1 |
684 |
jeremybenn |
/* Convert function calls to rtl insns, for GNU C compiler.
|
2 |
|
|
Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
|
4 |
|
|
2011, 2012 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "gimple.h"
|
29 |
|
|
#include "flags.h"
|
30 |
|
|
#include "expr.h"
|
31 |
|
|
#include "optabs.h"
|
32 |
|
|
#include "libfuncs.h"
|
33 |
|
|
#include "function.h"
|
34 |
|
|
#include "regs.h"
|
35 |
|
|
#include "diagnostic-core.h"
|
36 |
|
|
#include "output.h"
|
37 |
|
|
#include "tm_p.h"
|
38 |
|
|
#include "timevar.h"
|
39 |
|
|
#include "sbitmap.h"
|
40 |
|
|
#include "langhooks.h"
|
41 |
|
|
#include "target.h"
|
42 |
|
|
#include "cgraph.h"
|
43 |
|
|
#include "except.h"
|
44 |
|
|
#include "dbgcnt.h"
|
45 |
|
|
#include "tree-flow.h"
|
46 |
|
|
|
47 |
|
|
/* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
|
48 |
|
|
#define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
|
49 |
|
|
|
50 |
|
|
/* Data structure and subroutines used within expand_call. */
|
51 |
|
|
|
52 |
|
|
struct arg_data
|
53 |
|
|
{
|
54 |
|
|
/* Tree node for this argument. */
|
55 |
|
|
tree tree_value;
|
56 |
|
|
/* Mode for value; TYPE_MODE unless promoted. */
|
57 |
|
|
enum machine_mode mode;
|
58 |
|
|
/* Current RTL value for argument, or 0 if it isn't precomputed. */
|
59 |
|
|
rtx value;
|
60 |
|
|
/* Initially-compute RTL value for argument; only for const functions. */
|
61 |
|
|
rtx initial_value;
|
62 |
|
|
/* Register to pass this argument in, 0 if passed on stack, or an
|
63 |
|
|
PARALLEL if the arg is to be copied into multiple non-contiguous
|
64 |
|
|
registers. */
|
65 |
|
|
rtx reg;
|
66 |
|
|
/* Register to pass this argument in when generating tail call sequence.
|
67 |
|
|
This is not the same register as for normal calls on machines with
|
68 |
|
|
register windows. */
|
69 |
|
|
rtx tail_call_reg;
|
70 |
|
|
/* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
|
71 |
|
|
form for emit_group_move. */
|
72 |
|
|
rtx parallel_value;
|
73 |
|
|
/* If REG was promoted from the actual mode of the argument expression,
|
74 |
|
|
indicates whether the promotion is sign- or zero-extended. */
|
75 |
|
|
int unsignedp;
|
76 |
|
|
/* Number of bytes to put in registers. 0 means put the whole arg
|
77 |
|
|
in registers. Also 0 if not passed in registers. */
|
78 |
|
|
int partial;
|
79 |
|
|
/* Nonzero if argument must be passed on stack.
|
80 |
|
|
Note that some arguments may be passed on the stack
|
81 |
|
|
even though pass_on_stack is zero, just because FUNCTION_ARG says so.
|
82 |
|
|
pass_on_stack identifies arguments that *cannot* go in registers. */
|
83 |
|
|
int pass_on_stack;
|
84 |
|
|
/* Some fields packaged up for locate_and_pad_parm. */
|
85 |
|
|
struct locate_and_pad_arg_data locate;
|
86 |
|
|
/* Location on the stack at which parameter should be stored. The store
|
87 |
|
|
has already been done if STACK == VALUE. */
|
88 |
|
|
rtx stack;
|
89 |
|
|
/* Location on the stack of the start of this argument slot. This can
|
90 |
|
|
differ from STACK if this arg pads downward. This location is known
|
91 |
|
|
to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
|
92 |
|
|
rtx stack_slot;
|
93 |
|
|
/* Place that this stack area has been saved, if needed. */
|
94 |
|
|
rtx save_area;
|
95 |
|
|
/* If an argument's alignment does not permit direct copying into registers,
|
96 |
|
|
copy in smaller-sized pieces into pseudos. These are stored in a
|
97 |
|
|
block pointed to by this field. The next field says how many
|
98 |
|
|
word-sized pseudos we made. */
|
99 |
|
|
rtx *aligned_regs;
|
100 |
|
|
int n_aligned_regs;
|
101 |
|
|
};
|
102 |
|
|
|
103 |
|
|
/* A vector of one char per byte of stack space. A byte if nonzero if
|
104 |
|
|
the corresponding stack location has been used.
|
105 |
|
|
This vector is used to prevent a function call within an argument from
|
106 |
|
|
clobbering any stack already set up. */
|
107 |
|
|
static char *stack_usage_map;
|
108 |
|
|
|
109 |
|
|
/* Size of STACK_USAGE_MAP. */
|
110 |
|
|
static int highest_outgoing_arg_in_use;
|
111 |
|
|
|
112 |
|
|
/* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
|
113 |
|
|
stack location's tail call argument has been already stored into the stack.
|
114 |
|
|
This bitmap is used to prevent sibling call optimization if function tries
|
115 |
|
|
to use parent's incoming argument slots when they have been already
|
116 |
|
|
overwritten with tail call arguments. */
|
117 |
|
|
static sbitmap stored_args_map;
|
118 |
|
|
|
119 |
|
|
/* stack_arg_under_construction is nonzero when an argument may be
|
120 |
|
|
initialized with a constructor call (including a C function that
|
121 |
|
|
returns a BLKmode struct) and expand_call must take special action
|
122 |
|
|
to make sure the object being constructed does not overlap the
|
123 |
|
|
argument list for the constructor call. */
|
124 |
|
|
static int stack_arg_under_construction;
|
125 |
|
|
|
126 |
|
|
static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
|
127 |
|
|
HOST_WIDE_INT, rtx, rtx, int, rtx, int,
|
128 |
|
|
cumulative_args_t);
|
129 |
|
|
static void precompute_register_parameters (int, struct arg_data *, int *);
|
130 |
|
|
static int store_one_arg (struct arg_data *, rtx, int, int, int);
|
131 |
|
|
static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
|
132 |
|
|
static int finalize_must_preallocate (int, int, struct arg_data *,
|
133 |
|
|
struct args_size *);
|
134 |
|
|
static void precompute_arguments (int, struct arg_data *);
|
135 |
|
|
static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
|
136 |
|
|
static void initialize_argument_information (int, struct arg_data *,
|
137 |
|
|
struct args_size *, int,
|
138 |
|
|
tree, tree,
|
139 |
|
|
tree, tree, cumulative_args_t, int,
|
140 |
|
|
rtx *, int *, int *, int *,
|
141 |
|
|
bool *, bool);
|
142 |
|
|
static void compute_argument_addresses (struct arg_data *, rtx, int);
|
143 |
|
|
static rtx rtx_for_function_call (tree, tree);
|
144 |
|
|
static void load_register_parameters (struct arg_data *, int, rtx *, int,
|
145 |
|
|
int, int *);
|
146 |
|
|
static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
|
147 |
|
|
enum machine_mode, int, va_list);
|
148 |
|
|
static int special_function_p (const_tree, int);
|
149 |
|
|
static int check_sibcall_argument_overlap_1 (rtx);
|
150 |
|
|
static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
|
151 |
|
|
|
152 |
|
|
static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
|
153 |
|
|
unsigned int);
|
154 |
|
|
static tree split_complex_types (tree);
|
155 |
|
|
|
156 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
157 |
|
|
static rtx save_fixed_argument_area (int, rtx, int *, int *);
|
158 |
|
|
static void restore_fixed_argument_area (rtx, rtx, int, int);
|
159 |
|
|
#endif
|
160 |
|
|
|
161 |
|
|
/* Force FUNEXP into a form suitable for the address of a CALL,
|
162 |
|
|
and return that as an rtx. Also load the static chain register
|
163 |
|
|
if FNDECL is a nested function.
|
164 |
|
|
|
165 |
|
|
CALL_FUSAGE points to a variable holding the prospective
|
166 |
|
|
CALL_INSN_FUNCTION_USAGE information. */
|
167 |
|
|
|
168 |
|
|
rtx
|
169 |
|
|
prepare_call_address (tree fndecl, rtx funexp, rtx static_chain_value,
|
170 |
|
|
rtx *call_fusage, int reg_parm_seen, int sibcallp)
|
171 |
|
|
{
|
172 |
|
|
/* Make a valid memory address and copy constants through pseudo-regs,
|
173 |
|
|
but not for a constant address if -fno-function-cse. */
|
174 |
|
|
if (GET_CODE (funexp) != SYMBOL_REF)
|
175 |
|
|
/* If we are using registers for parameters, force the
|
176 |
|
|
function address into a register now. */
|
177 |
|
|
funexp = ((reg_parm_seen
|
178 |
|
|
&& targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
|
179 |
|
|
? force_not_mem (memory_address (FUNCTION_MODE, funexp))
|
180 |
|
|
: memory_address (FUNCTION_MODE, funexp));
|
181 |
|
|
else if (! sibcallp)
|
182 |
|
|
{
|
183 |
|
|
#ifndef NO_FUNCTION_CSE
|
184 |
|
|
if (optimize && ! flag_no_function_cse)
|
185 |
|
|
funexp = force_reg (Pmode, funexp);
|
186 |
|
|
#endif
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
if (static_chain_value != 0)
|
190 |
|
|
{
|
191 |
|
|
rtx chain;
|
192 |
|
|
|
193 |
|
|
gcc_assert (fndecl);
|
194 |
|
|
chain = targetm.calls.static_chain (fndecl, false);
|
195 |
|
|
static_chain_value = convert_memory_address (Pmode, static_chain_value);
|
196 |
|
|
|
197 |
|
|
emit_move_insn (chain, static_chain_value);
|
198 |
|
|
if (REG_P (chain))
|
199 |
|
|
use_reg (call_fusage, chain);
|
200 |
|
|
}
|
201 |
|
|
|
202 |
|
|
return funexp;
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
/* Generate instructions to call function FUNEXP,
|
206 |
|
|
and optionally pop the results.
|
207 |
|
|
The CALL_INSN is the first insn generated.
|
208 |
|
|
|
209 |
|
|
FNDECL is the declaration node of the function. This is given to the
|
210 |
|
|
hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
|
211 |
|
|
its own args.
|
212 |
|
|
|
213 |
|
|
FUNTYPE is the data type of the function. This is given to the hook
|
214 |
|
|
TARGET_RETURN_POPS_ARGS to determine whether this function pops its
|
215 |
|
|
own args. We used to allow an identifier for library functions, but
|
216 |
|
|
that doesn't work when the return type is an aggregate type and the
|
217 |
|
|
calling convention says that the pointer to this aggregate is to be
|
218 |
|
|
popped by the callee.
|
219 |
|
|
|
220 |
|
|
STACK_SIZE is the number of bytes of arguments on the stack,
|
221 |
|
|
ROUNDED_STACK_SIZE is that number rounded up to
|
222 |
|
|
PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
|
223 |
|
|
both to put into the call insn and to generate explicit popping
|
224 |
|
|
code if necessary.
|
225 |
|
|
|
226 |
|
|
STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
|
227 |
|
|
It is zero if this call doesn't want a structure value.
|
228 |
|
|
|
229 |
|
|
NEXT_ARG_REG is the rtx that results from executing
|
230 |
|
|
targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
|
231 |
|
|
just after all the args have had their registers assigned.
|
232 |
|
|
This could be whatever you like, but normally it is the first
|
233 |
|
|
arg-register beyond those used for args in this call,
|
234 |
|
|
or 0 if all the arg-registers are used in this call.
|
235 |
|
|
It is passed on to `gen_call' so you can put this info in the call insn.
|
236 |
|
|
|
237 |
|
|
VALREG is a hard register in which a value is returned,
|
238 |
|
|
or 0 if the call does not return a value.
|
239 |
|
|
|
240 |
|
|
OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
|
241 |
|
|
the args to this call were processed.
|
242 |
|
|
We restore `inhibit_defer_pop' to that value.
|
243 |
|
|
|
244 |
|
|
CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
|
245 |
|
|
denote registers used by the called function. */
|
246 |
|
|
|
247 |
|
|
static void
|
248 |
|
|
emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
|
249 |
|
|
tree funtype ATTRIBUTE_UNUSED,
|
250 |
|
|
HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
|
251 |
|
|
HOST_WIDE_INT rounded_stack_size,
|
252 |
|
|
HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
|
253 |
|
|
rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
|
254 |
|
|
int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
|
255 |
|
|
cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
|
256 |
|
|
{
|
257 |
|
|
rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
|
258 |
|
|
rtx call_insn, call, funmem;
|
259 |
|
|
int already_popped = 0;
|
260 |
|
|
HOST_WIDE_INT n_popped
|
261 |
|
|
= targetm.calls.return_pops_args (fndecl, funtype, stack_size);
|
262 |
|
|
|
263 |
|
|
#ifdef CALL_POPS_ARGS
|
264 |
|
|
n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
|
265 |
|
|
#endif
|
266 |
|
|
|
267 |
|
|
/* Ensure address is valid. SYMBOL_REF is already valid, so no need,
|
268 |
|
|
and we don't want to load it into a register as an optimization,
|
269 |
|
|
because prepare_call_address already did it if it should be done. */
|
270 |
|
|
if (GET_CODE (funexp) != SYMBOL_REF)
|
271 |
|
|
funexp = memory_address (FUNCTION_MODE, funexp);
|
272 |
|
|
|
273 |
|
|
funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
|
274 |
|
|
if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
|
275 |
|
|
{
|
276 |
|
|
tree t = fndecl;
|
277 |
|
|
|
278 |
|
|
/* Although a built-in FUNCTION_DECL and its non-__builtin
|
279 |
|
|
counterpart compare equal and get a shared mem_attrs, they
|
280 |
|
|
produce different dump output in compare-debug compilations,
|
281 |
|
|
if an entry gets garbage collected in one compilation, then
|
282 |
|
|
adds a different (but equivalent) entry, while the other
|
283 |
|
|
doesn't run the garbage collector at the same spot and then
|
284 |
|
|
shares the mem_attr with the equivalent entry. */
|
285 |
|
|
if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
|
286 |
|
|
{
|
287 |
|
|
tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
|
288 |
|
|
if (t2)
|
289 |
|
|
t = t2;
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
set_mem_expr (funmem, t);
|
293 |
|
|
}
|
294 |
|
|
else if (fntree)
|
295 |
|
|
set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
|
296 |
|
|
|
297 |
|
|
#if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
|
298 |
|
|
if ((ecf_flags & ECF_SIBCALL)
|
299 |
|
|
&& HAVE_sibcall_pop && HAVE_sibcall_value_pop
|
300 |
|
|
&& (n_popped > 0 || stack_size == 0))
|
301 |
|
|
{
|
302 |
|
|
rtx n_pop = GEN_INT (n_popped);
|
303 |
|
|
rtx pat;
|
304 |
|
|
|
305 |
|
|
/* If this subroutine pops its own args, record that in the call insn
|
306 |
|
|
if possible, for the sake of frame pointer elimination. */
|
307 |
|
|
|
308 |
|
|
if (valreg)
|
309 |
|
|
pat = GEN_SIBCALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
|
310 |
|
|
next_arg_reg, n_pop);
|
311 |
|
|
else
|
312 |
|
|
pat = GEN_SIBCALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
|
313 |
|
|
n_pop);
|
314 |
|
|
|
315 |
|
|
emit_call_insn (pat);
|
316 |
|
|
already_popped = 1;
|
317 |
|
|
}
|
318 |
|
|
else
|
319 |
|
|
#endif
|
320 |
|
|
|
321 |
|
|
#if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
|
322 |
|
|
/* If the target has "call" or "call_value" insns, then prefer them
|
323 |
|
|
if no arguments are actually popped. If the target does not have
|
324 |
|
|
"call" or "call_value" insns, then we must use the popping versions
|
325 |
|
|
even if the call has no arguments to pop. */
|
326 |
|
|
#if defined (HAVE_call) && defined (HAVE_call_value)
|
327 |
|
|
if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
|
328 |
|
|
&& n_popped > 0)
|
329 |
|
|
#else
|
330 |
|
|
if (HAVE_call_pop && HAVE_call_value_pop)
|
331 |
|
|
#endif
|
332 |
|
|
{
|
333 |
|
|
rtx n_pop = GEN_INT (n_popped);
|
334 |
|
|
rtx pat;
|
335 |
|
|
|
336 |
|
|
/* If this subroutine pops its own args, record that in the call insn
|
337 |
|
|
if possible, for the sake of frame pointer elimination. */
|
338 |
|
|
|
339 |
|
|
if (valreg)
|
340 |
|
|
pat = GEN_CALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
|
341 |
|
|
next_arg_reg, n_pop);
|
342 |
|
|
else
|
343 |
|
|
pat = GEN_CALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
|
344 |
|
|
n_pop);
|
345 |
|
|
|
346 |
|
|
emit_call_insn (pat);
|
347 |
|
|
already_popped = 1;
|
348 |
|
|
}
|
349 |
|
|
else
|
350 |
|
|
#endif
|
351 |
|
|
|
352 |
|
|
#if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
|
353 |
|
|
if ((ecf_flags & ECF_SIBCALL)
|
354 |
|
|
&& HAVE_sibcall && HAVE_sibcall_value)
|
355 |
|
|
{
|
356 |
|
|
if (valreg)
|
357 |
|
|
emit_call_insn (GEN_SIBCALL_VALUE (valreg, funmem,
|
358 |
|
|
rounded_stack_size_rtx,
|
359 |
|
|
next_arg_reg, NULL_RTX));
|
360 |
|
|
else
|
361 |
|
|
emit_call_insn (GEN_SIBCALL (funmem, rounded_stack_size_rtx,
|
362 |
|
|
next_arg_reg,
|
363 |
|
|
GEN_INT (struct_value_size)));
|
364 |
|
|
}
|
365 |
|
|
else
|
366 |
|
|
#endif
|
367 |
|
|
|
368 |
|
|
#if defined (HAVE_call) && defined (HAVE_call_value)
|
369 |
|
|
if (HAVE_call && HAVE_call_value)
|
370 |
|
|
{
|
371 |
|
|
if (valreg)
|
372 |
|
|
emit_call_insn (GEN_CALL_VALUE (valreg, funmem, rounded_stack_size_rtx,
|
373 |
|
|
next_arg_reg, NULL_RTX));
|
374 |
|
|
else
|
375 |
|
|
emit_call_insn (GEN_CALL (funmem, rounded_stack_size_rtx, next_arg_reg,
|
376 |
|
|
GEN_INT (struct_value_size)));
|
377 |
|
|
}
|
378 |
|
|
else
|
379 |
|
|
#endif
|
380 |
|
|
gcc_unreachable ();
|
381 |
|
|
|
382 |
|
|
/* Find the call we just emitted. */
|
383 |
|
|
call_insn = last_call_insn ();
|
384 |
|
|
|
385 |
|
|
/* Some target create a fresh MEM instead of reusing the one provided
|
386 |
|
|
above. Set its MEM_EXPR. */
|
387 |
|
|
call = PATTERN (call_insn);
|
388 |
|
|
if (GET_CODE (call) == PARALLEL)
|
389 |
|
|
call = XVECEXP (call, 0, 0);
|
390 |
|
|
if (GET_CODE (call) == SET)
|
391 |
|
|
call = SET_SRC (call);
|
392 |
|
|
if (GET_CODE (call) == CALL
|
393 |
|
|
&& MEM_P (XEXP (call, 0))
|
394 |
|
|
&& MEM_EXPR (XEXP (call, 0)) == NULL_TREE
|
395 |
|
|
&& MEM_EXPR (funmem) != NULL_TREE)
|
396 |
|
|
set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
|
397 |
|
|
|
398 |
|
|
/* Put the register usage information there. */
|
399 |
|
|
add_function_usage_to (call_insn, call_fusage);
|
400 |
|
|
|
401 |
|
|
/* If this is a const call, then set the insn's unchanging bit. */
|
402 |
|
|
if (ecf_flags & ECF_CONST)
|
403 |
|
|
RTL_CONST_CALL_P (call_insn) = 1;
|
404 |
|
|
|
405 |
|
|
/* If this is a pure call, then set the insn's unchanging bit. */
|
406 |
|
|
if (ecf_flags & ECF_PURE)
|
407 |
|
|
RTL_PURE_CALL_P (call_insn) = 1;
|
408 |
|
|
|
409 |
|
|
/* If this is a const call, then set the insn's unchanging bit. */
|
410 |
|
|
if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
|
411 |
|
|
RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
|
412 |
|
|
|
413 |
|
|
/* Create a nothrow REG_EH_REGION note, if needed. */
|
414 |
|
|
make_reg_eh_region_note (call_insn, ecf_flags, 0);
|
415 |
|
|
|
416 |
|
|
if (ecf_flags & ECF_NORETURN)
|
417 |
|
|
add_reg_note (call_insn, REG_NORETURN, const0_rtx);
|
418 |
|
|
|
419 |
|
|
if (ecf_flags & ECF_RETURNS_TWICE)
|
420 |
|
|
{
|
421 |
|
|
add_reg_note (call_insn, REG_SETJMP, const0_rtx);
|
422 |
|
|
cfun->calls_setjmp = 1;
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
|
426 |
|
|
|
427 |
|
|
/* Restore this now, so that we do defer pops for this call's args
|
428 |
|
|
if the context of the call as a whole permits. */
|
429 |
|
|
inhibit_defer_pop = old_inhibit_defer_pop;
|
430 |
|
|
|
431 |
|
|
if (n_popped > 0)
|
432 |
|
|
{
|
433 |
|
|
if (!already_popped)
|
434 |
|
|
CALL_INSN_FUNCTION_USAGE (call_insn)
|
435 |
|
|
= gen_rtx_EXPR_LIST (VOIDmode,
|
436 |
|
|
gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
|
437 |
|
|
CALL_INSN_FUNCTION_USAGE (call_insn));
|
438 |
|
|
rounded_stack_size -= n_popped;
|
439 |
|
|
rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
|
440 |
|
|
stack_pointer_delta -= n_popped;
|
441 |
|
|
|
442 |
|
|
add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
|
443 |
|
|
|
444 |
|
|
/* If popup is needed, stack realign must use DRAP */
|
445 |
|
|
if (SUPPORTS_STACK_ALIGNMENT)
|
446 |
|
|
crtl->need_drap = true;
|
447 |
|
|
}
|
448 |
|
|
/* For noreturn calls when not accumulating outgoing args force
|
449 |
|
|
REG_ARGS_SIZE note to prevent crossjumping of calls with different
|
450 |
|
|
args sizes. */
|
451 |
|
|
else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
|
452 |
|
|
add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
|
453 |
|
|
|
454 |
|
|
if (!ACCUMULATE_OUTGOING_ARGS)
|
455 |
|
|
{
|
456 |
|
|
/* If returning from the subroutine does not automatically pop the args,
|
457 |
|
|
we need an instruction to pop them sooner or later.
|
458 |
|
|
Perhaps do it now; perhaps just record how much space to pop later.
|
459 |
|
|
|
460 |
|
|
If returning from the subroutine does pop the args, indicate that the
|
461 |
|
|
stack pointer will be changed. */
|
462 |
|
|
|
463 |
|
|
if (rounded_stack_size != 0)
|
464 |
|
|
{
|
465 |
|
|
if (ecf_flags & ECF_NORETURN)
|
466 |
|
|
/* Just pretend we did the pop. */
|
467 |
|
|
stack_pointer_delta -= rounded_stack_size;
|
468 |
|
|
else if (flag_defer_pop && inhibit_defer_pop == 0
|
469 |
|
|
&& ! (ecf_flags & (ECF_CONST | ECF_PURE)))
|
470 |
|
|
pending_stack_adjust += rounded_stack_size;
|
471 |
|
|
else
|
472 |
|
|
adjust_stack (rounded_stack_size_rtx);
|
473 |
|
|
}
|
474 |
|
|
}
|
475 |
|
|
/* When we accumulate outgoing args, we must avoid any stack manipulations.
|
476 |
|
|
Restore the stack pointer to its original value now. Usually
|
477 |
|
|
ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
|
478 |
|
|
On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
|
479 |
|
|
popping variants of functions exist as well.
|
480 |
|
|
|
481 |
|
|
??? We may optimize similar to defer_pop above, but it is
|
482 |
|
|
probably not worthwhile.
|
483 |
|
|
|
484 |
|
|
??? It will be worthwhile to enable combine_stack_adjustments even for
|
485 |
|
|
such machines. */
|
486 |
|
|
else if (n_popped)
|
487 |
|
|
anti_adjust_stack (GEN_INT (n_popped));
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
/* Determine if the function identified by NAME and FNDECL is one with
|
491 |
|
|
special properties we wish to know about.
|
492 |
|
|
|
493 |
|
|
For example, if the function might return more than one time (setjmp), then
|
494 |
|
|
set RETURNS_TWICE to a nonzero value.
|
495 |
|
|
|
496 |
|
|
Similarly set NORETURN if the function is in the longjmp family.
|
497 |
|
|
|
498 |
|
|
Set MAY_BE_ALLOCA for any memory allocation function that might allocate
|
499 |
|
|
space from the stack such as alloca. */
|
500 |
|
|
|
501 |
|
|
static int
|
502 |
|
|
special_function_p (const_tree fndecl, int flags)
|
503 |
|
|
{
|
504 |
|
|
if (fndecl && DECL_NAME (fndecl)
|
505 |
|
|
&& IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
|
506 |
|
|
/* Exclude functions not at the file scope, or not `extern',
|
507 |
|
|
since they are not the magic functions we would otherwise
|
508 |
|
|
think they are.
