| 1 |
684 |
jeremybenn |
/* Control flow graph analysis code for GNU compiler.
|
| 2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
| 3 |
|
|
1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2010
|
| 4 |
|
|
Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
/* This file contains various simple utilities to analyze the CFG. */
|
| 23 |
|
|
#include "config.h"
|
| 24 |
|
|
#include "system.h"
|
| 25 |
|
|
#include "coretypes.h"
|
| 26 |
|
|
#include "tm.h"
|
| 27 |
|
|
#include "rtl.h"
|
| 28 |
|
|
#include "obstack.h"
|
| 29 |
|
|
#include "hard-reg-set.h"
|
| 30 |
|
|
#include "basic-block.h"
|
| 31 |
|
|
#include "insn-config.h"
|
| 32 |
|
|
#include "recog.h"
|
| 33 |
|
|
#include "diagnostic-core.h"
|
| 34 |
|
|
#include "tm_p.h"
|
| 35 |
|
|
#include "vec.h"
|
| 36 |
|
|
#include "vecprim.h"
|
| 37 |
|
|
#include "bitmap.h"
|
| 38 |
|
|
#include "sbitmap.h"
|
| 39 |
|
|
#include "timevar.h"
|
| 40 |
|
|
|
| 41 |
|
|
/* Store the data structures necessary for depth-first search. */
|
| 42 |
|
|
struct depth_first_search_dsS {
|
| 43 |
|
|
/* stack for backtracking during the algorithm */
|
| 44 |
|
|
basic_block *stack;
|
| 45 |
|
|
|
| 46 |
|
|
/* number of edges in the stack. That is, positions 0, ..., sp-1
|
| 47 |
|
|
have edges. */
|
| 48 |
|
|
unsigned int sp;
|
| 49 |
|
|
|
| 50 |
|
|
/* record of basic blocks already seen by depth-first search */
|
| 51 |
|
|
sbitmap visited_blocks;
|
| 52 |
|
|
};
|
| 53 |
|
|
typedef struct depth_first_search_dsS *depth_first_search_ds;
|
| 54 |
|
|
|
| 55 |
|
|
static void flow_dfs_compute_reverse_init (depth_first_search_ds);
|
| 56 |
|
|
static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
|
| 57 |
|
|
basic_block);
|
| 58 |
|
|
static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
|
| 59 |
|
|
basic_block);
|
| 60 |
|
|
static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
|
| 61 |
|
|
static bool flow_active_insn_p (const_rtx);
|
| 62 |
|
|
|
| 63 |
|
|
/* Like active_insn_p, except keep the return value clobber around
|
| 64 |
|
|
even after reload. */
|
| 65 |
|
|
|
| 66 |
|
|
static bool
|
| 67 |
|
|
flow_active_insn_p (const_rtx insn)
|
| 68 |
|
|
{
|
| 69 |
|
|
if (active_insn_p (insn))
|
| 70 |
|
|
return true;
|
| 71 |
|
|
|
| 72 |
|
|
/* A clobber of the function return value exists for buggy
|
| 73 |
|
|
programs that fail to return a value. Its effect is to
|
| 74 |
|
|
keep the return value from being live across the entire
|
| 75 |
|
|
function. If we allow it to be skipped, we introduce the
|
| 76 |
|
|
possibility for register lifetime confusion. */
|
| 77 |
|
|
if (GET_CODE (PATTERN (insn)) == CLOBBER
|
| 78 |
|
|
&& REG_P (XEXP (PATTERN (insn), 0))
|
| 79 |
|
|
&& REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
|
| 80 |
|
|
return true;
|
| 81 |
|
|
|
| 82 |
|
|
return false;
|
| 83 |
|
|
}
|
| 84 |
|
|
|
| 85 |
|
|
/* Return true if the block has no effect and only forwards control flow to
|
| 86 |
|
|
its single destination. */
|
| 87 |
|
|
|
| 88 |
|
|
bool
|
| 89 |
|
|
forwarder_block_p (const_basic_block bb)
|
| 90 |
|
|
{
|
| 91 |
|
|
rtx insn;
|
| 92 |
|
|
|
| 93 |
|
|
if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
|
| 94 |
|
|
|| !single_succ_p (bb))
|
| 95 |
|
|
return false;
|
| 96 |
|
|
|
| 97 |
|
|
for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
|
| 98 |
|
|
if (INSN_P (insn) && flow_active_insn_p (insn))
|
| 99 |
|
|
return false;
|
| 100 |
|
|
|
| 101 |
|
|
return (!INSN_P (insn)
|
| 102 |
|
|
|| (JUMP_P (insn) && simplejump_p (insn))
|
| 103 |
|
|
|| !flow_active_insn_p (insn));
|
| 104 |
|
|
}
|
| 105 |
|
|
|
| 106 |
|
|
/* Return nonzero if we can reach target from src by falling through. */
|
| 107 |
|
|
|
| 108 |
|
|
bool
|
| 109 |
|
|
can_fallthru (basic_block src, basic_block target)
|
| 110 |
|
|
{
|
| 111 |
|
|
rtx insn = BB_END (src);
|
| 112 |
|
|
rtx insn2;
|
| 113 |
|
|
edge e;
|
| 114 |
|
|
edge_iterator ei;
|
| 115 |
|
|
|
| 116 |
|
|
if (target == EXIT_BLOCK_PTR)
|
| 117 |
|
|
return true;
|
| 118 |
|
|
if (src->next_bb != target)
|
| 119 |
|
|
return 0;
|
| 120 |
|
|
FOR_EACH_EDGE (e, ei, src->succs)
|
| 121 |
|
|
if (e->dest == EXIT_BLOCK_PTR
|
| 122 |
|
|
&& e->flags & EDGE_FALLTHRU)
|
| 123 |
|
|
return 0;
|
| 124 |
|
|
|
| 125 |
|
|
insn2 = BB_HEAD (target);
|
| 126 |
|
|
if (insn2 && !active_insn_p (insn2))
|
| 127 |
|
|
insn2 = next_active_insn (insn2);
|
| 128 |
|
|
|
| 129 |
|
|
/* ??? Later we may add code to move jump tables offline. */
|
| 130 |
|
|
return next_active_insn (insn) == insn2;
|
| 131 |
|
|
}
|
| 132 |
|
|
|
| 133 |
|
|
/* Return nonzero if we could reach target from src by falling through,
|
| 134 |
|
|
if the target was made adjacent. If we already have a fall-through
|
| 135 |
|
|
edge to the exit block, we can't do that. */
|
| 136 |
|
|
bool
|
| 137 |
|
|
could_fall_through (basic_block src, basic_block target)
|
| 138 |
|
|
{
|
| 139 |
|
|
edge e;
|
| 140 |
|
|
edge_iterator ei;
|
| 141 |
|
|
|
| 142 |
|
|
if (target == EXIT_BLOCK_PTR)
|
| 143 |
|
|
return true;
|
| 144 |
|
|
FOR_EACH_EDGE (e, ei, src->succs)
|
| 145 |
|
|
if (e->dest == EXIT_BLOCK_PTR
|
| 146 |
|
|
&& e->flags & EDGE_FALLTHRU)
|
| 147 |
|
|
return 0;
|
| 148 |
|
|
return true;
|
| 149 |
|
|
}
|
| 150 |
|
|
|
| 151 |
|
|
/* Mark the back edges in DFS traversal.
|
| 152 |
|
|
Return nonzero if a loop (natural or otherwise) is present.
