff_freq)
|
| 862 |
|
|
/* The edge and the temporary best edge have almost equivalent
|
| 863 |
|
|
probabilities. The higher frequency of a successor now means
|
| 864 |
|
|
that there is another edge going into that successor.
|
| 865 |
|
|
This successor has lower frequency so it is better. */
|
| 866 |
|
|
is_better_edge = true;
|
| 867 |
|
|
else if (freq > best_freq + diff_freq)
|
| 868 |
|
|
/* This successor has higher frequency so it is worse. */
|
| 869 |
|
|
is_better_edge = false;
|
| 870 |
|
|
else if (e->dest->prev_bb == bb)
|
| 871 |
|
|
/* The edges have equivalent probabilities and the successors
|
| 872 |
|
|
have equivalent frequencies. Select the previous successor. */
|
| 873 |
|
|
is_better_edge = true;
|
| 874 |
|
|
else
|
| 875 |
|
|
is_better_edge = false;
|
| 876 |
|
|
|
| 877 |
|
|
/* If we are doing hot/cold partitioning, make sure that we always favor
|
| 878 |
|
|
non-crossing edges over crossing edges. */
|
| 879 |
|
|
|
| 880 |
|
|
if (!is_better_edge
|
| 881 |
|
|
&& flag_reorder_blocks_and_partition
|
| 882 |
|
|
&& cur_best_edge
|
| 883 |
|
|
&& (cur_best_edge->flags & EDGE_CROSSING)
|
| 884 |
|
|
&& !(e->flags & EDGE_CROSSING))
|
| 885 |
|
|
is_better_edge = true;
|
| 886 |
|
|
|
| 887 |
|
|
return is_better_edge;
|
| 888 |
|
|
}
|
| 889 |
|
|
|
| 890 |
|
|
/* Connect traces in array TRACES, N_TRACES is the count of traces. */
|
| 891 |
|
|
|
| 892 |
|
|
static void
|
| 893 |
|
|
connect_traces (int n_traces, struct trace *traces)
|
| 894 |
|
|
{
|
| 895 |
|
|
int i;
|
| 896 |
|
|
bool *connected;
|
| 897 |
|
|
bool two_passes;
|
| 898 |
|
|
int last_trace;
|
| 899 |
|
|
int current_pass;
|
| 900 |
|
|
int current_partition;
|
| 901 |
|
|
int freq_threshold;
|
| 902 |
|
|
gcov_type count_threshold;
|
| 903 |
|
|
|
| 904 |
|
|
freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
|
| 905 |
|
|
if (max_entry_count < INT_MAX / 1000)
|
| 906 |
|
|
count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
|
| 907 |
|
|
else
|
| 908 |
|
|
count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
|
| 909 |
|
|
|
| 910 |
|
|
connected = XCNEWVEC (bool, n_traces);
|
| 911 |
|
|
last_trace = -1;
|
| 912 |
|
|
current_pass = 1;
|
| 913 |
|
|
current_partition = BB_PARTITION (traces[0].first);
|
| 914 |
|
|
two_passes = false;
|
| 915 |
|
|
|
| 916 |
|
|
if (flag_reorder_blocks_and_partition)
|
| 917 |
|
|
for (i = 0; i < n_traces && !two_passes; i++)
|
| 918 |
|
|
if (BB_PARTITION (traces[0].first)
|
| 919 |
|
|
!= BB_PARTITION (traces[i].first))
|
| 920 |
|
|
two_passes = true;
|
| 921 |
|
|
|
| 922 |
|
|
for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
|
| 923 |
|
|
{
|
| 924 |
|
|
int t = i;
|
| 925 |
|
|
int t2;
|
| 926 |
|
|
edge e, best;
|
| 927 |
|
|
int best_len;
|
| 928 |
|
|
|
| 929 |
|
|
if (i >= n_traces)
|
| 930 |
|
|
{
|
| 931 |
|
|
gcc_assert (two_passes && current_pass == 1);
|
| 932 |
|
|
i = 0;
|
| 933 |
|
|
t = i;
|
| 934 |
|
|
current_pass = 2;
|
| 935 |
|
|
if (current_partition == BB_HOT_PARTITION)
|
| 936 |
|
|
current_partition = BB_COLD_PARTITION;
|
| 937 |
|
|
else
|
| 938 |
|
|
current_partition = BB_HOT_PARTITION;
|
| 939 |
|
|
}
|
| 940 |
|
|
|
| 941 |
|
|
if (connected[t])
|
| 942 |
|
|
continue;
|
| 943 |
|
|
|
| 944 |
|
|
if (two_passes
|
| 945 |
|
|
&& BB_PARTITION (traces[t].first) != current_partition)
|
| 946 |
|
|
continue;
|
| 947 |
|
|
|
| 948 |
|
|
connected[t] = true;
|
| 949 |
|
|
|
| 950 |
|
|
/* Find the predecessor traces. */
|
| 951 |
|
|
for (t2 = t; t2 > 0;)
|
| 952 |
|
|
{
|
| 953 |
|
|
edge_iterator ei;
|
| 954 |
|
|
best = NULL;
|
| 955 |
|
|
best_len = 0;
|
| 956 |
|
|
FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
|
| 957 |
|
|
{
|
| 958 |
|
|
int si = e->src->index;
|
| 959 |
|
|
|
| 960 |
|
|
if (e->src != ENTRY_BLOCK_PTR
|
| 961 |
|
|
&& (e->flags & EDGE_CAN_FALLTHRU)
|
| 962 |
|
|
&& !(e->flags & EDGE_COMPLEX)
|
| 963 |
|
|
&& bbd[si].end_of_trace >= 0
|
| 964 |
|
|
&& !connected[bbd[si].end_of_trace]
|
| 965 |
|
|
&& (BB_PARTITION (e->src) == current_partition)
|
| 966 |
|
|
&& (!best
|
| 967 |
|
|
|| e->probability > best->probability
|
| 968 |
|
|
|| (e->probability == best->probability
|
| 969 |
|
|
&& traces[bbd[si].end_of_trace].length > best_len)))
|
| 970 |
|
|
{
|
| 971 |
|
|
best = e;
|
| 972 |
|
|
best_len = traces[bbd[si].end_of_trace].length;
|
| 973 |
|
|
}
|
| 974 |
|
|
}
|
| 975 |
|
|
if (best)
|
| 976 |
|
|
{
|
| 977 |
|
|
best->src->aux = best->dest;
|
| 978 |
|
|
t2 = bbd[best->src->index].end_of_trace;
|
| 979 |
|
|
connected[t2] = true;
|
| 980 |
|
|
|
| 981 |
|
|
if (dump_file)
|
| 982 |
|
|
{
|
| 983 |
|
|
fprintf (dump_file, "Connection: %d %d\n",
|
| 984 |
|
|
best->src->index, best->dest->index);
|
| 985 |
|
|
}
|
| 986 |
|
|
}
|
| 987 |
|
|
else
|
| 988 |
|
|
break;
|
| 989 |
|
|
}
|
| 990 |
|
|
|
| 991 |
|
|
if (last_trace >= 0)
|
| 992 |
|
|
traces[last_trace].last->aux = traces[t2].first;
|
| 993 |
|
|
last_trace = t;
|
| 994 |
|
|
|
| 995 |
|
|
/* Find the successor traces. */
|
| 996 |
|
|
while (1)
|
| 997 |
|
|
{
|
| 998 |
|
|
/* Find the continuation of the chain. */
|
| 999 |
|
|
edge_iterator ei;
|
| 1000 |
|
|
best = NULL;
|
| 1001 |
|
|
best_len = 0;
|
| 1002 |
|
|
FOR_EACH_EDGE (e, ei, traces[t].last->succs)
|
| 1003 |
|
|
{
|
| 1004 |
|
|
int di = e->dest->index;
|
| 1005 |
|
|
|
| 1006 |
|
|
if (e->dest != EXIT_BLOCK_PTR
|
| 1007 |
|
|
&& (e->flags & EDGE_CAN_FALLTHRU)
|
| 1008 |
|
|
&& !(e->flags & EDGE_COMPLEX)
|
| 1009 |
|
|
&& bbd[di].start_of_trace >= 0
|
| 1010 |
|
|
&& !connected[bbd[di].start_of_trace]
|
| 1011 |
|
|
&& (BB_PARTITION (e->dest) == current_partition)
|
| 1012 |
|
|
&& (!best
|
| 1013 |
|
|
|| e->probability > best->probability
|
| 1014 |
|
|
|| (e->probability == best->probability
|
| 1015 |
|
|
&& traces[bbd[di].start_of_trace].length > best_len)))
|
| 1016 |
|
|
{
|
| 1017 |
|
|
best = e;
|
| 1018 |
|
|
best_len = traces[bbd[di].start_of_trace].length;
|
| 1019 |
|
|
}
|
| 1020 |
|
|
}
|
| 1021 |
|
|
|
| 1022 |
|
|
if (best)
|
| 1023 |
|
|
{
|
| 1024 |
|
|
if (dump_file)
|
| 1025 |
|
|
{
|
| 1026 |
|
|
fprintf (dump_file, "Connection: %d %d\n",
|
| 1027 |
|
|
best->src->index, best->dest->index);
|
| 1028 |
|
|
}
|
| 1029 |
|
|
t = bbd[best->dest->index].start_of_trace;
|
| 1030 |
|
|
traces[last_trace].last->aux = traces[t].first;
|
| 1031 |
|
|
connected[t] = true;
|
| 1032 |
|
|
last_trace = t;
|
| 1033 |
|
|
}
|
| 1034 |
|
|
else
|
| 1035 |
|
|
{
|
| 1036 |
|
|
/* Try to connect the traces by duplication of 1 block. */
|
| 1037 |
|
|
edge e2;
|
| 1038 |
|
|
basic_block next_bb = NULL;
|
| 1039 |
|
|
bool try_copy = false;
|
| 1040 |
|
|
|
| 1041 |
|
|
FOR_EACH_EDGE (e, ei, traces[t].last->succs)
|
| 1042 |
|
|
if (e->dest != EXIT_BLOCK_PTR
|
| 1043 |
|
|
&& (e->flags & EDGE_CAN_FALLTHRU)
|
| 1044 |
|
|
&& !(e->flags & EDGE_COMPLEX)
|
| 1045 |
|
|
&& (!best || e->probability > best->probability))
|
| 1046 |
|
|
{
|
| 1047 |
|
|
edge_iterator ei;
|
| 1048 |
|
|
edge best2 = NULL;
|
| 1049 |
|
|
int best2_len = 0;
|
| 1050 |
|
|
|
| 1051 |
|
|
/* If the destination is a start of a trace which is only
|
| 1052 |
|
|
one block long, then no need to search the successor
|
| 1053 |
|
|
blocks of the trace. Accept it. */
|
| 1054 |
|
|
