| 1 |
684 |
jeremybenn |
/* Control flow optimization code for GNU compiler.
|
| 2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
| 3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
|
| 4 |
|
|
Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
/* This file contains optimizer of the control flow. The main entry point is
|
| 23 |
|
|
cleanup_cfg. Following optimizations are performed:
|
| 24 |
|
|
|
| 25 |
|
|
- Unreachable blocks removal
|
| 26 |
|
|
- Edge forwarding (edge to the forwarder block is forwarded to its
|
| 27 |
|
|
successor. Simplification of the branch instruction is performed by
|
| 28 |
|
|
underlying infrastructure so branch can be converted to simplejump or
|
| 29 |
|
|
eliminated).
|
| 30 |
|
|
- Cross jumping (tail merging)
|
| 31 |
|
|
- Conditional jump-around-simplejump simplification
|
| 32 |
|
|
- Basic block merging. */
|
| 33 |
|
|
|
| 34 |
|
|
#include "config.h"
|
| 35 |
|
|
#include "system.h"
|
| 36 |
|
|
#include "coretypes.h"
|
| 37 |
|
|
#include "tm.h"
|
| 38 |
|
|
#include "rtl.h"
|
| 39 |
|
|
#include "hard-reg-set.h"
|
| 40 |
|
|
#include "regs.h"
|
| 41 |
|
|
#include "timevar.h"
|
| 42 |
|
|
#include "output.h"
|
| 43 |
|
|
#include "insn-config.h"
|
| 44 |
|
|
#include "flags.h"
|
| 45 |
|
|
#include "recog.h"
|
| 46 |
|
|
#include "diagnostic-core.h"
|
| 47 |
|
|
#include "cselib.h"
|
| 48 |
|
|
#include "params.h"
|
| 49 |
|
|
#include "tm_p.h"
|
| 50 |
|
|
#include "target.h"
|
| 51 |
|
|
#include "cfglayout.h"
|
| 52 |
|
|
#include "emit-rtl.h"
|
| 53 |
|
|
#include "tree-pass.h"
|
| 54 |
|
|
#include "cfgloop.h"
|
| 55 |
|
|
#include "expr.h"
|
| 56 |
|
|
#include "df.h"
|
| 57 |
|
|
#include "dce.h"
|
| 58 |
|
|
#include "dbgcnt.h"
|
| 59 |
|
|
|
| 60 |
|
|
#define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
|
| 61 |
|
|
|
| 62 |
|
|
/* Set to true when we are running first pass of try_optimize_cfg loop. */
|
| 63 |
|
|
static bool first_pass;
|
| 64 |
|
|
|
| 65 |
|
|
/* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
|
| 66 |
|
|
static bool crossjumps_occured;
|
| 67 |
|
|
|
| 68 |
|
|
/* Set to true if we couldn't run an optimization due to stale liveness
|
| 69 |
|
|
information; we should run df_analyze to enable more opportunities. */
|
| 70 |
|
|
static bool block_was_dirty;
|
| 71 |
|
|
|
| 72 |
|
|
static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
|
| 73 |
|
|
static bool try_crossjump_bb (int, basic_block);
|
| 74 |
|
|
static bool outgoing_edges_match (int, basic_block, basic_block);
|
| 75 |
|
|
static enum replace_direction old_insns_match_p (int, rtx, rtx);
|
| 76 |
|
|
|
| 77 |
|
|
static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
|
| 78 |
|
|
static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
|
| 79 |
|
|
static bool try_optimize_cfg (int);
|
| 80 |
|
|
static bool try_simplify_condjump (basic_block);
|
| 81 |
|
|
static bool try_forward_edges (int, basic_block);
|
| 82 |
|
|
static edge thread_jump (edge, basic_block);
|
| 83 |
|
|
static bool mark_effect (rtx, bitmap);
|
| 84 |
|
|
static void notice_new_block (basic_block);
|
| 85 |
|
|
static void update_forwarder_flag (basic_block);
|
| 86 |
|
|
static int mentions_nonequal_regs (rtx *, void *);
|
| 87 |
|
|
static void merge_memattrs (rtx, rtx);
|
| 88 |
|
|
|
| 89 |
|
|
/* Set flags for newly created block. */
|
| 90 |
|
|
|
| 91 |
|
|
static void
|
| 92 |
|
|
notice_new_block (basic_block bb)
|
| 93 |
|
|
{
|
| 94 |
|
|
if (!bb)
|
| 95 |
|
|
return;
|
| 96 |
|
|
|
| 97 |
|
|
if (forwarder_block_p (bb))
|
| 98 |
|
|
bb->flags |= BB_FORWARDER_BLOCK;
|
| 99 |
|
|
}
|
| 100 |
|
|
|
| 101 |
|
|
/* Recompute forwarder flag after block has been modified. */
|
| 102 |
|
|
|
| 103 |
|
|
static void
|
| 104 |
|
|
update_forwarder_flag (basic_block bb)
|
| 105 |
|
|
{
|
| 106 |
|
|
if (forwarder_block_p (bb))
|
| 107 |
|
|
bb->flags |= BB_FORWARDER_BLOCK;
|
| 108 |
|
|
else
|
| 109 |
|
|
bb->flags &= ~BB_FORWARDER_BLOCK;
|
| 110 |
|
|
}
|
| 111 |
|
|
|
| 112 |
|
|
/* Simplify a conditional jump around an unconditional jump.
|
| 113 |
|
|
Return true if something changed. */
|
| 114 |
|
|
|
| 115 |
|
|
static bool
|
| 116 |
|
|
try_simplify_condjump (basic_block cbranch_block)
|
| 117 |
|
|
{
|
| 118 |
|
|
basic_block jump_block, jump_dest_block, cbranch_dest_block;
|
| 119 |
|
|
edge cbranch_jump_edge, cbranch_fallthru_edge;
|
| 120 |
|
|
rtx cbranch_insn;
|
| 121 |
|
|
|
| 122 |
|
|
/* Verify that there are exactly two successors. */
|
| 123 |
|
|
if (EDGE_COUNT (cbranch_block->succs) != 2)
|
| 124 |
|
|
return false;
|
| 125 |
|
|
|
| 126 |
|
|
/* Verify that we've got a normal conditional branch at the end
|
| 127 |
|
|
of the block. */
|
| 128 |
|
|
cbranch_insn = BB_END (cbranch_block);
|
| 129 |
|
|
if (!any_condjump_p (cbranch_insn))
|
| 130 |
|
|
return false;
|
| 131 |
|
|
|
| 132 |
|
|
cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
|
| 133 |
|
|
cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
|
| 134 |
|
|
|
| 135 |
|
|
/* The next block must not have multiple predecessors, must not
|
| 136 |
|
|
be the last block in the function, and must contain just the
|
| 137 |
|
|
unconditional jump. */
|
| 138 |
|
|
jump_block = cbranch_fallthru_edge->dest;
|
| 139 |
|
|
if (!single_pred_p (jump_block)
|
| 140 |
|
|
|| jump_block->next_bb == EXIT_BLOCK_PTR
|
| 141 |
|
|
|| !FORWARDER_BLOCK_P (jump_block))
|
| 142 |
|
|
return false;
|
| 143 |
|
|
jump_dest_block = single_succ (jump_block);
|
| 144 |
|
|
|
| 145 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
| 146 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
| 147 |
|
|
and cold sections.
|
| 148 |
|
|
|
| 149 |
|
|
Basic block partitioning may result in some jumps that appear to
|
| 150 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
| 151 |
|
|
must be left untouched (they are required to make it safely across
|
| 152 |
|
|
partition boundaries). See the comments at the top of
|
| 153 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
| 154 |
|
|
|
| 155 |
|
|
if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
|
| 156 |
|
|
|| (cbranch_jump_edge->flags & EDGE_CROSSING))
|
| 157 |
|
|
return false;
|
| 158 |
|
|
|
| 159 |
|
|
/* The conditional branch must target the block after the
|
| 160 |
|
|
unconditional branch. */
|
| 161 |
|
|
cbranch_dest_block = cbranch_jump_edge->dest;
|
| 162 |
|
|
|
| 163 |
|
|
if (cbranch_dest_block == EXIT_BLOCK_PTR
|
| 164 |
|
|
|| !can_fallthru (jump_block, cbranch_dest_block))
|
| 165 |
|
|
return false;
|
| 166 |
|
|
|
| 167 |
|
|
/* Invert the conditional branch. */
|
| 168 |
|
|
if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
|
| 169 |
|
|
return false;
|
| 170 |
|
|
|
| 171 |
|
|
if (dump_file)
|
| 172 |
|
|
fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
|
| 173 |
|
|
INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
|
| 174 |
|
|
|
| 175 |
|
|
/* Success. Update the CFG to match. Note that after this point
|
| 176 |
|
|
the edge variable names appear backwards; the redirection is done
|
| 177 |
|
|
this way to preserve edge profile data. */
|
| 178 |
|
|
cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
|
| 179 |
|
|
cbranch_dest_block);
|
| 180 |
|
|
cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
|
| 181 |
|
|
jump_dest_block);
|
| 182 |
|
|
cbranch_jump_edge->flags |= EDGE_FALLTHRU;
|
| 183 |
|
|
cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
|
| 184 |
|
|
update_br_prob_note (cbranch_block);
|
| 185 |
|
|
|
| 186 |
|
|
/* Delete the block with the unconditional jump, and clean up the mess. */
|
| 187 |
|
|
delete_basic_block (jump_block);
|
| 188 |
|
|
tidy_fallthru_edge (cbranch_jump_edge);
|
| 189 |
|
|
update_forwarder_flag (cbranch_block);
|
| 190 |
|
|
|
| 191 |
|
|
return true;
|
| 192 |
|
|
}
|
| 193 |
|
|
|
| 194 |
|
|
/* Attempt to prove that operation is NOOP using CSElib or mark the effect
|
| 195 |
|
|
on register. Used by jump threading. */
|
| 196 |
|
|
|
| 197 |
|
|
static bool
|
| 198 |
|
|
mark_effect (rtx exp, regset nonequal)
|
| 199 |
|
|
{
|
| 200 |
|
|
int regno;
|
| 201 |
|
|
rtx dest;
|
| 202 |
|
|
switch (GET_CODE (exp))
|
| 203 |
|
|
{
|
| 204 |
|
|
/* In case we do clobber the register, mark it as equal, as we know the
|
| 205 |
|
|
value is dead so it don't have to match. */
|
| 206 |
|
|
case CLOBBER:
|
| 207 |
|
|
if (REG_P (XEXP (exp, 0)))
|
| 208 |
|
|
{
|
| 209 |
|
|
dest = XEXP (exp, 0);
|
| 210 |
|
|
regno = REGNO (dest);
|
| 211 |
|
|
if (HARD_REGISTER_NUM_P (regno))
|
| 212 |
|
|
bitmap_clear_range (nonequal, regno,
|
| 213 |
|
|
hard_regno_nregs[regno][GET_MODE (dest)]);
|
| 214 |
|
|
else
|
| 215 |
|
|
bitmap_clear_bit (nonequal, regno);
|
| 216 |
|
|
}
|
| 217 |
|
|
return false;
|
| 218 |
|
|
|
| 219 |
|
|
case SET:
|
| 220 |
|
|
if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
|
| 221 |
|
|
return false;
|
| 222 |
|
|
dest = SET_DEST (exp);
|
| 223 |
|
|
if (dest == pc_rtx)
|
| 224 |
|
|
return false;
|
| 225 |
|
|
if (!REG_P (dest))
|
| 226 |
|
|
return true;
|
| 227 |
|
|
regno = REGNO (dest);
|
| 228 |
|
|
if (HARD_REGISTER_NUM_P (regno))
|
| 229 |
|
|
bitmap_set_range (nonequal, regno,
|
| 230 |
|
|
hard_regno_nregs[regno][GET_MODE (dest)]);
|
| 231 |
|
|
else
|
| 232 |
|
|
bitmap_set_bit (nonequal, regno);
|
| 233 |
|
|
return false;
|
| 234 |
|
|
|
| 235 |
|
|
default:
|
| 236 |
|
|
return false;
|
| 237 |
|
|
}
|
| 238 |
|
|
}
|
| 239 |
|
|
|
| 240 |
|
|
/* Return nonzero if X is a register set in regset DATA.
|
| 241 |
|
|
Called via for_each_rtx. */
|
| 242 |
|
|
static int
|
| 243 |
|
|
mentions_nonequal_regs (rtx *x, void *data)
|
| 244 |
|
|
{
|
| 245 |
|
|
regset nonequal = (regset) data;
|
| 246 |
|
|
if (REG_P (*x))
|
| 247 |
|
|
{
|
| 248 |
|
|
int regno;
|
| 249 |
|
|
|
| 250 |
|
|
regno = REGNO (*x);
|
| 251 |
|
|
if (REGNO_REG_SET_P (nonequal, regno))
|
| 252 |
|
|
return 1;
|
| 253 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
| 254 |
|
|
{
|
| 255 |
|
|
int n = hard_regno_nregs[regno][GET_MODE (*x)];
|
| 256 |
|
|
while (--n > 0)
|
| 257 |
|
|
if (REGNO_REG_SET_P (nonequal, regno + n))
|
| 258 |
|
|
return 1;
|
| 259 |
|
|
}
|
| 260 |
|
|
}
|
| 261 |
|
|
return 0;
|
| 262 |
|
|
}
|
| 263 |
|
|
/* Attempt to prove that the basic block B will have no side effects and
|
| 264 |
|
|
always continues in the same edge if reached via E. Return the edge
|
| 265 |
|
|
if exist, NULL otherwise. */
|
| 266 |
|
|
|
| 267 |
|
|
static edge
|
| 268 |
|
|
thread_jump (edge e, basic_block b)
|
| 269 |
|
|
{
|
| 270 |
|
|
rtx set1, set2, cond1, cond2, insn;
|
| 271 |
|
|
enum rtx_code code1, code2, reversed_code2;
|
| 272 |
|
|
bool reverse1 = false;
|
| 273 |
|
|
unsigned i;
|
| 274 |
|
|
regset nonequal;
|
| 275 |
|
|
bool failed = false;
|
| 276 |
|
|
reg_set_iterator rsi;
|
| 277 |
|
|
|
| 278 |
|
|
if (b->flags & BB_NONTHREADABLE_BLOCK)
|
| 279 |
|
|
return NULL;
|
| 280 |
|
|
|
| 281 |
|
|
/* At the moment, we do handle only conditional jumps, but later we may
|
| 282 |
|
|
want to extend this code to tablejumps and others. */
|
| 283 |
|
|
if (EDGE_COUNT (e->src->succs) != 2)
|
| 284 |
|
|
return NULL;
|
| 285 |
|
|
if (EDGE_COUNT (b->succs) != 2)
|
| 286 |
|
|
{
|
| 287 |
|
|
b->flags |= BB_NONTHREADABLE_BLOCK;
|
| 288 |
|
|
return NULL;
|
| 289 |
|
|
}
|
| 290 |
|
|
|
| 291 |
|
|
/* Second branch must end with onlyjump, as we will eliminate the jump. */
|
| 292 |
|
|
if (!any_condjump_p (BB_END (e->src)))
|
| 293 |
|
|
return NULL;
|
| 294 |
|
|
|
| 295 |
|
|
if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
|
| 296 |
|
|
{
|
| 297 |
|
|
b->flags |= BB_NONTHREADABLE_BLOCK;
|
| 298 |
|
|
return NULL;
|
| 299 |
|
|
}
|
| 300 |
|
|
|
| 301 |
|
|
set1 = pc_set (BB_END (e->src));
|
| 302 |
|
|
set2 = pc_set (BB_END (b));
|
| 303 |
|
|
if (((e->flags & EDGE_FALLTHRU) != 0)
|
| 304 |
|
|
!= (XEXP (SET_SRC (set1), 1) == pc_rtx))
|
| 305 |
|
|
reverse1 = true;
|
| 306 |
|
|
|
| 307 |
|
|
cond1 = XEXP (SET_SRC (set1), 0);
|
| 308 |
|
|
cond2 = XEXP (SET_SRC (set2), 0);
|
| 309 |
|
|
if (reverse1)
|
| 310 |
|
|
code1 = reversed_comparison_code (cond1, BB_END (e->src));
|
| 311 |
|
|
else
|
| 312 |
|
|
code1 = GET_CODE (cond1);
|
| 313 |
|
|
|
| 314 |
|
|
code2 = GET_CODE (cond2);
|
| 315 |
|
|
reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
|
| 316 |
|
|
|
| 317 |
|
|
if (!comparison_dominates_p (code1, code2)
|
| 318 |
|
|
&& !comparison_dominates_p (code1, reversed_code2))
|
| 319 |
|
|
return NULL;
|
| 320 |
|
|
|
| 321 |
|
|
/* Ensure that the comparison operators are equivalent.
|
| 322 |
|
|
??? This is far too pessimistic. We should allow swapped operands,
|
| 323 |
|
|
different CCmodes, or for example comparisons for interval, that
|
| 324 |
|
|
dominate even when operands are not equivalent. */
|
| 325 |
|
|
if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|
| 326 |
|
|
|| !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
|
| 327 |
|
|
return NULL;
|
| 328 |
|
|
|
| 329 |
|
|
/* Short circuit cases where block B contains some side effects, as we can't
|
| 330 |
|
|
safely bypass it. */
|
| 331 |
|
|
for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
|
| 332 |
|
|
insn = NEXT_INSN (insn))
|
| 333 |
|
|
if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
|
| 334 |
|
|
{
|
| 335 |
|
|
b->flags |= BB_NONTHREADABLE_BLOCK;
|
| 336 |
|
|
return NULL;
|
| 337 |
|
|
}
|
| 338 |
|
|
|
| 339 |
|
|
cselib_init (0);
|
| 340 |
|
|
|
| 341 |
|
|
/* First process all values computed in the source basic block. */
|
| 342 |
|
|
for (insn = NEXT_INSN (BB_HEAD (e->src));
|
| 343 |
|
|
insn != NEXT_INSN (BB_END (e->src));
|
| 344 |
|
|
insn = NEXT_INSN (insn))
|
| 345 |
|
|
if (INSN_P (insn))
|
| 346 |
|
|
cselib_process_insn (insn);
|
| 347 |
|
|
|
| 348 |
|
|
nonequal = BITMAP_ALLOC (NULL);
|
| 349 |
|
|
CLEAR_REG_SET (nonequal);
|
| 350 |
|
|
|
| 351 |
|
|
/* Now assume that we've continued by the edge E to B and continue
|
| 352 |
|
|
processing as if it were same basic block.
|
| 353 |
|
|
Our goal is to prove that whole block is an NOOP. */
|
| 354 |
|
|
|
| 355 |
|
|
for (insn = NEXT_INSN (BB_HEAD (b));
|
| 356 |
|
|
insn != NEXT_INSN (BB_END (b)) && !failed;
|
| 357 |
|
|
insn = NEXT_INSN (insn))
|
| 358 |
|
|
{
|
| 359 |
|
|
if (INSN_P (insn))
|
| 360 |
|
|
{
|
| 361 |
|
|
rtx pat = PATTERN (insn);
|
| 362 |
|
|
|
| 363 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
| 364 |
|
|
{
|
| 365 |
|
|
for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
|
| 366 |
|
|
failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
|
| 367 |
|
|
}
|
| 368 |
|
|
else
|
| 369 |
|
|
failed |= mark_effect (pat, nonequal);
|
| 370 |
|
|
}
|
| 371 |
|
|
|
| 372 |
|
|
cselib_process_insn (insn);
|
| 373 |
|
|
}
|
| 374 |
|
|
|
| 375 |
|
|
/* Later we should clear nonequal of dead registers. So far we don't
|
| 376 |
|
|
have life information in cfg_cleanup. */
|
| 377 |
|
|
if (failed)
|
| 378 |
|
|
{
|
| 379 |
|
|
b->flags |= BB_NONTHREADABLE_BLOCK;
|
| 380 |
|
|
goto failed_exit;
|
| 381 |
|
|
}
|
| 382 |
|
|
|
| 383 |
|
|
/* cond2 must not mention any register that is not equal to the
|
| 384 |
|
|
former block. */
|
| 385 |
|
|
if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
|
| 386 |
|
|
goto failed_exit;
|
| 387 |
|
|
|
| 388 |
|
|
EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
|
| 389 |
|
|
goto failed_exit;
|
| 390 |
|
|
|
| 391 |
|
|
BITMAP_FREE (nonequal);
|
| 392 |
|
|
cselib_finish ();
|
| 393 |
|
|
if ((comparison_dominates_p (code1, code2) != 0)
|
| 394 |
|
|
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
|
| 395 |
|
|
return BRANCH_EDGE (b);
|
| 396 |
|
|
else
|
| 397 |
|
|
return FALLTHRU_EDGE (b);
|
| 398 |
|
|
|
| 399 |
|
|
failed_exit:
|
| 400 |
|
|
BITMAP_FREE (nonequal);
|
| 401 |
|
|
cselib_finish ();
|
| 402 |
|
|
return NULL;
|
| 403 |
|
|
}
|
| 404 |
|
|
|
| 405 |
|
|
/* Attempt to forward edges leaving basic block B.
