1 |
709 |
jeremybenn |
/* Output routines for GCC for ARM.
|
2 |
|
|
Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
|
3 |
|
|
2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
|
6 |
|
|
and Martin Simmons (@harleqn.co.uk).
|
7 |
|
|
More major hacks by Richard Earnshaw (rearnsha@arm.com).
|
8 |
|
|
|
9 |
|
|
This file is part of GCC.
|
10 |
|
|
|
11 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
12 |
|
|
under the terms of the GNU General Public License as published
|
13 |
|
|
by the Free Software Foundation; either version 3, or (at your
|
14 |
|
|
option) any later version.
|
15 |
|
|
|
16 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
17 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
18 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
19 |
|
|
License for more details.
|
20 |
|
|
|
21 |
|
|
You should have received a copy of the GNU General Public License
|
22 |
|
|
along with GCC; see the file COPYING3. If not see
|
23 |
|
|
<http://www.gnu.org/licenses/>. */
|
24 |
|
|
|
25 |
|
|
#include "config.h"
|
26 |
|
|
#include "system.h"
|
27 |
|
|
#include "coretypes.h"
|
28 |
|
|
#include "tm.h"
|
29 |
|
|
#include "rtl.h"
|
30 |
|
|
#include "tree.h"
|
31 |
|
|
#include "obstack.h"
|
32 |
|
|
#include "regs.h"
|
33 |
|
|
#include "hard-reg-set.h"
|
34 |
|
|
#include "insn-config.h"
|
35 |
|
|
#include "conditions.h"
|
36 |
|
|
#include "output.h"
|
37 |
|
|
#include "insn-attr.h"
|
38 |
|
|
#include "flags.h"
|
39 |
|
|
#include "reload.h"
|
40 |
|
|
#include "function.h"
|
41 |
|
|
#include "expr.h"
|
42 |
|
|
#include "optabs.h"
|
43 |
|
|
#include "diagnostic-core.h"
|
44 |
|
|
#include "recog.h"
|
45 |
|
|
#include "cgraph.h"
|
46 |
|
|
#include "ggc.h"
|
47 |
|
|
#include "except.h"
|
48 |
|
|
#include "c-family/c-pragma.h" /* ??? */
|
49 |
|
|
#include "integrate.h"
|
50 |
|
|
#include "tm_p.h"
|
51 |
|
|
#include "target.h"
|
52 |
|
|
#include "target-def.h"
|
53 |
|
|
#include "debug.h"
|
54 |
|
|
#include "langhooks.h"
|
55 |
|
|
#include "df.h"
|
56 |
|
|
#include "intl.h"
|
57 |
|
|
#include "libfuncs.h"
|
58 |
|
|
#include "params.h"
|
59 |
|
|
#include "opts.h"
|
60 |
|
|
|
61 |
|
|
/* Forward definitions of types. */
|
62 |
|
|
typedef struct minipool_node Mnode;
|
63 |
|
|
typedef struct minipool_fixup Mfix;
|
64 |
|
|
|
65 |
|
|
void (*arm_lang_output_object_attributes_hook)(void);
|
66 |
|
|
|
67 |
|
|
struct four_ints
|
68 |
|
|
{
|
69 |
|
|
int i[4];
|
70 |
|
|
};
|
71 |
|
|
|
72 |
|
|
/* Forward function declarations. */
|
73 |
|
|
static bool arm_needs_doubleword_align (enum machine_mode, const_tree);
|
74 |
|
|
static int arm_compute_static_chain_stack_bytes (void);
|
75 |
|
|
static arm_stack_offsets *arm_get_frame_offsets (void);
|
76 |
|
|
static void arm_add_gc_roots (void);
|
77 |
|
|
static int arm_gen_constant (enum rtx_code, enum machine_mode, rtx,
|
78 |
|
|
HOST_WIDE_INT, rtx, rtx, int, int);
|
79 |
|
|
static unsigned bit_count (unsigned long);
|
80 |
|
|
static int arm_address_register_rtx_p (rtx, int);
|
81 |
|
|
static int arm_legitimate_index_p (enum machine_mode, rtx, RTX_CODE, int);
|
82 |
|
|
static int thumb2_legitimate_index_p (enum machine_mode, rtx, int);
|
83 |
|
|
static int thumb1_base_register_rtx_p (rtx, enum machine_mode, int);
|
84 |
|
|
static rtx arm_legitimize_address (rtx, rtx, enum machine_mode);
|
85 |
|
|
static rtx thumb_legitimize_address (rtx, rtx, enum machine_mode);
|
86 |
|
|
inline static int thumb1_index_register_rtx_p (rtx, int);
|
87 |
|
|
static bool arm_legitimate_address_p (enum machine_mode, rtx, bool);
|
88 |
|
|
static int thumb_far_jump_used_p (void);
|
89 |
|
|
static bool thumb_force_lr_save (void);
|
90 |
|
|
static rtx emit_sfm (int, int);
|
91 |
|
|
static unsigned arm_size_return_regs (void);
|
92 |
|
|
static bool arm_assemble_integer (rtx, unsigned int, int);
|
93 |
|
|
static void arm_print_operand (FILE *, rtx, int);
|
94 |
|
|
static void arm_print_operand_address (FILE *, rtx);
|
95 |
|
|
static bool arm_print_operand_punct_valid_p (unsigned char code);
|
96 |
|
|
static const char *fp_const_from_val (REAL_VALUE_TYPE *);
|
97 |
|
|
static arm_cc get_arm_condition_code (rtx);
|
98 |
|
|
static HOST_WIDE_INT int_log2 (HOST_WIDE_INT);
|
99 |
|
|
static rtx is_jump_table (rtx);
|
100 |
|
|
static const char *output_multi_immediate (rtx *, const char *, const char *,
|
101 |
|
|
int, HOST_WIDE_INT);
|
102 |
|
|
static const char *shift_op (rtx, HOST_WIDE_INT *);
|
103 |
|
|
static struct machine_function *arm_init_machine_status (void);
|
104 |
|
|
static void thumb_exit (FILE *, int);
|
105 |
|
|
static rtx is_jump_table (rtx);
|
106 |
|
|
static HOST_WIDE_INT get_jump_table_size (rtx);
|
107 |
|
|
static Mnode *move_minipool_fix_forward_ref (Mnode *, Mnode *, HOST_WIDE_INT);
|
108 |
|
|
static Mnode *add_minipool_forward_ref (Mfix *);
|
109 |
|
|
static Mnode *move_minipool_fix_backward_ref (Mnode *, Mnode *, HOST_WIDE_INT);
|
110 |
|
|
static Mnode *add_minipool_backward_ref (Mfix *);
|
111 |
|
|
static void assign_minipool_offsets (Mfix *);
|
112 |
|
|
static void arm_print_value (FILE *, rtx);
|
113 |
|
|
static void dump_minipool (rtx);
|
114 |
|
|
static int arm_barrier_cost (rtx);
|
115 |
|
|
static Mfix *create_fix_barrier (Mfix *, HOST_WIDE_INT);
|
116 |
|
|
static void push_minipool_barrier (rtx, HOST_WIDE_INT);
|
117 |
|
|
static void push_minipool_fix (rtx, HOST_WIDE_INT, rtx *, enum machine_mode,
|
118 |
|
|
rtx);
|
119 |
|
|
static void arm_reorg (void);
|
120 |
|
|
static bool note_invalid_constants (rtx, HOST_WIDE_INT, int);
|
121 |
|
|
static unsigned long arm_compute_save_reg0_reg12_mask (void);
|
122 |
|
|
static unsigned long arm_compute_save_reg_mask (void);
|
123 |
|
|
static unsigned long arm_isr_value (tree);
|
124 |
|
|
static unsigned long arm_compute_func_type (void);
|
125 |
|
|
static tree arm_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
|
126 |
|
|
static tree arm_handle_pcs_attribute (tree *, tree, tree, int, bool *);
|
127 |
|
|
static tree arm_handle_isr_attribute (tree *, tree, tree, int, bool *);
|
128 |
|
|
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
|
129 |
|
|
static tree arm_handle_notshared_attribute (tree *, tree, tree, int, bool *);
|
130 |
|
|
#endif
|
131 |
|
|
static void arm_output_function_epilogue (FILE *, HOST_WIDE_INT);
|
132 |
|
|
static void arm_output_function_prologue (FILE *, HOST_WIDE_INT);
|
133 |
|
|
static int arm_comp_type_attributes (const_tree, const_tree);
|
134 |
|
|
static void arm_set_default_type_attributes (tree);
|
135 |
|
|
static int arm_adjust_cost (rtx, rtx, rtx, int);
|
136 |
|
|
static int optimal_immediate_sequence (enum rtx_code code,
|
137 |
|
|
unsigned HOST_WIDE_INT val,
|
138 |
|
|
struct four_ints *return_sequence);
|
139 |
|
|
static int optimal_immediate_sequence_1 (enum rtx_code code,
|
140 |
|
|
unsigned HOST_WIDE_INT val,
|
141 |
|
|
struct four_ints *return_sequence,
|
142 |
|
|
int i);
|
143 |
|
|
static int arm_get_strip_length (int);
|
144 |
|
|
static bool arm_function_ok_for_sibcall (tree, tree);
|
145 |
|
|
static enum machine_mode arm_promote_function_mode (const_tree,
|
146 |
|
|
enum machine_mode, int *,
|
147 |
|
|
const_tree, int);
|
148 |
|
|
static bool arm_return_in_memory (const_tree, const_tree);
|
149 |
|
|
static rtx arm_function_value (const_tree, const_tree, bool);
|
150 |
|
|
static rtx arm_libcall_value_1 (enum machine_mode);
|
151 |
|
|
static rtx arm_libcall_value (enum machine_mode, const_rtx);
|
152 |
|
|
static bool arm_function_value_regno_p (const unsigned int);
|
153 |
|
|
static void arm_internal_label (FILE *, const char *, unsigned long);
|
154 |
|
|
static void arm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
|
155 |
|
|
tree);
|
156 |
|
|
static bool arm_have_conditional_execution (void);
|
157 |
|
|
static bool arm_cannot_force_const_mem (enum machine_mode, rtx);
|
158 |
|
|
static bool arm_legitimate_constant_p (enum machine_mode, rtx);
|
159 |
|
|
static bool arm_rtx_costs_1 (rtx, enum rtx_code, int*, bool);
|
160 |
|
|
static bool arm_size_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *);
|
161 |
|
|
static bool arm_slowmul_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *, bool);
|
162 |
|
|
static bool arm_fastmul_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *, bool);
|
163 |
|
|
static bool arm_xscale_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *, bool);
|
164 |
|
|
static bool arm_9e_rtx_costs (rtx, enum rtx_code, enum rtx_code, int *, bool);
|
165 |
|
|
static bool arm_rtx_costs (rtx, int, int, int, int *, bool);
|
166 |
|
|
static int arm_address_cost (rtx, bool);
|
167 |
|
|
static int arm_register_move_cost (enum machine_mode, reg_class_t, reg_class_t);
|
168 |
|
|
static int arm_memory_move_cost (enum machine_mode, reg_class_t, bool);
|
169 |
|
|
static bool arm_memory_load_p (rtx);
|
170 |
|
|
static bool arm_cirrus_insn_p (rtx);
|
171 |
|
|
static void cirrus_reorg (rtx);
|
172 |
|
|
static void arm_init_builtins (void);
|
173 |
|
|
static void arm_init_iwmmxt_builtins (void);
|
174 |
|
|
static rtx safe_vector_operand (rtx, enum machine_mode);
|
175 |
|
|
static rtx arm_expand_binop_builtin (enum insn_code, tree, rtx);
|
176 |
|
|
static rtx arm_expand_unop_builtin (enum insn_code, tree, rtx, int);
|
177 |
|
|
static rtx arm_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
|
178 |
|
|
static tree arm_builtin_decl (unsigned, bool);
|
179 |
|
|
static void emit_constant_insn (rtx cond, rtx pattern);
|
180 |
|
|
static rtx emit_set_insn (rtx, rtx);
|
181 |
|
|
static int arm_arg_partial_bytes (cumulative_args_t, enum machine_mode,
|
182 |
|
|
tree, bool);
|
183 |
|
|
static rtx arm_function_arg (cumulative_args_t, enum machine_mode,
|
184 |
|
|
const_tree, bool);
|
185 |
|
|
static void arm_function_arg_advance (cumulative_args_t, enum machine_mode,
|
186 |
|
|
const_tree, bool);
|
187 |
|
|
static unsigned int arm_function_arg_boundary (enum machine_mode, const_tree);
|
188 |
|
|
static rtx aapcs_allocate_return_reg (enum machine_mode, const_tree,
|
189 |
|
|
const_tree);
|
190 |
|
|
static rtx aapcs_libcall_value (enum machine_mode);
|
191 |
|
|
static int aapcs_select_return_coproc (const_tree, const_tree);
|
192 |
|
|
|
193 |
|
|
#ifdef OBJECT_FORMAT_ELF
|
194 |
|
|
static void arm_elf_asm_constructor (rtx, int) ATTRIBUTE_UNUSED;
|
195 |
|
|
static void arm_elf_asm_destructor (rtx, int) ATTRIBUTE_UNUSED;
|
196 |
|
|
#endif
|
197 |
|
|
#ifndef ARM_PE
|
198 |
|
|
static void arm_encode_section_info (tree, rtx, int);
|
199 |
|
|
#endif
|
200 |
|
|
|
201 |
|
|
static void arm_file_end (void);
|
202 |
|
|
static void arm_file_start (void);
|
203 |
|
|
|
204 |
|
|
static void arm_setup_incoming_varargs (cumulative_args_t, enum machine_mode,
|
205 |
|
|
tree, int *, int);
|
206 |
|
|
static bool arm_pass_by_reference (cumulative_args_t,
|
207 |
|
|
enum machine_mode, const_tree, bool);
|
208 |
|
|
static bool arm_promote_prototypes (const_tree);
|
209 |
|
|
static bool arm_default_short_enums (void);
|
210 |
|
|
static bool arm_align_anon_bitfield (void);
|
211 |
|
|
static bool arm_return_in_msb (const_tree);
|
212 |
|
|
static bool arm_must_pass_in_stack (enum machine_mode, const_tree);
|
213 |
|
|
static bool arm_return_in_memory (const_tree, const_tree);
|
214 |
|
|
#if ARM_UNWIND_INFO
|
215 |
|
|
static void arm_unwind_emit (FILE *, rtx);
|
216 |
|
|
static bool arm_output_ttype (rtx);
|
217 |
|
|
static void arm_asm_emit_except_personality (rtx);
|
218 |
|
|
static void arm_asm_init_sections (void);
|
219 |
|
|
#endif
|
220 |
|
|
static rtx arm_dwarf_register_span (rtx);
|
221 |
|
|
|
222 |
|
|
static tree arm_cxx_guard_type (void);
|
223 |
|
|
static bool arm_cxx_guard_mask_bit (void);
|
224 |
|
|
static tree arm_get_cookie_size (tree);
|
225 |
|
|
static bool arm_cookie_has_size (void);
|
226 |
|
|
static bool arm_cxx_cdtor_returns_this (void);
|
227 |
|
|
static bool arm_cxx_key_method_may_be_inline (void);
|
228 |
|
|
static void arm_cxx_determine_class_data_visibility (tree);
|
229 |
|
|
static bool arm_cxx_class_data_always_comdat (void);
|
230 |
|
|
static bool arm_cxx_use_aeabi_atexit (void);
|
231 |
|
|
static void arm_init_libfuncs (void);
|
232 |
|
|
static tree arm_build_builtin_va_list (void);
|
233 |
|
|
static void arm_expand_builtin_va_start (tree, rtx);
|
234 |
|
|
static tree arm_gimplify_va_arg_expr (tree, tree, gimple_seq *, gimple_seq *);
|
235 |
|
|
static void arm_option_override (void);
|
236 |
|
|
static unsigned HOST_WIDE_INT arm_shift_truncation_mask (enum machine_mode);
|
237 |
|
|
static bool arm_cannot_copy_insn_p (rtx);
|
238 |
|
|
static bool arm_tls_symbol_p (rtx x);
|
239 |
|
|
static int arm_issue_rate (void);
|
240 |
|
|
static void arm_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
|
241 |
|
|
static bool arm_output_addr_const_extra (FILE *, rtx);
|
242 |
|
|
static bool arm_allocate_stack_slots_for_args (void);
|
243 |
|
|
static const char *arm_invalid_parameter_type (const_tree t);
|
244 |
|
|
static const char *arm_invalid_return_type (const_tree t);
|
245 |
|
|
static tree arm_promoted_type (const_tree t);
|
246 |
|
|
static tree arm_convert_to_type (tree type, tree expr);
|
247 |
|
|
static bool arm_scalar_mode_supported_p (enum machine_mode);
|
248 |
|
|
static bool arm_frame_pointer_required (void);
|
249 |
|
|
static bool arm_can_eliminate (const int, const int);
|
250 |
|
|
static void arm_asm_trampoline_template (FILE *);
|
251 |
|
|
static void arm_trampoline_init (rtx, tree, rtx);
|
252 |
|
|
static rtx arm_trampoline_adjust_address (rtx);
|
253 |
|
|
static rtx arm_pic_static_addr (rtx orig, rtx reg);
|
254 |
|
|
static bool cortex_a9_sched_adjust_cost (rtx, rtx, rtx, int *);
|
255 |
|
|
static bool xscale_sched_adjust_cost (rtx, rtx, rtx, int *);
|
256 |
|
|
static bool fa726te_sched_adjust_cost (rtx, rtx, rtx, int *);
|
257 |
|
|
static bool arm_array_mode_supported_p (enum machine_mode,
|
258 |
|
|
unsigned HOST_WIDE_INT);
|
259 |
|
|
static enum machine_mode arm_preferred_simd_mode (enum machine_mode);
|
260 |
|
|
static bool arm_class_likely_spilled_p (reg_class_t);
|
261 |
|
|
static bool arm_vector_alignment_reachable (const_tree type, bool is_packed);
|
262 |
|
|
static bool arm_builtin_support_vector_misalignment (enum machine_mode mode,
|
263 |
|
|
const_tree type,
|
264 |
|
|
int misalignment,
|
265 |
|
|
bool is_packed);
|
266 |
|
|
static void arm_conditional_register_usage (void);
|
267 |
|
|
static reg_class_t arm_preferred_rename_class (reg_class_t rclass);
|
268 |
|
|
static unsigned int arm_autovectorize_vector_sizes (void);
|
269 |
|
|
static int arm_default_branch_cost (bool, bool);
|
270 |
|
|
static int arm_cortex_a5_branch_cost (bool, bool);
|
271 |
|
|
|
272 |
|
|
static bool arm_vectorize_vec_perm_const_ok (enum machine_mode vmode,
|
273 |
|
|
const unsigned char *sel);
|
274 |
|
|
|
275 |
|
|
|
276 |
|
|
/* Table of machine attributes. */
|
277 |
|
|
static const struct attribute_spec arm_attribute_table[] =
|
278 |
|
|
{
|
279 |
|
|
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
|
280 |
|
|
affects_type_identity } */
|
281 |
|
|
/* Function calls made to this symbol must be done indirectly, because
|
282 |
|
|
it may lie outside of the 26 bit addressing range of a normal function
|
283 |
|
|
call. */
|
284 |
|
|
{ "long_call", 0, 0, false, true, true, NULL, false },
|
285 |
|
|
/* Whereas these functions are always known to reside within the 26 bit
|
286 |
|
|
addressing range. */
|
287 |
|
|
{ "short_call", 0, 0, false, true, true, NULL, false },
|
288 |
|
|
/* Specify the procedure call conventions for a function. */
|
289 |
|
|
{ "pcs", 1, 1, false, true, true, arm_handle_pcs_attribute,
|
290 |
|
|
false },
|
291 |
|
|
/* Interrupt Service Routines have special prologue and epilogue requirements. */
|
292 |
|
|
{ "isr", 0, 1, false, false, false, arm_handle_isr_attribute,
|
293 |
|
|
false },
|
294 |
|
|
{ "interrupt", 0, 1, false, false, false, arm_handle_isr_attribute,
|
295 |
|
|
false },
|
296 |
|
|
{ "naked", 0, 0, true, false, false, arm_handle_fndecl_attribute,
|
297 |
|
|
false },
|
298 |
|
|
#ifdef ARM_PE
|
299 |
|
|
/* ARM/PE has three new attributes:
|
300 |
|
|
interfacearm - ?
|
301 |
|
|
dllexport - for exporting a function/variable that will live in a dll
|
302 |
|
|
dllimport - for importing a function/variable from a dll
|
303 |
|
|
|
304 |
|
|
Microsoft allows multiple declspecs in one __declspec, separating
|
305 |
|
|
them with spaces. We do NOT support this. Instead, use __declspec
|
306 |
|
|
multiple times.
|
307 |
|
|
*/
|
308 |
|
|
{ "dllimport", 0, 0, true, false, false, NULL, false },
|
309 |
|
|
{ "dllexport", 0, 0, true, false, false, NULL, false },
|
310 |
|
|
{ "interfacearm", 0, 0, true, false, false, arm_handle_fndecl_attribute,
|
311 |
|
|
false },
|
312 |
|
|
#elif TARGET_DLLIMPORT_DECL_ATTRIBUTES
|
313 |
|
|
{ "dllimport", 0, 0, false, false, false, handle_dll_attribute, false },
|
314 |
|
|
{ "dllexport", 0, 0, false, false, false, handle_dll_attribute, false },
|
315 |
|
|
{ "notshared", 0, 0, false, true, false, arm_handle_notshared_attribute,
|
316 |
|
|
false },
|
317 |
|
|
#endif
|
318 |
|
|
{ NULL, 0, 0, false, false, false, NULL, false }
|
319 |
|
|
};
|
320 |
|
|
|
321 |
|
|
/* Initialize the GCC target structure. */
|
322 |
|
|
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
|
323 |
|
|
#undef TARGET_MERGE_DECL_ATTRIBUTES
|
324 |
|
|
#define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
|
325 |
|
|
#endif
|
326 |
|
|
|
327 |
|
|
#undef TARGET_LEGITIMIZE_ADDRESS
|
328 |
|
|
#define TARGET_LEGITIMIZE_ADDRESS arm_legitimize_address
|
329 |
|
|
|
330 |
|
|
#undef TARGET_ATTRIBUTE_TABLE
|
331 |
|
|
#define TARGET_ATTRIBUTE_TABLE arm_attribute_table
|
332 |
|
|
|
333 |
|
|
#undef TARGET_ASM_FILE_START
|
334 |
|
|
#define TARGET_ASM_FILE_START arm_file_start
|
335 |
|
|
#undef TARGET_ASM_FILE_END
|
336 |
|
|
#define TARGET_ASM_FILE_END arm_file_end
|
337 |
|
|
|
338 |
|
|
#undef TARGET_ASM_ALIGNED_SI_OP
|
339 |
|
|
#define TARGET_ASM_ALIGNED_SI_OP NULL
|
340 |
|
|
#undef TARGET_ASM_INTEGER
|
341 |
|
|
#define TARGET_ASM_INTEGER arm_assemble_integer
|
342 |
|
|
|
343 |
|
|
#undef TARGET_PRINT_OPERAND
|
344 |
|
|
#define TARGET_PRINT_OPERAND arm_print_operand
|
345 |
|
|
#undef TARGET_PRINT_OPERAND_ADDRESS
|
346 |
|
|
#define TARGET_PRINT_OPERAND_ADDRESS arm_print_operand_address
|
347 |
|
|
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
|
348 |
|
|
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P arm_print_operand_punct_valid_p
|
349 |
|
|
|
350 |
|
|
#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
|
351 |
|
|
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA arm_output_addr_const_extra
|
352 |
|
|
|
353 |
|
|
#undef TARGET_ASM_FUNCTION_PROLOGUE
|
354 |
|
|
#define TARGET_ASM_FUNCTION_PROLOGUE arm_output_function_prologue
|
355 |
|
|
|
356 |
|
|
#undef TARGET_ASM_FUNCTION_EPILOGUE
|
357 |
|
|
#define TARGET_ASM_FUNCTION_EPILOGUE arm_output_function_epilogue
|
358 |
|
|
|
359 |
|
|
#undef TARGET_OPTION_OVERRIDE
|
360 |
|
|
#define TARGET_OPTION_OVERRIDE arm_option_override
|
361 |
|
|
|
362 |
|
|
#undef TARGET_COMP_TYPE_ATTRIBUTES
|
363 |
|
|
#define TARGET_COMP_TYPE_ATTRIBUTES arm_comp_type_attributes
|
364 |
|
|
|
365 |
|
|
#undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
|
366 |
|
|
#define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES arm_set_default_type_attributes
|
367 |
|
|
|
368 |
|
|
#undef TARGET_SCHED_ADJUST_COST
|
369 |
|
|
#define TARGET_SCHED_ADJUST_COST arm_adjust_cost
|
370 |
|
|
|
371 |
|
|
#undef TARGET_REGISTER_MOVE_COST
|
372 |
|
|
#define TARGET_REGISTER_MOVE_COST arm_register_move_cost
|
373 |
|
|
|
374 |
|
|
#undef TARGET_MEMORY_MOVE_COST
|
375 |
|
|
#define TARGET_MEMORY_MOVE_COST arm_memory_move_cost
|
376 |
|
|
|
377 |
|
|
#undef TARGET_ENCODE_SECTION_INFO
|
378 |
|
|
#ifdef ARM_PE
|
379 |
|
|
#define TARGET_ENCODE_SECTION_INFO arm_pe_encode_section_info
|
380 |
|
|
#else
|
381 |
|
|
#define TARGET_ENCODE_SECTION_INFO arm_encode_section_info
|
382 |
|
|
#endif
|
383 |
|
|
|
384 |
|
|
#undef TARGET_STRIP_NAME_ENCODING
|
385 |
|
|
#define TARGET_STRIP_NAME_ENCODING arm_strip_name_encoding
|
386 |
|
|
|
387 |
|
|
#undef TARGET_ASM_INTERNAL_LABEL
|
388 |
|
|
#define TARGET_ASM_INTERNAL_LABEL arm_internal_label
|
389 |
|
|
|
390 |
|
|
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
|
391 |
|
|
#define TARGET_FUNCTION_OK_FOR_SIBCALL arm_function_ok_for_sibcall
|
392 |
|
|
|
393 |
|
|
#undef TARGET_FUNCTION_VALUE
|
394 |
|
|
#define TARGET_FUNCTION_VALUE arm_function_value
|
395 |
|
|
|
396 |
|
|
#undef TARGET_LIBCALL_VALUE
|
397 |
|
|
#define TARGET_LIBCALL_VALUE arm_libcall_value
|
398 |
|
|
|
399 |
|
|
#undef TARGET_FUNCTION_VALUE_REGNO_P
|
400 |
|
|
#define TARGET_FUNCTION_VALUE_REGNO_P arm_function_value_regno_p
|
401 |
|
|
|
402 |
|
|
#undef TARGET_ASM_OUTPUT_MI_THUNK
|
403 |
|
|
#define TARGET_ASM_OUTPUT_MI_THUNK arm_output_mi_thunk
|
404 |
|
|
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
|
405 |
|
|
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
|
406 |
|
|
|
407 |
|
|
#undef TARGET_RTX_COSTS
|
408 |
|
|
#define TARGET_RTX_COSTS arm_rtx_costs
|
409 |
|
|
#undef TARGET_ADDRESS_COST
|
410 |
|
|
#define TARGET_ADDRESS_COST arm_address_cost
|
411 |
|
|
|
412 |
|
|
#undef TARGET_SHIFT_TRUNCATION_MASK
|
413 |
|
|
#define TARGET_SHIFT_TRUNCATION_MASK arm_shift_truncation_mask
|
414 |
|
|
#undef TARGET_VECTOR_MODE_SUPPORTED_P
|
415 |
|
|
#define TARGET_VECTOR_MODE_SUPPORTED_P arm_vector_mode_supported_p
|
416 |
|
|
#undef TARGET_ARRAY_MODE_SUPPORTED_P
|
417 |
|
|
#define TARGET_ARRAY_MODE_SUPPORTED_P arm_array_mode_supported_p
|
418 |
|
|
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
|
419 |
|
|
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE arm_preferred_simd_mode
|
420 |
|
|
#undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES
|
421 |
|
|
#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES \
|
422 |
|
|
arm_autovectorize_vector_sizes
|
423 |
|
|
|
424 |
|
|
#undef TARGET_MACHINE_DEPENDENT_REORG
|
425 |
|
|
#define TARGET_MACHINE_DEPENDENT_REORG arm_reorg
|
426 |
|
|
|
427 |
|
|
#undef TARGET_INIT_BUILTINS
|
428 |
|
|
#define TARGET_INIT_BUILTINS arm_init_builtins
|
429 |
|
|
#undef TARGET_EXPAND_BUILTIN
|
430 |
|
|
#define TARGET_EXPAND_BUILTIN arm_expand_builtin
|
431 |
|
|
#undef TARGET_BUILTIN_DECL
|
432 |
|
|
#define TARGET_BUILTIN_DECL arm_builtin_decl
|
433 |
|
|
|
434 |
|
|
#undef TARGET_INIT_LIBFUNCS
|
435 |
|
|
#define TARGET_INIT_LIBFUNCS arm_init_libfuncs
|
436 |
|
|
|
437 |
|
|
#undef TARGET_PROMOTE_FUNCTION_MODE
|
438 |
|
|
#define TARGET_PROMOTE_FUNCTION_MODE arm_promote_function_mode
|
439 |
|
|
#undef TARGET_PROMOTE_PROTOTYPES
|
440 |
|
|
#define TARGET_PROMOTE_PROTOTYPES arm_promote_prototypes
|
441 |
|
|
#undef TARGET_PASS_BY_REFERENCE
|
442 |
|
|
#define TARGET_PASS_BY_REFERENCE arm_pass_by_reference
|
443 |
|
|
#undef TARGET_ARG_PARTIAL_BYTES
|
444 |
|
|
#define TARGET_ARG_PARTIAL_BYTES arm_arg_partial_bytes
|
445 |
|
|
#undef TARGET_FUNCTION_ARG
|
446 |
|
|
#define TARGET_FUNCTION_ARG arm_function_arg
|
447 |
|
|
#undef TARGET_FUNCTION_ARG_ADVANCE
|
448 |
|
|
#define TARGET_FUNCTION_ARG_ADVANCE arm_function_arg_advance
|
449 |
|
|
#undef TARGET_FUNCTION_ARG_BOUNDARY
|
450 |
|
|
#define TARGET_FUNCTION_ARG_BOUNDARY arm_function_arg_boundary
|
451 |
|
|
|
452 |
|
|
#undef TARGET_SETUP_INCOMING_VARARGS
|
453 |
|
|
#define TARGET_SETUP_INCOMING_VARARGS arm_setup_incoming_varargs
|
454 |
|
|
|
455 |
|
|
#undef TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS
|
456 |
|
|
#define TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS arm_allocate_stack_slots_for_args
|
457 |
|
|
|
458 |
|
|
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
|
459 |
|
|
#define TARGET_ASM_TRAMPOLINE_TEMPLATE arm_asm_trampoline_template
|
460 |
|
|
#undef TARGET_TRAMPOLINE_INIT
|
461 |
|
|
#define TARGET_TRAMPOLINE_INIT arm_trampoline_init
|
462 |
|
|
#undef TARGET_TRAMPOLINE_ADJUST_ADDRESS
|
463 |
|
|
#define TARGET_TRAMPOLINE_ADJUST_ADDRESS arm_trampoline_adjust_address
|
464 |
|
|
|
465 |
|
|
#undef TARGET_DEFAULT_SHORT_ENUMS
|
466 |
|
|
#define TARGET_DEFAULT_SHORT_ENUMS arm_default_short_enums
|
467 |
|
|
|
468 |
|
|
#undef TARGET_ALIGN_ANON_BITFIELD
|
469 |
|
|
#define TARGET_ALIGN_ANON_BITFIELD arm_align_anon_bitfield
|
470 |
|
|
|
471 |
|
|
#undef TARGET_NARROW_VOLATILE_BITFIELD
|
472 |
|
|
#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false
|
473 |
|
|
|
474 |
|
|
#undef TARGET_CXX_GUARD_TYPE
|
475 |
|
|
#define TARGET_CXX_GUARD_TYPE arm_cxx_guard_type
|
476 |
|
|
|
477 |
|
|
#undef TARGET_CXX_GUARD_MASK_BIT
|
478 |
|
|
#define TARGET_CXX_GUARD_MASK_BIT arm_cxx_guard_mask_bit
|
479 |
|
|
|
480 |
|
|
#undef TARGET_CXX_GET_COOKIE_SIZE
|
481 |
|
|
#define TARGET_CXX_GET_COOKIE_SIZE arm_get_cookie_size
|
482 |
|
|
|
483 |
|
|
#undef TARGET_CXX_COOKIE_HAS_SIZE
|
484 |
|
|
#define TARGET_CXX_COOKIE_HAS_SIZE arm_cookie_has_size
|
485 |
|
|
|
486 |
|
|
#undef TARGET_CXX_CDTOR_RETURNS_THIS
|
487 |
|
|
#define TARGET_CXX_CDTOR_RETURNS_THIS arm_cxx_cdtor_returns_this
|
488 |
|
|
|
489 |
|
|
#undef TARGET_CXX_KEY_METHOD_MAY_BE_INLINE
|
490 |
|
|
#define TARGET_CXX_KEY_METHOD_MAY_BE_INLINE arm_cxx_key_method_may_be_inline
|
491 |
|
|
|
492 |
|
|
#undef TARGET_CXX_USE_AEABI_ATEXIT
|
493 |
|
|
#define TARGET_CXX_USE_AEABI_ATEXIT arm_cxx_use_aeabi_atexit
|
494 |
|
|
|
495 |
|
|
#undef TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY
|
496 |
|
|
#define TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY \
|
497 |
|
|
arm_cxx_determine_class_data_visibility
|
498 |
|
|
|
499 |
|
|
#undef TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT
|
500 |
|
|
#define TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT arm_cxx_class_data_always_comdat
|
501 |
|
|
|
502 |
|
|
#undef TARGET_RETURN_IN_MSB
|
503 |
|
|
#define TARGET_RETURN_IN_MSB arm_return_in_msb
|
504 |
|
|
|
505 |
|
|
#undef TARGET_RETURN_IN_MEMORY
|
506 |
|
|
#define TARGET_RETURN_IN_MEMORY arm_return_in_memory
|
507 |
|
|
|
508 |
|
|
#undef TARGET_MUST_PASS_IN_STACK
|
509 |
|
|
#define TARGET_MUST_PASS_IN_STACK arm_must_pass_in_stack
|
510 |
|
|
|
511 |
|
|
#if ARM_UNWIND_INFO
|
512 |
|
|
#undef TARGET_ASM_UNWIND_EMIT
|
513 |
|
|
#define TARGET_ASM_UNWIND_EMIT arm_unwind_emit
|
514 |
|
|
|
515 |
|
|
/* EABI unwinding tables use a different format for the typeinfo tables. */
|
516 |
|
|
#undef TARGET_ASM_TTYPE
|
517 |
|
|
#define TARGET_ASM_TTYPE arm_output_ttype
|
518 |
|
|
|
519 |
|
|
#undef TARGET_ARM_EABI_UNWINDER
|
520 |
|
|
#define TARGET_ARM_EABI_UNWINDER true
|
521 |
|
|
|
522 |
|
|
#undef TARGET_ASM_EMIT_EXCEPT_PERSONALITY
|
523 |
|
|
#define TARGET_ASM_EMIT_EXCEPT_PERSONALITY arm_asm_emit_except_personality
|
524 |
|
|
|
525 |
|
|
#undef TARGET_ASM_INIT_SECTIONS
|
526 |
|
|
#define TARGET_ASM_INIT_SECTIONS arm_asm_init_sections
|
527 |
|
|
#endif /* ARM_UNWIND_INFO */
|
528 |
|
|
|
529 |
|
|
#undef TARGET_DWARF_REGISTER_SPAN
|
530 |
|
|
#define TARGET_DWARF_REGISTER_SPAN arm_dwarf_register_span
|
531 |
|
|
|
532 |
|
|
#undef TARGET_CANNOT_COPY_INSN_P
|
533 |
|
|
#define TARGET_CANNOT_COPY_INSN_P arm_cannot_copy_insn_p
|
534 |
|
|
|
535 |
|
|
#ifdef HAVE_AS_TLS
|
536 |
|
|
#undef TARGET_HAVE_TLS
|
537 |
|
|
#define TARGET_HAVE_TLS true
|
538 |
|
|
#endif
|
539 |
|
|
|
540 |
|
|
#undef TARGET_HAVE_CONDITIONAL_EXECUTION
|
541 |
|
|
#define TARGET_HAVE_CONDITIONAL_EXECUTION arm_have_conditional_execution
|
542 |
|
|
|
543 |
|
|
#undef TARGET_LEGITIMATE_CONSTANT_P
|
544 |
|
|
#define TARGET_LEGITIMATE_CONSTANT_P arm_legitimate_constant_p
|
545 |
|
|
|
546 |
|
|
#undef TARGET_CANNOT_FORCE_CONST_MEM
|
547 |
|
|
#define TARGET_CANNOT_FORCE_CONST_MEM arm_cannot_force_const_mem
|
548 |
|
|
|
549 |
|
|
#undef TARGET_MAX_ANCHOR_OFFSET
|
550 |
|
|
#define TARGET_MAX_ANCHOR_OFFSET 4095
|
551 |
|
|
|
552 |
|
|
/* The minimum is set such that the total size of the block
|
553 |
|
|
for a particular anchor is -4088 + 1 + 4095 bytes, which is
|
554 |
|
|
divisible by eight, ensuring natural spacing of anchors. */
|
555 |
|
|
#undef TARGET_MIN_ANCHOR_OFFSET
|
556 |
|
|
#define TARGET_MIN_ANCHOR_OFFSET -4088
|
557 |
|
|
|
558 |
|
|
#undef TARGET_SCHED_ISSUE_RATE
|
559 |
|
|
#define TARGET_SCHED_ISSUE_RATE arm_issue_rate
|
560 |
|
|
|
561 |
|
|
#undef TARGET_MANGLE_TYPE
|
562 |
|
|
#define TARGET_MANGLE_TYPE arm_mangle_type
|
563 |
|
|
|
564 |
|
|
#undef TARGET_BUILD_BUILTIN_VA_LIST
|
565 |
|
|
#define TARGET_BUILD_BUILTIN_VA_LIST arm_build_builtin_va_list
|
566 |
|
|
#undef TARGET_EXPAND_BUILTIN_VA_START
|
567 |
|
|
#define TARGET_EXPAND_BUILTIN_VA_START arm_expand_builtin_va_start
|
568 |
|
|
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
|
569 |
|
|
#define TARGET_GIMPLIFY_VA_ARG_EXPR arm_gimplify_va_arg_expr
|
570 |
|
|
|
571 |
|
|
#ifdef HAVE_AS_TLS
|
572 |
|
|
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
|
573 |
|
|
#define TARGET_ASM_OUTPUT_DWARF_DTPREL arm_output_dwarf_dtprel
|
574 |
|
|
#endif
|
575 |
|
|
|
576 |
|
|
#undef TARGET_LEGITIMATE_ADDRESS_P
|
577 |
|
|
#define TARGET_LEGITIMATE_ADDRESS_P arm_legitimate_address_p
|
578 |
|
|
|
579 |
|
|
#undef TARGET_INVALID_PARAMETER_TYPE
|
580 |
|
|
#define TARGET_INVALID_PARAMETER_TYPE arm_invalid_parameter_type
|
581 |
|
|
|
582 |
|
|
#undef TARGET_INVALID_RETURN_TYPE
|
583 |
|
|
#define TARGET_INVALID_RETURN_TYPE arm_invalid_return_type
|
584 |
|
|
|
585 |
|
|
#undef TARGET_PROMOTED_TYPE
|
586 |
|
|
#define TARGET_PROMOTED_TYPE arm_promoted_type
|
587 |
|
|
|
588 |
|
|
#undef TARGET_CONVERT_TO_TYPE
|
589 |
|
|
#define TARGET_CONVERT_TO_TYPE arm_convert_to_type
|
590 |
|
|
|
591 |
|
|
#undef TARGET_SCALAR_MODE_SUPPORTED_P
|
592 |
|
|
#define TARGET_SCALAR_MODE_SUPPORTED_P arm_scalar_mode_supported_p
|
593 |
|
|
|
594 |
|
|
#undef TARGET_FRAME_POINTER_REQUIRED
|
595 |
|
|
#define TARGET_FRAME_POINTER_REQUIRED arm_frame_pointer_required
|
596 |
|
|
|
597 |
|
|
#undef TARGET_CAN_ELIMINATE
|
598 |
|
|
#define TARGET_CAN_ELIMINATE arm_can_eliminate
|
599 |
|
|
|
600 |
|
|
#undef TARGET_CONDITIONAL_REGISTER_USAGE
|
601 |
|
|
#define TARGET_CONDITIONAL_REGISTER_USAGE arm_conditional_register_usage
|
602 |
|
|
|
603 |
|
|
#undef TARGET_CLASS_LIKELY_SPILLED_P
|
604 |
|
|
#define TARGET_CLASS_LIKELY_SPILLED_P arm_class_likely_spilled_p
|
605 |
|
|
|
606 |
|
|
#undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
|
607 |
|
|
#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE \
|
608 |
|
|
arm_vector_alignment_reachable
|
609 |
|
|
|
610 |
|
|
#undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
|
611 |
|
|
#define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
|
612 |
|
|
arm_builtin_support_vector_misalignment
|
613 |
|
|
|
614 |
|
|
#undef TARGET_PREFERRED_RENAME_CLASS
|
615 |
|
|
#define TARGET_PREFERRED_RENAME_CLASS \
|
616 |
|
|
arm_preferred_rename_class
|
617 |
|
|
|
618 |
|
|
#undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
|
619 |
|
|
#define TARGET_VECTORIZE_VEC_PERM_CONST_OK \
|
620 |
|
|
arm_vectorize_vec_perm_const_ok
|
621 |
|
|
|
622 |
|
|
struct gcc_target targetm = TARGET_INITIALIZER;
|
623 |
|
|
|
624 |
|
|
/* Obstack for minipool constant handling. */
|
625 |
|
|
static struct obstack minipool_obstack;
|
626 |
|
|
static char * minipool_startobj;
|
627 |
|
|
|
628 |
|
|
/* The maximum number of insns skipped which
|
629 |
|
|
will be conditionalised if possible. */
|
630 |
|
|
static int max_insns_skipped = 5;
|
631 |
|
|
|
632 |
|
|
extern FILE * asm_out_file;
|
633 |
|
|
|
634 |
|
|
/* True if we are currently building a constant table. */
|
635 |
|
|
int making_const_table;
|
636 |
|
|
|
637 |
|
|
/* The processor for which instructions should be scheduled. */
|
638 |
|
|
enum processor_type arm_tune = arm_none;
|
639 |
|
|
|
640 |
|
|
/* The current tuning set. */
|
641 |
|
|
const struct tune_params *current_tune;
|
642 |
|
|
|
643 |
|
|
/* Which floating point hardware to schedule for. */
|
644 |
|
|
int arm_fpu_attr;
|
645 |
|
|
|
646 |
|
|
/* Which floating popint hardware to use. */
|
647 |
|
|
const struct arm_fpu_desc *arm_fpu_desc;
|
648 |
|
|
|
649 |
|
|
/* Used for Thumb call_via trampolines. */
|
650 |
|
|
rtx thumb_call_via_label[14];
|
651 |
|
|
static int thumb_call_reg_needed;
|
652 |
|
|
|
653 |
|
|
/* Bit values used to identify processor capabilities. */
|
654 |
|
|
#define FL_CO_PROC (1 << 0) /* Has external co-processor bus */
|
655 |
|
|
#define FL_ARCH3M (1 << 1) /* Extended multiply */
|
656 |
|
|
#define FL_MODE26 (1 << 2) /* 26-bit mode support */
|
657 |
|
|
#define FL_MODE32 (1 << 3) /* 32-bit mode support */
|
658 |
|
|
#define FL_ARCH4 (1 << 4) /* Architecture rel 4 */
|
659 |
|
|
#define FL_ARCH5 (1 << 5) /* Architecture rel 5 */
|
660 |
|
|
#define FL_THUMB (1 << 6) /* Thumb aware */
|
661 |
|
|
#define FL_LDSCHED (1 << 7) /* Load scheduling necessary */
|
662 |
|
|
#define FL_STRONG (1 << 8) /* StrongARM */
|
663 |
|
|
#define FL_ARCH5E (1 << 9) /* DSP extensions to v5 */
|
664 |
|
|
#define FL_XSCALE (1 << 10) /* XScale */
|
665 |
|
|
#define FL_CIRRUS (1 << 11) /* Cirrus/DSP. */
|
666 |
|
|
#define FL_ARCH6 (1 << 12) /* Architecture rel 6. Adds
|
667 |
|
|
media instructions. */
|
668 |
|
|
#define FL_VFPV2 (1 << 13) /* Vector Floating Point V2. */
|
669 |
|
|
#define FL_WBUF (1 << 14) /* Schedule for write buffer ops.
|
670 |
|
|
Note: ARM6 & 7 derivatives only. */
|
671 |
|
|
#define FL_ARCH6K (1 << 15) /* Architecture rel 6 K extensions. */
|
672 |
|
|
#define FL_THUMB2 (1 << 16) /* Thumb-2. */
|
673 |
|
|
#define FL_NOTM (1 << 17) /* Instructions not present in the 'M'
|
674 |
|
|
profile. */
|
675 |
|
|
#define FL_THUMB_DIV (1 << 18) /* Hardware divide (Thumb mode). */
|
676 |
|
|
#define FL_VFPV3 (1 << 19) /* Vector Floating Point V3. */
|
677 |
|
|
#define FL_NEON (1 << 20) /* Neon instructions. */
|
678 |
|
|
#define FL_ARCH7EM (1 << 21) /* Instructions present in the ARMv7E-M
|
679 |
|
|
architecture. */
|
680 |
|
|
#define FL_ARCH7 (1 << 22) /* Architecture 7. */
|
681 |
|
|
#define FL_ARM_DIV (1 << 23) /* Hardware divide (ARM mode). */
|
682 |
|
|
|
683 |
|
|
#define FL_IWMMXT (1 << 29) /* XScale v2 or "Intel Wireless MMX technology". */
|
684 |
|
|
|
685 |
|
|
/* Flags that only effect tuning, not available instructions. */
|
686 |
|
|
#define FL_TUNE (FL_WBUF | FL_VFPV2 | FL_STRONG | FL_LDSCHED \
|
687 |
|
|
| FL_CO_PROC)
|
688 |
|
|
|
689 |
|
|
#define FL_FOR_ARCH2 FL_NOTM
|
690 |
|
|
#define FL_FOR_ARCH3 (FL_FOR_ARCH2 | FL_MODE32)
|
691 |
|
|
#define FL_FOR_ARCH3M (FL_FOR_ARCH3 | FL_ARCH3M)
|
692 |
|
|
#define FL_FOR_ARCH4 (FL_FOR_ARCH3M | FL_ARCH4)
|
693 |
|
|
#define FL_FOR_ARCH4T (FL_FOR_ARCH4 | FL_THUMB)
|
694 |
|
|
#define FL_FOR_ARCH5 (FL_FOR_ARCH4 | FL_ARCH5)
|
695 |
|
|
#define FL_FOR_ARCH5T (FL_FOR_ARCH5 | FL_THUMB)
|
696 |
|
|
#define FL_FOR_ARCH5E (FL_FOR_ARCH5 | FL_ARCH5E)
|
697 |
|
|
#define FL_FOR_ARCH5TE (FL_FOR_ARCH5E | FL_THUMB)
|
698 |
|
|
#define FL_FOR_ARCH5TEJ FL_FOR_ARCH5TE
|
699 |
|
|
#define FL_FOR_ARCH6 (FL_FOR_ARCH5TE | FL_ARCH6)
|
700 |
|
|
#define FL_FOR_ARCH6J FL_FOR_ARCH6
|
701 |
|
|
#define FL_FOR_ARCH6K (FL_FOR_ARCH6 | FL_ARCH6K)
|
702 |
|
|
#define FL_FOR_ARCH6Z FL_FOR_ARCH6
|
703 |
|
|
#define FL_FOR_ARCH6ZK FL_FOR_ARCH6K
|
704 |
|
|
#define FL_FOR_ARCH6T2 (FL_FOR_ARCH6 | FL_THUMB2)
|
705 |
|
|
#define FL_FOR_ARCH6M (FL_FOR_ARCH6 & ~FL_NOTM)
|
706 |
|
|
#define FL_FOR_ARCH7 ((FL_FOR_ARCH6T2 & ~FL_NOTM) | FL_ARCH7)
|
707 |
|
|
#define FL_FOR_ARCH7A (FL_FOR_ARCH7 | FL_NOTM | FL_ARCH6K)
|
708 |
|
|
#define FL_FOR_ARCH7R (FL_FOR_ARCH7A | FL_THUMB_DIV)
|
709 |
|
|
#define FL_FOR_ARCH7M (FL_FOR_ARCH7 | FL_THUMB_DIV)
|
710 |
|
|
#define FL_FOR_ARCH7EM (FL_FOR_ARCH7M | FL_ARCH7EM)
|
711 |
|
|
|
712 |
|
|
/* The bits in this mask specify which
|
713 |
|
|
instructions we are allowed to generate. */
|
714 |
|
|
static unsigned long insn_flags = 0;
|
715 |
|
|
|
716 |
|
|
/* The bits in this mask specify which instruction scheduling options should
|
717 |
|
|
be used. */
|
718 |
|
|
static unsigned long tune_flags = 0;
|
719 |
|
|
|
720 |
|
|
/* The following are used in the arm.md file as equivalents to bits
|
721 |
|
|
in the above two flag variables. */
|
722 |
|
|
|
723 |
|
|
/* Nonzero if this chip supports the ARM Architecture 3M extensions. */
|
724 |
|
|
int arm_arch3m = 0;
|
725 |
|
|
|
726 |
|
|
/* Nonzero if this chip supports the ARM Architecture 4 extensions. */
|
727 |
|
|
int arm_arch4 = 0;
|
728 |
|
|
|
729 |
|
|
/* Nonzero if this chip supports the ARM Architecture 4t extensions. */
|
730 |
|
|
int arm_arch4t = 0;
|
731 |
|
|
|
732 |
|
|
/* Nonzero if this chip supports the ARM Architecture 5 extensions. */
|
733 |
|
|
int arm_arch5 = 0;
|
734 |
|
|
|
735 |
|
|
/* Nonzero if this chip supports the ARM Architecture 5E extensions. */
|
736 |
|
|
int arm_arch5e = 0;
|
737 |
|
|
|
738 |
|
|
/* Nonzero if this chip supports the ARM Architecture 6 extensions. */
|
739 |
|
|
int arm_arch6 = 0;
|
740 |
|
|
|
741 |
|
|
/* Nonzero if this chip supports the ARM 6K extensions. */
|
742 |
|
|
int arm_arch6k = 0;
|
743 |
|
|
|
744 |
|
|
/* Nonzero if this chip supports the ARM 7 extensions. */
|
745 |
|
|
int arm_arch7 = 0;
|
746 |
|
|
|
747 |
|
|
/* Nonzero if instructions not present in the 'M' profile can be used. */
|
748 |
|
|
int arm_arch_notm = 0;
|
749 |
|
|
|
750 |
|
|
/* Nonzero if instructions present in ARMv7E-M can be used. */
|
751 |
|
|
int arm_arch7em = 0;
|
752 |
|
|
|
753 |
|
|
/* Nonzero if this chip can benefit from load scheduling. */
|
754 |
|
|
int arm_ld_sched = 0;
|
755 |
|
|
|
756 |
|
|
/* Nonzero if this chip is a StrongARM. */
|
757 |
|
|
int arm_tune_strongarm = 0;
|
758 |
|
|
|
759 |
|
|
/* Nonzero if this chip is a Cirrus variant. */
|
760 |
|
|
int arm_arch_cirrus = 0;
|
761 |
|
|
|
762 |
|
|
/* Nonzero if this chip supports Intel Wireless MMX technology. */
|
763 |
|
|
int arm_arch_iwmmxt = 0;
|
764 |
|
|
|
765 |
|
|
/* Nonzero if this chip is an XScale. */
|
766 |
|
|
int arm_arch_xscale = 0;
|
767 |
|
|
|
768 |
|
|
/* Nonzero if tuning for XScale */
|
769 |
|
|
int arm_tune_xscale = 0;
|
770 |
|
|
|
771 |
|
|
/* Nonzero if we want to tune for stores that access the write-buffer.
|
772 |
|
|
This typically means an ARM6 or ARM7 with MMU or MPU. */
|
773 |
|
|
int arm_tune_wbuf = 0;
|
774 |
|
|
|
775 |
|
|
/* Nonzero if tuning for Cortex-A9. */
|
776 |
|
|
int arm_tune_cortex_a9 = 0;
|
777 |
|
|
|
778 |
|
|
/* Nonzero if generating Thumb instructions. */
|
779 |
|
|
int thumb_code = 0;
|
780 |
|
|
|
781 |
|
|
/* Nonzero if generating Thumb-1 instructions. */
|
782 |
|
|
int thumb1_code = 0;
|
783 |
|
|
|
784 |
|
|
/* Nonzero if we should define __THUMB_INTERWORK__ in the
|
785 |
|
|
preprocessor.
|
786 |
|
|
XXX This is a bit of a hack, it's intended to help work around
|
787 |
|
|
problems in GLD which doesn't understand that armv5t code is
|
788 |
|
|
interworking clean. */
|
789 |
|
|
int arm_cpp_interwork = 0;
|
790 |
|
|
|
791 |
|
|
/* Nonzero if chip supports Thumb 2. */
|
792 |
|
|
int arm_arch_thumb2;
|
793 |
|
|
|
794 |
|
|
/* Nonzero if chip supports integer division instruction. */
|
795 |
|
|
int arm_arch_arm_hwdiv;
|
796 |
|
|
int arm_arch_thumb_hwdiv;
|
797 |
|
|
|
798 |
|
|
/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference,
|
799 |
|
|
we must report the mode of the memory reference from
|
800 |
|
|
TARGET_PRINT_OPERAND to TARGET_PRINT_OPERAND_ADDRESS. */
|
801 |
|
|
enum machine_mode output_memory_reference_mode;
|
802 |
|
|
|
803 |
|
|
/* The register number to be used for the PIC offset register. */
|
804 |
|
|
unsigned arm_pic_register = INVALID_REGNUM;
|
805 |
|
|
|
806 |
|
|
/* Set to 1 after arm_reorg has started. Reset to start at the start of
|
807 |
|
|
the next function. */
|
808 |
|
|
static int after_arm_reorg = 0;
|
809 |
|
|
|
810 |
|
|
enum arm_pcs arm_pcs_default;
|
811 |
|
|
|
812 |
|
|
/* For an explanation of these variables, see final_prescan_insn below. */
|
813 |
|
|
int arm_ccfsm_state;
|
814 |
|
|
/* arm_current_cc is also used for Thumb-2 cond_exec blocks. */
|
815 |
|
|
enum arm_cond_code arm_current_cc;
|
816 |
|
|
|
817 |
|
|
rtx arm_target_insn;
|
818 |
|
|
int arm_target_label;
|
819 |
|
|
/* The number of conditionally executed insns, including the current insn. */
|
820 |
|
|
int arm_condexec_count = 0;
|
821 |
|
|
/* A bitmask specifying the patterns for the IT block.
|
822 |
|
|
Zero means do not output an IT block before this insn. */
|
823 |
|
|
int arm_condexec_mask = 0;
|
824 |
|
|
/* The number of bits used in arm_condexec_mask. */
|
825 |
|
|
int arm_condexec_masklen = 0;
|
826 |
|
|
|
827 |
|
|
/* The condition codes of the ARM, and the inverse function. */
|
828 |
|
|
static const char * const arm_condition_codes[] =
|
829 |
|
|
{
|
830 |
|
|
"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
|
831 |
|
|
"hi", "ls", "ge", "lt", "gt", "le", "al", "nv"
|
832 |
|
|
};
|
833 |
|
|
|
834 |
|
|
/* The register numbers in sequence, for passing to arm_gen_load_multiple. */
|
835 |
|
|
int arm_regs_in_sequence[] =
|
836 |
|
|
{
|
837 |
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
838 |
|
|
};
|
839 |
|
|
|
840 |
|
|
#define ARM_LSL_NAME (TARGET_UNIFIED_ASM ? "lsl" : "asl")
|
841 |
|
|
#define streq(string1, string2) (strcmp (string1, string2) == 0)
|
842 |
|
|
|
843 |
|
|
#define THUMB2_WORK_REGS (0xff & ~( (1 << THUMB_HARD_FRAME_POINTER_REGNUM) \
|
844 |
|
|
| (1 << SP_REGNUM) | (1 << PC_REGNUM) \
|
845 |
|
|
| (1 << PIC_OFFSET_TABLE_REGNUM)))
|
846 |
|
|
|
847 |
|
|
/* Initialization code. */
|
848 |
|
|
|
849 |
|
|
struct processors
|
850 |
|
|
{
|
851 |
|
|
const char *const name;
|
852 |
|
|
enum processor_type core;
|
853 |
|
|
const char *arch;
|
854 |
|
|
const unsigned long flags;
|
855 |
|
|
const struct tune_params *const tune;
|
856 |
|
|
};
|
857 |
|
|
|
858 |
|
|
|
859 |
|
|
#define ARM_PREFETCH_NOT_BENEFICIAL 0, -1, -1
|
860 |
|
|
#define ARM_PREFETCH_BENEFICIAL(prefetch_slots,l1_size,l1_line_size) \
|
861 |
|
|
prefetch_slots, \
|
862 |
|
|
l1_size, \
|
863 |
|
|
l1_line_size
|
864 |
|
|
|
865 |
|
|
const struct tune_params arm_slowmul_tune =
|
866 |
|
|
{
|
867 |
|
|
arm_slowmul_rtx_costs,
|
868 |
|
|
NULL,
|
869 |
|
|
3, /* Constant limit. */
|
870 |
|
|
5, /* Max cond insns. */
|
871 |
|
|
ARM_PREFETCH_NOT_BENEFICIAL,
|
872 |
|
|
true, /* Prefer constant pool. */
|
873 |
|
|
arm_default_branch_cost
|
874 |
|
|
};
|
875 |
|
|
|
876 |
|
|
const struct tune_params arm_fastmul_tune =
|
877 |
|
|
{
|
878 |
|
|
arm_fastmul_rtx_costs,
|
879 |
|
|
NULL,
|
880 |
|
|
1, /* Constant limit. */
|
881 |
|
|
5, /* Max cond insns. */
|
882 |
|
|
ARM_PREFETCH_NOT_BENEFICIAL,
|
883 |
|
|
true, /* Prefer constant pool. */
|
884 |
|
|
arm_default_branch_cost
|
885 |
|
|
};
|
886 |
|
|
|
887 |
|
|
/* StrongARM has early execution of branches, so a sequence that is worth
|
888 |
|
|
skipping is shorter. Set max_insns_skipped to a lower value. */
|
889 |
|
|
|
890 |
|
|
const struct tune_params arm_strongarm_tune =
|
891 |
|
|
{
|
892 |
|
|
arm_fastmul_rtx_costs,
|
893 |
|
|
NULL,
|
894 |
|
|
1, /* Constant limit. */
|
895 |
|
|
3, /* Max cond insns. */
|
896 |
|
|
ARM_PREFETCH_NOT_BENEFICIAL,
|
897 |
|
|
true, /* Prefer constant pool. */
|
898 |
|
|
arm_default_branch_cost
|
899 |
|
|
};
|
900 |
|
|
|
901 |
|
|
const struct tune_params arm_xscale_tune =
|
902 |
|
|
{
|
903 |
|
|
arm_xscale_rtx_costs,
|
904 |
|
|
xscale_sched_adjust_cost,
|
905 |
|
|
2, /* Constant limit. */
|
906 |
|
|
3, /* Max cond insns. */
|
907 |
|
|
ARM_PREFETCH_NOT_BENEFICIAL,
|
908 |
|
|
true, /* Prefer constant pool. */
|
909 |
|
|
arm_default_branch_cost
|
910 |
|
|
};
|
911 |
|
|
|
912 |
|
|
const struct tune_params arm_9e_tune =
|
913 |
|
|
{
|
914 |
|
|
arm_9e_rtx_costs,
|
915 |
|
|
NULL,
|
916 |
|
|
1, /* Constant limit. */
|
917 |
|
|
5, /* Max cond insns. */
|
918 |
|
|
ARM_PREFETCH_NOT_BENEFICIAL,
|
919 |
|
|
true, /* Prefer constant pool. */
|
920 |
|
|
arm_default_branch_cost
|
921 |
|
|
};
|
922 |
|
|
|
923 |
|
|
const struct tune_params arm_v6t2_tune =
|
924 |
|
|
{
|
925 |
|
|
arm_9e_rtx_costs,
|
926 |
|
|
NULL,
|
927 |
|
|
1, /* Constant limit. */
|
928 |
|
|
5, /* Max cond insns. */
|
929 |
|
|
ARM_PREFETCH_NOT_BENEFICIAL,
|
930 |
|
|
false, /* Prefer constant pool. */
|
931 |
|
|
arm_default_branch_cost
|
932 |
|
|
};
|
933 |
|
|
|
934 |
|
|
/* Generic Cortex tuning. Use more specific tunings if appropriate. */
|
935 |
|
|
const struct tune_params arm_cortex_tune =
|
936 |
|
|
{
|
937 |
|
|
arm_9e_rtx_costs,
|
938 |
|
|
NULL,
|
939 |
|
|
1, /* Constant limit. */
|
940 |
|
|
5, /* Max cond insns. */
|
941 |
|
|
ARM_PREFETCH_NOT_BENEFICIAL,
|
942 |
|
|
false, /* Prefer constant pool. */
|
943 |
|
|
arm_default_branch_cost
|
944 |
|
|
};
|
945 |
|
|
|
946 |
|
|
/* Branches can be dual-issued on Cortex-A5, so conditional execution is
|
947 |
|
|
less appealing. Set max_insns_skipped to a low value. */
|
948 |
|
|
|
949 |
|
|
const struct tune_params arm_cortex_a5_tune =
|
950 |
|
|
{
|
951 |
|
|
arm_9e_rtx_costs,
|
952 |
|
|
NULL,
|
953 |
|
|
1, /* Constant limit. */
|
954 |
|
|
1, /* Max cond insns. */
|
955 |
|
|
ARM_PREFETCH_NOT_BENEFICIAL,
|
956 |
|
|
false, /* Prefer constant pool. */
|
957 |
|
|
arm_cortex_a5_branch_cost
|
958 |
|
|
};
|
959 |
|
|
|
960 |
|
|
const struct tune_params arm_cortex_a9_tune =
|
961 |
|
|
{
|
962 |
|
|
arm_9e_rtx_costs,
|
963 |
|
|
cortex_a9_sched_adjust_cost,
|
964 |
|
|
1, /* Constant limit. */
|
965 |
|
|
5, /* Max cond insns. */
|
966 |
|
|
ARM_PREFETCH_BENEFICIAL(4,32,32),
|
967 |
|
|
false, /* Prefer constant pool. */
|
968 |
|
|
arm_default_branch_cost
|
969 |
|
|
};
|
970 |
|
|
|
971 |
|
|
const struct tune_params arm_fa726te_tune =
|
972 |
|
|
{
|
973 |
|
|
arm_9e_rtx_costs,
|
974 |
|
|
fa726te_sched_adjust_cost,
|
975 |
|
|
1, /* Constant limit. */
|
976 |
|
|
5, /* Max cond insns. */
|
977 |
|
|
ARM_PREFETCH_NOT_BENEFICIAL,
|
978 |
|
|
true, /* Prefer constant pool. */
|
979 |
|
|
arm_default_branch_cost
|
980 |
|
|
};
|
981 |
|
|
|
982 |
|
|
|
983 |
|
|
/* Not all of these give usefully different compilation alternatives,
|
984 |
|
|
but there is no simple way of generalizing them. */
|
985 |
|
|
static const struct processors all_cores[] =
|
986 |
|
|
{
|
987 |
|
|
/* ARM Cores */
|
988 |
|
|
#define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
|
989 |
|
|
{NAME, IDENT, #ARCH, FLAGS | FL_FOR_ARCH##ARCH, &arm_##COSTS##_tune},
|
990 |
|
|
#include "arm-cores.def"
|
991 |
|
|
#undef ARM_CORE
|
992 |
|
|
{NULL, arm_none, NULL, 0, NULL}
|
993 |
|
|
};
|
994 |
|
|
|
995 |
|
|
static const struct processors all_architectures[] =
|
996 |
|
|
{
|
997 |
|
|
/* ARM Architectures */
|
998 |
|
|
/* We don't specify tuning costs here as it will be figured out
|
999 |
|
|
from the core. */
|
1000 |
|
|
|
1001 |
|
|
#define ARM_ARCH(NAME, CORE, ARCH, FLAGS) \
|
1002 |
|
|
{NAME, CORE, #ARCH, FLAGS, NULL},
|
1003 |
|
|
#include "arm-arches.def"
|
1004 |
|
|
#undef ARM_ARCH
|
1005 |
|
|
{NULL, arm_none, NULL, 0 , NULL}
|
1006 |
|
|
};
|
1007 |
|
|
|
1008 |
|
|
|
1009 |
|
|
/* These are populated as commandline arguments are processed, or NULL
|
1010 |
|
|
if not specified. */
|
1011 |
|
|
static const struct processors *arm_selected_arch;
|
1012 |
|
|
static const struct processors *arm_selected_cpu;
|
1013 |
|
|
static const struct processors *arm_selected_tune;
|
1014 |
|
|
|
1015 |
|
|
/* The name of the preprocessor macro to define for this architecture. */
|
1016 |
|
|
|
1017 |
|
|
char arm_arch_name[] = "__ARM_ARCH_0UNK__";
|
1018 |
|
|
|
1019 |
|
|
/* Available values for -mfpu=. */
|
1020 |
|
|
|
1021 |
|
|
static const struct arm_fpu_desc all_fpus[] =
|
1022 |
|
|
{
|
1023 |
|
|
#define ARM_FPU(NAME, MODEL, REV, VFP_REGS, NEON, FP16) \
|
1024 |
|
|
{ NAME, MODEL, REV, VFP_REGS, NEON, FP16 },
|
1025 |
|
|
#include "arm-fpus.def"
|
1026 |
|
|
#undef ARM_FPU
|
1027 |
|
|
};
|
1028 |
|
|
|
1029 |
|
|
|
1030 |
|
|
/* Supported TLS relocations. */
|
1031 |
|
|
|
1032 |
|
|
enum tls_reloc {
|
1033 |
|
|
TLS_GD32,
|
1034 |
|
|
TLS_LDM32,
|
1035 |
|
|
TLS_LDO32,
|
1036 |
|
|
TLS_IE32,
|
1037 |
|
|
TLS_LE32,
|
1038 |
|
|
TLS_DESCSEQ /* GNU scheme */
|
1039 |
|
|
};
|
1040 |
|
|
|
1041 |
|
|
/* The maximum number of insns to be used when loading a constant. */
|
1042 |
|
|
inline static int
|
1043 |
|
|
arm_constant_limit (bool size_p)
|
1044 |
|
|
{
|
1045 |
|
|
return size_p ? 1 : current_tune->constant_limit;
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
/* Emit an insn that's a simple single-set. Both the operands must be known
|
1049 |
|
|
to be valid. */
|
1050 |
|
|
inline static rtx
|
1051 |
|
|
emit_set_insn (rtx x, rtx y)
|
1052 |
|
|
{
|
1053 |
|
|
return emit_insn (gen_rtx_SET (VOIDmode, x, y));
|
1054 |
|
|
}
|
1055 |
|
|
|
1056 |
|
|
/* Return the number of bits set in VALUE. */
|
1057 |
|
|
static unsigned
|
1058 |
|
|
bit_count (unsigned long value)
|
1059 |
|
|
{
|
1060 |
|
|
unsigned long count = 0;
|
1061 |
|
|
|
1062 |
|
|
while (value)
|
1063 |
|
|
{
|
1064 |
|
|
count++;
|
1065 |
|
|
value &= value - 1; /* Clear the least-significant set bit. */
|
1066 |
|
|
}
|
1067 |
|
|
|
1068 |
|
|
return count;
|
1069 |
|
|
}
|
1070 |
|
|
|
1071 |
|
|
typedef struct
|
1072 |
|
|
{
|
1073 |
|
|
enum machine_mode mode;
|
1074 |
|
|
const char *name;
|
1075 |
|
|
} arm_fixed_mode_set;
|
1076 |
|
|
|
1077 |
|
|
/* A small helper for setting fixed-point library libfuncs. */
|
1078 |
|
|
|
1079 |
|
|
static void
|
1080 |
|
|
arm_set_fixed_optab_libfunc (optab optable, enum machine_mode mode,
|
1081 |
|
|
const char *funcname, const char *modename,
|
1082 |
|
|
int num_suffix)
|
1083 |
|
|
{
|
1084 |
|
|
char buffer[50];
|
1085 |
|
|
|
1086 |
|
|
if (num_suffix == 0)
|
1087 |
|
|
sprintf (buffer, "__gnu_%s%s", funcname, modename);
|
1088 |
|
|
else
|
1089 |
|
|
sprintf (buffer, "__gnu_%s%s%d", funcname, modename, num_suffix);
|
1090 |
|
|
|
1091 |
|
|
set_optab_libfunc (optable, mode, buffer);
|
1092 |
|
|
}
|
1093 |
|
|
|
1094 |
|
|
static void
|
1095 |
|
|
arm_set_fixed_conv_libfunc (convert_optab optable, enum machine_mode to,
|
1096 |
|
|
enum machine_mode from, const char *funcname,
|
1097 |
|
|
const char *toname, const char *fromname)
|
1098 |
|
|
{
|
1099 |
|
|
char buffer[50];
|
1100 |
|
|
const char *maybe_suffix_2 = "";
|
1101 |
|
|
|
1102 |
|
|
/* Follow the logic for selecting a "2" suffix in fixed-bit.h. */
|
1103 |
|
|
if (ALL_FIXED_POINT_MODE_P (from) && ALL_FIXED_POINT_MODE_P (to)
|
1104 |
|
|
&& UNSIGNED_FIXED_POINT_MODE_P (from) == UNSIGNED_FIXED_POINT_MODE_P (to)
|
1105 |
|
|
&& ALL_FRACT_MODE_P (from) == ALL_FRACT_MODE_P (to))
|
1106 |
|
|
maybe_suffix_2 = "2";
|
1107 |
|
|
|
1108 |
|
|
sprintf (buffer, "__gnu_%s%s%s%s", funcname, fromname, toname,
|
1109 |
|
|
maybe_suffix_2);
|
1110 |
|
|
|
1111 |
|
|
set_conv_libfunc (optable, to, from, buffer);
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
/* Set up library functions unique to ARM. */
|
1115 |
|
|
|
1116 |
|
|
static void
|
1117 |
|
|
arm_init_libfuncs (void)
|
1118 |
|
|
{
|
1119 |
|
|
/* For Linux, we have access to kernel support for atomic operations. */
|
1120 |
|
|
if (arm_abi == ARM_ABI_AAPCS_LINUX)
|
1121 |
|
|
init_sync_libfuncs (2 * UNITS_PER_WORD);
|
1122 |
|
|
|
1123 |
|
|
/* There are no special library functions unless we are using the
|
1124 |
|
|
ARM BPABI. */
|
1125 |
|
|
if (!TARGET_BPABI)
|
1126 |
|
|
return;
|
1127 |
|
|
|
1128 |
|
|
/* The functions below are described in Section 4 of the "Run-Time
|
1129 |
|
|
ABI for the ARM architecture", Version 1.0. */
|
1130 |
|
|
|
1131 |
|
|
/* Double-precision floating-point arithmetic. Table 2. */
|
1132 |
|
|
set_optab_libfunc (add_optab, DFmode, "__aeabi_dadd");
|
1133 |
|
|
set_optab_libfunc (sdiv_optab, DFmode, "__aeabi_ddiv");
|
1134 |
|
|
set_optab_libfunc (smul_optab, DFmode, "__aeabi_dmul");
|
1135 |
|
|
set_optab_libfunc (neg_optab, DFmode, "__aeabi_dneg");
|
1136 |
|
|
set_optab_libfunc (sub_optab, DFmode, "__aeabi_dsub");
|
1137 |
|
|
|
1138 |
|
|
/* Double-precision comparisons. Table 3. */
|
1139 |
|
|
set_optab_libfunc (eq_optab, DFmode, "__aeabi_dcmpeq");
|
1140 |
|
|
set_optab_libfunc (ne_optab, DFmode, NULL);
|
1141 |
|
|
set_optab_libfunc (lt_optab, DFmode, "__aeabi_dcmplt");
|
1142 |
|
|
set_optab_libfunc (le_optab, DFmode, "__aeabi_dcmple");
|
1143 |
|
|
set_optab_libfunc (ge_optab, DFmode, "__aeabi_dcmpge");
|
1144 |
|
|
set_optab_libfunc (gt_optab, DFmode, "__aeabi_dcmpgt");
|
1145 |
|
|
set_optab_libfunc (unord_optab, DFmode, "__aeabi_dcmpun");
|
1146 |
|
|
|
1147 |
|
|
/* Single-precision floating-point arithmetic. Table 4. */
|
1148 |
|
|
set_optab_libfunc (add_optab, SFmode, "__aeabi_fadd");
|
1149 |
|
|
set_optab_libfunc (sdiv_optab, SFmode, "__aeabi_fdiv");
|
1150 |
|
|
set_optab_libfunc (smul_optab, SFmode, "__aeabi_fmul");
|
1151 |
|
|
set_optab_libfunc (neg_optab, SFmode, "__aeabi_fneg");
|
1152 |
|
|
set_optab_libfunc (sub_optab, SFmode, "__aeabi_fsub");
|
1153 |
|
|
|
1154 |
|
|
/* Single-precision comparisons. Table 5. */
|
1155 |
|
|
set_optab_libfunc (eq_optab, SFmode, "__aeabi_fcmpeq");
|
1156 |
|
|
set_optab_libfunc (ne_optab, SFmode, NULL);
|
1157 |
|
|
set_optab_libfunc (lt_optab, SFmode, "__aeabi_fcmplt");
|
1158 |
|
|
set_optab_libfunc (le_optab, SFmode, "__aeabi_fcmple");
|
1159 |
|
|
set_optab_libfunc (ge_optab, SFmode, "__aeabi_fcmpge");
|
1160 |
|
|
set_optab_libfunc (gt_optab, SFmode, "__aeabi_fcmpgt");
|
1161 |
|
|
set_optab_libfunc (unord_optab, SFmode, "__aeabi_fcmpun");
|
1162 |
|
|
|
1163 |
|
|
/* Floating-point to integer conversions. Table 6. */
|
1164 |
|
|
set_conv_libfunc (sfix_optab, SImode, DFmode, "__aeabi_d2iz");
|
1165 |
|
|
set_conv_libfunc (ufix_optab, SImode, DFmode, "__aeabi_d2uiz");
|
1166 |
|
|
set_conv_libfunc (sfix_optab, DImode, DFmode, "__aeabi_d2lz");
|
1167 |
|
|
set_conv_libfunc (ufix_optab, DImode, DFmode, "__aeabi_d2ulz");
|
1168 |
|
|
set_conv_libfunc (sfix_optab, SImode, SFmode, "__aeabi_f2iz");
|
1169 |
|
|
set_conv_libfunc (ufix_optab, SImode, SFmode, "__aeabi_f2uiz");
|
1170 |
|
|
set_conv_libfunc (sfix_optab, DImode, SFmode, "__aeabi_f2lz");
|
1171 |
|
|
set_conv_libfunc (ufix_optab, DImode, SFmode, "__aeabi_f2ulz");
|
1172 |
|
|
|
1173 |
|
|
/* Conversions between floating types. Table 7. */
|
1174 |
|
|
set_conv_libfunc (trunc_optab, SFmode, DFmode, "__aeabi_d2f");
|
1175 |
|
|
set_conv_libfunc (sext_optab, DFmode, SFmode, "__aeabi_f2d");
|
1176 |
|
|
|
1177 |
|
|
/* Integer to floating-point conversions. Table 8. */
|
1178 |
|
|
set_conv_libfunc (sfloat_optab, DFmode, SImode, "__aeabi_i2d");
|
1179 |
|
|
set_conv_libfunc (ufloat_optab, DFmode, SImode, "__aeabi_ui2d");
|
1180 |
|
|
set_conv_libfunc (sfloat_optab, DFmode, DImode, "__aeabi_l2d");
|
1181 |
|
|
set_conv_libfunc (ufloat_optab, DFmode, DImode, "__aeabi_ul2d");
|
1182 |
|
|
set_conv_libfunc (sfloat_optab, SFmode, SImode, "__aeabi_i2f");
|
1183 |
|
|
set_conv_libfunc (ufloat_optab, SFmode, SImode, "__aeabi_ui2f");
|
1184 |
|
|
set_conv_libfunc (sfloat_optab, SFmode, DImode, "__aeabi_l2f");
|
1185 |
|
|
set_conv_libfunc (ufloat_optab, SFmode, DImode, "__aeabi_ul2f");
|
1186 |
|
|
|
1187 |
|
|
/* Long long. Table 9. */
|
1188 |
|
|
set_optab_libfunc (smul_optab, DImode, "__aeabi_lmul");
|
1189 |
|
|
set_optab_libfunc (sdivmod_optab, DImode, "__aeabi_ldivmod");
|
1190 |
|
|
set_optab_libfunc (udivmod_optab, DImode, "__aeabi_uldivmod");
|
1191 |
|
|
set_optab_libfunc (ashl_optab, DImode, "__aeabi_llsl");
|
1192 |
|
|
set_optab_libfunc (lshr_optab, DImode, "__aeabi_llsr");
|
1193 |
|
|
set_optab_libfunc (ashr_optab, DImode, "__aeabi_lasr");
|
1194 |
|
|
set_optab_libfunc (cmp_optab, DImode, "__aeabi_lcmp");
|
1195 |
|
|
set_optab_libfunc (ucmp_optab, DImode, "__aeabi_ulcmp");
|
1196 |
|
|
|
1197 |
|
|
/* Integer (32/32->32) division. \S 4.3.1. */
|
1198 |
|
|
set_optab_libfunc (sdivmod_optab, SImode, "__aeabi_idivmod");
|
1199 |
|
|
set_optab_libfunc (udivmod_optab, SImode, "__aeabi_uidivmod");
|
1200 |
|
|
|
1201 |
|
|
/* The divmod functions are designed so that they can be used for
|
1202 |
|
|
plain division, even though they return both the quotient and the
|
1203 |
|
|
remainder. The quotient is returned in the usual location (i.e.,
|
1204 |
|
|
r0 for SImode, {r0, r1} for DImode), just as would be expected
|
1205 |
|
|
for an ordinary division routine. Because the AAPCS calling
|
1206 |
|
|
conventions specify that all of { r0, r1, r2, r3 } are
|
1207 |
|
|
callee-saved registers, there is no need to tell the compiler
|
1208 |
|
|
explicitly that those registers are clobbered by these
|
1209 |
|
|
routines. */
|
1210 |
|
|
set_optab_libfunc (sdiv_optab, DImode, "__aeabi_ldivmod");
|
1211 |
|
|
set_optab_libfunc (udiv_optab, DImode, "__aeabi_uldivmod");
|
1212 |
|
|
|
1213 |
|
|
/* For SImode division the ABI provides div-without-mod routines,
|
1214 |
|
|
which are faster. */
|
1215 |
|
|
set_optab_libfunc (sdiv_optab, SImode, "__aeabi_idiv");
|
1216 |
|
|
set_optab_libfunc (udiv_optab, SImode, "__aeabi_uidiv");
|
1217 |
|
|
|
1218 |
|
|
/* We don't have mod libcalls. Fortunately gcc knows how to use the
|
1219 |
|
|
divmod libcalls instead. */
|
1220 |
|
|
set_optab_libfunc (smod_optab, DImode, NULL);
|
1221 |
|
|
set_optab_libfunc (umod_optab, DImode, NULL);
|
1222 |
|
|
set_optab_libfunc (smod_optab, SImode, NULL);
|
1223 |
|
|
set_optab_libfunc (umod_optab, SImode, NULL);
|
1224 |
|
|
|
1225 |
|
|
/* Half-precision float operations. The compiler handles all operations
|
1226 |
|
|
with NULL libfuncs by converting the SFmode. */
|
1227 |
|
|
switch (arm_fp16_format)
|
1228 |
|
|
{
|
1229 |
|
|
case ARM_FP16_FORMAT_IEEE:
|
1230 |
|
|
case ARM_FP16_FORMAT_ALTERNATIVE:
|
1231 |
|
|
|
1232 |
|
|
/* Conversions. */
|
1233 |
|
|
set_conv_libfunc (trunc_optab, HFmode, SFmode,
|
1234 |
|
|
(arm_fp16_format == ARM_FP16_FORMAT_IEEE
|
1235 |
|
|
? "__gnu_f2h_ieee"
|
1236 |
|
|
: "__gnu_f2h_alternative"));
|
1237 |
|
|
set_conv_libfunc (sext_optab, SFmode, HFmode,
|
1238 |
|
|
(arm_fp16_format == ARM_FP16_FORMAT_IEEE
|
1239 |
|
|
? "__gnu_h2f_ieee"
|
1240 |
|
|
: "__gnu_h2f_alternative"));
|
1241 |
|
|
|
1242 |
|
|
/* Arithmetic. */
|
1243 |
|
|
set_optab_libfunc (add_optab, HFmode, NULL);
|
1244 |
|
|
set_optab_libfunc (sdiv_optab, HFmode, NULL);
|
1245 |
|
|
set_optab_libfunc (smul_optab, HFmode, NULL);
|
1246 |
|
|
set_optab_libfunc (neg_optab, HFmode, NULL);
|
1247 |
|
|
set_optab_libfunc (sub_optab, HFmode, NULL);
|
1248 |
|
|
|
1249 |
|
|
/* Comparisons. */
|
1250 |
|
|
set_optab_libfunc (eq_optab, HFmode, NULL);
|
1251 |
|
|
set_optab_libfunc (ne_optab, HFmode, NULL);
|
1252 |
|
|
set_optab_libfunc (lt_optab, HFmode, NULL);
|
1253 |
|
|
set_optab_libfunc (le_optab, HFmode, NULL);
|
1254 |
|
|
set_optab_libfunc (ge_optab, HFmode, NULL);
|
1255 |
|
|
set_optab_libfunc (gt_optab, HFmode, NULL);
|
1256 |
|
|
set_optab_libfunc (unord_optab, HFmode, NULL);
|
1257 |
|
|
break;
|
1258 |
|
|
|
1259 |
|
|
default:
|
1260 |
|
|
break;
|
1261 |
|
|
}
|
1262 |
|
|
|
1263 |
|
|
/* Use names prefixed with __gnu_ for fixed-point helper functions. */
|
1264 |
|
|
{
|
1265 |
|
|
const arm_fixed_mode_set fixed_arith_modes[] =
|
1266 |
|
|
{
|
1267 |
|
|
{ QQmode, "qq" },
|
1268 |
|
|
{ UQQmode, "uqq" },
|
1269 |
|
|
{ HQmode, "hq" },
|
1270 |
|
|
{ UHQmode, "uhq" },
|
1271 |
|
|
{ SQmode, "sq" },
|
1272 |
|
|
{ USQmode, "usq" },
|
1273 |
|
|
{ DQmode, "dq" },
|
1274 |
|
|
{ UDQmode, "udq" },
|
1275 |
|
|
{ TQmode, "tq" },
|
1276 |
|
|
{ UTQmode, "utq" },
|
1277 |
|
|
{ HAmode, "ha" },
|
1278 |
|
|
{ UHAmode, "uha" },
|
1279 |
|
|
{ SAmode, "sa" },
|
1280 |
|
|
{ USAmode, "usa" },
|
1281 |
|
|
{ DAmode, "da" },
|
1282 |
|
|
{ UDAmode, "uda" },
|
1283 |
|
|
{ TAmode, "ta" },
|
1284 |
|
|
{ UTAmode, "uta" }
|
1285 |
|
|
};
|
1286 |
|
|
const arm_fixed_mode_set fixed_conv_modes[] =
|
1287 |
|
|
{
|
1288 |
|
|
{ QQmode, "qq" },
|
1289 |
|
|
{ UQQmode, "uqq" },
|
1290 |
|
|
{ HQmode, "hq" },
|
1291 |
|
|
{ UHQmode, "uhq" },
|
1292 |
|
|
{ SQmode, "sq" },
|
1293 |
|
|
{ USQmode, "usq" },
|
1294 |
|
|
{ DQmode, "dq" },
|
1295 |
|
|
{ UDQmode, "udq" },
|
1296 |
|
|
{ TQmode, "tq" },
|
1297 |
|
|
{ UTQmode, "utq" },
|
1298 |
|
|
{ HAmode, "ha" },
|
1299 |
|
|
{ UHAmode, "uha" },
|
1300 |
|
|
{ SAmode, "sa" },
|
1301 |
|
|
{ USAmode, "usa" },
|
1302 |
|
|
{ DAmode, "da" },
|
1303 |
|
|
{ UDAmode, "uda" },
|
1304 |
|
|
{ TAmode, "ta" },
|
1305 |
|
|
{ UTAmode, "uta" },
|
1306 |
|
|
{ QImode, "qi" },
|
1307 |
|
|
{ HImode, "hi" },
|
1308 |
|
|
{ SImode, "si" },
|
1309 |
|
|
{ DImode, "di" },
|
1310 |
|
|
{ TImode, "ti" },
|
1311 |
|
|
{ SFmode, "sf" },
|
1312 |
|
|
{ DFmode, "df" }
|
1313 |
|
|
};
|
1314 |
|
|
unsigned int i, j;
|
1315 |
|
|
|
1316 |
|
|
for (i = 0; i < ARRAY_SIZE (fixed_arith_modes); i++)
|
1317 |
|
|
{
|
1318 |
|
|
arm_set_fixed_optab_libfunc (add_optab, fixed_arith_modes[i].mode,
|
1319 |
|
|
"add", fixed_arith_modes[i].name, 3);
|
1320 |
|
|
arm_set_fixed_optab_libfunc (ssadd_optab, fixed_arith_modes[i].mode,
|
1321 |
|
|
"ssadd", fixed_arith_modes[i].name, 3);
|
1322 |
|
|
arm_set_fixed_optab_libfunc (usadd_optab, fixed_arith_modes[i].mode,
|
1323 |
|
|
"usadd", fixed_arith_modes[i].name, 3);
|
1324 |
|
|
arm_set_fixed_optab_libfunc (sub_optab, fixed_arith_modes[i].mode,
|
1325 |
|
|
"sub", fixed_arith_modes[i].name, 3);
|
1326 |
|
|
arm_set_fixed_optab_libfunc (sssub_optab, fixed_arith_modes[i].mode,
|
1327 |
|
|
"sssub", fixed_arith_modes[i].name, 3);
|
1328 |
|
|
arm_set_fixed_optab_libfunc (ussub_optab, fixed_arith_modes[i].mode,
|
1329 |
|
|
"ussub", fixed_arith_modes[i].name, 3);
|
1330 |
|
|
arm_set_fixed_optab_libfunc (smul_optab, fixed_arith_modes[i].mode,
|
1331 |
|
|
"mul", fixed_arith_modes[i].name, 3);
|
1332 |
|
|
arm_set_fixed_optab_libfunc (ssmul_optab, fixed_arith_modes[i].mode,
|
1333 |
|
|
"ssmul", fixed_arith_modes[i].name, 3);
|
1334 |
|
|
arm_set_fixed_optab_libfunc (usmul_optab, fixed_arith_modes[i].mode,
|
1335 |
|
|
"usmul", fixed_arith_modes[i].name, 3);
|
1336 |
|
|
arm_set_fixed_optab_libfunc (sdiv_optab, fixed_arith_modes[i].mode,
|
1337 |
|
|
"div", fixed_arith_modes[i].name, 3);
|
1338 |
|
|
arm_set_fixed_optab_libfunc (udiv_optab, fixed_arith_modes[i].mode,
|
1339 |
|
|
"udiv", fixed_arith_modes[i].name, 3);
|
1340 |
|
|
arm_set_fixed_optab_libfunc (ssdiv_optab, fixed_arith_modes[i].mode,
|
1341 |
|
|
"ssdiv", fixed_arith_modes[i].name, 3);
|
1342 |
|
|
arm_set_fixed_optab_libfunc (usdiv_optab, fixed_arith_modes[i].mode,
|
1343 |
|
|
"usdiv", fixed_arith_modes[i].name, 3);
|
1344 |
|
|
arm_set_fixed_optab_libfunc (neg_optab, fixed_arith_modes[i].mode,
|
1345 |
|
|
"neg", fixed_arith_modes[i].name, 2);
|
1346 |
|
|
arm_set_fixed_optab_libfunc (ssneg_optab, fixed_arith_modes[i].mode,
|
1347 |
|
|
"ssneg", fixed_arith_modes[i].name, 2);
|
1348 |
|
|
arm_set_fixed_optab_libfunc (usneg_optab, fixed_arith_modes[i].mode,
|
1349 |
|
|
"usneg", fixed_arith_modes[i].name, 2);
|
1350 |
|
|
arm_set_fixed_optab_libfunc (ashl_optab, fixed_arith_modes[i].mode,
|
1351 |
|
|
"ashl", fixed_arith_modes[i].name, 3);
|
1352 |
|
|
arm_set_fixed_optab_libfunc (ashr_optab, fixed_arith_modes[i].mode,
|
1353 |
|
|
"ashr", fixed_arith_modes[i].name, 3);
|
1354 |
|
|
arm_set_fixed_optab_libfunc (lshr_optab, fixed_arith_modes[i].mode,
|
1355 |
|
|
"lshr", fixed_arith_modes[i].name, 3);
|
1356 |
|
|
arm_set_fixed_optab_libfunc (ssashl_optab, fixed_arith_modes[i].mode,
|
1357 |
|
|
"ssashl", fixed_arith_modes[i].name, 3);
|
1358 |
|
|
arm_set_fixed_optab_libfunc (usashl_optab, fixed_arith_modes[i].mode,
|
1359 |
|
|
"usashl", fixed_arith_modes[i].name, 3);
|
1360 |
|
|
arm_set_fixed_optab_libfunc (cmp_optab, fixed_arith_modes[i].mode,
|
1361 |
|
|
"cmp", fixed_arith_modes[i].name, 2);
|
1362 |
|
|
}
|
1363 |
|
|
|
1364 |
|
|
for (i = 0; i < ARRAY_SIZE (fixed_conv_modes); i++)
|
1365 |
|
|
for (j = 0; j < ARRAY_SIZE (fixed_conv_modes); j++)
|
1366 |
|
|
{
|
1367 |
|
|
if (i == j
|
1368 |
|
|
|| (!ALL_FIXED_POINT_MODE_P (fixed_conv_modes[i].mode)
|
1369 |
|
|
&& !ALL_FIXED_POINT_MODE_P (fixed_conv_modes[j].mode)))
|
1370 |
|
|
continue;
|
1371 |
|
|
|
1372 |
|
|
arm_set_fixed_conv_libfunc (fract_optab, fixed_conv_modes[i].mode,
|
1373 |
|
|
fixed_conv_modes[j].mode, "fract",
|
1374 |
|
|
fixed_conv_modes[i].name,
|
1375 |
|
|
fixed_conv_modes[j].name);
|
1376 |
|
|
arm_set_fixed_conv_libfunc (satfract_optab,
|
1377 |
|
|
fixed_conv_modes[i].mode,
|
1378 |
|
|
fixed_conv_modes[j].mode, "satfract",
|
1379 |
|
|
fixed_conv_modes[i].name,
|
1380 |
|
|
fixed_conv_modes[j].name);
|
1381 |
|
|
arm_set_fixed_conv_libfunc (fractuns_optab,
|
1382 |
|
|
fixed_conv_modes[i].mode,
|
1383 |
|
|
fixed_conv_modes[j].mode, "fractuns",
|
1384 |
|
|
fixed_conv_modes[i].name,
|
1385 |
|
|
fixed_conv_modes[j].name);
|
1386 |
|
|
arm_set_fixed_conv_libfunc (satfractuns_optab,
|
1387 |
|
|
fixed_conv_modes[i].mode,
|
1388 |
|
|
fixed_conv_modes[j].mode, "satfractuns",
|
1389 |
|
|
fixed_conv_modes[i].name,
|
1390 |
|
|
fixed_conv_modes[j].name);
|
1391 |
|
|
}
|
1392 |
|
|
}
|
1393 |
|
|
|
1394 |
|
|
if (TARGET_AAPCS_BASED)
|
1395 |
|
|
synchronize_libfunc = init_one_libfunc ("__sync_synchronize");
|
1396 |
|
|
}
|
1397 |
|
|
|
1398 |
|
|
/* On AAPCS systems, this is the "struct __va_list". */
|
1399 |
|
|
static GTY(()) tree va_list_type;
|
1400 |
|
|
|
1401 |
|
|
/* Return the type to use as __builtin_va_list. */
|
1402 |
|
|
static tree
|
1403 |
|
|
arm_build_builtin_va_list (void)
|
1404 |
|
|
{
|
1405 |
|
|
tree va_list_name;
|
1406 |
|
|
tree ap_field;
|
1407 |
|
|
|
1408 |
|
|
if (!TARGET_AAPCS_BASED)
|
1409 |
|
|
return std_build_builtin_va_list ();
|
1410 |
|
|
|
1411 |
|
|
/* AAPCS \S 7.1.4 requires that va_list be a typedef for a type
|
1412 |
|
|
defined as:
|
1413 |
|
|
|
1414 |
|
|
struct __va_list
|
1415 |
|
|
{
|
1416 |
|
|
void *__ap;
|
1417 |
|
|
};
|
1418 |
|
|
|
1419 |
|
|
The C Library ABI further reinforces this definition in \S
|
1420 |
|
|
4.1.