if (bbd[e->dest->index].start_of_trace >= 0
|
| 1055 |
|
|
&& traces[bbd[e->dest->index].start_of_trace].length
|
| 1056 |
|
|
== 1)
|
| 1057 |
|
|
{
|
| 1058 |
|
|
best = e;
|
| 1059 |
|
|
try_copy = true;
|
| 1060 |
|
|
continue;
|
| 1061 |
|
|
}
|
| 1062 |
|
|
|
| 1063 |
|
|
FOR_EACH_EDGE (e2, ei, e->dest->succs)
|
| 1064 |
|
|
{
|
| 1065 |
|
|
int di = e2->dest->index;
|
| 1066 |
|
|
|
| 1067 |
|
|
if (e2->dest == EXIT_BLOCK_PTR
|
| 1068 |
|
|
|| ((e2->flags & EDGE_CAN_FALLTHRU)
|
| 1069 |
|
|
&& !(e2->flags & EDGE_COMPLEX)
|
| 1070 |
|
|
&& bbd[di].start_of_trace >= 0
|
| 1071 |
|
|
&& !connected[bbd[di].start_of_trace]
|
| 1072 |
|
|
&& (BB_PARTITION (e2->dest) == current_partition)
|
| 1073 |
|
|
&& (EDGE_FREQUENCY (e2) >= freq_threshold)
|
| 1074 |
|
|
&& (e2->count >= count_threshold)
|
| 1075 |
|
|
&& (!best2
|
| 1076 |
|
|
|| e2->probability > best2->probability
|
| 1077 |
|
|
|| (e2->probability == best2->probability
|
| 1078 |
|
|
&& traces[bbd[di].start_of_trace].length
|
| 1079 |
|
|
> best2_len))))
|
| 1080 |
|
|
{
|
| 1081 |
|
|
best = e;
|
| 1082 |
|
|
best2 = e2;
|
| 1083 |
|
|
if (e2->dest != EXIT_BLOCK_PTR)
|
| 1084 |
|
|
best2_len = traces[bbd[di].start_of_trace].length;
|
| 1085 |
|
|
else
|
| 1086 |
|
|
best2_len = INT_MAX;
|
| 1087 |
|
|
next_bb = e2->dest;
|
| 1088 |
|
|
try_copy = true;
|
| 1089 |
|
|
}
|
| 1090 |
|
|
}
|
| 1091 |
|
|
}
|
| 1092 |
|
|
|
| 1093 |
|
|
if (flag_reorder_blocks_and_partition)
|
| 1094 |
|
|
try_copy = false;
|
| 1095 |
|
|
|
| 1096 |
|
|
/* Copy tiny blocks always; copy larger blocks only when the
|
| 1097 |
|
|
edge is traversed frequently enough. */
|
| 1098 |
|
|
if (try_copy
|
| 1099 |
|
|
&& copy_bb_p (best->dest,
|
| 1100 |
|
|
optimize_edge_for_speed_p (best)
|
| 1101 |
|
|
&& EDGE_FREQUENCY (best) >= freq_threshold
|
| 1102 |
|
|
&& best->count >= count_threshold))
|
| 1103 |
|
|
{
|
| 1104 |
|
|
basic_block new_bb;
|
| 1105 |
|
|
|
| 1106 |
|
|
if (dump_file)
|
| 1107 |
|
|
{
|
| 1108 |
|
|
fprintf (dump_file, "Connection: %d %d ",
|
| 1109 |
|
|
traces[t].last->index, best->dest->index);
|
| 1110 |
|
|
if (!next_bb)
|
| 1111 |
|
|
fputc ('\n', dump_file);
|
| 1112 |
|
|
else if (next_bb == EXIT_BLOCK_PTR)
|
| 1113 |
|
|
fprintf (dump_file, "exit\n");
|
| 1114 |
|
|
else
|
| 1115 |
|
|
fprintf (dump_file, "%d\n", next_bb->index);
|
| 1116 |
|
|
}
|
| 1117 |
|
|
|
| 1118 |
|
|
new_bb = copy_bb (best->dest, best, traces[t].last, t);
|
| 1119 |
|
|
traces[t].last = new_bb;
|
| 1120 |
|
|
if (next_bb && next_bb != EXIT_BLOCK_PTR)
|
| 1121 |
|
|
{
|
| 1122 |
|
|
t = bbd[next_bb->index].start_of_trace;
|
| 1123 |
|
|
traces[last_trace].last->aux = traces[t].first;
|
| 1124 |
|
|
connected[t] = true;
|
| 1125 |
|
|
last_trace = t;
|
| 1126 |
|
|
}
|
| 1127 |
|
|
else
|
| 1128 |
|
|
break; /* Stop finding the successor traces. */
|
| 1129 |
|
|
}
|
| 1130 |
|
|
else
|
| 1131 |
|
|
break; /* Stop finding the successor traces. */
|
| 1132 |
|
|
}
|
| 1133 |
|
|
}
|
| 1134 |
|
|
}
|
| 1135 |
|
|
|
| 1136 |
|
|
if (dump_file)
|
| 1137 |
|
|
{
|
| 1138 |
|
|
basic_block bb;
|
| 1139 |
|
|
|
| 1140 |
|
|
fprintf (dump_file, "Final order:\n");
|
| 1141 |
|
|
for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
|
| 1142 |
|
|
fprintf (dump_file, "%d ", bb->index);
|
| 1143 |
|
|
fprintf (dump_file, "\n");
|
| 1144 |
|
|
fflush (dump_file);
|
| 1145 |
|
|
}
|
| 1146 |
|
|
|
| 1147 |
|
|
FREE (connected);
|
| 1148 |
|
|
}
|
| 1149 |
|
|
|
| 1150 |
|
|
/* Return true when BB can and should be copied. CODE_MAY_GROW is true
|
| 1151 |
|
|
when code size is allowed to grow by duplication. */
|
| 1152 |
|
|
|
| 1153 |
|
|
static bool
|
| 1154 |
|
|
copy_bb_p (const_basic_block bb, int code_may_grow)
|
| 1155 |
|
|
{
|
| 1156 |
|
|
int size = 0;
|
| 1157 |
|
|
int max_size = uncond_jump_length;
|
| 1158 |
|
|
rtx insn;
|
| 1159 |
|
|
|
| 1160 |
|
|
if (!bb->frequency)
|
| 1161 |
|
|
return false;
|
| 1162 |
|
|
if (EDGE_COUNT (bb->preds) < 2)
|
| 1163 |
|
|
return false;
|
| 1164 |
|
|
if (!can_duplicate_block_p (bb))
|
| 1165 |
|
|
return false;
|
| 1166 |
|
|
|
| 1167 |
|
|
/* Avoid duplicating blocks which have many successors (PR/13430). */
|
| 1168 |
|
|
if (EDGE_COUNT (bb->succs) > 8)
|
| 1169 |
|
|
return false;
|
| 1170 |
|
|
|
| 1171 |
|
|
if (code_may_grow && optimize_bb_for_speed_p (bb))
|
| 1172 |
|
|
max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
|
| 1173 |
|
|
|
| 1174 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 1175 |
|
|
{
|
| 1176 |
|
|
if (INSN_P (insn))
|
| 1177 |
|
|
size += get_attr_min_length (insn);
|
| 1178 |
|
|
}
|
| 1179 |
|
|
|
| 1180 |
|
|
if (size <= max_size)
|
| 1181 |
|
|
return true;
|
| 1182 |
|
|
|
| 1183 |
|
|
if (dump_file)
|
| 1184 |
|
|
{
|
| 1185 |
|
|
fprintf (dump_file,
|
| 1186 |
|
|
"Block %d can't be copied because its size = %d.\n",
|
| 1187 |
|
|
bb->index, size);
|
| 1188 |
|
|
}
|
| 1189 |
|
|
|
| 1190 |
|
|
return false;
|
| 1191 |
|
|
}
|
| 1192 |
|
|
|
| 1193 |
|
|
/* Return the length of unconditional jump instruction. */
|
| 1194 |
|
|
|
| 1195 |
|
|
int
|
| 1196 |
|
|
get_uncond_jump_length (void)
|
| 1197 |
|
|
{
|
| 1198 |
|
|
rtx label, jump;
|
| 1199 |
|
|
int length;
|
| 1200 |
|
|
|
| 1201 |
|
|
label = emit_label_before (gen_label_rtx (), get_insns ());
|
| 1202 |
|
|
jump = emit_jump_insn (gen_jump (label));
|
| 1203 |
|
|
|
| 1204 |
|
|
length = get_attr_min_length (jump);
|
| 1205 |
|
|
|
| 1206 |
|
|
delete_insn (jump);
|
| 1207 |
|
|
delete_insn (label);
|
| 1208 |
|
|
return length;
|
| 1209 |
|
|
}
|
| 1210 |
|
|
|
| 1211 |
|
|
/* Emit a barrier into the footer of BB. */
|
| 1212 |
|
|
|
| 1213 |
|
|
static void
|
| 1214 |
|
|
emit_barrier_after_bb (basic_block bb)
|
| 1215 |
|
|
{
|
| 1216 |
|
|
rtx barrier = emit_barrier_after (BB_END (bb));
|
| 1217 |
|
|
bb->il.rtl->footer = unlink_insn_chain (barrier, barrier);
|
| 1218 |
|
|
}
|
| 1219 |
|
|
|
| 1220 |
|
|
/* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
|
| 1221 |
|
|
Duplicate the landing pad and split the edges so that no EH edge
|
| 1222 |
|
|
crosses partitions. */
|
| 1223 |
|
|
|
| 1224 |
|
|
static void
|
| 1225 |
|
|
fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
|
| 1226 |
|
|
{
|
| 1227 |
|
|
eh_landing_pad new_lp;
|
| 1228 |
|
|
basic_block new_bb, last_bb, post_bb;
|
| 1229 |
|
|
rtx new_label, jump, post_label;
|
| 1230 |
|
|
unsigned new_partition;
|
| 1231 |
|
|
edge_iterator ei;
|
| 1232 |
|
|
edge e;
|
| 1233 |
|
|
|
| 1234 |
|
|
/* Generate the new landing-pad structure. */
|
| 1235 |
|
|
new_lp = gen_eh_landing_pad (old_lp->region);
|
| 1236 |
|
|
new_lp->post_landing_pad = old_lp->post_landing_pad;
|
| 1237 |
|
|
new_lp->landing_pad = gen_label_rtx ();
|
| 1238 |
|
|
LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
|
| 1239 |
|
|
|
| 1240 |
|
|
/* Put appropriate instructions in new bb. */
|
| 1241 |
|
|
new_label = emit_label (new_lp->landing_pad);
|
| 1242 |
|
|
|
| 1243 |
|
|
expand_dw2_landing_pad_for_region (old_lp->region);
|
| 1244 |
|
|
|
| 1245 |
|
|
post_bb = BLOCK_FOR_INSN (old_lp->landing_pad);
|
| 1246 |
|
|
post_bb = single_succ (post_bb);
|
| 1247 |
|
|
post_label = block_label (post_bb);
|
| 1248 |
|
|
jump = emit_jump_insn (gen_jump (post_label));
|
| 1249 |
|
|