|
| 406 |
|
|
Return true if successful. */
|
| 407 |
|
|
|
| 408 |
|
|
static bool
|
| 409 |
|
|
try_forward_edges (int mode, basic_block b)
|
| 410 |
|
|
{
|
| 411 |
|
|
bool changed = false;
|
| 412 |
|
|
edge_iterator ei;
|
| 413 |
|
|
edge e, *threaded_edges = NULL;
|
| 414 |
|
|
|
| 415 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
| 416 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
| 417 |
|
|
and cold sections.
|
| 418 |
|
|
|
| 419 |
|
|
Basic block partitioning may result in some jumps that appear to
|
| 420 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
| 421 |
|
|
must be left untouched (they are required to make it safely across
|
| 422 |
|
|
partition boundaries). See the comments at the top of
|
| 423 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
| 424 |
|
|
|
| 425 |
|
|
if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
|
| 426 |
|
|
return false;
|
| 427 |
|
|
|
| 428 |
|
|
for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
|
| 429 |
|
|
{
|
| 430 |
|
|
basic_block target, first;
|
| 431 |
|
|
int counter, goto_locus;
|
| 432 |
|
|
bool threaded = false;
|
| 433 |
|
|
int nthreaded_edges = 0;
|
| 434 |
|
|
bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
|
| 435 |
|
|
|
| 436 |
|
|
/* Skip complex edges because we don't know how to update them.
|
| 437 |
|
|
|
| 438 |
|
|
Still handle fallthru edges, as we can succeed to forward fallthru
|
| 439 |
|
|
edge to the same place as the branch edge of conditional branch
|
| 440 |
|
|
and turn conditional branch to an unconditional branch. */
|
| 441 |
|
|
if (e->flags & EDGE_COMPLEX)
|
| 442 |
|
|
{
|
| 443 |
|
|
ei_next (&ei);
|
| 444 |
|
|
continue;
|
| 445 |
|
|
}
|
| 446 |
|
|
|
| 447 |
|
|
target = first = e->dest;
|
| 448 |
|
|
counter = NUM_FIXED_BLOCKS;
|
| 449 |
|
|
goto_locus = e->goto_locus;
|
| 450 |
|
|
|
| 451 |
|
|
/* If we are partitioning hot/cold basic_blocks, we don't want to mess
|
| 452 |
|
|
up jumps that cross between hot/cold sections.
|
| 453 |
|
|
|
| 454 |
|
|
Basic block partitioning may result in some jumps that appear
|
| 455 |
|
|
to be optimizable (or blocks that appear to be mergeable), but which
|
| 456 |
|
|
really must be left untouched (they are required to make it safely
|
| 457 |
|
|
across partition boundaries). See the comments at the top of
|
| 458 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete
|
| 459 |
|
|
details. */
|
| 460 |
|
|
|
| 461 |
|
|
if (first != EXIT_BLOCK_PTR
|
| 462 |
|
|
&& find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
|
| 463 |
|
|
return false;
|
| 464 |
|
|
|
| 465 |
|
|
while (counter < n_basic_blocks)
|
| 466 |
|
|
{
|
| 467 |
|
|
basic_block new_target = NULL;
|
| 468 |
|
|
bool new_target_threaded = false;
|
| 469 |
|
|
may_thread |= (target->flags & BB_MODIFIED) != 0;
|
| 470 |
|
|
|
| 471 |
|
|
if (FORWARDER_BLOCK_P (target)
|
| 472 |
|
|
&& !(single_succ_edge (target)->flags & EDGE_CROSSING)
|
| 473 |
|
|
&& single_succ (target) != EXIT_BLOCK_PTR)
|
| 474 |
|
|
{
|
| 475 |
|
|
/* Bypass trivial infinite loops. */
|
| 476 |
|
|
new_target = single_succ (target);
|
| 477 |
|
|
if (target == new_target)
|
| 478 |
|
|
counter = n_basic_blocks;
|
| 479 |
|
|
else if (!optimize)
|
| 480 |
|
|
{
|
| 481 |
|
|
/* When not optimizing, ensure that edges or forwarder
|
| 482 |
|
|
blocks with different locus are not optimized out. */
|
| 483 |
|
|
int new_locus = single_succ_edge (target)->goto_locus;
|
| 484 |
|
|
int locus = goto_locus;
|
| 485 |
|
|
|
| 486 |
|
|
if (new_locus && locus && !locator_eq (new_locus, locus))
|
| 487 |
|
|
new_target = NULL;
|
| 488 |
|
|
else
|
| 489 |
|
|
{
|
| 490 |
|
|
rtx last;
|
| 491 |
|
|
|
| 492 |
|
|
if (new_locus)
|
| 493 |
|
|
locus = new_locus;
|
| 494 |
|
|
|
| 495 |
|
|
last = BB_END (target);
|
| 496 |
|
|
if (DEBUG_INSN_P (last))
|
| 497 |
|
|
last = prev_nondebug_insn (last);
|
| 498 |
|
|
|
| 499 |
|
|
new_locus = last && INSN_P (last)
|
| 500 |
|
|
? INSN_LOCATOR (last) : 0;
|
| 501 |
|
|
|
| 502 |
|
|
if (new_locus && locus && !locator_eq (new_locus, locus))
|
| 503 |
|
|
new_target = NULL;
|
| 504 |
|
|
else
|
| 505 |
|
|
{
|
| 506 |
|
|
if (new_locus)
|
| 507 |
|
|
locus = new_locus;
|
| 508 |
|
|
|
| 509 |
|
|
goto_locus = locus;
|
| 510 |
|
|
}
|
| 511 |
|
|
}
|
| 512 |
|
|
}
|
| 513 |
|
|
}
|
| 514 |
|
|
|
| 515 |
|
|
/* Allow to thread only over one edge at time to simplify updating
|
| 516 |
|
|
of probabilities. */
|
| 517 |
|
|
else if ((mode & CLEANUP_THREADING) && may_thread)
|
| 518 |
|
|
{
|
| 519 |
|
|
edge t = thread_jump (e, target);
|
| 520 |
|
|
if (t)
|
| 521 |
|
|
{
|
| 522 |
|
|
if (!threaded_edges)
|
| 523 |
|
|
threaded_edges = XNEWVEC (edge, n_basic_blocks);
|
| 524 |
|
|
else
|
| 525 |
|
|
{
|
| 526 |
|
|
int i;
|
| 527 |
|
|
|
| 528 |
|
|
/* Detect an infinite loop across blocks not
|
| 529 |
|
|
including the start block. */
|
| 530 |
|
|
for (i = 0; i < nthreaded_edges; ++i)
|
| 531 |
|
|
if (threaded_edges[i] == t)
|
| 532 |
|
|
break;
|
| 533 |
|
|
if (i < nthreaded_edges)
|
| 534 |
|
|
{
|
| 535 |
|
|
counter = n_basic_blocks;
|
| 536 |
|
|
break;
|
| 537 |
|
|
}
|
| 538 |
|
|
}
|
| 539 |
|
|
|
| 540 |
|
|
/* Detect an infinite loop across the start block. */
|
| 541 |
|
|
if (t->dest == b)
|
| 542 |
|
|
break;
|
| 543 |
|
|
|
| 544 |
|
|
gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
|
| 545 |
|
|
threaded_edges[nthreaded_edges++] = t;
|
| 546 |
|
|
|
| 547 |
|
|
new_target = t->dest;
|
| 548 |
|
|
new_target_threaded = true;
|
| 549 |
|
|
}
|
| 550 |
|
|
}
|
| 551 |
|
|
|
| 552 |
|
|
if (!new_target)
|
| 553 |
|
|
break;
|
| 554 |
|
|
|
| 555 |
|
|
counter++;
|
| 556 |
|
|
target = new_target;
|
| 557 |
|
|
threaded |= new_target_threaded;
|
| 558 |
|
|
}
|
| 559 |
|
|
|
| 560 |
|
|
if (counter >= n_basic_blocks)
|
| 561 |
|
|
{
|
| 562 |
|
|
if (dump_file)
|
| 563 |
|
|
fprintf (dump_file, "Infinite loop in BB %i.\n",
|
| 564 |
|
|
target->index);
|
| 565 |
|
|
}
|
| 566 |
|
|
else if (target == first)
|
| 567 |
|
|
; /* We didn't do anything. */
|
| 568 |
|
|
else
|
| 569 |
|
|
{
|
| 570 |
|
|
/* Save the values now, as the edge may get removed. */
|
| 571 |
|
|
gcov_type edge_count = e->count;
|
| 572 |
|
|
int edge_probability = e->probability;
|
| 573 |
|
|
int edge_frequency;
|
| 574 |
|
|
int n = 0;
|
| 575 |
|
|
|
| 576 |
|
|
e->goto_locus = goto_locus;
|
| 577 |
|
|
|
| 578 |
|
|
/* Don't force if target is exit block. */
|
| 579 |
|
|
if (threaded && target != EXIT_BLOCK_PTR)
|
| 580 |
|
|
{
|
| 581 |
|
|
notice_new_block (redirect_edge_and_branch_force (e, target));
|
| 582 |
|
|
if (dump_file)
|
| 583 |
|
|
fprintf (dump_file, "Conditionals threaded.\n");
|
| 584 |
|
|
}
|
| 585 |
|
|
else if (!redirect_edge_and_branch (e, target))
|
| 586 |
|
|
{
|
| 587 |
|
|
if (dump_file)
|
| 588 |
|
|
fprintf (dump_file,
|
| 589 |
|
|
"Forwarding edge %i->%i to %i failed.\n",
|
| 590 |
|
|
b->index, e->dest->index, target->index);
|
| 591 |
|
|
ei_next (&ei);
|
| 592 |
|
|
continue;
|
| 593 |
|
|
}
|
| 594 |
|
|
|
| 595 |
|
|
/* We successfully forwarded the edge. Now update profile
|
| 596 |
|
|
data: for each edge we traversed in the chain, remove
|
| 597 |
|
|
the original edge's execution count. */
|
| 598 |
|
|
edge_frequency = ((edge_probability * b->frequency
|
| 599 |
|
|
+ REG_BR_PROB_BASE / 2)
|
| 600 |
|
|
/ REG_BR_PROB_BASE);
|
| 601 |
|
|
|
| 602 |
|
|
do
|
| 603 |
|
|
{
|
| 604 |
|
|
edge t;
|
| 605 |
|
|
|
| 606 |
|
|
if (!single_succ_p (first))
|
| 607 |
|
|
{
|
| 608 |
|
|
gcc_assert (n < nthreaded_edges);
|
| 609 |
|
|
t = threaded_edges [n++];
|
| 610 |
|
|
gcc_assert (t->src == first);
|
| 611 |
|
|
update_bb_profile_for_threading (first, edge_frequency,
|
| 612 |
|
|
edge_count, t);
|
| 613 |
|
|
update_br_prob_note (first);
|
| 614 |
|
|
}
|
| 615 |
|
|
else
|
| 616 |
|
|
{
|
| 617 |
|
|
first->count -= edge_count;
|
| 618 |
|
|
if (first->count < 0)
|
| 619 |
|
|
first->count = 0;
|
| 620 |
|
|
first->frequency -= edge_frequency;
|
| 621 |
|
|
if (first->frequency < 0)
|
| 622 |
|
|
first->frequency = 0;
|
| 623 |
|
|
/* It is possible that as the result of
|
| 624 |
|
|
threading we've removed edge as it is
|
| 625 |
|
|
threaded to the fallthru edge. Avoid
|
| 626 |
|
|
getting out of sync. */
|
| 627 |
|
|
if (n < nthreaded_edges
|
| 628 |
|
|
&& first == threaded_edges [n]->src)
|
| 629 |
|
|
n++;
|
| 630 |
|
|
t = single_succ_edge (first);
|
| 631 |
|
|
}
|
| 632 |
|
|
|
| 633 |
|
|
t->count -= edge_count;
|
| 634 |
|
|
if (t->count < 0)
|
| 635 |
|
|
t->count = 0;
|
| 636 |
|
|
first = t->dest;
|
| 637 |
|
|
}
|
| 638 |
|
|
while (first != target);
|
| 639 |
|
|
|
| 640 |
|
|
changed = true;
|
| 641 |
|
|
continue;
|
| 642 |
|
|
}
|
| 643 |
|
|
ei_next (&ei);
|
| 644 |
|
|
}
|
| 645 |
|
|
|
| 646 |
|
|
free (threaded_edges);
|
| 647 |
|
|
return changed;
|
| 648 |
|
|
}
|
| 649 |
|
|
|
| 650 |
|
|
|
| 651 |
|
|
/* Blocks A and B are to be merged into a single block. A has no incoming
|
| 652 |
|
|
fallthru edge, so it can be moved before B without adding or modifying
|
| 653 |
|
|
any jumps (aside from the jump from A to B). */
|
| 654 |
|
|
|
| 655 |
|
|
static void
|
| 656 |
|
|
merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
|
| 657 |
|
|
{
|
| 658 |
|
|
rtx barrier;
|
| 659 |
|
|
|
| 660 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
| 661 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
| 662 |
|
|
and cold sections.
|
| 663 |
|
|
|
| 664 |
|
|
Basic block partitioning may result in some jumps that appear to
|
| 665 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
| 666 |
|
|
must be left untouched (they are required to make it safely across
|
| 667 |
|
|
partition boundaries). See the comments at the top of
|
| 668 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
| 669 |
|
|
|
| 670 |
|
|
if (BB_PARTITION (a) != BB_PARTITION (b))
|
| 671 |
|
|
return;
|
| 672 |
|
|
|
| 673 |
|
|
barrier = next_nonnote_insn (BB_END (a));
|
| 674 |
|
|
gcc_assert (BARRIER_P (barrier));
|
| 675 |
|
|
delete_insn (barrier);
|
| 676 |
|
|
|
| 677 |
|
|
/* Scramble the insn chain. */
|
| 678 |
|
|
if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
|
| 679 |
|
|
reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
|
| 680 |
|
|
df_set_bb_dirty (a);
|
| 681 |
|
|
|
| 682 |
|
|
if (dump_file)
|
| 683 |
|
|
fprintf (dump_file, "Moved block %d before %d and merged.\n",
|
| 684 |
|
|
a->index, b->index);
|
| 685 |
|
|
|
| 686 |
|
|
/* Swap the records for the two blocks around. */
|
| 687 |
|
|
|
| 688 |
|
|
unlink_block (a);
|
| 689 |
|
|
link_block (a, b->prev_bb);
|
| 690 |
|
|
|
| 691 |
|
|
/* Now blocks A and B are contiguous. Merge them. */
|
| 692 |
|
|
merge_blocks (a, b);
|
| 693 |
|
|
}
|
| 694 |
|
|
|
| 695 |
|
|
/* Blocks A and B are to be merged into a single block. B has no outgoing
|
| 696 |
|
|
fallthru edge, so it can be moved after A without adding or modifying
|
| 697 |
|
|
any jumps (aside from the jump from A to B). */
|
| 698 |
|
|
|
| 699 |
|
|
static void
|
| 700 |
|
|
merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
|
| 701 |
|
|
{
|
| 702 |
|
|
rtx barrier, real_b_end;
|
| 703 |
|
|
rtx label, table;
|
| 704 |
|
|
|
| 705 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
| 706 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
| 707 |
|
|
and cold sections.
|
| 708 |
|
|
|
| 709 |
|
|
Basic block partitioning may result in some jumps that appear to
|
| 710 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
| 711 |
|
|
must be left untouched (they are required to make it safely across
|
| 712 |
|
|
partition boundaries). See the comments at the top of
|
| 713 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
| 714 |
|
|
|
| 715 |
|
|
if (BB_PARTITION (a) != BB_PARTITION (b))
|
| 716 |
|
|
return;
|
| 717 |
|
|
|
| 718 |
|
|
real_b_end = BB_END (b);
|
| 719 |
|
|
|
| 720 |
|
|
/* If there is a jump table following block B temporarily add the jump table
|
| 721 |
|
|
to block B so that it will also be moved to the correct location. */
|
| 722 |
|
|
if (tablejump_p (BB_END (b), &label, &table)
|
| 723 |
|
|
&& prev_active_insn (label) == BB_END (b))
|
| 724 |
|
|
{
|
| 725 |
|
|
BB_END (b) = table;
|
| 726 |
|
|
}
|
| 727 |
|
|
|
| 728 |
|
|
/* There had better have been a barrier there. Delete it. */
|
| 729 |
|
|
barrier = NEXT_INSN (BB_END (b));
|
| 730 |
|
|
if (barrier && BARRIER_P (barrier))
|
| 731 |
|
|
delete_insn (barrier);
|
| 732 |
|
|
|
| 733 |
|
|
|
| 734 |
|
|
/* Scramble the insn chain. */
|
| 735 |
|
|
reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
|
| 736 |
|
|
|
| 737 |
|
|
/* Restore the real end of b. */
|
| 738 |
|
|
BB_END (b) = real_b_end;
|
| 739 |
|
|
|
| 740 |
|
|
if (dump_file)
|
| 741 |
|
|
fprintf (dump_file, "Moved block %d after %d and merged.\n",
|
| 742 |
|
|
b->index, a->index);
|
| 743 |
|
|
|
| 744 |
|
|
/* Now blocks A and B are contiguous. Merge them. */
|
| 745 |
|
|
merge_blocks (a, b);
|
| 746 |
|
|
}
|
| 747 |
|
|
|
| 748 |
|
|
/* Attempt to merge basic blocks that are potentially non-adjacent.
|
| 749 |
|
|
Return NULL iff the attempt failed, otherwise return basic block
|
| 750 |
|
|
where cleanup_cfg should continue. Because the merging commonly
|
| 751 |
|
|
moves basic block away or introduces another optimization
|
| 752 |
|
|
possibility, return basic block just before B so cleanup_cfg don't
|
| 753 |
|
|
need to iterate.
|
| 754 |
|
|
|
| 755 |
|
|
It may be good idea to return basic block before C in the case
|
| 756 |
|
|
C has been moved after B and originally appeared earlier in the
|
| 757 |
|
|
insn sequence, but we have no information available about the
|
| 758 |
|
|
relative ordering of these two. Hopefully it is not too common. */
|
| 759 |
|
|
|
| 760 |
|
|
static basic_block
|
| 761 |
|
|
merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
|
| 762 |
|
|
{
|
| 763 |
|
|
basic_block next;
|
| 764 |
|
|
|
| 765 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
| 766 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
| 767 |
|
|
and cold sections.
|
| 768 |
|
|
|
| 769 |
|
|
Basic block partitioning may result in some jumps that appear to
|
| 770 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
| 771 |
|
|
must be left untouched (they are required to make it safely across
|
| 772 |
|
|
partition boundaries). See the comments at the top of
|
| 773 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
| 774 |
|
|
|
| 775 |
|
|
if (BB_PARTITION (b) != BB_PARTITION (c))
|
| 776 |
|
|
return NULL;
|
| 777 |
|
|
|
| 778 |
|
|
/* If B has a fallthru edge to C, no need to move anything. */
|
| 779 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
| 780 |
|
|
{
|
| 781 |
|
|
int b_index = b->index, c_index = c->index;
|
| 782 |
|
|
merge_blocks (b, c);
|
| 783 |
|
|
update_forwarder_flag (b);
|
| 784 |
|
|
|
| 785 |
|
|
if (dump_file)
|
| 786 |
|
|
fprintf (dump_file, "Merged %d and %d without moving.\n",
|
| 787 |
|
|
b_index, c_index);
|
| 788 |
|
|
|
| 789 |
|
|
return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
|
| 790 |
|
|
}
|
| 791 |
|
|
|
| 792 |
|
|
/* Otherwise we will need to move code around. Do that only if expensive
|
| 793 |
|
|
transformations are allowed. */
|
| 794 |
|
|
else if (mode & CLEANUP_EXPENSIVE)
|
| 795 |
|
|
{
|
| 796 |
|
|
edge tmp_edge, b_fallthru_edge;
|
| 797 |
|
|
bool c_has_outgoing_fallthru;
|
| 798 |
|
|
bool b_has_incoming_fallthru;
|
| 799 |
|
|
|
| 800 |
|
|
/* Avoid overactive code motion, as the forwarder blocks should be
|
| 801 |
|
|
eliminated by edge redirection instead. One exception might have
|
| 802 |
|
|
been if B is a forwarder block and C has no fallthru edge, but
|
| 803 |
|
|
that should be cleaned up by bb-reorder instead. */
|
| 804 |
|
|
if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
|
| 805 |
|
|
return NULL;
|
| 806 |
|
|
|
| 807 |
|
|
/* We must make sure to not munge nesting of lexical blocks,
|
| 808 |
|
|
and loop notes. This is done by squeezing out all the notes
|
| 809 |
|
|
and leaving them there to lie. Not ideal, but functional. */
|
| 810 |
|
|
|
| 811 |
|
|
tmp_edge = find_fallthru_edge (c->succs);
|
| 812 |
|
|
c_has_outgoing_fallthru = (tmp_edge != NULL);
|
| 813 |
|
|
|
| 814 |
|
|
tmp_edge = find_fallthru_edge (b->preds);
|
| 815 |
|
|
b_has_incoming_fallthru = (tmp_edge != NULL);
|
| 816 |
|
|
b_fallthru_edge = tmp_edge;
|
| 817 |
|
|
next = b->prev_bb;
|
| 818 |
|
|
if (next == c)
|
| 819 |
|
|
next = next->prev_bb;
|
| 820 |
|
|
|
| 821 |
|
|
/* Otherwise, we're going to try to move C after B. If C does
|
| 822 |
|
|
not have an outgoing fallthru, then it can be moved
|
| 823 |
|
|
immediately after B without introducing or modifying jumps. */
|
| 824 |
|
|
if (! c_has_outgoing_fallthru)
|
| 825 |
|
|
{
|
| 826 |
|
|
merge_blocks_move_successor_nojumps (b, c);
|
| 827 |
|
|
return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
|
| 828 |
|
|
}
|
| 829 |
|
|
|
| 830 |
|
|
/* If B does not have an incoming fallthru, then it can be moved
|
| 831 |
|
|
immediately before C without introducing or modifying jumps.