|
| 153 |
|
|
Inspired by Depth_First_Search_PP described in:
|
| 154 |
|
|
|
| 155 |
|
|
Advanced Compiler Design and Implementation
|
| 156 |
|
|
Steven Muchnick
|
| 157 |
|
|
Morgan Kaufmann, 1997
|
| 158 |
|
|
|
| 159 |
|
|
and heavily borrowed from pre_and_rev_post_order_compute. */
|
| 160 |
|
|
|
| 161 |
|
|
bool
|
| 162 |
|
|
mark_dfs_back_edges (void)
|
| 163 |
|
|
{
|
| 164 |
|
|
edge_iterator *stack;
|
| 165 |
|
|
int *pre;
|
| 166 |
|
|
int *post;
|
| 167 |
|
|
int sp;
|
| 168 |
|
|
int prenum = 1;
|
| 169 |
|
|
int postnum = 1;
|
| 170 |
|
|
sbitmap visited;
|
| 171 |
|
|
bool found = false;
|
| 172 |
|
|
|
| 173 |
|
|
/* Allocate the preorder and postorder number arrays. */
|
| 174 |
|
|
pre = XCNEWVEC (int, last_basic_block);
|
| 175 |
|
|
post = XCNEWVEC (int, last_basic_block);
|
| 176 |
|
|
|
| 177 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
| 178 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
| 179 |
|
|
sp = 0;
|
| 180 |
|
|
|
| 181 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
| 182 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
| 183 |
|
|
|
| 184 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
| 185 |
|
|
sbitmap_zero (visited);
|
| 186 |
|
|
|
| 187 |
|
|
/* Push the first edge on to the stack. */
|
| 188 |
|
|
stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
|
| 189 |
|
|
|
| 190 |
|
|
while (sp)
|
| 191 |
|
|
{
|
| 192 |
|
|
edge_iterator ei;
|
| 193 |
|
|
basic_block src;
|
| 194 |
|
|
basic_block dest;
|
| 195 |
|
|
|
| 196 |
|
|
/* Look at the edge on the top of the stack. */
|
| 197 |
|
|
ei = stack[sp - 1];
|
| 198 |
|
|
src = ei_edge (ei)->src;
|
| 199 |
|
|
dest = ei_edge (ei)->dest;
|
| 200 |
|
|
ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
|
| 201 |
|
|
|
| 202 |
|
|
/* Check if the edge destination has been visited yet. */
|
| 203 |
|
|
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
|
| 204 |
|
|
{
|
| 205 |
|
|
/* Mark that we have visited the destination. */
|
| 206 |
|
|
SET_BIT (visited, dest->index);
|
| 207 |
|
|
|
| 208 |
|
|
pre[dest->index] = prenum++;
|
| 209 |
|
|
if (EDGE_COUNT (dest->succs) > 0)
|
| 210 |
|
|
{
|
| 211 |
|
|
/* Since the DEST node has been visited for the first
|
| 212 |
|
|
time, check its successors. */
|
| 213 |
|
|
stack[sp++] = ei_start (dest->succs);
|
| 214 |
|
|
}
|
| 215 |
|
|
else
|
| 216 |
|
|
post[dest->index] = postnum++;
|
| 217 |
|
|
}
|
| 218 |
|
|
else
|
| 219 |
|
|
{
|
| 220 |
|
|
if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
|
| 221 |
|
|
&& pre[src->index] >= pre[dest->index]
|
| 222 |
|
|
&& post[dest->index] == 0)
|
| 223 |
|
|
ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
|
| 224 |
|
|
|
| 225 |
|
|
if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
|
| 226 |
|
|
post[src->index] = postnum++;
|
| 227 |
|
|
|
| 228 |
|
|
if (!ei_one_before_end_p (ei))
|
| 229 |
|
|
ei_next (&stack[sp - 1]);
|
| 230 |
|
|
else
|
| 231 |
|
|
sp--;
|
| 232 |
|
|
}
|
| 233 |
|
|
}
|
| 234 |
|
|
|
| 235 |
|
|
free (pre);
|
| 236 |
|
|
free (post);
|
| 237 |
|
|
free (stack);
|
| 238 |
|
|
sbitmap_free (visited);
|
| 239 |
|
|
|
| 240 |
|
|
return found;
|
| 241 |
|
|
}
|
| 242 |
|
|
|
| 243 |
|
|
/* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
|
| 244 |
|
|
|
| 245 |
|
|
void
|
| 246 |
|
|
set_edge_can_fallthru_flag (void)
|
| 247 |
|
|
{
|
| 248 |
|
|
basic_block bb;
|
| 249 |
|
|
|
| 250 |
|
|
FOR_EACH_BB (bb)
|
| 251 |
|
|
{
|
| 252 |
|
|
edge e;
|
| 253 |
|
|
edge_iterator ei;
|
| 254 |
|
|
|
| 255 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 256 |
|
|
{
|
| 257 |
|
|
e->flags &= ~EDGE_CAN_FALLTHRU;
|
| 258 |
|
|
|
| 259 |
|
|
/* The FALLTHRU edge is also CAN_FALLTHRU edge. */
|
| 260 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
| 261 |
|
|
e->flags |= EDGE_CAN_FALLTHRU;
|
| 262 |
|
|
}
|
| 263 |
|
|
|
| 264 |
|
|
/* If the BB ends with an invertible condjump all (2) edges are
|
| 265 |
|
|
CAN_FALLTHRU edges. */
|
| 266 |
|
|
if (EDGE_COUNT (bb->succs) != 2)
|
| 267 |
|
|
continue;
|
| 268 |
|
|
if (!any_condjump_p (BB_END (bb)))
|
| 269 |
|
|
continue;
|
| 270 |
|
|
if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
|
| 271 |
|
|
continue;
|
| 272 |
|
|
invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
|
| 273 |
|
|
EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
|
| 274 |
|
|
EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
|
| 275 |
|
|
}
|
| 276 |
|
|
}
|
| 277 |
|
|
|
| 278 |
|
|
/* Find unreachable blocks. An unreachable block will have 0 in
|
| 279 |
|
|
the reachable bit in block->flags. A nonzero value indicates the
|
| 280 |
|
|
block is reachable. */
|
| 281 |
|
|
|
| 282 |
|
|
void
|
| 283 |
|
|
find_unreachable_blocks (void)
|
| 284 |
|
|
{
|
| 285 |
|
|
edge e;
|
| 286 |
|
|
edge_iterator ei;
|
| 287 |
|
|
basic_block *tos, *worklist, bb;
|
| 288 |
|
|
|
| 289 |
|
|
tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
|
| 290 |
|
|
|
| 291 |
|
|
/* Clear all the reachability flags. */
|
| 292 |
|
|
|
| 293 |
|
|
FOR_EACH_BB (bb)
|
| 294 |
|
|
bb->flags &= ~BB_REACHABLE;
|
| 295 |
|
|
|
| 296 |
|
|
/* Add our starting points to the worklist. Almost always there will
|
| 297 |
|
|
be only one. It isn't inconceivable that we might one day directly
|
| 298 |
|
|
support Fortran alternate entry points. */
|
| 299 |
|
|
|
| 300 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
| 301 |
|
|
{
|
| 302 |
|
|
*tos++ = e->dest;
|
| 303 |
|
|
|
| 304 |
|
|
/* Mark the block reachable. */
|
| 305 |
|
|
e->dest->flags |= BB_REACHABLE;
|
| 306 |
|
|
}
|
| 307 |
|
|
|
| 308 |
|
|
/* Iterate: find everything reachable from what we've already seen. */
|
| 309 |
|
|
|
| 310 |
|
|
while (tos != worklist)
|
| 311 |
|
|
{
|
| 312 |
|
|
basic_block b = *--tos;
|
| 313 |
|
|
|
| 314 |
|
|
FOR_EACH_EDGE (e, ei, b->succs)
|
| 315 |
|
|
{
|
| 316 |
|
|
basic_block dest = e->dest;
|
| 317 |
|
|
|
| 318 |
|
|
if (!(dest->flags & BB_REACHABLE))
|
| 319 |
|
|
{
|
| 320 |
|
|
*tos++ = dest;
|
| 321 |
|
|
dest->flags |= BB_REACHABLE;
|
| 322 |
|
|
}
|
| 323 |
|
|
}
|
| 324 |
|
|
}
|
| 325 |
|
|
|
| 326 |
|
|
free (worklist);
|
| 327 |
|
|
}
|
| 328 |
|
|
|
| 329 |
|
|
/* Functions to access an edge list with a vector representation.
|
| 330 |
|
|
Enough data is kept such that given an index number, the
|
| 331 |
|
|
pred and succ that edge represents can be determined, or
|
| 332 |
|
|
given a pred and a succ, its index number can be returned.