JUMP_LABEL (jump) = post_label;
|
| 1250 |
|
|
|
| 1251 |
|
|
/* Create new basic block to be dest for lp. */
|
| 1252 |
|
|
last_bb = EXIT_BLOCK_PTR->prev_bb;
|
| 1253 |
|
|
new_bb = create_basic_block (new_label, jump, last_bb);
|
| 1254 |
|
|
new_bb->aux = last_bb->aux;
|
| 1255 |
|
|
last_bb->aux = new_bb;
|
| 1256 |
|
|
|
| 1257 |
|
|
emit_barrier_after_bb (new_bb);
|
| 1258 |
|
|
|
| 1259 |
|
|
make_edge (new_bb, post_bb, 0);
|
| 1260 |
|
|
|
| 1261 |
|
|
/* Make sure new bb is in the other partition. */
|
| 1262 |
|
|
new_partition = BB_PARTITION (old_bb);
|
| 1263 |
|
|
new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
|
| 1264 |
|
|
BB_SET_PARTITION (new_bb, new_partition);
|
| 1265 |
|
|
|
| 1266 |
|
|
/* Fix up the edges. */
|
| 1267 |
|
|
for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
|
| 1268 |
|
|
if (BB_PARTITION (e->src) == new_partition)
|
| 1269 |
|
|
{
|
| 1270 |
|
|
rtx insn = BB_END (e->src);
|
| 1271 |
|
|
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
|
| 1272 |
|
|
|
| 1273 |
|
|
gcc_assert (note != NULL);
|
| 1274 |
|
|
gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
|
| 1275 |
|
|
XEXP (note, 0) = GEN_INT (new_lp->index);
|
| 1276 |
|
|
|
| 1277 |
|
|
/* Adjust the edge to the new destination. */
|
| 1278 |
|
|
redirect_edge_succ (e, new_bb);
|
| 1279 |
|
|
}
|
| 1280 |
|
|
else
|
| 1281 |
|
|
ei_next (&ei);
|
| 1282 |
|
|
}
|
| 1283 |
|
|
|
| 1284 |
|
|
/* Find the basic blocks that are rarely executed and need to be moved to
|
| 1285 |
|
|
a separate section of the .o file (to cut down on paging and improve
|
| 1286 |
|
|
cache locality). Return a vector of all edges that cross. */
|
| 1287 |
|
|
|
| 1288 |
|
|
static VEC(edge, heap) *
|
| 1289 |
|
|
find_rarely_executed_basic_blocks_and_crossing_edges (void)
|
| 1290 |
|
|
{
|
| 1291 |
|
|
VEC(edge, heap) *crossing_edges = NULL;
|
| 1292 |
|
|
basic_block bb;
|
| 1293 |
|
|
edge e;
|
| 1294 |
|
|
edge_iterator ei;
|
| 1295 |
|
|
|
| 1296 |
|
|
/* Mark which partition (hot/cold) each basic block belongs in. */
|
| 1297 |
|
|
FOR_EACH_BB (bb)
|
| 1298 |
|
|
{
|
| 1299 |
|
|
if (probably_never_executed_bb_p (bb))
|
| 1300 |
|
|
BB_SET_PARTITION (bb, BB_COLD_PARTITION);
|
| 1301 |
|
|
else
|
| 1302 |
|
|
BB_SET_PARTITION (bb, BB_HOT_PARTITION);
|
| 1303 |
|
|
}
|
| 1304 |
|
|
|
| 1305 |
|
|
/* The format of .gcc_except_table does not allow landing pads to
|
| 1306 |
|
|
be in a different partition as the throw. Fix this by either
|
| 1307 |
|
|
moving or duplicating the landing pads. */
|
| 1308 |
|
|
if (cfun->eh->lp_array)
|
| 1309 |
|
|
{
|
| 1310 |
|
|
unsigned i;
|
| 1311 |
|
|
eh_landing_pad lp;
|
| 1312 |
|
|
|
| 1313 |
|
|
FOR_EACH_VEC_ELT (eh_landing_pad, cfun->eh->lp_array, i, lp)
|
| 1314 |
|
|
{
|
| 1315 |
|
|
bool all_same, all_diff;
|
| 1316 |
|
|
|
| 1317 |
|
|
if (lp == NULL
|
| 1318 |
|
|
|| lp->landing_pad == NULL_RTX
|
| 1319 |
|
|
|| !LABEL_P (lp->landing_pad))
|
| 1320 |
|
|
continue;
|
| 1321 |
|
|
|
| 1322 |
|
|
all_same = all_diff = true;
|
| 1323 |
|
|
bb = BLOCK_FOR_INSN (lp->landing_pad);
|
| 1324 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 1325 |
|
|
{
|
| 1326 |
|
|
gcc_assert (e->flags & EDGE_EH);
|
| 1327 |
|
|
if (BB_PARTITION (bb) == BB_PARTITION (e->src))
|
| 1328 |
|
|
all_diff = false;
|
| 1329 |
|
|
else
|
| 1330 |
|
|
all_same = false;
|
| 1331 |
|
|
}
|
| 1332 |
|
|
|
| 1333 |
|
|
if (all_same)
|
| 1334 |
|
|
;
|
| 1335 |
|
|
else if (all_diff)
|
| 1336 |
|
|
{
|
| 1337 |
|
|
int which = BB_PARTITION (bb);
|
| 1338 |
|
|
which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
|
| 1339 |
|
|
BB_SET_PARTITION (bb, which);
|
| 1340 |
|
|
}
|
| 1341 |
|
|
else
|
| 1342 |
|
|
fix_up_crossing_landing_pad (lp, bb);
|
| 1343 |
|
|
}
|
| 1344 |
|
|
}
|
| 1345 |
|
|
|
| 1346 |
|
|
/* Mark every edge that crosses between sections. */
|
| 1347 |
|
|
|
| 1348 |
|
|
FOR_EACH_BB (bb)
|
| 1349 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 1350 |
|
|
{
|
| 1351 |
|
|
unsigned int flags = e->flags;
|
| 1352 |
|
|
|
| 1353 |
|
|
/* We should never have EDGE_CROSSING set yet. */
|
| 1354 |
|
|
gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
|
| 1355 |
|
|
|
| 1356 |
|
|
if (e->src != ENTRY_BLOCK_PTR
|
| 1357 |
|
|
&& e->dest != EXIT_BLOCK_PTR
|
| 1358 |
|
|
&& BB_PARTITION (e->src) != BB_PARTITION (e->dest))
|
| 1359 |
|
|
{
|
| 1360 |
|
|
VEC_safe_push (edge, heap, crossing_edges, e);
|
| 1361 |
|
|
flags |= EDGE_CROSSING;
|
| 1362 |
|
|
}
|
| 1363 |
|
|
|
| 1364 |
|
|
/* Now that we've split eh edges as appropriate, allow landing pads
|
| 1365 |
|
|
to be merged with the post-landing pads. */
|
| 1366 |
|
|
flags &= ~EDGE_PRESERVE;
|
| 1367 |
|
|
|
| 1368 |
|
|
e->flags = flags;
|
| 1369 |
|
|
}
|
| 1370 |
|
|
|
| 1371 |
|
|
return crossing_edges;
|
| 1372 |
|
|
}
|
| 1373 |
|
|
|
| 1374 |
|
|
/* If any destination of a crossing edge does not have a label, add label;
|
| 1375 |
|
|
Convert any easy fall-through crossing edges to unconditional jumps. */
|
| 1376 |
|
|
|
| 1377 |
|
|
static void
|
| 1378 |
|
|
add_labels_and_missing_jumps (VEC(edge, heap) *crossing_edges)
|
| 1379 |
|
|
{
|
| 1380 |
|
|
size_t i;
|
| 1381 |
|
|
edge e;
|
| 1382 |
|
|
|
| 1383 |
|
|
FOR_EACH_VEC_ELT (edge, crossing_edges, i, e)
|
| 1384 |
|
|
{
|
| 1385 |
|
|
basic_block src = e->src;
|
| 1386 |
|
|
basic_block dest = e->dest;
|
| 1387 |
|
|
rtx label, new_jump;
|
| 1388 |
|
|
|
| 1389 |
|
|
if (dest == EXIT_BLOCK_PTR)
|
| 1390 |
|
|
continue;
|
| 1391 |
|
|
|
| 1392 |
|
|
/* Make sure dest has a label. */
|
| 1393 |
|
|
label = block_label (dest);
|
| 1394 |
|
|
|
| 1395 |
|
|
/* Nothing to do for non-fallthru edges. */
|
| 1396 |
|
|
if (src == ENTRY_BLOCK_PTR)
|
| 1397 |
|
|
continue;
|
| 1398 |
|
|
if ((e->flags & EDGE_FALLTHRU) == 0)
|
| 1399 |
|
|
continue;
|
| 1400 |
|
|
|
| 1401 |
|
|
/* If the block does not end with a control flow insn, then we
|
| 1402 |
|
|
can trivially add a jump to the end to fixup the crossing.
|
| 1403 |
|
|
Otherwise the jump will have to go in a new bb, which will
|
| 1404 |
|
|
be handled by fix_up_fall_thru_edges function. */
|
| 1405 |
|
|
if (control_flow_insn_p (BB_END (src)))
|
| 1406 |
|
|
continue;
|
| 1407 |
|
|
|
| 1408 |
|
|
/* Make sure there's only one successor. */
|
| 1409 |
|
|
gcc_assert (single_succ_p (src));
|
| 1410 |
|
|
|
| 1411 |
|
|
new_jump = emit_jump_insn_after (gen_jump (label), BB_END (src));
|
| 1412 |
|
|
BB_END (src) = new_jump;
|
| 1413 |
|
|
JUMP_LABEL (new_jump) = label;
|
| 1414 |
|
|
LABEL_NUSES (label) += 1;
|
| 1415 |
|
|
|
| 1416 |
|
|
emit_barrier_after_bb (src);
|
| 1417 |
|
|
|
| 1418 |
|
|
/* Mark edge as non-fallthru. */
|
| 1419 |
|
|
e->flags &= ~EDGE_FALLTHRU;
|
| 1420 |
|
|
}
|
| 1421 |
|
|
}
|
| 1422 |
|
|
|
| 1423 |
|
|
/* Find any bb's where the fall-through edge is a crossing edge (note that
|
| 1424 |
|
|
these bb's must also contain a conditional jump or end with a call
|
| 1425 |
|
|
instruction; we've already dealt with fall-through edges for blocks
|
| 1426 |
|
|
that didn't have a conditional jump or didn't end with call instruction
|
| 1427 |
|
|
in the call to add_labels_and_missing_jumps). Convert the fall-through
|
| 1428 |
|
|
edge to non-crossing edge by inserting a new bb to fall-through into.
