OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [alpha/] [alpha.h] - Blame information for rev 709

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
/* Definitions of target machine for GNU compiler, for DEC Alpha.
2
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4
   Free Software Foundation, Inc.
5
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
 
7
This file is part of GCC.
8
 
9
GCC is free software; you can redistribute it and/or modify
10
it under the terms of the GNU General Public License as published by
11
the Free Software Foundation; either version 3, or (at your option)
12
any later version.
13
 
14
GCC is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
GNU General Public License for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with GCC; see the file COPYING3.  If not see
21
<http://www.gnu.org/licenses/>.  */
22
 
23
/* Target CPU builtins.  */
24
#define TARGET_CPU_CPP_BUILTINS()                       \
25
  do                                                    \
26
    {                                                   \
27
        builtin_define ("__alpha");                     \
28
        builtin_define ("__alpha__");                   \
29
        builtin_assert ("cpu=alpha");                   \
30
        builtin_assert ("machine=alpha");               \
31
        if (TARGET_CIX)                                 \
32
          {                                             \
33
            builtin_define ("__alpha_cix__");           \
34
            builtin_assert ("cpu=cix");                 \
35
          }                                             \
36
        if (TARGET_FIX)                                 \
37
          {                                             \
38
            builtin_define ("__alpha_fix__");           \
39
            builtin_assert ("cpu=fix");                 \
40
          }                                             \
41
        if (TARGET_BWX)                                 \
42
          {                                             \
43
            builtin_define ("__alpha_bwx__");           \
44
            builtin_assert ("cpu=bwx");                 \
45
          }                                             \
46
        if (TARGET_MAX)                                 \
47
          {                                             \
48
            builtin_define ("__alpha_max__");           \
49
            builtin_assert ("cpu=max");                 \
50
          }                                             \
51
        if (alpha_cpu == PROCESSOR_EV6)                 \
52
          {                                             \
53
            builtin_define ("__alpha_ev6__");           \
54
            builtin_assert ("cpu=ev6");                 \
55
          }                                             \
56
        else if (alpha_cpu == PROCESSOR_EV5)            \
57
          {                                             \
58
            builtin_define ("__alpha_ev5__");           \
59
            builtin_assert ("cpu=ev5");                 \
60
          }                                             \
61
        else    /* Presumably ev4.  */                  \
62
          {                                             \
63
            builtin_define ("__alpha_ev4__");           \
64
            builtin_assert ("cpu=ev4");                 \
65
          }                                             \
66
        if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT)    \
67
          builtin_define ("_IEEE_FP");                  \
68
        if (TARGET_IEEE_WITH_INEXACT)                   \
69
          builtin_define ("_IEEE_FP_INEXACT");          \
70
        if (TARGET_LONG_DOUBLE_128)                     \
71
          builtin_define ("__LONG_DOUBLE_128__");       \
72
                                                        \
73
        /* Macros dependent on the C dialect.  */       \
74
        SUBTARGET_LANGUAGE_CPP_BUILTINS();              \
75
} while (0)
76
 
77
#ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78
#define SUBTARGET_LANGUAGE_CPP_BUILTINS()               \
79
  do                                                    \
80
    {                                                   \
81
      if (preprocessing_asm_p ())                       \
82
        builtin_define_std ("LANGUAGE_ASSEMBLY");       \
83
      else if (c_dialect_cxx ())                        \
84
        {                                               \
85
          builtin_define ("__LANGUAGE_C_PLUS_PLUS");    \
86
          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");  \
87
        }                                               \
88
      else                                              \
89
        builtin_define_std ("LANGUAGE_C");              \
90
      if (c_dialect_objc ())                            \
91
        {                                               \
92
          builtin_define ("__LANGUAGE_OBJECTIVE_C");    \
93
          builtin_define ("__LANGUAGE_OBJECTIVE_C__");  \
94
        }                                               \
95
    }                                                   \
96
  while (0)
97
#endif
98
 
99
/* Run-time compilation parameters selecting different hardware subsets.  */
100
 
101
/* Which processor to schedule for. The cpu attribute defines a list that
102
   mirrors this list, so changes to alpha.md must be made at the same time.  */
103
 
104
enum processor_type
105
{
106
  PROCESSOR_EV4,                        /* 2106[46]{a,} */
107
  PROCESSOR_EV5,                        /* 21164{a,pc,} */
108
  PROCESSOR_EV6,                        /* 21264 */
109
  PROCESSOR_MAX
110
};
111
 
112
extern enum processor_type alpha_cpu;
113
extern enum processor_type alpha_tune;
114
 
115
enum alpha_trap_precision
116
{
117
  ALPHA_TP_PROG,        /* No precision (default).  */
118
  ALPHA_TP_FUNC,        /* Trap contained within originating function.  */
119
  ALPHA_TP_INSN         /* Instruction accuracy and code is resumption safe.  */
120
};
121
 
122
enum alpha_fp_rounding_mode
123
{
124
  ALPHA_FPRM_NORM,      /* Normal rounding mode.  */
125
  ALPHA_FPRM_MINF,      /* Round towards minus-infinity.  */
126
  ALPHA_FPRM_CHOP,      /* Chopped rounding mode (towards 0).  */
127
  ALPHA_FPRM_DYN        /* Dynamic rounding mode.  */
128
};
129
 
130
enum alpha_fp_trap_mode
131
{
132
  ALPHA_FPTM_N,         /* Normal trap mode.  */
133
  ALPHA_FPTM_U,         /* Underflow traps enabled.  */
134
  ALPHA_FPTM_SU,        /* Software completion, w/underflow traps */
135
  ALPHA_FPTM_SUI        /* Software completion, w/underflow & inexact traps */
136
};
137
 
138
extern enum alpha_trap_precision alpha_tp;
139
extern enum alpha_fp_rounding_mode alpha_fprm;
140
extern enum alpha_fp_trap_mode alpha_fptm;
141
 
142
/* Invert the easy way to make options work.  */
143
#define TARGET_FP       (!TARGET_SOFT_FP)
144
 
145
/* These are for target os support and cannot be changed at runtime.  */
146
#define TARGET_ABI_OPEN_VMS     0
147
#define TARGET_ABI_OSF          (!TARGET_ABI_OPEN_VMS)
148
 
