| 1 |
684 |
jeremybenn |
/* Functions to support general ended bitmaps.
|
| 2 |
|
|
Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
| 3 |
|
|
2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 8 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 10 |
|
|
version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#ifndef GCC_BITMAP_H
|
| 22 |
|
|
#define GCC_BITMAP_H
|
| 23 |
|
|
#include "hashtab.h"
|
| 24 |
|
|
#include "statistics.h"
|
| 25 |
|
|
#include "obstack.h"
|
| 26 |
|
|
|
| 27 |
|
|
/* Fundamental storage type for bitmap. */
|
| 28 |
|
|
|
| 29 |
|
|
typedef unsigned long BITMAP_WORD;
|
| 30 |
|
|
/* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
|
| 31 |
|
|
it is used in preprocessor directives -- hence the 1u. */
|
| 32 |
|
|
#define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
|
| 33 |
|
|
|
| 34 |
|
|
/* Number of words to use for each element in the linked list. */
|
| 35 |
|
|
|
| 36 |
|
|
#ifndef BITMAP_ELEMENT_WORDS
|
| 37 |
|
|
#define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
|
| 38 |
|
|
#endif
|
| 39 |
|
|
|
| 40 |
|
|
/* Number of bits in each actual element of a bitmap. */
|
| 41 |
|
|
|
| 42 |
|
|
#define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
|
| 43 |
|
|
|
| 44 |
|
|
/* Obstack for allocating bitmaps and elements from. */
|
| 45 |
|
|
typedef struct GTY (()) bitmap_obstack {
|
| 46 |
|
|
struct bitmap_element_def *elements;
|
| 47 |
|
|
struct bitmap_head_def *heads;
|
| 48 |
|
|
struct obstack GTY ((skip)) obstack;
|
| 49 |
|
|
} bitmap_obstack;
|
| 50 |
|
|
|
| 51 |
|
|
/* Bitmap set element. We use a linked list to hold only the bits that
|
| 52 |
|
|
are set. This allows for use to grow the bitset dynamically without
|
| 53 |
|
|
having to realloc and copy a giant bit array.
|
| 54 |
|
|
|
| 55 |
|
|
The free list is implemented as a list of lists. There is one
|
| 56 |
|
|
outer list connected together by prev fields. Each element of that
|
| 57 |
|
|
outer is an inner list (that may consist only of the outer list
|
| 58 |
|
|
element) that are connected by the next fields. The prev pointer
|
| 59 |
|
|
is undefined for interior elements. This allows
|
| 60 |
|
|
bitmap_elt_clear_from to be implemented in unit time rather than
|
| 61 |
|
|
linear in the number of elements to be freed. */
|
| 62 |
|
|
|
| 63 |
|
|
typedef struct GTY(()) bitmap_element_def {
|
| 64 |
|
|
struct bitmap_element_def *next; /* Next element. */
|
| 65 |
|
|
struct bitmap_element_def *prev; /* Previous element. */
|
| 66 |
|
|
unsigned int indx; /* regno/BITMAP_ELEMENT_ALL_BITS. */
|
| 67 |
|
|
BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set. */
|
| 68 |
|
|
} bitmap_element;
|
| 69 |
|
|
|
| 70 |
|
|
struct bitmap_descriptor;
|
| 71 |
|
|
/* Head of bitmap linked list. gengtype ignores ifdefs, but for
|
| 72 |
|
|
statistics we need to add a bitmap descriptor pointer. As it is
|
| 73 |
|
|
not collected, we can just GTY((skip)) it. */
|
| 74 |
|
|
|
| 75 |
|
|
typedef struct GTY(()) bitmap_head_def {
|
| 76 |
|
|
bitmap_element *first; /* First element in linked list. */
|
| 77 |
|
|
bitmap_element *current; /* Last element looked at. */
|
| 78 |
|
|
unsigned int indx; /* Index of last element looked at. */
|
| 79 |
|
|
bitmap_obstack *obstack; /* Obstack to allocate elements from.