|
| 832 |
|
|
C cannot be the first block, so we do not have to worry about
|
| 833 |
|
|
accessing a non-existent block. */
|
| 834 |
|
|
|
| 835 |
|
|
if (b_has_incoming_fallthru)
|
| 836 |
|
|
{
|
| 837 |
|
|
basic_block bb;
|
| 838 |
|
|
|
| 839 |
|
|
if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
|
| 840 |
|
|
return NULL;
|
| 841 |
|
|
bb = force_nonfallthru (b_fallthru_edge);
|
| 842 |
|
|
if (bb)
|
| 843 |
|
|
notice_new_block (bb);
|
| 844 |
|
|
}
|
| 845 |
|
|
|
| 846 |
|
|
merge_blocks_move_predecessor_nojumps (b, c);
|
| 847 |
|
|
return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
|
| 848 |
|
|
}
|
| 849 |
|
|
|
| 850 |
|
|
return NULL;
|
| 851 |
|
|
}
|
| 852 |
|
|
|
| 853 |
|
|
|
| 854 |
|
|
/* Removes the memory attributes of MEM expression
|
| 855 |
|
|
if they are not equal. */
|
| 856 |
|
|
|
| 857 |
|
|
void
|
| 858 |
|
|
merge_memattrs (rtx x, rtx y)
|
| 859 |
|
|
{
|
| 860 |
|
|
int i;
|
| 861 |
|
|
int j;
|
| 862 |
|
|
enum rtx_code code;
|
| 863 |
|
|
const char *fmt;
|
| 864 |
|
|
|
| 865 |
|
|
if (x == y)
|
| 866 |
|
|
return;
|
| 867 |
|
|
if (x == 0 || y == 0)
|
| 868 |
|
|
return;
|
| 869 |
|
|
|
| 870 |
|
|
code = GET_CODE (x);
|
| 871 |
|
|
|
| 872 |
|
|
if (code != GET_CODE (y))
|
| 873 |
|
|
return;
|
| 874 |
|
|
|
| 875 |
|
|
if (GET_MODE (x) != GET_MODE (y))
|
| 876 |
|
|
return;
|
| 877 |
|
|
|
| 878 |
|
|
if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
|
| 879 |
|
|
{
|
| 880 |
|
|
if (! MEM_ATTRS (x))
|
| 881 |
|
|
MEM_ATTRS (y) = 0;
|
| 882 |
|
|
else if (! MEM_ATTRS (y))
|
| 883 |
|
|
MEM_ATTRS (x) = 0;
|
| 884 |
|
|
else
|
| 885 |
|
|
{
|
| 886 |
|
|
HOST_WIDE_INT mem_size;
|
| 887 |
|
|
|
| 888 |
|
|
if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
|
| 889 |
|
|
{
|
| 890 |
|
|
set_mem_alias_set (x, 0);
|
| 891 |
|
|
set_mem_alias_set (y, 0);
|
| 892 |
|
|
}
|
| 893 |
|
|
|
| 894 |
|
|
if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
|
| 895 |
|
|
{
|
| 896 |
|
|
set_mem_expr (x, 0);
|
| 897 |
|
|
set_mem_expr (y, 0);
|
| 898 |
|
|
clear_mem_offset (x);
|
| 899 |
|
|
clear_mem_offset (y);
|
| 900 |
|
|
}
|
| 901 |
|
|
else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
|
| 902 |
|
|
|| (MEM_OFFSET_KNOWN_P (x)
|
| 903 |
|
|
&& MEM_OFFSET (x) != MEM_OFFSET (y)))
|
| 904 |
|
|
{
|
| 905 |
|
|
clear_mem_offset (x);
|
| 906 |
|
|
clear_mem_offset (y);
|
| 907 |
|
|
}
|
| 908 |
|
|
|
| 909 |
|
|
if (MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y))
|
| 910 |
|
|
{
|
| 911 |
|
|
mem_size = MAX (MEM_SIZE (x), MEM_SIZE (y));
|
| 912 |
|
|
set_mem_size (x, mem_size);
|
| 913 |
|
|
set_mem_size (y, mem_size);
|
| 914 |
|
|
}
|
| 915 |
|
|
else
|
| 916 |
|
|
{
|
| 917 |
|
|
clear_mem_size (x);
|
| 918 |
|
|
clear_mem_size (y);
|
| 919 |
|
|
}
|
| 920 |
|
|
|
| 921 |
|
|
set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
|
| 922 |
|
|
set_mem_align (y, MEM_ALIGN (x));
|
| 923 |
|
|
}
|
| 924 |
|
|
}
|
| 925 |
|
|
|
| 926 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 927 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 928 |
|
|
{
|
| 929 |
|
|
switch (fmt[i])
|
| 930 |
|
|
{
|
| 931 |
|
|
case 'E':
|
| 932 |
|
|
/* Two vectors must have the same length. */
|
| 933 |
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
| 934 |
|
|
return;
|
| 935 |
|
|
|
| 936 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 937 |
|
|
merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
|
| 938 |
|
|
|
| 939 |
|
|
break;
|
| 940 |
|
|
|
| 941 |
|
|
case 'e':
|
| 942 |
|
|
merge_memattrs (XEXP (x, i), XEXP (y, i));
|
| 943 |
|
|
}
|
| 944 |
|
|
}
|
| 945 |
|
|
return;
|
| 946 |
|
|
}
|
| 947 |
|
|
|
| 948 |
|
|
|
| 949 |
|
|
/* Checks if patterns P1 and P2 are equivalent, apart from the possibly
|
| 950 |
|
|
different single sets S1 and S2. */
|
| 951 |
|
|
|
| 952 |
|
|
static bool
|
| 953 |
|
|
equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
|
| 954 |
|
|
{
|
| 955 |
|
|
int i;
|
| 956 |
|
|
rtx e1, e2;
|
| 957 |
|
|
|
| 958 |
|
|
if (p1 == s1 && p2 == s2)
|
| 959 |
|
|
return true;
|
| 960 |
|
|
|
| 961 |
|
|
if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
|
| 962 |
|
|
return false;
|
| 963 |
|
|
|
| 964 |
|
|
if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
|
| 965 |
|
|
return false;
|
| 966 |
|
|
|
| 967 |
|
|
for (i = 0; i < XVECLEN (p1, 0); i++)
|
| 968 |
|
|
{
|
| 969 |
|
|
e1 = XVECEXP (p1, 0, i);
|
| 970 |
|
|
e2 = XVECEXP (p2, 0, i);
|
| 971 |
|
|
if (e1 == s1 && e2 == s2)
|
| 972 |
|
|
continue;
|
| 973 |
|
|
if (reload_completed
|
| 974 |
|
|
? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
|
| 975 |
|
|
continue;
|
| 976 |
|
|
|
| 977 |
|
|
return false;
|
| 978 |
|
|
}
|
| 979 |
|
|
|
| 980 |
|
|
return true;
|
| 981 |
|
|
}
|
| 982 |
|
|
|
| 983 |
|
|
/* Examine register notes on I1 and I2 and return:
|
| 984 |
|
|
- dir_forward if I1 can be replaced by I2, or
|
| 985 |
|
|
- dir_backward if I2 can be replaced by I1, or
|
| 986 |
|
|
- dir_both if both are the case. */
|
| 987 |
|
|
|
| 988 |
|
|
static enum replace_direction
|
| 989 |
|
|
can_replace_by (rtx i1, rtx i2)
|
| 990 |
|
|
{
|
| 991 |
|
|
rtx s1, s2, d1, d2, src1, src2, note1, note2;
|
| 992 |
|
|
bool c1, c2;
|
| 993 |
|
|
|
| 994 |
|
|
/* Check for 2 sets. */
|
| 995 |
|
|
s1 = single_set (i1);
|
| 996 |
|
|
s2 = single_set (i2);
|
| 997 |
|
|
if (s1 == NULL_RTX || s2 == NULL_RTX)
|
| 998 |
|
|
return dir_none;
|
| 999 |
|
|
|
| 1000 |
|
|
/* Check that the 2 sets set the same dest. */
|
| 1001 |
|
|
d1 = SET_DEST (s1);
|
| 1002 |
|
|
d2 = SET_DEST (s2);
|
| 1003 |
|
|
if (!(reload_completed
|
| 1004 |
|
|
? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
|
| 1005 |
|
|
return dir_none;
|
| 1006 |
|
|
|
| 1007 |
|
|
/* Find identical req_equiv or reg_equal note, which implies that the 2 sets
|
| 1008 |
|
|
set dest to the same value. */
|
| 1009 |
|
|
note1 = find_reg_equal_equiv_note (i1);
|
| 1010 |
|
|
note2 = find_reg_equal_equiv_note (i2);
|
| 1011 |
|
|
if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
|
| 1012 |
|
|
|| !CONST_INT_P (XEXP (note1, 0)))
|
| 1013 |
|
|
return dir_none;
|
| 1014 |
|
|
|
| 1015 |
|
|
if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
|
| 1016 |
|
|
return dir_none;
|
| 1017 |
|
|
|
| 1018 |
|
|
/* Although the 2 sets set dest to the same value, we cannot replace
|
| 1019 |
|
|
(set (dest) (const_int))
|
| 1020 |
|
|
by
|
| 1021 |
|
|
(set (dest) (reg))
|
| 1022 |
|
|
because we don't know if the reg is live and has the same value at the
|
| 1023 |
|
|
location of replacement. */
|
| 1024 |
|
|
src1 = SET_SRC (s1);
|
| 1025 |
|
|
src2 = SET_SRC (s2);
|
| 1026 |
|
|
c1 = CONST_INT_P (src1);
|
| 1027 |
|
|
c2 = CONST_INT_P (src2);
|
| 1028 |
|
|
if (c1 && c2)
|
| 1029 |
|
|
return dir_both;
|
| 1030 |
|
|
else if (c2)
|
| 1031 |
|
|
return dir_forward;
|
| 1032 |
|
|
else if (c1)
|
| 1033 |
|
|
return dir_backward;
|
| 1034 |
|
|
|
| 1035 |
|
|
return dir_none;
|
| 1036 |
|
|
}
|
| 1037 |
|
|
|
| 1038 |
|
|
/* Merges directions A and B. */
|
| 1039 |
|
|
|
| 1040 |
|
|
static enum replace_direction
|
| 1041 |
|
|
merge_dir (enum replace_direction a, enum replace_direction b)
|
| 1042 |
|
|
{
|
| 1043 |
|
|
/* Implements the following table:
|
| 1044 |
|
|
|bo fw bw no
|
| 1045 |
|
|
---+-----------
|
| 1046 |
|
|
bo |bo fw bw no
|
| 1047 |
|
|
fw |-- fw no no
|
| 1048 |
|
|
bw |-- -- bw no
|
| 1049 |
|
|
no |-- -- -- no. */
|
| 1050 |
|
|
|
| 1051 |
|
|
if (a == b)
|
| 1052 |
|
|
return a;
|
| 1053 |
|
|
|
| 1054 |
|
|
if (a == dir_both)
|
| 1055 |
|
|
return b;
|
| 1056 |
|
|
if (b == dir_both)
|
| 1057 |
|
|
return a;
|
| 1058 |
|
|
|
| 1059 |
|
|
return dir_none;
|
| 1060 |
|
|
}
|
| 1061 |
|
|
|
| 1062 |
|
|
/* Examine I1 and I2 and return:
|
| 1063 |
|
|
- dir_forward if I1 can be replaced by I2, or
|
| 1064 |
|
|
- dir_backward if I2 can be replaced by I1, or
|
| 1065 |
|
|
- dir_both if both are the case. */
|
| 1066 |
|
|
|
| 1067 |
|
|
static enum replace_direction
|
| 1068 |
|
|
old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
|
| 1069 |
|
|
{
|
| 1070 |
|
|
rtx p1, p2;
|
| 1071 |
|
|
|
| 1072 |
|
|
/* Verify that I1 and I2 are equivalent. */
|
| 1073 |
|
|
if (GET_CODE (i1) != GET_CODE (i2))
|
| 1074 |
|
|
return dir_none;
|
| 1075 |
|
|
|
| 1076 |
|
|
/* __builtin_unreachable() may lead to empty blocks (ending with
|
| 1077 |
|
|
NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
|
| 1078 |
|
|
if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
|
| 1079 |
|
|
return dir_both;
|
| 1080 |
|
|
|
| 1081 |
|
|
/* ??? Do not allow cross-jumping between different stack levels. */
|
| 1082 |
|
|
p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
|
| 1083 |
|
|
p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
|
| 1084 |
|
|
if (p1 && p2)
|
| 1085 |
|
|
{
|
| 1086 |
|
|
p1 = XEXP (p1, 0);
|
| 1087 |
|
|
p2 = XEXP (p2, 0);
|
| 1088 |
|
|
if (!rtx_equal_p (p1, p2))
|
| 1089 |
|
|
return dir_none;
|
| 1090 |
|
|
|
| 1091 |
|
|
/* ??? Worse, this adjustment had better be constant lest we
|
| 1092 |
|
|
have differing incoming stack levels. */
|
| 1093 |
|
|
if (!frame_pointer_needed
|
| 1094 |
|
|
&& find_args_size_adjust (i1) == HOST_WIDE_INT_MIN)
|
| 1095 |
|
|
return dir_none;
|
| 1096 |
|
|
}
|
| 1097 |
|
|
else if (p1 || p2)
|
| 1098 |
|
|
return dir_none;
|
| 1099 |
|
|
|
| 1100 |
|
|
p1 = PATTERN (i1);
|
| 1101 |
|
|
p2 = PATTERN (i2);
|
| 1102 |
|
|
|
| 1103 |
|
|
if (GET_CODE (p1) != GET_CODE (p2))
|
| 1104 |
|
|
return dir_none;
|
| 1105 |
|
|
|
| 1106 |
|
|
/* If this is a CALL_INSN, compare register usage information.
|
| 1107 |
|
|
If we don't check this on stack register machines, the two
|
| 1108 |
|
|
CALL_INSNs might be merged leaving reg-stack.c with mismatching
|
| 1109 |
|
|
numbers of stack registers in the same basic block.
|
| 1110 |
|
|
If we don't check this on machines with delay slots, a delay slot may
|
| 1111 |
|
|
be filled that clobbers a parameter expected by the subroutine.
|
| 1112 |
|
|
|
| 1113 |
|
|
??? We take the simple route for now and assume that if they're
|
| 1114 |
|
|
equal, they were constructed identically.
|
| 1115 |
|
|
|
| 1116 |
|
|
Also check for identical exception regions. */
|
| 1117 |
|
|
|
| 1118 |
|
|
if (CALL_P (i1))
|
| 1119 |
|
|
{
|
| 1120 |
|
|
/* Ensure the same EH region. */
|
| 1121 |
|
|
rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
|
| 1122 |
|
|
rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
|
| 1123 |
|
|
|
| 1124 |
|
|
if (!n1 && n2)
|
| 1125 |
|
|
return dir_none;
|
| 1126 |
|
|
|
| 1127 |
|
|
if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
|
| 1128 |
|
|
return dir_none;
|
| 1129 |
|
|
|
| 1130 |
|
|
if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
|
| 1131 |
|
|
CALL_INSN_FUNCTION_USAGE (i2))
|
| 1132 |
|
|
|| SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
|
| 1133 |
|
|
return dir_none;
|
| 1134 |
|
|
}
|
| 1135 |
|
|
|
| 1136 |
|
|
#ifdef STACK_REGS
|
| 1137 |
|
|
/* If cross_jump_death_matters is not 0, the insn's mode
|
| 1138 |
|
|
indicates whether or not the insn contains any stack-like
|
| 1139 |
|
|
regs. */
|
| 1140 |
|
|
|
| 1141 |
|
|
if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
|
| 1142 |
|
|
{
|
| 1143 |
|
|
/* If register stack conversion has already been done, then
|
| 1144 |
|
|
death notes must also be compared before it is certain that
|
| 1145 |
|
|
the two instruction streams match. */
|
| 1146 |
|
|
|
| 1147 |
|
|
rtx note;
|
| 1148 |
|
|
HARD_REG_SET i1_regset, i2_regset;
|
| 1149 |
|
|
|
| 1150 |
|
|
CLEAR_HARD_REG_SET (i1_regset);
|
| 1151 |
|
|
CLEAR_HARD_REG_SET (i2_regset);
|
| 1152 |
|
|
|
| 1153 |
|
|
for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
|
| 1154 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
| 1155 |
|
|
SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
|
| 1156 |
|
|
|
| 1157 |
|
|
for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
|
| 1158 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
| 1159 |
|
|
SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
|
| 1160 |
|
|
|
| 1161 |
|
|
if (!hard_reg_set_equal_p (i1_regset, i2_regset))
|
| 1162 |
|
|
return dir_none;
|
| 1163 |
|
|
}
|
| 1164 |
|
|
#endif
|
| 1165 |
|
|
|
| 1166 |
|
|
if (reload_completed
|
| 1167 |
|
|
? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
|
| 1168 |
|
|
return dir_both;
|
| 1169 |
|
|
|
| 1170 |
|
|
return can_replace_by (i1, i2);
|
| 1171 |
|
|
}
|
| 1172 |
|
|
|
| 1173 |
|
|
/* When comparing insns I1 and I2 in flow_find_cross_jump or
|
| 1174 |
|
|
flow_find_head_matching_sequence, ensure the notes match. */
|
| 1175 |
|
|
|
| 1176 |
|
|
static void
|
| 1177 |
|
|
merge_notes (rtx i1, rtx i2)
|
| 1178 |
|
|
{
|
| 1179 |
|
|
/* If the merged insns have different REG_EQUAL notes, then
|
| 1180 |
|
|
remove them. */
|
| 1181 |
|
|
rtx equiv1 = find_reg_equal_equiv_note (i1);
|
| 1182 |
|
|
rtx equiv2 = find_reg_equal_equiv_note (i2);
|
| 1183 |
|
|
|
| 1184 |
|
|
if (equiv1 && !equiv2)
|
| 1185 |
|
|
remove_note (i1, equiv1);
|
| 1186 |
|
|
else if (!equiv1 && equiv2)
|
| 1187 |
|
|
remove_note (i2, equiv2);
|
| 1188 |
|
|
else if (equiv1 && equiv2
|
| 1189 |
|
|
&& !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
|
| 1190 |
|
|
{
|
| 1191 |
|
|
remove_note (i1, equiv1);
|
| 1192 |
|
|
remove_note (i2, equiv2);
|
| 1193 |
|
|
}
|
| 1194 |
|
|
}
|
| 1195 |
|
|
|
| 1196 |
|
|
/* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
|
| 1197 |
|
|
resulting insn in I1, and the corresponding bb in BB1. At the head of a
|
| 1198 |
|
|
bb, if there is a predecessor bb that reaches this bb via fallthru, and
|
| 1199 |
|
|
FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
|
| 1200 |
|
|
DID_FALLTHRU. Otherwise, stops at the head of the bb. */
|
| 1201 |
|
|
|
| 1202 |
|
|
static void
|
| 1203 |
|
|
walk_to_nondebug_insn (rtx *i1, basic_block *bb1, bool follow_fallthru,
|
| 1204 |
|
|
bool *did_fallthru)
|
| 1205 |
|
|
{
|
| 1206 |
|
|
edge fallthru;
|
| 1207 |
|
|
|
| 1208 |
|
|
*did_fallthru = false;
|
| 1209 |
|
|
|
| 1210 |
|
|
/* Ignore notes. */
|
| 1211 |
|
|
while (!NONDEBUG_INSN_P (*i1))
|
| 1212 |
|
|
{
|
| 1213 |
|
|
if (*i1 != BB_HEAD (*bb1))
|
| 1214 |
|
|
{
|
| 1215 |
|
|
*i1 = PREV_INSN (*i1);
|
| 1216 |
|
|
continue;
|
| 1217 |
|
|
}
|
| 1218 |
|
|
|
| 1219 |
|
|
if (!follow_fallthru)
|
| 1220 |
|
|
return;
|
| 1221 |
|
|
|
| 1222 |
|
|
fallthru = find_fallthru_edge ((*bb1)->preds);
|
| 1223 |
|
|
if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun)
|
| 1224 |
|
|
|| !single_succ_p (fallthru->src))
|
| 1225 |
|
|
return;
|
| 1226 |
|
|
|
| 1227 |
|
|
*bb1 = fallthru->src;
|
| 1228 |
|
|
*i1 = BB_END (*bb1);
|
| 1229 |
|
|
*did_fallthru = true;
|
| 1230 |
|
|
}
|
| 1231 |
|
|
}
|
| 1232 |
|
|
|
| 1233 |
|
|
/* Look through the insns at the end of BB1 and BB2 and find the longest
|
| 1234 |
|
|
sequence that are either equivalent, or allow forward or backward
|
| 1235 |
|
|
replacement. Store the first insns for that sequence in *F1 and *F2 and
|
| 1236 |
|
|
return the sequence length.