|
| 333 |
|
|
This allows algorithms which consume a lot of memory to
|
| 334 |
|
|
represent the normally full matrix of edge (pred,succ) with a
|
| 335 |
|
|
single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
|
| 336 |
|
|
wasted space in the client code due to sparse flow graphs. */
|
| 337 |
|
|
|
| 338 |
|
|
/* This functions initializes the edge list. Basically the entire
|
| 339 |
|
|
flowgraph is processed, and all edges are assigned a number,
|
| 340 |
|
|
and the data structure is filled in. */
|
| 341 |
|
|
|
| 342 |
|
|
struct edge_list *
|
| 343 |
|
|
create_edge_list (void)
|
| 344 |
|
|
{
|
| 345 |
|
|
struct edge_list *elist;
|
| 346 |
|
|
edge e;
|
| 347 |
|
|
int num_edges;
|
| 348 |
|
|
int block_count;
|
| 349 |
|
|
basic_block bb;
|
| 350 |
|
|
edge_iterator ei;
|
| 351 |
|
|
|
| 352 |
|
|
block_count = n_basic_blocks; /* Include the entry and exit blocks. */
|
| 353 |
|
|
|
| 354 |
|
|
num_edges = 0;
|
| 355 |
|
|
|
| 356 |
|
|
/* Determine the number of edges in the flow graph by counting successor
|
| 357 |
|
|
edges on each basic block. */
|
| 358 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
| 359 |
|
|
{
|
| 360 |
|
|
num_edges += EDGE_COUNT (bb->succs);
|
| 361 |
|
|
}
|
| 362 |
|
|
|
| 363 |
|
|
elist = XNEW (struct edge_list);
|
| 364 |
|
|
elist->num_blocks = block_count;
|
| 365 |
|
|
elist->num_edges = num_edges;
|
| 366 |
|
|
elist->index_to_edge = XNEWVEC (edge, num_edges);
|
| 367 |
|
|
|
| 368 |
|
|
num_edges = 0;
|
| 369 |
|
|
|
| 370 |
|
|
/* Follow successors of blocks, and register these edges. */
|
| 371 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
| 372 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 373 |
|
|
elist->index_to_edge[num_edges++] = e;
|
| 374 |
|
|
|
| 375 |
|
|
return elist;
|
| 376 |
|
|
}
|
| 377 |
|
|
|
| 378 |
|
|
/* This function free's memory associated with an edge list. */
|
| 379 |
|
|
|
| 380 |
|
|
void
|
| 381 |
|
|
free_edge_list (struct edge_list *elist)
|
| 382 |
|
|
{
|
| 383 |
|
|
if (elist)
|
| 384 |
|
|
{
|
| 385 |
|
|
free (elist->index_to_edge);
|
| 386 |
|
|
free (elist);
|
| 387 |
|
|
}
|
| 388 |
|
|
}
|
| 389 |
|
|
|
| 390 |
|
|
/* This function provides debug output showing an edge list. */
|
| 391 |
|
|
|
| 392 |
|
|
DEBUG_FUNCTION void
|
| 393 |
|
|
print_edge_list (FILE *f, struct edge_list *elist)
|
| 394 |
|
|
{
|
| 395 |
|
|
int x;
|
| 396 |
|
|
|
| 397 |
|
|
fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
|
| 398 |
|
|
elist->num_blocks, elist->num_edges);
|
| 399 |
|
|
|
| 400 |
|
|
for (x = 0; x < elist->num_edges; x++)
|
| 401 |
|
|
{
|
| 402 |
|
|
fprintf (f, " %-4d - edge(", x);
|
| 403 |
|
|
if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
|
| 404 |
|
|
fprintf (f, "entry,");
|
| 405 |
|
|
else
|
| 406 |
|
|
fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
|
| 407 |
|
|
|
| 408 |
|
|
if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
|
| 409 |
|
|
fprintf (f, "exit)\n");
|
| 410 |
|
|
else
|
| 411 |
|
|
fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
|
| 412 |
|
|
}
|
| 413 |
|
|
}
|
| 414 |
|
|
|
| 415 |
|
|
/* This function provides an internal consistency check of an edge list,
|
| 416 |
|
|
verifying that all edges are present, and that there are no
|
| 417 |
|
|
extra edges. */
|
| 418 |
|
|
|
| 419 |
|
|
DEBUG_FUNCTION void
|
| 420 |
|
|
verify_edge_list (FILE *f, struct edge_list *elist)
|
| 421 |
|
|
{
|
| 422 |
|
|
int pred, succ, index;
|
| 423 |
|
|
edge e;
|
| 424 |
|
|
basic_block bb, p, s;
|
| 425 |
|
|
edge_iterator ei;
|
| 426 |
|
|
|
| 427 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
| 428 |
|
|
{
|
| 429 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 430 |
|
|
{
|
| 431 |
|
|
pred = e->src->index;
|
| 432 |
|
|
succ = e->dest->index;
|
| 433 |
|
|
index = EDGE_INDEX (elist, e->src, e->dest);
|
| 434 |
|
|
if (index == EDGE_INDEX_NO_EDGE)
|
| 435 |
|
|
{
|
| 436 |
|
|
fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
|
| 437 |
|
|
continue;
|
| 438 |
|
|
}
|
| 439 |
|
|
|
| 440 |
|
|
if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
|
| 441 |
|
|
fprintf (f, "*p* Pred for index %d should be %d not %d\n",
|
| 442 |
|
|
index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
|
| 443 |
|
|
if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
|
| 444 |
|
|
fprintf (f, "*p* Succ for index %d should be %d not %d\n",
|
| 445 |
|
|
index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
|
| 446 |
|
|
}
|
| 447 |
|
|
}
|
| 448 |
|
|
|
| 449 |
|
|
/* We've verified that all the edges are in the list, now lets make sure
|
| 450 |
|
|
there are no spurious edges in the list. */
|
| 451 |
|
|
|
| 452 |
|
|
FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
| 453 |
|
|
FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
|
| 454 |
|
|
{
|
| 455 |
|
|
int found_edge = 0;
|
| 456 |
|
|
|
| 457 |
|
|
FOR_EACH_EDGE (e, ei, p->succs)
|
| 458 |
|
|
if (e->dest == s)
|
| 459 |
|
|
{
|
| 460 |
|
|
found_edge = 1;
|
| 461 |
|
|
break;
|
| 462 |
|
|
}
|
| 463 |
|
|
|
| 464 |
|
|
FOR_EACH_EDGE (e, ei, s->preds)
|
| 465 |
|
|
if (e->src == p)
|
| 466 |
|
|
{
|
| 467 |
|
|
found_edge = 1;
|
| 468 |
|
|
break;
|
| 469 |
|
|
}
|
| 470 |
|
|
|
| 471 |
|
|
if (EDGE_INDEX (elist, p, s)
|
| 472 |
|
|
== EDGE_INDEX_NO_EDGE && found_edge != 0)
|
| 473 |
|
|
fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
|
| 474 |
|
|
p->index, s->index);
|
| 475 |
|
|
if (EDGE_INDEX (elist, p, s)
|
| 476 |
|
|
!= EDGE_INDEX_NO_EDGE && found_edge == 0)
|
| 477 |
|
|
fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
|
| 478 |
|
|
p->index, s->index, EDGE_INDEX (elist, p, s));
|
| 479 |
|
|
}
|
| 480 |
|
|
}
|
| 481 |
|
|
|
| 482 |
|
|
/* Given PRED and SUCC blocks, return the edge which connects the blocks.
|
| 483 |
|
|
If no such edge exists, return NULL. */
|
| 484 |
|
|
|
| 485 |
|
|
edge
|
| 486 |
|
|
find_edge (basic_block pred, basic_block succ)
|
| 487 |
|
|
{
|
| 488 |
|
|
edge e;
|
| 489 |
|
|
edge_iterator ei;
|
| 490 |
|
|
|
| 491 |
|
|
if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
|
| 492 |
|
|
{
|
| 493 |
|
|
FOR_EACH_EDGE (e, ei, pred->succs)
|
| 494 |
|
|
if (e->dest == succ)
|
| 495 |
|
|
return e;
|
| 496 |
|
|
}
|
| 497 |
|
|
else
|
| 498 |
|
|
{
|
| 499 |
|
|
FOR_EACH_EDGE (e, ei, succ->preds)
|
| 500 |
|
|
if (e->src == pred)
|
| 501 |
|
|
return e;
|
| 502 |
|
|
}
|
| 503 |
|
|
|
| 504 |
|
|
return NULL;
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
/* This routine will determine what, if any, edge there is between
|
| 508 |
|
|
a specified predecessor and successor. */
|
| 509 |
|
|
|
| 510 |
|
|
int
|
| 511 |
|
|
find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
|
| 512 |
|
|
{
|
| 513 |
|
|
int x;
|
| 514 |
|
|
|
| 515 |
|
|
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
| 516 |
|
|
if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
|
| 517 |
|
|
&& INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
|
| 518 |
|
|
return x;
|
| 519 |
|
|
|
| 520 |
|
|
return (EDGE_INDEX_NO_EDGE);
|
| 521 |
|
|
}
|
| 522 |
|
|
|
| 523 |
|
|
/* Dump the list of basic blocks in the bitmap NODES. */
|
| 524 |
|
|
|
| 525 |
|
|
void
|
| 526 |
|
|
flow_nodes_print (const char *str, const_sbitmap nodes, FILE *file)
|
| 527 |
|
|
{
|
| 528 |
|
|
unsigned int node = 0;
|
| 529 |
|
|
sbitmap_iterator sbi;
|
| 530 |
|
|
|
| 531 |
|
|
if (! nodes)
|
| 532 |
|
|
return;
|
| 533 |
|
|
|
| 534 |
|
|
fprintf (file, "%s { ", str);
|
| 535 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
|
| 536 |
|
|
fprintf (file, "%d ", node);
|
| 537 |
|
|
fputs ("}\n", file);
|
| 538 |
|
|
}
|
| 539 |
|
|
|
| 540 |
|
|
/* Dump the list of edges in the array EDGE_LIST. */
|
| 541 |
|
|
|
| 542 |
|
|
void
|
| 543 |
|
|
flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
|
| 544 |
|
|
{
|
| 545 |
|
|
int i;
|
| 546 |
|
|
|
| 547 |
|
|
if (! edge_list)
|
| 548 |
|
|
return;
|
| 549 |
|
|
|
| 550 |
|
|
fprintf (file, "%s { ", str);
|
| 551 |
|
|
for (i = 0; i < num_edges; i++)
|
| 552 |
|
|
fprintf (file, "%d->%d ", edge_list[i]->src->index,
|
| 553 |
|
|
edge_list[i]->dest->index);
|
| 554 |
|
|
|
| 555 |
|
|
fputs ("}\n", file);
|
| 556 |
|
|
}
|
| 557 |
|
|
|
| 558 |
|
|
|
| 559 |
|
|
/* This routine will remove any fake predecessor edges for a basic block.