|
| 80 |
|
|
If NULL, then use GGC allocation. */
|
| 81 |
|
|
#ifdef GATHER_STATISTICS
|
| 82 |
|
|
struct bitmap_descriptor GTY((skip)) *desc;
|
| 83 |
|
|
#endif
|
| 84 |
|
|
} bitmap_head;
|
| 85 |
|
|
|
| 86 |
|
|
/* Global data */
|
| 87 |
|
|
extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
|
| 88 |
|
|
extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
|
| 89 |
|
|
|
| 90 |
|
|
/* Clear a bitmap by freeing up the linked list. */
|
| 91 |
|
|
extern void bitmap_clear (bitmap);
|
| 92 |
|
|
|
| 93 |
|
|
/* Copy a bitmap to another bitmap. */
|
| 94 |
|
|
extern void bitmap_copy (bitmap, const_bitmap);
|
| 95 |
|
|
|
| 96 |
|
|
/* True if two bitmaps are identical. */
|
| 97 |
|
|
extern bool bitmap_equal_p (const_bitmap, const_bitmap);
|
| 98 |
|
|
|
| 99 |
|
|
/* True if the bitmaps intersect (their AND is non-empty). */
|
| 100 |
|
|
extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
|
| 101 |
|
|
|
| 102 |
|
|
/* True if the complement of the second intersects the first (their
|
| 103 |
|
|
AND_COMPL is non-empty). */
|
| 104 |
|
|
extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
|
| 105 |
|
|
|
| 106 |
|
|
/* True if MAP is an empty bitmap. */
|
| 107 |
|
|
#define bitmap_empty_p(MAP) (!(MAP)->first)
|
| 108 |
|
|
|
| 109 |
|
|
/* True if the bitmap has only a single bit set. */
|
| 110 |
|
|
extern bool bitmap_single_bit_set_p (const_bitmap);
|
| 111 |
|
|
|
| 112 |
|
|
/* Count the number of bits set in the bitmap. */
|
| 113 |
|
|
extern unsigned long bitmap_count_bits (const_bitmap);
|
| 114 |
|
|
|
| 115 |
|
|
/* Boolean operations on bitmaps. The _into variants are two operand
|
| 116 |
|
|
versions that modify the first source operand. The other variants
|
| 117 |
|
|
are three operand versions that to not destroy the source bitmaps.
|
| 118 |
|
|
The operations supported are &, & ~, |, ^. */
|
| 119 |
|
|
extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
|
| 120 |
|
|
extern void bitmap_and_into (bitmap, const_bitmap);
|
| 121 |
|
|
extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
|
| 122 |
|
|
extern bool bitmap_and_compl_into (bitmap, const_bitmap);
|
| 123 |
|
|
#define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
|
| 124 |
|
|
extern void bitmap_compl_and_into (bitmap, const_bitmap);
|
| 125 |
|
|
extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
|
| 126 |
|
|
extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
|
| 127 |
|
|
extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
|
| 128 |
|
|
extern bool bitmap_ior_into (bitmap, const_bitmap);
|
| 129 |
|
|
extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
|
| 130 |
|
|
extern void bitmap_xor_into (bitmap, const_bitmap);
|
| 131 |
|
|
|
| 132 |
|
|
/* DST = A | (B & C). Return true if DST changes. */
|
| 133 |
|
|
extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
|
| 134 |
|
|
/* DST = A | (B & ~C). Return true if DST changes. */
|
| 135 |
|
|
extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A, const_bitmap B, const_bitmap C);
|
| 136 |
|
|
/* A |= (B & ~C). Return true if A changes. */
|
| 137 |
|
|
extern bool bitmap_ior_and_compl_into (bitmap DST, const_bitmap B, const_bitmap C);