|
| 1429 |
|
|
The new bb will contain an unconditional jump (crossing edge) to the
|
| 1430 |
|
|
original fall through destination. */
|
| 1431 |
|
|
|
| 1432 |
|
|
static void
|
| 1433 |
|
|
fix_up_fall_thru_edges (void)
|
| 1434 |
|
|
{
|
| 1435 |
|
|
basic_block cur_bb;
|
| 1436 |
|
|
basic_block new_bb;
|
| 1437 |
|
|
edge succ1;
|
| 1438 |
|
|
edge succ2;
|
| 1439 |
|
|
edge fall_thru;
|
| 1440 |
|
|
edge cond_jump = NULL;
|
| 1441 |
|
|
edge e;
|
| 1442 |
|
|
bool cond_jump_crosses;
|
| 1443 |
|
|
int invert_worked;
|
| 1444 |
|
|
rtx old_jump;
|
| 1445 |
|
|
rtx fall_thru_label;
|
| 1446 |
|
|
|
| 1447 |
|
|
FOR_EACH_BB (cur_bb)
|
| 1448 |
|
|
{
|
| 1449 |
|
|
fall_thru = NULL;
|
| 1450 |
|
|
if (EDGE_COUNT (cur_bb->succs) > 0)
|
| 1451 |
|
|
succ1 = EDGE_SUCC (cur_bb, 0);
|
| 1452 |
|
|
else
|
| 1453 |
|
|
succ1 = NULL;
|
| 1454 |
|
|
|
| 1455 |
|
|
if (EDGE_COUNT (cur_bb->succs) > 1)
|
| 1456 |
|
|
succ2 = EDGE_SUCC (cur_bb, 1);
|
| 1457 |
|
|
else
|
| 1458 |
|
|
succ2 = NULL;
|
| 1459 |
|
|
|
| 1460 |
|
|
/* Find the fall-through edge. */
|
| 1461 |
|
|
|
| 1462 |
|
|
if (succ1
|
| 1463 |
|
|
&& (succ1->flags & EDGE_FALLTHRU))
|
| 1464 |
|
|
{
|
| 1465 |
|
|
fall_thru = succ1;
|
| 1466 |
|
|
cond_jump = succ2;
|
| 1467 |
|
|
}
|
| 1468 |
|
|
else if (succ2
|
| 1469 |
|
|
&& (succ2->flags & EDGE_FALLTHRU))
|
| 1470 |
|
|
{
|
| 1471 |
|
|
fall_thru = succ2;
|
| 1472 |
|
|
cond_jump = succ1;
|
| 1473 |
|
|
}
|
| 1474 |
|
|
else if (succ1
|
| 1475 |
|
|
&& (block_ends_with_call_p (cur_bb)
|
| 1476 |
|
|
|| can_throw_internal (BB_END (cur_bb))))
|
| 1477 |
|
|
{
|
| 1478 |
|
|
edge e;
|
| 1479 |
|
|
edge_iterator ei;
|
| 1480 |
|
|
|
| 1481 |
|
|
/* Find EDGE_CAN_FALLTHRU edge. */
|
| 1482 |
|
|
FOR_EACH_EDGE (e, ei, cur_bb->succs)
|
| 1483 |
|
|
if (e->flags & EDGE_CAN_FALLTHRU)
|
| 1484 |
|
|
{
|
| 1485 |
|
|
fall_thru = e;
|
| 1486 |
|
|
break;
|
| 1487 |
|
|
}
|
| 1488 |
|
|
}
|
| 1489 |
|
|
|
| 1490 |
|
|
if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
|
| 1491 |
|
|
{
|
| 1492 |
|
|
/* Check to see if the fall-thru edge is a crossing edge. */
|
| 1493 |
|
|
|
| 1494 |
|
|
if (fall_thru->flags & EDGE_CROSSING)
|
| 1495 |
|
|
{
|
| 1496 |
|
|
/* The fall_thru edge crosses; now check the cond jump edge, if
|
| 1497 |
|
|
it exists. */
|
| 1498 |
|
|
|
| 1499 |
|
|
cond_jump_crosses = true;
|
| 1500 |
|
|
invert_worked = 0;
|
| 1501 |
|
|
old_jump = BB_END (cur_bb);
|
| 1502 |
|
|
|
| 1503 |
|
|
/* Find the jump instruction, if there is one. */
|
| 1504 |
|
|
|
| 1505 |
|
|
if (cond_jump)
|
| 1506 |
|
|
{
|
| 1507 |
|
|
if (!(cond_jump->flags & EDGE_CROSSING))
|
| 1508 |
|
|
cond_jump_crosses = false;
|
| 1509 |
|
|
|
| 1510 |
|
|
/* We know the fall-thru edge crosses; if the cond
|
| 1511 |
|
|
jump edge does NOT cross, and its destination is the
|
| 1512 |
|
|
next block in the bb order, invert the jump
|
| 1513 |
|
|
(i.e. fix it so the fall thru does not cross and
|
| 1514 |
|
|
the cond jump does). */
|
| 1515 |
|
|
|
| 1516 |
|
|
if (!cond_jump_crosses
|
| 1517 |
|
|
&& cur_bb->aux == cond_jump->dest)
|
| 1518 |
|
|
{
|
| 1519 |
|
|
/* Find label in fall_thru block. We've already added
|
| 1520 |
|
|
any missing labels, so there must be one. */
|
| 1521 |
|
|
|
| 1522 |
|
|
fall_thru_label = block_label (fall_thru->dest);
|
| 1523 |
|
|
|
| 1524 |
|
|
if (old_jump && JUMP_P (old_jump) && fall_thru_label)
|
| 1525 |
|
|
invert_worked = invert_jump (old_jump,
|
| 1526 |
|
|
fall_thru_label,0);
|
| 1527 |
|
|
if (invert_worked)
|
| 1528 |
|
|
{
|
| 1529 |
|
|
fall_thru->flags &= ~EDGE_FALLTHRU;
|
| 1530 |
|
|
cond_jump->flags |= EDGE_FALLTHRU;
|
| 1531 |
|
|
update_br_prob_note (cur_bb);
|
| 1532 |
|
|
e = fall_thru;
|
| 1533 |
|
|
fall_thru = cond_jump;
|
| 1534 |
|
|
cond_jump = e;
|
| 1535 |
|
|
cond_jump->flags |= EDGE_CROSSING;
|
| 1536 |
|
|
fall_thru->flags &= ~EDGE_CROSSING;
|
| 1537 |
|
|
}
|
| 1538 |
|
|
}
|
| 1539 |
|
|
}
|
| 1540 |
|
|
|
| 1541 |
|
|
if (cond_jump_crosses || !invert_worked)
|
| 1542 |
|
|
{
|
| 1543 |
|
|
/* This is the case where both edges out of the basic
|
| 1544 |
|
|
block are crossing edges. Here we will fix up the
|
| 1545 |
|
|
fall through edge. The jump edge will be taken care
|
| 1546 |
|
|
of later. The EDGE_CROSSING flag of fall_thru edge
|
| 1547 |
|
|
is unset before the call to force_nonfallthru
|
| 1548 |
|
|
function because if a new basic-block is created
|
| 1549 |
|
|
this edge remains in the current section boundary
|
| 1550 |
|
|
while the edge between new_bb and the fall_thru->dest
|
| 1551 |
|
|
becomes EDGE_CROSSING. */
|
| 1552 |
|
|
|
| 1553 |
|
|
fall_thru->flags &= ~EDGE_CROSSING;
|
| 1554 |
|
|
new_bb = force_nonfallthru (fall_thru);
|
| 1555 |
|
|
|
| 1556 |
|
|
if (new_bb)
|
| 1557 |
|
|
{
|
| 1558 |
|
|
new_bb->aux = cur_bb->aux;
|
| 1559 |
|
|
cur_bb->aux = new_bb;
|
| 1560 |
|
|
|
| 1561 |
|
|
/* Make sure new fall-through bb is in same
|
| 1562 |
|
|
partition as bb it's falling through from. */
|
| 1563 |
|
|
|
| 1564 |
|
|
BB_COPY_PARTITION (new_bb, cur_bb);
|
| 1565 |
|
|
single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
|
| 1566 |
|
|
}
|
| 1567 |
|
|
else
|
| 1568 |
|
|
{
|
| 1569 |
|
|
/* If a new basic-block was not created; restore
|
| 1570 |
|
|
the EDGE_CROSSING flag. */
|
| 1571 |
|
|
fall_thru->flags |= EDGE_CROSSING;
|
| 1572 |
|
|
}
|
| 1573 |
|
|
|
| 1574 |
|
|
/* Add barrier after new jump */
|
| 1575 |
|
|
emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
|
| 1576 |
|
|
}
|
| 1577 |
|
|
}
|
| 1578 |
|
|
}
|
| 1579 |
|
|
}
|
| 1580 |
|
|
}
|
| 1581 |
|
|
|
| 1582 |
|
|
/* This function checks the destination block of a "crossing jump" to
|
| 1583 |
|
|
see if it has any crossing predecessors that begin with a code label
|
| 1584 |
|
|
and end with an unconditional jump. If so, it returns that predecessor
|
| 1585 |
|
|
block. (This is to avoid creating lots of new basic blocks that all
|
| 1586 |
|
|
contain unconditional jumps to the same destination). */
|
| 1587 |
|
|
|
| 1588 |
|
|
static basic_block
|
| 1589 |
|
|
find_jump_block (basic_block jump_dest)
|
| 1590 |
|
|
{
|
| 1591 |
|
|
basic_block source_bb = NULL;
|
| 1592 |
|
|
edge e;
|
| 1593 |
|
|
rtx insn;
|
| 1594 |
|
|
edge_iterator ei;
|
| 1595 |
|
|
|
| 1596 |
|
|
FOR_EACH_EDGE (e, ei, jump_dest->preds)
|
| 1597 |
|
|
if (e->flags & EDGE_CROSSING)
|
| 1598 |
|
|
{
|
| 1599 |
|
|
basic_block src = e->src;
|
| 1600 |
|
|
|
| 1601 |
|
|
/* Check each predecessor to see if it has a label, and contains
|
| 1602 |
|
|
only one executable instruction, which is an unconditional jump.
