OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [bb-reorder.c] - Blame information for rev 751

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* Basic block reordering routines for the GNU compiler.
2
   Copyright (C) 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011,
3
   2012 Free Software Foundation, Inc.
4
 
5
   This file is part of GCC.
6
 
7
   GCC is free software; you can redistribute it and/or modify it
8
   under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3, or (at your option)
10
   any later version.
11
 
12
   GCC is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15
   License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with GCC; see the file COPYING3.  If not see
19
   <http://www.gnu.org/licenses/>.  */
20
 
21
/* This (greedy) algorithm constructs traces in several rounds.
22
   The construction starts from "seeds".  The seed for the first round
23
   is the entry point of function.  When there are more than one seed
24
   that one is selected first that has the lowest key in the heap
25
   (see function bb_to_key).  Then the algorithm repeatedly adds the most
26
   probable successor to the end of a trace.  Finally it connects the traces.
27
 
28
   There are two parameters: Branch Threshold and Exec Threshold.
29
   If the edge to a successor of the actual basic block is lower than
30
   Branch Threshold or the frequency of the successor is lower than
31
   Exec Threshold the successor will be the seed in one of the next rounds.
32
   Each round has these parameters lower than the previous one.
33
   The last round has to have these parameters set to zero
34
   so that the remaining blocks are picked up.
35
 
36
   The algorithm selects the most probable successor from all unvisited
37
   successors and successors that have been added to this trace.
38
   The other successors (that has not been "sent" to the next round) will be
39
   other seeds for this round and the secondary traces will start in them.
40
   If the successor has not been visited in this trace it is added to the trace
41
   (however, there is some heuristic for simple branches).
42
   If the successor has been visited in this trace the loop has been found.
43
   If the loop has many iterations the loop is rotated so that the
44
   source block of the most probable edge going out from the loop
45
   is the last block of the trace.
46
   If the loop has few iterations and there is no edge from the last block of
47
   the loop going out from loop the loop header is duplicated.
48
   Finally, the construction of the trace is terminated.
49
 
50
   When connecting traces it first checks whether there is an edge from the
51
   last block of one trace to the first block of another trace.
52
   When there are still some unconnected traces it checks whether there exists
53
   a basic block BB such that BB is a successor of the last bb of one trace
54
   and BB is a predecessor of the first block of another trace. In this case,
55
   BB is duplicated and the traces are connected through this duplicate.
56
   The rest of traces are simply connected so there will be a jump to the
57
   beginning of the rest of trace.
58
 
59
 
60
   References:
61
 
62
   "Software Trace Cache"
63
   A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
64
   http://citeseer.nj.nec.com/15361.html
65
 
66
*/
67
 
68
#include "config.h"
69
#include "system.h"
70
#include "coretypes.h"
71
#include "tm.h"
72
#include "rtl.h"
73
#include "regs.h"
74
#include "flags.h"
75
#include "timevar.h"
76
#include "output.h"
77
#include "cfglayout.h"
78
#include "fibheap.h"
79
#include "target.h"
80
#include "function.h"
81
#include "tm_p.h"
82
#include "obstack.h"
83
#include "expr.h"
84
#include "params.h"
85
#include "diagnostic-core.h"
86
#include "toplev.h" /* user_defined_section_attribute */
87
#include "tree-pass.h"
88
#include "df.h"
89
#include "bb-reorder.h"
90
#include "except.h"
91
 
92
/* The number of rounds.  In most cases there will only be 4 rounds, but
93
   when partitioning hot and cold basic blocks into separate sections of
94
   the .o file there will be an extra round.*/
95
#define N_ROUNDS 5
96
 
97
/* Stubs in case we don't have a return insn.
98
   We have to check at runtime too, not only compiletime.  */
99
 
100
#ifndef HAVE_return
101
#define HAVE_return 0
102
#define gen_return() NULL_RTX
103
#endif
104
 
105
 
106
struct target_bb_reorder default_target_bb_reorder;
107
#if SWITCHABLE_TARGET
108
struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
109
#endif
110
 
111
#define uncond_jump_length \
112
  (this_target_bb_reorder->x_uncond_jump_length)
113
 
114
/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE.  */
115
static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
116
 
117
/* Exec thresholds in thousandths (per mille) of the frequency of bb 0.  */
118
static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
119
 
120
/* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
121
   block the edge destination is not duplicated while connecting traces.  */
122
#define DUPLICATION_THRESHOLD 100
123
 
124
/* Structure to hold needed information for each basic block.  */
125
typedef struct bbro_basic_block_data_def
126
{
127
  /* Which trace is the bb start of (-1 means it is not a start of a trace).  */
128
  int start_of_trace;
129
 
130
  /* Which trace is the bb end of (-1 means it is not an end of a trace).  */
131
  int end_of_trace;
132
 
133
  /* Which trace is the bb in?  */
134
  int in_trace;
135
 
136
  /* Which heap is BB in (if any)?  */
137
  fibheap_t heap;
138
 
139
  /* Which heap node is BB in (if any)?  */
140
  fibnode_t node;
141
} bbro_basic_block_data;
142
 
143
/* The current size of the following dynamic array.  */
144
static int array_size;
145
 
146
/* The array which holds needed information for basic blocks.  */
147
static bbro_basic_block_data *bbd;
148
 
149
/* To avoid frequent reallocation the size of arrays is greater than needed,
150
   the number of elements is (not less than) 1.25 * size_wanted.  */
151
#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
152
 
153
/* Free the memory and set the pointer to NULL.  */
154
#define FREE(P) (gcc_assert (P), free (P), P = 0)
155
 
156
/* Structure for holding information about a trace.  */
157
struct trace
158
{
159
  /* First and last basic block of the trace.  */
160
  basic_block first, last;
161
 
162
  /* The round of the STC creation which this trace was found in.  */
163
  int round;
164
 
165
  /* The length (i.e. the number of basic blocks) of the trace.  */
166
  int length;
167
};
168
 
169
/* Maximum frequency and count of one of the entry blocks.  */
170
static int max_entry_frequency;
171
static gcov_type max_entry_count;
172
 
173
/* Local function prototypes.  */
174
static void find_traces (int *, struct trace *);
175
static basic_block rotate_loop (edge, struct trace *, int);
176
static void mark_bb_visited (basic_block, int);
177
static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
178
                                 int, fibheap_t *, int);
179
static basic_block copy_bb (basic_block, edge, basic_block, int);
180
static fibheapkey_t bb_to_key (basic_block);
181
static bool better_edge_p (const_basic_block, const_edge, int, int, int, int, const_edge);
182
static void connect_traces (int, struct trace *);
183
static bool copy_bb_p (const_basic_block, int);
184
static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
185
 
186
/* Check to see if bb should be pushed into the next round of trace
187
   collections or not.  Reasons for pushing the block forward are 1).
188
   If the block is cold, we are doing partitioning, and there will be
189
   another round (cold partition blocks are not supposed to be
190
   collected into traces until the very last round); or 2). There will
191
   be another round, and the basic block is not "hot enough" for the
192
   current round of trace collection.  */
193
 
194
static bool
195
push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
196
                      int exec_th, gcov_type count_th)
197
{
198
  bool there_exists_another_round;
199
  bool block_not_hot_enough;
200
 
201
  there_exists_another_round = round < number_of_rounds - 1;
202
 
203
  block_not_hot_enough = (bb->frequency < exec_th
204
                          || bb->count < count_th
205
                          || probably_never_executed_bb_p (bb));
206
 
207
  if (there_exists_another_round
208
      && block_not_hot_enough)
209
    return true;
210
  else
211
    return false;
212
}
213
 
214
/* Find the traces for Software Trace Cache.  Chain each trace through
215
   RBI()->next.  Store the number of traces to N_TRACES and description of
216
   traces to TRACES.  */
217
 
218
static void
219
find_traces (int *n_traces, struct trace *traces)
220
{
221
  int i;
222
  int number_of_rounds;
223
  edge e;
224
  edge_iterator ei;
225
  fibheap_t heap;
226
 
227
  /* Add one extra round of trace collection when partitioning hot/cold
228
     basic blocks into separate sections.  The last round is for all the
229
     cold blocks (and ONLY the cold blocks).  */
230
 
231
  number_of_rounds = N_ROUNDS - 1;
232
 
233
  /* Insert entry points of function into heap.  */
234
  heap = fibheap_new ();
235
  max_entry_frequency = 0;
236
  max_entry_count = 0;
237
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
238
    {
239
      bbd[e->dest->index].heap = heap;
240
      bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
241
                                                    e->dest);
242
      if (e->dest->frequency > max_entry_frequency)
243
        max_entry_frequency = e->dest->frequency;
244
      if (e->dest->count > max_entry_count)
245
        max_entry_count = e->dest->count;
246
    }
247
 
248
  /* Find the traces.  */
249
  for (i = 0; i < number_of_rounds; i++)
250
    {
251
      gcov_type count_threshold;
252
 
253
      if (dump_file)
254
        fprintf (dump_file, "STC - round %d\n", i + 1);
255
 
256
      if (max_entry_count < INT_MAX / 1000)
257
        count_threshold = max_entry_count * exec_threshold[i] / 1000;
258
      else
259
        count_threshold = max_entry_count / 1000 * exec_threshold[i];
260
 
261
      find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
262
                           max_entry_frequency * exec_threshold[i] / 1000,
263
                           count_threshold, traces, n_traces, i, &heap,
264
                           number_of_rounds);
265
    }
266
  fibheap_delete (heap);
267
 
268
  if (dump_file)
269
    {
270
      for (i = 0; i < *n_traces; i++)
271
        {
272
          basic_block bb;
273
          fprintf (dump_file, "Trace %d (round %d):  ", i + 1,
274
                   traces[i].round + 1);
275
          for (bb = traces[i].first; bb != traces[i].last; bb = (basic_block) bb->aux)
276
            fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
277
          fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
278
        }
279
      fflush (dump_file);
280
    }
281
}
282
 
283
/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
284
   (with sequential number TRACE_N).  */
285
 
286
static basic_block
287
rotate_loop (edge back_edge, struct trace *trace, int trace_n)
288
{
289
  basic_block bb;
290
 
291
  /* Information about the best end (end after rotation) of the loop.  */
292
  basic_block best_bb = NULL;
293
  edge best_edge = NULL;
294
  int best_freq = -1;
295
  gcov_type best_count = -1;
296
  /* The best edge is preferred when its destination is not visited yet
297
     or is a start block of some trace.  */
298
  bool is_preferred = false;
299
 
300
  /* Find the most frequent edge that goes out from current trace.  */
301
  bb = back_edge->dest;
302
  do
303
    {
304
      edge e;
305
      edge_iterator ei;
306
 