|
| 138 |
|
|
|
| 139 |
|
|
/* Clear a single bit in a bitmap. Return true if the bit changed. */
|
| 140 |
|
|
extern bool bitmap_clear_bit (bitmap, int);
|
| 141 |
|
|
|
| 142 |
|
|
/* Set a single bit in a bitmap. Return true if the bit changed. */
|
| 143 |
|
|
extern bool bitmap_set_bit (bitmap, int);
|
| 144 |
|
|
|
| 145 |
|
|
/* Return true if a register is set in a register set. */
|
| 146 |
|
|
extern int bitmap_bit_p (bitmap, int);
|
| 147 |
|
|
|
| 148 |
|
|
/* Debug functions to print a bitmap linked list. */
|
| 149 |
|
|
extern void debug_bitmap (const_bitmap);
|
| 150 |
|
|
extern void debug_bitmap_file (FILE *, const_bitmap);
|
| 151 |
|
|
|
| 152 |
|
|
/* Print a bitmap. */
|
| 153 |
|
|
extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
|
| 154 |
|
|
|
| 155 |
|
|
/* Initialize and release a bitmap obstack. */
|
| 156 |
|
|
extern void bitmap_obstack_initialize (bitmap_obstack *);
|
| 157 |
|
|
extern void bitmap_obstack_release (bitmap_obstack *);
|
| 158 |
|
|
extern void bitmap_register (bitmap MEM_STAT_DECL);
|
| 159 |
|
|
extern void dump_bitmap_statistics (void);
|
| 160 |
|
|
|
| 161 |
|
|
/* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
|
| 162 |
|
|
to allocate from, NULL for GC'd bitmap. */
|
| 163 |
|
|
|
| 164 |
|
|
static inline void
|
| 165 |
|
|
bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
|
| 166 |
|
|
{
|
| 167 |
|
|
head->first = head->current = NULL;
|
| 168 |
|
|
head->obstack = obstack;
|
| 169 |
|
|
#ifdef GATHER_STATISTICS
|
| 170 |
|
|
bitmap_register (head PASS_MEM_STAT);
|
| 171 |
|
|
#endif
|
| 172 |
|
|
}
|
| 173 |
|
|
#define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
|
| 174 |
|
|
|
| 175 |
|
|
/* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
|
| 176 |
|
|
extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
|
| 177 |
|
|
#define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
|
| 178 |
|
|
extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
|
| 179 |
|
|
#define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
|
| 180 |
|
|
extern void bitmap_obstack_free (bitmap);
|
| 181 |
|
|
|
| 182 |
|
|
/* A few compatibility/functions macros for compatibility with sbitmaps */
|
| 183 |
|
|
#define dump_bitmap(file, bitmap) bitmap_print (file, bitmap, "", "\n")
|
| 184 |
|
|
#define bitmap_zero(a) bitmap_clear (a)
|
| 185 |
|
|
extern unsigned bitmap_first_set_bit (const_bitmap);
|
| 186 |
|
|
extern unsigned bitmap_last_set_bit (const_bitmap);
|
| 187 |
|
|
|
| 188 |
|
|
/* Compute bitmap hash (for purposes of hashing etc.) */
|
| 189 |
|
|
extern hashval_t bitmap_hash(const_bitmap);
|
| 190 |
|
|
|
| 191 |
|
|
/* Allocate a bitmap from a bit obstack. */
|
| 192 |
|
|
#define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
|
| 193 |
|
|
|
| 194 |
|
|
/* Allocate a gc'd bitmap. */
|
| 195 |
|
|
#define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
|
| 196 |
|
|
|
| 197 |
|
|
/* Do any cleanup needed on a bitmap when it is no longer used. */
|
| 198 |
|
|
#define BITMAP_FREE(BITMAP) \
|
| 199 |
|
|
((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
|
| 200 |
|
|
|
| 201 |
|
|
/* Iterator for bitmaps. */
|
| 202 |
|
|
|
| 203 |