|
509 |
|
|
FIXME: this should be handled with attributes, not with this
|
510 |
|
|
hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
|
511 |
|
|
because you can declare fork() inside a function if you
|
512 |
|
|
wish. */
|
513 |
|
|
&& (DECL_CONTEXT (fndecl) == NULL_TREE
|
514 |
|
|
|| TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
|
515 |
|
|
&& TREE_PUBLIC (fndecl))
|
516 |
|
|
{
|
517 |
|
|
const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
|
518 |
|
|
const char *tname = name;
|
519 |
|
|
|
520 |
|
|
/* We assume that alloca will always be called by name. It
|
521 |
|
|
makes no sense to pass it as a pointer-to-function to
|
522 |
|
|
anything that does not understand its behavior. */
|
523 |
|
|
if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
|
524 |
|
|
&& name[0] == 'a'
|
525 |
|
|
&& ! strcmp (name, "alloca"))
|
526 |
|
|
|| (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
|
527 |
|
|
&& name[0] == '_'
|
528 |
|
|
&& ! strcmp (name, "__builtin_alloca"))))
|
529 |
|
|
flags |= ECF_MAY_BE_ALLOCA;
|
530 |
|
|
|
531 |
|
|
/* Disregard prefix _, __, __x or __builtin_. */
|
532 |
|
|
if (name[0] == '_')
|
533 |
|
|
{
|
534 |
|
|
if (name[1] == '_'
|
535 |
|
|
&& name[2] == 'b'
|
536 |
|
|
&& !strncmp (name + 3, "uiltin_", 7))
|
537 |
|
|
tname += 10;
|
538 |
|
|
else if (name[1] == '_' && name[2] == 'x')
|
539 |
|
|
tname += 3;
|
540 |
|
|
else if (name[1] == '_')
|
541 |
|
|
tname += 2;
|
542 |
|
|
else
|
543 |
|
|
tname += 1;
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
if (tname[0] == 's')
|
547 |
|
|
{
|
548 |
|
|
if ((tname[1] == 'e'
|
549 |
|
|
&& (! strcmp (tname, "setjmp")
|
550 |
|
|
|| ! strcmp (tname, "setjmp_syscall")))
|
551 |
|
|
|| (tname[1] == 'i'
|
552 |
|
|
&& ! strcmp (tname, "sigsetjmp"))
|
553 |
|
|
|| (tname[1] == 'a'
|
554 |
|
|
&& ! strcmp (tname, "savectx")))
|
555 |
|
|
flags |= ECF_RETURNS_TWICE;
|
556 |
|
|
|
557 |
|
|
if (tname[1] == 'i'
|
558 |
|
|
&& ! strcmp (tname, "siglongjmp"))
|
559 |
|
|
flags |= ECF_NORETURN;
|
560 |
|
|
}
|
561 |
|
|
else if ((tname[0] == 'q' && tname[1] == 's'
|
562 |
|
|
&& ! strcmp (tname, "qsetjmp"))
|
563 |
|
|
|| (tname[0] == 'v' && tname[1] == 'f'
|
564 |
|
|
&& ! strcmp (tname, "vfork"))
|
565 |
|
|
|| (tname[0] == 'g' && tname[1] == 'e'
|
566 |
|
|
&& !strcmp (tname, "getcontext")))
|
567 |
|
|
flags |= ECF_RETURNS_TWICE;
|
568 |
|
|
|
569 |
|
|
else if (tname[0] == 'l' && tname[1] == 'o'
|
570 |
|
|
&& ! strcmp (tname, "longjmp"))
|
571 |
|
|
flags |= ECF_NORETURN;
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
return flags;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
/* Return nonzero when FNDECL represents a call to setjmp. */
|
578 |
|
|
|
579 |
|
|
int
|
580 |
|
|
setjmp_call_p (const_tree fndecl)
|
581 |
|
|
{
|
582 |
|
|
if (DECL_IS_RETURNS_TWICE (fndecl))
|
583 |
|
|
return ECF_RETURNS_TWICE;
|
584 |
|
|
return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
|
585 |
|
|
}
|
586 |
|
|
|
587 |
|
|
|
588 |
|
|
/* Return true if STMT is an alloca call. */
|
589 |
|
|
|
590 |
|
|
bool
|
591 |
|
|
gimple_alloca_call_p (const_gimple stmt)
|
592 |
|
|
{
|
593 |
|
|
tree fndecl;
|
594 |
|
|
|
595 |
|
|
if (!is_gimple_call (stmt))
|
596 |
|
|
return false;
|
597 |
|
|
|
598 |
|
|
fndecl = gimple_call_fndecl (stmt);
|
599 |
|
|
if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
|
600 |
|
|
return true;
|
601 |
|
|
|
602 |
|
|
return false;
|
603 |
|
|
}
|
604 |
|
|
|
605 |
|
|
/* Return true when exp contains alloca call. */
|
606 |
|
|
|
607 |
|
|
bool
|
608 |
|
|
alloca_call_p (const_tree exp)
|
609 |
|
|
{
|
610 |
|
|
if (TREE_CODE (exp) == CALL_EXPR
|
611 |
|
|
&& TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
|
612 |
|
|
&& (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
|
613 |
|
|
&& (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
|
614 |
|
|
& ECF_MAY_BE_ALLOCA))
|
615 |
|
|
return true;
|
616 |
|
|
return false;
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
/* Return TRUE if FNDECL is either a TM builtin or a TM cloned
|
620 |
|
|
function. Return FALSE otherwise. */
|
621 |
|
|
|
622 |
|
|
static bool
|
623 |
|
|
is_tm_builtin (const_tree fndecl)
|
624 |
|
|
{
|
625 |
|
|
if (fndecl == NULL)
|
626 |
|
|
return false;
|
627 |
|
|
|
628 |
|
|
if (decl_is_tm_clone (fndecl))
|
629 |
|
|
return true;
|
630 |
|
|
|
631 |
|
|
if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
632 |
|
|
{
|
633 |
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
634 |
|
|
{
|
635 |
|
|
case BUILT_IN_TM_COMMIT:
|
636 |
|
|
case BUILT_IN_TM_COMMIT_EH:
|
637 |
|
|
case BUILT_IN_TM_ABORT:
|
638 |
|
|
case BUILT_IN_TM_IRREVOCABLE:
|
639 |
|
|
case BUILT_IN_TM_GETTMCLONE_IRR:
|
640 |
|
|
case BUILT_IN_TM_MEMCPY:
|
641 |
|
|
case BUILT_IN_TM_MEMMOVE:
|
642 |
|
|
case BUILT_IN_TM_MEMSET:
|
643 |
|
|
CASE_BUILT_IN_TM_STORE (1):
|
644 |
|
|
CASE_BUILT_IN_TM_STORE (2):
|
645 |
|
|
CASE_BUILT_IN_TM_STORE (4):
|
646 |
|
|
CASE_BUILT_IN_TM_STORE (8):
|
647 |
|
|
CASE_BUILT_IN_TM_STORE (FLOAT):
|
648 |
|
|
CASE_BUILT_IN_TM_STORE (DOUBLE):
|
649 |
|
|
CASE_BUILT_IN_TM_STORE (LDOUBLE):
|
650 |
|
|
CASE_BUILT_IN_TM_STORE (M64):
|
651 |
|
|
CASE_BUILT_IN_TM_STORE (M128):
|
652 |
|
|
CASE_BUILT_IN_TM_STORE (M256):
|
653 |
|
|
CASE_BUILT_IN_TM_LOAD (1):
|
654 |
|
|
CASE_BUILT_IN_TM_LOAD (2):
|
655 |
|
|
CASE_BUILT_IN_TM_LOAD (4):
|
656 |
|
|
CASE_BUILT_IN_TM_LOAD (8):
|
657 |
|
|
CASE_BUILT_IN_TM_LOAD (FLOAT):
|
658 |
|
|
CASE_BUILT_IN_TM_LOAD (DOUBLE):
|
659 |
|
|
CASE_BUILT_IN_TM_LOAD (LDOUBLE):
|
660 |
|
|
CASE_BUILT_IN_TM_LOAD (M64):
|
661 |
|
|
CASE_BUILT_IN_TM_LOAD (M128):
|
662 |
|
|
CASE_BUILT_IN_TM_LOAD (M256):
|
663 |
|
|
case BUILT_IN_TM_LOG:
|
664 |
|
|
case BUILT_IN_TM_LOG_1:
|
665 |
|
|
case BUILT_IN_TM_LOG_2:
|
666 |
|
|
case BUILT_IN_TM_LOG_4:
|
667 |
|
|
case BUILT_IN_TM_LOG_8:
|
668 |
|
|
case BUILT_IN_TM_LOG_FLOAT:
|
669 |
|
|
case BUILT_IN_TM_LOG_DOUBLE:
|
670 |
|
|
case BUILT_IN_TM_LOG_LDOUBLE:
|
671 |
|
|
case BUILT_IN_TM_LOG_M64:
|
672 |
|
|
case BUILT_IN_TM_LOG_M128:
|
673 |
|
|
case BUILT_IN_TM_LOG_M256:
|
674 |
|
|
return true;
|
675 |
|
|
default:
|
676 |
|
|
break;
|
677 |
|
|
}
|
678 |
|
|
}
|
679 |
|
|
return false;
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
/* Detect flags (function attributes) from the function decl or type node. */
|
683 |
|
|
|
684 |
|
|
int
|
685 |
|
|
flags_from_decl_or_type (const_tree exp)
|
686 |
|
|
{
|
687 |
|
|
int flags = 0;
|
688 |
|
|
|
689 |
|
|
if (DECL_P (exp))
|
690 |
|
|
{
|
691 |
|
|
/* The function exp may have the `malloc' attribute. */
|
692 |
|
|
if (DECL_IS_MALLOC (exp))
|
693 |
|
|
flags |= ECF_MALLOC;
|
694 |
|
|
|
695 |
|
|
/* The function exp may have the `returns_twice' attribute. */
|
696 |
|
|
if (DECL_IS_RETURNS_TWICE (exp))
|
697 |
|
|
flags |= ECF_RETURNS_TWICE;
|
698 |
|
|
|
699 |
|
|
/* Process the pure and const attributes. */
|
700 |
|
|
if (TREE_READONLY (exp))
|
701 |
|
|
flags |= ECF_CONST;
|
702 |
|
|
if (DECL_PURE_P (exp))
|
703 |
|
|
flags |= ECF_PURE;
|
704 |
|
|
if (DECL_LOOPING_CONST_OR_PURE_P (exp))
|
705 |
|
|
flags |= ECF_LOOPING_CONST_OR_PURE;
|
706 |
|
|
|
707 |
|
|
if (DECL_IS_NOVOPS (exp))
|
708 |
|
|
flags |= ECF_NOVOPS;
|
709 |
|
|
if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
|
710 |
|
|
flags |= ECF_LEAF;
|
711 |
|
|
|
712 |
|
|
if (TREE_NOTHROW (exp))
|
713 |
|
|
flags |= ECF_NOTHROW;
|
714 |
|
|
|
715 |
|
|
if (flag_tm)
|
716 |
|
|
{
|
717 |
|
|
if (is_tm_builtin (exp))
|
718 |
|
|
flags |= ECF_TM_BUILTIN;
|
719 |
|
|
else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
|
720 |
|
|
|| lookup_attribute ("transaction_pure",
|
721 |
|
|
TYPE_ATTRIBUTES (TREE_TYPE (exp))))
|
722 |
|
|
flags |= ECF_TM_PURE;
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
flags = special_function_p (exp, flags);
|
726 |
|
|
}
|
727 |
|
|
else if (TYPE_P (exp))
|
728 |
|
|
{
|
729 |
|
|
if (TYPE_READONLY (exp))
|
730 |
|
|
flags |= ECF_CONST;
|
731 |
|
|
|
732 |
|
|
if (flag_tm
|
733 |
|
|
&& ((flags & ECF_CONST) != 0
|
734 |
|
|
|| lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
|
735 |
|
|
flags |= ECF_TM_PURE;
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
if (TREE_THIS_VOLATILE (exp))
|
739 |
|
|
{
|
740 |
|
|
flags |= ECF_NORETURN;
|
741 |
|
|
if (flags & (ECF_CONST|ECF_PURE))
|
742 |
|
|
flags |= ECF_LOOPING_CONST_OR_PURE;
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
return flags;
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
/* Detect flags from a CALL_EXPR. */
|
749 |
|
|
|
750 |
|
|
int
|
751 |
|
|
call_expr_flags (const_tree t)
|
752 |
|
|
{
|
753 |
|
|
int flags;
|
754 |
|
|
tree decl = get_callee_fndecl (t);
|
755 |
|
|
|
756 |
|
|
if (decl)
|
757 |
|
|
flags = flags_from_decl_or_type (decl);
|
758 |
|
|
else
|
759 |
|
|
{
|
760 |
|
|
t = TREE_TYPE (CALL_EXPR_FN (t));
|
761 |
|
|
if (t && TREE_CODE (t) == POINTER_TYPE)
|
762 |
|
|
flags = flags_from_decl_or_type (TREE_TYPE (t));
|
763 |
|
|
else
|
764 |
|
|
flags = 0;
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
return flags;
|
768 |
|
|
}
|
769 |
|
|
|
770 |
|
|
/* Precompute all register parameters as described by ARGS, storing values
|
771 |
|
|
into fields within the ARGS array.
|
772 |
|
|
|
773 |
|
|
NUM_ACTUALS indicates the total number elements in the ARGS array.
|
774 |
|
|
|
775 |
|
|
Set REG_PARM_SEEN if we encounter a register parameter. */
|
776 |
|
|
|
777 |
|
|
static void
|
778 |
|
|
precompute_register_parameters (int num_actuals, struct arg_data *args,
|
779 |
|
|
int *reg_parm_seen)
|
780 |
|
|
{
|
781 |
|
|
int i;
|
782 |
|
|
|
783 |
|
|
*reg_parm_seen = 0;
|
784 |
|
|
|
785 |
|
|
for (i = 0; i < num_actuals; i++)
|
786 |
|
|
if (args[i].reg != 0 && ! args[i].pass_on_stack)
|
787 |
|
|
{
|
788 |
|
|
*reg_parm_seen = 1;
|
789 |
|
|
|
790 |
|
|
if (args[i].value == 0)
|
791 |
|
|
{
|
792 |
|
|
push_temp_slots ();
|
793 |
|
|
args[i].value = expand_normal (args[i].tree_value);
|
794 |
|
|
preserve_temp_slots (args[i].value);
|
795 |
|
|
pop_temp_slots ();
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
/* If we are to promote the function arg to a wider mode,
|
799 |
|
|
do it now. */
|
800 |
|
|
|
801 |
|
|
if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
|
802 |
|
|
args[i].value
|
803 |
|
|
= convert_modes (args[i].mode,
|
804 |
|
|
TYPE_MODE (TREE_TYPE (args[i].tree_value)),
|
805 |
|
|
args[i].value, args[i].unsignedp);
|
806 |
|
|
|
807 |
|
|
/* If the value is a non-legitimate constant, force it into a
|
808 |
|
|
pseudo now. TLS symbols sometimes need a call to resolve. */
|
809 |
|
|
if (CONSTANT_P (args[i].value)
|
810 |
|
|
&& !targetm.legitimate_constant_p (args[i].mode, args[i].value))
|
811 |
|
|
args[i].value = force_reg (args[i].mode, args[i].value);
|
812 |
|
|
|
813 |
|
|
/* If we're going to have to load the value by parts, pull the
|
814 |
|
|
parts into pseudos. The part extraction process can involve
|
815 |
|
|
non-trivial computation. */
|
816 |
|
|
if (GET_CODE (args[i].reg) == PARALLEL)
|
817 |
|
|
{
|
818 |
|
|
tree type = TREE_TYPE (args[i].tree_value);
|
819 |
|
|
args[i].parallel_value
|
820 |
|
|
= emit_group_load_into_temps (args[i].reg, args[i].value,
|
821 |
|
|
type, int_size_in_bytes (type));
|
822 |
|
|
}
|
823 |
|
|
|
824 |
|
|
/* If the value is expensive, and we are inside an appropriately
|
825 |
|
|
short loop, put the value into a pseudo and then put the pseudo
|
826 |
|
|
into the hard reg.
|
827 |
|
|
|
828 |
|
|
For small register classes, also do this if this call uses
|
829 |
|
|
register parameters. This is to avoid reload conflicts while
|
830 |
|
|
loading the parameters registers. */
|
831 |
|
|
|
832 |
|
|
else if ((! (REG_P (args[i].value)
|
833 |
|
|
|| (GET_CODE (args[i].value) == SUBREG
|
834 |
|
|
&& REG_P (SUBREG_REG (args[i].value)))))
|
835 |
|
|
&& args[i].mode != BLKmode
|
836 |
|
|
&& set_src_cost (args[i].value, optimize_insn_for_speed_p ())
|
837 |
|
|
> COSTS_N_INSNS (1)
|
838 |
|
|
&& ((*reg_parm_seen
|
839 |
|
|
&& targetm.small_register_classes_for_mode_p (args[i].mode))
|
840 |
|
|
|| optimize))
|
841 |
|
|
args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
|
842 |
|
|
}
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
846 |
|
|
|
847 |
|
|
/* The argument list is the property of the called routine and it
|
848 |
|
|
may clobber it. If the fixed area has been used for previous
|
849 |
|
|
parameters, we must save and restore it. */
|
850 |
|
|
|
851 |
|
|
static rtx
|
852 |
|
|
save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
|
853 |
|
|
{
|
854 |
|
|
int low;
|
855 |
|
|
int high;
|
856 |
|
|
|
857 |
|
|
/* Compute the boundary of the area that needs to be saved, if any. */
|
858 |
|
|
high = reg_parm_stack_space;
|
859 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
860 |
|
|
high += 1;
|
861 |
|
|
#endif
|
862 |
|
|
if (high > highest_outgoing_arg_in_use)
|
863 |
|
|
high = highest_outgoing_arg_in_use;
|
864 |
|
|
|
865 |
|
|
for (low = 0; low < high; low++)
|
866 |
|
|
if (stack_usage_map[low] != 0)
|
867 |
|
|
{
|
868 |
|
|
int num_to_save;
|
869 |
|
|
enum machine_mode save_mode;
|
870 |
|
|
int delta;
|
871 |
|
|
rtx stack_area;
|
872 |
|
|
rtx save_area;
|
873 |
|
|
|
874 |
|
|
while (stack_usage_map[--high] == 0)
|
875 |
|
|
;
|
876 |
|
|
|
877 |
|
|
*low_to_save = low;
|
878 |
|
|
*high_to_save = high;
|
879 |
|
|
|
880 |
|
|
num_to_save = high - low + 1;
|
881 |
|
|
save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
|
882 |
|
|
|
883 |
|
|
/* If we don't have the required alignment, must do this
|
884 |
|
|
in BLKmode. */
|
885 |
|
|
if ((low & (MIN (GET_MODE_SIZE (save_mode),
|
886 |
|
|
BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
|
887 |
|
|
save_mode = BLKmode;
|
888 |
|
|
|
889 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
890 |
|
|
delta = -high;
|
891 |
|
|
#else
|
892 |
|
|
delta = low;
|
893 |
|
|
#endif
|
894 |
|
|
stack_area = gen_rtx_MEM (save_mode,
|
895 |
|
|
memory_address (save_mode,
|
896 |
|
|
plus_constant (argblock,
|
897 |
|
|
delta)));
|
898 |
|
|
|
899 |
|
|
set_mem_align (stack_area, PARM_BOUNDARY);
|
900 |
|
|
if (save_mode == BLKmode)
|
901 |
|
|
{
|
902 |
|
|
save_area = assign_stack_temp (BLKmode, num_to_save, 0);
|
903 |
|
|
emit_block_move (validize_mem (save_area), stack_area,
|
904 |
|
|
GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
|
905 |
|
|
}
|
906 |
|
|
else
|
907 |
|
|
{
|
908 |
|
|
save_area = gen_reg_rtx (save_mode);
|
909 |
|
|
emit_move_insn (save_area, stack_area);
|
910 |
|
|
}
|
911 |
|
|
|
912 |
|
|
return save_area;
|
913 |
|
|
}
|
914 |
|
|
|
915 |
|
|
return NULL_RTX;
|
916 |
|
|
}
|
917 |
|
|
|
918 |
|
|
static void
|
919 |
|
|
restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
|
920 |
|
|
{
|
921 |
|
|
enum machine_mode save_mode = GET_MODE (save_area);
|
922 |
|
|
int delta;
|
923 |
|
|
rtx stack_area;
|
924 |
|
|
|
925 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
926 |
|
|
delta = -high_to_save;
|
927 |
|
|
#else
|
928 |
|
|
delta = low_to_save;
|
929 |
|
|
#endif
|
930 |
|
|
stack_area = gen_rtx_MEM (save_mode,
|
931 |
|
|
memory_address (save_mode,
|
932 |
|
|
plus_constant (argblock, delta)));
|
933 |
|
|
set_mem_align (stack_area, PARM_BOUNDARY);
|
934 |
|
|
|
935 |
|
|
if (save_mode != BLKmode)
|
936 |
|
|
emit_move_insn (stack_area, save_area);
|
937 |
|
|
else
|
938 |
|
|
emit_block_move (stack_area, validize_mem (save_area),
|
939 |
|
|
GEN_INT (high_to_save - low_to_save + 1),
|
940 |
|
|
BLOCK_OP_CALL_PARM);
|
941 |
|
|
}
|
942 |
|
|
#endif /* REG_PARM_STACK_SPACE */
|
943 |
|
|
|
944 |
|
|
/* If any elements in ARGS refer to parameters that are to be passed in
|
945 |
|
|
registers, but not in memory, and whose alignment does not permit a
|
946 |
|
|
direct copy into registers. Copy the values into a group of pseudos
|
947 |
|
|
which we will later copy into the appropriate hard registers.
|
948 |
|
|
|
949 |
|
|
Pseudos for each unaligned argument will be stored into the array
|
950 |
|
|
args[argnum].aligned_regs. The caller is responsible for deallocating
|
951 |
|
|
the aligned_regs array if it is nonzero. */
|
952 |
|
|
|
953 |
|
|
static void
|
954 |
|
|
store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
|
955 |
|
|
{
|
956 |
|
|
int i, j;
|
957 |
|
|
|
958 |
|
|
for (i = 0; i < num_actuals; i++)
|
959 |
|
|
if (args[i].reg != 0 && ! args[i].pass_on_stack
|
960 |
|
|
&& args[i].mode == BLKmode
|
961 |
|
|
&& MEM_P (args[i].value)
|
962 |
|
|
&& (MEM_ALIGN (args[i].value)
|
963 |
|
|
< (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
|
964 |
|
|
{
|
965 |
|
|
int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
|
966 |
|
|
int endian_correction = 0;
|
967 |
|
|
|
968 |
|
|
if (args[i].partial)
|
969 |
|
|
{
|
970 |
|
|
gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
|
971 |
|
|
args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
|
972 |
|
|
}
|
973 |
|
|
else
|
974 |
|
|
{
|
975 |
|
|
args[i].n_aligned_regs
|
976 |
|
|
= (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
977 |
|
|
}
|
978 |
|
|
|
979 |
|
|
args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
|
980 |
|
|
|
981 |
|
|
/* Structures smaller than a word are normally aligned to the
|
982 |
|
|
least significant byte. On a BYTES_BIG_ENDIAN machine,
|
983 |
|
|
this means we must skip the empty high order bytes when
|
984 |
|
|
calculating the bit offset. */
|
985 |
|
|
if (bytes < UNITS_PER_WORD
|
986 |
|
|
#ifdef BLOCK_REG_PADDING
|
987 |
|
|
&& (BLOCK_REG_PADDING (args[i].mode,
|
988 |
|
|
TREE_TYPE (args[i].tree_value), 1)
|
989 |
|
|
== downward)
|
990 |
|
|
#else
|
991 |
|
|
&& BYTES_BIG_ENDIAN
|
992 |
|
|
#endif
|
993 |
|
|
)
|
994 |
|
|
endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
|
995 |
|
|
|
996 |
|
|
for (j = 0; j < args[i].n_aligned_regs; j++)
|
997 |
|
|
{
|
998 |
|
|
rtx reg = gen_reg_rtx (word_mode);
|
999 |
|
|
rtx word = operand_subword_force (args[i].value, j, BLKmode);
|
1000 |
|
|
int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
|
1001 |
|
|
|
1002 |
|
|
args[i].aligned_regs[j] = reg;
|
1003 |
|
|
word = extract_bit_field (word, bitsize, 0, 1, false, NULL_RTX,
|
1004 |
|
|
word_mode, word_mode);
|
1005 |
|
|
|
1006 |
|
|
/* There is no need to restrict this code to loading items
|
1007 |
|
|
in TYPE_ALIGN sized hunks. The bitfield instructions can
|
1008 |
|
|
load up entire word sized registers efficiently.
|
1009 |
|
|
|
1010 |
|
|
??? This may not be needed anymore.
|
1011 |
|
|
We use to emit a clobber here but that doesn't let later
|
1012 |
|
|
passes optimize the instructions we emit. By storing 0 into
|
1013 |
|
|
the register later passes know the first AND to zero out the
|
1014 |
|
|
bitfield being set in the register is unnecessary. The store
|
1015 |
|
|
of 0 will be deleted as will at least the first AND. */
|
1016 |
|
|
|
1017 |
|
|
emit_move_insn (reg, const0_rtx);
|
1018 |
|
|
|
1019 |
|
|
bytes -= bitsize / BITS_PER_UNIT;
|
1020 |
|
|
store_bit_field (reg, bitsize, endian_correction, 0, 0,
|
1021 |
|
|
word_mode, word);
|
1022 |
|
|
}
|
1023 |
|
|
}
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
/* Fill in ARGS_SIZE and ARGS array based on the parameters found in
|
1027 |
|
|
CALL_EXPR EXP.
|
1028 |
|
|
|
1029 |
|
|
NUM_ACTUALS is the total number of parameters.
|
1030 |
|
|
|
1031 |
|
|
N_NAMED_ARGS is the total number of named arguments.
|
1032 |
|
|
|
1033 |
|
|
STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
|
1034 |
|
|
value, or null.
|
1035 |
|
|
|
1036 |
|
|
FNDECL is the tree code for the target of this call (if known)
|
1037 |
|
|
|
1038 |
|
|
ARGS_SO_FAR holds state needed by the target to know where to place
|
1039 |
|
|
the next argument.
|
1040 |
|
|
|
1041 |
|
|
REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
|
1042 |
|
|
for arguments which are passed in registers.
|
1043 |
|
|
|
1044 |
|
|
OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
|
1045 |
|
|
and may be modified by this routine.
|
1046 |
|
|
|
1047 |
|
|
OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
|
1048 |
|
|
flags which may may be modified by this routine.
|
1049 |
|
|
|
1050 |
|
|
MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
|
1051 |
|
|
that requires allocation of stack space.
|
1052 |
|
|
|
1053 |
|
|
CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
|
1054 |
|
|
the thunked-to function. */
|
1055 |
|
|
|
1056 |
|
|
static void
|
1057 |
|
|
initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
|
1058 |
|
|
struct arg_data *args,
|
1059 |
|
|
struct args_size *args_size,
|
1060 |
|
|
int n_named_args ATTRIBUTE_UNUSED,
|
1061 |
|
|
tree exp, tree struct_value_addr_value,
|
1062 |
|
|
tree fndecl, tree fntype,
|
1063 |
|
|
cumulative_args_t args_so_far,
|
1064 |
|
|
int reg_parm_stack_space,
|
1065 |
|
|
rtx *old_stack_level, int *old_pending_adj,
|
1066 |
|
|
int *must_preallocate, int *ecf_flags,
|
1067 |
|
|
bool *may_tailcall, bool call_from_thunk_p)
|
1068 |
|
|
{
|
1069 |
|
|
CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
|
1070 |
|
|
location_t loc = EXPR_LOCATION (exp);
|
1071 |
|
|
/* 1 if scanning parms front to back, -1 if scanning back to front. */
|
1072 |
|
|
int inc;
|
1073 |
|
|
|
1074 |
|
|
/* Count arg position in order args appear. */
|
1075 |
|
|
int argpos;
|
1076 |
|
|
|
1077 |
|
|
int i;
|
1078 |
|
|
|
1079 |
|
|
args_size->constant = 0;
|
1080 |
|
|
args_size->var = 0;
|
1081 |
|
|
|
1082 |
|
|
/* In this loop, we consider args in the order they are written.
|
1083 |
|
|
We fill up ARGS from the front or from the back if necessary
|
1084 |
|
|
so that in any case the first arg to be pushed ends up at the front. */
|
1085 |
|
|
|
1086 |
|
|
if (PUSH_ARGS_REVERSED)
|
1087 |
|
|
{
|
1088 |
|
|
i = num_actuals - 1, inc = -1;
|
1089 |
|
|
/* In this case, must reverse order of args
|
1090 |
|
|
so that we compute and push the last arg first. */
|
1091 |
|
|
}
|
1092 |
|
|
else
|
1093 |
|
|
{
|
1094 |
|
|
i = 0, inc = 1;
|
1095 |
|
|
}
|
1096 |
|
|
|
1097 |
|
|
/* First fill in the actual arguments in the ARGS array, splitting
|
1098 |
|
|
complex arguments if necessary. */
|
1099 |
|
|
{
|
1100 |
|
|
int j = i;
|
1101 |
|
|
call_expr_arg_iterator iter;
|
1102 |
|
|
tree arg;
|
1103 |
|
|
|
1104 |
|
|
if (struct_value_addr_value)
|
1105 |
|
|
{
|
1106 |
|
|
args[j].tree_value = struct_value_addr_value;
|
1107 |
|
|
j += inc;
|
1108 |
|
|
}
|
1109 |
|
|
FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
|
1110 |
|
|
{
|
1111 |
|
|
tree argtype = TREE_TYPE (arg);
|
1112 |
|
|
if (targetm.calls.split_complex_arg
|
1113 |
|
|
&& argtype
|
1114 |
|
|
&& TREE_CODE (argtype) == COMPLEX_TYPE
|
1115 |
|
|
&& targetm.calls.split_complex_arg (argtype))
|
1116 |
|
|
{
|
1117 |
|
|
tree subtype = TREE_TYPE (argtype);
|
1118 |
|
|
args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
|
1119 |
|
|
j += inc;
|
1120 |
|
|
args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
|
1121 |
|
|
}
|
1122 |
|
|
else
|
1123 |
|
|
args[j].tree_value = arg;
|
1124 |
|
|
j += inc;
|
1125 |
|
|
}
|
1126 |
|
|
}
|
1127 |
|
|
|
1128 |
|
|
/* I counts args in order (to be) pushed; ARGPOS counts in order written. */
|
1129 |
|
|
for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
|
1130 |
|
|
{
|
1131 |
|
|
tree type = TREE_TYPE (args[i].tree_value);
|
1132 |
|
|
int unsignedp;
|
1133 |
|
|
enum machine_mode mode;
|
1134 |
|
|
|
1135 |
|
|
/* Replace erroneous argument with constant zero. */
|
1136 |
|
|
if (type == error_mark_node || !COMPLETE_TYPE_P (type))
|
1137 |
|
|
args[i].tree_value = integer_zero_node, type = integer_type_node;
|
1138 |
|
|
|
1139 |
|
|
/* If TYPE is a transparent union or record, pass things the way
|
1140 |
|
|
we would pass the first field of the union or record. We have
|
1141 |
|
|
already verified that the modes are the same. */
|
1142 |
|
|
if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
|
1143 |
|
|
&& TYPE_TRANSPARENT_AGGR (type))
|
1144 |
|
|
type = TREE_TYPE (first_field (type));
|
1145 |
|
|
|
1146 |
|
|
/* Decide where to pass this arg.
|
1147 |
|
|
|
1148 |
|
|
args[i].reg is nonzero if all or part is passed in registers.
|
1149 |
|
|
|
1150 |
|
|
args[i].partial is nonzero if part but not all is passed in registers,
|
1151 |
|
|
and the exact value says how many bytes are passed in registers.
|
1152 |
|
|
|
1153 |
|
|
args[i].pass_on_stack is nonzero if the argument must at least be
|
1154 |
|
|
computed on the stack. It may then be loaded back into registers
|
1155 |
|
|
if args[i].reg is nonzero.
|
1156 |
|
|
|
1157 |
|
|
These decisions are driven by the FUNCTION_... macros and must agree
|
1158 |
|
|
with those made by function.c. */
|
1159 |
|
|
|
1160 |
|
|
/* See if this argument should be passed by invisible reference. */
|
1161 |
|
|
if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
|
1162 |
|
|
type, argpos < n_named_args))
|
1163 |
|
|
{
|
1164 |
|
|
bool callee_copies;
|
1165 |
|
|
tree base = NULL_TREE;
|
1166 |
|
|
|
1167 |
|
|
callee_copies
|
1168 |
|
|
= reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
|
1169 |
|
|
type, argpos < n_named_args);
|
1170 |
|
|
|
1171 |
|
|
/* If we're compiling a thunk, pass through invisible references
|
1172 |
|
|
instead of making a copy. */
|
1173 |
|
|
if (call_from_thunk_p
|
1174 |
|
|
|| (callee_copies
|
1175 |
|
|
&& !TREE_ADDRESSABLE (type)
|
1176 |
|
|
&& (base = get_base_address (args[i].tree_value))
|
1177 |
|
|
&& TREE_CODE (base) != SSA_NAME
|
1178 |
|
|
&& (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
|
1179 |
|
|
{
|
1180 |
|
|
mark_addressable (args[i].tree_value);
|
1181 |
|
|
|
1182 |
|
|
/* We can't use sibcalls if a callee-copied argument is
|
1183 |
|
|
stored in the current function's frame. */
|
1184 |
|
|
if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
|
1185 |
|
|
*may_tailcall = false;
|
1186 |
|
|
|
1187 |
|
|
args[i].tree_value = build_fold_addr_expr_loc (loc,
|
1188 |
|
|
args[i].tree_value);
|
1189 |
|
|
type = TREE_TYPE (args[i].tree_value);
|
1190 |
|
|
|
1191 |
|
|
if (*ecf_flags & ECF_CONST)
|
1192 |
|
|
*ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
|
1193 |
|
|
}
|
1194 |
|
|
else
|
1195 |
|
|
{
|
1196 |
|
|
/* We make a copy of the object and pass the address to the
|
1197 |
|
|
function being called. */
|
1198 |
|
|
rtx copy;
|
1199 |
|
|
|
1200 |
|
|
if (!COMPLETE_TYPE_P (type)
|
1201 |
|
|
|| TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
|
1202 |
|
|
|| (flag_stack_check == GENERIC_STACK_CHECK
|
1203 |
|
|
&& compare_tree_int (TYPE_SIZE_UNIT (type),
|
1204 |
|
|
STACK_CHECK_MAX_VAR_SIZE) > 0))
|
1205 |
|
|
{
|
1206 |
|
|
/* This is a variable-sized object. Make space on the stack
|
1207 |
|
|
for it. */
|
1208 |
|
|
rtx size_rtx = expr_size (args[i].tree_value);
|
1209 |
|
|
|
1210 |
|
|
if (*old_stack_level == 0)
|
1211 |
|
|
{
|
1212 |
|
|
emit_stack_save (SAVE_BLOCK, old_stack_level);
|
1213 |
|
|
*old_pending_adj = pending_stack_adjust;
|
1214 |
|
|
pending_stack_adjust = 0;
|
1215 |
|
|
}
|
1216 |
|
|
|
1217 |
|
|
/* We can pass TRUE as the 4th argument because we just
|
1218 |
|
|
saved the stack pointer and will restore it right after
|
1219 |
|
|
the call. */
|
1220 |
|
|
copy = allocate_dynamic_stack_space (size_rtx,
|
1221 |
|
|
TYPE_ALIGN (type),
|
1222 |
|
|
TYPE_ALIGN (type),
|
1223 |
|
|
true);
|
1224 |
|
|
copy = gen_rtx_MEM (BLKmode, copy);
|
1225 |
|
|
set_mem_attributes (copy, type, 1);
|
1226 |
|
|
}
|
1227 |
|
|
else
|
1228 |
|
|
copy = assign_temp (type, 0, 1, 0);
|
1229 |
|
|
|
1230 |
|
|
store_expr (args[i].tree_value, copy, 0, false);
|
1231 |
|
|
|
1232 |
|
|
/* Just change the const function to pure and then let
|
1233 |
|
|
the next test clear the pure based on
|
1234 |
|
|
callee_copies. */
|
1235 |
|
|
if (*ecf_flags & ECF_CONST)
|
1236 |
|
|
{
|
1237 |
|
|
*ecf_flags &= ~ECF_CONST;
|
1238 |
|
|
*ecf_flags |= ECF_PURE;
|
1239 |
|
|
}
|
1240 |
|
|
|
1241 |
|
|
if (!callee_copies && *ecf_flags & ECF_PURE)
|
1242 |
|
|
*ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
|
1243 |
|
|
|
1244 |
|
|
args[i].tree_value
|
1245 |
|
|
= build_fold_addr_expr_loc (loc, make_tree (type, copy));
|
1246 |
|
|
type = TREE_TYPE (args[i].tree_value);
|
1247 |
|
|
*may_tailcall = false;
|
1248 |
|
|
}
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
unsignedp = TYPE_UNSIGNED (type);
|
1252 |
|
|
mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
|
1253 |
|
|
fndecl ? TREE_TYPE (fndecl) : fntype, 0);
|
1254 |
|
|
|
1255 |
|
|
args[i].unsignedp = unsignedp;
|
1256 |
|
|
args[i].mode = mode;
|
1257 |
|
|
|
1258 |
|
|
args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
|
1259 |
|
|
argpos < n_named_args);
|
1260 |
|
|
|
1261 |
|
|
/* If this is a sibling call and the machine has register windows, the
|
1262 |
|
|
register window has to be unwinded before calling the routine, so
|
1263 |
|
|
arguments have to go into the incoming registers. */
|
1264 |
|
|
if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
|
1265 |
|
|
args[i].tail_call_reg
|
1266 |
|
|
= targetm.calls.function_incoming_arg (args_so_far, mode, type,
|
1267 |
|
|
argpos < n_named_args);
|
1268 |
|
|
else
|
1269 |
|
|
args[i].tail_call_reg = args[i].reg;
|
1270 |
|
|
|
1271 |
|
|
if (args[i].reg)
|
1272 |
|
|
args[i].partial
|
1273 |
|
|
= targetm.calls.arg_partial_bytes (args_so_far, mode, type,
|
1274 |
|
|
argpos < n_named_args);
|
1275 |
|
|
|
1276 |
|
|
args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
|
1277 |
|
|
|
1278 |
|
|
/* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
|
1279 |
|
|
it means that we are to pass this arg in the register(s) designated
|
1280 |
|
|
by the PARALLEL, but also to pass it in the stack. */
|
1281 |
|
|
if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
|
1282 |
|
|
&& XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
|
1283 |
|
|
args[i].pass_on_stack = 1;
|
1284 |
|
|
|
1285 |
|
|
/* If this is an addressable type, we must preallocate the stack
|
1286 |
|
|
since we must evaluate the object into its final location.