149
#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
150
#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
151
#endif
152
#ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
153
#define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
154
#endif
155
#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
156
#define TARGET_CAN_FAULT_IN_PROLOGUE 0
157
#endif
158
#ifndef TARGET_HAS_XFLOATING_LIBS
159
#define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
160
#endif
161
#ifndef TARGET_PROFILING_NEEDS_GP
162
#define TARGET_PROFILING_NEEDS_GP 0
163
#endif
164
#ifndef TARGET_LD_BUGGY_LDGP
165
#define TARGET_LD_BUGGY_LDGP 0
166
#endif
167
#ifndef TARGET_FIXUP_EV5_PREFETCH
168
#define TARGET_FIXUP_EV5_PREFETCH 0
169
#endif
170
#ifndef HAVE_AS_TLS
171
#define HAVE_AS_TLS 0
172
#endif
173
 
174
#define TARGET_DEFAULT MASK_FPREGS
175
 
176
#ifndef TARGET_CPU_DEFAULT
177
#define TARGET_CPU_DEFAULT 0
178
#endif
179
 
180
#ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
181
#ifdef HAVE_AS_EXPLICIT_RELOCS
182
#define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
183
#define TARGET_SUPPORT_ARCH 1
184
#else
185
#define TARGET_DEFAULT_EXPLICIT_RELOCS 0
186
#endif
187
#endif
188
 
189
#ifndef TARGET_SUPPORT_ARCH
190
#define TARGET_SUPPORT_ARCH 0
191
#endif
192
 
193
/* Support for a compile-time default CPU, et cetera.  The rules are:
194
   --with-cpu is ignored if -mcpu is specified.
195
   --with-tune is ignored if -mtune is specified.  */
196
#define OPTION_DEFAULT_SPECS \
197
  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
198
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
199
 
200
 
201
/* target machine storage layout */
202
 
203
/* Define the size of `int'.  The default is the same as the word size.  */
204
#define INT_TYPE_SIZE 32
205
 
206
/* Define the size of `long long'.  The default is the twice the word size.  */
207
#define LONG_LONG_TYPE_SIZE 64
208
 
209
/* The two floating-point formats we support are S-floating, which is
210
   4 bytes, and T-floating, which is 8 bytes.  `float' is S and `double'
211
   and `long double' are T.  */
212
 
213
#define FLOAT_TYPE_SIZE 32
214
#define DOUBLE_TYPE_SIZE 64
215
#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
216
 
217
/* Define this to set long double type size to use in libgcc2.c, which can
218
   not depend on target_flags.  */
219
#ifdef __LONG_DOUBLE_128__
220
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
221
#else
222
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
223
#endif
224
 
225
/* Work around target_flags dependency in ada/targtyps.c.  */
226
#define WIDEST_HARDWARE_FP_SIZE 64
227
 
228
#define WCHAR_TYPE "unsigned int"
229
#define WCHAR_TYPE_SIZE 32
230
 
231
/* Define this macro if it is advisable to hold scalars in registers
232
   in a wider mode than that declared by the program.  In such cases,
233
   the value is constrained to be within the bounds of the declared
234
   type, but kept valid in the wider mode.  The signedness of the
235
   extension may differ from that of the type.
236
 
237
   For Alpha, we always store objects in a full register.  32-bit integers
238
   are always sign-extended, but smaller objects retain their signedness.
239
 
240
   Note that small vector types can get mapped onto integer modes at the
241
   whim of not appearing in alpha-modes.def.  We never promoted these
242
   values before; don't do so now that we've trimmed the set of modes to
243
   those actually implemented in the backend.  */
244
 
245
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)                       \
246
  if (GET_MODE_CLASS (MODE) == MODE_INT                         \
247
      && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE)      \
248
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)                 \
249
    {                                                           \
250
      if ((MODE) == SImode)                                     \
251
        (UNSIGNEDP) = 0;                                 \
252
      (MODE) = DImode;                                          \
253
    }
254
 
255
/* Define this if most significant bit is lowest numbered
256
   in instructions that operate on numbered bit-fields.
257
 
258
   There are no such instructions on the Alpha, but the documentation
259
   is little endian.  */
260
#define BITS_BIG_ENDIAN 0
261
 
262
/* Define this if most significant byte of a word is the lowest numbered.
263
   This is false on the Alpha.  */
264
#define BYTES_BIG_ENDIAN 0
265
 
266
/* Define this if most significant word of a multiword number is lowest
267
   numbered.
268
 
269
   For Alpha we can decide arbitrarily since there are no machine instructions
270
   for them.  Might as well be consistent with bytes.  */
271
#define WORDS_BIG_ENDIAN 0
272
 
273
/* Width of a word, in units (bytes).  */
274
#define UNITS_PER_WORD 8
275
 
276
/* Width in bits of a pointer.
277
   See also the macro `Pmode' defined below.  */
278
#define POINTER_SIZE 64
279
 
280
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
281
#define PARM_BOUNDARY 64
282
 
283
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
284
#define STACK_BOUNDARY 128
285
 
286
/* Allocation boundary (in *bits*) for the code of a function.  */
287
#define FUNCTION_BOUNDARY 32
288
 
289
/* Alignment of field after `int : 0' in a structure.  */
290
#define EMPTY_FIELD_BOUNDARY 64
291
 
292
/* Every structure's size must be a multiple of this.  */
293
#define STRUCTURE_SIZE_BOUNDARY 8
294
 
295
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
296
#define PCC_BITFIELD_TYPE_MATTERS 1
297
 
298
/* No data type wants to be aligned rounder than this.  */
299
#define BIGGEST_ALIGNMENT 128
300
 
301
/* For atomic access to objects, must have at least 32-bit alignment
302
   unless the machine has byte operations.  */
303
#define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
304
 
305
/* Align all constants and variables to at least a word boundary so
306
   we can pick up pieces of them faster.  */
307
/* ??? Only if block-move stuff knows about different source/destination
308
   alignment.  */
309
#if 0
310
#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
311
#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
312
#endif
313
 
314
/* Set this nonzero if move instructions will actually fail to work
315
   when given unaligned data.
316
 
317
   Since we get an error message when we do one, call them invalid.  */
318
 
319
#define STRICT_ALIGNMENT 1
320
 
321
/* Set this nonzero if unaligned move instructions are extremely slow.
322
 
323
   On the Alpha, they trap.  */
324
 
325
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
326
 
327
/* Standard register usage.  */
328
 
329
/* Number of actual hardware registers.
330
   The hardware registers are assigned numbers for the compiler
331
   from 0 to just below FIRST_PSEUDO_REGISTER.
332
   All registers that the compiler knows about must be given numbers,
333
   even those that are not normally considered general registers.
334
 