|
|
typedef struct
|
| 204 |
|
|
{
|
| 205 |
|
|
/* Pointer to the current bitmap element. */
|
| 206 |
|
|
bitmap_element *elt1;
|
| 207 |
|
|
|
| 208 |
|
|
/* Pointer to 2nd bitmap element when two are involved. */
|
| 209 |
|
|
bitmap_element *elt2;
|
| 210 |
|
|
|
| 211 |
|
|
/* Word within the current element. */
|
| 212 |
|
|
unsigned word_no;
|
| 213 |
|
|
|
| 214 |
|
|
/* Contents of the actually processed word. When finding next bit
|
| 215 |
|
|
it is shifted right, so that the actual bit is always the least
|
| 216 |
|
|
significant bit of ACTUAL. */
|
| 217 |
|
|
BITMAP_WORD bits;
|
| 218 |
|
|
} bitmap_iterator;
|
| 219 |
|
|
|
| 220 |
|
|
/* Initialize a single bitmap iterator. START_BIT is the first bit to
|
| 221 |
|
|
iterate from. */
|
| 222 |
|
|
|
| 223 |
|
|
static inline void
|
| 224 |
|
|
bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
|
| 225 |
|
|
unsigned start_bit, unsigned *bit_no)
|
| 226 |
|
|
{
|
| 227 |
|
|
bi->elt1 = map->first;
|
| 228 |
|
|
bi->elt2 = NULL;
|
| 229 |
|
|
|
| 230 |
|
|
/* Advance elt1 until it is not before the block containing start_bit. */
|
| 231 |
|
|
while (1)
|
| 232 |
|
|
{
|
| 233 |
|
|
if (!bi->elt1)
|
| 234 |
|
|
{
|
| 235 |
|
|
bi->elt1 = &bitmap_zero_bits;
|
| 236 |
|
|
break;
|
| 237 |
|
|
}
|
| 238 |
|
|
|
| 239 |
|
|
if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
|
| 240 |
|
|
break;
|
| 241 |
|
|
bi->elt1 = bi->elt1->next;
|
| 242 |
|
|
}
|
| 243 |
|
|
|
| 244 |
|
|
/* We might have gone past the start bit, so reinitialize it. */
|
| 245 |
|
|
if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
|
| 246 |
|
|
start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
|
| 247 |
|
|
|
| 248 |
|
|
/* Initialize for what is now start_bit. */
|
| 249 |
|
|
bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
|
| 250 |
|
|
bi->bits = bi->elt1->bits[bi->word_no];
|
| 251 |
|
|
bi->bits >>= start_bit % BITMAP_WORD_BITS;
|
| 252 |
|
|
|
| 253 |
|
|
/* If this word is zero, we must make sure we're not pointing at the
|
| 254 |
|
|
first bit, otherwise our incrementing to the next word boundary
|
| 255 |
|
|
will fail. It won't matter if this increment moves us into the
|
| 256 |
|
|
next word. */
|
| 257 |
|
|
start_bit += !bi->bits;
|
| 258 |
|
|
|
| 259 |
|
|
*bit_no = start_bit;
|
| 260 |
|
|
}
|
| 261 |
|
|
|
| 262 |
|
|
/* Initialize an iterator to iterate over the intersection of two
|
| 263 |
|
|
bitmaps. START_BIT is the bit to commence from. */
|
| 264 |
|
|
|
| 265 |
|
|
static inline void
|
| 266 |
|
|
bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
|
| 267 |
|
|
unsigned start_bit, unsigned *bit_no)
|
| 268 |
|
|
{
|
| 269 |
|
|
bi->elt1 = map1->first;
|
| 270 |
|
|
bi->elt2 = map2->first;
|
| 271 |
|
|
|
| 272 |
|
|
/* Advance elt1 until it is not before the block containing
|
| 273 |
|
|
start_bit. */
|
| 274 |
|
|
while (1)
|
| 275 |
|
|
{
|
| 276 |
|
|
if (!bi->elt1)
|
| 277 |
|
|
{
|
| 278 |
|
|
bi->elt2 = NULL;
|
| 279 |
|
|
break;
|
| 280 |
|
|
}
|
| 281 |
|
|
|
| 282 |
|
|
if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
|
| 283 |
|
|
break;
|
| 284 |
|
|
bi->elt1 = bi->elt1->next;
|
| 285 |
|
|
}
|
| 286 |
|
|
|
| 287 |
|
|