|
| 560 |
|
|
When the edge is removed, it is also removed from whatever successor
|
| 561 |
|
|
list it is in. */
|
| 562 |
|
|
|
| 563 |
|
|
static void
|
| 564 |
|
|
remove_fake_predecessors (basic_block bb)
|
| 565 |
|
|
{
|
| 566 |
|
|
edge e;
|
| 567 |
|
|
edge_iterator ei;
|
| 568 |
|
|
|
| 569 |
|
|
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
| 570 |
|
|
{
|
| 571 |
|
|
if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
|
| 572 |
|
|
remove_edge (e);
|
| 573 |
|
|
else
|
| 574 |
|
|
ei_next (&ei);
|
| 575 |
|
|
}
|
| 576 |
|
|
}
|
| 577 |
|
|
|
| 578 |
|
|
/* This routine will remove all fake edges from the flow graph. If
|
| 579 |
|
|
we remove all fake successors, it will automatically remove all
|
| 580 |
|
|
fake predecessors. */
|
| 581 |
|
|
|
| 582 |
|
|
void
|
| 583 |
|
|
remove_fake_edges (void)
|
| 584 |
|
|
{
|
| 585 |
|
|
basic_block bb;
|
| 586 |
|
|
|
| 587 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
|
| 588 |
|
|
remove_fake_predecessors (bb);
|
| 589 |
|
|
}
|
| 590 |
|
|
|
| 591 |
|
|
/* This routine will remove all fake edges to the EXIT_BLOCK. */
|
| 592 |
|
|
|
| 593 |
|
|
void
|
| 594 |
|
|
remove_fake_exit_edges (void)
|
| 595 |
|
|
{
|
| 596 |
|
|
remove_fake_predecessors (EXIT_BLOCK_PTR);
|
| 597 |
|
|
}
|
| 598 |
|
|
|
| 599 |
|
|
|
| 600 |
|
|
/* This function will add a fake edge between any block which has no
|
| 601 |
|
|
successors, and the exit block. Some data flow equations require these
|
| 602 |
|
|
edges to exist. */
|
| 603 |
|
|
|
| 604 |
|
|
void
|
| 605 |
|
|
add_noreturn_fake_exit_edges (void)
|
| 606 |
|
|
{
|
| 607 |
|
|
basic_block bb;
|
| 608 |
|
|
|
| 609 |
|
|
FOR_EACH_BB (bb)
|
| 610 |
|
|
if (EDGE_COUNT (bb->succs) == 0)
|
| 611 |
|
|
make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
|
| 612 |
|
|
}
|
| 613 |
|
|
|
| 614 |
|
|
/* This function adds a fake edge between any infinite loops to the
|
| 615 |
|
|
exit block. Some optimizations require a path from each node to
|
| 616 |
|
|
the exit node.
|
| 617 |
|
|
|
| 618 |
|
|
See also Morgan, Figure 3.10, pp. 82-83.
|
| 619 |
|
|
|
| 620 |
|
|
The current implementation is ugly, not attempting to minimize the
|
| 621 |
|
|
number of inserted fake edges. To reduce the number of fake edges
|
| 622 |
|
|
to insert, add fake edges from _innermost_ loops containing only
|
| 623 |
|
|
nodes not reachable from the exit block. */
|
| 624 |
|
|
|
| 625 |
|
|
void
|
| 626 |
|
|
connect_infinite_loops_to_exit (void)
|
| 627 |
|
|
{
|
| 628 |
|
|
basic_block unvisited_block = EXIT_BLOCK_PTR;
|
| 629 |
|
|
struct depth_first_search_dsS dfs_ds;
|
| 630 |
|
|
|
| 631 |
|
|
/* Perform depth-first search in the reverse graph to find nodes
|
| 632 |
|
|
reachable from the exit block. */
|
| 633 |
|
|
flow_dfs_compute_reverse_init (&dfs_ds);
|
| 634 |
|
|
flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
|
| 635 |
|
|
|
| 636 |
|
|
/* Repeatedly add fake edges, updating the unreachable nodes. */
|
| 637 |
|
|
while (1)
|
| 638 |
|
|
{
|
| 639 |
|
|
unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
|
| 640 |
|
|
unvisited_block);
|
| 641 |
|
|
if (!unvisited_block)
|
| 642 |
|
|
break;
|
| 643 |
|
|
|
| 644 |
|
|
make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
|
| 645 |
|
|
flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
|
| 646 |
|
|
}
|
| 647 |
|
|
|
| 648 |
|
|
flow_dfs_compute_reverse_finish (&dfs_ds);
|
| 649 |
|
|
return;
|
| 650 |
|
|
}
|
| 651 |
|
|
|
| 652 |
|
|
/* Compute reverse top sort order. This is computing a post order
|
| 653 |
|
|
numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
|
| 654 |
|
|
ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
|
| 655 |
|
|
true, unreachable blocks are deleted. */
|
| 656 |
|
|
|
| 657 |
|
|
int
|
| 658 |
|
|
post_order_compute (int *post_order, bool include_entry_exit,
|
| 659 |
|
|
bool delete_unreachable)
|
| 660 |
|
|
{
|
| 661 |
|
|
edge_iterator *stack;
|
| 662 |
|
|
int sp;
|
| 663 |
|
|
int post_order_num = 0;
|
| 664 |
|
|
sbitmap visited;
|
| 665 |
|
|
int count;
|
| 666 |
|
|
|
| 667 |
|
|
if (include_entry_exit)
|
| 668 |
|
|
post_order[post_order_num++] = EXIT_BLOCK;
|
| 669 |
|
|
|
| 670 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
| 671 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
| 672 |
|
|
sp = 0;
|
| 673 |
|
|
|
| 674 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
| 675 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
| 676 |
|
|
|
| 677 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
| 678 |
|
|
sbitmap_zero (visited);
|
| 679 |
|
|
|
| 680 |
|
|
/* Push the first edge on to the stack. */
|
| 681 |
|
|
stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
|
| 682 |
|
|
|
| 683 |
|
|
while (sp)
|
| 684 |
|
|
{
|
| 685 |
|
|
edge_iterator ei;
|
| 686 |
|
|
basic_block src;
|
| 687 |
|
|
basic_block dest;
|
| 688 |
|
|
|
| 689 |
|
|
/* Look at the edge on the top of the stack. */
|
| 690 |
|
|
ei = stack[sp - 1];
|
| 691 |
|
|
src = ei_edge (ei)->src;
|
| 692 |
|
|
dest = ei_edge (ei)->dest;
|
| 693 |
|
|
|
| 694 |
|
|
/* Check if the edge destination has been visited yet. */
|
| 695 |
|
|
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
|
| 696 |
|
|
{
|
| 697 |
|
|
/* Mark that we have visited the destination. */
|
| 698 |
|
|
SET_BIT (visited, dest->index);
|
| 699 |
|
|
|
| 700 |
|
|
if (EDGE_COUNT (dest->succs) > 0)
|
| 701 |
|
|
/* Since the DEST node has been visited for the first
|
| 702 |
|
|
time, check its successors. */
|
| 703 |
|
|
stack[sp++] = ei_start (dest->succs);
|
| 704 |
|
|
else
|
| 705 |
|
|
post_order[post_order_num++] = dest->index;
|
| 706 |
|
|
}
|
| 707 |
|
|
else
|
| 708 |
|
|
{
|
| 709 |
|
|
if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
|
| 710 |
|
|
post_order[post_order_num++] = src->index;
|
| 711 |
|
|
|
| 712 |
|
|
if (!ei_one_before_end_p (ei))
|
| 713 |
|
|
ei_next (&stack[sp - 1]);
|
| 714 |
|
|
else
|
| 715 |
|
|
sp--;
|
| 716 |
|
|
}
|
| 717 |
|
|
}
|
| 718 |
|
|
|
| 719 |
|
|
if (include_entry_exit)
|
| 720 |
|
|
{
|
| 721 |
|
|
post_order[post_order_num++] = ENTRY_BLOCK;
|
| 722 |
|
|
count = post_order_num;
|
| 723 |
|
|
}
|
| 724 |
|
|
else
|
| 725 |
|
|
count = post_order_num + 2;
|
| 726 |
|
|
|
| 727 |
|
|
/* Delete the unreachable blocks if some were found and we are
|
| 728 |
|
|
supposed to do it. */
|
| 729 |
|
|
if (delete_unreachable && (count != n_basic_blocks))
|
| 730 |
|
|
{
|
| 731 |
|
|
basic_block b;
|
| 732 |
|
|
basic_block next_bb;
|
| 733 |
|
|
for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
|
| 734 |
|
|
{
|
| 735 |
|
|
next_bb = b->next_bb;
|
| 736 |
|
|
|
| 737 |
|
|
if (!(TEST_BIT (visited, b->index)))
|
| 738 |
|
|
delete_basic_block (b);
|
| 739 |
|
|
}
|
| 740 |
|
|
|
| 741 |
|
|
tidy_fallthru_edges ();
|
| 742 |
|
|
}
|
| 743 |
|
|
|
| 744 |
|
|
free (stack);
|
| 745 |
|
|
sbitmap_free (visited);
|
| 746 |
|
|
return post_order_num;
|
| 747 |
|
|
}
|
| 748 |
|
|
|
| 749 |
|
|
|
| 750 |
|
|
/* Helper routine for inverted_post_order_compute.