335
   We define all 32 integer registers, even though $31 is always zero,
336
   and all 32 floating-point registers, even though $f31 is also
337
   always zero.  We do not bother defining the FP status register and
338
   there are no other registers.
339
 
340
   Since $31 is always zero, we will use register number 31 as the
341
   argument pointer.  It will never appear in the generated code
342
   because we will always be eliminating it in favor of the stack
343
   pointer or hardware frame pointer.
344
 
345
   Likewise, we use $f31 for the frame pointer, which will always
346
   be eliminated in favor of the hardware frame pointer or the
347
   stack pointer.  */
348
 
349
#define FIRST_PSEUDO_REGISTER 64
350
 
351
/* 1 for registers that have pervasive standard uses
352
   and are not available for the register allocator.  */
353
 
354
#define FIXED_REGISTERS  \
355
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
356
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
357
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
358
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
359
 
360
/* 1 for registers not available across function calls.
361
   These must include the FIXED_REGISTERS and also any
362
   registers that can be used without being saved.
363
   The latter must include the registers where values are returned
364
   and the register where structure-value addresses are passed.
365
   Aside from that, you can include as many other registers as you like.  */
366
#define CALL_USED_REGISTERS  \
367
 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
368
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
369
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
370
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
371
 
372
/* List the order in which to allocate registers.  Each register must be
373
   listed once, even those in FIXED_REGISTERS.  */
374
 
375
#define REG_ALLOC_ORDER { \
376
   1, 2, 3, 4, 5, 6, 7, 8,      /* nonsaved integer registers */        \
377
   22, 23, 24, 25, 28,          /* likewise */                          \
378
   0,                            /* likewise, but return value */        \
379
   21, 20, 19, 18, 17, 16,      /* likewise, but input args */          \
380
   27,                          /* likewise, but OSF procedure value */ \
381
                                                                        \
382
   42, 43, 44, 45, 46, 47,      /* nonsaved floating-point registers */ \
383
   54, 55, 56, 57, 58, 59,      /* likewise */                          \
384
   60, 61, 62,                  /* likewise */                          \
385
   32, 33,                      /* likewise, but return values */       \
386
   53, 52, 51, 50, 49, 48,      /* likewise, but input args */          \
387
                                                                        \
388
   9, 10, 11, 12, 13, 14,       /* saved integer registers */           \
389
   26,                          /* return address */                    \
390
   15,                          /* hard frame pointer */                \
391
                                                                        \
392
   34, 35, 36, 37, 38, 39,      /* saved floating-point registers */    \
393
   40, 41,                      /* likewise */                          \
394
                                                                        \
395
   29, 30, 31, 63               /* gp, sp, ap, sfp */                   \
396
}
397
 
398
/* Return number of consecutive hard regs needed starting at reg REGNO
399
   to hold something of mode MODE.
400
   This is ordinarily the length in words of a value of mode MODE
401
   but can be less for certain modes in special long registers.  */
402
 
403
#define HARD_REGNO_NREGS(REGNO, MODE)   \
404
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
405
 
406
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
407
   On Alpha, the integer registers can hold any mode.  The floating-point
408
   registers can hold 64-bit integers as well, but not smaller values.  */
409
 
410
#define HARD_REGNO_MODE_OK(REGNO, MODE)                                 \
411
  (IN_RANGE ((REGNO), 32, 62)                                           \
412
   ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode           \
413
     || (MODE) == SCmode || (MODE) == DCmode                            \
414
   : 1)
415
 
416
/* A C expression that is nonzero if a value of mode
417
   MODE1 is accessible in mode MODE2 without copying.
418
 
419
   This asymmetric test is true when MODE1 could be put
420
   in an FP register but MODE2 could not.  */
421
 
422
#define MODES_TIEABLE_P(MODE1, MODE2)                           \
423
  (HARD_REGNO_MODE_OK (32, (MODE1))                             \
424
   ? HARD_REGNO_MODE_OK (32, (MODE2))                           \
425
   : 1)
426
 
427
/* Specify the registers used for certain standard purposes.
428
   The values of these macros are register numbers.  */
429
 
430
/* Alpha pc isn't overloaded on a register that the compiler knows about.  */
431
/* #define PC_REGNUM  */
432
 
433
/* Register to use for pushing function arguments.  */
434
#define STACK_POINTER_REGNUM 30
435
 
436
/* Base register for access to local variables of the function.  */
437
#define HARD_FRAME_POINTER_REGNUM 15
438
 
439
/* Base register for access to arguments of the function.  */
440
#define ARG_POINTER_REGNUM 31
441
 
442
/* Base register for access to local variables of function.  */
443
#define FRAME_POINTER_REGNUM 63
444
 
445
/* Register in which static-chain is passed to a function.
446
 
447
   For the Alpha, this is based on an example; the calling sequence
448
   doesn't seem to specify this.  */
449
#define STATIC_CHAIN_REGNUM 1
450
 
451
/* The register number of the register used to address a table of
452
   static data addresses in memory.  */
453
#define PIC_OFFSET_TABLE_REGNUM 29
454
 
455
/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
456
   is clobbered by calls.  */
457
/* ??? It is and it isn't.  It's required to be valid for a given
458
   function when the function returns.  It isn't clobbered by
459
   current_file functions.  Moreover, we do not expose the ldgp
460
   until after reload, so we're probably safe.  */
461
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
462
 
463
/* Define the classes of registers for register constraints in the
464
   machine description.  Also define ranges of constants.
465
 
466
   One of the classes must always be named ALL_REGS and include all hard regs.
467
   If there is more than one class, another class must be named NO_REGS
468
   and contain no registers.
469
 
470
   The name GENERAL_REGS must be the name of a class (or an alias for
471
   another name such as ALL_REGS).  This is the class of registers
472
   that is allowed by "g" or "r" in a register constraint.
473
   Also, registers outside this class are allocated only when
474
   instructions express preferences for them.
475
 
476
   The classes must be numbered in nondecreasing order; that is,
477
   a larger-numbered class must never be contained completely
478
   in a smaller-numbered class.
479
 
480
   For any two classes, it is very desirable that there be another
481
   class that represents their union.  */
482
 
483
enum reg_class {
484
  NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
485
  GENERAL_REGS, FLOAT_REGS, ALL_REGS,
486
  LIM_REG_CLASSES
487
};
488
 