|
1421 |
|
|
|
1422 |
|
|
We must follow this definition exactly. The structure tag
|
1423 |
|
|
name is visible in C++ mangled names, and thus forms a part
|
1424 |
|
|
of the ABI. The field name may be used by people who
|
1425 |
|
|
#include <stdarg.h>. */
|
1426 |
|
|
/* Create the type. */
|
1427 |
|
|
va_list_type = lang_hooks.types.make_type (RECORD_TYPE);
|
1428 |
|
|
/* Give it the required name. */
|
1429 |
|
|
va_list_name = build_decl (BUILTINS_LOCATION,
|
1430 |
|
|
TYPE_DECL,
|
1431 |
|
|
get_identifier ("__va_list"),
|
1432 |
|
|
va_list_type);
|
1433 |
|
|
DECL_ARTIFICIAL (va_list_name) = 1;
|
1434 |
|
|
TYPE_NAME (va_list_type) = va_list_name;
|
1435 |
|
|
TYPE_STUB_DECL (va_list_type) = va_list_name;
|
1436 |
|
|
/* Create the __ap field. */
|
1437 |
|
|
ap_field = build_decl (BUILTINS_LOCATION,
|
1438 |
|
|
FIELD_DECL,
|
1439 |
|
|
get_identifier ("__ap"),
|
1440 |
|
|
ptr_type_node);
|
1441 |
|
|
DECL_ARTIFICIAL (ap_field) = 1;
|
1442 |
|
|
DECL_FIELD_CONTEXT (ap_field) = va_list_type;
|
1443 |
|
|
TYPE_FIELDS (va_list_type) = ap_field;
|
1444 |
|
|
/* Compute its layout. */
|
1445 |
|
|
layout_type (va_list_type);
|
1446 |
|
|
|
1447 |
|
|
return va_list_type;
|
1448 |
|
|
}
|
1449 |
|
|
|
1450 |
|
|
/* Return an expression of type "void *" pointing to the next
|
1451 |
|
|
available argument in a variable-argument list. VALIST is the
|
1452 |
|
|
user-level va_list object, of type __builtin_va_list. */
|
1453 |
|
|
static tree
|
1454 |
|
|
arm_extract_valist_ptr (tree valist)
|
1455 |
|
|
{
|
1456 |
|
|
if (TREE_TYPE (valist) == error_mark_node)
|
1457 |
|
|
return error_mark_node;
|
1458 |
|
|
|
1459 |
|
|
/* On an AAPCS target, the pointer is stored within "struct
|
1460 |
|
|
va_list". */
|
1461 |
|
|
if (TARGET_AAPCS_BASED)
|
1462 |
|
|
{
|
1463 |
|
|
tree ap_field = TYPE_FIELDS (TREE_TYPE (valist));
|
1464 |
|
|
valist = build3 (COMPONENT_REF, TREE_TYPE (ap_field),
|
1465 |
|
|
valist, ap_field, NULL_TREE);
|
1466 |
|
|
}
|
1467 |
|
|
|
1468 |
|
|
return valist;
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
/* Implement TARGET_EXPAND_BUILTIN_VA_START. */
|
1472 |
|
|
static void
|
1473 |
|
|
arm_expand_builtin_va_start (tree valist, rtx nextarg)
|
1474 |
|
|
{
|
1475 |
|
|
valist = arm_extract_valist_ptr (valist);
|
1476 |
|
|
std_expand_builtin_va_start (valist, nextarg);
|
1477 |
|
|
}
|
1478 |
|
|
|
1479 |
|
|
/* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */
|
1480 |
|
|
static tree
|
1481 |
|
|
arm_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
|
1482 |
|
|
gimple_seq *post_p)
|
1483 |
|
|
{
|
1484 |
|
|
valist = arm_extract_valist_ptr (valist);
|
1485 |
|
|
return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
|
1486 |
|
|
}
|
1487 |
|
|
|
1488 |
|
|
/* Fix up any incompatible options that the user has specified. */
|
1489 |
|
|
static void
|
1490 |
|
|
arm_option_override (void)
|
1491 |
|
|
{
|
1492 |
|
|
if (global_options_set.x_arm_arch_option)
|
1493 |
|
|
arm_selected_arch = &all_architectures[arm_arch_option];
|
1494 |
|
|
|
1495 |
|
|
if (global_options_set.x_arm_cpu_option)
|
1496 |
|
|
arm_selected_cpu = &all_cores[(int) arm_cpu_option];
|
1497 |
|
|
|
1498 |
|
|
if (global_options_set.x_arm_tune_option)
|
1499 |
|
|
arm_selected_tune = &all_cores[(int) arm_tune_option];
|
1500 |
|
|
|
1501 |
|
|
#ifdef SUBTARGET_OVERRIDE_OPTIONS
|
1502 |
|
|
SUBTARGET_OVERRIDE_OPTIONS;
|
1503 |
|
|
#endif
|
1504 |
|
|
|
1505 |
|
|
if (arm_selected_arch)
|
1506 |
|
|
{
|
1507 |
|
|
if (arm_selected_cpu)
|
1508 |
|
|
{
|
1509 |
|
|
/* Check for conflict between mcpu and march. */
|
1510 |
|
|
if ((arm_selected_cpu->flags ^ arm_selected_arch->flags) & ~FL_TUNE)
|
1511 |
|
|
{
|
1512 |
|
|
warning (0, "switch -mcpu=%s conflicts with -march=%s switch",
|
1513 |
|
|
arm_selected_cpu->name, arm_selected_arch->name);
|
1514 |
|
|
/* -march wins for code generation.
|
1515 |
|
|
-mcpu wins for default tuning. */
|
1516 |
|
|
if (!arm_selected_tune)
|
1517 |
|
|
arm_selected_tune = arm_selected_cpu;
|
1518 |
|
|
|
1519 |
|
|
arm_selected_cpu = arm_selected_arch;
|
1520 |
|
|
}
|
1521 |
|
|
else
|
1522 |
|
|
/* -mcpu wins. */
|
1523 |
|
|
arm_selected_arch = NULL;
|
1524 |
|
|
}
|
1525 |
|
|
else
|
1526 |
|
|
/* Pick a CPU based on the architecture. */
|
1527 |
|
|
arm_selected_cpu = arm_selected_arch;
|
1528 |
|
|
}
|
1529 |
|
|
|
1530 |
|
|
/* If the user did not specify a processor, choose one for them. */
|
1531 |
|
|
if (!arm_selected_cpu)
|
1532 |
|
|
{
|
1533 |
|
|
const struct processors * sel;
|
1534 |
|
|
unsigned int sought;
|
1535 |
|
|
|
1536 |
|
|
arm_selected_cpu = &all_cores[TARGET_CPU_DEFAULT];
|
1537 |
|
|
if (!arm_selected_cpu->name)
|
1538 |
|
|
{
|
1539 |
|
|
#ifdef SUBTARGET_CPU_DEFAULT
|
1540 |
|
|
/* Use the subtarget default CPU if none was specified by
|
1541 |
|
|
configure. */
|
1542 |
|
|
arm_selected_cpu = &all_cores[SUBTARGET_CPU_DEFAULT];
|
1543 |
|
|
#endif
|
1544 |
|
|
/* Default to ARM6. */
|
1545 |
|
|
if (!arm_selected_cpu->name)
|
1546 |
|
|
arm_selected_cpu = &all_cores[arm6];
|
1547 |
|
|
}
|
1548 |
|
|
|
1549 |
|
|
sel = arm_selected_cpu;
|
1550 |
|
|
insn_flags = sel->flags;
|
1551 |
|
|
|
1552 |
|
|
/* Now check to see if the user has specified some command line
|
1553 |
|
|
switch that require certain abilities from the cpu. */
|
1554 |
|
|
sought = 0;
|
1555 |
|
|
|
1556 |
|
|
if (TARGET_INTERWORK || TARGET_THUMB)
|
1557 |
|
|
{
|
1558 |
|
|
sought |= (FL_THUMB | FL_MODE32);
|
1559 |
|
|
|
1560 |
|
|
/* There are no ARM processors that support both APCS-26 and
|
1561 |
|
|
interworking. Therefore we force FL_MODE26 to be removed
|
1562 |
|
|
from insn_flags here (if it was set), so that the search
|
1563 |
|
|
below will always be able to find a compatible processor. */
|
1564 |
|
|
insn_flags &= ~FL_MODE26;
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
if (sought != 0 && ((sought & insn_flags) != sought))
|
1568 |
|
|
{
|
1569 |
|
|
/* Try to locate a CPU type that supports all of the abilities
|
1570 |
|
|
of the default CPU, plus the extra abilities requested by
|
1571 |
|
|
the user. */
|
1572 |
|
|
for (sel = all_cores; sel->name != NULL; sel++)
|
1573 |
|
|
if ((sel->flags & sought) == (sought | insn_flags))
|
1574 |
|
|
break;
|
1575 |
|
|
|
1576 |
|
|
if (sel->name == NULL)
|
1577 |
|
|
{
|
1578 |
|
|
unsigned current_bit_count = 0;
|
1579 |
|
|
const struct processors * best_fit = NULL;
|
1580 |
|
|
|
1581 |
|
|
/* Ideally we would like to issue an error message here
|
1582 |
|
|
saying that it was not possible to find a CPU compatible
|
1583 |
|
|
with the default CPU, but which also supports the command
|
1584 |
|
|
line options specified by the programmer, and so they
|
1585 |
|
|
ought to use the -mcpu=<name> command line option to
|
1586 |
|
|
override the default CPU type.
|
1587 |
|
|
|
1588 |
|
|
If we cannot find a cpu that has both the
|
1589 |
|
|
characteristics of the default cpu and the given
|
1590 |
|
|
command line options we scan the array again looking
|
1591 |
|
|
for a best match. */
|
1592 |
|
|
for (sel = all_cores; sel->name != NULL; sel++)
|
1593 |
|
|
if ((sel->flags & sought) == sought)
|
1594 |
|
|
{
|
1595 |
|
|
unsigned count;
|
1596 |
|
|
|
1597 |
|
|
count = bit_count (sel->flags & insn_flags);
|
1598 |
|
|
|
1599 |
|
|
if (count >= current_bit_count)
|
1600 |
|
|
{
|
1601 |
|
|
best_fit = sel;
|
1602 |
|
|
current_bit_count = count;
|
1603 |
|
|
}
|
1604 |
|
|
}
|
1605 |
|
|
|
1606 |
|
|
gcc_assert (best_fit);
|
1607 |
|
|
sel = best_fit;
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
arm_selected_cpu = sel;
|
1611 |
|
|
}
|
1612 |
|
|
}
|
1613 |
|
|
|
1614 |
|
|
gcc_assert (arm_selected_cpu);
|
1615 |
|
|
/* The selected cpu may be an architecture, so lookup tuning by core ID. */
|
1616 |
|
|
if (!arm_selected_tune)
|
1617 |
|
|
arm_selected_tune = &all_cores[arm_selected_cpu->core];
|
1618 |
|
|
|
1619 |
|
|
sprintf (arm_arch_name, "__ARM_ARCH_%s__", arm_selected_cpu->arch);
|
1620 |
|
|
insn_flags = arm_selected_cpu->flags;
|
1621 |
|
|
|
1622 |
|
|
arm_tune = arm_selected_tune->core;
|
1623 |
|
|
tune_flags = arm_selected_tune->flags;
|
1624 |
|
|
current_tune = arm_selected_tune->tune;
|
1625 |
|
|
|
1626 |
|
|
/* Make sure that the processor choice does not conflict with any of the
|
1627 |
|
|
other command line choices. */
|
1628 |
|
|
if (TARGET_ARM && !(insn_flags & FL_NOTM))
|
1629 |
|
|
error ("target CPU does not support ARM mode");
|
1630 |
|
|
|
1631 |
|
|
/* BPABI targets use linker tricks to allow interworking on cores
|
1632 |
|
|
without thumb support. */
|
1633 |
|
|
if (TARGET_INTERWORK && !((insn_flags & FL_THUMB) || TARGET_BPABI))
|
1634 |
|
|
{
|
1635 |
|
|
warning (0, "target CPU does not support interworking" );
|
1636 |
|
|
target_flags &= ~MASK_INTERWORK;
|
1637 |
|
|
}
|
1638 |
|
|
|
1639 |
|
|
if (TARGET_THUMB && !(insn_flags & FL_THUMB))
|
1640 |
|
|
{
|
1641 |
|
|
warning (0, "target CPU does not support THUMB instructions");
|
1642 |
|
|
target_flags &= ~MASK_THUMB;
|
1643 |
|
|
}
|
1644 |
|
|
|
1645 |
|
|
if (TARGET_APCS_FRAME && TARGET_THUMB)
|
1646 |
|
|
{
|
1647 |
|
|
/* warning (0, "ignoring -mapcs-frame because -mthumb was used"); */
|
1648 |
|
|
target_flags &= ~MASK_APCS_FRAME;
|
1649 |
|
|
}
|
1650 |
|
|
|
1651 |
|
|
/* Callee super interworking implies thumb interworking. Adding
|
1652 |
|
|
this to the flags here simplifies the logic elsewhere. */
|
1653 |
|
|
if (TARGET_THUMB && TARGET_CALLEE_INTERWORKING)
|
1654 |
|
|
target_flags |= MASK_INTERWORK;
|
1655 |
|
|
|
1656 |
|
|
/* TARGET_BACKTRACE calls leaf_function_p, which causes a crash if done
|
1657 |
|
|
from here where no function is being compiled currently. */
|
1658 |
|
|
if ((TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME) && TARGET_ARM)
|
1659 |
|
|
warning (0, "enabling backtrace support is only meaningful when compiling for the Thumb");
|
1660 |
|
|
|
1661 |
|
|
if (TARGET_ARM && TARGET_CALLEE_INTERWORKING)
|
1662 |
|
|
warning (0, "enabling callee interworking support is only meaningful when compiling for the Thumb");
|
1663 |
|
|
|
1664 |
|
|
if (TARGET_APCS_STACK && !TARGET_APCS_FRAME)
|
1665 |
|
|
{
|
1666 |
|
|
warning (0, "-mapcs-stack-check incompatible with -mno-apcs-frame");
|
1667 |
|
|
target_flags |= MASK_APCS_FRAME;
|
1668 |
|
|
}
|
1669 |
|
|
|
1670 |
|
|
if (TARGET_POKE_FUNCTION_NAME)
|
1671 |
|
|
target_flags |= MASK_APCS_FRAME;
|
1672 |
|
|
|
1673 |
|
|
if (TARGET_APCS_REENT && flag_pic)
|
1674 |
|
|
error ("-fpic and -mapcs-reent are incompatible");
|
1675 |
|
|
|
1676 |
|
|
if (TARGET_APCS_REENT)
|
1677 |
|
|
warning (0, "APCS reentrant code not supported. Ignored");
|
1678 |
|
|
|
1679 |
|
|
/* If this target is normally configured to use APCS frames, warn if they
|
1680 |
|
|
are turned off and debugging is turned on. */
|
1681 |
|
|
if (TARGET_ARM
|
1682 |
|
|
&& write_symbols != NO_DEBUG
|
1683 |
|
|
&& !TARGET_APCS_FRAME
|
1684 |
|
|
&& (TARGET_DEFAULT & MASK_APCS_FRAME))
|
1685 |
|
|
warning (0, "-g with -mno-apcs-frame may not give sensible debugging");
|
1686 |
|
|
|
1687 |
|
|
if (TARGET_APCS_FLOAT)
|
1688 |
|
|
warning (0, "passing floating point arguments in fp regs not yet supported");
|
1689 |
|
|
|
1690 |
|
|
if (TARGET_LITTLE_WORDS)
|
1691 |
|
|
warning (OPT_Wdeprecated, "%<mwords-little-endian%> is deprecated and "
|
1692 |
|
|
"will be removed in a future release");
|
1693 |
|
|
|
1694 |
|
|
/* Initialize boolean versions of the flags, for use in the arm.md file. */
|
1695 |
|
|
arm_arch3m = (insn_flags & FL_ARCH3M) != 0;
|
1696 |
|
|
arm_arch4 = (insn_flags & FL_ARCH4) != 0;
|
1697 |
|
|
arm_arch4t = arm_arch4 & ((insn_flags & FL_THUMB) != 0);
|
1698 |
|
|
arm_arch5 = (insn_flags & FL_ARCH5) != 0;
|
1699 |
|
|
arm_arch5e = (insn_flags & FL_ARCH5E) != 0;
|
1700 |
|
|
arm_arch6 = (insn_flags & FL_ARCH6) != 0;
|
1701 |
|
|
arm_arch6k = (insn_flags & FL_ARCH6K) != 0;
|
1702 |
|
|
arm_arch_notm = (insn_flags & FL_NOTM) != 0;
|
1703 |
|
|
arm_arch7 = (insn_flags & FL_ARCH7) != 0;
|
1704 |
|
|
arm_arch7em = (insn_flags & FL_ARCH7EM) != 0;
|
1705 |
|
|
arm_arch_thumb2 = (insn_flags & FL_THUMB2) != 0;
|
1706 |
|
|
arm_arch_xscale = (insn_flags & FL_XSCALE) != 0;
|
1707 |
|
|
arm_arch_cirrus = (insn_flags & FL_CIRRUS) != 0;
|
1708 |
|
|
|
1709 |
|
|
arm_ld_sched = (tune_flags & FL_LDSCHED) != 0;
|
1710 |
|
|
arm_tune_strongarm = (tune_flags & FL_STRONG) != 0;
|
1711 |
|
|
thumb_code = TARGET_ARM == 0;
|
1712 |
|
|
thumb1_code = TARGET_THUMB1 != 0;
|
1713 |
|
|
arm_tune_wbuf = (tune_flags & FL_WBUF) != 0;
|
1714 |
|
|
arm_tune_xscale = (tune_flags & FL_XSCALE) != 0;
|
1715 |
|
|
arm_arch_iwmmxt = (insn_flags & FL_IWMMXT) != 0;
|
1716 |
|
|
arm_arch_thumb_hwdiv = (insn_flags & FL_THUMB_DIV) != 0;
|
1717 |
|
|
arm_arch_arm_hwdiv = (insn_flags & FL_ARM_DIV) != 0;
|
1718 |
|
|
arm_tune_cortex_a9 = (arm_tune == cortexa9) != 0;
|
1719 |
|
|
|
1720 |
|
|
/* If we are not using the default (ARM mode) section anchor offset
|
1721 |
|
|
ranges, then set the correct ranges now. */
|
1722 |
|
|
if (TARGET_THUMB1)
|
1723 |
|
|
{
|
1724 |
|
|
/* Thumb-1 LDR instructions cannot have negative offsets.
|
1725 |
|
|
Permissible positive offset ranges are 5-bit (for byte loads),
|
1726 |
|
|
6-bit (for halfword loads), or 7-bit (for word loads).
|
1727 |
|
|
Empirical results suggest a 7-bit anchor range gives the best
|
1728 |
|
|
overall code size. */
|
1729 |
|
|
targetm.min_anchor_offset = 0;
|
1730 |
|
|
targetm.max_anchor_offset = 127;
|
1731 |
|
|
}
|
1732 |
|
|
else if (TARGET_THUMB2)
|
1733 |
|
|
{
|
1734 |
|
|
/* The minimum is set such that the total size of the block
|
1735 |
|
|
for a particular anchor is 248 + 1 + 4095 bytes, which is
|
1736 |
|
|
divisible by eight, ensuring natural spacing of anchors. */
|
1737 |
|
|
targetm.min_anchor_offset = -248;
|
1738 |
|
|
targetm.max_anchor_offset = 4095;
|
1739 |
|
|
}
|
1740 |
|
|
|
1741 |
|
|
/* V5 code we generate is completely interworking capable, so we turn off
|
1742 |
|
|
TARGET_INTERWORK here to avoid many tests later on. */
|
1743 |
|
|
|
1744 |
|
|
/* XXX However, we must pass the right pre-processor defines to CPP
|
1745 |
|
|
or GLD can get confused. This is a hack. */
|
1746 |
|
|
if (TARGET_INTERWORK)
|
1747 |
|
|
arm_cpp_interwork = 1;
|
1748 |
|
|
|
1749 |
|
|
if (arm_arch5)
|
1750 |
|
|
target_flags &= ~MASK_INTERWORK;
|
1751 |
|
|
|
1752 |
|
|
if (TARGET_IWMMXT && !ARM_DOUBLEWORD_ALIGN)
|
1753 |
|
|
error ("iwmmxt requires an AAPCS compatible ABI for proper operation");
|
1754 |
|
|
|
1755 |
|
|
if (TARGET_IWMMXT_ABI && !TARGET_IWMMXT)
|
1756 |
|
|
error ("iwmmxt abi requires an iwmmxt capable cpu");
|
1757 |
|
|
|
1758 |
|
|
if (!global_options_set.x_arm_fpu_index)
|
1759 |
|
|
{
|
1760 |
|
|
const char *target_fpu_name;
|
1761 |
|
|
bool ok;
|
1762 |
|
|
|
1763 |
|
|
#ifdef FPUTYPE_DEFAULT
|
1764 |
|
|
target_fpu_name = FPUTYPE_DEFAULT;
|
1765 |
|
|
#else
|
1766 |
|
|
if (arm_arch_cirrus)
|
1767 |
|
|
target_fpu_name = "maverick";
|
1768 |
|
|
else
|
1769 |
|
|
target_fpu_name = "fpe2";
|
1770 |
|
|
#endif
|
1771 |
|
|
|
1772 |
|
|
ok = opt_enum_arg_to_value (OPT_mfpu_, target_fpu_name, &arm_fpu_index,
|
1773 |
|
|
CL_TARGET);
|
1774 |
|
|
gcc_assert (ok);
|
1775 |
|
|
}
|
1776 |
|
|
|
1777 |
|
|
arm_fpu_desc = &all_fpus[arm_fpu_index];
|
1778 |
|
|
|
1779 |
|
|
switch (arm_fpu_desc->model)
|
1780 |
|
|
{
|
1781 |
|
|
case ARM_FP_MODEL_FPA:
|
1782 |
|
|
if (arm_fpu_desc->rev == 2)
|
1783 |
|
|
arm_fpu_attr = FPU_FPE2;
|
1784 |
|
|
else if (arm_fpu_desc->rev == 3)
|
1785 |
|
|
arm_fpu_attr = FPU_FPE3;
|
1786 |
|
|
else
|
1787 |
|
|
arm_fpu_attr = FPU_FPA;
|
1788 |
|
|
break;
|
1789 |
|
|
|
1790 |
|
|
case ARM_FP_MODEL_MAVERICK:
|
1791 |
|
|
arm_fpu_attr = FPU_MAVERICK;
|
1792 |
|
|
break;
|
1793 |
|
|
|
1794 |
|
|
case ARM_FP_MODEL_VFP:
|
1795 |
|
|
arm_fpu_attr = FPU_VFP;
|
1796 |
|
|
break;
|
1797 |
|
|
|
1798 |
|
|
default:
|
1799 |
|
|
gcc_unreachable();
|
1800 |
|
|
}
|
1801 |
|
|
|
1802 |
|
|
if (TARGET_AAPCS_BASED
|
1803 |
|
|
&& (arm_fpu_desc->model == ARM_FP_MODEL_FPA))
|
1804 |
|
|
error ("FPA is unsupported in the AAPCS");
|
1805 |
|
|
|
1806 |
|
|
if (TARGET_AAPCS_BASED)
|
1807 |
|
|
{
|
1808 |
|
|
if (TARGET_CALLER_INTERWORKING)
|
1809 |
|
|
error ("AAPCS does not support -mcaller-super-interworking");
|
1810 |
|
|
else
|
1811 |
|
|
if (TARGET_CALLEE_INTERWORKING)
|
1812 |
|
|
error ("AAPCS does not support -mcallee-super-interworking");
|
1813 |
|
|
}
|
1814 |
|
|
|
1815 |
|
|
/* FPA and iWMMXt are incompatible because the insn encodings overlap.
|
1816 |
|
|
VFP and iWMMXt can theoretically coexist, but it's unlikely such silicon
|
1817 |
|
|
will ever exist. GCC makes no attempt to support this combination. */
|
1818 |
|
|
if (TARGET_IWMMXT && !TARGET_SOFT_FLOAT)
|
1819 |
|
|
sorry ("iWMMXt and hardware floating point");
|
1820 |
|
|
|
1821 |
|
|
/* ??? iWMMXt insn patterns need auditing for Thumb-2. */
|
1822 |
|
|
if (TARGET_THUMB2 && TARGET_IWMMXT)
|
1823 |
|
|
sorry ("Thumb-2 iWMMXt");
|
1824 |
|
|
|
1825 |
|
|
/* __fp16 support currently assumes the core has ldrh. */
|
1826 |
|
|
if (!arm_arch4 && arm_fp16_format != ARM_FP16_FORMAT_NONE)
|
1827 |
|
|
sorry ("__fp16 and no ldrh");
|
1828 |
|
|
|
1829 |
|
|
/* If soft-float is specified then don't use FPU. */
|
1830 |
|
|
if (TARGET_SOFT_FLOAT)
|
1831 |
|
|
arm_fpu_attr = FPU_NONE;
|
1832 |
|
|
|
1833 |
|
|
if (TARGET_AAPCS_BASED)
|
1834 |
|
|
{
|
1835 |
|
|
if (arm_abi == ARM_ABI_IWMMXT)
|
1836 |
|
|
arm_pcs_default = ARM_PCS_AAPCS_IWMMXT;
|
1837 |
|
|
else if (arm_float_abi == ARM_FLOAT_ABI_HARD
|
1838 |
|
|
&& TARGET_HARD_FLOAT
|
1839 |
|
|
&& TARGET_VFP)
|
1840 |
|
|
arm_pcs_default = ARM_PCS_AAPCS_VFP;
|
1841 |
|
|
else
|
1842 |
|
|
arm_pcs_default = ARM_PCS_AAPCS;
|
1843 |
|
|
}
|
1844 |
|
|
else
|
1845 |
|
|
{
|
1846 |
|
|
if (arm_float_abi == ARM_FLOAT_ABI_HARD && TARGET_VFP)
|
1847 |
|
|
sorry ("-mfloat-abi=hard and VFP");
|
1848 |
|
|
|
1849 |
|
|
if (arm_abi == ARM_ABI_APCS)
|
1850 |
|
|
arm_pcs_default = ARM_PCS_APCS;
|
1851 |
|
|
else
|
1852 |
|
|
arm_pcs_default = ARM_PCS_ATPCS;
|
1853 |
|
|
}
|
1854 |
|
|
|
1855 |
|
|
/* For arm2/3 there is no need to do any scheduling if there is only
|
1856 |
|
|
a floating point emulator, or we are doing software floating-point. */
|
1857 |
|
|
if ((TARGET_SOFT_FLOAT
|
1858 |
|
|
|| (TARGET_FPA && arm_fpu_desc->rev))
|
1859 |
|
|
&& (tune_flags & FL_MODE32) == 0)
|
1860 |
|
|
flag_schedule_insns = flag_schedule_insns_after_reload = 0;
|
1861 |
|
|
|
1862 |
|
|
/* Use the cp15 method if it is available. */
|
1863 |
|
|
if (target_thread_pointer == TP_AUTO)
|
1864 |
|
|
{
|
1865 |
|
|
if (arm_arch6k && !TARGET_THUMB1)
|
1866 |
|
|
target_thread_pointer = TP_CP15;
|
1867 |
|
|
else
|
1868 |
|
|
target_thread_pointer = TP_SOFT;
|
1869 |
|
|
}
|
1870 |
|
|
|
1871 |
|
|
if (TARGET_HARD_TP && TARGET_THUMB1)
|
1872 |
|
|
error ("can not use -mtp=cp15 with 16-bit Thumb");
|
1873 |
|
|
|
1874 |
|
|
/* Override the default structure alignment for AAPCS ABI. */
|
1875 |
|
|
if (!global_options_set.x_arm_structure_size_boundary)
|
1876 |
|
|
{
|
1877 |
|
|
if (TARGET_AAPCS_BASED)
|
1878 |
|
|
arm_structure_size_boundary = 8;
|
1879 |
|
|
}
|
1880 |
|
|
else
|
1881 |
|
|
{
|
1882 |
|
|
if (arm_structure_size_boundary != 8
|
1883 |
|
|
&& arm_structure_size_boundary != 32
|
1884 |
|
|
&& !(ARM_DOUBLEWORD_ALIGN && arm_structure_size_boundary == 64))
|
1885 |
|
|
{
|
1886 |
|
|
if (ARM_DOUBLEWORD_ALIGN)
|
1887 |
|
|
warning (0,
|
1888 |
|
|
"structure size boundary can only be set to 8, 32 or 64");
|
1889 |
|
|
else
|
1890 |
|
|
warning (0, "structure size boundary can only be set to 8 or 32");
|
1891 |
|
|
arm_structure_size_boundary
|
1892 |
|
|
= (TARGET_AAPCS_BASED ? 8 : DEFAULT_STRUCTURE_SIZE_BOUNDARY);
|
1893 |
|
|
}
|
1894 |
|
|
}
|
1895 |
|
|
|
1896 |
|
|
if (!TARGET_ARM && TARGET_VXWORKS_RTP && flag_pic)
|
1897 |
|
|
{
|
1898 |
|
|
error ("RTP PIC is incompatible with Thumb");
|
1899 |
|
|
flag_pic = 0;
|
1900 |
|
|
}
|
1901 |
|
|
|
1902 |
|
|
/* If stack checking is disabled, we can use r10 as the PIC register,
|
1903 |
|
|
which keeps r9 available. The EABI specifies r9 as the PIC register. */
|
1904 |
|
|
if (flag_pic && TARGET_SINGLE_PIC_BASE)
|
1905 |
|
|
{
|
1906 |
|
|
if (TARGET_VXWORKS_RTP)
|
1907 |
|
|
warning (0, "RTP PIC is incompatible with -msingle-pic-base");
|
1908 |
|
|
arm_pic_register = (TARGET_APCS_STACK || TARGET_AAPCS_BASED) ? 9 : 10;
|
1909 |
|
|
}
|
1910 |
|
|
|
1911 |
|
|
if (flag_pic && TARGET_VXWORKS_RTP)
|
1912 |
|
|
arm_pic_register = 9;
|
1913 |
|
|
|
1914 |
|
|
if (arm_pic_register_string != NULL)
|
1915 |
|
|
{
|
1916 |
|
|
int pic_register = decode_reg_name (arm_pic_register_string);
|
1917 |
|
|
|
1918 |
|
|
if (!flag_pic)
|
1919 |
|
|
warning (0, "-mpic-register= is useless without -fpic");
|
1920 |
|
|
|
1921 |
|
|
/* Prevent the user from choosing an obviously stupid PIC register. */
|
1922 |
|
|
else if (pic_register < 0 || call_used_regs[pic_register]
|
1923 |
|
|
|| pic_register == HARD_FRAME_POINTER_REGNUM
|
1924 |
|
|
|| pic_register == STACK_POINTER_REGNUM
|
1925 |
|
|
|| pic_register >= PC_REGNUM
|
1926 |
|
|
|| (TARGET_VXWORKS_RTP
|
1927 |
|
|
&& (unsigned int) pic_register != arm_pic_register))
|
1928 |
|
|
error ("unable to use '%s' for PIC register", arm_pic_register_string);
|
1929 |
|
|
else
|
1930 |
|
|
arm_pic_register = pic_register;
|
1931 |
|
|
}
|
1932 |
|
|
|
1933 |
|
|
/* Enable -mfix-cortex-m3-ldrd by default for Cortex-M3 cores. */
|
1934 |
|
|
if (fix_cm3_ldrd == 2)
|
1935 |
|
|
{
|
1936 |
|
|
if (arm_selected_cpu->core == cortexm3)
|
1937 |
|
|
fix_cm3_ldrd = 1;
|
1938 |
|
|
else
|
1939 |
|
|
fix_cm3_ldrd = 0;
|
1940 |
|
|
}
|
1941 |
|
|
|
1942 |
|
|
/* Enable -munaligned-access by default for
|
1943 |
|
|
- all ARMv6 architecture-based processors
|
1944 |
|
|
- ARMv7-A, ARMv7-R, and ARMv7-M architecture-based processors.
|
1945 |
|
|
|
1946 |
|
|
Disable -munaligned-access by default for
|
1947 |
|
|
- all pre-ARMv6 architecture-based processors
|
1948 |
|
|
- ARMv6-M architecture-based processors. */
|
1949 |
|
|
|
1950 |
|
|
if (unaligned_access == 2)
|
1951 |
|
|
{
|
1952 |
|
|
if (arm_arch6 && (arm_arch_notm || arm_arch7))
|
1953 |
|
|
unaligned_access = 1;
|
1954 |
|
|
else
|
1955 |
|
|
unaligned_access = 0;
|
1956 |
|
|
}
|
1957 |
|
|
else if (unaligned_access == 1
|
1958 |
|
|
&& !(arm_arch6 && (arm_arch_notm || arm_arch7)))
|
1959 |
|
|
{
|
1960 |
|
|
warning (0, "target CPU does not support unaligned accesses");
|
1961 |
|
|
unaligned_access = 0;
|
1962 |
|
|
}
|
1963 |
|
|
|
1964 |
|
|
if (TARGET_THUMB1 && flag_schedule_insns)
|
1965 |
|
|
{
|
1966 |
|
|
/* Don't warn since it's on by default in -O2. */
|
1967 |
|
|
flag_schedule_insns = 0;
|
1968 |
|
|
}
|
1969 |
|
|
|
1970 |
|
|
if (optimize_size)
|
1971 |
|
|
{
|
1972 |
|
|
/* If optimizing for size, bump the number of instructions that we
|
1973 |
|
|
are prepared to conditionally execute (even on a StrongARM). */
|
1974 |
|
|
max_insns_skipped = 6;
|
1975 |
|
|
}
|
1976 |
|
|
else
|
1977 |
|
|
max_insns_skipped = current_tune->max_insns_skipped;
|
1978 |
|
|
|
1979 |
|
|
/* Hot/Cold partitioning is not currently supported, since we can't
|
1980 |
|
|
handle literal pool placement in that case. */
|
1981 |
|
|
if (flag_reorder_blocks_and_partition)
|
1982 |
|
|
{
|
1983 |
|
|
inform (input_location,
|
1984 |
|
|
"-freorder-blocks-and-partition not supported on this architecture");
|
1985 |
|
|
flag_reorder_blocks_and_partition = 0;
|
1986 |
|
|
flag_reorder_blocks = 1;
|
1987 |
|
|
}
|
1988 |
|
|
|
1989 |
|
|
if (flag_pic)
|
1990 |
|
|
/* Hoisting PIC address calculations more aggressively provides a small,
|
1991 |
|
|
but measurable, size reduction for PIC code. Therefore, we decrease
|
1992 |
|
|
the bar for unrestricted expression hoisting to the cost of PIC address
|
1993 |
|
|
calculation, which is 2 instructions. */
|
1994 |
|
|
maybe_set_param_value (PARAM_GCSE_UNRESTRICTED_COST, 2,
|
1995 |
|
|
global_options.x_param_values,
|
1996 |
|
|
global_options_set.x_param_values);
|
1997 |
|
|
|
1998 |
|
|
/* ARM EABI defaults to strict volatile bitfields. */
|
1999 |
|
|
if (TARGET_AAPCS_BASED && flag_strict_volatile_bitfields < 0
|
2000 |
|
|
&& abi_version_at_least(2))
|
2001 |
|
|
flag_strict_volatile_bitfields = 1;
|
2002 |
|
|
|
2003 |
|
|
/* Enable sw prefetching at -O3 for CPUS that have prefetch, and we have deemed
|
2004 |
|
|
it beneficial (signified by setting num_prefetch_slots to 1 or more.) */
|
2005 |
|
|
if (flag_prefetch_loop_arrays < 0
|
2006 |
|
|
&& HAVE_prefetch
|
2007 |
|
|
&& optimize >= 3
|
2008 |
|
|
&& current_tune->num_prefetch_slots > 0)
|
2009 |
|
|
flag_prefetch_loop_arrays = 1;
|
2010 |
|
|
|
2011 |
|
|
/* Set up parameters to be used in prefetching algorithm. Do not override the
|
2012 |
|
|
defaults unless we are tuning for a core we have researched values for. */
|
2013 |
|
|
if (current_tune->num_prefetch_slots > 0)
|
2014 |
|
|
maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES,
|
2015 |
|
|
current_tune->num_prefetch_slots,
|
2016 |
|
|
global_options.x_param_values,
|
2017 |
|
|
global_options_set.x_param_values);
|
2018 |
|
|
if (current_tune->l1_cache_line_size >= 0)
|
2019 |
|
|
maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE,
|
2020 |
|
|
current_tune->l1_cache_line_size,
|
2021 |
|
|
global_options.x_param_values,
|
2022 |
|
|
global_options_set.x_param_values);
|
2023 |
|
|
if (current_tune->l1_cache_size >= 0)
|
2024 |
|
|
maybe_set_param_value (PARAM_L1_CACHE_SIZE,
|
2025 |
|
|
current_tune->l1_cache_size,
|
2026 |
|
|
global_options.x_param_values,
|
2027 |
|
|
global_options_set.x_param_values);
|
2028 |
|
|
|
2029 |
|
|
/* Register global variables with the garbage collector. */
|
2030 |
|
|
arm_add_gc_roots ();
|
2031 |
|
|
}
|
2032 |
|
|
|
2033 |
|
|
static void
|
2034 |
|
|
arm_add_gc_roots (void)
|
2035 |
|
|
{
|
2036 |
|
|
gcc_obstack_init(&minipool_obstack);
|
2037 |
|
|
minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0);
|
2038 |
|
|
}
|
2039 |
|
|
|
2040 |
|
|
/* A table of known ARM exception types.
|
2041 |
|
|
For use with the interrupt function attribute. */
|
2042 |
|
|
|
2043 |
|
|
typedef struct
|
2044 |
|
|
{
|
2045 |
|
|
const char *const arg;
|
2046 |
|
|
const unsigned long return_value;
|
2047 |
|
|
}
|
2048 |
|
|
isr_attribute_arg;
|
2049 |
|
|
|
2050 |
|
|
static const isr_attribute_arg isr_attribute_args [] =
|
2051 |
|
|
{
|
2052 |
|
|
{ "IRQ", ARM_FT_ISR },
|
2053 |
|
|
{ "irq", ARM_FT_ISR },
|
2054 |
|
|
{ "FIQ", ARM_FT_FIQ },
|
2055 |
|
|
{ "fiq", ARM_FT_FIQ },
|
2056 |
|
|
{ "ABORT", ARM_FT_ISR },
|
2057 |
|
|
{ "abort", ARM_FT_ISR },
|
2058 |
|
|
{ "ABORT", ARM_FT_ISR },
|
2059 |
|
|
{ "abort", ARM_FT_ISR },
|
2060 |
|
|
{ "UNDEF", ARM_FT_EXCEPTION },
|
2061 |
|
|
{ "undef", ARM_FT_EXCEPTION },
|
2062 |
|
|
{ "SWI", ARM_FT_EXCEPTION },
|
2063 |
|
|
{ "swi", ARM_FT_EXCEPTION },
|
2064 |
|
|
{ NULL, ARM_FT_NORMAL }
|
2065 |
|
|
};
|
2066 |
|
|
|
2067 |
|
|
/* Returns the (interrupt) function type of the current
|
2068 |
|
|
function, or ARM_FT_UNKNOWN if the type cannot be determined. */
|
2069 |
|
|
|
2070 |
|
|
static unsigned long
|
2071 |
|
|
arm_isr_value (tree argument)
|
2072 |
|
|
{
|
2073 |
|
|
const isr_attribute_arg * ptr;
|
2074 |
|
|
const char * arg;
|
2075 |
|
|
|
2076 |
|
|
if (!arm_arch_notm)
|
2077 |
|
|
return ARM_FT_NORMAL | ARM_FT_STACKALIGN;
|
2078 |
|
|
|
2079 |
|
|
/* No argument - default to IRQ. */
|
2080 |
|
|
if (argument == NULL_TREE)
|
2081 |
|
|
return ARM_FT_ISR;
|
2082 |
|
|
|
2083 |
|
|
/* Get the value of the argument. */
|
2084 |
|
|
if (TREE_VALUE (argument) == NULL_TREE
|
2085 |
|
|
|| TREE_CODE (TREE_VALUE (argument)) != STRING_CST)
|
2086 |
|
|
return ARM_FT_UNKNOWN;
|
2087 |
|
|
|
2088 |
|
|
arg = TREE_STRING_POINTER (TREE_VALUE (argument));
|
2089 |
|
|
|
2090 |
|
|
/* Check it against the list of known arguments. */
|
2091 |
|
|
for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++)
|
2092 |
|
|
if (streq (arg, ptr->arg))
|
2093 |
|
|
return ptr->return_value;
|
2094 |
|
|
|
2095 |
|
|
/* An unrecognized interrupt type. */
|
2096 |
|
|
return ARM_FT_UNKNOWN;
|
2097 |
|
|
}
|
2098 |
|
|
|
2099 |
|
|
/* Computes the type of the current function. */
|
2100 |
|
|
|
2101 |
|
|
static unsigned long
|
2102 |
|
|
arm_compute_func_type (void)
|
2103 |
|
|
{
|
2104 |
|
|
unsigned long type = ARM_FT_UNKNOWN;
|
2105 |
|
|
tree a;
|
2106 |
|
|
tree attr;
|
2107 |
|
|
|
2108 |
|
|
gcc_assert (TREE_CODE (current_function_decl) == FUNCTION_DECL);
|
2109 |
|
|
|
2110 |
|
|
/* Decide if the current function is volatile. Such functions
|
2111 |
|
|
never return, and many memory cycles can be saved by not storing
|
2112 |
|
|
register values that will never be needed again. This optimization
|
2113 |
|
|
was added to speed up context switching in a kernel application. */
|
2114 |
|
|
if (optimize > 0
|
2115 |
|
|
&& (TREE_NOTHROW (current_function_decl)
|
2116 |
|
|
|| !(flag_unwind_tables
|
2117 |
|
|
|| (flag_exceptions
|
2118 |
|
|
&& arm_except_unwind_info (&global_options) != UI_SJLJ)))
|
2119 |
|
|
&& TREE_THIS_VOLATILE (current_function_decl))
|
2120 |
|
|
type |= ARM_FT_VOLATILE;
|
2121 |
|
|
|
2122 |
|
|
if (cfun->static_chain_decl != NULL)
|
2123 |
|
|
type |= ARM_FT_NESTED;
|
2124 |
|
|
|
2125 |
|
|
attr = DECL_ATTRIBUTES (current_function_decl);
|
2126 |
|
|
|
2127 |
|
|
a = lookup_attribute ("naked", attr);
|
2128 |
|
|
if (a != NULL_TREE)
|
2129 |
|
|
type |= ARM_FT_NAKED;
|
2130 |
|
|
|
2131 |
|
|
a = lookup_attribute ("isr", attr);
|
2132 |
|
|
if (a == NULL_TREE)
|
2133 |
|
|
a = lookup_attribute ("interrupt", attr);
|
2134 |
|
|
|
2135 |
|
|
if (a == NULL_TREE)
|
2136 |
|
|
type |= TARGET_INTERWORK ? ARM_FT_INTERWORKED : ARM_FT_NORMAL;
|
2137 |
|
|
else
|
2138 |
|
|
type |= arm_isr_value (TREE_VALUE (a));
|
2139 |
|
|
|
2140 |
|
|
return type;
|
2141 |
|
|
}
|
2142 |
|
|
|
2143 |
|
|
/* Returns the type of the current function. */
|
2144 |
|
|
|
2145 |
|
|
unsigned long
|
2146 |
|
|
arm_current_func_type (void)
|
2147 |
|
|
{
|
2148 |
|
|
if (ARM_FUNC_TYPE (cfun->machine->func_type) == ARM_FT_UNKNOWN)
|
2149 |
|
|
cfun->machine->func_type = arm_compute_func_type ();
|
2150 |
|
|
|
2151 |
|
|
return cfun->machine->func_type;
|
2152 |
|
|
}
|
2153 |
|
|
|
2154 |
|
|
bool
|
2155 |
|
|
arm_allocate_stack_slots_for_args (void)
|
2156 |
|
|
{
|
2157 |
|
|
/* Naked functions should not allocate stack slots for arguments. */
|
2158 |
|
|
return !IS_NAKED (arm_current_func_type ());
|
2159 |
|
|
}
|
2160 |
|
|
|
2161 |
|
|
|
2162 |
|
|
/* Output assembler code for a block containing the constant parts
|
2163 |
|
|
of a trampoline, leaving space for the variable parts.
|
2164 |
|
|
|
2165 |
|
|
On the ARM, (if r8 is the static chain regnum, and remembering that
|
2166 |
|
|
referencing pc adds an offset of 8) the trampoline looks like:
|
2167 |
|
|
ldr r8, [pc, #0]
|
2168 |
|
|
ldr pc, [pc]
|
2169 |
|
|
.word static chain value
|
2170 |
|
|
.word function's address
|
2171 |
|
|
XXX FIXME: When the trampoline returns, r8 will be clobbered. */
|
2172 |
|
|
|
2173 |
|
|
static void
|
2174 |
|
|
arm_asm_trampoline_template (FILE *f)
|
2175 |
|
|
{
|
2176 |
|
|
if (TARGET_ARM)
|
2177 |
|
|
{
|
2178 |
|
|
asm_fprintf (f, "\tldr\t%r, [%r, #0]\n", STATIC_CHAIN_REGNUM, PC_REGNUM);
|
2179 |
|
|
asm_fprintf (f, "\tldr\t%r, [%r, #0]\n", PC_REGNUM, PC_REGNUM);
|
2180 |
|
|
}
|
2181 |
|
|
else if (TARGET_THUMB2)
|
2182 |
|
|
{
|
2183 |
|
|
/* The Thumb-2 trampoline is similar to the arm implementation.
|
2184 |
|
|
Unlike 16-bit Thumb, we enter the stub in thumb mode. */
|
2185 |
|
|
asm_fprintf (f, "\tldr.w\t%r, [%r, #4]\n",
|
2186 |
|
|
STATIC_CHAIN_REGNUM, PC_REGNUM);
|
2187 |
|
|
asm_fprintf (f, "\tldr.w\t%r, [%r, #4]\n", PC_REGNUM, PC_REGNUM);
|
2188 |
|
|
}
|
2189 |
|
|
else
|
2190 |
|
|
{
|
2191 |
|
|
ASM_OUTPUT_ALIGN (f, 2);
|
2192 |
|
|
fprintf (f, "\t.code\t16\n");
|
2193 |
|
|
fprintf (f, ".Ltrampoline_start:\n");
|
2194 |
|
|
asm_fprintf (f, "\tpush\t{r0, r1}\n");
|
2195 |
|
|
asm_fprintf (f, "\tldr\tr0, [%r, #8]\n", PC_REGNUM);
|
2196 |
|
|
asm_fprintf (f, "\tmov\t%r, r0\n", STATIC_CHAIN_REGNUM);
|
2197 |
|
|
asm_fprintf (f, "\tldr\tr0, [%r, #8]\n", PC_REGNUM);
|
2198 |
|
|
asm_fprintf (f, "\tstr\tr0, [%r, #4]\n", SP_REGNUM);
|
2199 |
|
|
asm_fprintf (f, "\tpop\t{r0, %r}\n", PC_REGNUM);
|
2200 |
|
|
}
|
2201 |
|
|
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);
|
2202 |
|
|
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);
|
2203 |
|
|
}
|
2204 |
|
|
|
2205 |
|
|
/* Emit RTL insns to initialize the variable parts of a trampoline. */
|
2206 |
|
|
|
2207 |
|
|
static void
|
2208 |
|
|
arm_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
|
2209 |
|
|
{
|
2210 |
|
|
rtx fnaddr, mem, a_tramp;
|
2211 |
|
|
|
2212 |
|
|
emit_block_move (m_tramp, assemble_trampoline_template (),
|
2213 |
|
|
GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
|
2214 |
|
|
|
2215 |
|
|
mem = adjust_address (m_tramp, SImode, TARGET_32BIT ? 8 : 12);
|
2216 |
|
|
emit_move_insn (mem, chain_value);
|
2217 |
|
|
|
2218 |
|
|
mem = adjust_address (m_tramp, SImode, TARGET_32BIT ? 12 : 16);
|
2219 |
|
|
fnaddr = XEXP (DECL_RTL (fndecl), 0);
|
2220 |
|
|
emit_move_insn (mem, fnaddr);
|
2221 |
|
|
|
2222 |
|
|
a_tramp = XEXP (m_tramp, 0);
|
2223 |
|
|
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"),
|
2224 |
|
|
LCT_NORMAL, VOIDmode, 2, a_tramp, Pmode,
|
2225 |
|
|
plus_constant (a_tramp, TRAMPOLINE_SIZE), Pmode);
|
2226 |
|
|
}
|
2227 |
|
|
|
2228 |
|
|
/* Thumb trampolines should be entered in thumb mode, so set
|
2229 |
|
|
the bottom bit of the address. */
|
2230 |
|
|
|
2231 |
|
|
static rtx
|
2232 |
|
|
arm_trampoline_adjust_address (rtx addr)
|
2233 |
|
|
{
|
2234 |
|
|
if (TARGET_THUMB)
|
2235 |
|
|
addr = expand_simple_binop (Pmode, IOR, addr, const1_rtx,
|
2236 |
|
|
NULL, 0, OPTAB_LIB_WIDEN);
|
2237 |
|
|
return addr;
|
2238 |
|
|
}
|
2239 |
|
|
|
2240 |
|
|
/* Return 1 if it is possible to return using a single instruction.
|
2241 |
|
|
If SIBLING is non-null, this is a test for a return before a sibling
|
2242 |
|
|
call. SIBLING is the call insn, so we can examine its register usage. */
|
2243 |
|
|
|
2244 |
|
|
int
|
2245 |
|
|
use_return_insn (int iscond, rtx sibling)
|
2246 |
|
|
{
|
2247 |
|
|
int regno;
|
2248 |
|
|
unsigned int func_type;
|
2249 |
|
|
unsigned long saved_int_regs;
|
2250 |
|
|
unsigned HOST_WIDE_INT stack_adjust;
|
2251 |
|
|
arm_stack_offsets *offsets;
|
2252 |
|
|
|
2253 |
|
|
/* Never use a return instruction before reload has run. */
|
2254 |
|
|
if (!reload_completed)
|
2255 |
|
|
return 0;
|
2256 |
|
|
|
2257 |
|
|
func_type = arm_current_func_type ();
|
2258 |
|
|
|
2259 |
|
|
/* Naked, volatile and stack alignment functions need special
|
2260 |
|
|
consideration. */
|
2261 |
|
|
if (func_type & (ARM_FT_VOLATILE | ARM_FT_NAKED | ARM_FT_STACKALIGN))
|
2262 |
|
|
return 0;
|
2263 |
|
|
|
2264 |
|
|
/* So do interrupt functions that use the frame pointer and Thumb
|
2265 |
|
|
interrupt functions. */
|
2266 |
|
|
if (IS_INTERRUPT (func_type) && (frame_pointer_needed || TARGET_THUMB))
|
2267 |
|
|
return 0;
|
2268 |
|
|
|
2269 |
|
|
offsets = arm_get_frame_offsets ();
|
2270 |
|
|
stack_adjust = offsets->outgoing_args - offsets->saved_regs;
|
2271 |
|
|
|
2272 |
|
|
/* As do variadic functions. */
|
2273 |
|
|
if (crtl->args.pretend_args_size
|
2274 |
|
|
|| cfun->machine->uses_anonymous_args
|
2275 |
|
|
/* Or if the function calls __builtin_eh_return () */
|
2276 |
|
|
|| crtl->calls_eh_return
|
2277 |
|
|
/* Or if the function calls alloca */
|
2278 |
|
|
|| cfun->calls_alloca
|
2279 |
|
|
/* Or if there is a stack adjustment. However, if the stack pointer
|
2280 |
|
|
is saved on the stack, we can use a pre-incrementing stack load. */
|
2281 |
|
|
|| !(stack_adjust == 0 || (TARGET_APCS_FRAME && frame_pointer_needed
|
2282 |
|
|
&& stack_adjust == 4)))
|
2283 |
|
|
return 0;
|
2284 |
|
|
|
2285 |
|
|
saved_int_regs = offsets->saved_regs_mask;
|
2286 |
|
|
|
2287 |
|
|
/* Unfortunately, the insn
|
2288 |
|
|
|
2289 |
|
|
ldmib sp, {..., sp, ...}
|
2290 |
|
|
|
2291 |
|
|
triggers a bug on most SA-110 based devices, such that the stack
|
2292 |
|
|
pointer won't be correctly restored if the instruction takes a
|
2293 |
|
|
page fault. We work around this problem by popping r3 along with
|
2294 |
|
|
the other registers, since that is never slower than executing
|
2295 |
|
|
another instruction.
|
2296 |
|
|
|
2297 |
|
|
We test for !arm_arch5 here, because code for any architecture
|
2298 |
|
|
less than this could potentially be run on one of the buggy
|
2299 |
|
|
chips. */
|
2300 |
|
|
if (stack_adjust == 4 && !arm_arch5 && TARGET_ARM)
|
2301 |
|
|
{
|
2302 |
|
|
/* Validate that r3 is a call-clobbered register (always true in
|
2303 |
|
|
the default abi) ... */
|
2304 |
|
|
if (!call_used_regs[3])
|
2305 |
|
|
return 0;
|
2306 |
|
|
|
2307 |
|
|
/* ... that it isn't being used for a return value ... */
|
2308 |
|
|
if (arm_size_return_regs () >= (4 * UNITS_PER_WORD))
|
2309 |
|
|
return 0;
|
2310 |
|
|
|
2311 |
|
|
/* ... or for a tail-call argument ... */
|
2312 |
|
|
if (sibling)
|
2313 |
|
|
{
|
2314 |
|
|
gcc_assert (GET_CODE (sibling) == CALL_INSN);
|
2315 |
|
|
|
2316 |
|
|
if (find_regno_fusage (sibling, USE, 3))
|
2317 |
|
|
return 0;
|
2318 |
|
|
}
|
2319 |
|
|
|
2320 |
|
|
/* ... and that there are no call-saved registers in r0-r2
|
2321 |
|
|
(always true in the default ABI). */
|
2322 |
|
|
if (saved_int_regs & 0x7)
|
2323 |
|
|
return 0;
|
2324 |
|
|
}
|
2325 |
|
|
|
2326 |
|
|
/* Can't be done if interworking with Thumb, and any registers have been
|
2327 |
|
|
stacked. */
|
2328 |
|
|
if (TARGET_INTERWORK && saved_int_regs != 0 && !IS_INTERRUPT(func_type))
|
2329 |
|
|
return 0;
|
2330 |
|
|
|
2331 |
|
|
/* On StrongARM, conditional returns are expensive if they aren't
|
2332 |
|
|
taken and multiple registers have been stacked. */
|
2333 |
|
|
if (iscond && arm_tune_strongarm)
|
2334 |
|
|
{
|
2335 |
|
|
/* Conditional return when just the LR is stored is a simple
|
2336 |
|
|
conditional-load instruction, that's not expensive. */
|
2337 |
|
|
if (saved_int_regs != 0 && saved_int_regs != (1 << LR_REGNUM))
|
2338 |
|
|
return 0;
|
2339 |
|
|
|
2340 |
|
|
if (flag_pic
|
2341 |
|
|
&& arm_pic_register != INVALID_REGNUM
|
2342 |
|
|
&& df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM))
|
2343 |
|
|
return 0;
|
2344 |
|
|
}
|
2345 |
|
|
|
2346 |
|
|
/* If there are saved registers but the LR isn't saved, then we need
|
2347 |
|
|
two instructions for the return. */
|
2348 |
|
|
if (saved_int_regs && !(saved_int_regs & (1 << LR_REGNUM)))
|
2349 |
|
|
return 0;
|
2350 |
|
|
|
2351 |
|
|
/* Can't be done if any of the FPA regs are pushed,
|
2352 |
|
|
since this also requires an insn. */
|
2353 |
|
|
if (TARGET_HARD_FLOAT && TARGET_FPA)
|
2354 |
|
|
for (regno = FIRST_FPA_REGNUM; regno <= LAST_FPA_REGNUM; regno++)
|
2355 |
|
|
if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
|
2356 |
|
|
return 0;
|
2357 |
|
|
|
2358 |
|
|
/* Likewise VFP regs. */
|
2359 |
|
|
if (TARGET_HARD_FLOAT && TARGET_VFP)
|
2360 |
|
|
for (regno = FIRST_VFP_REGNUM; regno <= LAST_VFP_REGNUM; regno++)
|
2361 |
|
|
if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
|
2362 |
|
|
return 0;
|
2363 |
|
|
|
2364 |
|
|
if (TARGET_REALLY_IWMMXT)
|
2365 |
|
|
for (regno = FIRST_IWMMXT_REGNUM; regno <= LAST_IWMMXT_REGNUM; regno++)
|
2366 |
|
|
if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
|
2367 |
|
|
return 0;
|
2368 |
|
|
|
2369 |
|
|
return 1;
|
2370 |
|
|
}
|
2371 |
|
|
|
2372 |
|
|
/* Return TRUE if int I is a valid immediate ARM constant. */
|
2373 |
|
|
|
2374 |
|
|
int
|
2375 |
|
|
const_ok_for_arm (HOST_WIDE_INT i)
|
2376 |
|
|
{
|
2377 |
|
|
int lowbit;
|
2378 |
|
|
|
2379 |
|
|
/* For machines with >32 bit HOST_WIDE_INT, the bits above bit 31 must
|
2380 |
|
|
be all zero, or all one. */
|
2381 |
|
|
if ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0
|
2382 |
|
|
&& ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff)
|
2383 |
|
|
!= ((~(unsigned HOST_WIDE_INT) 0)
|
2384 |
|
|
& ~(unsigned HOST_WIDE_INT) 0xffffffff)))
|
2385 |
|
|
return FALSE;
|
2386 |
|
|
|
2387 |
|
|
i &= (unsigned HOST_WIDE_INT) 0xffffffff;
|
2388 |
|
|
|
2389 |
|
|
/* Fast return for 0 and small values. We must do this for zero, since
|
2390 |
|
|
the code below can't handle that one case. */
|
2391 |
|
|
if ((i & ~(unsigned HOST_WIDE_INT) 0xff) == 0)
|
2392 |
|
|
return TRUE;
|
2393 |
|
|
|
2394 |
|
|
/* Get the number of trailing zeros. */
|
2395 |
|
|
lowbit = ffs((int) i) - 1;
|
2396 |
|
|
|
2397 |
|
|
/* Only even shifts are allowed in ARM mode so round down to the
|
2398 |
|
|
nearest even number. */
|
2399 |
|
|
if (TARGET_ARM)
|
2400 |
|
|
lowbit &= ~1;
|
2401 |
|
|
|
2402 |
|
|
if ((i & ~(((unsigned HOST_WIDE_INT) 0xff) << lowbit)) == 0)
|
2403 |
|
|
return TRUE;
|
2404 |
|
|
|
2405 |
|
|
if (TARGET_ARM)
|
2406 |
|
|
{
|
2407 |
|
|
/* Allow rotated constants in ARM mode. */
|
2408 |
|
|
if (lowbit <= 4
|
2409 |
|
|
&& ((i & ~0xc000003f) == 0
|
2410 |
|
|
|| (i & ~0xf000000f) == 0
|
2411 |
|
|
|| (i & ~0xfc000003) == 0))
|
2412 |
|
|
return TRUE;
|
2413 |
|
|
}
|
2414 |
|
|
else
|
2415 |
|
|
{
|
2416 |
|
|
HOST_WIDE_INT v;
|
2417 |
|
|
|
2418 |
|
|
/* Allow repeated patterns 0x00XY00XY or 0xXYXYXYXY. */
|
2419 |
|
|
v = i & 0xff;
|
2420 |
|
|
v |= v << 16;
|
2421 |
|
|
if (i == v || i == (v | (v << 8)))
|
2422 |
|
|
return TRUE;
|
2423 |
|
|
|
2424 |
|
|
/* Allow repeated pattern 0xXY00XY00. */
|
2425 |
|
|
v = i & 0xff00;
|
2426 |
|
|
v |= v << 16;
|
2427 |
|
|
if (i == v)
|
2428 |
|
|
return TRUE;
|
2429 |
|
|
}
|
2430 |
|
|
|
2431 |
|
|
return FALSE;
|
2432 |
|
|
}
|
2433 |
|
|
|
2434 |
|
|
/* Return true if I is a valid constant for the operation CODE. */
|
2435 |
|
|
int
|
2436 |
|
|
const_ok_for_op (HOST_WIDE_INT i, enum rtx_code code)
|
2437 |
|
|
{
|
2438 |
|
|
if (const_ok_for_arm (i))
|
2439 |
|
|
return 1;
|
2440 |
|
|
|
2441 |
|
|
switch (code)
|
2442 |
|
|
{
|
2443 |
|
|
case SET:
|
2444 |
|
|
/* See if we can use movw. */
|
2445 |
|
|
if (arm_arch_thumb2 && (i & 0xffff0000) == 0)
|
2446 |
|
|
return 1;
|
2447 |
|
|
else
|
2448 |
|
|
/* Otherwise, try mvn. */
|
2449 |
|
|
return const_ok_for_arm (ARM_SIGN_EXTEND (~i));
|
2450 |
|
|
|
2451 |
|
|
case PLUS:
|
2452 |
|
|
/* See if we can use addw or subw. */
|
2453 |
|
|
if (TARGET_THUMB2
|
2454 |
|
|
&& ((i & 0xfffff000) == 0
|
2455 |
|
|
|| ((-i) & 0xfffff000) == 0))
|
2456 |
|
|
return 1;
|
2457 |
|
|
/* else fall through. */
|
2458 |
|
|
|
2459 |
|
|
case COMPARE:
|
2460 |
|
|
case EQ:
|
2461 |
|
|
case NE:
|
2462 |
|
|
case GT:
|
2463 |
|
|
case LE:
|
2464 |
|
|
case LT:
|
2465 |
|
|
case GE:
|
2466 |
|
|
case GEU:
|
2467 |
|
|
case LTU:
|
2468 |
|
|
case GTU:
|
2469 |
|
|
case LEU:
|
2470 |
|
|
case UNORDERED:
|
2471 |
|
|
case ORDERED:
|
2472 |
|
|
case UNEQ:
|
2473 |
|
|
case UNGE:
|
2474 |
|
|
case UNLT:
|
2475 |
|
|
case UNGT:
|
2476 |
|
|
case UNLE:
|
2477 |
|
|
return const_ok_for_arm (ARM_SIGN_EXTEND (-i));
|
2478 |
|
|
|
2479 |
|
|
case MINUS: /* Should only occur with (MINUS I reg) => rsb */
|
2480 |
|
|
case XOR:
|
2481 |
|
|
return 0;
|
2482 |
|
|
|
2483 |
|
|
case IOR:
|
2484 |
|
|
if (TARGET_THUMB2)
|
2485 |
|
|
return const_ok_for_arm (ARM_SIGN_EXTEND (~i));
|
2486 |
|
|
return 0;
|
2487 |
|
|
|
2488 |
|
|
case AND:
|
2489 |
|
|
return const_ok_for_arm (ARM_SIGN_EXTEND (~i));
|
2490 |
|
|
|
2491 |
|
|
default:
|
2492 |
|
|
gcc_unreachable ();
|
2493 |
|
|
}
|
2494 |
|
|
}
|
2495 |
|
|
|
2496 |
|
|
/* Emit a sequence of insns to handle a large constant.
|
2497 |
|
|
CODE is the code of the operation required, it can be any of SET, PLUS,
|
2498 |
|
|
IOR, AND, XOR, MINUS;
|
2499 |
|
|
MODE is the mode in which the operation is being performed;
|
2500 |
|
|
VAL is the integer to operate on;
|
2501 |
|
|
SOURCE is the other operand (a register, or a null-pointer for SET);
|
2502 |
|
|
SUBTARGETS means it is safe to create scratch registers if that will
|
2503 |
|
|
either produce a simpler sequence, or we will want to cse the values.
|
2504 |
|
|
Return value is the number of insns emitted. */
|
2505 |
|
|
|
2506 |
|
|
/* ??? Tweak this for thumb2. */
|
2507 |
|
|
int
|
2508 |
|
|
arm_split_constant (enum rtx_code code, enum machine_mode mode, rtx insn,
|
2509 |
|
|
HOST_WIDE_INT val, rtx target, rtx source, int subtargets)
|
2510 |
|
|
{
|
2511 |
|
|
rtx cond;
|
2512 |
|
|
|
2513 |
|
|
if (insn && GET_CODE (PATTERN (insn)) == COND_EXEC)
|
2514 |
|
|
cond = COND_EXEC_TEST (PATTERN (insn));
|
2515 |
|
|
else
|
2516 |
|
|
cond = NULL_RTX;
|
2517 |
|
|
|
2518 |
|
|
if (subtargets || code == SET
|
2519 |
|
|
|| (GET_CODE (target) == REG && GET_CODE (source) == REG
|
2520 |
|
|
&& REGNO (target) != REGNO (source)))
|
2521 |
|
|
{
|
2522 |
|
|
/* After arm_reorg has been called, we can't fix up expensive
|
2523 |
|
|
constants by pushing them into memory so we must synthesize
|
2524 |
|
|
them in-line, regardless of the cost. This is only likely to
|
2525 |
|
|
be more costly on chips that have load delay slots and we are
|
2526 |
|
|
compiling without running the scheduler (so no splitting
|
2527 |
|
|
occurred before the final instruction emission).
|
2528 |
|
|
|
2529 |
|
|
Ref: gcc -O1 -mcpu=strongarm gcc.c-torture/compile/980506-2.c
|
2530 |
|
|
*/
|
2531 |
|
|
if (!after_arm_reorg
|
2532 |
|
|
&& !cond
|
2533 |
|
|
&& (arm_gen_constant (code, mode, NULL_RTX, val, target, source,
|
2534 |
|
|
1, 0)
|
2535 |
|
|
> (arm_constant_limit (optimize_function_for_size_p (cfun))
|
2536 |
|
|
+ (code != SET))))
|
2537 |
|
|
{
|
2538 |
|
|
if (code == SET)
|
2539 |
|
|
{
|
2540 |
|
|
/* Currently SET is the only monadic value for CODE, all
|
2541 |
|
|
the rest are diadic. */
|
2542 |
|
|
if (TARGET_USE_MOVT)
|
2543 |
|
|
arm_emit_movpair (target, GEN_INT (val));
|
2544 |
|
|
else
|
2545 |
|
|
emit_set_insn (target, GEN_INT (val));
|
2546 |
|
|
|
2547 |
|
|
return 1;
|
2548 |
|
|
}
|
2549 |
|
|
else
|
2550 |
|
|
{
|
2551 |
|
|
rtx temp = subtargets ? gen_reg_rtx (mode) : target;
|
2552 |
|
|
|
2553 |
|
|
if (TARGET_USE_MOVT)
|
2554 |
|
|
arm_emit_movpair (temp, GEN_INT (val));
|
2555 |
|
|
else
|
2556 |
|
|
emit_set_insn (temp, GEN_INT (val));
|
2557 |
|
|
|
2558 |
|
|
/* For MINUS, the value is subtracted from, since we never
|
2559 |
|
|
have subtraction of a constant. */
|
2560 |
|
|
if (code == MINUS)
|
2561 |
|
|
emit_set_insn (target, gen_rtx_MINUS (mode, temp, source));
|
2562 |
|
|
else
|
2563 |
|
|
emit_set_insn (target,
|
2564 |
|
|
gen_rtx_fmt_ee (code, mode, source, temp));
|
2565 |
|
|
return 2;
|
2566 |
|
|
}
|
2567 |
|
|
}
|
2568 |
|
|
}
|
2569 |
|
|
|
2570 |
|
|
return arm_gen_constant (code, mode, cond, val, target, source, subtargets,
|
2571 |
|
|
1);
|
2572 |
|
|
}
|
2573 |
|
|
|
2574 |
|
|
/* Return a sequence of integers, in RETURN_SEQUENCE that fit into
|
2575 |
|
|
ARM/THUMB2 immediates, and add up to VAL.
|
2576 |
|
|
Thr function return value gives the number of insns required. */
|
2577 |
|
|
static int
|
2578 |
|
|
optimal_immediate_sequence (enum rtx_code code, unsigned HOST_WIDE_INT val,
|
2579 |
|
|
struct four_ints *return_sequence)
|
2580 |
|
|
{
|
2581 |
|
|
int best_consecutive_zeros = 0;
|
2582 |
|
|
int i;
|
2583 |
|
|
int best_start = 0;
|
2584 |
|
|
int insns1, insns2;
|
2585 |
|
|
struct four_ints tmp_sequence;
|
2586 |
|
|
|
2587 |
|
|
/* If we aren't targetting ARM, the best place to start is always at
|
2588 |
|
|
the bottom, otherwise look more closely. */
|
2589 |
|
|
if (TARGET_ARM)
|
2590 |
|
|
{
|
2591 |
|
|
for (i = 0; i < 32; i += 2)
|
2592 |
|
|
{
|
2593 |
|
|
int consecutive_zeros = 0;
|
2594 |
|
|
|
2595 |
|
|
if (!(val & (3 << i)))
|
2596 |
|
|
{
|
2597 |
|
|
while ((i < 32) && !(val & (3 << i)))
|
2598 |
|
|
{
|
2599 |
|
|
consecutive_zeros += 2;
|
2600 |
|
|
i += 2;
|
2601 |
|
|
}
|
2602 |
|
|
if (consecutive_zeros > best_consecutive_zeros)
|
2603 |
|
|
{
|
2604 |
|
|
best_consecutive_zeros = consecutive_zeros;
|
2605 |
|
|
best_start = i - consecutive_zeros;
|
2606 |
|
|
}
|
2607 |
|
|
i -= 2;
|
2608 |
|
|
}
|
2609 |
|
|
}
|
2610 |
|
|
}
|
2611 |
|
|
|
2612 |
|
|
/* So long as it won't require any more insns to do so, it's
|
2613 |
|
|
desirable to emit a small constant (in bits 0...9) in the last
|
2614 |
|
|
insn. This way there is more chance that it can be combined with
|
2615 |
|
|
a later addressing insn to form a pre-indexed load or store
|
2616 |
|
|
operation. Consider:
|
2617 |
|
|
|
2618 |
|
|
*((volatile int *)0xe0000100) = 1;
|
2619 |
|
|
*((volatile int *)0xe0000110) = 2;
|
2620 |
|
|
|
2621 |
|
|
We want this to wind up as:
|
2622 |
|
|
|
2623 |
|
|
mov rA, #0xe0000000
|
2624 |
|
|
mov rB, #1
|
2625 |
|
|
str rB, [rA, #0x100]
|
2626 |
|
|
mov rB, #2
|
2627 |
|
|
str rB, [rA, #0x110]
|
2628 |
|
|
|
2629 |
|
|
rather than having to synthesize both large constants from scratch.
|
2630 |
|
|
|
2631 |
|
|
Therefore, we calculate how many insns would be required to emit
|
2632 |
|
|
the constant starting from `best_start', and also starting from
|
2633 |
|
|
zero (i.e. with bit 31 first to be output). If `best_start' doesn't
|
2634 |
|
|
yield a shorter sequence, we may as well use zero. */
|
2635 |
|
|
insns1 = optimal_immediate_sequence_1 (code, val, return_sequence, best_start);
|
2636 |
|
|
if (best_start != 0
|
2637 |
|
|
&& ((((unsigned HOST_WIDE_INT) 1) << best_start) < val))
|
2638 |
|
|
{
|
2639 |
|
|
insns2 = optimal_immediate_sequence_1 (code, val, &tmp_sequence, 0);
|
2640 |
|
|
if (insns2 <= insns1)
|
2641 |
|
|
{
|
2642 |
|
|
*return_sequence = tmp_sequence;
|
2643 |
|
|
insns1 = insns2;
|
2644 |
|
|
}
|
2645 |
|
|
}
|
2646 |
|
|
|
2647 |
|
|
return insns1;
|
2648 |
|
|
}
|
2649 |
|
|
|
2650 |
|
|
/* As for optimal_immediate_sequence, but starting at bit-position I. */
|
2651 |
|
|
static int
|
2652 |
|
|
optimal_immediate_sequence_1 (enum rtx_code code, unsigned HOST_WIDE_INT val,
|
2653 |
|
|
struct four_ints *return_sequence, int i)
|
2654 |
|
|
{
|
2655 |
|
|
int remainder = val & 0xffffffff;
|
2656 |
|
|
int insns = 0;
|
2657 |
|
|
|
2658 |
|
|
/* Try and find a way of doing the job in either two or three
|
2659 |
|
|
instructions.
|
2660 |
|
|
|
2661 |
|
|
In ARM mode we can use 8-bit constants, rotated to any 2-bit aligned
|
2662 |
|
|
location. We start at position I. This may be the MSB, or
|
2663 |
|
|
optimial_immediate_sequence may have positioned it at the largest block
|
2664 |
|
|
of zeros that are aligned on a 2-bit boundary. We then fill up the temps,
|
2665 |
|
|
wrapping around to the top of the word when we drop off the bottom.
|
2666 |
|
|
In the worst case this code should produce no more than four insns.
|
2667 |
|
|
|
2668 |
|
|
In Thumb2 mode, we can use 32/16-bit replicated constants, and 8-bit
|
2669 |
|
|
constants, shifted to any arbitrary location. We should always start
|
2670 |
|
|
at the MSB. */
|
2671 |
|
|
do
|
2672 |
|
|
{
|
2673 |
|
|
int end;
|
2674 |
|
|
unsigned int b1, b2, b3, b4;
|
2675 |
|
|
unsigned HOST_WIDE_INT result;
|
2676 |
|
|
int loc;
|
2677 |
|
|
|
2678 |
|
|
gcc_assert (insns < 4);
|
2679 |
|
|
|
2680 |
|
|
if (i <= 0)
|
2681 |
|
|
i += 32;
|
2682 |
|
|
|
2683 |
|
|
/* First, find the next normal 12/8-bit shifted/rotated immediate. */
|
2684 |
|
|
if (remainder & ((TARGET_ARM ? (3 << (i - 2)) : (1 << (i - 1)))))
|
2685 |
|
|
{
|
2686 |
|
|
loc = i;
|
2687 |
|
|
if (i <= 12 && TARGET_THUMB2 && code == PLUS)
|
2688 |
|
|
/* We can use addw/subw for the last 12 bits. */
|
2689 |
|
|
result = remainder;
|
2690 |
|
|
else
|
2691 |
|
|
{
|
2692 |
|
|
/* Use an 8-bit shifted/rotated immediate. */
|
2693 |
|
|
end = i - 8;
|
2694 |
|
|
if (end < 0)
|
2695 |
|
|
end += 32;
|
2696 |
|
|
result = remainder & ((0x0ff << end)
|
2697 |
|
|
| ((i < end) ? (0xff >> (32 - end))
|
2698 |
|
|
: 0));
|
2699 |
|
|
i -= 8;
|
2700 |
|
|
}
|
2701 |
|
|
}
|
2702 |
|
|
else
|
2703 |
|
|
{
|
2704 |
|
|
/* Arm allows rotates by a multiple of two. Thumb-2 allows
|
2705 |
|
|
arbitrary shifts. */
|
2706 |
|
|
i -= TARGET_ARM ? 2 : 1;
|
2707 |
|
|
continue;
|
2708 |
|
|
}
|
2709 |
|
|
|
2710 |
|
|
/* Next, see if we can do a better job with a thumb2 replicated
|
2711 |
|
|
constant.
|
2712 |
|
|
|
2713 |
|
|
We do it this way around to catch the cases like 0x01F001E0 where
|
2714 |
|
|
two 8-bit immediates would work, but a replicated constant would
|
2715 |
|
|
make it worse.
|
2716 |
|
|
|
2717 |
|
|
TODO: 16-bit constants that don't clear all the bits, but still win.