/* Advance elt2 until it is not before elt1. */
|
| 288 |
|
|
while (1)
|
| 289 |
|
|
{
|
| 290 |
|
|
if (!bi->elt2)
|
| 291 |
|
|
{
|
| 292 |
|
|
bi->elt1 = bi->elt2 = &bitmap_zero_bits;
|
| 293 |
|
|
break;
|
| 294 |
|
|
}
|
| 295 |
|
|
|
| 296 |
|
|
if (bi->elt2->indx >= bi->elt1->indx)
|
| 297 |
|
|
break;
|
| 298 |
|
|
bi->elt2 = bi->elt2->next;
|
| 299 |
|
|
}
|
| 300 |
|
|
|
| 301 |
|
|
/* If we're at the same index, then we have some intersecting bits. */
|
| 302 |
|
|
if (bi->elt1->indx == bi->elt2->indx)
|
| 303 |
|
|
{
|
| 304 |
|
|
/* We might have advanced beyond the start_bit, so reinitialize
|
| 305 |
|
|
for that. */
|
| 306 |
|
|
if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
|
| 307 |
|
|
start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
|
| 308 |
|
|
|
| 309 |
|
|
bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
|
| 310 |
|
|
bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
|
| 311 |
|
|
bi->bits >>= start_bit % BITMAP_WORD_BITS;
|
| 312 |
|
|
}
|
| 313 |
|
|
else
|
| 314 |
|
|
{
|
| 315 |
|
|
/* Otherwise we must immediately advance elt1, so initialize for
|
| 316 |
|
|
that. */
|
| 317 |
|
|
bi->word_no = BITMAP_ELEMENT_WORDS - 1;
|
| 318 |
|
|
bi->bits = 0;
|
| 319 |
|
|
}
|
| 320 |
|
|
|
| 321 |
|
|
/* If this word is zero, we must make sure we're not pointing at the
|
| 322 |
|
|
first bit, otherwise our incrementing to the next word boundary
|
| 323 |
|
|
will fail. It won't matter if this increment moves us into the
|
| 324 |
|
|
next word. */
|
| 325 |
|
|
start_bit += !bi->bits;
|
| 326 |
|
|
|
| 327 |
|
|
*bit_no = start_bit;
|
| 328 |
|
|
}
|
| 329 |
|
|
|
| 330 |
|
|
/* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
|
| 331 |
|
|
*/
|
| 332 |
|
|
|
| 333 |
|
|
static inline void
|
| 334 |
|
|
bmp_iter_and_compl_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
|
| 335 |
|
|
unsigned start_bit, unsigned *bit_no)
|
| 336 |
|
|
{
|
| 337 |
|
|
bi->elt1 = map1->first;
|
| 338 |
|
|
bi->elt2 = map2->first;
|
| 339 |
|
|
|
| 340 |
|
|
/* Advance elt1 until it is not before the block containing start_bit. */
|
| 341 |
|
|
while (1)
|
| 342 |
|
|
{
|
| 343 |
|
|
if (!bi->elt1)
|
| 344 |
|
|
{
|
| 345 |
|
|
bi->elt1 = &bitmap_zero_bits;
|
| 346 |
|
|
break;
|
| 347 |
|
|
}
|
| 348 |
|
|
|
| 349 |
|
|
if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
|
| 350 |
|
|
break;
|
| 351 |
|
|
bi->elt1 = bi->elt1->next;
|
| 352 |
|
|
}
|
| 353 |
|
|
|
| 354 |
|
|
/* Advance elt2 until it is not before elt1. */
|
| 355 |
|
|
while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
|
| 356 |
|
|
bi->elt2 = bi->elt2->next;
|
| 357 |
|
|
|
| 358 |
|
|
/* We might have advanced beyond the start_bit, so reinitialize for
|
| 359 |
|
|
that. */
|
| 360 |
|
|
if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
|
| 361 |
|
|
start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
|
| 362 |
|
|
|
| 363 |
|
|
bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
|
| 364 |
|
|
bi->bits = bi->elt1->bits[bi->word_no];
|
| 365 |
|
|
if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
|
| 366 |
|
|
bi->bits &= ~bi->elt2->bits[bi->word_no];
|
| 367 |
|
|
bi->bits >>= start_bit % BITMAP_WORD_BITS;