489
#define N_REG_CLASSES (int) LIM_REG_CLASSES
490
 
491
/* Give names of register classes as strings for dump file.  */
492
 
493
#define REG_CLASS_NAMES                                 \
494
 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
495
  "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
496
 
497
/* Define which registers fit in which classes.
498
   This is an initializer for a vector of HARD_REG_SET
499
   of length N_REG_CLASSES.  */
500
 
501
#define REG_CLASS_CONTENTS                              \
502
{ {0x00000000, 0x00000000},     /* NO_REGS */           \
503
  {0x00000001, 0x00000000},     /* R0_REG */            \
504
  {0x01000000, 0x00000000},     /* R24_REG */           \
505
  {0x02000000, 0x00000000},     /* R25_REG */           \
506
  {0x08000000, 0x00000000},     /* R27_REG */           \
507
  {0xffffffff, 0x80000000},     /* GENERAL_REGS */      \
508
  {0x00000000, 0x7fffffff},     /* FLOAT_REGS */        \
509
  {0xffffffff, 0xffffffff} }
510
 
511
/* The same information, inverted:
512
   Return the class number of the smallest class containing
513
   reg number REGNO.  This could be a conditional expression
514
   or could index an array.  */
515
 
516
#define REGNO_REG_CLASS(REGNO)                  \
517
 ((REGNO) == 0 ? R0_REG                          \
518
  : (REGNO) == 24 ? R24_REG                     \
519
  : (REGNO) == 25 ? R25_REG                     \
520
  : (REGNO) == 27 ? R27_REG                     \
521
  : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS     \
522
  : GENERAL_REGS)
523
 
524
/* The class value for index registers, and the one for base regs.  */
525
#define INDEX_REG_CLASS NO_REGS
526
#define BASE_REG_CLASS GENERAL_REGS
527
 
528
/* Given an rtx X being reloaded into a reg required to be
529
   in class CLASS, return the class of reg to actually use.
530
   In general this is just CLASS; but on some machines
531
   in some cases it is preferable to use a more restrictive class.  */
532
 
533
#define PREFERRED_RELOAD_CLASS  alpha_preferred_reload_class
534
 
535
/* If we are copying between general and FP registers, we need a memory
536
   location unless the FIX extension is available.  */
537
 
538
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
539
 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
540
                   || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
541
 
542
/* Specify the mode to be used for memory when a secondary memory
543
   location is needed.  If MODE is floating-point, use it.  Otherwise,
544
   widen to a word like the default.  This is needed because we always
545
   store integers in FP registers in quadword format.  This whole
546
   area is very tricky! */
547
#define SECONDARY_MEMORY_NEEDED_MODE(MODE)              \
548
  (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE)         \
549
   : GET_MODE_SIZE (MODE) >= 4 ? (MODE)                 \
550
   : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
551
 
552
/* Return the class of registers that cannot change mode from FROM to TO.  */
553
 
554
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
555
  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                   \
556
   ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
557
 
558
/* Define the cost of moving between registers of various classes.  Moving
559
   between FLOAT_REGS and anything else except float regs is expensive.
560
   In fact, we make it quite expensive because we really don't want to
561
   do these moves unless it is clearly worth it.  Optimizations may
562
   reduce the impact of not being able to allocate a pseudo to a
563
   hard register.  */
564
 
565
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)                \
566
  (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2     \
567
   : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8)              \
568
   : 4+2*alpha_memory_latency)
569
 
570
/* A C expressions returning the cost of moving data of MODE from a register to
571
   or from memory.
572
 
573
   On the Alpha, bump this up a bit.  */
574
 
575
extern int alpha_memory_latency;
576
#define MEMORY_MOVE_COST(MODE,CLASS,IN)  (2*alpha_memory_latency)
577
 
578
/* Provide the cost of a branch.  Exact meaning under development.  */
579
#define BRANCH_COST(speed_p, predictable_p) 5
580
 
581
/* Stack layout; function entry, exit and calling.  */
582
 
583
/* Define this if pushing a word on the stack
584
   makes the stack pointer a smaller address.  */
585
#define STACK_GROWS_DOWNWARD
586
 
587
/* Define this to nonzero if the nominal address of the stack frame
588
   is at the high-address end of the local variables;
589
   that is, each additional local variable allocated
590
   goes at a more negative offset in the frame.  */
591
/* #define FRAME_GROWS_DOWNWARD 0 */
592
 
593
/* Offset within stack frame to start allocating local variables at.
594
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
595
   first local allocated.  Otherwise, it is the offset to the BEGINNING
596
   of the first local allocated.  */
597
 
598
#define STARTING_FRAME_OFFSET 0
599
 
600
/* If we generate an insn to push BYTES bytes,
601
   this says how many the stack pointer really advances by.
602
   On Alpha, don't define this because there are no push insns.  */
603
/*  #define PUSH_ROUNDING(BYTES) */
604
 
605
/* Define this to be nonzero if stack checking is built into the ABI.  */
606
#define STACK_CHECK_BUILTIN 1
607
 
608
/* Define this if the maximum size of all the outgoing args is to be
609
   accumulated and pushed during the prologue.  The amount can be
610
   found in the variable crtl->outgoing_args_size.  */
611
#define ACCUMULATE_OUTGOING_ARGS 1
612
 
613
/* Offset of first parameter from the argument pointer register value.  */
614
 
615
#define FIRST_PARM_OFFSET(FNDECL) 0
616
 
617
/* Definitions for register eliminations.
618
 
619
   We have two registers that can be eliminated on the Alpha.  First, the
620
   frame pointer register can often be eliminated in favor of the stack
621
   pointer register.  Secondly, the argument pointer register can always be
622
   eliminated; it is replaced with either the stack or frame pointer.  */
623
 
624
/* This is an array of structures.  Each structure initializes one pair
625
   of eliminable registers.  The "from" register number is given first,
626
   followed by "to".  Eliminations of the same "from" register are listed
627
   in order of preference.  */
628
 
629
#define ELIMINABLE_REGS                              \
630
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},        \
631
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
632
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},      \
633
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
634
 
635
/* Round up to a multiple of 16 bytes.  */
636
#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
637
 
638
/* Define the offset between two registers, one to be eliminated, and the other
639
   its replacement, at the start of a routine.  */
640
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
641
  ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
642
 
643
/* Define this if stack space is still allocated for a parameter passed
644
   in a register.  */
645
/* #define REG_PARM_STACK_SPACE */
646
 