|
| 1237 |
|
|
|
| 1238 |
|
|
DIR_P indicates the allowed replacement direction on function entry, and
|
| 1239 |
|
|
the actual replacement direction on function exit. If NULL, only equivalent
|
| 1240 |
|
|
sequences are allowed.
|
| 1241 |
|
|
|
| 1242 |
|
|
To simplify callers of this function, if the blocks match exactly,
|
| 1243 |
|
|
store the head of the blocks in *F1 and *F2. */
|
| 1244 |
|
|
|
| 1245 |
|
|
int
|
| 1246 |
|
|
flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2,
|
| 1247 |
|
|
enum replace_direction *dir_p)
|
| 1248 |
|
|
{
|
| 1249 |
|
|
rtx i1, i2, last1, last2, afterlast1, afterlast2;
|
| 1250 |
|
|
int ninsns = 0;
|
| 1251 |
|
|
rtx p1;
|
| 1252 |
|
|
enum replace_direction dir, last_dir, afterlast_dir;
|
| 1253 |
|
|
bool follow_fallthru, did_fallthru;
|
| 1254 |
|
|
|
| 1255 |
|
|
if (dir_p)
|
| 1256 |
|
|
dir = *dir_p;
|
| 1257 |
|
|
else
|
| 1258 |
|
|
dir = dir_both;
|
| 1259 |
|
|
afterlast_dir = dir;
|
| 1260 |
|
|
last_dir = afterlast_dir;
|
| 1261 |
|
|
|
| 1262 |
|
|
/* Skip simple jumps at the end of the blocks. Complex jumps still
|
| 1263 |
|
|
need to be compared for equivalence, which we'll do below. */
|
| 1264 |
|
|
|
| 1265 |
|
|
i1 = BB_END (bb1);
|
| 1266 |
|
|
last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
|
| 1267 |
|
|
if (onlyjump_p (i1)
|
| 1268 |
|
|
|| (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
|
| 1269 |
|
|
{
|
| 1270 |
|
|
last1 = i1;
|
| 1271 |
|
|
i1 = PREV_INSN (i1);
|
| 1272 |
|
|
}
|
| 1273 |
|
|
|
| 1274 |
|
|
i2 = BB_END (bb2);
|
| 1275 |
|
|
if (onlyjump_p (i2)
|
| 1276 |
|
|
|| (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
|
| 1277 |
|
|
{
|
| 1278 |
|
|
last2 = i2;
|
| 1279 |
|
|
/* Count everything except for unconditional jump as insn. */
|
| 1280 |
|
|
if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
|
| 1281 |
|
|
ninsns++;
|
| 1282 |
|
|
i2 = PREV_INSN (i2);
|
| 1283 |
|
|
}
|
| 1284 |
|
|
|
| 1285 |
|
|
while (true)
|
| 1286 |
|
|
{
|
| 1287 |
|
|
/* In the following example, we can replace all jumps to C by jumps to A.
|
| 1288 |
|
|
|
| 1289 |
|
|
This removes 4 duplicate insns.
|
| 1290 |
|
|
[bb A] insn1 [bb C] insn1
|
| 1291 |
|
|
insn2 insn2
|
| 1292 |
|
|
[bb B] insn3 insn3
|
| 1293 |
|
|
insn4 insn4
|
| 1294 |
|
|
jump_insn jump_insn
|
| 1295 |
|
|
|
| 1296 |
|
|
We could also replace all jumps to A by jumps to C, but that leaves B
|
| 1297 |
|
|
alive, and removes only 2 duplicate insns. In a subsequent crossjump
|
| 1298 |
|
|
step, all jumps to B would be replaced with jumps to the middle of C,
|
| 1299 |
|
|
achieving the same result with more effort.
|
| 1300 |
|
|
So we allow only the first possibility, which means that we don't allow
|
| 1301 |
|
|
fallthru in the block that's being replaced. */
|
| 1302 |
|
|
|
| 1303 |
|
|
follow_fallthru = dir_p && dir != dir_forward;
|
| 1304 |
|
|
walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
|
| 1305 |
|
|
if (did_fallthru)
|
| 1306 |
|
|
dir = dir_backward;
|
| 1307 |
|
|
|
| 1308 |
|
|
follow_fallthru = dir_p && dir != dir_backward;
|
| 1309 |
|
|
walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
|
| 1310 |
|
|
if (did_fallthru)
|
| 1311 |
|
|
dir = dir_forward;
|
| 1312 |
|
|
|
| 1313 |
|
|
if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
|
| 1314 |
|
|
break;
|
| 1315 |
|
|
|
| 1316 |
|
|
dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
|
| 1317 |
|
|
if (dir == dir_none || (!dir_p && dir != dir_both))
|
| 1318 |
|
|
break;
|
| 1319 |
|
|
|
| 1320 |
|
|
merge_memattrs (i1, i2);
|
| 1321 |
|
|
|
| 1322 |
|
|
/* Don't begin a cross-jump with a NOTE insn. */
|
| 1323 |
|
|
if (INSN_P (i1))
|
| 1324 |
|
|
{
|
| 1325 |
|
|
merge_notes (i1, i2);
|
| 1326 |
|
|
|
| 1327 |
|
|
afterlast1 = last1, afterlast2 = last2;
|
| 1328 |
|
|
last1 = i1, last2 = i2;
|
| 1329 |
|
|
afterlast_dir = last_dir;
|
| 1330 |
|
|
last_dir = dir;
|
| 1331 |
|
|
p1 = PATTERN (i1);
|
| 1332 |
|
|
if (!(GET_CODE (p1) == USE || GET_CODE (p1) == CLOBBER))
|
| 1333 |
|
|
ninsns++;
|
| 1334 |
|
|
}
|
| 1335 |
|
|
|
| 1336 |
|
|
i1 = PREV_INSN (i1);
|
| 1337 |
|
|
i2 = PREV_INSN (i2);
|
| 1338 |
|
|
}
|
| 1339 |
|
|
|
| 1340 |
|
|
#ifdef HAVE_cc0
|
| 1341 |
|
|
/* Don't allow the insn after a compare to be shared by
|
| 1342 |
|
|
cross-jumping unless the compare is also shared. */
|
| 1343 |
|
|
if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
|
| 1344 |
|
|
last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
|
| 1345 |
|
|
#endif
|
| 1346 |
|
|
|
| 1347 |
|
|
/* Include preceding notes and labels in the cross-jump. One,
|
| 1348 |
|
|
this may bring us to the head of the blocks as requested above.
|
| 1349 |
|
|
Two, it keeps line number notes as matched as may be. */
|
| 1350 |
|
|
if (ninsns)
|
| 1351 |
|
|
{
|
| 1352 |
|
|
bb1 = BLOCK_FOR_INSN (last1);
|
| 1353 |
|
|
while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
|
| 1354 |
|
|
last1 = PREV_INSN (last1);
|
| 1355 |
|
|
|
| 1356 |
|
|
if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
|
| 1357 |
|
|
last1 = PREV_INSN (last1);
|
| 1358 |
|
|
|
| 1359 |
|
|
bb2 = BLOCK_FOR_INSN (last2);
|
| 1360 |
|
|
while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
|
| 1361 |
|
|
last2 = PREV_INSN (last2);
|
| 1362 |
|
|
|
| 1363 |
|
|
if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
|
| 1364 |
|
|
last2 = PREV_INSN (last2);
|
| 1365 |
|
|
|
| 1366 |
|
|
*f1 = last1;
|
| 1367 |
|
|
*f2 = last2;
|
| 1368 |
|
|
}
|
| 1369 |
|
|
|
| 1370 |
|
|
if (dir_p)
|
| 1371 |
|
|
*dir_p = last_dir;
|
| 1372 |
|
|
return ninsns;
|
| 1373 |
|
|
}
|
| 1374 |
|
|
|
| 1375 |
|
|
/* Like flow_find_cross_jump, except start looking for a matching sequence from
|
| 1376 |
|
|
the head of the two blocks. Do not include jumps at the end.
|
| 1377 |
|
|
If STOP_AFTER is nonzero, stop after finding that many matching
|
| 1378 |
|
|
instructions. */
|
| 1379 |
|
|
|
| 1380 |
|
|
int
|
| 1381 |
|
|
flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
|
| 1382 |
|
|
rtx *f2, int stop_after)
|
| 1383 |
|
|
{
|
| 1384 |
|
|
rtx i1, i2, last1, last2, beforelast1, beforelast2;
|
| 1385 |
|
|
int ninsns = 0;
|
| 1386 |
|
|
edge e;
|
| 1387 |
|
|
edge_iterator ei;
|
| 1388 |
|
|
int nehedges1 = 0, nehedges2 = 0;
|
| 1389 |
|
|
|
| 1390 |
|
|
FOR_EACH_EDGE (e, ei, bb1->succs)
|
| 1391 |
|
|
if (e->flags & EDGE_EH)
|
| 1392 |
|
|
nehedges1++;
|
| 1393 |
|
|
FOR_EACH_EDGE (e, ei, bb2->succs)
|
| 1394 |
|
|
if (e->flags & EDGE_EH)
|
| 1395 |
|
|
nehedges2++;
|
| 1396 |
|
|
|
| 1397 |
|
|
i1 = BB_HEAD (bb1);
|
| 1398 |
|
|
i2 = BB_HEAD (bb2);
|
| 1399 |
|
|
last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
|
| 1400 |
|
|
|
| 1401 |
|
|
while (true)
|
| 1402 |
|
|
{
|
| 1403 |
|
|
/* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
|
| 1404 |
|
|
while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
|
| 1405 |
|
|
{
|
| 1406 |
|
|
if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
|
| 1407 |
|
|
break;
|
| 1408 |
|
|
i1 = NEXT_INSN (i1);
|
| 1409 |
|
|
}
|
| 1410 |
|
|
|
| 1411 |
|
|
while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
|
| 1412 |
|
|
{
|
| 1413 |
|
|
if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
|
| 1414 |
|
|
break;
|
| 1415 |
|
|
i2 = NEXT_INSN (i2);
|
| 1416 |
|
|
}
|
| 1417 |
|
|
|
| 1418 |
|
|
if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
|
| 1419 |
|
|
|| (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
|
| 1420 |
|
|
break;
|
| 1421 |
|
|
|
| 1422 |
|
|
if (NOTE_P (i1) || NOTE_P (i2)
|
| 1423 |
|
|
|| JUMP_P (i1) || JUMP_P (i2))
|
| 1424 |
|
|
break;
|
| 1425 |
|
|
|
| 1426 |
|
|
/* A sanity check to make sure we're not merging insns with different
|
| 1427 |
|
|
effects on EH. If only one of them ends a basic block, it shouldn't
|
| 1428 |
|
|
have an EH edge; if both end a basic block, there should be the same
|
| 1429 |
|
|
number of EH edges. */
|
| 1430 |
|
|
if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
|
| 1431 |
|
|
&& nehedges1 > 0)
|
| 1432 |
|
|
|| (i2 == BB_END (bb2) && i1 != BB_END (bb1)
|
| 1433 |
|
|
&& nehedges2 > 0)
|
| 1434 |
|
|
|| (i1 == BB_END (bb1) && i2 == BB_END (bb2)
|
| 1435 |
|
|
&& nehedges1 != nehedges2))
|
| 1436 |
|
|
break;
|
| 1437 |
|
|
|
| 1438 |
|
|
if (old_insns_match_p (0, i1, i2) != dir_both)
|
| 1439 |
|
|
break;
|
| 1440 |
|
|
|
| 1441 |
|
|
merge_memattrs (i1, i2);
|
| 1442 |
|
|
|
| 1443 |
|
|
/* Don't begin a cross-jump with a NOTE insn. */
|
| 1444 |
|
|
if (INSN_P (i1))
|
| 1445 |
|
|
{
|
| 1446 |
|
|
merge_notes (i1, i2);
|
| 1447 |
|
|
|
| 1448 |
|
|
beforelast1 = last1, beforelast2 = last2;
|
| 1449 |
|
|
last1 = i1, last2 = i2;
|
| 1450 |
|
|
ninsns++;
|
| 1451 |
|
|
}
|
| 1452 |
|
|
|
| 1453 |
|
|
if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
|
| 1454 |
|
|
|| (stop_after > 0 && ninsns == stop_after))
|
| 1455 |
|
|
break;
|
| 1456 |
|
|
|
| 1457 |
|
|
i1 = NEXT_INSN (i1);
|
| 1458 |
|
|
i2 = NEXT_INSN (i2);
|
| 1459 |
|
|
}
|
| 1460 |
|
|
|
| 1461 |
|
|
#ifdef HAVE_cc0
|
| 1462 |
|
|
/* Don't allow a compare to be shared by cross-jumping unless the insn
|
| 1463 |
|
|
after the compare is also shared. */
|
| 1464 |
|
|
if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
|
| 1465 |
|
|
last1 = beforelast1, last2 = beforelast2, ninsns--;
|
| 1466 |
|
|
#endif
|
| 1467 |
|
|
|
| 1468 |
|
|
if (ninsns)
|
| 1469 |
|
|
{
|
| 1470 |
|
|
*f1 = last1;
|
| 1471 |
|
|
*f2 = last2;
|
| 1472 |
|
|
}
|
| 1473 |
|
|
|
| 1474 |
|
|
return ninsns;
|
| 1475 |
|
|
}
|
| 1476 |
|
|
|
| 1477 |
|
|
/* Return true iff outgoing edges of BB1 and BB2 match, together with
|
| 1478 |
|
|
the branch instruction. This means that if we commonize the control
|
| 1479 |
|
|
flow before end of the basic block, the semantic remains unchanged.
|
| 1480 |
|
|
|
| 1481 |
|
|
We may assume that there exists one edge with a common destination. */
|
| 1482 |
|
|
|
| 1483 |
|
|
static bool
|
| 1484 |
|
|
outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
|
| 1485 |
|
|
{
|
| 1486 |
|
|
int nehedges1 = 0, nehedges2 = 0;
|
| 1487 |
|
|
edge fallthru1 = 0, fallthru2 = 0;
|
| 1488 |
|
|
edge e1, e2;
|
| 1489 |
|
|
edge_iterator ei;
|
| 1490 |
|
|
|
| 1491 |
|
|
/* If we performed shrink-wrapping, edges to the EXIT_BLOCK_PTR can
|
| 1492 |
|
|
only be distinguished for JUMP_INSNs. The two paths may differ in
|
| 1493 |
|
|
whether they went through the prologue. Sibcalls are fine, we know
|
| 1494 |
|
|
that we either didn't need or inserted an epilogue before them. */
|
| 1495 |
|
|
if (crtl->shrink_wrapped
|
| 1496 |
|
|
&& single_succ_p (bb1) && single_succ (bb1) == EXIT_BLOCK_PTR
|
| 1497 |
|
|
&& !JUMP_P (BB_END (bb1))
|
| 1498 |
|
|
&& !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
|
| 1499 |
|
|
return false;
|
| 1500 |
|
|
|
| 1501 |
|
|
/* If BB1 has only one successor, we may be looking at either an
|
| 1502 |
|
|
unconditional jump, or a fake edge to exit. */
|
| 1503 |
|
|
if (single_succ_p (bb1)
|
| 1504 |
|
|
&& (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
|
| 1505 |
|
|
&& (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
|
| 1506 |
|
|
return (single_succ_p (bb2)
|
| 1507 |
|
|
&& (single_succ_edge (bb2)->flags
|
| 1508 |
|
|
& (EDGE_COMPLEX | EDGE_FAKE)) == 0
|
| 1509 |
|
|
&& (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
|
| 1510 |
|
|
|
| 1511 |
|
|
/* Match conditional jumps - this may get tricky when fallthru and branch
|
| 1512 |
|
|
edges are crossed. */
|
| 1513 |
|
|
if (EDGE_COUNT (bb1->succs) == 2
|
| 1514 |
|
|
&& any_condjump_p (BB_END (bb1))
|
| 1515 |
|
|
&& onlyjump_p (BB_END (bb1)))
|
| 1516 |
|
|
{
|
| 1517 |
|
|
edge b1, f1, b2, f2;
|
| 1518 |
|
|
bool reverse, match;
|
| 1519 |
|
|
rtx set1, set2, cond1, cond2;
|
| 1520 |
|
|
enum rtx_code code1, code2;
|
| 1521 |
|
|
|
| 1522 |
|
|
if (EDGE_COUNT (bb2->succs) != 2
|
| 1523 |
|
|
|| !any_condjump_p (BB_END (bb2))
|
| 1524 |
|
|
|| !onlyjump_p (BB_END (bb2)))
|
| 1525 |
|
|
return false;
|
| 1526 |
|
|
|
| 1527 |
|
|
b1 = BRANCH_EDGE (bb1);
|
| 1528 |
|
|
b2 = BRANCH_EDGE (bb2);
|
| 1529 |
|
|
f1 = FALLTHRU_EDGE (bb1);
|
| 1530 |
|
|
f2 = FALLTHRU_EDGE (bb2);
|
| 1531 |
|
|
|
| 1532 |
|
|
/* Get around possible forwarders on fallthru edges. Other cases
|
| 1533 |
|
|
should be optimized out already. */
|
| 1534 |
|
|
if (FORWARDER_BLOCK_P (f1->dest))
|
| 1535 |
|
|
f1 = single_succ_edge (f1->dest);
|
| 1536 |
|
|
|
| 1537 |
|
|
if (FORWARDER_BLOCK_P (f2->dest))
|
| 1538 |
|
|
f2 = single_succ_edge (f2->dest);
|
| 1539 |
|
|
|
| 1540 |
|
|
/* To simplify use of this function, return false if there are
|
| 1541 |
|
|
unneeded forwarder blocks. These will get eliminated later
|
| 1542 |
|
|
during cleanup_cfg. */
|
| 1543 |
|
|
if (FORWARDER_BLOCK_P (f1->dest)
|
| 1544 |
|
|
|| FORWARDER_BLOCK_P (f2->dest)
|
| 1545 |
|
|
|| FORWARDER_BLOCK_P (b1->dest)
|
| 1546 |
|
|
|| FORWARDER_BLOCK_P (b2->dest))
|
| 1547 |
|
|
return false;
|
| 1548 |
|
|
|
| 1549 |
|
|
if (f1->dest == f2->dest && b1->dest == b2->dest)
|
| 1550 |
|
|
reverse = false;
|
| 1551 |
|
|
else if (f1->dest == b2->dest && b1->dest == f2->dest)
|
| 1552 |
|
|
reverse = true;
|
| 1553 |
|
|
else
|
| 1554 |
|
|
return false;
|
| 1555 |
|
|
|
| 1556 |
|
|
set1 = pc_set (BB_END (bb1));
|
| 1557 |
|
|
set2 = pc_set (BB_END (bb2));
|
| 1558 |
|
|
if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
|
| 1559 |
|
|
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
|
| 1560 |
|
|
reverse = !reverse;
|
| 1561 |
|
|
|
| 1562 |
|
|
cond1 = XEXP (SET_SRC (set1), 0);
|
| 1563 |
|
|
cond2 = XEXP (SET_SRC (set2), 0);
|
| 1564 |
|
|
code1 = GET_CODE (cond1);
|
| 1565 |
|
|
if (reverse)
|
| 1566 |
|
|
code2 = reversed_comparison_code (cond2, BB_END (bb2));
|
| 1567 |
|
|
else
|
| 1568 |
|
|
code2 = GET_CODE (cond2);
|
| 1569 |
|
|
|
| 1570 |
|
|
if (code2 == UNKNOWN)
|
| 1571 |
|
|
return false;
|
| 1572 |
|
|
|
| 1573 |
|
|
/* Verify codes and operands match. */
|
| 1574 |
|
|
match = ((code1 == code2
|
| 1575 |
|
|
&& rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|
| 1576 |
|
|
&& rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
|
| 1577 |
|
|
|| (code1 == swap_condition (code2)
|
| 1578 |
|
|
&& rtx_renumbered_equal_p (XEXP (cond1, 1),
|
| 1579 |
|
|
XEXP (cond2, 0))
|
| 1580 |
|
|
&& rtx_renumbered_equal_p (XEXP (cond1, 0),
|
| 1581 |
|
|
XEXP (cond2, 1))));
|
| 1582 |
|
|
|
| 1583 |
|
|
/* If we return true, we will join the blocks. Which means that
|
| 1584 |
|
|
we will only have one branch prediction bit to work with. Thus
|
| 1585 |
|
|
we require the existing branches to have probabilities that are
|
| 1586 |
|
|
roughly similar. */
|
| 1587 |
|
|
if (match
|
| 1588 |
|
|
&& optimize_bb_for_speed_p (bb1)
|
| 1589 |
|
|
&& optimize_bb_for_speed_p (bb2))
|
| 1590 |
|
|
{
|
| 1591 |
|
|
int prob2;
|
| 1592 |
|
|
|
| 1593 |
|
|
if (b1->dest == b2->dest)
|
| 1594 |
|
|
prob2 = b2->probability;
|
| 1595 |
|
|
else
|
| 1596 |
|
|
/* Do not use f2 probability as f2 may be forwarded. */
|
| 1597 |
|
|
prob2 = REG_BR_PROB_BASE - b2->probability;
|
| 1598 |
|
|
|
| 1599 |
|
|
/* Fail if the difference in probabilities is greater than 50%.