|
| 368 |
|
|
|
| 369 |
|
|
/* If this word is zero, we must make sure we're not pointing at the
|
| 370 |
|
|
first bit, otherwise our incrementing to the next word boundary
|
| 371 |
|
|
will fail. It won't matter if this increment moves us into the
|
| 372 |
|
|
next word. */
|
| 373 |
|
|
start_bit += !bi->bits;
|
| 374 |
|
|
|
| 375 |
|
|
*bit_no = start_bit;
|
| 376 |
|
|
}
|
| 377 |
|
|
|
| 378 |
|
|
/* Advance to the next bit in BI. We don't advance to the next
|
| 379 |
|
|
nonzero bit yet. */
|
| 380 |
|
|
|
| 381 |
|
|
static inline void
|
| 382 |
|
|
bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
|
| 383 |
|
|
{
|
| 384 |
|
|
bi->bits >>= 1;
|
| 385 |
|
|
*bit_no += 1;
|
| 386 |
|
|
}
|
| 387 |
|
|
|
| 388 |
|
|
/* Advance to first set bit in BI. */
|
| 389 |
|
|
|
| 390 |
|
|
static inline void
|
| 391 |
|
|
bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
|
| 392 |
|
|
{
|
| 393 |
|
|
#if (GCC_VERSION >= 3004)
|
| 394 |
|
|
{
|
| 395 |
|
|
unsigned int n = __builtin_ctzl (bi->bits);
|
| 396 |
|
|
gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
|
| 397 |
|
|
bi->bits >>= n;
|
| 398 |
|
|
*bit_no += n;
|
| 399 |
|
|
}
|
| 400 |
|
|
#else
|
| 401 |
|
|
while (!(bi->bits & 1))
|
| 402 |
|
|
{
|
| 403 |
|
|
bi->bits >>= 1;
|
| 404 |
|
|
*bit_no += 1;
|
| 405 |
|
|
}
|
| 406 |
|
|
#endif
|
| 407 |
|
|
}
|
| 408 |
|
|
|
| 409 |
|
|
/* Advance to the next nonzero bit of a single bitmap, we will have
|
| 410 |
|
|
already advanced past the just iterated bit. Return true if there
|
| 411 |
|
|
is a bit to iterate. */
|
| 412 |
|
|
|
| 413 |
|
|
static inline bool
|
| 414 |
|
|
bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
|
| 415 |
|
|
{
|
| 416 |
|
|
/* If our current word is nonzero, it contains the bit we want. */
|
| 417 |
|
|
if (bi->bits)
|
| 418 |
|
|
{
|
| 419 |
|
|
next_bit:
|
| 420 |
|
|
bmp_iter_next_bit (bi, bit_no);
|
| 421 |
|
|
return true;
|
| 422 |
|
|
}
|
| 423 |
|
|
|
| 424 |
|
|
/* Round up to the word boundary. We might have just iterated past
|
| 425 |
|
|
the end of the last word, hence the -1. It is not possible for
|
| 426 |
|
|
bit_no to point at the beginning of the now last word. */
|
| 427 |
|
|
*bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
|
| 428 |
|
|
/ BITMAP_WORD_BITS * BITMAP_WORD_BITS);
|
| 429 |
|
|
bi->word_no++;
|
| 430 |
|
|
|
| 431 |
|
|
while (1)
|
| 432 |
|
|
{
|
| 433 |
|
|
/* Find the next nonzero word in this elt. */
|
| 434 |
|
|
while (bi->word_no != BITMAP_ELEMENT_WORDS)
|
| 435 |
|
|
{
|
| 436 |
|
|
bi->bits = bi->elt1->bits[bi->word_no];
|
| 437 |
|
|
if (bi->bits)
|
| 438 |
|
|
goto next_bit;
|
| 439 |
|
|
*bit_no += BITMAP_WORD_BITS;
|
| 440 |
|
|
bi->word_no++;
|
| 441 |
|
|
}
|
| 442 |
|
|
|
| 443 |
|
|
/* Advance to the next element. */
|
| 444 |
|
|
bi->elt1 = bi->elt1->next;
|
| 445 |
|
|
if (!bi->elt1)
|
| 446 |
|
|
return false;
|
| 447 |
|
|
*bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
|
| 448 |
|
|
bi->word_no = 0;
|
| 449 |
|
|
}
|
| 450 |
|
|
}
|
| 451 |
|
|
|
| 452 |
|
|
/* Advance to the next nonzero bit of an intersecting pair of
|
| 453 |
|
|
bitmaps. We will have already advanced past the just iterated bit.