647
/* Define how to find the value returned by a function.
648
   VALTYPE is the data type of the value (as a tree).
649
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
650
   otherwise, FUNC is 0.
651
 
652
   On Alpha the value is found in $0 for integer functions and
653
   $f0 for floating-point functions.  */
654
 
655
#define FUNCTION_VALUE(VALTYPE, FUNC) \
656
  function_value (VALTYPE, FUNC, VOIDmode)
657
 
658
/* Define how to find the value returned by a library function
659
   assuming the value has mode MODE.  */
660
 
661
#define LIBCALL_VALUE(MODE) \
662
  function_value (NULL, NULL, MODE)
663
 
664
/* 1 if N is a possible register number for a function value
665
   as seen by the caller.  */
666
 
667
#define FUNCTION_VALUE_REGNO_P(N)  \
668
  ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
669
 
670
/* 1 if N is a possible register number for function argument passing.
671
   On Alpha, these are $16-$21 and $f16-$f21.  */
672
 
673
#define FUNCTION_ARG_REGNO_P(N) \
674
  (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
675
 
676
/* Define a data type for recording info about an argument list
677
   during the scan of that argument list.  This data type should
678
   hold all necessary information about the function itself
679
   and about the args processed so far, enough to enable macros
680
   such as FUNCTION_ARG to determine where the next arg should go.
681
 
682
   On Alpha, this is a single integer, which is a number of words
683
   of arguments scanned so far.
684
   Thus 6 or more means all following args should go on the stack.  */
685
 
686
#define CUMULATIVE_ARGS int
687
 
688
/* Initialize a variable CUM of type CUMULATIVE_ARGS
689
   for a call to a function whose data type is FNTYPE.
690
   For a library call, FNTYPE is 0.  */
691
 
692
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
693
  (CUM) = 0
694
 
695
/* Define intermediate macro to compute the size (in registers) of an argument
696
   for the Alpha.  */
697
 
698
#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED)                               \
699
  ((MODE) == TFmode || (MODE) == TCmode ? 1                             \
700
   : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
701
      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
702
 
703
/* Make (or fake) .linkage entry for function call.
704
   IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.  */
705
 
706
/* This macro defines the start of an assembly comment.  */
707
 
708
#define ASM_COMMENT_START " #"
709
 
710
/* This macro produces the initial definition of a function.  */
711
 
712
#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
713
  alpha_start_function(FILE,NAME,DECL);
714
 
715
/* This macro closes up a function definition for the assembler.  */
716
 
717
#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
718
  alpha_end_function(FILE,NAME,DECL)
719
 
720
/* Output any profiling code before the prologue.  */
721
 
722
#define PROFILE_BEFORE_PROLOGUE 1
723
 
724
/* Never use profile counters.  */
725
 
726
#define NO_PROFILE_COUNTERS 1
727
 
728
/* Output assembler code to FILE to increment profiler label # LABELNO
729
   for profiling a function entry.  Under OSF/1, profiling is enabled
730
   by simply passing -pg to the assembler and linker.  */
731
 
732
#define FUNCTION_PROFILER(FILE, LABELNO)
733
 
734
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
735
   the stack pointer does not matter.  The value is tested only in
736
   functions that have frame pointers.
737
   No definition is equivalent to always zero.  */
738
 
739
#define EXIT_IGNORE_STACK 1
740
 
741
/* Define registers used by the epilogue and return instruction.  */
742
 
743
#define EPILOGUE_USES(REGNO)    ((REGNO) == 26)
744
 
745
/* Length in units of the trampoline for entering a nested function.  */
746
 
747
#define TRAMPOLINE_SIZE    32
748
 
749
/* The alignment of a trampoline, in bits.  */
750
 
751
#define TRAMPOLINE_ALIGNMENT  64
752
 
753
/* A C expression whose value is RTL representing the value of the return
754
   address for the frame COUNT steps up from the current frame.
755
   FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
756
   the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.  */
757
 
758
#define RETURN_ADDR_RTX  alpha_return_addr
759
 
760
/* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
761
   can use DWARF_ALT_FRAME_RETURN_COLUMN defined below.  This is just the same
762
   as the default definition in dwarf2out.c.  */
763
#undef DWARF_FRAME_REGNUM
764
#define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
765
 
766
/* Before the prologue, RA lives in $26.  */
767
#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 26)
768
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
769
#define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
770
#define DWARF_ZERO_REG 31
771
 
772
/* Describe how we implement __builtin_eh_return.  */
773
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
774
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 28)
775
#define EH_RETURN_HANDLER_RTX \
776
  gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
777
                                     crtl->outgoing_args_size))
778
 
779
/* Addressing modes, and classification of registers for them.  */
780
 
781
/* Macros to check register numbers against specific register classes.  */
782
 
783
/* These assume that REGNO is a hard or pseudo reg number.
784
   They give nonzero only if REGNO is a hard reg of the suitable class
785
   or a pseudo reg currently allocated to a suitable hard reg.
786
   Since they use reg_renumber, they are safe only once reg_renumber
787
   has been allocated, which happens in local-alloc.c.  */
788
 
789
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
790
#define REGNO_OK_FOR_BASE_P(REGNO) \
791
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32  \
792
 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
793
 
794
/* Maximum number of registers that can appear in a valid memory address.  */
795
#define MAX_REGS_PER_ADDRESS 1
796
 
797
/* Recognize any constant value that is a valid address.  For the Alpha,
798
   there are only constants none since we want to use LDA to load any
799
   symbolic addresses into registers.  */
800
 
801
#define CONSTANT_ADDRESS_P(X)   \
802
  (CONST_INT_P (X)              \
803
   && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
804
 
805
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
806
   and check its validity for a certain class.
807
   We have two alternate definitions for each of them.
808
   The usual definition accepts all pseudo regs; the other rejects
809
   them unless they have been allocated suitable hard regs.
810
   The symbol REG_OK_STRICT causes the latter definition to be used.
811
 
812
   Most source files want to accept pseudo regs in the hope that
813
   they will get allocated to the class that the insn wants them to be in.
814
   Source files for reload pass need to be strict.
815
   After reload, it makes no difference, since pseudo regs have
816
   been eliminated by then.  */
817
 
818
/* Nonzero if X is a hard reg that can be used as an index
819
   or if it is a pseudo reg.  */
820
#define REG_OK_FOR_INDEX_P(X) 0
821
 