|
2718 |
|
|
TODO: Arithmetic splitting for set/add/sub, rather than bitwise. */
|
2719 |
|
|
if (TARGET_THUMB2)
|
2720 |
|
|
{
|
2721 |
|
|
b1 = (remainder & 0xff000000) >> 24;
|
2722 |
|
|
b2 = (remainder & 0x00ff0000) >> 16;
|
2723 |
|
|
b3 = (remainder & 0x0000ff00) >> 8;
|
2724 |
|
|
b4 = remainder & 0xff;
|
2725 |
|
|
|
2726 |
|
|
if (loc > 24)
|
2727 |
|
|
{
|
2728 |
|
|
/* The 8-bit immediate already found clears b1 (and maybe b2),
|
2729 |
|
|
but must leave b3 and b4 alone. */
|
2730 |
|
|
|
2731 |
|
|
/* First try to find a 32-bit replicated constant that clears
|
2732 |
|
|
almost everything. We can assume that we can't do it in one,
|
2733 |
|
|
or else we wouldn't be here. */
|
2734 |
|
|
unsigned int tmp = b1 & b2 & b3 & b4;
|
2735 |
|
|
unsigned int tmp2 = tmp + (tmp << 8) + (tmp << 16)
|
2736 |
|
|
+ (tmp << 24);
|
2737 |
|
|
unsigned int matching_bytes = (tmp == b1) + (tmp == b2)
|
2738 |
|
|
+ (tmp == b3) + (tmp == b4);
|
2739 |
|
|
if (tmp
|
2740 |
|
|
&& (matching_bytes >= 3
|
2741 |
|
|
|| (matching_bytes == 2
|
2742 |
|
|
&& const_ok_for_op (remainder & ~tmp2, code))))
|
2743 |
|
|
{
|
2744 |
|
|
/* At least 3 of the bytes match, and the fourth has at
|
2745 |
|
|
least as many bits set, or two of the bytes match
|
2746 |
|
|
and it will only require one more insn to finish. */
|
2747 |
|
|
result = tmp2;
|
2748 |
|
|
i = tmp != b1 ? 32
|
2749 |
|
|
: tmp != b2 ? 24
|
2750 |
|
|
: tmp != b3 ? 16
|
2751 |
|
|
: 8;
|
2752 |
|
|
}
|
2753 |
|
|
|
2754 |
|
|
/* Second, try to find a 16-bit replicated constant that can
|
2755 |
|
|
leave three of the bytes clear. If b2 or b4 is already
|
2756 |
|
|
zero, then we can. If the 8-bit from above would not
|
2757 |
|
|
clear b2 anyway, then we still win. */
|
2758 |
|
|
else if (b1 == b3 && (!b2 || !b4
|
2759 |
|
|
|| (remainder & 0x00ff0000 & ~result)))
|
2760 |
|
|
{
|
2761 |
|
|
result = remainder & 0xff00ff00;
|
2762 |
|
|
i = 24;
|
2763 |
|
|
}
|
2764 |
|
|
}
|
2765 |
|
|
else if (loc > 16)
|
2766 |
|
|
{
|
2767 |
|
|
/* The 8-bit immediate already found clears b2 (and maybe b3)
|
2768 |
|
|
and we don't get here unless b1 is alredy clear, but it will
|
2769 |
|
|
leave b4 unchanged. */
|
2770 |
|
|
|
2771 |
|
|
/* If we can clear b2 and b4 at once, then we win, since the
|
2772 |
|
|
8-bits couldn't possibly reach that far. */
|
2773 |
|
|
if (b2 == b4)
|
2774 |
|
|
{
|
2775 |
|
|
result = remainder & 0x00ff00ff;
|
2776 |
|
|
i = 16;
|
2777 |
|
|
}
|
2778 |
|
|
}
|
2779 |
|
|
}
|
2780 |
|
|
|
2781 |
|
|
return_sequence->i[insns++] = result;
|
2782 |
|
|
remainder &= ~result;
|
2783 |
|
|
|
2784 |
|
|
if (code == SET || code == MINUS)
|
2785 |
|
|
code = PLUS;
|
2786 |
|
|
}
|
2787 |
|
|
while (remainder);
|
2788 |
|
|
|
2789 |
|
|
return insns;
|
2790 |
|
|
}
|
2791 |
|
|
|
2792 |
|
|
/* Emit an instruction with the indicated PATTERN. If COND is
|
2793 |
|
|
non-NULL, conditionalize the execution of the instruction on COND
|
2794 |
|
|
being true. */
|
2795 |
|
|
|
2796 |
|
|
static void
|
2797 |
|
|
emit_constant_insn (rtx cond, rtx pattern)
|
2798 |
|
|
{
|
2799 |
|
|
if (cond)
|
2800 |
|
|
pattern = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond), pattern);
|
2801 |
|
|
emit_insn (pattern);
|
2802 |
|
|
}
|
2803 |
|
|
|
2804 |
|
|
/* As above, but extra parameter GENERATE which, if clear, suppresses
|
2805 |
|
|
RTL generation. */
|
2806 |
|
|
|
2807 |
|
|
static int
|
2808 |
|
|
arm_gen_constant (enum rtx_code code, enum machine_mode mode, rtx cond,
|
2809 |
|
|
HOST_WIDE_INT val, rtx target, rtx source, int subtargets,
|
2810 |
|
|
int generate)
|
2811 |
|
|
{
|
2812 |
|
|
int can_invert = 0;
|
2813 |
|
|
int can_negate = 0;
|
2814 |
|
|
int final_invert = 0;
|
2815 |
|
|
int i;
|
2816 |
|
|
int set_sign_bit_copies = 0;
|
2817 |
|
|
int clear_sign_bit_copies = 0;
|
2818 |
|
|
int clear_zero_bit_copies = 0;
|
2819 |
|
|
int set_zero_bit_copies = 0;
|
2820 |
|
|
int insns = 0, neg_insns, inv_insns;
|
2821 |
|
|
unsigned HOST_WIDE_INT temp1, temp2;
|
2822 |
|
|
unsigned HOST_WIDE_INT remainder = val & 0xffffffff;
|
2823 |
|
|
struct four_ints *immediates;
|
2824 |
|
|
struct four_ints pos_immediates, neg_immediates, inv_immediates;
|
2825 |
|
|
|
2826 |
|
|
/* Find out which operations are safe for a given CODE. Also do a quick
|
2827 |
|
|
check for degenerate cases; these can occur when DImode operations
|
2828 |
|
|
are split. */
|
2829 |
|
|
switch (code)
|
2830 |
|
|
{
|
2831 |
|
|
case SET:
|
2832 |
|
|
can_invert = 1;
|
2833 |
|
|
break;
|
2834 |
|
|
|
2835 |
|
|
case PLUS:
|
2836 |
|
|
can_negate = 1;
|
2837 |
|
|
break;
|
2838 |
|
|
|
2839 |
|
|
case IOR:
|
2840 |
|
|
if (remainder == 0xffffffff)
|
2841 |
|
|
{
|
2842 |
|
|
if (generate)
|
2843 |
|
|
emit_constant_insn (cond,
|
2844 |
|
|
gen_rtx_SET (VOIDmode, target,
|
2845 |
|
|
GEN_INT (ARM_SIGN_EXTEND (val))));
|
2846 |
|
|
return 1;
|
2847 |
|
|
}
|
2848 |
|
|
|
2849 |
|
|
if (remainder == 0)
|
2850 |
|
|
{
|
2851 |
|
|
if (reload_completed && rtx_equal_p (target, source))
|
2852 |
|
|
return 0;
|
2853 |
|
|
|
2854 |
|
|
if (generate)
|
2855 |
|
|
emit_constant_insn (cond,
|
2856 |
|
|
gen_rtx_SET (VOIDmode, target, source));
|
2857 |
|
|
return 1;
|
2858 |
|
|
}
|
2859 |
|
|
break;
|
2860 |
|
|
|
2861 |
|
|
case AND:
|
2862 |
|
|
if (remainder == 0)
|
2863 |
|
|
{
|
2864 |
|
|
if (generate)
|
2865 |
|
|
emit_constant_insn (cond,
|
2866 |
|
|
gen_rtx_SET (VOIDmode, target, const0_rtx));
|
2867 |
|
|
return 1;
|
2868 |
|
|
}
|
2869 |
|
|
if (remainder == 0xffffffff)
|
2870 |
|
|
{
|
2871 |
|
|
if (reload_completed && rtx_equal_p (target, source))
|
2872 |
|
|
return 0;
|
2873 |
|
|
if (generate)
|
2874 |
|
|
emit_constant_insn (cond,
|
2875 |
|
|
gen_rtx_SET (VOIDmode, target, source));
|
2876 |
|
|
return 1;
|
2877 |
|
|
}
|
2878 |
|
|
can_invert = 1;
|
2879 |
|
|
break;
|
2880 |
|
|
|
2881 |
|
|
case XOR:
|
2882 |
|
|
if (remainder == 0)
|
2883 |
|
|
{
|
2884 |
|
|
if (reload_completed && rtx_equal_p (target, source))
|
2885 |
|
|
return 0;
|
2886 |
|
|
if (generate)
|
2887 |
|
|
emit_constant_insn (cond,
|
2888 |
|
|
gen_rtx_SET (VOIDmode, target, source));
|
2889 |
|
|
return 1;
|
2890 |
|
|
}
|
2891 |
|
|
|
2892 |
|
|
if (remainder == 0xffffffff)
|
2893 |
|
|
{
|
2894 |
|
|
if (generate)
|
2895 |
|
|
emit_constant_insn (cond,
|
2896 |
|
|
gen_rtx_SET (VOIDmode, target,
|
2897 |
|
|
gen_rtx_NOT (mode, source)));
|
2898 |
|
|
return 1;
|
2899 |
|
|
}
|
2900 |
|
|
final_invert = 1;
|
2901 |
|
|
break;
|
2902 |
|
|
|
2903 |
|
|
case MINUS:
|
2904 |
|
|
/* We treat MINUS as (val - source), since (source - val) is always
|
2905 |
|
|
passed as (source + (-val)). */
|
2906 |
|
|
if (remainder == 0)
|
2907 |
|
|
{
|
2908 |
|
|
if (generate)
|
2909 |
|
|
emit_constant_insn (cond,
|
2910 |
|
|
gen_rtx_SET (VOIDmode, target,
|
2911 |
|
|
gen_rtx_NEG (mode, source)));
|
2912 |
|
|
return 1;
|
2913 |
|
|
}
|
2914 |
|
|
if (const_ok_for_arm (val))
|
2915 |
|
|
{
|
2916 |
|
|
if (generate)
|
2917 |
|
|
emit_constant_insn (cond,
|
2918 |
|
|
gen_rtx_SET (VOIDmode, target,
|
2919 |
|
|
gen_rtx_MINUS (mode, GEN_INT (val),
|
2920 |
|
|
source)));
|
2921 |
|
|
return 1;
|
2922 |
|
|
}
|
2923 |
|
|
|
2924 |
|
|
break;
|
2925 |
|
|
|
2926 |
|
|
default:
|
2927 |
|
|
gcc_unreachable ();
|
2928 |
|
|
}
|
2929 |
|
|
|
2930 |
|
|
/* If we can do it in one insn get out quickly. */
|
2931 |
|
|
if (const_ok_for_op (val, code))
|
2932 |
|
|
{
|
2933 |
|
|
if (generate)
|
2934 |
|
|
emit_constant_insn (cond,
|
2935 |
|
|
gen_rtx_SET (VOIDmode, target,
|
2936 |
|
|
(source
|
2937 |
|
|
? gen_rtx_fmt_ee (code, mode, source,
|
2938 |
|
|
GEN_INT (val))
|
2939 |
|
|
: GEN_INT (val))));
|
2940 |
|
|
return 1;
|
2941 |
|
|
}
|
2942 |
|
|
|
2943 |
|
|
/* Calculate a few attributes that may be useful for specific
|
2944 |
|
|
optimizations. */
|
2945 |
|
|
/* Count number of leading zeros. */
|
2946 |
|
|
for (i = 31; i >= 0; i--)
|
2947 |
|
|
{
|
2948 |
|
|
if ((remainder & (1 << i)) == 0)
|
2949 |
|
|
clear_sign_bit_copies++;
|
2950 |
|
|
else
|
2951 |
|
|
break;
|
2952 |
|
|
}
|
2953 |
|
|
|
2954 |
|
|
/* Count number of leading 1's. */
|
2955 |
|
|
for (i = 31; i >= 0; i--)
|
2956 |
|
|
{
|
2957 |
|
|
if ((remainder & (1 << i)) != 0)
|
2958 |
|
|
set_sign_bit_copies++;
|
2959 |
|
|
else
|
2960 |
|
|
break;
|
2961 |
|
|
}
|
2962 |
|
|
|
2963 |
|
|
/* Count number of trailing zero's. */
|
2964 |
|
|
for (i = 0; i <= 31; i++)
|
2965 |
|
|
{
|
2966 |
|
|
if ((remainder & (1 << i)) == 0)
|
2967 |
|
|
clear_zero_bit_copies++;
|
2968 |
|
|
else
|
2969 |
|
|
break;
|
2970 |
|
|
}
|
2971 |
|
|
|
2972 |
|
|
/* Count number of trailing 1's. */
|
2973 |
|
|
for (i = 0; i <= 31; i++)
|
2974 |
|
|
{
|
2975 |
|
|
if ((remainder & (1 << i)) != 0)
|
2976 |
|
|
set_zero_bit_copies++;
|
2977 |
|
|
else
|
2978 |
|
|
break;
|
2979 |
|
|
}
|
2980 |
|
|
|
2981 |
|
|
switch (code)
|
2982 |
|
|
{
|
2983 |
|
|
case SET:
|
2984 |
|
|
/* See if we can do this by sign_extending a constant that is known
|
2985 |
|
|
to be negative. This is a good, way of doing it, since the shift
|
2986 |
|
|
may well merge into a subsequent insn. */
|
2987 |
|
|
if (set_sign_bit_copies > 1)
|
2988 |
|
|
{
|
2989 |
|
|
if (const_ok_for_arm
|
2990 |
|
|
(temp1 = ARM_SIGN_EXTEND (remainder
|
2991 |
|
|
<< (set_sign_bit_copies - 1))))
|
2992 |
|
|
{
|
2993 |
|
|
if (generate)
|
2994 |
|
|
{
|
2995 |
|
|
rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
|
2996 |
|
|
emit_constant_insn (cond,
|
2997 |
|
|
gen_rtx_SET (VOIDmode, new_src,
|
2998 |
|
|
GEN_INT (temp1)));
|
2999 |
|
|
emit_constant_insn (cond,
|
3000 |
|
|
gen_ashrsi3 (target, new_src,
|
3001 |
|
|
GEN_INT (set_sign_bit_copies - 1)));
|
3002 |
|
|
}
|
3003 |
|
|
return 2;
|
3004 |
|
|
}
|
3005 |
|
|
/* For an inverted constant, we will need to set the low bits,
|
3006 |
|
|
these will be shifted out of harm's way. */
|
3007 |
|
|
temp1 |= (1 << (set_sign_bit_copies - 1)) - 1;
|
3008 |
|
|
if (const_ok_for_arm (~temp1))
|
3009 |
|
|
{
|
3010 |
|
|
if (generate)
|
3011 |
|
|
{
|
3012 |
|
|
rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
|
3013 |
|
|
emit_constant_insn (cond,
|
3014 |
|
|
gen_rtx_SET (VOIDmode, new_src,
|
3015 |
|
|
GEN_INT (temp1)));
|
3016 |
|
|
emit_constant_insn (cond,
|
3017 |
|
|
gen_ashrsi3 (target, new_src,
|
3018 |
|
|
GEN_INT (set_sign_bit_copies - 1)));
|
3019 |
|
|
}
|
3020 |
|
|
return 2;
|
3021 |
|
|
}
|
3022 |
|
|
}
|
3023 |
|
|
|
3024 |
|
|
/* See if we can calculate the value as the difference between two
|
3025 |
|
|
valid immediates. */
|
3026 |
|
|
if (clear_sign_bit_copies + clear_zero_bit_copies <= 16)
|
3027 |
|
|
{
|
3028 |
|
|
int topshift = clear_sign_bit_copies & ~1;
|
3029 |
|
|
|
3030 |
|
|
temp1 = ARM_SIGN_EXTEND ((remainder + (0x00800000 >> topshift))
|
3031 |
|
|
& (0xff000000 >> topshift));
|
3032 |
|
|
|
3033 |
|
|
/* If temp1 is zero, then that means the 9 most significant
|
3034 |
|
|
bits of remainder were 1 and we've caused it to overflow.
|
3035 |
|
|
When topshift is 0 we don't need to do anything since we
|
3036 |
|
|
can borrow from 'bit 32'. */
|
3037 |
|
|
if (temp1 == 0 && topshift != 0)
|
3038 |
|
|
temp1 = 0x80000000 >> (topshift - 1);
|
3039 |
|
|
|
3040 |
|
|
temp2 = ARM_SIGN_EXTEND (temp1 - remainder);
|
3041 |
|
|
|
3042 |
|
|
if (const_ok_for_arm (temp2))
|
3043 |
|
|
{
|
3044 |
|
|
if (generate)
|
3045 |
|
|
{
|
3046 |
|
|
rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
|
3047 |
|
|
emit_constant_insn (cond,
|
3048 |
|
|
gen_rtx_SET (VOIDmode, new_src,
|
3049 |
|
|
GEN_INT (temp1)));
|
3050 |
|
|
emit_constant_insn (cond,
|
3051 |
|
|
gen_addsi3 (target, new_src,
|
3052 |
|
|
GEN_INT (-temp2)));
|
3053 |
|
|
}
|
3054 |
|
|
|
3055 |
|
|
return 2;
|
3056 |
|
|
}
|
3057 |
|
|
}
|
3058 |
|
|
|
3059 |
|
|
/* See if we can generate this by setting the bottom (or the top)
|
3060 |
|
|
16 bits, and then shifting these into the other half of the
|
3061 |
|
|
word. We only look for the simplest cases, to do more would cost
|
3062 |
|
|
too much. Be careful, however, not to generate this when the
|
3063 |
|
|
alternative would take fewer insns. */
|
3064 |
|
|
if (val & 0xffff0000)
|
3065 |
|
|
{
|
3066 |
|
|
temp1 = remainder & 0xffff0000;
|
3067 |
|
|
temp2 = remainder & 0x0000ffff;
|
3068 |
|
|
|
3069 |
|
|
/* Overlaps outside this range are best done using other methods. */
|
3070 |
|
|
for (i = 9; i < 24; i++)
|
3071 |
|
|
{
|
3072 |
|
|
if ((((temp2 | (temp2 << i)) & 0xffffffff) == remainder)
|
3073 |
|
|
&& !const_ok_for_arm (temp2))
|
3074 |
|
|
{
|
3075 |
|
|
rtx new_src = (subtargets
|
3076 |
|
|
? (generate ? gen_reg_rtx (mode) : NULL_RTX)
|
3077 |
|
|
: target);
|
3078 |
|
|
insns = arm_gen_constant (code, mode, cond, temp2, new_src,
|
3079 |
|
|
source, subtargets, generate);
|
3080 |
|
|
source = new_src;
|
3081 |
|
|
if (generate)
|
3082 |
|
|
emit_constant_insn
|
3083 |
|
|
(cond,
|
3084 |
|
|
gen_rtx_SET
|
3085 |
|
|
(VOIDmode, target,
|
3086 |
|
|
gen_rtx_IOR (mode,
|
3087 |
|
|
gen_rtx_ASHIFT (mode, source,
|
3088 |
|
|
GEN_INT (i)),
|
3089 |
|
|
source)));
|
3090 |
|
|
return insns + 1;
|
3091 |
|
|
}
|
3092 |
|
|
}
|
3093 |
|
|
|
3094 |
|
|
/* Don't duplicate cases already considered. */
|
3095 |
|
|
for (i = 17; i < 24; i++)
|
3096 |
|
|
{
|
3097 |
|
|
if (((temp1 | (temp1 >> i)) == remainder)
|
3098 |
|
|
&& !const_ok_for_arm (temp1))
|
3099 |
|
|
{
|
3100 |
|
|
rtx new_src = (subtargets
|
3101 |
|
|
? (generate ? gen_reg_rtx (mode) : NULL_RTX)
|
3102 |
|
|
: target);
|
3103 |
|
|
insns = arm_gen_constant (code, mode, cond, temp1, new_src,
|
3104 |
|
|
source, subtargets, generate);
|
3105 |
|
|
source = new_src;
|
3106 |
|
|
if (generate)
|
3107 |
|
|
emit_constant_insn
|
3108 |
|
|
(cond,
|
3109 |
|
|
gen_rtx_SET (VOIDmode, target,
|
3110 |
|
|
gen_rtx_IOR
|
3111 |
|
|
(mode,
|
3112 |
|
|
gen_rtx_LSHIFTRT (mode, source,
|
3113 |
|
|
GEN_INT (i)),
|
3114 |
|
|
source)));
|
3115 |
|
|
return insns + 1;
|
3116 |
|
|
}
|
3117 |
|
|
}
|
3118 |
|
|
}
|
3119 |
|
|
break;
|
3120 |
|
|
|
3121 |
|
|
case IOR:
|
3122 |
|
|
case XOR:
|
3123 |
|
|
/* If we have IOR or XOR, and the constant can be loaded in a
|
3124 |
|
|
single instruction, and we can find a temporary to put it in,
|
3125 |
|
|
then this can be done in two instructions instead of 3-4. */
|
3126 |
|
|
if (subtargets
|
3127 |
|
|
/* TARGET can't be NULL if SUBTARGETS is 0 */
|
3128 |
|
|
|| (reload_completed && !reg_mentioned_p (target, source)))
|
3129 |
|
|
{
|
3130 |
|
|
if (const_ok_for_arm (ARM_SIGN_EXTEND (~val)))
|
3131 |
|
|
{
|
3132 |
|
|
if (generate)
|
3133 |
|
|
{
|
3134 |
|
|
rtx sub = subtargets ? gen_reg_rtx (mode) : target;
|
3135 |
|
|
|
3136 |
|
|
emit_constant_insn (cond,
|
3137 |
|
|
gen_rtx_SET (VOIDmode, sub,
|
3138 |
|
|
GEN_INT (val)));
|
3139 |
|
|
emit_constant_insn (cond,
|
3140 |
|
|
gen_rtx_SET (VOIDmode, target,
|
3141 |
|
|
gen_rtx_fmt_ee (code, mode,
|
3142 |
|
|
source, sub)));
|
3143 |
|
|
}
|
3144 |
|
|
return 2;
|
3145 |
|
|
}
|
3146 |
|
|
}
|
3147 |
|
|
|
3148 |
|
|
if (code == XOR)
|
3149 |
|
|
break;
|
3150 |
|
|
|
3151 |
|
|
/* Convert.
|
3152 |
|
|
x = y | constant ( which is composed of set_sign_bit_copies of leading 1s
|
3153 |
|
|
and the remainder 0s for e.g. 0xfff00000)
|
3154 |
|
|
x = ~(~(y ashift set_sign_bit_copies) lshiftrt set_sign_bit_copies)
|
3155 |
|
|
|
3156 |
|
|
This can be done in 2 instructions by using shifts with mov or mvn.
|
3157 |
|
|
e.g. for
|
3158 |
|
|
x = x | 0xfff00000;
|
3159 |
|
|
we generate.
|
3160 |
|
|
mvn r0, r0, asl #12
|
3161 |
|
|
mvn r0, r0, lsr #12 */
|
3162 |
|
|
if (set_sign_bit_copies > 8
|
3163 |
|
|
&& (val & (-1 << (32 - set_sign_bit_copies))) == val)
|
3164 |
|
|
{
|
3165 |
|
|
if (generate)
|
3166 |
|
|
{
|
3167 |
|
|
rtx sub = subtargets ? gen_reg_rtx (mode) : target;
|
3168 |
|
|
rtx shift = GEN_INT (set_sign_bit_copies);
|
3169 |
|
|
|
3170 |
|
|
emit_constant_insn
|
3171 |
|
|
(cond,
|
3172 |
|
|
gen_rtx_SET (VOIDmode, sub,
|
3173 |
|
|
gen_rtx_NOT (mode,
|
3174 |
|
|
gen_rtx_ASHIFT (mode,
|
3175 |
|
|
source,
|
3176 |
|
|
shift))));
|
3177 |
|
|
emit_constant_insn
|
3178 |
|
|
(cond,
|
3179 |
|
|
gen_rtx_SET (VOIDmode, target,
|
3180 |
|
|
gen_rtx_NOT (mode,
|
3181 |
|
|
gen_rtx_LSHIFTRT (mode, sub,
|
3182 |
|
|
shift))));
|
3183 |
|
|
}
|
3184 |
|
|
return 2;
|
3185 |
|
|
}
|
3186 |
|
|
|
3187 |
|
|
/* Convert
|
3188 |
|
|
x = y | constant (which has set_zero_bit_copies number of trailing ones).
|
3189 |
|
|
to
|
3190 |
|
|
x = ~((~y lshiftrt set_zero_bit_copies) ashift set_zero_bit_copies).
|
3191 |
|
|
|
3192 |
|
|
For eg. r0 = r0 | 0xfff
|
3193 |
|
|
mvn r0, r0, lsr #12
|
3194 |
|
|
mvn r0, r0, asl #12
|
3195 |
|
|
|
3196 |
|
|
*/
|
3197 |
|
|
if (set_zero_bit_copies > 8
|
3198 |
|
|
&& (remainder & ((1 << set_zero_bit_copies) - 1)) == remainder)
|
3199 |
|
|
{
|
3200 |
|
|
if (generate)
|
3201 |
|
|
{
|
3202 |
|
|
rtx sub = subtargets ? gen_reg_rtx (mode) : target;
|
3203 |
|
|
rtx shift = GEN_INT (set_zero_bit_copies);
|
3204 |
|
|
|
3205 |
|
|
emit_constant_insn
|
3206 |
|
|
(cond,
|
3207 |
|
|
gen_rtx_SET (VOIDmode, sub,
|
3208 |
|
|
gen_rtx_NOT (mode,
|
3209 |
|
|
gen_rtx_LSHIFTRT (mode,
|
3210 |
|
|
source,
|
3211 |
|
|
shift))));
|
3212 |
|
|
emit_constant_insn
|
3213 |
|
|
(cond,
|
3214 |
|
|
gen_rtx_SET (VOIDmode, target,
|
3215 |
|
|
gen_rtx_NOT (mode,
|
3216 |
|
|
gen_rtx_ASHIFT (mode, sub,
|
3217 |
|
|
shift))));
|
3218 |
|
|
}
|
3219 |
|
|
return 2;
|
3220 |
|
|
}
|
3221 |
|
|
|
3222 |
|
|
/* This will never be reached for Thumb2 because orn is a valid
|
3223 |
|
|
instruction. This is for Thumb1 and the ARM 32 bit cases.
|
3224 |
|
|
|
3225 |
|
|
x = y | constant (such that ~constant is a valid constant)
|
3226 |
|
|
Transform this to
|
3227 |
|
|
x = ~(~y & ~constant).
|
3228 |
|
|
*/
|
3229 |
|
|
if (const_ok_for_arm (temp1 = ARM_SIGN_EXTEND (~val)))
|
3230 |
|
|
{
|
3231 |
|
|
if (generate)
|
3232 |
|
|
{
|
3233 |
|
|
rtx sub = subtargets ? gen_reg_rtx (mode) : target;
|
3234 |
|
|
emit_constant_insn (cond,
|
3235 |
|
|
gen_rtx_SET (VOIDmode, sub,
|
3236 |
|
|
gen_rtx_NOT (mode, source)));
|
3237 |
|
|
source = sub;
|
3238 |
|
|
if (subtargets)
|
3239 |
|
|
sub = gen_reg_rtx (mode);
|
3240 |
|
|
emit_constant_insn (cond,
|
3241 |
|
|
gen_rtx_SET (VOIDmode, sub,
|
3242 |
|
|
gen_rtx_AND (mode, source,
|
3243 |
|
|
GEN_INT (temp1))));
|
3244 |
|
|
emit_constant_insn (cond,
|
3245 |
|
|
gen_rtx_SET (VOIDmode, target,
|
3246 |
|
|
gen_rtx_NOT (mode, sub)));
|
3247 |
|
|
}
|
3248 |
|
|
return 3;
|
3249 |
|
|
}
|
3250 |
|
|
break;
|
3251 |
|
|
|
3252 |
|
|
case AND:
|
3253 |
|
|
/* See if two shifts will do 2 or more insn's worth of work. */
|
3254 |
|
|
if (clear_sign_bit_copies >= 16 && clear_sign_bit_copies < 24)
|
3255 |
|
|
{
|
3256 |
|
|
HOST_WIDE_INT shift_mask = ((0xffffffff
|
3257 |
|
|
<< (32 - clear_sign_bit_copies))
|
3258 |
|
|
& 0xffffffff);
|
3259 |
|
|
|
3260 |
|
|
if ((remainder | shift_mask) != 0xffffffff)
|
3261 |
|
|
{
|
3262 |
|
|
if (generate)
|
3263 |
|
|
{
|
3264 |
|
|
rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
|
3265 |
|
|
insns = arm_gen_constant (AND, mode, cond,
|
3266 |
|
|
remainder | shift_mask,
|
3267 |
|
|
new_src, source, subtargets, 1);
|
3268 |
|
|
source = new_src;
|
3269 |
|
|
}
|
3270 |
|
|
else
|
3271 |
|
|
{
|
3272 |
|
|
rtx targ = subtargets ? NULL_RTX : target;
|
3273 |
|
|
insns = arm_gen_constant (AND, mode, cond,
|
3274 |
|
|
remainder | shift_mask,
|
3275 |
|
|
targ, source, subtargets, 0);
|
3276 |
|
|
}
|
3277 |
|
|
}
|
3278 |
|
|
|
3279 |
|
|
if (generate)
|
3280 |
|
|
{
|
3281 |
|
|
rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
|
3282 |
|
|
rtx shift = GEN_INT (clear_sign_bit_copies);
|
3283 |
|
|
|
3284 |
|
|
emit_insn (gen_ashlsi3 (new_src, source, shift));
|
3285 |
|
|
emit_insn (gen_lshrsi3 (target, new_src, shift));
|
3286 |
|
|
}
|
3287 |
|
|
|
3288 |
|
|
return insns + 2;
|
3289 |
|
|
}
|
3290 |
|
|
|
3291 |
|
|
if (clear_zero_bit_copies >= 16 && clear_zero_bit_copies < 24)
|
3292 |
|
|
{
|
3293 |
|
|
HOST_WIDE_INT shift_mask = (1 << clear_zero_bit_copies) - 1;
|
3294 |
|
|
|
3295 |
|
|
if ((remainder | shift_mask) != 0xffffffff)
|
3296 |
|
|
{
|
3297 |
|
|
if (generate)
|
3298 |
|
|
{
|
3299 |
|
|
rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
|
3300 |
|
|
|
3301 |
|
|
insns = arm_gen_constant (AND, mode, cond,
|
3302 |
|
|
remainder | shift_mask,
|
3303 |
|
|
new_src, source, subtargets, 1);
|
3304 |
|
|
source = new_src;
|
3305 |
|
|
}
|
3306 |
|
|
else
|
3307 |
|
|
{
|
3308 |
|
|
rtx targ = subtargets ? NULL_RTX : target;
|
3309 |
|
|
|
3310 |
|
|
insns = arm_gen_constant (AND, mode, cond,
|
3311 |
|
|
remainder | shift_mask,
|
3312 |
|
|
targ, source, subtargets, 0);
|
3313 |
|
|
}
|
3314 |
|
|
}
|
3315 |
|
|
|
3316 |
|
|
if (generate)
|
3317 |
|
|
{
|
3318 |
|
|
rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
|
3319 |
|
|
rtx shift = GEN_INT (clear_zero_bit_copies);
|
3320 |
|
|
|
3321 |
|
|
emit_insn (gen_lshrsi3 (new_src, source, shift));
|
3322 |
|
|
emit_insn (gen_ashlsi3 (target, new_src, shift));
|
3323 |
|
|
}
|
3324 |
|
|
|
3325 |
|
|
return insns + 2;
|
3326 |
|
|
}
|
3327 |
|
|
|
3328 |
|
|
break;
|
3329 |
|
|
|
3330 |
|
|
default:
|
3331 |
|
|
break;
|
3332 |
|
|
}
|
3333 |
|
|
|
3334 |
|
|
/* Calculate what the instruction sequences would be if we generated it
|
3335 |
|
|
normally, negated, or inverted. */
|
3336 |
|
|
if (code == AND)
|
3337 |
|
|
/* AND cannot be split into multiple insns, so invert and use BIC. */
|
3338 |
|
|
insns = 99;
|
3339 |
|
|
else
|
3340 |
|
|
insns = optimal_immediate_sequence (code, remainder, &pos_immediates);
|
3341 |
|
|
|
3342 |
|
|
if (can_negate)
|
3343 |
|
|
neg_insns = optimal_immediate_sequence (code, (-remainder) & 0xffffffff,
|
3344 |
|
|
&neg_immediates);
|
3345 |
|
|
else
|
3346 |
|
|
neg_insns = 99;
|
3347 |
|
|
|
3348 |
|
|
if (can_invert || final_invert)
|
3349 |
|
|
inv_insns = optimal_immediate_sequence (code, remainder ^ 0xffffffff,
|
3350 |
|
|
&inv_immediates);
|
3351 |
|
|
else
|
3352 |
|
|
inv_insns = 99;
|
3353 |
|
|
|
3354 |
|
|
immediates = &pos_immediates;
|
3355 |
|
|
|
3356 |
|
|
/* Is the negated immediate sequence more efficient? */
|
3357 |
|
|
if (neg_insns < insns && neg_insns <= inv_insns)
|
3358 |
|
|
{
|
3359 |
|
|
insns = neg_insns;
|
3360 |
|
|
immediates = &neg_immediates;
|
3361 |
|
|
}
|
3362 |
|
|
else
|
3363 |
|
|
can_negate = 0;
|
3364 |
|
|
|
3365 |
|
|
/* Is the inverted immediate sequence more efficient?
|
3366 |
|
|
We must allow for an extra NOT instruction for XOR operations, although
|
3367 |
|
|
there is some chance that the final 'mvn' will get optimized later. */
|
3368 |
|
|
if ((inv_insns + 1) < insns || (!final_invert && inv_insns < insns))
|
3369 |
|
|
{
|
3370 |
|
|
insns = inv_insns;
|
3371 |
|
|
immediates = &inv_immediates;
|
3372 |
|
|
}
|
3373 |
|
|
else
|
3374 |
|
|
{
|
3375 |
|
|
can_invert = 0;
|
3376 |
|
|
final_invert = 0;
|
3377 |
|
|
}
|
3378 |
|
|
|
3379 |
|
|
/* Now output the chosen sequence as instructions. */
|
3380 |
|
|
if (generate)
|
3381 |
|
|
{
|
3382 |
|
|
for (i = 0; i < insns; i++)
|
3383 |
|
|
{
|
3384 |
|
|
rtx new_src, temp1_rtx;
|
3385 |
|
|
|
3386 |
|
|
temp1 = immediates->i[i];
|
3387 |
|
|
|
3388 |
|
|
if (code == SET || code == MINUS)
|
3389 |
|
|
new_src = (subtargets ? gen_reg_rtx (mode) : target);
|
3390 |
|
|
else if ((final_invert || i < (insns - 1)) && subtargets)
|
3391 |
|
|
new_src = gen_reg_rtx (mode);
|
3392 |
|
|
else
|
3393 |
|
|
new_src = target;
|
3394 |
|
|
|
3395 |
|
|
if (can_invert)
|
3396 |
|
|
temp1 = ~temp1;
|
3397 |
|
|
else if (can_negate)
|
3398 |
|
|
temp1 = -temp1;
|
3399 |
|
|
|
3400 |
|
|
temp1 = trunc_int_for_mode (temp1, mode);
|
3401 |
|
|
temp1_rtx = GEN_INT (temp1);
|
3402 |
|
|
|
3403 |
|
|
if (code == SET)
|
3404 |
|
|
;
|
3405 |
|
|
else if (code == MINUS)
|
3406 |
|
|
temp1_rtx = gen_rtx_MINUS (mode, temp1_rtx, source);
|
3407 |
|
|
else
|
3408 |
|
|
temp1_rtx = gen_rtx_fmt_ee (code, mode, source, temp1_rtx);
|
3409 |
|
|
|
3410 |
|
|
emit_constant_insn (cond,
|
3411 |
|
|
gen_rtx_SET (VOIDmode, new_src,
|
3412 |
|
|
temp1_rtx));
|
3413 |
|
|
source = new_src;
|
3414 |
|
|
|
3415 |
|
|
if (code == SET)
|
3416 |
|
|
{
|
3417 |
|
|
can_negate = can_invert;
|
3418 |
|
|
can_invert = 0;
|
3419 |
|
|
code = PLUS;
|
3420 |
|
|
}
|
3421 |
|
|
else if (code == MINUS)
|
3422 |
|
|
code = PLUS;
|
3423 |
|
|
}
|
3424 |
|
|
}
|
3425 |
|
|
|
3426 |
|
|
if (final_invert)
|
3427 |
|
|
{
|
3428 |
|
|
if (generate)
|
3429 |
|
|
emit_constant_insn (cond, gen_rtx_SET (VOIDmode, target,
|
3430 |
|
|
gen_rtx_NOT (mode, source)));
|
3431 |
|
|
insns++;
|
3432 |
|
|
}
|
3433 |
|
|
|
3434 |
|
|
return insns;
|
3435 |
|
|
}
|
3436 |
|
|
|
3437 |
|
|
/* Canonicalize a comparison so that we are more likely to recognize it.
|
3438 |
|
|
This can be done for a few constant compares, where we can make the
|
3439 |
|
|
immediate value easier to load. */
|
3440 |
|
|
|
3441 |
|
|
enum rtx_code
|
3442 |
|
|
arm_canonicalize_comparison (enum rtx_code code, rtx *op0, rtx *op1)
|
3443 |
|
|
{
|
3444 |
|
|
enum machine_mode mode;
|
3445 |
|
|
unsigned HOST_WIDE_INT i, maxval;
|
3446 |
|
|
|
3447 |
|
|
mode = GET_MODE (*op0);
|
3448 |
|
|
if (mode == VOIDmode)
|
3449 |
|
|
mode = GET_MODE (*op1);
|
3450 |
|
|
|
3451 |
|
|
maxval = (((unsigned HOST_WIDE_INT) 1) << (GET_MODE_BITSIZE(mode) - 1)) - 1;
|
3452 |
|
|
|
3453 |
|
|
/* For DImode, we have GE/LT/GEU/LTU comparisons. In ARM mode
|
3454 |
|
|
we can also use cmp/cmpeq for GTU/LEU. GT/LE must be either
|
3455 |
|
|
reversed or (for constant OP1) adjusted to GE/LT. Similarly
|
3456 |
|
|
for GTU/LEU in Thumb mode. */
|
3457 |
|
|
if (mode == DImode)
|
3458 |
|
|
{
|
3459 |
|
|
rtx tem;
|
3460 |
|
|
|
3461 |
|
|
/* To keep things simple, always use the Cirrus cfcmp64 if it is
|
3462 |
|
|
available. */
|
3463 |
|
|
if (TARGET_ARM && TARGET_HARD_FLOAT && TARGET_MAVERICK)
|
3464 |
|
|
return code;
|
3465 |
|
|
|
3466 |
|
|
if (code == GT || code == LE
|
3467 |
|
|
|| (!TARGET_ARM && (code == GTU || code == LEU)))
|
3468 |
|
|
{
|
3469 |
|
|
/* Missing comparison. First try to use an available
|
3470 |
|
|
comparison. */
|
3471 |
|
|
if (GET_CODE (*op1) == CONST_INT)
|
3472 |
|
|
{
|
3473 |
|
|
i = INTVAL (*op1);
|
3474 |
|
|
switch (code)
|
3475 |
|
|
{
|
3476 |
|
|
case GT:
|
3477 |
|
|
case LE:
|
3478 |
|
|
if (i != maxval
|
3479 |
|
|
&& arm_const_double_by_immediates (GEN_INT (i + 1)))
|
3480 |
|
|
{
|
3481 |
|
|
*op1 = GEN_INT (i + 1);
|
3482 |
|
|
return code == GT ? GE : LT;
|
3483 |
|
|
}
|
3484 |
|
|
break;
|
3485 |
|
|
case GTU:
|
3486 |
|
|
case LEU:
|
3487 |
|
|
if (i != ~((unsigned HOST_WIDE_INT) 0)
|
3488 |
|
|
&& arm_const_double_by_immediates (GEN_INT (i + 1)))
|
3489 |
|
|
{
|
3490 |
|
|
*op1 = GEN_INT (i + 1);
|
3491 |
|
|
return code == GTU ? GEU : LTU;
|
3492 |
|
|
}
|
3493 |
|
|
break;
|
3494 |
|
|
default:
|
3495 |
|
|
gcc_unreachable ();
|
3496 |
|
|
}
|
3497 |
|
|
}
|
3498 |
|
|
|
3499 |
|
|
/* If that did not work, reverse the condition. */
|
3500 |
|
|
tem = *op0;
|
3501 |
|
|
*op0 = *op1;
|
3502 |
|
|
*op1 = tem;
|
3503 |
|
|
return swap_condition (code);
|
3504 |
|
|
}
|
3505 |
|
|
|
3506 |
|
|
return code;
|
3507 |
|
|
}
|
3508 |
|
|
|
3509 |
|
|
/* If *op0 is (zero_extend:SI (subreg:QI (reg:SI) 0)) and comparing
|
3510 |
|
|
with const0_rtx, change it to (and:SI (reg:SI) (const_int 255)),
|
3511 |
|
|
to facilitate possible combining with a cmp into 'ands'. */
|
3512 |
|
|
if (mode == SImode
|
3513 |
|
|
&& GET_CODE (*op0) == ZERO_EXTEND
|
3514 |
|
|
&& GET_CODE (XEXP (*op0, 0)) == SUBREG
|
3515 |
|
|
&& GET_MODE (XEXP (*op0, 0)) == QImode
|
3516 |
|
|
&& GET_MODE (SUBREG_REG (XEXP (*op0, 0))) == SImode
|
3517 |
|
|
&& subreg_lowpart_p (XEXP (*op0, 0))
|
3518 |
|
|
&& *op1 == const0_rtx)
|
3519 |
|
|
*op0 = gen_rtx_AND (SImode, SUBREG_REG (XEXP (*op0, 0)),
|
3520 |
|
|
GEN_INT (255));
|
3521 |
|
|
|
3522 |
|
|
/* Comparisons smaller than DImode. Only adjust comparisons against
|
3523 |
|
|
an out-of-range constant. */
|
3524 |
|
|
if (GET_CODE (*op1) != CONST_INT
|
3525 |
|
|
|| const_ok_for_arm (INTVAL (*op1))
|
3526 |
|
|
|| const_ok_for_arm (- INTVAL (*op1)))
|
3527 |
|
|
return code;
|
3528 |
|
|
|
3529 |
|
|
i = INTVAL (*op1);
|
3530 |
|
|
|
3531 |
|
|
switch (code)
|
3532 |
|
|
{
|
3533 |
|
|
case EQ:
|
3534 |
|
|
case NE:
|
3535 |
|
|
return code;
|
3536 |
|
|
|
3537 |
|
|
case GT:
|
3538 |
|
|
case LE:
|
3539 |
|
|
if (i != maxval
|
3540 |
|
|
&& (const_ok_for_arm (i + 1) || const_ok_for_arm (-(i + 1))))
|
3541 |
|
|
{
|
3542 |
|
|
*op1 = GEN_INT (i + 1);
|
3543 |
|
|
return code == GT ? GE : LT;
|
3544 |
|
|
}
|
3545 |
|
|
break;
|
3546 |
|
|
|
3547 |
|
|
case GE:
|
3548 |
|
|
case LT:
|
3549 |
|
|
if (i != ~maxval
|
3550 |
|
|
&& (const_ok_for_arm (i - 1) || const_ok_for_arm (-(i - 1))))
|
3551 |
|
|
{
|
3552 |
|
|
*op1 = GEN_INT (i - 1);
|
3553 |
|
|
return code == GE ? GT : LE;
|
3554 |
|
|
}
|
3555 |
|
|
break;
|
3556 |
|
|
|
3557 |
|
|
case GTU:
|
3558 |
|
|
case LEU:
|
3559 |
|
|
if (i != ~((unsigned HOST_WIDE_INT) 0)
|
3560 |
|
|
&& (const_ok_for_arm (i + 1) || const_ok_for_arm (-(i + 1))))
|
3561 |
|
|
{
|
3562 |
|
|
*op1 = GEN_INT (i + 1);
|
3563 |
|
|
return code == GTU ? GEU : LTU;
|
3564 |
|
|
}
|
3565 |
|
|
break;
|
3566 |
|
|
|
3567 |
|
|
case GEU:
|
3568 |
|
|
case LTU:
|
3569 |
|
|
if (i != 0
|
3570 |
|
|
&& (const_ok_for_arm (i - 1) || const_ok_for_arm (-(i - 1))))
|
3571 |
|
|
{
|
3572 |
|
|
*op1 = GEN_INT (i - 1);
|
3573 |
|
|
return code == GEU ? GTU : LEU;
|
3574 |
|
|
}
|
3575 |
|
|
break;
|
3576 |
|
|
|
3577 |
|
|
default:
|
3578 |
|
|
gcc_unreachable ();
|
3579 |
|
|
}
|
3580 |
|
|
|
3581 |
|
|
return code;
|
3582 |
|
|
}
|
3583 |
|
|
|
3584 |
|
|
|
3585 |
|
|
/* Define how to find the value returned by a function. */
|
3586 |
|
|
|
3587 |
|
|
static rtx
|
3588 |
|
|
arm_function_value(const_tree type, const_tree func,
|
3589 |
|
|
bool outgoing ATTRIBUTE_UNUSED)
|
3590 |
|
|
{
|
3591 |
|
|
enum machine_mode mode;
|
3592 |
|
|
int unsignedp ATTRIBUTE_UNUSED;
|
3593 |
|
|
rtx r ATTRIBUTE_UNUSED;
|
3594 |
|
|
|
3595 |
|
|
mode = TYPE_MODE (type);
|
3596 |
|
|
|
3597 |
|
|
if (TARGET_AAPCS_BASED)
|
3598 |
|
|
return aapcs_allocate_return_reg (mode, type, func);
|
3599 |
|
|
|
3600 |
|
|
/* Promote integer types. */
|
3601 |
|
|
if (INTEGRAL_TYPE_P (type))
|
3602 |
|
|
mode = arm_promote_function_mode (type, mode, &unsignedp, func, 1);
|
3603 |
|
|
|
3604 |
|
|
/* Promotes small structs returned in a register to full-word size
|
3605 |
|
|
for big-endian AAPCS. */
|
3606 |
|
|
if (arm_return_in_msb (type))
|
3607 |
|
|
{
|
3608 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (type);
|
3609 |
|
|
if (size % UNITS_PER_WORD != 0)
|
3610 |
|
|
{
|
3611 |
|
|
size += UNITS_PER_WORD - size % UNITS_PER_WORD;
|
3612 |
|
|
mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
|
3613 |
|
|
}
|
3614 |
|
|
}
|
3615 |
|
|
|
3616 |
|
|
return arm_libcall_value_1 (mode);
|
3617 |
|
|
}
|
3618 |
|
|
|
3619 |
|
|
static int
|
3620 |
|
|
libcall_eq (const void *p1, const void *p2)
|
3621 |
|
|
{
|
3622 |
|
|
return rtx_equal_p ((const_rtx) p1, (const_rtx) p2);
|
3623 |
|
|
}
|
3624 |
|
|
|
3625 |
|
|
static hashval_t
|
3626 |
|
|
libcall_hash (const void *p1)
|
3627 |
|
|
{
|
3628 |
|
|
return hash_rtx ((const_rtx) p1, VOIDmode, NULL, NULL, FALSE);
|
3629 |
|
|
}
|
3630 |
|
|
|
3631 |
|
|
static void
|
3632 |
|
|
add_libcall (htab_t htab, rtx libcall)
|
3633 |
|
|
{
|
3634 |
|
|
*htab_find_slot (htab, libcall, INSERT) = libcall;
|
3635 |
|
|
}
|
3636 |
|
|
|
3637 |
|
|
static bool
|
3638 |
|
|
arm_libcall_uses_aapcs_base (const_rtx libcall)
|
3639 |
|
|
{
|
3640 |
|
|
static bool init_done = false;
|
3641 |
|
|
static htab_t libcall_htab;
|
3642 |
|
|
|
3643 |
|
|
if (!init_done)
|
3644 |
|
|
{
|
3645 |
|
|
init_done = true;
|
3646 |
|
|
|
3647 |
|
|
libcall_htab = htab_create (31, libcall_hash, libcall_eq,
|
3648 |
|
|
NULL);
|
3649 |
|
|
add_libcall (libcall_htab,
|
3650 |
|
|
convert_optab_libfunc (sfloat_optab, SFmode, SImode));
|
3651 |
|
|
add_libcall (libcall_htab,
|
3652 |
|
|
convert_optab_libfunc (sfloat_optab, DFmode, SImode));
|
3653 |
|
|
add_libcall (libcall_htab,
|
3654 |
|
|
convert_optab_libfunc (sfloat_optab, SFmode, DImode));
|
3655 |
|
|
add_libcall (libcall_htab,
|
3656 |
|
|
convert_optab_libfunc (sfloat_optab, DFmode, DImode));
|
3657 |
|
|
|
3658 |
|
|
add_libcall (libcall_htab,
|
3659 |
|
|
convert_optab_libfunc (ufloat_optab, SFmode, SImode));
|
3660 |
|
|
add_libcall (libcall_htab,
|
3661 |
|
|
convert_optab_libfunc (ufloat_optab, DFmode, SImode));
|
3662 |
|
|
add_libcall (libcall_htab,
|
3663 |
|
|
convert_optab_libfunc (ufloat_optab, SFmode, DImode));
|
3664 |
|
|
add_libcall (libcall_htab,
|
3665 |
|
|
convert_optab_libfunc (ufloat_optab, DFmode, DImode));
|
3666 |
|
|
|
3667 |
|
|
add_libcall (libcall_htab,
|
3668 |
|
|
convert_optab_libfunc (sext_optab, SFmode, HFmode));
|
3669 |
|
|
add_libcall (libcall_htab,
|
3670 |
|
|
convert_optab_libfunc (trunc_optab, HFmode, SFmode));
|
3671 |
|
|
add_libcall (libcall_htab,
|
3672 |
|
|
convert_optab_libfunc (sfix_optab, SImode, DFmode));
|
3673 |
|
|
add_libcall (libcall_htab,
|
3674 |
|
|
convert_optab_libfunc (ufix_optab, SImode, DFmode));
|
3675 |
|
|
add_libcall (libcall_htab,
|
3676 |
|
|
convert_optab_libfunc (sfix_optab, DImode, DFmode));
|
3677 |
|
|
add_libcall (libcall_htab,
|
3678 |
|
|
convert_optab_libfunc (ufix_optab, DImode, DFmode));
|
3679 |
|
|
add_libcall (libcall_htab,
|
3680 |
|
|
convert_optab_libfunc (sfix_optab, DImode, SFmode));
|
3681 |
|
|
add_libcall (libcall_htab,
|
3682 |
|
|
convert_optab_libfunc (ufix_optab, DImode, SFmode));
|
3683 |
|
|
|
3684 |
|
|
/* Values from double-precision helper functions are returned in core
|
3685 |
|
|
registers if the selected core only supports single-precision
|
3686 |
|
|
arithmetic, even if we are using the hard-float ABI. The same is
|
3687 |
|
|
true for single-precision helpers, but we will never be using the
|
3688 |
|
|
hard-float ABI on a CPU which doesn't support single-precision
|
3689 |
|
|
operations in hardware. */
|
3690 |
|
|
add_libcall (libcall_htab, optab_libfunc (add_optab, DFmode));
|
3691 |
|
|
add_libcall (libcall_htab, optab_libfunc (sdiv_optab, DFmode));
|
3692 |
|
|
add_libcall (libcall_htab, optab_libfunc (smul_optab, DFmode));
|
3693 |
|
|
add_libcall (libcall_htab, optab_libfunc (neg_optab, DFmode));
|
3694 |
|
|
add_libcall (libcall_htab, optab_libfunc (sub_optab, DFmode));
|
3695 |
|
|
add_libcall (libcall_htab, optab_libfunc (eq_optab, DFmode));
|
3696 |
|
|
add_libcall (libcall_htab, optab_libfunc (lt_optab, DFmode));
|
3697 |
|
|
add_libcall (libcall_htab, optab_libfunc (le_optab, DFmode));
|
3698 |
|
|
add_libcall (libcall_htab, optab_libfunc (ge_optab, DFmode));
|
3699 |
|
|
add_libcall (libcall_htab, optab_libfunc (gt_optab, DFmode));
|
3700 |
|
|
add_libcall (libcall_htab, optab_libfunc (unord_optab, DFmode));
|
3701 |
|
|
add_libcall (libcall_htab, convert_optab_libfunc (sext_optab, DFmode,
|
3702 |
|
|
SFmode));
|
3703 |
|
|
add_libcall (libcall_htab, convert_optab_libfunc (trunc_optab, SFmode,
|
3704 |
|
|
DFmode));
|
3705 |
|
|
}
|
3706 |
|
|
|
3707 |
|
|
return libcall && htab_find (libcall_htab, libcall) != NULL;
|
3708 |
|
|
}
|
3709 |
|
|
|
3710 |
|
|
static rtx
|
3711 |
|
|
arm_libcall_value_1 (enum machine_mode mode)
|
3712 |
|
|
{
|
3713 |
|
|
if (TARGET_AAPCS_BASED)
|
3714 |
|
|
return aapcs_libcall_value (mode);
|
3715 |
|
|
else if (TARGET_32BIT
|
3716 |
|
|
&& TARGET_HARD_FLOAT_ABI
|
3717 |
|
|
&& TARGET_FPA
|
3718 |
|
|
&& GET_MODE_CLASS (mode) == MODE_FLOAT)
|
3719 |
|
|
return gen_rtx_REG (mode, FIRST_FPA_REGNUM);
|
3720 |
|
|
else if (TARGET_32BIT
|
3721 |
|
|
&& TARGET_HARD_FLOAT_ABI
|
3722 |
|
|
&& TARGET_MAVERICK
|
3723 |
|
|
&& GET_MODE_CLASS (mode) == MODE_FLOAT)
|
3724 |
|
|
return gen_rtx_REG (mode, FIRST_CIRRUS_FP_REGNUM);
|
3725 |
|
|
else if (TARGET_IWMMXT_ABI
|
3726 |
|
|
&& arm_vector_mode_supported_p (mode))
|
3727 |
|
|
return gen_rtx_REG (mode, FIRST_IWMMXT_REGNUM);
|
3728 |
|
|
else
|
3729 |
|
|
return gen_rtx_REG (mode, ARG_REGISTER (1));
|
3730 |
|
|
}
|
3731 |
|
|
|
3732 |
|
|
/* Define how to find the value returned by a library function
|
3733 |
|
|
assuming the value has mode MODE. */
|
3734 |
|
|
|
3735 |
|
|
static rtx
|
3736 |
|
|
arm_libcall_value (enum machine_mode mode, const_rtx libcall)
|
3737 |
|
|
{
|
3738 |
|
|
if (TARGET_AAPCS_BASED && arm_pcs_default != ARM_PCS_AAPCS
|
3739 |
|
|
&& GET_MODE_CLASS (mode) == MODE_FLOAT)
|
3740 |
|
|
{
|
3741 |
|
|
/* The following libcalls return their result in integer registers,
|
3742 |
|
|
even though they return a floating point value. */
|
3743 |
|
|
if (arm_libcall_uses_aapcs_base (libcall))
|
3744 |
|
|
return gen_rtx_REG (mode, ARG_REGISTER(1));
|
3745 |
|
|
|
3746 |
|
|
}
|
3747 |
|
|
|
3748 |
|
|
return arm_libcall_value_1 (mode);
|
3749 |
|
|
}
|
3750 |
|
|
|
3751 |
|
|
/* Implement TARGET_FUNCTION_VALUE_REGNO_P. */
|
3752 |
|
|
|
3753 |
|
|
static bool
|
3754 |
|
|
arm_function_value_regno_p (const unsigned int regno)
|
3755 |
|
|
{
|
3756 |
|
|
if (regno == ARG_REGISTER (1)
|
3757 |
|
|
|| (TARGET_32BIT
|
3758 |
|
|
&& TARGET_AAPCS_BASED
|
3759 |
|
|
&& TARGET_VFP
|
3760 |
|
|
&& TARGET_HARD_FLOAT
|
3761 |
|
|
&& regno == FIRST_VFP_REGNUM)
|
3762 |
|
|
|| (TARGET_32BIT
|
3763 |
|
|
&& TARGET_HARD_FLOAT_ABI
|
3764 |
|
|
&& TARGET_MAVERICK
|
3765 |
|
|
&& regno == FIRST_CIRRUS_FP_REGNUM)
|
3766 |
|
|
|| (TARGET_IWMMXT_ABI
|
3767 |
|
|
&& regno == FIRST_IWMMXT_REGNUM)
|
3768 |
|
|
|| (TARGET_32BIT
|
3769 |
|
|
&& TARGET_HARD_FLOAT_ABI
|
3770 |
|
|
&& TARGET_FPA
|
3771 |
|
|
&& regno == FIRST_FPA_REGNUM))
|
3772 |
|
|
return true;
|
3773 |
|
|
|
3774 |
|
|
return false;
|
3775 |
|
|
}
|
3776 |
|
|
|
3777 |
|
|
/* Determine the amount of memory needed to store the possible return
|
3778 |
|
|
registers of an untyped call. */
|
3779 |
|
|
int
|
3780 |
|
|
arm_apply_result_size (void)
|
3781 |
|
|
{
|
3782 |
|
|
int size = 16;
|
3783 |
|
|
|
3784 |
|
|
if (TARGET_32BIT)
|
3785 |
|
|
{
|
3786 |
|
|
if (TARGET_HARD_FLOAT_ABI)
|
3787 |
|
|
{
|
3788 |
|
|
if (TARGET_VFP)
|
3789 |
|
|
size += 32;
|
3790 |
|
|
if (TARGET_FPA)
|
3791 |
|
|
size += 12;
|
3792 |
|
|
if (TARGET_MAVERICK)
|
3793 |
|
|
size += 8;
|
3794 |
|
|
}
|
3795 |
|
|
if (TARGET_IWMMXT_ABI)
|
3796 |
|
|
size += 8;
|
3797 |
|
|
}
|
3798 |
|
|
|
3799 |
|
|
return size;
|
3800 |
|
|
}
|
3801 |
|
|
|
3802 |
|
|
/* Decide whether TYPE should be returned in memory (true)
|
3803 |
|
|
or in a register (false). FNTYPE is the type of the function making
|
3804 |
|
|
the call. */
|
3805 |
|
|
static bool
|
3806 |
|
|
arm_return_in_memory (const_tree type, const_tree fntype)
|
3807 |
|
|
{
|
3808 |
|
|
HOST_WIDE_INT size;
|
3809 |
|
|
|
3810 |
|
|
size = int_size_in_bytes (type); /* Negative if not fixed size. */
|
3811 |
|
|
|
3812 |
|
|
if (TARGET_AAPCS_BASED)
|
3813 |
|
|
{
|
3814 |
|
|
/* Simple, non-aggregate types (ie not including vectors and
|
3815 |
|
|
complex) are always returned in a register (or registers).
|
3816 |
|
|
We don't care about which register here, so we can short-cut
|
3817 |
|
|
some of the detail. */
|
3818 |
|
|
if (!AGGREGATE_TYPE_P (type)
|
3819 |
|
|
&& TREE_CODE (type) != VECTOR_TYPE
|
3820 |
|
|
&& TREE_CODE (type) != COMPLEX_TYPE)
|
3821 |
|
|
return false;
|
3822 |
|
|
|
3823 |
|
|
/* Any return value that is no larger than one word can be
|
3824 |
|
|
returned in r0. */
|
3825 |
|
|
if (((unsigned HOST_WIDE_INT) size) <= UNITS_PER_WORD)
|
3826 |
|
|
return false;
|
3827 |
|
|
|
3828 |
|
|
/* Check any available co-processors to see if they accept the
|
3829 |
|
|
type as a register candidate (VFP, for example, can return
|
3830 |
|
|
some aggregates in consecutive registers). These aren't
|
3831 |
|
|
available if the call is variadic. */
|
3832 |
|
|
if (aapcs_select_return_coproc (type, fntype) >= 0)
|
3833 |
|
|
return false;
|
3834 |
|
|
|
3835 |
|
|
/* Vector values should be returned using ARM registers, not
|
3836 |
|
|
memory (unless they're over 16 bytes, which will break since
|
3837 |
|
|
we only have four call-clobbered registers to play with). */
|
3838 |
|
|
if (TREE_CODE (type) == VECTOR_TYPE)
|
3839 |
|
|
return (size < 0 || size > (4 * UNITS_PER_WORD));
|
3840 |
|
|
|
3841 |
|
|
/* The rest go in memory. */
|
3842 |
|
|
return true;
|
3843 |
|
|
}
|
3844 |
|
|
|
3845 |
|
|
if (TREE_CODE (type) == VECTOR_TYPE)
|
3846 |
|
|
return (size < 0 || size > (4 * UNITS_PER_WORD));
|
3847 |
|
|
|
3848 |
|
|
if (!AGGREGATE_TYPE_P (type) &&
|
3849 |
|
|
(TREE_CODE (type) != VECTOR_TYPE))
|
3850 |
|
|
/* All simple types are returned in registers. */
|
3851 |
|
|
return false;
|
3852 |
|
|
|
3853 |
|
|
if (arm_abi != ARM_ABI_APCS)
|
3854 |
|
|
{
|
3855 |
|
|
/* ATPCS and later return aggregate types in memory only if they are
|
3856 |
|
|
larger than a word (or are variable size). */
|
3857 |
|
|
return (size < 0 || size > UNITS_PER_WORD);
|
3858 |
|
|
}
|
3859 |
|
|
|
3860 |
|
|
/* For the arm-wince targets we choose to be compatible with Microsoft's
|
3861 |
|
|
ARM and Thumb compilers, which always return aggregates in memory. */
|
3862 |
|
|
#ifndef ARM_WINCE
|
3863 |
|
|
/* All structures/unions bigger than one word are returned in memory.
|
3864 |
|
|
Also catch the case where int_size_in_bytes returns -1. In this case
|
3865 |
|
|
the aggregate is either huge or of variable size, and in either case
|
3866 |
|
|
we will want to return it via memory and not in a register. */
|
3867 |
|
|
if (size < 0 || size > UNITS_PER_WORD)
|
3868 |
|
|
return true;
|
3869 |
|
|
|
3870 |
|
|
if (TREE_CODE (type) == RECORD_TYPE)
|
3871 |
|
|
{
|
3872 |
|
|
tree field;
|
3873 |
|
|
|
3874 |
|
|
/* For a struct the APCS says that we only return in a register
|
3875 |
|
|
if the type is 'integer like' and every addressable element
|
3876 |
|
|
has an offset of zero. For practical purposes this means
|
3877 |
|
|
that the structure can have at most one non bit-field element
|
3878 |
|
|
and that this element must be the first one in the structure. */
|
3879 |
|
|
|
3880 |
|
|
/* Find the first field, ignoring non FIELD_DECL things which will
|
3881 |
|
|
have been created by C++. */
|
3882 |
|
|
for (field = TYPE_FIELDS (type);
|
3883 |
|
|
field && TREE_CODE (field) != FIELD_DECL;
|
3884 |
|
|
field = DECL_CHAIN (field))
|
3885 |
|
|
continue;
|
3886 |
|
|
|
3887 |
|
|
if (field == NULL)
|
3888 |
|
|
return false; /* An empty structure. Allowed by an extension to ANSI C. */
|
3889 |
|
|
|
3890 |
|
|
/* Check that the first field is valid for returning in a register. */
|
3891 |
|
|
|
3892 |
|
|
/* ... Floats are not allowed */
|
3893 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (field)))
|
3894 |
|
|
return true;
|
3895 |
|
|
|
3896 |
|
|
/* ... Aggregates that are not themselves valid for returning in
|
3897 |
|
|
a register are not allowed. */
|
3898 |
|
|
if (arm_return_in_memory (TREE_TYPE (field), NULL_TREE))
|
3899 |
|
|
return true;
|
3900 |
|
|
|
3901 |
|
|
/* Now check the remaining fields, if any. Only bitfields are allowed,
|
3902 |
|
|
since they are not addressable. */
|
3903 |
|
|
for (field = DECL_CHAIN (field);
|
3904 |
|
|
field;
|
3905 |
|
|
field = DECL_CHAIN (field))
|
3906 |
|
|
{
|
3907 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
3908 |
|
|
continue;
|
3909 |
|
|
|
3910 |
|
|
if (!DECL_BIT_FIELD_TYPE (field))
|
3911 |
|
|
return true;
|
3912 |
|
|
}
|
3913 |
|
|
|
3914 |
|
|
return false;
|
3915 |
|
|
}
|
3916 |
|
|
|
3917 |
|
|
if (TREE_CODE (type) == UNION_TYPE)
|
3918 |
|
|
{
|
3919 |
|
|
tree field;
|
3920 |
|
|
|
3921 |
|
|
/* Unions can be returned in registers if every element is
|
3922 |
|
|
integral, or can be returned in an integer register. */
|
3923 |
|
|
for (field = TYPE_FIELDS (type);
|
3924 |
|
|
field;
|
3925 |
|
|
field = DECL_CHAIN (field))
|
3926 |
|
|
{
|
3927 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
3928 |
|
|
continue;
|
3929 |
|
|
|
3930 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (field)))
|
3931 |
|
|
return true;
|
3932 |
|
|
|
3933 |
|
|
if (arm_return_in_memory (TREE_TYPE (field), NULL_TREE))
|
3934 |
|
|
return true;
|
3935 |
|
|
}
|
3936 |
|
|
|
3937 |
|
|
return false;
|
3938 |
|
|
}
|
3939 |
|
|
#endif /* not ARM_WINCE */
|
3940 |
|
|
|
3941 |
|
|
/* Return all other types in memory. */
|
3942 |
|
|
return true;
|
3943 |
|
|
}
|
3944 |
|
|
|
3945 |
|
|
/* Indicate whether or not words of a double are in big-endian order. */
|
3946 |
|
|
|
3947 |
|
|
int
|
3948 |
|
|
arm_float_words_big_endian (void)
|
3949 |
|
|
{
|
3950 |
|
|
if (TARGET_MAVERICK)
|
3951 |
|
|
return 0;
|
3952 |
|
|
|
3953 |
|
|
/* For FPA, float words are always big-endian. For VFP, floats words
|
3954 |
|
|
follow the memory system mode. */
|
3955 |
|
|
|
3956 |
|
|
if (TARGET_FPA)
|
3957 |
|
|
{
|
3958 |
|
|
return 1;
|
3959 |
|
|
}
|
3960 |
|
|
|
3961 |
|
|
if (TARGET_VFP)
|
3962 |
|
|
return (TARGET_BIG_END ? 1 : 0);
|
3963 |
|
|
|
3964 |
|
|
return 1;
|
3965 |
|
|
}
|
3966 |
|
|
|
3967 |
|
|
const struct pcs_attribute_arg
|
3968 |
|
|
{
|
3969 |
|
|
const char *arg;
|
3970 |
|
|
enum arm_pcs value;
|
3971 |
|
|
} pcs_attribute_args[] =
|
3972 |
|
|
{
|
3973 |
|
|
{"aapcs", ARM_PCS_AAPCS},
|
3974 |
|
|
{"aapcs-vfp", ARM_PCS_AAPCS_VFP},
|
3975 |
|
|
#if 0
|
3976 |
|
|
/* We could recognize these, but changes would be needed elsewhere
|
3977 |
|
|
* to implement them. */
|
3978 |
|
|
{"aapcs-iwmmxt", ARM_PCS_AAPCS_IWMMXT},
|
3979 |
|
|
{"atpcs", ARM_PCS_ATPCS},
|
3980 |
|
|
{"apcs", ARM_PCS_APCS},
|
3981 |
|
|
#endif
|
3982 |
|
|
{NULL, ARM_PCS_UNKNOWN}
|
3983 |
|
|
};
|
3984 |
|
|
|
3985 |
|
|
static enum arm_pcs
|
3986 |
|
|
arm_pcs_from_attribute (tree attr)
|
3987 |
|
|
{
|
3988 |
|
|
const struct pcs_attribute_arg *ptr;
|
3989 |
|
|
const char *arg;
|
3990 |
|
|
|
3991 |
|
|
/* Get the value of the argument. */
|
3992 |
|
|
if (TREE_VALUE (attr) == NULL_TREE
|
3993 |
|
|
|| TREE_CODE (TREE_VALUE (attr)) != STRING_CST)
|
3994 |
|
|
return ARM_PCS_UNKNOWN;
|
3995 |
|
|
|
3996 |
|
|
arg = TREE_STRING_POINTER (TREE_VALUE (attr));
|
3997 |
|
|
|
3998 |
|
|
/* Check it against the list of known arguments. */
|
3999 |
|
|
for (ptr = pcs_attribute_args; ptr->arg != NULL; ptr++)
|
4000 |
|
|
if (streq (arg, ptr->arg))
|
4001 |
|
|
return ptr->value;
|
4002 |
|
|
|
4003 |
|
|
/* An unrecognized interrupt type. */
|
4004 |
|
|
return ARM_PCS_UNKNOWN;
|
4005 |
|
|
}
|
4006 |
|
|
|
4007 |
|
|
/* Get the PCS variant to use for this call. TYPE is the function's type
|
4008 |
|
|
specification, DECL is the specific declartion. DECL may be null if
|
4009 |
|
|
the call could be indirect or if this is a library call. */
|
4010 |
|
|
static enum arm_pcs
|
4011 |
|
|
arm_get_pcs_model (const_tree type, const_tree decl)
|
4012 |
|
|
{
|
4013 |
|
|
bool user_convention = false;
|
4014 |
|
|
enum arm_pcs user_pcs = arm_pcs_default;
|
4015 |
|
|
tree attr;
|
4016 |
|
|
|
4017 |
|
|
gcc_assert (type);
|
4018 |
|
|
|
4019 |
|
|
attr = lookup_attribute ("pcs", TYPE_ATTRIBUTES (type));
|
4020 |
|
|
if (attr)
|
4021 |
|
|
{
|
4022 |
|
|
user_pcs = arm_pcs_from_attribute (TREE_VALUE (attr));
|
4023 |
|
|
user_convention = true;
|
4024 |
|
|
}
|
4025 |
|
|
|
4026 |
|
|
if (TARGET_AAPCS_BASED)
|
4027 |
|
|
{
|
4028 |
|
|
/* Detect varargs functions. These always use the base rules
|
4029 |
|
|
(no argument is ever a candidate for a co-processor
|
4030 |
|
|
register). */
|
4031 |
|
|
bool base_rules = stdarg_p (type);
|
4032 |
|
|
|
4033 |
|
|
if (user_convention)
|
4034 |
|
|
{
|
4035 |
|
|
if (user_pcs > ARM_PCS_AAPCS_LOCAL)
|
4036 |
|
|
sorry ("non-AAPCS derived PCS variant");
|
4037 |
|
|
else if (base_rules && user_pcs != ARM_PCS_AAPCS)
|
4038 |
|
|
error ("variadic functions must use the base AAPCS variant");
|
4039 |
|
|
}
|
4040 |
|
|
|
4041 |
|
|
if (base_rules)
|
4042 |
|
|
return ARM_PCS_AAPCS;
|
4043 |
|
|
else if (user_convention)
|
4044 |
|
|
return user_pcs;
|
4045 |
|
|
else if (decl && flag_unit_at_a_time)
|
4046 |
|
|
{
|
4047 |
|
|
/* Local functions never leak outside this compilation unit,
|
4048 |
|
|
so we are free to use whatever conventions are
|
4049 |
|
|
appropriate. */
|
4050 |
|
|
/* FIXME: remove CONST_CAST_TREE when cgraph is constified. */
|
4051 |
|
|
struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE(decl));
|
4052 |
|
|
if (i && i->local)
|
4053 |
|
|
return ARM_PCS_AAPCS_LOCAL;
|
4054 |
|
|
}
|
4055 |
|
|
}
|
4056 |
|
|
else if (user_convention && user_pcs != arm_pcs_default)
|
4057 |
|
|
sorry ("PCS variant");
|
4058 |
|
|
|
4059 |
|
|
/* For everything else we use the target's default. */
|
4060 |
|
|
return arm_pcs_default;
|
4061 |
|
|
}
|
4062 |
|
|
|
4063 |
|
|
|
4064 |
|
|
static void
|
4065 |
|
|
aapcs_vfp_cum_init (CUMULATIVE_ARGS *pcum ATTRIBUTE_UNUSED,
|
4066 |
|
|
const_tree fntype ATTRIBUTE_UNUSED,
|
4067 |
|
|
rtx libcall ATTRIBUTE_UNUSED,
|
4068 |
|
|
const_tree fndecl ATTRIBUTE_UNUSED)
|
4069 |
|
|
{
|
4070 |
|
|
/* Record the unallocated VFP registers. */
|
4071 |
|
|
pcum->aapcs_vfp_regs_free = (1 << NUM_VFP_ARG_REGS) - 1;
|
4072 |
|
|
pcum->aapcs_vfp_reg_alloc = 0;
|
4073 |
|
|
}
|
4074 |
|
|
|
4075 |
|
|
/* Walk down the type tree of TYPE counting consecutive base elements.
|
4076 |
|
|
If *MODEP is VOIDmode, then set it to the first valid floating point
|
4077 |
|
|
type. If a non-floating point type is found, or if a floating point
|
4078 |
|
|
type that doesn't match a non-VOIDmode *MODEP is found, then return -1,
|
4079 |
|
|
otherwise return the count in the sub-tree. */
|
4080 |
|
|
static int
|
4081 |
|
|
aapcs_vfp_sub_candidate (const_tree type, enum machine_mode *modep)
|
4082 |
|
|
{
|
4083 |
|
|
enum machine_mode mode;
|
4084 |
|
|
HOST_WIDE_INT size;
|
4085 |
|
|
|
4086 |
|
|
switch (TREE_CODE (type))
|
4087 |
|
|
{
|
4088 |
|
|
case REAL_TYPE:
|
4089 |
|
|
mode = TYPE_MODE (type);
|
4090 |
|
|
if (mode != DFmode && mode != SFmode)
|
4091 |
|
|
return -1;
|
4092 |
|
|
|
4093 |
|
|
if (*modep == VOIDmode)
|
4094 |
|
|
*modep = mode;
|
4095 |
|
|
|
4096 |
|
|
if (*modep == mode)
|
4097 |
|
|
return 1;
|
4098 |
|
|
|
4099 |
|
|
break;
|
4100 |
|
|
|
4101 |
|
|
case COMPLEX_TYPE:
|
4102 |
|
|
mode = TYPE_MODE (TREE_TYPE (type));
|
4103 |
|
|
if (mode != DFmode && mode != SFmode)
|
4104 |
|
|
return -1;
|
4105 |
|
|
|
4106 |
|
|
if (*modep == VOIDmode)
|
4107 |
|
|
*modep = mode;
|
4108 |
|
|
|
4109 |
|
|
if (*modep == mode)
|
4110 |
|
|
return 2;
|
4111 |
|
|
|
4112 |
|
|
break;
|
4113 |
|
|
|
4114 |
|
|
case VECTOR_TYPE:
|
4115 |
|
|
/* Use V2SImode and V4SImode as representatives of all 64-bit
|
4116 |
|
|
and 128-bit vector types, whether or not those modes are
|
4117 |
|
|
supported with the present options. */
|
4118 |
|
|
size = int_size_in_bytes (type);
|
4119 |
|
|
switch (size)
|
4120 |
|
|
{
|
4121 |
|
|
case 8:
|
4122 |
|
|
mode = V2SImode;
|
4123 |
|
|
break;
|
4124 |
|
|
case 16:
|
4125 |
|
|
mode = V4SImode;
|
4126 |
|
|
break;
|
4127 |
|
|
default:
|
4128 |
|
|
return -1;
|
4129 |
|
|
}
|
4130 |
|
|
|
4131 |
|
|
if (*modep == VOIDmode)
|
4132 |
|
|
*modep = mode;
|
4133 |
|
|
|
4134 |
|
|
/* Vector modes are considered to be opaque: two vectors are
|
4135 |
|
|
equivalent for the purposes of being homogeneous aggregates
|
4136 |
|
|
if they are the same size. */
|
4137 |
|
|
if (*modep == mode)
|
4138 |
|
|
return 1;
|
4139 |
|
|
|
4140 |
|
|
break;
|
4141 |
|
|
|
4142 |
|
|
case ARRAY_TYPE:
|
4143 |
|
|
{
|
4144 |
|
|
int count;
|
4145 |
|
|
tree index = TYPE_DOMAIN (type);
|
4146 |
|
|
|
4147 |
|
|
/* Can't handle incomplete types. */
|
4148 |
|
|
if (!COMPLETE_TYPE_P(type))
|
4149 |
|
|
return -1;
|
4150 |
|
|
|
4151 |
|
|
count = aapcs_vfp_sub_candidate (TREE_TYPE (type), modep);
|
4152 |
|
|
if (count == -1
|
4153 |
|
|
|| !index
|
4154 |
|
|
|| !TYPE_MAX_VALUE (index)
|
4155 |
|
|
|| !host_integerp (TYPE_MAX_VALUE (index), 1)
|
4156 |
|
|
|| !TYPE_MIN_VALUE (index)
|
4157 |
|
|
|| !host_integerp (TYPE_MIN_VALUE (index), 1)
|
4158 |
|
|
|| count < 0)
|
4159 |
|
|
return -1;
|
4160 |
|
|
|
4161 |
|
|
count *= (1 + tree_low_cst (TYPE_MAX_VALUE (index), 1)
|
4162 |
|
|
- tree_low_cst (TYPE_MIN_VALUE (index), 1));
|
4163 |
|
|
|
4164 |
|
|
/* There must be no padding. */
|
4165 |
|
|
if (!host_integerp (TYPE_SIZE (type), 1)
|
4166 |
|
|
|| (tree_low_cst (TYPE_SIZE (type), 1)
|
4167 |
|
|
!= count * GET_MODE_BITSIZE (*modep)))
|
4168 |
|
|
return -1;
|
4169 |
|
|
|
4170 |
|
|
return count;
|
4171 |
|
|
}
|
4172 |
|
|
|
4173 |
|
|
case RECORD_TYPE:
|
4174 |
|
|
{
|
4175 |
|
|
int count = 0;
|
4176 |
|
|
int sub_count;
|
4177 |
|
|
tree field;
|
4178 |
|
|
|
4179 |
|
|
/* Can't handle incomplete types. */
|
4180 |
|
|
if (!COMPLETE_TYPE_P(type))
|
4181 |
|
|
return -1;
|
4182 |
|
|
|
4183 |
|
|
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
4184 |
|
|
{
|
4185 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
4186 |
|
|
continue;
|
4187 |
|
|
|
4188 |
|
|
sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep);
|
4189 |
|
|
if (sub_count < 0)
|
4190 |
|
|
return -1;
|
4191 |
|
|
count += sub_count;
|
4192 |
|
|
}
|
4193 |
|
|
|
4194 |
|
|
/* There must be no padding. */
|
4195 |
|
|
if (!host_integerp (TYPE_SIZE (type), 1)
|
4196 |
|
|
|| (tree_low_cst (TYPE_SIZE (type), 1)
|
4197 |
|
|
!= count * GET_MODE_BITSIZE (*modep)))
|
4198 |
|
|
return -1;
|
4199 |
|
|
|
4200 |
|
|
return count;
|
4201 |
|
|
}
|
4202 |
|
|
|
4203 |
|
|
case UNION_TYPE:
|
4204 |
|
|
case QUAL_UNION_TYPE:
|
4205 |
|
|
{
|
4206 |
|
|
/* These aren't very interesting except in a degenerate case. */
|
4207 |
|
|
int count = 0;
|
4208 |
|
|
int sub_count;
|
4209 |
|
|
tree field;
|
4210 |
|
|
|
4211 |
|
|
/* Can't handle incomplete types. */
|
4212 |
|
|
if (!COMPLETE_TYPE_P(type))
|
4213 |
|
|
return -1;
|
4214 |
|
|
|
4215 |
|
|
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
4216 |
|
|
{
|
4217 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
4218 |
|
|
continue;
|
4219 |
|
|
|
4220 |
|
|
sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep);
|
4221 |
|
|
if (sub_count < 0)
|
4222 |
|
|
return -1;
|
4223 |
|
|
count = count > sub_count ? count : sub_count;
|
4224 |
|
|
}
|
4225 |
|
|
|
4226 |
|
|
/* There must be no padding. */
|
4227 |
|
|
if (!host_integerp (TYPE_SIZE (type), 1)
|
4228 |
|
|
|| (tree_low_cst (TYPE_SIZE (type), 1)
|
4229 |
|
|
!= count * GET_MODE_BITSIZE (*modep)))
|
4230 |
|
|
return -1;
|
4231 |
|
|
|
4232 |
|
|
return count;
|
4233 |
|
|
}
|
4234 |
|
|
|
4235 |
|
|
default:
|
4236 |
|
|
break;
|
4237 |
|
|
}
|
4238 |
|
|
|
4239 |
|
|
return -1;
|
4240 |
|
|
}
|
4241 |
|
|
|
4242 |
|
|
/* Return true if PCS_VARIANT should use VFP registers. */
|
4243 |
|
|
static bool
|
4244 |
|
|
use_vfp_abi (enum arm_pcs pcs_variant, bool is_double)
|
4245 |
|
|
{
|
4246 |
|
|
if (pcs_variant == ARM_PCS_AAPCS_VFP)
|
4247 |
|
|
{
|
4248 |
|
|
static bool seen_thumb1_vfp = false;
|
4249 |
|
|
|
4250 |
|
|
if (TARGET_THUMB1 && !seen_thumb1_vfp)
|
4251 |
|
|
{
|
4252 |
|
|
sorry ("Thumb-1 hard-float VFP ABI");
|
4253 |
|
|
/* sorry() is not immediately fatal, so only display this once. */
|
4254 |
|
|
seen_thumb1_vfp = true;
|
4255 |
|
|
}
|
4256 |
|
|
|
4257 |
|
|
return true;
|
4258 |
|
|
}
|
4259 |
|
|
|
4260 |
|
|
if (pcs_variant != ARM_PCS_AAPCS_LOCAL)
|
4261 |
|
|
return false;
|
4262 |
|
|
|
4263 |
|
|
return (TARGET_32BIT && TARGET_VFP && TARGET_HARD_FLOAT &&
|
4264 |
|
|
(TARGET_VFP_DOUBLE || !is_double));
|
4265 |
|
|
}
|
4266 |
|
|
|
4267 |
|
|
/* Return true if an argument whose type is TYPE, or mode is MODE, is
|
4268 |
|
|
suitable for passing or returning in VFP registers for the PCS
|
4269 |
|
|
variant selected. If it is, then *BASE_MODE is updated to contain
|
4270 |
|
|
a machine mode describing each element of the argument's type and
|
4271 |
|
|
*COUNT to hold the number of such elements. */
|
4272 |
|
|
static bool
|
4273 |
|
|
aapcs_vfp_is_call_or_return_candidate (enum arm_pcs pcs_variant,
|
4274 |
|
|
enum machine_mode mode, const_tree type,
|
4275 |
|
|
enum machine_mode *base_mode, int *count)
|
4276 |
|
|
{
|
4277 |
|
|
enum machine_mode new_mode = VOIDmode;
|
4278 |
|
|
|
4279 |
|
|
/* If we have the type information, prefer that to working things
|
4280 |
|
|
out from the mode. */
|
4281 |
|
|
if (type)
|
4282 |
|
|
{
|
4283 |
|
|
int ag_count = aapcs_vfp_sub_candidate (type, &new_mode);
|
4284 |
|
|
|
4285 |
|
|
if (ag_count > 0 && ag_count <= 4)
|
4286 |
|
|
*count = ag_count;
|
4287 |
|
|
else
|
4288 |
|
|
return false;
|
4289 |
|
|
}
|
4290 |
|
|
else if (GET_MODE_CLASS (mode) == MODE_FLOAT
|
4291 |
|
|
|| GET_MODE_CLASS (mode) == MODE_VECTOR_INT
|
4292 |
|
|
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
4293 |
|
|
{
|
4294 |
|
|
*count = 1;
|
4295 |
|
|
new_mode = mode;
|
4296 |
|
|
}
|
4297 |
|
|
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
4298 |
|
|
{
|
4299 |
|
|
*count = 2;
|
4300 |
|
|
new_mode = (mode == DCmode ? DFmode : SFmode);
|
4301 |
|
|
}
|
4302 |
|
|
else
|
4303 |
|
|
return false;
|
4304 |
|
|
|
4305 |
|
|
|
4306 |
|
|
if (!use_vfp_abi (pcs_variant, ARM_NUM_REGS (new_mode) > 1))
|
4307 |
|
|
return false;
|
4308 |
|
|
|
4309 |
|
|
*base_mode = new_mode;
|
4310 |
|
|
return true;
|
4311 |
|
|
}
|
4312 |
|
|
|
4313 |
|
|
static bool
|
4314 |
|
|
aapcs_vfp_is_return_candidate (enum arm_pcs pcs_variant,
|
4315 |
|
|
enum machine_mode mode, const_tree type)
|
4316 |
|
|
{
|
4317 |
|
|
int count ATTRIBUTE_UNUSED;
|
4318 |
|
|
enum machine_mode ag_mode ATTRIBUTE_UNUSED;
|
4319 |
|
|
|
4320 |
|
|
if (!use_vfp_abi (pcs_variant, false))
|
4321 |
|
|
return false;
|
4322 |
|
|
return aapcs_vfp_is_call_or_return_candidate (pcs_variant, mode, type,
|
4323 |
|
|
&ag_mode, &count);
|
4324 |
|
|
}
|
4325 |
|
|
|
4326 |
|
|
static bool
|
4327 |
|
|
aapcs_vfp_is_call_candidate (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
|
4328 |
|
|
const_tree type)
|
4329 |
|
|
{
|
4330 |
|
|
if (!use_vfp_abi (pcum->pcs_variant, false))
|
4331 |
|
|
return false;
|
4332 |
|
|
|
4333 |
|
|
return aapcs_vfp_is_call_or_return_candidate (pcum->pcs_variant, mode, type,
|
4334 |
|
|
&pcum->aapcs_vfp_rmode,
|
4335 |
|
|
&pcum->aapcs_vfp_rcount);
|
4336 |
|
|
}
|
4337 |
|
|
|
4338 |
|
|
static bool
|
4339 |
|
|
aapcs_vfp_allocate (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
|
4340 |
|
|
const_tree type ATTRIBUTE_UNUSED)
|
4341 |
|
|
{
|
4342 |
|
|
int shift = GET_MODE_SIZE (pcum->aapcs_vfp_rmode) / GET_MODE_SIZE (SFmode);
|
4343 |
|
|
unsigned mask = (1 << (shift * pcum->aapcs_vfp_rcount)) - 1;
|
4344 |
|
|
int regno;
|
4345 |
|
|
|
4346 |
|
|
for (regno = 0; regno < NUM_VFP_ARG_REGS; regno += shift)
|
4347 |
|
|
if (((pcum->aapcs_vfp_regs_free >> regno) & mask) == mask)
|
4348 |
|
|
{
|
4349 |
|
|
pcum->aapcs_vfp_reg_alloc = mask << regno;
|
4350 |
|
|
if (mode == BLKmode || (mode == TImode && !TARGET_NEON))
|
4351 |
|
|
{
|
4352 |
|
|
int i;
|
4353 |
|
|
int rcount = pcum->aapcs_vfp_rcount;
|
4354 |
|
|
int rshift = shift;
|
4355 |
|
|
enum machine_mode rmode = pcum->aapcs_vfp_rmode;
|
4356 |
|
|
rtx par;
|
4357 |
|
|
if (!TARGET_NEON)
|
4358 |
|
|
{
|
4359 |
|
|
/* Avoid using unsupported vector modes. */
|
4360 |
|
|
if (rmode == V2SImode)
|
4361 |
|
|
rmode = DImode;
|
4362 |
|
|
else if (rmode == V4SImode)
|
4363 |
|
|
{
|
4364 |
|
|
rmode = DImode;
|
4365 |
|
|
rcount *= 2;
|
4366 |
|
|
rshift /= 2;
|
4367 |
|
|
}
|
4368 |
|
|
}
|
4369 |
|
|
par = gen_rtx_PARALLEL (mode, rtvec_alloc (rcount));
|
4370 |
|
|
for (i = 0; i < rcount; i++)
|
4371 |
|
|
{
|
4372 |
|
|
rtx tmp = gen_rtx_REG (rmode,
|
4373 |
|
|
FIRST_VFP_REGNUM + regno + i * rshift);
|
4374 |
|
|
tmp = gen_rtx_EXPR_LIST
|
4375 |
|
|
(VOIDmode, tmp,
|
4376 |
|
|
GEN_INT (i * GET_MODE_SIZE (rmode)));
|
4377 |
|
|
XVECEXP (par, 0, i) = tmp;
|
4378 |
|
|
}
|
4379 |
|
|
|
4380 |
|
|
pcum->aapcs_reg = par;
|
4381 |
|
|
}
|
4382 |
|
|
else
|
4383 |
|
|
pcum->aapcs_reg = gen_rtx_REG (mode, FIRST_VFP_REGNUM + regno);
|
4384 |
|
|
return true;
|
4385 |
|
|
}
|
4386 |
|
|
return false;
|
4387 |
|
|
}
|
4388 |
|
|
|
4389 |
|
|
static rtx
|
4390 |
|
|
aapcs_vfp_allocate_return_reg (enum arm_pcs pcs_variant ATTRIBUTE_UNUSED,
|
4391 |
|
|
enum machine_mode mode,
|
4392 |
|
|
const_tree type ATTRIBUTE_UNUSED)
|
4393 |
|
|
{
|
4394 |
|
|
if (!use_vfp_abi (pcs_variant, false))
|
4395 |
|
|
return NULL;
|
4396 |
|
|
|
4397 |
|
|
if (mode == BLKmode || (mode == TImode && !TARGET_NEON))
|
4398 |
|
|
{
|
4399 |
|
|
int count;
|
4400 |
|
|
enum machine_mode ag_mode;
|
4401 |
|
|
int i;
|
4402 |
|
|
rtx par;
|
4403 |
|
|
int shift;
|
4404 |
|
|
|
4405 |
|
|
aapcs_vfp_is_call_or_return_candidate (pcs_variant, mode, type,
|
4406 |
|
|
&ag_mode, &count);
|
4407 |
|
|
|
4408 |
|
|
if (!TARGET_NEON)
|
4409 |
|
|
{
|
4410 |
|
|
if (ag_mode == V2SImode)
|
4411 |
|
|
ag_mode = DImode;
|
4412 |
|
|
else if (ag_mode == V4SImode)
|
4413 |
|
|
{
|
4414 |
|
|
ag_mode = DImode;
|
4415 |
|
|
count *= 2;
|
4416 |
|
|
}
|
4417 |
|
|
}
|
4418 |
|
|
shift = GET_MODE_SIZE(ag_mode) / GET_MODE_SIZE(SFmode);
|
4419 |
|
|
par = gen_rtx_PARALLEL (mode, rtvec_alloc (count));
|
4420 |
|
|
for (i = 0; i < count; i++)
|
4421 |
|
|
{
|
4422 |
|
|
rtx tmp = gen_rtx_REG (ag_mode, FIRST_VFP_REGNUM + i * shift);
|
4423 |
|
|
tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp,
|
4424 |
|
|
GEN_INT (i * GET_MODE_SIZE (ag_mode)));
|
4425 |
|
|
XVECEXP (par, 0, i) = tmp;
|
4426 |
|
|
}
|
4427 |
|
|
|
4428 |
|
|
return par;
|
4429 |
|
|
}
|
4430 |
|
|
|
4431 |
|
|
return gen_rtx_REG (mode, FIRST_VFP_REGNUM);
|
4432 |
|
|
}
|
4433 |
|
|
|
4434 |
|
|
static void
|
4435 |
|
|
aapcs_vfp_advance (CUMULATIVE_ARGS *pcum ATTRIBUTE_UNUSED,
|
4436 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
4437 |
|
|
const_tree type ATTRIBUTE_UNUSED)
|
4438 |
|
|
{
|
4439 |
|
|
pcum->aapcs_vfp_regs_free &= ~pcum->aapcs_vfp_reg_alloc;
|
4440 |
|
|
pcum->aapcs_vfp_reg_alloc = 0;
|
4441 |
|
|
return;
|
4442 |
|
|
}
|
4443 |
|
|
|
4444 |
|
|
#define AAPCS_CP(X) \
|
4445 |
|
|
{ \
|
4446 |
|
|
aapcs_ ## X ## _cum_init, \
|
4447 |
|
|
aapcs_ ## X ## _is_call_candidate, \
|
4448 |
|
|
aapcs_ ## X ## _allocate, \
|
4449 |
|
|
aapcs_ ## X ## _is_return_candidate, \
|
4450 |
|
|
aapcs_ ## X ## _allocate_return_reg, \
|
4451 |
|
|
aapcs_ ## X ## _advance \
|
4452 |
|
|
}
|
4453 |
|
|
|
4454 |
|
|
/* Table of co-processors that can be used to pass arguments in
|
4455 |
|
|
registers. Idealy no arugment should be a candidate for more than
|
4456 |
|
|
one co-processor table entry, but the table is processed in order
|
4457 |
|
|
and stops after the first match. If that entry then fails to put
|
4458 |
|
|
the argument into a co-processor register, the argument will go on
|
4459 |
|
|
the stack. */
|
4460 |
|
|
static struct
|
4461 |
|
|
{
|
4462 |
|
|
/* Initialize co-processor related state in CUMULATIVE_ARGS structure. */
|
4463 |
|
|
void (*cum_init) (CUMULATIVE_ARGS *, const_tree, rtx, const_tree);
|
4464 |
|
|
|
4465 |
|
|
/* Return true if an argument of mode MODE (or type TYPE if MODE is
|
4466 |
|
|
BLKmode) is a candidate for this co-processor's registers; this
|
4467 |
|
|
function should ignore any position-dependent state in
|
4468 |
|
|
CUMULATIVE_ARGS and only use call-type dependent information. */
|
4469 |
|
|
bool (*is_call_candidate) (CUMULATIVE_ARGS *, enum machine_mode, const_tree);
|
4470 |
|
|
|
4471 |
|
|
/* Return true if the argument does get a co-processor register; it
|
4472 |
|
|
should set aapcs_reg to an RTX of the register allocated as is
|
4473 |
|
|
required for a return from FUNCTION_ARG. */
|
4474 |
|
|
bool (*allocate) (CUMULATIVE_ARGS *, enum machine_mode, const_tree);
|
4475 |
|
|
|
4476 |
|
|
/* Return true if a result of mode MODE (or type TYPE if MODE is
|
4477 |
|
|
BLKmode) is can be returned in this co-processor's registers. */
|
4478 |
|
|
bool (*is_return_candidate) (enum arm_pcs, enum machine_mode, const_tree);
|
4479 |
|
|
|
4480 |
|
|
/* Allocate and return an RTX element to hold the return type of a
|
4481 |
|
|
call, this routine must not fail and will only be called if
|
4482 |
|
|
is_return_candidate returned true with the same parameters. */
|
4483 |
|
|
rtx (*allocate_return_reg) (enum arm_pcs, enum machine_mode, const_tree);
|
4484 |
|
|
|
4485 |
|
|
/* Finish processing this argument and prepare to start processing
|
4486 |
|
|
the next one. */
|
4487 |
|
|
void (*advance) (CUMULATIVE_ARGS *, enum machine_mode, const_tree);
|
4488 |
|
|
} aapcs_cp_arg_layout[ARM_NUM_COPROC_SLOTS] =
|
4489 |
|
|
{
|
4490 |
|
|
AAPCS_CP(vfp)
|
4491 |
|
|
};
|
4492 |
|
|
|
4493 |
|
|
#undef AAPCS_CP
|
4494 |
|
|
|
4495 |
|
|
static int
|
4496 |
|
|
aapcs_select_call_coproc (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
|
4497 |
|
|
const_tree type)
|
4498 |
|
|
{
|
4499 |
|
|
int i;
|
4500 |
|
|
|
4501 |
|
|
for (i = 0; i < ARM_NUM_COPROC_SLOTS; i++)
|
4502 |
|
|
if (aapcs_cp_arg_layout[i].is_call_candidate (pcum, mode, type))
|
4503 |
|
|
return i;
|
4504 |
|
|
|
4505 |
|
|
return -1;
|
4506 |
|
|
}
|
4507 |
|
|
|
4508 |
|
|
static int
|
4509 |
|
|
aapcs_select_return_coproc (const_tree type, const_tree fntype)
|
4510 |
|
|
{
|
4511 |
|
|
/* We aren't passed a decl, so we can't check that a call is local.