|
| 1603 |
|
|
If so, we can use it. */
|
| 1604 |
|
|
|
| 1605 |
|
|
if (LABEL_P (BB_HEAD (src)))
|
| 1606 |
|
|
for (insn = BB_HEAD (src);
|
| 1607 |
|
|
!INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
|
| 1608 |
|
|
insn = NEXT_INSN (insn))
|
| 1609 |
|
|
{
|
| 1610 |
|
|
if (INSN_P (insn)
|
| 1611 |
|
|
&& insn == BB_END (src)
|
| 1612 |
|
|
&& JUMP_P (insn)
|
| 1613 |
|
|
&& !any_condjump_p (insn))
|
| 1614 |
|
|
{
|
| 1615 |
|
|
source_bb = src;
|
| 1616 |
|
|
break;
|
| 1617 |
|
|
}
|
| 1618 |
|
|
}
|
| 1619 |
|
|
|
| 1620 |
|
|
if (source_bb)
|
| 1621 |
|
|
break;
|
| 1622 |
|
|
}
|
| 1623 |
|
|
|
| 1624 |
|
|
return source_bb;
|
| 1625 |
|
|
}
|
| 1626 |
|
|
|
| 1627 |
|
|
/* Find all BB's with conditional jumps that are crossing edges;
|
| 1628 |
|
|
insert a new bb and make the conditional jump branch to the new
|
| 1629 |
|
|
bb instead (make the new bb same color so conditional branch won't
|
| 1630 |
|
|
be a 'crossing' edge). Insert an unconditional jump from the
|
| 1631 |
|
|
new bb to the original destination of the conditional jump. */
|
| 1632 |
|
|
|
| 1633 |
|
|
static void
|
| 1634 |
|
|
fix_crossing_conditional_branches (void)
|
| 1635 |
|
|
{
|
| 1636 |
|
|
basic_block cur_bb;
|
| 1637 |
|
|
basic_block new_bb;
|
| 1638 |
|
|
basic_block dest;
|
| 1639 |
|
|
edge succ1;
|
| 1640 |
|
|
edge succ2;
|
| 1641 |
|
|
edge crossing_edge;
|
| 1642 |
|
|
edge new_edge;
|
| 1643 |
|
|
rtx old_jump;
|
| 1644 |
|
|
rtx set_src;
|
| 1645 |
|
|
rtx old_label = NULL_RTX;
|
| 1646 |
|
|
rtx new_label;
|
| 1647 |
|
|
|
| 1648 |
|
|
FOR_EACH_BB (cur_bb)
|
| 1649 |
|
|
{
|
| 1650 |
|
|
crossing_edge = NULL;
|
| 1651 |
|
|
if (EDGE_COUNT (cur_bb->succs) > 0)
|
| 1652 |
|
|
succ1 = EDGE_SUCC (cur_bb, 0);
|
| 1653 |
|
|
else
|
| 1654 |
|
|
succ1 = NULL;
|
| 1655 |
|
|
|
| 1656 |
|
|
if (EDGE_COUNT (cur_bb->succs) > 1)
|
| 1657 |
|
|
succ2 = EDGE_SUCC (cur_bb, 1);
|
| 1658 |
|
|
else
|
| 1659 |
|
|
succ2 = NULL;
|
| 1660 |
|
|
|
| 1661 |
|
|
/* We already took care of fall-through edges, so only one successor
|
| 1662 |
|
|
can be a crossing edge. */
|
| 1663 |
|
|
|
| 1664 |
|
|
if (succ1 && (succ1->flags & EDGE_CROSSING))
|
| 1665 |
|
|
crossing_edge = succ1;
|
| 1666 |
|
|
else if (succ2 && (succ2->flags & EDGE_CROSSING))
|
| 1667 |
|
|
crossing_edge = succ2;
|
| 1668 |
|
|
|
| 1669 |
|
|
if (crossing_edge)
|
| 1670 |
|
|
{
|
| 1671 |
|
|
old_jump = BB_END (cur_bb);
|
| 1672 |
|
|
|
| 1673 |
|
|
/* Check to make sure the jump instruction is a
|
| 1674 |
|
|
conditional jump. */
|
| 1675 |
|
|
|
| 1676 |
|
|
set_src = NULL_RTX;
|
| 1677 |
|
|
|
| 1678 |
|
|
if (any_condjump_p (old_jump))
|
| 1679 |
|
|
{
|
| 1680 |
|
|
if (GET_CODE (PATTERN (old_jump)) == SET)
|
| 1681 |
|
|
set_src = SET_SRC (PATTERN (old_jump));
|
| 1682 |
|
|
else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
|
| 1683 |
|
|
{
|
| 1684 |
|
|
set_src = XVECEXP (PATTERN (old_jump), 0,0);
|
| 1685 |
|
|
if (GET_CODE (set_src) == SET)
|
| 1686 |
|
|
set_src = SET_SRC (set_src);
|
| 1687 |
|
|
else
|
| 1688 |
|
|
set_src = NULL_RTX;
|
| 1689 |
|
|
}
|
| 1690 |
|
|
}
|
| 1691 |
|
|
|
| 1692 |
|
|
if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
|
| 1693 |
|
|
{
|
| 1694 |
|
|
if (GET_CODE (XEXP (set_src, 1)) == PC)
|
| 1695 |
|
|
old_label = XEXP (set_src, 2);
|
| 1696 |
|
|
else if (GET_CODE (XEXP (set_src, 2)) == PC)
|
| 1697 |
|
|
old_label = XEXP (set_src, 1);
|
| 1698 |
|
|
|
| 1699 |
|
|
/* Check to see if new bb for jumping to that dest has
|
| 1700 |
|
|
already been created; if so, use it; if not, create
|
| 1701 |
|
|
a new one. */
|
| 1702 |
|
|
|
| 1703 |
|
|
new_bb = find_jump_block (crossing_edge->dest);
|
| 1704 |
|
|
|
| 1705 |
|
|
if (new_bb)
|
| 1706 |
|
|
new_label = block_label (new_bb);
|
| 1707 |
|
|
else
|
| 1708 |
|
|
{
|
| 1709 |
|
|
basic_block last_bb;
|
| 1710 |
|
|
rtx new_jump;
|
| 1711 |
|
|
|
| 1712 |
|
|
/* Create new basic block to be dest for
|
| 1713 |
|
|
conditional jump. */
|
| 1714 |
|
|
|
| 1715 |
|
|
/* Put appropriate instructions in new bb. */
|
| 1716 |
|
|
|
| 1717 |
|
|
new_label = gen_label_rtx ();
|
| 1718 |
|
|
emit_label (new_label);
|
| 1719 |
|
|
|
| 1720 |
|
|
gcc_assert (GET_CODE (old_label) == LABEL_REF);
|
| 1721 |
|
|
old_label = JUMP_LABEL (old_jump);
|
| 1722 |
|
|
new_jump = emit_jump_insn (gen_jump (old_label));
|
| 1723 |
|
|
JUMP_LABEL (new_jump) = old_label;
|
| 1724 |
|
|
|
| 1725 |
|
|
last_bb = EXIT_BLOCK_PTR->prev_bb;
|
| 1726 |
|
|
new_bb = create_basic_block (new_label, new_jump, last_bb);
|
| 1727 |
|
|
new_bb->aux = last_bb->aux;
|
| 1728 |
|
|
last_bb->aux = new_bb;
|
| 1729 |
|
|
|
| 1730 |
|
|
emit_barrier_after_bb (new_bb);
|
| 1731 |
|
|
|
| 1732 |
|
|
/* Make sure new bb is in same partition as source
|
| 1733 |
|
|
of conditional branch. */
|
| 1734 |
|
|
BB_COPY_PARTITION (new_bb, cur_bb);
|
| 1735 |
|
|
}
|
| 1736 |
|
|
|
| 1737 |
|
|
/* Make old jump branch to new bb. */
|
| 1738 |
|
|
|
| 1739 |
|
|
redirect_jump (old_jump, new_label, 0);
|
| 1740 |
|
|
|
| 1741 |
|
|
/* Remove crossing_edge as predecessor of 'dest'. */
|
| 1742 |
|
|
|
| 1743 |
|
|
dest = crossing_edge->dest;
|
| 1744 |
|
|
|
| 1745 |
|
|
redirect_edge_succ (crossing_edge, new_bb);
|
| 1746 |
|
|
|
| 1747 |
|
|
/* Make a new edge from new_bb to old dest; new edge
|
| 1748 |
|
|
will be a successor for new_bb and a predecessor
|
| 1749 |
|
|
for 'dest'. */
|
| 1750 |
|
|
|
| 1751 |
|
|
if (EDGE_COUNT (new_bb->succs) == 0)
|
| 1752 |
|
|
new_edge = make_edge (new_bb, dest, 0);
|
| 1753 |
|
|
else
|
| 1754 |
|
|
new_edge = EDGE_SUCC (new_bb, 0);
|
| 1755 |
|
|
|
| 1756 |
|
|
crossing_edge->flags &= ~EDGE_CROSSING;
|
| 1757 |
|
|
new_edge->flags |= EDGE_CROSSING;
|
| 1758 |
|
|
}
|
| 1759 |
|
|
}
|
| 1760 |
|
|
}
|
| 1761 |
|
|
}
|
| 1762 |
|
|
|
| 1763 |
|
|
/* Find any unconditional branches that cross between hot and cold
|
| 1764 |
|
|
sections. Convert them into indirect jumps instead. */
|
| 1765 |
|
|
|
| 1766 |
|
|
static void
|
| 1767 |
|
|
fix_crossing_unconditional_branches (void)
|
| 1768 |
|
|
{
|
| 1769 |
|
|
basic_block cur_bb;
|
| 1770 |
|
|
rtx last_insn;
|
| 1771 |
|
|
rtx label;
|
| 1772 |
|
|
rtx label_addr;
|
| 1773 |
|
|
rtx indirect_jump_sequence;
|
| 1774 |
|
|
rtx jump_insn = NULL_RTX;
|
| 1775 |
|
|
rtx new_reg;
|
| 1776 |
|
|
rtx cur_insn;
|
| 1777 |
|
|
edge succ;
|
| 1778 |
|
|
|
| 1779 |
|
|
FOR_EACH_BB (cur_bb)
|
| 1780 |
|
|
{
|
| 1781 |
|
|
last_insn = BB_END (cur_bb);
|
| 1782 |
|
|
|
| 1783 |
|
|
if (EDGE_COUNT (cur_bb->succs) < 1)
|
| 1784 |
|
|
continue;
|
| 1785 |
|
|
|
| 1786 |
|
|
succ = EDGE_SUCC (cur_bb, 0);
|
| 1787 |
|
|
|
| 1788 |
|
|
/* Check to see if bb ends in a crossing (unconditional) jump. At
|
| 1789 |
|
|
this point, no crossing jumps should be conditional. */
|
| 1790 |
|
|
|
| 1791 |
|
|
if (JUMP_P (last_insn)
|
| 1792 |
|
|
&& (succ->flags & EDGE_CROSSING))
|
| 1793 |
|
|
{
|
| 1794 |
|
|
rtx label2, table;
|
| 1795 |
|
|
|
| 1796 |
|
|
gcc_assert (!any_condjump_p (last_insn));
|
| 1797 |
|
|
|
| 1798 |
|
|
/* Make sure the jump is not already an indirect or table jump. */
|
| 1799 |
|
|
|
| 1800 |
|
|
if (!computed_jump_p (last_insn)
|
| 1801 |
|
|
&& !tablejump_p (last_insn, &label2, &table))
|
| 1802 |
|
|
{
|
| 1803 |
|
|
/* We have found a "crossing" unconditional branch. Now
|
| 1804 |
|
|
we must convert it to an indirect jump. First create
|
| 1805 |
|
|
reference of label, as target for jump. */
|
| 1806 |
|
|
|
| 1807 |
|
|
label = JUMP_LABEL (last_insn);
|
| 1808 |
|
|
label_addr = gen_rtx_LABEL_REF (Pmode, label);
|
| 1809 |
|
|
LABEL_NUSES (label) += 1;
|
| 1810 |
|
|
|
| 1811 |
|
|
/* Get a register to use for the indirect jump. */
|
| 1812 |
|
|
|
| 1813 |
|
|
new_reg = gen_reg_rtx (Pmode);
|
| 1814 |
|
|
|
| 1815 |
|
|
/* Generate indirect the jump sequence. */
|
| 1816 |
|
|
|
| 1817 |
|
|
start_sequence ();
|
| 1818 |
|
|
emit_move_insn (new_reg, label_addr);
|
| 1819 |
|
|
emit_indirect_jump (new_reg);
|
| 1820 |
|
|
indirect_jump_sequence = get_insns ();
|
| 1821 |
|
|
end_sequence ();
|
| 1822 |
|
|
|
| 1823 |
|
|
/* Make sure every instruction in the new jump sequence has
|
| 1824 |
|
|
its basic block set to be cur_bb. */
|
| 1825 |
|
|
|
| 1826 |
|
|
for (cur_insn = indirect_jump_sequence; cur_insn;
|
| 1827 |
|
|
cur_insn = NEXT_INSN (cur_insn))
|
| 1828 |
|
|
{
|
| 1829 |
|
|
if (!BARRIER_P (cur_insn))
|
| 1830 |
|
|
BLOCK_FOR_INSN (cur_insn) = cur_bb;
|
| 1831 |
|
|
if (JUMP_P (cur_insn))
|
| 1832 |
|
|
jump_insn = cur_insn;
|
| 1833 |
|
|
}
|
| 1834 |
|
|
|
| 1835 |
|
|
/* Insert the new (indirect) jump sequence immediately before
|
| 1836 |
|
|
the unconditional jump, then delete the unconditional jump. */
|
| 1837 |
|
|
|
| 1838 |
|
|
emit_insn_before (indirect_jump_sequence, last_insn);
|
| 1839 |
|
|
delete_insn (last_insn);
|
| 1840 |
|
|
|
| 1841 |
|
|
/* Make BB_END for cur_bb be the jump instruction (NOT the
|
| 1842 |
|
|
barrier instruction at the end of the sequence...). */
|
| 1843 |
|
|
|
| 1844 |
|
|
BB_END (cur_bb) = jump_insn;
|
| 1845 |
|
|
}
|
| 1846 |
|
|
}
|
| 1847 |
|
|
}
|
| 1848 |
|
|
}
|
| 1849 |
|
|
|
| 1850 |
|
|