|
| 1600 |
|
|
This rules out two well-predicted branches with opposite
|
| 1601 |
|
|
outcomes. */
|
| 1602 |
|
|
if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
|
| 1603 |
|
|
{
|
| 1604 |
|
|
if (dump_file)
|
| 1605 |
|
|
fprintf (dump_file,
|
| 1606 |
|
|
"Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
|
| 1607 |
|
|
bb1->index, bb2->index, b1->probability, prob2);
|
| 1608 |
|
|
|
| 1609 |
|
|
return false;
|
| 1610 |
|
|
}
|
| 1611 |
|
|
}
|
| 1612 |
|
|
|
| 1613 |
|
|
if (dump_file && match)
|
| 1614 |
|
|
fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
|
| 1615 |
|
|
bb1->index, bb2->index);
|
| 1616 |
|
|
|
| 1617 |
|
|
return match;
|
| 1618 |
|
|
}
|
| 1619 |
|
|
|
| 1620 |
|
|
/* Generic case - we are seeing a computed jump, table jump or trapping
|
| 1621 |
|
|
instruction. */
|
| 1622 |
|
|
|
| 1623 |
|
|
/* Check whether there are tablejumps in the end of BB1 and BB2.
|
| 1624 |
|
|
Return true if they are identical. */
|
| 1625 |
|
|
{
|
| 1626 |
|
|
rtx label1, label2;
|
| 1627 |
|
|
rtx table1, table2;
|
| 1628 |
|
|
|
| 1629 |
|
|
if (tablejump_p (BB_END (bb1), &label1, &table1)
|
| 1630 |
|
|
&& tablejump_p (BB_END (bb2), &label2, &table2)
|
| 1631 |
|
|
&& GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
|
| 1632 |
|
|
{
|
| 1633 |
|
|
/* The labels should never be the same rtx. If they really are same
|
| 1634 |
|
|
the jump tables are same too. So disable crossjumping of blocks BB1
|
| 1635 |
|
|
and BB2 because when deleting the common insns in the end of BB1
|
| 1636 |
|
|
by delete_basic_block () the jump table would be deleted too. */
|
| 1637 |
|
|
/* If LABEL2 is referenced in BB1->END do not do anything
|
| 1638 |
|
|
because we would loose information when replacing
|
| 1639 |
|
|
LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
|
| 1640 |
|
|
if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
|
| 1641 |
|
|
{
|
| 1642 |
|
|
/* Set IDENTICAL to true when the tables are identical. */
|
| 1643 |
|
|
bool identical = false;
|
| 1644 |
|
|
rtx p1, p2;
|
| 1645 |
|
|
|
| 1646 |
|
|
p1 = PATTERN (table1);
|
| 1647 |
|
|
p2 = PATTERN (table2);
|
| 1648 |
|
|
if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
|
| 1649 |
|
|
{
|
| 1650 |
|
|
identical = true;
|
| 1651 |
|
|
}
|
| 1652 |
|
|
else if (GET_CODE (p1) == ADDR_DIFF_VEC
|
| 1653 |
|
|
&& (XVECLEN (p1, 1) == XVECLEN (p2, 1))
|
| 1654 |
|
|
&& rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
|
| 1655 |
|
|
&& rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
|
| 1656 |
|
|
{
|
| 1657 |
|
|
int i;
|
| 1658 |
|
|
|
| 1659 |
|
|
identical = true;
|
| 1660 |
|
|
for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
|
| 1661 |
|
|
if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
|
| 1662 |
|
|
identical = false;
|
| 1663 |
|
|
}
|
| 1664 |
|
|
|
| 1665 |
|
|
if (identical)
|
| 1666 |
|
|
{
|
| 1667 |
|
|
replace_label_data rr;
|
| 1668 |
|
|
bool match;
|
| 1669 |
|
|
|
| 1670 |
|
|
/* Temporarily replace references to LABEL1 with LABEL2
|
| 1671 |
|
|
in BB1->END so that we could compare the instructions. */
|
| 1672 |
|
|
rr.r1 = label1;
|
| 1673 |
|
|
rr.r2 = label2;
|
| 1674 |
|
|
rr.update_label_nuses = false;
|
| 1675 |
|
|
for_each_rtx (&BB_END (bb1), replace_label, &rr);
|
| 1676 |
|
|
|
| 1677 |
|
|
match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
|
| 1678 |
|
|
== dir_both);
|
| 1679 |
|
|
if (dump_file && match)
|
| 1680 |
|
|
fprintf (dump_file,
|
| 1681 |
|
|
"Tablejumps in bb %i and %i match.\n",
|
| 1682 |
|
|
bb1->index, bb2->index);
|
| 1683 |
|
|
|
| 1684 |
|
|
/* Set the original label in BB1->END because when deleting
|
| 1685 |
|
|
a block whose end is a tablejump, the tablejump referenced
|
| 1686 |
|
|
from the instruction is deleted too. */
|
| 1687 |
|
|
rr.r1 = label2;
|
| 1688 |
|
|
rr.r2 = label1;
|
| 1689 |
|
|
for_each_rtx (&BB_END (bb1), replace_label, &rr);
|
| 1690 |
|
|
|
| 1691 |
|
|
return match;
|
| 1692 |
|
|
}
|
| 1693 |
|
|
}
|
| 1694 |
|
|
return false;
|
| 1695 |
|
|
}
|
| 1696 |
|
|
}
|
| 1697 |
|
|
|
| 1698 |
|
|
/* First ensure that the instructions match. There may be many outgoing
|
| 1699 |
|
|
edges so this test is generally cheaper. */
|
| 1700 |
|
|
if (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)) != dir_both)
|
| 1701 |
|
|
return false;
|
| 1702 |
|
|
|
| 1703 |
|
|
/* Search the outgoing edges, ensure that the counts do match, find possible
|
| 1704 |
|
|
fallthru and exception handling edges since these needs more
|
| 1705 |
|
|
validation. */
|
| 1706 |
|
|
if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
|
| 1707 |
|
|
return false;
|
| 1708 |
|
|
|
| 1709 |
|
|
FOR_EACH_EDGE (e1, ei, bb1->succs)
|
| 1710 |
|
|
{
|
| 1711 |
|
|
e2 = EDGE_SUCC (bb2, ei.index);
|
| 1712 |
|
|
|
| 1713 |
|
|
if (e1->flags & EDGE_EH)
|
| 1714 |
|
|
nehedges1++;
|
| 1715 |
|
|
|
| 1716 |
|
|
if (e2->flags & EDGE_EH)
|
| 1717 |
|
|
nehedges2++;
|
| 1718 |
|
|
|
| 1719 |
|
|
if (e1->flags & EDGE_FALLTHRU)
|
| 1720 |
|
|
fallthru1 = e1;
|
| 1721 |
|
|
if (e2->flags & EDGE_FALLTHRU)
|
| 1722 |
|
|
fallthru2 = e2;
|
| 1723 |
|
|
}
|
| 1724 |
|
|
|
| 1725 |
|
|
/* If number of edges of various types does not match, fail. */
|
| 1726 |
|
|
if (nehedges1 != nehedges2
|
| 1727 |
|
|
|| (fallthru1 != 0) != (fallthru2 != 0))
|
| 1728 |
|
|
return false;
|
| 1729 |
|
|
|
| 1730 |
|
|
/* fallthru edges must be forwarded to the same destination. */
|
| 1731 |
|
|
if (fallthru1)
|
| 1732 |
|
|
{
|
| 1733 |
|
|
basic_block d1 = (forwarder_block_p (fallthru1->dest)
|
| 1734 |
|
|
? single_succ (fallthru1->dest): fallthru1->dest);
|
| 1735 |
|
|
basic_block d2 = (forwarder_block_p (fallthru2->dest)
|
| 1736 |
|
|
? single_succ (fallthru2->dest): fallthru2->dest);
|
| 1737 |
|
|
|
| 1738 |
|
|
if (d1 != d2)
|
| 1739 |
|
|
return false;
|
| 1740 |
|
|
}
|
| 1741 |
|
|
|
| 1742 |
|
|
/* Ensure the same EH region. */
|
| 1743 |
|
|
{
|
| 1744 |
|
|
rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
|
| 1745 |
|
|
rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
|
| 1746 |
|
|
|
| 1747 |
|
|
if (!n1 && n2)
|
| 1748 |
|
|
return false;
|
| 1749 |
|
|
|
| 1750 |
|
|
if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
|
| 1751 |
|
|
return false;
|
| 1752 |
|
|
}
|
| 1753 |
|
|
|
| 1754 |
|
|
/* The same checks as in try_crossjump_to_edge. It is required for RTL
|
| 1755 |
|
|
version of sequence abstraction. */
|
| 1756 |
|
|
FOR_EACH_EDGE (e1, ei, bb2->succs)
|
| 1757 |
|
|
{
|
| 1758 |
|
|
edge e2;
|
| 1759 |
|
|
edge_iterator ei;
|
| 1760 |
|
|
basic_block d1 = e1->dest;
|
| 1761 |
|
|
|
| 1762 |
|
|
if (FORWARDER_BLOCK_P (d1))
|
| 1763 |
|
|
d1 = EDGE_SUCC (d1, 0)->dest;
|
| 1764 |
|
|
|
| 1765 |
|
|
FOR_EACH_EDGE (e2, ei, bb1->succs)
|
| 1766 |
|
|
{
|
| 1767 |
|
|
basic_block d2 = e2->dest;
|
| 1768 |
|
|
if (FORWARDER_BLOCK_P (d2))
|
| 1769 |
|
|
d2 = EDGE_SUCC (d2, 0)->dest;
|
| 1770 |
|
|
if (d1 == d2)
|
| 1771 |
|
|
break;
|
| 1772 |
|
|
}
|
| 1773 |
|
|
|
| 1774 |
|
|
if (!e2)
|
| 1775 |
|
|
return false;
|
| 1776 |
|
|
}
|
| 1777 |
|
|
|
| 1778 |
|
|
return true;
|
| 1779 |
|
|
}
|
| 1780 |
|
|
|
| 1781 |
|
|
/* Returns true if BB basic block has a preserve label. */
|
| 1782 |
|
|
|
| 1783 |
|
|
static bool
|
| 1784 |
|
|
block_has_preserve_label (basic_block bb)
|
| 1785 |
|
|
{
|
| 1786 |
|
|
return (bb
|
| 1787 |
|
|
&& block_label (bb)
|
| 1788 |
|
|
&& LABEL_PRESERVE_P (block_label (bb)));
|
| 1789 |
|
|
}
|
| 1790 |
|
|
|
| 1791 |
|
|
/* E1 and E2 are edges with the same destination block. Search their
|
| 1792 |
|
|
predecessors for common code. If found, redirect control flow from
|
| 1793 |
|
|
(maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
|
| 1794 |
|
|
or the other way around (dir_backward). DIR specifies the allowed
|
| 1795 |
|
|
replacement direction. */
|
| 1796 |
|
|
|
| 1797 |
|
|
static bool
|
| 1798 |
|
|
try_crossjump_to_edge (int mode, edge e1, edge e2,
|
| 1799 |
|
|
enum replace_direction dir)
|
| 1800 |
|
|
{
|
| 1801 |
|
|
int nmatch;
|
| 1802 |
|
|
basic_block src1 = e1->src, src2 = e2->src;
|
| 1803 |
|
|
basic_block redirect_to, redirect_from, to_remove;
|
| 1804 |
|
|
basic_block osrc1, osrc2, redirect_edges_to, tmp;
|
| 1805 |
|
|
rtx newpos1, newpos2;
|
| 1806 |
|
|
edge s;
|
| 1807 |
|
|
edge_iterator ei;
|
| 1808 |
|
|
|
| 1809 |
|
|
newpos1 = newpos2 = NULL_RTX;
|
| 1810 |
|
|
|
| 1811 |
|
|
/* If we have partitioned hot/cold basic blocks, it is a bad idea
|
| 1812 |
|
|
to try this optimization.
|
| 1813 |
|
|
|
| 1814 |
|
|
Basic block partitioning may result in some jumps that appear to
|
| 1815 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
| 1816 |
|
|
must be left untouched (they are required to make it safely across
|
| 1817 |
|
|
partition boundaries). See the comments at the top of
|
| 1818 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
| 1819 |
|
|
|
| 1820 |
|
|
if (flag_reorder_blocks_and_partition && reload_completed)
|
| 1821 |
|
|
return false;
|
| 1822 |
|
|
|
| 1823 |
|
|
/* Search backward through forwarder blocks. We don't need to worry
|
| 1824 |
|
|
about multiple entry or chained forwarders, as they will be optimized
|
| 1825 |
|
|
away. We do this to look past the unconditional jump following a
|
| 1826 |
|
|
conditional jump that is required due to the current CFG shape. */
|
| 1827 |
|
|
if (single_pred_p (src1)
|
| 1828 |
|
|
&& FORWARDER_BLOCK_P (src1))
|
| 1829 |
|
|
e1 = single_pred_edge (src1), src1 = e1->src;
|
| 1830 |
|
|
|
| 1831 |
|
|
if (single_pred_p (src2)
|
| 1832 |
|
|
&& FORWARDER_BLOCK_P (src2))
|
| 1833 |
|
|
e2 = single_pred_edge (src2), src2 = e2->src;
|
| 1834 |
|
|
|
| 1835 |
|
|
/* Nothing to do if we reach ENTRY, or a common source block. */
|
| 1836 |
|
|
if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
|
| 1837 |
|
|
return false;
|
| 1838 |
|
|
if (src1 == src2)
|
| 1839 |
|
|
return false;
|
| 1840 |
|
|
|
| 1841 |
|
|
/* Seeing more than 1 forwarder blocks would confuse us later... */
|
| 1842 |
|
|
if (FORWARDER_BLOCK_P (e1->dest)
|
| 1843 |
|
|
&& FORWARDER_BLOCK_P (single_succ (e1->dest)))
|
| 1844 |
|
|
return false;
|
| 1845 |
|
|
|
| 1846 |
|
|
if (FORWARDER_BLOCK_P (e2->dest)
|
| 1847 |
|
|
&& FORWARDER_BLOCK_P (single_succ (e2->dest)))
|
| 1848 |
|
|
return false;
|
| 1849 |
|
|
|
| 1850 |
|
|
/* Likewise with dead code (possibly newly created by the other optimizations
|
| 1851 |
|
|
of cfg_cleanup). */
|
| 1852 |
|
|
if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
|
| 1853 |
|
|
return false;
|
| 1854 |
|
|
|
| 1855 |
|
|
/* Look for the common insn sequence, part the first ... */
|
| 1856 |
|
|
if (!outgoing_edges_match (mode, src1, src2))
|
| 1857 |
|
|
return false;
|
| 1858 |
|
|
|
| 1859 |
|
|
/* ... and part the second. */
|
| 1860 |
|
|
nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
|
| 1861 |
|
|
|
| 1862 |
|
|
osrc1 = src1;
|
| 1863 |
|
|
osrc2 = src2;
|
| 1864 |
|
|
if (newpos1 != NULL_RTX)
|
| 1865 |
|
|
src1 = BLOCK_FOR_INSN (newpos1);
|
| 1866 |
|
|
if (newpos2 != NULL_RTX)
|
| 1867 |
|
|
src2 = BLOCK_FOR_INSN (newpos2);
|
| 1868 |
|
|
|
| 1869 |
|
|
if (dir == dir_backward)
|
| 1870 |
|
|
{
|
| 1871 |
|
|
#define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
|
| 1872 |
|
|
SWAP (basic_block, osrc1, osrc2);
|
| 1873 |
|
|
SWAP (basic_block, src1, src2);
|
| 1874 |
|
|
SWAP (edge, e1, e2);
|
| 1875 |
|
|
SWAP (rtx, newpos1, newpos2);
|
| 1876 |
|
|
#undef SWAP
|
| 1877 |
|
|
}
|
| 1878 |
|
|
|
| 1879 |
|
|
/* Don't proceed with the crossjump unless we found a sufficient number
|
| 1880 |
|
|
of matching instructions or the 'from' block was totally matched
|
| 1881 |
|
|
(such that its predecessors will hopefully be redirected and the
|
| 1882 |
|
|
block removed). */
|
| 1883 |
|
|
if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
|
| 1884 |
|
|
&& (newpos1 != BB_HEAD (src1)))
|
| 1885 |
|
|
return false;
|
| 1886 |
|
|
|
| 1887 |
|
|
/* Avoid deleting preserve label when redirecting ABNORMAL edges. */
|
| 1888 |
|
|
if (block_has_preserve_label (e1->dest)
|
| 1889 |
|
|
&& (e1->flags & EDGE_ABNORMAL))
|
| 1890 |
|
|
return false;
|
| 1891 |
|
|
|
| 1892 |
|
|
/* Here we know that the insns in the end of SRC1 which are common with SRC2
|
| 1893 |
|
|
will be deleted.