822
/* Nonzero if X is a hard reg that can be used as a base reg
823
   or if it is a pseudo reg.  */
824
#define NONSTRICT_REG_OK_FOR_BASE_P(X)  \
825
  (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
826
 
827
/* ??? Nonzero if X is the frame pointer, or some virtual register
828
   that may eliminate to the frame pointer.  These will be allowed to
829
   have offsets greater than 32K.  This is done because register
830
   elimination offsets will change the hi/lo split, and if we split
831
   before reload, we will require additional instructions.  */
832
#define NONSTRICT_REG_OK_FP_BASE_P(X)           \
833
  (REGNO (X) == 31 || REGNO (X) == 63           \
834
   || (REGNO (X) >= FIRST_PSEUDO_REGISTER       \
835
       && REGNO (X) < LAST_VIRTUAL_POINTER_REGISTER))
836
 
837
/* Nonzero if X is a hard reg that can be used as a base reg.  */
838
#define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
839
 
840
#ifdef REG_OK_STRICT
841
#define REG_OK_FOR_BASE_P(X)    STRICT_REG_OK_FOR_BASE_P (X)
842
#else
843
#define REG_OK_FOR_BASE_P(X)    NONSTRICT_REG_OK_FOR_BASE_P (X)
844
#endif
845
 
846
/* Try a machine-dependent way of reloading an illegitimate address
847
   operand.  If we find one, push the reload and jump to WIN.  This
848
   macro is used in only one place: `find_reloads_address' in reload.c.  */
849
 
850
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)               \
851
do {                                                                         \
852
  rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
853
  if (new_x)                                                                 \
854
    {                                                                        \
855
      X = new_x;                                                             \
856
      goto WIN;                                                              \
857
    }                                                                        \
858
} while (0)
859
 
860
/* Go to LABEL if ADDR (a legitimate address expression)
861
   has an effect that depends on the machine mode it is used for.
862
   On the Alpha this is true only for the unaligned modes.   We can
863
   simplify this test since we know that the address must be valid.  */
864
 
865
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
866
{ if (GET_CODE (ADDR) == AND) goto LABEL; }
867
 
868
/* Specify the machine mode that this machine uses
869
   for the index in the tablejump instruction.  */
870
#define CASE_VECTOR_MODE SImode
871
 
872
/* Define as C expression which evaluates to nonzero if the tablejump
873
   instruction expects the table to contain offsets from the address of the
874
   table.
875
 
876
   Do not define this if the table should contain absolute addresses.
877
   On the Alpha, the table is really GP-relative, not relative to the PC
878
   of the table, but we pretend that it is PC-relative; this should be OK,
879
   but we should try to find some better way sometime.  */
880
#define CASE_VECTOR_PC_RELATIVE 1
881
 
882
/* Define this as 1 if `char' should by default be signed; else as 0.  */
883
#define DEFAULT_SIGNED_CHAR 1
884
 
885
/* Max number of bytes we can move to or from memory
886
   in one reasonably fast instruction.  */
887
 
888
#define MOVE_MAX 8
889
 
890
/* If a memory-to-memory move would take MOVE_RATIO or more simple
891
   move-instruction pairs, we will do a movmem or libcall instead.
892
 
893
   Without byte/word accesses, we want no more than four instructions;
894
   with, several single byte accesses are better.  */
895
 
896
#define MOVE_RATIO(speed)  (TARGET_BWX ? 7 : 2)
897
 
898
/* Largest number of bytes of an object that can be placed in a register.
899
   On the Alpha we have plenty of registers, so use TImode.  */
900
#define MAX_FIXED_MODE_SIZE     GET_MODE_BITSIZE (TImode)
901
 
902
/* Nonzero if access to memory by bytes is no faster than for words.
903
   Also nonzero if doing byte operations (specifically shifts) in registers
904
   is undesirable.
905
 
906
   On the Alpha, we want to not use the byte operation and instead use
907
   masking operations to access fields; these will save instructions.  */
908
 
909
#define SLOW_BYTE_ACCESS        1
910
 
911
/* Define if operations between registers always perform the operation
912
   on the full register even if a narrower mode is specified.  */
913
#define WORD_REGISTER_OPERATIONS
914
 
915
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
916
   will either zero-extend or sign-extend.  The value of this macro should
917
   be the code that says which one of the two operations is implicitly
918
   done, UNKNOWN if none.  */
919
#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
920
 
921
/* Define if loading short immediate values into registers sign extends.  */
922
#define SHORT_IMMEDIATES_SIGN_EXTEND
923
 
924
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
925
   is done just by pretending it is already truncated.  */
926
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
927
 
928
/* The CIX ctlz and cttz instructions return 64 for zero.  */
929
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, TARGET_CIX)
930
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, TARGET_CIX)
931
 
932
/* Define the value returned by a floating-point comparison instruction.  */
933
 
934
#define FLOAT_STORE_FLAG_VALUE(MODE) \
935
  REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
936
 
937
/* Canonicalize a comparison from one we don't have to one we do have.  */
938
 
939
#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
940
  do {                                                                  \
941
    if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
942
        && (REG_P (OP1) || (OP1) == const0_rtx))                \
943
      {                                                                 \
944
        rtx tem = (OP0);                                                \
945
        (OP0) = (OP1);                                                  \
946
        (OP1) = tem;                                                    \
947
        (CODE) = swap_condition (CODE);                                 \
948
      }                                                                 \
949
    if (((CODE) == LT || (CODE) == LTU)                                 \
950
        && CONST_INT_P (OP1) && INTVAL (OP1) == 256)                    \
951
      {                                                                 \
952
        (CODE) = (CODE) == LT ? LE : LEU;                               \
953
        (OP1) = GEN_INT (255);                                          \
954
      }                                                                 \
955
  } while (0)
956
 
957
/* Specify the machine mode that pointers have.
958
   After generation of rtl, the compiler makes no further distinction
959
   between pointers and any other objects of this machine mode.  */
960
#define Pmode DImode
961
 
962
/* Mode of a function address in a call instruction (for indexing purposes).  */
963
 
964
#define FUNCTION_MODE Pmode
965
 
966
/* Define this if addresses of constant functions
967
   shouldn't be put through pseudo regs where they can be cse'd.
968
   Desirable on machines where ordinary constants are expensive
969
   but a CALL with constant address is cheap.
970
 
971
   We define this on the Alpha so that gen_call and gen_call_value
972
   get to see the SYMBOL_REF (for the hint field of the jsr).  It will
973
   then copy it into a register, thus actually letting the address be
974
   cse'ed.  */
975
 