/* Add REG_CROSSING_JUMP note to all crossing jump insns. */
|
| 1851 |
|
|
|
| 1852 |
|
|
static void
|
| 1853 |
|
|
add_reg_crossing_jump_notes (void)
|
| 1854 |
|
|
{
|
| 1855 |
|
|
basic_block bb;
|
| 1856 |
|
|
edge e;
|
| 1857 |
|
|
edge_iterator ei;
|
| 1858 |
|
|
|
| 1859 |
|
|
FOR_EACH_BB (bb)
|
| 1860 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 1861 |
|
|
if ((e->flags & EDGE_CROSSING)
|
| 1862 |
|
|
&& JUMP_P (BB_END (e->src)))
|
| 1863 |
|
|
add_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
|
| 1864 |
|
|
}
|
| 1865 |
|
|
|
| 1866 |
|
|
/* Verify, in the basic block chain, that there is at most one switch
|
| 1867 |
|
|
between hot/cold partitions. This is modelled on
|
| 1868 |
|
|
rtl_verify_flow_info_1, but it cannot go inside that function
|
| 1869 |
|
|
because this condition will not be true until after
|
| 1870 |
|
|
reorder_basic_blocks is called. */
|
| 1871 |
|
|
|
| 1872 |
|
|
static void
|
| 1873 |
|
|
verify_hot_cold_block_grouping (void)
|
| 1874 |
|
|
{
|
| 1875 |
|
|
basic_block bb;
|
| 1876 |
|
|
int err = 0;
|
| 1877 |
|
|
bool switched_sections = false;
|
| 1878 |
|
|
int current_partition = 0;
|
| 1879 |
|
|
|
| 1880 |
|
|
FOR_EACH_BB (bb)
|
| 1881 |
|
|
{
|
| 1882 |
|
|
if (!current_partition)
|
| 1883 |
|
|
current_partition = BB_PARTITION (bb);
|
| 1884 |
|
|
if (BB_PARTITION (bb) != current_partition)
|
| 1885 |
|
|
{
|
| 1886 |
|
|
if (switched_sections)
|
| 1887 |
|
|
{
|
| 1888 |
|
|
error ("multiple hot/cold transitions found (bb %i)",
|
| 1889 |
|
|
bb->index);
|
| 1890 |
|
|
err = 1;
|
| 1891 |
|
|
}
|
| 1892 |
|
|
else
|
| 1893 |
|
|
{
|
| 1894 |
|
|
switched_sections = true;
|
| 1895 |
|
|
current_partition = BB_PARTITION (bb);
|
| 1896 |
|
|
}
|
| 1897 |
|
|
}
|
| 1898 |
|
|
}
|
| 1899 |
|
|
|
| 1900 |
|
|
gcc_assert(!err);
|
| 1901 |
|
|
}
|
| 1902 |
|
|
|
| 1903 |
|
|
/* Reorder basic blocks. The main entry point to this file. FLAGS is
|
| 1904 |
|
|
the set of flags to pass to cfg_layout_initialize(). */
|
| 1905 |
|
|
|
| 1906 |
|
|
void
|
| 1907 |
|
|
reorder_basic_blocks (void)
|
| 1908 |
|
|
{
|
| 1909 |
|
|
int n_traces;
|
| 1910 |
|
|
int i;
|
| 1911 |
|
|
struct trace *traces;
|
| 1912 |
|
|
|
| 1913 |
|
|
gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
|
| 1914 |
|
|
|
| 1915 |
|
|
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
|
| 1916 |
|
|
return;
|
| 1917 |
|
|
|
| 1918 |
|
|
set_edge_can_fallthru_flag ();
|
| 1919 |
|
|
mark_dfs_back_edges ();
|
| 1920 |
|
|
|
| 1921 |
|
|
/* We are estimating the length of uncond jump insn only once since the code
|
| 1922 |
|
|
for getting the insn length always returns the minimal length now. */
|
| 1923 |
|
|
if (uncond_jump_length == 0)
|
| 1924 |
|
|
uncond_jump_length = get_uncond_jump_length ();
|
| 1925 |
|
|
|
| 1926 |
|
|
/* We need to know some information for each basic block. */
|
| 1927 |
|
|
array_size = GET_ARRAY_SIZE (last_basic_block);
|
| 1928 |
|
|
bbd = XNEWVEC (bbro_basic_block_data, array_size);
|
| 1929 |
|
|
for (i = 0; i < array_size; i++)
|
| 1930 |
|
|
{
|
| 1931 |
|
|
bbd[i].start_of_trace = -1;
|
| 1932 |
|
|
bbd[i].in_trace = -1;
|
| 1933 |
|
|
bbd[i].end_of_trace = -1;
|
| 1934 |
|
|
bbd[i].heap = NULL;
|
| 1935 |
|
|
bbd[i].node = NULL;
|
| 1936 |
|
|
}
|
| 1937 |
|
|
|
| 1938 |
|
|
traces = XNEWVEC (struct trace, n_basic_blocks);
|
| 1939 |
|
|
n_traces = 0;
|
| 1940 |
|
|
find_traces (&n_traces, traces);
|
| 1941 |
|
|
connect_traces (n_traces, traces);
|
| 1942 |
|
|
FREE (traces);
|
| 1943 |
|
|
FREE (bbd);
|
| 1944 |
|
|
|
| 1945 |
|
|
relink_block_chain (/*stay_in_cfglayout_mode=*/true);
|
| 1946 |
|
|
|
| 1947 |
|
|
if (dump_file)
|
| 1948 |
|
|
dump_flow_info (dump_file, dump_flags);
|
| 1949 |
|
|
|
| 1950 |
|
|
if (flag_reorder_blocks_and_partition)
|
| 1951 |
|
|
verify_hot_cold_block_grouping ();
|
| 1952 |
|
|
}
|
| 1953 |
|
|
|
| 1954 |
|
|
/* Determine which partition the first basic block in the function
|
| 1955 |
|
|
belongs to, then find the first basic block in the current function
|
| 1956 |
|
|
that belongs to a different section, and insert a
|
| 1957 |
|
|
NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
|
| 1958 |
|
|
instruction stream. When writing out the assembly code,
|
| 1959 |
|
|
encountering this note will make the compiler switch between the
|
| 1960 |
|
|
hot and cold text sections. */
|
| 1961 |
|
|
|
| 1962 |
|
|
static void
|
| 1963 |
|
|
insert_section_boundary_note (void)
|
| 1964 |
|
|
{
|
| 1965 |
|
|
basic_block bb;
|
| 1966 |
|
|
rtx new_note;
|
| 1967 |
|
|
int first_partition = 0;
|
| 1968 |
|
|
|
| 1969 |
|
|
if (!flag_reorder_blocks_and_partition)
|
| 1970 |
|
|
return;
|
| 1971 |
|
|
|
| 1972 |
|
|
FOR_EACH_BB (bb)
|
| 1973 |
|
|
{
|
| 1974 |
|
|
if (!first_partition)
|
| 1975 |
|
|
first_partition = BB_PARTITION (bb);
|
| 1976 |
|
|
if (BB_PARTITION (bb) != first_partition)
|
| 1977 |
|
|
{
|
| 1978 |
|
|
new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
|
| 1979 |
|
|
BB_HEAD (bb));
|
| 1980 |
|
|
/* ??? This kind of note always lives between basic blocks,
|
| 1981 |
|
|
but add_insn_before will set BLOCK_FOR_INSN anyway. */
|
| 1982 |
|
|
BLOCK_FOR_INSN (new_note) = NULL;
|
| 1983 |
|
|
break;
|
| 1984 |
|
|
}
|
| 1985 |
|
|
}
|
| 1986 |
|
|
}
|
| 1987 |
|
|
|
| 1988 |
|
|
/* Duplicate the blocks containing computed gotos. This basically unfactors
|
| 1989 |
|
|
computed gotos that were factored early on in the compilation process to
|
| 1990 |
|
|
speed up edge based data flow. We used to not unfactoring them again,
|
| 1991 |
|
|
which can seriously pessimize code with many computed jumps in the source
|
| 1992 |
|
|
code, such as interpreters. See e.g. PR15242. */
|
| 1993 |
|
|
|
| 1994 |
|
|
static bool
|
| 1995 |
|
|
gate_duplicate_computed_gotos (void)
|
| 1996 |
|
|
{
|
| 1997 |
|
|
if (targetm.cannot_modify_jumps_p ())
|
| 1998 |
|
|
return false;
|
| 1999 |
|
|
return (optimize > 0
|
| 2000 |
|
|
&& flag_expensive_optimizations
|
| 2001 |
|
|
&& ! optimize_function_for_size_p (cfun));
|
| 2002 |
|
|
}
|
| 2003 |
|
|
|
| 2004 |
|
|
|
| 2005 |
|
|
static unsigned int
|
| 2006 |
|
|
duplicate_computed_gotos (void)
|
| 2007 |
|
|
{
|
| 2008 |
|
|
basic_block bb, new_bb;
|
| 2009 |
|
|
bitmap candidates;
|
| 2010 |
|
|
int max_size;
|
| 2011 |
|
|
|
| 2012 |
|
|
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
|
| 2013 |
|
|
return 0;
|
| 2014 |
|
|
|
| 2015 |
|
|
cfg_layout_initialize (0);
|
| 2016 |
|
|
|
| 2017 |
|
|
/* We are estimating the length of uncond jump insn only once
|
| 2018 |
|
|
since the code for getting the insn length always returns
|
| 2019 |
|
|
the minimal length now. */
|
| 2020 |
|
|
if (uncond_jump_length == 0)
|
| 2021 |
|
|
uncond_jump_length = get_uncond_jump_length ();
|
| 2022 |
|
|
|
| 2023 |
|
|
max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
|
| 2024 |
|
|
candidates = BITMAP_ALLOC (NULL);
|
| 2025 |
|
|
|
| 2026 |
|
|
/* Look for blocks that end in a computed jump, and see if such blocks
|
| 2027 |
|
|
are suitable for unfactoring. If a block is a candidate for unfactoring,
|
| 2028 |
|
|
mark it in the candidates. */
|
| 2029 |
|
|
FOR_EACH_BB (bb)
|
| 2030 |
|
|
{
|
| 2031 |
|
|
rtx insn;
|
| 2032 |
|
|
edge e;
|
| 2033 |
|
|
edge_iterator ei;
|
| 2034 |
|
|
int size, all_flags;
|
| 2035 |
|
|
|
| 2036 |
|
|
/* Build the reorder chain for the original order of blocks. */
|
| 2037 |
|
|
if (bb->next_bb != EXIT_BLOCK_PTR)
|
| 2038 |
|
|
bb->aux = bb->next_bb;
|
| 2039 |
|
|
|
| 2040 |
|
|
/* Obviously the block has to end in a computed jump. */
|
| 2041 |
|
|
if (!computed_jump_p (BB_END (bb)))
|
| 2042 |
|
|
continue;
|
| 2043 |
|
|
|
| 2044 |
|
|
/* Only consider blocks that can be duplicated. */
|
| 2045 |
|
|
if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
|
| 2046 |
|
|
|| !can_duplicate_block_p (bb))
|
| 2047 |
|
|
continue;
|
| 2048 |
|
|
|
| 2049 |
|
|
/* Make sure that the block is small enough. */
|
| 2050 |
|
|
size = 0;
|
| 2051 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 2052 |
|
|
if (INSN_P (insn))
|
| 2053 |
|
|
{
|
| 2054 |
|
|
size += get_attr_min_length (insn);
|
| 2055 |
|
|
if (size > max_size)
|
| 2056 |
|
|
break;
|
| 2057 |
|
|
}
|
| 2058 |
|
|
if (size > max_size)
|
| 2059 |
|
|
continue;
|
| 2060 |
|
|
|
| 2061 |
|
|
/* Final check: there must not be any incoming abnormal edges. */
|
| 2062 |
|
|
all_flags = 0;
|
| 2063 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 2064 |
|
|
all_flags |= e->flags;
|
| 2065 |
|
|
if (all_flags & EDGE_COMPLEX)
|
| 2066 |
|
|
continue;
|
| 2067 |
|
|
|
| 2068 |
|
|
bitmap_set_bit (candidates, bb->index);
|
| 2069 |
|
|
}
|
| 2070 |
|
|
|
| 2071 |
|
|
/* Nothing to do if there is no computed jump here. */
|
| 2072 |
|
|
if (bitmap_empty_p (candidates))
|
| 2073 |
|
|
goto done;
|
| 2074 |
|
|
|
| 2075 |
|
|
/* Duplicate computed gotos. */
|
| 2076 |
|
|
FOR_EACH_BB (bb)
|
| 2077 |
|
|
{
|
| 2078 |
|
|
if (bb->il.rtl->visited)
|
| 2079 |
|
|
continue;
|
| 2080 |
|
|
|
| 2081 |
|
|
bb->il.rtl->visited = 1;
|
| 2082 |
|
|
|
| 2083 |
|
|
/* BB must have one outgoing edge. That edge must not lead to
|
| 2084 |
|
|
the exit block or the next block.