|
| 751 |
|
|
BB has to belong to a region of CFG
|
| 752 |
|
|
unreachable by inverted traversal from the exit.
|
| 753 |
|
|
i.e. there's no control flow path from ENTRY to EXIT
|
| 754 |
|
|
that contains this BB.
|
| 755 |
|
|
This can happen in two cases - if there's an infinite loop
|
| 756 |
|
|
or if there's a block that has no successor
|
| 757 |
|
|
(call to a function with no return).
|
| 758 |
|
|
Some RTL passes deal with this condition by
|
| 759 |
|
|
calling connect_infinite_loops_to_exit () and/or
|
| 760 |
|
|
add_noreturn_fake_exit_edges ().
|
| 761 |
|
|
However, those methods involve modifying the CFG itself
|
| 762 |
|
|
which may not be desirable.
|
| 763 |
|
|
Hence, we deal with the infinite loop/no return cases
|
| 764 |
|
|
by identifying a unique basic block that can reach all blocks
|
| 765 |
|
|
in such a region by inverted traversal.
|
| 766 |
|
|
This function returns a basic block that guarantees
|
| 767 |
|
|
that all blocks in the region are reachable
|
| 768 |
|
|
by starting an inverted traversal from the returned block. */
|
| 769 |
|
|
|
| 770 |
|
|
static basic_block
|
| 771 |
|
|
dfs_find_deadend (basic_block bb)
|
| 772 |
|
|
{
|
| 773 |
|
|
sbitmap visited = sbitmap_alloc (last_basic_block);
|
| 774 |
|
|
sbitmap_zero (visited);
|
| 775 |
|
|
|
| 776 |
|
|
for (;;)
|
| 777 |
|
|
{
|
| 778 |
|
|
SET_BIT (visited, bb->index);
|
| 779 |
|
|
if (EDGE_COUNT (bb->succs) == 0
|
| 780 |
|
|
|| TEST_BIT (visited, EDGE_SUCC (bb, 0)->dest->index))
|
| 781 |
|
|
{
|
| 782 |
|
|
sbitmap_free (visited);
|
| 783 |
|
|
return bb;
|
| 784 |
|
|
}
|
| 785 |
|
|
|
| 786 |
|
|
bb = EDGE_SUCC (bb, 0)->dest;
|
| 787 |
|
|
}
|
| 788 |
|
|
|
| 789 |
|
|
gcc_unreachable ();
|
| 790 |
|
|
}
|
| 791 |
|
|
|
| 792 |
|
|
|
| 793 |
|
|
/* Compute the reverse top sort order of the inverted CFG
|
| 794 |
|
|
i.e. starting from the exit block and following the edges backward
|
| 795 |
|
|
(from successors to predecessors).
|
| 796 |
|
|
This ordering can be used for forward dataflow problems among others.
|
| 797 |
|
|
|
| 798 |
|
|
This function assumes that all blocks in the CFG are reachable
|
| 799 |
|
|
from the ENTRY (but not necessarily from EXIT).
|
| 800 |
|
|
|
| 801 |
|
|
If there's an infinite loop,
|
| 802 |
|
|
a simple inverted traversal starting from the blocks
|
| 803 |
|
|
with no successors can't visit all blocks.
|
| 804 |
|
|
To solve this problem, we first do inverted traversal
|
| 805 |
|
|
starting from the blocks with no successor.
|
| 806 |
|
|
And if there's any block left that's not visited by the regular
|
| 807 |
|
|
inverted traversal from EXIT,
|
| 808 |
|
|
those blocks are in such problematic region.
|
| 809 |
|
|
Among those, we find one block that has
|
| 810 |
|
|
any visited predecessor (which is an entry into such a region),
|
| 811 |
|
|
and start looking for a "dead end" from that block
|
| 812 |
|
|
and do another inverted traversal from that block. */
|
| 813 |
|
|
|
| 814 |
|
|
int
|
| 815 |
|
|
inverted_post_order_compute (int *post_order)
|
| 816 |
|
|
{
|
| 817 |
|
|
basic_block bb;
|
| 818 |
|
|
edge_iterator *stack;
|
| 819 |
|
|
int sp;
|
| 820 |
|
|
int post_order_num = 0;
|
| 821 |
|
|
sbitmap visited;
|
| 822 |
|
|
|
| 823 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
| 824 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
| 825 |
|
|
sp = 0;
|
| 826 |
|
|
|
| 827 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
| 828 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
| 829 |
|
|
|
| 830 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
| 831 |
|
|
sbitmap_zero (visited);
|
| 832 |
|
|
|
| 833 |
|
|
/* Put all blocks that have no successor into the initial work list. */
|
| 834 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
| 835 |
|
|
if (EDGE_COUNT (bb->succs) == 0)
|
| 836 |
|
|
{
|
| 837 |
|
|
/* Push the initial edge on to the stack. */
|
| 838 |
|
|
if (EDGE_COUNT (bb->preds) > 0)
|
| 839 |
|
|
{
|
| 840 |
|
|
stack[sp++] = ei_start (bb->preds);
|
| 841 |
|
|
SET_BIT (visited, bb->index);
|
| 842 |
|
|
}
|
| 843 |
|
|
}
|
| 844 |
|
|
|
| 845 |
|
|
do
|
| 846 |
|
|
{
|
| 847 |
|
|
bool has_unvisited_bb = false;
|
| 848 |
|
|
|
| 849 |
|
|
/* The inverted traversal loop. */
|
| 850 |
|
|
while (sp)
|
| 851 |
|
|
{
|
| 852 |
|
|
edge_iterator ei;
|
| 853 |
|
|
basic_block pred;
|
| 854 |
|
|
|
| 855 |
|
|
/* Look at the edge on the top of the stack. */
|
| 856 |
|
|
ei = stack[sp - 1];
|
| 857 |
|
|
bb = ei_edge (ei)->dest;
|
| 858 |
|
|
pred = ei_edge (ei)->src;
|
| 859 |
|
|
|
| 860 |
|
|
/* Check if the predecessor has been visited yet. */
|
| 861 |
|
|
if (! TEST_BIT (visited, pred->index))
|
| 862 |
|
|
{
|
| 863 |
|
|
/* Mark that we have visited the destination. */
|
| 864 |
|
|
SET_BIT (visited, pred->index);
|
| 865 |
|
|
|
| 866 |
|
|
if (EDGE_COUNT (pred->preds) > 0)
|
| 867 |
|
|
/* Since the predecessor node has been visited for the first
|
| 868 |
|
|
time, check its predecessors. */
|
| 869 |
|
|
stack[sp++] = ei_start (pred->preds);
|
| 870 |
|
|
else
|
| 871 |
|
|
post_order[post_order_num++] = pred->index;
|
| 872 |
|
|
}
|
| 873 |
|
|
else
|
| 874 |
|
|
{
|
| 875 |
|
|
if (bb != EXIT_BLOCK_PTR && ei_one_before_end_p (ei))
|
| 876 |
|
|
post_order[post_order_num++] = bb->index;
|
| 877 |
|
|
|
| 878 |
|
|
if (!ei_one_before_end_p (ei))
|
| 879 |
|
|
ei_next (&stack[sp - 1]);
|
| 880 |
|
|
else
|
| 881 |
|
|
sp--;
|
| 882 |
|
|
}
|
| 883 |
|
|
}
|
| 884 |
|
|
|
| 885 |
|
|
/* Detect any infinite loop and activate the kludge.