307
      FOR_EACH_EDGE (e, ei, bb->succs)
308
        if (e->dest != EXIT_BLOCK_PTR
309
            && e->dest->il.rtl->visited != trace_n
310
            && (e->flags & EDGE_CAN_FALLTHRU)
311
            && !(e->flags & EDGE_COMPLEX))
312
        {
313
          if (is_preferred)
314
            {
315
              /* The best edge is preferred.  */
316
              if (!e->dest->il.rtl->visited
317
                  || bbd[e->dest->index].start_of_trace >= 0)
318
                {
319
                  /* The current edge E is also preferred.  */
320
                  int freq = EDGE_FREQUENCY (e);
321
                  if (freq > best_freq || e->count > best_count)
322
                    {
323
                      best_freq = freq;
324
                      best_count = e->count;
325
                      best_edge = e;
326
                      best_bb = bb;
327
                    }
328
                }
329
            }
330
          else
331
            {
332
              if (!e->dest->il.rtl->visited
333
                  || bbd[e->dest->index].start_of_trace >= 0)
334
                {
335
                  /* The current edge E is preferred.  */
336
                  is_preferred = true;
337
                  best_freq = EDGE_FREQUENCY (e);
338
                  best_count = e->count;
339
                  best_edge = e;
340
                  best_bb = bb;
341
                }
342
              else
343
                {
344
                  int freq = EDGE_FREQUENCY (e);
345
                  if (!best_edge || freq > best_freq || e->count > best_count)
346
                    {
347
                      best_freq = freq;
348
                      best_count = e->count;
349
                      best_edge = e;
350
                      best_bb = bb;
351
                    }
352
                }
353
            }
354
        }
355
      bb = (basic_block) bb->aux;
356
    }
357
  while (bb != back_edge->dest);
358
 
359
  if (best_bb)
360
    {
361
      /* Rotate the loop so that the BEST_EDGE goes out from the last block of
362
         the trace.  */
363
      if (back_edge->dest == trace->first)
364
        {
365
          trace->first = (basic_block) best_bb->aux;
366
        }
367
      else
368
        {
369
          basic_block prev_bb;
370
 
371
          for (prev_bb = trace->first;
372
               prev_bb->aux != back_edge->dest;
373
               prev_bb = (basic_block) prev_bb->aux)
374
            ;
375
          prev_bb->aux = best_bb->aux;
376
 
377
          /* Try to get rid of uncond jump to cond jump.  */
378
          if (single_succ_p (prev_bb))
379
            {
380
              basic_block header = single_succ (prev_bb);
381
 
382
              /* Duplicate HEADER if it is a small block containing cond jump
383
                 in the end.  */
384
              if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
385
                  && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
386
                                     NULL_RTX))
387
                copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
388
            }
389
        }
390
    }
391
  else
392
    {
393
      /* We have not found suitable loop tail so do no rotation.  */
394
      best_bb = back_edge->src;
395
    }
396
  best_bb->aux = NULL;
397
  return best_bb;
398
}
399
 
400
/* This function marks BB that it was visited in trace number TRACE.  */
401
 
402
static void
403
mark_bb_visited (basic_block bb, int trace)
404
{
405
  bb->il.rtl->visited = trace;
406
  if (bbd[bb->index].heap)
407
    {
408
      fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
409
      bbd[bb->index].heap = NULL;
410
      bbd[bb->index].node = NULL;
411
    }
412
}
413
 
414
/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
415
   not include basic blocks their probability is lower than BRANCH_TH or their
416
   frequency is lower than EXEC_TH into traces (or count is lower than
417
   COUNT_TH).  It stores the new traces into TRACES and modifies the number of
418
   traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
419
   expects that starting basic blocks are in *HEAP and at the end it deletes
420
   *HEAP and stores starting points for the next round into new *HEAP.  */
421
 
422
static void
423
find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
424
                     struct trace *traces, int *n_traces, int round,
425
                     fibheap_t *heap, int number_of_rounds)
426
{
427
  /* Heap for discarded basic blocks which are possible starting points for
428
     the next round.  */
429
  fibheap_t new_heap = fibheap_new ();
430
 
431
  while (!fibheap_empty (*heap))
432
    {
433
      basic_block bb;
434
      struct trace *trace;
435
      edge best_edge, e;
436
      fibheapkey_t key;
437
      edge_iterator ei;
438
 
439
      bb = (basic_block) fibheap_extract_min (*heap);
440
      bbd[bb->index].heap = NULL;
441
      bbd[bb->index].node = NULL;
442
 
443
      if (dump_file)
444
        fprintf (dump_file, "Getting bb %d\n", bb->index);
445
 
446
      /* If the BB's frequency is too low send BB to the next round.  When
447
         partitioning hot/cold blocks into separate sections, make sure all
448
         the cold blocks (and ONLY the cold blocks) go into the (extra) final
449
         round.  */
450
 
451
      if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
452
                                count_th))
453
        {
454
          int key = bb_to_key (bb);
455
          bbd[bb->index].heap = new_heap;
456
          bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
457
 
458
          if (dump_file)
459
            fprintf (dump_file,
460
                     "  Possible start point of next round: %d (key: %d)\n",
461
                     bb->index, key);
462
          continue;
463
        }
464
 
465
      trace = traces + *n_traces;
466
      trace->first = bb;
467
      trace->round = round;
468
      trace->length = 0;
469
      bbd[bb->index].in_trace = *n_traces;
470
      (*n_traces)++;
471
 
472
      do
473
        {
474
          int prob, freq;
475
          bool ends_in_call;
476
 
477
          /* The probability and frequency of the best edge.  */
478
          int best_prob = INT_MIN / 2;
479
          int best_freq = INT_MIN / 2;
480
 
481
          best_edge = NULL;
482
          mark_bb_visited (bb, *n_traces);
483
          trace->length++;
484
 
485
          if (dump_file)
486
            fprintf (dump_file, "Basic block %d was visited in trace %d\n",
487
                     bb->index, *n_traces - 1);
488
 
489
          ends_in_call = block_ends_with_call_p (bb);
490
 
491
          /* Select the successor that will be placed after BB.  */
492
          FOR_EACH_EDGE (e, ei, bb->succs)
493
            {
494
              gcc_assert (!(e->flags & EDGE_FAKE));
495
 
496
              if (e->dest == EXIT_BLOCK_PTR)
497
                continue;
498
 
499
              if (e->dest->il.rtl->visited
500
                  && e->dest->il.rtl->visited != *n_traces)
501
                continue;
502
 
503
              if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
504
                continue;
505
 
506
              prob = e->probability;
507
              freq = e->dest->frequency;
508
 
509
              /* The only sensible preference for a call instruction is the
510
                 fallthru edge.  Don't bother selecting anything else.  */
511
              if (ends_in_call)
512
                {
513
                  if (e->flags & EDGE_CAN_FALLTHRU)
514
                    {
515
                      best_edge = e;
516
                      best_prob = prob;
517
                      best_freq = freq;
518
                    }
519
                  continue;
520
                }
521
 
522
              /* Edge that cannot be fallthru or improbable or infrequent
523
                 successor (i.e. it is unsuitable successor).  */
524
              if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
525
                  || prob < branch_th || EDGE_FREQUENCY (e) < exec_th
526
                  || e->count < count_th)
527
                continue;
528
 
529
              /* If partitioning hot/cold basic blocks, don't consider edges
530
                 that cross section boundaries.  */
531
 
532
              if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
533
                                 best_edge))
534
                {
535
                  best_edge = e;
536
                  best_prob = prob;
537
                  best_freq = freq;
538
                }
539
            }
540
 
541
          /* If the best destination has multiple predecessors, and can be
542
             duplicated cheaper than a jump, don't allow it to be added
543
             to a trace.  We'll duplicate it when connecting traces.  */
544
          if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
545
              && copy_bb_p (best_edge->dest, 0))
546
            best_edge = NULL;
547
 
548
          /* Add all non-selected successors to the heaps.  */
549
          FOR_EACH_EDGE (e, ei, bb->succs)
550
            {
551
              if (e == best_edge
552
                  || e->dest == EXIT_BLOCK_PTR
553
                  || e->dest->il.rtl->visited)
554
                continue;
555
 
556
              key = bb_to_key (e->dest);
557
 
558
              if (bbd[e->dest->index].heap)
559
                {
560
                  /* E->DEST is already in some heap.  */
561
                  if (key != bbd[e->dest->index].node->key)
562
                    {
563
                      if (dump_file)
564
                        {
565
                          fprintf (dump_file,
566
                                   "Changing key for bb %d from %ld to %ld.\n",
567
                                   e->dest->index,
568
                                   (long) bbd[e->dest->index].node->key,
569
                                   key);
570
                        }
571
                      fibheap_replace_key (bbd[e->dest->index].heap,
572
                                           bbd[e->dest->index].node, key);
573
                    }
574
                }
575
              else
576
                {
577
                  fibheap_t which_heap = *heap;
578
 
579
                  prob = e->probability;
580
                  freq = EDGE_FREQUENCY (e);
581
 
582
                  if (!(e->flags & EDGE_CAN_FALLTHRU)
583
                      || (e->flags & EDGE_COMPLEX)
584
                      || prob < branch_th || freq < exec_th
585
                      || e->count < count_th)
586
                    {
587
                      /* When partitioning hot/cold basic blocks, make sure
588
                         the cold blocks (and only the cold blocks) all get
589
                         pushed to the last round of trace collection.  */
590
 
591
                      if (push_to_next_round_p (e->dest, round,
592
                                                number_of_rounds,
593
                                                exec_th, count_th))
594
                        which_heap = new_heap;
595
                    }
596
 
597
                  bbd[e->dest->index].heap = which_heap;
598
                  bbd[e->dest->index].node = fibheap_insert (which_heap,
599
                                                                key, e->dest);
600
 
601
                  if (dump_file)
602
                    {
603
                      fprintf (dump_file,
604
                               "  Possible start of %s round: %d (key: %ld)\n",
605
                               (which_heap == new_heap) ? "next" : "this",
606
                               e->dest->index, (long) key);
607
                    }
608
 
609
                }
610
            }
611
 
612
          if (best_edge) /* Suitable successor was found.  */
613
            {
614
              if (best_edge->dest->il.rtl->visited == *n_traces)
615
                {
616
                  /* We do nothing with one basic block loops.  */
617
                  if (best_edge->dest != bb)
618
                    {
619
                      if (EDGE_FREQUENCY (best_edge)
620
                          > 4 * best_edge->dest->frequency / 5)
621
                        {
622
                          /* The loop has at least 4 iterations.  If the loop
623
                             header is not the first block of the function
624
                             we can rotate the loop.  */
625
 