|
4512 |
|
|
However, it isn't clear that that would be a win anyway, since it
|
4513 |
|
|
might limit some tail-calling opportunities. */
|
4514 |
|
|
enum arm_pcs pcs_variant;
|
4515 |
|
|
|
4516 |
|
|
if (fntype)
|
4517 |
|
|
{
|
4518 |
|
|
const_tree fndecl = NULL_TREE;
|
4519 |
|
|
|
4520 |
|
|
if (TREE_CODE (fntype) == FUNCTION_DECL)
|
4521 |
|
|
{
|
4522 |
|
|
fndecl = fntype;
|
4523 |
|
|
fntype = TREE_TYPE (fntype);
|
4524 |
|
|
}
|
4525 |
|
|
|
4526 |
|
|
pcs_variant = arm_get_pcs_model (fntype, fndecl);
|
4527 |
|
|
}
|
4528 |
|
|
else
|
4529 |
|
|
pcs_variant = arm_pcs_default;
|
4530 |
|
|
|
4531 |
|
|
if (pcs_variant != ARM_PCS_AAPCS)
|
4532 |
|
|
{
|
4533 |
|
|
int i;
|
4534 |
|
|
|
4535 |
|
|
for (i = 0; i < ARM_NUM_COPROC_SLOTS; i++)
|
4536 |
|
|
if (aapcs_cp_arg_layout[i].is_return_candidate (pcs_variant,
|
4537 |
|
|
TYPE_MODE (type),
|
4538 |
|
|
type))
|
4539 |
|
|
return i;
|
4540 |
|
|
}
|
4541 |
|
|
return -1;
|
4542 |
|
|
}
|
4543 |
|
|
|
4544 |
|
|
static rtx
|
4545 |
|
|
aapcs_allocate_return_reg (enum machine_mode mode, const_tree type,
|
4546 |
|
|
const_tree fntype)
|
4547 |
|
|
{
|
4548 |
|
|
/* We aren't passed a decl, so we can't check that a call is local.
|
4549 |
|
|
However, it isn't clear that that would be a win anyway, since it
|
4550 |
|
|
might limit some tail-calling opportunities. */
|
4551 |
|
|
enum arm_pcs pcs_variant;
|
4552 |
|
|
int unsignedp ATTRIBUTE_UNUSED;
|
4553 |
|
|
|
4554 |
|
|
if (fntype)
|
4555 |
|
|
{
|
4556 |
|
|
const_tree fndecl = NULL_TREE;
|
4557 |
|
|
|
4558 |
|
|
if (TREE_CODE (fntype) == FUNCTION_DECL)
|
4559 |
|
|
{
|
4560 |
|
|
fndecl = fntype;
|
4561 |
|
|
fntype = TREE_TYPE (fntype);
|
4562 |
|
|
}
|
4563 |
|
|
|
4564 |
|
|
pcs_variant = arm_get_pcs_model (fntype, fndecl);
|
4565 |
|
|
}
|
4566 |
|
|
else
|
4567 |
|
|
pcs_variant = arm_pcs_default;
|
4568 |
|
|
|
4569 |
|
|
/* Promote integer types. */
|
4570 |
|
|
if (type && INTEGRAL_TYPE_P (type))
|
4571 |
|
|
mode = arm_promote_function_mode (type, mode, &unsignedp, fntype, 1);
|
4572 |
|
|
|
4573 |
|
|
if (pcs_variant != ARM_PCS_AAPCS)
|
4574 |
|
|
{
|
4575 |
|
|
int i;
|
4576 |
|
|
|
4577 |
|
|
for (i = 0; i < ARM_NUM_COPROC_SLOTS; i++)
|
4578 |
|
|
if (aapcs_cp_arg_layout[i].is_return_candidate (pcs_variant, mode,
|
4579 |
|
|
type))
|
4580 |
|
|
return aapcs_cp_arg_layout[i].allocate_return_reg (pcs_variant,
|
4581 |
|
|
mode, type);
|
4582 |
|
|
}
|
4583 |
|
|
|
4584 |
|
|
/* Promotes small structs returned in a register to full-word size
|
4585 |
|
|
for big-endian AAPCS. */
|
4586 |
|
|
if (type && arm_return_in_msb (type))
|
4587 |
|
|
{
|
4588 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (type);
|
4589 |
|
|
if (size % UNITS_PER_WORD != 0)
|
4590 |
|
|
{
|
4591 |
|
|
size += UNITS_PER_WORD - size % UNITS_PER_WORD;
|
4592 |
|
|
mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
|
4593 |
|
|
}
|
4594 |
|
|
}
|
4595 |
|
|
|
4596 |
|
|
return gen_rtx_REG (mode, R0_REGNUM);
|
4597 |
|
|
}
|
4598 |
|
|
|
4599 |
|
|
static rtx
|
4600 |
|
|
aapcs_libcall_value (enum machine_mode mode)
|
4601 |
|
|
{
|
4602 |
|
|
if (BYTES_BIG_ENDIAN && ALL_FIXED_POINT_MODE_P (mode)
|
4603 |
|
|
&& GET_MODE_SIZE (mode) <= 4)
|
4604 |
|
|
mode = SImode;
|
4605 |
|
|
|
4606 |
|
|
return aapcs_allocate_return_reg (mode, NULL_TREE, NULL_TREE);
|
4607 |
|
|
}
|
4608 |
|
|
|
4609 |
|
|
/* Lay out a function argument using the AAPCS rules. The rule
|
4610 |
|
|
numbers referred to here are those in the AAPCS. */
|
4611 |
|
|
static void
|
4612 |
|
|
aapcs_layout_arg (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
|
4613 |
|
|
const_tree type, bool named)
|
4614 |
|
|
{
|
4615 |
|
|
int nregs, nregs2;
|
4616 |
|
|
int ncrn;
|
4617 |
|
|
|
4618 |
|
|
/* We only need to do this once per argument. */
|
4619 |
|
|
if (pcum->aapcs_arg_processed)
|
4620 |
|
|
return;
|
4621 |
|
|
|
4622 |
|
|
pcum->aapcs_arg_processed = true;
|
4623 |
|
|
|
4624 |
|
|
/* Special case: if named is false then we are handling an incoming
|
4625 |
|
|
anonymous argument which is on the stack. */
|
4626 |
|
|
if (!named)
|
4627 |
|
|
return;
|
4628 |
|
|
|
4629 |
|
|
/* Is this a potential co-processor register candidate? */
|
4630 |
|
|
if (pcum->pcs_variant != ARM_PCS_AAPCS)
|
4631 |
|
|
{
|
4632 |
|
|
int slot = aapcs_select_call_coproc (pcum, mode, type);
|
4633 |
|
|
pcum->aapcs_cprc_slot = slot;
|
4634 |
|
|
|
4635 |
|
|
/* We don't have to apply any of the rules from part B of the
|
4636 |
|
|
preparation phase, these are handled elsewhere in the
|
4637 |
|
|
compiler. */
|
4638 |
|
|
|
4639 |
|
|
if (slot >= 0)
|
4640 |
|
|
{
|
4641 |
|
|
/* A Co-processor register candidate goes either in its own
|
4642 |
|
|
class of registers or on the stack. */
|
4643 |
|
|
if (!pcum->aapcs_cprc_failed[slot])
|
4644 |
|
|
{
|
4645 |
|
|
/* C1.cp - Try to allocate the argument to co-processor
|
4646 |
|
|
registers. */
|
4647 |
|
|
if (aapcs_cp_arg_layout[slot].allocate (pcum, mode, type))
|
4648 |
|
|
return;
|
4649 |
|
|
|
4650 |
|
|
/* C2.cp - Put the argument on the stack and note that we
|
4651 |
|
|
can't assign any more candidates in this slot. We also
|
4652 |
|
|
need to note that we have allocated stack space, so that
|
4653 |
|
|
we won't later try to split a non-cprc candidate between
|
4654 |
|
|
core registers and the stack. */
|
4655 |
|
|
pcum->aapcs_cprc_failed[slot] = true;
|
4656 |
|
|
pcum->can_split = false;
|
4657 |
|
|
}
|
4658 |
|
|
|
4659 |
|
|
/* We didn't get a register, so this argument goes on the
|
4660 |
|
|
stack. */
|
4661 |
|
|
gcc_assert (pcum->can_split == false);
|
4662 |
|
|
return;
|
4663 |
|
|
}
|
4664 |
|
|
}
|
4665 |
|
|
|
4666 |
|
|
/* C3 - For double-word aligned arguments, round the NCRN up to the
|
4667 |
|
|
next even number. */
|
4668 |
|
|
ncrn = pcum->aapcs_ncrn;
|
4669 |
|
|
if ((ncrn & 1) && arm_needs_doubleword_align (mode, type))
|
4670 |
|
|
ncrn++;
|
4671 |
|
|
|
4672 |
|
|
nregs = ARM_NUM_REGS2(mode, type);
|
4673 |
|
|
|
4674 |
|
|
/* Sigh, this test should really assert that nregs > 0, but a GCC
|
4675 |
|
|
extension allows empty structs and then gives them empty size; it
|
4676 |
|
|
then allows such a structure to be passed by value. For some of
|
4677 |
|
|
the code below we have to pretend that such an argument has
|
4678 |
|
|
non-zero size so that we 'locate' it correctly either in
|
4679 |
|
|
registers or on the stack. */
|
4680 |
|
|
gcc_assert (nregs >= 0);
|
4681 |
|
|
|
4682 |
|
|
nregs2 = nregs ? nregs : 1;
|
4683 |
|
|
|
4684 |
|
|
/* C4 - Argument fits entirely in core registers. */
|
4685 |
|
|
if (ncrn + nregs2 <= NUM_ARG_REGS)
|
4686 |
|
|
{
|
4687 |
|
|
pcum->aapcs_reg = gen_rtx_REG (mode, ncrn);
|
4688 |
|
|
pcum->aapcs_next_ncrn = ncrn + nregs;
|
4689 |
|
|
return;
|
4690 |
|
|
}
|
4691 |
|
|
|
4692 |
|
|
/* C5 - Some core registers left and there are no arguments already
|
4693 |
|
|
on the stack: split this argument between the remaining core
|
4694 |
|
|
registers and the stack. */
|
4695 |
|
|
if (ncrn < NUM_ARG_REGS && pcum->can_split)
|
4696 |
|
|
{
|
4697 |
|
|
pcum->aapcs_reg = gen_rtx_REG (mode, ncrn);
|
4698 |
|
|
pcum->aapcs_next_ncrn = NUM_ARG_REGS;
|
4699 |
|
|
pcum->aapcs_partial = (NUM_ARG_REGS - ncrn) * UNITS_PER_WORD;
|
4700 |
|
|
return;
|
4701 |
|
|
}
|
4702 |
|
|
|
4703 |
|
|
/* C6 - NCRN is set to 4. */
|
4704 |
|
|
pcum->aapcs_next_ncrn = NUM_ARG_REGS;
|
4705 |
|
|
|
4706 |
|
|
/* C7,C8 - arugment goes on the stack. We have nothing to do here. */
|
4707 |
|
|
return;
|
4708 |
|
|
}
|
4709 |
|
|
|
4710 |
|
|
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
4711 |
|
|
for a call to a function whose data type is FNTYPE.
|
4712 |
|
|
For a library call, FNTYPE is NULL. */
|
4713 |
|
|
void
|
4714 |
|
|
arm_init_cumulative_args (CUMULATIVE_ARGS *pcum, tree fntype,
|
4715 |
|
|
rtx libname,
|
4716 |
|
|
tree fndecl ATTRIBUTE_UNUSED)
|
4717 |
|
|
{
|
4718 |
|
|
/* Long call handling. */
|
4719 |
|
|
if (fntype)
|
4720 |
|
|
pcum->pcs_variant = arm_get_pcs_model (fntype, fndecl);
|
4721 |
|
|
else
|
4722 |
|
|
pcum->pcs_variant = arm_pcs_default;
|
4723 |
|
|
|
4724 |
|
|
if (pcum->pcs_variant <= ARM_PCS_AAPCS_LOCAL)
|
4725 |
|
|
{
|
4726 |
|
|
if (arm_libcall_uses_aapcs_base (libname))
|
4727 |
|
|
pcum->pcs_variant = ARM_PCS_AAPCS;
|
4728 |
|
|
|
4729 |
|
|
pcum->aapcs_ncrn = pcum->aapcs_next_ncrn = 0;
|
4730 |
|
|
pcum->aapcs_reg = NULL_RTX;
|
4731 |
|
|
pcum->aapcs_partial = 0;
|
4732 |
|
|
pcum->aapcs_arg_processed = false;
|
4733 |
|
|
pcum->aapcs_cprc_slot = -1;
|
4734 |
|
|
pcum->can_split = true;
|
4735 |
|
|
|
4736 |
|
|
if (pcum->pcs_variant != ARM_PCS_AAPCS)
|
4737 |
|
|
{
|
4738 |
|
|
int i;
|
4739 |
|
|
|
4740 |
|
|
for (i = 0; i < ARM_NUM_COPROC_SLOTS; i++)
|
4741 |
|
|
{
|
4742 |
|
|
pcum->aapcs_cprc_failed[i] = false;
|
4743 |
|
|
aapcs_cp_arg_layout[i].cum_init (pcum, fntype, libname, fndecl);
|
4744 |
|
|
}
|
4745 |
|
|
}
|
4746 |
|
|
return;
|
4747 |
|
|
}
|
4748 |
|
|
|
4749 |
|
|
/* Legacy ABIs */
|
4750 |
|
|
|
4751 |
|
|
/* On the ARM, the offset starts at 0. */
|
4752 |
|
|
pcum->nregs = 0;
|
4753 |
|
|
pcum->iwmmxt_nregs = 0;
|
4754 |
|
|
pcum->can_split = true;
|
4755 |
|
|
|
4756 |
|
|
/* Varargs vectors are treated the same as long long.
|
4757 |
|
|
named_count avoids having to change the way arm handles 'named' */
|
4758 |
|
|
pcum->named_count = 0;
|
4759 |
|
|
pcum->nargs = 0;
|
4760 |
|
|
|
4761 |
|
|
if (TARGET_REALLY_IWMMXT && fntype)
|
4762 |
|
|
{
|
4763 |
|
|
tree fn_arg;
|
4764 |
|
|
|
4765 |
|
|
for (fn_arg = TYPE_ARG_TYPES (fntype);
|
4766 |
|
|
fn_arg;
|
4767 |
|
|
fn_arg = TREE_CHAIN (fn_arg))
|
4768 |
|
|
pcum->named_count += 1;
|
4769 |
|
|
|
4770 |
|
|
if (! pcum->named_count)
|
4771 |
|
|
pcum->named_count = INT_MAX;
|
4772 |
|
|
}
|
4773 |
|
|
}
|
4774 |
|
|
|
4775 |
|
|
|
4776 |
|
|
/* Return true if mode/type need doubleword alignment. */
|
4777 |
|
|
static bool
|
4778 |
|
|
arm_needs_doubleword_align (enum machine_mode mode, const_tree type)
|
4779 |
|
|
{
|
4780 |
|
|
return (GET_MODE_ALIGNMENT (mode) > PARM_BOUNDARY
|
4781 |
|
|
|| (type && TYPE_ALIGN (type) > PARM_BOUNDARY));
|
4782 |
|
|
}
|
4783 |
|
|
|
4784 |
|
|
|
4785 |
|
|
/* Determine where to put an argument to a function.
|
4786 |
|
|
Value is zero to push the argument on the stack,
|
4787 |
|
|
or a hard register in which to store the argument.
|
4788 |
|
|
|
4789 |
|
|
MODE is the argument's machine mode.
|
4790 |
|
|
TYPE is the data type of the argument (as a tree).
|
4791 |
|
|
This is null for libcalls where that information may
|
4792 |
|
|
not be available.
|
4793 |
|
|
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
4794 |
|
|
the preceding args and about the function being called.
|
4795 |
|
|
NAMED is nonzero if this argument is a named parameter
|
4796 |
|
|
(otherwise it is an extra parameter matching an ellipsis).
|
4797 |
|
|
|
4798 |
|
|
On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
|
4799 |
|
|
other arguments are passed on the stack. If (NAMED == 0) (which happens
|
4800 |
|
|
only in assign_parms, since TARGET_SETUP_INCOMING_VARARGS is
|
4801 |
|
|
defined), say it is passed in the stack (function_prologue will
|
4802 |
|
|
indeed make it pass in the stack if necessary). */
|
4803 |
|
|
|
4804 |
|
|
static rtx
|
4805 |
|
|
arm_function_arg (cumulative_args_t pcum_v, enum machine_mode mode,
|
4806 |
|
|
const_tree type, bool named)
|
4807 |
|
|
{
|
4808 |
|
|
CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
|
4809 |
|
|
int nregs;
|
4810 |
|
|
|
4811 |
|
|
/* Handle the special case quickly. Pick an arbitrary value for op2 of
|
4812 |
|
|
a call insn (op3 of a call_value insn). */
|
4813 |
|
|
if (mode == VOIDmode)
|
4814 |
|
|
return const0_rtx;
|
4815 |
|
|
|
4816 |
|
|
if (pcum->pcs_variant <= ARM_PCS_AAPCS_LOCAL)
|
4817 |
|
|
{
|
4818 |
|
|
aapcs_layout_arg (pcum, mode, type, named);
|
4819 |
|
|
return pcum->aapcs_reg;
|
4820 |
|
|
}
|
4821 |
|
|
|
4822 |
|
|
/* Varargs vectors are treated the same as long long.
|
4823 |
|
|
named_count avoids having to change the way arm handles 'named' */
|
4824 |
|
|
if (TARGET_IWMMXT_ABI
|
4825 |
|
|
&& arm_vector_mode_supported_p (mode)
|
4826 |
|
|
&& pcum->named_count > pcum->nargs + 1)
|
4827 |
|
|
{
|
4828 |
|
|
if (pcum->iwmmxt_nregs <= 9)
|
4829 |
|
|
return gen_rtx_REG (mode, pcum->iwmmxt_nregs + FIRST_IWMMXT_REGNUM);
|
4830 |
|
|
else
|
4831 |
|
|
{
|
4832 |
|
|
pcum->can_split = false;
|
4833 |
|
|
return NULL_RTX;
|
4834 |
|
|
}
|
4835 |
|
|
}
|
4836 |
|
|
|
4837 |
|
|
/* Put doubleword aligned quantities in even register pairs. */
|
4838 |
|
|
if (pcum->nregs & 1
|
4839 |
|
|
&& ARM_DOUBLEWORD_ALIGN
|
4840 |
|
|
&& arm_needs_doubleword_align (mode, type))
|
4841 |
|
|
pcum->nregs++;
|
4842 |
|
|
|
4843 |
|
|
/* Only allow splitting an arg between regs and memory if all preceding
|
4844 |
|
|
args were allocated to regs. For args passed by reference we only count
|
4845 |
|
|
the reference pointer. */
|
4846 |
|
|
if (pcum->can_split)
|
4847 |
|
|
nregs = 1;
|
4848 |
|
|
else
|
4849 |
|
|
nregs = ARM_NUM_REGS2 (mode, type);
|
4850 |
|
|
|
4851 |
|
|
if (!named || pcum->nregs + nregs > NUM_ARG_REGS)
|
4852 |
|
|
return NULL_RTX;
|
4853 |
|
|
|
4854 |
|
|
return gen_rtx_REG (mode, pcum->nregs);
|
4855 |
|
|
}
|
4856 |
|
|
|
4857 |
|
|
static unsigned int
|
4858 |
|
|
arm_function_arg_boundary (enum machine_mode mode, const_tree type)
|
4859 |
|
|
{
|
4860 |
|
|
return (ARM_DOUBLEWORD_ALIGN && arm_needs_doubleword_align (mode, type)
|
4861 |
|
|
? DOUBLEWORD_ALIGNMENT
|
4862 |
|
|
: PARM_BOUNDARY);
|
4863 |
|
|
}
|
4864 |
|
|
|
4865 |
|
|
static int
|
4866 |
|
|
arm_arg_partial_bytes (cumulative_args_t pcum_v, enum machine_mode mode,
|
4867 |
|
|
tree type, bool named)
|
4868 |
|
|
{
|
4869 |
|
|
CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
|
4870 |
|
|
int nregs = pcum->nregs;
|
4871 |
|
|
|
4872 |
|
|
if (pcum->pcs_variant <= ARM_PCS_AAPCS_LOCAL)
|
4873 |
|
|
{
|
4874 |
|
|
aapcs_layout_arg (pcum, mode, type, named);
|
4875 |
|
|
return pcum->aapcs_partial;
|
4876 |
|
|
}
|
4877 |
|
|
|
4878 |
|
|
if (TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (mode))
|
4879 |
|
|
return 0;
|
4880 |
|
|
|
4881 |
|
|
if (NUM_ARG_REGS > nregs
|
4882 |
|
|
&& (NUM_ARG_REGS < nregs + ARM_NUM_REGS2 (mode, type))
|
4883 |
|
|
&& pcum->can_split)
|
4884 |
|
|
return (NUM_ARG_REGS - nregs) * UNITS_PER_WORD;
|
4885 |
|
|
|
4886 |
|
|
return 0;
|
4887 |
|
|
}
|
4888 |
|
|
|
4889 |
|
|
/* Update the data in PCUM to advance over an argument
|
4890 |
|
|
of mode MODE and data type TYPE.
|
4891 |
|
|
(TYPE is null for libcalls where that information may not be available.) */
|
4892 |
|
|
|
4893 |
|
|
static void
|
4894 |
|
|
arm_function_arg_advance (cumulative_args_t pcum_v, enum machine_mode mode,
|
4895 |
|
|
const_tree type, bool named)
|
4896 |
|
|
{
|
4897 |
|
|
CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
|
4898 |
|
|
|
4899 |
|
|
if (pcum->pcs_variant <= ARM_PCS_AAPCS_LOCAL)
|
4900 |
|
|
{
|
4901 |
|
|
aapcs_layout_arg (pcum, mode, type, named);
|
4902 |
|
|
|
4903 |
|
|
if (pcum->aapcs_cprc_slot >= 0)
|
4904 |
|
|
{
|
4905 |
|
|
aapcs_cp_arg_layout[pcum->aapcs_cprc_slot].advance (pcum, mode,
|
4906 |
|
|
type);
|
4907 |
|
|
pcum->aapcs_cprc_slot = -1;
|
4908 |
|
|
}
|
4909 |
|
|
|
4910 |
|
|
/* Generic stuff. */
|
4911 |
|
|
pcum->aapcs_arg_processed = false;
|
4912 |
|
|
pcum->aapcs_ncrn = pcum->aapcs_next_ncrn;
|
4913 |
|
|
pcum->aapcs_reg = NULL_RTX;
|
4914 |
|
|
pcum->aapcs_partial = 0;
|
4915 |
|
|
}
|
4916 |
|
|
else
|
4917 |
|
|
{
|
4918 |
|
|
pcum->nargs += 1;
|
4919 |
|
|
if (arm_vector_mode_supported_p (mode)
|
4920 |
|
|
&& pcum->named_count > pcum->nargs
|
4921 |
|
|
&& TARGET_IWMMXT_ABI)
|
4922 |
|
|
pcum->iwmmxt_nregs += 1;
|
4923 |
|
|
else
|
4924 |
|
|
pcum->nregs += ARM_NUM_REGS2 (mode, type);
|
4925 |
|
|
}
|
4926 |
|
|
}
|
4927 |
|
|
|
4928 |
|
|
/* Variable sized types are passed by reference. This is a GCC
|
4929 |
|
|
extension to the ARM ABI. */
|
4930 |
|
|
|
4931 |
|
|
static bool
|
4932 |
|
|
arm_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
|
4933 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
4934 |
|
|
const_tree type, bool named ATTRIBUTE_UNUSED)
|
4935 |
|
|
{
|
4936 |
|
|
return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
|
4937 |
|
|
}
|
4938 |
|
|
|
4939 |
|
|
/* Encode the current state of the #pragma [no_]long_calls. */
|
4940 |
|
|
typedef enum
|
4941 |
|
|
{
|
4942 |
|
|
OFF, /* No #pragma [no_]long_calls is in effect. */
|
4943 |
|
|
LONG, /* #pragma long_calls is in effect. */
|
4944 |
|
|
SHORT /* #pragma no_long_calls is in effect. */
|
4945 |
|
|
} arm_pragma_enum;
|
4946 |
|
|
|
4947 |
|
|
static arm_pragma_enum arm_pragma_long_calls = OFF;
|
4948 |
|
|
|
4949 |
|
|
void
|
4950 |
|
|
arm_pr_long_calls (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
|
4951 |
|
|
{
|
4952 |
|
|
arm_pragma_long_calls = LONG;
|
4953 |
|
|
}
|
4954 |
|
|
|
4955 |
|
|
void
|
4956 |
|
|
arm_pr_no_long_calls (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
|
4957 |
|
|
{
|
4958 |
|
|
arm_pragma_long_calls = SHORT;
|
4959 |
|
|
}
|
4960 |
|
|
|
4961 |
|
|
void
|
4962 |
|
|
arm_pr_long_calls_off (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
|
4963 |
|
|
{
|
4964 |
|
|
arm_pragma_long_calls = OFF;
|
4965 |
|
|
}
|
4966 |
|
|
|
4967 |
|
|
/* Handle an attribute requiring a FUNCTION_DECL;
|
4968 |
|
|
arguments as in struct attribute_spec.handler. */
|
4969 |
|
|
static tree
|
4970 |
|
|
arm_handle_fndecl_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
|
4971 |
|
|
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
|
4972 |
|
|
{
|
4973 |
|
|
if (TREE_CODE (*node) != FUNCTION_DECL)
|
4974 |
|
|
{
|
4975 |
|
|
warning (OPT_Wattributes, "%qE attribute only applies to functions",
|
4976 |
|
|
name);
|
4977 |
|
|
*no_add_attrs = true;
|
4978 |
|
|
}
|
4979 |
|
|
|
4980 |
|
|
return NULL_TREE;
|
4981 |
|
|
}
|
4982 |
|
|
|
4983 |
|
|
/* Handle an "interrupt" or "isr" attribute;
|
4984 |
|
|
arguments as in struct attribute_spec.handler. */
|
4985 |
|
|
static tree
|
4986 |
|
|
arm_handle_isr_attribute (tree *node, tree name, tree args, int flags,
|
4987 |
|
|
bool *no_add_attrs)
|
4988 |
|
|
{
|
4989 |
|
|
if (DECL_P (*node))
|
4990 |
|
|
{
|
4991 |
|
|
if (TREE_CODE (*node) != FUNCTION_DECL)
|
4992 |
|
|
{
|
4993 |
|
|
warning (OPT_Wattributes, "%qE attribute only applies to functions",
|
4994 |
|
|
name);
|
4995 |
|
|
*no_add_attrs = true;
|
4996 |
|
|
}
|
4997 |
|
|
/* FIXME: the argument if any is checked for type attributes;
|
4998 |
|
|
should it be checked for decl ones? */
|
4999 |
|
|
}
|
5000 |
|
|
else
|
5001 |
|
|
{
|
5002 |
|
|
if (TREE_CODE (*node) == FUNCTION_TYPE
|
5003 |
|
|
|| TREE_CODE (*node) == METHOD_TYPE)
|
5004 |
|
|
{
|
5005 |
|
|
if (arm_isr_value (args) == ARM_FT_UNKNOWN)
|
5006 |
|
|
{
|
5007 |
|
|
warning (OPT_Wattributes, "%qE attribute ignored",
|
5008 |
|
|
name);
|
5009 |
|
|
*no_add_attrs = true;
|
5010 |
|
|
}
|
5011 |
|
|
}
|
5012 |
|
|
else if (TREE_CODE (*node) == POINTER_TYPE
|
5013 |
|
|
&& (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE
|
5014 |
|
|
|| TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE)
|
5015 |
|
|
&& arm_isr_value (args) != ARM_FT_UNKNOWN)
|
5016 |
|
|
{
|
5017 |
|
|
*node = build_variant_type_copy (*node);
|
5018 |
|
|
TREE_TYPE (*node) = build_type_attribute_variant
|
5019 |
|
|
(TREE_TYPE (*node),
|
5020 |
|
|
tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node))));
|
5021 |
|
|
*no_add_attrs = true;
|
5022 |
|
|
}
|
5023 |
|
|
else
|
5024 |
|
|
{
|
5025 |
|
|
/* Possibly pass this attribute on from the type to a decl. */
|
5026 |
|
|
if (flags & ((int) ATTR_FLAG_DECL_NEXT
|
5027 |
|
|
| (int) ATTR_FLAG_FUNCTION_NEXT
|
5028 |
|
|
| (int) ATTR_FLAG_ARRAY_NEXT))
|
5029 |
|
|
{
|
5030 |
|
|
*no_add_attrs = true;
|
5031 |
|
|
return tree_cons (name, args, NULL_TREE);
|
5032 |
|
|
}
|
5033 |
|
|
else
|
5034 |
|
|
{
|
5035 |
|
|
warning (OPT_Wattributes, "%qE attribute ignored",
|
5036 |
|
|
name);
|
5037 |
|
|
}
|
5038 |
|
|
}
|
5039 |
|
|
}
|
5040 |
|
|
|
5041 |
|
|
return NULL_TREE;
|
5042 |
|
|
}
|
5043 |
|
|
|
5044 |
|
|
/* Handle a "pcs" attribute; arguments as in struct
|
5045 |
|
|
attribute_spec.handler. */
|
5046 |
|
|
static tree
|
5047 |
|
|
arm_handle_pcs_attribute (tree *node ATTRIBUTE_UNUSED, tree name, tree args,
|
5048 |
|
|
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
|
5049 |
|
|
{
|
5050 |
|
|
if (arm_pcs_from_attribute (args) == ARM_PCS_UNKNOWN)
|
5051 |
|
|
{
|
5052 |
|
|
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
5053 |
|
|
*no_add_attrs = true;
|
5054 |
|
|
}
|
5055 |
|
|
return NULL_TREE;
|
5056 |
|
|
}
|
5057 |
|
|
|
5058 |
|
|
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
|
5059 |
|
|
/* Handle the "notshared" attribute. This attribute is another way of
|
5060 |
|
|
requesting hidden visibility. ARM's compiler supports
|
5061 |
|
|
"__declspec(notshared)"; we support the same thing via an
|
5062 |
|
|
attribute. */
|
5063 |
|
|
|
5064 |
|
|
static tree
|
5065 |
|
|
arm_handle_notshared_attribute (tree *node,
|
5066 |
|
|
tree name ATTRIBUTE_UNUSED,
|
5067 |
|
|
tree args ATTRIBUTE_UNUSED,
|
5068 |
|
|
int flags ATTRIBUTE_UNUSED,
|
5069 |
|
|
bool *no_add_attrs)
|
5070 |
|
|
{
|
5071 |
|
|
tree decl = TYPE_NAME (*node);
|
5072 |
|
|
|
5073 |
|
|
if (decl)
|
5074 |
|
|
{
|
5075 |
|
|
DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
|
5076 |
|
|
DECL_VISIBILITY_SPECIFIED (decl) = 1;
|
5077 |
|
|
*no_add_attrs = false;
|
5078 |
|
|
}
|
5079 |
|
|
return NULL_TREE;
|
5080 |
|
|
}
|
5081 |
|
|
#endif
|
5082 |
|
|
|
5083 |
|
|
/* Return 0 if the attributes for two types are incompatible, 1 if they
|
5084 |
|
|
are compatible, and 2 if they are nearly compatible (which causes a
|
5085 |
|
|
warning to be generated). */
|
5086 |
|
|
static int
|
5087 |
|
|
arm_comp_type_attributes (const_tree type1, const_tree type2)
|
5088 |
|
|
{
|
5089 |
|
|
int l1, l2, s1, s2;
|
5090 |
|
|
|
5091 |
|
|
/* Check for mismatch of non-default calling convention. */
|
5092 |
|
|
if (TREE_CODE (type1) != FUNCTION_TYPE)
|
5093 |
|
|
return 1;
|
5094 |
|
|
|
5095 |
|
|
/* Check for mismatched call attributes. */
|
5096 |
|
|
l1 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type1)) != NULL;
|
5097 |
|
|
l2 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type2)) != NULL;
|
5098 |
|
|
s1 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type1)) != NULL;
|
5099 |
|
|
s2 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type2)) != NULL;
|
5100 |
|
|
|
5101 |
|
|
/* Only bother to check if an attribute is defined. */
|
5102 |
|
|
if (l1 | l2 | s1 | s2)
|
5103 |
|
|
{
|
5104 |
|
|
/* If one type has an attribute, the other must have the same attribute. */
|
5105 |
|
|
if ((l1 != l2) || (s1 != s2))
|
5106 |
|
|
return 0;
|
5107 |
|
|
|
5108 |
|
|
/* Disallow mixed attributes. */
|
5109 |
|
|
if ((l1 & s2) || (l2 & s1))
|
5110 |
|
|
return 0;
|
5111 |
|
|
}
|
5112 |
|
|
|
5113 |
|
|
/* Check for mismatched ISR attribute. */
|
5114 |
|
|
l1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL;
|
5115 |
|
|
if (! l1)
|
5116 |
|
|
l1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL;
|
5117 |
|
|
l2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL;
|
5118 |
|
|
if (! l2)
|
5119 |
|
|
l1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL;
|
5120 |
|
|
if (l1 != l2)
|
5121 |
|
|
return 0;
|
5122 |
|
|
|
5123 |
|
|
return 1;
|
5124 |
|
|
}
|
5125 |
|
|
|
5126 |
|
|
/* Assigns default attributes to newly defined type. This is used to
|
5127 |
|
|
set short_call/long_call attributes for function types of
|
5128 |
|
|
functions defined inside corresponding #pragma scopes. */
|
5129 |
|
|
static void
|
5130 |
|
|
arm_set_default_type_attributes (tree type)
|
5131 |
|
|
{
|
5132 |
|
|
/* Add __attribute__ ((long_call)) to all functions, when
|
5133 |
|
|
inside #pragma long_calls or __attribute__ ((short_call)),
|
5134 |
|
|
when inside #pragma no_long_calls. */
|
5135 |
|
|
if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
|
5136 |
|
|
{
|
5137 |
|
|
tree type_attr_list, attr_name;
|
5138 |
|
|
type_attr_list = TYPE_ATTRIBUTES (type);
|
5139 |
|
|
|
5140 |
|
|
if (arm_pragma_long_calls == LONG)
|
5141 |
|
|
attr_name = get_identifier ("long_call");
|
5142 |
|
|
else if (arm_pragma_long_calls == SHORT)
|
5143 |
|
|
attr_name = get_identifier ("short_call");
|
5144 |
|
|
else
|
5145 |
|
|
return;
|
5146 |
|
|
|
5147 |
|
|
type_attr_list = tree_cons (attr_name, NULL_TREE, type_attr_list);
|
5148 |
|
|
TYPE_ATTRIBUTES (type) = type_attr_list;
|
5149 |
|
|
}
|
5150 |
|
|
}
|
5151 |
|
|
|
5152 |
|
|
/* Return true if DECL is known to be linked into section SECTION. */
|
5153 |
|
|
|
5154 |
|
|
static bool
|
5155 |
|
|
arm_function_in_section_p (tree decl, section *section)
|
5156 |
|
|
{
|
5157 |
|
|
/* We can only be certain about functions defined in the same
|
5158 |
|
|
compilation unit. */
|
5159 |
|
|
if (!TREE_STATIC (decl))
|
5160 |
|
|
return false;
|
5161 |
|
|
|
5162 |
|
|
/* Make sure that SYMBOL always binds to the definition in this
|
5163 |
|
|
compilation unit. */
|
5164 |
|
|
if (!targetm.binds_local_p (decl))
|
5165 |
|
|
return false;
|
5166 |
|
|
|
5167 |
|
|
/* If DECL_SECTION_NAME is set, assume it is trustworthy. */
|
5168 |
|
|
if (!DECL_SECTION_NAME (decl))
|
5169 |
|
|
{
|
5170 |
|
|
/* Make sure that we will not create a unique section for DECL. */
|
5171 |
|
|
if (flag_function_sections || DECL_ONE_ONLY (decl))
|
5172 |
|
|
return false;
|
5173 |
|
|
}
|
5174 |
|
|
|
5175 |
|
|
return function_section (decl) == section;
|
5176 |
|
|
}
|
5177 |
|
|
|
5178 |
|
|
/* Return nonzero if a 32-bit "long_call" should be generated for
|
5179 |
|
|
a call from the current function to DECL. We generate a long_call
|
5180 |
|
|
if the function:
|
5181 |
|
|
|
5182 |
|
|
a. has an __attribute__((long call))
|
5183 |
|
|
or b. is within the scope of a #pragma long_calls
|
5184 |
|
|
or c. the -mlong-calls command line switch has been specified
|
5185 |
|
|
|
5186 |
|
|
However we do not generate a long call if the function:
|
5187 |
|
|
|
5188 |
|
|
d. has an __attribute__ ((short_call))
|
5189 |
|
|
or e. is inside the scope of a #pragma no_long_calls
|
5190 |
|
|
or f. is defined in the same section as the current function. */
|
5191 |
|
|
|
5192 |
|
|
bool
|
5193 |
|
|
arm_is_long_call_p (tree decl)
|
5194 |
|
|
{
|
5195 |
|
|
tree attrs;
|
5196 |
|
|
|
5197 |
|
|
if (!decl)
|
5198 |
|
|
return TARGET_LONG_CALLS;
|
5199 |
|
|
|
5200 |
|
|
attrs = TYPE_ATTRIBUTES (TREE_TYPE (decl));
|
5201 |
|
|
if (lookup_attribute ("short_call", attrs))
|
5202 |
|
|
return false;
|
5203 |
|
|
|
5204 |
|
|
/* For "f", be conservative, and only cater for cases in which the
|
5205 |
|
|
whole of the current function is placed in the same section. */
|
5206 |
|
|
if (!flag_reorder_blocks_and_partition
|
5207 |
|
|
&& TREE_CODE (decl) == FUNCTION_DECL
|
5208 |
|
|
&& arm_function_in_section_p (decl, current_function_section ()))
|
5209 |
|
|
return false;
|
5210 |
|
|
|
5211 |
|
|
if (lookup_attribute ("long_call", attrs))
|
5212 |
|
|
return true;
|
5213 |
|
|
|
5214 |
|
|
return TARGET_LONG_CALLS;
|
5215 |
|
|
}
|
5216 |
|
|
|
5217 |
|
|
/* Return nonzero if it is ok to make a tail-call to DECL. */
|
5218 |
|
|
static bool
|
5219 |
|
|
arm_function_ok_for_sibcall (tree decl, tree exp)
|
5220 |
|
|
{
|
5221 |
|
|
unsigned long func_type;
|
5222 |
|
|
|
5223 |
|
|
if (cfun->machine->sibcall_blocked)
|
5224 |
|
|
return false;
|
5225 |
|
|
|
5226 |
|
|
/* Never tailcall something for which we have no decl, or if we
|
5227 |
|
|
are generating code for Thumb-1. */
|
5228 |
|
|
if (decl == NULL || TARGET_THUMB1)
|
5229 |
|
|
return false;
|
5230 |
|
|
|
5231 |
|
|
/* The PIC register is live on entry to VxWorks PLT entries, so we
|
5232 |
|
|
must make the call before restoring the PIC register. */
|
5233 |
|
|
if (TARGET_VXWORKS_RTP && flag_pic && !targetm.binds_local_p (decl))
|
5234 |
|
|
return false;
|
5235 |
|
|
|
5236 |
|
|
/* Cannot tail-call to long calls, since these are out of range of
|
5237 |
|
|
a branch instruction. */
|
5238 |
|
|
if (arm_is_long_call_p (decl))
|
5239 |
|
|
return false;
|
5240 |
|
|
|
5241 |
|
|
/* If we are interworking and the function is not declared static
|
5242 |
|
|
then we can't tail-call it unless we know that it exists in this
|
5243 |
|
|
compilation unit (since it might be a Thumb routine). */
|
5244 |
|
|
if (TARGET_INTERWORK && TREE_PUBLIC (decl) && !TREE_ASM_WRITTEN (decl))
|
5245 |
|
|
return false;
|
5246 |
|
|
|
5247 |
|
|
func_type = arm_current_func_type ();
|
5248 |
|
|
/* Never tailcall from an ISR routine - it needs a special exit sequence. */
|
5249 |
|
|
if (IS_INTERRUPT (func_type))
|
5250 |
|
|
return false;
|
5251 |
|
|
|
5252 |
|
|
if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
|
5253 |
|
|
{
|
5254 |
|
|
/* Check that the return value locations are the same. For
|
5255 |
|
|
example that we aren't returning a value from the sibling in
|
5256 |
|
|
a VFP register but then need to transfer it to a core
|
5257 |
|
|
register. */
|
5258 |
|
|
rtx a, b;
|
5259 |
|
|
|
5260 |
|
|
a = arm_function_value (TREE_TYPE (exp), decl, false);
|
5261 |
|
|
b = arm_function_value (TREE_TYPE (DECL_RESULT (cfun->decl)),
|
5262 |
|
|
cfun->decl, false);
|
5263 |
|
|
if (!rtx_equal_p (a, b))
|
5264 |
|
|
return false;
|
5265 |
|
|
}
|
5266 |
|
|
|
5267 |
|
|
/* Never tailcall if function may be called with a misaligned SP. */
|
5268 |
|
|
if (IS_STACKALIGN (func_type))
|
5269 |
|
|
return false;
|
5270 |
|
|
|
5271 |
|
|
/* The AAPCS says that, on bare-metal, calls to unresolved weak
|
5272 |
|
|
references should become a NOP. Don't convert such calls into
|
5273 |
|
|
sibling calls. */
|
5274 |
|
|
if (TARGET_AAPCS_BASED
|
5275 |
|
|
&& arm_abi == ARM_ABI_AAPCS
|
5276 |
|
|
&& DECL_WEAK (decl))
|
5277 |
|
|
return false;
|
5278 |
|
|
|
5279 |
|
|
/* Everything else is ok. */
|
5280 |
|
|
return true;
|
5281 |
|
|
}
|
5282 |
|
|
|
5283 |
|
|
|
5284 |
|
|
/* Addressing mode support functions. */
|
5285 |
|
|
|
5286 |
|
|
/* Return nonzero if X is a legitimate immediate operand when compiling
|
5287 |
|
|
for PIC. We know that X satisfies CONSTANT_P and flag_pic is true. */
|
5288 |
|
|
int
|
5289 |
|
|
legitimate_pic_operand_p (rtx x)
|
5290 |
|
|
{
|
5291 |
|
|
if (GET_CODE (x) == SYMBOL_REF
|
5292 |
|
|
|| (GET_CODE (x) == CONST
|
5293 |
|
|
&& GET_CODE (XEXP (x, 0)) == PLUS
|
5294 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF))
|
5295 |
|
|
return 0;
|
5296 |
|
|
|
5297 |
|
|
return 1;
|
5298 |
|
|
}
|
5299 |
|
|
|
5300 |
|
|
/* Record that the current function needs a PIC register. Initialize
|
5301 |
|
|
cfun->machine->pic_reg if we have not already done so. */
|
5302 |
|
|
|
5303 |
|
|
static void
|
5304 |
|
|
require_pic_register (void)
|
5305 |
|
|
{
|
5306 |
|
|
/* A lot of the logic here is made obscure by the fact that this
|
5307 |
|
|
routine gets called as part of the rtx cost estimation process.
|
5308 |
|
|
We don't want those calls to affect any assumptions about the real
|
5309 |
|
|
function; and further, we can't call entry_of_function() until we
|
5310 |
|
|
start the real expansion process. */
|
5311 |
|
|
if (!crtl->uses_pic_offset_table)
|
5312 |
|
|
{
|
5313 |
|
|
gcc_assert (can_create_pseudo_p ());
|
5314 |
|
|
if (arm_pic_register != INVALID_REGNUM)
|
5315 |
|
|
{
|
5316 |
|
|
if (!cfun->machine->pic_reg)
|
5317 |
|
|
cfun->machine->pic_reg = gen_rtx_REG (Pmode, arm_pic_register);
|
5318 |
|
|
|
5319 |
|
|
/* Play games to avoid marking the function as needing pic
|
5320 |
|
|
if we are being called as part of the cost-estimation
|
5321 |
|
|
process. */
|
5322 |
|
|
if (current_ir_type () != IR_GIMPLE || currently_expanding_to_rtl)
|
5323 |
|
|
crtl->uses_pic_offset_table = 1;
|
5324 |
|
|
}
|
5325 |
|
|
else
|
5326 |
|
|
{
|
5327 |
|
|
rtx seq, insn;
|
5328 |
|
|
|
5329 |
|
|
if (!cfun->machine->pic_reg)
|
5330 |
|
|
cfun->machine->pic_reg = gen_reg_rtx (Pmode);
|
5331 |
|
|
|
5332 |
|
|
/* Play games to avoid marking the function as needing pic
|
5333 |
|
|
if we are being called as part of the cost-estimation
|
5334 |
|
|
process. */
|
5335 |
|
|
if (current_ir_type () != IR_GIMPLE || currently_expanding_to_rtl)
|
5336 |
|
|
{
|
5337 |
|
|
crtl->uses_pic_offset_table = 1;
|
5338 |
|
|
start_sequence ();
|
5339 |
|
|
|
5340 |
|
|
arm_load_pic_register (0UL);
|
5341 |
|
|
|
5342 |
|
|
seq = get_insns ();
|
5343 |
|
|
end_sequence ();
|
5344 |
|
|
|
5345 |
|
|
for (insn = seq; insn; insn = NEXT_INSN (insn))
|
5346 |
|
|
if (INSN_P (insn))
|
5347 |
|
|
INSN_LOCATOR (insn) = prologue_locator;
|
5348 |
|
|
|
5349 |
|
|
/* We can be called during expansion of PHI nodes, where
|
5350 |
|
|
we can't yet emit instructions directly in the final
|
5351 |
|
|
insn stream. Queue the insns on the entry edge, they will
|
5352 |
|
|
be committed after everything else is expanded. */
|
5353 |
|
|
insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
|
5354 |
|
|
}
|
5355 |
|
|
}
|
5356 |
|
|
}
|
5357 |
|
|
}
|
5358 |
|
|
|
5359 |
|
|
rtx
|
5360 |
|
|
legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg)
|
5361 |
|
|
{
|
5362 |
|
|
if (GET_CODE (orig) == SYMBOL_REF
|
5363 |
|
|
|| GET_CODE (orig) == LABEL_REF)
|
5364 |
|
|
{
|
5365 |
|
|
rtx insn;
|
5366 |
|
|
|
5367 |
|
|
if (reg == 0)
|
5368 |
|
|
{
|
5369 |
|
|
gcc_assert (can_create_pseudo_p ());
|
5370 |
|
|
reg = gen_reg_rtx (Pmode);
|
5371 |
|
|
}
|
5372 |
|
|
|
5373 |
|
|
/* VxWorks does not impose a fixed gap between segments; the run-time
|
5374 |
|
|
gap can be different from the object-file gap. We therefore can't
|
5375 |
|
|
use GOTOFF unless we are absolutely sure that the symbol is in the
|
5376 |
|
|
same segment as the GOT. Unfortunately, the flexibility of linker
|
5377 |
|
|
scripts means that we can't be sure of that in general, so assume
|
5378 |
|
|
that GOTOFF is never valid on VxWorks. */
|
5379 |
|
|
if ((GET_CODE (orig) == LABEL_REF
|
5380 |
|
|
|| (GET_CODE (orig) == SYMBOL_REF &&
|
5381 |
|
|
SYMBOL_REF_LOCAL_P (orig)))
|
5382 |
|
|
&& NEED_GOT_RELOC
|
5383 |
|
|
&& !TARGET_VXWORKS_RTP)
|
5384 |
|
|
insn = arm_pic_static_addr (orig, reg);
|
5385 |
|
|
else
|
5386 |
|
|
{
|
5387 |
|
|
rtx pat;
|
5388 |
|
|
rtx mem;
|
5389 |
|
|
|
5390 |
|
|
/* If this function doesn't have a pic register, create one now. */
|
5391 |
|
|
require_pic_register ();
|
5392 |
|
|
|
5393 |
|
|
pat = gen_calculate_pic_address (reg, cfun->machine->pic_reg, orig);
|
5394 |
|
|
|
5395 |
|
|
/* Make the MEM as close to a constant as possible. */
|
5396 |
|
|
mem = SET_SRC (pat);
|
5397 |
|
|
gcc_assert (MEM_P (mem) && !MEM_VOLATILE_P (mem));
|
5398 |
|
|
MEM_READONLY_P (mem) = 1;
|
5399 |
|
|
MEM_NOTRAP_P (mem) = 1;
|
5400 |
|
|
|
5401 |
|
|
insn = emit_insn (pat);
|
5402 |
|
|
}
|
5403 |
|
|
|
5404 |
|
|
/* Put a REG_EQUAL note on this insn, so that it can be optimized
|
5405 |
|
|
by loop. */
|
5406 |
|
|
set_unique_reg_note (insn, REG_EQUAL, orig);
|
5407 |
|
|
|
5408 |
|
|
return reg;
|
5409 |
|
|
}
|
5410 |
|
|
else if (GET_CODE (orig) == CONST)
|
5411 |
|
|
{
|
5412 |
|
|
rtx base, offset;
|
5413 |
|
|
|
5414 |
|
|
if (GET_CODE (XEXP (orig, 0)) == PLUS
|
5415 |
|
|
&& XEXP (XEXP (orig, 0), 0) == cfun->machine->pic_reg)
|
5416 |
|
|
return orig;
|
5417 |
|
|
|
5418 |
|
|
/* Handle the case where we have: const (UNSPEC_TLS). */
|
5419 |
|
|
if (GET_CODE (XEXP (orig, 0)) == UNSPEC
|
5420 |
|
|
&& XINT (XEXP (orig, 0), 1) == UNSPEC_TLS)
|
5421 |
|
|
return orig;
|
5422 |
|
|
|
5423 |
|
|
/* Handle the case where we have:
|
5424 |
|
|
const (plus (UNSPEC_TLS) (ADDEND)). The ADDEND must be a
|
5425 |
|
|
CONST_INT. */
|
5426 |
|
|
if (GET_CODE (XEXP (orig, 0)) == PLUS
|
5427 |
|
|
&& GET_CODE (XEXP (XEXP (orig, 0), 0)) == UNSPEC
|
5428 |
|
|
&& XINT (XEXP (XEXP (orig, 0), 0), 1) == UNSPEC_TLS)
|
5429 |
|
|
{
|
5430 |
|
|
gcc_assert (GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT);
|
5431 |
|
|
return orig;
|
5432 |
|
|
}
|
5433 |
|
|
|
5434 |
|
|
if (reg == 0)
|
5435 |
|
|
{
|
5436 |
|
|
gcc_assert (can_create_pseudo_p ());
|
5437 |
|
|
reg = gen_reg_rtx (Pmode);
|
5438 |
|
|
}
|
5439 |
|
|
|
5440 |
|
|
gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
|
5441 |
|
|
|
5442 |
|
|
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
|
5443 |
|
|
offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
|
5444 |
|
|
base == reg ? 0 : reg);
|
5445 |
|
|
|
5446 |
|
|
if (GET_CODE (offset) == CONST_INT)
|
5447 |
|
|
{
|
5448 |
|
|
/* The base register doesn't really matter, we only want to
|
5449 |
|
|
test the index for the appropriate mode. */
|
5450 |
|
|
if (!arm_legitimate_index_p (mode, offset, SET, 0))
|
5451 |
|
|
{
|
5452 |
|
|
gcc_assert (can_create_pseudo_p ());
|
5453 |
|
|
offset = force_reg (Pmode, offset);
|
5454 |
|
|
}
|
5455 |
|
|
|
5456 |
|
|
if (GET_CODE (offset) == CONST_INT)
|
5457 |
|
|
return plus_constant (base, INTVAL (offset));
|
5458 |
|
|
}
|
5459 |
|
|
|
5460 |
|
|
if (GET_MODE_SIZE (mode) > 4
|
5461 |
|
|
&& (GET_MODE_CLASS (mode) == MODE_INT
|
5462 |
|
|
|| TARGET_SOFT_FLOAT))
|
5463 |
|
|
{
|
5464 |
|
|
emit_insn (gen_addsi3 (reg, base, offset));
|
5465 |
|
|
return reg;
|
5466 |
|
|
}
|
5467 |
|
|
|
5468 |
|
|
return gen_rtx_PLUS (Pmode, base, offset);
|
5469 |
|
|
}
|
5470 |
|
|
|
5471 |
|
|
return orig;
|
5472 |
|
|
}
|
5473 |
|
|
|
5474 |
|
|
|
5475 |
|
|
/* Find a spare register to use during the prolog of a function. */
|
5476 |
|
|
|
5477 |
|
|
static int
|
5478 |
|
|
thumb_find_work_register (unsigned long pushed_regs_mask)
|
5479 |
|
|
{
|
5480 |
|
|
int reg;
|
5481 |
|
|
|
5482 |
|
|
/* Check the argument registers first as these are call-used. The
|
5483 |
|
|
register allocation order means that sometimes r3 might be used
|
5484 |
|
|
but earlier argument registers might not, so check them all. */
|
5485 |
|
|
for (reg = LAST_ARG_REGNUM; reg >= 0; reg --)
|
5486 |
|
|
if (!df_regs_ever_live_p (reg))
|
5487 |
|
|
return reg;
|
5488 |
|
|
|
5489 |
|
|
/* Before going on to check the call-saved registers we can try a couple
|
5490 |
|
|
more ways of deducing that r3 is available. The first is when we are
|
5491 |
|
|
pushing anonymous arguments onto the stack and we have less than 4
|
5492 |
|
|
registers worth of fixed arguments(*). In this case r3 will be part of
|
5493 |
|
|
the variable argument list and so we can be sure that it will be
|
5494 |
|
|
pushed right at the start of the function. Hence it will be available
|
5495 |
|
|
for the rest of the prologue.
|
5496 |
|
|
(*): ie crtl->args.pretend_args_size is greater than 0. */
|
5497 |
|
|
if (cfun->machine->uses_anonymous_args
|
5498 |
|
|
&& crtl->args.pretend_args_size > 0)
|
5499 |
|
|
return LAST_ARG_REGNUM;
|
5500 |
|
|
|
5501 |
|
|
/* The other case is when we have fixed arguments but less than 4 registers
|
5502 |
|
|
worth. In this case r3 might be used in the body of the function, but
|
5503 |
|
|
it is not being used to convey an argument into the function. In theory
|
5504 |
|
|
we could just check crtl->args.size to see how many bytes are
|
5505 |
|
|
being passed in argument registers, but it seems that it is unreliable.
|
5506 |
|
|
Sometimes it will have the value 0 when in fact arguments are being
|
5507 |
|
|
passed. (See testcase execute/20021111-1.c for an example). So we also
|
5508 |
|
|
check the args_info.nregs field as well. The problem with this field is
|
5509 |
|
|
that it makes no allowances for arguments that are passed to the
|
5510 |
|
|
function but which are not used. Hence we could miss an opportunity
|
5511 |
|
|
when a function has an unused argument in r3. But it is better to be
|
5512 |
|
|
safe than to be sorry. */
|
5513 |
|
|
if (! cfun->machine->uses_anonymous_args
|
5514 |
|
|
&& crtl->args.size >= 0
|
5515 |
|
|
&& crtl->args.size <= (LAST_ARG_REGNUM * UNITS_PER_WORD)
|
5516 |
|
|
&& crtl->args.info.nregs < 4)
|
5517 |
|
|
return LAST_ARG_REGNUM;
|
5518 |
|
|
|
5519 |
|
|
/* Otherwise look for a call-saved register that is going to be pushed. */
|
5520 |
|
|
for (reg = LAST_LO_REGNUM; reg > LAST_ARG_REGNUM; reg --)
|
5521 |
|
|
if (pushed_regs_mask & (1 << reg))
|
5522 |
|
|
return reg;
|
5523 |
|
|
|
5524 |
|
|
if (TARGET_THUMB2)
|
5525 |
|
|
{
|
5526 |
|
|
/* Thumb-2 can use high regs. */
|
5527 |
|
|
for (reg = FIRST_HI_REGNUM; reg < 15; reg ++)
|
5528 |
|
|
if (pushed_regs_mask & (1 << reg))
|
5529 |
|
|
return reg;
|
5530 |
|
|
}
|
5531 |
|
|
/* Something went wrong - thumb_compute_save_reg_mask()
|
5532 |
|
|
should have arranged for a suitable register to be pushed. */
|
5533 |
|
|
gcc_unreachable ();
|
5534 |
|
|
}
|
5535 |
|
|
|
5536 |
|
|
static GTY(()) int pic_labelno;
|
5537 |
|
|
|
5538 |
|
|
/* Generate code to load the PIC register. In thumb mode SCRATCH is a
|
5539 |
|
|
low register. */
|
5540 |
|
|
|
5541 |
|
|
void
|
5542 |
|
|
arm_load_pic_register (unsigned long saved_regs ATTRIBUTE_UNUSED)
|
5543 |
|
|
{
|
5544 |
|
|
rtx l1, labelno, pic_tmp, pic_rtx, pic_reg;
|
5545 |
|
|
|
5546 |
|
|
if (crtl->uses_pic_offset_table == 0 || TARGET_SINGLE_PIC_BASE)
|
5547 |
|
|
return;
|
5548 |
|
|
|
5549 |
|
|
gcc_assert (flag_pic);
|
5550 |
|
|
|
5551 |
|
|
pic_reg = cfun->machine->pic_reg;
|
5552 |
|
|
if (TARGET_VXWORKS_RTP)
|
5553 |
|
|
{
|
5554 |
|
|
pic_rtx = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_BASE);
|
5555 |
|
|
pic_rtx = gen_rtx_CONST (Pmode, pic_rtx);
|
5556 |
|
|
emit_insn (gen_pic_load_addr_32bit (pic_reg, pic_rtx));
|
5557 |
|
|
|
5558 |
|
|
emit_insn (gen_rtx_SET (Pmode, pic_reg, gen_rtx_MEM (Pmode, pic_reg)));
|
5559 |
|
|
|
5560 |
|
|
pic_tmp = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_INDEX);
|
5561 |
|
|
emit_insn (gen_pic_offset_arm (pic_reg, pic_reg, pic_tmp));
|
5562 |
|
|
}
|
5563 |
|
|
else
|
5564 |
|
|
{
|
5565 |
|
|
/* We use an UNSPEC rather than a LABEL_REF because this label
|
5566 |
|
|
never appears in the code stream. */
|
5567 |
|
|
|
5568 |
|
|
labelno = GEN_INT (pic_labelno++);
|
5569 |
|
|
l1 = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
|
5570 |
|
|
l1 = gen_rtx_CONST (VOIDmode, l1);
|
5571 |
|
|
|
5572 |
|
|
/* On the ARM the PC register contains 'dot + 8' at the time of the
|
5573 |
|
|
addition, on the Thumb it is 'dot + 4'. */
|
5574 |
|
|
pic_rtx = plus_constant (l1, TARGET_ARM ? 8 : 4);
|
5575 |
|
|
pic_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, pic_rtx),
|
5576 |
|
|
UNSPEC_GOTSYM_OFF);
|
5577 |
|
|
pic_rtx = gen_rtx_CONST (Pmode, pic_rtx);
|
5578 |
|
|
|
5579 |
|
|
if (TARGET_32BIT)
|
5580 |
|
|
{
|
5581 |
|
|
emit_insn (gen_pic_load_addr_unified (pic_reg, pic_rtx, labelno));
|
5582 |
|
|
}
|
5583 |
|
|
else /* TARGET_THUMB1 */
|
5584 |
|
|
{
|
5585 |
|
|
if (arm_pic_register != INVALID_REGNUM
|
5586 |
|
|
&& REGNO (pic_reg) > LAST_LO_REGNUM)
|
5587 |
|
|
{
|
5588 |
|
|
/* We will have pushed the pic register, so we should always be
|
5589 |
|
|
able to find a work register. */
|
5590 |
|
|
pic_tmp = gen_rtx_REG (SImode,
|
5591 |
|
|
thumb_find_work_register (saved_regs));
|
5592 |
|
|
emit_insn (gen_pic_load_addr_thumb1 (pic_tmp, pic_rtx));
|
5593 |
|
|
emit_insn (gen_movsi (pic_offset_table_rtx, pic_tmp));
|
5594 |
|
|
emit_insn (gen_pic_add_dot_plus_four (pic_reg, pic_reg, labelno));
|
5595 |
|
|
}
|
5596 |
|
|
else
|
5597 |
|
|
emit_insn (gen_pic_load_addr_unified (pic_reg, pic_rtx, labelno));
|
5598 |
|
|
}
|
5599 |
|
|
}
|
5600 |
|
|
|
5601 |
|
|
/* Need to emit this whether or not we obey regdecls,
|
5602 |
|
|
since setjmp/longjmp can cause life info to screw up. */
|
5603 |
|
|
emit_use (pic_reg);
|
5604 |
|
|
}
|
5605 |
|
|
|
5606 |
|
|
/* Generate code to load the address of a static var when flag_pic is set. */
|
5607 |
|
|
static rtx
|
5608 |
|
|
arm_pic_static_addr (rtx orig, rtx reg)
|
5609 |
|
|
{
|
5610 |
|
|
rtx l1, labelno, offset_rtx, insn;
|
5611 |
|
|
|
5612 |
|
|
gcc_assert (flag_pic);
|
5613 |
|
|
|
5614 |
|
|
/* We use an UNSPEC rather than a LABEL_REF because this label
|
5615 |
|
|
never appears in the code stream. */
|
5616 |
|
|
labelno = GEN_INT (pic_labelno++);
|
5617 |
|
|
l1 = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
|
5618 |
|
|
l1 = gen_rtx_CONST (VOIDmode, l1);
|
5619 |
|
|
|
5620 |
|
|
/* On the ARM the PC register contains 'dot + 8' at the time of the
|
5621 |
|
|
addition, on the Thumb it is 'dot + 4'. */
|
5622 |
|
|
offset_rtx = plus_constant (l1, TARGET_ARM ? 8 : 4);
|
5623 |
|
|
offset_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, orig, offset_rtx),
|
5624 |
|
|
UNSPEC_SYMBOL_OFFSET);
|
5625 |
|
|
offset_rtx = gen_rtx_CONST (Pmode, offset_rtx);
|
5626 |
|
|
|
5627 |
|
|
insn = emit_insn (gen_pic_load_addr_unified (reg, offset_rtx, labelno));
|
5628 |
|
|
return insn;
|
5629 |
|
|
}
|
5630 |
|
|
|
5631 |
|
|
/* Return nonzero if X is valid as an ARM state addressing register. */
|
5632 |
|
|
static int
|
5633 |
|
|
arm_address_register_rtx_p (rtx x, int strict_p)
|
5634 |
|
|
{
|
5635 |
|
|
int regno;
|
5636 |
|
|
|
5637 |
|
|
if (GET_CODE (x) != REG)
|
5638 |
|
|
return 0;
|
5639 |
|
|
|
5640 |
|
|
regno = REGNO (x);
|
5641 |
|
|
|
5642 |
|
|
if (strict_p)
|
5643 |
|
|
return ARM_REGNO_OK_FOR_BASE_P (regno);
|
5644 |
|
|
|
5645 |
|
|
return (regno <= LAST_ARM_REGNUM
|
5646 |
|
|
|| regno >= FIRST_PSEUDO_REGISTER
|
5647 |
|
|
|| regno == FRAME_POINTER_REGNUM
|
5648 |
|
|
|| regno == ARG_POINTER_REGNUM);
|
5649 |
|
|
}
|
5650 |
|
|
|
5651 |
|
|
/* Return TRUE if this rtx is the difference of a symbol and a label,
|
5652 |
|
|
and will reduce to a PC-relative relocation in the object file.
|
5653 |
|
|
Expressions like this can be left alone when generating PIC, rather
|
5654 |
|
|
than forced through the GOT. */
|
5655 |
|
|
static int
|
5656 |
|
|
pcrel_constant_p (rtx x)
|
5657 |
|
|
{
|
5658 |
|
|
if (GET_CODE (x) == MINUS)
|
5659 |
|
|
return symbol_mentioned_p (XEXP (x, 0)) && label_mentioned_p (XEXP (x, 1));
|
5660 |
|
|
|
5661 |
|
|
return FALSE;
|
5662 |
|
|
}
|
5663 |
|
|
|
5664 |
|
|
/* Return true if X will surely end up in an index register after next
|
5665 |
|
|
splitting pass. */
|
5666 |
|
|
static bool
|
5667 |
|
|
will_be_in_index_register (const_rtx x)
|
5668 |
|
|
{
|
5669 |
|
|
/* arm.md: calculate_pic_address will split this into a register. */
|
5670 |
|
|
return GET_CODE (x) == UNSPEC && (XINT (x, 1) == UNSPEC_PIC_SYM);
|
5671 |
|
|
}
|
5672 |
|
|
|
5673 |
|
|
/* Return nonzero if X is a valid ARM state address operand. */
|
5674 |
|
|
int
|
5675 |
|
|
arm_legitimate_address_outer_p (enum machine_mode mode, rtx x, RTX_CODE outer,
|
5676 |
|
|
int strict_p)
|
5677 |
|
|
{
|
5678 |
|
|
bool use_ldrd;
|
5679 |
|
|
enum rtx_code code = GET_CODE (x);
|
5680 |
|
|
|
5681 |
|
|
if (arm_address_register_rtx_p (x, strict_p))
|
5682 |
|
|
return 1;
|
5683 |
|
|
|
5684 |
|
|
use_ldrd = (TARGET_LDRD
|
5685 |
|
|
&& (mode == DImode
|
5686 |
|
|
|| (mode == DFmode && (TARGET_SOFT_FLOAT || TARGET_VFP))));
|
5687 |
|
|
|
5688 |
|
|
if (code == POST_INC || code == PRE_DEC
|
5689 |
|
|
|| ((code == PRE_INC || code == POST_DEC)
|
5690 |
|
|
&& (use_ldrd || GET_MODE_SIZE (mode) <= 4)))
|
5691 |
|
|
return arm_address_register_rtx_p (XEXP (x, 0), strict_p);
|
5692 |
|
|
|
5693 |
|
|
else if ((code == POST_MODIFY || code == PRE_MODIFY)
|
5694 |
|
|
&& arm_address_register_rtx_p (XEXP (x, 0), strict_p)
|
5695 |
|
|
&& GET_CODE (XEXP (x, 1)) == PLUS
|
5696 |
|
|
&& rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
|
5697 |
|
|
{
|
5698 |
|
|
rtx addend = XEXP (XEXP (x, 1), 1);
|
5699 |
|
|
|
5700 |
|
|
/* Don't allow ldrd post increment by register because it's hard
|
5701 |
|
|
to fixup invalid register choices. */
|
5702 |
|
|
if (use_ldrd
|
5703 |
|
|
&& GET_CODE (x) == POST_MODIFY
|
5704 |
|
|
&& GET_CODE (addend) == REG)
|
5705 |
|
|
return 0;
|
5706 |
|
|
|
5707 |
|
|
return ((use_ldrd || GET_MODE_SIZE (mode) <= 4)
|
5708 |
|
|
&& arm_legitimate_index_p (mode, addend, outer, strict_p));
|
5709 |
|
|
}
|
5710 |
|
|
|
5711 |
|
|
/* After reload constants split into minipools will have addresses
|
5712 |
|
|
from a LABEL_REF. */
|
5713 |
|
|
else if (reload_completed
|
5714 |
|
|
&& (code == LABEL_REF
|
5715 |
|
|
|| (code == CONST
|
5716 |
|
|
&& GET_CODE (XEXP (x, 0)) == PLUS
|
5717 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
|
5718 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
|
5719 |
|
|
return 1;
|
5720 |
|
|
|
5721 |
|
|
else if (mode == TImode || (TARGET_NEON && VALID_NEON_STRUCT_MODE (mode)))
|
5722 |
|
|
return 0;
|
5723 |
|
|
|
5724 |
|
|
else if (code == PLUS)
|
5725 |
|
|
{
|
5726 |
|
|
rtx xop0 = XEXP (x, 0);
|
5727 |
|
|
rtx xop1 = XEXP (x, 1);
|
5728 |
|
|
|
5729 |
|
|
return ((arm_address_register_rtx_p (xop0, strict_p)
|
5730 |
|
|
&& ((GET_CODE(xop1) == CONST_INT
|
5731 |
|
|
&& arm_legitimate_index_p (mode, xop1, outer, strict_p))
|
5732 |
|
|
|| (!strict_p && will_be_in_index_register (xop1))))
|
5733 |
|
|
|| (arm_address_register_rtx_p (xop1, strict_p)
|
5734 |
|
|
&& arm_legitimate_index_p (mode, xop0, outer, strict_p)));
|
5735 |
|
|
}
|
5736 |
|
|
|
5737 |
|
|
#if 0
|
5738 |
|
|
/* Reload currently can't handle MINUS, so disable this for now */
|
5739 |
|
|
else if (GET_CODE (x) == MINUS)
|
5740 |
|
|
{
|
5741 |
|
|
rtx xop0 = XEXP (x, 0);
|
5742 |
|
|
rtx xop1 = XEXP (x, 1);
|
5743 |
|
|
|
5744 |
|
|
return (arm_address_register_rtx_p (xop0, strict_p)
|
5745 |
|
|
&& arm_legitimate_index_p (mode, xop1, outer, strict_p));
|
5746 |
|
|
}
|
5747 |
|
|
#endif
|
5748 |
|
|
|
5749 |
|
|
else if (GET_MODE_CLASS (mode) != MODE_FLOAT
|
5750 |
|
|
&& code == SYMBOL_REF
|
5751 |
|
|
&& CONSTANT_POOL_ADDRESS_P (x)
|
5752 |
|
|
&& ! (flag_pic
|
5753 |
|
|
&& symbol_mentioned_p (get_pool_constant (x))
|
5754 |
|
|
&& ! pcrel_constant_p (get_pool_constant (x))))
|
5755 |
|
|
return 1;
|
5756 |
|
|
|
5757 |
|
|
return 0;
|
5758 |
|
|
}
|
5759 |
|
|
|
5760 |
|
|
/* Return nonzero if X is a valid Thumb-2 address operand. */
|
5761 |
|
|
static int
|
5762 |
|
|
thumb2_legitimate_address_p (enum machine_mode mode, rtx x, int strict_p)
|
5763 |
|
|
{
|
5764 |
|
|
bool use_ldrd;
|
5765 |
|
|
enum rtx_code code = GET_CODE (x);
|
5766 |
|
|
|
5767 |
|
|
if (arm_address_register_rtx_p (x, strict_p))
|
5768 |
|
|
return 1;
|
5769 |
|
|
|
5770 |
|
|
use_ldrd = (TARGET_LDRD
|
5771 |
|
|
&& (mode == DImode
|
5772 |
|
|
|| (mode == DFmode && (TARGET_SOFT_FLOAT || TARGET_VFP))));
|
5773 |
|
|
|
5774 |
|
|
if (code == POST_INC || code == PRE_DEC
|
5775 |
|
|
|| ((code == PRE_INC || code == POST_DEC)
|
5776 |
|
|
&& (use_ldrd || GET_MODE_SIZE (mode) <= 4)))
|
5777 |
|
|
return arm_address_register_rtx_p (XEXP (x, 0), strict_p);
|
5778 |
|
|
|
5779 |
|
|
else if ((code == POST_MODIFY || code == PRE_MODIFY)
|
5780 |
|
|
&& arm_address_register_rtx_p (XEXP (x, 0), strict_p)
|
5781 |
|
|
&& GET_CODE (XEXP (x, 1)) == PLUS
|
5782 |
|
|
&& rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
|
5783 |
|
|
{
|
5784 |
|
|
/* Thumb-2 only has autoincrement by constant. */
|
5785 |
|
|
rtx addend = XEXP (XEXP (x, 1), 1);
|
5786 |
|
|
HOST_WIDE_INT offset;
|
5787 |
|
|
|
5788 |
|
|
if (GET_CODE (addend) != CONST_INT)
|
5789 |
|
|
return 0;
|
5790 |
|
|
|
5791 |
|
|
offset = INTVAL(addend);
|
5792 |
|
|
if (GET_MODE_SIZE (mode) <= 4)
|
5793 |
|
|
return (offset > -256 && offset < 256);
|
5794 |
|
|
|
5795 |
|
|
return (use_ldrd && offset > -1024 && offset < 1024
|
5796 |
|
|
&& (offset & 3) == 0);
|
5797 |
|
|
}
|
5798 |
|
|
|
5799 |
|
|
/* After reload constants split into minipools will have addresses
|
5800 |
|
|
from a LABEL_REF. */
|
5801 |
|
|
else if (reload_completed
|
5802 |
|
|
&& (code == LABEL_REF
|
5803 |
|
|
|| (code == CONST
|
5804 |
|
|
&& GET_CODE (XEXP (x, 0)) == PLUS
|
5805 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
|
5806 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
|
5807 |
|
|
return 1;
|
5808 |
|
|
|
5809 |
|
|
else if (mode == TImode || (TARGET_NEON && VALID_NEON_STRUCT_MODE (mode)))
|
5810 |
|
|
return 0;
|
5811 |
|
|
|
5812 |
|
|
else if (code == PLUS)
|
5813 |
|
|
{
|
5814 |
|
|
rtx xop0 = XEXP (x, 0);
|
5815 |
|
|
rtx xop1 = XEXP (x, 1);
|
5816 |
|
|
|
5817 |
|
|
return ((arm_address_register_rtx_p (xop0, strict_p)
|
5818 |
|
|
&& (thumb2_legitimate_index_p (mode, xop1, strict_p)
|
5819 |
|
|
|| (!strict_p && will_be_in_index_register (xop1))))
|
5820 |
|
|
|| (arm_address_register_rtx_p (xop1, strict_p)
|
5821 |
|
|
&& thumb2_legitimate_index_p (mode, xop0, strict_p)));
|
5822 |
|
|
}
|
5823 |
|
|
|
5824 |
|
|
else if (GET_MODE_CLASS (mode) != MODE_FLOAT
|
5825 |
|
|
&& code == SYMBOL_REF
|
5826 |
|
|
&& CONSTANT_POOL_ADDRESS_P (x)
|
5827 |
|
|
&& ! (flag_pic
|
5828 |
|
|
&& symbol_mentioned_p (get_pool_constant (x))
|
5829 |
|
|
&& ! pcrel_constant_p (get_pool_constant (x))))
|
5830 |
|
|
return 1;
|
5831 |
|
|
|
5832 |
|
|
return 0;
|
5833 |
|
|
}
|
5834 |
|
|
|
5835 |
|
|
/* Return nonzero if INDEX is valid for an address index operand in
|
5836 |
|
|
ARM state. */
|
5837 |
|
|
static int
|
5838 |
|
|
arm_legitimate_index_p (enum machine_mode mode, rtx index, RTX_CODE outer,
|
5839 |
|
|
int strict_p)
|
5840 |
|
|
{
|
5841 |
|
|
HOST_WIDE_INT range;
|
5842 |
|
|
enum rtx_code code = GET_CODE (index);
|
5843 |
|
|
|
5844 |
|
|
/* Standard coprocessor addressing modes. */
|
5845 |
|
|
if (TARGET_HARD_FLOAT
|
5846 |
|
|
&& (TARGET_VFP || TARGET_FPA || TARGET_MAVERICK)
|
5847 |
|
|
&& (mode == SFmode || mode == DFmode
|
5848 |
|
|
|| (TARGET_MAVERICK && mode == DImode)))
|
5849 |
|
|
return (code == CONST_INT && INTVAL (index) < 1024
|
5850 |
|
|
&& INTVAL (index) > -1024
|
5851 |
|
|
&& (INTVAL (index) & 3) == 0);
|
5852 |
|
|
|
5853 |
|
|
/* For quad modes, we restrict the constant offset to be slightly less
|
5854 |
|
|
than what the instruction format permits. We do this because for
|
5855 |
|
|
quad mode moves, we will actually decompose them into two separate
|
5856 |
|
|
double-mode reads or writes. INDEX must therefore be a valid
|
5857 |
|
|
(double-mode) offset and so should INDEX+8. */
|
5858 |
|
|
if (TARGET_NEON && VALID_NEON_QREG_MODE (mode))
|
5859 |
|
|
return (code == CONST_INT
|
5860 |
|
|
&& INTVAL (index) < 1016
|
5861 |
|
|
&& INTVAL (index) > -1024
|
5862 |
|
|
&& (INTVAL (index) & 3) == 0);
|
5863 |
|
|
|
5864 |
|
|
/* We have no such constraint on double mode offsets, so we permit the
|
5865 |
|
|
full range of the instruction format. */
|
5866 |
|
|
if (TARGET_NEON && VALID_NEON_DREG_MODE (mode))
|
5867 |
|
|
return (code == CONST_INT
|
5868 |
|
|
&& INTVAL (index) < 1024
|
5869 |
|
|
&& INTVAL (index) > -1024
|
5870 |
|
|
&& (INTVAL (index) & 3) == 0);
|
5871 |
|
|
|
5872 |
|
|
if (TARGET_REALLY_IWMMXT && VALID_IWMMXT_REG_MODE (mode))
|
5873 |
|
|
return (code == CONST_INT
|
5874 |
|
|
&& INTVAL (index) < 1024
|
5875 |
|
|
&& INTVAL (index) > -1024
|
5876 |
|
|
&& (INTVAL (index) & 3) == 0);
|
5877 |
|
|
|
5878 |
|
|
if (arm_address_register_rtx_p (index, strict_p)
|
5879 |
|
|
&& (GET_MODE_SIZE (mode) <= 4))
|
5880 |
|
|
return 1;
|
5881 |
|
|
|
5882 |
|
|
if (mode == DImode || mode == DFmode)
|
5883 |
|
|
{
|
5884 |
|
|
if (code == CONST_INT)
|
5885 |
|
|
{
|
5886 |
|
|
HOST_WIDE_INT val = INTVAL (index);
|
5887 |
|
|
|
5888 |
|
|
if (TARGET_LDRD)
|
5889 |
|
|
return val > -256 && val < 256;
|
5890 |
|
|
else
|
5891 |
|
|
return val > -4096 && val < 4092;
|
5892 |
|
|
}
|
5893 |
|
|
|
5894 |
|
|
return TARGET_LDRD && arm_address_register_rtx_p (index, strict_p);
|
5895 |
|
|
}
|
5896 |
|
|
|
5897 |
|
|
if (GET_MODE_SIZE (mode) <= 4
|
5898 |
|
|
&& ! (arm_arch4
|
5899 |
|
|
&& (mode == HImode
|
5900 |
|
|
|| mode == HFmode
|
5901 |
|
|
|| (mode == QImode && outer == SIGN_EXTEND))))
|
5902 |
|
|
{
|
5903 |
|
|
if (code == MULT)
|
5904 |
|
|
{
|
5905 |
|
|
rtx xiop0 = XEXP (index, 0);
|
5906 |
|
|
rtx xiop1 = XEXP (index, 1);
|
5907 |
|
|
|
5908 |
|
|
return ((arm_address_register_rtx_p (xiop0, strict_p)
|
5909 |
|
|
&& power_of_two_operand (xiop1, SImode))
|
5910 |
|
|
|| (arm_address_register_rtx_p (xiop1, strict_p)
|
5911 |
|
|
&& power_of_two_operand (xiop0, SImode)));
|
5912 |
|
|
}
|
5913 |
|
|
else if (code == LSHIFTRT || code == ASHIFTRT
|
5914 |
|
|
|| code == ASHIFT || code == ROTATERT)
|
5915 |
|
|
{
|
5916 |
|
|
rtx op = XEXP (index, 1);
|
5917 |
|
|
|
5918 |
|
|
return (arm_address_register_rtx_p (XEXP (index, 0), strict_p)
|
5919 |
|
|
&& GET_CODE (op) == CONST_INT
|
5920 |
|
|
&& INTVAL (op) > 0
|
5921 |
|
|
&& INTVAL (op) <= 31);
|
5922 |
|
|
}
|
5923 |
|
|
}
|
5924 |
|
|
|
5925 |
|
|
/* For ARM v4 we may be doing a sign-extend operation during the
|
5926 |
|
|
load. */
|
5927 |
|
|
if (arm_arch4)
|
5928 |
|
|
{
|
5929 |
|
|
if (mode == HImode
|
5930 |
|
|
|| mode == HFmode
|
5931 |
|
|
|| (outer == SIGN_EXTEND && mode == QImode))
|
5932 |
|
|
range = 256;
|
5933 |
|
|
else
|
5934 |
|
|
range = 4096;
|
5935 |
|
|
}
|
5936 |
|
|
else
|
5937 |
|
|
range = (mode == HImode || mode == HFmode) ? 4095 : 4096;
|
5938 |
|
|
|
5939 |
|
|
return (code == CONST_INT
|
5940 |
|
|
&& INTVAL (index) < range
|
5941 |
|
|
&& INTVAL (index) > -range);
|
5942 |
|
|
}
|
5943 |
|
|
|
5944 |
|
|
/* Return true if OP is a valid index scaling factor for Thumb-2 address
|
5945 |
|
|
index operand. i.e. 1, 2, 4 or 8. */
|
5946 |
|
|
static bool
|
5947 |
|
|
thumb2_index_mul_operand (rtx op)
|
5948 |
|
|
{
|
5949 |
|
|
HOST_WIDE_INT val;
|
5950 |
|
|
|
5951 |
|
|
if (GET_CODE(op) != CONST_INT)
|
5952 |
|
|
return false;
|
5953 |
|
|
|
5954 |
|
|
val = INTVAL(op);
|
5955 |
|
|
return (val == 1 || val == 2 || val == 4 || val == 8);
|
5956 |
|
|
}
|
5957 |
|
|
|
5958 |
|
|
/* Return nonzero if INDEX is a valid Thumb-2 address index operand. */
|
5959 |
|
|
static int
|
5960 |
|
|
thumb2_legitimate_index_p (enum machine_mode mode, rtx index, int strict_p)
|
5961 |
|
|
{
|
5962 |
|
|
enum rtx_code code = GET_CODE (index);
|
5963 |
|
|
|
5964 |
|
|
/* ??? Combine arm and thumb2 coprocessor addressing modes. */
|
5965 |
|
|
/* Standard coprocessor addressing modes. */
|
5966 |
|
|
if (TARGET_HARD_FLOAT
|
5967 |
|
|
&& (TARGET_VFP || TARGET_FPA || TARGET_MAVERICK)
|
5968 |
|
|
&& (mode == SFmode || mode == DFmode
|
5969 |
|
|
|| (TARGET_MAVERICK && mode == DImode)))
|
5970 |
|
|
return (code == CONST_INT && INTVAL (index) < 1024
|
5971 |
|
|
/* Thumb-2 allows only > -256 index range for it's core register
|
5972 |
|
|
load/stores. Since we allow SF/DF in core registers, we have
|
5973 |
|
|
to use the intersection between -256~4096 (core) and -1024~1024
|
5974 |
|
|
(coprocessor). */
|
5975 |
|
|
&& INTVAL (index) > -256
|
5976 |
|
|
&& (INTVAL (index) & 3) == 0);
|
5977 |
|
|
|
5978 |
|
|
if (TARGET_REALLY_IWMMXT && VALID_IWMMXT_REG_MODE (mode))
|
5979 |
|
|
{
|
5980 |
|
|
/* For DImode assume values will usually live in core regs
|
5981 |
|
|
and only allow LDRD addressing modes. */
|
5982 |
|
|
if (!TARGET_LDRD || mode != DImode)
|
5983 |
|
|
return (code == CONST_INT
|
5984 |
|
|
&& INTVAL (index) < 1024
|
5985 |
|
|
&& INTVAL (index) > -1024
|
5986 |
|
|
&& (INTVAL (index) & 3) == 0);
|
5987 |
|
|
}
|
5988 |
|
|
|
5989 |
|
|
/* For quad modes, we restrict the constant offset to be slightly less
|
5990 |
|
|
than what the instruction format permits. We do this because for
|
5991 |
|
|
quad mode moves, we will actually decompose them into two separate
|
5992 |
|
|
double-mode reads or writes. INDEX must therefore be a valid
|
5993 |
|
|
(double-mode) offset and so should INDEX+8. */
|
5994 |
|
|
if (TARGET_NEON && VALID_NEON_QREG_MODE (mode))
|
5995 |
|
|
return (code == CONST_INT
|
5996 |
|
|
&& INTVAL (index) < 1016
|
5997 |
|
|
&& INTVAL (index) > -1024
|
5998 |
|
|
&& (INTVAL (index) & 3) == 0);
|
5999 |
|
|
|
6000 |
|
|
/* We have no such constraint on double mode offsets, so we permit the
|
6001 |
|
|
full range of the instruction format. */
|
6002 |
|
|
if (TARGET_NEON && VALID_NEON_DREG_MODE (mode))
|
6003 |
|
|
return (code == CONST_INT
|
6004 |
|
|
&& INTVAL (index) < 1024
|
6005 |
|
|
&& INTVAL (index) > -1024
|
6006 |
|
|
&& (INTVAL (index) & 3) == 0);
|
6007 |
|
|
|
6008 |
|
|
if (arm_address_register_rtx_p (index, strict_p)
|
6009 |
|
|
&& (GET_MODE_SIZE (mode) <= 4))
|
6010 |
|
|
return 1;
|
6011 |
|
|
|
6012 |
|
|
if (mode == DImode || mode == DFmode)
|
6013 |
|
|
{
|
6014 |
|
|
if (code == CONST_INT)
|
6015 |
|
|
{
|
6016 |
|
|
HOST_WIDE_INT val = INTVAL (index);
|
6017 |
|
|
/* ??? Can we assume ldrd for thumb2? */
|
6018 |
|
|
/* Thumb-2 ldrd only has reg+const addressing modes. */
|
6019 |
|
|
/* ldrd supports offsets of +-1020.