|
1287 |
|
|
|
1288 |
|
|
If this is to be passed in both registers and the stack, it is simpler
|
1289 |
|
|
to preallocate. */
|
1290 |
|
|
if (TREE_ADDRESSABLE (type)
|
1291 |
|
|
|| (args[i].pass_on_stack && args[i].reg != 0))
|
1292 |
|
|
*must_preallocate = 1;
|
1293 |
|
|
|
1294 |
|
|
/* Compute the stack-size of this argument. */
|
1295 |
|
|
if (args[i].reg == 0 || args[i].partial != 0
|
1296 |
|
|
|| reg_parm_stack_space > 0
|
1297 |
|
|
|| args[i].pass_on_stack)
|
1298 |
|
|
locate_and_pad_parm (mode, type,
|
1299 |
|
|
#ifdef STACK_PARMS_IN_REG_PARM_AREA
|
1300 |
|
|
1,
|
1301 |
|
|
#else
|
1302 |
|
|
args[i].reg != 0,
|
1303 |
|
|
#endif
|
1304 |
|
|
args[i].pass_on_stack ? 0 : args[i].partial,
|
1305 |
|
|
fndecl, args_size, &args[i].locate);
|
1306 |
|
|
#ifdef BLOCK_REG_PADDING
|
1307 |
|
|
else
|
1308 |
|
|
/* The argument is passed entirely in registers. See at which
|
1309 |
|
|
end it should be padded. */
|
1310 |
|
|
args[i].locate.where_pad =
|
1311 |
|
|
BLOCK_REG_PADDING (mode, type,
|
1312 |
|
|
int_size_in_bytes (type) <= UNITS_PER_WORD);
|
1313 |
|
|
#endif
|
1314 |
|
|
|
1315 |
|
|
/* Update ARGS_SIZE, the total stack space for args so far. */
|
1316 |
|
|
|
1317 |
|
|
args_size->constant += args[i].locate.size.constant;
|
1318 |
|
|
if (args[i].locate.size.var)
|
1319 |
|
|
ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
|
1320 |
|
|
|
1321 |
|
|
/* Increment ARGS_SO_FAR, which has info about which arg-registers
|
1322 |
|
|
have been used, etc. */
|
1323 |
|
|
|
1324 |
|
|
targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
|
1325 |
|
|
type, argpos < n_named_args);
|
1326 |
|
|
}
|
1327 |
|
|
}
|
1328 |
|
|
|
1329 |
|
|
/* Update ARGS_SIZE to contain the total size for the argument block.
|
1330 |
|
|
Return the original constant component of the argument block's size.
|
1331 |
|
|
|
1332 |
|
|
REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
|
1333 |
|
|
for arguments passed in registers. */
|
1334 |
|
|
|
1335 |
|
|
static int
|
1336 |
|
|
compute_argument_block_size (int reg_parm_stack_space,
|
1337 |
|
|
struct args_size *args_size,
|
1338 |
|
|
tree fndecl ATTRIBUTE_UNUSED,
|
1339 |
|
|
tree fntype ATTRIBUTE_UNUSED,
|
1340 |
|
|
int preferred_stack_boundary ATTRIBUTE_UNUSED)
|
1341 |
|
|
{
|
1342 |
|
|
int unadjusted_args_size = args_size->constant;
|
1343 |
|
|
|
1344 |
|
|
/* For accumulate outgoing args mode we don't need to align, since the frame
|
1345 |
|
|
will be already aligned. Align to STACK_BOUNDARY in order to prevent
|
1346 |
|
|
backends from generating misaligned frame sizes. */
|
1347 |
|
|
if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
|
1348 |
|
|
preferred_stack_boundary = STACK_BOUNDARY;
|
1349 |
|
|
|
1350 |
|
|
/* Compute the actual size of the argument block required. The variable
|
1351 |
|
|
and constant sizes must be combined, the size may have to be rounded,
|
1352 |
|
|
and there may be a minimum required size. */
|
1353 |
|
|
|
1354 |
|
|
if (args_size->var)
|
1355 |
|
|
{
|
1356 |
|
|
args_size->var = ARGS_SIZE_TREE (*args_size);
|
1357 |
|
|
args_size->constant = 0;
|
1358 |
|
|
|
1359 |
|
|
preferred_stack_boundary /= BITS_PER_UNIT;
|
1360 |
|
|
if (preferred_stack_boundary > 1)
|
1361 |
|
|
{
|
1362 |
|
|
/* We don't handle this case yet. To handle it correctly we have
|
1363 |
|
|
to add the delta, round and subtract the delta.
|
1364 |
|
|
Currently no machine description requires this support. */
|
1365 |
|
|
gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
|
1366 |
|
|
args_size->var = round_up (args_size->var, preferred_stack_boundary);
|
1367 |
|
|
}
|
1368 |
|
|
|
1369 |
|
|
if (reg_parm_stack_space > 0)
|
1370 |
|
|
{
|
1371 |
|
|
args_size->var
|
1372 |
|
|
= size_binop (MAX_EXPR, args_size->var,
|
1373 |
|
|
ssize_int (reg_parm_stack_space));
|
1374 |
|
|
|
1375 |
|
|
/* The area corresponding to register parameters is not to count in
|
1376 |
|
|
the size of the block we need. So make the adjustment. */
|
1377 |
|
|
if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
|
1378 |
|
|
args_size->var
|
1379 |
|
|
= size_binop (MINUS_EXPR, args_size->var,
|
1380 |
|
|
ssize_int (reg_parm_stack_space));
|
1381 |
|
|
}
|
1382 |
|
|
}
|
1383 |
|
|
else
|
1384 |
|
|
{
|
1385 |
|
|
preferred_stack_boundary /= BITS_PER_UNIT;
|
1386 |
|
|
if (preferred_stack_boundary < 1)
|
1387 |
|
|
preferred_stack_boundary = 1;
|
1388 |
|
|
args_size->constant = (((args_size->constant
|
1389 |
|
|
+ stack_pointer_delta
|
1390 |
|
|
+ preferred_stack_boundary - 1)
|
1391 |
|
|
/ preferred_stack_boundary
|
1392 |
|
|
* preferred_stack_boundary)
|
1393 |
|
|
- stack_pointer_delta);
|
1394 |
|
|
|
1395 |
|
|
args_size->constant = MAX (args_size->constant,
|
1396 |
|
|
reg_parm_stack_space);
|
1397 |
|
|
|
1398 |
|
|
if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
|
1399 |
|
|
args_size->constant -= reg_parm_stack_space;
|
1400 |
|
|
}
|
1401 |
|
|
return unadjusted_args_size;
|
1402 |
|
|
}
|
1403 |
|
|
|
1404 |
|
|
/* Precompute parameters as needed for a function call.
|
1405 |
|
|
|
1406 |
|
|
FLAGS is mask of ECF_* constants.
|
1407 |
|
|
|
1408 |
|
|
NUM_ACTUALS is the number of arguments.
|
1409 |
|
|
|
1410 |
|
|
ARGS is an array containing information for each argument; this
|
1411 |
|
|
routine fills in the INITIAL_VALUE and VALUE fields for each
|
1412 |
|
|
precomputed argument. */
|
1413 |
|
|
|
1414 |
|
|
static void
|
1415 |
|
|
precompute_arguments (int num_actuals, struct arg_data *args)
|
1416 |
|
|
{
|
1417 |
|
|
int i;
|
1418 |
|
|
|
1419 |
|
|
/* If this is a libcall, then precompute all arguments so that we do not
|
1420 |
|
|
get extraneous instructions emitted as part of the libcall sequence. */
|
1421 |
|
|
|
1422 |
|
|
/* If we preallocated the stack space, and some arguments must be passed
|
1423 |
|
|
on the stack, then we must precompute any parameter which contains a
|
1424 |
|
|
function call which will store arguments on the stack.
|
1425 |
|
|
Otherwise, evaluating the parameter may clobber previous parameters
|
1426 |
|
|
which have already been stored into the stack. (we have code to avoid
|
1427 |
|
|
such case by saving the outgoing stack arguments, but it results in
|
1428 |
|
|
worse code) */
|
1429 |
|
|
if (!ACCUMULATE_OUTGOING_ARGS)
|
1430 |
|
|
return;
|
1431 |
|
|
|
1432 |
|
|
for (i = 0; i < num_actuals; i++)
|
1433 |
|
|
{
|
1434 |
|
|
tree type;
|
1435 |
|
|
enum machine_mode mode;
|
1436 |
|
|
|
1437 |
|
|
if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
|
1438 |
|
|
continue;
|
1439 |
|
|
|
1440 |
|
|
/* If this is an addressable type, we cannot pre-evaluate it. */
|
1441 |
|
|
type = TREE_TYPE (args[i].tree_value);
|
1442 |
|
|
gcc_assert (!TREE_ADDRESSABLE (type));
|
1443 |
|
|
|
1444 |
|
|
args[i].initial_value = args[i].value
|
1445 |
|
|
= expand_normal (args[i].tree_value);
|
1446 |
|
|
|
1447 |
|
|
mode = TYPE_MODE (type);
|
1448 |
|
|
if (mode != args[i].mode)
|
1449 |
|
|
{
|
1450 |
|
|
int unsignedp = args[i].unsignedp;
|
1451 |
|
|
args[i].value
|
1452 |
|
|
= convert_modes (args[i].mode, mode,
|
1453 |
|
|
args[i].value, args[i].unsignedp);
|
1454 |
|
|
|
1455 |
|
|
/* CSE will replace this only if it contains args[i].value
|
1456 |
|
|
pseudo, so convert it down to the declared mode using
|
1457 |
|
|
a SUBREG. */
|
1458 |
|
|
if (REG_P (args[i].value)
|
1459 |
|
|
&& GET_MODE_CLASS (args[i].mode) == MODE_INT
|
1460 |
|
|
&& promote_mode (type, mode, &unsignedp) != args[i].mode)
|
1461 |
|
|
{
|
1462 |
|
|
args[i].initial_value
|
1463 |
|
|
= gen_lowpart_SUBREG (mode, args[i].value);
|
1464 |
|
|
SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
|
1465 |
|
|
SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
|
1466 |
|
|
args[i].unsignedp);
|
1467 |
|
|
}
|
1468 |
|
|
}
|
1469 |
|
|
}
|
1470 |
|
|
}
|
1471 |
|
|
|
1472 |
|
|
/* Given the current state of MUST_PREALLOCATE and information about
|
1473 |
|
|
arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
|
1474 |
|
|
compute and return the final value for MUST_PREALLOCATE. */
|
1475 |
|
|
|
1476 |
|
|
static int
|
1477 |
|
|
finalize_must_preallocate (int must_preallocate, int num_actuals,
|
1478 |
|
|
struct arg_data *args, struct args_size *args_size)
|
1479 |
|
|
{
|
1480 |
|
|
/* See if we have or want to preallocate stack space.
|
1481 |
|
|
|
1482 |
|
|
If we would have to push a partially-in-regs parm
|
1483 |
|
|
before other stack parms, preallocate stack space instead.
|
1484 |
|
|
|
1485 |
|
|
If the size of some parm is not a multiple of the required stack
|
1486 |
|
|
alignment, we must preallocate.
|
1487 |
|
|
|
1488 |
|
|
If the total size of arguments that would otherwise create a copy in
|
1489 |
|
|
a temporary (such as a CALL) is more than half the total argument list
|
1490 |
|
|
size, preallocation is faster.
|
1491 |
|
|
|
1492 |
|
|
Another reason to preallocate is if we have a machine (like the m88k)
|
1493 |
|
|
where stack alignment is required to be maintained between every
|
1494 |
|
|
pair of insns, not just when the call is made. However, we assume here
|
1495 |
|
|
that such machines either do not have push insns (and hence preallocation
|
1496 |
|
|
would occur anyway) or the problem is taken care of with
|
1497 |
|
|
PUSH_ROUNDING. */
|
1498 |
|
|
|
1499 |
|
|
if (! must_preallocate)
|
1500 |
|
|
{
|
1501 |
|
|
int partial_seen = 0;
|
1502 |
|
|
int copy_to_evaluate_size = 0;
|
1503 |
|
|
int i;
|
1504 |
|
|
|
1505 |
|
|
for (i = 0; i < num_actuals && ! must_preallocate; i++)
|
1506 |
|
|
{
|
1507 |
|
|
if (args[i].partial > 0 && ! args[i].pass_on_stack)
|
1508 |
|
|
partial_seen = 1;
|
1509 |
|
|
else if (partial_seen && args[i].reg == 0)
|
1510 |
|
|
must_preallocate = 1;
|
1511 |
|
|
|
1512 |
|
|
if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
|
1513 |
|
|
&& (TREE_CODE (args[i].tree_value) == CALL_EXPR
|
1514 |
|
|
|| TREE_CODE (args[i].tree_value) == TARGET_EXPR
|
1515 |
|
|
|| TREE_CODE (args[i].tree_value) == COND_EXPR
|
1516 |
|
|
|| TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
|
1517 |
|
|
copy_to_evaluate_size
|
1518 |
|
|
+= int_size_in_bytes (TREE_TYPE (args[i].tree_value));
|
1519 |
|
|
}
|
1520 |
|
|
|
1521 |
|
|
if (copy_to_evaluate_size * 2 >= args_size->constant
|
1522 |
|
|
&& args_size->constant > 0)
|
1523 |
|
|
must_preallocate = 1;
|
1524 |
|
|
}
|
1525 |
|
|
return must_preallocate;
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
/* If we preallocated stack space, compute the address of each argument
|
1529 |
|
|
and store it into the ARGS array.
|
1530 |
|
|
|
1531 |
|
|
We need not ensure it is a valid memory address here; it will be
|
1532 |
|
|
validized when it is used.
|
1533 |
|
|
|
1534 |
|
|
ARGBLOCK is an rtx for the address of the outgoing arguments. */
|
1535 |
|
|
|
1536 |
|
|
static void
|
1537 |
|
|
compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
|
1538 |
|
|
{
|
1539 |
|
|
if (argblock)
|
1540 |
|
|
{
|
1541 |
|
|
rtx arg_reg = argblock;
|
1542 |
|
|
int i, arg_offset = 0;
|
1543 |
|
|
|
1544 |
|
|
if (GET_CODE (argblock) == PLUS)
|
1545 |
|
|
arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
|
1546 |
|
|
|
1547 |
|
|
for (i = 0; i < num_actuals; i++)
|
1548 |
|
|
{
|
1549 |
|
|
rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
|
1550 |
|
|
rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
|
1551 |
|
|
rtx addr;
|
1552 |
|
|
unsigned int align, boundary;
|
1553 |
|
|
unsigned int units_on_stack = 0;
|
1554 |
|
|
enum machine_mode partial_mode = VOIDmode;
|
1555 |
|
|
|
1556 |
|
|
/* Skip this parm if it will not be passed on the stack. */
|
1557 |
|
|
if (! args[i].pass_on_stack
|
1558 |
|
|
&& args[i].reg != 0
|
1559 |
|
|
&& args[i].partial == 0)
|
1560 |
|
|
continue;
|
1561 |
|
|
|
1562 |
|
|
if (CONST_INT_P (offset))
|
1563 |
|
|
addr = plus_constant (arg_reg, INTVAL (offset));
|
1564 |
|
|
else
|
1565 |
|
|
addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
|
1566 |
|
|
|
1567 |
|
|
addr = plus_constant (addr, arg_offset);
|
1568 |
|
|
|
1569 |
|
|
if (args[i].partial != 0)
|
1570 |
|
|
{
|
1571 |
|
|
/* Only part of the parameter is being passed on the stack.
|
1572 |
|
|
Generate a simple memory reference of the correct size. */
|
1573 |
|
|
units_on_stack = args[i].locate.size.constant;
|
1574 |
|
|
partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
|
1575 |
|
|
MODE_INT, 1);
|
1576 |
|
|
args[i].stack = gen_rtx_MEM (partial_mode, addr);
|
1577 |
|
|
set_mem_size (args[i].stack, units_on_stack);
|
1578 |
|
|
}
|
1579 |
|
|
else
|
1580 |
|
|
{
|
1581 |
|
|
args[i].stack = gen_rtx_MEM (args[i].mode, addr);
|
1582 |
|
|
set_mem_attributes (args[i].stack,
|
1583 |
|
|
TREE_TYPE (args[i].tree_value), 1);
|
1584 |
|
|
}
|
1585 |
|
|
align = BITS_PER_UNIT;
|
1586 |
|
|
boundary = args[i].locate.boundary;
|
1587 |
|
|
if (args[i].locate.where_pad != downward)
|
1588 |
|
|
align = boundary;
|
1589 |
|
|
else if (CONST_INT_P (offset))
|
1590 |
|
|
{
|
1591 |
|
|
align = INTVAL (offset) * BITS_PER_UNIT | boundary;
|
1592 |
|
|
align = align & -align;
|
1593 |
|
|
}
|
1594 |
|
|
set_mem_align (args[i].stack, align);
|
1595 |
|
|
|
1596 |
|
|
if (CONST_INT_P (slot_offset))
|
1597 |
|
|
addr = plus_constant (arg_reg, INTVAL (slot_offset));
|
1598 |
|
|
else
|
1599 |
|
|
addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
|
1600 |
|
|
|
1601 |
|
|
addr = plus_constant (addr, arg_offset);
|
1602 |
|
|
|
1603 |
|
|
if (args[i].partial != 0)
|
1604 |
|
|
{
|
1605 |
|
|
/* Only part of the parameter is being passed on the stack.
|
1606 |
|
|
Generate a simple memory reference of the correct size.
|
1607 |
|
|
*/
|
1608 |
|
|
args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
|
1609 |
|
|
set_mem_size (args[i].stack_slot, units_on_stack);
|
1610 |
|
|
}
|
1611 |
|
|
else
|
1612 |
|
|
{
|
1613 |
|
|
args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
|
1614 |
|
|
set_mem_attributes (args[i].stack_slot,
|
1615 |
|
|
TREE_TYPE (args[i].tree_value), 1);
|
1616 |
|
|
}
|
1617 |
|
|
set_mem_align (args[i].stack_slot, args[i].locate.boundary);
|
1618 |
|
|
|
1619 |
|
|
/* Function incoming arguments may overlap with sibling call
|
1620 |
|
|
outgoing arguments and we cannot allow reordering of reads
|
1621 |
|
|
from function arguments with stores to outgoing arguments
|
1622 |
|
|
of sibling calls. */
|
1623 |
|
|
set_mem_alias_set (args[i].stack, 0);
|
1624 |
|
|
set_mem_alias_set (args[i].stack_slot, 0);
|
1625 |
|
|
}
|
1626 |
|
|
}
|
1627 |
|
|
}
|
1628 |
|
|
|
1629 |
|
|
/* Given a FNDECL and EXP, return an rtx suitable for use as a target address
|
1630 |
|
|
in a call instruction.
|
1631 |
|
|
|
1632 |
|
|
FNDECL is the tree node for the target function. For an indirect call
|
1633 |
|
|
FNDECL will be NULL_TREE.
|
1634 |
|
|
|
1635 |
|
|
ADDR is the operand 0 of CALL_EXPR for this call. */
|
1636 |
|
|
|
1637 |
|
|
static rtx
|
1638 |
|
|
rtx_for_function_call (tree fndecl, tree addr)
|
1639 |
|
|
{
|
1640 |
|
|
rtx funexp;
|
1641 |
|
|
|
1642 |
|
|
/* Get the function to call, in the form of RTL. */
|
1643 |
|
|
if (fndecl)
|
1644 |
|
|
{
|
1645 |
|
|
/* If this is the first use of the function, see if we need to
|
1646 |
|
|
make an external definition for it. */
|
1647 |
|
|
if (!TREE_USED (fndecl) && fndecl != current_function_decl)
|
1648 |
|
|
{
|
1649 |
|
|
assemble_external (fndecl);
|
1650 |
|
|
TREE_USED (fndecl) = 1;
|
1651 |
|
|
}
|
1652 |
|
|
|
1653 |
|
|
/* Get a SYMBOL_REF rtx for the function address. */
|
1654 |
|
|
funexp = XEXP (DECL_RTL (fndecl), 0);
|
1655 |
|
|
}
|
1656 |
|
|
else
|
1657 |
|
|
/* Generate an rtx (probably a pseudo-register) for the address. */
|
1658 |
|
|
{
|
1659 |
|
|
push_temp_slots ();
|
1660 |
|
|
funexp = expand_normal (addr);
|
1661 |
|
|
pop_temp_slots (); /* FUNEXP can't be BLKmode. */
|
1662 |
|
|
}
|
1663 |
|
|
return funexp;
|
1664 |
|
|
}
|
1665 |
|
|
|
1666 |
|
|
/* Internal state for internal_arg_pointer_based_exp and its helpers. */
|
1667 |
|
|
static struct
|
1668 |
|
|
{
|
1669 |
|
|
/* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
|
1670 |
|
|
or NULL_RTX if none has been scanned yet. */
|
1671 |
|
|
rtx scan_start;
|
1672 |
|
|
/* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
|
1673 |
|
|
based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
|
1674 |
|
|
pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
|
1675 |
|
|
with fixed offset, or PC if this is with variable or unknown offset. */
|
1676 |
|
|
VEC(rtx, heap) *cache;
|
1677 |
|
|
} internal_arg_pointer_exp_state;
|
1678 |
|
|
|
1679 |
|
|
static rtx internal_arg_pointer_based_exp (rtx, bool);
|
1680 |
|
|
|
1681 |
|
|
/* Helper function for internal_arg_pointer_based_exp. Scan insns in
|
1682 |
|
|
the tail call sequence, starting with first insn that hasn't been
|
1683 |
|
|
scanned yet, and note for each pseudo on the LHS whether it is based
|
1684 |
|
|
on crtl->args.internal_arg_pointer or not, and what offset from that
|
1685 |
|
|
that pointer it has. */
|
1686 |
|
|
|
1687 |
|
|
static void
|
1688 |
|
|
internal_arg_pointer_based_exp_scan (void)
|
1689 |
|
|
{
|
1690 |
|
|
rtx insn, scan_start = internal_arg_pointer_exp_state.scan_start;
|
1691 |
|
|
|
1692 |
|
|
if (scan_start == NULL_RTX)
|
1693 |
|
|
insn = get_insns ();
|
1694 |
|
|
else
|
1695 |
|
|
insn = NEXT_INSN (scan_start);
|
1696 |
|
|
|
1697 |
|
|
while (insn)
|
1698 |
|
|
{
|
1699 |
|
|
rtx set = single_set (insn);
|
1700 |
|
|
if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
|
1701 |
|
|
{
|
1702 |
|
|
rtx val = NULL_RTX;
|
1703 |
|
|
unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
|
1704 |
|
|
/* Punt on pseudos set multiple times. */
|
1705 |
|
|
if (idx < VEC_length (rtx, internal_arg_pointer_exp_state.cache)
|
1706 |
|
|
&& (VEC_index (rtx, internal_arg_pointer_exp_state.cache, idx)
|
1707 |
|
|
!= NULL_RTX))
|
1708 |
|
|
val = pc_rtx;
|
1709 |
|
|
else
|
1710 |
|
|
val = internal_arg_pointer_based_exp (SET_SRC (set), false);
|
1711 |
|
|
if (val != NULL_RTX)
|
1712 |
|
|
{
|
1713 |
|
|
if (idx
|
1714 |
|
|
>= VEC_length (rtx, internal_arg_pointer_exp_state.cache))
|
1715 |
|
|
VEC_safe_grow_cleared (rtx, heap,
|
1716 |
|
|
internal_arg_pointer_exp_state.cache,
|
1717 |
|
|
idx + 1);
|
1718 |
|
|
VEC_replace (rtx, internal_arg_pointer_exp_state.cache,
|
1719 |
|
|
idx, val);
|
1720 |
|
|
}
|
1721 |
|
|
}
|
1722 |
|
|
if (NEXT_INSN (insn) == NULL_RTX)
|
1723 |
|
|
scan_start = insn;
|
1724 |
|
|
insn = NEXT_INSN (insn);
|
1725 |
|
|
}
|
1726 |
|
|
|
1727 |
|
|
internal_arg_pointer_exp_state.scan_start = scan_start;
|
1728 |
|
|
}
|
1729 |
|
|
|
1730 |
|
|
/* Helper function for internal_arg_pointer_based_exp, called through
|
1731 |
|
|
for_each_rtx. Return 1 if *LOC is a register based on
|
1732 |
|
|
crtl->args.internal_arg_pointer. Return -1 if *LOC is not based on it
|
1733 |
|
|
and the subexpressions need not be examined. Otherwise return 0. */
|
1734 |
|
|
|
1735 |
|
|
static int
|
1736 |
|
|
internal_arg_pointer_based_exp_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
|
1737 |
|
|
{
|
1738 |
|
|
if (REG_P (*loc) && internal_arg_pointer_based_exp (*loc, false) != NULL_RTX)
|
1739 |
|
|
return 1;
|
1740 |
|
|
if (MEM_P (*loc))
|
1741 |
|
|
return -1;
|
1742 |
|
|
return 0;
|
1743 |
|
|
}
|
1744 |
|
|
|
1745 |
|
|
/* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
|
1746 |
|
|
NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
|
1747 |
|
|
it with fixed offset, or PC if this is with variable or unknown offset.
|
1748 |
|
|
TOPLEVEL is true if the function is invoked at the topmost level. */
|
1749 |
|
|
|
1750 |
|
|
static rtx
|
1751 |
|
|
internal_arg_pointer_based_exp (rtx rtl, bool toplevel)
|
1752 |
|
|
{
|
1753 |
|
|
if (CONSTANT_P (rtl))
|
1754 |
|
|
return NULL_RTX;
|
1755 |
|
|
|
1756 |
|
|
if (rtl == crtl->args.internal_arg_pointer)
|
1757 |
|
|
return const0_rtx;
|
1758 |
|
|
|
1759 |
|
|
if (REG_P (rtl) && HARD_REGISTER_P (rtl))
|
1760 |
|
|
return NULL_RTX;
|
1761 |
|
|
|
1762 |
|
|
if (GET_CODE (rtl) == PLUS && CONST_INT_P (XEXP (rtl, 1)))
|
1763 |
|
|
{
|
1764 |
|
|
rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
|
1765 |
|
|
if (val == NULL_RTX || val == pc_rtx)
|
1766 |
|
|
return val;
|
1767 |
|
|
return plus_constant (val, INTVAL (XEXP (rtl, 1)));
|
1768 |
|
|
}
|
1769 |
|
|
|
1770 |
|
|
/* When called at the topmost level, scan pseudo assignments in between the
|
1771 |
|
|
last scanned instruction in the tail call sequence and the latest insn
|
1772 |
|
|
in that sequence. */
|
1773 |
|
|
if (toplevel)
|
1774 |
|
|
internal_arg_pointer_based_exp_scan ();
|
1775 |
|
|
|
1776 |
|
|
if (REG_P (rtl))
|
1777 |
|
|
{
|
1778 |
|
|
unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
|
1779 |
|
|
if (idx < VEC_length (rtx, internal_arg_pointer_exp_state.cache))
|
1780 |
|
|
return VEC_index (rtx, internal_arg_pointer_exp_state.cache, idx);
|
1781 |
|
|
|
1782 |
|
|
return NULL_RTX;
|
1783 |
|
|
}
|
1784 |
|
|
|
1785 |
|
|
if (for_each_rtx (&rtl, internal_arg_pointer_based_exp_1, NULL))
|
1786 |
|
|
return pc_rtx;
|
1787 |
|
|
|
1788 |
|
|
return NULL_RTX;
|
1789 |
|
|
}
|
1790 |
|
|
|
1791 |
|
|
/* Return true if and only if SIZE storage units (usually bytes)
|
1792 |
|
|
starting from address ADDR overlap with already clobbered argument
|
1793 |
|
|
area. This function is used to determine if we should give up a
|
1794 |
|
|
sibcall. */
|
1795 |
|
|
|
1796 |
|
|
static bool
|
1797 |
|
|
mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
|
1798 |
|
|
{
|
1799 |
|
|
HOST_WIDE_INT i;
|
1800 |
|
|
rtx val;
|
1801 |
|
|
|
1802 |
|
|
if (sbitmap_empty_p (stored_args_map))
|
1803 |
|
|
return false;
|
1804 |
|
|
val = internal_arg_pointer_based_exp (addr, true);
|
1805 |
|
|
if (val == NULL_RTX)
|
1806 |
|
|
return false;
|
1807 |
|
|
else if (val == pc_rtx)
|
1808 |
|
|
return true;
|
1809 |
|
|
else
|
1810 |
|
|
i = INTVAL (val);
|
1811 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
1812 |
|
|
i -= crtl->args.pretend_args_size;
|
1813 |
|
|
#else
|
1814 |
|
|
i += crtl->args.pretend_args_size;
|
1815 |
|
|
#endif
|
1816 |
|
|
|
1817 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
1818 |
|
|
i = -i - size;
|
1819 |
|
|
#endif
|
1820 |
|
|
if (size > 0)
|
1821 |
|
|
{
|
1822 |
|
|
unsigned HOST_WIDE_INT k;
|
1823 |
|
|
|
1824 |
|
|
for (k = 0; k < size; k++)
|
1825 |
|
|
if (i + k < stored_args_map->n_bits
|
1826 |
|
|
&& TEST_BIT (stored_args_map, i + k))
|
1827 |
|
|
return true;
|
1828 |
|
|
}
|
1829 |
|
|
|
1830 |
|
|
return false;
|
1831 |
|
|
}
|
1832 |
|
|
|
1833 |
|
|
/* Do the register loads required for any wholly-register parms or any
|
1834 |
|
|
parms which are passed both on the stack and in a register. Their
|
1835 |
|
|
expressions were already evaluated.