626
                          if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
627
                            {
628
                              if (dump_file)
629
                                {
630
                                  fprintf (dump_file,
631
                                           "Rotating loop %d - %d\n",
632
                                           best_edge->dest->index, bb->index);
633
                                }
634
                              bb->aux = best_edge->dest;
635
                              bbd[best_edge->dest->index].in_trace =
636
                                                             (*n_traces) - 1;
637
                              bb = rotate_loop (best_edge, trace, *n_traces);
638
                            }
639
                        }
640
                      else
641
                        {
642
                          /* The loop has less than 4 iterations.  */
643
 
644
                          if (single_succ_p (bb)
645
                              && copy_bb_p (best_edge->dest,
646
                                            optimize_edge_for_speed_p (best_edge)))
647
                            {
648
                              bb = copy_bb (best_edge->dest, best_edge, bb,
649
                                            *n_traces);
650
                              trace->length++;
651
                            }
652
                        }
653
                    }
654
 
655
                  /* Terminate the trace.  */
656
                  break;
657
                }
658
              else
659
                {
660
                  /* Check for a situation
661
 
662
                    A
663
                   /|
664
                  B |
665
                   \|
666
                    C
667
 
668
                  where
669
                  EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
670
                    >= EDGE_FREQUENCY (AC).
671
                  (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
672
                  Best ordering is then A B C.
673
 
674
                  This situation is created for example by:
675
 
676
                  if (A) B;
677
                  C;
678
 
679
                  */
680
 
681
                  FOR_EACH_EDGE (e, ei, bb->succs)
682
                    if (e != best_edge
683
                        && (e->flags & EDGE_CAN_FALLTHRU)
684
                        && !(e->flags & EDGE_COMPLEX)
685
                        && !e->dest->il.rtl->visited
686
                        && single_pred_p (e->dest)
687
                        && !(e->flags & EDGE_CROSSING)
688
                        && single_succ_p (e->dest)
689
                        && (single_succ_edge (e->dest)->flags
690
                            & EDGE_CAN_FALLTHRU)
691
                        && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
692
                        && single_succ (e->dest) == best_edge->dest
693
                        && 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
694
                      {
695
                        best_edge = e;
696
                        if (dump_file)
697
                          fprintf (dump_file, "Selecting BB %d\n",
698
                                   best_edge->dest->index);
699
                        break;
700
                      }
701
 
702
                  bb->aux = best_edge->dest;
703
                  bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
704
                  bb = best_edge->dest;
705
                }
706
            }
707
        }
708
      while (best_edge);
709
      trace->last = bb;
710
      bbd[trace->first->index].start_of_trace = *n_traces - 1;
711
      bbd[trace->last->index].end_of_trace = *n_traces - 1;
712
 
713
      /* The trace is terminated so we have to recount the keys in heap
714
         (some block can have a lower key because now one of its predecessors
715
         is an end of the trace).  */
716
      FOR_EACH_EDGE (e, ei, bb->succs)
717
        {
718
          if (e->dest == EXIT_BLOCK_PTR
719
              || e->dest->il.rtl->visited)
720
            continue;
721
 
722
          if (bbd[e->dest->index].heap)
723
            {
724
              key = bb_to_key (e->dest);
725
              if (key != bbd[e->dest->index].node->key)
726
                {
727
                  if (dump_file)
728
                    {
729
                      fprintf (dump_file,
730
                               "Changing key for bb %d from %ld to %ld.\n",
731
                               e->dest->index,
732
                               (long) bbd[e->dest->index].node->key, key);
733
                    }
734
                  fibheap_replace_key (bbd[e->dest->index].heap,
735
                                       bbd[e->dest->index].node,
736
                                       key);
737
                }
738
            }
739
        }
740
    }
741
 
742
  fibheap_delete (*heap);
743
 
744
  /* "Return" the new heap.  */
745
  *heap = new_heap;
746
}
747
 
748
/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
749
   it to trace after BB, mark OLD_BB visited and update pass' data structures
750
   (TRACE is a number of trace which OLD_BB is duplicated to).  */
751
 
752
static basic_block
753
copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
754
{
755
  basic_block new_bb;
756
 
757
  new_bb = duplicate_block (old_bb, e, bb);
758
  BB_COPY_PARTITION (new_bb, old_bb);
759
 
760
  gcc_assert (e->dest == new_bb);
761
  gcc_assert (!e->dest->il.rtl->visited);
762
 
763
  if (dump_file)
764
    fprintf (dump_file,
765
             "Duplicated bb %d (created bb %d)\n",
766
             old_bb->index, new_bb->index);
767
  new_bb->il.rtl->visited = trace;
768
  new_bb->aux = bb->aux;
769
  bb->aux = new_bb;
770
 
771
  if (new_bb->index >= array_size || last_basic_block > array_size)
772
    {
773
      int i;
774
      int new_size;
775
 
776
      new_size = MAX (last_basic_block, new_bb->index + 1);
777
      new_size = GET_ARRAY_SIZE (new_size);
778
      bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
779
      for (i = array_size; i < new_size; i++)
780
        {
781
          bbd[i].start_of_trace = -1;
782
          bbd[i].in_trace = -1;
783
          bbd[i].end_of_trace = -1;
784
          bbd[i].heap = NULL;
785
          bbd[i].node = NULL;
786
        }
787
      array_size = new_size;
788
 
789
      if (dump_file)
790
        {
791
          fprintf (dump_file,
792
                   "Growing the dynamic array to %d elements.\n",
793
                   array_size);
794
        }
795
    }
796
 
797
  bbd[new_bb->index].in_trace = trace;
798
 
799
  return new_bb;
800
}
801
 
802
/* Compute and return the key (for the heap) of the basic block BB.  */
803
 
804
static fibheapkey_t
805
bb_to_key (basic_block bb)
806
{
807
  edge e;
808
  edge_iterator ei;
809
  int priority = 0;
810
 
811
  /* Do not start in probably never executed blocks.  */
812
 
813
  if (BB_PARTITION (bb) == BB_COLD_PARTITION
814
      || probably_never_executed_bb_p (bb))
815
    return BB_FREQ_MAX;
816
 
817
  /* Prefer blocks whose predecessor is an end of some trace
818
     or whose predecessor edge is EDGE_DFS_BACK.  */
819
  FOR_EACH_EDGE (e, ei, bb->preds)
820
    {
821
      if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
822
          || (e->flags & EDGE_DFS_BACK))
823
        {
824
          int edge_freq = EDGE_FREQUENCY (e);
825
 
826
          if (edge_freq > priority)
827
            priority = edge_freq;
828
        }
829
    }
830
 
831
  if (priority)
832
    /* The block with priority should have significantly lower key.  */
833
    return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
834
  return -bb->frequency;
835
}
836
 
837
/* Return true when the edge E from basic block BB is better than the temporary
838
   best edge (details are in function).  The probability of edge E is PROB. The
839
   frequency of the successor is FREQ.  The current best probability is
840
   BEST_PROB, the best frequency is BEST_FREQ.
841
   The edge is considered to be equivalent when PROB does not differ much from
842
   BEST_PROB; similarly for frequency.  */
843
 
844
static bool
845
better_edge_p (const_basic_block bb, const_edge e, int prob, int freq, int best_prob,
846
               int best_freq, const_edge cur_best_edge)
847
{
848
  bool is_better_edge;
849
 
850
  /* The BEST_* values do not have to be best, but can be a bit smaller than
851
     maximum values.  */
852
  int diff_prob = best_prob / 10;
853
  int diff_freq = best_freq / 10;
854
 
855
  if (prob > best_prob + diff_prob)
856
    /* The edge has higher probability than the temporary best edge.  */
857
    is_better_edge = true;
858
  else if (prob < best_prob - diff_prob)
859
    /* The edge has lower probability than the temporary best edge.  */
860
    is_better_edge = false;
861
  else if (freq < best_freq - diff_freq)
862
    /* The edge and the temporary best edge  have almost equivalent
863
       probabilities.  The higher frequency of a successor now means
864
       that there is another edge going into that successor.
865
       This successor has lower frequency so it is better.  */
866
    is_better_edge = true;
867
  else if (freq > best_freq + diff_freq)
868
    /* This successor has higher frequency so it is worse.  */
869
    is_better_edge = false;
870
  else if (e->dest->prev_bb == bb)
871
    /* The edges have equivalent probabilities and the successors
872
       have equivalent frequencies.  Select the previous successor.  */
873
    is_better_edge = true;
874
  else
875
    is_better_edge = false;
876
 
877
  /* If we are doing hot/cold partitioning, make sure that we always favor
878
     non-crossing edges over crossing edges.  */
879
 
880
  if (!is_better_edge
881
      && flag_reorder_blocks_and_partition
882
      && cur_best_edge
883
      && (cur_best_edge->flags & EDGE_CROSSING)
884
      && !(e->flags & EDGE_CROSSING))
885
    is_better_edge = true;
886
 
887
  return is_better_edge;
888
}
889
 
890
/* Connect traces in array TRACES, N_TRACES is the count of traces.  */
891
 
892
static void
893
connect_traces (int n_traces, struct trace *traces)
894
{
895
  int i;
896
  bool *connected;
897
  bool two_passes;
898
  int last_trace;
899
  int current_pass;
900
  int current_partition;
901
  int freq_threshold;
902
  gcov_type count_threshold;
903
 
904
  freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
905
  if (max_entry_count < INT_MAX / 1000)
906
    count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
907
  else
908
    count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
909
 
910
  connected = XCNEWVEC (bool, n_traces);
911
  last_trace = -1;
912
  current_pass = 1;
913
  current_partition = BB_PARTITION (traces[0].first);
914
  two_passes = false;
915
 
916
  if (flag_reorder_blocks_and_partition)
917
    for (i = 0; i < n_traces && !two_passes; i++)
918
      if (BB_PARTITION (traces[0].first)
919
          != BB_PARTITION (traces[i].first))
920
        two_passes = true;
921
 
922
  for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
923
    {
924
      int t = i;
925
      int t2;
926
      edge e, best;
927
      int best_len;
928
 
929
      if (i >= n_traces)
930
        {
931
          gcc_assert (two_passes && current_pass == 1);
932
          i = 0;
933
          t = i;
934
          current_pass = 2;
935
          if (current_partition == BB_HOT_PARTITION)
936
            current_partition = BB_COLD_PARTITION;
937
          else
938
            current_partition = BB_HOT_PARTITION;
939
        }
940
 
941
      if (connected[t])
942
        continue;
943
 
944
      if (two_passes
945
          && BB_PARTITION (traces[t].first) != current_partition)
946
        continue;
947
 
948
      connected[t] = true;
949
 
950
      /* Find the predecessor traces.  */
951
      for (t2 = t; t2 > 0;)
952
        {
953
          edge_iterator ei;
954
          best = NULL;
955
          best_len = 0;
956
          FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
957
            {
958
              int si = e->src->index;
959
 