|
6020 |
|
|
However the ldr fallback does not. */
|
6021 |
|
|
return val > -256 && val < 256 && (val & 3) == 0;
|
6022 |
|
|
}
|
6023 |
|
|
else
|
6024 |
|
|
return 0;
|
6025 |
|
|
}
|
6026 |
|
|
|
6027 |
|
|
if (code == MULT)
|
6028 |
|
|
{
|
6029 |
|
|
rtx xiop0 = XEXP (index, 0);
|
6030 |
|
|
rtx xiop1 = XEXP (index, 1);
|
6031 |
|
|
|
6032 |
|
|
return ((arm_address_register_rtx_p (xiop0, strict_p)
|
6033 |
|
|
&& thumb2_index_mul_operand (xiop1))
|
6034 |
|
|
|| (arm_address_register_rtx_p (xiop1, strict_p)
|
6035 |
|
|
&& thumb2_index_mul_operand (xiop0)));
|
6036 |
|
|
}
|
6037 |
|
|
else if (code == ASHIFT)
|
6038 |
|
|
{
|
6039 |
|
|
rtx op = XEXP (index, 1);
|
6040 |
|
|
|
6041 |
|
|
return (arm_address_register_rtx_p (XEXP (index, 0), strict_p)
|
6042 |
|
|
&& GET_CODE (op) == CONST_INT
|
6043 |
|
|
&& INTVAL (op) > 0
|
6044 |
|
|
&& INTVAL (op) <= 3);
|
6045 |
|
|
}
|
6046 |
|
|
|
6047 |
|
|
return (code == CONST_INT
|
6048 |
|
|
&& INTVAL (index) < 4096
|
6049 |
|
|
&& INTVAL (index) > -256);
|
6050 |
|
|
}
|
6051 |
|
|
|
6052 |
|
|
/* Return nonzero if X is valid as a 16-bit Thumb state base register. */
|
6053 |
|
|
static int
|
6054 |
|
|
thumb1_base_register_rtx_p (rtx x, enum machine_mode mode, int strict_p)
|
6055 |
|
|
{
|
6056 |
|
|
int regno;
|
6057 |
|
|
|
6058 |
|
|
if (GET_CODE (x) != REG)
|
6059 |
|
|
return 0;
|
6060 |
|
|
|
6061 |
|
|
regno = REGNO (x);
|
6062 |
|
|
|
6063 |
|
|
if (strict_p)
|
6064 |
|
|
return THUMB1_REGNO_MODE_OK_FOR_BASE_P (regno, mode);
|
6065 |
|
|
|
6066 |
|
|
return (regno <= LAST_LO_REGNUM
|
6067 |
|
|
|| regno > LAST_VIRTUAL_REGISTER
|
6068 |
|
|
|| regno == FRAME_POINTER_REGNUM
|
6069 |
|
|
|| (GET_MODE_SIZE (mode) >= 4
|
6070 |
|
|
&& (regno == STACK_POINTER_REGNUM
|
6071 |
|
|
|| regno >= FIRST_PSEUDO_REGISTER
|
6072 |
|
|
|| x == hard_frame_pointer_rtx
|
6073 |
|
|
|| x == arg_pointer_rtx)));
|
6074 |
|
|
}
|
6075 |
|
|
|
6076 |
|
|
/* Return nonzero if x is a legitimate index register. This is the case
|
6077 |
|
|
for any base register that can access a QImode object. */
|
6078 |
|
|
inline static int
|
6079 |
|
|
thumb1_index_register_rtx_p (rtx x, int strict_p)
|
6080 |
|
|
{
|
6081 |
|
|
return thumb1_base_register_rtx_p (x, QImode, strict_p);
|
6082 |
|
|
}
|
6083 |
|
|
|
6084 |
|
|
/* Return nonzero if x is a legitimate 16-bit Thumb-state address.
|
6085 |
|
|
|
6086 |
|
|
The AP may be eliminated to either the SP or the FP, so we use the
|
6087 |
|
|
least common denominator, e.g. SImode, and offsets from 0 to 64.
|
6088 |
|
|
|
6089 |
|
|
??? Verify whether the above is the right approach.
|
6090 |
|
|
|
6091 |
|
|
??? Also, the FP may be eliminated to the SP, so perhaps that
|
6092 |
|
|
needs special handling also.
|
6093 |
|
|
|
6094 |
|
|
??? Look at how the mips16 port solves this problem. It probably uses
|
6095 |
|
|
better ways to solve some of these problems.
|
6096 |
|
|
|
6097 |
|
|
Although it is not incorrect, we don't accept QImode and HImode
|
6098 |
|
|
addresses based on the frame pointer or arg pointer until the
|
6099 |
|
|
reload pass starts. This is so that eliminating such addresses
|
6100 |
|
|
into stack based ones won't produce impossible code. */
|
6101 |
|
|
int
|
6102 |
|
|
thumb1_legitimate_address_p (enum machine_mode mode, rtx x, int strict_p)
|
6103 |
|
|
{
|
6104 |
|
|
/* ??? Not clear if this is right. Experiment. */
|
6105 |
|
|
if (GET_MODE_SIZE (mode) < 4
|
6106 |
|
|
&& !(reload_in_progress || reload_completed)
|
6107 |
|
|
&& (reg_mentioned_p (frame_pointer_rtx, x)
|
6108 |
|
|
|| reg_mentioned_p (arg_pointer_rtx, x)
|
6109 |
|
|
|| reg_mentioned_p (virtual_incoming_args_rtx, x)
|
6110 |
|
|
|| reg_mentioned_p (virtual_outgoing_args_rtx, x)
|
6111 |
|
|
|| reg_mentioned_p (virtual_stack_dynamic_rtx, x)
|
6112 |
|
|
|| reg_mentioned_p (virtual_stack_vars_rtx, x)))
|
6113 |
|
|
return 0;
|
6114 |
|
|
|
6115 |
|
|
/* Accept any base register. SP only in SImode or larger. */
|
6116 |
|
|
else if (thumb1_base_register_rtx_p (x, mode, strict_p))
|
6117 |
|
|
return 1;
|
6118 |
|
|
|
6119 |
|
|
/* This is PC relative data before arm_reorg runs. */
|
6120 |
|
|
else if (GET_MODE_SIZE (mode) >= 4 && CONSTANT_P (x)
|
6121 |
|
|
&& GET_CODE (x) == SYMBOL_REF
|
6122 |
|
|
&& CONSTANT_POOL_ADDRESS_P (x) && !flag_pic)
|
6123 |
|
|
return 1;
|
6124 |
|
|
|
6125 |
|
|
/* This is PC relative data after arm_reorg runs. */
|
6126 |
|
|
else if ((GET_MODE_SIZE (mode) >= 4 || mode == HFmode)
|
6127 |
|
|
&& reload_completed
|
6128 |
|
|
&& (GET_CODE (x) == LABEL_REF
|
6129 |
|
|
|| (GET_CODE (x) == CONST
|
6130 |
|
|
&& GET_CODE (XEXP (x, 0)) == PLUS
|
6131 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
|
6132 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
|
6133 |
|
|
return 1;
|
6134 |
|
|
|
6135 |
|
|
/* Post-inc indexing only supported for SImode and larger. */
|
6136 |
|
|
else if (GET_CODE (x) == POST_INC && GET_MODE_SIZE (mode) >= 4
|
6137 |
|
|
&& thumb1_index_register_rtx_p (XEXP (x, 0), strict_p))
|
6138 |
|
|
return 1;
|
6139 |
|
|
|
6140 |
|
|
else if (GET_CODE (x) == PLUS)
|
6141 |
|
|
{
|
6142 |
|
|
/* REG+REG address can be any two index registers. */
|
6143 |
|
|
/* We disallow FRAME+REG addressing since we know that FRAME
|
6144 |
|
|
will be replaced with STACK, and SP relative addressing only
|
6145 |
|
|
permits SP+OFFSET. */
|
6146 |
|
|
if (GET_MODE_SIZE (mode) <= 4
|
6147 |
|
|
&& XEXP (x, 0) != frame_pointer_rtx
|
6148 |
|
|
&& XEXP (x, 1) != frame_pointer_rtx
|
6149 |
|
|
&& thumb1_index_register_rtx_p (XEXP (x, 0), strict_p)
|
6150 |
|
|
&& (thumb1_index_register_rtx_p (XEXP (x, 1), strict_p)
|
6151 |
|
|
|| (!strict_p && will_be_in_index_register (XEXP (x, 1)))))
|
6152 |
|
|
return 1;
|
6153 |
|
|
|
6154 |
|
|
/* REG+const has 5-7 bit offset for non-SP registers. */
|
6155 |
|
|
else if ((thumb1_index_register_rtx_p (XEXP (x, 0), strict_p)
|
6156 |
|
|
|| XEXP (x, 0) == arg_pointer_rtx)
|
6157 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
6158 |
|
|
&& thumb_legitimate_offset_p (mode, INTVAL (XEXP (x, 1))))
|
6159 |
|
|
return 1;
|
6160 |
|
|
|
6161 |
|
|
/* REG+const has 10-bit offset for SP, but only SImode and
|
6162 |
|
|
larger is supported. */
|
6163 |
|
|
/* ??? Should probably check for DI/DFmode overflow here
|
6164 |
|
|
just like GO_IF_LEGITIMATE_OFFSET does. */
|
6165 |
|
|
else if (GET_CODE (XEXP (x, 0)) == REG
|
6166 |
|
|
&& REGNO (XEXP (x, 0)) == STACK_POINTER_REGNUM
|
6167 |
|
|
&& GET_MODE_SIZE (mode) >= 4
|
6168 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
6169 |
|
|
&& INTVAL (XEXP (x, 1)) >= 0
|
6170 |
|
|
&& INTVAL (XEXP (x, 1)) + GET_MODE_SIZE (mode) <= 1024
|
6171 |
|
|
&& (INTVAL (XEXP (x, 1)) & 3) == 0)
|
6172 |
|
|
return 1;
|
6173 |
|
|
|
6174 |
|
|
else if (GET_CODE (XEXP (x, 0)) == REG
|
6175 |
|
|
&& (REGNO (XEXP (x, 0)) == FRAME_POINTER_REGNUM
|
6176 |
|
|
|| REGNO (XEXP (x, 0)) == ARG_POINTER_REGNUM
|
6177 |
|
|
|| (REGNO (XEXP (x, 0)) >= FIRST_VIRTUAL_REGISTER
|
6178 |
|
|
&& REGNO (XEXP (x, 0))
|
6179 |
|
|
<= LAST_VIRTUAL_POINTER_REGISTER))
|
6180 |
|
|
&& GET_MODE_SIZE (mode) >= 4
|
6181 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
6182 |
|
|
&& (INTVAL (XEXP (x, 1)) & 3) == 0)
|
6183 |
|
|
return 1;
|
6184 |
|
|
}
|
6185 |
|
|
|
6186 |
|
|
else if (GET_MODE_CLASS (mode) != MODE_FLOAT
|
6187 |
|
|
&& GET_MODE_SIZE (mode) == 4
|
6188 |
|
|
&& GET_CODE (x) == SYMBOL_REF
|
6189 |
|
|
&& CONSTANT_POOL_ADDRESS_P (x)
|
6190 |
|
|
&& ! (flag_pic
|
6191 |
|
|
&& symbol_mentioned_p (get_pool_constant (x))
|
6192 |
|
|
&& ! pcrel_constant_p (get_pool_constant (x))))
|
6193 |
|
|
return 1;
|
6194 |
|
|
|
6195 |
|
|
return 0;
|
6196 |
|
|
}
|
6197 |
|
|
|
6198 |
|
|
/* Return nonzero if VAL can be used as an offset in a Thumb-state address
|
6199 |
|
|
instruction of mode MODE. */
|
6200 |
|
|
int
|
6201 |
|
|
thumb_legitimate_offset_p (enum machine_mode mode, HOST_WIDE_INT val)
|
6202 |
|
|
{
|
6203 |
|
|
switch (GET_MODE_SIZE (mode))
|
6204 |
|
|
{
|
6205 |
|
|
case 1:
|
6206 |
|
|
return val >= 0 && val < 32;
|
6207 |
|
|
|
6208 |
|
|
case 2:
|
6209 |
|
|
return val >= 0 && val < 64 && (val & 1) == 0;
|
6210 |
|
|
|
6211 |
|
|
default:
|
6212 |
|
|
return (val >= 0
|
6213 |
|
|
&& (val + GET_MODE_SIZE (mode)) <= 128
|
6214 |
|
|
&& (val & 3) == 0);
|
6215 |
|
|
}
|
6216 |
|
|
}
|
6217 |
|
|
|
6218 |
|
|
bool
|
6219 |
|
|
arm_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
|
6220 |
|
|
{
|
6221 |
|
|
if (TARGET_ARM)
|
6222 |
|
|
return arm_legitimate_address_outer_p (mode, x, SET, strict_p);
|
6223 |
|
|
else if (TARGET_THUMB2)
|
6224 |
|
|
return thumb2_legitimate_address_p (mode, x, strict_p);
|
6225 |
|
|
else /* if (TARGET_THUMB1) */
|
6226 |
|
|
return thumb1_legitimate_address_p (mode, x, strict_p);
|
6227 |
|
|
}
|
6228 |
|
|
|
6229 |
|
|
/* Build the SYMBOL_REF for __tls_get_addr. */
|
6230 |
|
|
|
6231 |
|
|
static GTY(()) rtx tls_get_addr_libfunc;
|
6232 |
|
|
|
6233 |
|
|
static rtx
|
6234 |
|
|
get_tls_get_addr (void)
|
6235 |
|
|
{
|
6236 |
|
|
if (!tls_get_addr_libfunc)
|
6237 |
|
|
tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
|
6238 |
|
|
return tls_get_addr_libfunc;
|
6239 |
|
|
}
|
6240 |
|
|
|
6241 |
|
|
static rtx
|
6242 |
|
|
arm_load_tp (rtx target)
|
6243 |
|
|
{
|
6244 |
|
|
if (!target)
|
6245 |
|
|
target = gen_reg_rtx (SImode);
|
6246 |
|
|
|
6247 |
|
|
if (TARGET_HARD_TP)
|
6248 |
|
|
{
|
6249 |
|
|
/* Can return in any reg. */
|
6250 |
|
|
emit_insn (gen_load_tp_hard (target));
|
6251 |
|
|
}
|
6252 |
|
|
else
|
6253 |
|
|
{
|
6254 |
|
|
/* Always returned in r0. Immediately copy the result into a pseudo,
|
6255 |
|
|
otherwise other uses of r0 (e.g. setting up function arguments) may
|
6256 |
|
|
clobber the value. */
|
6257 |
|
|
|
6258 |
|
|
rtx tmp;
|
6259 |
|
|
|
6260 |
|
|
emit_insn (gen_load_tp_soft ());
|
6261 |
|
|
|
6262 |
|
|
tmp = gen_rtx_REG (SImode, 0);
|
6263 |
|
|
emit_move_insn (target, tmp);
|
6264 |
|
|
}
|
6265 |
|
|
return target;
|
6266 |
|
|
}
|
6267 |
|
|
|
6268 |
|
|
static rtx
|
6269 |
|
|
load_tls_operand (rtx x, rtx reg)
|
6270 |
|
|
{
|
6271 |
|
|
rtx tmp;
|
6272 |
|
|
|
6273 |
|
|
if (reg == NULL_RTX)
|
6274 |
|
|
reg = gen_reg_rtx (SImode);
|
6275 |
|
|
|
6276 |
|
|
tmp = gen_rtx_CONST (SImode, x);
|
6277 |
|
|
|
6278 |
|
|
emit_move_insn (reg, tmp);
|
6279 |
|
|
|
6280 |
|
|
return reg;
|
6281 |
|
|
}
|
6282 |
|
|
|
6283 |
|
|
static rtx
|
6284 |
|
|
arm_call_tls_get_addr (rtx x, rtx reg, rtx *valuep, int reloc)
|
6285 |
|
|
{
|
6286 |
|
|
rtx insns, label, labelno, sum;
|
6287 |
|
|
|
6288 |
|
|
gcc_assert (reloc != TLS_DESCSEQ);
|
6289 |
|
|
start_sequence ();
|
6290 |
|
|
|
6291 |
|
|
labelno = GEN_INT (pic_labelno++);
|
6292 |
|
|
label = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
|
6293 |
|
|
label = gen_rtx_CONST (VOIDmode, label);
|
6294 |
|
|
|
6295 |
|
|
sum = gen_rtx_UNSPEC (Pmode,
|
6296 |
|
|
gen_rtvec (4, x, GEN_INT (reloc), label,
|
6297 |
|
|
GEN_INT (TARGET_ARM ? 8 : 4)),
|
6298 |
|
|
UNSPEC_TLS);
|
6299 |
|
|
reg = load_tls_operand (sum, reg);
|
6300 |
|
|
|
6301 |
|
|
if (TARGET_ARM)
|
6302 |
|
|
emit_insn (gen_pic_add_dot_plus_eight (reg, reg, labelno));
|
6303 |
|
|
else
|
6304 |
|
|
emit_insn (gen_pic_add_dot_plus_four (reg, reg, labelno));
|
6305 |
|
|
|
6306 |
|
|
*valuep = emit_library_call_value (get_tls_get_addr (), NULL_RTX,
|
6307 |
|
|
LCT_PURE, /* LCT_CONST? */
|
6308 |
|
|
Pmode, 1, reg, Pmode);
|
6309 |
|
|
|
6310 |
|
|
insns = get_insns ();
|
6311 |
|
|
end_sequence ();
|
6312 |
|
|
|
6313 |
|
|
return insns;
|
6314 |
|
|
}
|
6315 |
|
|
|
6316 |
|
|
static rtx
|
6317 |
|
|
arm_tls_descseq_addr (rtx x, rtx reg)
|
6318 |
|
|
{
|
6319 |
|
|
rtx labelno = GEN_INT (pic_labelno++);
|
6320 |
|
|
rtx label = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
|
6321 |
|
|
rtx sum = gen_rtx_UNSPEC (Pmode,
|
6322 |
|
|
gen_rtvec (4, x, GEN_INT (TLS_DESCSEQ),
|
6323 |
|
|
gen_rtx_CONST (VOIDmode, label),
|
6324 |
|
|
GEN_INT (!TARGET_ARM)),
|
6325 |
|
|
UNSPEC_TLS);
|
6326 |
|
|
rtx reg0 = load_tls_operand (sum, gen_rtx_REG (SImode, 0));
|
6327 |
|
|
|
6328 |
|
|
emit_insn (gen_tlscall (x, labelno));
|
6329 |
|
|
if (!reg)
|
6330 |
|
|
reg = gen_reg_rtx (SImode);
|
6331 |
|
|
else
|
6332 |
|
|
gcc_assert (REGNO (reg) != 0);
|
6333 |
|
|
|
6334 |
|
|
emit_move_insn (reg, reg0);
|
6335 |
|
|
|
6336 |
|
|
return reg;
|
6337 |
|
|
}
|
6338 |
|
|
|
6339 |
|
|
rtx
|
6340 |
|
|
legitimize_tls_address (rtx x, rtx reg)
|
6341 |
|
|
{
|
6342 |
|
|
rtx dest, tp, label, labelno, sum, insns, ret, eqv, addend;
|
6343 |
|
|
unsigned int model = SYMBOL_REF_TLS_MODEL (x);
|
6344 |
|
|
|
6345 |
|
|
switch (model)
|
6346 |
|
|
{
|
6347 |
|
|
case TLS_MODEL_GLOBAL_DYNAMIC:
|
6348 |
|
|
if (TARGET_GNU2_TLS)
|
6349 |
|
|
{
|
6350 |
|
|
reg = arm_tls_descseq_addr (x, reg);
|
6351 |
|
|
|
6352 |
|
|
tp = arm_load_tp (NULL_RTX);
|
6353 |
|
|
|
6354 |
|
|
dest = gen_rtx_PLUS (Pmode, tp, reg);
|
6355 |
|
|
}
|
6356 |
|
|
else
|
6357 |
|
|
{
|
6358 |
|
|
/* Original scheme */
|
6359 |
|
|
insns = arm_call_tls_get_addr (x, reg, &ret, TLS_GD32);
|
6360 |
|
|
dest = gen_reg_rtx (Pmode);
|
6361 |
|
|
emit_libcall_block (insns, dest, ret, x);
|
6362 |
|
|
}
|
6363 |
|
|
return dest;
|
6364 |
|
|
|
6365 |
|
|
case TLS_MODEL_LOCAL_DYNAMIC:
|
6366 |
|
|
if (TARGET_GNU2_TLS)
|
6367 |
|
|
{
|
6368 |
|
|
reg = arm_tls_descseq_addr (x, reg);
|
6369 |
|
|
|
6370 |
|
|
tp = arm_load_tp (NULL_RTX);
|
6371 |
|
|
|
6372 |
|
|
dest = gen_rtx_PLUS (Pmode, tp, reg);
|
6373 |
|
|
}
|
6374 |
|
|
else
|
6375 |
|
|
{
|
6376 |
|
|
insns = arm_call_tls_get_addr (x, reg, &ret, TLS_LDM32);
|
6377 |
|
|
|
6378 |
|
|
/* Attach a unique REG_EQUIV, to allow the RTL optimizers to
|
6379 |
|
|
share the LDM result with other LD model accesses. */
|
6380 |
|
|
eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx),
|
6381 |
|
|
UNSPEC_TLS);
|
6382 |
|
|
dest = gen_reg_rtx (Pmode);
|
6383 |
|
|
emit_libcall_block (insns, dest, ret, eqv);
|
6384 |
|
|
|
6385 |
|
|
/* Load the addend. */
|
6386 |
|
|
addend = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x,
|
6387 |
|
|
GEN_INT (TLS_LDO32)),
|
6388 |
|
|
UNSPEC_TLS);
|
6389 |
|
|
addend = force_reg (SImode, gen_rtx_CONST (SImode, addend));
|
6390 |
|
|
dest = gen_rtx_PLUS (Pmode, dest, addend);
|
6391 |
|
|
}
|
6392 |
|
|
return dest;
|
6393 |
|
|
|
6394 |
|
|
case TLS_MODEL_INITIAL_EXEC:
|
6395 |
|
|
labelno = GEN_INT (pic_labelno++);
|
6396 |
|
|
label = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, labelno), UNSPEC_PIC_LABEL);
|
6397 |
|
|
label = gen_rtx_CONST (VOIDmode, label);
|
6398 |
|
|
sum = gen_rtx_UNSPEC (Pmode,
|
6399 |
|
|
gen_rtvec (4, x, GEN_INT (TLS_IE32), label,
|
6400 |
|
|
GEN_INT (TARGET_ARM ? 8 : 4)),
|
6401 |
|
|
UNSPEC_TLS);
|
6402 |
|
|
reg = load_tls_operand (sum, reg);
|
6403 |
|
|
|
6404 |
|
|
if (TARGET_ARM)
|
6405 |
|
|
emit_insn (gen_tls_load_dot_plus_eight (reg, reg, labelno));
|
6406 |
|
|
else if (TARGET_THUMB2)
|
6407 |
|
|
emit_insn (gen_tls_load_dot_plus_four (reg, NULL, reg, labelno));
|
6408 |
|
|
else
|
6409 |
|
|
{
|
6410 |
|
|
emit_insn (gen_pic_add_dot_plus_four (reg, reg, labelno));
|
6411 |
|
|
emit_move_insn (reg, gen_const_mem (SImode, reg));
|
6412 |
|
|
}
|
6413 |
|
|
|
6414 |
|
|
tp = arm_load_tp (NULL_RTX);
|
6415 |
|
|
|
6416 |
|
|
return gen_rtx_PLUS (Pmode, tp, reg);
|
6417 |
|
|
|
6418 |
|
|
case TLS_MODEL_LOCAL_EXEC:
|
6419 |
|
|
tp = arm_load_tp (NULL_RTX);
|
6420 |
|
|
|
6421 |
|
|
reg = gen_rtx_UNSPEC (Pmode,
|
6422 |
|
|
gen_rtvec (2, x, GEN_INT (TLS_LE32)),
|
6423 |
|
|
UNSPEC_TLS);
|
6424 |
|
|
reg = force_reg (SImode, gen_rtx_CONST (SImode, reg));
|
6425 |
|
|
|
6426 |
|
|
return gen_rtx_PLUS (Pmode, tp, reg);
|
6427 |
|
|
|
6428 |
|
|
default:
|
6429 |
|
|
abort ();
|
6430 |
|
|
}
|
6431 |
|
|
}
|
6432 |
|
|
|
6433 |
|
|
/* Try machine-dependent ways of modifying an illegitimate address
|
6434 |
|
|
to be legitimate. If we find one, return the new, valid address. */
|
6435 |
|
|
rtx
|
6436 |
|
|
arm_legitimize_address (rtx x, rtx orig_x, enum machine_mode mode)
|
6437 |
|
|
{
|
6438 |
|
|
if (!TARGET_ARM)
|
6439 |
|
|
{
|
6440 |
|
|
/* TODO: legitimize_address for Thumb2. */
|
6441 |
|
|
if (TARGET_THUMB2)
|
6442 |
|
|
return x;
|
6443 |
|
|
return thumb_legitimize_address (x, orig_x, mode);
|
6444 |
|
|
}
|
6445 |
|
|
|
6446 |
|
|
if (arm_tls_symbol_p (x))
|
6447 |
|
|
return legitimize_tls_address (x, NULL_RTX);
|
6448 |
|
|
|
6449 |
|
|
if (GET_CODE (x) == PLUS)
|
6450 |
|
|
{
|
6451 |
|
|
rtx xop0 = XEXP (x, 0);
|
6452 |
|
|
rtx xop1 = XEXP (x, 1);
|
6453 |
|
|
|
6454 |
|
|
if (CONSTANT_P (xop0) && !symbol_mentioned_p (xop0))
|
6455 |
|
|
xop0 = force_reg (SImode, xop0);
|
6456 |
|
|
|
6457 |
|
|
if (CONSTANT_P (xop1) && !symbol_mentioned_p (xop1))
|
6458 |
|
|
xop1 = force_reg (SImode, xop1);
|
6459 |
|
|
|
6460 |
|
|
if (ARM_BASE_REGISTER_RTX_P (xop0)
|
6461 |
|
|
&& GET_CODE (xop1) == CONST_INT)
|
6462 |
|
|
{
|
6463 |
|
|
HOST_WIDE_INT n, low_n;
|
6464 |
|
|
rtx base_reg, val;
|
6465 |
|
|
n = INTVAL (xop1);
|
6466 |
|
|
|
6467 |
|
|
/* VFP addressing modes actually allow greater offsets, but for
|
6468 |
|
|
now we just stick with the lowest common denominator. */
|
6469 |
|
|
if (mode == DImode
|
6470 |
|
|
|| ((TARGET_SOFT_FLOAT || TARGET_VFP) && mode == DFmode))
|
6471 |
|
|
{
|
6472 |
|
|
low_n = n & 0x0f;
|
6473 |
|
|
n &= ~0x0f;
|
6474 |
|
|
if (low_n > 4)
|
6475 |
|
|
{
|
6476 |
|
|
n += 16;
|
6477 |
|
|
low_n -= 16;
|
6478 |
|
|
}
|
6479 |
|
|
}
|
6480 |
|
|
else
|
6481 |
|
|
{
|
6482 |
|
|
low_n = ((mode) == TImode ? 0
|
6483 |
|
|
: n >= 0 ? (n & 0xfff) : -((-n) & 0xfff));
|
6484 |
|
|
n -= low_n;
|
6485 |
|
|
}
|
6486 |
|
|
|
6487 |
|
|
base_reg = gen_reg_rtx (SImode);
|
6488 |
|
|
val = force_operand (plus_constant (xop0, n), NULL_RTX);
|
6489 |
|
|
emit_move_insn (base_reg, val);
|
6490 |
|
|
x = plus_constant (base_reg, low_n);
|
6491 |
|
|
}
|
6492 |
|
|
else if (xop0 != XEXP (x, 0) || xop1 != XEXP (x, 1))
|
6493 |
|
|
x = gen_rtx_PLUS (SImode, xop0, xop1);
|
6494 |
|
|
}
|
6495 |
|
|
|
6496 |
|
|
/* XXX We don't allow MINUS any more -- see comment in
|
6497 |
|
|
arm_legitimate_address_outer_p (). */
|
6498 |
|
|
else if (GET_CODE (x) == MINUS)
|
6499 |
|
|
{
|
6500 |
|
|
rtx xop0 = XEXP (x, 0);
|
6501 |
|
|
rtx xop1 = XEXP (x, 1);
|
6502 |
|
|
|
6503 |
|
|
if (CONSTANT_P (xop0))
|
6504 |
|
|
xop0 = force_reg (SImode, xop0);
|
6505 |
|
|
|
6506 |
|
|
if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1))
|
6507 |
|
|
xop1 = force_reg (SImode, xop1);
|
6508 |
|
|
|
6509 |
|
|
if (xop0 != XEXP (x, 0) || xop1 != XEXP (x, 1))
|
6510 |
|
|
x = gen_rtx_MINUS (SImode, xop0, xop1);
|
6511 |
|
|
}
|
6512 |
|
|
|
6513 |
|
|
/* Make sure to take full advantage of the pre-indexed addressing mode
|
6514 |
|
|
with absolute addresses which often allows for the base register to
|
6515 |
|
|
be factorized for multiple adjacent memory references, and it might
|
6516 |
|
|
even allows for the mini pool to be avoided entirely. */
|
6517 |
|
|
else if (GET_CODE (x) == CONST_INT && optimize > 0)
|
6518 |
|
|
{
|
6519 |
|
|
unsigned int bits;
|
6520 |
|
|
HOST_WIDE_INT mask, base, index;
|
6521 |
|
|
rtx base_reg;
|
6522 |
|
|
|
6523 |
|
|
/* ldr and ldrb can use a 12-bit index, ldrsb and the rest can only
|
6524 |
|
|
use a 8-bit index. So let's use a 12-bit index for SImode only and
|
6525 |
|
|
hope that arm_gen_constant will enable ldrb to use more bits. */
|
6526 |
|
|
bits = (mode == SImode) ? 12 : 8;
|
6527 |
|
|
mask = (1 << bits) - 1;
|
6528 |
|
|
base = INTVAL (x) & ~mask;
|
6529 |
|
|
index = INTVAL (x) & mask;
|
6530 |
|
|
if (bit_count (base & 0xffffffff) > (32 - bits)/2)
|
6531 |
|
|
{
|
6532 |
|
|
/* It'll most probably be more efficient to generate the base
|
6533 |
|
|
with more bits set and use a negative index instead. */
|
6534 |
|
|
base |= mask;
|
6535 |
|
|
index -= mask;
|
6536 |
|
|
}
|
6537 |
|
|
base_reg = force_reg (SImode, GEN_INT (base));
|
6538 |
|
|
x = plus_constant (base_reg, index);
|
6539 |
|
|
}
|
6540 |
|
|
|
6541 |
|
|
if (flag_pic)
|
6542 |
|
|
{
|
6543 |
|
|
/* We need to find and carefully transform any SYMBOL and LABEL
|
6544 |
|
|
references; so go back to the original address expression. */
|
6545 |
|
|
rtx new_x = legitimize_pic_address (orig_x, mode, NULL_RTX);
|
6546 |
|
|
|
6547 |
|
|
if (new_x != orig_x)
|
6548 |
|
|
x = new_x;
|
6549 |
|
|
}
|
6550 |
|
|
|
6551 |
|
|
return x;
|
6552 |
|
|
}
|
6553 |
|
|
|
6554 |
|
|
|
6555 |
|
|
/* Try machine-dependent ways of modifying an illegitimate Thumb address
|
6556 |
|
|
to be legitimate. If we find one, return the new, valid address. */
|
6557 |
|
|
rtx
|
6558 |
|
|
thumb_legitimize_address (rtx x, rtx orig_x, enum machine_mode mode)
|
6559 |
|
|
{
|
6560 |
|
|
if (arm_tls_symbol_p (x))
|
6561 |
|
|
return legitimize_tls_address (x, NULL_RTX);
|
6562 |
|
|
|
6563 |
|
|
if (GET_CODE (x) == PLUS
|
6564 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
6565 |
|
|
&& (INTVAL (XEXP (x, 1)) >= 32 * GET_MODE_SIZE (mode)
|
6566 |
|
|
|| INTVAL (XEXP (x, 1)) < 0))
|
6567 |
|
|
{
|
6568 |
|
|
rtx xop0 = XEXP (x, 0);
|
6569 |
|
|
rtx xop1 = XEXP (x, 1);
|
6570 |
|
|
HOST_WIDE_INT offset = INTVAL (xop1);
|
6571 |
|
|
|
6572 |
|
|
/* Try and fold the offset into a biasing of the base register and
|
6573 |
|
|
then offsetting that. Don't do this when optimizing for space
|
6574 |
|
|
since it can cause too many CSEs. */
|
6575 |
|
|
if (optimize_size && offset >= 0
|
6576 |
|
|
&& offset < 256 + 31 * GET_MODE_SIZE (mode))
|
6577 |
|
|
{
|
6578 |
|
|
HOST_WIDE_INT delta;
|
6579 |
|
|
|
6580 |
|
|
if (offset >= 256)
|
6581 |
|
|
delta = offset - (256 - GET_MODE_SIZE (mode));
|
6582 |
|
|
else if (offset < 32 * GET_MODE_SIZE (mode) + 8)
|
6583 |
|
|
delta = 31 * GET_MODE_SIZE (mode);
|
6584 |
|
|
else
|
6585 |
|
|
delta = offset & (~31 * GET_MODE_SIZE (mode));
|
6586 |
|
|
|
6587 |
|
|
xop0 = force_operand (plus_constant (xop0, offset - delta),
|
6588 |
|
|
NULL_RTX);
|
6589 |
|
|
x = plus_constant (xop0, delta);
|
6590 |
|
|
}
|
6591 |
|
|
else if (offset < 0 && offset > -256)
|
6592 |
|
|
/* Small negative offsets are best done with a subtract before the
|
6593 |
|
|
dereference, forcing these into a register normally takes two
|
6594 |
|
|
instructions. */
|
6595 |
|
|
x = force_operand (x, NULL_RTX);
|
6596 |
|
|
else
|
6597 |
|
|
{
|
6598 |
|
|
/* For the remaining cases, force the constant into a register. */
|
6599 |
|
|
xop1 = force_reg (SImode, xop1);
|
6600 |
|
|
x = gen_rtx_PLUS (SImode, xop0, xop1);
|
6601 |
|
|
}
|
6602 |
|
|
}
|
6603 |
|
|
else if (GET_CODE (x) == PLUS
|
6604 |
|
|
&& s_register_operand (XEXP (x, 1), SImode)
|
6605 |
|
|
&& !s_register_operand (XEXP (x, 0), SImode))
|
6606 |
|
|
{
|
6607 |
|
|
rtx xop0 = force_operand (XEXP (x, 0), NULL_RTX);
|
6608 |
|
|
|
6609 |
|
|
x = gen_rtx_PLUS (SImode, xop0, XEXP (x, 1));
|
6610 |
|
|
}
|
6611 |
|
|
|
6612 |
|
|
if (flag_pic)
|
6613 |
|
|
{
|
6614 |
|
|
/* We need to find and carefully transform any SYMBOL and LABEL
|
6615 |
|
|
references; so go back to the original address expression. */
|
6616 |
|
|
rtx new_x = legitimize_pic_address (orig_x, mode, NULL_RTX);
|
6617 |
|
|
|
6618 |
|
|
if (new_x != orig_x)
|
6619 |
|
|
x = new_x;
|
6620 |
|
|
}
|
6621 |
|
|
|
6622 |
|
|
return x;
|
6623 |
|
|
}
|
6624 |
|
|
|
6625 |
|
|
bool
|
6626 |
|
|
arm_legitimize_reload_address (rtx *p,
|
6627 |
|
|
enum machine_mode mode,
|
6628 |
|
|
int opnum, int type,
|
6629 |
|
|
int ind_levels ATTRIBUTE_UNUSED)
|
6630 |
|
|
{
|
6631 |
|
|
/* We must recognize output that we have already generated ourselves. */
|
6632 |
|
|
if (GET_CODE (*p) == PLUS
|
6633 |
|
|
&& GET_CODE (XEXP (*p, 0)) == PLUS
|
6634 |
|
|
&& GET_CODE (XEXP (XEXP (*p, 0), 0)) == REG
|
6635 |
|
|
&& GET_CODE (XEXP (XEXP (*p, 0), 1)) == CONST_INT
|
6636 |
|
|
&& GET_CODE (XEXP (*p, 1)) == CONST_INT)
|
6637 |
|
|
{
|
6638 |
|
|
push_reload (XEXP (*p, 0), NULL_RTX, &XEXP (*p, 0), NULL,
|
6639 |
|
|
MODE_BASE_REG_CLASS (mode), GET_MODE (*p),
|
6640 |
|
|
VOIDmode, 0, 0, opnum, (enum reload_type) type);
|
6641 |
|
|
return true;
|
6642 |
|
|
}
|
6643 |
|
|
|
6644 |
|
|
if (GET_CODE (*p) == PLUS
|
6645 |
|
|
&& GET_CODE (XEXP (*p, 0)) == REG
|
6646 |
|
|
&& ARM_REGNO_OK_FOR_BASE_P (REGNO (XEXP (*p, 0)))
|
6647 |
|
|
/* If the base register is equivalent to a constant, let the generic
|
6648 |
|
|
code handle it. Otherwise we will run into problems if a future
|
6649 |
|
|
reload pass decides to rematerialize the constant. */
|
6650 |
|
|
&& !reg_equiv_constant (ORIGINAL_REGNO (XEXP (*p, 0)))
|
6651 |
|
|
&& GET_CODE (XEXP (*p, 1)) == CONST_INT)
|
6652 |
|
|
{
|
6653 |
|
|
HOST_WIDE_INT val = INTVAL (XEXP (*p, 1));
|
6654 |
|
|
HOST_WIDE_INT low, high;
|
6655 |
|
|
|
6656 |
|
|
/* Detect coprocessor load/stores. */
|
6657 |
|
|
bool coproc_p = ((TARGET_HARD_FLOAT
|
6658 |
|
|
&& (TARGET_VFP || TARGET_FPA || TARGET_MAVERICK)
|
6659 |
|
|
&& (mode == SFmode || mode == DFmode
|
6660 |
|
|
|| (mode == DImode && TARGET_MAVERICK)))
|
6661 |
|
|
|| (TARGET_REALLY_IWMMXT
|
6662 |
|
|
&& VALID_IWMMXT_REG_MODE (mode))
|
6663 |
|
|
|| (TARGET_NEON
|
6664 |
|
|
&& (VALID_NEON_DREG_MODE (mode)
|
6665 |
|
|
|| VALID_NEON_QREG_MODE (mode))));
|
6666 |
|
|
|
6667 |
|
|
/* For some conditions, bail out when lower two bits are unaligned. */
|
6668 |
|
|
if ((val & 0x3) != 0
|
6669 |
|
|
/* Coprocessor load/store indexes are 8-bits + '00' appended. */
|
6670 |
|
|
&& (coproc_p
|
6671 |
|
|
/* For DI, and DF under soft-float: */
|
6672 |
|
|
|| ((mode == DImode || mode == DFmode)
|
6673 |
|
|
/* Without ldrd, we use stm/ldm, which does not
|
6674 |
|
|
fair well with unaligned bits. */
|
6675 |
|
|
&& (! TARGET_LDRD
|
6676 |
|
|
/* Thumb-2 ldrd/strd is [-1020,+1020] in steps of 4. */
|
6677 |
|
|
|| TARGET_THUMB2))))
|
6678 |
|
|
return false;
|
6679 |
|
|
|
6680 |
|
|
/* When breaking down a [reg+index] reload address into [(reg+high)+low],
|
6681 |
|
|
of which the (reg+high) gets turned into a reload add insn,
|
6682 |
|
|
we try to decompose the index into high/low values that can often
|
6683 |
|
|
also lead to better reload CSE.
|
6684 |
|
|
For example:
|
6685 |
|
|
ldr r0, [r2, #4100] // Offset too large
|
6686 |
|
|
ldr r1, [r2, #4104] // Offset too large
|
6687 |
|
|
|
6688 |
|
|
is best reloaded as:
|
6689 |
|
|
add t1, r2, #4096
|
6690 |
|
|
ldr r0, [t1, #4]
|
6691 |
|
|
add t2, r2, #4096
|
6692 |
|
|
ldr r1, [t2, #8]
|
6693 |
|
|
|
6694 |
|
|
which post-reload CSE can simplify in most cases to eliminate the
|
6695 |
|
|
second add instruction:
|
6696 |
|
|
add t1, r2, #4096
|
6697 |
|
|
ldr r0, [t1, #4]
|
6698 |
|
|
ldr r1, [t1, #8]
|
6699 |
|
|
|
6700 |
|
|
The idea here is that we want to split out the bits of the constant
|
6701 |
|
|
as a mask, rather than as subtracting the maximum offset that the
|
6702 |
|
|
respective type of load/store used can handle.
|
6703 |
|
|
|
6704 |
|
|
When encountering negative offsets, we can still utilize it even if
|
6705 |
|
|
the overall offset is positive; sometimes this may lead to an immediate
|
6706 |
|
|
that can be constructed with fewer instructions.
|
6707 |
|
|
For example:
|
6708 |
|
|
ldr r0, [r2, #0x3FFFFC]
|
6709 |
|
|
|
6710 |
|
|
This is best reloaded as:
|
6711 |
|
|
add t1, r2, #0x400000
|
6712 |
|
|
ldr r0, [t1, #-4]
|
6713 |
|
|
|
6714 |
|
|
The trick for spotting this for a load insn with N bits of offset
|
6715 |
|
|
(i.e. bits N-1:0) is to look at bit N; if it is set, then chose a
|
6716 |
|
|
negative offset that is going to make bit N and all the bits below
|
6717 |
|
|
it become zero in the remainder part.
|
6718 |
|
|
|
6719 |
|
|
The SIGN_MAG_LOW_ADDR_BITS macro below implements this, with respect
|
6720 |
|
|
to sign-magnitude addressing (i.e. separate +- bit, or 1's complement),
|
6721 |
|
|
used in most cases of ARM load/store instructions. */
|
6722 |
|
|
|
6723 |
|
|
#define SIGN_MAG_LOW_ADDR_BITS(VAL, N) \
|
6724 |
|
|
(((VAL) & ((1 << (N)) - 1)) \
|
6725 |
|
|
? (((VAL) & ((1 << ((N) + 1)) - 1)) ^ (1 << (N))) - (1 << (N)) \
|
6726 |
|
|
: 0)
|
6727 |
|
|
|
6728 |
|
|
if (coproc_p)
|
6729 |
|
|
{
|
6730 |
|
|
low = SIGN_MAG_LOW_ADDR_BITS (val, 10);
|
6731 |
|
|
|
6732 |
|
|
/* NEON quad-word load/stores are made of two double-word accesses,
|
6733 |
|
|
so the valid index range is reduced by 8. Treat as 9-bit range if
|
6734 |
|
|
we go over it. */
|
6735 |
|
|
if (TARGET_NEON && VALID_NEON_QREG_MODE (mode) && low >= 1016)
|
6736 |
|
|
low = SIGN_MAG_LOW_ADDR_BITS (val, 9);
|
6737 |
|
|
}
|
6738 |
|
|
else if (GET_MODE_SIZE (mode) == 8)
|
6739 |
|
|
{
|
6740 |
|
|
if (TARGET_LDRD)
|
6741 |
|
|
low = (TARGET_THUMB2
|
6742 |
|
|
? SIGN_MAG_LOW_ADDR_BITS (val, 10)
|
6743 |
|
|
: SIGN_MAG_LOW_ADDR_BITS (val, 8));
|
6744 |
|
|
else
|
6745 |
|
|
/* For pre-ARMv5TE (without ldrd), we use ldm/stm(db/da/ib)
|
6746 |
|
|
to access doublewords. The supported load/store offsets are
|
6747 |
|
|
-8, -4, and 4, which we try to produce here. */
|
6748 |
|
|
low = ((val & 0xf) ^ 0x8) - 0x8;
|
6749 |
|
|
}
|
6750 |
|
|
else if (GET_MODE_SIZE (mode) < 8)
|
6751 |
|
|
{
|
6752 |
|
|
/* NEON element load/stores do not have an offset. */
|
6753 |
|
|
if (TARGET_NEON_FP16 && mode == HFmode)
|
6754 |
|
|
return false;
|
6755 |
|
|
|
6756 |
|
|
if (TARGET_THUMB2)
|
6757 |
|
|
{
|
6758 |
|
|
/* Thumb-2 has an asymmetrical index range of (-256,4096).
|
6759 |
|
|
Try the wider 12-bit range first, and re-try if the result
|
6760 |
|
|
is out of range. */
|
6761 |
|
|
low = SIGN_MAG_LOW_ADDR_BITS (val, 12);
|
6762 |
|
|
if (low < -255)
|
6763 |
|
|
low = SIGN_MAG_LOW_ADDR_BITS (val, 8);
|
6764 |
|
|
}
|
6765 |
|
|
else
|
6766 |
|
|
{
|
6767 |
|
|
if (mode == HImode || mode == HFmode)
|
6768 |
|
|
{
|
6769 |
|
|
if (arm_arch4)
|
6770 |
|
|
low = SIGN_MAG_LOW_ADDR_BITS (val, 8);
|
6771 |
|
|
else
|
6772 |
|
|
{
|
6773 |
|
|
/* The storehi/movhi_bytes fallbacks can use only
|
6774 |
|
|
[-4094,+4094] of the full ldrb/strb index range. */
|
6775 |
|
|
low = SIGN_MAG_LOW_ADDR_BITS (val, 12);
|
6776 |
|
|
if (low == 4095 || low == -4095)
|
6777 |
|
|
return false;
|
6778 |
|
|
}
|
6779 |
|
|
}
|
6780 |
|
|
else
|
6781 |
|
|
low = SIGN_MAG_LOW_ADDR_BITS (val, 12);
|
6782 |
|
|
}
|
6783 |
|
|
}
|
6784 |
|
|
else
|
6785 |
|
|
return false;
|
6786 |
|
|
|
6787 |
|
|
high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff)
|
6788 |
|
|
^ (unsigned HOST_WIDE_INT) 0x80000000)
|
6789 |
|
|
- (unsigned HOST_WIDE_INT) 0x80000000);
|
6790 |
|
|
/* Check for overflow or zero */
|
6791 |
|
|
if (low == 0 || high == 0 || (high + low != val))
|
6792 |
|
|
return false;
|
6793 |
|
|
|
6794 |
|
|
/* Reload the high part into a base reg; leave the low part
|
6795 |
|
|
in the mem. */
|
6796 |
|
|
*p = gen_rtx_PLUS (GET_MODE (*p),
|
6797 |
|
|
gen_rtx_PLUS (GET_MODE (*p), XEXP (*p, 0),
|
6798 |
|
|
GEN_INT (high)),
|
6799 |
|
|
GEN_INT (low));
|
6800 |
|
|
push_reload (XEXP (*p, 0), NULL_RTX, &XEXP (*p, 0), NULL,
|
6801 |
|
|
MODE_BASE_REG_CLASS (mode), GET_MODE (*p),
|
6802 |
|
|
VOIDmode, 0, 0, opnum, (enum reload_type) type);
|
6803 |
|
|
return true;
|
6804 |
|
|
}
|
6805 |
|
|
|
6806 |
|
|
return false;
|
6807 |
|
|
}
|
6808 |
|
|
|
6809 |
|
|
rtx
|
6810 |
|
|
thumb_legitimize_reload_address (rtx *x_p,
|
6811 |
|
|
enum machine_mode mode,
|
6812 |
|
|
int opnum, int type,
|
6813 |
|
|
int ind_levels ATTRIBUTE_UNUSED)
|
6814 |
|
|
{
|
6815 |
|
|
rtx x = *x_p;
|
6816 |
|
|
|
6817 |
|
|
if (GET_CODE (x) == PLUS
|
6818 |
|
|
&& GET_MODE_SIZE (mode) < 4
|
6819 |
|
|
&& REG_P (XEXP (x, 0))
|
6820 |
|
|
&& XEXP (x, 0) == stack_pointer_rtx
|
6821 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
6822 |
|
|
&& !thumb_legitimate_offset_p (mode, INTVAL (XEXP (x, 1))))
|
6823 |
|
|
{
|
6824 |
|
|
rtx orig_x = x;
|
6825 |
|
|
|
6826 |
|
|
x = copy_rtx (x);
|
6827 |
|
|
push_reload (orig_x, NULL_RTX, x_p, NULL, MODE_BASE_REG_CLASS (mode),
|
6828 |
|
|
Pmode, VOIDmode, 0, 0, opnum, (enum reload_type) type);
|
6829 |
|
|
return x;
|
6830 |
|
|
}
|
6831 |
|
|
|
6832 |
|
|
/* If both registers are hi-regs, then it's better to reload the
|
6833 |
|
|
entire expression rather than each register individually. That
|
6834 |
|
|
only requires one reload register rather than two. */
|
6835 |
|
|
if (GET_CODE (x) == PLUS
|
6836 |
|
|
&& REG_P (XEXP (x, 0))
|
6837 |
|
|
&& REG_P (XEXP (x, 1))
|
6838 |
|
|
&& !REG_MODE_OK_FOR_REG_BASE_P (XEXP (x, 0), mode)
|
6839 |
|
|
&& !REG_MODE_OK_FOR_REG_BASE_P (XEXP (x, 1), mode))
|
6840 |
|
|
{
|
6841 |
|
|
rtx orig_x = x;
|
6842 |
|
|
|
6843 |
|
|
x = copy_rtx (x);
|
6844 |
|
|
push_reload (orig_x, NULL_RTX, x_p, NULL, MODE_BASE_REG_CLASS (mode),
|
6845 |
|
|
Pmode, VOIDmode, 0, 0, opnum, (enum reload_type) type);
|
6846 |
|
|
return x;
|
6847 |
|
|
}
|
6848 |
|
|
|
6849 |
|
|
return NULL;
|
6850 |
|
|
}
|
6851 |
|
|
|
6852 |
|
|
/* Test for various thread-local symbols. */
|
6853 |
|
|
|
6854 |
|
|
/* Return TRUE if X is a thread-local symbol. */
|
6855 |
|
|
|
6856 |
|
|
static bool
|
6857 |
|
|
arm_tls_symbol_p (rtx x)
|
6858 |
|
|
{
|
6859 |
|
|
if (! TARGET_HAVE_TLS)
|
6860 |
|
|
return false;
|
6861 |
|
|
|
6862 |
|
|
if (GET_CODE (x) != SYMBOL_REF)
|
6863 |
|
|
return false;
|
6864 |
|
|
|
6865 |
|
|
return SYMBOL_REF_TLS_MODEL (x) != 0;
|
6866 |
|
|
}
|
6867 |
|
|
|
6868 |
|
|
/* Helper for arm_tls_referenced_p. */
|
6869 |
|
|
|
6870 |
|
|
static int
|
6871 |
|
|
arm_tls_operand_p_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
|
6872 |
|
|
{
|
6873 |
|
|
if (GET_CODE (*x) == SYMBOL_REF)
|
6874 |
|
|
return SYMBOL_REF_TLS_MODEL (*x) != 0;
|
6875 |
|
|
|
6876 |
|
|
/* Don't recurse into UNSPEC_TLS looking for TLS symbols; these are
|
6877 |
|
|
TLS offsets, not real symbol references. */
|
6878 |
|
|
if (GET_CODE (*x) == UNSPEC
|
6879 |
|
|
&& XINT (*x, 1) == UNSPEC_TLS)
|
6880 |
|
|
return -1;
|
6881 |
|
|
|
6882 |
|
|
return 0;
|
6883 |
|
|
}
|
6884 |
|
|
|
6885 |
|
|
/* Return TRUE if X contains any TLS symbol references. */
|
6886 |
|
|
|
6887 |
|
|
bool
|
6888 |
|
|
arm_tls_referenced_p (rtx x)
|
6889 |
|
|
{
|
6890 |
|
|
if (! TARGET_HAVE_TLS)
|
6891 |
|
|
return false;
|
6892 |
|
|
|
6893 |
|
|
return for_each_rtx (&x, arm_tls_operand_p_1, NULL);
|
6894 |
|
|
}
|
6895 |
|
|
|
6896 |
|
|
/* Implement TARGET_LEGITIMATE_CONSTANT_P.
|
6897 |
|
|
|
6898 |
|
|
On the ARM, allow any integer (invalid ones are removed later by insn
|
6899 |
|
|
patterns), nice doubles and symbol_refs which refer to the function's
|
6900 |
|
|
constant pool XXX.
|
6901 |
|
|
|
6902 |
|
|
When generating pic allow anything. */
|
6903 |
|
|
|
6904 |
|
|
static bool
|
6905 |
|
|
arm_legitimate_constant_p_1 (enum machine_mode mode, rtx x)
|
6906 |
|
|
{
|
6907 |
|
|
/* At present, we have no support for Neon structure constants, so forbid
|
6908 |
|
|
them here. It might be possible to handle simple cases like 0 and -1
|
6909 |
|
|
in future. */
|
6910 |
|
|
if (TARGET_NEON && VALID_NEON_STRUCT_MODE (mode))
|
6911 |
|
|
return false;
|
6912 |
|
|
|
6913 |
|
|
return flag_pic || !label_mentioned_p (x);
|
6914 |
|
|
}
|
6915 |
|
|
|
6916 |
|
|
static bool
|
6917 |
|
|
thumb_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
|
6918 |
|
|
{
|
6919 |
|
|
return (GET_CODE (x) == CONST_INT
|
6920 |
|
|
|| GET_CODE (x) == CONST_DOUBLE
|
6921 |
|
|
|| CONSTANT_ADDRESS_P (x)
|
6922 |
|
|
|| flag_pic);
|
6923 |
|
|
}
|
6924 |
|
|
|
6925 |
|
|
static bool
|
6926 |
|
|
arm_legitimate_constant_p (enum machine_mode mode, rtx x)
|
6927 |
|
|
{
|
6928 |
|
|
return (!arm_cannot_force_const_mem (mode, x)
|
6929 |
|
|
&& (TARGET_32BIT
|
6930 |
|
|
? arm_legitimate_constant_p_1 (mode, x)
|
6931 |
|
|
: thumb_legitimate_constant_p (mode, x)));
|
6932 |
|
|
}
|
6933 |
|
|
|
6934 |
|
|
/* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
|
6935 |
|
|
|
6936 |
|
|
static bool
|
6937 |
|
|
arm_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
|
6938 |
|
|
{
|
6939 |
|
|
rtx base, offset;
|
6940 |
|
|
|
6941 |
|
|
if (ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
|
6942 |
|
|
{
|
6943 |
|
|
split_const (x, &base, &offset);
|
6944 |
|
|
if (GET_CODE (base) == SYMBOL_REF
|
6945 |
|
|
&& !offset_within_block_p (base, INTVAL (offset)))
|
6946 |
|
|
return true;
|
6947 |
|
|
}
|
6948 |
|
|
return arm_tls_referenced_p (x);
|
6949 |
|
|
}
|
6950 |
|
|
|
6951 |
|
|
#define REG_OR_SUBREG_REG(X) \
|
6952 |
|
|
(GET_CODE (X) == REG \
|
6953 |
|
|
|| (GET_CODE (X) == SUBREG && GET_CODE (SUBREG_REG (X)) == REG))
|
6954 |
|
|
|
6955 |
|
|
#define REG_OR_SUBREG_RTX(X) \
|
6956 |
|
|
(GET_CODE (X) == REG ? (X) : SUBREG_REG (X))
|
6957 |
|
|
|
6958 |
|
|
static inline int
|
6959 |
|
|
thumb1_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer)
|
6960 |
|
|
{
|
6961 |
|
|
enum machine_mode mode = GET_MODE (x);
|
6962 |
|
|
int total;
|
6963 |
|
|
|
6964 |
|
|
switch (code)
|
6965 |
|
|
{
|
6966 |
|
|
case ASHIFT:
|
6967 |
|
|
case ASHIFTRT:
|
6968 |
|
|
case LSHIFTRT:
|
6969 |
|
|
case ROTATERT:
|
6970 |
|
|
case PLUS:
|
6971 |
|
|
case MINUS:
|
6972 |
|
|
case COMPARE:
|
6973 |
|
|
case NEG:
|
6974 |
|
|
case NOT:
|
6975 |
|
|
return COSTS_N_INSNS (1);
|
6976 |
|
|
|
6977 |
|
|
case MULT:
|
6978 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
6979 |
|
|
{
|
6980 |
|
|
int cycles = 0;
|
6981 |
|
|
unsigned HOST_WIDE_INT i = INTVAL (XEXP (x, 1));
|
6982 |
|
|
|
6983 |
|
|
while (i)
|
6984 |
|
|
{
|
6985 |
|
|
i >>= 2;
|
6986 |
|
|
cycles++;
|
6987 |
|
|
}
|
6988 |
|
|
return COSTS_N_INSNS (2) + cycles;
|
6989 |
|
|
}
|
6990 |
|
|
return COSTS_N_INSNS (1) + 16;
|
6991 |
|
|
|
6992 |
|
|
case SET:
|
6993 |
|
|
return (COSTS_N_INSNS (1)
|
6994 |
|
|
+ 4 * ((GET_CODE (SET_SRC (x)) == MEM)
|
6995 |
|
|
+ GET_CODE (SET_DEST (x)) == MEM));
|
6996 |
|
|
|
6997 |
|
|
case CONST_INT:
|
6998 |
|
|
if (outer == SET)
|
6999 |
|
|
{
|
7000 |
|
|
if ((unsigned HOST_WIDE_INT) INTVAL (x) < 256)
|
7001 |
|
|
return 0;
|
7002 |
|
|
if (thumb_shiftable_const (INTVAL (x)))
|
7003 |
|
|
return COSTS_N_INSNS (2);
|
7004 |
|
|
return COSTS_N_INSNS (3);
|
7005 |
|
|
}
|
7006 |
|
|
else if ((outer == PLUS || outer == COMPARE)
|
7007 |
|
|
&& INTVAL (x) < 256 && INTVAL (x) > -256)
|
7008 |
|
|
return 0;
|
7009 |
|
|
else if ((outer == IOR || outer == XOR || outer == AND)
|
7010 |
|
|
&& INTVAL (x) < 256 && INTVAL (x) >= -256)
|
7011 |
|
|
return COSTS_N_INSNS (1);
|
7012 |
|
|
else if (outer == AND)
|
7013 |
|
|
{
|
7014 |
|
|
int i;
|
7015 |
|
|
/* This duplicates the tests in the andsi3 expander. */
|
7016 |
|
|
for (i = 9; i <= 31; i++)
|
7017 |
|
|
if ((((HOST_WIDE_INT) 1) << i) - 1 == INTVAL (x)
|
7018 |
|
|
|| (((HOST_WIDE_INT) 1) << i) - 1 == ~INTVAL (x))
|
7019 |
|
|
return COSTS_N_INSNS (2);
|
7020 |
|
|
}
|
7021 |
|
|
else if (outer == ASHIFT || outer == ASHIFTRT
|
7022 |
|
|
|| outer == LSHIFTRT)
|
7023 |
|
|
return 0;
|
7024 |
|
|
return COSTS_N_INSNS (2);
|
7025 |
|
|
|
7026 |
|
|
case CONST:
|
7027 |
|
|
case CONST_DOUBLE:
|
7028 |
|
|
case LABEL_REF:
|
7029 |
|
|
case SYMBOL_REF:
|
7030 |
|
|
return COSTS_N_INSNS (3);
|
7031 |
|
|
|
7032 |
|
|
case UDIV:
|
7033 |
|
|
case UMOD:
|
7034 |
|
|
case DIV:
|
7035 |
|
|
case MOD:
|
7036 |
|
|
return 100;
|
7037 |
|
|
|
7038 |
|
|
case TRUNCATE:
|
7039 |
|
|
return 99;
|
7040 |
|
|
|
7041 |
|
|
case AND:
|
7042 |
|
|
case XOR:
|
7043 |
|
|
case IOR:
|
7044 |
|
|
/* XXX guess. */
|
7045 |
|
|
return 8;
|
7046 |
|
|
|
7047 |
|
|
case MEM:
|
7048 |
|
|
/* XXX another guess. */
|
7049 |
|
|
/* Memory costs quite a lot for the first word, but subsequent words
|
7050 |
|
|
load at the equivalent of a single insn each. */
|
7051 |
|
|
return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
|
7052 |
|
|
+ ((GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
|
7053 |
|
|
? 4 : 0));
|
7054 |
|
|
|
7055 |
|
|
case IF_THEN_ELSE:
|
7056 |
|
|
/* XXX a guess. */
|
7057 |
|
|
if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
|
7058 |
|
|
return 14;
|
7059 |
|
|
return 2;
|
7060 |
|
|
|
7061 |
|
|
case SIGN_EXTEND:
|
7062 |
|
|
case ZERO_EXTEND:
|
7063 |
|
|
total = mode == DImode ? COSTS_N_INSNS (1) : 0;
|
7064 |
|
|
total += thumb1_rtx_costs (XEXP (x, 0), GET_CODE (XEXP (x, 0)), code);
|
7065 |
|
|
|
7066 |
|
|
if (mode == SImode)
|
7067 |
|
|
return total;
|
7068 |
|
|
|
7069 |
|
|
if (arm_arch6)
|
7070 |
|
|
return total + COSTS_N_INSNS (1);
|
7071 |
|
|
|
7072 |
|
|
/* Assume a two-shift sequence. Increase the cost slightly so
|
7073 |
|
|
we prefer actual shifts over an extend operation. */
|
7074 |
|
|
return total + 1 + COSTS_N_INSNS (2);
|
7075 |
|
|
|
7076 |
|
|
default:
|
7077 |
|
|
return 99;
|
7078 |
|
|
}
|
7079 |
|
|
}
|
7080 |
|
|
|
7081 |
|
|
static inline bool
|
7082 |
|
|
arm_rtx_costs_1 (rtx x, enum rtx_code outer, int* total, bool speed)
|
7083 |
|
|
{
|
7084 |
|
|
enum machine_mode mode = GET_MODE (x);
|
7085 |
|
|
enum rtx_code subcode;
|
7086 |
|
|
rtx operand;
|
7087 |
|
|
enum rtx_code code = GET_CODE (x);
|
7088 |
|
|
*total = 0;
|
7089 |
|
|
|
7090 |
|
|
switch (code)
|
7091 |
|
|
{
|
7092 |
|
|
case MEM:
|
7093 |
|
|
/* Memory costs quite a lot for the first word, but subsequent words
|
7094 |
|
|
load at the equivalent of a single insn each. */
|
7095 |
|
|
*total = COSTS_N_INSNS (2 + ARM_NUM_REGS (mode));
|
7096 |
|
|
return true;
|
7097 |
|
|
|
7098 |
|
|
case DIV:
|
7099 |
|
|
case MOD:
|
7100 |
|
|
case UDIV:
|
7101 |
|
|
case UMOD:
|
7102 |
|
|
if (TARGET_HARD_FLOAT && mode == SFmode)
|
7103 |
|
|
*total = COSTS_N_INSNS (2);
|
7104 |
|
|
else if (TARGET_HARD_FLOAT && mode == DFmode && !TARGET_VFP_SINGLE)
|
7105 |
|
|
*total = COSTS_N_INSNS (4);
|
7106 |
|
|
else
|
7107 |
|
|
*total = COSTS_N_INSNS (20);
|
7108 |
|
|
return false;
|
7109 |
|
|
|
7110 |
|
|
case ROTATE:
|
7111 |
|
|
if (GET_CODE (XEXP (x, 1)) == REG)
|
7112 |
|
|
*total = COSTS_N_INSNS (1); /* Need to subtract from 32 */
|
7113 |
|
|
else if (GET_CODE (XEXP (x, 1)) != CONST_INT)
|
7114 |
|
|
*total = rtx_cost (XEXP (x, 1), code, 1, speed);
|
7115 |
|
|
|
7116 |
|
|
/* Fall through */
|
7117 |
|
|
case ROTATERT:
|
7118 |
|
|
if (mode != SImode)
|
7119 |
|
|
{
|
7120 |
|
|
*total += COSTS_N_INSNS (4);
|
7121 |
|
|
return true;
|
7122 |
|
|
}
|
7123 |
|
|
|
7124 |
|
|
/* Fall through */
|
7125 |
|
|
case ASHIFT: case LSHIFTRT: case ASHIFTRT:
|
7126 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
7127 |
|
|
if (mode == DImode)
|
7128 |
|
|
{
|
7129 |
|
|
*total += COSTS_N_INSNS (3);
|
7130 |
|
|
return true;
|
7131 |
|
|
}
|
7132 |
|
|
|
7133 |
|
|
*total += COSTS_N_INSNS (1);
|
7134 |
|
|
/* Increase the cost of complex shifts because they aren't any faster,
|
7135 |
|
|
and reduce dual issue opportunities. */
|
7136 |
|
|
if (arm_tune_cortex_a9
|
7137 |
|
|
&& outer != SET && GET_CODE (XEXP (x, 1)) != CONST_INT)
|
7138 |
|
|
++*total;
|
7139 |
|
|
|
7140 |
|
|
return true;
|
7141 |
|
|
|
7142 |
|
|
case MINUS:
|
7143 |
|
|
if (mode == DImode)
|
7144 |
|
|
{
|
7145 |
|
|
*total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
|
7146 |
|
|
if (GET_CODE (XEXP (x, 0)) == CONST_INT
|
7147 |
|
|
&& const_ok_for_arm (INTVAL (XEXP (x, 0))))
|
7148 |
|
|
{
|
7149 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, speed);
|
7150 |
|
|
return true;
|
7151 |
|
|
}
|
7152 |
|
|
|
7153 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
7154 |
|
|
&& const_ok_for_arm (INTVAL (XEXP (x, 1))))
|
7155 |
|
|
{
|
7156 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
7157 |
|
|
return true;
|
7158 |
|
|
}
|
7159 |
|
|
|
7160 |
|
|
return false;
|
7161 |
|
|
}
|
7162 |
|
|
|
7163 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
7164 |
|
|
{
|
7165 |
|
|
if (TARGET_HARD_FLOAT
|
7166 |
|
|
&& (mode == SFmode
|
7167 |
|
|
|| (mode == DFmode && !TARGET_VFP_SINGLE)))
|
7168 |
|
|
{
|
7169 |
|
|
*total = COSTS_N_INSNS (1);
|
7170 |
|
|
if (GET_CODE (XEXP (x, 0)) == CONST_DOUBLE
|
7171 |
|
|
&& arm_const_double_rtx (XEXP (x, 0)))
|
7172 |
|
|
{
|
7173 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, speed);
|
7174 |
|
|
return true;
|
7175 |
|
|
}
|
7176 |
|
|
|
7177 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE
|
7178 |
|
|
&& arm_const_double_rtx (XEXP (x, 1)))
|
7179 |
|
|
{
|
7180 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
7181 |
|
|
return true;
|
7182 |
|
|
}
|
7183 |
|
|
|
7184 |
|
|
return false;
|
7185 |
|
|
}
|
7186 |
|
|
*total = COSTS_N_INSNS (20);
|
7187 |
|
|
return false;
|
7188 |
|
|
}
|
7189 |
|
|
|
7190 |
|
|
*total = COSTS_N_INSNS (1);
|
7191 |
|
|
if (GET_CODE (XEXP (x, 0)) == CONST_INT
|
7192 |
|
|
&& const_ok_for_arm (INTVAL (XEXP (x, 0))))
|
7193 |
|
|
{
|
7194 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, speed);
|
7195 |
|
|
return true;
|
7196 |
|
|
}
|
7197 |
|
|
|
7198 |
|
|
subcode = GET_CODE (XEXP (x, 1));
|
7199 |
|
|
if (subcode == ASHIFT || subcode == ASHIFTRT
|
7200 |
|
|
|| subcode == LSHIFTRT
|
7201 |
|
|
|| subcode == ROTATE || subcode == ROTATERT)
|
7202 |
|
|
{
|
7203 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
7204 |
|
|
*total += rtx_cost (XEXP (XEXP (x, 1), 0), subcode, 0, speed);
|
7205 |
|
|
return true;
|
7206 |
|
|
}
|
7207 |
|
|
|
7208 |
|
|
/* A shift as a part of RSB costs no more than RSB itself. */
|
7209 |
|
|
if (GET_CODE (XEXP (x, 0)) == MULT
|
7210 |
|
|
&& power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode))
|
7211 |
|
|
{
|
7212 |
|
|
*total += rtx_cost (XEXP (XEXP (x, 0), 0), code, 0, speed);
|
7213 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, speed);
|
7214 |
|
|
return true;
|
7215 |
|
|
}
|
7216 |
|
|
|
7217 |
|
|
if (subcode == MULT
|
7218 |
|
|
&& power_of_two_operand (XEXP (XEXP (x, 1), 1), SImode))
|
7219 |
|
|
{
|
7220 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
7221 |
|
|
*total += rtx_cost (XEXP (XEXP (x, 1), 0), subcode, 0, speed);
|
7222 |
|
|
return true;
|
7223 |
|
|
}
|
7224 |
|
|
|
7225 |
|
|
if (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == RTX_COMPARE
|
7226 |
|
|
|| GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == RTX_COMM_COMPARE)
|
7227 |
|
|
{
|
7228 |
|
|
*total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code, 0, speed);
|
7229 |
|
|
if (GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
|
7230 |
|
|
&& REGNO (XEXP (XEXP (x, 1), 0)) != CC_REGNUM)
|
7231 |
|
|
*total += COSTS_N_INSNS (1);
|
7232 |
|
|
|
7233 |
|
|
return true;
|
7234 |
|
|
}
|
7235 |
|
|
|
7236 |
|
|
/* Fall through */
|
7237 |
|
|
|
7238 |
|
|
case PLUS:
|
7239 |
|
|
if (code == PLUS && arm_arch6 && mode == SImode
|
7240 |
|
|
&& (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
|
7241 |
|
|
|| GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
|
7242 |
|
|
{
|
7243 |
|
|
*total = COSTS_N_INSNS (1);
|
7244 |
|
|
*total += rtx_cost (XEXP (XEXP (x, 0), 0), GET_CODE (XEXP (x, 0)),
|
7245 |
|
|
0, speed);
|
7246 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, speed);
|
7247 |
|
|
return true;
|
7248 |
|
|
}
|
7249 |
|
|
|
7250 |
|
|
/* MLA: All arguments must be registers. We filter out
|
7251 |
|
|
multiplication by a power of two, so that we fall down into
|
7252 |
|
|
the code below. */
|
7253 |
|
|
if (GET_CODE (XEXP (x, 0)) == MULT
|
7254 |
|
|
&& !power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode))
|
7255 |
|
|
{
|
7256 |
|
|
/* The cost comes from the cost of the multiply. */
|
7257 |
|
|
return false;
|
7258 |
|
|
}
|
7259 |
|
|
|
7260 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
7261 |
|
|
{
|
7262 |
|
|
if (TARGET_HARD_FLOAT
|
7263 |
|
|
&& (mode == SFmode
|
7264 |
|
|
|| (mode == DFmode && !TARGET_VFP_SINGLE)))
|
7265 |
|
|
{
|
7266 |
|
|
*total = COSTS_N_INSNS (1);
|
7267 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE
|
7268 |
|
|
&& arm_const_double_rtx (XEXP (x, 1)))
|
7269 |
|
|
{
|
7270 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
7271 |
|
|
return true;
|
7272 |
|
|
}
|
7273 |
|
|
|
7274 |
|
|
return false;
|
7275 |
|
|
}
|
7276 |
|
|
|
7277 |
|
|
*total = COSTS_N_INSNS (20);
|
7278 |
|
|
return false;
|
7279 |
|
|
}
|
7280 |
|
|
|
7281 |
|
|
if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_COMPARE
|
7282 |
|
|
|| GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_COMM_COMPARE)
|
7283 |
|
|
{
|
7284 |
|
|
*total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 1), code, 1, speed);
|
7285 |
|
|
if (GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
|
7286 |
|
|
&& REGNO (XEXP (XEXP (x, 0), 0)) != CC_REGNUM)
|
7287 |
|
|
*total += COSTS_N_INSNS (1);
|
7288 |
|
|
return true;
|
7289 |
|
|
}
|
7290 |
|
|
|
7291 |
|
|
/* Fall through */
|
7292 |
|
|
|
7293 |
|
|
case AND: case XOR: case IOR:
|
7294 |
|
|
|
7295 |
|
|
/* Normally the frame registers will be spilt into reg+const during
|
7296 |
|
|
reload, so it is a bad idea to combine them with other instructions,
|
7297 |
|
|
since then they might not be moved outside of loops. As a compromise
|
7298 |
|
|
we allow integration with ops that have a constant as their second
|
7299 |
|
|
operand. */
|
7300 |
|
|
if (REG_OR_SUBREG_REG (XEXP (x, 0))
|
7301 |
|
|
&& ARM_FRAME_RTX (REG_OR_SUBREG_RTX (XEXP (x, 0)))
|
7302 |
|
|
&& GET_CODE (XEXP (x, 1)) != CONST_INT)
|
7303 |
|
|
*total = COSTS_N_INSNS (1);
|
7304 |
|
|
|
7305 |
|
|
if (mode == DImode)
|
7306 |
|
|
{
|
7307 |
|
|
*total += COSTS_N_INSNS (2);
|
7308 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
7309 |
|
|
&& const_ok_for_op (INTVAL (XEXP (x, 1)), code))
|
7310 |
|
|
{
|
7311 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
7312 |
|
|
return true;
|
7313 |
|
|
}
|
7314 |
|
|
|
7315 |
|
|
return false;
|
7316 |
|
|
}
|
7317 |
|
|
|
7318 |
|
|
*total += COSTS_N_INSNS (1);
|
7319 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
7320 |
|
|
&& const_ok_for_op (INTVAL (XEXP (x, 1)), code))
|
7321 |
|
|
{
|
7322 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
7323 |
|
|
return true;
|
7324 |
|
|
}
|
7325 |
|
|
subcode = GET_CODE (XEXP (x, 0));
|
7326 |
|
|
if (subcode == ASHIFT || subcode == ASHIFTRT
|
7327 |
|
|
|| subcode == LSHIFTRT
|
7328 |
|
|
|| subcode == ROTATE || subcode == ROTATERT)
|
7329 |
|
|
{
|
7330 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, speed);
|
7331 |
|
|
*total += rtx_cost (XEXP (XEXP (x, 0), 0), subcode, 0, speed);
|
7332 |
|
|
return true;
|
7333 |
|
|
}
|
7334 |
|
|
|
7335 |
|
|
if (subcode == MULT
|
7336 |
|
|
&& power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode))
|
7337 |
|
|
{
|
7338 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, speed);
|
7339 |
|
|
*total += rtx_cost (XEXP (XEXP (x, 0), 0), subcode, 0, speed);
|
7340 |
|
|
return true;
|
7341 |
|
|
}
|
7342 |
|
|
|
7343 |
|
|
if (subcode == UMIN || subcode == UMAX
|
7344 |
|
|
|| subcode == SMIN || subcode == SMAX)
|
7345 |
|
|
{
|
7346 |
|
|
*total = COSTS_N_INSNS (3);
|
7347 |
|
|
return true;
|
7348 |
|
|
}
|
7349 |
|
|
|
7350 |
|
|
return false;
|
7351 |
|
|
|
7352 |
|
|
case MULT:
|
7353 |
|
|
/* This should have been handled by the CPU specific routines. */
|
7354 |
|
|
gcc_unreachable ();
|
7355 |
|
|
|
7356 |
|
|
case TRUNCATE:
|
7357 |
|
|
if (arm_arch3m && mode == SImode
|
7358 |
|
|
&& GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
7359 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
|
7360 |
|
|
&& (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0))
|
7361 |
|
|
== GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)))
|
7362 |
|
|
&& (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
|
7363 |
|
|
|| GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND))
|
7364 |
|
|
{
|
7365 |
|
|
*total = rtx_cost (XEXP (XEXP (x, 0), 0), LSHIFTRT, 0, speed);
|
7366 |
|
|
return true;
|
7367 |
|
|
}
|
7368 |
|
|
*total = COSTS_N_INSNS (2); /* Plus the cost of the MULT */
|
7369 |
|
|
return false;
|
7370 |
|
|
|
7371 |
|
|
case NEG:
|
7372 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
7373 |
|
|
{
|
7374 |
|
|
if (TARGET_HARD_FLOAT
|
7375 |
|
|
&& (mode == SFmode
|
7376 |
|
|
|| (mode == DFmode && !TARGET_VFP_SINGLE)))
|
7377 |
|
|
{
|
7378 |
|
|
*total = COSTS_N_INSNS (1);
|
7379 |
|
|
return false;
|
7380 |
|
|
}
|
7381 |
|
|
*total = COSTS_N_INSNS (2);
|
7382 |
|
|
return false;
|
7383 |
|
|
}
|
7384 |
|
|
|
7385 |
|
|
/* Fall through */
|
7386 |
|
|
case NOT:
|
7387 |
|
|
*total = COSTS_N_INSNS (ARM_NUM_REGS(mode));
|
7388 |
|
|
if (mode == SImode && code == NOT)
|
7389 |
|
|
{
|
7390 |
|
|
subcode = GET_CODE (XEXP (x, 0));
|
7391 |
|
|
if (subcode == ASHIFT || subcode == ASHIFTRT
|
7392 |
|
|
|| subcode == LSHIFTRT
|
7393 |
|
|
|| subcode == ROTATE || subcode == ROTATERT
|
7394 |
|
|
|| (subcode == MULT
|
7395 |
|
|
&& power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode)))
|
7396 |
|
|
{
|
7397 |
|
|
*total += rtx_cost (XEXP (XEXP (x, 0), 0), subcode, 0, speed);
|
7398 |
|
|
/* Register shifts cost an extra cycle. */
|
7399 |
|
|
if (GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
|
7400 |
|
|
*total += COSTS_N_INSNS (1) + rtx_cost (XEXP (XEXP (x, 0), 1),
|
7401 |
|
|
subcode, 1, speed);
|
7402 |
|
|
return true;
|
7403 |
|
|
}
|
7404 |
|
|
}
|
7405 |
|
|
|
7406 |
|
|
return false;
|
7407 |
|
|
|
7408 |
|
|
case IF_THEN_ELSE:
|
7409 |
|
|
if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
|
7410 |
|
|
{
|
7411 |
|
|
*total = COSTS_N_INSNS (4);
|
7412 |
|
|
return true;
|
7413 |
|
|
}
|
7414 |
|
|
|
7415 |
|
|
operand = XEXP (x, 0);
|
7416 |
|
|
|
7417 |
|
|
if (!((GET_RTX_CLASS (GET_CODE (operand)) == RTX_COMPARE
|
7418 |
|
|
|| GET_RTX_CLASS (GET_CODE (operand)) == RTX_COMM_COMPARE)
|
7419 |
|
|
&& GET_CODE (XEXP (operand, 0)) == REG
|
7420 |
|
|
&& REGNO (XEXP (operand, 0)) == CC_REGNUM))
|
7421 |
|
|
*total += COSTS_N_INSNS (1);
|
7422 |
|
|
*total += (rtx_cost (XEXP (x, 1), code, 1, speed)
|
7423 |
|
|
+ rtx_cost (XEXP (x, 2), code, 2, speed));
|
7424 |
|
|
return true;
|
7425 |
|
|
|
7426 |
|
|
case NE:
|
7427 |
|
|
if (mode == SImode && XEXP (x, 1) == const0_rtx)
|
7428 |
|
|
{
|
7429 |
|
|
*total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code, 0, speed);
|
7430 |
|
|
return true;
|
7431 |
|
|
}
|
7432 |
|
|
goto scc_insn;
|
7433 |
|
|
|
7434 |
|
|
case GE:
|
7435 |
|
|
if ((GET_CODE (XEXP (x, 0)) != REG || REGNO (XEXP (x, 0)) != CC_REGNUM)
|
7436 |
|
|
&& mode == SImode && XEXP (x, 1) == const0_rtx)
|
7437 |
|
|
{
|
7438 |
|
|
*total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code, 0, speed);
|
7439 |
|
|
return true;
|
7440 |
|
|
}
|
7441 |
|
|
goto scc_insn;
|
7442 |
|
|
|
7443 |
|
|
case LT:
|
7444 |
|
|
if ((GET_CODE (XEXP (x, 0)) != REG || REGNO (XEXP (x, 0)) != CC_REGNUM)
|
7445 |
|
|
&& mode == SImode && XEXP (x, 1) == const0_rtx)
|
7446 |
|
|
{
|
7447 |
|
|
*total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code, 0, speed);
|
7448 |
|
|
return true;
|
7449 |
|
|
}
|
7450 |
|
|
goto scc_insn;
|
7451 |
|
|
|
7452 |
|
|
case EQ:
|
7453 |
|
|
case GT:
|
7454 |
|
|
case LE:
|
7455 |
|
|
case GEU:
|
7456 |
|
|
case LTU:
|
7457 |
|
|
case GTU:
|
7458 |
|
|
case LEU:
|
7459 |
|
|
case UNORDERED:
|
7460 |
|
|
case ORDERED:
|
7461 |
|
|
case UNEQ:
|
7462 |
|
|
case UNGE:
|
7463 |
|
|
case UNLT:
|
7464 |
|
|
case UNGT:
|
7465 |
|
|
case UNLE:
|
7466 |
|
|
scc_insn:
|
7467 |
|
|
/* SCC insns. In the case where the comparison has already been
|
7468 |
|
|
performed, then they cost 2 instructions. Otherwise they need
|
7469 |
|
|
an additional comparison before them. */
|
7470 |
|
|
*total = COSTS_N_INSNS (2);
|
7471 |
|
|
if (GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) == CC_REGNUM)
|
7472 |
|
|
{
|
7473 |
|
|
return true;
|
7474 |
|
|
}
|
7475 |
|
|
|
7476 |
|
|
/* Fall through */
|
7477 |
|
|
case COMPARE:
|
7478 |
|
|
if (GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) == CC_REGNUM)
|
7479 |
|
|
{
|
7480 |
|
|
*total = 0;
|
7481 |
|
|
return true;
|
7482 |
|
|
}
|
7483 |
|
|
|
7484 |
|
|
*total += COSTS_N_INSNS (1);
|
7485 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
7486 |
|
|
&& const_ok_for_op (INTVAL (XEXP (x, 1)), code))
|
7487 |
|
|
{
|
7488 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
7489 |
|
|
return true;
|
7490 |
|
|
}
|
7491 |
|
|
|
7492 |
|
|
subcode = GET_CODE (XEXP (x, 0));
|
7493 |
|
|
if (subcode == ASHIFT || subcode == ASHIFTRT
|
7494 |
|
|
|| subcode == LSHIFTRT
|
7495 |
|
|
|| subcode == ROTATE || subcode == ROTATERT)
|
7496 |
|
|
{
|
7497 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, speed);
|
7498 |
|
|
*total += rtx_cost (XEXP (XEXP (x, 0), 0), subcode, 0, speed);
|
7499 |
|
|
return true;
|
7500 |
|
|
}
|
7501 |
|
|
|
7502 |
|
|
if (subcode == MULT
|
7503 |
|
|
&& power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode))
|
7504 |
|
|
{
|
7505 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, speed);
|
7506 |
|
|
*total += rtx_cost (XEXP (XEXP (x, 0), 0), subcode, 0, speed);
|
7507 |
|
|
return true;
|
7508 |
|
|
}
|
7509 |
|
|
|
7510 |
|
|
return false;
|
7511 |
|
|
|
7512 |
|
|
case UMIN:
|
7513 |
|
|
case UMAX:
|
7514 |
|
|
case SMIN:
|
7515 |
|
|
case SMAX:
|
7516 |
|
|
*total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code, 0, speed);
|
7517 |
|
|
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|
7518 |
|
|
|| !const_ok_for_arm (INTVAL (XEXP (x, 1))))
|
7519 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, speed);
|
7520 |
|
|
return true;
|
7521 |
|
|
|
7522 |
|
|
case ABS:
|
7523 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
7524 |
|
|
{
|
7525 |
|
|
if (TARGET_HARD_FLOAT
|
7526 |
|
|
&& (mode == SFmode
|
7527 |
|
|
|| (mode == DFmode && !TARGET_VFP_SINGLE)))
|
7528 |
|
|
{
|
7529 |
|
|
*total = COSTS_N_INSNS (1);
|
7530 |
|
|
return false;
|
7531 |
|
|
}
|
7532 |
|
|
*total = COSTS_N_INSNS (20);
|
7533 |
|
|
return false;
|
7534 |
|
|
}
|
7535 |
|
|
*total = COSTS_N_INSNS (1);
|
7536 |
|
|
if (mode == DImode)
|
7537 |
|
|
*total += COSTS_N_INSNS (3);
|
7538 |
|
|
return false;
|
7539 |
|
|
|
7540 |
|
|
case SIGN_EXTEND:
|
7541 |
|
|
case ZERO_EXTEND:
|
7542 |
|
|
*total = 0;
|
7543 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT)
|
7544 |
|
|
{
|
7545 |
|
|
rtx op = XEXP (x, 0);
|
7546 |
|
|
enum machine_mode opmode = GET_MODE (op);
|
7547 |
|
|
|
7548 |
|
|
if (mode == DImode)
|
7549 |
|
|
*total += COSTS_N_INSNS (1);
|
7550 |
|
|
|
7551 |
|
|
if (opmode != SImode)
|
7552 |
|
|
{
|
7553 |
|
|
if (MEM_P (op))
|
7554 |
|
|
{
|
7555 |
|
|
/* If !arm_arch4, we use one of the extendhisi2_mem
|
7556 |
|
|
or movhi_bytes patterns for HImode. For a QImode
|
7557 |
|
|
sign extension, we first zero-extend from memory
|
7558 |
|
|
and then perform a shift sequence. */
|
7559 |
|
|
if (!arm_arch4 && (opmode != QImode || code == SIGN_EXTEND))
|
7560 |
|
|
*total += COSTS_N_INSNS (2);
|
7561 |
|
|
}
|
7562 |
|
|
else if (arm_arch6)
|
7563 |
|
|
*total += COSTS_N_INSNS (1);
|
7564 |
|
|
|
7565 |
|
|
/* We don't have the necessary insn, so we need to perform some
|
7566 |
|
|
other operation. */
|
7567 |
|
|
else if (TARGET_ARM && code == ZERO_EXTEND && mode == QImode)
|
7568 |
|
|
/* An and with constant 255. */
|
7569 |
|
|
*total += COSTS_N_INSNS (1);
|
7570 |
|
|
else
|
7571 |
|
|
/* A shift sequence. Increase costs slightly to avoid
|
7572 |
|
|
combining two shifts into an extend operation. */
|
7573 |
|
|
*total += COSTS_N_INSNS (2) + 1;
|
7574 |
|
|
}
|
7575 |
|
|
|
7576 |
|
|
return false;
|
7577 |
|
|
}
|
7578 |
|
|
|
7579 |
|
|
switch (GET_MODE (XEXP (x, 0)))
|
7580 |
|
|
{
|
7581 |
|
|
case V8QImode:
|
7582 |
|
|
case V4HImode:
|
7583 |
|
|
case V2SImode:
|
7584 |
|
|
case V4QImode:
|
7585 |
|
|
case V2HImode:
|
7586 |
|
|
*total = COSTS_N_INSNS (1);
|
7587 |
|
|
return false;
|
7588 |
|
|
|
7589 |
|
|
default:
|
7590 |
|
|
gcc_unreachable ();
|
7591 |
|
|
}
|
7592 |
|
|
gcc_unreachable ();
|
7593 |
|
|
|
7594 |
|
|
case ZERO_EXTRACT:
|
7595 |
|
|
case SIGN_EXTRACT:
|
7596 |
|
|
*total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code, 0, speed);
|
7597 |
|
|
return true;
|
7598 |
|
|
|
7599 |
|
|
case CONST_INT:
|
7600 |
|
|
if (const_ok_for_arm (INTVAL (x))
|
7601 |
|
|
|| const_ok_for_arm (~INTVAL (x)))
|
7602 |
|
|
*total = COSTS_N_INSNS (1);
|
7603 |
|
|
else
|
7604 |
|
|
*total = COSTS_N_INSNS (arm_gen_constant (SET, mode, NULL_RTX,
|
7605 |
|
|
INTVAL (x), NULL_RTX,
|
7606 |
|
|
NULL_RTX, 0, 0));
|
7607 |
|
|
return true;
|
7608 |
|
|
|
7609 |
|
|
case CONST:
|
7610 |
|
|
case LABEL_REF:
|
7611 |
|
|
case SYMBOL_REF:
|
7612 |
|
|
*total = COSTS_N_INSNS (3);
|
7613 |
|
|
return true;
|
7614 |
|
|
|
7615 |
|
|
case HIGH:
|
7616 |
|
|
*total = COSTS_N_INSNS (1);
|
7617 |
|
|
return true;
|
7618 |
|
|
|
7619 |
|
|
case LO_SUM:
|
7620 |
|
|
*total = COSTS_N_INSNS (1);
|
7621 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
7622 |
|
|
return true;
|
7623 |
|
|
|
7624 |
|
|
case CONST_DOUBLE:
|
7625 |
|
|
if (TARGET_HARD_FLOAT && vfp3_const_double_rtx (x)
|
7626 |
|
|
&& (mode == SFmode || !TARGET_VFP_SINGLE))
|
7627 |
|
|
*total = COSTS_N_INSNS (1);
|
7628 |
|
|
else
|
7629 |
|
|
*total = COSTS_N_INSNS (4);
|
7630 |
|
|
return true;
|
7631 |
|
|
|
7632 |
|
|
case SET:
|
7633 |
|
|
return false;
|
7634 |
|
|
|
7635 |
|
|
case UNSPEC:
|
7636 |
|
|
/* We cost this as high as our memory costs to allow this to
|
7637 |
|
|
be hoisted from loops. */
|
7638 |
|
|
if (XINT (x, 1) == UNSPEC_PIC_UNIFIED)
|
7639 |
|
|
{
|
7640 |
|
|
*total = COSTS_N_INSNS (2 + ARM_NUM_REGS (mode));
|
7641 |
|
|
}
|
7642 |
|
|
return true;
|
7643 |
|
|
|
7644 |
|
|
default:
|
7645 |
|
|
*total = COSTS_N_INSNS (4);
|
7646 |
|
|
return false;
|
7647 |
|
|
}
|
7648 |
|
|
}
|
7649 |
|
|
|
7650 |
|
|
/* Estimates the size cost of thumb1 instructions.