|
1836 |
|
|
|
1837 |
|
|
Mark all register-parms as living through the call, putting these USE
|
1838 |
|
|
insns in the CALL_INSN_FUNCTION_USAGE field.
|
1839 |
|
|
|
1840 |
|
|
When IS_SIBCALL, perform the check_sibcall_argument_overlap
|
1841 |
|
|
checking, setting *SIBCALL_FAILURE if appropriate. */
|
1842 |
|
|
|
1843 |
|
|
static void
|
1844 |
|
|
load_register_parameters (struct arg_data *args, int num_actuals,
|
1845 |
|
|
rtx *call_fusage, int flags, int is_sibcall,
|
1846 |
|
|
int *sibcall_failure)
|
1847 |
|
|
{
|
1848 |
|
|
int i, j;
|
1849 |
|
|
|
1850 |
|
|
for (i = 0; i < num_actuals; i++)
|
1851 |
|
|
{
|
1852 |
|
|
rtx reg = ((flags & ECF_SIBCALL)
|
1853 |
|
|
? args[i].tail_call_reg : args[i].reg);
|
1854 |
|
|
if (reg)
|
1855 |
|
|
{
|
1856 |
|
|
int partial = args[i].partial;
|
1857 |
|
|
int nregs;
|
1858 |
|
|
int size = 0;
|
1859 |
|
|
rtx before_arg = get_last_insn ();
|
1860 |
|
|
/* Set non-negative if we must move a word at a time, even if
|
1861 |
|
|
just one word (e.g, partial == 4 && mode == DFmode). Set
|
1862 |
|
|
to -1 if we just use a normal move insn. This value can be
|
1863 |
|
|
zero if the argument is a zero size structure. */
|
1864 |
|
|
nregs = -1;
|
1865 |
|
|
if (GET_CODE (reg) == PARALLEL)
|
1866 |
|
|
;
|
1867 |
|
|
else if (partial)
|
1868 |
|
|
{
|
1869 |
|
|
gcc_assert (partial % UNITS_PER_WORD == 0);
|
1870 |
|
|
nregs = partial / UNITS_PER_WORD;
|
1871 |
|
|
}
|
1872 |
|
|
else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
|
1873 |
|
|
{
|
1874 |
|
|
size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
|
1875 |
|
|
nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
|
1876 |
|
|
}
|
1877 |
|
|
else
|
1878 |
|
|
size = GET_MODE_SIZE (args[i].mode);
|
1879 |
|
|
|
1880 |
|
|
/* Handle calls that pass values in multiple non-contiguous
|
1881 |
|
|
locations. The Irix 6 ABI has examples of this. */
|
1882 |
|
|
|
1883 |
|
|
if (GET_CODE (reg) == PARALLEL)
|
1884 |
|
|
emit_group_move (reg, args[i].parallel_value);
|
1885 |
|
|
|
1886 |
|
|
/* If simple case, just do move. If normal partial, store_one_arg
|
1887 |
|
|
has already loaded the register for us. In all other cases,
|
1888 |
|
|
load the register(s) from memory. */
|
1889 |
|
|
|
1890 |
|
|
else if (nregs == -1)
|
1891 |
|
|
{
|
1892 |
|
|
emit_move_insn (reg, args[i].value);
|
1893 |
|
|
#ifdef BLOCK_REG_PADDING
|
1894 |
|
|
/* Handle case where we have a value that needs shifting
|
1895 |
|
|
up to the msb. eg. a QImode value and we're padding
|
1896 |
|
|
upward on a BYTES_BIG_ENDIAN machine. */
|
1897 |
|
|
if (size < UNITS_PER_WORD
|
1898 |
|
|
&& (args[i].locate.where_pad
|
1899 |
|
|
== (BYTES_BIG_ENDIAN ? upward : downward)))
|
1900 |
|
|
{
|
1901 |
|
|
rtx x;
|
1902 |
|
|
int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
|
1903 |
|
|
|
1904 |
|
|
/* Assigning REG here rather than a temp makes CALL_FUSAGE
|
1905 |
|
|
report the whole reg as used. Strictly speaking, the
|
1906 |
|
|
call only uses SIZE bytes at the msb end, but it doesn't
|
1907 |
|
|
seem worth generating rtl to say that. */
|
1908 |
|
|
reg = gen_rtx_REG (word_mode, REGNO (reg));
|
1909 |
|
|
x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
|
1910 |
|
|
if (x != reg)
|
1911 |
|
|
emit_move_insn (reg, x);
|
1912 |
|
|
}
|
1913 |
|
|
#endif
|
1914 |
|
|
}
|
1915 |
|
|
|
1916 |
|
|
/* If we have pre-computed the values to put in the registers in
|
1917 |
|
|
the case of non-aligned structures, copy them in now. */
|
1918 |
|
|
|
1919 |
|
|
else if (args[i].n_aligned_regs != 0)
|
1920 |
|
|
for (j = 0; j < args[i].n_aligned_regs; j++)
|
1921 |
|
|
emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
|
1922 |
|
|
args[i].aligned_regs[j]);
|
1923 |
|
|
|
1924 |
|
|
else if (partial == 0 || args[i].pass_on_stack)
|
1925 |
|
|
{
|
1926 |
|
|
rtx mem = validize_mem (args[i].value);
|
1927 |
|
|
|
1928 |
|
|
/* Check for overlap with already clobbered argument area,
|
1929 |
|
|
providing that this has non-zero size. */
|
1930 |
|
|
if (is_sibcall
|
1931 |
|
|
&& (size == 0
|
1932 |
|
|
|| mem_overlaps_already_clobbered_arg_p
|
1933 |
|
|
(XEXP (args[i].value, 0), size)))
|
1934 |
|
|
*sibcall_failure = 1;
|
1935 |
|
|
|
1936 |
|
|
/* Handle a BLKmode that needs shifting. */
|
1937 |
|
|
if (nregs == 1 && size < UNITS_PER_WORD
|
1938 |
|
|
#ifdef BLOCK_REG_PADDING
|
1939 |
|
|
&& args[i].locate.where_pad == downward
|
1940 |
|
|
#else
|
1941 |
|
|
&& BYTES_BIG_ENDIAN
|
1942 |
|
|
#endif
|
1943 |
|
|
)
|
1944 |
|
|
{
|
1945 |
|
|
rtx tem = operand_subword_force (mem, 0, args[i].mode);
|
1946 |
|
|
rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
|
1947 |
|
|
rtx x = gen_reg_rtx (word_mode);
|
1948 |
|
|
int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
|
1949 |
|
|
enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
|
1950 |
|
|
: LSHIFT_EXPR;
|
1951 |
|
|
|
1952 |
|
|
emit_move_insn (x, tem);
|
1953 |
|
|
x = expand_shift (dir, word_mode, x, shift, ri, 1);
|
1954 |
|
|
if (x != ri)
|
1955 |
|
|
emit_move_insn (ri, x);
|
1956 |
|
|
}
|
1957 |
|
|
else
|
1958 |
|
|
move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
|
1959 |
|
|
}
|
1960 |
|
|
|
1961 |
|
|
/* When a parameter is a block, and perhaps in other cases, it is
|
1962 |
|
|
possible that it did a load from an argument slot that was
|
1963 |
|
|
already clobbered. */
|
1964 |
|
|
if (is_sibcall
|
1965 |
|
|
&& check_sibcall_argument_overlap (before_arg, &args[i], 0))
|
1966 |
|
|
*sibcall_failure = 1;
|
1967 |
|
|
|
1968 |
|
|
/* Handle calls that pass values in multiple non-contiguous
|
1969 |
|
|
locations. The Irix 6 ABI has examples of this. */
|
1970 |
|
|
if (GET_CODE (reg) == PARALLEL)
|
1971 |
|
|
use_group_regs (call_fusage, reg);
|
1972 |
|
|
else if (nregs == -1)
|
1973 |
|
|
use_reg_mode (call_fusage, reg,
|
1974 |
|
|
TYPE_MODE (TREE_TYPE (args[i].tree_value)));
|
1975 |
|
|
else if (nregs > 0)
|
1976 |
|
|
use_regs (call_fusage, REGNO (reg), nregs);
|
1977 |
|
|
}
|
1978 |
|
|
}
|
1979 |
|
|
}
|
1980 |
|
|
|
1981 |
|
|
/* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
|
1982 |
|
|
wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
|
1983 |
|
|
bytes, then we would need to push some additional bytes to pad the
|
1984 |
|
|
arguments. So, we compute an adjust to the stack pointer for an
|
1985 |
|
|
amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
|
1986 |
|
|
bytes. Then, when the arguments are pushed the stack will be perfectly
|
1987 |
|
|
aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
|
1988 |
|
|
be popped after the call. Returns the adjustment. */
|
1989 |
|
|
|
1990 |
|
|
static int
|
1991 |
|
|
combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
|
1992 |
|
|
struct args_size *args_size,
|
1993 |
|
|
unsigned int preferred_unit_stack_boundary)
|
1994 |
|
|
{
|
1995 |
|
|
/* The number of bytes to pop so that the stack will be
|
1996 |
|
|
under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
|
1997 |
|
|
HOST_WIDE_INT adjustment;
|
1998 |
|
|
/* The alignment of the stack after the arguments are pushed, if we
|
1999 |
|
|
just pushed the arguments without adjust the stack here. */
|
2000 |
|
|
unsigned HOST_WIDE_INT unadjusted_alignment;
|
2001 |
|
|
|
2002 |
|
|
unadjusted_alignment
|
2003 |
|
|
= ((stack_pointer_delta + unadjusted_args_size)
|
2004 |
|
|
% preferred_unit_stack_boundary);
|
2005 |
|
|
|
2006 |
|
|
/* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
|
2007 |
|
|
as possible -- leaving just enough left to cancel out the
|
2008 |
|
|
UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
|
2009 |
|
|
PENDING_STACK_ADJUST is non-negative, and congruent to
|
2010 |
|
|
-UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
|
2011 |
|
|
|
2012 |
|
|
/* Begin by trying to pop all the bytes. */
|
2013 |
|
|
unadjusted_alignment
|
2014 |
|
|
= (unadjusted_alignment
|
2015 |
|
|
- (pending_stack_adjust % preferred_unit_stack_boundary));
|
2016 |
|
|
adjustment = pending_stack_adjust;
|
2017 |
|
|
/* Push enough additional bytes that the stack will be aligned
|
2018 |
|
|
after the arguments are pushed. */
|
2019 |
|
|
if (preferred_unit_stack_boundary > 1)
|
2020 |
|
|
{
|
2021 |
|
|
if (unadjusted_alignment > 0)
|
2022 |
|
|
adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
|
2023 |
|
|
else
|
2024 |
|
|
adjustment += unadjusted_alignment;
|
2025 |
|
|
}
|
2026 |
|
|
|
2027 |
|
|
/* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
|
2028 |
|
|
bytes after the call. The right number is the entire
|
2029 |
|
|
PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
|
2030 |
|
|
by the arguments in the first place. */
|
2031 |
|
|
args_size->constant
|
2032 |
|
|
= pending_stack_adjust - adjustment + unadjusted_args_size;
|
2033 |
|
|
|
2034 |
|
|
return adjustment;
|
2035 |
|
|
}
|
2036 |
|
|
|
2037 |
|
|
/* Scan X expression if it does not dereference any argument slots
|
2038 |
|
|
we already clobbered by tail call arguments (as noted in stored_args_map
|
2039 |
|
|
bitmap).
|
2040 |
|
|
Return nonzero if X expression dereferences such argument slots,
|
2041 |
|
|
zero otherwise. */
|
2042 |
|
|
|
2043 |
|
|
static int
|
2044 |
|
|
check_sibcall_argument_overlap_1 (rtx x)
|
2045 |
|
|
{
|
2046 |
|
|
RTX_CODE code;
|
2047 |
|
|
int i, j;
|
2048 |
|
|
const char *fmt;
|
2049 |
|
|
|
2050 |
|
|
if (x == NULL_RTX)
|
2051 |
|
|
return 0;
|
2052 |
|
|
|
2053 |
|
|
code = GET_CODE (x);
|
2054 |
|
|
|
2055 |
|
|
/* We need not check the operands of the CALL expression itself. */
|
2056 |
|
|
if (code == CALL)
|
2057 |
|
|
return 0;
|
2058 |
|
|
|
2059 |
|
|
if (code == MEM)
|
2060 |
|
|
return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
|
2061 |
|
|
GET_MODE_SIZE (GET_MODE (x)));
|
2062 |
|
|
|
2063 |
|
|
/* Scan all subexpressions. */
|
2064 |
|
|
fmt = GET_RTX_FORMAT (code);
|
2065 |
|
|
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
2066 |
|
|
{
|
2067 |
|
|
if (*fmt == 'e')
|
2068 |
|
|
{
|
2069 |
|
|
if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
|
2070 |
|
|
return 1;
|
2071 |
|
|
}
|
2072 |
|
|
else if (*fmt == 'E')
|
2073 |
|
|
{
|
2074 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
2075 |
|
|
if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
|
2076 |
|
|
return 1;
|
2077 |
|
|
}
|
2078 |
|
|
}
|
2079 |
|
|
return 0;
|
2080 |
|
|
}
|
2081 |
|
|
|
2082 |
|
|
/* Scan sequence after INSN if it does not dereference any argument slots
|
2083 |
|
|
we already clobbered by tail call arguments (as noted in stored_args_map
|
2084 |
|
|
bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
|
2085 |
|
|
stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
|
2086 |
|
|
should be 0). Return nonzero if sequence after INSN dereferences such argument
|
2087 |
|
|
slots, zero otherwise. */
|
2088 |
|
|
|
2089 |
|
|
static int
|
2090 |
|
|
check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
|
2091 |
|
|
{
|
2092 |
|
|
int low, high;
|
2093 |
|
|
|
2094 |
|
|
if (insn == NULL_RTX)
|
2095 |
|
|
insn = get_insns ();
|
2096 |
|
|
else
|
2097 |
|
|
insn = NEXT_INSN (insn);
|
2098 |
|
|
|
2099 |
|
|
for (; insn; insn = NEXT_INSN (insn))
|
2100 |
|
|
if (INSN_P (insn)
|
2101 |
|
|
&& check_sibcall_argument_overlap_1 (PATTERN (insn)))
|
2102 |
|
|
break;
|
2103 |
|
|
|
2104 |
|
|
if (mark_stored_args_map)
|
2105 |
|
|
{
|
2106 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
2107 |
|
|
low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
|
2108 |
|
|
#else
|
2109 |
|
|
low = arg->locate.slot_offset.constant;
|
2110 |
|
|
#endif
|
2111 |
|
|
|
2112 |
|
|
for (high = low + arg->locate.size.constant; low < high; low++)
|
2113 |
|
|
SET_BIT (stored_args_map, low);
|
2114 |
|
|
}
|
2115 |
|
|
return insn != NULL_RTX;
|
2116 |
|
|
}
|
2117 |
|
|
|
2118 |
|
|
/* Given that a function returns a value of mode MODE at the most
|
2119 |
|
|
significant end of hard register VALUE, shift VALUE left or right
|
2120 |
|
|
as specified by LEFT_P. Return true if some action was needed. */
|
2121 |
|
|
|
2122 |
|
|
bool
|
2123 |
|
|
shift_return_value (enum machine_mode mode, bool left_p, rtx value)
|
2124 |
|
|
{
|
2125 |
|
|
HOST_WIDE_INT shift;
|
2126 |
|
|
|
2127 |
|
|
gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
|
2128 |
|
|
shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
|
2129 |
|
|
if (shift == 0)
|
2130 |
|
|
return false;
|
2131 |
|
|
|
2132 |
|
|
/* Use ashr rather than lshr for right shifts. This is for the benefit
|
2133 |
|
|
of the MIPS port, which requires SImode values to be sign-extended
|
2134 |
|
|
when stored in 64-bit registers. */
|
2135 |
|
|
if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
|
2136 |
|
|
value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
|
2137 |
|
|
gcc_unreachable ();
|
2138 |
|
|
return true;
|
2139 |
|
|
}
|
2140 |
|
|
|
2141 |
|
|
/* If X is a likely-spilled register value, copy it to a pseudo
|
2142 |
|
|
register and return that register. Return X otherwise. */
|
2143 |
|
|
|
2144 |
|
|
static rtx
|
2145 |
|
|
avoid_likely_spilled_reg (rtx x)
|
2146 |
|
|
{
|
2147 |
|
|
rtx new_rtx;
|
2148 |
|
|
|
2149 |
|
|
if (REG_P (x)
|
2150 |
|
|
&& HARD_REGISTER_P (x)
|
2151 |
|
|
&& targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
|
2152 |
|
|
{
|
2153 |
|
|
/* Make sure that we generate a REG rather than a CONCAT.
|
2154 |
|
|
Moves into CONCATs can need nontrivial instructions,
|
2155 |
|
|
and the whole point of this function is to avoid
|
2156 |
|
|
using the hard register directly in such a situation. */
|
2157 |
|
|
generating_concat_p = 0;
|
2158 |
|
|
new_rtx = gen_reg_rtx (GET_MODE (x));
|
2159 |
|
|
generating_concat_p = 1;
|
2160 |
|
|
emit_move_insn (new_rtx, x);
|
2161 |
|
|
return new_rtx;
|
2162 |
|
|
}
|
2163 |
|
|
return x;
|
2164 |
|
|
}
|
2165 |
|
|
|
2166 |
|
|
/* Generate all the code for a CALL_EXPR exp
|
2167 |
|
|
and return an rtx for its value.
|
2168 |
|
|
Store the value in TARGET (specified as an rtx) if convenient.
|
2169 |
|
|
If the value is stored in TARGET then TARGET is returned.
|
2170 |
|
|
If IGNORE is nonzero, then we ignore the value of the function call. */
|
2171 |
|
|
|
2172 |
|
|
rtx
|
2173 |
|
|
expand_call (tree exp, rtx target, int ignore)
|
2174 |
|
|
{
|
2175 |
|
|
/* Nonzero if we are currently expanding a call. */
|
2176 |
|
|
static int currently_expanding_call = 0;
|
2177 |
|
|
|
2178 |
|
|
/* RTX for the function to be called. */
|
2179 |
|
|
rtx funexp;
|
2180 |
|
|
/* Sequence of insns to perform a normal "call". */
|
2181 |
|
|
rtx normal_call_insns = NULL_RTX;
|
2182 |
|
|
/* Sequence of insns to perform a tail "call". */
|
2183 |
|
|
rtx tail_call_insns = NULL_RTX;
|
2184 |
|
|
/* Data type of the function. */
|
2185 |
|
|
tree funtype;
|
2186 |
|
|
tree type_arg_types;
|
2187 |
|
|
tree rettype;
|
2188 |
|
|
/* Declaration of the function being called,
|
2189 |
|
|
or 0 if the function is computed (not known by name). */
|
2190 |
|
|
tree fndecl = 0;
|
2191 |
|
|
/* The type of the function being called. */
|
2192 |
|
|
tree fntype;
|
2193 |
|
|
bool try_tail_call = CALL_EXPR_TAILCALL (exp);
|
2194 |
|
|
int pass;
|
2195 |
|
|
|
2196 |
|
|
/* Register in which non-BLKmode value will be returned,
|
2197 |
|
|
or 0 if no value or if value is BLKmode. */
|
2198 |
|
|
rtx valreg;
|
2199 |
|
|
/* Address where we should return a BLKmode value;
|
2200 |
|
|
|
2201 |
|
|
rtx structure_value_addr = 0;
|
2202 |
|
|
/* Nonzero if that address is being passed by treating it as
|
2203 |
|
|
an extra, implicit first parameter. Otherwise,
|
2204 |
|
|
it is passed by being copied directly into struct_value_rtx. */
|
2205 |
|
|
int structure_value_addr_parm = 0;
|
2206 |
|
|
/* Holds the value of implicit argument for the struct value. */
|
2207 |
|
|
tree structure_value_addr_value = NULL_TREE;
|
2208 |
|
|
/* Size of aggregate value wanted, or zero if none wanted
|
2209 |
|
|
or if we are using the non-reentrant PCC calling convention
|
2210 |
|
|
or expecting the value in registers. */
|
2211 |
|
|
HOST_WIDE_INT struct_value_size = 0;
|
2212 |
|
|
/* Nonzero if called function returns an aggregate in memory PCC style,
|
2213 |
|
|
by returning the address of where to find it. */
|
2214 |
|
|
int pcc_struct_value = 0;
|
2215 |
|
|
rtx struct_value = 0;
|
2216 |
|
|
|
2217 |
|
|
/* Number of actual parameters in this call, including struct value addr. */
|
2218 |
|
|
int num_actuals;
|
2219 |
|
|
/* Number of named args. Args after this are anonymous ones
|
2220 |
|
|
and they must all go on the stack. */
|
2221 |
|
|
int n_named_args;
|
2222 |
|
|
/* Number of complex actual arguments that need to be split. */
|
2223 |
|
|
int num_complex_actuals = 0;
|
2224 |
|
|
|
2225 |
|
|
/* Vector of information about each argument.
|
2226 |
|
|
Arguments are numbered in the order they will be pushed,
|
2227 |
|
|
not the order they are written. */
|
2228 |
|
|
struct arg_data *args;
|
2229 |
|
|
|
2230 |
|
|
/* Total size in bytes of all the stack-parms scanned so far. */
|
2231 |
|
|
struct args_size args_size;
|
2232 |
|
|
struct args_size adjusted_args_size;
|
2233 |
|
|
/* Size of arguments before any adjustments (such as rounding). */
|
2234 |
|
|
int unadjusted_args_size;
|
2235 |
|
|
/* Data on reg parms scanned so far. */
|
2236 |
|
|
CUMULATIVE_ARGS args_so_far_v;
|
2237 |
|
|
cumulative_args_t args_so_far;
|
2238 |
|
|
/* Nonzero if a reg parm has been scanned. */
|
2239 |
|
|
int reg_parm_seen;
|
2240 |
|
|
/* Nonzero if this is an indirect function call. */
|
2241 |
|
|
|
2242 |
|
|
/* Nonzero if we must avoid push-insns in the args for this call.
|
2243 |
|
|
If stack space is allocated for register parameters, but not by the
|
2244 |
|
|
caller, then it is preallocated in the fixed part of the stack frame.
|
2245 |
|
|
So the entire argument block must then be preallocated (i.e., we
|
2246 |
|
|
ignore PUSH_ROUNDING in that case). */
|
2247 |
|
|
|
2248 |
|
|
int must_preallocate = !PUSH_ARGS;
|
2249 |
|
|
|
2250 |
|
|
/* Size of the stack reserved for parameter registers. */
|
2251 |
|
|
int reg_parm_stack_space = 0;
|
2252 |
|
|
|
2253 |
|
|
/* Address of space preallocated for stack parms
|
2254 |
|
|
(on machines that lack push insns), or 0 if space not preallocated. */
|
2255 |
|
|
rtx argblock = 0;
|
2256 |
|
|
|
2257 |
|
|
/* Mask of ECF_ flags. */
|
2258 |
|
|
int flags = 0;
|
2259 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
2260 |
|
|
/* Define the boundary of the register parm stack space that needs to be
|
2261 |
|
|
saved, if any. */
|
2262 |
|
|
int low_to_save, high_to_save;
|
2263 |
|
|
rtx save_area = 0; /* Place that it is saved */
|
2264 |
|
|
#endif
|
2265 |
|
|
|
2266 |
|
|
int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
|
2267 |
|
|
char *initial_stack_usage_map = stack_usage_map;
|
2268 |
|
|
char *stack_usage_map_buf = NULL;
|
2269 |
|
|
|
2270 |
|
|
int old_stack_allocated;
|
2271 |
|
|
|
2272 |
|
|
/* State variables to track stack modifications. */
|
2273 |
|
|
rtx old_stack_level = 0;
|
2274 |
|
|
int old_stack_arg_under_construction = 0;
|
2275 |
|
|
int old_pending_adj = 0;
|
2276 |
|
|
int old_inhibit_defer_pop = inhibit_defer_pop;
|
2277 |
|
|
|
2278 |
|
|
/* Some stack pointer alterations we make are performed via
|
2279 |
|
|
allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
|
2280 |
|
|
which we then also need to save/restore along the way. */
|
2281 |
|
|
int old_stack_pointer_delta = 0;
|
2282 |
|
|
|
2283 |
|
|
rtx call_fusage;
|
2284 |
|
|
tree addr = CALL_EXPR_FN (exp);
|
2285 |
|
|
int i;
|
2286 |
|
|
/* The alignment of the stack, in bits. */
|
2287 |
|
|
unsigned HOST_WIDE_INT preferred_stack_boundary;
|
2288 |
|
|
/* The alignment of the stack, in bytes. */
|
2289 |
|
|
unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
|
2290 |
|
|
/* The static chain value to use for this call. */
|
2291 |
|
|
rtx static_chain_value;
|
2292 |
|
|
/* See if this is "nothrow" function call. */
|
2293 |
|
|
if (TREE_NOTHROW (exp))
|
2294 |
|
|
flags |= ECF_NOTHROW;
|
2295 |
|
|
|
2296 |
|
|
/* See if we can find a DECL-node for the actual function, and get the
|
2297 |
|
|
function attributes (flags) from the function decl or type node. */
|
2298 |
|
|
fndecl = get_callee_fndecl (exp);
|
2299 |
|
|
if (fndecl)
|
2300 |
|
|
{
|
2301 |
|
|
fntype = TREE_TYPE (fndecl);
|
2302 |
|
|
flags |= flags_from_decl_or_type (fndecl);
|
2303 |
|
|
}
|
2304 |
|
|
else
|
2305 |
|
|
{
|
2306 |
|
|
fntype = TREE_TYPE (TREE_TYPE (addr));
|
2307 |
|
|
flags |= flags_from_decl_or_type (fntype);
|
2308 |
|
|
}
|
2309 |
|
|
rettype = TREE_TYPE (exp);
|
2310 |
|
|
|
2311 |
|
|
struct_value = targetm.calls.struct_value_rtx (fntype, 0);
|
2312 |
|
|
|
2313 |
|
|
/* Warn if this value is an aggregate type,
|
2314 |
|
|
regardless of which calling convention we are using for it. */
|
2315 |
|
|
if (AGGREGATE_TYPE_P (rettype))
|
2316 |
|
|
warning (OPT_Waggregate_return, "function call has aggregate value");
|
2317 |
|
|
|
2318 |
|
|
/* If the result of a non looping pure or const function call is
|
2319 |
|
|
ignored (or void), and none of its arguments are volatile, we can
|
2320 |
|
|
avoid expanding the call and just evaluate the arguments for
|
2321 |
|
|
side-effects. */
|
2322 |
|
|
if ((flags & (ECF_CONST | ECF_PURE))
|
2323 |
|
|
&& (!(flags & ECF_LOOPING_CONST_OR_PURE))
|
2324 |
|
|
&& (ignore || target == const0_rtx
|
2325 |
|
|
|| TYPE_MODE (rettype) == VOIDmode))
|
2326 |
|
|
{
|
2327 |
|
|
bool volatilep = false;
|
2328 |
|
|
tree arg;
|
2329 |
|
|
call_expr_arg_iterator iter;
|
2330 |
|
|
|
2331 |
|
|
FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
|
2332 |
|
|
if (TREE_THIS_VOLATILE (arg))
|
2333 |
|
|
{
|
2334 |
|
|
volatilep = true;
|
2335 |
|
|
break;
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
if (! volatilep)
|
2339 |
|
|
{
|
2340 |
|
|
FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
|
2341 |
|
|
expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
2342 |
|
|
return const0_rtx;
|
2343 |
|
|
}
|
2344 |
|
|
}
|
2345 |
|
|
|
2346 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
2347 |
|
|
reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
|
2348 |
|
|
#endif
|
2349 |
|
|
|
2350 |
|
|
if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
|
2351 |
|
|
&& reg_parm_stack_space > 0 && PUSH_ARGS)
|
2352 |
|
|
must_preallocate = 1;
|
2353 |
|
|
|
2354 |
|
|
/* Set up a place to return a structure. */
|
2355 |
|
|
|
2356 |
|
|
/* Cater to broken compilers. */
|
2357 |
|
|
if (aggregate_value_p (exp, fntype))
|
2358 |
|
|
{
|
2359 |
|
|
/* This call returns a big structure. */
|
2360 |
|
|
flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
|
2361 |
|
|
|
2362 |
|
|
#ifdef PCC_STATIC_STRUCT_RETURN
|
2363 |
|
|
{
|
2364 |
|
|
pcc_struct_value = 1;
|
2365 |
|
|
}
|
2366 |
|
|
#else /* not PCC_STATIC_STRUCT_RETURN */
|
2367 |
|
|
{
|
2368 |
|
|
struct_value_size = int_size_in_bytes (rettype);
|
2369 |
|
|
|
2370 |
|
|
if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
|
2371 |
|
|
structure_value_addr = XEXP (target, 0);
|
2372 |
|
|
else
|
2373 |
|
|
{
|
2374 |
|
|
/* For variable-sized objects, we must be called with a target
|
2375 |
|
|
specified. If we were to allocate space on the stack here,
|
2376 |
|
|
we would have no way of knowing when to free it. */
|
2377 |
|
|
rtx d = assign_temp (rettype, 0, 1, 1);
|
2378 |
|
|
|
2379 |
|
|
mark_temp_addr_taken (d);
|
2380 |
|
|
structure_value_addr = XEXP (d, 0);
|
2381 |
|
|
target = 0;
|
2382 |
|
|
}
|
2383 |
|
|
}
|
2384 |
|
|
#endif /* not PCC_STATIC_STRUCT_RETURN */
|
2385 |
|
|
}
|
2386 |
|
|
|
2387 |
|
|
/* Figure out the amount to which the stack should be aligned. */
|
2388 |
|
|
preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
|
2389 |
|
|
if (fndecl)
|
2390 |
|
|
{
|
2391 |
|
|
struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
|
2392 |
|
|
/* Without automatic stack alignment, we can't increase preferred
|
2393 |
|
|
stack boundary. With automatic stack alignment, it is
|
2394 |
|
|
unnecessary since unless we can guarantee that all callers will
|
2395 |
|
|
align the outgoing stack properly, callee has to align its
|
2396 |
|
|
stack anyway. */
|
2397 |
|
|
if (i
|
2398 |
|
|
&& i->preferred_incoming_stack_boundary
|
2399 |
|
|
&& i->preferred_incoming_stack_boundary < preferred_stack_boundary)
|
2400 |
|
|
preferred_stack_boundary = i->preferred_incoming_stack_boundary;
|
2401 |
|
|
}
|
2402 |
|
|
|
2403 |
|
|
/* Operand 0 is a pointer-to-function; get the type of the function. */
|
2404 |
|
|
funtype = TREE_TYPE (addr);
|
2405 |
|
|
gcc_assert (POINTER_TYPE_P (funtype));
|
2406 |
|
|
funtype = TREE_TYPE (funtype);
|
2407 |
|
|
|
2408 |
|
|
/* Count whether there are actual complex arguments that need to be split
|
2409 |
|
|
into their real and imaginary parts. Munge the type_arg_types
|
2410 |
|
|
appropriately here as well. */
|
2411 |
|
|
if (targetm.calls.split_complex_arg)
|
2412 |
|
|
{
|
2413 |
|
|
call_expr_arg_iterator iter;
|
2414 |
|
|
tree arg;
|
2415 |
|
|
FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
|
2416 |
|
|
{
|
2417 |
|
|
tree type = TREE_TYPE (arg);
|
2418 |
|
|
if (type && TREE_CODE (type) == COMPLEX_TYPE
|
2419 |
|
|
&& targetm.calls.split_complex_arg (type))
|
2420 |
|
|
num_complex_actuals++;
|
2421 |
|
|
}
|
2422 |
|
|
type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
|
2423 |
|
|
}
|
2424 |
|
|
else
|
2425 |
|
|
type_arg_types = TYPE_ARG_TYPES (funtype);
|
2426 |
|
|
|
2427 |
|
|
if (flags & ECF_MAY_BE_ALLOCA)
|
2428 |
|
|
cfun->calls_alloca = 1;
|
2429 |
|
|
|
2430 |
|
|
/* If struct_value_rtx is 0, it means pass the address
|
2431 |
|
|
as if it were an extra parameter. Put the argument expression
|
2432 |
|
|
in structure_value_addr_value. */
|
2433 |
|
|
if (structure_value_addr && struct_value == 0)
|
2434 |
|
|
{
|
2435 |
|
|
/* If structure_value_addr is a REG other than
|
2436 |
|
|
virtual_outgoing_args_rtx, we can use always use it. If it
|
2437 |
|
|
is not a REG, we must always copy it into a register.