960
              if (e->src != ENTRY_BLOCK_PTR
961
                  && (e->flags & EDGE_CAN_FALLTHRU)
962
                  && !(e->flags & EDGE_COMPLEX)
963
                  && bbd[si].end_of_trace >= 0
964
                  && !connected[bbd[si].end_of_trace]
965
                  && (BB_PARTITION (e->src) == current_partition)
966
                  && (!best
967
                      || e->probability > best->probability
968
                      || (e->probability == best->probability
969
                          && traces[bbd[si].end_of_trace].length > best_len)))
970
                {
971
                  best = e;
972
                  best_len = traces[bbd[si].end_of_trace].length;
973
                }
974
            }
975
          if (best)
976
            {
977
              best->src->aux = best->dest;
978
              t2 = bbd[best->src->index].end_of_trace;
979
              connected[t2] = true;
980
 
981
              if (dump_file)
982
                {
983
                  fprintf (dump_file, "Connection: %d %d\n",
984
                           best->src->index, best->dest->index);
985
                }
986
            }
987
          else
988
            break;
989
        }
990
 
991
      if (last_trace >= 0)
992
        traces[last_trace].last->aux = traces[t2].first;
993
      last_trace = t;
994
 
995
      /* Find the successor traces.  */
996
      while (1)
997
        {
998
          /* Find the continuation of the chain.  */
999
          edge_iterator ei;
1000
          best = NULL;
1001
          best_len = 0;
1002
          FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1003
            {
1004
              int di = e->dest->index;
1005
 
1006
              if (e->dest != EXIT_BLOCK_PTR
1007
                  && (e->flags & EDGE_CAN_FALLTHRU)
1008
                  && !(e->flags & EDGE_COMPLEX)
1009
                  && bbd[di].start_of_trace >= 0
1010
                  && !connected[bbd[di].start_of_trace]
1011
                  && (BB_PARTITION (e->dest) == current_partition)
1012
                  && (!best
1013
                      || e->probability > best->probability
1014
                      || (e->probability == best->probability
1015
                          && traces[bbd[di].start_of_trace].length > best_len)))
1016
                {
1017
                  best = e;
1018
                  best_len = traces[bbd[di].start_of_trace].length;
1019
                }
1020
            }
1021
 
1022
          if (best)
1023
            {
1024
              if (dump_file)
1025
                {
1026
                  fprintf (dump_file, "Connection: %d %d\n",
1027
                           best->src->index, best->dest->index);
1028
                }
1029
              t = bbd[best->dest->index].start_of_trace;
1030
              traces[last_trace].last->aux = traces[t].first;
1031
              connected[t] = true;
1032
              last_trace = t;
1033
            }
1034
          else
1035
            {
1036
              /* Try to connect the traces by duplication of 1 block.  */
1037
              edge e2;
1038
              basic_block next_bb = NULL;
1039
              bool try_copy = false;
1040
 
1041
              FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1042
                if (e->dest != EXIT_BLOCK_PTR
1043
                    && (e->flags & EDGE_CAN_FALLTHRU)
1044
                    && !(e->flags & EDGE_COMPLEX)
1045
                    && (!best || e->probability > best->probability))
1046
                  {
1047
                    edge_iterator ei;
1048
                    edge best2 = NULL;
1049
                    int best2_len = 0;
1050
 
1051
                    /* If the destination is a start of a trace which is only
1052
                       one block long, then no need to search the successor
1053
                       blocks of the trace.  Accept it.  */
1054
                    if (bbd[e->dest->index].start_of_trace >= 0
1055
                        && traces[bbd[e->dest->index].start_of_trace].length
1056
                           == 1)
1057
                      {
1058
                        best = e;
1059
                        try_copy = true;
1060
                        continue;
1061
                      }
1062
 
1063
                    FOR_EACH_EDGE (e2, ei, e->dest->succs)
1064
                      {
1065
                        int di = e2->dest->index;
1066
 
1067
                        if (e2->dest == EXIT_BLOCK_PTR
1068
                            || ((e2->flags & EDGE_CAN_FALLTHRU)
1069
                                && !(e2->flags & EDGE_COMPLEX)
1070
                                && bbd[di].start_of_trace >= 0
1071
                                && !connected[bbd[di].start_of_trace]
1072
                                && (BB_PARTITION (e2->dest) == current_partition)
1073
                                && (EDGE_FREQUENCY (e2) >= freq_threshold)
1074
                                && (e2->count >= count_threshold)
1075
                                && (!best2
1076
                                    || e2->probability > best2->probability
1077
                                    || (e2->probability == best2->probability
1078
                                        && traces[bbd[di].start_of_trace].length
1079
                                           > best2_len))))
1080
                          {
1081
                            best = e;
1082
                            best2 = e2;
1083
                            if (e2->dest != EXIT_BLOCK_PTR)
1084
                              best2_len = traces[bbd[di].start_of_trace].length;
1085
                            else
1086
                              best2_len = INT_MAX;
1087
                            next_bb = e2->dest;
1088
                            try_copy = true;
1089
                          }
1090
                      }
1091
                  }
1092
 
1093
              if (flag_reorder_blocks_and_partition)
1094
                try_copy = false;
1095
 
1096
              /* Copy tiny blocks always; copy larger blocks only when the
1097
                 edge is traversed frequently enough.  */
1098
              if (try_copy
1099
                  && copy_bb_p (best->dest,
1100
                                optimize_edge_for_speed_p (best)
1101
                                && EDGE_FREQUENCY (best) >= freq_threshold
1102
                                && best->count >= count_threshold))
1103
                {
1104
                  basic_block new_bb;
1105
 
1106
                  if (dump_file)
1107
                    {
1108
                      fprintf (dump_file, "Connection: %d %d ",
1109
                               traces[t].last->index, best->dest->index);
1110
                      if (!next_bb)
1111
                        fputc ('\n', dump_file);
1112
                      else if (next_bb == EXIT_BLOCK_PTR)
1113
                        fprintf (dump_file, "exit\n");
1114
                      else
1115
                        fprintf (dump_file, "%d\n", next_bb->index);
1116
                    }
1117
 
1118
                  new_bb = copy_bb (best->dest, best, traces[t].last, t);
1119
                  traces[t].last = new_bb;
1120
                  if (next_bb && next_bb != EXIT_BLOCK_PTR)
1121
                    {
1122
                      t = bbd[next_bb->index].start_of_trace;
1123
                      traces[last_trace].last->aux = traces[t].first;
1124
                      connected[t] = true;
1125
                      last_trace = t;
1126
                    }
1127
                  else
1128
                    break;      /* Stop finding the successor traces.  */
1129
                }
1130
              else
1131
                break;  /* Stop finding the successor traces.  */
1132
            }
1133
        }
1134
    }
1135
 
1136
  if (dump_file)
1137
    {
1138
      basic_block bb;
1139
 
1140
      fprintf (dump_file, "Final order:\n");
1141
      for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1142
        fprintf (dump_file, "%d ", bb->index);
1143
      fprintf (dump_file, "\n");
1144
      fflush (dump_file);
1145
    }
1146
 
1147
  FREE (connected);
1148
}
1149
 
1150
/* Return true when BB can and should be copied. CODE_MAY_GROW is true
1151
   when code size is allowed to grow by duplication.  */
1152
 
1153
static bool
1154
copy_bb_p (const_basic_block bb, int code_may_grow)
1155
{
1156
  int size = 0;
1157
  int max_size = uncond_jump_length;
1158
  rtx insn;
1159
 
1160
  if (!bb->frequency)
1161
    return false;
1162
  if (EDGE_COUNT (bb->preds) < 2)
1163
    return false;
1164
  if (!can_duplicate_block_p (bb))
1165
    return false;
1166
 
1167
  /* Avoid duplicating blocks which have many successors (PR/13430).  */
1168
  if (EDGE_COUNT (bb->succs) > 8)
1169
    return false;
1170
 
1171
  if (code_may_grow && optimize_bb_for_speed_p (bb))
1172
    max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1173
 
1174
  FOR_BB_INSNS (bb, insn)
1175
    {
1176
      if (INSN_P (insn))
1177
        size += get_attr_min_length (insn);
1178
    }
1179
 
1180
  if (size <= max_size)
1181
    return true;
1182
 
1183
  if (dump_file)
1184
    {
1185
      fprintf (dump_file,
1186
               "Block %d can't be copied because its size = %d.\n",
1187
               bb->index, size);
1188
    }
1189
 
1190
  return false;
1191
}
1192
 
1193
/* Return the length of unconditional jump instruction.  */
1194
 
1195
int
1196
get_uncond_jump_length (void)
1197
{
1198
  rtx label, jump;
1199
  int length;
1200
 
1201
  label = emit_label_before (gen_label_rtx (), get_insns ());
1202
  jump = emit_jump_insn (gen_jump (label));
1203
 
1204
  length = get_attr_min_length (jump);
1205
 
1206
  delete_insn (jump);
1207
  delete_insn (label);
1208
  return length;
1209
}
1210
 
1211
/* Emit a barrier into the footer of BB.  */
1212
 
1213
static void
1214
emit_barrier_after_bb (basic_block bb)
1215
{
1216
  rtx barrier = emit_barrier_after (BB_END (bb));
1217
  bb->il.rtl->footer = unlink_insn_chain (barrier, barrier);
1218
}
1219
 
1220
/* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1221
   Duplicate the landing pad and split the edges so that no EH edge
1222
   crosses partitions.  */
1223
 
1224
static void
1225
fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1226
{
1227
  eh_landing_pad new_lp;
1228
  basic_block new_bb, last_bb, post_bb;
1229
  rtx new_label, jump, post_label;
1230
  unsigned new_partition;
1231
  edge_iterator ei;
1232
  edge e;
1233
 
1234
  /* Generate the new landing-pad structure.  */
1235
  new_lp = gen_eh_landing_pad (old_lp->region);
1236
  new_lp->post_landing_pad = old_lp->post_landing_pad;
1237
  new_lp->landing_pad = gen_label_rtx ();
1238
  LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1239
 
1240
  /* Put appropriate instructions in new bb.  */
1241
  new_label = emit_label (new_lp->landing_pad);
1242
 
1243
  expand_dw2_landing_pad_for_region (old_lp->region);
1244
 
1245
  post_bb = BLOCK_FOR_INSN (old_lp->landing_pad);
1246
  post_bb = single_succ (post_bb);
1247
  post_label = block_label (post_bb);
1248
  jump = emit_jump_insn (gen_jump (post_label));
1249
  JUMP_LABEL (jump) = post_label;
1250
 
1251
  /* Create new basic block to be dest for lp.  */
1252
  last_bb = EXIT_BLOCK_PTR->prev_bb;
1253
  new_bb = create_basic_block (new_label, jump, last_bb);
1254
  new_bb->aux = last_bb->aux;
1255
  last_bb->aux = new_bb;
1256
 