|
| 886 |
|
|
Note that this doesn't check EXIT_BLOCK itself
|
| 887 |
|
|
since EXIT_BLOCK is always added after the outer do-while loop. */
|
| 888 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
| 889 |
|
|
if (!TEST_BIT (visited, bb->index))
|
| 890 |
|
|
{
|
| 891 |
|
|
has_unvisited_bb = true;
|
| 892 |
|
|
|
| 893 |
|
|
if (EDGE_COUNT (bb->preds) > 0)
|
| 894 |
|
|
{
|
| 895 |
|
|
edge_iterator ei;
|
| 896 |
|
|
edge e;
|
| 897 |
|
|
basic_block visited_pred = NULL;
|
| 898 |
|
|
|
| 899 |
|
|
/* Find an already visited predecessor. */
|
| 900 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 901 |
|
|
{
|
| 902 |
|
|
if (TEST_BIT (visited, e->src->index))
|
| 903 |
|
|
visited_pred = e->src;
|
| 904 |
|
|
}
|
| 905 |
|
|
|
| 906 |
|
|
if (visited_pred)
|
| 907 |
|
|
{
|
| 908 |
|
|
basic_block be = dfs_find_deadend (bb);
|
| 909 |
|
|
gcc_assert (be != NULL);
|
| 910 |
|
|
SET_BIT (visited, be->index);
|
| 911 |
|
|
stack[sp++] = ei_start (be->preds);
|
| 912 |
|
|
break;
|
| 913 |
|
|
}
|
| 914 |
|
|
}
|
| 915 |
|
|
}
|
| 916 |
|
|
|
| 917 |
|
|
if (has_unvisited_bb && sp == 0)
|
| 918 |
|
|
{
|
| 919 |
|
|
/* No blocks are reachable from EXIT at all.
|
| 920 |
|
|
Find a dead-end from the ENTRY, and restart the iteration. */
|
| 921 |
|
|
basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR);
|
| 922 |
|
|
gcc_assert (be != NULL);
|
| 923 |
|
|
SET_BIT (visited, be->index);
|
| 924 |
|
|
stack[sp++] = ei_start (be->preds);
|
| 925 |
|
|
}
|
| 926 |
|
|
|
| 927 |
|
|
/* The only case the below while fires is
|
| 928 |
|
|
when there's an infinite loop. */
|
| 929 |
|
|
}
|
| 930 |
|
|
while (sp);
|
| 931 |
|
|
|
| 932 |
|
|
/* EXIT_BLOCK is always included. */
|
| 933 |
|
|
post_order[post_order_num++] = EXIT_BLOCK;
|
| 934 |
|
|
|
| 935 |
|
|
free (stack);
|
| 936 |
|
|
sbitmap_free (visited);
|
| 937 |
|
|
return post_order_num;
|
| 938 |
|
|
}
|
| 939 |
|
|
|
| 940 |
|
|
/* Compute the depth first search order and store in the array
|
| 941 |
|
|
PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
|
| 942 |
|
|
REV_POST_ORDER is nonzero, return the reverse completion number for each
|
| 943 |
|
|
node. Returns the number of nodes visited. A depth first search
|
| 944 |
|
|
tries to get as far away from the starting point as quickly as
|
| 945 |
|
|
possible.
|
| 946 |
|
|
|
| 947 |
|
|
pre_order is a really a preorder numbering of the graph.
|
| 948 |
|
|
rev_post_order is really a reverse postorder numbering of the graph.
|
| 949 |
|
|
*/
|
| 950 |
|
|
|
| 951 |
|
|
int
|
| 952 |
|
|
pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
|
| 953 |
|
|
bool include_entry_exit)
|
| 954 |
|
|
{
|
| 955 |
|
|
edge_iterator *stack;
|
| 956 |
|
|
int sp;
|
| 957 |
|
|
int pre_order_num = 0;
|
| 958 |
|
|
int rev_post_order_num = n_basic_blocks - 1;
|
| 959 |
|
|
sbitmap visited;
|
| 960 |
|
|
|
| 961 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
| 962 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
| 963 |
|
|
sp = 0;
|
| 964 |
|
|
|
| 965 |
|
|
if (include_entry_exit)
|
| 966 |
|
|
{
|
| 967 |
|
|
if (pre_order)
|
| 968 |
|
|
pre_order[pre_order_num] = ENTRY_BLOCK;
|
| 969 |
|
|
pre_order_num++;
|
| 970 |
|
|
if (rev_post_order)
|
| 971 |
|
|
rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
|
| 972 |
|
|
}
|
| 973 |
|
|
else
|
| 974 |
|
|
rev_post_order_num -= NUM_FIXED_BLOCKS;
|
| 975 |
|
|
|
| 976 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
| 977 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
| 978 |
|
|
|
| 979 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
| 980 |
|
|
sbitmap_zero (visited);
|
| 981 |
|
|
|
| 982 |
|
|
/* Push the first edge on to the stack. */
|
| 983 |
|
|
stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
|
| 984 |
|
|
|
| 985 |
|
|
while (sp)
|
| 986 |
|
|
{
|
| 987 |
|
|
edge_iterator ei;
|
| 988 |
|
|
basic_block src;
|
| 989 |
|
|
basic_block dest;
|
| 990 |
|
|
|
| 991 |
|
|
/* Look at the edge on the top of the stack. */
|
| 992 |
|
|
ei = stack[sp - 1];
|
| 993 |
|
|
src = ei_edge (ei)->src;
|
| 994 |
|
|
dest = ei_edge (ei)->dest;
|
| 995 |
|
|
|
| 996 |
|
|
/* Check if the edge destination has been visited yet. */
|
| 997 |
|
|
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
|
| 998 |
|
|
{
|
| 999 |
|
|
/* Mark that we have visited the destination. */
|
| 1000 |
|
|
SET_BIT (visited, dest->index);
|
| 1001 |
|
|
|
| 1002 |
|
|
if (pre_order)
|
| 1003 |
|
|
pre_order[pre_order_num] = dest->index;
|
| 1004 |
|
|
|
| 1005 |
|
|
pre_order_num++;
|
| 1006 |
|
|
|
| 1007 |
|
|
if (EDGE_COUNT (dest->succs) > 0)
|
| 1008 |
|
|
/* Since the DEST node has been visited for the first
|
| 1009 |
|
|
time, check its successors. */
|
| 1010 |
|
|
stack[sp++] = ei_start (dest->succs);
|
| 1011 |
|
|
else if (rev_post_order)
|
| 1012 |
|
|
/* There are no successors for the DEST node so assign
|
| 1013 |
|
|
its reverse completion number. */
|
| 1014 |
|
|
rev_post_order[rev_post_order_num--] = dest->index;
|
| 1015 |
|
|
}
|
| 1016 |
|
|
else
|
| 1017 |
|
|
{
|
| 1018 |
|
|
if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
|
| 1019 |
|
|
&& rev_post_order)
|
| 1020 |
|
|
/* There are no more successors for the SRC node
|
| 1021 |
|
|
so assign its reverse completion number. */
|
| 1022 |
|
|
rev_post_order[rev_post_order_num--] = src->index;
|
| 1023 |
|
|
|
| 1024 |
|
|
if (!ei_one_before_end_p (ei))
|
| 1025 |
|
|
ei_next (&stack[sp - 1]);
|
| 1026 |
|
|
else
|
| 1027 |
|
|
sp--;
|
| 1028 |
|
|
}
|
| 1029 |
|
|
}
|
| 1030 |
|
|
|
| 1031 |
|
|
free (stack);
|
| 1032 |
|
|
sbitmap_free (visited);
|
| 1033 |
|
|
|
| 1034 |
|
|
if (include_entry_exit)
|
| 1035 |
|
|
{
|
| 1036 |
|
|
if (pre_order)
|
| 1037 |
|
|
pre_order[pre_order_num] = EXIT_BLOCK;
|
| 1038 |
|
|
pre_order_num++;
|
| 1039 |
|
|
if (rev_post_order)
|
| 1040 |
|
|
rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
|
| 1041 |
|
|
/* The number of nodes visited should be the number of blocks. */
|
| 1042 |
|
|
gcc_assert (pre_order_num == n_basic_blocks);
|
| 1043 |
|
|
}
|
| 1044 |
|
|
else
|
| 1045 |
|
|
/* The number of nodes visited should be the number of blocks minus
|
| 1046 |
|
|
the entry and exit blocks which are not visited here. */
|
| 1047 |
|
|
gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
|
| 1048 |
|
|
|
| 1049 |
|
|
return pre_order_num;
|
| 1050 |
|
|
}
|
| 1051 |
|
|
|
| 1052 |
|
|
/* Compute the depth first search order on the _reverse_ graph and
|
| 1053 |
|
|
store in the array DFS_ORDER, marking the nodes visited in VISITED.
|
| 1054 |
|
|
Returns the number of nodes visited.
|
| 1055 |
|
|
|
| 1056 |
|
|
The computation is split into three pieces:
|
| 1057 |
|
|
|
| 1058 |
|
|
flow_dfs_compute_reverse_init () creates the necessary data
|
| 1059 |
|
|
structures.