|
7651 |
|
|
For now most of the code is copied from thumb1_rtx_costs. We need more
|
7652 |
|
|
fine grain tuning when we have more related test cases. */
|
7653 |
|
|
static inline int
|
7654 |
|
|
thumb1_size_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer)
|
7655 |
|
|
{
|
7656 |
|
|
enum machine_mode mode = GET_MODE (x);
|
7657 |
|
|
|
7658 |
|
|
switch (code)
|
7659 |
|
|
{
|
7660 |
|
|
case ASHIFT:
|
7661 |
|
|
case ASHIFTRT:
|
7662 |
|
|
case LSHIFTRT:
|
7663 |
|
|
case ROTATERT:
|
7664 |
|
|
case PLUS:
|
7665 |
|
|
case MINUS:
|
7666 |
|
|
case COMPARE:
|
7667 |
|
|
case NEG:
|
7668 |
|
|
case NOT:
|
7669 |
|
|
return COSTS_N_INSNS (1);
|
7670 |
|
|
|
7671 |
|
|
case MULT:
|
7672 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
7673 |
|
|
{
|
7674 |
|
|
/* Thumb1 mul instruction can't operate on const. We must Load it
|
7675 |
|
|
into a register first. */
|
7676 |
|
|
int const_size = thumb1_size_rtx_costs (XEXP (x, 1), CONST_INT, SET);
|
7677 |
|
|
return COSTS_N_INSNS (1) + const_size;
|
7678 |
|
|
}
|
7679 |
|
|
return COSTS_N_INSNS (1);
|
7680 |
|
|
|
7681 |
|
|
case SET:
|
7682 |
|
|
return (COSTS_N_INSNS (1)
|
7683 |
|
|
+ 4 * ((GET_CODE (SET_SRC (x)) == MEM)
|
7684 |
|
|
+ GET_CODE (SET_DEST (x)) == MEM));
|
7685 |
|
|
|
7686 |
|
|
case CONST_INT:
|
7687 |
|
|
if (outer == SET)
|
7688 |
|
|
{
|
7689 |
|
|
if ((unsigned HOST_WIDE_INT) INTVAL (x) < 256)
|
7690 |
|
|
return COSTS_N_INSNS (1);
|
7691 |
|
|
/* See split "TARGET_THUMB1 && satisfies_constraint_J". */
|
7692 |
|
|
if (INTVAL (x) >= -255 && INTVAL (x) <= -1)
|
7693 |
|
|
return COSTS_N_INSNS (2);
|
7694 |
|
|
/* See split "TARGET_THUMB1 && satisfies_constraint_K". */
|
7695 |
|
|
if (thumb_shiftable_const (INTVAL (x)))
|
7696 |
|
|
return COSTS_N_INSNS (2);
|
7697 |
|
|
return COSTS_N_INSNS (3);
|
7698 |
|
|
}
|
7699 |
|
|
else if ((outer == PLUS || outer == COMPARE)
|
7700 |
|
|
&& INTVAL (x) < 256 && INTVAL (x) > -256)
|
7701 |
|
|
return 0;
|
7702 |
|
|
else if ((outer == IOR || outer == XOR || outer == AND)
|
7703 |
|
|
&& INTVAL (x) < 256 && INTVAL (x) >= -256)
|
7704 |
|
|
return COSTS_N_INSNS (1);
|
7705 |
|
|
else if (outer == AND)
|
7706 |
|
|
{
|
7707 |
|
|
int i;
|
7708 |
|
|
/* This duplicates the tests in the andsi3 expander. */
|
7709 |
|
|
for (i = 9; i <= 31; i++)
|
7710 |
|
|
if ((((HOST_WIDE_INT) 1) << i) - 1 == INTVAL (x)
|
7711 |
|
|
|| (((HOST_WIDE_INT) 1) << i) - 1 == ~INTVAL (x))
|
7712 |
|
|
return COSTS_N_INSNS (2);
|
7713 |
|
|
}
|
7714 |
|
|
else if (outer == ASHIFT || outer == ASHIFTRT
|
7715 |
|
|
|| outer == LSHIFTRT)
|
7716 |
|
|
return 0;
|
7717 |
|
|
return COSTS_N_INSNS (2);
|
7718 |
|
|
|
7719 |
|
|
case CONST:
|
7720 |
|
|
case CONST_DOUBLE:
|
7721 |
|
|
case LABEL_REF:
|
7722 |
|
|
case SYMBOL_REF:
|
7723 |
|
|
return COSTS_N_INSNS (3);
|
7724 |
|
|
|
7725 |
|
|
case UDIV:
|
7726 |
|
|
case UMOD:
|
7727 |
|
|
case DIV:
|
7728 |
|
|
case MOD:
|
7729 |
|
|
return 100;
|
7730 |
|
|
|
7731 |
|
|
case TRUNCATE:
|
7732 |
|
|
return 99;
|
7733 |
|
|
|
7734 |
|
|
case AND:
|
7735 |
|
|
case XOR:
|
7736 |
|
|
case IOR:
|
7737 |
|
|
/* XXX guess. */
|
7738 |
|
|
return 8;
|
7739 |
|
|
|
7740 |
|
|
case MEM:
|
7741 |
|
|
/* XXX another guess. */
|
7742 |
|
|
/* Memory costs quite a lot for the first word, but subsequent words
|
7743 |
|
|
load at the equivalent of a single insn each. */
|
7744 |
|
|
return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
|
7745 |
|
|
+ ((GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
|
7746 |
|
|
? 4 : 0));
|
7747 |
|
|
|
7748 |
|
|
case IF_THEN_ELSE:
|
7749 |
|
|
/* XXX a guess. */
|
7750 |
|
|
if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
|
7751 |
|
|
return 14;
|
7752 |
|
|
return 2;
|
7753 |
|
|
|
7754 |
|
|
case ZERO_EXTEND:
|
7755 |
|
|
/* XXX still guessing. */
|
7756 |
|
|
switch (GET_MODE (XEXP (x, 0)))
|
7757 |
|
|
{
|
7758 |
|
|
case QImode:
|
7759 |
|
|
return (1 + (mode == DImode ? 4 : 0)
|
7760 |
|
|
+ (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
|
7761 |
|
|
|
7762 |
|
|
case HImode:
|
7763 |
|
|
return (4 + (mode == DImode ? 4 : 0)
|
7764 |
|
|
+ (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
|
7765 |
|
|
|
7766 |
|
|
case SImode:
|
7767 |
|
|
return (1 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
|
7768 |
|
|
|
7769 |
|
|
default:
|
7770 |
|
|
return 99;
|
7771 |
|
|
}
|
7772 |
|
|
|
7773 |
|
|
default:
|
7774 |
|
|
return 99;
|
7775 |
|
|
}
|
7776 |
|
|
}
|
7777 |
|
|
|
7778 |
|
|
/* RTX costs when optimizing for size. */
|
7779 |
|
|
static bool
|
7780 |
|
|
arm_size_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
|
7781 |
|
|
int *total)
|
7782 |
|
|
{
|
7783 |
|
|
enum machine_mode mode = GET_MODE (x);
|
7784 |
|
|
if (TARGET_THUMB1)
|
7785 |
|
|
{
|
7786 |
|
|
*total = thumb1_size_rtx_costs (x, code, outer_code);
|
7787 |
|
|
return true;
|
7788 |
|
|
}
|
7789 |
|
|
|
7790 |
|
|
/* FIXME: This makes no attempt to prefer narrow Thumb-2 instructions. */
|
7791 |
|
|
switch (code)
|
7792 |
|
|
{
|
7793 |
|
|
case MEM:
|
7794 |
|
|
/* A memory access costs 1 insn if the mode is small, or the address is
|
7795 |
|
|
a single register, otherwise it costs one insn per word. */
|
7796 |
|
|
if (REG_P (XEXP (x, 0)))
|
7797 |
|
|
*total = COSTS_N_INSNS (1);
|
7798 |
|
|
else if (flag_pic
|
7799 |
|
|
&& GET_CODE (XEXP (x, 0)) == PLUS
|
7800 |
|
|
&& will_be_in_index_register (XEXP (XEXP (x, 0), 1)))
|
7801 |
|
|
/* This will be split into two instructions.
|
7802 |
|
|
See arm.md:calculate_pic_address. */
|
7803 |
|
|
*total = COSTS_N_INSNS (2);
|
7804 |
|
|
else
|
7805 |
|
|
*total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
|
7806 |
|
|
return true;
|
7807 |
|
|
|
7808 |
|
|
case DIV:
|
7809 |
|
|
case MOD:
|
7810 |
|
|
case UDIV:
|
7811 |
|
|
case UMOD:
|
7812 |
|
|
/* Needs a libcall, so it costs about this. */
|
7813 |
|
|
*total = COSTS_N_INSNS (2);
|
7814 |
|
|
return false;
|
7815 |
|
|
|
7816 |
|
|
case ROTATE:
|
7817 |
|
|
if (mode == SImode && GET_CODE (XEXP (x, 1)) == REG)
|
7818 |
|
|
{
|
7819 |
|
|
*total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code, 0, false);
|
7820 |
|
|
return true;
|
7821 |
|
|
}
|
7822 |
|
|
/* Fall through */
|
7823 |
|
|
case ROTATERT:
|
7824 |
|
|
case ASHIFT:
|
7825 |
|
|
case LSHIFTRT:
|
7826 |
|
|
case ASHIFTRT:
|
7827 |
|
|
if (mode == DImode && GET_CODE (XEXP (x, 1)) == CONST_INT)
|
7828 |
|
|
{
|
7829 |
|
|
*total = COSTS_N_INSNS (3) + rtx_cost (XEXP (x, 0), code, 0, false);
|
7830 |
|
|
return true;
|
7831 |
|
|
}
|
7832 |
|
|
else if (mode == SImode)
|
7833 |
|
|
{
|
7834 |
|
|
*total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code, 0, false);
|
7835 |
|
|
/* Slightly disparage register shifts, but not by much. */
|
7836 |
|
|
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
|
7837 |
|
|
*total += 1 + rtx_cost (XEXP (x, 1), code, 1, false);
|
7838 |
|
|
return true;
|
7839 |
|
|
}
|
7840 |
|
|
|
7841 |
|
|
/* Needs a libcall. */
|
7842 |
|
|
*total = COSTS_N_INSNS (2);
|
7843 |
|
|
return false;
|
7844 |
|
|
|
7845 |
|
|
case MINUS:
|
7846 |
|
|
if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
|
7847 |
|
|
&& (mode == SFmode || !TARGET_VFP_SINGLE))
|
7848 |
|
|
{
|
7849 |
|
|
*total = COSTS_N_INSNS (1);
|
7850 |
|
|
return false;
|
7851 |
|
|
}
|
7852 |
|
|
|
7853 |
|
|
if (mode == SImode)
|
7854 |
|
|
{
|
7855 |
|
|
enum rtx_code subcode0 = GET_CODE (XEXP (x, 0));
|
7856 |
|
|
enum rtx_code subcode1 = GET_CODE (XEXP (x, 1));
|
7857 |
|
|
|
7858 |
|
|
if (subcode0 == ROTATE || subcode0 == ROTATERT || subcode0 == ASHIFT
|
7859 |
|
|
|| subcode0 == LSHIFTRT || subcode0 == ASHIFTRT
|
7860 |
|
|
|| subcode1 == ROTATE || subcode1 == ROTATERT
|
7861 |
|
|
|| subcode1 == ASHIFT || subcode1 == LSHIFTRT
|
7862 |
|
|
|| subcode1 == ASHIFTRT)
|
7863 |
|
|
{
|
7864 |
|
|
/* It's just the cost of the two operands. */
|
7865 |
|
|
*total = 0;
|
7866 |
|
|
return false;
|
7867 |
|
|
}
|
7868 |
|
|
|
7869 |
|
|
*total = COSTS_N_INSNS (1);
|
7870 |
|
|
return false;
|
7871 |
|
|
}
|
7872 |
|
|
|
7873 |
|
|
*total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
|
7874 |
|
|
return false;
|
7875 |
|
|
|
7876 |
|
|
case PLUS:
|
7877 |
|
|
if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
|
7878 |
|
|
&& (mode == SFmode || !TARGET_VFP_SINGLE))
|
7879 |
|
|
{
|
7880 |
|
|
*total = COSTS_N_INSNS (1);
|
7881 |
|
|
return false;
|
7882 |
|
|
}
|
7883 |
|
|
|
7884 |
|
|
/* A shift as a part of ADD costs nothing. */
|
7885 |
|
|
if (GET_CODE (XEXP (x, 0)) == MULT
|
7886 |
|
|
&& power_of_two_operand (XEXP (XEXP (x, 0), 1), SImode))
|
7887 |
|
|
{
|
7888 |
|
|
*total = COSTS_N_INSNS (TARGET_THUMB2 ? 2 : 1);
|
7889 |
|
|
*total += rtx_cost (XEXP (XEXP (x, 0), 0), code, 0, false);
|
7890 |
|
|
*total += rtx_cost (XEXP (x, 1), code, 1, false);
|
7891 |
|
|
return true;
|
7892 |
|
|
}
|
7893 |
|
|
|
7894 |
|
|
/* Fall through */
|
7895 |
|
|
case AND: case XOR: case IOR:
|
7896 |
|
|
if (mode == SImode)
|
7897 |
|
|
{
|
7898 |
|
|
enum rtx_code subcode = GET_CODE (XEXP (x, 0));
|
7899 |
|
|
|
7900 |
|
|
if (subcode == ROTATE || subcode == ROTATERT || subcode == ASHIFT
|
7901 |
|
|
|| subcode == LSHIFTRT || subcode == ASHIFTRT
|
7902 |
|
|
|| (code == AND && subcode == NOT))
|
7903 |
|
|
{
|
7904 |
|
|
/* It's just the cost of the two operands. */
|
7905 |
|
|
*total = 0;
|
7906 |
|
|
return false;
|
7907 |
|
|
}
|
7908 |
|
|
}
|
7909 |
|
|
|
7910 |
|
|
*total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
|
7911 |
|
|
return false;
|
7912 |
|
|
|
7913 |
|
|
case MULT:
|
7914 |
|
|
*total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
|
7915 |
|
|
return false;
|
7916 |
|
|
|
7917 |
|
|
case NEG:
|
7918 |
|
|
if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
|
7919 |
|
|
&& (mode == SFmode || !TARGET_VFP_SINGLE))
|
7920 |
|
|
{
|
7921 |
|
|
*total = COSTS_N_INSNS (1);
|
7922 |
|
|
return false;
|
7923 |
|
|
}
|
7924 |
|
|
|
7925 |
|
|
/* Fall through */
|
7926 |
|
|
case NOT:
|
7927 |
|
|
*total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
|
7928 |
|
|
|
7929 |
|
|
return false;
|
7930 |
|
|
|
7931 |
|
|
case IF_THEN_ELSE:
|
7932 |
|
|
*total = 0;
|
7933 |
|
|
return false;
|
7934 |
|
|
|
7935 |
|
|
case COMPARE:
|
7936 |
|
|
if (cc_register (XEXP (x, 0), VOIDmode))
|
7937 |
|
|
* total = 0;
|
7938 |
|
|
else
|
7939 |
|
|
*total = COSTS_N_INSNS (1);
|
7940 |
|
|
return false;
|
7941 |
|
|
|
7942 |
|
|
case ABS:
|
7943 |
|
|
if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT
|
7944 |
|
|
&& (mode == SFmode || !TARGET_VFP_SINGLE))
|
7945 |
|
|
*total = COSTS_N_INSNS (1);
|
7946 |
|
|
else
|
7947 |
|
|
*total = COSTS_N_INSNS (1 + ARM_NUM_REGS (mode));
|
7948 |
|
|
return false;
|
7949 |
|
|
|
7950 |
|
|
case SIGN_EXTEND:
|
7951 |
|
|
case ZERO_EXTEND:
|
7952 |
|
|
return arm_rtx_costs_1 (x, outer_code, total, 0);
|
7953 |
|
|
|
7954 |
|
|
case CONST_INT:
|
7955 |
|
|
if (const_ok_for_arm (INTVAL (x)))
|
7956 |
|
|
/* A multiplication by a constant requires another instruction
|
7957 |
|
|
to load the constant to a register. */
|
7958 |
|
|
*total = COSTS_N_INSNS ((outer_code == SET || outer_code == MULT)
|
7959 |
|
|
? 1 : 0);
|
7960 |
|
|
else if (const_ok_for_arm (~INTVAL (x)))
|
7961 |
|
|
*total = COSTS_N_INSNS (outer_code == AND ? 0 : 1);
|
7962 |
|
|
else if (const_ok_for_arm (-INTVAL (x)))
|
7963 |
|
|
{
|
7964 |
|
|
if (outer_code == COMPARE || outer_code == PLUS
|
7965 |
|
|
|| outer_code == MINUS)
|
7966 |
|
|
*total = 0;
|
7967 |
|
|
else
|
7968 |
|
|
*total = COSTS_N_INSNS (1);
|
7969 |
|
|
}
|
7970 |
|
|
else
|
7971 |
|
|
*total = COSTS_N_INSNS (2);
|
7972 |
|
|
return true;
|
7973 |
|
|
|
7974 |
|
|
case CONST:
|
7975 |
|
|
case LABEL_REF:
|
7976 |
|
|
case SYMBOL_REF:
|
7977 |
|
|
*total = COSTS_N_INSNS (2);
|
7978 |
|
|
return true;
|
7979 |
|
|
|
7980 |
|
|
case CONST_DOUBLE:
|
7981 |
|
|
*total = COSTS_N_INSNS (4);
|
7982 |
|
|
return true;
|
7983 |
|
|
|
7984 |
|
|
case HIGH:
|
7985 |
|
|
case LO_SUM:
|
7986 |
|
|
/* We prefer constant pool entries to MOVW/MOVT pairs, so bump the
|
7987 |
|
|
cost of these slightly. */
|
7988 |
|
|
*total = COSTS_N_INSNS (1) + 1;
|
7989 |
|
|
return true;
|
7990 |
|
|
|
7991 |
|
|
case SET:
|
7992 |
|
|
return false;
|
7993 |
|
|
|
7994 |
|
|
default:
|
7995 |
|
|
if (mode != VOIDmode)
|
7996 |
|
|
*total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
|
7997 |
|
|
else
|
7998 |
|
|
*total = COSTS_N_INSNS (4); /* How knows? */
|
7999 |
|
|
return false;
|
8000 |
|
|
}
|
8001 |
|
|
}
|
8002 |
|
|
|
8003 |
|
|
/* RTX costs when optimizing for size. */
|
8004 |
|
|
static bool
|
8005 |
|
|
arm_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
|
8006 |
|
|
int *total, bool speed)
|
8007 |
|
|
{
|
8008 |
|
|
if (!speed)
|
8009 |
|
|
return arm_size_rtx_costs (x, (enum rtx_code) code,
|
8010 |
|
|
(enum rtx_code) outer_code, total);
|
8011 |
|
|
else
|
8012 |
|
|
return current_tune->rtx_costs (x, (enum rtx_code) code,
|
8013 |
|
|
(enum rtx_code) outer_code,
|
8014 |
|
|
total, speed);
|
8015 |
|
|
}
|
8016 |
|
|
|
8017 |
|
|
/* RTX costs for cores with a slow MUL implementation. Thumb-2 is not
|
8018 |
|
|
supported on any "slowmul" cores, so it can be ignored. */
|
8019 |
|
|
|
8020 |
|
|
static bool
|
8021 |
|
|
arm_slowmul_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
|
8022 |
|
|
int *total, bool speed)
|
8023 |
|
|
{
|
8024 |
|
|
enum machine_mode mode = GET_MODE (x);
|
8025 |
|
|
|
8026 |
|
|
if (TARGET_THUMB)
|
8027 |
|
|
{
|
8028 |
|
|
*total = thumb1_rtx_costs (x, code, outer_code);
|
8029 |
|
|
return true;
|
8030 |
|
|
}
|
8031 |
|
|
|
8032 |
|
|
switch (code)
|
8033 |
|
|
{
|
8034 |
|
|
case MULT:
|
8035 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT
|
8036 |
|
|
|| mode == DImode)
|
8037 |
|
|
{
|
8038 |
|
|
*total = COSTS_N_INSNS (20);
|
8039 |
|
|
return false;
|
8040 |
|
|
}
|
8041 |
|
|
|
8042 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
8043 |
|
|
{
|
8044 |
|
|
unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
|
8045 |
|
|
& (unsigned HOST_WIDE_INT) 0xffffffff);
|
8046 |
|
|
int cost, const_ok = const_ok_for_arm (i);
|
8047 |
|
|
int j, booth_unit_size;
|
8048 |
|
|
|
8049 |
|
|
/* Tune as appropriate. */
|
8050 |
|
|
cost = const_ok ? 4 : 8;
|
8051 |
|
|
booth_unit_size = 2;
|
8052 |
|
|
for (j = 0; i && j < 32; j += booth_unit_size)
|
8053 |
|
|
{
|
8054 |
|
|
i >>= booth_unit_size;
|
8055 |
|
|
cost++;
|
8056 |
|
|
}
|
8057 |
|
|
|
8058 |
|
|
*total = COSTS_N_INSNS (cost);
|
8059 |
|
|
*total += rtx_cost (XEXP (x, 0), code, 0, speed);
|
8060 |
|
|
return true;
|
8061 |
|
|
}
|
8062 |
|
|
|
8063 |
|
|
*total = COSTS_N_INSNS (20);
|
8064 |
|
|
return false;
|
8065 |
|
|
|
8066 |
|
|
default:
|
8067 |
|
|
return arm_rtx_costs_1 (x, outer_code, total, speed);;
|
8068 |
|
|
}
|
8069 |
|
|
}
|
8070 |
|
|
|
8071 |
|
|
|
8072 |
|
|
/* RTX cost for cores with a fast multiply unit (M variants). */
|
8073 |
|
|
|
8074 |
|
|
static bool
|
8075 |
|
|
arm_fastmul_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
|
8076 |
|
|
int *total, bool speed)
|
8077 |
|
|
{
|
8078 |
|
|
enum machine_mode mode = GET_MODE (x);
|
8079 |
|
|
|
8080 |
|
|
if (TARGET_THUMB1)
|
8081 |
|
|
{
|
8082 |
|
|
*total = thumb1_rtx_costs (x, code, outer_code);
|
8083 |
|
|
return true;
|
8084 |
|
|
}
|
8085 |
|
|
|
8086 |
|
|
/* ??? should thumb2 use different costs? */
|
8087 |
|
|
switch (code)
|
8088 |
|
|
{
|
8089 |
|
|
case MULT:
|
8090 |
|
|
/* There is no point basing this on the tuning, since it is always the
|
8091 |
|
|
fast variant if it exists at all. */
|
8092 |
|
|
if (mode == DImode
|
8093 |
|
|
&& (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
|
8094 |
|
|
&& (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
|
8095 |
|
|
|| GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
|
8096 |
|
|
{
|
8097 |
|
|
*total = COSTS_N_INSNS(2);
|
8098 |
|
|
return false;
|
8099 |
|
|
}
|
8100 |
|
|
|
8101 |
|
|
|
8102 |
|
|
if (mode == DImode)
|
8103 |
|
|
{
|
8104 |
|
|
*total = COSTS_N_INSNS (5);
|
8105 |
|
|
return false;
|
8106 |
|
|
}
|
8107 |
|
|
|
8108 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
8109 |
|
|
{
|
8110 |
|
|
unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
|
8111 |
|
|
& (unsigned HOST_WIDE_INT) 0xffffffff);
|
8112 |
|
|
int cost, const_ok = const_ok_for_arm (i);
|
8113 |
|
|
int j, booth_unit_size;
|
8114 |
|
|
|
8115 |
|
|
/* Tune as appropriate. */
|
8116 |
|
|
cost = const_ok ? 4 : 8;
|
8117 |
|
|
booth_unit_size = 8;
|
8118 |
|
|
for (j = 0; i && j < 32; j += booth_unit_size)
|
8119 |
|
|
{
|
8120 |
|
|
i >>= booth_unit_size;
|
8121 |
|
|
cost++;
|
8122 |
|
|
}
|
8123 |
|
|
|
8124 |
|
|
*total = COSTS_N_INSNS(cost);
|
8125 |
|
|
return false;
|
8126 |
|
|
}
|
8127 |
|
|
|
8128 |
|
|
if (mode == SImode)
|
8129 |
|
|
{
|
8130 |
|
|
*total = COSTS_N_INSNS (4);
|
8131 |
|
|
return false;
|
8132 |
|
|
}
|
8133 |
|
|
|
8134 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
8135 |
|
|
{
|
8136 |
|
|
if (TARGET_HARD_FLOAT
|
8137 |
|
|
&& (mode == SFmode
|
8138 |
|
|
|| (mode == DFmode && !TARGET_VFP_SINGLE)))
|
8139 |
|
|
{
|
8140 |
|
|
*total = COSTS_N_INSNS (1);
|
8141 |
|
|
return false;
|
8142 |
|
|
}
|
8143 |
|
|
}
|
8144 |
|
|
|
8145 |
|
|
/* Requires a lib call */
|
8146 |
|
|
*total = COSTS_N_INSNS (20);
|
8147 |
|
|
return false;
|
8148 |
|
|
|
8149 |
|
|
default:
|
8150 |
|
|
return arm_rtx_costs_1 (x, outer_code, total, speed);
|
8151 |
|
|
}
|
8152 |
|
|
}
|
8153 |
|
|
|
8154 |
|
|
|
8155 |
|
|
/* RTX cost for XScale CPUs. Thumb-2 is not supported on any xscale cores,
|
8156 |
|
|
so it can be ignored. */
|
8157 |
|
|
|
8158 |
|
|
static bool
|
8159 |
|
|
arm_xscale_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
|
8160 |
|
|
int *total, bool speed)
|
8161 |
|
|
{
|
8162 |
|
|
enum machine_mode mode = GET_MODE (x);
|
8163 |
|
|
|
8164 |
|
|
if (TARGET_THUMB)
|
8165 |
|
|
{
|
8166 |
|
|
*total = thumb1_rtx_costs (x, code, outer_code);
|
8167 |
|
|
return true;
|
8168 |
|
|
}
|
8169 |
|
|
|
8170 |
|
|
switch (code)
|
8171 |
|
|
{
|
8172 |
|
|
case COMPARE:
|
8173 |
|
|
if (GET_CODE (XEXP (x, 0)) != MULT)
|
8174 |
|
|
return arm_rtx_costs_1 (x, outer_code, total, speed);
|
8175 |
|
|
|
8176 |
|
|
/* A COMPARE of a MULT is slow on XScale; the muls instruction
|
8177 |
|
|
will stall until the multiplication is complete. */
|
8178 |
|
|
*total = COSTS_N_INSNS (3);
|
8179 |
|
|
return false;
|
8180 |
|
|
|
8181 |
|
|
case MULT:
|
8182 |
|
|
/* There is no point basing this on the tuning, since it is always the
|
8183 |
|
|
fast variant if it exists at all. */
|
8184 |
|
|
if (mode == DImode
|
8185 |
|
|
&& (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
|
8186 |
|
|
&& (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
|
8187 |
|
|
|| GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
|
8188 |
|
|
{
|
8189 |
|
|
*total = COSTS_N_INSNS (2);
|
8190 |
|
|
return false;
|
8191 |
|
|
}
|
8192 |
|
|
|
8193 |
|
|
|
8194 |
|
|
if (mode == DImode)
|
8195 |
|
|
{
|
8196 |
|
|
*total = COSTS_N_INSNS (5);
|
8197 |
|
|
return false;
|
8198 |
|
|
}
|
8199 |
|
|
|
8200 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
8201 |
|
|
{
|
8202 |
|
|
/* If operand 1 is a constant we can more accurately
|
8203 |
|
|
calculate the cost of the multiply. The multiplier can
|
8204 |
|
|
retire 15 bits on the first cycle and a further 12 on the
|
8205 |
|
|
second. We do, of course, have to load the constant into
|
8206 |
|
|
a register first. */
|
8207 |
|
|
unsigned HOST_WIDE_INT i = INTVAL (XEXP (x, 1));
|
8208 |
|
|
/* There's a general overhead of one cycle. */
|
8209 |
|
|
int cost = 1;
|
8210 |
|
|
unsigned HOST_WIDE_INT masked_const;
|
8211 |
|
|
|
8212 |
|
|
if (i & 0x80000000)
|
8213 |
|
|
i = ~i;
|
8214 |
|
|
|
8215 |
|
|
i &= (unsigned HOST_WIDE_INT) 0xffffffff;
|
8216 |
|
|
|
8217 |
|
|
masked_const = i & 0xffff8000;
|
8218 |
|
|
if (masked_const != 0)
|
8219 |
|
|
{
|
8220 |
|
|
cost++;
|
8221 |
|
|
masked_const = i & 0xf8000000;
|
8222 |
|
|
if (masked_const != 0)
|
8223 |
|
|
cost++;
|
8224 |
|
|
}
|
8225 |
|
|
*total = COSTS_N_INSNS (cost);
|
8226 |
|
|
return false;
|
8227 |
|
|
}
|
8228 |
|
|
|
8229 |
|
|
if (mode == SImode)
|
8230 |
|
|
{
|
8231 |
|
|
*total = COSTS_N_INSNS (3);
|
8232 |
|
|
return false;
|
8233 |
|
|
}
|
8234 |
|
|
|
8235 |
|
|
/* Requires a lib call */
|
8236 |
|
|
*total = COSTS_N_INSNS (20);
|
8237 |
|
|
return false;
|
8238 |
|
|
|
8239 |
|
|
default:
|
8240 |
|
|
return arm_rtx_costs_1 (x, outer_code, total, speed);
|
8241 |
|
|
}
|
8242 |
|
|
}
|
8243 |
|
|
|
8244 |
|
|
|
8245 |
|
|
/* RTX costs for 9e (and later) cores. */
|
8246 |
|
|
|
8247 |
|
|
static bool
|
8248 |
|
|
arm_9e_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer_code,
|
8249 |
|
|
int *total, bool speed)
|
8250 |
|
|
{
|
8251 |
|
|
enum machine_mode mode = GET_MODE (x);
|
8252 |
|
|
|
8253 |
|
|
if (TARGET_THUMB1)
|
8254 |
|
|
{
|
8255 |
|
|
switch (code)
|
8256 |
|
|
{
|
8257 |
|
|
case MULT:
|
8258 |
|
|
*total = COSTS_N_INSNS (3);
|
8259 |
|
|
return true;
|
8260 |
|
|
|
8261 |
|
|
default:
|
8262 |
|
|
*total = thumb1_rtx_costs (x, code, outer_code);
|
8263 |
|
|
return true;
|
8264 |
|
|
}
|
8265 |
|
|
}
|
8266 |
|
|
|
8267 |
|
|
switch (code)
|
8268 |
|
|
{
|
8269 |
|
|
case MULT:
|
8270 |
|
|
/* There is no point basing this on the tuning, since it is always the
|
8271 |
|
|
fast variant if it exists at all. */
|
8272 |
|
|
if (mode == DImode
|
8273 |
|
|
&& (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
|
8274 |
|
|
&& (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
|
8275 |
|
|
|| GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
|
8276 |
|
|
{
|
8277 |
|
|
*total = COSTS_N_INSNS (2);
|
8278 |
|
|
return false;
|
8279 |
|
|
}
|
8280 |
|
|
|
8281 |
|
|
|
8282 |
|
|
if (mode == DImode)
|
8283 |
|
|
{
|
8284 |
|
|
*total = COSTS_N_INSNS (5);
|
8285 |
|
|
return false;
|
8286 |
|
|
}
|
8287 |
|
|
|
8288 |
|
|
if (mode == SImode)
|
8289 |
|
|
{
|
8290 |
|
|
*total = COSTS_N_INSNS (2);
|
8291 |
|
|
return false;
|
8292 |
|
|
}
|
8293 |
|
|
|
8294 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
8295 |
|
|
{
|
8296 |
|
|
if (TARGET_HARD_FLOAT
|
8297 |
|
|
&& (mode == SFmode
|
8298 |
|
|
|| (mode == DFmode && !TARGET_VFP_SINGLE)))
|
8299 |
|
|
{
|
8300 |
|
|
*total = COSTS_N_INSNS (1);
|
8301 |
|
|
return false;
|
8302 |
|
|
}
|
8303 |
|
|
}
|
8304 |
|
|
|
8305 |
|
|
*total = COSTS_N_INSNS (20);
|
8306 |
|
|
return false;
|
8307 |
|
|
|
8308 |
|
|
default:
|
8309 |
|
|
return arm_rtx_costs_1 (x, outer_code, total, speed);
|
8310 |
|
|
}
|
8311 |
|
|
}
|
8312 |
|
|
/* All address computations that can be done are free, but rtx cost returns
|
8313 |
|
|
the same for practically all of them. So we weight the different types
|
8314 |
|
|
of address here in the order (most pref first):
|
8315 |
|
|
PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL. */
|
8316 |
|
|
static inline int
|
8317 |
|
|
arm_arm_address_cost (rtx x)
|
8318 |
|
|
{
|
8319 |
|
|
enum rtx_code c = GET_CODE (x);
|
8320 |
|
|
|
8321 |
|
|
if (c == PRE_INC || c == PRE_DEC || c == POST_INC || c == POST_DEC)
|
8322 |
|
|
return 0;
|
8323 |
|
|
if (c == MEM || c == LABEL_REF || c == SYMBOL_REF)
|
8324 |
|
|
return 10;
|
8325 |
|
|
|
8326 |
|
|
if (c == PLUS)
|
8327 |
|
|
{
|
8328 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
8329 |
|
|
return 2;
|
8330 |
|
|
|
8331 |
|
|
if (ARITHMETIC_P (XEXP (x, 0)) || ARITHMETIC_P (XEXP (x, 1)))
|
8332 |
|
|
return 3;
|
8333 |
|
|
|
8334 |
|
|
return 4;
|
8335 |
|
|
}
|
8336 |
|
|
|
8337 |
|
|
return 6;
|
8338 |
|
|
}
|
8339 |
|
|
|
8340 |
|
|
static inline int
|
8341 |
|
|
arm_thumb_address_cost (rtx x)
|
8342 |
|
|
{
|
8343 |
|
|
enum rtx_code c = GET_CODE (x);
|
8344 |
|
|
|
8345 |
|
|
if (c == REG)
|
8346 |
|
|
return 1;
|
8347 |
|
|
if (c == PLUS
|
8348 |
|
|
&& GET_CODE (XEXP (x, 0)) == REG
|
8349 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
|
8350 |
|
|
return 1;
|
8351 |
|
|
|
8352 |
|
|
return 2;
|
8353 |
|
|
}
|
8354 |
|
|
|
8355 |
|
|
static int
|
8356 |
|
|
arm_address_cost (rtx x, bool speed ATTRIBUTE_UNUSED)
|
8357 |
|
|
{
|
8358 |
|
|
return TARGET_32BIT ? arm_arm_address_cost (x) : arm_thumb_address_cost (x);
|
8359 |
|
|
}
|
8360 |
|
|
|
8361 |
|
|
/* Adjust cost hook for XScale. */
|
8362 |
|
|
static bool
|
8363 |
|
|
xscale_sched_adjust_cost (rtx insn, rtx link, rtx dep, int * cost)
|
8364 |
|
|
{
|
8365 |
|
|
/* Some true dependencies can have a higher cost depending
|
8366 |
|
|
on precisely how certain input operands are used. */
|
8367 |
|
|
if (REG_NOTE_KIND(link) == 0
|
8368 |
|
|
&& recog_memoized (insn) >= 0
|
8369 |
|
|
&& recog_memoized (dep) >= 0)
|
8370 |
|
|
{
|
8371 |
|
|
int shift_opnum = get_attr_shift (insn);
|
8372 |
|
|
enum attr_type attr_type = get_attr_type (dep);
|
8373 |
|
|
|
8374 |
|
|
/* If nonzero, SHIFT_OPNUM contains the operand number of a shifted
|
8375 |
|
|
operand for INSN. If we have a shifted input operand and the
|
8376 |
|
|
instruction we depend on is another ALU instruction, then we may
|
8377 |
|
|
have to account for an additional stall. */
|
8378 |
|
|
if (shift_opnum != 0
|
8379 |
|
|
&& (attr_type == TYPE_ALU_SHIFT || attr_type == TYPE_ALU_SHIFT_REG))
|
8380 |
|
|
{
|
8381 |
|
|
rtx shifted_operand;
|
8382 |
|
|
int opno;
|
8383 |
|
|
|
8384 |
|
|
/* Get the shifted operand. */
|
8385 |
|
|
extract_insn (insn);
|
8386 |
|
|
shifted_operand = recog_data.operand[shift_opnum];
|
8387 |
|
|
|
8388 |
|
|
/* Iterate over all the operands in DEP. If we write an operand
|
8389 |
|
|
that overlaps with SHIFTED_OPERAND, then we have increase the
|
8390 |
|
|
cost of this dependency. */
|
8391 |
|
|
extract_insn (dep);
|
8392 |
|
|
preprocess_constraints ();
|
8393 |
|
|
for (opno = 0; opno < recog_data.n_operands; opno++)
|
8394 |
|
|
{
|
8395 |
|
|
/* We can ignore strict inputs. */
|
8396 |
|
|
if (recog_data.operand_type[opno] == OP_IN)
|
8397 |
|
|
continue;
|
8398 |
|
|
|
8399 |
|
|
if (reg_overlap_mentioned_p (recog_data.operand[opno],
|
8400 |
|
|
shifted_operand))
|
8401 |
|
|
{
|
8402 |
|
|
*cost = 2;
|
8403 |
|
|
return false;
|
8404 |
|
|
}
|
8405 |
|
|
}
|
8406 |
|
|
}
|
8407 |
|
|
}
|
8408 |
|
|
return true;
|
8409 |
|
|
}
|
8410 |
|
|
|
8411 |
|
|
/* Adjust cost hook for Cortex A9. */
|
8412 |
|
|
static bool
|
8413 |
|
|
cortex_a9_sched_adjust_cost (rtx insn, rtx link, rtx dep, int * cost)
|
8414 |
|
|
{
|
8415 |
|
|
switch (REG_NOTE_KIND (link))
|
8416 |
|
|
{
|
8417 |
|
|
case REG_DEP_ANTI:
|
8418 |
|
|
*cost = 0;
|
8419 |
|
|
return false;
|
8420 |
|
|
|
8421 |
|
|
case REG_DEP_TRUE:
|
8422 |
|
|
case REG_DEP_OUTPUT:
|
8423 |
|
|
if (recog_memoized (insn) >= 0
|
8424 |
|
|
&& recog_memoized (dep) >= 0)
|
8425 |
|
|
{
|
8426 |
|
|
if (GET_CODE (PATTERN (insn)) == SET)
|
8427 |
|
|
{
|
8428 |
|
|
if (GET_MODE_CLASS
|
8429 |
|
|
(GET_MODE (SET_DEST (PATTERN (insn)))) == MODE_FLOAT
|
8430 |
|
|
|| GET_MODE_CLASS
|
8431 |
|
|
(GET_MODE (SET_SRC (PATTERN (insn)))) == MODE_FLOAT)
|
8432 |
|
|
{
|
8433 |
|
|
enum attr_type attr_type_insn = get_attr_type (insn);
|
8434 |
|
|
enum attr_type attr_type_dep = get_attr_type (dep);
|
8435 |
|
|
|
8436 |
|
|
/* By default all dependencies of the form
|
8437 |
|
|
s0 = s0 <op> s1
|
8438 |
|
|
s0 = s0 <op> s2
|
8439 |
|
|
have an extra latency of 1 cycle because
|
8440 |
|
|
of the input and output dependency in this
|
8441 |
|
|
case. However this gets modeled as an true
|
8442 |
|
|
dependency and hence all these checks. */
|
8443 |
|
|
if (REG_P (SET_DEST (PATTERN (insn)))
|
8444 |
|
|
&& REG_P (SET_DEST (PATTERN (dep)))
|
8445 |
|
|
&& reg_overlap_mentioned_p (SET_DEST (PATTERN (insn)),
|
8446 |
|
|
SET_DEST (PATTERN (dep))))
|
8447 |
|
|
{
|
8448 |
|
|
/* FMACS is a special case where the dependant
|
8449 |
|
|
instruction can be issued 3 cycles before
|
8450 |
|
|
the normal latency in case of an output
|
8451 |
|
|
dependency. */
|
8452 |
|
|
if ((attr_type_insn == TYPE_FMACS
|
8453 |
|
|
|| attr_type_insn == TYPE_FMACD)
|
8454 |
|
|
&& (attr_type_dep == TYPE_FMACS
|
8455 |
|
|
|| attr_type_dep == TYPE_FMACD))
|
8456 |
|
|
{
|
8457 |
|
|
if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
|
8458 |
|
|
*cost = insn_default_latency (dep) - 3;
|
8459 |
|
|
else
|
8460 |
|
|
*cost = insn_default_latency (dep);
|
8461 |
|
|
return false;
|
8462 |
|
|
}
|
8463 |
|
|
else
|
8464 |
|
|
{
|
8465 |
|
|
if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
|
8466 |
|
|
*cost = insn_default_latency (dep) + 1;
|
8467 |
|
|
else
|
8468 |
|
|
*cost = insn_default_latency (dep);
|
8469 |
|
|
}
|
8470 |
|
|
return false;
|
8471 |
|
|
}
|
8472 |
|
|
}
|
8473 |
|
|
}
|
8474 |
|
|
}
|
8475 |
|
|
break;
|
8476 |
|
|
|
8477 |
|
|
default:
|
8478 |
|
|
gcc_unreachable ();
|
8479 |
|
|
}
|
8480 |
|
|
|
8481 |
|
|
return true;
|
8482 |
|
|
}
|
8483 |
|
|
|
8484 |
|
|
/* Adjust cost hook for FA726TE. */
|
8485 |
|
|
static bool
|
8486 |
|
|
fa726te_sched_adjust_cost (rtx insn, rtx link, rtx dep, int * cost)
|
8487 |
|
|
{
|
8488 |
|
|
/* For FA726TE, true dependency on CPSR (i.e. set cond followed by predicated)
|
8489 |
|
|
have penalty of 3. */
|
8490 |
|
|
if (REG_NOTE_KIND (link) == REG_DEP_TRUE
|
8491 |
|
|
&& recog_memoized (insn) >= 0
|
8492 |
|
|
&& recog_memoized (dep) >= 0
|
8493 |
|
|
&& get_attr_conds (dep) == CONDS_SET)
|
8494 |
|
|
{
|
8495 |
|
|
/* Use of carry (e.g. 64-bit arithmetic) in ALU: 3-cycle latency. */
|
8496 |
|
|
if (get_attr_conds (insn) == CONDS_USE
|
8497 |
|
|
&& get_attr_type (insn) != TYPE_BRANCH)
|
8498 |
|
|
{
|
8499 |
|
|
*cost = 3;
|
8500 |
|
|
return false;
|
8501 |
|
|
}
|
8502 |
|
|
|
8503 |
|
|
if (GET_CODE (PATTERN (insn)) == COND_EXEC
|
8504 |
|
|
|| get_attr_conds (insn) == CONDS_USE)
|
8505 |
|
|
{
|
8506 |
|
|
*cost = 0;
|
8507 |
|
|
return false;
|
8508 |
|
|
}
|
8509 |
|
|
}
|
8510 |
|
|
|
8511 |
|
|
return true;
|
8512 |
|
|
}
|
8513 |
|
|
|
8514 |
|
|
/* Implement TARGET_REGISTER_MOVE_COST.
|
8515 |
|
|
|
8516 |
|
|
Moves between FPA_REGS and GENERAL_REGS are two memory insns.
|
8517 |
|
|
Moves between VFP_REGS and GENERAL_REGS are a single insn, but
|
8518 |
|
|
it is typically more expensive than a single memory access. We set
|
8519 |
|
|
the cost to less than two memory accesses so that floating
|
8520 |
|
|
point to integer conversion does not go through memory. */
|
8521 |
|
|
|
8522 |
|
|
int
|
8523 |
|
|
arm_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
|
8524 |
|
|
reg_class_t from, reg_class_t to)
|
8525 |
|
|
{
|
8526 |
|
|
if (TARGET_32BIT)
|
8527 |
|
|
{
|
8528 |
|
|
if ((from == FPA_REGS && to != FPA_REGS)
|
8529 |
|
|
|| (from != FPA_REGS && to == FPA_REGS))
|
8530 |
|
|
return 20;
|
8531 |
|
|
else if ((IS_VFP_CLASS (from) && !IS_VFP_CLASS (to))
|
8532 |
|
|
|| (!IS_VFP_CLASS (from) && IS_VFP_CLASS (to)))
|
8533 |
|
|
return 15;
|
8534 |
|
|
else if ((from == IWMMXT_REGS && to != IWMMXT_REGS)
|
8535 |
|
|
|| (from != IWMMXT_REGS && to == IWMMXT_REGS))
|
8536 |
|
|
return 4;
|
8537 |
|
|
else if (from == IWMMXT_GR_REGS || to == IWMMXT_GR_REGS)
|
8538 |
|
|
return 20;
|
8539 |
|
|
else if ((from == CIRRUS_REGS && to != CIRRUS_REGS)
|
8540 |
|
|
|| (from != CIRRUS_REGS && to == CIRRUS_REGS))
|
8541 |
|
|
return 20;
|
8542 |
|
|
else
|
8543 |
|
|
return 2;
|
8544 |
|
|
}
|
8545 |
|
|
else
|
8546 |
|
|
{
|
8547 |
|
|
if (from == HI_REGS || to == HI_REGS)
|
8548 |
|
|
return 4;
|
8549 |
|
|
else
|
8550 |
|
|
return 2;
|
8551 |
|
|
}
|
8552 |
|
|
}
|
8553 |
|
|
|
8554 |
|
|
/* Implement TARGET_MEMORY_MOVE_COST. */
|
8555 |
|
|
|
8556 |
|
|
int
|
8557 |
|
|
arm_memory_move_cost (enum machine_mode mode, reg_class_t rclass,
|
8558 |
|
|
bool in ATTRIBUTE_UNUSED)
|
8559 |
|
|
{
|
8560 |
|
|
if (TARGET_32BIT)
|
8561 |
|
|
return 10;
|
8562 |
|
|
else
|
8563 |
|
|
{
|
8564 |
|
|
if (GET_MODE_SIZE (mode) < 4)
|
8565 |
|
|
return 8;
|
8566 |
|
|
else
|
8567 |
|
|
return ((2 * GET_MODE_SIZE (mode)) * (rclass == LO_REGS ? 1 : 2));
|
8568 |
|
|
}
|
8569 |
|
|
}
|
8570 |
|
|
|
8571 |
|
|
/* This function implements the target macro TARGET_SCHED_ADJUST_COST.
|
8572 |
|
|
It corrects the value of COST based on the relationship between
|
8573 |
|
|
INSN and DEP through the dependence LINK. It returns the new
|
8574 |
|
|
value. There is a per-core adjust_cost hook to adjust scheduler costs
|
8575 |
|
|
and the per-core hook can choose to completely override the generic
|
8576 |
|
|
adjust_cost function. Only put bits of code into arm_adjust_cost that
|
8577 |
|
|
are common across all cores. */
|
8578 |
|
|
static int
|
8579 |
|
|
arm_adjust_cost (rtx insn, rtx link, rtx dep, int cost)
|
8580 |
|
|
{
|
8581 |
|
|
rtx i_pat, d_pat;
|
8582 |
|
|
|
8583 |
|
|
/* When generating Thumb-1 code, we want to place flag-setting operations
|
8584 |
|
|
close to a conditional branch which depends on them, so that we can
|
8585 |
|
|
omit the comparison. */
|
8586 |
|
|
if (TARGET_THUMB1
|
8587 |
|
|
&& REG_NOTE_KIND (link) == 0
|
8588 |
|
|
&& recog_memoized (insn) == CODE_FOR_cbranchsi4_insn
|
8589 |
|
|
&& recog_memoized (dep) >= 0
|
8590 |
|
|
&& get_attr_conds (dep) == CONDS_SET)
|
8591 |
|
|
return 0;
|
8592 |
|
|
|
8593 |
|
|
if (current_tune->sched_adjust_cost != NULL)
|
8594 |
|
|
{
|
8595 |
|
|
if (!current_tune->sched_adjust_cost (insn, link, dep, &cost))
|
8596 |
|
|
return cost;
|
8597 |
|
|
}
|
8598 |
|
|
|
8599 |
|
|
/* XXX This is not strictly true for the FPA. */
|
8600 |
|
|
if (REG_NOTE_KIND (link) == REG_DEP_ANTI
|
8601 |
|
|
|| REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
|
8602 |
|
|
return 0;
|
8603 |
|
|
|
8604 |
|
|
/* Call insns don't incur a stall, even if they follow a load. */
|
8605 |
|
|
if (REG_NOTE_KIND (link) == 0
|
8606 |
|
|
&& GET_CODE (insn) == CALL_INSN)
|
8607 |
|
|
return 1;
|
8608 |
|
|
|
8609 |
|
|
if ((i_pat = single_set (insn)) != NULL
|
8610 |
|
|
&& GET_CODE (SET_SRC (i_pat)) == MEM
|
8611 |
|
|
&& (d_pat = single_set (dep)) != NULL
|
8612 |
|
|
&& GET_CODE (SET_DEST (d_pat)) == MEM)
|
8613 |
|
|
{
|
8614 |
|
|
rtx src_mem = XEXP (SET_SRC (i_pat), 0);
|
8615 |
|
|
/* This is a load after a store, there is no conflict if the load reads
|
8616 |
|
|
from a cached area. Assume that loads from the stack, and from the
|
8617 |
|
|
constant pool are cached, and that others will miss. This is a
|
8618 |
|
|
hack. */
|
8619 |
|
|
|
8620 |
|
|
if ((GET_CODE (src_mem) == SYMBOL_REF
|
8621 |
|
|
&& CONSTANT_POOL_ADDRESS_P (src_mem))
|
8622 |
|
|
|| reg_mentioned_p (stack_pointer_rtx, src_mem)
|
8623 |
|
|
|| reg_mentioned_p (frame_pointer_rtx, src_mem)
|
8624 |
|
|
|| reg_mentioned_p (hard_frame_pointer_rtx, src_mem))
|
8625 |
|
|
return 1;
|
8626 |
|
|
}
|
8627 |
|
|
|
8628 |
|
|
return cost;
|
8629 |
|
|
}
|
8630 |
|
|
|
8631 |
|
|
static int
|
8632 |
|
|
arm_default_branch_cost (bool speed_p, bool predictable_p ATTRIBUTE_UNUSED)
|
8633 |
|
|
{
|
8634 |
|
|
if (TARGET_32BIT)
|
8635 |
|
|
return (TARGET_THUMB2 && !speed_p) ? 1 : 4;
|
8636 |
|
|
else
|
8637 |
|
|
return (optimize > 0) ? 2 : 0;
|
8638 |
|
|
}
|
8639 |
|
|
|
8640 |
|
|
static int
|
8641 |
|
|
arm_cortex_a5_branch_cost (bool speed_p, bool predictable_p)
|
8642 |
|
|
{
|
8643 |
|
|
return speed_p ? 0 : arm_default_branch_cost (speed_p, predictable_p);
|
8644 |
|
|
}
|
8645 |
|
|
|
8646 |
|
|
static int fp_consts_inited = 0;
|
8647 |
|
|
|
8648 |
|
|
/* Only zero is valid for VFP. Other values are also valid for FPA. */
|
8649 |
|
|
static const char * const strings_fp[8] =
|
8650 |
|
|
{
|
8651 |
|
|
"0", "1", "2", "3",
|
8652 |
|
|
"4", "5", "0.5", "10"
|
8653 |
|
|
};
|
8654 |
|
|
|
8655 |
|
|
static REAL_VALUE_TYPE values_fp[8];
|
8656 |
|
|
|
8657 |
|
|
static void
|
8658 |
|
|
init_fp_table (void)
|
8659 |
|
|
{
|
8660 |
|
|
int i;
|
8661 |
|
|
REAL_VALUE_TYPE r;
|
8662 |
|
|
|
8663 |
|
|
if (TARGET_VFP)
|
8664 |
|
|
fp_consts_inited = 1;
|
8665 |
|
|
else
|
8666 |
|
|
fp_consts_inited = 8;
|
8667 |
|
|
|
8668 |
|
|
for (i = 0; i < fp_consts_inited; i++)
|
8669 |
|
|
{
|
8670 |
|
|
r = REAL_VALUE_ATOF (strings_fp[i], DFmode);
|
8671 |
|
|
values_fp[i] = r;
|
8672 |
|
|
}
|
8673 |
|
|
}
|
8674 |
|
|
|
8675 |
|
|
/* Return TRUE if rtx X is a valid immediate FP constant. */
|
8676 |
|
|
int
|
8677 |
|
|
arm_const_double_rtx (rtx x)
|
8678 |
|
|
{
|
8679 |
|
|
REAL_VALUE_TYPE r;
|
8680 |
|
|
int i;
|
8681 |
|
|
|
8682 |
|
|
if (!fp_consts_inited)
|
8683 |
|
|
init_fp_table ();
|
8684 |
|
|
|
8685 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
|
8686 |
|
|
if (REAL_VALUE_MINUS_ZERO (r))
|
8687 |
|
|
return 0;
|
8688 |
|
|
|
8689 |
|
|
for (i = 0; i < fp_consts_inited; i++)
|
8690 |
|
|
if (REAL_VALUES_EQUAL (r, values_fp[i]))
|
8691 |
|
|
return 1;
|
8692 |
|
|
|
8693 |
|
|
return 0;
|
8694 |
|
|
}
|
8695 |
|
|
|
8696 |
|
|
/* Return TRUE if rtx X is a valid immediate FPA constant. */
|
8697 |
|
|
int
|
8698 |
|
|
neg_const_double_rtx_ok_for_fpa (rtx x)
|
8699 |
|
|
{
|
8700 |
|
|
REAL_VALUE_TYPE r;
|
8701 |
|
|
int i;
|
8702 |
|
|
|
8703 |
|
|
if (!fp_consts_inited)
|
8704 |
|
|
init_fp_table ();
|
8705 |
|
|
|
8706 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
|
8707 |
|
|
r = real_value_negate (&r);
|
8708 |
|
|
if (REAL_VALUE_MINUS_ZERO (r))
|
8709 |
|
|
return 0;
|
8710 |
|
|
|
8711 |
|
|
for (i = 0; i < 8; i++)
|
8712 |
|
|
if (REAL_VALUES_EQUAL (r, values_fp[i]))
|
8713 |
|
|
return 1;
|
8714 |
|
|
|
8715 |
|
|
return 0;
|
8716 |
|
|
}
|
8717 |
|
|
|
8718 |
|
|
|
8719 |
|
|
/* VFPv3 has a fairly wide range of representable immediates, formed from
|
8720 |
|
|
"quarter-precision" floating-point values. These can be evaluated using this
|
8721 |
|
|
formula (with ^ for exponentiation):
|
8722 |
|
|
|
8723 |
|
|
-1^s * n * 2^-r
|
8724 |
|
|
|
8725 |
|
|
Where 's' is a sign bit (0/1), 'n' and 'r' are integers such that
|
8726 |
|
|
16 <= n <= 31 and 0 <= r <= 7.
|
8727 |
|
|
|
8728 |
|
|
These values are mapped onto an 8-bit integer ABCDEFGH s.t.
|
8729 |
|
|
|
8730 |
|
|
- A (most-significant) is the sign bit.
|
8731 |
|
|
- BCD are the exponent (encoded as r XOR 3).
|
8732 |
|
|
- EFGH are the mantissa (encoded as n - 16).
|
8733 |
|
|
*/
|
8734 |
|
|
|
8735 |
|
|
/* Return an integer index for a VFPv3 immediate operand X suitable for the
|
8736 |
|
|
fconst[sd] instruction, or -1 if X isn't suitable. */
|
8737 |
|
|
static int
|
8738 |
|
|
vfp3_const_double_index (rtx x)
|
8739 |
|
|
{
|
8740 |
|
|
REAL_VALUE_TYPE r, m;
|
8741 |
|
|
int sign, exponent;
|
8742 |
|
|
unsigned HOST_WIDE_INT mantissa, mant_hi;
|
8743 |
|
|
unsigned HOST_WIDE_INT mask;
|
8744 |
|
|
HOST_WIDE_INT m1, m2;
|
8745 |
|
|
int point_pos = 2 * HOST_BITS_PER_WIDE_INT - 1;
|
8746 |
|
|
|
8747 |
|
|
if (!TARGET_VFP3 || GET_CODE (x) != CONST_DOUBLE)
|
8748 |
|
|
return -1;
|
8749 |
|
|
|
8750 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
|
8751 |
|
|
|
8752 |
|
|
/* We can't represent these things, so detect them first. */
|
8753 |
|
|
if (REAL_VALUE_ISINF (r) || REAL_VALUE_ISNAN (r) || REAL_VALUE_MINUS_ZERO (r))
|
8754 |
|
|
return -1;
|
8755 |
|
|
|
8756 |
|
|
/* Extract sign, exponent and mantissa. */
|
8757 |
|
|
sign = REAL_VALUE_NEGATIVE (r) ? 1 : 0;
|
8758 |
|
|
r = real_value_abs (&r);
|
8759 |
|
|
exponent = REAL_EXP (&r);
|
8760 |
|
|
/* For the mantissa, we expand into two HOST_WIDE_INTS, apart from the
|
8761 |
|
|
highest (sign) bit, with a fixed binary point at bit point_pos.
|
8762 |
|
|
WARNING: If there's ever a VFP version which uses more than 2 * H_W_I - 1
|
8763 |
|
|
bits for the mantissa, this may fail (low bits would be lost). */
|
8764 |
|
|
real_ldexp (&m, &r, point_pos - exponent);
|
8765 |
|
|
REAL_VALUE_TO_INT (&m1, &m2, m);
|
8766 |
|
|
mantissa = m1;
|
8767 |
|
|
mant_hi = m2;
|
8768 |
|
|
|
8769 |
|
|
/* If there are bits set in the low part of the mantissa, we can't
|
8770 |
|
|
represent this value. */
|
8771 |
|
|
if (mantissa != 0)
|
8772 |
|
|
return -1;
|
8773 |
|
|
|
8774 |
|
|
/* Now make it so that mantissa contains the most-significant bits, and move
|
8775 |
|
|
the point_pos to indicate that the least-significant bits have been
|
8776 |
|
|
discarded. */
|
8777 |
|
|
point_pos -= HOST_BITS_PER_WIDE_INT;
|
8778 |
|
|
mantissa = mant_hi;
|
8779 |
|
|
|
8780 |
|
|
/* We can permit four significant bits of mantissa only, plus a high bit
|
8781 |
|
|
which is always 1. */
|
8782 |
|
|
mask = ((unsigned HOST_WIDE_INT)1 << (point_pos - 5)) - 1;
|
8783 |
|
|
if ((mantissa & mask) != 0)
|
8784 |
|
|
return -1;
|
8785 |
|
|
|
8786 |
|
|
/* Now we know the mantissa is in range, chop off the unneeded bits. */
|
8787 |
|
|
mantissa >>= point_pos - 5;
|
8788 |
|
|
|
8789 |
|
|
/* The mantissa may be zero. Disallow that case. (It's possible to load the
|
8790 |
|
|
floating-point immediate zero with Neon using an integer-zero load, but
|
8791 |
|
|
that case is handled elsewhere.) */
|
8792 |
|
|
if (mantissa == 0)
|
8793 |
|
|
return -1;
|
8794 |
|
|
|
8795 |
|
|
gcc_assert (mantissa >= 16 && mantissa <= 31);
|
8796 |
|
|
|
8797 |
|
|
/* The value of 5 here would be 4 if GCC used IEEE754-like encoding (where
|
8798 |
|
|
normalized significands are in the range [1, 2). (Our mantissa is shifted
|
8799 |
|
|
left 4 places at this point relative to normalized IEEE754 values). GCC
|
8800 |
|
|
internally uses [0.5, 1) (see real.c), so the exponent returned from
|
8801 |
|
|
REAL_EXP must be altered. */
|
8802 |
|
|
exponent = 5 - exponent;
|
8803 |
|
|
|
8804 |
|
|
if (exponent < 0 || exponent > 7)
|
8805 |
|
|
return -1;
|
8806 |
|
|
|
8807 |
|
|
/* Sign, mantissa and exponent are now in the correct form to plug into the
|
8808 |
|
|
formula described in the comment above. */
|
8809 |
|
|
return (sign << 7) | ((exponent ^ 3) << 4) | (mantissa - 16);
|
8810 |
|
|
}
|
8811 |
|
|
|
8812 |
|
|
/* Return TRUE if rtx X is a valid immediate VFPv3 constant. */
|
8813 |
|
|
int
|
8814 |
|
|
vfp3_const_double_rtx (rtx x)
|
8815 |
|
|
{
|
8816 |
|
|
if (!TARGET_VFP3)
|
8817 |
|
|
return 0;
|
8818 |
|
|
|
8819 |
|
|
return vfp3_const_double_index (x) != -1;
|
8820 |
|
|
}
|
8821 |
|
|
|
8822 |
|
|
/* Recognize immediates which can be used in various Neon instructions. Legal
|
8823 |
|
|
immediates are described by the following table (for VMVN variants, the
|
8824 |
|
|
bitwise inverse of the constant shown is recognized. In either case, VMOV
|
8825 |
|
|
is output and the correct instruction to use for a given constant is chosen
|
8826 |
|
|
by the assembler). The constant shown is replicated across all elements of
|
8827 |
|
|
the destination vector.
|
8828 |
|
|
|
8829 |
|
|
insn elems variant constant (binary)
|
8830 |
|
|
---- ----- ------- -----------------
|
8831 |
|
|
vmov i32 0 00000000 00000000 00000000 abcdefgh
|
8832 |
|
|
vmov i32 1 00000000 00000000 abcdefgh 00000000
|
8833 |
|
|
vmov i32 2 00000000 abcdefgh 00000000 00000000
|
8834 |
|
|
vmov i32 3 abcdefgh 00000000 00000000 00000000
|
8835 |
|
|
vmov i16 4 00000000 abcdefgh
|
8836 |
|
|
vmov i16 5 abcdefgh 00000000
|
8837 |
|
|
vmvn i32 6 00000000 00000000 00000000 abcdefgh
|
8838 |
|
|
vmvn i32 7 00000000 00000000 abcdefgh 00000000
|
8839 |
|
|
vmvn i32 8 00000000 abcdefgh 00000000 00000000
|
8840 |
|
|
vmvn i32 9 abcdefgh 00000000 00000000 00000000
|
8841 |
|
|
vmvn i16 10 00000000 abcdefgh
|
8842 |
|
|
vmvn i16 11 abcdefgh 00000000
|
8843 |
|
|
vmov i32 12 00000000 00000000 abcdefgh 11111111
|
8844 |
|
|
vmvn i32 13 00000000 00000000 abcdefgh 11111111
|
8845 |
|
|
vmov i32 14 00000000 abcdefgh 11111111 11111111
|
8846 |
|
|
vmvn i32 15 00000000 abcdefgh 11111111 11111111
|
8847 |
|
|
vmov i8 16 abcdefgh
|
8848 |
|
|
vmov i64 17 aaaaaaaa bbbbbbbb cccccccc dddddddd
|
8849 |
|
|
eeeeeeee ffffffff gggggggg hhhhhhhh
|
8850 |
|
|
vmov f32 18 aBbbbbbc defgh000 00000000 00000000
|
8851 |
|
|
|
8852 |
|
|
For case 18, B = !b. Representable values are exactly those accepted by
|
8853 |
|
|
vfp3_const_double_index, but are output as floating-point numbers rather
|
8854 |
|
|
than indices.
|
8855 |
|
|
|
8856 |
|
|
Variants 0-5 (inclusive) may also be used as immediates for the second
|
8857 |
|
|
operand of VORR/VBIC instructions.
|
8858 |
|
|
|
8859 |
|
|
The INVERSE argument causes the bitwise inverse of the given operand to be
|
8860 |
|
|
recognized instead (used for recognizing legal immediates for the VAND/VORN
|
8861 |
|
|
pseudo-instructions). If INVERSE is true, the value placed in *MODCONST is
|
8862 |
|
|
*not* inverted (i.e. the pseudo-instruction forms vand/vorn should still be
|
8863 |
|
|
output, rather than the real insns vbic/vorr).
|
8864 |
|
|
|
8865 |
|
|
INVERSE makes no difference to the recognition of float vectors.
|
8866 |
|
|
|
8867 |
|
|
The return value is the variant of immediate as shown in the above table, or
|
8868 |
|
|
-1 if the given value doesn't match any of the listed patterns.