|
| 454 |
|
|
Return true if there is a bit to iterate. */
|
| 455 |
|
|
|
| 456 |
|
|
static inline bool
|
| 457 |
|
|
bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
|
| 458 |
|
|
{
|
| 459 |
|
|
/* If our current word is nonzero, it contains the bit we want. */
|
| 460 |
|
|
if (bi->bits)
|
| 461 |
|
|
{
|
| 462 |
|
|
next_bit:
|
| 463 |
|
|
bmp_iter_next_bit (bi, bit_no);
|
| 464 |
|
|
return true;
|
| 465 |
|
|
}
|
| 466 |
|
|
|
| 467 |
|
|
/* Round up to the word boundary. We might have just iterated past
|
| 468 |
|
|
the end of the last word, hence the -1. It is not possible for
|
| 469 |
|
|
bit_no to point at the beginning of the now last word. */
|
| 470 |
|
|
*bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
|
| 471 |
|
|
/ BITMAP_WORD_BITS * BITMAP_WORD_BITS);
|
| 472 |
|
|
bi->word_no++;
|
| 473 |
|
|
|
| 474 |
|
|
while (1)
|
| 475 |
|
|
{
|
| 476 |
|
|
/* Find the next nonzero word in this elt. */
|
| 477 |
|
|
while (bi->word_no != BITMAP_ELEMENT_WORDS)
|
| 478 |
|
|
{
|
| 479 |
|
|
bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
|
| 480 |
|
|
if (bi->bits)
|
| 481 |
|
|
goto next_bit;
|
| 482 |
|
|
*bit_no += BITMAP_WORD_BITS;
|
| 483 |
|
|
bi->word_no++;
|
| 484 |
|
|
}
|
| 485 |
|
|
|
| 486 |
|
|
/* Advance to the next identical element. */
|
| 487 |
|
|
do
|
| 488 |
|
|
{
|
| 489 |
|
|
/* Advance elt1 while it is less than elt2. We always want
|
| 490 |
|
|
to advance one elt. */
|
| 491 |
|
|
do
|
| 492 |
|
|
{
|
| 493 |
|
|
bi->elt1 = bi->elt1->next;
|
| 494 |
|
|
if (!bi->elt1)
|
| 495 |
|
|
return false;
|
| 496 |
|
|
}
|
| 497 |
|
|
while (bi->elt1->indx < bi->elt2->indx);
|
| 498 |
|
|
|
| 499 |
|
|
/* Advance elt2 to be no less than elt1. This might not
|
| 500 |
|
|
advance. */
|
| 501 |
|
|
while (bi->elt2->indx < bi->elt1->indx)
|
| 502 |
|
|
{
|
| 503 |
|
|
bi->elt2 = bi->elt2->next;
|
| 504 |
|
|
if (!bi->elt2)
|
| 505 |
|
|
return false;
|
| 506 |
|
|
}
|
| 507 |
|
|
}
|
| 508 |
|
|
while (bi->elt1->indx != bi->elt2->indx);
|
| 509 |
|
|
|
| 510 |
|
|
*bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
|
| 511 |
|
|
bi->word_no = 0;
|
| 512 |
|
|
}
|
| 513 |
|
|
}
|
| 514 |
|
|
|
| 515 |
|
|
/* Advance to the next nonzero bit in the intersection of
|
| 516 |
|
|
complemented bitmaps. We will have already advanced past the just
|
| 517 |
|
|
iterated bit. */
|
| 518 |
|
|
|
| 519 |
|
|
static inline bool
|
| 520 |
|
|
bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
|
| 521 |
|
|
{
|
| 522 |
|
|
/* If our current word is nonzero, it contains the bit we want. */
|
| 523 |
|
|
if (bi->bits)
|
| 524 |
|
|
{
|
| 525 |
|
|
next_bit:
|
| 526 |
|
|
bmp_iter_next_bit (bi, bit_no);
|
| 527 |
|
|
return true;
|
| 528 |
|
|
}
|
| 529 |
|
|
|
| 530 |
|
|
/* Round up to the word boundary. We might have just iterated past
|
| 531 |
|
|
the end of the last word, hence the -1. It is not possible for
|
| 532 |
|
|