|
| 2085 |
|
|
The destination must have more than one predecessor. */
|
| 2086 |
|
|
if (!single_succ_p (bb)
|
| 2087 |
|
|
|| single_succ (bb) == EXIT_BLOCK_PTR
|
| 2088 |
|
|
|| single_succ (bb) == bb->next_bb
|
| 2089 |
|
|
|| single_pred_p (single_succ (bb)))
|
| 2090 |
|
|
continue;
|
| 2091 |
|
|
|
| 2092 |
|
|
/* The successor block has to be a duplication candidate. */
|
| 2093 |
|
|
if (!bitmap_bit_p (candidates, single_succ (bb)->index))
|
| 2094 |
|
|
continue;
|
| 2095 |
|
|
|
| 2096 |
|
|
new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
|
| 2097 |
|
|
new_bb->aux = bb->aux;
|
| 2098 |
|
|
bb->aux = new_bb;
|
| 2099 |
|
|
new_bb->il.rtl->visited = 1;
|
| 2100 |
|
|
}
|
| 2101 |
|
|
|
| 2102 |
|
|
done:
|
| 2103 |
|
|
cfg_layout_finalize ();
|
| 2104 |
|
|
|
| 2105 |
|
|
BITMAP_FREE (candidates);
|
| 2106 |
|
|
return 0;
|
| 2107 |
|
|
}
|
| 2108 |
|
|
|
| 2109 |
|
|
struct rtl_opt_pass pass_duplicate_computed_gotos =
|
| 2110 |
|
|
{
|
| 2111 |
|
|
{
|
| 2112 |
|
|
RTL_PASS,
|
| 2113 |
|
|
"compgotos", /* name */
|
| 2114 |
|
|
gate_duplicate_computed_gotos, /* gate */
|
| 2115 |
|
|
duplicate_computed_gotos, /* execute */
|
| 2116 |
|
|
NULL, /* sub */
|
| 2117 |
|
|
NULL, /* next */
|
| 2118 |
|
|
0, /* static_pass_number */
|
| 2119 |
|
|
TV_REORDER_BLOCKS, /* tv_id */
|
| 2120 |
|
|
0, /* properties_required */
|
| 2121 |
|
|
0, /* properties_provided */
|
| 2122 |
|
|
0, /* properties_destroyed */
|
| 2123 |
|
|
0, /* todo_flags_start */
|
| 2124 |
|
|
TODO_verify_rtl_sharing,/* todo_flags_finish */
|
| 2125 |
|
|
}
|
| 2126 |
|
|
};
|
| 2127 |
|
|
|
| 2128 |
|
|
|
| 2129 |
|
|
/* This function is the main 'entrance' for the optimization that
|
| 2130 |
|
|
partitions hot and cold basic blocks into separate sections of the
|
| 2131 |
|
|
.o file (to improve performance and cache locality). Ideally it
|
| 2132 |
|
|
would be called after all optimizations that rearrange the CFG have
|
| 2133 |
|
|
been called. However part of this optimization may introduce new
|
| 2134 |
|
|
register usage, so it must be called before register allocation has
|
| 2135 |
|
|
occurred. This means that this optimization is actually called
|
| 2136 |
|
|
well before the optimization that reorders basic blocks (see
|
| 2137 |
|
|
function above).
|
| 2138 |
|
|
|
| 2139 |
|
|
This optimization checks the feedback information to determine
|
| 2140 |
|
|
which basic blocks are hot/cold, updates flags on the basic blocks
|
| 2141 |
|
|
to indicate which section they belong in. This information is
|
| 2142 |
|
|
later used for writing out sections in the .o file. Because hot
|
| 2143 |
|
|
and cold sections can be arbitrarily large (within the bounds of
|
| 2144 |
|
|
memory), far beyond the size of a single function, it is necessary
|
| 2145 |
|
|
to fix up all edges that cross section boundaries, to make sure the
|
| 2146 |
|
|
instructions used can actually span the required distance. The
|
| 2147 |
|
|
fixes are described below.
|
| 2148 |
|
|
|
| 2149 |
|
|
Fall-through edges must be changed into jumps; it is not safe or
|
| 2150 |
|
|
legal to fall through across a section boundary. Whenever a
|
| 2151 |
|
|
fall-through edge crossing a section boundary is encountered, a new
|
| 2152 |
|
|
basic block is inserted (in the same section as the fall-through
|
| 2153 |
|
|
source), and the fall through edge is redirected to the new basic
|
| 2154 |
|
|
block. The new basic block contains an unconditional jump to the
|
| 2155 |
|
|
original fall-through target. (If the unconditional jump is
|
| 2156 |
|
|
insufficient to cross section boundaries, that is dealt with a
|
| 2157 |
|
|
little later, see below).
|
| 2158 |
|
|
|
| 2159 |
|
|
In order to deal with architectures that have short conditional
|
| 2160 |
|
|
branches (which cannot span all of memory) we take any conditional
|
| 2161 |
|
|
jump that attempts to cross a section boundary and add a level of
|
| 2162 |
|
|
indirection: it becomes a conditional jump to a new basic block, in
|
| 2163 |
|
|
the same section. The new basic block contains an unconditional
|
| 2164 |
|
|
jump to the original target, in the other section.
|
| 2165 |
|
|
|
| 2166 |
|
|
For those architectures whose unconditional branch is also
|
| 2167 |
|
|
incapable of reaching all of memory, those unconditional jumps are
|
| 2168 |
|
|
converted into indirect jumps, through a register.
|
| 2169 |
|
|
|
| 2170 |
|
|
IMPORTANT NOTE: This optimization causes some messy interactions
|
| 2171 |
|
|
with the cfg cleanup optimizations; those optimizations want to
|
| 2172 |
|
|
merge blocks wherever possible, and to collapse indirect jump
|
| 2173 |
|
|
sequences (change "A jumps to B jumps to C" directly into "A jumps
|
| 2174 |
|
|
to C"). Those optimizations can undo the jump fixes that
|
| 2175 |
|
|
partitioning is required to make (see above), in order to ensure
|
| 2176 |
|
|
that jumps attempting to cross section boundaries are really able
|
| 2177 |
|
|
to cover whatever distance the jump requires (on many architectures
|
| 2178 |
|
|
conditional or unconditional jumps are not able to reach all of
|
| 2179 |
|
|
memory). Therefore tests have to be inserted into each such
|
| 2180 |
|
|
optimization to make sure that it does not undo stuff necessary to
|
| 2181 |
|
|
cross partition boundaries. This would be much less of a problem
|
| 2182 |
|
|
if we could perform this optimization later in the compilation, but
|
| 2183 |
|
|
unfortunately the fact that we may need to create indirect jumps
|
| 2184 |
|
|
(through registers) requires that this optimization be performed
|
| 2185 |
|
|
before register allocation.
|
| 2186 |
|
|
|
| 2187 |
|
|
Hot and cold basic blocks are partitioned and put in separate
|
| 2188 |
|
|
sections of the .o file, to reduce paging and improve cache
|
| 2189 |
|
|
performance (hopefully). This can result in bits of code from the
|
| 2190 |
|
|
same function being widely separated in the .o file. However this
|
| 2191 |
|
|
is not obvious to the current bb structure. Therefore we must take
|
| 2192 |
|
|
care to ensure that: 1). There are no fall_thru edges that cross
|
| 2193 |
|
|
between sections; 2). For those architectures which have "short"
|
| 2194 |
|
|
conditional branches, all conditional branches that attempt to
|
| 2195 |
|
|
cross between sections are converted to unconditional branches;
|
| 2196 |
|
|
and, 3). For those architectures which have "short" unconditional
|
| 2197 |
|
|
branches, all unconditional branches that attempt to cross between
|
| 2198 |
|
|
sections are converted to indirect jumps.
|
| 2199 |
|
|
|
| 2200 |
|
|
The code for fixing up fall_thru edges that cross between hot and
|
| 2201 |
|
|
cold basic blocks does so by creating new basic blocks containing
|
| 2202 |
|
|
unconditional branches to the appropriate label in the "other"
|
| 2203 |
|
|
section. The new basic block is then put in the same (hot or cold)
|
| 2204 |
|
|
section as the original conditional branch, and the fall_thru edge
|
| 2205 |
|
|
is modified to fall into the new basic block instead. By adding
|
| 2206 |
|
|
this level of indirection we end up with only unconditional branches
|
| 2207 |
|
|
crossing between hot and cold sections.