|
2438 |
|
|
If it is virtual_outgoing_args_rtx, we must copy it to another
|
2439 |
|
|
register in some cases. */
|
2440 |
|
|
rtx temp = (!REG_P (structure_value_addr)
|
2441 |
|
|
|| (ACCUMULATE_OUTGOING_ARGS
|
2442 |
|
|
&& stack_arg_under_construction
|
2443 |
|
|
&& structure_value_addr == virtual_outgoing_args_rtx)
|
2444 |
|
|
? copy_addr_to_reg (convert_memory_address
|
2445 |
|
|
(Pmode, structure_value_addr))
|
2446 |
|
|
: structure_value_addr);
|
2447 |
|
|
|
2448 |
|
|
structure_value_addr_value =
|
2449 |
|
|
make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
|
2450 |
|
|
structure_value_addr_parm = 1;
|
2451 |
|
|
}
|
2452 |
|
|
|
2453 |
|
|
/* Count the arguments and set NUM_ACTUALS. */
|
2454 |
|
|
num_actuals =
|
2455 |
|
|
call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
|
2456 |
|
|
|
2457 |
|
|
/* Compute number of named args.
|
2458 |
|
|
First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
|
2459 |
|
|
|
2460 |
|
|
if (type_arg_types != 0)
|
2461 |
|
|
n_named_args
|
2462 |
|
|
= (list_length (type_arg_types)
|
2463 |
|
|
/* Count the struct value address, if it is passed as a parm. */
|
2464 |
|
|
+ structure_value_addr_parm);
|
2465 |
|
|
else
|
2466 |
|
|
/* If we know nothing, treat all args as named. */
|
2467 |
|
|
n_named_args = num_actuals;
|
2468 |
|
|
|
2469 |
|
|
/* Start updating where the next arg would go.
|
2470 |
|
|
|
2471 |
|
|
On some machines (such as the PA) indirect calls have a different
|
2472 |
|
|
calling convention than normal calls. The fourth argument in
|
2473 |
|
|
INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
|
2474 |
|
|
or not. */
|
2475 |
|
|
INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
|
2476 |
|
|
args_so_far = pack_cumulative_args (&args_so_far_v);
|
2477 |
|
|
|
2478 |
|
|
/* Now possibly adjust the number of named args.
|
2479 |
|
|
Normally, don't include the last named arg if anonymous args follow.
|
2480 |
|
|
We do include the last named arg if
|
2481 |
|
|
targetm.calls.strict_argument_naming() returns nonzero.
|
2482 |
|
|
(If no anonymous args follow, the result of list_length is actually
|
2483 |
|
|
one too large. This is harmless.)
|
2484 |
|
|
|
2485 |
|
|
If targetm.calls.pretend_outgoing_varargs_named() returns
|
2486 |
|
|
nonzero, and targetm.calls.strict_argument_naming() returns zero,
|
2487 |
|
|
this machine will be able to place unnamed args that were passed
|
2488 |
|
|
in registers into the stack. So treat all args as named. This
|
2489 |
|
|
allows the insns emitting for a specific argument list to be
|
2490 |
|
|
independent of the function declaration.
|
2491 |
|
|
|
2492 |
|
|
If targetm.calls.pretend_outgoing_varargs_named() returns zero,
|
2493 |
|
|
we do not have any reliable way to pass unnamed args in
|
2494 |
|
|
registers, so we must force them into memory. */
|
2495 |
|
|
|
2496 |
|
|
if (type_arg_types != 0
|
2497 |
|
|
&& targetm.calls.strict_argument_naming (args_so_far))
|
2498 |
|
|
;
|
2499 |
|
|
else if (type_arg_types != 0
|
2500 |
|
|
&& ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
|
2501 |
|
|
/* Don't include the last named arg. */
|
2502 |
|
|
--n_named_args;
|
2503 |
|
|
else
|
2504 |
|
|
/* Treat all args as named. */
|
2505 |
|
|
n_named_args = num_actuals;
|
2506 |
|
|
|
2507 |
|
|
/* Make a vector to hold all the information about each arg. */
|
2508 |
|
|
args = XALLOCAVEC (struct arg_data, num_actuals);
|
2509 |
|
|
memset (args, 0, num_actuals * sizeof (struct arg_data));
|
2510 |
|
|
|
2511 |
|
|
/* Build up entries in the ARGS array, compute the size of the
|
2512 |
|
|
arguments into ARGS_SIZE, etc. */
|
2513 |
|
|
initialize_argument_information (num_actuals, args, &args_size,
|
2514 |
|
|
n_named_args, exp,
|
2515 |
|
|
structure_value_addr_value, fndecl, fntype,
|
2516 |
|
|
args_so_far, reg_parm_stack_space,
|
2517 |
|
|
&old_stack_level, &old_pending_adj,
|
2518 |
|
|
&must_preallocate, &flags,
|
2519 |
|
|
&try_tail_call, CALL_FROM_THUNK_P (exp));
|
2520 |
|
|
|
2521 |
|
|
if (args_size.var)
|
2522 |
|
|
must_preallocate = 1;
|
2523 |
|
|
|
2524 |
|
|
/* Now make final decision about preallocating stack space. */
|
2525 |
|
|
must_preallocate = finalize_must_preallocate (must_preallocate,
|
2526 |
|
|
num_actuals, args,
|
2527 |
|
|
&args_size);
|
2528 |
|
|
|
2529 |
|
|
/* If the structure value address will reference the stack pointer, we
|
2530 |
|
|
must stabilize it. We don't need to do this if we know that we are
|
2531 |
|
|
not going to adjust the stack pointer in processing this call. */
|
2532 |
|
|
|
2533 |
|
|
if (structure_value_addr
|
2534 |
|
|
&& (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
|
2535 |
|
|
|| reg_mentioned_p (virtual_outgoing_args_rtx,
|
2536 |
|
|
structure_value_addr))
|
2537 |
|
|
&& (args_size.var
|
2538 |
|
|
|| (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
|
2539 |
|
|
structure_value_addr = copy_to_reg (structure_value_addr);
|
2540 |
|
|
|
2541 |
|
|
/* Tail calls can make things harder to debug, and we've traditionally
|
2542 |
|
|
pushed these optimizations into -O2. Don't try if we're already
|
2543 |
|
|
expanding a call, as that means we're an argument. Don't try if
|
2544 |
|
|
there's cleanups, as we know there's code to follow the call. */
|
2545 |
|
|
|
2546 |
|
|
if (currently_expanding_call++ != 0
|
2547 |
|
|
|| !flag_optimize_sibling_calls
|
2548 |
|
|
|| args_size.var
|
2549 |
|
|
|| dbg_cnt (tail_call) == false)
|
2550 |
|
|
try_tail_call = 0;
|
2551 |
|
|
|
2552 |
|
|
/* Rest of purposes for tail call optimizations to fail. */
|
2553 |
|
|
if (
|
2554 |
|
|
#ifdef HAVE_sibcall_epilogue
|
2555 |
|
|
!HAVE_sibcall_epilogue
|
2556 |
|
|
#else
|
2557 |
|
|
1
|
2558 |
|
|
#endif
|
2559 |
|
|
|| !try_tail_call
|
2560 |
|
|
/* Doing sibling call optimization needs some work, since
|
2561 |
|
|
structure_value_addr can be allocated on the stack.
|
2562 |
|
|
It does not seem worth the effort since few optimizable
|
2563 |
|
|
sibling calls will return a structure. */
|
2564 |
|
|
|| structure_value_addr != NULL_RTX
|
2565 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
2566 |
|
|
/* If outgoing reg parm stack space changes, we can not do sibcall. */
|
2567 |
|
|
|| (OUTGOING_REG_PARM_STACK_SPACE (funtype)
|
2568 |
|
|
!= OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
|
2569 |
|
|
|| (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
|
2570 |
|
|
#endif
|
2571 |
|
|
/* Check whether the target is able to optimize the call
|
2572 |
|
|
into a sibcall. */
|
2573 |
|
|
|| !targetm.function_ok_for_sibcall (fndecl, exp)
|
2574 |
|
|
/* Functions that do not return exactly once may not be sibcall
|
2575 |
|
|
optimized. */
|
2576 |
|
|
|| (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
|
2577 |
|
|
|| TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
|
2578 |
|
|
/* If the called function is nested in the current one, it might access
|
2579 |
|
|
some of the caller's arguments, but could clobber them beforehand if
|
2580 |
|
|
the argument areas are shared. */
|
2581 |
|
|
|| (fndecl && decl_function_context (fndecl) == current_function_decl)
|
2582 |
|
|
/* If this function requires more stack slots than the current
|
2583 |
|
|
function, we cannot change it into a sibling call.
|
2584 |
|
|
crtl->args.pretend_args_size is not part of the
|
2585 |
|
|
stack allocated by our caller. */
|
2586 |
|
|
|| args_size.constant > (crtl->args.size
|
2587 |
|
|
- crtl->args.pretend_args_size)
|
2588 |
|
|
/* If the callee pops its own arguments, then it must pop exactly
|
2589 |
|
|
the same number of arguments as the current function. */
|
2590 |
|
|
|| (targetm.calls.return_pops_args (fndecl, funtype, args_size.constant)
|
2591 |
|
|
!= targetm.calls.return_pops_args (current_function_decl,
|
2592 |
|
|
TREE_TYPE (current_function_decl),
|
2593 |
|
|
crtl->args.size))
|
2594 |
|
|
|| !lang_hooks.decls.ok_for_sibcall (fndecl))
|
2595 |
|
|
try_tail_call = 0;
|
2596 |
|
|
|
2597 |
|
|
/* Check if caller and callee disagree in promotion of function
|
2598 |
|
|
return value. */
|
2599 |
|
|
if (try_tail_call)
|
2600 |
|
|
{
|
2601 |
|
|
enum machine_mode caller_mode, caller_promoted_mode;
|
2602 |
|
|
enum machine_mode callee_mode, callee_promoted_mode;
|
2603 |
|
|
int caller_unsignedp, callee_unsignedp;
|
2604 |
|
|
tree caller_res = DECL_RESULT (current_function_decl);
|
2605 |
|
|
|
2606 |
|
|
caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
|
2607 |
|
|
caller_mode = DECL_MODE (caller_res);
|
2608 |
|
|
callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
|
2609 |
|
|
callee_mode = TYPE_MODE (TREE_TYPE (funtype));
|
2610 |
|
|
caller_promoted_mode
|
2611 |
|
|
= promote_function_mode (TREE_TYPE (caller_res), caller_mode,
|
2612 |
|
|
&caller_unsignedp,
|
2613 |
|
|
TREE_TYPE (current_function_decl), 1);
|
2614 |
|
|
callee_promoted_mode
|
2615 |
|
|
= promote_function_mode (TREE_TYPE (funtype), callee_mode,
|
2616 |
|
|
&callee_unsignedp,
|
2617 |
|
|
funtype, 1);
|
2618 |
|
|
if (caller_mode != VOIDmode
|
2619 |
|
|
&& (caller_promoted_mode != callee_promoted_mode
|
2620 |
|
|
|| ((caller_mode != caller_promoted_mode
|
2621 |
|
|
|| callee_mode != callee_promoted_mode)
|
2622 |
|
|
&& (caller_unsignedp != callee_unsignedp
|
2623 |
|
|
|| GET_MODE_BITSIZE (caller_mode)
|
2624 |
|
|
< GET_MODE_BITSIZE (callee_mode)))))
|
2625 |
|
|
try_tail_call = 0;
|
2626 |
|
|
}
|
2627 |
|
|
|
2628 |
|
|
/* Ensure current function's preferred stack boundary is at least
|
2629 |
|
|
what we need. Stack alignment may also increase preferred stack
|
2630 |
|
|
boundary. */
|
2631 |
|
|
if (crtl->preferred_stack_boundary < preferred_stack_boundary)
|
2632 |
|
|
crtl->preferred_stack_boundary = preferred_stack_boundary;
|
2633 |
|
|
else
|
2634 |
|
|
preferred_stack_boundary = crtl->preferred_stack_boundary;
|
2635 |
|
|
|
2636 |
|
|
preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
|
2637 |
|
|
|
2638 |
|
|
/* We want to make two insn chains; one for a sibling call, the other
|
2639 |
|
|
for a normal call. We will select one of the two chains after
|
2640 |
|
|
initial RTL generation is complete. */
|
2641 |
|
|
for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
|
2642 |
|
|
{
|
2643 |
|
|
int sibcall_failure = 0;
|
2644 |
|
|
/* We want to emit any pending stack adjustments before the tail
|
2645 |
|
|
recursion "call". That way we know any adjustment after the tail
|
2646 |
|
|
recursion call can be ignored if we indeed use the tail
|
2647 |
|
|
call expansion. */
|
2648 |
|
|
int save_pending_stack_adjust = 0;
|
2649 |
|
|
int save_stack_pointer_delta = 0;
|
2650 |
|
|
rtx insns;
|
2651 |
|
|
rtx before_call, next_arg_reg, after_args;
|
2652 |
|
|
|
2653 |
|
|
if (pass == 0)
|
2654 |
|
|
{
|
2655 |
|
|
/* State variables we need to save and restore between
|
2656 |
|
|
iterations. */
|
2657 |
|
|
save_pending_stack_adjust = pending_stack_adjust;
|
2658 |
|
|
save_stack_pointer_delta = stack_pointer_delta;
|
2659 |
|
|
}
|
2660 |
|
|
if (pass)
|
2661 |
|
|
flags &= ~ECF_SIBCALL;
|
2662 |
|
|
else
|
2663 |
|
|
flags |= ECF_SIBCALL;
|
2664 |
|
|
|
2665 |
|
|
/* Other state variables that we must reinitialize each time
|
2666 |
|
|
through the loop (that are not initialized by the loop itself). */
|
2667 |
|
|
argblock = 0;
|
2668 |
|
|
call_fusage = 0;
|
2669 |
|
|
|
2670 |
|
|
/* Start a new sequence for the normal call case.
|
2671 |
|
|
|
2672 |
|
|
From this point on, if the sibling call fails, we want to set
|
2673 |
|
|
sibcall_failure instead of continuing the loop. */
|
2674 |
|
|
start_sequence ();
|
2675 |
|
|
|
2676 |
|
|
/* Don't let pending stack adjusts add up to too much.
|
2677 |
|
|
Also, do all pending adjustments now if there is any chance
|
2678 |
|
|
this might be a call to alloca or if we are expanding a sibling
|
2679 |
|
|
call sequence.
|
2680 |
|
|
Also do the adjustments before a throwing call, otherwise
|
2681 |
|
|
exception handling can fail; PR 19225. */
|
2682 |
|
|
if (pending_stack_adjust >= 32
|
2683 |
|
|
|| (pending_stack_adjust > 0
|
2684 |
|
|
&& (flags & ECF_MAY_BE_ALLOCA))
|
2685 |
|
|
|| (pending_stack_adjust > 0
|
2686 |
|
|
&& flag_exceptions && !(flags & ECF_NOTHROW))
|
2687 |
|
|
|| pass == 0)
|
2688 |
|
|
do_pending_stack_adjust ();
|
2689 |
|
|
|
2690 |
|
|
/* Precompute any arguments as needed. */
|
2691 |
|
|
if (pass)
|
2692 |
|
|
precompute_arguments (num_actuals, args);
|
2693 |
|
|
|
2694 |
|
|
/* Now we are about to start emitting insns that can be deleted
|
2695 |
|
|
if a libcall is deleted. */
|
2696 |
|
|
if (pass && (flags & ECF_MALLOC))
|
2697 |
|
|
start_sequence ();
|
2698 |
|
|
|
2699 |
|
|
if (pass == 0 && crtl->stack_protect_guard)
|
2700 |
|
|
stack_protect_epilogue ();
|
2701 |
|
|
|
2702 |
|
|
adjusted_args_size = args_size;
|
2703 |
|
|
/* Compute the actual size of the argument block required. The variable
|
2704 |
|
|
and constant sizes must be combined, the size may have to be rounded,
|
2705 |
|
|
and there may be a minimum required size. When generating a sibcall
|
2706 |
|
|
pattern, do not round up, since we'll be re-using whatever space our
|
2707 |
|
|
caller provided. */
|
2708 |
|
|
unadjusted_args_size
|
2709 |
|
|
= compute_argument_block_size (reg_parm_stack_space,
|
2710 |
|
|
&adjusted_args_size,
|
2711 |
|
|
fndecl, fntype,
|
2712 |
|
|
(pass == 0 ? 0
|
2713 |
|
|
: preferred_stack_boundary));
|
2714 |
|
|
|
2715 |
|
|
old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
|
2716 |
|
|
|
2717 |
|
|
/* The argument block when performing a sibling call is the
|
2718 |
|
|
incoming argument block. */
|
2719 |
|
|
if (pass == 0)
|
2720 |
|
|
{
|
2721 |
|
|
argblock = crtl->args.internal_arg_pointer;
|
2722 |
|
|
argblock
|
2723 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
2724 |
|
|
= plus_constant (argblock, crtl->args.pretend_args_size);
|
2725 |
|
|
#else
|
2726 |
|
|
= plus_constant (argblock, -crtl->args.pretend_args_size);
|
2727 |
|
|
#endif
|
2728 |
|
|
stored_args_map = sbitmap_alloc (args_size.constant);
|
2729 |
|
|
sbitmap_zero (stored_args_map);
|
2730 |
|
|
}
|
2731 |
|
|
|
2732 |
|
|
/* If we have no actual push instructions, or shouldn't use them,
|
2733 |
|
|
make space for all args right now. */
|
2734 |
|
|
else if (adjusted_args_size.var != 0)
|
2735 |
|
|
{
|
2736 |
|
|
if (old_stack_level == 0)
|
2737 |
|
|
{
|
2738 |
|
|
emit_stack_save (SAVE_BLOCK, &old_stack_level);
|
2739 |
|
|
old_stack_pointer_delta = stack_pointer_delta;
|
2740 |
|
|
old_pending_adj = pending_stack_adjust;
|
2741 |
|
|
pending_stack_adjust = 0;
|
2742 |
|
|
/* stack_arg_under_construction says whether a stack arg is
|
2743 |
|
|
being constructed at the old stack level. Pushing the stack
|
2744 |
|
|
gets a clean outgoing argument block. */
|
2745 |
|
|
old_stack_arg_under_construction = stack_arg_under_construction;
|
2746 |
|
|
stack_arg_under_construction = 0;
|
2747 |
|
|
}
|
2748 |
|
|
argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
|
2749 |
|
|
if (flag_stack_usage_info)
|
2750 |
|
|
current_function_has_unbounded_dynamic_stack_size = 1;
|
2751 |
|
|
}
|
2752 |
|
|
else
|
2753 |
|
|
{
|
2754 |
|
|
/* Note that we must go through the motions of allocating an argument
|
2755 |
|
|
block even if the size is zero because we may be storing args
|
2756 |
|
|
in the area reserved for register arguments, which may be part of
|
2757 |
|
|
the stack frame. */
|
2758 |
|
|
|
2759 |
|
|
int needed = adjusted_args_size.constant;
|
2760 |
|
|
|
2761 |
|
|
/* Store the maximum argument space used. It will be pushed by
|
2762 |
|
|
the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
|
2763 |
|
|
checking). */
|
2764 |
|
|
|
2765 |
|
|
if (needed > crtl->outgoing_args_size)
|
2766 |
|
|
crtl->outgoing_args_size = needed;
|
2767 |
|
|
|
2768 |
|
|
if (must_preallocate)
|
2769 |
|
|
{
|
2770 |
|
|
if (ACCUMULATE_OUTGOING_ARGS)
|
2771 |
|
|
{
|
2772 |
|
|
/* Since the stack pointer will never be pushed, it is
|
2773 |
|
|
possible for the evaluation of a parm to clobber
|
2774 |
|
|
something we have already written to the stack.
|
2775 |
|
|
Since most function calls on RISC machines do not use
|
2776 |
|
|
the stack, this is uncommon, but must work correctly.
|
2777 |
|
|
|
2778 |
|
|
Therefore, we save any area of the stack that was already
|
2779 |
|
|
written and that we are using. Here we set up to do this
|
2780 |
|
|
by making a new stack usage map from the old one. The
|
2781 |
|
|
actual save will be done by store_one_arg.
|
2782 |
|
|
|
2783 |
|
|
Another approach might be to try to reorder the argument
|
2784 |
|
|
evaluations to avoid this conflicting stack usage. */
|
2785 |
|
|
|
2786 |
|
|
/* Since we will be writing into the entire argument area,
|
2787 |
|
|
the map must be allocated for its entire size, not just
|
2788 |
|
|
the part that is the responsibility of the caller. */
|
2789 |
|
|
if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
|
2790 |
|
|
needed += reg_parm_stack_space;
|
2791 |
|
|
|
2792 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
2793 |
|
|
highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
|
2794 |
|
|
needed + 1);
|
2795 |
|
|
#else
|
2796 |
|
|
highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
|
2797 |
|
|
needed);
|
2798 |
|
|
#endif
|
2799 |
|
|
free (stack_usage_map_buf);
|
2800 |
|
|
stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
|
2801 |
|
|
stack_usage_map = stack_usage_map_buf;
|
2802 |
|
|
|
2803 |
|
|
if (initial_highest_arg_in_use)
|
2804 |
|
|
memcpy (stack_usage_map, initial_stack_usage_map,
|
2805 |
|
|
initial_highest_arg_in_use);
|
2806 |
|
|
|
2807 |
|
|
if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
|
2808 |
|
|
memset (&stack_usage_map[initial_highest_arg_in_use], 0,
|
2809 |
|
|
(highest_outgoing_arg_in_use
|
2810 |
|
|
- initial_highest_arg_in_use));
|
2811 |
|
|
needed = 0;
|
2812 |
|
|
|
2813 |
|
|
/* The address of the outgoing argument list must not be
|
2814 |
|
|
copied to a register here, because argblock would be left
|
2815 |
|
|
pointing to the wrong place after the call to
|
2816 |
|
|
allocate_dynamic_stack_space below. */
|
2817 |
|
|
|
2818 |
|
|
argblock = virtual_outgoing_args_rtx;
|
2819 |
|
|
}
|
2820 |
|
|
else
|
2821 |
|
|
{
|
2822 |
|
|
if (inhibit_defer_pop == 0)
|
2823 |
|
|
{
|
2824 |
|
|
/* Try to reuse some or all of the pending_stack_adjust
|
2825 |
|
|
to get this space. */
|
2826 |
|
|
needed
|
2827 |
|
|
= (combine_pending_stack_adjustment_and_call
|
2828 |
|
|
(unadjusted_args_size,
|
2829 |
|
|
&adjusted_args_size,
|
2830 |
|
|
preferred_unit_stack_boundary));
|
2831 |
|
|
|
2832 |
|
|
/* combine_pending_stack_adjustment_and_call computes
|
2833 |
|
|
an adjustment before the arguments are allocated.
|
2834 |
|
|
Account for them and see whether or not the stack
|
2835 |
|
|
needs to go up or down. */
|
2836 |
|
|
needed = unadjusted_args_size - needed;
|
2837 |
|
|
|
2838 |
|
|
if (needed < 0)
|
2839 |
|
|
{
|
2840 |
|
|
/* We're releasing stack space. */
|
2841 |
|
|
/* ??? We can avoid any adjustment at all if we're
|
2842 |
|
|
already aligned. FIXME. */
|
2843 |
|
|
pending_stack_adjust = -needed;
|
2844 |
|
|
do_pending_stack_adjust ();
|
2845 |
|
|
needed = 0;
|
2846 |
|
|
}
|
2847 |
|
|
else
|
2848 |
|
|
/* We need to allocate space. We'll do that in
|
2849 |
|
|
push_block below. */
|
2850 |
|
|
pending_stack_adjust = 0;
|
2851 |
|
|
}
|
2852 |
|
|
|
2853 |
|
|
/* Special case this because overhead of `push_block' in
|
2854 |
|
|
this case is non-trivial. */
|
2855 |
|
|
if (needed == 0)
|
2856 |
|
|
argblock = virtual_outgoing_args_rtx;
|
2857 |
|
|
else
|
2858 |
|
|
{
|
2859 |
|
|
argblock = push_block (GEN_INT (needed), 0, 0);
|
2860 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
2861 |
|
|
argblock = plus_constant (argblock, needed);
|
2862 |
|
|
#endif
|
2863 |
|
|
}
|
2864 |
|
|
|
2865 |
|
|
/* We only really need to call `copy_to_reg' in the case
|
2866 |
|
|
where push insns are going to be used to pass ARGBLOCK
|
2867 |
|
|
to a function call in ARGS. In that case, the stack
|
2868 |
|
|
pointer changes value from the allocation point to the
|
2869 |
|
|
call point, and hence the value of
|
2870 |
|
|
VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
|
2871 |
|
|
as well always do it. */
|
2872 |
|
|
argblock = copy_to_reg (argblock);
|
2873 |
|
|
}
|
2874 |
|
|
}
|
2875 |
|
|
}
|
2876 |
|
|
|
2877 |
|
|
if (ACCUMULATE_OUTGOING_ARGS)
|
2878 |
|
|
{
|
2879 |
|
|
/* The save/restore code in store_one_arg handles all
|
2880 |
|
|
cases except one: a constructor call (including a C
|
2881 |
|
|
function returning a BLKmode struct) to initialize
|
2882 |
|
|
an argument. */
|
2883 |
|
|
if (stack_arg_under_construction)
|
2884 |
|
|
{
|
2885 |
|
|
rtx push_size
|
2886 |
|
|
= GEN_INT (adjusted_args_size.constant
|
2887 |
|
|
+ (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
|
2888 |
|
|
: TREE_TYPE (fndecl))) ? 0
|
2889 |
|
|
: reg_parm_stack_space));
|
2890 |
|
|
if (old_stack_level == 0)
|
2891 |
|
|
{
|
2892 |
|
|
emit_stack_save (SAVE_BLOCK, &old_stack_level);
|
2893 |
|
|
old_stack_pointer_delta = stack_pointer_delta;
|
2894 |
|
|
old_pending_adj = pending_stack_adjust;
|
2895 |
|
|
pending_stack_adjust = 0;
|
2896 |
|
|
/* stack_arg_under_construction says whether a stack
|
2897 |
|
|
arg is being constructed at the old stack level.
|
2898 |
|
|
Pushing the stack gets a clean outgoing argument
|
2899 |
|
|
block. */
|
2900 |
|
|
old_stack_arg_under_construction
|
2901 |
|
|
= stack_arg_under_construction;
|
2902 |
|
|
stack_arg_under_construction = 0;
|
2903 |
|
|
/* Make a new map for the new argument list. */
|
2904 |
|
|
free (stack_usage_map_buf);
|
2905 |
|
|
stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
|
2906 |
|
|
stack_usage_map = stack_usage_map_buf;
|
2907 |
|
|
highest_outgoing_arg_in_use = 0;
|
2908 |
|
|
}
|
2909 |
|
|
/* We can pass TRUE as the 4th argument because we just
|
2910 |
|
|
saved the stack pointer and will restore it right after
|
2911 |
|
|
the call. */
|
2912 |
|
|
allocate_dynamic_stack_space (push_size, 0,
|
2913 |
|
|
BIGGEST_ALIGNMENT, true);
|
2914 |
|
|
}
|
2915 |
|
|
|
2916 |
|
|
/* If argument evaluation might modify the stack pointer,
|
2917 |
|
|
copy the address of the argument list to a register. */
|
2918 |
|
|
for (i = 0; i < num_actuals; i++)
|
2919 |
|
|
if (args[i].pass_on_stack)
|
2920 |
|
|
{
|
2921 |
|
|
argblock = copy_addr_to_reg (argblock);
|
2922 |
|
|
break;
|
2923 |
|
|
}
|
2924 |
|
|
}
|
2925 |
|
|
|
2926 |
|
|
compute_argument_addresses (args, argblock, num_actuals);
|
2927 |
|
|
|
2928 |
|
|
/* If we push args individually in reverse order, perform stack alignment
|
2929 |
|
|
before the first push (the last arg). */
|
2930 |
|
|
if (PUSH_ARGS_REVERSED && argblock == 0
|
2931 |
|
|
&& adjusted_args_size.constant != unadjusted_args_size)
|
2932 |
|
|
{
|
2933 |
|
|
/* When the stack adjustment is pending, we get better code
|
2934 |
|
|
by combining the adjustments. */
|
2935 |
|
|
if (pending_stack_adjust
|
2936 |
|
|
&& ! inhibit_defer_pop)
|
2937 |
|
|
{
|
2938 |
|
|
pending_stack_adjust
|
2939 |
|
|
= (combine_pending_stack_adjustment_and_call
|
2940 |
|
|
(unadjusted_args_size,
|
2941 |
|
|
&adjusted_args_size,
|
2942 |
|
|
preferred_unit_stack_boundary));
|
2943 |
|
|
do_pending_stack_adjust ();
|
2944 |
|
|
}
|
2945 |
|
|
else if (argblock == 0)
|
2946 |
|
|
anti_adjust_stack (GEN_INT (adjusted_args_size.constant
|
2947 |
|
|
- unadjusted_args_size));
|
2948 |
|
|
}
|
2949 |
|
|
/* Now that the stack is properly aligned, pops can't safely
|
2950 |
|
|
be deferred during the evaluation of the arguments. */
|
2951 |
|
|
NO_DEFER_POP;
|
2952 |
|
|
|
2953 |
|
|
/* Record the maximum pushed stack space size. We need to delay
|
2954 |
|
|
doing it this far to take into account the optimization done
|
2955 |
|
|
by combine_pending_stack_adjustment_and_call. */
|
2956 |
|
|
if (flag_stack_usage_info
|
2957 |
|
|
&& !ACCUMULATE_OUTGOING_ARGS
|
2958 |
|
|
&& pass
|
2959 |
|
|
&& adjusted_args_size.var == 0)
|
2960 |
|
|
{
|
2961 |
|
|
int pushed = adjusted_args_size.constant + pending_stack_adjust;
|
2962 |
|
|
if (pushed > current_function_pushed_stack_size)
|
2963 |
|
|
current_function_pushed_stack_size = pushed;
|
2964 |
|
|
}
|
2965 |
|
|
|
2966 |
|
|
funexp = rtx_for_function_call (fndecl, addr);
|
2967 |
|
|
|
2968 |
|
|
/* Figure out the register where the value, if any, will come back. */
|
2969 |
|
|
valreg = 0;
|
2970 |
|
|
if (TYPE_MODE (rettype) != VOIDmode
|
2971 |
|
|
&& ! structure_value_addr)
|
2972 |
|
|
{
|
2973 |
|
|
if (pcc_struct_value)
|
2974 |
|
|
valreg = hard_function_value (build_pointer_type (rettype),
|
2975 |
|
|
fndecl, NULL, (pass == 0));
|
2976 |
|
|
else
|
2977 |
|
|
valreg = hard_function_value (rettype, fndecl, fntype,
|
2978 |
|
|
(pass == 0));
|
2979 |
|
|
|
2980 |
|
|
/* If VALREG is a PARALLEL whose first member has a zero
|
2981 |
|
|
offset, use that. This is for targets such as m68k that
|
2982 |
|
|
return the same value in multiple places. */
|
2983 |
|
|
if (GET_CODE (valreg) == PARALLEL)
|
2984 |
|
|
{
|
2985 |
|
|
rtx elem = XVECEXP (valreg, 0, 0);
|
2986 |
|
|
rtx where = XEXP (elem, 0);
|
2987 |
|
|
rtx offset = XEXP (elem, 1);
|
2988 |
|
|
if (offset == const0_rtx
|
2989 |
|
|
&& GET_MODE (where) == GET_MODE (valreg))
|
2990 |
|
|
valreg = where;
|
2991 |
|
|
}
|
2992 |
|
|
}
|
2993 |
|
|
|
2994 |
|
|
/* Precompute all register parameters. It isn't safe to compute anything
|
2995 |
|
|
once we have started filling any specific hard regs. */
|
2996 |
|
|
precompute_register_parameters (num_actuals, args, ®_parm_seen);
|
2997 |
|
|
|
2998 |
|
|
if (CALL_EXPR_STATIC_CHAIN (exp))
|
2999 |
|
|
static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
|
3000 |
|
|
else
|
3001 |
|
|
static_chain_value = 0;
|
3002 |
|
|
|
3003 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
3004 |
|
|
/* Save the fixed argument area if it's part of the caller's frame and
|
3005 |
|
|
is clobbered by argument setup for this call. */
|
3006 |
|
|
if (ACCUMULATE_OUTGOING_ARGS && pass)
|
3007 |
|
|
save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
|
3008 |
|
|
&low_to_save, &high_to_save);
|
3009 |
|
|
#endif
|
3010 |
|
|
|
3011 |
|
|
/* Now store (and compute if necessary) all non-register parms.