1257
  emit_barrier_after_bb (new_bb);
1258
 
1259
  make_edge (new_bb, post_bb, 0);
1260
 
1261
  /* Make sure new bb is in the other partition.  */
1262
  new_partition = BB_PARTITION (old_bb);
1263
  new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1264
  BB_SET_PARTITION (new_bb, new_partition);
1265
 
1266
  /* Fix up the edges.  */
1267
  for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1268
    if (BB_PARTITION (e->src) == new_partition)
1269
      {
1270
        rtx insn = BB_END (e->src);
1271
        rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1272
 
1273
        gcc_assert (note != NULL);
1274
        gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1275
        XEXP (note, 0) = GEN_INT (new_lp->index);
1276
 
1277
        /* Adjust the edge to the new destination.  */
1278
        redirect_edge_succ (e, new_bb);
1279
      }
1280
    else
1281
      ei_next (&ei);
1282
}
1283
 
1284
/* Find the basic blocks that are rarely executed and need to be moved to
1285
   a separate section of the .o file (to cut down on paging and improve
1286
   cache locality).  Return a vector of all edges that cross.  */
1287
 
1288
static VEC(edge, heap) *
1289
find_rarely_executed_basic_blocks_and_crossing_edges (void)
1290
{
1291
  VEC(edge, heap) *crossing_edges = NULL;
1292
  basic_block bb;
1293
  edge e;
1294
  edge_iterator ei;
1295
 
1296
  /* Mark which partition (hot/cold) each basic block belongs in.  */
1297
  FOR_EACH_BB (bb)
1298
    {
1299
      if (probably_never_executed_bb_p (bb))
1300
        BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1301
      else
1302
        BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1303
    }
1304
 
1305
  /* The format of .gcc_except_table does not allow landing pads to
1306
     be in a different partition as the throw.  Fix this by either
1307
     moving or duplicating the landing pads.  */
1308
  if (cfun->eh->lp_array)
1309
    {
1310
      unsigned i;
1311
      eh_landing_pad lp;
1312
 
1313
      FOR_EACH_VEC_ELT (eh_landing_pad, cfun->eh->lp_array, i, lp)
1314
        {
1315
          bool all_same, all_diff;
1316
 
1317
          if (lp == NULL
1318
              || lp->landing_pad == NULL_RTX
1319
              || !LABEL_P (lp->landing_pad))
1320
            continue;
1321
 
1322
          all_same = all_diff = true;
1323
          bb = BLOCK_FOR_INSN (lp->landing_pad);
1324
          FOR_EACH_EDGE (e, ei, bb->preds)
1325
            {
1326
              gcc_assert (e->flags & EDGE_EH);
1327
              if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1328
                all_diff = false;
1329
              else
1330
                all_same = false;
1331
            }
1332
 
1333
          if (all_same)
1334
            ;
1335
          else if (all_diff)
1336
            {
1337
              int which = BB_PARTITION (bb);
1338
              which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1339
              BB_SET_PARTITION (bb, which);
1340
            }
1341
          else
1342
            fix_up_crossing_landing_pad (lp, bb);
1343
        }
1344
    }
1345
 
1346
  /* Mark every edge that crosses between sections.  */
1347
 
1348
  FOR_EACH_BB (bb)
1349
    FOR_EACH_EDGE (e, ei, bb->succs)
1350
      {
1351
        unsigned int flags = e->flags;
1352
 
1353
        /* We should never have EDGE_CROSSING set yet.  */
1354
        gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1355
 
1356
        if (e->src != ENTRY_BLOCK_PTR
1357
            && e->dest != EXIT_BLOCK_PTR
1358
            && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1359
          {
1360
            VEC_safe_push (edge, heap, crossing_edges, e);
1361
            flags |= EDGE_CROSSING;
1362
          }
1363
 
1364
        /* Now that we've split eh edges as appropriate, allow landing pads
1365
           to be merged with the post-landing pads.  */
1366
        flags &= ~EDGE_PRESERVE;
1367
 
1368
        e->flags = flags;
1369
      }
1370
 
1371
  return crossing_edges;
1372
}
1373
 
1374
/* If any destination of a crossing edge does not have a label, add label;
1375
   Convert any easy fall-through crossing edges to unconditional jumps.  */
1376
 
1377
static void
1378
add_labels_and_missing_jumps (VEC(edge, heap) *crossing_edges)
1379
{
1380
  size_t i;
1381
  edge e;
1382
 
1383
  FOR_EACH_VEC_ELT (edge, crossing_edges, i, e)
1384
    {
1385
      basic_block src = e->src;
1386
      basic_block dest = e->dest;
1387
      rtx label, new_jump;
1388
 
1389
      if (dest == EXIT_BLOCK_PTR)
1390
        continue;
1391
 
1392
      /* Make sure dest has a label.  */
1393
      label = block_label (dest);
1394
 
1395
      /* Nothing to do for non-fallthru edges.  */
1396
      if (src == ENTRY_BLOCK_PTR)
1397
        continue;
1398
      if ((e->flags & EDGE_FALLTHRU) == 0)
1399
        continue;
1400
 
1401
      /* If the block does not end with a control flow insn, then we
1402
         can trivially add a jump to the end to fixup the crossing.
1403
         Otherwise the jump will have to go in a new bb, which will
1404
         be handled by fix_up_fall_thru_edges function.  */
1405
      if (control_flow_insn_p (BB_END (src)))
1406
        continue;
1407
 
1408
      /* Make sure there's only one successor.  */
1409
      gcc_assert (single_succ_p (src));
1410
 
1411
      new_jump = emit_jump_insn_after (gen_jump (label), BB_END (src));
1412
      BB_END (src) = new_jump;
1413
      JUMP_LABEL (new_jump) = label;
1414
      LABEL_NUSES (label) += 1;
1415
 
1416
      emit_barrier_after_bb (src);
1417
 
1418
      /* Mark edge as non-fallthru.  */
1419
      e->flags &= ~EDGE_FALLTHRU;
1420
    }
1421
}
1422
 
1423
/* Find any bb's where the fall-through edge is a crossing edge (note that
1424
   these bb's must also contain a conditional jump or end with a call
1425
   instruction; we've already dealt with fall-through edges for blocks
1426
   that didn't have a conditional jump or didn't end with call instruction
1427
   in the call to add_labels_and_missing_jumps).  Convert the fall-through
1428
   edge to non-crossing edge by inserting a new bb to fall-through into.
1429
   The new bb will contain an unconditional jump (crossing edge) to the
1430
   original fall through destination.  */
1431
 
1432
static void
1433
fix_up_fall_thru_edges (void)
1434
{
1435
  basic_block cur_bb;
1436
  basic_block new_bb;
1437
  edge succ1;
1438
  edge succ2;
1439
  edge fall_thru;
1440
  edge cond_jump = NULL;
1441
  edge e;
1442
  bool cond_jump_crosses;
1443
  int invert_worked;
1444
  rtx old_jump;
1445
  rtx fall_thru_label;
1446
 
1447
  FOR_EACH_BB (cur_bb)
1448
    {
1449
      fall_thru = NULL;
1450
      if (EDGE_COUNT (cur_bb->succs) > 0)
1451
        succ1 = EDGE_SUCC (cur_bb, 0);
1452
      else
1453
        succ1 = NULL;
1454
 
1455
      if (EDGE_COUNT (cur_bb->succs) > 1)
1456
        succ2 = EDGE_SUCC (cur_bb, 1);
1457
      else
1458
        succ2 = NULL;
1459
 
1460
      /* Find the fall-through edge.  */
1461
 
1462
      if (succ1
1463
          && (succ1->flags & EDGE_FALLTHRU))
1464
        {
1465
          fall_thru = succ1;
1466
          cond_jump = succ2;
1467
        }
1468
      else if (succ2
1469
               && (succ2->flags & EDGE_FALLTHRU))
1470
        {
1471
          fall_thru = succ2;
1472
          cond_jump = succ1;
1473
        }
1474
      else if (succ1
1475
               && (block_ends_with_call_p (cur_bb)
1476
                   || can_throw_internal (BB_END (cur_bb))))
1477
        {
1478
          edge e;
1479
          edge_iterator ei;
1480
 
1481
          /* Find EDGE_CAN_FALLTHRU edge.  */
1482
          FOR_EACH_EDGE (e, ei, cur_bb->succs)
1483
            if (e->flags & EDGE_CAN_FALLTHRU)
1484
              {
1485
                fall_thru = e;
1486
                break;
1487
              }
1488
        }
1489
 
1490
      if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
1491
        {
1492
          /* Check to see if the fall-thru edge is a crossing edge.  */
1493
 
1494
          if (fall_thru->flags & EDGE_CROSSING)
1495
            {
1496
              /* The fall_thru edge crosses; now check the cond jump edge, if
1497
                 it exists.  */
1498
 
1499
              cond_jump_crosses = true;
1500
              invert_worked  = 0;
1501
              old_jump = BB_END (cur_bb);
1502
 
1503
              /* Find the jump instruction, if there is one.  */
1504
 
1505
              if (cond_jump)
1506
                {
1507
                  if (!(cond_jump->flags & EDGE_CROSSING))
1508
                    cond_jump_crosses = false;
1509
 
1510
                  /* We know the fall-thru edge crosses; if the cond
1511
                     jump edge does NOT cross, and its destination is the
1512
                     next block in the bb order, invert the jump
1513
                     (i.e. fix it so the fall thru does not cross and
1514
                     the cond jump does).  */
1515
 
1516
                  if (!cond_jump_crosses
1517
                      && cur_bb->aux == cond_jump->dest)
1518
                    {
1519
                      /* Find label in fall_thru block. We've already added
1520
                         any missing labels, so there must be one.  */
1521
 
1522
                      fall_thru_label = block_label (fall_thru->dest);
1523
 
1524
                      if (old_jump && JUMP_P (old_jump) && fall_thru_label)
1525
                        invert_worked = invert_jump (old_jump,
1526
                                                     fall_thru_label,0);
1527
                      if (invert_worked)
1528
                        {
1529
                          fall_thru->flags &= ~EDGE_FALLTHRU;
1530
                          cond_jump->flags |= EDGE_FALLTHRU;
1531
                          update_br_prob_note (cur_bb);
1532
                          e = fall_thru;
1533
                          fall_thru = cond_jump;
1534
                          cond_jump = e;
1535
                          cond_jump->flags |= EDGE_CROSSING;
1536
                          fall_thru->flags &= ~EDGE_CROSSING;
1537
                        }
1538
                    }
1539
                }
1540
 
1541
              if (cond_jump_crosses || !invert_worked)
1542
                {
1543
                  /* This is the case where both edges out of the basic
1544
                     block are crossing edges. Here we will fix up the
1545
                     fall through edge. The jump edge will be taken care
1546
                     of later.  The EDGE_CROSSING flag of fall_thru edge
1547
                     is unset before the call to force_nonfallthru
1548
                     function because if a new basic-block is created
1549
                     this edge remains in the current section boundary
1550
                     while the edge between new_bb and the fall_thru->dest
1551
                     becomes EDGE_CROSSING.  */
1552
 