|
| 1060 |
|
|
|
| 1061 |
|
|
flow_dfs_compute_reverse_add_bb () adds a basic block to the data
|
| 1062 |
|
|
structures. The block will start the search.
|
| 1063 |
|
|
|
| 1064 |
|
|
flow_dfs_compute_reverse_execute () continues (or starts) the
|
| 1065 |
|
|
search using the block on the top of the stack, stopping when the
|
| 1066 |
|
|
stack is empty.
|
| 1067 |
|
|
|
| 1068 |
|
|
flow_dfs_compute_reverse_finish () destroys the necessary data
|
| 1069 |
|
|
structures.
|
| 1070 |
|
|
|
| 1071 |
|
|
Thus, the user will probably call ..._init(), call ..._add_bb() to
|
| 1072 |
|
|
add a beginning basic block to the stack, call ..._execute(),
|
| 1073 |
|
|
possibly add another bb to the stack and again call ..._execute(),
|
| 1074 |
|
|
..., and finally call _finish(). */
|
| 1075 |
|
|
|
| 1076 |
|
|
/* Initialize the data structures used for depth-first search on the
|
| 1077 |
|
|
reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
|
| 1078 |
|
|
added to the basic block stack. DATA is the current depth-first
|
| 1079 |
|
|
search context. If INITIALIZE_STACK is nonzero, there is an
|
| 1080 |
|
|
element on the stack. */
|
| 1081 |
|
|
|
| 1082 |
|
|
static void
|
| 1083 |
|
|
flow_dfs_compute_reverse_init (depth_first_search_ds data)
|
| 1084 |
|
|
{
|
| 1085 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
| 1086 |
|
|
data->stack = XNEWVEC (basic_block, n_basic_blocks);
|
| 1087 |
|
|
data->sp = 0;
|
| 1088 |
|
|
|
| 1089 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
| 1090 |
|
|
data->visited_blocks = sbitmap_alloc (last_basic_block);
|
| 1091 |
|
|
|
| 1092 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
| 1093 |
|
|
sbitmap_zero (data->visited_blocks);
|
| 1094 |
|
|
|
| 1095 |
|
|
return;
|
| 1096 |
|
|
}
|
| 1097 |
|
|
|
| 1098 |
|
|
/* Add the specified basic block to the top of the dfs data
|
| 1099 |
|
|
structures. When the search continues, it will start at the
|
| 1100 |
|
|
block. */
|
| 1101 |
|
|
|
| 1102 |
|
|
static void
|
| 1103 |
|
|
flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
|
| 1104 |
|
|
{
|
| 1105 |
|
|
data->stack[data->sp++] = bb;
|
| 1106 |
|
|
SET_BIT (data->visited_blocks, bb->index);
|
| 1107 |
|
|
}
|
| 1108 |
|
|
|
| 1109 |
|
|
/* Continue the depth-first search through the reverse graph starting with the
|
| 1110 |
|
|
block at the stack's top and ending when the stack is empty. Visited nodes
|
| 1111 |
|
|
are marked. Returns an unvisited basic block, or NULL if there is none
|
| 1112 |
|
|
available. */
|
| 1113 |
|
|
|
| 1114 |
|
|
static basic_block
|
| 1115 |
|
|
flow_dfs_compute_reverse_execute (depth_first_search_ds data,
|
| 1116 |
|
|
basic_block last_unvisited)
|
| 1117 |
|
|
{
|
| 1118 |
|
|
basic_block bb;
|
| 1119 |
|
|
edge e;
|
| 1120 |
|
|
edge_iterator ei;
|
| 1121 |
|
|
|
| 1122 |
|
|
while (data->sp > 0)
|
| 1123 |
|
|
{
|
| 1124 |
|
|
bb = data->stack[--data->sp];
|
| 1125 |
|
|
|
| 1126 |
|
|
/* Perform depth-first search on adjacent vertices. */
|
| 1127 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 1128 |
|
|
if (!TEST_BIT (data->visited_blocks, e->src->index))
|
| 1129 |
|
|
flow_dfs_compute_reverse_add_bb (data, e->src);
|
| 1130 |
|
|
}
|
| 1131 |
|
|
|
| 1132 |
|
|
/* Determine if there are unvisited basic blocks. */
|
| 1133 |
|
|
FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
|
| 1134 |
|
|
if (!TEST_BIT (data->visited_blocks, bb->index))
|
| 1135 |
|
|
return bb;
|
| 1136 |
|
|
|
| 1137 |
|
|
return NULL;
|
| 1138 |
|
|
}
|
| 1139 |
|
|
|
| 1140 |
|
|
/* Destroy the data structures needed for depth-first search on the
|
| 1141 |
|
|
reverse graph. */
|
| 1142 |
|
|
|
| 1143 |
|
|
static void
|
| 1144 |
|
|
flow_dfs_compute_reverse_finish (depth_first_search_ds data)
|
| 1145 |
|
|
{
|
| 1146 |
|
|
free (data->stack);
|
| 1147 |
|
|
sbitmap_free (data->visited_blocks);
|
| 1148 |
|
|
}
|
| 1149 |
|
|
|
| 1150 |
|
|
/* Performs dfs search from BB over vertices satisfying PREDICATE;
|
| 1151 |
|
|
if REVERSE, go against direction of edges. Returns number of blocks
|
| 1152 |
|
|
found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
|
| 1153 |
|
|
int
|
| 1154 |
|
|
dfs_enumerate_from (basic_block bb, int reverse,
|
| 1155 |
|
|
bool (*predicate) (const_basic_block, const void *),
|
| 1156 |
|
|
basic_block *rslt, int rslt_max, const void *data)
|
| 1157 |
|
|
{
|
| 1158 |
|
|
basic_block *st, lbb;
|
| 1159 |
|
|
int sp = 0, tv = 0;
|
| 1160 |
|
|
unsigned size;
|
| 1161 |
|
|
|
| 1162 |
|
|
/* A bitmap to keep track of visited blocks. Allocating it each time
|
| 1163 |
|
|
this function is called is not possible, since dfs_enumerate_from
|
| 1164 |
|
|
is often used on small (almost) disjoint parts of cfg (bodies of
|
| 1165 |
|
|
loops), and allocating a large sbitmap would lead to quadratic
|
| 1166 |
|
|
behavior. */
|
| 1167 |
|
|
static sbitmap visited;
|
| 1168 |
|
|
static unsigned v_size;
|
| 1169 |
|
|
|
| 1170 |
|
|
#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
|
| 1171 |
|
|
#define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
|
| 1172 |
|
|
#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
|
| 1173 |
|
|
|
| 1174 |
|
|
/* Resize the VISITED sbitmap if necessary. */
|
| 1175 |
|
|
size = last_basic_block;
|
| 1176 |
|
|
if (size < 10)
|
| 1177 |
|
|
size = 10;
|
| 1178 |
|
|
|
| 1179 |
|
|
if (!visited)
|
| 1180 |
|
|
{
|
| 1181 |
|
|
|
| 1182 |
|
|
visited = sbitmap_alloc (size);
|
| 1183 |
|
|
sbitmap_zero (visited);
|
| 1184 |
|
|
v_size = size;
|
| 1185 |
|
|
}
|
| 1186 |
|
|
else if (v_size < size)
|
| 1187 |
|
|
{
|
| 1188 |
|
|
/* Ensure that we increase the size of the sbitmap exponentially. */
|
| 1189 |
|
|
if (2 * v_size > size)
|
| 1190 |
|
|
size = 2 * v_size;
|
| 1191 |
|
|
|
| 1192 |
|
|
visited = sbitmap_resize (visited, size, 0);
|
| 1193 |
|
|
v_size = size;
|
| 1194 |
|
|
}
|
| 1195 |
|
|
|
| 1196 |
|
|
st = XCNEWVEC (basic_block, rslt_max);
|
| 1197 |
|
|
rslt[tv++] = st[sp++] = bb;
|
| 1198 |
|
|
MARK_VISITED (bb);
|
| 1199 |
|
|
while (sp)
|
| 1200 |
|
|
{
|
| 1201 |
|
|
edge e;
|
| 1202 |
|
|
edge_iterator ei;
|
| 1203 |
|
|
lbb = st[--sp];
|
| 1204 |
|
|
if (reverse)
|
| 1205 |
|
|
{
|
| 1206 |
|
|
FOR_EACH_EDGE (e, ei, lbb->preds)
|
| 1207 |
|
|
if (!VISITED_P (e->src) && predicate (e->src, data))
|
| 1208 |
|
|
{
|
| 1209 |
|
|
gcc_assert (tv != rslt_max);
|
| 1210 |
|
|
rslt[tv++] = st[sp++] = e->src;
|
| 1211 |
|
|
MARK_VISITED (e->src);
|
| 1212 |
|
|
}
|
| 1213 |
|
|
}
|
| 1214 |
|
|
else
|
| 1215 |
|
|
{
|
| 1216 |
|
|
FOR_EACH_EDGE (e, ei, lbb->succs)
|
| 1217 |
|
|
if (!VISITED_P (e->dest) && predicate (e->dest, data))
|
| 1218 |
|
|
{
|
| 1219 |
|
|
gcc_assert (tv != rslt_max);
|
| 1220 |
|
|
rslt[tv++] = st[sp++] = e->dest;
|
| 1221 |
|
|
MARK_VISITED (e->dest);
|
| 1222 |
|
|
}
|
| 1223 |
|
|
}
|
| 1224 |
|
|
}
|
| 1225 |
|
|
free (st);
|
| 1226 |
|
|
for (sp = 0; sp < tv; sp++)
|
| 1227 |
|
|
UNMARK_VISITED (rslt[sp]);
|
| 1228 |
|
|
return tv;
|
| 1229 |
|
|
#undef MARK_VISITED
|
| 1230 |
|
|
#undef UNMARK_VISITED
|
| 1231 |
|
|
#undef VISITED_P
|
| 1232 |
|
|
}
|
| 1233 |
|
|
|
| 1234 |
|
|
|
| 1235 |
|
|
/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
|
| 1236 |
|
|
|
| 1237 |
|
|
This algorithm can be found in Timothy Harvey's PhD thesis, at
|
| 1238 |
|
|
http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
|
| 1239 |
|
|
dominance algorithms.