|
| 1894 |
|
|
If we have tablejumps in the end of SRC1 and SRC2
|
| 1895 |
|
|
they have been already compared for equivalence in outgoing_edges_match ()
|
| 1896 |
|
|
so replace the references to TABLE1 by references to TABLE2. */
|
| 1897 |
|
|
{
|
| 1898 |
|
|
rtx label1, label2;
|
| 1899 |
|
|
rtx table1, table2;
|
| 1900 |
|
|
|
| 1901 |
|
|
if (tablejump_p (BB_END (osrc1), &label1, &table1)
|
| 1902 |
|
|
&& tablejump_p (BB_END (osrc2), &label2, &table2)
|
| 1903 |
|
|
&& label1 != label2)
|
| 1904 |
|
|
{
|
| 1905 |
|
|
replace_label_data rr;
|
| 1906 |
|
|
rtx insn;
|
| 1907 |
|
|
|
| 1908 |
|
|
/* Replace references to LABEL1 with LABEL2. */
|
| 1909 |
|
|
rr.r1 = label1;
|
| 1910 |
|
|
rr.r2 = label2;
|
| 1911 |
|
|
rr.update_label_nuses = true;
|
| 1912 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
| 1913 |
|
|
{
|
| 1914 |
|
|
/* Do not replace the label in SRC1->END because when deleting
|
| 1915 |
|
|
a block whose end is a tablejump, the tablejump referenced
|
| 1916 |
|
|
from the instruction is deleted too. */
|
| 1917 |
|
|
if (insn != BB_END (osrc1))
|
| 1918 |
|
|
for_each_rtx (&insn, replace_label, &rr);
|
| 1919 |
|
|
}
|
| 1920 |
|
|
}
|
| 1921 |
|
|
}
|
| 1922 |
|
|
|
| 1923 |
|
|
/* Avoid splitting if possible. We must always split when SRC2 has
|
| 1924 |
|
|
EH predecessor edges, or we may end up with basic blocks with both
|
| 1925 |
|
|
normal and EH predecessor edges. */
|
| 1926 |
|
|
if (newpos2 == BB_HEAD (src2)
|
| 1927 |
|
|
&& !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
|
| 1928 |
|
|
redirect_to = src2;
|
| 1929 |
|
|
else
|
| 1930 |
|
|
{
|
| 1931 |
|
|
if (newpos2 == BB_HEAD (src2))
|
| 1932 |
|
|
{
|
| 1933 |
|
|
/* Skip possible basic block header. */
|
| 1934 |
|
|
if (LABEL_P (newpos2))
|
| 1935 |
|
|
newpos2 = NEXT_INSN (newpos2);
|
| 1936 |
|
|
while (DEBUG_INSN_P (newpos2))
|
| 1937 |
|
|
newpos2 = NEXT_INSN (newpos2);
|
| 1938 |
|
|
if (NOTE_P (newpos2))
|
| 1939 |
|
|
newpos2 = NEXT_INSN (newpos2);
|
| 1940 |
|
|
while (DEBUG_INSN_P (newpos2))
|
| 1941 |
|
|
newpos2 = NEXT_INSN (newpos2);
|
| 1942 |
|
|
}
|
| 1943 |
|
|
|
| 1944 |
|
|
if (dump_file)
|
| 1945 |
|
|
fprintf (dump_file, "Splitting bb %i before %i insns\n",
|
| 1946 |
|
|
src2->index, nmatch);
|
| 1947 |
|
|
redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
|
| 1948 |
|
|
}
|
| 1949 |
|
|
|
| 1950 |
|
|
if (dump_file)
|
| 1951 |
|
|
fprintf (dump_file,
|
| 1952 |
|
|
"Cross jumping from bb %i to bb %i; %i common insns\n",
|
| 1953 |
|
|
src1->index, src2->index, nmatch);
|
| 1954 |
|
|
|
| 1955 |
|
|
/* We may have some registers visible through the block. */
|
| 1956 |
|
|
df_set_bb_dirty (redirect_to);
|
| 1957 |
|
|
|
| 1958 |
|
|
if (osrc2 == src2)
|
| 1959 |
|
|
redirect_edges_to = redirect_to;
|
| 1960 |
|
|
else
|
| 1961 |
|
|
redirect_edges_to = osrc2;
|
| 1962 |
|
|
|
| 1963 |
|
|
/* Recompute the frequencies and counts of outgoing edges. */
|
| 1964 |
|
|
FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
|
| 1965 |
|
|
{
|
| 1966 |
|
|
edge s2;
|
| 1967 |
|
|
edge_iterator ei;
|
| 1968 |
|
|
basic_block d = s->dest;
|
| 1969 |
|
|
|
| 1970 |
|
|
if (FORWARDER_BLOCK_P (d))
|
| 1971 |
|
|
d = single_succ (d);
|
| 1972 |
|
|
|
| 1973 |
|
|
FOR_EACH_EDGE (s2, ei, src1->succs)
|
| 1974 |
|
|
{
|
| 1975 |
|
|
basic_block d2 = s2->dest;
|
| 1976 |
|
|
if (FORWARDER_BLOCK_P (d2))
|
| 1977 |
|
|
d2 = single_succ (d2);
|
| 1978 |
|
|
if (d == d2)
|
| 1979 |
|
|
break;
|
| 1980 |
|
|
}
|
| 1981 |
|
|
|
| 1982 |
|
|
s->count += s2->count;
|
| 1983 |
|
|
|
| 1984 |
|
|
/* Take care to update possible forwarder blocks. We verified
|
| 1985 |
|
|
that there is no more than one in the chain, so we can't run
|
| 1986 |
|
|
into infinite loop. */
|
| 1987 |
|
|
if (FORWARDER_BLOCK_P (s->dest))
|
| 1988 |
|
|
{
|
| 1989 |
|
|
single_succ_edge (s->dest)->count += s2->count;
|
| 1990 |
|
|
s->dest->count += s2->count;
|
| 1991 |
|
|
s->dest->frequency += EDGE_FREQUENCY (s);
|
| 1992 |
|
|
}
|
| 1993 |
|
|
|
| 1994 |
|
|
if (FORWARDER_BLOCK_P (s2->dest))
|
| 1995 |
|
|
{
|
| 1996 |
|
|
single_succ_edge (s2->dest)->count -= s2->count;
|
| 1997 |
|
|
if (single_succ_edge (s2->dest)->count < 0)
|
| 1998 |
|
|
single_succ_edge (s2->dest)->count = 0;
|
| 1999 |
|
|
s2->dest->count -= s2->count;
|
| 2000 |
|
|
s2->dest->frequency -= EDGE_FREQUENCY (s);
|
| 2001 |
|
|
if (s2->dest->frequency < 0)
|
| 2002 |
|
|
s2->dest->frequency = 0;
|
| 2003 |
|
|
if (s2->dest->count < 0)
|
| 2004 |
|
|
s2->dest->count = 0;
|
| 2005 |
|
|
}
|
| 2006 |
|
|
|
| 2007 |
|
|
if (!redirect_edges_to->frequency && !src1->frequency)
|
| 2008 |
|
|
s->probability = (s->probability + s2->probability) / 2;
|
| 2009 |
|
|
else
|
| 2010 |
|
|
s->probability
|
| 2011 |
|
|
= ((s->probability * redirect_edges_to->frequency +
|
| 2012 |
|
|
s2->probability * src1->frequency)
|
| 2013 |
|
|
/ (redirect_edges_to->frequency + src1->frequency));
|
| 2014 |
|
|
}
|
| 2015 |
|
|
|
| 2016 |
|
|
/* Adjust count and frequency for the block. An earlier jump
|
| 2017 |
|
|
threading pass may have left the profile in an inconsistent
|
| 2018 |
|
|
state (see update_bb_profile_for_threading) so we must be
|
| 2019 |
|
|
prepared for overflows. */
|
| 2020 |
|
|
tmp = redirect_to;
|
| 2021 |
|
|
do
|
| 2022 |
|
|
{
|
| 2023 |
|
|
tmp->count += src1->count;
|
| 2024 |
|
|
tmp->frequency += src1->frequency;
|
| 2025 |
|
|
if (tmp->frequency > BB_FREQ_MAX)
|
| 2026 |
|
|
tmp->frequency = BB_FREQ_MAX;
|
| 2027 |
|
|
if (tmp == redirect_edges_to)
|
| 2028 |
|
|
break;
|
| 2029 |
|
|
tmp = find_fallthru_edge (tmp->succs)->dest;
|
| 2030 |
|
|
}
|
| 2031 |
|
|
while (true);
|
| 2032 |
|
|
update_br_prob_note (redirect_edges_to);
|
| 2033 |
|
|
|
| 2034 |
|
|
/* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
|
| 2035 |
|
|
|
| 2036 |
|
|
/* Skip possible basic block header. */
|
| 2037 |
|
|
if (LABEL_P (newpos1))
|
| 2038 |
|
|
newpos1 = NEXT_INSN (newpos1);
|
| 2039 |
|
|
|
| 2040 |
|
|
while (DEBUG_INSN_P (newpos1))
|
| 2041 |
|
|
newpos1 = NEXT_INSN (newpos1);
|
| 2042 |
|
|
|
| 2043 |
|
|
if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
|
| 2044 |
|
|
newpos1 = NEXT_INSN (newpos1);
|
| 2045 |
|
|
|
| 2046 |
|
|
while (DEBUG_INSN_P (newpos1))
|
| 2047 |
|
|
newpos1 = NEXT_INSN (newpos1);
|
| 2048 |
|
|
|
| 2049 |
|
|
redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
|
| 2050 |
|
|
to_remove = single_succ (redirect_from);
|
| 2051 |
|
|
|
| 2052 |
|
|
redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
|
| 2053 |
|
|
delete_basic_block (to_remove);
|
| 2054 |
|
|
|
| 2055 |
|
|
update_forwarder_flag (redirect_from);
|
| 2056 |
|
|
if (redirect_to != src2)
|
| 2057 |
|
|
update_forwarder_flag (src2);
|
| 2058 |
|
|
|
| 2059 |
|
|
return true;
|
| 2060 |
|
|
}
|
| 2061 |
|
|
|
| 2062 |
|
|
/* Search the predecessors of BB for common insn sequences. When found,
|
| 2063 |
|
|
share code between them by redirecting control flow. Return true if
|
| 2064 |
|
|
any changes made. */
|
| 2065 |
|
|
|
| 2066 |
|
|
static bool
|
| 2067 |
|
|
try_crossjump_bb (int mode, basic_block bb)
|
| 2068 |
|
|
{
|
| 2069 |
|
|
edge e, e2, fallthru;
|
| 2070 |
|
|
bool changed;
|
| 2071 |
|
|
unsigned max, ix, ix2;
|
| 2072 |
|
|
|
| 2073 |
|
|
/* Nothing to do if there is not at least two incoming edges. */
|
| 2074 |
|
|
if (EDGE_COUNT (bb->preds) < 2)
|
| 2075 |
|
|
return false;
|
| 2076 |
|
|
|
| 2077 |
|
|
/* Don't crossjump if this block ends in a computed jump,
|
| 2078 |
|
|
unless we are optimizing for size. */
|
| 2079 |
|
|
if (optimize_bb_for_size_p (bb)
|
| 2080 |
|
|
&& bb != EXIT_BLOCK_PTR
|
| 2081 |
|
|
&& computed_jump_p (BB_END (bb)))
|
| 2082 |
|
|
return false;
|
| 2083 |
|
|
|
| 2084 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
| 2085 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
| 2086 |
|
|
and cold sections.
|
| 2087 |
|
|
|
| 2088 |
|
|
Basic block partitioning may result in some jumps that appear to
|
| 2089 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
| 2090 |
|
|
must be left untouched (they are required to make it safely across
|
| 2091 |
|
|
partition boundaries). See the comments at the top of
|
| 2092 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
| 2093 |
|
|
|
| 2094 |
|
|
if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
|
| 2095 |
|
|
BB_PARTITION (EDGE_PRED (bb, 1)->src)
|
| 2096 |
|
|
|| (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
|
| 2097 |
|
|
return false;
|
| 2098 |
|
|
|
| 2099 |
|
|
/* It is always cheapest to redirect a block that ends in a branch to
|
| 2100 |
|
|
a block that falls through into BB, as that adds no branches to the
|
| 2101 |
|
|
program. We'll try that combination first. */
|
| 2102 |
|
|
fallthru = NULL;
|
| 2103 |
|
|
max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
|
| 2104 |
|
|
|
| 2105 |
|
|
if (EDGE_COUNT (bb->preds) > max)
|
| 2106 |
|
|
return false;
|
| 2107 |
|
|
|
| 2108 |
|
|
fallthru = find_fallthru_edge (bb->preds);
|
| 2109 |
|
|
|
| 2110 |
|
|
changed = false;
|
| 2111 |
|
|
for (ix = 0; ix < EDGE_COUNT (bb->preds);)
|
| 2112 |
|
|
{
|
| 2113 |
|
|
e = EDGE_PRED (bb, ix);
|
| 2114 |
|
|
ix++;
|
| 2115 |
|
|
|
| 2116 |
|
|
/* As noted above, first try with the fallthru predecessor (or, a
|
| 2117 |
|
|
fallthru predecessor if we are in cfglayout mode). */
|
| 2118 |
|
|
if (fallthru)
|
| 2119 |
|
|
{
|
| 2120 |
|
|
/* Don't combine the fallthru edge into anything else.
|
| 2121 |
|
|
If there is a match, we'll do it the other way around. */
|
| 2122 |
|
|
if (e == fallthru)
|
| 2123 |
|
|
continue;
|
| 2124 |
|
|
/* If nothing changed since the last attempt, there is nothing
|
| 2125 |
|
|
we can do. */
|
| 2126 |
|
|
if (!first_pass
|
| 2127 |
|
|
&& !((e->src->flags & BB_MODIFIED)
|
| 2128 |
|
|
|| (fallthru->src->flags & BB_MODIFIED)))
|
| 2129 |
|
|
continue;
|
| 2130 |
|
|
|
| 2131 |
|
|
if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
|
| 2132 |
|
|
{
|
| 2133 |
|
|
changed = true;
|
| 2134 |
|
|
ix = 0;
|
| 2135 |
|
|
continue;
|
| 2136 |
|
|
}
|
| 2137 |
|
|
}
|
| 2138 |
|
|
|
| 2139 |
|
|
/* Non-obvious work limiting check: Recognize that we're going
|
| 2140 |
|
|
to call try_crossjump_bb on every basic block. So if we have
|
| 2141 |
|
|
two blocks with lots of outgoing edges (a switch) and they
|
| 2142 |
|
|
share lots of common destinations, then we would do the
|
| 2143 |
|
|
cross-jump check once for each common destination.
|
| 2144 |
|
|
|
| 2145 |
|
|
Now, if the blocks actually are cross-jump candidates, then
|
| 2146 |
|
|
all of their destinations will be shared. Which means that
|
| 2147 |
|
|
we only need check them for cross-jump candidacy once. We
|
| 2148 |
|
|
can eliminate redundant checks of crossjump(A,B) by arbitrarily
|
| 2149 |
|
|
choosing to do the check from the block for which the edge
|
| 2150 |
|
|
in question is the first successor of A. */
|
| 2151 |
|
|
if (EDGE_SUCC (e->src, 0) != e)
|
| 2152 |
|
|
continue;
|
| 2153 |
|
|
|
| 2154 |
|
|
for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
|
| 2155 |
|
|
{
|
| 2156 |
|
|
e2 = EDGE_PRED (bb, ix2);
|
| 2157 |
|
|
|
| 2158 |
|
|
if (e2 == e)
|
| 2159 |
|
|
continue;
|
| 2160 |
|
|
|
| 2161 |
|
|
/* We've already checked the fallthru edge above. */
|
| 2162 |
|
|
if (e2 == fallthru)
|
| 2163 |
|
|
continue;
|
| 2164 |
|
|
|
| 2165 |
|
|
/* The "first successor" check above only prevents multiple
|
| 2166 |
|
|
checks of crossjump(A,B). In order to prevent redundant
|
| 2167 |
|
|
checks of crossjump(B,A), require that A be the block
|
| 2168 |
|
|
with the lowest index. */
|
| 2169 |
|
|
if (e->src->index > e2->src->index)
|
| 2170 |
|
|
continue;
|
| 2171 |
|
|
|
| 2172 |
|
|
/* If nothing changed since the last attempt, there is nothing
|
| 2173 |
|
|
we can do. */
|
| 2174 |
|
|
if (!first_pass
|
| 2175 |
|
|
&& !((e->src->flags & BB_MODIFIED)
|
| 2176 |
|
|
|| (e2->src->flags & BB_MODIFIED)))
|
| 2177 |
|
|
continue;
|
| 2178 |
|
|
|
| 2179 |
|
|
/* Both e and e2 are not fallthru edges, so we can crossjump in either
|
| 2180 |
|
|
direction. */
|
| 2181 |
|
|
if (try_crossjump_to_edge (mode, e, e2, dir_both))
|
| 2182 |
|
|
{
|
| 2183 |
|
|
changed = true;
|
| 2184 |
|
|
ix = 0;
|
| 2185 |
|
|
break;
|
| 2186 |
|
|
}
|
| 2187 |
|
|
}
|
| 2188 |
|
|
}
|
| 2189 |
|
|
|
| 2190 |
|
|
if (changed)
|
| 2191 |
|
|
crossjumps_occured = true;
|
| 2192 |
|
|
|
| 2193 |
|
|
return changed;
|
| 2194 |
|
|
}
|
| 2195 |
|
|
|
| 2196 |
|
|
/* Search the successors of BB for common insn sequences. When found,
|
| 2197 |
|
|
share code between them by moving it across the basic block
|
| 2198 |
|
|
boundary. Return true if any changes made. */
|
| 2199 |
|
|
|
| 2200 |
|
|
static bool
|
| 2201 |
|
|
try_head_merge_bb (basic_block bb)
|
| 2202 |
|
|
{
|
| 2203 |
|
|
basic_block final_dest_bb = NULL;
|
| 2204 |
|
|
int max_match = INT_MAX;
|
| 2205 |
|
|
edge e0;
|
| 2206 |
|
|
rtx *headptr, *currptr, *nextptr;
|
| 2207 |
|
|
bool changed, moveall;
|
| 2208 |
|
|
unsigned ix;
|
| 2209 |
|
|
rtx e0_last_head, cond, move_before;
|
| 2210 |
|
|
unsigned nedges = EDGE_COUNT (bb->succs);
|
| 2211 |
|
|
rtx jump = BB_END (bb);
|
| 2212 |
|
|
regset live, live_union;
|
| 2213 |
|
|
|
| 2214 |
|
|
/* Nothing to do if there is not at least two outgoing edges. */
|
| 2215 |
|
|
if (nedges < 2)
|
| 2216 |
|
|
return false;
|
| 2217 |
|
|
|
| 2218 |
|
|
/* Don't crossjump if this block ends in a computed jump,
|
| 2219 |
|
|
unless we are optimizing for size. */
|
| 2220 |
|
|
if (optimize_bb_for_size_p (bb)
|
| 2221 |
|
|
&& bb != EXIT_BLOCK_PTR
|
| 2222 |
|
|
&& computed_jump_p (BB_END (bb)))
|
| 2223 |
|
|
return false;
|
| 2224 |
|
|
|
| 2225 |
|
|
cond = get_condition (jump, &move_before, true, false);
|
| 2226 |
|
|
if (cond == NULL_RTX)
|
| 2227 |
|
|
{
|
| 2228 |
|
|
#ifdef HAVE_cc0
|
| 2229 |
|
|
if (reg_mentioned_p (cc0_rtx, jump))
|
| 2230 |
|
|
move_before = prev_nonnote_nondebug_insn (jump);
|
| 2231 |
|
|
else
|
| 2232 |
|
|
#endif
|
| 2233 |
|
|
move_before = jump;
|
| 2234 |
|
|
}
|
| 2235 |
|
|
|
| 2236 |
|
|
for (ix = 0; ix < nedges; ix++)
|
| 2237 |
|
|
if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR)
|
| 2238 |
|
|
return false;
|
| 2239 |
|
|
|
| 2240 |
|
|
for (ix = 0; ix < nedges; ix++)
|
| 2241 |
|
|
{
|
| 2242 |
|
|
edge e = EDGE_SUCC (bb, ix);
|
| 2243 |
|
|
basic_block other_bb = e->dest;
|
| 2244 |
|
|
|
| 2245 |
|
|
if (df_get_bb_dirty (other_bb))
|
| 2246 |
|
|
{
|
| 2247 |
|
|
block_was_dirty = true;
|
| 2248 |
|
|
return false;
|
| 2249 |
|
|
}
|
| 2250 |
|
|
|
| 2251 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
| 2252 |
|
|
return false;
|
| 2253 |
|
|
|
| 2254 |
|
|
/* Normally, all destination blocks must only be reachable from this
|
| 2255 |
|
|
block, i.e. they must have one incoming edge.
|
| 2256 |
|
|
|
| 2257 |
|
|
There is one special case we can handle, that of multiple consecutive
|
| 2258 |
|
|
jumps where the first jumps to one of the targets of the second jump.
|
| 2259 |
|
|
This happens frequently in switch statements for default labels.
|
| 2260 |
|
|
The structure is as follows:
|
| 2261 |
|
|
FINAL_DEST_BB
|
| 2262 |
|
|
....
|
| 2263 |
|
|
if (cond) jump A;
|
| 2264 |
|
|
fall through
|
| 2265 |
|
|
BB
|
| 2266 |
|
|
jump with targets A, B, C, D...