1553
                  fall_thru->flags &= ~EDGE_CROSSING;
1554
                  new_bb = force_nonfallthru (fall_thru);
1555
 
1556
                  if (new_bb)
1557
                    {
1558
                      new_bb->aux = cur_bb->aux;
1559
                      cur_bb->aux = new_bb;
1560
 
1561
                      /* Make sure new fall-through bb is in same
1562
                         partition as bb it's falling through from.  */
1563
 
1564
                      BB_COPY_PARTITION (new_bb, cur_bb);
1565
                      single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1566
                    }
1567
                  else
1568
                    {
1569
                      /* If a new basic-block was not created; restore
1570
                         the EDGE_CROSSING flag.  */
1571
                      fall_thru->flags |= EDGE_CROSSING;
1572
                    }
1573
 
1574
                  /* Add barrier after new jump */
1575
                  emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
1576
                }
1577
            }
1578
        }
1579
    }
1580
}
1581
 
1582
/* This function checks the destination block of a "crossing jump" to
1583
   see if it has any crossing predecessors that begin with a code label
1584
   and end with an unconditional jump.  If so, it returns that predecessor
1585
   block.  (This is to avoid creating lots of new basic blocks that all
1586
   contain unconditional jumps to the same destination).  */
1587
 
1588
static basic_block
1589
find_jump_block (basic_block jump_dest)
1590
{
1591
  basic_block source_bb = NULL;
1592
  edge e;
1593
  rtx insn;
1594
  edge_iterator ei;
1595
 
1596
  FOR_EACH_EDGE (e, ei, jump_dest->preds)
1597
    if (e->flags & EDGE_CROSSING)
1598
      {
1599
        basic_block src = e->src;
1600
 
1601
        /* Check each predecessor to see if it has a label, and contains
1602
           only one executable instruction, which is an unconditional jump.
1603
           If so, we can use it.  */
1604
 
1605
        if (LABEL_P (BB_HEAD (src)))
1606
          for (insn = BB_HEAD (src);
1607
               !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1608
               insn = NEXT_INSN (insn))
1609
            {
1610
              if (INSN_P (insn)
1611
                  && insn == BB_END (src)
1612
                  && JUMP_P (insn)
1613
                  && !any_condjump_p (insn))
1614
                {
1615
                  source_bb = src;
1616
                  break;
1617
                }
1618
            }
1619
 
1620
        if (source_bb)
1621
          break;
1622
      }
1623
 
1624
  return source_bb;
1625
}
1626
 
1627
/* Find all BB's with conditional jumps that are crossing edges;
1628
   insert a new bb and make the conditional jump branch to the new
1629
   bb instead (make the new bb same color so conditional branch won't
1630
   be a 'crossing' edge).  Insert an unconditional jump from the
1631
   new bb to the original destination of the conditional jump.  */
1632
 
1633
static void
1634
fix_crossing_conditional_branches (void)
1635
{
1636
  basic_block cur_bb;
1637
  basic_block new_bb;
1638
  basic_block dest;
1639
  edge succ1;
1640
  edge succ2;
1641
  edge crossing_edge;
1642
  edge new_edge;
1643
  rtx old_jump;
1644
  rtx set_src;
1645
  rtx old_label = NULL_RTX;
1646
  rtx new_label;
1647
 
1648
  FOR_EACH_BB (cur_bb)
1649
    {
1650
      crossing_edge = NULL;
1651
      if (EDGE_COUNT (cur_bb->succs) > 0)
1652
        succ1 = EDGE_SUCC (cur_bb, 0);
1653
      else
1654
        succ1 = NULL;
1655
 
1656
      if (EDGE_COUNT (cur_bb->succs) > 1)
1657
        succ2 = EDGE_SUCC (cur_bb, 1);
1658
      else
1659
        succ2 = NULL;
1660
 
1661
      /* We already took care of fall-through edges, so only one successor
1662
         can be a crossing edge.  */
1663
 
1664
      if (succ1 && (succ1->flags & EDGE_CROSSING))
1665
        crossing_edge = succ1;
1666
      else if (succ2 && (succ2->flags & EDGE_CROSSING))
1667
        crossing_edge = succ2;
1668
 
1669
      if (crossing_edge)
1670
        {
1671
          old_jump = BB_END (cur_bb);
1672
 
1673
          /* Check to make sure the jump instruction is a
1674
             conditional jump.  */
1675
 
1676
          set_src = NULL_RTX;
1677
 
1678
          if (any_condjump_p (old_jump))
1679
            {
1680
              if (GET_CODE (PATTERN (old_jump)) == SET)
1681
                set_src = SET_SRC (PATTERN (old_jump));
1682
              else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
1683
                {
1684
                  set_src = XVECEXP (PATTERN (old_jump), 0,0);
1685
                  if (GET_CODE (set_src) == SET)
1686
                    set_src = SET_SRC (set_src);
1687
                  else
1688
                    set_src = NULL_RTX;
1689
                }
1690
            }
1691
 
1692
          if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
1693
            {
1694
              if (GET_CODE (XEXP (set_src, 1)) == PC)
1695
                old_label = XEXP (set_src, 2);
1696
              else if (GET_CODE (XEXP (set_src, 2)) == PC)
1697
                old_label = XEXP (set_src, 1);
1698
 
1699
              /* Check to see if new bb for jumping to that dest has
1700
                 already been created; if so, use it; if not, create
1701
                 a new one.  */
1702
 
1703
              new_bb = find_jump_block (crossing_edge->dest);
1704
 
1705
              if (new_bb)
1706
                new_label = block_label (new_bb);
1707
              else
1708
                {
1709
                  basic_block last_bb;
1710
                  rtx new_jump;
1711
 
1712
                  /* Create new basic block to be dest for
1713
                     conditional jump.  */
1714
 
1715
                  /* Put appropriate instructions in new bb.  */
1716
 
1717
                  new_label = gen_label_rtx ();
1718
                  emit_label (new_label);
1719
 
1720
                  gcc_assert (GET_CODE (old_label) == LABEL_REF);
1721
                  old_label = JUMP_LABEL (old_jump);
1722
                  new_jump = emit_jump_insn (gen_jump (old_label));
1723
                  JUMP_LABEL (new_jump) = old_label;
1724
 
1725
                  last_bb = EXIT_BLOCK_PTR->prev_bb;
1726
                  new_bb = create_basic_block (new_label, new_jump, last_bb);
1727
                  new_bb->aux = last_bb->aux;
1728
                  last_bb->aux = new_bb;
1729
 
1730
                  emit_barrier_after_bb (new_bb);
1731
 
1732
                  /* Make sure new bb is in same partition as source
1733
                     of conditional branch.  */
1734
                  BB_COPY_PARTITION (new_bb, cur_bb);
1735
                }
1736
 
1737
              /* Make old jump branch to new bb.  */
1738
 
1739
              redirect_jump (old_jump, new_label, 0);
1740
 
1741
              /* Remove crossing_edge as predecessor of 'dest'.  */
1742
 
1743
              dest = crossing_edge->dest;
1744
 
1745
              redirect_edge_succ (crossing_edge, new_bb);
1746
 
1747
              /* Make a new edge from new_bb to old dest; new edge
1748
                 will be a successor for new_bb and a predecessor
1749
                 for 'dest'.  */
1750
 
1751
              if (EDGE_COUNT (new_bb->succs) == 0)
1752
                new_edge = make_edge (new_bb, dest, 0);
1753
              else
1754
                new_edge = EDGE_SUCC (new_bb, 0);
1755
 
1756
              crossing_edge->flags &= ~EDGE_CROSSING;
1757
              new_edge->flags |= EDGE_CROSSING;
1758
            }
1759
        }
1760
    }
1761
}
1762
 
1763
/* Find any unconditional branches that cross between hot and cold
1764
   sections.  Convert them into indirect jumps instead.  */
1765
 
1766
static void
1767
fix_crossing_unconditional_branches (void)
1768
{
1769
  basic_block cur_bb;
1770
  rtx last_insn;
1771
  rtx label;
1772
  rtx label_addr;
1773
  rtx indirect_jump_sequence;
1774
  rtx jump_insn = NULL_RTX;
1775
  rtx new_reg;
1776
  rtx cur_insn;
1777
  edge succ;
1778
 
1779
  FOR_EACH_BB (cur_bb)
1780
    {
1781
      last_insn = BB_END (cur_bb);
1782
 
1783
      if (EDGE_COUNT (cur_bb->succs) < 1)
1784
        continue;
1785
 
1786
      succ = EDGE_SUCC (cur_bb, 0);
1787
 
1788
      /* Check to see if bb ends in a crossing (unconditional) jump.  At
1789
         this point, no crossing jumps should be conditional.  */
1790
 
1791
      if (JUMP_P (last_insn)
1792
          && (succ->flags & EDGE_CROSSING))
1793
        {
1794
          rtx label2, table;
1795
 
1796
          gcc_assert (!any_condjump_p (last_insn));
1797
 
1798
          /* Make sure the jump is not already an indirect or table jump.  */
1799
 
1800
          if (!computed_jump_p (last_insn)
1801
              && !tablejump_p (last_insn, &label2, &table))
1802
            {
1803
              /* We have found a "crossing" unconditional branch.  Now
1804
                 we must convert it to an indirect jump.  First create
1805
                 reference of label, as target for jump.  */
1806
 
1807
              label = JUMP_LABEL (last_insn);
1808
              label_addr = gen_rtx_LABEL_REF (Pmode, label);
1809
              LABEL_NUSES (label) += 1;
1810
 
1811
              /* Get a register to use for the indirect jump.  */
1812
 
1813
              new_reg = gen_reg_rtx (Pmode);
1814
 
1815
              /* Generate indirect the jump sequence.  */
1816
 
1817
              start_sequence ();
1818
              emit_move_insn (new_reg, label_addr);
1819
              emit_indirect_jump (new_reg);
1820
              indirect_jump_sequence = get_insns ();
1821
              end_sequence ();
1822
 
1823
              /* Make sure every instruction in the new jump sequence has
1824
                 its basic block set to be cur_bb.  */
1825
 
1826
              for (cur_insn = indirect_jump_sequence; cur_insn;
1827
                   cur_insn = NEXT_INSN (cur_insn))
1828
                {
1829
                  if (!BARRIER_P (cur_insn))
1830
                    BLOCK_FOR_INSN (cur_insn) = cur_bb;
1831
                  if (JUMP_P (cur_insn))
1832
                    jump_insn = cur_insn;
1833
                }
1834
 
1835
              /* Insert the new (indirect) jump sequence immediately before
1836
                 the unconditional jump, then delete the unconditional jump.  */
1837
 