|
3012 |
|
|
These come before register parms, since they can require block-moves,
|
3013 |
|
|
which could clobber the registers used for register parms.
|
3014 |
|
|
Parms which have partial registers are not stored here,
|
3015 |
|
|
but we do preallocate space here if they want that. */
|
3016 |
|
|
|
3017 |
|
|
for (i = 0; i < num_actuals; i++)
|
3018 |
|
|
{
|
3019 |
|
|
if (args[i].reg == 0 || args[i].pass_on_stack)
|
3020 |
|
|
{
|
3021 |
|
|
rtx before_arg = get_last_insn ();
|
3022 |
|
|
|
3023 |
|
|
if (store_one_arg (&args[i], argblock, flags,
|
3024 |
|
|
adjusted_args_size.var != 0,
|
3025 |
|
|
reg_parm_stack_space)
|
3026 |
|
|
|| (pass == 0
|
3027 |
|
|
&& check_sibcall_argument_overlap (before_arg,
|
3028 |
|
|
&args[i], 1)))
|
3029 |
|
|
sibcall_failure = 1;
|
3030 |
|
|
}
|
3031 |
|
|
|
3032 |
|
|
if (args[i].stack)
|
3033 |
|
|
call_fusage
|
3034 |
|
|
= gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
|
3035 |
|
|
gen_rtx_USE (VOIDmode, args[i].stack),
|
3036 |
|
|
call_fusage);
|
3037 |
|
|
}
|
3038 |
|
|
|
3039 |
|
|
/* If we have a parm that is passed in registers but not in memory
|
3040 |
|
|
and whose alignment does not permit a direct copy into registers,
|
3041 |
|
|
make a group of pseudos that correspond to each register that we
|
3042 |
|
|
will later fill. */
|
3043 |
|
|
if (STRICT_ALIGNMENT)
|
3044 |
|
|
store_unaligned_arguments_into_pseudos (args, num_actuals);
|
3045 |
|
|
|
3046 |
|
|
/* Now store any partially-in-registers parm.
|
3047 |
|
|
This is the last place a block-move can happen. */
|
3048 |
|
|
if (reg_parm_seen)
|
3049 |
|
|
for (i = 0; i < num_actuals; i++)
|
3050 |
|
|
if (args[i].partial != 0 && ! args[i].pass_on_stack)
|
3051 |
|
|
{
|
3052 |
|
|
rtx before_arg = get_last_insn ();
|
3053 |
|
|
|
3054 |
|
|
if (store_one_arg (&args[i], argblock, flags,
|
3055 |
|
|
adjusted_args_size.var != 0,
|
3056 |
|
|
reg_parm_stack_space)
|
3057 |
|
|
|| (pass == 0
|
3058 |
|
|
&& check_sibcall_argument_overlap (before_arg,
|
3059 |
|
|
&args[i], 1)))
|
3060 |
|
|
sibcall_failure = 1;
|
3061 |
|
|
}
|
3062 |
|
|
|
3063 |
|
|
/* If we pushed args in forward order, perform stack alignment
|
3064 |
|
|
after pushing the last arg. */
|
3065 |
|
|
if (!PUSH_ARGS_REVERSED && argblock == 0)
|
3066 |
|
|
anti_adjust_stack (GEN_INT (adjusted_args_size.constant
|
3067 |
|
|
- unadjusted_args_size));
|
3068 |
|
|
|
3069 |
|
|
/* If register arguments require space on the stack and stack space
|
3070 |
|
|
was not preallocated, allocate stack space here for arguments
|
3071 |
|
|
passed in registers. */
|
3072 |
|
|
if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
|
3073 |
|
|
&& !ACCUMULATE_OUTGOING_ARGS
|
3074 |
|
|
&& must_preallocate == 0 && reg_parm_stack_space > 0)
|
3075 |
|
|
anti_adjust_stack (GEN_INT (reg_parm_stack_space));
|
3076 |
|
|
|
3077 |
|
|
/* Pass the function the address in which to return a
|
3078 |
|
|
structure value. */
|
3079 |
|
|
if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
|
3080 |
|
|
{
|
3081 |
|
|
structure_value_addr
|
3082 |
|
|
= convert_memory_address (Pmode, structure_value_addr);
|
3083 |
|
|
emit_move_insn (struct_value,
|
3084 |
|
|
force_reg (Pmode,
|
3085 |
|
|
force_operand (structure_value_addr,
|
3086 |
|
|
NULL_RTX)));
|
3087 |
|
|
|
3088 |
|
|
if (REG_P (struct_value))
|
3089 |
|
|
use_reg (&call_fusage, struct_value);
|
3090 |
|
|
}
|
3091 |
|
|
|
3092 |
|
|
after_args = get_last_insn ();
|
3093 |
|
|
funexp = prepare_call_address (fndecl, funexp, static_chain_value,
|
3094 |
|
|
&call_fusage, reg_parm_seen, pass == 0);
|
3095 |
|
|
|
3096 |
|
|
load_register_parameters (args, num_actuals, &call_fusage, flags,
|
3097 |
|
|
pass == 0, &sibcall_failure);
|
3098 |
|
|
|
3099 |
|
|
/* Save a pointer to the last insn before the call, so that we can
|
3100 |
|
|
later safely search backwards to find the CALL_INSN. */
|
3101 |
|
|
before_call = get_last_insn ();
|
3102 |
|
|
|
3103 |
|
|
/* Set up next argument register. For sibling calls on machines
|
3104 |
|
|
with register windows this should be the incoming register. */
|
3105 |
|
|
if (pass == 0)
|
3106 |
|
|
next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
|
3107 |
|
|
VOIDmode,
|
3108 |
|
|
void_type_node,
|
3109 |
|
|
true);
|
3110 |
|
|
else
|
3111 |
|
|
next_arg_reg = targetm.calls.function_arg (args_so_far,
|
3112 |
|
|
VOIDmode, void_type_node,
|
3113 |
|
|
true);
|
3114 |
|
|
|
3115 |
|
|
/* All arguments and registers used for the call must be set up by
|
3116 |
|
|
now! */
|
3117 |
|
|
|
3118 |
|
|
/* Stack must be properly aligned now. */
|
3119 |
|
|
gcc_assert (!pass
|
3120 |
|
|
|| !(stack_pointer_delta % preferred_unit_stack_boundary));
|
3121 |
|
|
|
3122 |
|
|
/* Generate the actual call instruction. */
|
3123 |
|
|
emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
|
3124 |
|
|
adjusted_args_size.constant, struct_value_size,
|
3125 |
|
|
next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
|
3126 |
|
|
flags, args_so_far);
|
3127 |
|
|
|
3128 |
|
|
/* If the call setup or the call itself overlaps with anything
|
3129 |
|
|
of the argument setup we probably clobbered our call address.
|
3130 |
|
|
In that case we can't do sibcalls. */
|
3131 |
|
|
if (pass == 0
|
3132 |
|
|
&& check_sibcall_argument_overlap (after_args, 0, 0))
|
3133 |
|
|
sibcall_failure = 1;
|
3134 |
|
|
|
3135 |
|
|
/* If a non-BLKmode value is returned at the most significant end
|
3136 |
|
|
of a register, shift the register right by the appropriate amount
|
3137 |
|
|
and update VALREG accordingly. BLKmode values are handled by the
|
3138 |
|
|
group load/store machinery below. */
|
3139 |
|
|
if (!structure_value_addr
|
3140 |
|
|
&& !pcc_struct_value
|
3141 |
|
|
&& TYPE_MODE (rettype) != BLKmode
|
3142 |
|
|
&& targetm.calls.return_in_msb (rettype))
|
3143 |
|
|
{
|
3144 |
|
|
if (shift_return_value (TYPE_MODE (rettype), false, valreg))
|
3145 |
|
|
sibcall_failure = 1;
|
3146 |
|
|
valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
|
3147 |
|
|
}
|
3148 |
|
|
|
3149 |
|
|
if (pass && (flags & ECF_MALLOC))
|
3150 |
|
|
{
|
3151 |
|
|
rtx temp = gen_reg_rtx (GET_MODE (valreg));
|
3152 |
|
|
rtx last, insns;
|
3153 |
|
|
|
3154 |
|
|
/* The return value from a malloc-like function is a pointer. */
|
3155 |
|
|
if (TREE_CODE (rettype) == POINTER_TYPE)
|
3156 |
|
|
mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
|
3157 |
|
|
|
3158 |
|
|
emit_move_insn (temp, valreg);
|
3159 |
|
|
|
3160 |
|
|
/* The return value from a malloc-like function can not alias
|
3161 |
|
|
anything else. */
|
3162 |
|
|
last = get_last_insn ();
|
3163 |
|
|
add_reg_note (last, REG_NOALIAS, temp);
|
3164 |
|
|
|
3165 |
|
|
/* Write out the sequence. */
|
3166 |
|
|
insns = get_insns ();
|
3167 |
|
|
end_sequence ();
|
3168 |
|
|
emit_insn (insns);
|
3169 |
|
|
valreg = temp;
|
3170 |
|
|
}
|
3171 |
|
|
|
3172 |
|
|
/* For calls to `setjmp', etc., inform
|
3173 |
|
|
function.c:setjmp_warnings that it should complain if
|
3174 |
|
|
nonvolatile values are live. For functions that cannot
|
3175 |
|
|
return, inform flow that control does not fall through. */
|
3176 |
|
|
|
3177 |
|
|
if ((flags & ECF_NORETURN) || pass == 0)
|
3178 |
|
|
{
|
3179 |
|
|
/* The barrier must be emitted
|
3180 |
|
|
immediately after the CALL_INSN. Some ports emit more
|
3181 |
|
|
than just a CALL_INSN above, so we must search for it here. */
|
3182 |
|
|
|
3183 |
|
|
rtx last = get_last_insn ();
|
3184 |
|
|
while (!CALL_P (last))
|
3185 |
|
|
{
|
3186 |
|
|
last = PREV_INSN (last);
|
3187 |
|
|
/* There was no CALL_INSN? */
|
3188 |
|
|
gcc_assert (last != before_call);
|
3189 |
|
|
}
|
3190 |
|
|
|
3191 |
|
|
emit_barrier_after (last);
|
3192 |
|
|
|
3193 |
|
|
/* Stack adjustments after a noreturn call are dead code.
|
3194 |
|
|
However when NO_DEFER_POP is in effect, we must preserve
|
3195 |
|
|
stack_pointer_delta. */
|
3196 |
|
|
if (inhibit_defer_pop == 0)
|
3197 |
|
|
{
|
3198 |
|
|
stack_pointer_delta = old_stack_allocated;
|
3199 |
|
|
pending_stack_adjust = 0;
|
3200 |
|
|
}
|
3201 |
|
|
}
|
3202 |
|
|
|
3203 |
|
|
/* If value type not void, return an rtx for the value. */
|
3204 |
|
|
|
3205 |
|
|
if (TYPE_MODE (rettype) == VOIDmode
|
3206 |
|
|
|| ignore)
|
3207 |
|
|
target = const0_rtx;
|
3208 |
|
|
else if (structure_value_addr)
|
3209 |
|
|
{
|
3210 |
|
|
if (target == 0 || !MEM_P (target))
|
3211 |
|
|
{
|
3212 |
|
|
target
|
3213 |
|
|
= gen_rtx_MEM (TYPE_MODE (rettype),
|
3214 |
|
|
memory_address (TYPE_MODE (rettype),
|
3215 |
|
|
structure_value_addr));
|
3216 |
|
|
set_mem_attributes (target, rettype, 1);
|
3217 |
|
|
}
|
3218 |
|
|
}
|
3219 |
|
|
else if (pcc_struct_value)
|
3220 |
|
|
{
|
3221 |
|
|
/* This is the special C++ case where we need to
|
3222 |
|
|
know what the true target was. We take care to
|
3223 |
|
|
never use this value more than once in one expression. */
|
3224 |
|
|
target = gen_rtx_MEM (TYPE_MODE (rettype),
|
3225 |
|
|
copy_to_reg (valreg));
|
3226 |
|
|
set_mem_attributes (target, rettype, 1);
|
3227 |
|
|
}
|
3228 |
|
|
/* Handle calls that return values in multiple non-contiguous locations.
|
3229 |
|
|
The Irix 6 ABI has examples of this. */
|
3230 |
|
|
else if (GET_CODE (valreg) == PARALLEL)
|
3231 |
|
|
{
|
3232 |
|
|
if (target == 0)
|
3233 |
|
|
{
|
3234 |
|
|
/* This will only be assigned once, so it can be readonly. */
|
3235 |
|
|
tree nt = build_qualified_type (rettype,
|
3236 |
|
|
(TYPE_QUALS (rettype)
|
3237 |
|
|
| TYPE_QUAL_CONST));
|
3238 |
|
|
|
3239 |
|
|
target = assign_temp (nt, 0, 1, 1);
|
3240 |
|
|
}
|
3241 |
|
|
|
3242 |
|
|
if (! rtx_equal_p (target, valreg))
|
3243 |
|
|
emit_group_store (target, valreg, rettype,
|
3244 |
|
|
int_size_in_bytes (rettype));
|
3245 |
|
|
|
3246 |
|
|
/* We can not support sibling calls for this case. */
|
3247 |
|
|
sibcall_failure = 1;
|
3248 |
|
|
}
|
3249 |
|
|
else if (target
|
3250 |
|
|
&& GET_MODE (target) == TYPE_MODE (rettype)
|
3251 |
|
|
&& GET_MODE (target) == GET_MODE (valreg))
|
3252 |
|
|
{
|
3253 |
|
|
bool may_overlap = false;
|
3254 |
|
|
|
3255 |
|
|
/* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
|
3256 |
|
|
reg to a plain register. */
|
3257 |
|
|
if (!REG_P (target) || HARD_REGISTER_P (target))
|
3258 |
|
|
valreg = avoid_likely_spilled_reg (valreg);
|
3259 |
|
|
|
3260 |
|
|
/* If TARGET is a MEM in the argument area, and we have
|
3261 |
|
|
saved part of the argument area, then we can't store
|
3262 |
|
|
directly into TARGET as it may get overwritten when we
|
3263 |
|
|
restore the argument save area below. Don't work too
|
3264 |
|
|
hard though and simply force TARGET to a register if it
|
3265 |
|
|
is a MEM; the optimizer is quite likely to sort it out. */
|
3266 |
|
|
if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
|
3267 |
|
|
for (i = 0; i < num_actuals; i++)
|
3268 |
|
|
if (args[i].save_area)
|
3269 |
|
|
{
|
3270 |
|
|
may_overlap = true;
|
3271 |
|
|
break;
|
3272 |
|
|
}
|
3273 |
|
|
|
3274 |
|
|
if (may_overlap)
|
3275 |
|
|
target = copy_to_reg (valreg);
|
3276 |
|
|
else
|
3277 |
|
|
{
|
3278 |
|
|
/* TARGET and VALREG cannot be equal at this point
|
3279 |
|
|
because the latter would not have
|
3280 |
|
|
REG_FUNCTION_VALUE_P true, while the former would if
|
3281 |
|
|
it were referring to the same register.
|
3282 |
|
|
|
3283 |
|
|
If they refer to the same register, this move will be
|
3284 |
|
|
a no-op, except when function inlining is being
|
3285 |
|
|
done. */
|
3286 |
|
|
emit_move_insn (target, valreg);
|
3287 |
|
|
|
3288 |
|
|
/* If we are setting a MEM, this code must be executed.
|
3289 |
|
|
Since it is emitted after the call insn, sibcall
|
3290 |
|
|
optimization cannot be performed in that case. */
|
3291 |
|
|
if (MEM_P (target))
|
3292 |
|
|
sibcall_failure = 1;
|
3293 |
|
|
}
|
3294 |
|
|
}
|
3295 |
|
|
else if (TYPE_MODE (rettype) == BLKmode)
|
3296 |
|
|
{
|
3297 |
|
|
rtx val = valreg;
|
3298 |
|
|
if (GET_MODE (val) != BLKmode)
|
3299 |
|
|
val = avoid_likely_spilled_reg (val);
|
3300 |
|
|
target = copy_blkmode_from_reg (target, val, rettype);
|
3301 |
|
|
|
3302 |
|
|
/* We can not support sibling calls for this case. */
|
3303 |
|
|
sibcall_failure = 1;
|
3304 |
|
|
}
|
3305 |
|
|
else
|
3306 |
|
|
target = copy_to_reg (avoid_likely_spilled_reg (valreg));
|
3307 |
|
|
|
3308 |
|
|
/* If we promoted this return value, make the proper SUBREG.
|
3309 |
|
|
TARGET might be const0_rtx here, so be careful. */
|
3310 |
|
|
if (REG_P (target)
|
3311 |
|
|
&& TYPE_MODE (rettype) != BLKmode
|
3312 |
|
|
&& GET_MODE (target) != TYPE_MODE (rettype))
|
3313 |
|
|
{
|
3314 |
|
|
tree type = rettype;
|
3315 |
|
|
int unsignedp = TYPE_UNSIGNED (type);
|
3316 |
|
|
int offset = 0;
|
3317 |
|
|
enum machine_mode pmode;
|
3318 |
|
|
|
3319 |
|
|
/* Ensure we promote as expected, and get the new unsignedness. */
|
3320 |
|
|
pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
|
3321 |
|
|
funtype, 1);
|
3322 |
|
|
gcc_assert (GET_MODE (target) == pmode);
|
3323 |
|
|
|
3324 |
|
|
if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
|
3325 |
|
|
&& (GET_MODE_SIZE (GET_MODE (target))
|
3326 |
|
|
> GET_MODE_SIZE (TYPE_MODE (type))))
|
3327 |
|
|
{
|
3328 |
|
|
offset = GET_MODE_SIZE (GET_MODE (target))
|
3329 |
|
|
- GET_MODE_SIZE (TYPE_MODE (type));
|
3330 |
|
|
if (! BYTES_BIG_ENDIAN)
|
3331 |
|
|
offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
|
3332 |
|
|
else if (! WORDS_BIG_ENDIAN)
|
3333 |
|
|
offset %= UNITS_PER_WORD;
|
3334 |
|
|
}
|
3335 |
|
|
|
3336 |
|
|
target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
|
3337 |
|
|
SUBREG_PROMOTED_VAR_P (target) = 1;
|
3338 |
|
|
SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
|
3339 |
|
|
}
|
3340 |
|
|
|
3341 |
|
|
/* If size of args is variable or this was a constructor call for a stack
|
3342 |
|
|
argument, restore saved stack-pointer value. */
|
3343 |
|
|
|
3344 |
|
|
if (old_stack_level)
|
3345 |
|
|
{
|
3346 |
|
|
rtx prev = get_last_insn ();
|
3347 |
|
|
|
3348 |
|
|
emit_stack_restore (SAVE_BLOCK, old_stack_level);
|
3349 |
|
|
stack_pointer_delta = old_stack_pointer_delta;
|
3350 |
|
|
|
3351 |
|
|
fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
|
3352 |
|
|
|
3353 |
|
|
pending_stack_adjust = old_pending_adj;
|
3354 |
|
|
old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
|
3355 |
|
|
stack_arg_under_construction = old_stack_arg_under_construction;
|
3356 |
|
|
highest_outgoing_arg_in_use = initial_highest_arg_in_use;
|
3357 |
|
|
stack_usage_map = initial_stack_usage_map;
|
3358 |
|
|
sibcall_failure = 1;
|
3359 |
|
|
}
|
3360 |
|
|
else if (ACCUMULATE_OUTGOING_ARGS && pass)
|
3361 |
|
|
{
|
3362 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
3363 |
|
|
if (save_area)
|
3364 |
|
|
restore_fixed_argument_area (save_area, argblock,
|
3365 |
|
|
high_to_save, low_to_save);
|
3366 |
|
|
#endif
|
3367 |
|
|
|
3368 |
|
|
/* If we saved any argument areas, restore them. */
|
3369 |
|
|
for (i = 0; i < num_actuals; i++)
|
3370 |
|
|
if (args[i].save_area)
|
3371 |
|
|
{
|
3372 |
|
|
enum machine_mode save_mode = GET_MODE (args[i].save_area);
|
3373 |
|
|
rtx stack_area
|
3374 |
|
|
= gen_rtx_MEM (save_mode,
|
3375 |
|
|
memory_address (save_mode,
|
3376 |
|
|
XEXP (args[i].stack_slot, 0)));
|
3377 |
|
|
|
3378 |
|
|
if (save_mode != BLKmode)
|
3379 |
|
|
emit_move_insn (stack_area, args[i].save_area);
|
3380 |
|
|
else
|
3381 |
|
|
emit_block_move (stack_area, args[i].save_area,
|
3382 |
|
|
GEN_INT (args[i].locate.size.constant),
|
3383 |
|
|
BLOCK_OP_CALL_PARM);
|
3384 |
|
|
}
|
3385 |
|
|
|
3386 |
|
|
highest_outgoing_arg_in_use = initial_highest_arg_in_use;
|
3387 |
|
|
stack_usage_map = initial_stack_usage_map;
|
3388 |
|
|
}
|
3389 |
|
|
|
3390 |
|
|
/* If this was alloca, record the new stack level for nonlocal gotos.
|
3391 |
|
|
Check for the handler slots since we might not have a save area
|
3392 |
|
|
for non-local gotos. */
|
3393 |
|
|
|
3394 |
|
|
if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
|
3395 |
|
|
update_nonlocal_goto_save_area ();
|
3396 |
|
|
|
3397 |
|
|
/* Free up storage we no longer need. */
|
3398 |
|
|
for (i = 0; i < num_actuals; ++i)
|
3399 |
|
|
free (args[i].aligned_regs);
|
3400 |
|
|
|
3401 |
|
|
insns = get_insns ();
|
3402 |
|
|
end_sequence ();
|
3403 |
|
|
|
3404 |
|
|
if (pass == 0)
|
3405 |
|
|
{
|
3406 |
|
|
tail_call_insns = insns;
|
3407 |
|
|
|
3408 |
|
|
/* Restore the pending stack adjustment now that we have
|
3409 |
|
|
finished generating the sibling call sequence. */
|
3410 |
|
|
|
3411 |
|
|
pending_stack_adjust = save_pending_stack_adjust;
|
3412 |
|
|
stack_pointer_delta = save_stack_pointer_delta;
|
3413 |
|
|
|
3414 |
|
|
/* Prepare arg structure for next iteration. */
|
3415 |
|
|
for (i = 0; i < num_actuals; i++)
|
3416 |
|
|
{
|
3417 |
|
|
args[i].value = 0;
|
3418 |
|
|
args[i].aligned_regs = 0;
|
3419 |
|
|
args[i].stack = 0;
|
3420 |
|
|
}
|
3421 |
|
|
|
3422 |
|
|
sbitmap_free (stored_args_map);
|
3423 |
|
|
internal_arg_pointer_exp_state.scan_start = NULL_RTX;
|
3424 |
|
|
VEC_free (rtx, heap, internal_arg_pointer_exp_state.cache);
|
3425 |
|
|
}
|
3426 |
|
|
else
|
3427 |
|
|
{
|
3428 |
|
|
normal_call_insns = insns;
|
3429 |
|
|
|
3430 |
|
|
/* Verify that we've deallocated all the stack we used. */
|
3431 |
|
|
gcc_assert ((flags & ECF_NORETURN)
|
3432 |
|
|
|| (old_stack_allocated
|
3433 |
|
|
== stack_pointer_delta - pending_stack_adjust));
|
3434 |
|
|
}
|
3435 |
|
|
|
3436 |
|
|
/* If something prevents making this a sibling call,
|
3437 |
|
|
zero out the sequence. */
|
3438 |
|
|
if (sibcall_failure)
|
3439 |
|
|
tail_call_insns = NULL_RTX;
|
3440 |
|
|
else
|
3441 |
|
|
break;
|
3442 |
|
|
}
|
3443 |
|
|
|
3444 |
|
|
/* If tail call production succeeded, we need to remove REG_EQUIV notes on
|
3445 |
|
|
arguments too, as argument area is now clobbered by the call. */
|
3446 |
|
|
if (tail_call_insns)
|
3447 |
|
|
{
|
3448 |
|
|
emit_insn (tail_call_insns);
|
3449 |
|
|
crtl->tail_call_emit = true;
|
3450 |
|
|
}
|
3451 |
|
|
else
|
3452 |
|
|
emit_insn (normal_call_insns);
|
3453 |
|
|
|
3454 |
|
|
currently_expanding_call--;
|
3455 |
|
|
|
3456 |
|
|
free (stack_usage_map_buf);
|
3457 |
|
|
|
3458 |
|
|
return target;
|
3459 |
|
|
}
|
3460 |
|
|
|
3461 |
|
|
/* A sibling call sequence invalidates any REG_EQUIV notes made for
|
3462 |
|
|
this function's incoming arguments.
|
3463 |
|
|
|
3464 |
|
|
At the start of RTL generation we know the only REG_EQUIV notes
|
3465 |
|
|
in the rtl chain are those for incoming arguments, so we can look
|
3466 |
|
|
for REG_EQUIV notes between the start of the function and the
|
3467 |
|
|
NOTE_INSN_FUNCTION_BEG.
|
3468 |
|
|
|
3469 |
|
|
This is (slight) overkill. We could keep track of the highest
|
3470 |
|
|
argument we clobber and be more selective in removing notes, but it
|
3471 |
|
|
does not seem to be worth the effort. */
|
3472 |
|
|
|
3473 |
|
|
void
|
3474 |
|
|
fixup_tail_calls (void)
|
3475 |
|
|
{
|
3476 |
|
|
rtx insn;
|
3477 |
|
|
|
3478 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
3479 |
|
|
{
|
3480 |
|
|
rtx note;
|
3481 |
|
|
|
3482 |
|
|
/* There are never REG_EQUIV notes for the incoming arguments
|
3483 |
|
|
after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
|
3484 |
|
|
if (NOTE_P (insn)
|
3485 |
|
|
&& NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
|
3486 |
|
|
break;
|
3487 |
|
|
|
3488 |
|
|
note = find_reg_note (insn, REG_EQUIV, 0);
|
3489 |
|
|
if (note)
|
3490 |
|
|
remove_note (insn, note);
|
3491 |
|
|
note = find_reg_note (insn, REG_EQUIV, 0);
|
3492 |
|
|
gcc_assert (!note);
|
3493 |
|
|
}
|
3494 |
|
|
}
|
3495 |
|
|
|
3496 |
|
|
/* Traverse a list of TYPES and expand all complex types into their
|
3497 |
|
|
components. */
|
3498 |
|
|
static tree
|
3499 |
|
|
split_complex_types (tree types)
|
3500 |
|
|
{
|
3501 |
|
|
tree p;
|
3502 |
|
|
|
3503 |
|
|
/* Before allocating memory, check for the common case of no complex. */
|
3504 |
|
|
for (p = types; p; p = TREE_CHAIN (p))
|
3505 |
|
|
{
|
3506 |
|
|
tree type = TREE_VALUE (p);
|
3507 |
|
|
if (TREE_CODE (type) == COMPLEX_TYPE
|
3508 |
|
|
&& targetm.calls.split_complex_arg (type))
|
3509 |
|
|
goto found;
|
3510 |
|
|
}
|
3511 |
|
|
return types;
|
3512 |
|
|
|
3513 |
|
|
found:
|
3514 |
|
|
types = copy_list (types);
|
3515 |
|
|
|
3516 |
|
|
for (p = types; p; p = TREE_CHAIN (p))
|
3517 |
|
|
{
|
3518 |
|
|
tree complex_type = TREE_VALUE (p);
|
3519 |
|
|
|
3520 |
|
|
if (TREE_CODE (complex_type) == COMPLEX_TYPE
|
3521 |
|
|
&& targetm.calls.split_complex_arg (complex_type))
|
3522 |
|
|
{
|
3523 |
|
|
tree next, imag;
|
3524 |
|
|
|
3525 |
|
|
/* Rewrite complex type with component type. */
|
3526 |
|
|
TREE_VALUE (p) = TREE_TYPE (complex_type);
|
3527 |
|
|
next = TREE_CHAIN (p);
|
3528 |
|
|
|
3529 |
|
|
/* Add another component type for the imaginary part. */
|
3530 |
|
|
imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
|
3531 |
|
|
TREE_CHAIN (p) = imag;
|
3532 |
|
|
TREE_CHAIN (imag) = next;
|
3533 |
|
|
|
3534 |
|
|
/* Skip the newly created node. */
|
3535 |
|
|
p = TREE_CHAIN (p);
|
3536 |
|
|
}
|
3537 |
|
|
}
|
3538 |
|
|
|
3539 |
|
|
return types;
|
3540 |
|
|
}
|
3541 |
|
|
|
3542 |
|
|
/* Output a library call to function FUN (a SYMBOL_REF rtx).