976
#define NO_FUNCTION_CSE
977
 
978
/* Define this to be nonzero if shift instructions ignore all but the low-order
979
   few bits.  */
980
#define SHIFT_COUNT_TRUNCATED 1
981
 
982
/* Control the assembler format that we output.  */
983
 
984
/* Output to assembler file text saying following lines
985
   may contain character constants, extra white space, comments, etc.  */
986
#define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
987
 
988
/* Output to assembler file text saying following lines
989
   no longer contain unusual constructs.  */
990
#define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
991
 
992
#define TEXT_SECTION_ASM_OP "\t.text"
993
 
994
/* Output before read-only data.  */
995
 
996
#define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
997
 
998
/* Output before writable data.  */
999
 
1000
#define DATA_SECTION_ASM_OP "\t.data"
1001
 
1002
/* How to refer to registers in assembler output.
1003
   This sequence is indexed by compiler's hard-register-number (see above).  */
1004
 
1005
#define REGISTER_NAMES                                          \
1006
{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8",          \
1007
 "$9", "$10", "$11", "$12", "$13", "$14", "$15",                \
1008
 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",        \
1009
 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP",         \
1010
 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1011
 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",         \
1012
 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1013
 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1014
 
1015
/* Strip name encoding when emitting labels.  */
1016
 
1017
#define ASM_OUTPUT_LABELREF(STREAM, NAME)       \
1018
do {                                            \
1019
  const char *name_ = NAME;                     \
1020
  if (*name_ == '@' || *name_ == '%')           \
1021
    name_ += 2;                                 \
1022
  if (*name_ == '*')                            \
1023
    name_++;                                    \
1024
  else                                          \
1025
    fputs (user_label_prefix, STREAM);          \
1026
  fputs (name_, STREAM);                        \
1027
} while (0)
1028
 
1029
/* Globalizing directive for a label.  */
1030
#define GLOBAL_ASM_OP "\t.globl "
1031
 
1032
/* The prefix to add to user-visible assembler symbols.  */
1033
 
1034
#define USER_LABEL_PREFIX ""
1035
 
1036
/* This is how to output a label for a jump table.  Arguments are the same as
1037
   for (*targetm.asm_out.internal_label), except the insn for the jump table is
1038
   passed.  */
1039
 
1040
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN)        \
1041
{ ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1042
 
1043
/* This is how to store into the string LABEL
1044
   the symbol_ref name of an internal numbered label where
1045
   PREFIX is the class of label and NUM is the number within the class.
1046
   This is suitable for output with `assemble_name'.  */
1047
 
1048
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1049
  sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1050
 
1051
/* We use the default ASCII-output routine, except that we don't write more
1052
   than 50 characters since the assembler doesn't support very long lines.  */
1053
 
1054
#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1055
  do {                                                                        \
1056
    FILE *_hide_asm_out_file = (MYFILE);                                      \
1057
    const unsigned char *_hide_p = (const unsigned char *) (MYSTRING);        \
1058
    int _hide_thissize = (MYLENGTH);                                          \
1059
    int _size_so_far = 0;                                                      \
1060
    {                                                                         \
1061
      FILE *asm_out_file = _hide_asm_out_file;                                \
1062
      const unsigned char *p = _hide_p;                                       \
1063
      int thissize = _hide_thissize;                                          \
1064
      int i;                                                                  \
1065
      fprintf (asm_out_file, "\t.ascii \"");                                  \
1066
                                                                              \
1067
      for (i = 0; i < thissize; i++)                                           \
1068
        {                                                                     \
1069
          register int c = p[i];                                              \
1070
                                                                              \
1071
          if (_size_so_far ++ > 50 && i < thissize - 4)                       \
1072
            _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");      \
1073
                                                                              \
1074
          if (c == '\"' || c == '\\')                                         \
1075
            putc ('\\', asm_out_file);                                        \
1076
          if (c >= ' ' && c < 0177)                                           \
1077
            putc (c, asm_out_file);                                           \
1078
          else                                                                \
1079
            {                                                                 \
1080
              fprintf (asm_out_file, "\\%o", c);                              \
1081
              /* After an octal-escape, if a digit follows,                   \
1082
                 terminate one string constant and start another.             \
1083
                 The VAX assembler fails to stop reading the escape           \
1084
                 after three digits, so this is the only way we               \
1085
                 can get it to parse the data properly.  */                   \
1086
              if (i < thissize - 1 && ISDIGIT (p[i + 1]))                     \
1087
                _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");  \
1088
          }                                                                   \
1089
        }                                                                     \
1090
      fprintf (asm_out_file, "\"\n");                                         \
1091
    }                                                                         \
1092
  }                                                                           \
1093
  while (0)
1094
 
1095
/* This is how to output an element of a case-vector that is relative.  */
1096
 
1097
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1098
  fprintf (FILE, "\t.gprel32 $L%d\n", (VALUE))
1099
 
1100
/* This is how to output an assembler line
1101
   that says to advance the location counter
1102
   to a multiple of 2**LOG bytes.  */
1103
 
1104
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
1105
  if ((LOG) != 0)                        \
1106
    fprintf (FILE, "\t.align %d\n", LOG);
1107
 
1108
/* This is how to advance the location counter by SIZE bytes.  */
1109
 
1110
#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1111
  fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1112
 
1113
/* This says how to output an assembler line
1114
   to define a global common symbol.  */
1115
 
1116
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1117
( fputs ("\t.comm ", (FILE)),                   \
1118
  assemble_name ((FILE), (NAME)),               \
1119
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1120
 
1121
/* This says how to output an assembler line
1122
   to define a local common symbol.  */
1123
 
1124
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED)      \
1125
( fputs ("\t.lcomm ", (FILE)),                          \
1126
  assemble_name ((FILE), (NAME)),                       \
1127
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1128
 
1129
 
1130
/* Print operand X (an rtx) in assembler syntax to file FILE.
1131
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1132
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1133
 
1134
#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
1135
 
1136
/* Determine which codes are valid without a following integer.  These must
1137
   not be alphabetic.
1138
 
1139
   ~    Generates the name of the current function.
1140
 
1141
   /    Generates the instruction suffix.  The TRAP_SUFFIX and ROUND_SUFFIX
1142
        attributes are examined to determine what is appropriate.
1143
 