|
| 2267 |
|
|
A
|
| 2268 |
|
|
has two incoming edges, from FINAL_DEST_BB and BB
|
| 2269 |
|
|
|
| 2270 |
|
|
In this case, we can try to move the insns through BB and into
|
| 2271 |
|
|
FINAL_DEST_BB. */
|
| 2272 |
|
|
if (EDGE_COUNT (other_bb->preds) != 1)
|
| 2273 |
|
|
{
|
| 2274 |
|
|
edge incoming_edge, incoming_bb_other_edge;
|
| 2275 |
|
|
edge_iterator ei;
|
| 2276 |
|
|
|
| 2277 |
|
|
if (final_dest_bb != NULL
|
| 2278 |
|
|
|| EDGE_COUNT (other_bb->preds) != 2)
|
| 2279 |
|
|
return false;
|
| 2280 |
|
|
|
| 2281 |
|
|
/* We must be able to move the insns across the whole block. */
|
| 2282 |
|
|
move_before = BB_HEAD (bb);
|
| 2283 |
|
|
while (!NONDEBUG_INSN_P (move_before))
|
| 2284 |
|
|
move_before = NEXT_INSN (move_before);
|
| 2285 |
|
|
|
| 2286 |
|
|
if (EDGE_COUNT (bb->preds) != 1)
|
| 2287 |
|
|
return false;
|
| 2288 |
|
|
incoming_edge = EDGE_PRED (bb, 0);
|
| 2289 |
|
|
final_dest_bb = incoming_edge->src;
|
| 2290 |
|
|
if (EDGE_COUNT (final_dest_bb->succs) != 2)
|
| 2291 |
|
|
return false;
|
| 2292 |
|
|
FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
|
| 2293 |
|
|
if (incoming_bb_other_edge != incoming_edge)
|
| 2294 |
|
|
break;
|
| 2295 |
|
|
if (incoming_bb_other_edge->dest != other_bb)
|
| 2296 |
|
|
return false;
|
| 2297 |
|
|
}
|
| 2298 |
|
|
}
|
| 2299 |
|
|
|
| 2300 |
|
|
e0 = EDGE_SUCC (bb, 0);
|
| 2301 |
|
|
e0_last_head = NULL_RTX;
|
| 2302 |
|
|
changed = false;
|
| 2303 |
|
|
|
| 2304 |
|
|
for (ix = 1; ix < nedges; ix++)
|
| 2305 |
|
|
{
|
| 2306 |
|
|
edge e = EDGE_SUCC (bb, ix);
|
| 2307 |
|
|
rtx e0_last, e_last;
|
| 2308 |
|
|
int nmatch;
|
| 2309 |
|
|
|
| 2310 |
|
|
nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
|
| 2311 |
|
|
&e0_last, &e_last, 0);
|
| 2312 |
|
|
if (nmatch == 0)
|
| 2313 |
|
|
return false;
|
| 2314 |
|
|
|
| 2315 |
|
|
if (nmatch < max_match)
|
| 2316 |
|
|
{
|
| 2317 |
|
|
max_match = nmatch;
|
| 2318 |
|
|
e0_last_head = e0_last;
|
| 2319 |
|
|
}
|
| 2320 |
|
|
}
|
| 2321 |
|
|
|
| 2322 |
|
|
/* If we matched an entire block, we probably have to avoid moving the
|
| 2323 |
|
|
last insn. */
|
| 2324 |
|
|
if (max_match > 0
|
| 2325 |
|
|
&& e0_last_head == BB_END (e0->dest)
|
| 2326 |
|
|
&& (find_reg_note (e0_last_head, REG_EH_REGION, 0)
|
| 2327 |
|
|
|| control_flow_insn_p (e0_last_head)))
|
| 2328 |
|
|
{
|
| 2329 |
|
|
max_match--;
|
| 2330 |
|
|
if (max_match == 0)
|
| 2331 |
|
|
return false;
|
| 2332 |
|
|
do
|
| 2333 |
|
|
e0_last_head = prev_real_insn (e0_last_head);
|
| 2334 |
|
|
while (DEBUG_INSN_P (e0_last_head));
|
| 2335 |
|
|
}
|
| 2336 |
|
|
|
| 2337 |
|
|
if (max_match == 0)
|
| 2338 |
|
|
return false;
|
| 2339 |
|
|
|
| 2340 |
|
|
/* We must find a union of the live registers at each of the end points. */
|
| 2341 |
|
|
live = BITMAP_ALLOC (NULL);
|
| 2342 |
|
|
live_union = BITMAP_ALLOC (NULL);
|
| 2343 |
|
|
|
| 2344 |
|
|
currptr = XNEWVEC (rtx, nedges);
|
| 2345 |
|
|
headptr = XNEWVEC (rtx, nedges);
|
| 2346 |
|
|
nextptr = XNEWVEC (rtx, nedges);
|
| 2347 |
|
|
|
| 2348 |
|
|
for (ix = 0; ix < nedges; ix++)
|
| 2349 |
|
|
{
|
| 2350 |
|
|
int j;
|
| 2351 |
|
|
basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
|
| 2352 |
|
|
rtx head = BB_HEAD (merge_bb);
|
| 2353 |
|
|
|
| 2354 |
|
|
while (!NONDEBUG_INSN_P (head))
|
| 2355 |
|
|
head = NEXT_INSN (head);
|
| 2356 |
|
|
headptr[ix] = head;
|
| 2357 |
|
|
currptr[ix] = head;
|
| 2358 |
|
|
|
| 2359 |
|
|
/* Compute the end point and live information */
|
| 2360 |
|
|
for (j = 1; j < max_match; j++)
|
| 2361 |
|
|
do
|
| 2362 |
|
|
head = NEXT_INSN (head);
|
| 2363 |
|
|
while (!NONDEBUG_INSN_P (head));
|
| 2364 |
|
|
simulate_backwards_to_point (merge_bb, live, head);
|
| 2365 |
|
|
IOR_REG_SET (live_union, live);
|
| 2366 |
|
|
}
|
| 2367 |
|
|
|
| 2368 |
|
|
/* If we're moving across two blocks, verify the validity of the
|
| 2369 |
|
|
first move, then adjust the target and let the loop below deal
|
| 2370 |
|
|
with the final move. */
|
| 2371 |
|
|
if (final_dest_bb != NULL)
|
| 2372 |
|
|
{
|
| 2373 |
|
|
rtx move_upto;
|
| 2374 |
|
|
|
| 2375 |
|
|
moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
|
| 2376 |
|
|
jump, e0->dest, live_union,
|
| 2377 |
|
|
NULL, &move_upto);
|
| 2378 |
|
|
if (!moveall)
|
| 2379 |
|
|
{
|
| 2380 |
|
|
if (move_upto == NULL_RTX)
|
| 2381 |
|
|
goto out;
|
| 2382 |
|
|
|
| 2383 |
|
|
while (e0_last_head != move_upto)
|
| 2384 |
|
|
{
|
| 2385 |
|
|
df_simulate_one_insn_backwards (e0->dest, e0_last_head,
|
| 2386 |
|
|
live_union);
|
| 2387 |
|
|
e0_last_head = PREV_INSN (e0_last_head);
|
| 2388 |
|
|
}
|
| 2389 |
|
|
}
|
| 2390 |
|
|
if (e0_last_head == NULL_RTX)
|
| 2391 |
|
|
goto out;
|
| 2392 |
|
|
|
| 2393 |
|
|
jump = BB_END (final_dest_bb);
|
| 2394 |
|
|
cond = get_condition (jump, &move_before, true, false);
|
| 2395 |
|
|
if (cond == NULL_RTX)
|
| 2396 |
|
|
{
|
| 2397 |
|
|
#ifdef HAVE_cc0
|
| 2398 |
|
|
if (reg_mentioned_p (cc0_rtx, jump))
|
| 2399 |
|
|
move_before = prev_nonnote_nondebug_insn (jump);
|
| 2400 |
|
|
else
|
| 2401 |
|
|
#endif
|
| 2402 |
|
|
move_before = jump;
|
| 2403 |
|
|
}
|
| 2404 |
|
|
}
|
| 2405 |
|
|
|
| 2406 |
|
|
do
|
| 2407 |
|
|
{
|
| 2408 |
|
|
rtx move_upto;
|
| 2409 |
|
|
moveall = can_move_insns_across (currptr[0], e0_last_head,
|
| 2410 |
|
|
move_before, jump, e0->dest, live_union,
|
| 2411 |
|
|
NULL, &move_upto);
|
| 2412 |
|
|
if (!moveall && move_upto == NULL_RTX)
|
| 2413 |
|
|
{
|
| 2414 |
|
|
if (jump == move_before)
|
| 2415 |
|
|
break;
|
| 2416 |
|
|
|
| 2417 |
|
|
/* Try again, using a different insertion point. */
|
| 2418 |
|
|
move_before = jump;
|
| 2419 |
|
|
|
| 2420 |
|
|
#ifdef HAVE_cc0
|
| 2421 |
|
|
/* Don't try moving before a cc0 user, as that may invalidate
|
| 2422 |
|
|
the cc0. */
|
| 2423 |
|
|
if (reg_mentioned_p (cc0_rtx, jump))
|
| 2424 |
|
|
break;
|
| 2425 |
|
|
#endif
|
| 2426 |
|
|
|
| 2427 |
|
|
continue;
|
| 2428 |
|
|
}
|
| 2429 |
|
|
|
| 2430 |
|
|
if (final_dest_bb && !moveall)
|
| 2431 |
|
|
/* We haven't checked whether a partial move would be OK for the first
|
| 2432 |
|
|
move, so we have to fail this case. */
|
| 2433 |
|
|
break;
|
| 2434 |
|
|
|
| 2435 |
|
|
changed = true;
|
| 2436 |
|
|
for (;;)
|
| 2437 |
|
|
{
|
| 2438 |
|
|
if (currptr[0] == move_upto)
|
| 2439 |
|
|
break;
|
| 2440 |
|
|
for (ix = 0; ix < nedges; ix++)
|
| 2441 |
|
|
{
|
| 2442 |
|
|
rtx curr = currptr[ix];
|
| 2443 |
|
|
do
|
| 2444 |
|
|
curr = NEXT_INSN (curr);
|
| 2445 |
|
|
while (!NONDEBUG_INSN_P (curr));
|
| 2446 |
|
|
currptr[ix] = curr;
|
| 2447 |
|
|
}
|
| 2448 |
|
|
}
|
| 2449 |
|
|
|
| 2450 |
|
|
/* If we can't currently move all of the identical insns, remember
|
| 2451 |
|
|
each insn after the range that we'll merge. */
|
| 2452 |
|
|
if (!moveall)
|
| 2453 |
|
|
for (ix = 0; ix < nedges; ix++)
|
| 2454 |
|
|
{
|
| 2455 |
|
|
rtx curr = currptr[ix];
|
| 2456 |
|
|
do
|
| 2457 |
|
|
curr = NEXT_INSN (curr);
|
| 2458 |
|
|
while (!NONDEBUG_INSN_P (curr));
|
| 2459 |
|
|
nextptr[ix] = curr;
|
| 2460 |
|
|
}
|
| 2461 |
|
|
|
| 2462 |
|
|
reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
|
| 2463 |
|
|
df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
|
| 2464 |
|
|
if (final_dest_bb != NULL)
|
| 2465 |
|
|
df_set_bb_dirty (final_dest_bb);
|
| 2466 |
|
|
df_set_bb_dirty (bb);
|
| 2467 |
|
|
for (ix = 1; ix < nedges; ix++)
|
| 2468 |
|
|
{
|
| 2469 |
|
|
df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
|
| 2470 |
|
|
delete_insn_chain (headptr[ix], currptr[ix], false);
|
| 2471 |
|
|
}
|
| 2472 |
|
|
if (!moveall)
|
| 2473 |
|
|
{
|
| 2474 |
|
|
if (jump == move_before)
|
| 2475 |
|
|
break;
|
| 2476 |
|
|
|
| 2477 |
|
|
/* For the unmerged insns, try a different insertion point. */
|
| 2478 |
|
|
move_before = jump;
|
| 2479 |
|
|
|
| 2480 |
|
|
#ifdef HAVE_cc0
|
| 2481 |
|
|
/* Don't try moving before a cc0 user, as that may invalidate
|
| 2482 |
|
|
the cc0. */
|
| 2483 |
|
|
if (reg_mentioned_p (cc0_rtx, jump))
|
| 2484 |
|
|
break;
|
| 2485 |
|
|
#endif
|
| 2486 |
|
|
|
| 2487 |
|
|
for (ix = 0; ix < nedges; ix++)
|
| 2488 |
|
|
currptr[ix] = headptr[ix] = nextptr[ix];
|
| 2489 |
|
|
}
|
| 2490 |
|
|
}
|
| 2491 |
|
|
while (!moveall);
|
| 2492 |
|
|
|
| 2493 |
|
|
out:
|
| 2494 |
|
|
free (currptr);
|
| 2495 |
|
|
free (headptr);
|
| 2496 |
|
|
free (nextptr);
|
| 2497 |
|
|
|
| 2498 |
|
|
crossjumps_occured |= changed;
|
| 2499 |
|
|
|
| 2500 |
|
|
return changed;
|
| 2501 |
|
|
}
|
| 2502 |
|
|
|
| 2503 |
|
|
/* Return true if BB contains just bb note, or bb note followed
|
| 2504 |
|
|
by only DEBUG_INSNs. */
|
| 2505 |
|
|
|
| 2506 |
|
|
static bool
|
| 2507 |
|
|
trivially_empty_bb_p (basic_block bb)
|
| 2508 |
|
|
{
|
| 2509 |
|
|
rtx insn = BB_END (bb);
|
| 2510 |
|
|
|
| 2511 |
|
|
while (1)
|
| 2512 |
|
|
{
|
| 2513 |
|
|
if (insn == BB_HEAD (bb))
|
| 2514 |
|
|
return true;
|
| 2515 |
|
|
if (!DEBUG_INSN_P (insn))
|
| 2516 |
|
|
return false;
|
| 2517 |
|
|
insn = PREV_INSN (insn);
|
| 2518 |
|
|
}
|
| 2519 |
|
|
}
|
| 2520 |
|
|
|
| 2521 |
|
|
/* Do simple CFG optimizations - basic block merging, simplifying of jump
|
| 2522 |
|
|
instructions etc. Return nonzero if changes were made. */
|
| 2523 |
|
|
|
| 2524 |
|
|
static bool
|
| 2525 |
|
|
try_optimize_cfg (int mode)
|
| 2526 |
|
|
{
|
| 2527 |
|
|
bool changed_overall = false;
|
| 2528 |
|
|
bool changed;
|
| 2529 |
|
|
int iterations = 0;
|
| 2530 |
|
|
basic_block bb, b, next;
|
| 2531 |
|
|
|
| 2532 |
|
|
if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
|
| 2533 |
|
|
clear_bb_flags ();
|
| 2534 |
|
|
|
| 2535 |
|
|
crossjumps_occured = false;
|
| 2536 |
|
|
|
| 2537 |
|
|
FOR_EACH_BB (bb)
|
| 2538 |
|
|
update_forwarder_flag (bb);
|
| 2539 |
|
|
|
| 2540 |
|
|
if (! targetm.cannot_modify_jumps_p ())
|
| 2541 |
|
|
{
|
| 2542 |
|
|
first_pass = true;
|
| 2543 |
|
|
/* Attempt to merge blocks as made possible by edge removal. If
|
| 2544 |
|
|
a block has only one successor, and the successor has only
|
| 2545 |
|
|
one predecessor, they may be combined. */
|
| 2546 |
|
|
do
|
| 2547 |
|
|
{
|
| 2548 |
|
|
block_was_dirty = false;
|
| 2549 |
|
|
changed = false;
|
| 2550 |
|
|
iterations++;
|
| 2551 |
|
|
|
| 2552 |
|
|
if (dump_file)
|
| 2553 |
|
|
fprintf (dump_file,
|
| 2554 |
|
|
"\n\ntry_optimize_cfg iteration %i\n\n",
|
| 2555 |
|
|
iterations);
|
| 2556 |
|
|
|
| 2557 |
|
|
for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
|
| 2558 |
|
|
{
|
| 2559 |
|
|
basic_block c;
|
| 2560 |
|
|
edge s;
|
| 2561 |
|
|
bool changed_here = false;
|
| 2562 |
|
|
|
| 2563 |
|
|
/* Delete trivially dead basic blocks. This is either
|
| 2564 |
|
|
blocks with no predecessors, or empty blocks with no
|
| 2565 |
|
|
successors. However if the empty block with no
|
| 2566 |
|
|
successors is the successor of the ENTRY_BLOCK, it is
|
| 2567 |
|
|
kept. This ensures that the ENTRY_BLOCK will have a
|
| 2568 |
|
|
successor which is a precondition for many RTL
|
| 2569 |
|
|
passes. Empty blocks may result from expanding
|
| 2570 |
|
|
__builtin_unreachable (). */
|
| 2571 |
|
|
if (EDGE_COUNT (b->preds) == 0
|
| 2572 |
|
|
|| (EDGE_COUNT (b->succs) == 0
|
| 2573 |
|
|
&& trivially_empty_bb_p (b)
|
| 2574 |
|
|
&& single_succ_edge (ENTRY_BLOCK_PTR)->dest != b))
|
| 2575 |
|
|
{
|
| 2576 |
|
|
c = b->prev_bb;
|
| 2577 |
|
|
if (EDGE_COUNT (b->preds) > 0)
|
| 2578 |
|
|
{
|
| 2579 |
|
|
edge e;
|
| 2580 |
|
|
edge_iterator ei;
|
| 2581 |
|
|
|
| 2582 |
|
|
if (current_ir_type () == IR_RTL_CFGLAYOUT)
|
| 2583 |
|
|
{
|
| 2584 |
|
|
if (b->il.rtl->footer
|
| 2585 |
|
|
&& BARRIER_P (b->il.rtl->footer))
|
| 2586 |
|
|
FOR_EACH_EDGE (e, ei, b->preds)
|
| 2587 |
|
|
if ((e->flags & EDGE_FALLTHRU)
|
| 2588 |
|
|
&& e->src->il.rtl->footer == NULL)
|
| 2589 |
|
|
{
|
| 2590 |
|
|
if (b->il.rtl->footer)
|
| 2591 |
|
|
{
|
| 2592 |
|
|
e->src->il.rtl->footer = b->il.rtl->footer;
|
| 2593 |
|
|
b->il.rtl->footer = NULL;
|
| 2594 |
|
|
}
|
| 2595 |
|
|
else
|
| 2596 |
|
|
{
|
| 2597 |
|
|
start_sequence ();
|
| 2598 |
|
|
e->src->il.rtl->footer = emit_barrier ();
|
| 2599 |
|
|
end_sequence ();
|
| 2600 |
|
|
}
|
| 2601 |
|
|
}
|
| 2602 |
|
|
}
|
| 2603 |
|
|
else
|
| 2604 |
|
|
{
|
| 2605 |
|
|
rtx last = get_last_bb_insn (b);
|
| 2606 |
|
|
if (last && BARRIER_P (last))
|
| 2607 |
|
|
FOR_EACH_EDGE (e, ei, b->preds)
|
| 2608 |
|
|
if ((e->flags & EDGE_FALLTHRU))
|
| 2609 |
|
|
emit_barrier_after (BB_END (e->src));
|
| 2610 |
|
|
}
|
| 2611 |
|
|
}
|
| 2612 |
|
|
delete_basic_block (b);
|
| 2613 |
|
|
changed = true;
|
| 2614 |
|
|
/* Avoid trying to remove ENTRY_BLOCK_PTR. */
|
| 2615 |
|
|
b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
|
| 2616 |
|
|
continue;
|
| 2617 |
|
|
}
|
| 2618 |
|
|
|
| 2619 |
|
|
/* Remove code labels no longer used. */
|
| 2620 |
|
|
if (single_pred_p (b)
|
| 2621 |
|
|
&& (single_pred_edge (b)->flags & EDGE_FALLTHRU)
|
| 2622 |
|
|
&& !(single_pred_edge (b)->flags & EDGE_COMPLEX)
|
| 2623 |
|
|
&& LABEL_P (BB_HEAD (b))
|
| 2624 |
|
|
/* If the previous block ends with a branch to this
|
| 2625 |
|
|
block, we can't delete the label. Normally this
|
| 2626 |
|
|
is a condjump that is yet to be simplified, but
|
| 2627 |
|
|
if CASE_DROPS_THRU, this can be a tablejump with
|
| 2628 |
|
|
some element going to the same place as the
|
| 2629 |
|
|
default (fallthru). */
|
| 2630 |
|
|
&& (single_pred (b) == ENTRY_BLOCK_PTR
|
| 2631 |
|
|
|| !JUMP_P (BB_END (single_pred (b)))
|
| 2632 |
|
|
|| ! label_is_jump_target_p (BB_HEAD (b),
|
| 2633 |
|
|
BB_END (single_pred (b)))))
|
| 2634 |
|
|
{
|
| 2635 |
|
|
rtx label = BB_HEAD (b);
|
| 2636 |
|
|
|
| 2637 |
|
|
delete_insn_chain (label, label, false);
|
| 2638 |
|
|
/* If the case label is undeletable, move it after the
|
| 2639 |
|
|
BASIC_BLOCK note. */
|
| 2640 |
|
|
if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
|
| 2641 |
|
|
{
|
| 2642 |
|
|
rtx bb_note = NEXT_INSN (BB_HEAD (b));
|
| 2643 |
|
|
|
| 2644 |
|
|
reorder_insns_nobb (label, label, bb_note);
|
| 2645 |
|
|
BB_HEAD (b) = bb_note;
|
| 2646 |
|
|
if (BB_END (b) == bb_note)
|
| 2647 |
|
|
BB_END (b) = label;
|
| 2648 |
|
|
}
|
| 2649 |
|
|
if (dump_file)
|
| 2650 |
|
|
fprintf (dump_file, "Deleted label in block %i.\n",
|
| 2651 |
|
|
b->index);
|
| 2652 |
|
|
}
|
| 2653 |
|
|
|
| 2654 |
|
|
/* If we fall through an empty block, we can remove it. */
|
| 2655 |
|
|
if (!(mode & CLEANUP_CFGLAYOUT)
|
| 2656 |
|
|
&& single_pred_p (b)
|
| 2657 |
|
|
&& (single_pred_edge (b)->flags & EDGE_FALLTHRU)
|
| 2658 |
|
|
&& !LABEL_P (BB_HEAD (b))
|
| 2659 |
|
|
&& FORWARDER_BLOCK_P (b)