|
8869 |
|
|
*/
|
8870 |
|
|
static int
|
8871 |
|
|
neon_valid_immediate (rtx op, enum machine_mode mode, int inverse,
|
8872 |
|
|
rtx *modconst, int *elementwidth)
|
8873 |
|
|
{
|
8874 |
|
|
#define CHECK(STRIDE, ELSIZE, CLASS, TEST) \
|
8875 |
|
|
matches = 1; \
|
8876 |
|
|
for (i = 0; i < idx; i += (STRIDE)) \
|
8877 |
|
|
if (!(TEST)) \
|
8878 |
|
|
matches = 0; \
|
8879 |
|
|
if (matches) \
|
8880 |
|
|
{ \
|
8881 |
|
|
immtype = (CLASS); \
|
8882 |
|
|
elsize = (ELSIZE); \
|
8883 |
|
|
break; \
|
8884 |
|
|
}
|
8885 |
|
|
|
8886 |
|
|
unsigned int i, elsize = 0, idx = 0, n_elts = CONST_VECTOR_NUNITS (op);
|
8887 |
|
|
unsigned int innersize = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
8888 |
|
|
unsigned char bytes[16];
|
8889 |
|
|
int immtype = -1, matches;
|
8890 |
|
|
unsigned int invmask = inverse ? 0xff : 0;
|
8891 |
|
|
|
8892 |
|
|
/* Vectors of float constants. */
|
8893 |
|
|
if (GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
8894 |
|
|
{
|
8895 |
|
|
rtx el0 = CONST_VECTOR_ELT (op, 0);
|
8896 |
|
|
REAL_VALUE_TYPE r0;
|
8897 |
|
|
|
8898 |
|
|
if (!vfp3_const_double_rtx (el0))
|
8899 |
|
|
return -1;
|
8900 |
|
|
|
8901 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r0, el0);
|
8902 |
|
|
|
8903 |
|
|
for (i = 1; i < n_elts; i++)
|
8904 |
|
|
{
|
8905 |
|
|
rtx elt = CONST_VECTOR_ELT (op, i);
|
8906 |
|
|
REAL_VALUE_TYPE re;
|
8907 |
|
|
|
8908 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (re, elt);
|
8909 |
|
|
|
8910 |
|
|
if (!REAL_VALUES_EQUAL (r0, re))
|
8911 |
|
|
return -1;
|
8912 |
|
|
}
|
8913 |
|
|
|
8914 |
|
|
if (modconst)
|
8915 |
|
|
*modconst = CONST_VECTOR_ELT (op, 0);
|
8916 |
|
|
|
8917 |
|
|
if (elementwidth)
|
8918 |
|
|
*elementwidth = 0;
|
8919 |
|
|
|
8920 |
|
|
return 18;
|
8921 |
|
|
}
|
8922 |
|
|
|
8923 |
|
|
/* Splat vector constant out into a byte vector. */
|
8924 |
|
|
for (i = 0; i < n_elts; i++)
|
8925 |
|
|
{
|
8926 |
|
|
rtx el = CONST_VECTOR_ELT (op, i);
|
8927 |
|
|
unsigned HOST_WIDE_INT elpart;
|
8928 |
|
|
unsigned int part, parts;
|
8929 |
|
|
|
8930 |
|
|
if (GET_CODE (el) == CONST_INT)
|
8931 |
|
|
{
|
8932 |
|
|
elpart = INTVAL (el);
|
8933 |
|
|
parts = 1;
|
8934 |
|
|
}
|
8935 |
|
|
else if (GET_CODE (el) == CONST_DOUBLE)
|
8936 |
|
|
{
|
8937 |
|
|
elpart = CONST_DOUBLE_LOW (el);
|
8938 |
|
|
parts = 2;
|
8939 |
|
|
}
|
8940 |
|
|
else
|
8941 |
|
|
gcc_unreachable ();
|
8942 |
|
|
|
8943 |
|
|
for (part = 0; part < parts; part++)
|
8944 |
|
|
{
|
8945 |
|
|
unsigned int byte;
|
8946 |
|
|
for (byte = 0; byte < innersize; byte++)
|
8947 |
|
|
{
|
8948 |
|
|
bytes[idx++] = (elpart & 0xff) ^ invmask;
|
8949 |
|
|
elpart >>= BITS_PER_UNIT;
|
8950 |
|
|
}
|
8951 |
|
|
if (GET_CODE (el) == CONST_DOUBLE)
|
8952 |
|
|
elpart = CONST_DOUBLE_HIGH (el);
|
8953 |
|
|
}
|
8954 |
|
|
}
|
8955 |
|
|
|
8956 |
|
|
/* Sanity check. */
|
8957 |
|
|
gcc_assert (idx == GET_MODE_SIZE (mode));
|
8958 |
|
|
|
8959 |
|
|
do
|
8960 |
|
|
{
|
8961 |
|
|
CHECK (4, 32, 0, bytes[i] == bytes[0] && bytes[i + 1] == 0
|
8962 |
|
|
&& bytes[i + 2] == 0 && bytes[i + 3] == 0);
|
8963 |
|
|
|
8964 |
|
|
CHECK (4, 32, 1, bytes[i] == 0 && bytes[i + 1] == bytes[1]
|
8965 |
|
|
&& bytes[i + 2] == 0 && bytes[i + 3] == 0);
|
8966 |
|
|
|
8967 |
|
|
CHECK (4, 32, 2, bytes[i] == 0 && bytes[i + 1] == 0
|
8968 |
|
|
&& bytes[i + 2] == bytes[2] && bytes[i + 3] == 0);
|
8969 |
|
|
|
8970 |
|
|
CHECK (4, 32, 3, bytes[i] == 0 && bytes[i + 1] == 0
|
8971 |
|
|
&& bytes[i + 2] == 0 && bytes[i + 3] == bytes[3]);
|
8972 |
|
|
|
8973 |
|
|
CHECK (2, 16, 4, bytes[i] == bytes[0] && bytes[i + 1] == 0);
|
8974 |
|
|
|
8975 |
|
|
CHECK (2, 16, 5, bytes[i] == 0 && bytes[i + 1] == bytes[1]);
|
8976 |
|
|
|
8977 |
|
|
CHECK (4, 32, 6, bytes[i] == bytes[0] && bytes[i + 1] == 0xff
|
8978 |
|
|
&& bytes[i + 2] == 0xff && bytes[i + 3] == 0xff);
|
8979 |
|
|
|
8980 |
|
|
CHECK (4, 32, 7, bytes[i] == 0xff && bytes[i + 1] == bytes[1]
|
8981 |
|
|
&& bytes[i + 2] == 0xff && bytes[i + 3] == 0xff);
|
8982 |
|
|
|
8983 |
|
|
CHECK (4, 32, 8, bytes[i] == 0xff && bytes[i + 1] == 0xff
|
8984 |
|
|
&& bytes[i + 2] == bytes[2] && bytes[i + 3] == 0xff);
|
8985 |
|
|
|
8986 |
|
|
CHECK (4, 32, 9, bytes[i] == 0xff && bytes[i + 1] == 0xff
|
8987 |
|
|
&& bytes[i + 2] == 0xff && bytes[i + 3] == bytes[3]);
|
8988 |
|
|
|
8989 |
|
|
CHECK (2, 16, 10, bytes[i] == bytes[0] && bytes[i + 1] == 0xff);
|
8990 |
|
|
|
8991 |
|
|
CHECK (2, 16, 11, bytes[i] == 0xff && bytes[i + 1] == bytes[1]);
|
8992 |
|
|
|
8993 |
|
|
CHECK (4, 32, 12, bytes[i] == 0xff && bytes[i + 1] == bytes[1]
|
8994 |
|
|
&& bytes[i + 2] == 0 && bytes[i + 3] == 0);
|
8995 |
|
|
|
8996 |
|
|
CHECK (4, 32, 13, bytes[i] == 0 && bytes[i + 1] == bytes[1]
|
8997 |
|
|
&& bytes[i + 2] == 0xff && bytes[i + 3] == 0xff);
|
8998 |
|
|
|
8999 |
|
|
CHECK (4, 32, 14, bytes[i] == 0xff && bytes[i + 1] == 0xff
|
9000 |
|
|
&& bytes[i + 2] == bytes[2] && bytes[i + 3] == 0);
|
9001 |
|
|
|
9002 |
|
|
CHECK (4, 32, 15, bytes[i] == 0 && bytes[i + 1] == 0
|
9003 |
|
|
&& bytes[i + 2] == bytes[2] && bytes[i + 3] == 0xff);
|
9004 |
|
|
|
9005 |
|
|
CHECK (1, 8, 16, bytes[i] == bytes[0]);
|
9006 |
|
|
|
9007 |
|
|
CHECK (1, 64, 17, (bytes[i] == 0 || bytes[i] == 0xff)
|
9008 |
|
|
&& bytes[i] == bytes[(i + 8) % idx]);
|
9009 |
|
|
}
|
9010 |
|
|
while (0);
|
9011 |
|
|
|
9012 |
|
|
if (immtype == -1)
|
9013 |
|
|
return -1;
|
9014 |
|
|
|
9015 |
|
|
if (elementwidth)
|
9016 |
|
|
*elementwidth = elsize;
|
9017 |
|
|
|
9018 |
|
|
if (modconst)
|
9019 |
|
|
{
|
9020 |
|
|
unsigned HOST_WIDE_INT imm = 0;
|
9021 |
|
|
|
9022 |
|
|
/* Un-invert bytes of recognized vector, if necessary. */
|
9023 |
|
|
if (invmask != 0)
|
9024 |
|
|
for (i = 0; i < idx; i++)
|
9025 |
|
|
bytes[i] ^= invmask;
|
9026 |
|
|
|
9027 |
|
|
if (immtype == 17)
|
9028 |
|
|
{
|
9029 |
|
|
/* FIXME: Broken on 32-bit H_W_I hosts. */
|
9030 |
|
|
gcc_assert (sizeof (HOST_WIDE_INT) == 8);
|
9031 |
|
|
|
9032 |
|
|
for (i = 0; i < 8; i++)
|
9033 |
|
|
imm |= (unsigned HOST_WIDE_INT) (bytes[i] ? 0xff : 0)
|
9034 |
|
|
<< (i * BITS_PER_UNIT);
|
9035 |
|
|
|
9036 |
|
|
*modconst = GEN_INT (imm);
|
9037 |
|
|
}
|
9038 |
|
|
else
|
9039 |
|
|
{
|
9040 |
|
|
unsigned HOST_WIDE_INT imm = 0;
|
9041 |
|
|
|
9042 |
|
|
for (i = 0; i < elsize / BITS_PER_UNIT; i++)
|
9043 |
|
|
imm |= (unsigned HOST_WIDE_INT) bytes[i] << (i * BITS_PER_UNIT);
|
9044 |
|
|
|
9045 |
|
|
*modconst = GEN_INT (imm);
|
9046 |
|
|
}
|
9047 |
|
|
}
|
9048 |
|
|
|
9049 |
|
|
return immtype;
|
9050 |
|
|
#undef CHECK
|
9051 |
|
|
}
|
9052 |
|
|
|
9053 |
|
|
/* Return TRUE if rtx X is legal for use as either a Neon VMOV (or, implicitly,
|
9054 |
|
|
VMVN) immediate. Write back width per element to *ELEMENTWIDTH (or zero for
|
9055 |
|
|
float elements), and a modified constant (whatever should be output for a
|
9056 |
|
|
VMOV) in *MODCONST. */
|
9057 |
|
|
|
9058 |
|
|
int
|
9059 |
|
|
neon_immediate_valid_for_move (rtx op, enum machine_mode mode,
|
9060 |
|
|
rtx *modconst, int *elementwidth)
|
9061 |
|
|
{
|
9062 |
|
|
rtx tmpconst;
|
9063 |
|
|
int tmpwidth;
|
9064 |
|
|
int retval = neon_valid_immediate (op, mode, 0, &tmpconst, &tmpwidth);
|
9065 |
|
|
|
9066 |
|
|
if (retval == -1)
|
9067 |
|
|
return 0;
|
9068 |
|
|
|
9069 |
|
|
if (modconst)
|
9070 |
|
|
*modconst = tmpconst;
|
9071 |
|
|
|
9072 |
|
|
if (elementwidth)
|
9073 |
|
|
*elementwidth = tmpwidth;
|
9074 |
|
|
|
9075 |
|
|
return 1;
|
9076 |
|
|
}
|
9077 |
|
|
|
9078 |
|
|
/* Return TRUE if rtx X is legal for use in a VORR or VBIC instruction. If
|
9079 |
|
|
the immediate is valid, write a constant suitable for using as an operand
|
9080 |
|
|
to VORR/VBIC/VAND/VORN to *MODCONST and the corresponding element width to
|
9081 |
|
|
*ELEMENTWIDTH. See neon_valid_immediate for description of INVERSE. */
|
9082 |
|
|
|
9083 |
|
|
int
|
9084 |
|
|
neon_immediate_valid_for_logic (rtx op, enum machine_mode mode, int inverse,
|
9085 |
|
|
rtx *modconst, int *elementwidth)
|
9086 |
|
|
{
|
9087 |
|
|
rtx tmpconst;
|
9088 |
|
|
int tmpwidth;
|
9089 |
|
|
int retval = neon_valid_immediate (op, mode, inverse, &tmpconst, &tmpwidth);
|
9090 |
|
|
|
9091 |
|
|
if (retval < 0 || retval > 5)
|
9092 |
|
|
return 0;
|
9093 |
|
|
|
9094 |
|
|
if (modconst)
|
9095 |
|
|
*modconst = tmpconst;
|
9096 |
|
|
|
9097 |
|
|
if (elementwidth)
|
9098 |
|
|
*elementwidth = tmpwidth;
|
9099 |
|
|
|
9100 |
|
|
return 1;
|
9101 |
|
|
}
|
9102 |
|
|
|
9103 |
|
|
/* Return TRUE if rtx OP is legal for use in a VSHR or VSHL instruction. If
|
9104 |
|
|
the immediate is valid, write a constant suitable for using as an operand
|
9105 |
|
|
to VSHR/VSHL to *MODCONST and the corresponding element width to
|
9106 |
|
|
*ELEMENTWIDTH. ISLEFTSHIFT is for determine left or right shift,
|
9107 |
|
|
because they have different limitations. */
|
9108 |
|
|
|
9109 |
|
|
int
|
9110 |
|
|
neon_immediate_valid_for_shift (rtx op, enum machine_mode mode,
|
9111 |
|
|
rtx *modconst, int *elementwidth,
|
9112 |
|
|
bool isleftshift)
|
9113 |
|
|
{
|
9114 |
|
|
unsigned int innersize = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
9115 |
|
|
unsigned int n_elts = CONST_VECTOR_NUNITS (op), i;
|
9116 |
|
|
unsigned HOST_WIDE_INT last_elt = 0;
|
9117 |
|
|
unsigned HOST_WIDE_INT maxshift;
|
9118 |
|
|
|
9119 |
|
|
/* Split vector constant out into a byte vector. */
|
9120 |
|
|
for (i = 0; i < n_elts; i++)
|
9121 |
|
|
{
|
9122 |
|
|
rtx el = CONST_VECTOR_ELT (op, i);
|
9123 |
|
|
unsigned HOST_WIDE_INT elpart;
|
9124 |
|
|
|
9125 |
|
|
if (GET_CODE (el) == CONST_INT)
|
9126 |
|
|
elpart = INTVAL (el);
|
9127 |
|
|
else if (GET_CODE (el) == CONST_DOUBLE)
|
9128 |
|
|
return 0;
|
9129 |
|
|
else
|
9130 |
|
|
gcc_unreachable ();
|
9131 |
|
|
|
9132 |
|
|
if (i != 0 && elpart != last_elt)
|
9133 |
|
|
return 0;
|
9134 |
|
|
|
9135 |
|
|
last_elt = elpart;
|
9136 |
|
|
}
|
9137 |
|
|
|
9138 |
|
|
/* Shift less than element size. */
|
9139 |
|
|
maxshift = innersize * 8;
|
9140 |
|
|
|
9141 |
|
|
if (isleftshift)
|
9142 |
|
|
{
|
9143 |
|
|
/* Left shift immediate value can be from 0 to <size>-1. */
|
9144 |
|
|
if (last_elt >= maxshift)
|
9145 |
|
|
return 0;
|
9146 |
|
|
}
|
9147 |
|
|
else
|
9148 |
|
|
{
|
9149 |
|
|
/* Right shift immediate value can be from 1 to <size>. */
|
9150 |
|
|
if (last_elt == 0 || last_elt > maxshift)
|
9151 |
|
|
return 0;
|
9152 |
|
|
}
|
9153 |
|
|
|
9154 |
|
|
if (elementwidth)
|
9155 |
|
|
*elementwidth = innersize * 8;
|
9156 |
|
|
|
9157 |
|
|
if (modconst)
|
9158 |
|
|
*modconst = CONST_VECTOR_ELT (op, 0);
|
9159 |
|
|
|
9160 |
|
|
return 1;
|
9161 |
|
|
}
|
9162 |
|
|
|
9163 |
|
|
/* Return a string suitable for output of Neon immediate logic operation
|
9164 |
|
|
MNEM. */
|
9165 |
|
|
|
9166 |
|
|
char *
|
9167 |
|
|
neon_output_logic_immediate (const char *mnem, rtx *op2, enum machine_mode mode,
|
9168 |
|
|
int inverse, int quad)
|
9169 |
|
|
{
|
9170 |
|
|
int width, is_valid;
|
9171 |
|
|
static char templ[40];
|
9172 |
|
|
|
9173 |
|
|
is_valid = neon_immediate_valid_for_logic (*op2, mode, inverse, op2, &width);
|
9174 |
|
|
|
9175 |
|
|
gcc_assert (is_valid != 0);
|
9176 |
|
|
|
9177 |
|
|
if (quad)
|
9178 |
|
|
sprintf (templ, "%s.i%d\t%%q0, %%2", mnem, width);
|
9179 |
|
|
else
|
9180 |
|
|
sprintf (templ, "%s.i%d\t%%P0, %%2", mnem, width);
|
9181 |
|
|
|
9182 |
|
|
return templ;
|
9183 |
|
|
}
|
9184 |
|
|
|
9185 |
|
|
/* Return a string suitable for output of Neon immediate shift operation
|
9186 |
|
|
(VSHR or VSHL) MNEM. */
|
9187 |
|
|
|
9188 |
|
|
char *
|
9189 |
|
|
neon_output_shift_immediate (const char *mnem, char sign, rtx *op2,
|
9190 |
|
|
enum machine_mode mode, int quad,
|
9191 |
|
|
bool isleftshift)
|
9192 |
|
|
{
|
9193 |
|
|
int width, is_valid;
|
9194 |
|
|
static char templ[40];
|
9195 |
|
|
|
9196 |
|
|
is_valid = neon_immediate_valid_for_shift (*op2, mode, op2, &width, isleftshift);
|
9197 |
|
|
gcc_assert (is_valid != 0);
|
9198 |
|
|
|
9199 |
|
|
if (quad)
|
9200 |
|
|
sprintf (templ, "%s.%c%d\t%%q0, %%q1, %%2", mnem, sign, width);
|
9201 |
|
|
else
|
9202 |
|
|
sprintf (templ, "%s.%c%d\t%%P0, %%P1, %%2", mnem, sign, width);
|
9203 |
|
|
|
9204 |
|
|
return templ;
|
9205 |
|
|
}
|
9206 |
|
|
|
9207 |
|
|
/* Output a sequence of pairwise operations to implement a reduction.
|
9208 |
|
|
NOTE: We do "too much work" here, because pairwise operations work on two
|
9209 |
|
|
registers-worth of operands in one go. Unfortunately we can't exploit those
|
9210 |
|
|
extra calculations to do the full operation in fewer steps, I don't think.
|
9211 |
|
|
Although all vector elements of the result but the first are ignored, we
|
9212 |
|
|
actually calculate the same result in each of the elements. An alternative
|
9213 |
|
|
such as initially loading a vector with zero to use as each of the second
|
9214 |
|
|
operands would use up an additional register and take an extra instruction,
|
9215 |
|
|
for no particular gain. */
|
9216 |
|
|
|
9217 |
|
|
void
|
9218 |
|
|
neon_pairwise_reduce (rtx op0, rtx op1, enum machine_mode mode,
|
9219 |
|
|
rtx (*reduc) (rtx, rtx, rtx))
|
9220 |
|
|
{
|
9221 |
|
|
enum machine_mode inner = GET_MODE_INNER (mode);
|
9222 |
|
|
unsigned int i, parts = GET_MODE_SIZE (mode) / GET_MODE_SIZE (inner);
|
9223 |
|
|
rtx tmpsum = op1;
|
9224 |
|
|
|
9225 |
|
|
for (i = parts / 2; i >= 1; i /= 2)
|
9226 |
|
|
{
|
9227 |
|
|
rtx dest = (i == 1) ? op0 : gen_reg_rtx (mode);
|
9228 |
|
|
emit_insn (reduc (dest, tmpsum, tmpsum));
|
9229 |
|
|
tmpsum = dest;
|
9230 |
|
|
}
|
9231 |
|
|
}
|
9232 |
|
|
|
9233 |
|
|
/* If VALS is a vector constant that can be loaded into a register
|
9234 |
|
|
using VDUP, generate instructions to do so and return an RTX to
|
9235 |
|
|
assign to the register. Otherwise return NULL_RTX. */
|
9236 |
|
|
|
9237 |
|
|
static rtx
|
9238 |
|
|
neon_vdup_constant (rtx vals)
|
9239 |
|
|
{
|
9240 |
|
|
enum machine_mode mode = GET_MODE (vals);
|
9241 |
|
|
enum machine_mode inner_mode = GET_MODE_INNER (mode);
|
9242 |
|
|
int n_elts = GET_MODE_NUNITS (mode);
|
9243 |
|
|
bool all_same = true;
|
9244 |
|
|
rtx x;
|
9245 |
|
|
int i;
|
9246 |
|
|
|
9247 |
|
|
if (GET_CODE (vals) != CONST_VECTOR || GET_MODE_SIZE (inner_mode) > 4)
|
9248 |
|
|
return NULL_RTX;
|
9249 |
|
|
|
9250 |
|
|
for (i = 0; i < n_elts; ++i)
|
9251 |
|
|
{
|
9252 |
|
|
x = XVECEXP (vals, 0, i);
|
9253 |
|
|
if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
|
9254 |
|
|
all_same = false;
|
9255 |
|
|
}
|
9256 |
|
|
|
9257 |
|
|
if (!all_same)
|
9258 |
|
|
/* The elements are not all the same. We could handle repeating
|
9259 |
|
|
patterns of a mode larger than INNER_MODE here (e.g. int8x8_t
|
9260 |
|
|
{0, C, 0, C, 0, C, 0, C} which can be loaded using
|
9261 |
|
|
vdup.i16). */
|
9262 |
|
|
return NULL_RTX;
|
9263 |
|
|
|
9264 |
|
|
/* We can load this constant by using VDUP and a constant in a
|
9265 |
|
|
single ARM register. This will be cheaper than a vector
|
9266 |
|
|
load. */
|
9267 |
|
|
|
9268 |
|
|
x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, 0));
|
9269 |
|
|
return gen_rtx_VEC_DUPLICATE (mode, x);
|
9270 |
|
|
}
|
9271 |
|
|
|
9272 |
|
|
/* Generate code to load VALS, which is a PARALLEL containing only
|
9273 |
|
|
constants (for vec_init) or CONST_VECTOR, efficiently into a
|
9274 |
|
|
register. Returns an RTX to copy into the register, or NULL_RTX
|
9275 |
|
|
for a PARALLEL that can not be converted into a CONST_VECTOR. */
|
9276 |
|
|
|
9277 |
|
|
rtx
|
9278 |
|
|
neon_make_constant (rtx vals)
|
9279 |
|
|
{
|
9280 |
|
|
enum machine_mode mode = GET_MODE (vals);
|
9281 |
|
|
rtx target;
|
9282 |
|
|
rtx const_vec = NULL_RTX;
|
9283 |
|
|
int n_elts = GET_MODE_NUNITS (mode);
|
9284 |
|
|
int n_const = 0;
|
9285 |
|
|
int i;
|
9286 |
|
|
|
9287 |
|
|
if (GET_CODE (vals) == CONST_VECTOR)
|
9288 |
|
|
const_vec = vals;
|
9289 |
|
|
else if (GET_CODE (vals) == PARALLEL)
|
9290 |
|
|
{
|
9291 |
|
|
/* A CONST_VECTOR must contain only CONST_INTs and
|
9292 |
|
|
CONST_DOUBLEs, but CONSTANT_P allows more (e.g. SYMBOL_REF).
|
9293 |
|
|
Only store valid constants in a CONST_VECTOR. */
|
9294 |
|
|
for (i = 0; i < n_elts; ++i)
|
9295 |
|
|
{
|
9296 |
|
|
rtx x = XVECEXP (vals, 0, i);
|
9297 |
|
|
if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
|
9298 |
|
|
n_const++;
|
9299 |
|
|
}
|
9300 |
|
|
if (n_const == n_elts)
|
9301 |
|
|
const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
|
9302 |
|
|
}
|
9303 |
|
|
else
|
9304 |
|
|
gcc_unreachable ();
|
9305 |
|
|
|
9306 |
|
|
if (const_vec != NULL
|
9307 |
|
|
&& neon_immediate_valid_for_move (const_vec, mode, NULL, NULL))
|
9308 |
|
|
/* Load using VMOV. On Cortex-A8 this takes one cycle. */
|
9309 |
|
|
return const_vec;
|
9310 |
|
|
else if ((target = neon_vdup_constant (vals)) != NULL_RTX)
|
9311 |
|
|
/* Loaded using VDUP. On Cortex-A8 the VDUP takes one NEON
|
9312 |
|
|
pipeline cycle; creating the constant takes one or two ARM
|
9313 |
|
|
pipeline cycles. */
|
9314 |
|
|
return target;
|
9315 |
|
|
else if (const_vec != NULL_RTX)
|
9316 |
|
|
/* Load from constant pool. On Cortex-A8 this takes two cycles
|
9317 |
|
|
(for either double or quad vectors). We can not take advantage
|
9318 |
|
|
of single-cycle VLD1 because we need a PC-relative addressing
|
9319 |
|
|
mode. */
|
9320 |
|
|
return const_vec;
|
9321 |
|
|
else
|
9322 |
|
|
/* A PARALLEL containing something not valid inside CONST_VECTOR.
|
9323 |
|
|
We can not construct an initializer. */
|
9324 |
|
|
return NULL_RTX;
|
9325 |
|
|
}
|
9326 |
|
|
|
9327 |
|
|
/* Initialize vector TARGET to VALS. */
|
9328 |
|
|
|
9329 |
|
|
void
|
9330 |
|
|
neon_expand_vector_init (rtx target, rtx vals)
|
9331 |
|
|
{
|
9332 |
|
|
enum machine_mode mode = GET_MODE (target);
|
9333 |
|
|
enum machine_mode inner_mode = GET_MODE_INNER (mode);
|
9334 |
|
|
int n_elts = GET_MODE_NUNITS (mode);
|
9335 |
|
|
int n_var = 0, one_var = -1;
|
9336 |
|
|
bool all_same = true;
|
9337 |
|
|
rtx x, mem;
|
9338 |
|
|
int i;
|
9339 |
|
|
|
9340 |
|
|
for (i = 0; i < n_elts; ++i)
|
9341 |
|
|
{
|
9342 |
|
|
x = XVECEXP (vals, 0, i);
|
9343 |
|
|
if (!CONSTANT_P (x))
|
9344 |
|
|
++n_var, one_var = i;
|
9345 |
|
|
|
9346 |
|
|
if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
|
9347 |
|
|
all_same = false;
|
9348 |
|
|
}
|
9349 |
|
|
|
9350 |
|
|
if (n_var == 0)
|
9351 |
|
|
{
|
9352 |
|
|
rtx constant = neon_make_constant (vals);
|
9353 |
|
|
if (constant != NULL_RTX)
|
9354 |
|
|
{
|
9355 |
|
|
emit_move_insn (target, constant);
|
9356 |
|
|
return;
|
9357 |
|
|
}
|
9358 |
|
|
}
|
9359 |
|
|
|
9360 |
|
|
/* Splat a single non-constant element if we can. */
|
9361 |
|
|
if (all_same && GET_MODE_SIZE (inner_mode) <= 4)
|
9362 |
|
|
{
|
9363 |
|
|
x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, 0));
|
9364 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, target,
|
9365 |
|
|
gen_rtx_VEC_DUPLICATE (mode, x)));
|
9366 |
|
|
return;
|
9367 |
|
|
}
|
9368 |
|
|
|
9369 |
|
|
/* One field is non-constant. Load constant then overwrite varying
|
9370 |
|
|
field. This is more efficient than using the stack. */
|
9371 |
|
|
if (n_var == 1)
|
9372 |
|
|
{
|
9373 |
|
|
rtx copy = copy_rtx (vals);
|
9374 |
|
|
rtx index = GEN_INT (one_var);
|
9375 |
|
|
|
9376 |
|
|
/* Load constant part of vector, substitute neighboring value for
|
9377 |
|
|
varying element. */
|
9378 |
|
|
XVECEXP (copy, 0, one_var) = XVECEXP (vals, 0, (one_var + 1) % n_elts);
|
9379 |
|
|
neon_expand_vector_init (target, copy);
|
9380 |
|
|
|
9381 |
|
|
/* Insert variable. */
|
9382 |
|
|
x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, one_var));
|
9383 |
|
|
switch (mode)
|
9384 |
|
|
{
|
9385 |
|
|
case V8QImode:
|
9386 |
|
|
emit_insn (gen_neon_vset_lanev8qi (target, x, target, index));
|
9387 |
|
|
break;
|
9388 |
|
|
case V16QImode:
|
9389 |
|
|
emit_insn (gen_neon_vset_lanev16qi (target, x, target, index));
|
9390 |
|
|
break;
|
9391 |
|
|
case V4HImode:
|
9392 |
|
|
emit_insn (gen_neon_vset_lanev4hi (target, x, target, index));
|
9393 |
|
|
break;
|
9394 |
|
|
case V8HImode:
|
9395 |
|
|
emit_insn (gen_neon_vset_lanev8hi (target, x, target, index));
|
9396 |
|
|
break;
|
9397 |
|
|
case V2SImode:
|
9398 |
|
|
emit_insn (gen_neon_vset_lanev2si (target, x, target, index));
|
9399 |
|
|
break;
|
9400 |
|
|
case V4SImode:
|
9401 |
|
|
emit_insn (gen_neon_vset_lanev4si (target, x, target, index));
|
9402 |
|
|
break;
|
9403 |
|
|
case V2SFmode:
|
9404 |
|
|
emit_insn (gen_neon_vset_lanev2sf (target, x, target, index));
|
9405 |
|
|
break;
|
9406 |
|
|
case V4SFmode:
|
9407 |
|
|
emit_insn (gen_neon_vset_lanev4sf (target, x, target, index));
|
9408 |
|
|
break;
|
9409 |
|
|
case V2DImode:
|
9410 |
|
|
emit_insn (gen_neon_vset_lanev2di (target, x, target, index));
|
9411 |
|
|
break;
|
9412 |
|
|
default:
|
9413 |
|
|
gcc_unreachable ();
|
9414 |
|
|
}
|
9415 |
|
|
return;
|
9416 |
|
|
}
|
9417 |
|
|
|
9418 |
|
|
/* Construct the vector in memory one field at a time
|
9419 |
|
|
and load the whole vector. */
|
9420 |
|
|
mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
|
9421 |
|
|
for (i = 0; i < n_elts; i++)
|
9422 |
|
|
emit_move_insn (adjust_address_nv (mem, inner_mode,
|
9423 |
|
|
i * GET_MODE_SIZE (inner_mode)),
|
9424 |
|
|
XVECEXP (vals, 0, i));
|
9425 |
|
|
emit_move_insn (target, mem);
|
9426 |
|
|
}
|
9427 |
|
|
|
9428 |
|
|
/* Ensure OPERAND lies between LOW (inclusive) and HIGH (exclusive). Raise
|
9429 |
|
|
ERR if it doesn't. FIXME: NEON bounds checks occur late in compilation, so
|
9430 |
|
|
reported source locations are bogus. */
|
9431 |
|
|
|
9432 |
|
|
static void
|
9433 |
|
|
bounds_check (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high,
|
9434 |
|
|
const char *err)
|
9435 |
|
|
{
|
9436 |
|
|
HOST_WIDE_INT lane;
|
9437 |
|
|
|
9438 |
|
|
gcc_assert (GET_CODE (operand) == CONST_INT);
|
9439 |
|
|
|
9440 |
|
|
lane = INTVAL (operand);
|
9441 |
|
|
|
9442 |
|
|
if (lane < low || lane >= high)
|
9443 |
|
|
error (err);
|
9444 |
|
|
}
|
9445 |
|
|
|
9446 |
|
|
/* Bounds-check lanes. */
|
9447 |
|
|
|
9448 |
|
|
void
|
9449 |
|
|
neon_lane_bounds (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high)
|
9450 |
|
|
{
|
9451 |
|
|
bounds_check (operand, low, high, "lane out of range");
|
9452 |
|
|
}
|
9453 |
|
|
|
9454 |
|
|
/* Bounds-check constants. */
|
9455 |
|
|
|
9456 |
|
|
void
|
9457 |
|
|
neon_const_bounds (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high)
|
9458 |
|
|
{
|
9459 |
|
|
bounds_check (operand, low, high, "constant out of range");
|
9460 |
|
|
}
|
9461 |
|
|
|
9462 |
|
|
HOST_WIDE_INT
|
9463 |
|
|
neon_element_bits (enum machine_mode mode)
|
9464 |
|
|
{
|
9465 |
|
|
if (mode == DImode)
|
9466 |
|
|
return GET_MODE_BITSIZE (mode);
|
9467 |
|
|
else
|
9468 |
|
|
return GET_MODE_BITSIZE (GET_MODE_INNER (mode));
|
9469 |
|
|
}
|
9470 |
|
|
|
9471 |
|
|
|
9472 |
|
|
/* Predicates for `match_operand' and `match_operator'. */
|
9473 |
|
|
|
9474 |
|
|
/* Return nonzero if OP is a valid Cirrus memory address pattern. */
|
9475 |
|
|
int
|
9476 |
|
|
cirrus_memory_offset (rtx op)
|
9477 |
|
|
{
|
9478 |
|
|
/* Reject eliminable registers. */
|
9479 |
|
|
if (! (reload_in_progress || reload_completed)
|
9480 |
|
|
&& ( reg_mentioned_p (frame_pointer_rtx, op)
|
9481 |
|
|
|| reg_mentioned_p (arg_pointer_rtx, op)
|
9482 |
|
|
|| reg_mentioned_p (virtual_incoming_args_rtx, op)
|
9483 |
|
|
|| reg_mentioned_p (virtual_outgoing_args_rtx, op)
|
9484 |
|
|
|| reg_mentioned_p (virtual_stack_dynamic_rtx, op)
|
9485 |
|
|
|| reg_mentioned_p (virtual_stack_vars_rtx, op)))
|
9486 |
|
|
return 0;
|
9487 |
|
|
|
9488 |
|
|
if (GET_CODE (op) == MEM)
|
9489 |
|
|
{
|
9490 |
|
|
rtx ind;
|
9491 |
|
|
|
9492 |
|
|
ind = XEXP (op, 0);
|
9493 |
|
|
|
9494 |
|
|
/* Match: (mem (reg)). */
|
9495 |
|
|
if (GET_CODE (ind) == REG)
|
9496 |
|
|
return 1;
|
9497 |
|
|
|
9498 |
|
|
/* Match:
|
9499 |
|
|
(mem (plus (reg)
|
9500 |
|
|
(const))). */
|
9501 |
|
|
if (GET_CODE (ind) == PLUS
|
9502 |
|
|
&& GET_CODE (XEXP (ind, 0)) == REG
|
9503 |
|
|
&& REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
|
9504 |
|
|
&& GET_CODE (XEXP (ind, 1)) == CONST_INT)
|
9505 |
|
|
return 1;
|
9506 |
|
|
}
|
9507 |
|
|
|
9508 |
|
|
return 0;
|
9509 |
|
|
}
|
9510 |
|
|
|
9511 |
|
|
/* Return TRUE if OP is a valid coprocessor memory address pattern.
|
9512 |
|
|
WB is true if full writeback address modes are allowed and is false
|
9513 |
|
|
if limited writeback address modes (POST_INC and PRE_DEC) are
|
9514 |
|
|
allowed. */
|
9515 |
|
|
|
9516 |
|
|
int
|
9517 |
|
|
arm_coproc_mem_operand (rtx op, bool wb)
|
9518 |
|
|
{
|
9519 |
|
|
rtx ind;
|
9520 |
|
|
|
9521 |
|
|
/* Reject eliminable registers. */
|
9522 |
|
|
if (! (reload_in_progress || reload_completed)
|
9523 |
|
|
&& ( reg_mentioned_p (frame_pointer_rtx, op)
|
9524 |
|
|
|| reg_mentioned_p (arg_pointer_rtx, op)
|
9525 |
|
|
|| reg_mentioned_p (virtual_incoming_args_rtx, op)
|
9526 |
|
|
|| reg_mentioned_p (virtual_outgoing_args_rtx, op)
|
9527 |
|
|
|| reg_mentioned_p (virtual_stack_dynamic_rtx, op)
|
9528 |
|
|
|| reg_mentioned_p (virtual_stack_vars_rtx, op)))
|
9529 |
|
|
return FALSE;
|
9530 |
|
|
|
9531 |
|
|
/* Constants are converted into offsets from labels. */
|
9532 |
|
|
if (GET_CODE (op) != MEM)
|
9533 |
|
|
return FALSE;
|
9534 |
|
|
|
9535 |
|
|
ind = XEXP (op, 0);
|
9536 |
|
|
|
9537 |
|
|
if (reload_completed
|
9538 |
|
|
&& (GET_CODE (ind) == LABEL_REF
|
9539 |
|
|
|| (GET_CODE (ind) == CONST
|
9540 |
|
|
&& GET_CODE (XEXP (ind, 0)) == PLUS
|
9541 |
|
|
&& GET_CODE (XEXP (XEXP (ind, 0), 0)) == LABEL_REF
|
9542 |
|
|
&& GET_CODE (XEXP (XEXP (ind, 0), 1)) == CONST_INT)))
|
9543 |
|
|
return TRUE;
|
9544 |
|
|
|
9545 |
|
|
/* Match: (mem (reg)). */
|
9546 |
|
|
if (GET_CODE (ind) == REG)
|
9547 |
|
|
return arm_address_register_rtx_p (ind, 0);
|
9548 |
|
|
|
9549 |
|
|
/* Autoincremment addressing modes. POST_INC and PRE_DEC are
|
9550 |
|
|
acceptable in any case (subject to verification by
|
9551 |
|
|
arm_address_register_rtx_p). We need WB to be true to accept
|
9552 |
|
|
PRE_INC and POST_DEC. */
|
9553 |
|
|
if (GET_CODE (ind) == POST_INC
|
9554 |
|
|
|| GET_CODE (ind) == PRE_DEC
|
9555 |
|
|
|| (wb
|
9556 |
|
|
&& (GET_CODE (ind) == PRE_INC
|
9557 |
|
|
|| GET_CODE (ind) == POST_DEC)))
|
9558 |
|
|
return arm_address_register_rtx_p (XEXP (ind, 0), 0);
|
9559 |
|
|
|
9560 |
|
|
if (wb
|
9561 |
|
|
&& (GET_CODE (ind) == POST_MODIFY || GET_CODE (ind) == PRE_MODIFY)
|
9562 |
|
|
&& arm_address_register_rtx_p (XEXP (ind, 0), 0)
|
9563 |
|
|
&& GET_CODE (XEXP (ind, 1)) == PLUS
|
9564 |
|
|
&& rtx_equal_p (XEXP (XEXP (ind, 1), 0), XEXP (ind, 0)))
|
9565 |
|
|
ind = XEXP (ind, 1);
|
9566 |
|
|
|
9567 |
|
|
/* Match:
|
9568 |
|
|
(plus (reg)
|
9569 |
|
|
(const)). */
|
9570 |
|
|
if (GET_CODE (ind) == PLUS
|
9571 |
|
|
&& GET_CODE (XEXP (ind, 0)) == REG
|
9572 |
|
|
&& REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
|
9573 |
|
|
&& GET_CODE (XEXP (ind, 1)) == CONST_INT
|
9574 |
|
|
&& INTVAL (XEXP (ind, 1)) > -1024
|
9575 |
|
|
&& INTVAL (XEXP (ind, 1)) < 1024
|
9576 |
|
|
&& (INTVAL (XEXP (ind, 1)) & 3) == 0)
|
9577 |
|
|
return TRUE;
|
9578 |
|
|
|
9579 |
|
|
return FALSE;
|
9580 |
|
|
}
|
9581 |
|
|
|
9582 |
|
|
/* Return TRUE if OP is a memory operand which we can load or store a vector
|
9583 |
|
|
to/from. TYPE is one of the following values:
|
9584 |
|
|
|
9585 |
|
|
1 - Core registers (ldm)
|
9586 |
|
|
2 - Element/structure loads (vld1)
|
9587 |
|
|
*/
|
9588 |
|
|
int
|
9589 |
|
|
neon_vector_mem_operand (rtx op, int type)
|
9590 |
|
|
{
|
9591 |
|
|
rtx ind;
|
9592 |
|
|
|
9593 |
|
|
/* Reject eliminable registers. */
|
9594 |
|
|
if (! (reload_in_progress || reload_completed)
|
9595 |
|
|
&& ( reg_mentioned_p (frame_pointer_rtx, op)
|
9596 |
|
|
|| reg_mentioned_p (arg_pointer_rtx, op)
|
9597 |
|
|
|| reg_mentioned_p (virtual_incoming_args_rtx, op)
|
9598 |
|
|
|| reg_mentioned_p (virtual_outgoing_args_rtx, op)
|
9599 |
|
|
|| reg_mentioned_p (virtual_stack_dynamic_rtx, op)
|
9600 |
|
|
|| reg_mentioned_p (virtual_stack_vars_rtx, op)))
|
9601 |
|
|
return FALSE;
|
9602 |
|
|
|
9603 |
|
|
/* Constants are converted into offsets from labels. */
|
9604 |
|
|
if (GET_CODE (op) != MEM)
|
9605 |
|
|
return FALSE;
|
9606 |
|
|
|
9607 |
|
|
ind = XEXP (op, 0);
|
9608 |
|
|
|
9609 |
|
|
if (reload_completed
|
9610 |
|
|
&& (GET_CODE (ind) == LABEL_REF
|
9611 |
|
|
|| (GET_CODE (ind) == CONST
|
9612 |
|
|
&& GET_CODE (XEXP (ind, 0)) == PLUS
|
9613 |
|
|
&& GET_CODE (XEXP (XEXP (ind, 0), 0)) == LABEL_REF
|
9614 |
|
|
&& GET_CODE (XEXP (XEXP (ind, 0), 1)) == CONST_INT)))
|
9615 |
|
|
return TRUE;
|
9616 |
|
|
|
9617 |
|
|
/* Match: (mem (reg)). */
|
9618 |
|
|
if (GET_CODE (ind) == REG)
|
9619 |
|
|
return arm_address_register_rtx_p (ind, 0);
|
9620 |
|
|
|
9621 |
|
|
/* Allow post-increment with Neon registers. */
|
9622 |
|
|
if ((type != 1 && GET_CODE (ind) == POST_INC)
|
9623 |
|
|
|| (type == 0 && GET_CODE (ind) == PRE_DEC))
|
9624 |
|
|
return arm_address_register_rtx_p (XEXP (ind, 0), 0);
|
9625 |
|
|
|
9626 |
|
|
/* FIXME: vld1 allows register post-modify. */
|
9627 |
|
|
|
9628 |
|
|
/* Match:
|
9629 |
|
|
(plus (reg)
|
9630 |
|
|
(const)). */
|
9631 |
|
|
if (type == 0
|
9632 |
|
|
&& GET_CODE (ind) == PLUS
|
9633 |
|
|
&& GET_CODE (XEXP (ind, 0)) == REG
|
9634 |
|
|
&& REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
|
9635 |
|
|
&& GET_CODE (XEXP (ind, 1)) == CONST_INT
|
9636 |
|
|
&& INTVAL (XEXP (ind, 1)) > -1024
|
9637 |
|
|
&& INTVAL (XEXP (ind, 1)) < 1016
|
9638 |
|
|
&& (INTVAL (XEXP (ind, 1)) & 3) == 0)
|
9639 |
|
|
return TRUE;
|
9640 |
|
|
|
9641 |
|
|
return FALSE;
|
9642 |
|
|
}
|
9643 |
|
|
|
9644 |
|
|
/* Return TRUE if OP is a mem suitable for loading/storing a Neon struct
|
9645 |
|
|
type. */
|
9646 |
|
|
int
|
9647 |
|
|
neon_struct_mem_operand (rtx op)
|
9648 |
|
|
{
|
9649 |
|
|
rtx ind;
|
9650 |
|
|
|
9651 |
|
|
/* Reject eliminable registers. */
|
9652 |
|
|
if (! (reload_in_progress || reload_completed)
|
9653 |
|
|
&& ( reg_mentioned_p (frame_pointer_rtx, op)
|
9654 |
|
|
|| reg_mentioned_p (arg_pointer_rtx, op)
|
9655 |
|
|
|| reg_mentioned_p (virtual_incoming_args_rtx, op)
|
9656 |
|
|
|| reg_mentioned_p (virtual_outgoing_args_rtx, op)
|
9657 |
|
|
|| reg_mentioned_p (virtual_stack_dynamic_rtx, op)
|
9658 |
|
|
|| reg_mentioned_p (virtual_stack_vars_rtx, op)))
|
9659 |
|
|
return FALSE;
|
9660 |
|
|
|
9661 |
|
|
/* Constants are converted into offsets from labels. */
|
9662 |
|
|
if (GET_CODE (op) != MEM)
|
9663 |
|
|
return FALSE;
|
9664 |
|
|
|
9665 |
|
|
ind = XEXP (op, 0);
|
9666 |
|
|
|
9667 |
|
|
if (reload_completed
|
9668 |
|
|
&& (GET_CODE (ind) == LABEL_REF
|
9669 |
|
|
|| (GET_CODE (ind) == CONST
|
9670 |
|
|
&& GET_CODE (XEXP (ind, 0)) == PLUS
|
9671 |
|
|
&& GET_CODE (XEXP (XEXP (ind, 0), 0)) == LABEL_REF
|
9672 |
|
|
&& GET_CODE (XEXP (XEXP (ind, 0), 1)) == CONST_INT)))
|
9673 |
|
|
return TRUE;
|
9674 |
|
|
|
9675 |
|
|
/* Match: (mem (reg)). */
|
9676 |
|
|
if (GET_CODE (ind) == REG)
|
9677 |
|
|
return arm_address_register_rtx_p (ind, 0);
|
9678 |
|
|
|
9679 |
|
|
/* vldm/vstm allows POST_INC (ia) and PRE_DEC (db). */
|
9680 |
|
|
if (GET_CODE (ind) == POST_INC
|
9681 |
|
|
|| GET_CODE (ind) == PRE_DEC)
|
9682 |
|
|
return arm_address_register_rtx_p (XEXP (ind, 0), 0);
|
9683 |
|
|
|
9684 |
|
|
return FALSE;
|
9685 |
|
|
}
|
9686 |
|
|
|
9687 |
|
|
/* Return true if X is a register that will be eliminated later on. */
|
9688 |
|
|
int
|
9689 |
|
|
arm_eliminable_register (rtx x)
|
9690 |
|
|
{
|
9691 |
|
|
return REG_P (x) && (REGNO (x) == FRAME_POINTER_REGNUM
|
9692 |
|
|
|| REGNO (x) == ARG_POINTER_REGNUM
|
9693 |
|
|
|| (REGNO (x) >= FIRST_VIRTUAL_REGISTER
|
9694 |
|
|
&& REGNO (x) <= LAST_VIRTUAL_REGISTER));
|
9695 |
|
|
}
|
9696 |
|
|
|
9697 |
|
|
/* Return GENERAL_REGS if a scratch register required to reload x to/from
|
9698 |
|
|
coprocessor registers. Otherwise return NO_REGS. */
|
9699 |
|
|
|
9700 |
|
|
enum reg_class
|
9701 |
|
|
coproc_secondary_reload_class (enum machine_mode mode, rtx x, bool wb)
|
9702 |
|
|
{
|
9703 |
|
|
if (mode == HFmode)
|
9704 |
|
|
{
|
9705 |
|
|
if (!TARGET_NEON_FP16)
|
9706 |
|
|
return GENERAL_REGS;
|
9707 |
|
|
if (s_register_operand (x, mode) || neon_vector_mem_operand (x, 2))
|
9708 |
|
|
return NO_REGS;
|
9709 |
|
|
return GENERAL_REGS;
|
9710 |
|
|
}
|
9711 |
|
|
|
9712 |
|
|
/* The neon move patterns handle all legitimate vector and struct
|
9713 |
|
|
addresses. */
|
9714 |
|
|
if (TARGET_NEON
|
9715 |
|
|
&& (MEM_P (x) || GET_CODE (x) == CONST_VECTOR)
|
9716 |
|
|
&& (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
|
9717 |
|
|
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
|
9718 |
|
|
|| VALID_NEON_STRUCT_MODE (mode)))
|
9719 |
|
|
return NO_REGS;
|
9720 |
|
|
|
9721 |
|
|
if (arm_coproc_mem_operand (x, wb) || s_register_operand (x, mode))
|
9722 |
|
|
return NO_REGS;
|
9723 |
|
|
|
9724 |
|
|
return GENERAL_REGS;
|
9725 |
|
|
}
|
9726 |
|
|
|
9727 |
|
|
/* Values which must be returned in the most-significant end of the return
|
9728 |
|
|
register. */
|
9729 |
|
|
|
9730 |
|
|
static bool
|
9731 |
|
|
arm_return_in_msb (const_tree valtype)
|
9732 |
|
|
{
|
9733 |
|
|
return (TARGET_AAPCS_BASED
|
9734 |
|
|
&& BYTES_BIG_ENDIAN
|
9735 |
|
|
&& (AGGREGATE_TYPE_P (valtype)
|
9736 |
|
|
|| TREE_CODE (valtype) == COMPLEX_TYPE
|
9737 |
|
|
|| FIXED_POINT_TYPE_P (valtype)));
|
9738 |
|
|
}
|
9739 |
|
|
|
9740 |
|
|
/* Returns TRUE if INSN is an "LDR REG, ADDR" instruction.
|
9741 |
|
|
Use by the Cirrus Maverick code which has to workaround
|
9742 |
|
|
a hardware bug triggered by such instructions. */
|
9743 |
|
|
static bool
|
9744 |
|
|
arm_memory_load_p (rtx insn)
|
9745 |
|
|
{
|
9746 |
|
|
rtx body, lhs, rhs;;
|
9747 |
|
|
|
9748 |
|
|
if (insn == NULL_RTX || GET_CODE (insn) != INSN)
|
9749 |
|
|
return false;
|
9750 |
|
|
|
9751 |
|
|
body = PATTERN (insn);
|
9752 |
|
|
|
9753 |
|
|
if (GET_CODE (body) != SET)
|
9754 |
|
|
return false;
|
9755 |
|
|
|
9756 |
|
|
lhs = XEXP (body, 0);
|
9757 |
|
|
rhs = XEXP (body, 1);
|
9758 |
|
|
|
9759 |
|
|
lhs = REG_OR_SUBREG_RTX (lhs);
|
9760 |
|
|
|
9761 |
|
|
/* If the destination is not a general purpose
|
9762 |
|
|
register we do not have to worry. */
|
9763 |
|
|
if (GET_CODE (lhs) != REG
|
9764 |
|
|
|| REGNO_REG_CLASS (REGNO (lhs)) != GENERAL_REGS)
|
9765 |
|
|
return false;
|
9766 |
|
|
|
9767 |
|
|
/* As well as loads from memory we also have to react
|
9768 |
|
|
to loads of invalid constants which will be turned
|
9769 |
|
|
into loads from the minipool. */
|
9770 |
|
|
return (GET_CODE (rhs) == MEM
|
9771 |
|
|
|| GET_CODE (rhs) == SYMBOL_REF
|
9772 |
|
|
|| note_invalid_constants (insn, -1, false));
|
9773 |
|
|
}
|
9774 |
|
|
|
9775 |
|
|
/* Return TRUE if INSN is a Cirrus instruction. */
|
9776 |
|
|
static bool
|
9777 |
|
|
arm_cirrus_insn_p (rtx insn)
|
9778 |
|
|
{
|
9779 |
|
|
enum attr_cirrus attr;
|
9780 |
|
|
|
9781 |
|
|
/* get_attr cannot accept USE or CLOBBER. */
|
9782 |
|
|
if (!insn
|
9783 |
|
|
|| GET_CODE (insn) != INSN
|
9784 |
|
|
|| GET_CODE (PATTERN (insn)) == USE
|
9785 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
9786 |
|
|
return 0;
|
9787 |
|
|
|
9788 |
|
|
attr = get_attr_cirrus (insn);
|
9789 |
|
|
|
9790 |
|
|
return attr != CIRRUS_NOT;
|
9791 |
|
|
}
|
9792 |
|
|
|
9793 |
|
|
/* Cirrus reorg for invalid instruction combinations. */
|
9794 |
|
|
static void
|
9795 |
|
|
cirrus_reorg (rtx first)
|
9796 |
|
|
{
|
9797 |
|
|
enum attr_cirrus attr;
|
9798 |
|
|
rtx body = PATTERN (first);
|
9799 |
|
|
rtx t;
|
9800 |
|
|
int nops;
|
9801 |
|
|
|
9802 |
|
|
/* Any branch must be followed by 2 non Cirrus instructions. */
|
9803 |
|
|
if (GET_CODE (first) == JUMP_INSN && GET_CODE (body) != RETURN)
|
9804 |
|
|
{
|
9805 |
|
|
nops = 0;
|
9806 |
|
|
t = next_nonnote_insn (first);
|
9807 |
|
|
|
9808 |
|
|
if (arm_cirrus_insn_p (t))
|
9809 |
|
|
++ nops;
|
9810 |
|
|
|
9811 |
|
|
if (arm_cirrus_insn_p (next_nonnote_insn (t)))
|
9812 |
|
|
++ nops;
|
9813 |
|
|
|
9814 |
|
|
while (nops --)
|
9815 |
|
|
emit_insn_after (gen_nop (), first);
|
9816 |
|
|
|
9817 |
|
|
return;
|
9818 |
|
|
}
|
9819 |
|
|
|
9820 |
|
|
/* (float (blah)) is in parallel with a clobber. */
|
9821 |
|
|
if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
|
9822 |
|
|
body = XVECEXP (body, 0, 0);
|
9823 |
|
|
|
9824 |
|
|
if (GET_CODE (body) == SET)
|
9825 |
|
|
{
|
9826 |
|
|
rtx lhs = XEXP (body, 0), rhs = XEXP (body, 1);
|
9827 |
|
|
|
9828 |
|
|
/* cfldrd, cfldr64, cfstrd, cfstr64 must
|
9829 |
|
|
be followed by a non Cirrus insn. */
|
9830 |
|
|
if (get_attr_cirrus (first) == CIRRUS_DOUBLE)
|
9831 |
|
|
{
|
9832 |
|
|
if (arm_cirrus_insn_p (next_nonnote_insn (first)))
|
9833 |
|
|
emit_insn_after (gen_nop (), first);
|
9834 |
|
|
|
9835 |
|
|
return;
|
9836 |
|
|
}
|
9837 |
|
|
else if (arm_memory_load_p (first))
|
9838 |
|
|
{
|
9839 |
|
|
unsigned int arm_regno;
|
9840 |
|
|
|
9841 |
|
|
/* Any ldr/cfmvdlr, ldr/cfmvdhr, ldr/cfmvsr, ldr/cfmv64lr,
|
9842 |
|
|
ldr/cfmv64hr combination where the Rd field is the same
|
9843 |
|
|
in both instructions must be split with a non Cirrus
|
9844 |
|
|
insn. Example:
|
9845 |
|
|
|
9846 |
|
|
ldr r0, blah
|
9847 |
|
|
nop
|
9848 |
|
|
cfmvsr mvf0, r0. */
|
9849 |
|
|
|
9850 |
|
|
/* Get Arm register number for ldr insn. */
|
9851 |
|
|
if (GET_CODE (lhs) == REG)
|
9852 |
|
|
arm_regno = REGNO (lhs);
|
9853 |
|
|
else
|
9854 |
|
|
{
|
9855 |
|
|
gcc_assert (GET_CODE (rhs) == REG);
|
9856 |
|
|
arm_regno = REGNO (rhs);
|
9857 |
|
|
}
|
9858 |
|
|
|
9859 |
|
|
/* Next insn. */
|
9860 |
|
|
first = next_nonnote_insn (first);
|
9861 |
|
|
|
9862 |
|
|
if (! arm_cirrus_insn_p (first))
|
9863 |
|
|
return;
|
9864 |
|
|
|
9865 |
|
|
body = PATTERN (first);
|
9866 |
|
|
|
9867 |
|
|
/* (float (blah)) is in parallel with a clobber. */
|
9868 |
|
|
if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0))
|
9869 |
|
|
body = XVECEXP (body, 0, 0);
|
9870 |
|
|
|
9871 |
|
|
if (GET_CODE (body) == FLOAT)
|
9872 |
|
|
body = XEXP (body, 0);
|
9873 |
|
|
|
9874 |
|
|
if (get_attr_cirrus (first) == CIRRUS_MOVE
|
9875 |
|
|
&& GET_CODE (XEXP (body, 1)) == REG
|
9876 |
|
|
&& arm_regno == REGNO (XEXP (body, 1)))
|
9877 |
|
|
emit_insn_after (gen_nop (), first);
|
9878 |
|
|
|
9879 |
|
|
return;
|
9880 |
|
|
}
|
9881 |
|
|
}
|
9882 |
|
|
|
9883 |
|
|
/* get_attr cannot accept USE or CLOBBER. */
|
9884 |
|
|
if (!first
|
9885 |
|
|
|| GET_CODE (first) != INSN
|
9886 |
|
|
|| GET_CODE (PATTERN (first)) == USE
|
9887 |
|
|
|| GET_CODE (PATTERN (first)) == CLOBBER)
|
9888 |
|
|
return;
|
9889 |
|
|
|
9890 |
|
|
attr = get_attr_cirrus (first);
|
9891 |
|
|
|
9892 |
|
|
/* Any coprocessor compare instruction (cfcmps, cfcmpd, ...)
|
9893 |
|
|
must be followed by a non-coprocessor instruction. */
|
9894 |
|
|
if (attr == CIRRUS_COMPARE)
|
9895 |
|
|
{
|
9896 |
|
|
nops = 0;
|
9897 |
|
|
|
9898 |
|
|
t = next_nonnote_insn (first);
|
9899 |
|
|
|
9900 |
|
|
if (arm_cirrus_insn_p (t))
|
9901 |
|
|
++ nops;
|
9902 |
|
|
|
9903 |
|
|
if (arm_cirrus_insn_p (next_nonnote_insn (t)))
|
9904 |
|
|
++ nops;
|
9905 |
|
|
|
9906 |
|
|
while (nops --)
|
9907 |
|
|
emit_insn_after (gen_nop (), first);
|
9908 |
|
|
|
9909 |
|
|
return;
|
9910 |
|
|
}
|
9911 |
|
|
}
|
9912 |
|
|
|
9913 |
|
|
/* Return TRUE if X references a SYMBOL_REF. */
|
9914 |
|
|
int
|
9915 |
|
|
symbol_mentioned_p (rtx x)
|
9916 |
|
|
{
|
9917 |
|
|
const char * fmt;
|
9918 |
|
|
int i;
|
9919 |
|
|
|
9920 |
|
|
if (GET_CODE (x) == SYMBOL_REF)
|
9921 |
|
|
return 1;
|
9922 |
|
|
|
9923 |
|
|
/* UNSPEC_TLS entries for a symbol include the SYMBOL_REF, but they
|
9924 |
|
|
are constant offsets, not symbols. */
|
9925 |
|
|
if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
|
9926 |
|
|
return 0;
|
9927 |
|
|
|
9928 |
|
|
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
9929 |
|
|
|
9930 |
|
|
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
9931 |
|
|
{
|
9932 |
|
|
if (fmt[i] == 'E')
|
9933 |
|
|
{
|
9934 |
|
|
int j;
|
9935 |
|
|
|
9936 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
9937 |
|
|
if (symbol_mentioned_p (XVECEXP (x, i, j)))
|
9938 |
|
|
return 1;
|
9939 |
|
|
}
|
9940 |
|
|
else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i)))
|
9941 |
|
|
return 1;
|
9942 |
|
|
}
|
9943 |
|
|
|
9944 |
|
|
return 0;
|
9945 |
|
|
}
|
9946 |
|
|
|
9947 |
|
|
/* Return TRUE if X references a LABEL_REF. */
|
9948 |
|
|
int
|
9949 |
|
|
label_mentioned_p (rtx x)
|
9950 |
|
|
{
|
9951 |
|
|
const char * fmt;
|
9952 |
|
|
int i;
|
9953 |
|
|
|
9954 |
|
|
if (GET_CODE (x) == LABEL_REF)
|
9955 |
|
|
return 1;
|
9956 |
|
|
|
9957 |
|
|
/* UNSPEC_TLS entries for a symbol include a LABEL_REF for the referencing
|
9958 |
|
|
instruction, but they are constant offsets, not symbols. */
|
9959 |
|
|
if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
|
9960 |
|
|
return 0;
|
9961 |
|
|
|
9962 |
|
|
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
9963 |
|
|
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
9964 |
|
|
{
|
9965 |
|
|
if (fmt[i] == 'E')
|
9966 |
|
|
{
|
9967 |
|
|
int j;
|
9968 |
|
|
|
9969 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
9970 |
|
|
if (label_mentioned_p (XVECEXP (x, i, j)))
|
9971 |
|
|
return 1;
|
9972 |
|
|
}
|
9973 |
|
|
else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i)))
|
9974 |
|
|
return 1;
|
9975 |
|
|
}
|
9976 |
|
|
|
9977 |
|
|
return 0;
|
9978 |
|
|
}
|
9979 |
|
|
|
9980 |
|
|
int
|
9981 |
|
|
tls_mentioned_p (rtx x)
|
9982 |
|
|
{
|
9983 |
|
|
switch (GET_CODE (x))
|
9984 |
|
|
{
|
9985 |
|
|
case CONST:
|
9986 |
|
|
return tls_mentioned_p (XEXP (x, 0));
|
9987 |
|
|
|
9988 |
|
|
case UNSPEC:
|
9989 |
|
|
if (XINT (x, 1) == UNSPEC_TLS)
|
9990 |
|
|
return 1;
|
9991 |
|
|
|
9992 |
|
|
default:
|
9993 |
|
|
return 0;
|
9994 |
|
|
}
|
9995 |
|
|
}
|
9996 |
|
|
|
9997 |
|
|
/* Must not copy any rtx that uses a pc-relative address. */
|
9998 |
|
|
|
9999 |
|
|
static int
|
10000 |
|
|
arm_note_pic_base (rtx *x, void *date ATTRIBUTE_UNUSED)
|
10001 |
|
|
{
|
10002 |
|
|
if (GET_CODE (*x) == UNSPEC
|
10003 |
|
|
&& (XINT (*x, 1) == UNSPEC_PIC_BASE
|
10004 |
|
|
|| XINT (*x, 1) == UNSPEC_PIC_UNIFIED))
|
10005 |
|
|
return 1;
|
10006 |
|
|
return 0;
|
10007 |
|
|
}
|
10008 |
|
|
|
10009 |
|
|
static bool
|
10010 |
|
|
arm_cannot_copy_insn_p (rtx insn)
|
10011 |
|
|
{
|
10012 |
|
|
/* The tls call insn cannot be copied, as it is paired with a data
|
10013 |
|
|
word. */
|
10014 |
|
|
if (recog_memoized (insn) == CODE_FOR_tlscall)
|
10015 |
|
|
return true;
|
10016 |
|
|
|
10017 |
|
|
return for_each_rtx (&PATTERN (insn), arm_note_pic_base, NULL);
|
10018 |
|
|
}
|
10019 |
|
|
|
10020 |
|
|
enum rtx_code
|
10021 |
|
|
minmax_code (rtx x)
|
10022 |
|
|
{
|
10023 |
|
|
enum rtx_code code = GET_CODE (x);
|
10024 |
|
|
|
10025 |
|
|
switch (code)
|
10026 |
|
|
{
|
10027 |
|
|
case SMAX:
|
10028 |
|
|
return GE;
|
10029 |
|
|
case SMIN:
|
10030 |
|
|
return LE;
|
10031 |
|
|
case UMIN:
|
10032 |
|
|
return LEU;
|
10033 |
|
|
case UMAX:
|
10034 |
|
|
return GEU;
|
10035 |
|
|
default:
|
10036 |
|
|
gcc_unreachable ();
|
10037 |
|
|
}
|
10038 |
|
|
}
|
10039 |
|
|
|
10040 |
|
|
/* Return 1 if memory locations are adjacent. */
|
10041 |
|
|
int
|
10042 |
|
|
adjacent_mem_locations (rtx a, rtx b)
|
10043 |
|
|
{
|
10044 |
|
|
/* We don't guarantee to preserve the order of these memory refs. */
|
10045 |
|
|
if (volatile_refs_p (a) || volatile_refs_p (b))
|
10046 |
|
|
return 0;
|
10047 |
|
|
|
10048 |
|
|
if ((GET_CODE (XEXP (a, 0)) == REG
|
10049 |
|
|
|| (GET_CODE (XEXP (a, 0)) == PLUS
|
10050 |
|
|
&& GET_CODE (XEXP (XEXP (a, 0), 1)) == CONST_INT))
|
10051 |
|
|
&& (GET_CODE (XEXP (b, 0)) == REG
|
10052 |
|
|
|| (GET_CODE (XEXP (b, 0)) == PLUS
|
10053 |
|
|
&& GET_CODE (XEXP (XEXP (b, 0), 1)) == CONST_INT)))
|
10054 |
|
|
{
|
10055 |
|
|
HOST_WIDE_INT val0 = 0, val1 = 0;
|
10056 |
|
|
rtx reg0, reg1;
|
10057 |
|
|
int val_diff;
|
10058 |
|
|
|
10059 |
|
|
if (GET_CODE (XEXP (a, 0)) == PLUS)
|
10060 |
|
|
{
|
10061 |
|
|
reg0 = XEXP (XEXP (a, 0), 0);
|
10062 |
|
|
val0 = INTVAL (XEXP (XEXP (a, 0), 1));
|
10063 |
|
|
}
|
10064 |
|
|
else
|
10065 |
|
|
reg0 = XEXP (a, 0);
|
10066 |
|
|
|
10067 |
|
|
if (GET_CODE (XEXP (b, 0)) == PLUS)
|
10068 |
|
|
{
|
10069 |
|
|
reg1 = XEXP (XEXP (b, 0), 0);
|
10070 |
|
|
val1 = INTVAL (XEXP (XEXP (b, 0), 1));
|
10071 |
|
|
}
|
10072 |
|
|
else
|
10073 |
|
|
reg1 = XEXP (b, 0);
|
10074 |
|
|
|
10075 |
|
|
/* Don't accept any offset that will require multiple
|
10076 |
|
|
instructions to handle, since this would cause the
|
10077 |
|
|
arith_adjacentmem pattern to output an overlong sequence. */
|
10078 |
|
|
if (!const_ok_for_op (val0, PLUS) || !const_ok_for_op (val1, PLUS))
|
10079 |
|
|
return 0;
|
10080 |
|
|
|
10081 |
|
|
/* Don't allow an eliminable register: register elimination can make
|
10082 |
|
|
the offset too large. */
|
10083 |
|
|
if (arm_eliminable_register (reg0))
|
10084 |
|
|
return 0;
|
10085 |
|
|
|
10086 |
|
|
val_diff = val1 - val0;
|
10087 |
|
|
|
10088 |
|
|
if (arm_ld_sched)
|
10089 |
|
|
{
|
10090 |
|
|
/* If the target has load delay slots, then there's no benefit
|
10091 |
|
|
to using an ldm instruction unless the offset is zero and
|
10092 |
|
|
we are optimizing for size. */
|
10093 |
|
|
return (optimize_size && (REGNO (reg0) == REGNO (reg1))
|
10094 |
|
|
&& (val0 == 0 || val1 == 0 || val0 == 4 || val1 == 4)
|
10095 |
|
|
&& (val_diff == 4 || val_diff == -4));
|
10096 |
|
|
}
|
10097 |
|
|
|
10098 |
|
|
return ((REGNO (reg0) == REGNO (reg1))
|
10099 |
|
|
&& (val_diff == 4 || val_diff == -4));
|
10100 |
|
|
}
|
10101 |
|
|
|
10102 |
|
|
return 0;
|
10103 |
|
|
}
|
10104 |
|
|
|
10105 |
|
|
/* Return true iff it would be profitable to turn a sequence of NOPS loads
|
10106 |
|
|
or stores (depending on IS_STORE) into a load-multiple or store-multiple
|
10107 |
|
|
instruction. ADD_OFFSET is nonzero if the base address register needs
|
10108 |
|
|
to be modified with an add instruction before we can use it. */
|
10109 |
|
|
|
10110 |
|
|
static bool
|
10111 |
|
|
multiple_operation_profitable_p (bool is_store ATTRIBUTE_UNUSED,
|
10112 |
|
|
int nops, HOST_WIDE_INT add_offset)
|
10113 |
|
|
{
|
10114 |
|
|
/* For ARM8,9 & StrongARM, 2 ldr instructions are faster than an ldm
|
10115 |
|
|
if the offset isn't small enough. The reason 2 ldrs are faster
|
10116 |
|
|
is because these ARMs are able to do more than one cache access
|
10117 |
|
|
in a single cycle. The ARM9 and StrongARM have Harvard caches,
|
10118 |
|
|
whilst the ARM8 has a double bandwidth cache. This means that
|
10119 |
|
|
these cores can do both an instruction fetch and a data fetch in
|
10120 |
|
|
a single cycle, so the trick of calculating the address into a
|
10121 |
|
|
scratch register (one of the result regs) and then doing a load
|
10122 |
|
|
multiple actually becomes slower (and no smaller in code size).
|
10123 |
|
|
That is the transformation
|
10124 |
|
|
|
10125 |
|
|
ldr rd1, [rbase + offset]
|
10126 |
|
|
ldr rd2, [rbase + offset + 4]
|
10127 |
|
|
|
10128 |
|
|
to
|
10129 |
|
|
|
10130 |
|
|
add rd1, rbase, offset
|
10131 |
|
|
ldmia rd1, {rd1, rd2}
|
10132 |
|
|
|
10133 |
|
|
produces worse code -- '3 cycles + any stalls on rd2' instead of
|
10134 |
|
|
'2 cycles + any stalls on rd2'. On ARMs with only one cache
|
10135 |
|
|
access per cycle, the first sequence could never complete in less
|
10136 |
|
|
than 6 cycles, whereas the ldm sequence would only take 5 and
|
10137 |
|
|
would make better use of sequential accesses if not hitting the
|
10138 |
|
|
cache.
|
10139 |
|
|
|
10140 |
|
|
We cheat here and test 'arm_ld_sched' which we currently know to
|
10141 |
|
|
only be true for the ARM8, ARM9 and StrongARM. If this ever
|
10142 |
|
|
changes, then the test below needs to be reworked. */
|
10143 |
|
|
if (nops == 2 && arm_ld_sched && add_offset != 0)
|
10144 |
|
|
return false;
|
10145 |
|
|
|
10146 |
|
|
/* XScale has load-store double instructions, but they have stricter
|
10147 |
|
|
alignment requirements than load-store multiple, so we cannot
|
10148 |
|
|
use them.
|
10149 |
|
|
|
10150 |
|
|
For XScale ldm requires 2 + NREGS cycles to complete and blocks
|
10151 |
|
|
the pipeline until completion.
|
10152 |
|
|
|
10153 |
|
|
NREGS CYCLES
|
10154 |
|
|
1 3
|
10155 |
|
|
2 4
|
10156 |
|
|
3 5
|
10157 |
|
|
4 6
|
10158 |
|
|
|
10159 |
|
|
An ldr instruction takes 1-3 cycles, but does not block the
|
10160 |
|
|
pipeline.
|
10161 |
|
|
|
10162 |
|
|
NREGS CYCLES
|
10163 |
|
|
1 1-3
|
10164 |
|
|
2 2-6
|
10165 |
|
|
3 3-9
|
10166 |
|
|
4 4-12
|
10167 |
|
|
|
10168 |
|
|
Best case ldr will always win. However, the more ldr instructions
|
10169 |
|
|
we issue, the less likely we are to be able to schedule them well.
|
10170 |
|
|
Using ldr instructions also increases code size.
|
10171 |
|
|
|
10172 |
|
|
As a compromise, we use ldr for counts of 1 or 2 regs, and ldm
|
10173 |
|
|
for counts of 3 or 4 regs. */
|
10174 |
|
|
if (nops <= 2 && arm_tune_xscale && !optimize_size)
|
10175 |
|
|
return false;
|
10176 |
|
|
return true;
|
10177 |
|
|
}
|
10178 |
|
|
|
10179 |
|
|
/* Subroutine of load_multiple_sequence and store_multiple_sequence.
|
10180 |
|
|
Given an array of UNSORTED_OFFSETS, of which there are NOPS, compute
|
10181 |
|
|
an array ORDER which describes the sequence to use when accessing the
|
10182 |
|
|
offsets that produces an ascending order. In this sequence, each
|
10183 |
|
|
offset must be larger by exactly 4 than the previous one. ORDER[0]
|
10184 |
|
|
must have been filled in with the lowest offset by the caller.
|
10185 |
|
|
If UNSORTED_REGS is nonnull, it is an array of register numbers that
|
10186 |
|
|
we use to verify that ORDER produces an ascending order of registers.
|
10187 |
|
|
Return true if it was possible to construct such an order, false if
|
10188 |
|
|
not. */
|
10189 |
|
|
|
10190 |
|
|
static bool
|
10191 |
|
|
compute_offset_order (int nops, HOST_WIDE_INT *unsorted_offsets, int *order,
|
10192 |
|
|
int *unsorted_regs)
|
10193 |
|
|
{
|
10194 |
|
|
int i;
|
10195 |
|
|
for (i = 1; i < nops; i++)
|
10196 |
|
|
{
|
10197 |
|
|
int j;
|
10198 |
|
|
|
10199 |
|
|
order[i] = order[i - 1];
|
10200 |
|
|
for (j = 0; j < nops; j++)
|
10201 |
|
|
if (unsorted_offsets[j] == unsorted_offsets[order[i - 1]] + 4)
|
10202 |
|
|
{
|
10203 |
|
|
/* We must find exactly one offset that is higher than the
|
10204 |
|
|
previous one by 4. */
|
10205 |
|
|
if (order[i] != order[i - 1])
|
10206 |
|
|
return false;
|
10207 |
|
|
order[i] = j;
|
10208 |
|
|
}
|
10209 |
|
|
if (order[i] == order[i - 1])
|
10210 |
|
|
return false;
|
10211 |
|
|
/* The register numbers must be ascending. */
|
10212 |
|
|
if (unsorted_regs != NULL
|
10213 |
|
|
&& unsorted_regs[order[i]] <= unsorted_regs[order[i - 1]])
|
10214 |
|
|
return false;
|
10215 |
|
|
}
|
10216 |
|
|
return true;
|
10217 |
|
|
}
|
10218 |
|
|
|
10219 |
|
|
/* Used to determine in a peephole whether a sequence of load
|
10220 |
|
|
instructions can be changed into a load-multiple instruction.
|
10221 |
|
|
NOPS is the number of separate load instructions we are examining. The
|
10222 |
|
|
first NOPS entries in OPERANDS are the destination registers, the
|
10223 |
|
|
next NOPS entries are memory operands. If this function is
|
10224 |
|
|
successful, *BASE is set to the common base register of the memory
|
10225 |
|
|
accesses; *LOAD_OFFSET is set to the first memory location's offset
|
10226 |
|
|
from that base register.
|
10227 |
|
|
REGS is an array filled in with the destination register numbers.
|
10228 |
|
|
SAVED_ORDER (if nonnull), is an array filled in with an order that maps
|
10229 |
|
|
insn numbers to an ascending order of stores. If CHECK_REGS is true,
|
10230 |
|
|
the sequence of registers in REGS matches the loads from ascending memory
|
10231 |
|
|
locations, and the function verifies that the register numbers are
|
10232 |
|
|
themselves ascending. If CHECK_REGS is false, the register numbers
|
10233 |
|
|
are stored in the order they are found in the operands. */
|
10234 |
|
|
static int
|
10235 |
|
|
load_multiple_sequence (rtx *operands, int nops, int *regs, int *saved_order,
|
10236 |
|
|
int *base, HOST_WIDE_INT *load_offset, bool check_regs)
|
10237 |
|
|
{
|
10238 |
|
|
int unsorted_regs[MAX_LDM_STM_OPS];
|
10239 |
|
|
HOST_WIDE_INT unsorted_offsets[MAX_LDM_STM_OPS];
|
10240 |
|
|
int order[MAX_LDM_STM_OPS];
|
10241 |
|
|
rtx base_reg_rtx = NULL;
|
10242 |
|
|
int base_reg = -1;
|
10243 |
|
|
int i, ldm_case;
|
10244 |
|
|
|
10245 |
|
|
/* Can only handle up to MAX_LDM_STM_OPS insns at present, though could be
|
10246 |
|
|
easily extended if required. */
|
10247 |
|
|
gcc_assert (nops >= 2 && nops <= MAX_LDM_STM_OPS);
|
10248 |
|
|
|
10249 |
|
|
memset (order, 0, MAX_LDM_STM_OPS * sizeof (int));
|
10250 |
|
|
|
10251 |
|
|
/* Loop over the operands and check that the memory references are
|
10252 |
|
|
suitable (i.e. immediate offsets from the same base register). At
|
10253 |
|
|
the same time, extract the target register, and the memory
|
10254 |
|
|
offsets. */
|
10255 |
|
|
for (i = 0; i < nops; i++)
|
10256 |
|
|
{
|
10257 |
|
|
rtx reg;
|
10258 |
|
|
rtx offset;
|
10259 |
|
|
|
10260 |
|
|
/* Convert a subreg of a mem into the mem itself. */
|
10261 |
|
|
if (GET_CODE (operands[nops + i]) == SUBREG)
|
10262 |
|
|
operands[nops + i] = alter_subreg (operands + (nops + i));
|
10263 |
|
|
|
10264 |
|
|
gcc_assert (GET_CODE (operands[nops + i]) == MEM);
|
10265 |
|
|
|
10266 |
|
|
/* Don't reorder volatile memory references; it doesn't seem worth
|
10267 |
|
|
looking for the case where the order is ok anyway. */
|
10268 |
|
|
if (MEM_VOLATILE_P (operands[nops + i]))
|
10269 |
|
|
return 0;
|
10270 |
|
|
|
10271 |
|
|
offset = const0_rtx;
|
10272 |
|
|
|
10273 |
|
|
if ((GET_CODE (reg = XEXP (operands[nops + i], 0)) == REG
|
10274 |
|
|
|| (GET_CODE (reg) == SUBREG
|
10275 |
|
|
&& GET_CODE (reg = SUBREG_REG (reg)) == REG))
|
10276 |
|
|
|| (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
|
10277 |
|
|
&& ((GET_CODE (reg = XEXP (XEXP (operands[nops + i], 0), 0))
|
10278 |
|
|
== REG)
|
10279 |
|
|
|| (GET_CODE (reg) == SUBREG
|
10280 |
|
|
&& GET_CODE (reg = SUBREG_REG (reg)) == REG))
|
10281 |
|
|
&& (GET_CODE (offset = XEXP (XEXP (operands[nops + i], 0), 1))
|
10282 |
|
|
== CONST_INT)))
|
10283 |
|
|
{
|
10284 |
|
|
if (i == 0)
|
10285 |
|
|
{
|
10286 |
|
|
base_reg = REGNO (reg);
|
10287 |
|
|
base_reg_rtx = reg;
|
10288 |
|
|
if (TARGET_THUMB1 && base_reg > LAST_LO_REGNUM)
|
10289 |
|
|
return 0;
|
10290 |
|
|
}
|
10291 |
|
|
else if (base_reg != (int) REGNO (reg))
|
10292 |
|
|
/* Not addressed from the same base register. */
|
10293 |
|
|
return 0;
|
10294 |
|
|
|
10295 |
|
|
unsorted_regs[i] = (GET_CODE (operands[i]) == REG
|
10296 |
|
|
? REGNO (operands[i])
|
10297 |
|
|
: REGNO (SUBREG_REG (operands[i])));
|
10298 |
|
|
|
10299 |
|
|
/* If it isn't an integer register, or if it overwrites the
|
10300 |
|
|
base register but isn't the last insn in the list, then
|
10301 |
|
|
we can't do this. */
|
10302 |
|
|
if (unsorted_regs[i] < 0
|
10303 |
|
|
|| (TARGET_THUMB1 && unsorted_regs[i] > LAST_LO_REGNUM)
|
10304 |
|
|
|| unsorted_regs[i] > 14
|
10305 |
|
|
|| (i != nops - 1 && unsorted_regs[i] == base_reg))
|
10306 |
|
|
return 0;
|
10307 |
|
|
|
10308 |
|
|
unsorted_offsets[i] = INTVAL (offset);
|
10309 |
|
|
if (i == 0 || unsorted_offsets[i] < unsorted_offsets[order[0]])
|
10310 |
|
|
order[0] = i;
|
10311 |
|
|
}
|
10312 |
|
|
else
|
10313 |
|
|
/* Not a suitable memory address. */
|
10314 |
|
|
return 0;
|
10315 |
|
|
}
|
10316 |
|
|
|
10317 |
|
|
/* All the useful information has now been extracted from the
|
10318 |
|
|
operands into unsorted_regs and unsorted_offsets; additionally,
|
10319 |
|
|
order[0] has been set to the lowest offset in the list. Sort
|
10320 |
|
|
the offsets into order, verifying that they are adjacent, and
|
10321 |
|
|
check that the register numbers are ascending. */
|
10322 |
|
|
if (!compute_offset_order (nops, unsorted_offsets, order,
|
10323 |
|
|
check_regs ? unsorted_regs : NULL))
|
10324 |
|
|
return 0;
|
10325 |
|
|
|
10326 |
|
|
if (saved_order)
|
10327 |
|
|
memcpy (saved_order, order, sizeof order);
|
10328 |
|
|
|
10329 |
|
|
if (base)
|
10330 |
|
|
{
|
10331 |
|
|
*base = base_reg;
|
10332 |
|
|
|
10333 |
|
|
for (i = 0; i < nops; i++)
|
10334 |
|
|
regs[i] = unsorted_regs[check_regs ? order[i] : i];
|
10335 |
|
|
|
10336 |
|
|
*load_offset = unsorted_offsets[order[0]];
|
10337 |
|
|
}
|
10338 |
|
|
|
10339 |
|
|
if (TARGET_THUMB1
|
10340 |
|
|
&& !peep2_reg_dead_p (nops, base_reg_rtx))
|
10341 |
|
|
return 0;
|
10342 |
|
|
|
10343 |
|
|
if (unsorted_offsets[order[0]] == 0)
|
10344 |
|
|
ldm_case = 1; /* ldmia */
|
10345 |
|
|
else if (TARGET_ARM && unsorted_offsets[order[0]] == 4)
|
10346 |
|
|
ldm_case = 2; /* ldmib */
|
10347 |
|
|
else if (TARGET_ARM && unsorted_offsets[order[nops - 1]] == 0)
|
10348 |
|
|
ldm_case = 3; /* ldmda */
|
10349 |
|
|
else if (TARGET_32BIT && unsorted_offsets[order[nops - 1]] == -4)
|
10350 |
|
|
ldm_case = 4; /* ldmdb */
|
10351 |
|
|
else if (const_ok_for_arm (unsorted_offsets[order[0]])
|
10352 |
|
|
|| const_ok_for_arm (-unsorted_offsets[order[0]]))
|
10353 |
|
|
ldm_case = 5;
|
10354 |
|
|
else
|
10355 |
|
|
return 0;
|
10356 |
|
|
|
10357 |
|
|
if (!multiple_operation_profitable_p (false, nops,
|
10358 |
|
|
ldm_case == 5
|
10359 |
|
|
? unsorted_offsets[order[0]] : 0))
|
10360 |
|
|
return 0;
|
10361 |
|
|
|
10362 |
|
|
return ldm_case;
|
10363 |
|
|
}
|
10364 |
|
|
|
10365 |
|
|
/* Used to determine in a peephole whether a sequence of store instructions can
|
10366 |
|
|
be changed into a store-multiple instruction.
|
10367 |
|
|
NOPS is the number of separate store instructions we are examining.
|
10368 |
|
|
NOPS_TOTAL is the total number of instructions recognized by the peephole
|
10369 |
|
|
pattern.
|
10370 |
|
|
The first NOPS entries in OPERANDS are the source registers, the next
|
10371 |
|
|
NOPS entries are memory operands. If this function is successful, *BASE is
|
10372 |
|
|
set to the common base register of the memory accesses; *LOAD_OFFSET is set
|
10373 |
|
|
to the first memory location's offset from that base register. REGS is an
|
10374 |
|
|
array filled in with the source register numbers, REG_RTXS (if nonnull) is
|
10375 |
|
|
likewise filled with the corresponding rtx's.
|
10376 |
|
|
SAVED_ORDER (if nonnull), is an array filled in with an order that maps insn
|
10377 |
|
|
numbers to an ascending order of stores.
|
10378 |
|
|
If CHECK_REGS is true, the sequence of registers in *REGS matches the stores
|
10379 |
|
|
from ascending memory locations, and the function verifies that the register
|
10380 |
|
|
numbers are themselves ascending. If CHECK_REGS is false, the register
|
10381 |
|
|
numbers are stored in the order they are found in the operands. */
|
10382 |
|
|
static int
|
10383 |
|
|
store_multiple_sequence (rtx *operands, int nops, int nops_total,
|
10384 |
|
|
int *regs, rtx *reg_rtxs, int *saved_order, int *base,
|
10385 |
|
|
HOST_WIDE_INT *load_offset, bool check_regs)
|
10386 |
|
|
{
|
10387 |
|
|
int unsorted_regs[MAX_LDM_STM_OPS];
|
10388 |
|
|
rtx unsorted_reg_rtxs[MAX_LDM_STM_OPS];
|
10389 |
|
|
HOST_WIDE_INT unsorted_offsets[MAX_LDM_STM_OPS];
|
10390 |
|
|
int order[MAX_LDM_STM_OPS];
|
10391 |
|
|
int base_reg = -1;
|
10392 |
|
|
rtx base_reg_rtx = NULL;
|
10393 |
|
|
int i, stm_case;
|
10394 |
|
|
|
10395 |
|
|
/* Write back of base register is currently only supported for Thumb 1. */
|
10396 |
|
|
int base_writeback = TARGET_THUMB1;
|
10397 |
|
|
|
10398 |
|
|
/* Can only handle up to MAX_LDM_STM_OPS insns at present, though could be
|
10399 |
|
|
easily extended if required. */
|
10400 |
|
|
gcc_assert (nops >= 2 && nops <= MAX_LDM_STM_OPS);
|
10401 |
|
|
|
10402 |
|
|
memset (order, 0, MAX_LDM_STM_OPS * sizeof (int));
|
10403 |
|
|
|
10404 |
|
|
/* Loop over the operands and check that the memory references are
|
10405 |
|
|
suitable (i.e. immediate offsets from the same base register). At
|
10406 |
|
|
the same time, extract the target register, and the memory
|
10407 |
|
|
offsets. */
|
10408 |
|
|
for (i = 0; i < nops; i++)
|
10409 |
|
|
{
|
10410 |
|
|
rtx reg;
|
10411 |
|
|
rtx offset;
|
10412 |
|
|
|
10413 |
|
|
/* Convert a subreg of a mem into the mem itself. */
|
10414 |
|
|
if (GET_CODE (operands[nops + i]) == SUBREG)
|
10415 |
|
|
operands[nops + i] = alter_subreg (operands + (nops + i));
|
10416 |
|
|
|
10417 |
|
|
gcc_assert (GET_CODE (operands[nops + i]) == MEM);
|
10418 |
|
|
|
10419 |
|
|
/* Don't reorder volatile memory references; it doesn't seem worth
|
10420 |
|
|
looking for the case where the order is ok anyway. */
|
10421 |
|
|
if (MEM_VOLATILE_P (operands[nops + i]))
|
10422 |
|
|
return 0;
|
10423 |
|
|
|
10424 |
|
|
offset = const0_rtx;
|
10425 |
|
|
|
10426 |
|
|
if ((GET_CODE (reg = XEXP (operands[nops + i], 0)) == REG
|
10427 |
|
|
|| (GET_CODE (reg) == SUBREG
|
10428 |
|
|
&& GET_CODE (reg = SUBREG_REG (reg)) == REG))
|
10429 |
|
|
|| (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
|
10430 |
|
|
&& ((GET_CODE (reg = XEXP (XEXP (operands[nops + i], 0), 0))
|
10431 |
|
|
== REG)
|
10432 |
|
|
|| (GET_CODE (reg) == SUBREG
|
10433 |
|
|
&& GET_CODE (reg = SUBREG_REG (reg)) == REG))
|
10434 |
|
|
&& (GET_CODE (offset = XEXP (XEXP (operands[nops + i], 0), 1))
|
10435 |
|
|
== CONST_INT)))
|
10436 |
|
|
{
|
10437 |
|
|
unsorted_reg_rtxs[i] = (GET_CODE (operands[i]) == REG
|
10438 |
|
|
? operands[i] : SUBREG_REG (operands[i]));
|
10439 |
|
|
unsorted_regs[i] = REGNO (unsorted_reg_rtxs[i]);
|
10440 |
|
|
|
10441 |
|
|
if (i == 0)
|
10442 |
|
|
{
|
10443 |
|
|
base_reg = REGNO (reg);
|
10444 |
|
|
base_reg_rtx = reg;
|
10445 |
|
|
if (TARGET_THUMB1 && base_reg > LAST_LO_REGNUM)
|
10446 |
|
|
return 0;
|
10447 |
|
|
}
|
10448 |
|
|
else if (base_reg != (int) REGNO (reg))
|
10449 |
|
|
/* Not addressed from the same base register. */
|
10450 |
|
|
return 0;
|
10451 |
|
|
|
10452 |
|
|
/* If it isn't an integer register, then we can't do this. */
|
10453 |
|
|
if (unsorted_regs[i] < 0
|
10454 |
|
|
|| (TARGET_THUMB1 && unsorted_regs[i] > LAST_LO_REGNUM)
|
10455 |
|
|
/* The effects are unpredictable if the base register is
|
10456 |
|
|
both updated and stored. */
|
10457 |
|
|
|| (base_writeback && unsorted_regs[i] == base_reg)
|
10458 |
|
|
|| (TARGET_THUMB2 && unsorted_regs[i] == SP_REGNUM)
|
10459 |
|
|
|| unsorted_regs[i] > 14)
|
10460 |
|
|
return 0;
|
10461 |
|
|
|
10462 |
|
|
unsorted_offsets[i] = INTVAL (offset);
|
10463 |
|
|
if (i == 0 || unsorted_offsets[i] < unsorted_offsets[order[0]])
|
10464 |
|
|
order[0] = i;
|
10465 |
|
|
}
|
10466 |
|
|
else
|
10467 |
|
|
/* Not a suitable memory address. */
|
10468 |
|
|
return 0;
|
10469 |
|
|
}
|
10470 |
|
|
|
10471 |
|
|
/* All the useful information has now been extracted from the
|
10472 |
|
|
operands into unsorted_regs and unsorted_offsets; additionally,
|
10473 |
|
|
order[0] has been set to the lowest offset in the list. Sort
|
10474 |
|
|
the offsets into order, verifying that they are adjacent, and
|
10475 |
|
|
check that the register numbers are ascending. */
|
10476 |
|
|
if (!compute_offset_order (nops, unsorted_offsets, order,
|
10477 |
|
|
check_regs ? unsorted_regs : NULL))
|
10478 |
|
|
return 0;
|
10479 |
|
|
|
10480 |
|
|
if (saved_order)
|
10481 |
|
|
memcpy (saved_order, order, sizeof order);
|
10482 |
|
|
|
10483 |
|
|
if (base)
|
10484 |
|
|
{
|
10485 |
|
|
*base = base_reg;
|
10486 |
|
|
|
10487 |
|
|
for (i = 0; i < nops; i++)
|
10488 |
|
|
{
|
10489 |
|
|
regs[i] = unsorted_regs[check_regs ? order[i] : i];
|
10490 |
|
|
if (reg_rtxs)
|
10491 |
|
|
reg_rtxs[i] = unsorted_reg_rtxs[check_regs ? order[i] : i];
|
10492 |
|
|
}
|
10493 |
|
|
|
10494 |
|
|
*load_offset = unsorted_offsets[order[0]];
|
10495 |
|
|
}
|
10496 |
|
|
|
10497 |
|
|
if (TARGET_THUMB1
|
10498 |
|
|
&& !peep2_reg_dead_p (nops_total, base_reg_rtx))
|
10499 |
|
|
return 0;
|
10500 |
|
|
|
10501 |
|
|
if (unsorted_offsets[order[0]] == 0)
|
10502 |
|
|
stm_case = 1; /* stmia */
|
10503 |
|
|
else if (TARGET_ARM && unsorted_offsets[order[0]] == 4)
|
10504 |
|
|
stm_case = 2; /* stmib */
|
10505 |
|
|
else if (TARGET_ARM && unsorted_offsets[order[nops - 1]] == 0)
|
10506 |
|
|
stm_case = 3; /* stmda */
|
10507 |
|
|
else if (TARGET_32BIT && unsorted_offsets[order[nops - 1]] == -4)
|
10508 |
|
|
stm_case = 4; /* stmdb */
|
10509 |
|
|
else
|
10510 |
|
|
return 0;
|
10511 |
|
|
|
10512 |
|
|
if (!multiple_operation_profitable_p (false, nops, 0))
|
10513 |
|
|
return 0;
|
10514 |
|
|
|
10515 |
|
|
return stm_case;
|
10516 |
|
|
}
|
10517 |
|
|
|
10518 |
|
|
/* Routines for use in generating RTL. */
|
10519 |
|
|
|
10520 |
|
|
/* Generate a load-multiple instruction. COUNT is the number of loads in
|
10521 |
|
|
the instruction; REGS and MEMS are arrays containing the operands.