|
3543 |
|
|
The RETVAL parameter specifies whether return value needs to be saved, other
|
3544 |
|
|
parameters are documented in the emit_library_call function below. */
|
3545 |
|
|
|
3546 |
|
|
static rtx
|
3547 |
|
|
emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
|
3548 |
|
|
enum libcall_type fn_type,
|
3549 |
|
|
enum machine_mode outmode, int nargs, va_list p)
|
3550 |
|
|
{
|
3551 |
|
|
/* Total size in bytes of all the stack-parms scanned so far. */
|
3552 |
|
|
struct args_size args_size;
|
3553 |
|
|
/* Size of arguments before any adjustments (such as rounding). */
|
3554 |
|
|
struct args_size original_args_size;
|
3555 |
|
|
int argnum;
|
3556 |
|
|
rtx fun;
|
3557 |
|
|
/* Todo, choose the correct decl type of orgfun. Sadly this information
|
3558 |
|
|
isn't present here, so we default to native calling abi here. */
|
3559 |
|
|
tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
|
3560 |
|
|
tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
|
3561 |
|
|
int inc;
|
3562 |
|
|
int count;
|
3563 |
|
|
rtx argblock = 0;
|
3564 |
|
|
CUMULATIVE_ARGS args_so_far_v;
|
3565 |
|
|
cumulative_args_t args_so_far;
|
3566 |
|
|
struct arg
|
3567 |
|
|
{
|
3568 |
|
|
rtx value;
|
3569 |
|
|
enum machine_mode mode;
|
3570 |
|
|
rtx reg;
|
3571 |
|
|
int partial;
|
3572 |
|
|
struct locate_and_pad_arg_data locate;
|
3573 |
|
|
rtx save_area;
|
3574 |
|
|
};
|
3575 |
|
|
struct arg *argvec;
|
3576 |
|
|
int old_inhibit_defer_pop = inhibit_defer_pop;
|
3577 |
|
|
rtx call_fusage = 0;
|
3578 |
|
|
rtx mem_value = 0;
|
3579 |
|
|
rtx valreg;
|
3580 |
|
|
int pcc_struct_value = 0;
|
3581 |
|
|
int struct_value_size = 0;
|
3582 |
|
|
int flags;
|
3583 |
|
|
int reg_parm_stack_space = 0;
|
3584 |
|
|
int needed;
|
3585 |
|
|
rtx before_call;
|
3586 |
|
|
tree tfom; /* type_for_mode (outmode, 0) */
|
3587 |
|
|
|
3588 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
3589 |
|
|
/* Define the boundary of the register parm stack space that needs to be
|
3590 |
|
|
save, if any. */
|
3591 |
|
|
int low_to_save = 0, high_to_save = 0;
|
3592 |
|
|
rtx save_area = 0; /* Place that it is saved. */
|
3593 |
|
|
#endif
|
3594 |
|
|
|
3595 |
|
|
/* Size of the stack reserved for parameter registers. */
|
3596 |
|
|
int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
|
3597 |
|
|
char *initial_stack_usage_map = stack_usage_map;
|
3598 |
|
|
char *stack_usage_map_buf = NULL;
|
3599 |
|
|
|
3600 |
|
|
rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
|
3601 |
|
|
|
3602 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
3603 |
|
|
reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
|
3604 |
|
|
#endif
|
3605 |
|
|
|
3606 |
|
|
/* By default, library functions can not throw. */
|
3607 |
|
|
flags = ECF_NOTHROW;
|
3608 |
|
|
|
3609 |
|
|
switch (fn_type)
|
3610 |
|
|
{
|
3611 |
|
|
case LCT_NORMAL:
|
3612 |
|
|
break;
|
3613 |
|
|
case LCT_CONST:
|
3614 |
|
|
flags |= ECF_CONST;
|
3615 |
|
|
break;
|
3616 |
|
|
case LCT_PURE:
|
3617 |
|
|
flags |= ECF_PURE;
|
3618 |
|
|
break;
|
3619 |
|
|
case LCT_NORETURN:
|
3620 |
|
|
flags |= ECF_NORETURN;
|
3621 |
|
|
break;
|
3622 |
|
|
case LCT_THROW:
|
3623 |
|
|
flags = ECF_NORETURN;
|
3624 |
|
|
break;
|
3625 |
|
|
case LCT_RETURNS_TWICE:
|
3626 |
|
|
flags = ECF_RETURNS_TWICE;
|
3627 |
|
|
break;
|
3628 |
|
|
}
|
3629 |
|
|
fun = orgfun;
|
3630 |
|
|
|
3631 |
|
|
/* Ensure current function's preferred stack boundary is at least
|
3632 |
|
|
what we need. */
|
3633 |
|
|
if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
|
3634 |
|
|
crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
|
3635 |
|
|
|
3636 |
|
|
/* If this kind of value comes back in memory,
|
3637 |
|
|
decide where in memory it should come back. */
|
3638 |
|
|
if (outmode != VOIDmode)
|
3639 |
|
|
{
|
3640 |
|
|
tfom = lang_hooks.types.type_for_mode (outmode, 0);
|
3641 |
|
|
if (aggregate_value_p (tfom, 0))
|
3642 |
|
|
{
|
3643 |
|
|
#ifdef PCC_STATIC_STRUCT_RETURN
|
3644 |
|
|
rtx pointer_reg
|
3645 |
|
|
= hard_function_value (build_pointer_type (tfom), 0, 0, 0);
|
3646 |
|
|
mem_value = gen_rtx_MEM (outmode, pointer_reg);
|
3647 |
|
|
pcc_struct_value = 1;
|
3648 |
|
|
if (value == 0)
|
3649 |
|
|
value = gen_reg_rtx (outmode);
|
3650 |
|
|
#else /* not PCC_STATIC_STRUCT_RETURN */
|
3651 |
|
|
struct_value_size = GET_MODE_SIZE (outmode);
|
3652 |
|
|
if (value != 0 && MEM_P (value))
|
3653 |
|
|
mem_value = value;
|
3654 |
|
|
else
|
3655 |
|
|
mem_value = assign_temp (tfom, 0, 1, 1);
|
3656 |
|
|
#endif
|
3657 |
|
|
/* This call returns a big structure. */
|
3658 |
|
|
flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
|
3659 |
|
|
}
|
3660 |
|
|
}
|
3661 |
|
|
else
|
3662 |
|
|
tfom = void_type_node;
|
3663 |
|
|
|
3664 |
|
|
/* ??? Unfinished: must pass the memory address as an argument. */
|
3665 |
|
|
|
3666 |
|
|
/* Copy all the libcall-arguments out of the varargs data
|
3667 |
|
|
and into a vector ARGVEC.
|
3668 |
|
|
|
3669 |
|
|
Compute how to pass each argument. We only support a very small subset
|
3670 |
|
|
of the full argument passing conventions to limit complexity here since
|
3671 |
|
|
library functions shouldn't have many args. */
|
3672 |
|
|
|
3673 |
|
|
argvec = XALLOCAVEC (struct arg, nargs + 1);
|
3674 |
|
|
memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
|
3675 |
|
|
|
3676 |
|
|
#ifdef INIT_CUMULATIVE_LIBCALL_ARGS
|
3677 |
|
|
INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
|
3678 |
|
|
#else
|
3679 |
|
|
INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
|
3680 |
|
|
#endif
|
3681 |
|
|
args_so_far = pack_cumulative_args (&args_so_far_v);
|
3682 |
|
|
|
3683 |
|
|
args_size.constant = 0;
|
3684 |
|
|
args_size.var = 0;
|
3685 |
|
|
|
3686 |
|
|
count = 0;
|
3687 |
|
|
|
3688 |
|
|
push_temp_slots ();
|
3689 |
|
|
|
3690 |
|
|
/* If there's a structure value address to be passed,
|
3691 |
|
|
either pass it in the special place, or pass it as an extra argument. */
|
3692 |
|
|
if (mem_value && struct_value == 0 && ! pcc_struct_value)
|
3693 |
|
|
{
|
3694 |
|
|
rtx addr = XEXP (mem_value, 0);
|
3695 |
|
|
|
3696 |
|
|
nargs++;
|
3697 |
|
|
|
3698 |
|
|
/* Make sure it is a reasonable operand for a move or push insn. */
|
3699 |
|
|
if (!REG_P (addr) && !MEM_P (addr)
|
3700 |
|
|
&& !(CONSTANT_P (addr)
|
3701 |
|
|
&& targetm.legitimate_constant_p (Pmode, addr)))
|
3702 |
|
|
addr = force_operand (addr, NULL_RTX);
|
3703 |
|
|
|
3704 |
|
|
argvec[count].value = addr;
|
3705 |
|
|
argvec[count].mode = Pmode;
|
3706 |
|
|
argvec[count].partial = 0;
|
3707 |
|
|
|
3708 |
|
|
argvec[count].reg = targetm.calls.function_arg (args_so_far,
|
3709 |
|
|
Pmode, NULL_TREE, true);
|
3710 |
|
|
gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
|
3711 |
|
|
NULL_TREE, 1) == 0);
|
3712 |
|
|
|
3713 |
|
|
locate_and_pad_parm (Pmode, NULL_TREE,
|
3714 |
|
|
#ifdef STACK_PARMS_IN_REG_PARM_AREA
|
3715 |
|
|
1,
|
3716 |
|
|
#else
|
3717 |
|
|
argvec[count].reg != 0,
|
3718 |
|
|
#endif
|
3719 |
|
|
0, NULL_TREE, &args_size, &argvec[count].locate);
|
3720 |
|
|
|
3721 |
|
|
if (argvec[count].reg == 0 || argvec[count].partial != 0
|
3722 |
|
|
|| reg_parm_stack_space > 0)
|
3723 |
|
|
args_size.constant += argvec[count].locate.size.constant;
|
3724 |
|
|
|
3725 |
|
|
targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
|
3726 |
|
|
|
3727 |
|
|
count++;
|
3728 |
|
|
}
|
3729 |
|
|
|
3730 |
|
|
for (; count < nargs; count++)
|
3731 |
|
|
{
|
3732 |
|
|
rtx val = va_arg (p, rtx);
|
3733 |
|
|
enum machine_mode mode = (enum machine_mode) va_arg (p, int);
|
3734 |
|
|
int unsigned_p = 0;
|
3735 |
|
|
|
3736 |
|
|
/* We cannot convert the arg value to the mode the library wants here;
|
3737 |
|
|
must do it earlier where we know the signedness of the arg. */
|
3738 |
|
|
gcc_assert (mode != BLKmode
|
3739 |
|
|
&& (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
|
3740 |
|
|
|
3741 |
|
|
/* Make sure it is a reasonable operand for a move or push insn. */
|
3742 |
|
|
if (!REG_P (val) && !MEM_P (val)
|
3743 |
|
|
&& !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
|
3744 |
|
|
val = force_operand (val, NULL_RTX);
|
3745 |
|
|
|
3746 |
|
|
if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
|
3747 |
|
|
{
|
3748 |
|
|
rtx slot;
|
3749 |
|
|
int must_copy
|
3750 |
|
|
= !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
|
3751 |
|
|
|
3752 |
|
|
/* If this was a CONST function, it is now PURE since it now
|
3753 |
|
|
reads memory. */
|
3754 |
|
|
if (flags & ECF_CONST)
|
3755 |
|
|
{
|
3756 |
|
|
flags &= ~ECF_CONST;
|
3757 |
|
|
flags |= ECF_PURE;
|
3758 |
|
|
}
|
3759 |
|
|
|
3760 |
|
|
if (MEM_P (val) && !must_copy)
|
3761 |
|
|
{
|
3762 |
|
|
tree val_expr = MEM_EXPR (val);
|
3763 |
|
|
if (val_expr)
|
3764 |
|
|
mark_addressable (val_expr);
|
3765 |
|
|
slot = val;
|
3766 |
|
|
}
|
3767 |
|
|
else
|
3768 |
|
|
{
|
3769 |
|
|
slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
|
3770 |
|
|
0, 1, 1);
|
3771 |
|
|
emit_move_insn (slot, val);
|
3772 |
|
|
}
|
3773 |
|
|
|
3774 |
|
|
call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
|
3775 |
|
|
gen_rtx_USE (VOIDmode, slot),
|
3776 |
|
|
call_fusage);
|
3777 |
|
|
if (must_copy)
|
3778 |
|
|
call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
|
3779 |
|
|
gen_rtx_CLOBBER (VOIDmode,
|
3780 |
|
|
slot),
|
3781 |
|
|
call_fusage);
|
3782 |
|
|
|
3783 |
|
|
mode = Pmode;
|
3784 |
|
|
val = force_operand (XEXP (slot, 0), NULL_RTX);
|
3785 |
|
|
}
|
3786 |
|
|
|
3787 |
|
|
mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
|
3788 |
|
|
argvec[count].mode = mode;
|
3789 |
|
|
argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
|
3790 |
|
|
argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
|
3791 |
|
|
NULL_TREE, true);
|
3792 |
|
|
|
3793 |
|
|
argvec[count].partial
|
3794 |
|
|
= targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
|
3795 |
|
|
|
3796 |
|
|
if (argvec[count].reg == 0
|
3797 |
|
|
|| argvec[count].partial != 0
|
3798 |
|
|
|| reg_parm_stack_space > 0)
|
3799 |
|
|
{
|
3800 |
|
|
locate_and_pad_parm (mode, NULL_TREE,
|
3801 |
|
|
#ifdef STACK_PARMS_IN_REG_PARM_AREA
|
3802 |
|
|
1,
|
3803 |
|
|
#else
|
3804 |
|
|
argvec[count].reg != 0,
|
3805 |
|
|
#endif
|
3806 |
|
|
argvec[count].partial,
|
3807 |
|
|
NULL_TREE, &args_size, &argvec[count].locate);
|
3808 |
|
|
args_size.constant += argvec[count].locate.size.constant;
|
3809 |
|
|
gcc_assert (!argvec[count].locate.size.var);
|
3810 |
|
|
}
|
3811 |
|
|
#ifdef BLOCK_REG_PADDING
|
3812 |
|
|
else
|
3813 |
|
|
/* The argument is passed entirely in registers. See at which
|
3814 |
|
|
end it should be padded. */
|
3815 |
|
|
argvec[count].locate.where_pad =
|
3816 |
|
|
BLOCK_REG_PADDING (mode, NULL_TREE,
|
3817 |
|
|
GET_MODE_SIZE (mode) <= UNITS_PER_WORD);
|
3818 |
|
|
#endif
|
3819 |
|
|
|
3820 |
|
|
targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
|
3821 |
|
|
}
|
3822 |
|
|
|
3823 |
|
|
/* If this machine requires an external definition for library
|
3824 |
|
|
functions, write one out. */
|
3825 |
|
|
assemble_external_libcall (fun);
|
3826 |
|
|
|
3827 |
|
|
original_args_size = args_size;
|
3828 |
|
|
args_size.constant = (((args_size.constant
|
3829 |
|
|
+ stack_pointer_delta
|
3830 |
|
|
+ STACK_BYTES - 1)
|
3831 |
|
|
/ STACK_BYTES
|
3832 |
|
|
* STACK_BYTES)
|
3833 |
|
|
- stack_pointer_delta);
|
3834 |
|
|
|
3835 |
|
|
args_size.constant = MAX (args_size.constant,
|
3836 |
|
|
reg_parm_stack_space);
|
3837 |
|
|
|
3838 |
|
|
if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
|
3839 |
|
|
args_size.constant -= reg_parm_stack_space;
|
3840 |
|
|
|
3841 |
|
|
if (args_size.constant > crtl->outgoing_args_size)
|
3842 |
|
|
crtl->outgoing_args_size = args_size.constant;
|
3843 |
|
|
|
3844 |
|
|
if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
|
3845 |
|
|
{
|
3846 |
|
|
int pushed = args_size.constant + pending_stack_adjust;
|
3847 |
|
|
if (pushed > current_function_pushed_stack_size)
|
3848 |
|
|
current_function_pushed_stack_size = pushed;
|
3849 |
|
|
}
|
3850 |
|
|
|
3851 |
|
|
if (ACCUMULATE_OUTGOING_ARGS)
|
3852 |
|
|
{
|
3853 |
|
|
/* Since the stack pointer will never be pushed, it is possible for
|
3854 |
|
|
the evaluation of a parm to clobber something we have already
|
3855 |
|
|
written to the stack. Since most function calls on RISC machines
|
3856 |
|
|
do not use the stack, this is uncommon, but must work correctly.
|
3857 |
|
|
|
3858 |
|
|
Therefore, we save any area of the stack that was already written
|
3859 |
|
|
and that we are using. Here we set up to do this by making a new
|
3860 |
|
|
stack usage map from the old one.
|
3861 |
|
|
|
3862 |
|
|
Another approach might be to try to reorder the argument
|
3863 |
|
|
evaluations to avoid this conflicting stack usage. */
|
3864 |
|
|
|
3865 |
|
|
needed = args_size.constant;
|
3866 |
|
|
|
3867 |
|
|
/* Since we will be writing into the entire argument area, the
|
3868 |
|
|
map must be allocated for its entire size, not just the part that
|
3869 |
|
|
is the responsibility of the caller. */
|
3870 |
|
|
if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
|
3871 |
|
|
needed += reg_parm_stack_space;
|
3872 |
|
|
|
3873 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
3874 |
|
|
highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
|
3875 |
|
|
needed + 1);
|
3876 |
|
|
#else
|
3877 |
|
|
highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
|
3878 |
|
|
needed);
|
3879 |
|
|
#endif
|
3880 |
|
|
stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
|
3881 |
|
|
stack_usage_map = stack_usage_map_buf;
|
3882 |
|
|
|
3883 |
|
|
if (initial_highest_arg_in_use)
|
3884 |
|
|
memcpy (stack_usage_map, initial_stack_usage_map,
|
3885 |
|
|
initial_highest_arg_in_use);
|
3886 |
|
|
|
3887 |
|
|
if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
|
3888 |
|
|
memset (&stack_usage_map[initial_highest_arg_in_use], 0,
|
3889 |
|
|
highest_outgoing_arg_in_use - initial_highest_arg_in_use);
|
3890 |
|
|
needed = 0;
|
3891 |
|
|
|
3892 |
|
|
/* We must be careful to use virtual regs before they're instantiated,
|
3893 |
|
|
and real regs afterwards. Loop optimization, for example, can create
|
3894 |
|
|
new libcalls after we've instantiated the virtual regs, and if we
|
3895 |
|
|
use virtuals anyway, they won't match the rtl patterns. */
|
3896 |
|
|
|
3897 |
|
|
if (virtuals_instantiated)
|
3898 |
|
|
argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
|
3899 |
|
|
else
|
3900 |
|
|
argblock = virtual_outgoing_args_rtx;
|
3901 |
|
|
}
|
3902 |
|
|
else
|
3903 |
|
|
{
|
3904 |
|
|
if (!PUSH_ARGS)
|
3905 |
|
|
argblock = push_block (GEN_INT (args_size.constant), 0, 0);
|
3906 |
|
|
}
|
3907 |
|
|
|
3908 |
|
|
/* If we push args individually in reverse order, perform stack alignment
|
3909 |
|
|
before the first push (the last arg). */
|
3910 |
|
|
if (argblock == 0 && PUSH_ARGS_REVERSED)
|
3911 |
|
|
anti_adjust_stack (GEN_INT (args_size.constant
|
3912 |
|
|
- original_args_size.constant));
|
3913 |
|
|
|
3914 |
|
|
if (PUSH_ARGS_REVERSED)
|
3915 |
|
|
{
|
3916 |
|
|
inc = -1;
|
3917 |
|
|
argnum = nargs - 1;
|
3918 |
|
|
}
|
3919 |
|
|
else
|
3920 |
|
|
{
|
3921 |
|
|
inc = 1;
|
3922 |
|
|
argnum = 0;
|
3923 |
|
|
}
|
3924 |
|
|
|
3925 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
3926 |
|
|
if (ACCUMULATE_OUTGOING_ARGS)
|
3927 |
|
|
{
|
3928 |
|
|
/* The argument list is the property of the called routine and it
|
3929 |
|
|
may clobber it. If the fixed area has been used for previous
|
3930 |
|
|
parameters, we must save and restore it. */
|
3931 |
|
|
save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
|
3932 |
|
|
&low_to_save, &high_to_save);
|
3933 |
|
|
}
|
3934 |
|
|
#endif
|
3935 |
|
|
|
3936 |
|
|
/* Push the args that need to be pushed. */
|
3937 |
|
|
|
3938 |
|
|
/* ARGNUM indexes the ARGVEC array in the order in which the arguments
|
3939 |
|
|
are to be pushed. */
|
3940 |
|
|
for (count = 0; count < nargs; count++, argnum += inc)
|
3941 |
|
|
{
|
3942 |
|
|
enum machine_mode mode = argvec[argnum].mode;
|
3943 |
|
|
rtx val = argvec[argnum].value;
|
3944 |
|
|
rtx reg = argvec[argnum].reg;
|
3945 |
|
|
int partial = argvec[argnum].partial;
|
3946 |
|
|
unsigned int parm_align = argvec[argnum].locate.boundary;
|
3947 |
|
|
int lower_bound = 0, upper_bound = 0, i;
|
3948 |
|
|
|
3949 |
|
|
if (! (reg != 0 && partial == 0))
|
3950 |
|
|
{
|
3951 |
|
|
rtx use;
|
3952 |
|
|
|
3953 |
|
|
if (ACCUMULATE_OUTGOING_ARGS)
|
3954 |
|
|
{
|
3955 |
|
|
/* If this is being stored into a pre-allocated, fixed-size,
|
3956 |
|
|
stack area, save any previous data at that location. */
|
3957 |
|
|
|
3958 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
3959 |
|
|
/* stack_slot is negative, but we want to index stack_usage_map
|
3960 |
|
|
with positive values. */
|
3961 |
|
|
upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
|
3962 |
|
|
lower_bound = upper_bound - argvec[argnum].locate.size.constant;
|
3963 |
|
|
#else
|
3964 |
|
|
lower_bound = argvec[argnum].locate.slot_offset.constant;
|
3965 |
|
|
upper_bound = lower_bound + argvec[argnum].locate.size.constant;
|
3966 |
|
|
#endif
|
3967 |
|
|
|
3968 |
|
|
i = lower_bound;
|
3969 |
|
|
/* Don't worry about things in the fixed argument area;
|
3970 |
|
|
it has already been saved. */
|
3971 |
|
|
if (i < reg_parm_stack_space)
|
3972 |
|
|
i = reg_parm_stack_space;
|
3973 |
|
|
while (i < upper_bound && stack_usage_map[i] == 0)
|
3974 |
|
|
i++;
|
3975 |
|
|
|
3976 |
|
|
if (i < upper_bound)
|
3977 |
|
|
{
|
3978 |
|
|
/* We need to make a save area. */
|
3979 |
|
|
unsigned int size
|
3980 |
|
|
= argvec[argnum].locate.size.constant * BITS_PER_UNIT;
|
3981 |
|
|
enum machine_mode save_mode
|
3982 |
|
|
= mode_for_size (size, MODE_INT, 1);
|
3983 |
|
|
rtx adr
|
3984 |
|
|
= plus_constant (argblock,
|
3985 |
|
|
argvec[argnum].locate.offset.constant);
|
3986 |
|
|
rtx stack_area
|
3987 |
|
|
= gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
|
3988 |
|
|
|
3989 |
|
|
if (save_mode == BLKmode)
|
3990 |
|
|
{
|
3991 |
|
|
argvec[argnum].save_area
|
3992 |
|
|
= assign_stack_temp (BLKmode,
|
3993 |
|
|
argvec[argnum].locate.size.constant,
|
3994 |
|
|
0);
|
3995 |
|
|
|
3996 |
|
|
emit_block_move (validize_mem (argvec[argnum].save_area),
|
3997 |
|
|
stack_area,
|
3998 |
|
|
GEN_INT (argvec[argnum].locate.size.constant),
|
3999 |
|
|
BLOCK_OP_CALL_PARM);
|
4000 |
|
|
}
|
4001 |
|
|
else
|
4002 |
|
|
{
|
4003 |
|
|
argvec[argnum].save_area = gen_reg_rtx (save_mode);
|
4004 |
|
|
|
4005 |
|
|
emit_move_insn (argvec[argnum].save_area, stack_area);
|
4006 |
|
|
}
|
4007 |
|
|
}
|
4008 |
|
|
}
|
4009 |
|
|
|
4010 |
|
|
emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
|
4011 |
|
|
partial, reg, 0, argblock,
|
4012 |
|
|
GEN_INT (argvec[argnum].locate.offset.constant),
|
4013 |
|
|
reg_parm_stack_space,
|
4014 |
|
|
ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
|
4015 |
|
|
|
4016 |
|
|
/* Now mark the segment we just used. */
|
4017 |
|
|
if (ACCUMULATE_OUTGOING_ARGS)
|
4018 |
|
|
for (i = lower_bound; i < upper_bound; i++)
|
4019 |
|
|
stack_usage_map[i] = 1;
|
4020 |
|
|
|
4021 |
|
|
NO_DEFER_POP;
|
4022 |
|
|
|
4023 |
|
|
/* Indicate argument access so that alias.c knows that these
|
4024 |
|
|
values are live. */
|
4025 |
|
|
if (argblock)
|
4026 |
|
|
use = plus_constant (argblock,
|
4027 |
|
|
argvec[argnum].locate.offset.constant);
|
4028 |
|
|
else
|
4029 |
|
|
/* When arguments are pushed, trying to tell alias.c where
|
4030 |
|
|
exactly this argument is won't work, because the
|
4031 |
|
|
auto-increment causes confusion. So we merely indicate
|
4032 |
|
|
that we access something with a known mode somewhere on
|
4033 |
|
|
the stack. */
|
4034 |
|
|
use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
|
4035 |
|
|
gen_rtx_SCRATCH (Pmode));
|
4036 |
|
|
use = gen_rtx_MEM (argvec[argnum].mode, use);
|
4037 |
|
|
use = gen_rtx_USE (VOIDmode, use);
|
4038 |
|
|
call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
|
4039 |
|
|
}
|
4040 |
|
|
}
|
4041 |
|
|
|
4042 |
|
|
/* If we pushed args in forward order, perform stack alignment
|
4043 |
|
|
after pushing the last arg. */
|
4044 |
|
|
if (argblock == 0 && !PUSH_ARGS_REVERSED)
|
4045 |
|
|
anti_adjust_stack (GEN_INT (args_size.constant
|
4046 |
|
|
- original_args_size.constant));
|
4047 |
|
|
|
4048 |
|
|
if (PUSH_ARGS_REVERSED)
|
4049 |
|
|
argnum = nargs - 1;
|
4050 |
|
|
else
|
4051 |
|
|
argnum = 0;
|
4052 |
|
|
|
4053 |
|
|
fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
|
4054 |
|
|
|
4055 |
|
|
/* Now load any reg parms into their regs. */
|
4056 |
|
|
|
4057 |
|
|
/* ARGNUM indexes the ARGVEC array in the order in which the arguments
|
4058 |
|
|
are to be pushed. */
|
4059 |
|
|
for (count = 0; count < nargs; count++, argnum += inc)
|
4060 |
|
|
{
|
4061 |
|
|
enum machine_mode mode = argvec[argnum].mode;
|
4062 |
|
|
rtx val = argvec[argnum].value;
|
4063 |
|
|
rtx reg = argvec[argnum].reg;
|
4064 |
|
|
int partial = argvec[argnum].partial;
|
4065 |
|
|
#ifdef BLOCK_REG_PADDING
|
4066 |
|
|
int size = 0;
|
4067 |
|
|
#endif
|
4068 |
|
|
|
4069 |
|
|
/* Handle calls that pass values in multiple non-contiguous
|
4070 |
|
|
locations. The PA64 has examples of this for library calls. */
|
4071 |
|
|
if (reg != 0 && GET_CODE (reg) == PARALLEL)
|
4072 |
|
|
emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
|
4073 |
|
|
else if (reg != 0 && partial == 0)
|
4074 |
|
|
{
|
4075 |
|
|
emit_move_insn (reg, val);
|
4076 |
|
|
#ifdef BLOCK_REG_PADDING
|
4077 |
|
|
size = GET_MODE_SIZE (argvec[argnum].mode);
|
4078 |
|
|
|
4079 |
|
|
/* Copied from load_register_parameters. */
|
4080 |
|
|
|
4081 |
|
|
/* Handle case where we have a value that needs shifting
|
4082 |
|
|
up to the msb. eg. a QImode value and we're padding
|
4083 |
|
|
upward on a BYTES_BIG_ENDIAN machine. */
|
4084 |
|
|
if (size < UNITS_PER_WORD
|
4085 |
|
|
&& (argvec[argnum].locate.where_pad
|
4086 |
|
|
== (BYTES_BIG_ENDIAN ? upward : downward)))
|
4087 |
|
|
{
|
4088 |
|
|
rtx x;
|
4089 |
|
|
int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
|
4090 |
|
|
|
4091 |
|
|
/* Assigning REG here rather than a temp makes CALL_FUSAGE
|
4092 |
|
|
report the whole reg as used. Strictly speaking, the
|
4093 |
|
|
call only uses SIZE bytes at the msb end, but it doesn't
|
4094 |
|
|
seem worth generating rtl to say that. */
|
4095 |
|
|
reg = gen_rtx_REG (word_mode, REGNO (reg));
|
4096 |
|
|
x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
|
4097 |
|
|
if (x != reg)
|
4098 |
|
|
emit_move_insn (reg, x);
|
4099 |
|
|
}
|
4100 |
|
|
#endif
|
4101 |
|
|
}
|
4102 |
|
|
|
4103 |
|
|
NO_DEFER_POP;
|
4104 |
|
|
}
|
4105 |
|
|
|
4106 |
|
|
/* Any regs containing parms remain in use through the call. */
|
4107 |
|
|
for (count = 0; count < nargs; count++)
|
4108 |
|
|
{
|
4109 |
|
|
rtx reg = argvec[count].reg;
|
4110 |
|
|
if (reg != 0 && GET_CODE (reg) == PARALLEL)
|
4111 |
|
|
use_group_regs (&call_fusage, reg);
|
4112 |
|
|
else if (reg != 0)
|
4113 |
|
|
{
|
4114 |
|
|
int partial = argvec[count].partial;
|
4115 |
|
|
if (partial)
|
4116 |
|
|
{
|
4117 |
|
|
int nregs;
|
4118 |
|
|
gcc_assert (partial % UNITS_PER_WORD == 0);
|
4119 |
|
|
nregs = partial / UNITS_PER_WORD;
|
4120 |
|
|
use_regs (&call_fusage, REGNO (reg), nregs);
|
4121 |
|
|
}
|
4122 |
|
|
else
|
4123 |
|
|
use_reg (&call_fusage, reg);
|
4124 |
|
|
}
|
4125 |
|
|
}
|
4126 |
|
|
|
4127 |
|
|
/* Pass the function the address in which to return a structure value. */
|
4128 |
|
|
if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
|
4129 |
|
|
{
|
4130 |
|
|
emit_move_insn (struct_value,
|
4131 |
|
|
force_reg (Pmode,
|
4132 |
|
|
force_operand (XEXP (mem_value, 0),
|
4133 |
|
|
NULL_RTX)));
|
4134 |
|
|
if (REG_P (struct_value))
|
4135 |
|
|
use_reg (&call_fusage, struct_value);
|
4136 |
|
|
}
|
4137 |
|
|
|
4138 |
|
|
/* Don't allow popping to be deferred, since then
|
4139 |
|
|
cse'ing of library calls could delete a call and leave the pop. */
|
4140 |
|
|
NO_DEFER_POP;
|
4141 |
|
|
valreg = (mem_value == 0 && outmode != VOIDmode
|
4142 |
|
|
? hard_libcall_value (outmode, orgfun) : NULL_RTX);
|
4143 |
|
|
|
4144 |
|
|
/* Stack must be properly aligned now. */
|
4145 |
|
|
gcc_assert (!(stack_pointer_delta
|
4146 |
|
|
& (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
|
4147 |
|
|
|
4148 |
|
|
before_call = get_last_insn ();
|
4149 |
|
|
|
4150 |
|
|
/* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
|
4151 |
|
|
will set inhibit_defer_pop to that value. */
|
4152 |
|
|
/* The return type is needed to decide how many bytes the function pops.