1838
              emit_insn_before (indirect_jump_sequence, last_insn);
1839
              delete_insn (last_insn);
1840
 
1841
              /* Make BB_END for cur_bb be the jump instruction (NOT the
1842
                 barrier instruction at the end of the sequence...).  */
1843
 
1844
              BB_END (cur_bb) = jump_insn;
1845
            }
1846
        }
1847
    }
1848
}
1849
 
1850
/* Add REG_CROSSING_JUMP note to all crossing jump insns.  */
1851
 
1852
static void
1853
add_reg_crossing_jump_notes (void)
1854
{
1855
  basic_block bb;
1856
  edge e;
1857
  edge_iterator ei;
1858
 
1859
  FOR_EACH_BB (bb)
1860
    FOR_EACH_EDGE (e, ei, bb->succs)
1861
      if ((e->flags & EDGE_CROSSING)
1862
          && JUMP_P (BB_END (e->src)))
1863
        add_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
1864
}
1865
 
1866
/* Verify, in the basic block chain, that there is at most one switch
1867
   between hot/cold partitions. This is modelled on
1868
   rtl_verify_flow_info_1, but it cannot go inside that function
1869
   because this condition will not be true until after
1870
   reorder_basic_blocks is called.  */
1871
 
1872
static void
1873
verify_hot_cold_block_grouping (void)
1874
{
1875
  basic_block bb;
1876
  int err = 0;
1877
  bool switched_sections = false;
1878
  int current_partition = 0;
1879
 
1880
  FOR_EACH_BB (bb)
1881
    {
1882
      if (!current_partition)
1883
        current_partition = BB_PARTITION (bb);
1884
      if (BB_PARTITION (bb) != current_partition)
1885
        {
1886
          if (switched_sections)
1887
            {
1888
              error ("multiple hot/cold transitions found (bb %i)",
1889
                     bb->index);
1890
              err = 1;
1891
            }
1892
          else
1893
            {
1894
              switched_sections = true;
1895
              current_partition = BB_PARTITION (bb);
1896
            }
1897
        }
1898
    }
1899
 
1900
  gcc_assert(!err);
1901
}
1902
 
1903
/* Reorder basic blocks.  The main entry point to this file.  FLAGS is
1904
   the set of flags to pass to cfg_layout_initialize().  */
1905
 
1906
void
1907
reorder_basic_blocks (void)
1908
{
1909
  int n_traces;
1910
  int i;
1911
  struct trace *traces;
1912
 
1913
  gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
1914
 
1915
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1916
    return;
1917
 
1918
  set_edge_can_fallthru_flag ();
1919
  mark_dfs_back_edges ();
1920
 
1921
  /* We are estimating the length of uncond jump insn only once since the code
1922
     for getting the insn length always returns the minimal length now.  */
1923
  if (uncond_jump_length == 0)
1924
    uncond_jump_length = get_uncond_jump_length ();
1925
 
1926
  /* We need to know some information for each basic block.  */
1927
  array_size = GET_ARRAY_SIZE (last_basic_block);
1928
  bbd = XNEWVEC (bbro_basic_block_data, array_size);
1929
  for (i = 0; i < array_size; i++)
1930
    {
1931
      bbd[i].start_of_trace = -1;
1932
      bbd[i].in_trace = -1;
1933
      bbd[i].end_of_trace = -1;
1934
      bbd[i].heap = NULL;
1935
      bbd[i].node = NULL;
1936
    }
1937
 
1938
  traces = XNEWVEC (struct trace, n_basic_blocks);
1939
  n_traces = 0;
1940
  find_traces (&n_traces, traces);
1941
  connect_traces (n_traces, traces);
1942
  FREE (traces);
1943
  FREE (bbd);
1944
 
1945
  relink_block_chain (/*stay_in_cfglayout_mode=*/true);
1946
 
1947
  if (dump_file)
1948
    dump_flow_info (dump_file, dump_flags);
1949
 
1950
  if (flag_reorder_blocks_and_partition)
1951
    verify_hot_cold_block_grouping ();
1952
}
1953
 
1954
/* Determine which partition the first basic block in the function
1955
   belongs to, then find the first basic block in the current function
1956
   that belongs to a different section, and insert a
1957
   NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
1958
   instruction stream.  When writing out the assembly code,
1959
   encountering this note will make the compiler switch between the
1960
   hot and cold text sections.  */
1961
 
1962
static void
1963
insert_section_boundary_note (void)
1964
{
1965
  basic_block bb;
1966
  rtx new_note;
1967
  int first_partition = 0;
1968
 
1969
  if (!flag_reorder_blocks_and_partition)
1970
    return;
1971
 
1972
  FOR_EACH_BB (bb)
1973
    {
1974
      if (!first_partition)
1975
        first_partition = BB_PARTITION (bb);
1976
      if (BB_PARTITION (bb) != first_partition)
1977
        {
1978
          new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
1979
                                       BB_HEAD (bb));
1980
          /* ??? This kind of note always lives between basic blocks,
1981
             but add_insn_before will set BLOCK_FOR_INSN anyway.  */
1982
          BLOCK_FOR_INSN (new_note) = NULL;
1983
          break;
1984
        }
1985
    }
1986
}
1987
 
1988
/* Duplicate the blocks containing computed gotos.  This basically unfactors
1989
   computed gotos that were factored early on in the compilation process to
1990
   speed up edge based data flow.  We used to not unfactoring them again,
1991
   which can seriously pessimize code with many computed jumps in the source
1992
   code, such as interpreters.  See e.g. PR15242.  */
1993
 
1994
static bool
1995
gate_duplicate_computed_gotos (void)
1996
{
1997
  if (targetm.cannot_modify_jumps_p ())
1998
    return false;
1999
  return (optimize > 0
2000
          && flag_expensive_optimizations
2001
          && ! optimize_function_for_size_p (cfun));
2002
}
2003
 
2004
 
2005
static unsigned int
2006
duplicate_computed_gotos (void)
2007
{
2008
  basic_block bb, new_bb;
2009
  bitmap candidates;
2010
  int max_size;
2011
 
2012
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2013
    return 0;
2014
 
2015
  cfg_layout_initialize (0);
2016
 
2017
  /* We are estimating the length of uncond jump insn only once
2018
     since the code for getting the insn length always returns
2019
     the minimal length now.  */
2020
  if (uncond_jump_length == 0)
2021
    uncond_jump_length = get_uncond_jump_length ();
2022
 
2023
  max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2024
  candidates = BITMAP_ALLOC (NULL);
2025
 
2026
  /* Look for blocks that end in a computed jump, and see if such blocks
2027
     are suitable for unfactoring.  If a block is a candidate for unfactoring,
2028
     mark it in the candidates.  */
2029
  FOR_EACH_BB (bb)
2030
    {
2031
      rtx insn;
2032
      edge e;
2033
      edge_iterator ei;
2034
      int size, all_flags;
2035
 
2036
      /* Build the reorder chain for the original order of blocks.  */
2037
      if (bb->next_bb != EXIT_BLOCK_PTR)
2038
        bb->aux = bb->next_bb;
2039
 
2040
      /* Obviously the block has to end in a computed jump.  */
2041
      if (!computed_jump_p (BB_END (bb)))
2042
        continue;
2043
 
2044
      /* Only consider blocks that can be duplicated.  */
2045
      if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2046
          || !can_duplicate_block_p (bb))
2047
        continue;
2048
 
2049
      /* Make sure that the block is small enough.  */
2050
      size = 0;
2051
      FOR_BB_INSNS (bb, insn)
2052
        if (INSN_P (insn))
2053
          {
2054
            size += get_attr_min_length (insn);
2055
            if (size > max_size)
2056
               break;
2057
          }
2058
      if (size > max_size)
2059
        continue;
2060
 
2061
      /* Final check: there must not be any incoming abnormal edges.  */
2062
      all_flags = 0;
2063
      FOR_EACH_EDGE (e, ei, bb->preds)
2064
        all_flags |= e->flags;
2065
      if (all_flags & EDGE_COMPLEX)
2066
        continue;
2067
 
2068
      bitmap_set_bit (candidates, bb->index);
2069
    }
2070
 
2071
  /* Nothing to do if there is no computed jump here.  */
2072
  if (bitmap_empty_p (candidates))
2073
    goto done;
2074
 
2075
  /* Duplicate computed gotos.  */
2076
  FOR_EACH_BB (bb)
2077
    {
2078
      if (bb->il.rtl->visited)
2079
        continue;
2080
 
2081
      bb->il.rtl->visited = 1;
2082
 
2083
      /* BB must have one outgoing edge.  That edge must not lead to
2084
         the exit block or the next block.
2085
         The destination must have more than one predecessor.  */
2086
      if (!single_succ_p (bb)
2087
          || single_succ (bb) == EXIT_BLOCK_PTR
2088
          || single_succ (bb) == bb->next_bb
2089
          || single_pred_p (single_succ (bb)))
2090
        continue;
2091
 
2092
      /* The successor block has to be a duplication candidate.  */
2093
      if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2094
        continue;
2095
 
2096
      new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2097
      new_bb->aux = bb->aux;
2098
      bb->aux = new_bb;
2099
      new_bb->il.rtl->visited = 1;
2100
    }
2101
 
2102
done:
2103
  cfg_layout_finalize ();
2104
 
2105
  BITMAP_FREE (candidates);
2106
  return 0;
2107
}
2108
 
2109
struct rtl_opt_pass pass_duplicate_computed_gotos =
2110
{
2111
 {
2112
  RTL_PASS,
2113
  "compgotos",                          /* name */
2114
  gate_duplicate_computed_gotos,        /* gate */
2115
  duplicate_computed_gotos,             /* execute */
2116
  NULL,                                 /* sub */
2117
  NULL,                                 /* next */
2118
  0,                                    /* static_pass_number */
2119
  TV_REORDER_BLOCKS,                    /* tv_id */
2120
  0,                                    /* properties_required */
2121
  0,                                    /* properties_provided */
2122
  0,                                    /* properties_destroyed */
2123
  0,                                    /* todo_flags_start */
2124
  TODO_verify_rtl_sharing,/* todo_flags_finish */
2125
 }
2126
};
2127
 
2128
 
2129
/* This function is the main 'entrance' for the optimization that
2130
   partitions hot and cold basic blocks into separate sections of the
2131
   .o file (to improve performance and cache locality).  Ideally it
2132
   would be called after all optimizations that rearrange the CFG have
2133
   been called.  However part of this optimization may introduce new
2134
   register usage, so it must be called before register allocation has
2135
   occurred.  This means that this optimization is actually called
2136
   well before the optimization that reorders basic blocks (see
2137
   function above).
2138
 