|
| 1240 |
|
|
|
| 1241 |
|
|
First, we identify each join point, j (any node with more than one
|
| 1242 |
|
|
incoming edge is a join point).
|
| 1243 |
|
|
|
| 1244 |
|
|
We then examine each predecessor, p, of j and walk up the dominator tree
|
| 1245 |
|
|
starting at p.
|
| 1246 |
|
|
|
| 1247 |
|
|
We stop the walk when we reach j's immediate dominator - j is in the
|
| 1248 |
|
|
dominance frontier of each of the nodes in the walk, except for j's
|
| 1249 |
|
|
immediate dominator. Intuitively, all of the rest of j's dominators are
|
| 1250 |
|
|
shared by j's predecessors as well.
|
| 1251 |
|
|
Since they dominate j, they will not have j in their dominance frontiers.
|
| 1252 |
|
|
|
| 1253 |
|
|
The number of nodes touched by this algorithm is equal to the size
|
| 1254 |
|
|
of the dominance frontiers, no more, no less.
|
| 1255 |
|
|
*/
|
| 1256 |
|
|
|
| 1257 |
|
|
|
| 1258 |
|
|
static void
|
| 1259 |
|
|
compute_dominance_frontiers_1 (bitmap_head *frontiers)
|
| 1260 |
|
|
{
|
| 1261 |
|
|
edge p;
|
| 1262 |
|
|
edge_iterator ei;
|
| 1263 |
|
|
basic_block b;
|
| 1264 |
|
|
FOR_EACH_BB (b)
|
| 1265 |
|
|
{
|
| 1266 |
|
|
if (EDGE_COUNT (b->preds) >= 2)
|
| 1267 |
|
|
{
|
| 1268 |
|
|
FOR_EACH_EDGE (p, ei, b->preds)
|
| 1269 |
|
|
{
|
| 1270 |
|
|
basic_block runner = p->src;
|
| 1271 |
|
|
basic_block domsb;
|
| 1272 |
|
|
if (runner == ENTRY_BLOCK_PTR)
|
| 1273 |
|
|
continue;
|
| 1274 |
|
|
|
| 1275 |
|
|
domsb = get_immediate_dominator (CDI_DOMINATORS, b);
|
| 1276 |
|
|
while (runner != domsb)
|
| 1277 |
|
|
{
|
| 1278 |
|
|
if (!bitmap_set_bit (&frontiers[runner->index],
|
| 1279 |
|
|
b->index))
|
| 1280 |
|
|
break;
|
| 1281 |
|
|
runner = get_immediate_dominator (CDI_DOMINATORS,
|
| 1282 |
|
|
runner);
|
| 1283 |
|
|
}
|
| 1284 |
|
|
}
|
| 1285 |
|
|
}
|
| 1286 |
|
|
}
|
| 1287 |
|
|
}
|
| 1288 |
|
|
|
| 1289 |
|
|
|
| 1290 |
|
|
void
|
| 1291 |
|
|
compute_dominance_frontiers (bitmap_head *frontiers)
|
| 1292 |
|
|
{
|
| 1293 |
|
|
timevar_push (TV_DOM_FRONTIERS);
|
| 1294 |
|
|
|
| 1295 |
|
|
compute_dominance_frontiers_1 (frontiers);
|
| 1296 |
|
|
|
| 1297 |
|
|
timevar_pop (TV_DOM_FRONTIERS);
|
| 1298 |
|
|
}
|
| 1299 |
|
|
|
| 1300 |
|
|
/* Given a set of blocks with variable definitions (DEF_BLOCKS),
|
| 1301 |
|
|
return a bitmap with all the blocks in the iterated dominance
|
| 1302 |
|
|
frontier of the blocks in DEF_BLOCKS. DFS contains dominance
|
| 1303 |
|
|
frontier information as returned by compute_dominance_frontiers.
|
| 1304 |
|
|
|
| 1305 |
|
|
The resulting set of blocks are the potential sites where PHI nodes
|
| 1306 |
|
|
are needed. The caller is responsible for freeing the memory
|
| 1307 |
|
|
allocated for the return value. */
|
| 1308 |
|
|
|
| 1309 |
|
|
bitmap
|
| 1310 |
|
|
compute_idf (bitmap def_blocks, bitmap_head *dfs)
|
| 1311 |
|
|
{
|
| 1312 |
|
|
bitmap_iterator bi;
|
| 1313 |
|
|
unsigned bb_index, i;
|
| 1314 |
|
|
VEC(int,heap) *work_stack;
|
| 1315 |
|
|
bitmap phi_insertion_points;
|
| 1316 |
|
|
|
| 1317 |
|
|
work_stack = VEC_alloc (int, heap, n_basic_blocks);
|
| 1318 |
|
|
phi_insertion_points = BITMAP_ALLOC (NULL);
|
| 1319 |
|
|
|
| 1320 |
|
|
/* Seed the work list with all the blocks in DEF_BLOCKS. We use
|
| 1321 |
|
|
VEC_quick_push here for speed. This is safe because we know that
|
| 1322 |
|
|
the number of definition blocks is no greater than the number of
|
| 1323 |
|
|
basic blocks, which is the initial capacity of WORK_STACK. */
|
| 1324 |
|
|
EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
|
| 1325 |
|
|
VEC_quick_push (int, work_stack, bb_index);
|
| 1326 |
|
|
|
| 1327 |
|
|
/* Pop a block off the worklist, add every block that appears in
|
| 1328 |
|
|
the original block's DF that we have not already processed to
|
| 1329 |
|
|
the worklist. Iterate until the worklist is empty. Blocks
|
| 1330 |
|
|
which are added to the worklist are potential sites for
|
| 1331 |
|
|
PHI nodes. */
|
| 1332 |
|
|
while (VEC_length (int, work_stack) > 0)
|
| 1333 |
|
|
{
|
| 1334 |
|
|
bb_index = VEC_pop (int, work_stack);
|
| 1335 |
|
|
|
| 1336 |
|
|
/* Since the registration of NEW -> OLD name mappings is done
|
| 1337 |
|
|
separately from the call to update_ssa, when updating the SSA
|
| 1338 |
|
|
form, the basic blocks where new and/or old names are defined
|
| 1339 |
|
|
may have disappeared by CFG cleanup calls. In this case,
|
| 1340 |
|
|
we may pull a non-existing block from the work stack. */
|
| 1341 |
|
|
gcc_assert (bb_index < (unsigned) last_basic_block);
|
| 1342 |
|
|
|
| 1343 |
|
|
EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points,
|
| 1344 |
|
|
0, i, bi)
|
| 1345 |
|
|
{
|
| 1346 |
|
|
/* Use a safe push because if there is a definition of VAR
|
| 1347 |
|
|
in every basic block, then WORK_STACK may eventually have
|
| 1348 |
|
|
more than N_BASIC_BLOCK entries. */
|
| 1349 |
|
|
VEC_safe_push (int, heap, work_stack, i);
|
| 1350 |
|
|
bitmap_set_bit (phi_insertion_points, i);
|
| 1351 |
|
|
}
|
| 1352 |
|
|
}
|
| 1353 |
|
|
|
| 1354 |
|
|
VEC_free (int, heap, work_stack);
|
| 1355 |
|
|
|
| 1356 |
|
|
return phi_insertion_points;
|
| 1357 |
|
|
}
|
| 1358 |
|
|
|
| 1359 |
|
|
|