|
4153 |
|
|
Signedness plays no role in that, so for simplicity, we pretend it's
|
4154 |
|
|
always signed. We also assume that the list of arguments passed has
|
4155 |
|
|
no impact, so we pretend it is unknown. */
|
4156 |
|
|
|
4157 |
|
|
emit_call_1 (fun, NULL,
|
4158 |
|
|
get_identifier (XSTR (orgfun, 0)),
|
4159 |
|
|
build_function_type (tfom, NULL_TREE),
|
4160 |
|
|
original_args_size.constant, args_size.constant,
|
4161 |
|
|
struct_value_size,
|
4162 |
|
|
targetm.calls.function_arg (args_so_far,
|
4163 |
|
|
VOIDmode, void_type_node, true),
|
4164 |
|
|
valreg,
|
4165 |
|
|
old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
|
4166 |
|
|
|
4167 |
|
|
/* Right-shift returned value if necessary. */
|
4168 |
|
|
if (!pcc_struct_value
|
4169 |
|
|
&& TYPE_MODE (tfom) != BLKmode
|
4170 |
|
|
&& targetm.calls.return_in_msb (tfom))
|
4171 |
|
|
{
|
4172 |
|
|
shift_return_value (TYPE_MODE (tfom), false, valreg);
|
4173 |
|
|
valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
|
4174 |
|
|
}
|
4175 |
|
|
|
4176 |
|
|
/* For calls to `setjmp', etc., inform function.c:setjmp_warnings
|
4177 |
|
|
that it should complain if nonvolatile values are live. For
|
4178 |
|
|
functions that cannot return, inform flow that control does not
|
4179 |
|
|
fall through. */
|
4180 |
|
|
|
4181 |
|
|
if (flags & ECF_NORETURN)
|
4182 |
|
|
{
|
4183 |
|
|
/* The barrier note must be emitted
|
4184 |
|
|
immediately after the CALL_INSN. Some ports emit more than
|
4185 |
|
|
just a CALL_INSN above, so we must search for it here. */
|
4186 |
|
|
|
4187 |
|
|
rtx last = get_last_insn ();
|
4188 |
|
|
while (!CALL_P (last))
|
4189 |
|
|
{
|
4190 |
|
|
last = PREV_INSN (last);
|
4191 |
|
|
/* There was no CALL_INSN? */
|
4192 |
|
|
gcc_assert (last != before_call);
|
4193 |
|
|
}
|
4194 |
|
|
|
4195 |
|
|
emit_barrier_after (last);
|
4196 |
|
|
}
|
4197 |
|
|
|
4198 |
|
|
/* Now restore inhibit_defer_pop to its actual original value. */
|
4199 |
|
|
OK_DEFER_POP;
|
4200 |
|
|
|
4201 |
|
|
pop_temp_slots ();
|
4202 |
|
|
|
4203 |
|
|
/* Copy the value to the right place. */
|
4204 |
|
|
if (outmode != VOIDmode && retval)
|
4205 |
|
|
{
|
4206 |
|
|
if (mem_value)
|
4207 |
|
|
{
|
4208 |
|
|
if (value == 0)
|
4209 |
|
|
value = mem_value;
|
4210 |
|
|
if (value != mem_value)
|
4211 |
|
|
emit_move_insn (value, mem_value);
|
4212 |
|
|
}
|
4213 |
|
|
else if (GET_CODE (valreg) == PARALLEL)
|
4214 |
|
|
{
|
4215 |
|
|
if (value == 0)
|
4216 |
|
|
value = gen_reg_rtx (outmode);
|
4217 |
|
|
emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
|
4218 |
|
|
}
|
4219 |
|
|
else
|
4220 |
|
|
{
|
4221 |
|
|
/* Convert to the proper mode if a promotion has been active. */
|
4222 |
|
|
if (GET_MODE (valreg) != outmode)
|
4223 |
|
|
{
|
4224 |
|
|
int unsignedp = TYPE_UNSIGNED (tfom);
|
4225 |
|
|
|
4226 |
|
|
gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
|
4227 |
|
|
fndecl ? TREE_TYPE (fndecl) : fntype, 1)
|
4228 |
|
|
== GET_MODE (valreg));
|
4229 |
|
|
valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
|
4230 |
|
|
}
|
4231 |
|
|
|
4232 |
|
|
if (value != 0)
|
4233 |
|
|
emit_move_insn (value, valreg);
|
4234 |
|
|
else
|
4235 |
|
|
value = valreg;
|
4236 |
|
|
}
|
4237 |
|
|
}
|
4238 |
|
|
|
4239 |
|
|
if (ACCUMULATE_OUTGOING_ARGS)
|
4240 |
|
|
{
|
4241 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
4242 |
|
|
if (save_area)
|
4243 |
|
|
restore_fixed_argument_area (save_area, argblock,
|
4244 |
|
|
high_to_save, low_to_save);
|
4245 |
|
|
#endif
|
4246 |
|
|
|
4247 |
|
|
/* If we saved any argument areas, restore them. */
|
4248 |
|
|
for (count = 0; count < nargs; count++)
|
4249 |
|
|
if (argvec[count].save_area)
|
4250 |
|
|
{
|
4251 |
|
|
enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
|
4252 |
|
|
rtx adr = plus_constant (argblock,
|
4253 |
|
|
argvec[count].locate.offset.constant);
|
4254 |
|
|
rtx stack_area = gen_rtx_MEM (save_mode,
|
4255 |
|
|
memory_address (save_mode, adr));
|
4256 |
|
|
|
4257 |
|
|
if (save_mode == BLKmode)
|
4258 |
|
|
emit_block_move (stack_area,
|
4259 |
|
|
validize_mem (argvec[count].save_area),
|
4260 |
|
|
GEN_INT (argvec[count].locate.size.constant),
|
4261 |
|
|
BLOCK_OP_CALL_PARM);
|
4262 |
|
|
else
|
4263 |
|
|
emit_move_insn (stack_area, argvec[count].save_area);
|
4264 |
|
|
}
|
4265 |
|
|
|
4266 |
|
|
highest_outgoing_arg_in_use = initial_highest_arg_in_use;
|
4267 |
|
|
stack_usage_map = initial_stack_usage_map;
|
4268 |
|
|
}
|
4269 |
|
|
|
4270 |
|
|
free (stack_usage_map_buf);
|
4271 |
|
|
|
4272 |
|
|
return value;
|
4273 |
|
|
|
4274 |
|
|
}
|
4275 |
|
|
|
4276 |
|
|
/* Output a library call to function FUN (a SYMBOL_REF rtx)
|
4277 |
|
|
(emitting the queue unless NO_QUEUE is nonzero),
|
4278 |
|
|
for a value of mode OUTMODE,
|
4279 |
|
|
with NARGS different arguments, passed as alternating rtx values
|
4280 |
|
|
and machine_modes to convert them to.
|
4281 |
|
|
|
4282 |
|
|
FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
|
4283 |
|
|
`const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
|
4284 |
|
|
other types of library calls. */
|
4285 |
|
|
|
4286 |
|
|
void
|
4287 |
|
|
emit_library_call (rtx orgfun, enum libcall_type fn_type,
|
4288 |
|
|
enum machine_mode outmode, int nargs, ...)
|
4289 |
|
|
{
|
4290 |
|
|
va_list p;
|
4291 |
|
|
|
4292 |
|
|
va_start (p, nargs);
|
4293 |
|
|
emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
|
4294 |
|
|
va_end (p);
|
4295 |
|
|
}
|
4296 |
|
|
|
4297 |
|
|
/* Like emit_library_call except that an extra argument, VALUE,
|
4298 |
|
|
comes second and says where to store the result.
|
4299 |
|
|
(If VALUE is zero, this function chooses a convenient way
|
4300 |
|
|
to return the value.
|
4301 |
|
|
|
4302 |
|
|
This function returns an rtx for where the value is to be found.
|
4303 |
|
|
If VALUE is nonzero, VALUE is returned. */
|
4304 |
|
|
|
4305 |
|
|
rtx
|
4306 |
|
|
emit_library_call_value (rtx orgfun, rtx value,
|
4307 |
|
|
enum libcall_type fn_type,
|
4308 |
|
|
enum machine_mode outmode, int nargs, ...)
|
4309 |
|
|
{
|
4310 |
|
|
rtx result;
|
4311 |
|
|
va_list p;
|
4312 |
|
|
|
4313 |
|
|
va_start (p, nargs);
|
4314 |
|
|
result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
|
4315 |
|
|
nargs, p);
|
4316 |
|
|
va_end (p);
|
4317 |
|
|
|
4318 |
|
|
return result;
|
4319 |
|
|
}
|
4320 |
|
|
|
4321 |
|
|
/* Store a single argument for a function call
|
4322 |
|
|
into the register or memory area where it must be passed.
|
4323 |
|
|
*ARG describes the argument value and where to pass it.
|
4324 |
|
|
|
4325 |
|
|
ARGBLOCK is the address of the stack-block for all the arguments,
|
4326 |
|
|
or 0 on a machine where arguments are pushed individually.
|
4327 |
|
|
|
4328 |
|
|
MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
|
4329 |
|
|
so must be careful about how the stack is used.
|
4330 |
|
|
|
4331 |
|
|
VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
|
4332 |
|
|
argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
|
4333 |
|
|
that we need not worry about saving and restoring the stack.
|
4334 |
|
|
|
4335 |
|
|
FNDECL is the declaration of the function we are calling.
|
4336 |
|
|
|
4337 |
|
|
Return nonzero if this arg should cause sibcall failure,
|
4338 |
|
|
zero otherwise. */
|
4339 |
|
|
|
4340 |
|
|
static int
|
4341 |
|
|
store_one_arg (struct arg_data *arg, rtx argblock, int flags,
|
4342 |
|
|
int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
|
4343 |
|
|
{
|
4344 |
|
|
tree pval = arg->tree_value;
|
4345 |
|
|
rtx reg = 0;
|
4346 |
|
|
int partial = 0;
|
4347 |
|
|
int used = 0;
|
4348 |
|
|
int i, lower_bound = 0, upper_bound = 0;
|
4349 |
|
|
int sibcall_failure = 0;
|
4350 |
|
|
|
4351 |
|
|
if (TREE_CODE (pval) == ERROR_MARK)
|
4352 |
|
|
return 1;
|
4353 |
|
|
|
4354 |
|
|
/* Push a new temporary level for any temporaries we make for
|
4355 |
|
|
this argument. */
|
4356 |
|
|
push_temp_slots ();
|
4357 |
|
|
|
4358 |
|
|
if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
|
4359 |
|
|
{
|
4360 |
|
|
/* If this is being stored into a pre-allocated, fixed-size, stack area,
|
4361 |
|
|
save any previous data at that location. */
|
4362 |
|
|
if (argblock && ! variable_size && arg->stack)
|
4363 |
|
|
{
|
4364 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
4365 |
|
|
/* stack_slot is negative, but we want to index stack_usage_map
|
4366 |
|
|
with positive values. */
|
4367 |
|
|
if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
|
4368 |
|
|
upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
|
4369 |
|
|
else
|
4370 |
|
|
upper_bound = 0;
|
4371 |
|
|
|
4372 |
|
|
lower_bound = upper_bound - arg->locate.size.constant;
|
4373 |
|
|
#else
|
4374 |
|
|
if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
|
4375 |
|
|
lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
|
4376 |
|
|
else
|
4377 |
|
|
lower_bound = 0;
|
4378 |
|
|
|
4379 |
|
|
upper_bound = lower_bound + arg->locate.size.constant;
|
4380 |
|
|
#endif
|
4381 |
|
|
|
4382 |
|
|
i = lower_bound;
|
4383 |
|
|
/* Don't worry about things in the fixed argument area;
|
4384 |
|
|
it has already been saved. */
|
4385 |
|
|
if (i < reg_parm_stack_space)
|
4386 |
|
|
i = reg_parm_stack_space;
|
4387 |
|
|
while (i < upper_bound && stack_usage_map[i] == 0)
|
4388 |
|
|
i++;
|
4389 |
|
|
|
4390 |
|
|
if (i < upper_bound)
|
4391 |
|
|
{
|
4392 |
|
|
/* We need to make a save area. */
|
4393 |
|
|
unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
|
4394 |
|
|
enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
|
4395 |
|
|
rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
|
4396 |
|
|
rtx stack_area = gen_rtx_MEM (save_mode, adr);
|
4397 |
|
|
|
4398 |
|
|
if (save_mode == BLKmode)
|
4399 |
|
|
{
|
4400 |
|
|
tree ot = TREE_TYPE (arg->tree_value);
|
4401 |
|
|
tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
|
4402 |
|
|
| TYPE_QUAL_CONST));
|
4403 |
|
|
|
4404 |
|
|
arg->save_area = assign_temp (nt, 0, 1, 1);
|
4405 |
|
|
preserve_temp_slots (arg->save_area);
|
4406 |
|
|
emit_block_move (validize_mem (arg->save_area), stack_area,
|
4407 |
|
|
GEN_INT (arg->locate.size.constant),
|
4408 |
|
|
BLOCK_OP_CALL_PARM);
|
4409 |
|
|
}
|
4410 |
|
|
else
|
4411 |
|
|
{
|
4412 |
|
|
arg->save_area = gen_reg_rtx (save_mode);
|
4413 |
|
|
emit_move_insn (arg->save_area, stack_area);
|
4414 |
|
|
}
|
4415 |
|
|
}
|
4416 |
|
|
}
|
4417 |
|
|
}
|
4418 |
|
|
|
4419 |
|
|
/* If this isn't going to be placed on both the stack and in registers,
|
4420 |
|
|
set up the register and number of words. */
|
4421 |
|
|
if (! arg->pass_on_stack)
|
4422 |
|
|
{
|
4423 |
|
|
if (flags & ECF_SIBCALL)
|
4424 |
|
|
reg = arg->tail_call_reg;
|
4425 |
|
|
else
|
4426 |
|
|
reg = arg->reg;
|
4427 |
|
|
partial = arg->partial;
|
4428 |
|
|
}
|
4429 |
|
|
|
4430 |
|
|
/* Being passed entirely in a register. We shouldn't be called in
|
4431 |
|
|
this case. */
|
4432 |
|
|
gcc_assert (reg == 0 || partial != 0);
|
4433 |
|
|
|
4434 |
|
|
/* If this arg needs special alignment, don't load the registers
|
4435 |
|
|
here. */
|
4436 |
|
|
if (arg->n_aligned_regs != 0)
|
4437 |
|
|
reg = 0;
|
4438 |
|
|
|
4439 |
|
|
/* If this is being passed partially in a register, we can't evaluate
|
4440 |
|
|
it directly into its stack slot. Otherwise, we can. */
|
4441 |
|
|
if (arg->value == 0)
|
4442 |
|
|
{
|
4443 |
|
|
/* stack_arg_under_construction is nonzero if a function argument is
|
4444 |
|
|
being evaluated directly into the outgoing argument list and
|
4445 |
|
|
expand_call must take special action to preserve the argument list
|
4446 |
|
|
if it is called recursively.
|
4447 |
|
|
|
4448 |
|
|
For scalar function arguments stack_usage_map is sufficient to
|
4449 |
|
|
determine which stack slots must be saved and restored. Scalar
|
4450 |
|
|
arguments in general have pass_on_stack == 0.
|
4451 |
|
|
|
4452 |
|
|
If this argument is initialized by a function which takes the
|
4453 |
|
|
address of the argument (a C++ constructor or a C function
|
4454 |
|
|
returning a BLKmode structure), then stack_usage_map is
|
4455 |
|
|
insufficient and expand_call must push the stack around the
|
4456 |
|
|
function call. Such arguments have pass_on_stack == 1.
|
4457 |
|
|
|
4458 |
|
|
Note that it is always safe to set stack_arg_under_construction,
|
4459 |
|
|
but this generates suboptimal code if set when not needed. */
|
4460 |
|
|
|
4461 |
|
|
if (arg->pass_on_stack)
|
4462 |
|
|
stack_arg_under_construction++;
|
4463 |
|
|
|
4464 |
|
|
arg->value = expand_expr (pval,
|
4465 |
|
|
(partial
|
4466 |
|
|
|| TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
|
4467 |
|
|
? NULL_RTX : arg->stack,
|
4468 |
|
|
VOIDmode, EXPAND_STACK_PARM);
|
4469 |
|
|
|
4470 |
|
|
/* If we are promoting object (or for any other reason) the mode
|
4471 |
|
|
doesn't agree, convert the mode. */
|
4472 |
|
|
|
4473 |
|
|
if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
|
4474 |
|
|
arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
|
4475 |
|
|
arg->value, arg->unsignedp);
|
4476 |
|
|
|
4477 |
|
|
if (arg->pass_on_stack)
|
4478 |
|
|
stack_arg_under_construction--;
|
4479 |
|
|
}
|
4480 |
|
|
|
4481 |
|
|
/* Check for overlap with already clobbered argument area. */
|
4482 |
|
|
if ((flags & ECF_SIBCALL)
|
4483 |
|
|
&& MEM_P (arg->value)
|
4484 |
|
|
&& mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
|
4485 |
|
|
arg->locate.size.constant))
|
4486 |
|
|
sibcall_failure = 1;
|
4487 |
|
|
|
4488 |
|
|
/* Don't allow anything left on stack from computation
|
4489 |
|
|
of argument to alloca. */
|
4490 |
|
|
if (flags & ECF_MAY_BE_ALLOCA)
|
4491 |
|
|
do_pending_stack_adjust ();
|
4492 |
|
|
|
4493 |
|
|
if (arg->value == arg->stack)
|
4494 |
|
|
/* If the value is already in the stack slot, we are done. */
|
4495 |
|
|
;
|
4496 |
|
|
else if (arg->mode != BLKmode)
|
4497 |
|
|
{
|
4498 |
|
|
int size;
|
4499 |
|
|
unsigned int parm_align;
|
4500 |
|
|
|
4501 |
|
|
/* Argument is a scalar, not entirely passed in registers.
|
4502 |
|
|
(If part is passed in registers, arg->partial says how much
|
4503 |
|
|
and emit_push_insn will take care of putting it there.)
|
4504 |
|
|
|
4505 |
|
|
Push it, and if its size is less than the
|
4506 |
|
|
amount of space allocated to it,
|
4507 |
|
|
also bump stack pointer by the additional space.
|
4508 |
|
|
Note that in C the default argument promotions
|
4509 |
|
|
will prevent such mismatches. */
|
4510 |
|
|
|
4511 |
|
|
size = GET_MODE_SIZE (arg->mode);
|
4512 |
|
|
/* Compute how much space the push instruction will push.
|
4513 |
|
|
On many machines, pushing a byte will advance the stack
|
4514 |
|
|
pointer by a halfword. */
|
4515 |
|
|
#ifdef PUSH_ROUNDING
|
4516 |
|
|
size = PUSH_ROUNDING (size);
|
4517 |
|
|
#endif
|
4518 |
|
|
used = size;
|
4519 |
|
|
|
4520 |
|
|
/* Compute how much space the argument should get:
|
4521 |
|
|
round up to a multiple of the alignment for arguments. */
|
4522 |
|
|
if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
|
4523 |
|
|
used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
|
4524 |
|
|
/ (PARM_BOUNDARY / BITS_PER_UNIT))
|
4525 |
|
|
* (PARM_BOUNDARY / BITS_PER_UNIT));
|
4526 |
|
|
|
4527 |
|
|
/* Compute the alignment of the pushed argument. */
|
4528 |
|
|
parm_align = arg->locate.boundary;
|
4529 |
|
|
if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
|
4530 |
|
|
{
|
4531 |
|
|
int pad = used - size;
|
4532 |
|
|
if (pad)
|
4533 |
|
|
{
|
4534 |
|
|
unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
|
4535 |
|
|
parm_align = MIN (parm_align, pad_align);
|
4536 |
|
|
}
|
4537 |
|
|
}
|
4538 |
|
|
|
4539 |
|
|
/* This isn't already where we want it on the stack, so put it there.
|
4540 |
|
|
This can either be done with push or copy insns. */
|
4541 |
|
|
emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
|
4542 |
|
|
parm_align, partial, reg, used - size, argblock,
|
4543 |
|
|
ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
|
4544 |
|
|
ARGS_SIZE_RTX (arg->locate.alignment_pad));
|
4545 |
|
|
|
4546 |
|
|
/* Unless this is a partially-in-register argument, the argument is now
|
4547 |
|
|
in the stack. */
|
4548 |
|
|
if (partial == 0)
|
4549 |
|
|
arg->value = arg->stack;
|
4550 |
|
|
}
|
4551 |
|
|
else
|
4552 |
|
|
{
|
4553 |
|
|
/* BLKmode, at least partly to be pushed. */
|
4554 |
|
|
|
4555 |
|
|
unsigned int parm_align;
|
4556 |
|
|
int excess;
|
4557 |
|
|
rtx size_rtx;
|
4558 |
|
|
|
4559 |
|
|
/* Pushing a nonscalar.
|
4560 |
|
|
If part is passed in registers, PARTIAL says how much
|
4561 |
|
|
and emit_push_insn will take care of putting it there. */
|
4562 |
|
|
|
4563 |
|
|
/* Round its size up to a multiple
|
4564 |
|
|
of the allocation unit for arguments. */
|
4565 |
|
|
|
4566 |
|
|
if (arg->locate.size.var != 0)
|
4567 |
|
|
{
|
4568 |
|
|
excess = 0;
|
4569 |
|
|
size_rtx = ARGS_SIZE_RTX (arg->locate.size);
|
4570 |
|
|
}
|
4571 |
|
|
else
|
4572 |
|
|
{
|
4573 |
|
|
/* PUSH_ROUNDING has no effect on us, because emit_push_insn
|
4574 |
|
|
for BLKmode is careful to avoid it. */
|
4575 |
|
|
excess = (arg->locate.size.constant
|
4576 |
|
|
- int_size_in_bytes (TREE_TYPE (pval))
|
4577 |
|
|
+ partial);
|
4578 |
|
|
size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
|
4579 |
|
|
NULL_RTX, TYPE_MODE (sizetype),
|
4580 |
|
|
EXPAND_NORMAL);
|
4581 |
|
|
}
|
4582 |
|
|
|
4583 |
|
|
parm_align = arg->locate.boundary;
|
4584 |
|
|
|
4585 |
|
|
/* When an argument is padded down, the block is aligned to
|
4586 |
|
|
PARM_BOUNDARY, but the actual argument isn't. */
|
4587 |
|
|
if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
|
4588 |
|
|
{
|
4589 |
|
|
if (arg->locate.size.var)
|
4590 |
|
|
parm_align = BITS_PER_UNIT;
|
4591 |
|
|
else if (excess)
|
4592 |
|
|
{
|
4593 |
|
|
unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
|
4594 |
|
|
parm_align = MIN (parm_align, excess_align);
|
4595 |
|
|
}
|
4596 |
|
|
}
|
4597 |
|
|
|
4598 |
|
|
if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
|
4599 |
|
|
{
|
4600 |
|
|
/* emit_push_insn might not work properly if arg->value and
|
4601 |
|
|
argblock + arg->locate.offset areas overlap. */
|
4602 |
|
|
rtx x = arg->value;
|
4603 |
|
|
int i = 0;
|
4604 |
|
|
|
4605 |
|
|
if (XEXP (x, 0) == crtl->args.internal_arg_pointer
|
4606 |
|
|
|| (GET_CODE (XEXP (x, 0)) == PLUS
|
4607 |
|
|
&& XEXP (XEXP (x, 0), 0) ==
|
4608 |
|
|
crtl->args.internal_arg_pointer
|
4609 |
|
|
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))))
|
4610 |
|
|
{
|
4611 |
|
|
if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
|
4612 |
|
|
i = INTVAL (XEXP (XEXP (x, 0), 1));
|
4613 |
|
|
|
4614 |
|
|
/* expand_call should ensure this. */
|
4615 |
|
|
gcc_assert (!arg->locate.offset.var
|
4616 |
|
|
&& arg->locate.size.var == 0
|
4617 |
|
|
&& CONST_INT_P (size_rtx));
|
4618 |
|
|
|
4619 |
|
|
if (arg->locate.offset.constant > i)
|
4620 |
|
|
{
|
4621 |
|
|
if (arg->locate.offset.constant < i + INTVAL (size_rtx))
|
4622 |
|
|
sibcall_failure = 1;
|
4623 |
|
|
}
|
4624 |
|
|
else if (arg->locate.offset.constant < i)
|
4625 |
|
|
{
|
4626 |
|
|
/* Use arg->locate.size.constant instead of size_rtx
|
4627 |
|
|
because we only care about the part of the argument
|
4628 |
|
|
on the stack. */
|
4629 |
|
|
if (i < (arg->locate.offset.constant
|
4630 |
|
|
+ arg->locate.size.constant))
|
4631 |
|
|
sibcall_failure = 1;
|
4632 |
|
|
}
|
4633 |
|
|
else
|
4634 |
|
|
{
|
4635 |
|
|
/* Even though they appear to be at the same location,
|
4636 |
|
|
if part of the outgoing argument is in registers,
|
4637 |
|
|
they aren't really at the same location. Check for
|
4638 |
|
|
this by making sure that the incoming size is the
|
4639 |
|
|
same as the outgoing size. */
|
4640 |
|
|
if (arg->locate.size.constant != INTVAL (size_rtx))
|
4641 |
|
|
sibcall_failure = 1;
|
4642 |
|
|
}
|
4643 |
|
|
}
|
4644 |
|
|
}
|
4645 |
|
|
|
4646 |
|
|
emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
|
4647 |
|
|
parm_align, partial, reg, excess, argblock,
|
4648 |
|
|
ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
|
4649 |
|
|
ARGS_SIZE_RTX (arg->locate.alignment_pad));
|
4650 |
|
|
|
4651 |
|
|
/* Unless this is a partially-in-register argument, the argument is now
|
4652 |
|
|
in the stack.
|
4653 |
|
|
|
4654 |
|
|
??? Unlike the case above, in which we want the actual
|
4655 |
|
|
address of the data, so that we can load it directly into a
|
4656 |
|
|
register, here we want the address of the stack slot, so that
|
4657 |
|
|
it's properly aligned for word-by-word copying or something
|
4658 |
|
|
like that. It's not clear that this is always correct. */
|
4659 |
|
|
if (partial == 0)
|
4660 |
|
|
arg->value = arg->stack_slot;
|
4661 |
|
|
}
|
4662 |
|
|
|
4663 |
|
|
if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
|
4664 |
|
|
{
|
4665 |
|
|
tree type = TREE_TYPE (arg->tree_value);
|
4666 |
|
|
arg->parallel_value
|
4667 |
|
|
= emit_group_load_into_temps (arg->reg, arg->value, type,
|
4668 |
|
|
int_size_in_bytes (type));
|
4669 |
|
|
}
|
4670 |
|
|
|
4671 |
|
|
/* Mark all slots this store used. */
|
4672 |
|
|
if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
|
4673 |
|
|
&& argblock && ! variable_size && arg->stack)
|
4674 |
|
|
for (i = lower_bound; i < upper_bound; i++)
|
4675 |
|
|
stack_usage_map[i] = 1;
|
4676 |
|
|
|
4677 |
|
|
/* Once we have pushed something, pops can't safely
|
4678 |
|
|
be deferred during the rest of the arguments. */
|
4679 |
|
|
NO_DEFER_POP;
|
4680 |
|
|
|
4681 |
|
|
/* Free any temporary slots made in processing this argument. Show
|
4682 |
|
|
that we might have taken the address of something and pushed that
|
4683 |
|
|
as an operand. */
|
4684 |
|
|
preserve_temp_slots (NULL_RTX);
|
4685 |
|
|
free_temp_slots ();
|
4686 |
|
|
pop_temp_slots ();
|
4687 |
|
|
|
4688 |
|
|
return sibcall_failure;
|
4689 |
|
|
}
|
4690 |
|
|
|
4691 |
|
|
/* Nonzero if we do not know how to pass TYPE solely in registers. */
|
4692 |
|
|
|
4693 |
|
|
bool
|
4694 |
|
|
must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
|
4695 |
|
|
const_tree type)
|
4696 |
|
|
{
|
4697 |
|
|
if (!type)
|
4698 |
|
|
return false;
|
4699 |
|
|
|
4700 |
|
|
/* If the type has variable size... */
|
4701 |
|
|
if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
4702 |
|
|
return true;
|
4703 |
|
|
|
4704 |
|
|
/* If the type is marked as addressable (it is required
|
4705 |
|
|
to be constructed into the stack)... */
|
4706 |
|
|
if (TREE_ADDRESSABLE (type))
|
4707 |
|
|
return true;
|
4708 |
|
|
|
4709 |
|
|
return false;
|
4710 |
|
|
}
|
4711 |
|
|
|
4712 |
|
|
/* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
|
4713 |
|
|
takes trailing padding of a structure into account. */
|
4714 |
|
|
/* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
|
4715 |
|
|
|
4716 |
|
|
bool
|
4717 |
|
|
must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
|
4718 |
|
|
{
|
4719 |
|
|
if (!type)
|
4720 |
|
|
return false;
|
4721 |
|
|
|
4722 |
|
|
/* If the type has variable size... */
|
4723 |
|
|
if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
4724 |
|
|
return true;
|
4725 |
|
|
|
4726 |
|
|
/* If the type is marked as addressable (it is required
|
4727 |
|
|
to be constructed into the stack)... */
|
4728 |
|
|
if (TREE_ADDRESSABLE (type))
|
4729 |
|
|
return true;
|
4730 |
|
|
|
4731 |
|
|
/* If the padding and mode of the type is such that a copy into
|
4732 |
|
|
a register would put it into the wrong part of the register. */
|
4733 |
|
|
if (mode == BLKmode
|
4734 |
|
|
&& int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
|
4735 |
|
|
&& (FUNCTION_ARG_PADDING (mode, type)
|
4736 |
|
|
== (BYTES_BIG_ENDIAN ? upward : downward)))
|
4737 |
|
|
return true;
|
4738 |
|
|
|
4739 |
|
|
return false;
|
4740 |
|
|
}
|