|
| 2660 |
|
|
/* Note that forwarder_block_p true ensures that
|
| 2661 |
|
|
there is a successor for this block. */
|
| 2662 |
|
|
&& (single_succ_edge (b)->flags & EDGE_FALLTHRU)
|
| 2663 |
|
|
&& n_basic_blocks > NUM_FIXED_BLOCKS + 1)
|
| 2664 |
|
|
{
|
| 2665 |
|
|
if (dump_file)
|
| 2666 |
|
|
fprintf (dump_file,
|
| 2667 |
|
|
"Deleting fallthru block %i.\n",
|
| 2668 |
|
|
b->index);
|
| 2669 |
|
|
|
| 2670 |
|
|
c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
|
| 2671 |
|
|
redirect_edge_succ_nodup (single_pred_edge (b),
|
| 2672 |
|
|
single_succ (b));
|
| 2673 |
|
|
delete_basic_block (b);
|
| 2674 |
|
|
changed = true;
|
| 2675 |
|
|
b = c;
|
| 2676 |
|
|
continue;
|
| 2677 |
|
|
}
|
| 2678 |
|
|
|
| 2679 |
|
|
/* Merge B with its single successor, if any. */
|
| 2680 |
|
|
if (single_succ_p (b)
|
| 2681 |
|
|
&& (s = single_succ_edge (b))
|
| 2682 |
|
|
&& !(s->flags & EDGE_COMPLEX)
|
| 2683 |
|
|
&& (c = s->dest) != EXIT_BLOCK_PTR
|
| 2684 |
|
|
&& single_pred_p (c)
|
| 2685 |
|
|
&& b != c)
|
| 2686 |
|
|
{
|
| 2687 |
|
|
/* When not in cfg_layout mode use code aware of reordering
|
| 2688 |
|
|
INSN. This code possibly creates new basic blocks so it
|
| 2689 |
|
|
does not fit merge_blocks interface and is kept here in
|
| 2690 |
|
|
hope that it will become useless once more of compiler
|
| 2691 |
|
|
is transformed to use cfg_layout mode. */
|
| 2692 |
|
|
|
| 2693 |
|
|
if ((mode & CLEANUP_CFGLAYOUT)
|
| 2694 |
|
|
&& can_merge_blocks_p (b, c))
|
| 2695 |
|
|
{
|
| 2696 |
|
|
merge_blocks (b, c);
|
| 2697 |
|
|
update_forwarder_flag (b);
|
| 2698 |
|
|
changed_here = true;
|
| 2699 |
|
|
}
|
| 2700 |
|
|
else if (!(mode & CLEANUP_CFGLAYOUT)
|
| 2701 |
|
|
/* If the jump insn has side effects,
|
| 2702 |
|
|
we can't kill the edge. */
|
| 2703 |
|
|
&& (!JUMP_P (BB_END (b))
|
| 2704 |
|
|
|| (reload_completed
|
| 2705 |
|
|
? simplejump_p (BB_END (b))
|
| 2706 |
|
|
: (onlyjump_p (BB_END (b))
|
| 2707 |
|
|
&& !tablejump_p (BB_END (b),
|
| 2708 |
|
|
NULL, NULL))))
|
| 2709 |
|
|
&& (next = merge_blocks_move (s, b, c, mode)))
|
| 2710 |
|
|
{
|
| 2711 |
|
|
b = next;
|
| 2712 |
|
|
changed_here = true;
|
| 2713 |
|
|
}
|
| 2714 |
|
|
}
|
| 2715 |
|
|
|
| 2716 |
|
|
/* Simplify branch over branch. */
|
| 2717 |
|
|
if ((mode & CLEANUP_EXPENSIVE)
|
| 2718 |
|
|
&& !(mode & CLEANUP_CFGLAYOUT)
|
| 2719 |
|
|
&& try_simplify_condjump (b))
|
| 2720 |
|
|
changed_here = true;
|
| 2721 |
|
|
|
| 2722 |
|
|
/* If B has a single outgoing edge, but uses a
|
| 2723 |
|
|
non-trivial jump instruction without side-effects, we
|
| 2724 |
|
|
can either delete the jump entirely, or replace it
|
| 2725 |
|
|
with a simple unconditional jump. */
|
| 2726 |
|
|
if (single_succ_p (b)
|
| 2727 |
|
|
&& single_succ (b) != EXIT_BLOCK_PTR
|
| 2728 |
|
|
&& onlyjump_p (BB_END (b))
|
| 2729 |
|
|
&& !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
|
| 2730 |
|
|
&& try_redirect_by_replacing_jump (single_succ_edge (b),
|
| 2731 |
|
|
single_succ (b),
|
| 2732 |
|
|
(mode & CLEANUP_CFGLAYOUT) != 0))
|
| 2733 |
|
|
{
|
| 2734 |
|
|
update_forwarder_flag (b);
|
| 2735 |
|
|
changed_here = true;
|
| 2736 |
|
|
}
|
| 2737 |
|
|
|
| 2738 |
|
|
/* Simplify branch to branch. */
|
| 2739 |
|
|
if (try_forward_edges (mode, b))
|
| 2740 |
|
|
{
|
| 2741 |
|
|
update_forwarder_flag (b);
|
| 2742 |
|
|
changed_here = true;
|
| 2743 |
|
|
}
|
| 2744 |
|
|
|
| 2745 |
|
|
/* Look for shared code between blocks. */
|
| 2746 |
|
|
if ((mode & CLEANUP_CROSSJUMP)
|
| 2747 |
|
|
&& try_crossjump_bb (mode, b))
|
| 2748 |
|
|
changed_here = true;
|
| 2749 |
|
|
|
| 2750 |
|
|
if ((mode & CLEANUP_CROSSJUMP)
|
| 2751 |
|
|
/* This can lengthen register lifetimes. Do it only after
|
| 2752 |
|
|
reload. */
|
| 2753 |
|
|
&& reload_completed
|
| 2754 |
|
|
&& try_head_merge_bb (b))
|
| 2755 |
|
|
changed_here = true;
|
| 2756 |
|
|
|
| 2757 |
|
|
/* Don't get confused by the index shift caused by
|
| 2758 |
|
|
deleting blocks. */
|
| 2759 |
|
|
if (!changed_here)
|
| 2760 |
|
|
b = b->next_bb;
|
| 2761 |
|
|
else
|
| 2762 |
|
|
changed = true;
|
| 2763 |
|
|
}
|
| 2764 |
|
|
|
| 2765 |
|
|
if ((mode & CLEANUP_CROSSJUMP)
|
| 2766 |
|
|
&& try_crossjump_bb (mode, EXIT_BLOCK_PTR))
|
| 2767 |
|
|
changed = true;
|
| 2768 |
|
|
|
| 2769 |
|
|
if (block_was_dirty)
|
| 2770 |
|
|
{
|
| 2771 |
|
|
/* This should only be set by head-merging. */
|
| 2772 |
|
|
gcc_assert (mode & CLEANUP_CROSSJUMP);
|
| 2773 |
|
|
df_analyze ();
|
| 2774 |
|
|
}
|
| 2775 |
|
|
|
| 2776 |
|
|
#ifdef ENABLE_CHECKING
|
| 2777 |
|
|
if (changed)
|
| 2778 |
|
|
verify_flow_info ();
|
| 2779 |
|
|
#endif
|
| 2780 |
|
|
|
| 2781 |
|
|
changed_overall |= changed;
|
| 2782 |
|
|
first_pass = false;
|
| 2783 |
|
|
}
|
| 2784 |
|
|
while (changed);
|
| 2785 |
|
|
}
|
| 2786 |
|
|
|
| 2787 |
|
|
FOR_ALL_BB (b)
|
| 2788 |
|
|
b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
|
| 2789 |
|
|
|
| 2790 |
|
|
return changed_overall;
|
| 2791 |
|
|
}
|
| 2792 |
|
|
|
| 2793 |
|
|
/* Delete all unreachable basic blocks. */
|
| 2794 |
|
|
|
| 2795 |
|
|
bool
|
| 2796 |
|
|
delete_unreachable_blocks (void)
|
| 2797 |
|
|
{
|
| 2798 |
|
|
bool changed = false;
|
| 2799 |
|
|
basic_block b, prev_bb;
|
| 2800 |
|
|
|
| 2801 |
|
|
find_unreachable_blocks ();
|
| 2802 |
|
|
|
| 2803 |
|
|
/* When we're in GIMPLE mode and there may be debug insns, we should
|
| 2804 |
|
|
delete blocks in reverse dominator order, so as to get a chance
|
| 2805 |
|
|
to substitute all released DEFs into debug stmts. If we don't
|
| 2806 |
|
|
have dominators information, walking blocks backward gets us a
|
| 2807 |
|
|
better chance of retaining most debug information than
|
| 2808 |
|
|
otherwise. */
|
| 2809 |
|
|
if (MAY_HAVE_DEBUG_STMTS && current_ir_type () == IR_GIMPLE
|
| 2810 |
|
|
&& dom_info_available_p (CDI_DOMINATORS))
|
| 2811 |
|
|
{
|
| 2812 |
|
|
for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
|
| 2813 |
|
|
{
|
| 2814 |
|
|
prev_bb = b->prev_bb;
|
| 2815 |
|
|
|
| 2816 |
|
|
if (!(b->flags & BB_REACHABLE))
|
| 2817 |
|
|
{
|
| 2818 |
|
|
/* Speed up the removal of blocks that don't dominate
|
| 2819 |
|
|
others. Walking backwards, this should be the common
|
| 2820 |
|
|
case. */
|
| 2821 |
|
|
if (!first_dom_son (CDI_DOMINATORS, b))
|
| 2822 |
|
|
delete_basic_block (b);
|
| 2823 |
|
|
else
|
| 2824 |
|
|
{
|
| 2825 |
|
|
VEC (basic_block, heap) *h
|
| 2826 |
|
|
= get_all_dominated_blocks (CDI_DOMINATORS, b);
|
| 2827 |
|
|
|
| 2828 |
|
|
while (VEC_length (basic_block, h))
|
| 2829 |
|
|
{
|
| 2830 |
|
|
b = VEC_pop (basic_block, h);
|
| 2831 |
|
|
|
| 2832 |
|
|
prev_bb = b->prev_bb;
|
| 2833 |
|
|
|
| 2834 |
|
|
gcc_assert (!(b->flags & BB_REACHABLE));
|
| 2835 |
|
|
|
| 2836 |
|
|
delete_basic_block (b);
|
| 2837 |
|
|
}
|
| 2838 |
|
|
|
| 2839 |
|
|
VEC_free (basic_block, heap, h);
|
| 2840 |
|
|
}
|
| 2841 |
|
|
|
| 2842 |
|
|
changed = true;
|
| 2843 |
|
|
}
|
| 2844 |
|
|
}
|
| 2845 |
|
|
}
|
| 2846 |
|
|
else
|
| 2847 |
|
|
{
|
| 2848 |
|
|
for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
|
| 2849 |
|
|
{
|
| 2850 |
|
|
prev_bb = b->prev_bb;
|
| 2851 |
|
|
|
| 2852 |
|
|
if (!(b->flags & BB_REACHABLE))
|
| 2853 |
|
|
{
|
| 2854 |
|
|
delete_basic_block (b);
|
| 2855 |
|
|
changed = true;
|
| 2856 |
|
|
}
|
| 2857 |
|
|
}
|
| 2858 |
|
|
}
|
| 2859 |
|
|
|
| 2860 |
|
|
if (changed)
|
| 2861 |
|
|
tidy_fallthru_edges ();
|
| 2862 |
|
|
return changed;
|
| 2863 |
|
|
}
|
| 2864 |
|
|
|
| 2865 |
|
|
/* Delete any jump tables never referenced. We can't delete them at the
|
| 2866 |
|
|
time of removing tablejump insn as they are referenced by the preceding
|
| 2867 |
|
|
insns computing the destination, so we delay deleting and garbagecollect
|
| 2868 |
|
|
them once life information is computed. */
|
| 2869 |
|
|
void
|
| 2870 |
|
|
delete_dead_jumptables (void)
|
| 2871 |
|
|
{
|
| 2872 |
|
|
basic_block bb;
|
| 2873 |
|
|
|
| 2874 |
|
|
/* A dead jump table does not belong to any basic block. Scan insns
|
| 2875 |
|
|
between two adjacent basic blocks. */
|
| 2876 |
|
|
FOR_EACH_BB (bb)
|
| 2877 |
|
|
{
|
| 2878 |
|
|
rtx insn, next;
|
| 2879 |
|
|
|
| 2880 |
|
|
for (insn = NEXT_INSN (BB_END (bb));
|
| 2881 |
|
|
insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
|
| 2882 |
|
|
insn = next)
|
| 2883 |
|
|
{
|
| 2884 |
|
|
next = NEXT_INSN (insn);
|
| 2885 |
|
|
if (LABEL_P (insn)
|
| 2886 |
|
|
&& LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
|
| 2887 |
|
|
&& JUMP_TABLE_DATA_P (next))
|
| 2888 |
|
|
{
|
| 2889 |
|
|
rtx label = insn, jump = next;
|
| 2890 |
|
|
|
| 2891 |
|
|
if (dump_file)
|
| 2892 |
|
|
fprintf (dump_file, "Dead jumptable %i removed\n",
|
| 2893 |
|
|
INSN_UID (insn));
|
| 2894 |
|
|
|
| 2895 |
|
|
next = NEXT_INSN (next);
|
| 2896 |
|
|
delete_insn (jump);
|
| 2897 |
|
|
delete_insn (label);
|
| 2898 |
|
|
}
|
| 2899 |
|
|
}
|
| 2900 |
|
|
}
|
| 2901 |
|
|
}
|
| 2902 |
|
|
|
| 2903 |
|
|
|
| 2904 |
|
|
/* Tidy the CFG by deleting unreachable code and whatnot. */
|
| 2905 |
|
|
|
| 2906 |
|
|
bool
|
| 2907 |
|
|
cleanup_cfg (int mode)
|
| 2908 |
|
|
{
|
| 2909 |
|
|
bool changed = false;
|
| 2910 |
|
|
|
| 2911 |
|
|
/* Set the cfglayout mode flag here. We could update all the callers
|
| 2912 |
|
|
but that is just inconvenient, especially given that we eventually
|
| 2913 |
|
|
want to have cfglayout mode as the default. */
|
| 2914 |
|
|
if (current_ir_type () == IR_RTL_CFGLAYOUT)
|
| 2915 |
|
|
mode |= CLEANUP_CFGLAYOUT;
|
| 2916 |
|
|
|
| 2917 |
|
|
timevar_push (TV_CLEANUP_CFG);
|
| 2918 |
|
|
if (delete_unreachable_blocks ())
|
| 2919 |
|
|
{
|
| 2920 |
|
|
changed = true;
|
| 2921 |
|
|
/* We've possibly created trivially dead code. Cleanup it right
|
| 2922 |
|
|
now to introduce more opportunities for try_optimize_cfg. */
|
| 2923 |
|
|
if (!(mode & (CLEANUP_NO_INSN_DEL))
|
| 2924 |
|
|
&& !reload_completed)
|
| 2925 |
|
|
delete_trivially_dead_insns (get_insns (), max_reg_num ());
|
| 2926 |
|
|
}
|
| 2927 |
|
|
|
| 2928 |
|
|
compact_blocks ();
|
| 2929 |
|
|
|
| 2930 |
|
|
/* To tail-merge blocks ending in the same noreturn function (e.g.
|
| 2931 |
|
|
a call to abort) we have to insert fake edges to exit. Do this
|
| 2932 |
|
|
here once. The fake edges do not interfere with any other CFG
|
| 2933 |
|
|
cleanups. */
|
| 2934 |
|
|
if (mode & CLEANUP_CROSSJUMP)
|
| 2935 |
|
|
add_noreturn_fake_exit_edges ();
|
| 2936 |
|
|
|
| 2937 |
|
|
if (!dbg_cnt (cfg_cleanup))
|
| 2938 |
|
|
return changed;
|
| 2939 |
|
|
|
| 2940 |
|
|
while (try_optimize_cfg (mode))
|
| 2941 |
|
|
{
|
| 2942 |
|
|
delete_unreachable_blocks (), changed = true;
|
| 2943 |
|
|
if (!(mode & CLEANUP_NO_INSN_DEL))
|
| 2944 |
|
|
{
|
| 2945 |
|
|
/* Try to remove some trivially dead insns when doing an expensive
|
| 2946 |
|
|
cleanup. But delete_trivially_dead_insns doesn't work after
|
| 2947 |
|
|
reload (it only handles pseudos) and run_fast_dce is too costly
|
| 2948 |
|
|
to run in every iteration.
|
| 2949 |
|
|
|
| 2950 |
|
|
For effective cross jumping, we really want to run a fast DCE to
|
| 2951 |
|
|
clean up any dead conditions, or they get in the way of performing
|
| 2952 |
|
|
useful tail merges.
|
| 2953 |
|
|
|
| 2954 |
|
|
Other transformations in cleanup_cfg are not so sensitive to dead
|
| 2955 |
|
|
code, so delete_trivially_dead_insns or even doing nothing at all
|
| 2956 |
|
|
is good enough. */
|
| 2957 |
|
|
if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
|
| 2958 |
|
|
&& !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
|
| 2959 |
|
|
break;
|
| 2960 |
|
|
if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
|
| 2961 |
|
|
run_fast_dce ();
|
| 2962 |
|
|
}
|
| 2963 |
|
|
else
|
| 2964 |
|
|
break;
|
| 2965 |
|
|
}
|
| 2966 |
|
|
|
| 2967 |
|
|
if (mode & CLEANUP_CROSSJUMP)
|
| 2968 |
|
|
remove_fake_exit_edges ();
|
| 2969 |
|
|
|
| 2970 |
|
|
/* Don't call delete_dead_jumptables in cfglayout mode, because
|
| 2971 |
|
|
that function assumes that jump tables are in the insns stream.
|
| 2972 |
|
|
But we also don't _have_ to delete dead jumptables in cfglayout
|
| 2973 |
|
|
mode because we shouldn't even be looking at things that are
|
| 2974 |
|
|
not in a basic block. Dead jumptables are cleaned up when
|
| 2975 |
|
|
going out of cfglayout mode. */
|
| 2976 |
|
|
if (!(mode & CLEANUP_CFGLAYOUT))
|
| 2977 |
|
|
delete_dead_jumptables ();
|
| 2978 |
|
|
|
| 2979 |
|
|
timevar_pop (TV_CLEANUP_CFG);
|
| 2980 |
|
|
|
| 2981 |
|
|
return changed;
|
| 2982 |
|
|
}
|
| 2983 |
|
|
|
| 2984 |
|
|
static unsigned int
|
| 2985 |
|
|
rest_of_handle_jump (void)
|
| 2986 |
|
|
{
|
| 2987 |
|
|
if (crtl->tail_call_emit)
|
| 2988 |
|
|
fixup_tail_calls ();
|
| 2989 |
|
|
return 0;
|
| 2990 |
|
|
}
|
| 2991 |
|
|
|
| 2992 |
|
|
struct rtl_opt_pass pass_jump =
|
| 2993 |
|
|
{
|
| 2994 |
|
|
{
|
| 2995 |
|
|
RTL_PASS,
|
| 2996 |
|
|
"sibling", /* name */
|
| 2997 |
|
|
NULL, /* gate */
|
| 2998 |
|
|
rest_of_handle_jump, /* execute */
|
| 2999 |
|
|
NULL, /* sub */
|
| 3000 |
|
|
NULL, /* next */
|
| 3001 |
|
|
0, /* static_pass_number */
|
| 3002 |
|
|
TV_JUMP, /* tv_id */
|
| 3003 |
|
|
0, /* properties_required */
|
| 3004 |
|
|
0, /* properties_provided */
|
| 3005 |
|
|
0, /* properties_destroyed */
|
| 3006 |
|
|
TODO_ggc_collect, /* todo_flags_start */
|
| 3007 |
|
|
TODO_verify_flow, /* todo_flags_finish */
|
| 3008 |
|
|
}
|
| 3009 |
|
|
};
|
| 3010 |
|
|
|
| 3011 |
|
|
|
| 3012 |
|
|
static unsigned int
|
| 3013 |
|
|
rest_of_handle_jump2 (void)
|
| 3014 |
|
|
{
|
| 3015 |
|
|
delete_trivially_dead_insns (get_insns (), max_reg_num ());
|
| 3016 |
|
|
if (dump_file)
|
| 3017 |
|
|
dump_flow_info (dump_file, dump_flags);
|
| 3018 |
|
|
cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
|
| 3019 |
|
|
| (flag_thread_jumps ? CLEANUP_THREADING : 0));
|
| 3020 |
|
|
return 0;
|
| 3021 |
|
|
}
|
| 3022 |
|
|
|
| 3023 |
|
|
|
| 3024 |
|
|
struct rtl_opt_pass pass_jump2 =
|
| 3025 |
|
|
{
|
| 3026 |
|
|
{
|
| 3027 |
|
|
RTL_PASS,
|
| 3028 |
|
|
"jump", /* name */
|
| 3029 |
|
|
NULL, /* gate */
|
| 3030 |
|
|
rest_of_handle_jump2, /* execute */
|
| 3031 |
|
|
NULL, /* sub */
|
| 3032 |
|
|
NULL, /* next */
|
| 3033 |
|
|
0, /* static_pass_number */
|
| 3034 |
|
|
TV_JUMP, /* tv_id */
|
| 3035 |
|
|
0, /* properties_required */
|
| 3036 |
|
|
0, /* properties_provided */
|
| 3037 |
|
|
0, /* properties_destroyed */
|
| 3038 |
|
|
TODO_ggc_collect, /* todo_flags_start */
|
| 3039 |
|
|
TODO_verify_rtl_sharing, /* todo_flags_finish */
|
| 3040 |
|
|
}
|
| 3041 |
|
|
};
|