2139
   This optimization checks the feedback information to determine
2140
   which basic blocks are hot/cold, updates flags on the basic blocks
2141
   to indicate which section they belong in.  This information is
2142
   later used for writing out sections in the .o file.  Because hot
2143
   and cold sections can be arbitrarily large (within the bounds of
2144
   memory), far beyond the size of a single function, it is necessary
2145
   to fix up all edges that cross section boundaries, to make sure the
2146
   instructions used can actually span the required distance.  The
2147
   fixes are described below.
2148
 
2149
   Fall-through edges must be changed into jumps; it is not safe or
2150
   legal to fall through across a section boundary.  Whenever a
2151
   fall-through edge crossing a section boundary is encountered, a new
2152
   basic block is inserted (in the same section as the fall-through
2153
   source), and the fall through edge is redirected to the new basic
2154
   block.  The new basic block contains an unconditional jump to the
2155
   original fall-through target.  (If the unconditional jump is
2156
   insufficient to cross section boundaries, that is dealt with a
2157
   little later, see below).
2158
 
2159
   In order to deal with architectures that have short conditional
2160
   branches (which cannot span all of memory) we take any conditional
2161
   jump that attempts to cross a section boundary and add a level of
2162
   indirection: it becomes a conditional jump to a new basic block, in
2163
   the same section.  The new basic block contains an unconditional
2164
   jump to the original target, in the other section.
2165
 
2166
   For those architectures whose unconditional branch is also
2167
   incapable of reaching all of memory, those unconditional jumps are
2168
   converted into indirect jumps, through a register.
2169
 
2170
   IMPORTANT NOTE: This optimization causes some messy interactions
2171
   with the cfg cleanup optimizations; those optimizations want to
2172
   merge blocks wherever possible, and to collapse indirect jump
2173
   sequences (change "A jumps to B jumps to C" directly into "A jumps
2174
   to C").  Those optimizations can undo the jump fixes that
2175
   partitioning is required to make (see above), in order to ensure
2176
   that jumps attempting to cross section boundaries are really able
2177
   to cover whatever distance the jump requires (on many architectures
2178
   conditional or unconditional jumps are not able to reach all of
2179
   memory).  Therefore tests have to be inserted into each such
2180
   optimization to make sure that it does not undo stuff necessary to
2181
   cross partition boundaries.  This would be much less of a problem
2182
   if we could perform this optimization later in the compilation, but
2183
   unfortunately the fact that we may need to create indirect jumps
2184
   (through registers) requires that this optimization be performed
2185
   before register allocation.
2186
 
2187
   Hot and cold basic blocks are partitioned and put in separate
2188
   sections of the .o file, to reduce paging and improve cache
2189
   performance (hopefully).  This can result in bits of code from the
2190
   same function being widely separated in the .o file.  However this
2191
   is not obvious to the current bb structure.  Therefore we must take
2192
   care to ensure that: 1). There are no fall_thru edges that cross
2193
   between sections; 2). For those architectures which have "short"
2194
   conditional branches, all conditional branches that attempt to
2195
   cross between sections are converted to unconditional branches;
2196
   and, 3). For those architectures which have "short" unconditional
2197
   branches, all unconditional branches that attempt to cross between
2198
   sections are converted to indirect jumps.
2199
 
2200
   The code for fixing up fall_thru edges that cross between hot and
2201
   cold basic blocks does so by creating new basic blocks containing
2202
   unconditional branches to the appropriate label in the "other"
2203
   section.  The new basic block is then put in the same (hot or cold)
2204
   section as the original conditional branch, and the fall_thru edge
2205
   is modified to fall into the new basic block instead.  By adding
2206
   this level of indirection we end up with only unconditional branches
2207
   crossing between hot and cold sections.
2208
 
2209
   Conditional branches are dealt with by adding a level of indirection.
2210
   A new basic block is added in the same (hot/cold) section as the
2211
   conditional branch, and the conditional branch is retargeted to the
2212
   new basic block.  The new basic block contains an unconditional branch
2213
   to the original target of the conditional branch (in the other section).
2214
 
2215
   Unconditional branches are dealt with by converting them into
2216
   indirect jumps.  */
2217
 
2218
static unsigned
2219
partition_hot_cold_basic_blocks (void)
2220
{
2221
  VEC(edge, heap) *crossing_edges;
2222
 
2223
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2224
    return 0;
2225
 
2226
  df_set_flags (DF_DEFER_INSN_RESCAN);
2227
 
2228
  crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2229
  if (crossing_edges == NULL)
2230
    return 0;
2231
 
2232
  /* Make sure the source of any crossing edge ends in a jump and the
2233
     destination of any crossing edge has a label.  */
2234
  add_labels_and_missing_jumps (crossing_edges);
2235
 
2236
  /* Convert all crossing fall_thru edges to non-crossing fall
2237
     thrus to unconditional jumps (that jump to the original fall
2238
     thru dest).  */
2239
  fix_up_fall_thru_edges ();
2240
 
2241
  /* If the architecture does not have conditional branches that can
2242
     span all of memory, convert crossing conditional branches into
2243
     crossing unconditional branches.  */
2244
  if (!HAS_LONG_COND_BRANCH)
2245
    fix_crossing_conditional_branches ();
2246
 
2247
  /* If the architecture does not have unconditional branches that
2248
     can span all of memory, convert crossing unconditional branches
2249
     into indirect jumps.  Since adding an indirect jump also adds
2250
     a new register usage, update the register usage information as
2251
     well.  */
2252
  if (!HAS_LONG_UNCOND_BRANCH)
2253
    fix_crossing_unconditional_branches ();
2254
 
2255
  add_reg_crossing_jump_notes ();
2256
 
2257
  /* Clear bb->aux fields that the above routines were using.  */
2258
  clear_aux_for_blocks ();
2259
 
2260
  VEC_free (edge, heap, crossing_edges);
2261
 
2262
  /* ??? FIXME: DF generates the bb info for a block immediately.
2263
     And by immediately, I mean *during* creation of the block.
2264
 
2265
        #0  df_bb_refs_collect
2266
        #1  in df_bb_refs_record
2267
        #2  in create_basic_block_structure
2268
 
2269
     Which means that the bb_has_eh_pred test in df_bb_refs_collect
2270
     will *always* fail, because no edges can have been added to the
2271
     block yet.  Which of course means we don't add the right
2272
     artificial refs, which means we fail df_verify (much) later.
2273
 
2274
     Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
2275
     that we also shouldn't grab data from the new blocks those new
2276
     insns are in either.  In this way one can create the block, link
2277
     it up properly, and have everything Just Work later, when deferred
2278
     insns are processed.
2279
 
2280
     In the meantime, we have no other option but to throw away all
2281
     of the DF data and recompute it all.  */
2282
  if (cfun->eh->lp_array)
2283
    {
2284
      df_finish_pass (true);
2285
      df_scan_alloc (NULL);
2286
      df_scan_blocks ();
2287
      /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
2288
         data.  We blindly generated all of them when creating the new
2289
         landing pad.  Delete those assignments we don't use.  */
2290
      df_set_flags (DF_LR_RUN_DCE);
2291
      df_analyze ();
2292
    }
2293
 
2294
  return TODO_verify_flow | TODO_verify_rtl_sharing;
2295
}
2296
 
2297
static bool
2298
gate_handle_reorder_blocks (void)
2299
{
2300
  if (targetm.cannot_modify_jumps_p ())
2301
    return false;
2302
  /* Don't reorder blocks when optimizing for size because extra jump insns may
2303
     be created; also barrier may create extra padding.
2304
 
2305
     More correctly we should have a block reordering mode that tried to
2306
     minimize the combined size of all the jumps.  This would more or less
2307
     automatically remove extra jumps, but would also try to use more short
2308
     jumps instead of long jumps.  */
2309
  if (!optimize_function_for_speed_p (cfun))
2310
    return false;
2311
  return (optimize > 0
2312
          && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2313
}
2314
 
2315
 
2316
/* Reorder basic blocks.  */
2317
static unsigned int
2318
rest_of_handle_reorder_blocks (void)
2319
{
2320
  basic_block bb;
2321
 
2322
  /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2323
     splitting possibly introduced more crossjumping opportunities.  */
2324
  cfg_layout_initialize (CLEANUP_EXPENSIVE);
2325
 
2326
  reorder_basic_blocks ();
2327
  cleanup_cfg (CLEANUP_EXPENSIVE);
2328
 
2329
  FOR_EACH_BB (bb)
2330
    if (bb->next_bb != EXIT_BLOCK_PTR)
2331
      bb->aux = bb->next_bb;
2332
  cfg_layout_finalize ();
2333
 
2334
  /* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes.  */
2335
  insert_section_boundary_note ();
2336
  return 0;
2337
}
2338
 
2339
struct rtl_opt_pass pass_reorder_blocks =
2340
{
2341
 {
2342
  RTL_PASS,
2343
  "bbro",                               /* name */
2344
  gate_handle_reorder_blocks,           /* gate */
2345
  rest_of_handle_reorder_blocks,        /* execute */
2346
  NULL,                                 /* sub */
2347
  NULL,                                 /* next */
2348
  0,                                    /* static_pass_number */
2349
  TV_REORDER_BLOCKS,                    /* tv_id */
2350
  0,                                    /* properties_required */
2351
  0,                                    /* properties_provided */
2352
  0,                                    /* properties_destroyed */
2353
  0,                                    /* todo_flags_start */
2354
  TODO_verify_rtl_sharing,              /* todo_flags_finish */
2355
 }
2356
};
2357
 
2358
static bool
2359
gate_handle_partition_blocks (void)
2360
{
2361
  /* The optimization to partition hot/cold basic blocks into separate
2362
     sections of the .o file does not work well with linkonce or with
2363
     user defined section attributes.  Don't call it if either case
2364
     arises.  */
2365
  return (flag_reorder_blocks_and_partition
2366
          && optimize
2367
          /* See gate_handle_reorder_blocks.  We should not partition if
2368
             we are going to omit the reordering.  */
2369
          && optimize_function_for_speed_p (cfun)
2370
          && !DECL_ONE_ONLY (current_function_decl)
2371
          && !user_defined_section_attribute);
2372
}
2373
 
2374
struct rtl_opt_pass pass_partition_blocks =
2375
{
2376
 {
2377
  RTL_PASS,
2378
  "bbpart",                             /* name */
2379
  gate_handle_partition_blocks,         /* gate */
2380
  partition_hot_cold_basic_blocks,      /* execute */
2381
  NULL,                                 /* sub */
2382
  NULL,                                 /* next */
2383
  0,                                    /* static_pass_number */
2384
  TV_REORDER_BLOCKS,                    /* tv_id */
2385
  PROP_cfglayout,                       /* properties_required */
2386
  0,                                    /* properties_provided */
2387
  0,                                    /* properties_destroyed */
2388
  0,                                    /* todo_flags_start */
2389
 
2390
 }
2391
};

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.