1144
   ,    Generates single precision suffix for floating point
1145
        instructions (s for IEEE, f for VAX)
1146
 
1147
   -    Generates double precision suffix for floating point
1148
        instructions (t for IEEE, g for VAX)
1149
   */
1150
 
1151
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1152
  ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1153
   || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1154
 
1155
/* Print a memory address as an operand to reference that memory location.  */
1156
 
1157
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1158
  print_operand_address((FILE), (ADDR))
1159
 
1160
/* Tell collect that the object format is ECOFF.  */
1161
#define OBJECT_FORMAT_COFF
1162
#define EXTENDED_COFF
1163
 
1164
/* If we use NM, pass -g to it so it only lists globals.  */
1165
#define NM_FLAGS "-pg"
1166
 
1167
/* Definitions for debugging.  */
1168
 
1169
#define SDB_DEBUGGING_INFO 1            /* generate info for mips-tfile */
1170
#define DBX_DEBUGGING_INFO 1            /* generate embedded stabs */
1171
#define MIPS_DEBUGGING_INFO 1           /* MIPS specific debugging info */
1172
 
1173
#ifndef PREFERRED_DEBUGGING_TYPE        /* assume SDB_DEBUGGING_INFO */
1174
#define PREFERRED_DEBUGGING_TYPE  SDB_DEBUG
1175
#endif
1176
 
1177
 
1178
/* Correct the offset of automatic variables and arguments.  Note that
1179
   the Alpha debug format wants all automatic variables and arguments
1180
   to be in terms of two different offsets from the virtual frame pointer,
1181
   which is the stack pointer before any adjustment in the function.
1182
   The offset for the argument pointer is fixed for the native compiler,
1183
   it is either zero (for the no arguments case) or large enough to hold
1184
   all argument registers.
1185
   The offset for the auto pointer is the fourth argument to the .frame
1186
   directive (local_offset).
1187
   To stay compatible with the native tools we use the same offsets
1188
   from the virtual frame pointer and adjust the debugger arg/auto offsets
1189
   accordingly. These debugger offsets are set up in output_prolog.  */
1190
 
1191
extern long alpha_arg_offset;
1192
extern long alpha_auto_offset;
1193
#define DEBUGGER_AUTO_OFFSET(X) \
1194
  ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1195
#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1196
 
1197
/* mips-tfile doesn't understand .stabd directives.  */
1198
#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {      \
1199
  dbxout_begin_stabn_sline (LINE);                              \
1200
  dbxout_stab_value_internal_label ("LM", &COUNTER);            \
1201
} while (0)
1202
 
1203
/* We want to use MIPS-style .loc directives for SDB line numbers.  */
1204
extern int num_source_filenames;
1205
#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)    \
1206
  fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
1207
 
1208
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)                        \
1209
  alpha_output_filename (STREAM, NAME)
1210
 
1211
/* mips-tfile.c limits us to strings of one page.  We must underestimate this
1212
   number, because the real length runs past this up to the next
1213
   continuation point.  This is really a dbxout.c bug.  */
1214
#define DBX_CONTIN_LENGTH 3000
1215
 
1216
/* By default, turn on GDB extensions.  */
1217
#define DEFAULT_GDB_EXTENSIONS 1
1218
 
1219
/* Stabs-in-ECOFF can't handle dbxout_function_end().  */
1220
#define NO_DBX_FUNCTION_END 1
1221
 
1222
/* If we are smuggling stabs through the ALPHA ECOFF object
1223
   format, put a comment in front of the .stab<x> operation so
1224
   that the ALPHA assembler does not choke.  The mips-tfile program
1225
   will correctly put the stab into the object file.  */
1226
 
1227
#define ASM_STABS_OP    ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1228
#define ASM_STABN_OP    ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1229
#define ASM_STABD_OP    ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1230
 
1231
/* Forward references to tags are allowed.  */
1232
#define SDB_ALLOW_FORWARD_REFERENCES
1233
 
1234
/* Unknown tags are also allowed.  */
1235
#define SDB_ALLOW_UNKNOWN_REFERENCES
1236
 
1237
#define PUT_SDB_DEF(a)                                  \
1238
do {                                                    \
1239
  fprintf (asm_out_file, "\t%s.def\t",                  \
1240
           (TARGET_GAS) ? "" : "#");                    \
1241
  ASM_OUTPUT_LABELREF (asm_out_file, a);                \
1242
  fputc (';', asm_out_file);                            \
1243
} while (0)
1244
 
1245
#define PUT_SDB_PLAIN_DEF(a)                            \
1246
do {                                                    \
1247
  fprintf (asm_out_file, "\t%s.def\t.%s;",              \
1248
           (TARGET_GAS) ? "" : "#", (a));               \
1249
} while (0)
1250
 
1251
#define PUT_SDB_TYPE(a)                                 \
1252
do {                                                    \
1253
  fprintf (asm_out_file, "\t.type\t0x%x;", (a));        \
1254
} while (0)
1255
 
1256
/* For block start and end, we create labels, so that
1257
   later we can figure out where the correct offset is.
1258
   The normal .ent/.end serve well enough for functions,
1259
   so those are just commented out.  */
1260
 
1261
extern int sdb_label_count;             /* block start/end next label # */
1262
 
1263
#define PUT_SDB_BLOCK_START(LINE)                       \
1264
do {                                                    \
1265
  fprintf (asm_out_file,                                \
1266
           "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n",           \
1267
           sdb_label_count,                             \
1268
           (TARGET_GAS) ? "" : "#",                     \
1269
           sdb_label_count,                             \
1270
           (LINE));                                     \
1271
  sdb_label_count++;                                    \
1272
} while (0)
1273
 
1274
#define PUT_SDB_BLOCK_END(LINE)                         \
1275
do {                                                    \
1276
  fprintf (asm_out_file,                                \
1277
           "$Le%d:\n\t%s.bend\t$Le%d\t%d\n",            \
1278
           sdb_label_count,                             \
1279
           (TARGET_GAS) ? "" : "#",                     \
1280
           sdb_label_count,                             \
1281
           (LINE));                                     \
1282
  sdb_label_count++;                                    \
1283
} while (0)
1284
 
1285
#define PUT_SDB_FUNCTION_START(LINE)
1286
 
1287
#define PUT_SDB_FUNCTION_END(LINE)
1288
 
1289
#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1290
 
1291
/* The system headers under Alpha systems are generally C++-aware.  */
1292
#define NO_IMPLICIT_EXTERN_C

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.