bit_no to point at the beginning of the now last word. */
|
| 533 |
|
|
*bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
|
| 534 |
|
|
/ BITMAP_WORD_BITS * BITMAP_WORD_BITS);
|
| 535 |
|
|
bi->word_no++;
|
| 536 |
|
|
|
| 537 |
|
|
while (1)
|
| 538 |
|
|
{
|
| 539 |
|
|
/* Find the next nonzero word in this elt. */
|
| 540 |
|
|
while (bi->word_no != BITMAP_ELEMENT_WORDS)
|
| 541 |
|
|
{
|
| 542 |
|
|
bi->bits = bi->elt1->bits[bi->word_no];
|
| 543 |
|
|
if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
|
| 544 |
|
|
bi->bits &= ~bi->elt2->bits[bi->word_no];
|
| 545 |
|
|
if (bi->bits)
|
| 546 |
|
|
goto next_bit;
|
| 547 |
|
|
*bit_no += BITMAP_WORD_BITS;
|
| 548 |
|
|
bi->word_no++;
|
| 549 |
|
|
}
|
| 550 |
|
|
|
| 551 |
|
|
/* Advance to the next element of elt1. */
|
| 552 |
|
|
bi->elt1 = bi->elt1->next;
|
| 553 |
|
|
if (!bi->elt1)
|
| 554 |
|
|
return false;
|
| 555 |
|
|
|
| 556 |
|
|
/* Advance elt2 until it is no less than elt1. */
|
| 557 |
|
|
while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
|
| 558 |
|
|
bi->elt2 = bi->elt2->next;
|
| 559 |
|
|
|
| 560 |
|
|
*bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
|
| 561 |
|
|
bi->word_no = 0;
|
| 562 |
|
|
}
|
| 563 |
|
|
}
|
| 564 |
|
|
|
| 565 |
|
|
/* Loop over all bits set in BITMAP, starting with MIN and setting
|
| 566 |
|
|
BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
|
| 567 |
|
|
should be treated as a read-only variable as it contains loop
|
| 568 |
|
|
state. */
|
| 569 |
|
|
|
| 570 |
|
|
#define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
|
| 571 |
|
|
for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
|
| 572 |
|
|
bmp_iter_set (&(ITER), &(BITNUM)); \
|
| 573 |
|
|
bmp_iter_next (&(ITER), &(BITNUM)))
|
| 574 |
|
|
|
| 575 |
|
|
/* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
|
| 576 |
|
|
and setting BITNUM to the bit number. ITER is a bitmap iterator.
|
| 577 |
|
|
BITNUM should be treated as a read-only variable as it contains
|
| 578 |
|
|
loop state. */
|
| 579 |
|
|
|
| 580 |
|
|
#define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
|
| 581 |
|
|
for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
|
| 582 |
|
|
&(BITNUM)); \
|
| 583 |
|
|
bmp_iter_and (&(ITER), &(BITNUM)); \
|
| 584 |
|
|
bmp_iter_next (&(ITER), &(BITNUM)))
|
| 585 |
|
|
|
| 586 |
|
|
/* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
|
| 587 |
|
|
and setting BITNUM to the bit number. ITER is a bitmap iterator.
|
| 588 |
|
|
BITNUM should be treated as a read-only variable as it contains
|
| 589 |
|
|
loop state. */
|
| 590 |
|
|
|
| 591 |
|
|
#define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
|
| 592 |
|
|
for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
|
| 593 |
|
|
&(BITNUM)); \
|
| 594 |
|
|
bmp_iter_and_compl (&(ITER), &(BITNUM)); \
|
| 595 |
|
|
bmp_iter_next (&(ITER), &(BITNUM)))
|
| 596 |
|
|
|
| 597 |
|
|
#endif /* GCC_BITMAP_H */
|