|
| 2208 |
|
|
|
| 2209 |
|
|
Conditional branches are dealt with by adding a level of indirection.
|
| 2210 |
|
|
A new basic block is added in the same (hot/cold) section as the
|
| 2211 |
|
|
conditional branch, and the conditional branch is retargeted to the
|
| 2212 |
|
|
new basic block. The new basic block contains an unconditional branch
|
| 2213 |
|
|
to the original target of the conditional branch (in the other section).
|
| 2214 |
|
|
|
| 2215 |
|
|
Unconditional branches are dealt with by converting them into
|
| 2216 |
|
|
indirect jumps. */
|
| 2217 |
|
|
|
| 2218 |
|
|
static unsigned
|
| 2219 |
|
|
partition_hot_cold_basic_blocks (void)
|
| 2220 |
|
|
{
|
| 2221 |
|
|
VEC(edge, heap) *crossing_edges;
|
| 2222 |
|
|
|
| 2223 |
|
|
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
|
| 2224 |
|
|
return 0;
|
| 2225 |
|
|
|
| 2226 |
|
|
df_set_flags (DF_DEFER_INSN_RESCAN);
|
| 2227 |
|
|
|
| 2228 |
|
|
crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
|
| 2229 |
|
|
if (crossing_edges == NULL)
|
| 2230 |
|
|
return 0;
|
| 2231 |
|
|
|
| 2232 |
|
|
/* Make sure the source of any crossing edge ends in a jump and the
|
| 2233 |
|
|
destination of any crossing edge has a label. */
|
| 2234 |
|
|
add_labels_and_missing_jumps (crossing_edges);
|
| 2235 |
|
|
|
| 2236 |
|
|
/* Convert all crossing fall_thru edges to non-crossing fall
|
| 2237 |
|
|
thrus to unconditional jumps (that jump to the original fall
|
| 2238 |
|
|
thru dest). */
|
| 2239 |
|
|
fix_up_fall_thru_edges ();
|
| 2240 |
|
|
|
| 2241 |
|
|
/* If the architecture does not have conditional branches that can
|
| 2242 |
|
|
span all of memory, convert crossing conditional branches into
|
| 2243 |
|
|
crossing unconditional branches. */
|
| 2244 |
|
|
if (!HAS_LONG_COND_BRANCH)
|
| 2245 |
|
|
fix_crossing_conditional_branches ();
|
| 2246 |
|
|
|
| 2247 |
|
|
/* If the architecture does not have unconditional branches that
|
| 2248 |
|
|
can span all of memory, convert crossing unconditional branches
|
| 2249 |
|
|
into indirect jumps. Since adding an indirect jump also adds
|
| 2250 |
|
|
a new register usage, update the register usage information as
|
| 2251 |
|
|
well. */
|
| 2252 |
|
|
if (!HAS_LONG_UNCOND_BRANCH)
|
| 2253 |
|
|
fix_crossing_unconditional_branches ();
|
| 2254 |
|
|
|
| 2255 |
|
|
add_reg_crossing_jump_notes ();
|
| 2256 |
|
|
|
| 2257 |
|
|
/* Clear bb->aux fields that the above routines were using. */
|
| 2258 |
|
|
clear_aux_for_blocks ();
|
| 2259 |
|
|
|
| 2260 |
|
|
VEC_free (edge, heap, crossing_edges);
|
| 2261 |
|
|
|
| 2262 |
|
|
/* ??? FIXME: DF generates the bb info for a block immediately.
|
| 2263 |
|
|
And by immediately, I mean *during* creation of the block.
|
| 2264 |
|
|
|
| 2265 |
|
|
#0 df_bb_refs_collect
|
| 2266 |
|
|
#1 in df_bb_refs_record
|
| 2267 |
|
|
#2 in create_basic_block_structure
|
| 2268 |
|
|
|
| 2269 |
|
|
Which means that the bb_has_eh_pred test in df_bb_refs_collect
|
| 2270 |
|
|
will *always* fail, because no edges can have been added to the
|
| 2271 |
|
|
block yet. Which of course means we don't add the right
|
| 2272 |
|
|
artificial refs, which means we fail df_verify (much) later.
|
| 2273 |
|
|
|
| 2274 |
|
|
Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
|
| 2275 |
|
|
that we also shouldn't grab data from the new blocks those new
|
| 2276 |
|
|
insns are in either. In this way one can create the block, link
|
| 2277 |
|
|
it up properly, and have everything Just Work later, when deferred
|
| 2278 |
|
|
insns are processed.
|
| 2279 |
|
|
|
| 2280 |
|
|
In the meantime, we have no other option but to throw away all
|
| 2281 |
|
|
of the DF data and recompute it all. */
|
| 2282 |
|
|
if (cfun->eh->lp_array)
|
| 2283 |
|
|
{
|
| 2284 |
|
|
df_finish_pass (true);
|
| 2285 |
|
|
df_scan_alloc (NULL);
|
| 2286 |
|
|
df_scan_blocks ();
|
| 2287 |
|
|
/* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
|
| 2288 |
|
|
data. We blindly generated all of them when creating the new
|
| 2289 |
|
|
landing pad. Delete those assignments we don't use. */
|
| 2290 |
|
|
df_set_flags (DF_LR_RUN_DCE);
|
| 2291 |
|
|
df_analyze ();
|
| 2292 |
|
|
}
|
| 2293 |
|
|
|
| 2294 |
|
|
return TODO_verify_flow | TODO_verify_rtl_sharing;
|
| 2295 |
|
|
}
|
| 2296 |
|
|
|
| 2297 |
|
|
static bool
|
| 2298 |
|
|
gate_handle_reorder_blocks (void)
|
| 2299 |
|
|
{
|
| 2300 |
|
|
if (targetm.cannot_modify_jumps_p ())
|
| 2301 |
|
|
return false;
|
| 2302 |
|
|
/* Don't reorder blocks when optimizing for size because extra jump insns may
|
| 2303 |
|
|
be created; also barrier may create extra padding.
|
| 2304 |
|
|
|
| 2305 |
|
|
More correctly we should have a block reordering mode that tried to
|
| 2306 |
|
|
minimize the combined size of all the jumps. This would more or less
|
| 2307 |
|
|
automatically remove extra jumps, but would also try to use more short
|
| 2308 |
|
|
jumps instead of long jumps. */
|
| 2309 |
|
|
if (!optimize_function_for_speed_p (cfun))
|
| 2310 |
|
|
return false;
|
| 2311 |
|
|
return (optimize > 0
|
| 2312 |
|
|
&& (flag_reorder_blocks || flag_reorder_blocks_and_partition));
|
| 2313 |
|
|
}
|
| 2314 |
|
|
|
| 2315 |
|
|
|
| 2316 |
|
|
/* Reorder basic blocks. */
|
| 2317 |
|
|
static unsigned int
|
| 2318 |
|
|
rest_of_handle_reorder_blocks (void)
|
| 2319 |
|
|
{
|
| 2320 |
|
|
basic_block bb;
|
| 2321 |
|
|
|
| 2322 |
|
|
/* Last attempt to optimize CFG, as scheduling, peepholing and insn
|
| 2323 |
|
|
splitting possibly introduced more crossjumping opportunities. */
|
| 2324 |
|
|
cfg_layout_initialize (CLEANUP_EXPENSIVE);
|
| 2325 |
|
|
|
| 2326 |
|
|
reorder_basic_blocks ();
|
| 2327 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE);
|
| 2328 |
|
|
|
| 2329 |
|
|
FOR_EACH_BB (bb)
|
| 2330 |
|
|
if (bb->next_bb != EXIT_BLOCK_PTR)
|
| 2331 |
|
|
bb->aux = bb->next_bb;
|
| 2332 |
|
|
cfg_layout_finalize ();
|
| 2333 |
|
|
|
| 2334 |
|
|
/* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes. */
|
| 2335 |
|
|
insert_section_boundary_note ();
|
| 2336 |
|
|
return 0;
|
| 2337 |
|
|
}
|
| 2338 |
|
|
|
| 2339 |
|
|
struct rtl_opt_pass pass_reorder_blocks =
|
| 2340 |
|
|
{
|
| 2341 |
|
|
{
|
| 2342 |
|
|
RTL_PASS,
|
| 2343 |
|
|
"bbro", /* name */
|
| 2344 |
|
|
gate_handle_reorder_blocks, /* gate */
|
| 2345 |
|
|
rest_of_handle_reorder_blocks, /* execute */
|
| 2346 |
|
|
NULL, /* sub */
|
| 2347 |
|
|
NULL, /* next */
|
| 2348 |
|
|
0, /* static_pass_number */
|
| 2349 |
|
|
TV_REORDER_BLOCKS, /* tv_id */
|
| 2350 |
|
|
0, /* properties_required */
|
| 2351 |
|
|
0, /* properties_provided */
|
| 2352 |
|
|
0, /* properties_destroyed */
|
| 2353 |
|
|
0, /* todo_flags_start */
|
| 2354 |
|
|
TODO_verify_rtl_sharing, /* todo_flags_finish */
|
| 2355 |
|
|
}
|
| 2356 |
|
|
};
|
| 2357 |
|
|
|
| 2358 |
|
|
static bool
|
| 2359 |
|
|
gate_handle_partition_blocks (void)
|
| 2360 |
|
|
{
|
| 2361 |
|
|
/* The optimization to partition hot/cold basic blocks into separate
|
| 2362 |
|
|
sections of the .o file does not work well with linkonce or with
|
| 2363 |
|
|
user defined section attributes. Don't call it if either case
|
| 2364 |
|
|
arises. */
|
| 2365 |
|
|
return (flag_reorder_blocks_and_partition
|
| 2366 |
|
|
&& optimize
|
| 2367 |
|
|
/* See gate_handle_reorder_blocks. We should not partition if
|
| 2368 |
|
|
we are going to omit the reordering. */
|
| 2369 |
|
|
&& optimize_function_for_speed_p (cfun)
|
| 2370 |
|
|
&& !DECL_ONE_ONLY (current_function_decl)
|
| 2371 |
|
|
&& !user_defined_section_attribute);
|
| 2372 |
|
|
}
|
| 2373 |
|
|
|
| 2374 |
|
|
struct rtl_opt_pass pass_partition_blocks =
|
| 2375 |
|
|
{
|
| 2376 |
|
|
{
|
| 2377 |
|
|
RTL_PASS,
|
| 2378 |
|
|
"bbpart", /* name */
|
| 2379 |
|
|
gate_handle_partition_blocks, /* gate */
|
| 2380 |
|
|
partition_hot_cold_basic_blocks, /* execute */
|
| 2381 |
|
|
NULL, /* sub */
|
| 2382 |
|
|
NULL, /* next */
|
| 2383 |
|
|
0, /* static_pass_number */
|
| 2384 |
|
|
TV_REORDER_BLOCKS, /* tv_id */
|
| 2385 |
|
|
PROP_cfglayout, /* properties_required */
|
| 2386 |
|
|
0, /* properties_provided */
|
| 2387 |
|
|
0, /* properties_destroyed */
|
| 2388 |
|
|
0, /* todo_flags_start */
|
| 2389 |
|
|
|
| 2390 |
|
|
}
|
| 2391 |
|
|
};
|