|
10522 |
|
|
BASEREG is the base register to be used in addressing the memory operands.
|
10523 |
|
|
WBACK_OFFSET is nonzero if the instruction should update the base
|
10524 |
|
|
register. */
|
10525 |
|
|
|
10526 |
|
|
static rtx
|
10527 |
|
|
arm_gen_load_multiple_1 (int count, int *regs, rtx *mems, rtx basereg,
|
10528 |
|
|
HOST_WIDE_INT wback_offset)
|
10529 |
|
|
{
|
10530 |
|
|
int i = 0, j;
|
10531 |
|
|
rtx result;
|
10532 |
|
|
|
10533 |
|
|
if (!multiple_operation_profitable_p (false, count, 0))
|
10534 |
|
|
{
|
10535 |
|
|
rtx seq;
|
10536 |
|
|
|
10537 |
|
|
start_sequence ();
|
10538 |
|
|
|
10539 |
|
|
for (i = 0; i < count; i++)
|
10540 |
|
|
emit_move_insn (gen_rtx_REG (SImode, regs[i]), mems[i]);
|
10541 |
|
|
|
10542 |
|
|
if (wback_offset != 0)
|
10543 |
|
|
emit_move_insn (basereg, plus_constant (basereg, wback_offset));
|
10544 |
|
|
|
10545 |
|
|
seq = get_insns ();
|
10546 |
|
|
end_sequence ();
|
10547 |
|
|
|
10548 |
|
|
return seq;
|
10549 |
|
|
}
|
10550 |
|
|
|
10551 |
|
|
result = gen_rtx_PARALLEL (VOIDmode,
|
10552 |
|
|
rtvec_alloc (count + (wback_offset != 0 ? 1 : 0)));
|
10553 |
|
|
if (wback_offset != 0)
|
10554 |
|
|
{
|
10555 |
|
|
XVECEXP (result, 0, 0)
|
10556 |
|
|
= gen_rtx_SET (VOIDmode, basereg,
|
10557 |
|
|
plus_constant (basereg, wback_offset));
|
10558 |
|
|
i = 1;
|
10559 |
|
|
count++;
|
10560 |
|
|
}
|
10561 |
|
|
|
10562 |
|
|
for (j = 0; i < count; i++, j++)
|
10563 |
|
|
XVECEXP (result, 0, i)
|
10564 |
|
|
= gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, regs[j]), mems[j]);
|
10565 |
|
|
|
10566 |
|
|
return result;
|
10567 |
|
|
}
|
10568 |
|
|
|
10569 |
|
|
/* Generate a store-multiple instruction. COUNT is the number of stores in
|
10570 |
|
|
the instruction; REGS and MEMS are arrays containing the operands.
|
10571 |
|
|
BASEREG is the base register to be used in addressing the memory operands.
|
10572 |
|
|
WBACK_OFFSET is nonzero if the instruction should update the base
|
10573 |
|
|
register. */
|
10574 |
|
|
|
10575 |
|
|
static rtx
|
10576 |
|
|
arm_gen_store_multiple_1 (int count, int *regs, rtx *mems, rtx basereg,
|
10577 |
|
|
HOST_WIDE_INT wback_offset)
|
10578 |
|
|
{
|
10579 |
|
|
int i = 0, j;
|
10580 |
|
|
rtx result;
|
10581 |
|
|
|
10582 |
|
|
if (GET_CODE (basereg) == PLUS)
|
10583 |
|
|
basereg = XEXP (basereg, 0);
|
10584 |
|
|
|
10585 |
|
|
if (!multiple_operation_profitable_p (false, count, 0))
|
10586 |
|
|
{
|
10587 |
|
|
rtx seq;
|
10588 |
|
|
|
10589 |
|
|
start_sequence ();
|
10590 |
|
|
|
10591 |
|
|
for (i = 0; i < count; i++)
|
10592 |
|
|
emit_move_insn (mems[i], gen_rtx_REG (SImode, regs[i]));
|
10593 |
|
|
|
10594 |
|
|
if (wback_offset != 0)
|
10595 |
|
|
emit_move_insn (basereg, plus_constant (basereg, wback_offset));
|
10596 |
|
|
|
10597 |
|
|
seq = get_insns ();
|
10598 |
|
|
end_sequence ();
|
10599 |
|
|
|
10600 |
|
|
return seq;
|
10601 |
|
|
}
|
10602 |
|
|
|
10603 |
|
|
result = gen_rtx_PARALLEL (VOIDmode,
|
10604 |
|
|
rtvec_alloc (count + (wback_offset != 0 ? 1 : 0)));
|
10605 |
|
|
if (wback_offset != 0)
|
10606 |
|
|
{
|
10607 |
|
|
XVECEXP (result, 0, 0)
|
10608 |
|
|
= gen_rtx_SET (VOIDmode, basereg,
|
10609 |
|
|
plus_constant (basereg, wback_offset));
|
10610 |
|
|
i = 1;
|
10611 |
|
|
count++;
|
10612 |
|
|
}
|
10613 |
|
|
|
10614 |
|
|
for (j = 0; i < count; i++, j++)
|
10615 |
|
|
XVECEXP (result, 0, i)
|
10616 |
|
|
= gen_rtx_SET (VOIDmode, mems[j], gen_rtx_REG (SImode, regs[j]));
|
10617 |
|
|
|
10618 |
|
|
return result;
|
10619 |
|
|
}
|
10620 |
|
|
|
10621 |
|
|
/* Generate either a load-multiple or a store-multiple instruction. This
|
10622 |
|
|
function can be used in situations where we can start with a single MEM
|
10623 |
|
|
rtx and adjust its address upwards.
|
10624 |
|
|
COUNT is the number of operations in the instruction, not counting a
|
10625 |
|
|
possible update of the base register. REGS is an array containing the
|
10626 |
|
|
register operands.
|
10627 |
|
|
BASEREG is the base register to be used in addressing the memory operands,
|
10628 |
|
|
which are constructed from BASEMEM.
|
10629 |
|
|
WRITE_BACK specifies whether the generated instruction should include an
|
10630 |
|
|
update of the base register.
|
10631 |
|
|
OFFSETP is used to pass an offset to and from this function; this offset
|
10632 |
|
|
is not used when constructing the address (instead BASEMEM should have an
|
10633 |
|
|
appropriate offset in its address), it is used only for setting
|
10634 |
|
|
MEM_OFFSET. It is updated only if WRITE_BACK is true.*/
|
10635 |
|
|
|
10636 |
|
|
static rtx
|
10637 |
|
|
arm_gen_multiple_op (bool is_load, int *regs, int count, rtx basereg,
|
10638 |
|
|
bool write_back, rtx basemem, HOST_WIDE_INT *offsetp)
|
10639 |
|
|
{
|
10640 |
|
|
rtx mems[MAX_LDM_STM_OPS];
|
10641 |
|
|
HOST_WIDE_INT offset = *offsetp;
|
10642 |
|
|
int i;
|
10643 |
|
|
|
10644 |
|
|
gcc_assert (count <= MAX_LDM_STM_OPS);
|
10645 |
|
|
|
10646 |
|
|
if (GET_CODE (basereg) == PLUS)
|
10647 |
|
|
basereg = XEXP (basereg, 0);
|
10648 |
|
|
|
10649 |
|
|
for (i = 0; i < count; i++)
|
10650 |
|
|
{
|
10651 |
|
|
rtx addr = plus_constant (basereg, i * 4);
|
10652 |
|
|
mems[i] = adjust_automodify_address_nv (basemem, SImode, addr, offset);
|
10653 |
|
|
offset += 4;
|
10654 |
|
|
}
|
10655 |
|
|
|
10656 |
|
|
if (write_back)
|
10657 |
|
|
*offsetp = offset;
|
10658 |
|
|
|
10659 |
|
|
if (is_load)
|
10660 |
|
|
return arm_gen_load_multiple_1 (count, regs, mems, basereg,
|
10661 |
|
|
write_back ? 4 * count : 0);
|
10662 |
|
|
else
|
10663 |
|
|
return arm_gen_store_multiple_1 (count, regs, mems, basereg,
|
10664 |
|
|
write_back ? 4 * count : 0);
|
10665 |
|
|
}
|
10666 |
|
|
|
10667 |
|
|
rtx
|
10668 |
|
|
arm_gen_load_multiple (int *regs, int count, rtx basereg, int write_back,
|
10669 |
|
|
rtx basemem, HOST_WIDE_INT *offsetp)
|
10670 |
|
|
{
|
10671 |
|
|
return arm_gen_multiple_op (TRUE, regs, count, basereg, write_back, basemem,
|
10672 |
|
|
offsetp);
|
10673 |
|
|
}
|
10674 |
|
|
|
10675 |
|
|
rtx
|
10676 |
|
|
arm_gen_store_multiple (int *regs, int count, rtx basereg, int write_back,
|
10677 |
|
|
rtx basemem, HOST_WIDE_INT *offsetp)
|
10678 |
|
|
{
|
10679 |
|
|
return arm_gen_multiple_op (FALSE, regs, count, basereg, write_back, basemem,
|
10680 |
|
|
offsetp);
|
10681 |
|
|
}
|
10682 |
|
|
|
10683 |
|
|
/* Called from a peephole2 expander to turn a sequence of loads into an
|
10684 |
|
|
LDM instruction. OPERANDS are the operands found by the peephole matcher;
|
10685 |
|
|
NOPS indicates how many separate loads we are trying to combine. SORT_REGS
|
10686 |
|
|
is true if we can reorder the registers because they are used commutatively
|
10687 |
|
|
subsequently.
|
10688 |
|
|
Returns true iff we could generate a new instruction. */
|
10689 |
|
|
|
10690 |
|
|
bool
|
10691 |
|
|
gen_ldm_seq (rtx *operands, int nops, bool sort_regs)
|
10692 |
|
|
{
|
10693 |
|
|
int regs[MAX_LDM_STM_OPS], mem_order[MAX_LDM_STM_OPS];
|
10694 |
|
|
rtx mems[MAX_LDM_STM_OPS];
|
10695 |
|
|
int i, j, base_reg;
|
10696 |
|
|
rtx base_reg_rtx;
|
10697 |
|
|
HOST_WIDE_INT offset;
|
10698 |
|
|
int write_back = FALSE;
|
10699 |
|
|
int ldm_case;
|
10700 |
|
|
rtx addr;
|
10701 |
|
|
|
10702 |
|
|
ldm_case = load_multiple_sequence (operands, nops, regs, mem_order,
|
10703 |
|
|
&base_reg, &offset, !sort_regs);
|
10704 |
|
|
|
10705 |
|
|
if (ldm_case == 0)
|
10706 |
|
|
return false;
|
10707 |
|
|
|
10708 |
|
|
if (sort_regs)
|
10709 |
|
|
for (i = 0; i < nops - 1; i++)
|
10710 |
|
|
for (j = i + 1; j < nops; j++)
|
10711 |
|
|
if (regs[i] > regs[j])
|
10712 |
|
|
{
|
10713 |
|
|
int t = regs[i];
|
10714 |
|
|
regs[i] = regs[j];
|
10715 |
|
|
regs[j] = t;
|
10716 |
|
|
}
|
10717 |
|
|
base_reg_rtx = gen_rtx_REG (Pmode, base_reg);
|
10718 |
|
|
|
10719 |
|
|
if (TARGET_THUMB1)
|
10720 |
|
|
{
|
10721 |
|
|
gcc_assert (peep2_reg_dead_p (nops, base_reg_rtx));
|
10722 |
|
|
gcc_assert (ldm_case == 1 || ldm_case == 5);
|
10723 |
|
|
write_back = TRUE;
|
10724 |
|
|
}
|
10725 |
|
|
|
10726 |
|
|
if (ldm_case == 5)
|
10727 |
|
|
{
|
10728 |
|
|
rtx newbase = TARGET_THUMB1 ? base_reg_rtx : gen_rtx_REG (SImode, regs[0]);
|
10729 |
|
|
emit_insn (gen_addsi3 (newbase, base_reg_rtx, GEN_INT (offset)));
|
10730 |
|
|
offset = 0;
|
10731 |
|
|
if (!TARGET_THUMB1)
|
10732 |
|
|
{
|
10733 |
|
|
base_reg = regs[0];
|
10734 |
|
|
base_reg_rtx = newbase;
|
10735 |
|
|
}
|
10736 |
|
|
}
|
10737 |
|
|
|
10738 |
|
|
for (i = 0; i < nops; i++)
|
10739 |
|
|
{
|
10740 |
|
|
addr = plus_constant (base_reg_rtx, offset + i * 4);
|
10741 |
|
|
mems[i] = adjust_automodify_address_nv (operands[nops + mem_order[i]],
|
10742 |
|
|
SImode, addr, 0);
|
10743 |
|
|
}
|
10744 |
|
|
emit_insn (arm_gen_load_multiple_1 (nops, regs, mems, base_reg_rtx,
|
10745 |
|
|
write_back ? offset + i * 4 : 0));
|
10746 |
|
|
return true;
|
10747 |
|
|
}
|
10748 |
|
|
|
10749 |
|
|
/* Called from a peephole2 expander to turn a sequence of stores into an
|
10750 |
|
|
STM instruction. OPERANDS are the operands found by the peephole matcher;
|
10751 |
|
|
NOPS indicates how many separate stores we are trying to combine.
|
10752 |
|
|
Returns true iff we could generate a new instruction. */
|
10753 |
|
|
|
10754 |
|
|
bool
|
10755 |
|
|
gen_stm_seq (rtx *operands, int nops)
|
10756 |
|
|
{
|
10757 |
|
|
int i;
|
10758 |
|
|
int regs[MAX_LDM_STM_OPS], mem_order[MAX_LDM_STM_OPS];
|
10759 |
|
|
rtx mems[MAX_LDM_STM_OPS];
|
10760 |
|
|
int base_reg;
|
10761 |
|
|
rtx base_reg_rtx;
|
10762 |
|
|
HOST_WIDE_INT offset;
|
10763 |
|
|
int write_back = FALSE;
|
10764 |
|
|
int stm_case;
|
10765 |
|
|
rtx addr;
|
10766 |
|
|
bool base_reg_dies;
|
10767 |
|
|
|
10768 |
|
|
stm_case = store_multiple_sequence (operands, nops, nops, regs, NULL,
|
10769 |
|
|
mem_order, &base_reg, &offset, true);
|
10770 |
|
|
|
10771 |
|
|
if (stm_case == 0)
|
10772 |
|
|
return false;
|
10773 |
|
|
|
10774 |
|
|
base_reg_rtx = gen_rtx_REG (Pmode, base_reg);
|
10775 |
|
|
|
10776 |
|
|
base_reg_dies = peep2_reg_dead_p (nops, base_reg_rtx);
|
10777 |
|
|
if (TARGET_THUMB1)
|
10778 |
|
|
{
|
10779 |
|
|
gcc_assert (base_reg_dies);
|
10780 |
|
|
write_back = TRUE;
|
10781 |
|
|
}
|
10782 |
|
|
|
10783 |
|
|
if (stm_case == 5)
|
10784 |
|
|
{
|
10785 |
|
|
gcc_assert (base_reg_dies);
|
10786 |
|
|
emit_insn (gen_addsi3 (base_reg_rtx, base_reg_rtx, GEN_INT (offset)));
|
10787 |
|
|
offset = 0;
|
10788 |
|
|
}
|
10789 |
|
|
|
10790 |
|
|
addr = plus_constant (base_reg_rtx, offset);
|
10791 |
|
|
|
10792 |
|
|
for (i = 0; i < nops; i++)
|
10793 |
|
|
{
|
10794 |
|
|
addr = plus_constant (base_reg_rtx, offset + i * 4);
|
10795 |
|
|
mems[i] = adjust_automodify_address_nv (operands[nops + mem_order[i]],
|
10796 |
|
|
SImode, addr, 0);
|
10797 |
|
|
}
|
10798 |
|
|
emit_insn (arm_gen_store_multiple_1 (nops, regs, mems, base_reg_rtx,
|
10799 |
|
|
write_back ? offset + i * 4 : 0));
|
10800 |
|
|
return true;
|
10801 |
|
|
}
|
10802 |
|
|
|
10803 |
|
|
/* Called from a peephole2 expander to turn a sequence of stores that are
|
10804 |
|
|
preceded by constant loads into an STM instruction. OPERANDS are the
|
10805 |
|
|
operands found by the peephole matcher; NOPS indicates how many
|
10806 |
|
|
separate stores we are trying to combine; there are 2 * NOPS
|
10807 |
|
|
instructions in the peephole.
|
10808 |
|
|
Returns true iff we could generate a new instruction. */
|
10809 |
|
|
|
10810 |
|
|
bool
|
10811 |
|
|
gen_const_stm_seq (rtx *operands, int nops)
|
10812 |
|
|
{
|
10813 |
|
|
int regs[MAX_LDM_STM_OPS], sorted_regs[MAX_LDM_STM_OPS];
|
10814 |
|
|
int reg_order[MAX_LDM_STM_OPS], mem_order[MAX_LDM_STM_OPS];
|
10815 |
|
|
rtx reg_rtxs[MAX_LDM_STM_OPS], orig_reg_rtxs[MAX_LDM_STM_OPS];
|
10816 |
|
|
rtx mems[MAX_LDM_STM_OPS];
|
10817 |
|
|
int base_reg;
|
10818 |
|
|
rtx base_reg_rtx;
|
10819 |
|
|
HOST_WIDE_INT offset;
|
10820 |
|
|
int write_back = FALSE;
|
10821 |
|
|
int stm_case;
|
10822 |
|
|
rtx addr;
|
10823 |
|
|
bool base_reg_dies;
|
10824 |
|
|
int i, j;
|
10825 |
|
|
HARD_REG_SET allocated;
|
10826 |
|
|
|
10827 |
|
|
stm_case = store_multiple_sequence (operands, nops, 2 * nops, regs, reg_rtxs,
|
10828 |
|
|
mem_order, &base_reg, &offset, false);
|
10829 |
|
|
|
10830 |
|
|
if (stm_case == 0)
|
10831 |
|
|
return false;
|
10832 |
|
|
|
10833 |
|
|
memcpy (orig_reg_rtxs, reg_rtxs, sizeof orig_reg_rtxs);
|
10834 |
|
|
|
10835 |
|
|
/* If the same register is used more than once, try to find a free
|
10836 |
|
|
register. */
|
10837 |
|
|
CLEAR_HARD_REG_SET (allocated);
|
10838 |
|
|
for (i = 0; i < nops; i++)
|
10839 |
|
|
{
|
10840 |
|
|
for (j = i + 1; j < nops; j++)
|
10841 |
|
|
if (regs[i] == regs[j])
|
10842 |
|
|
{
|
10843 |
|
|
rtx t = peep2_find_free_register (0, nops * 2,
|
10844 |
|
|
TARGET_THUMB1 ? "l" : "r",
|
10845 |
|
|
SImode, &allocated);
|
10846 |
|
|
if (t == NULL_RTX)
|
10847 |
|
|
return false;
|
10848 |
|
|
reg_rtxs[i] = t;
|
10849 |
|
|
regs[i] = REGNO (t);
|
10850 |
|
|
}
|
10851 |
|
|
}
|
10852 |
|
|
|
10853 |
|
|
/* Compute an ordering that maps the register numbers to an ascending
|
10854 |
|
|
sequence. */
|
10855 |
|
|
reg_order[0] = 0;
|
10856 |
|
|
for (i = 0; i < nops; i++)
|
10857 |
|
|
if (regs[i] < regs[reg_order[0]])
|
10858 |
|
|
reg_order[0] = i;
|
10859 |
|
|
|
10860 |
|
|
for (i = 1; i < nops; i++)
|
10861 |
|
|
{
|
10862 |
|
|
int this_order = reg_order[i - 1];
|
10863 |
|
|
for (j = 0; j < nops; j++)
|
10864 |
|
|
if (regs[j] > regs[reg_order[i - 1]]
|
10865 |
|
|
&& (this_order == reg_order[i - 1]
|
10866 |
|
|
|| regs[j] < regs[this_order]))
|
10867 |
|
|
this_order = j;
|
10868 |
|
|
reg_order[i] = this_order;
|
10869 |
|
|
}
|
10870 |
|
|
|
10871 |
|
|
/* Ensure that registers that must be live after the instruction end
|
10872 |
|
|
up with the correct value. */
|
10873 |
|
|
for (i = 0; i < nops; i++)
|
10874 |
|
|
{
|
10875 |
|
|
int this_order = reg_order[i];
|
10876 |
|
|
if ((this_order != mem_order[i]
|
10877 |
|
|
|| orig_reg_rtxs[this_order] != reg_rtxs[this_order])
|
10878 |
|
|
&& !peep2_reg_dead_p (nops * 2, orig_reg_rtxs[this_order]))
|
10879 |
|
|
return false;
|
10880 |
|
|
}
|
10881 |
|
|
|
10882 |
|
|
/* Load the constants. */
|
10883 |
|
|
for (i = 0; i < nops; i++)
|
10884 |
|
|
{
|
10885 |
|
|
rtx op = operands[2 * nops + mem_order[i]];
|
10886 |
|
|
sorted_regs[i] = regs[reg_order[i]];
|
10887 |
|
|
emit_move_insn (reg_rtxs[reg_order[i]], op);
|
10888 |
|
|
}
|
10889 |
|
|
|
10890 |
|
|
base_reg_rtx = gen_rtx_REG (Pmode, base_reg);
|
10891 |
|
|
|
10892 |
|
|
base_reg_dies = peep2_reg_dead_p (nops * 2, base_reg_rtx);
|
10893 |
|
|
if (TARGET_THUMB1)
|
10894 |
|
|
{
|
10895 |
|
|
gcc_assert (base_reg_dies);
|
10896 |
|
|
write_back = TRUE;
|
10897 |
|
|
}
|
10898 |
|
|
|
10899 |
|
|
if (stm_case == 5)
|
10900 |
|
|
{
|
10901 |
|
|
gcc_assert (base_reg_dies);
|
10902 |
|
|
emit_insn (gen_addsi3 (base_reg_rtx, base_reg_rtx, GEN_INT (offset)));
|
10903 |
|
|
offset = 0;
|
10904 |
|
|
}
|
10905 |
|
|
|
10906 |
|
|
addr = plus_constant (base_reg_rtx, offset);
|
10907 |
|
|
|
10908 |
|
|
for (i = 0; i < nops; i++)
|
10909 |
|
|
{
|
10910 |
|
|
addr = plus_constant (base_reg_rtx, offset + i * 4);
|
10911 |
|
|
mems[i] = adjust_automodify_address_nv (operands[nops + mem_order[i]],
|
10912 |
|
|
SImode, addr, 0);
|
10913 |
|
|
}
|
10914 |
|
|
emit_insn (arm_gen_store_multiple_1 (nops, sorted_regs, mems, base_reg_rtx,
|
10915 |
|
|
write_back ? offset + i * 4 : 0));
|
10916 |
|
|
return true;
|
10917 |
|
|
}
|
10918 |
|
|
|
10919 |
|
|
/* Copy a block of memory using plain ldr/str/ldrh/strh instructions, to permit
|
10920 |
|
|
unaligned copies on processors which support unaligned semantics for those
|
10921 |
|
|
instructions. INTERLEAVE_FACTOR can be used to attempt to hide load latency
|
10922 |
|
|
(using more registers) by doing e.g. load/load/store/store for a factor of 2.
|
10923 |
|
|
An interleave factor of 1 (the minimum) will perform no interleaving.
|
10924 |
|
|
Load/store multiple are used for aligned addresses where possible. */
|
10925 |
|
|
|
10926 |
|
|
static void
|
10927 |
|
|
arm_block_move_unaligned_straight (rtx dstbase, rtx srcbase,
|
10928 |
|
|
HOST_WIDE_INT length,
|
10929 |
|
|
unsigned int interleave_factor)
|
10930 |
|
|
{
|
10931 |
|
|
rtx *regs = XALLOCAVEC (rtx, interleave_factor);
|
10932 |
|
|
int *regnos = XALLOCAVEC (int, interleave_factor);
|
10933 |
|
|
HOST_WIDE_INT block_size_bytes = interleave_factor * UNITS_PER_WORD;
|
10934 |
|
|
HOST_WIDE_INT i, j;
|
10935 |
|
|
HOST_WIDE_INT remaining = length, words;
|
10936 |
|
|
rtx halfword_tmp = NULL, byte_tmp = NULL;
|
10937 |
|
|
rtx dst, src;
|
10938 |
|
|
bool src_aligned = MEM_ALIGN (srcbase) >= BITS_PER_WORD;
|
10939 |
|
|
bool dst_aligned = MEM_ALIGN (dstbase) >= BITS_PER_WORD;
|
10940 |
|
|
HOST_WIDE_INT srcoffset, dstoffset;
|
10941 |
|
|
HOST_WIDE_INT src_autoinc, dst_autoinc;
|
10942 |
|
|
rtx mem, addr;
|
10943 |
|
|
|
10944 |
|
|
gcc_assert (1 <= interleave_factor && interleave_factor <= 4);
|
10945 |
|
|
|
10946 |
|
|
/* Use hard registers if we have aligned source or destination so we can use
|
10947 |
|
|
load/store multiple with contiguous registers. */
|
10948 |
|
|
if (dst_aligned || src_aligned)
|
10949 |
|
|
for (i = 0; i < interleave_factor; i++)
|
10950 |
|
|
regs[i] = gen_rtx_REG (SImode, i);
|
10951 |
|
|
else
|
10952 |
|
|
for (i = 0; i < interleave_factor; i++)
|
10953 |
|
|
regs[i] = gen_reg_rtx (SImode);
|
10954 |
|
|
|
10955 |
|
|
dst = copy_addr_to_reg (XEXP (dstbase, 0));
|
10956 |
|
|
src = copy_addr_to_reg (XEXP (srcbase, 0));
|
10957 |
|
|
|
10958 |
|
|
srcoffset = dstoffset = 0;
|
10959 |
|
|
|
10960 |
|
|
/* Calls to arm_gen_load_multiple and arm_gen_store_multiple update SRC/DST.
|
10961 |
|
|
For copying the last bytes we want to subtract this offset again. */
|
10962 |
|
|
src_autoinc = dst_autoinc = 0;
|
10963 |
|
|
|
10964 |
|
|
for (i = 0; i < interleave_factor; i++)
|
10965 |
|
|
regnos[i] = i;
|
10966 |
|
|
|
10967 |
|
|
/* Copy BLOCK_SIZE_BYTES chunks. */
|
10968 |
|
|
|
10969 |
|
|
for (i = 0; i + block_size_bytes <= length; i += block_size_bytes)
|
10970 |
|
|
{
|
10971 |
|
|
/* Load words. */
|
10972 |
|
|
if (src_aligned && interleave_factor > 1)
|
10973 |
|
|
{
|
10974 |
|
|
emit_insn (arm_gen_load_multiple (regnos, interleave_factor, src,
|
10975 |
|
|
TRUE, srcbase, &srcoffset));
|
10976 |
|
|
src_autoinc += UNITS_PER_WORD * interleave_factor;
|
10977 |
|
|
}
|
10978 |
|
|
else
|
10979 |
|
|
{
|
10980 |
|
|
for (j = 0; j < interleave_factor; j++)
|
10981 |
|
|
{
|
10982 |
|
|
addr = plus_constant (src, srcoffset + j * UNITS_PER_WORD
|
10983 |
|
|
- src_autoinc);
|
10984 |
|
|
mem = adjust_automodify_address (srcbase, SImode, addr,
|
10985 |
|
|
srcoffset + j * UNITS_PER_WORD);
|
10986 |
|
|
emit_insn (gen_unaligned_loadsi (regs[j], mem));
|
10987 |
|
|
}
|
10988 |
|
|
srcoffset += block_size_bytes;
|
10989 |
|
|
}
|
10990 |
|
|
|
10991 |
|
|
/* Store words. */
|
10992 |
|
|
if (dst_aligned && interleave_factor > 1)
|
10993 |
|
|
{
|
10994 |
|
|
emit_insn (arm_gen_store_multiple (regnos, interleave_factor, dst,
|
10995 |
|
|
TRUE, dstbase, &dstoffset));
|
10996 |
|
|
dst_autoinc += UNITS_PER_WORD * interleave_factor;
|
10997 |
|
|
}
|
10998 |
|
|
else
|
10999 |
|
|
{
|
11000 |
|
|
for (j = 0; j < interleave_factor; j++)
|
11001 |
|
|
{
|
11002 |
|
|
addr = plus_constant (dst, dstoffset + j * UNITS_PER_WORD
|
11003 |
|
|
- dst_autoinc);
|
11004 |
|
|
mem = adjust_automodify_address (dstbase, SImode, addr,
|
11005 |
|
|
dstoffset + j * UNITS_PER_WORD);
|
11006 |
|
|
emit_insn (gen_unaligned_storesi (mem, regs[j]));
|
11007 |
|
|
}
|
11008 |
|
|
dstoffset += block_size_bytes;
|
11009 |
|
|
}
|
11010 |
|
|
|
11011 |
|
|
remaining -= block_size_bytes;
|
11012 |
|
|
}
|
11013 |
|
|
|
11014 |
|
|
/* Copy any whole words left (note these aren't interleaved with any
|
11015 |
|
|
subsequent halfword/byte load/stores in the interests of simplicity). */
|
11016 |
|
|
|
11017 |
|
|
words = remaining / UNITS_PER_WORD;
|
11018 |
|
|
|
11019 |
|
|
gcc_assert (words < interleave_factor);
|
11020 |
|
|
|
11021 |
|
|
if (src_aligned && words > 1)
|
11022 |
|
|
{
|
11023 |
|
|
emit_insn (arm_gen_load_multiple (regnos, words, src, TRUE, srcbase,
|
11024 |
|
|
&srcoffset));
|
11025 |
|
|
src_autoinc += UNITS_PER_WORD * words;
|
11026 |
|
|
}
|
11027 |
|
|
else
|
11028 |
|
|
{
|
11029 |
|
|
for (j = 0; j < words; j++)
|
11030 |
|
|
{
|
11031 |
|
|
addr = plus_constant (src,
|
11032 |
|
|
srcoffset + j * UNITS_PER_WORD - src_autoinc);
|
11033 |
|
|
mem = adjust_automodify_address (srcbase, SImode, addr,
|
11034 |
|
|
srcoffset + j * UNITS_PER_WORD);
|
11035 |
|
|
emit_insn (gen_unaligned_loadsi (regs[j], mem));
|
11036 |
|
|
}
|
11037 |
|
|
srcoffset += words * UNITS_PER_WORD;
|
11038 |
|
|
}
|
11039 |
|
|
|
11040 |
|
|
if (dst_aligned && words > 1)
|
11041 |
|
|
{
|
11042 |
|
|
emit_insn (arm_gen_store_multiple (regnos, words, dst, TRUE, dstbase,
|
11043 |
|
|
&dstoffset));
|
11044 |
|
|
dst_autoinc += words * UNITS_PER_WORD;
|
11045 |
|
|
}
|
11046 |
|
|
else
|
11047 |
|
|
{
|
11048 |
|
|
for (j = 0; j < words; j++)
|
11049 |
|
|
{
|
11050 |
|
|
addr = plus_constant (dst,
|
11051 |
|
|
dstoffset + j * UNITS_PER_WORD - dst_autoinc);
|
11052 |
|
|
mem = adjust_automodify_address (dstbase, SImode, addr,
|
11053 |
|
|
dstoffset + j * UNITS_PER_WORD);
|
11054 |
|
|
emit_insn (gen_unaligned_storesi (mem, regs[j]));
|
11055 |
|
|
}
|
11056 |
|
|
dstoffset += words * UNITS_PER_WORD;
|
11057 |
|
|
}
|
11058 |
|
|
|
11059 |
|
|
remaining -= words * UNITS_PER_WORD;
|
11060 |
|
|
|
11061 |
|
|
gcc_assert (remaining < 4);
|
11062 |
|
|
|
11063 |
|
|
/* Copy a halfword if necessary. */
|
11064 |
|
|
|
11065 |
|
|
if (remaining >= 2)
|
11066 |
|
|
{
|
11067 |
|
|
halfword_tmp = gen_reg_rtx (SImode);
|
11068 |
|
|
|
11069 |
|
|
addr = plus_constant (src, srcoffset - src_autoinc);
|
11070 |
|
|
mem = adjust_automodify_address (srcbase, HImode, addr, srcoffset);
|
11071 |
|
|
emit_insn (gen_unaligned_loadhiu (halfword_tmp, mem));
|
11072 |
|
|
|
11073 |
|
|
/* Either write out immediately, or delay until we've loaded the last
|
11074 |
|
|
byte, depending on interleave factor. */
|
11075 |
|
|
if (interleave_factor == 1)
|
11076 |
|
|
{
|
11077 |
|
|
addr = plus_constant (dst, dstoffset - dst_autoinc);
|
11078 |
|
|
mem = adjust_automodify_address (dstbase, HImode, addr, dstoffset);
|
11079 |
|
|
emit_insn (gen_unaligned_storehi (mem,
|
11080 |
|
|
gen_lowpart (HImode, halfword_tmp)));
|
11081 |
|
|
halfword_tmp = NULL;
|
11082 |
|
|
dstoffset += 2;
|
11083 |
|
|
}
|
11084 |
|
|
|
11085 |
|
|
remaining -= 2;
|
11086 |
|
|
srcoffset += 2;
|
11087 |
|
|
}
|
11088 |
|
|
|
11089 |
|
|
gcc_assert (remaining < 2);
|
11090 |
|
|
|
11091 |
|
|
/* Copy last byte. */
|
11092 |
|
|
|
11093 |
|
|
if ((remaining & 1) != 0)
|
11094 |
|
|
{
|
11095 |
|
|
byte_tmp = gen_reg_rtx (SImode);
|
11096 |
|
|
|
11097 |
|
|
addr = plus_constant (src, srcoffset - src_autoinc);
|
11098 |
|
|
mem = adjust_automodify_address (srcbase, QImode, addr, srcoffset);
|
11099 |
|
|
emit_move_insn (gen_lowpart (QImode, byte_tmp), mem);
|
11100 |
|
|
|
11101 |
|
|
if (interleave_factor == 1)
|
11102 |
|
|
{
|
11103 |
|
|
addr = plus_constant (dst, dstoffset - dst_autoinc);
|
11104 |
|
|
mem = adjust_automodify_address (dstbase, QImode, addr, dstoffset);
|
11105 |
|
|
emit_move_insn (mem, gen_lowpart (QImode, byte_tmp));
|
11106 |
|
|
byte_tmp = NULL;
|
11107 |
|
|
dstoffset++;
|
11108 |
|
|
}
|
11109 |
|
|
|
11110 |
|
|
remaining--;
|
11111 |
|
|
srcoffset++;
|
11112 |
|
|
}
|
11113 |
|
|
|
11114 |
|
|
/* Store last halfword if we haven't done so already. */
|
11115 |
|
|
|
11116 |
|
|
if (halfword_tmp)
|
11117 |
|
|
{
|
11118 |
|
|
addr = plus_constant (dst, dstoffset - dst_autoinc);
|
11119 |
|
|
mem = adjust_automodify_address (dstbase, HImode, addr, dstoffset);
|
11120 |
|
|
emit_insn (gen_unaligned_storehi (mem,
|
11121 |
|
|
gen_lowpart (HImode, halfword_tmp)));
|
11122 |
|
|
dstoffset += 2;
|
11123 |
|
|
}
|
11124 |
|
|
|
11125 |
|
|
/* Likewise for last byte. */
|
11126 |
|
|
|
11127 |
|
|
if (byte_tmp)
|
11128 |
|
|
{
|
11129 |
|
|
addr = plus_constant (dst, dstoffset - dst_autoinc);
|
11130 |
|
|
mem = adjust_automodify_address (dstbase, QImode, addr, dstoffset);
|
11131 |
|
|
emit_move_insn (mem, gen_lowpart (QImode, byte_tmp));
|
11132 |
|
|
dstoffset++;
|
11133 |
|
|
}
|
11134 |
|
|
|
11135 |
|
|
gcc_assert (remaining == 0 && srcoffset == dstoffset);
|
11136 |
|
|
}
|
11137 |
|
|
|
11138 |
|
|
/* From mips_adjust_block_mem:
|
11139 |
|
|
|
11140 |
|
|
Helper function for doing a loop-based block operation on memory
|
11141 |
|
|
reference MEM. Each iteration of the loop will operate on LENGTH
|
11142 |
|
|
bytes of MEM.
|
11143 |
|
|
|
11144 |
|
|
Create a new base register for use within the loop and point it to
|
11145 |
|
|
the start of MEM. Create a new memory reference that uses this
|
11146 |
|
|
register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
|
11147 |
|
|
|
11148 |
|
|
static void
|
11149 |
|
|
arm_adjust_block_mem (rtx mem, HOST_WIDE_INT length, rtx *loop_reg,
|
11150 |
|
|
rtx *loop_mem)
|
11151 |
|
|
{
|
11152 |
|
|
*loop_reg = copy_addr_to_reg (XEXP (mem, 0));
|
11153 |
|
|
|
11154 |
|
|
/* Although the new mem does not refer to a known location,
|
11155 |
|
|
it does keep up to LENGTH bytes of alignment. */
|
11156 |
|
|
*loop_mem = change_address (mem, BLKmode, *loop_reg);
|
11157 |
|
|
set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
|
11158 |
|
|
}
|
11159 |
|
|
|
11160 |
|
|
/* From mips_block_move_loop:
|
11161 |
|
|
|
11162 |
|
|
Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
|
11163 |
|
|
bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that
|
11164 |
|
|
the memory regions do not overlap. */
|
11165 |
|
|
|
11166 |
|
|
static void
|
11167 |
|
|
arm_block_move_unaligned_loop (rtx dest, rtx src, HOST_WIDE_INT length,
|
11168 |
|
|
unsigned int interleave_factor,
|
11169 |
|
|
HOST_WIDE_INT bytes_per_iter)
|
11170 |
|
|
{
|
11171 |
|
|
rtx label, src_reg, dest_reg, final_src, test;
|
11172 |
|
|
HOST_WIDE_INT leftover;
|
11173 |
|
|
|
11174 |
|
|
leftover = length % bytes_per_iter;
|
11175 |
|
|
length -= leftover;
|
11176 |
|
|
|
11177 |
|
|
/* Create registers and memory references for use within the loop. */
|
11178 |
|
|
arm_adjust_block_mem (src, bytes_per_iter, &src_reg, &src);
|
11179 |
|
|
arm_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest);
|
11180 |
|
|
|
11181 |
|
|
/* Calculate the value that SRC_REG should have after the last iteration of
|
11182 |
|
|
the loop. */
|
11183 |
|
|
final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
|
11184 |
|
|
0, 0, OPTAB_WIDEN);
|
11185 |
|
|
|
11186 |
|
|
/* Emit the start of the loop. */
|
11187 |
|
|
label = gen_label_rtx ();
|
11188 |
|
|
emit_label (label);
|
11189 |
|
|
|
11190 |
|
|
/* Emit the loop body. */
|
11191 |
|
|
arm_block_move_unaligned_straight (dest, src, bytes_per_iter,
|
11192 |
|
|
interleave_factor);
|
11193 |
|
|
|
11194 |
|
|
/* Move on to the next block. */
|
11195 |
|
|
emit_move_insn (src_reg, plus_constant (src_reg, bytes_per_iter));
|
11196 |
|
|
emit_move_insn (dest_reg, plus_constant (dest_reg, bytes_per_iter));
|
11197 |
|
|
|
11198 |
|
|
/* Emit the loop condition. */
|
11199 |
|
|
test = gen_rtx_NE (VOIDmode, src_reg, final_src);
|
11200 |
|
|
emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label));
|
11201 |
|
|
|
11202 |
|
|
/* Mop up any left-over bytes. */
|
11203 |
|
|
if (leftover)
|
11204 |
|
|
arm_block_move_unaligned_straight (dest, src, leftover, interleave_factor);
|
11205 |
|
|
}
|
11206 |
|
|
|
11207 |
|
|
/* Emit a block move when either the source or destination is unaligned (not
|
11208 |
|
|
aligned to a four-byte boundary). This may need further tuning depending on
|
11209 |
|
|
core type, optimize_size setting, etc. */
|
11210 |
|
|
|
11211 |
|
|
static int
|
11212 |
|
|
arm_movmemqi_unaligned (rtx *operands)
|
11213 |
|
|
{
|
11214 |
|
|
HOST_WIDE_INT length = INTVAL (operands[2]);
|
11215 |
|
|
|
11216 |
|
|
if (optimize_size)
|
11217 |
|
|
{
|
11218 |
|
|
bool src_aligned = MEM_ALIGN (operands[1]) >= BITS_PER_WORD;
|
11219 |
|
|
bool dst_aligned = MEM_ALIGN (operands[0]) >= BITS_PER_WORD;
|
11220 |
|
|
/* Inlined memcpy using ldr/str/ldrh/strh can be quite big: try to limit
|
11221 |
|
|
size of code if optimizing for size. We'll use ldm/stm if src_aligned
|
11222 |
|
|
or dst_aligned though: allow more interleaving in those cases since the
|
11223 |
|
|
resulting code can be smaller. */
|
11224 |
|
|
unsigned int interleave_factor = (src_aligned || dst_aligned) ? 2 : 1;
|
11225 |
|
|
HOST_WIDE_INT bytes_per_iter = (src_aligned || dst_aligned) ? 8 : 4;
|
11226 |
|
|
|
11227 |
|
|
if (length > 12)
|
11228 |
|
|
arm_block_move_unaligned_loop (operands[0], operands[1], length,
|
11229 |
|
|
interleave_factor, bytes_per_iter);
|
11230 |
|
|
else
|
11231 |
|
|
arm_block_move_unaligned_straight (operands[0], operands[1], length,
|
11232 |
|
|
interleave_factor);
|
11233 |
|
|
}
|
11234 |
|
|
else
|
11235 |
|
|
{
|
11236 |
|
|
/* Note that the loop created by arm_block_move_unaligned_loop may be
|
11237 |
|
|
subject to loop unrolling, which makes tuning this condition a little
|
11238 |
|
|
redundant. */
|
11239 |
|
|
if (length > 32)
|
11240 |
|
|
arm_block_move_unaligned_loop (operands[0], operands[1], length, 4, 16);
|
11241 |
|
|
else
|
11242 |
|
|
arm_block_move_unaligned_straight (operands[0], operands[1], length, 4);
|
11243 |
|
|
}
|
11244 |
|
|
|
11245 |
|
|
return 1;
|
11246 |
|
|
}
|
11247 |
|
|
|
11248 |
|
|
int
|
11249 |
|
|
arm_gen_movmemqi (rtx *operands)
|
11250 |
|
|
{
|
11251 |
|
|
HOST_WIDE_INT in_words_to_go, out_words_to_go, last_bytes;
|
11252 |
|
|
HOST_WIDE_INT srcoffset, dstoffset;
|
11253 |
|
|
int i;
|
11254 |
|
|
rtx src, dst, srcbase, dstbase;
|
11255 |
|
|
rtx part_bytes_reg = NULL;
|
11256 |
|
|
rtx mem;
|
11257 |
|
|
|
11258 |
|
|
if (GET_CODE (operands[2]) != CONST_INT
|
11259 |
|
|
|| GET_CODE (operands[3]) != CONST_INT
|
11260 |
|
|
|| INTVAL (operands[2]) > 64)
|
11261 |
|
|
return 0;
|
11262 |
|
|
|
11263 |
|
|
if (unaligned_access && (INTVAL (operands[3]) & 3) != 0)
|
11264 |
|
|
return arm_movmemqi_unaligned (operands);
|
11265 |
|
|
|
11266 |
|
|
if (INTVAL (operands[3]) & 3)
|
11267 |
|
|
return 0;
|
11268 |
|
|
|
11269 |
|
|
dstbase = operands[0];
|
11270 |
|
|
srcbase = operands[1];
|
11271 |
|
|
|
11272 |
|
|
dst = copy_to_mode_reg (SImode, XEXP (dstbase, 0));
|
11273 |
|
|
src = copy_to_mode_reg (SImode, XEXP (srcbase, 0));
|
11274 |
|
|
|
11275 |
|
|
in_words_to_go = ARM_NUM_INTS (INTVAL (operands[2]));
|
11276 |
|
|
out_words_to_go = INTVAL (operands[2]) / 4;
|
11277 |
|
|
last_bytes = INTVAL (operands[2]) & 3;
|
11278 |
|
|
dstoffset = srcoffset = 0;
|
11279 |
|
|
|
11280 |
|
|
if (out_words_to_go != in_words_to_go && ((in_words_to_go - 1) & 3) != 0)
|
11281 |
|
|
part_bytes_reg = gen_rtx_REG (SImode, (in_words_to_go - 1) & 3);
|
11282 |
|
|
|
11283 |
|
|
for (i = 0; in_words_to_go >= 2; i+=4)
|
11284 |
|
|
{
|
11285 |
|
|
if (in_words_to_go > 4)
|
11286 |
|
|
emit_insn (arm_gen_load_multiple (arm_regs_in_sequence, 4, src,
|
11287 |
|
|
TRUE, srcbase, &srcoffset));
|
11288 |
|
|
else
|
11289 |
|
|
emit_insn (arm_gen_load_multiple (arm_regs_in_sequence, in_words_to_go,
|
11290 |
|
|
src, FALSE, srcbase,
|
11291 |
|
|
&srcoffset));
|
11292 |
|
|
|
11293 |
|
|
if (out_words_to_go)
|
11294 |
|
|
{
|
11295 |
|
|
if (out_words_to_go > 4)
|
11296 |
|
|
emit_insn (arm_gen_store_multiple (arm_regs_in_sequence, 4, dst,
|
11297 |
|
|
TRUE, dstbase, &dstoffset));
|
11298 |
|
|
else if (out_words_to_go != 1)
|
11299 |
|
|
emit_insn (arm_gen_store_multiple (arm_regs_in_sequence,
|
11300 |
|
|
out_words_to_go, dst,
|
11301 |
|
|
(last_bytes == 0
|
11302 |
|
|
? FALSE : TRUE),
|
11303 |
|
|
dstbase, &dstoffset));
|
11304 |
|
|
else
|
11305 |
|
|
{
|
11306 |
|
|
mem = adjust_automodify_address (dstbase, SImode, dst, dstoffset);
|
11307 |
|
|
emit_move_insn (mem, gen_rtx_REG (SImode, 0));
|
11308 |
|
|
if (last_bytes != 0)
|
11309 |
|
|
{
|
11310 |
|
|
emit_insn (gen_addsi3 (dst, dst, GEN_INT (4)));
|
11311 |
|
|
dstoffset += 4;
|
11312 |
|
|
}
|
11313 |
|
|
}
|
11314 |
|
|
}
|
11315 |
|
|
|
11316 |
|
|
in_words_to_go -= in_words_to_go < 4 ? in_words_to_go : 4;
|
11317 |
|
|
out_words_to_go -= out_words_to_go < 4 ? out_words_to_go : 4;
|
11318 |
|
|
}
|
11319 |
|
|
|
11320 |
|
|
/* OUT_WORDS_TO_GO will be zero here if there are byte stores to do. */
|
11321 |
|
|
if (out_words_to_go)
|
11322 |
|
|
{
|
11323 |
|
|
rtx sreg;
|
11324 |
|
|
|
11325 |
|
|
mem = adjust_automodify_address (srcbase, SImode, src, srcoffset);
|
11326 |
|
|
sreg = copy_to_reg (mem);
|
11327 |
|
|
|
11328 |
|
|
mem = adjust_automodify_address (dstbase, SImode, dst, dstoffset);
|
11329 |
|
|
emit_move_insn (mem, sreg);
|
11330 |
|
|
in_words_to_go--;
|
11331 |
|
|
|
11332 |
|
|
gcc_assert (!in_words_to_go); /* Sanity check */
|
11333 |
|
|
}
|
11334 |
|
|
|
11335 |
|
|
if (in_words_to_go)
|
11336 |
|
|
{
|
11337 |
|
|
gcc_assert (in_words_to_go > 0);
|
11338 |
|
|
|
11339 |
|
|
mem = adjust_automodify_address (srcbase, SImode, src, srcoffset);
|
11340 |
|
|
part_bytes_reg = copy_to_mode_reg (SImode, mem);
|
11341 |
|
|
}
|
11342 |
|
|
|
11343 |
|
|
gcc_assert (!last_bytes || part_bytes_reg);
|
11344 |
|
|
|
11345 |
|
|
if (BYTES_BIG_ENDIAN && last_bytes)
|
11346 |
|
|
{
|
11347 |
|
|
rtx tmp = gen_reg_rtx (SImode);
|
11348 |
|
|
|
11349 |
|
|
/* The bytes we want are in the top end of the word. */
|
11350 |
|
|
emit_insn (gen_lshrsi3 (tmp, part_bytes_reg,
|
11351 |
|
|
GEN_INT (8 * (4 - last_bytes))));
|
11352 |
|
|
part_bytes_reg = tmp;
|
11353 |
|
|
|
11354 |
|
|
while (last_bytes)
|
11355 |
|
|
{
|
11356 |
|
|
mem = adjust_automodify_address (dstbase, QImode,
|
11357 |
|
|
plus_constant (dst, last_bytes - 1),
|
11358 |
|
|
dstoffset + last_bytes - 1);
|
11359 |
|
|
emit_move_insn (mem, gen_lowpart (QImode, part_bytes_reg));
|
11360 |
|
|
|
11361 |
|
|
if (--last_bytes)
|
11362 |
|
|
{
|
11363 |
|
|
tmp = gen_reg_rtx (SImode);
|
11364 |
|
|
emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (8)));
|
11365 |
|
|
part_bytes_reg = tmp;
|
11366 |
|
|
}
|
11367 |
|
|
}
|
11368 |
|
|
|
11369 |
|
|
}
|
11370 |
|
|
else
|
11371 |
|
|
{
|
11372 |
|
|
if (last_bytes > 1)
|
11373 |
|
|
{
|
11374 |
|
|
mem = adjust_automodify_address (dstbase, HImode, dst, dstoffset);
|
11375 |
|
|
emit_move_insn (mem, gen_lowpart (HImode, part_bytes_reg));
|
11376 |
|
|
last_bytes -= 2;
|
11377 |
|
|
if (last_bytes)
|
11378 |
|
|
{
|
11379 |
|
|
rtx tmp = gen_reg_rtx (SImode);
|
11380 |
|
|
emit_insn (gen_addsi3 (dst, dst, const2_rtx));
|
11381 |
|
|
emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (16)));
|
11382 |
|
|
part_bytes_reg = tmp;
|
11383 |
|
|
dstoffset += 2;
|
11384 |
|
|
}
|
11385 |
|
|
}
|
11386 |
|
|
|
11387 |
|
|
if (last_bytes)
|
11388 |
|
|
{
|
11389 |
|
|
mem = adjust_automodify_address (dstbase, QImode, dst, dstoffset);
|
11390 |
|
|
emit_move_insn (mem, gen_lowpart (QImode, part_bytes_reg));
|
11391 |
|
|
}
|
11392 |
|
|
}
|
11393 |
|
|
|
11394 |
|
|
return 1;
|
11395 |
|
|
}
|
11396 |
|
|
|
11397 |
|
|
/* Select a dominance comparison mode if possible for a test of the general
|
11398 |
|
|
form (OP (COND_OR (X) (Y)) (const_int 0)). We support three forms.
|
11399 |
|
|
COND_OR == DOM_CC_X_AND_Y => (X && Y)
|
11400 |
|
|
COND_OR == DOM_CC_NX_OR_Y => ((! X) || Y)
|
11401 |
|
|
COND_OR == DOM_CC_X_OR_Y => (X || Y)
|
11402 |
|
|
In all cases OP will be either EQ or NE, but we don't need to know which
|
11403 |
|
|
here. If we are unable to support a dominance comparison we return
|
11404 |
|
|
CC mode. This will then fail to match for the RTL expressions that
|
11405 |
|
|
generate this call. */
|
11406 |
|
|
enum machine_mode
|
11407 |
|
|
arm_select_dominance_cc_mode (rtx x, rtx y, HOST_WIDE_INT cond_or)
|
11408 |
|
|
{
|
11409 |
|
|
enum rtx_code cond1, cond2;
|
11410 |
|
|
int swapped = 0;
|
11411 |
|
|
|
11412 |
|
|
/* Currently we will probably get the wrong result if the individual
|
11413 |
|
|
comparisons are not simple. This also ensures that it is safe to
|
11414 |
|
|
reverse a comparison if necessary. */
|
11415 |
|
|
if ((arm_select_cc_mode (cond1 = GET_CODE (x), XEXP (x, 0), XEXP (x, 1))
|
11416 |
|
|
!= CCmode)
|
11417 |
|
|
|| (arm_select_cc_mode (cond2 = GET_CODE (y), XEXP (y, 0), XEXP (y, 1))
|
11418 |
|
|
!= CCmode))
|
11419 |
|
|
return CCmode;
|
11420 |
|
|
|
11421 |
|
|
/* The if_then_else variant of this tests the second condition if the
|
11422 |
|
|
first passes, but is true if the first fails. Reverse the first
|
11423 |
|
|
condition to get a true "inclusive-or" expression. */
|
11424 |
|
|
if (cond_or == DOM_CC_NX_OR_Y)
|
11425 |
|
|
cond1 = reverse_condition (cond1);
|
11426 |
|
|
|
11427 |
|
|
/* If the comparisons are not equal, and one doesn't dominate the other,
|
11428 |
|
|
then we can't do this. */
|
11429 |
|
|
if (cond1 != cond2
|
11430 |
|
|
&& !comparison_dominates_p (cond1, cond2)
|
11431 |
|
|
&& (swapped = 1, !comparison_dominates_p (cond2, cond1)))
|
11432 |
|
|
return CCmode;
|
11433 |
|
|
|
11434 |
|
|
if (swapped)
|
11435 |
|
|
{
|
11436 |
|
|
enum rtx_code temp = cond1;
|
11437 |
|
|
cond1 = cond2;
|
11438 |
|
|
cond2 = temp;
|
11439 |
|
|
}
|
11440 |
|
|
|
11441 |
|
|
switch (cond1)
|
11442 |
|
|
{
|
11443 |
|
|
case EQ:
|
11444 |
|
|
if (cond_or == DOM_CC_X_AND_Y)
|
11445 |
|
|
return CC_DEQmode;
|
11446 |
|
|
|
11447 |
|
|
switch (cond2)
|
11448 |
|
|
{
|
11449 |
|
|
case EQ: return CC_DEQmode;
|
11450 |
|
|
case LE: return CC_DLEmode;
|
11451 |
|
|
case LEU: return CC_DLEUmode;
|
11452 |
|
|
case GE: return CC_DGEmode;
|
11453 |
|
|
case GEU: return CC_DGEUmode;
|
11454 |
|
|
default: gcc_unreachable ();
|
11455 |
|
|
}
|
11456 |
|
|
|
11457 |
|
|
case LT:
|
11458 |
|
|
if (cond_or == DOM_CC_X_AND_Y)
|
11459 |
|
|
return CC_DLTmode;
|
11460 |
|
|
|
11461 |
|
|
switch (cond2)
|
11462 |
|
|
{
|
11463 |
|
|
case LT:
|
11464 |
|
|
return CC_DLTmode;
|
11465 |
|
|
case LE:
|
11466 |
|
|
return CC_DLEmode;
|
11467 |
|
|
case NE:
|
11468 |
|
|
return CC_DNEmode;
|
11469 |
|
|
default:
|
11470 |
|
|
gcc_unreachable ();
|
11471 |
|
|
}
|
11472 |
|
|
|
11473 |
|
|
case GT:
|
11474 |
|
|
if (cond_or == DOM_CC_X_AND_Y)
|
11475 |
|
|
return CC_DGTmode;
|
11476 |
|
|
|
11477 |
|
|
switch (cond2)
|
11478 |
|
|
{
|
11479 |
|
|
case GT:
|
11480 |
|
|
return CC_DGTmode;
|
11481 |
|
|
case GE:
|
11482 |
|
|
return CC_DGEmode;
|
11483 |
|
|
case NE:
|
11484 |
|
|
return CC_DNEmode;
|
11485 |
|
|
default:
|
11486 |
|
|
gcc_unreachable ();
|
11487 |
|
|
}
|
11488 |
|
|
|
11489 |
|
|
case LTU:
|
11490 |
|
|
if (cond_or == DOM_CC_X_AND_Y)
|
11491 |
|
|
return CC_DLTUmode;
|
11492 |
|
|
|
11493 |
|
|
switch (cond2)
|
11494 |
|
|
{
|
11495 |
|
|
case LTU:
|
11496 |
|
|
return CC_DLTUmode;
|
11497 |
|
|
case LEU:
|
11498 |
|
|
return CC_DLEUmode;
|
11499 |
|
|
case NE:
|
11500 |
|
|
return CC_DNEmode;
|
11501 |
|
|
default:
|
11502 |
|
|
gcc_unreachable ();
|
11503 |
|
|
}
|
11504 |
|
|
|
11505 |
|
|
case GTU:
|
11506 |
|
|
if (cond_or == DOM_CC_X_AND_Y)
|
11507 |
|
|
return CC_DGTUmode;
|
11508 |
|
|
|
11509 |
|
|
switch (cond2)
|
11510 |
|
|
{
|
11511 |
|
|
case GTU:
|
11512 |
|
|
return CC_DGTUmode;
|
11513 |
|
|
case GEU:
|
11514 |
|
|
return CC_DGEUmode;
|
11515 |
|
|
case NE:
|
11516 |
|
|
return CC_DNEmode;
|
11517 |
|
|
default:
|
11518 |
|
|
gcc_unreachable ();
|
11519 |
|
|
}
|
11520 |
|
|
|
11521 |
|
|
/* The remaining cases only occur when both comparisons are the
|
11522 |
|
|
same. */
|
11523 |
|
|
case NE:
|
11524 |
|
|
gcc_assert (cond1 == cond2);
|
11525 |
|
|
return CC_DNEmode;
|
11526 |
|
|
|
11527 |
|
|
case LE:
|
11528 |
|
|
gcc_assert (cond1 == cond2);
|
11529 |
|
|
return CC_DLEmode;
|
11530 |
|
|
|
11531 |
|
|
case GE:
|
11532 |
|
|
gcc_assert (cond1 == cond2);
|
11533 |
|
|
return CC_DGEmode;
|
11534 |
|
|
|
11535 |
|
|
case LEU:
|
11536 |
|
|
gcc_assert (cond1 == cond2);
|
11537 |
|
|
return CC_DLEUmode;
|
11538 |
|
|
|
11539 |
|
|
case GEU:
|
11540 |
|
|
gcc_assert (cond1 == cond2);
|
11541 |
|
|
return CC_DGEUmode;
|
11542 |
|
|
|
11543 |
|
|
default:
|
11544 |
|
|
gcc_unreachable ();
|
11545 |
|
|
}
|
11546 |
|
|
}
|
11547 |
|
|
|
11548 |
|
|
enum machine_mode
|
11549 |
|
|
arm_select_cc_mode (enum rtx_code op, rtx x, rtx y)
|
11550 |
|
|
{
|
11551 |
|
|
/* All floating point compares return CCFP if it is an equality
|
11552 |
|
|
comparison, and CCFPE otherwise. */
|
11553 |
|
|
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
|
11554 |
|
|
{
|
11555 |
|
|
switch (op)
|
11556 |
|
|
{
|
11557 |
|
|
case EQ:
|
11558 |
|
|
case NE:
|
11559 |
|
|
case UNORDERED:
|
11560 |
|
|
case ORDERED:
|
11561 |
|
|
case UNLT:
|
11562 |
|
|
case UNLE:
|
11563 |
|
|
case UNGT:
|
11564 |
|
|
case UNGE:
|
11565 |
|
|
case UNEQ:
|
11566 |
|
|
case LTGT:
|
11567 |
|
|
return CCFPmode;
|
11568 |
|
|
|
11569 |
|
|
case LT:
|
11570 |
|
|
case LE:
|
11571 |
|
|
case GT:
|
11572 |
|
|
case GE:
|
11573 |
|
|
if (TARGET_HARD_FLOAT && TARGET_MAVERICK)
|
11574 |
|
|
return CCFPmode;
|
11575 |
|
|
return CCFPEmode;
|
11576 |
|
|
|
11577 |
|
|
default:
|
11578 |
|
|
gcc_unreachable ();
|
11579 |
|
|
}
|
11580 |
|
|
}
|
11581 |
|
|
|
11582 |
|
|
/* A compare with a shifted operand. Because of canonicalization, the
|
11583 |
|
|
comparison will have to be swapped when we emit the assembler. */
|
11584 |
|
|
if (GET_MODE (y) == SImode
|
11585 |
|
|
&& (REG_P (y) || (GET_CODE (y) == SUBREG))
|
11586 |
|
|
&& (GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
|
11587 |
|
|
|| GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ROTATE
|
11588 |
|
|
|| GET_CODE (x) == ROTATERT))
|
11589 |
|
|
return CC_SWPmode;
|
11590 |
|
|
|
11591 |
|
|
/* This operation is performed swapped, but since we only rely on the Z
|
11592 |
|
|
flag we don't need an additional mode. */
|
11593 |
|
|
if (GET_MODE (y) == SImode
|
11594 |
|
|
&& (REG_P (y) || (GET_CODE (y) == SUBREG))
|
11595 |
|
|
&& GET_CODE (x) == NEG
|
11596 |
|
|
&& (op == EQ || op == NE))
|
11597 |
|
|
return CC_Zmode;
|
11598 |
|
|
|
11599 |
|
|
/* This is a special case that is used by combine to allow a
|
11600 |
|
|
comparison of a shifted byte load to be split into a zero-extend
|
11601 |
|
|
followed by a comparison of the shifted integer (only valid for
|
11602 |
|
|
equalities and unsigned inequalities). */
|
11603 |
|
|
if (GET_MODE (x) == SImode
|
11604 |
|
|
&& GET_CODE (x) == ASHIFT
|
11605 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 24
|
11606 |
|
|
&& GET_CODE (XEXP (x, 0)) == SUBREG
|
11607 |
|
|
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == MEM
|
11608 |
|
|
&& GET_MODE (SUBREG_REG (XEXP (x, 0))) == QImode
|
11609 |
|
|
&& (op == EQ || op == NE
|
11610 |
|
|
|| op == GEU || op == GTU || op == LTU || op == LEU)
|
11611 |
|
|
&& GET_CODE (y) == CONST_INT)
|
11612 |
|
|
return CC_Zmode;
|
11613 |
|
|
|
11614 |
|
|
/* A construct for a conditional compare, if the false arm contains
|
11615 |
|
|
0, then both conditions must be true, otherwise either condition
|
11616 |
|
|
must be true. Not all conditions are possible, so CCmode is
|
11617 |
|
|
returned if it can't be done. */
|
11618 |
|
|
if (GET_CODE (x) == IF_THEN_ELSE
|
11619 |
|
|
&& (XEXP (x, 2) == const0_rtx
|
11620 |
|
|
|| XEXP (x, 2) == const1_rtx)
|
11621 |
|
|
&& COMPARISON_P (XEXP (x, 0))
|
11622 |
|
|
&& COMPARISON_P (XEXP (x, 1)))
|
11623 |
|
|
return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
|
11624 |
|
|
INTVAL (XEXP (x, 2)));
|
11625 |
|
|
|
11626 |
|
|
/* Alternate canonicalizations of the above. These are somewhat cleaner. */
|
11627 |
|
|
if (GET_CODE (x) == AND
|
11628 |
|
|
&& (op == EQ || op == NE)
|
11629 |
|
|
&& COMPARISON_P (XEXP (x, 0))
|
11630 |
|
|
&& COMPARISON_P (XEXP (x, 1)))
|
11631 |
|
|
return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
|
11632 |
|
|
DOM_CC_X_AND_Y);
|
11633 |
|
|
|
11634 |
|
|
if (GET_CODE (x) == IOR
|
11635 |
|
|
&& (op == EQ || op == NE)
|
11636 |
|
|
&& COMPARISON_P (XEXP (x, 0))
|
11637 |
|
|
&& COMPARISON_P (XEXP (x, 1)))
|
11638 |
|
|
return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
|
11639 |
|
|
DOM_CC_X_OR_Y);
|
11640 |
|
|
|
11641 |
|
|
/* An operation (on Thumb) where we want to test for a single bit.
|
11642 |
|
|
This is done by shifting that bit up into the top bit of a
|
11643 |
|
|
scratch register; we can then branch on the sign bit. */
|
11644 |
|
|
if (TARGET_THUMB1
|
11645 |
|
|
&& GET_MODE (x) == SImode
|
11646 |
|
|
&& (op == EQ || op == NE)
|
11647 |
|
|
&& GET_CODE (x) == ZERO_EXTRACT
|
11648 |
|
|
&& XEXP (x, 1) == const1_rtx)
|
11649 |
|
|
return CC_Nmode;
|
11650 |
|
|
|
11651 |
|
|
/* An operation that sets the condition codes as a side-effect, the
|
11652 |
|
|
V flag is not set correctly, so we can only use comparisons where
|
11653 |
|
|
this doesn't matter. (For LT and GE we can use "mi" and "pl"
|
11654 |
|
|
instead.) */
|
11655 |
|
|
/* ??? Does the ZERO_EXTRACT case really apply to thumb2? */
|
11656 |
|
|
if (GET_MODE (x) == SImode
|
11657 |
|
|
&& y == const0_rtx
|
11658 |
|
|
&& (op == EQ || op == NE || op == LT || op == GE)
|
11659 |
|
|
&& (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
|
11660 |
|
|
|| GET_CODE (x) == AND || GET_CODE (x) == IOR
|
11661 |
|
|
|| GET_CODE (x) == XOR || GET_CODE (x) == MULT
|
11662 |
|
|
|| GET_CODE (x) == NOT || GET_CODE (x) == NEG
|
11663 |
|
|
|| GET_CODE (x) == LSHIFTRT
|
11664 |
|
|
|| GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
|
11665 |
|
|
|| GET_CODE (x) == ROTATERT
|
11666 |
|
|
|| (TARGET_32BIT && GET_CODE (x) == ZERO_EXTRACT)))
|
11667 |
|
|
return CC_NOOVmode;
|
11668 |
|
|
|
11669 |
|
|
if (GET_MODE (x) == QImode && (op == EQ || op == NE))
|
11670 |
|
|
return CC_Zmode;
|
11671 |
|
|
|
11672 |
|
|
if (GET_MODE (x) == SImode && (op == LTU || op == GEU)
|
11673 |
|
|
&& GET_CODE (x) == PLUS
|
11674 |
|
|
&& (rtx_equal_p (XEXP (x, 0), y) || rtx_equal_p (XEXP (x, 1), y)))
|
11675 |
|
|
return CC_Cmode;
|
11676 |
|
|
|
11677 |
|
|
if (GET_MODE (x) == DImode || GET_MODE (y) == DImode)
|
11678 |
|
|
{
|
11679 |
|
|
/* To keep things simple, always use the Cirrus cfcmp64 if it is
|
11680 |
|
|
available. */
|
11681 |
|
|
if (TARGET_ARM && TARGET_HARD_FLOAT && TARGET_MAVERICK)
|
11682 |
|
|
return CCmode;
|
11683 |
|
|
|
11684 |
|
|
switch (op)
|
11685 |
|
|
{
|
11686 |
|
|
case EQ:
|
11687 |
|
|
case NE:
|
11688 |
|
|
/* A DImode comparison against zero can be implemented by
|
11689 |
|
|
or'ing the two halves together. */
|
11690 |
|
|
if (y == const0_rtx)
|
11691 |
|
|
return CC_Zmode;
|
11692 |
|
|
|
11693 |
|
|
/* We can do an equality test in three Thumb instructions. */
|
11694 |
|
|
if (!TARGET_32BIT)
|
11695 |
|
|
return CC_Zmode;
|
11696 |
|
|
|
11697 |
|
|
/* FALLTHROUGH */
|
11698 |
|
|
|
11699 |
|
|
case LTU:
|
11700 |
|
|
case LEU:
|
11701 |
|
|
case GTU:
|
11702 |
|
|
case GEU:
|
11703 |
|
|
/* DImode unsigned comparisons can be implemented by cmp +
|
11704 |
|
|
cmpeq without a scratch register. Not worth doing in
|
11705 |
|
|
Thumb-2. */
|
11706 |
|
|
if (TARGET_32BIT)
|
11707 |
|
|
return CC_CZmode;
|
11708 |
|
|
|
11709 |
|
|
/* FALLTHROUGH */
|
11710 |
|
|
|
11711 |
|
|
case LT:
|
11712 |
|
|
case LE:
|
11713 |
|
|
case GT:
|
11714 |
|
|
case GE:
|
11715 |
|
|
/* DImode signed and unsigned comparisons can be implemented
|
11716 |
|
|
by cmp + sbcs with a scratch register, but that does not
|
11717 |
|
|
set the Z flag - we must reverse GT/LE/GTU/LEU. */
|
11718 |
|
|
gcc_assert (op != EQ && op != NE);
|
11719 |
|
|
return CC_NCVmode;
|
11720 |
|
|
|
11721 |
|
|
default:
|
11722 |
|
|
gcc_unreachable ();
|
11723 |
|
|
}
|
11724 |
|
|
}
|
11725 |
|
|
|
11726 |
|
|
return CCmode;
|
11727 |
|
|
}
|
11728 |
|
|
|
11729 |
|
|
/* X and Y are two things to compare using CODE. Emit the compare insn and
|
11730 |
|
|
return the rtx for register 0 in the proper mode. FP means this is a
|
11731 |
|
|
floating point compare: I don't think that it is needed on the arm. */
|
11732 |
|
|
rtx
|
11733 |
|
|
arm_gen_compare_reg (enum rtx_code code, rtx x, rtx y, rtx scratch)
|
11734 |
|
|
{
|
11735 |
|
|
enum machine_mode mode;
|
11736 |
|
|
rtx cc_reg;
|
11737 |
|
|
int dimode_comparison = GET_MODE (x) == DImode || GET_MODE (y) == DImode;
|
11738 |
|
|
|
11739 |
|
|
/* We might have X as a constant, Y as a register because of the predicates
|
11740 |
|
|
used for cmpdi. If so, force X to a register here. */
|
11741 |
|
|
if (dimode_comparison && !REG_P (x))
|
11742 |
|
|
x = force_reg (DImode, x);
|
11743 |
|
|
|
11744 |
|
|
mode = SELECT_CC_MODE (code, x, y);
|
11745 |
|
|
cc_reg = gen_rtx_REG (mode, CC_REGNUM);
|
11746 |
|
|
|
11747 |
|
|
if (dimode_comparison
|
11748 |
|
|
&& !(TARGET_HARD_FLOAT && TARGET_MAVERICK)
|
11749 |
|
|
&& mode != CC_CZmode)
|
11750 |
|
|
{
|
11751 |
|
|
rtx clobber, set;
|
11752 |
|
|
|
11753 |
|
|
/* To compare two non-zero values for equality, XOR them and
|
11754 |
|
|
then compare against zero. Not used for ARM mode; there
|
11755 |
|
|
CC_CZmode is cheaper. */
|
11756 |
|
|
if (mode == CC_Zmode && y != const0_rtx)
|
11757 |
|
|
{
|
11758 |
|
|
gcc_assert (!reload_completed);
|
11759 |
|
|
x = expand_binop (DImode, xor_optab, x, y, NULL_RTX, 0, OPTAB_WIDEN);
|
11760 |
|
|
y = const0_rtx;
|
11761 |
|
|
}
|
11762 |
|
|
|
11763 |
|
|
/* A scratch register is required. */
|
11764 |
|
|
if (reload_completed)
|
11765 |
|
|
gcc_assert (scratch != NULL && GET_MODE (scratch) == SImode);
|
11766 |
|
|
else
|
11767 |
|
|
scratch = gen_rtx_SCRATCH (SImode);
|
11768 |
|
|
|
11769 |
|
|
clobber = gen_rtx_CLOBBER (VOIDmode, scratch);
|
11770 |
|
|
set = gen_rtx_SET (VOIDmode, cc_reg, gen_rtx_COMPARE (mode, x, y));
|
11771 |
|
|
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
|
11772 |
|
|
}
|
11773 |
|
|
else
|
11774 |
|
|
emit_set_insn (cc_reg, gen_rtx_COMPARE (mode, x, y));
|
11775 |
|
|
|
11776 |
|
|
return cc_reg;
|
11777 |
|
|
}
|
11778 |
|
|
|
11779 |
|
|
/* Generate a sequence of insns that will generate the correct return
|
11780 |
|
|
address mask depending on the physical architecture that the program
|
11781 |
|
|
is running on. */
|
11782 |
|
|
rtx
|
11783 |
|
|
arm_gen_return_addr_mask (void)
|
11784 |
|
|
{
|
11785 |
|
|
rtx reg = gen_reg_rtx (Pmode);
|
11786 |
|
|
|
11787 |
|
|
emit_insn (gen_return_addr_mask (reg));
|
11788 |
|
|
return reg;
|
11789 |
|
|
}
|
11790 |
|
|
|
11791 |
|
|
void
|
11792 |
|
|
arm_reload_in_hi (rtx *operands)
|
11793 |
|
|
{
|
11794 |
|
|
rtx ref = operands[1];
|
11795 |
|
|
rtx base, scratch;
|
11796 |
|
|
HOST_WIDE_INT offset = 0;
|
11797 |
|
|
|
11798 |
|
|
if (GET_CODE (ref) == SUBREG)
|
11799 |
|
|
{
|
11800 |
|
|
offset = SUBREG_BYTE (ref);
|
11801 |
|
|
ref = SUBREG_REG (ref);
|
11802 |
|
|
}
|
11803 |
|
|
|
11804 |
|
|
if (GET_CODE (ref) == REG)
|
11805 |
|
|
{
|
11806 |
|
|
/* We have a pseudo which has been spilt onto the stack; there
|
11807 |
|
|
are two cases here: the first where there is a simple
|
11808 |
|
|
stack-slot replacement and a second where the stack-slot is
|
11809 |
|
|
out of range, or is used as a subreg. */
|
11810 |
|
|
if (reg_equiv_mem (REGNO (ref)))
|
11811 |
|
|
{
|
11812 |
|
|
ref = reg_equiv_mem (REGNO (ref));
|
11813 |
|
|
base = find_replacement (&XEXP (ref, 0));
|
11814 |
|
|
}
|
11815 |
|
|
else
|
11816 |
|
|
/* The slot is out of range, or was dressed up in a SUBREG. */
|
11817 |
|
|
base = reg_equiv_address (REGNO (ref));
|
11818 |
|
|
}
|
11819 |
|
|
else
|
11820 |
|
|
base = find_replacement (&XEXP (ref, 0));
|
11821 |
|
|
|
11822 |
|
|
/* Handle the case where the address is too complex to be offset by 1. */
|
11823 |
|
|
if (GET_CODE (base) == MINUS
|
11824 |
|
|
|| (GET_CODE (base) == PLUS && GET_CODE (XEXP (base, 1)) != CONST_INT))
|
11825 |
|
|
{
|
11826 |
|
|
rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
|
11827 |
|
|
|
11828 |
|
|
emit_set_insn (base_plus, base);
|
11829 |
|
|
base = base_plus;
|
11830 |
|
|
}
|
11831 |
|
|
else if (GET_CODE (base) == PLUS)
|
11832 |
|
|
{
|
11833 |
|
|
/* The addend must be CONST_INT, or we would have dealt with it above. */
|
11834 |
|
|
HOST_WIDE_INT hi, lo;
|
11835 |
|
|
|
11836 |
|
|
offset += INTVAL (XEXP (base, 1));
|
11837 |
|
|
base = XEXP (base, 0);
|
11838 |
|
|
|
11839 |
|
|
/* Rework the address into a legal sequence of insns. */
|
11840 |
|
|
/* Valid range for lo is -4095 -> 4095 */
|
11841 |
|
|
lo = (offset >= 0
|
11842 |
|
|
? (offset & 0xfff)
|
11843 |
|
|
: -((-offset) & 0xfff));
|
11844 |
|
|
|
11845 |
|
|
/* Corner case, if lo is the max offset then we would be out of range
|
11846 |
|
|
once we have added the additional 1 below, so bump the msb into the
|
11847 |
|
|
pre-loading insn(s). */
|
11848 |
|
|
if (lo == 4095)
|
11849 |
|
|
lo &= 0x7ff;
|
11850 |
|
|
|
11851 |
|
|
hi = ((((offset - lo) & (HOST_WIDE_INT) 0xffffffff)
|
11852 |
|
|
^ (HOST_WIDE_INT) 0x80000000)
|
11853 |
|
|
- (HOST_WIDE_INT) 0x80000000);
|
11854 |
|
|
|
11855 |
|
|
gcc_assert (hi + lo == offset);
|
11856 |
|
|
|
11857 |
|
|
if (hi != 0)
|
11858 |
|
|
{
|
11859 |
|
|
rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
|
11860 |
|
|
|
11861 |
|
|
/* Get the base address; addsi3 knows how to handle constants
|
11862 |
|
|
that require more than one insn. */
|
11863 |
|
|
emit_insn (gen_addsi3 (base_plus, base, GEN_INT (hi)));
|
11864 |
|
|
base = base_plus;
|
11865 |
|
|
offset = lo;
|
11866 |
|
|
}
|
11867 |
|
|
}
|
11868 |
|
|
|
11869 |
|
|
/* Operands[2] may overlap operands[0] (though it won't overlap
|
11870 |
|
|
operands[1]), that's why we asked for a DImode reg -- so we can
|
11871 |
|
|
use the bit that does not overlap. */
|
11872 |
|
|
if (REGNO (operands[2]) == REGNO (operands[0]))
|
11873 |
|
|
scratch = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
|
11874 |
|
|
else
|
11875 |
|
|
scratch = gen_rtx_REG (SImode, REGNO (operands[2]));
|
11876 |
|
|
|
11877 |
|
|
emit_insn (gen_zero_extendqisi2 (scratch,
|
11878 |
|
|
gen_rtx_MEM (QImode,
|
11879 |
|
|
plus_constant (base,
|
11880 |
|
|
offset))));
|
11881 |
|
|
emit_insn (gen_zero_extendqisi2 (gen_rtx_SUBREG (SImode, operands[0], 0),
|
11882 |
|
|
gen_rtx_MEM (QImode,
|
11883 |
|
|
plus_constant (base,
|
11884 |
|
|
offset + 1))));
|
11885 |
|
|
if (!BYTES_BIG_ENDIAN)
|
11886 |
|
|
emit_set_insn (gen_rtx_SUBREG (SImode, operands[0], 0),
|
11887 |
|
|
gen_rtx_IOR (SImode,
|
11888 |
|
|
gen_rtx_ASHIFT
|
11889 |
|
|
(SImode,
|
11890 |
|
|
gen_rtx_SUBREG (SImode, operands[0], 0),
|
11891 |
|
|
GEN_INT (8)),
|
11892 |
|
|
scratch));
|
11893 |
|
|
else
|
11894 |
|
|
emit_set_insn (gen_rtx_SUBREG (SImode, operands[0], 0),
|
11895 |
|
|
gen_rtx_IOR (SImode,
|
11896 |
|
|
gen_rtx_ASHIFT (SImode, scratch,
|
11897 |
|
|
GEN_INT (8)),
|
11898 |
|
|
gen_rtx_SUBREG (SImode, operands[0], 0)));
|
11899 |
|
|
}
|
11900 |
|
|
|
11901 |
|
|
/* Handle storing a half-word to memory during reload by synthesizing as two
|
11902 |
|
|
byte stores. Take care not to clobber the input values until after we
|
11903 |
|
|
have moved them somewhere safe. This code assumes that if the DImode
|
11904 |
|
|
scratch in operands[2] overlaps either the input value or output address
|
11905 |
|
|
in some way, then that value must die in this insn (we absolutely need
|
11906 |
|
|
two scratch registers for some corner cases). */
|
11907 |
|
|
void
|
11908 |
|
|
arm_reload_out_hi (rtx *operands)
|
11909 |
|
|
{
|
11910 |
|
|
rtx ref = operands[0];
|
11911 |
|
|
rtx outval = operands[1];
|
11912 |
|
|
rtx base, scratch;
|
11913 |
|
|
HOST_WIDE_INT offset = 0;
|
11914 |
|
|
|
11915 |
|
|
if (GET_CODE (ref) == SUBREG)
|
11916 |
|
|
{
|
11917 |
|
|
offset = SUBREG_BYTE (ref);
|
11918 |
|
|
ref = SUBREG_REG (ref);
|
11919 |
|
|
}
|
11920 |
|
|
|
11921 |
|
|
if (GET_CODE (ref) == REG)
|
11922 |
|
|
{
|
11923 |
|
|
/* We have a pseudo which has been spilt onto the stack; there
|
11924 |
|
|
are two cases here: the first where there is a simple
|
11925 |
|
|
stack-slot replacement and a second where the stack-slot is
|
11926 |
|
|
out of range, or is used as a subreg. */
|
11927 |
|
|
if (reg_equiv_mem (REGNO (ref)))
|
11928 |
|
|
{
|
11929 |
|
|
ref = reg_equiv_mem (REGNO (ref));
|
11930 |
|
|
base = find_replacement (&XEXP (ref, 0));
|
11931 |
|
|
}
|
11932 |
|
|
else
|
11933 |
|
|
/* The slot is out of range, or was dressed up in a SUBREG. */
|
11934 |
|
|
base = reg_equiv_address (REGNO (ref));
|
11935 |
|
|
}
|
11936 |
|
|
else
|
11937 |
|
|
base = find_replacement (&XEXP (ref, 0));
|
11938 |
|
|
|
11939 |
|
|
scratch = gen_rtx_REG (SImode, REGNO (operands[2]));
|
11940 |
|
|
|
11941 |
|
|
/* Handle the case where the address is too complex to be offset by 1. */
|
11942 |
|
|
if (GET_CODE (base) == MINUS
|
11943 |
|
|
|| (GET_CODE (base) == PLUS && GET_CODE (XEXP (base, 1)) != CONST_INT))
|
11944 |
|
|
{
|
11945 |
|
|
rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
|
11946 |
|
|
|
11947 |
|
|
/* Be careful not to destroy OUTVAL. */
|
11948 |
|
|
if (reg_overlap_mentioned_p (base_plus, outval))
|
11949 |
|
|
{
|
11950 |
|
|
/* Updating base_plus might destroy outval, see if we can
|
11951 |
|
|
swap the scratch and base_plus. */
|
11952 |
|
|
if (!reg_overlap_mentioned_p (scratch, outval))
|
11953 |
|
|
{
|
11954 |
|
|
rtx tmp = scratch;
|
11955 |
|
|
scratch = base_plus;
|
11956 |
|
|
base_plus = tmp;
|
11957 |
|
|
}
|
11958 |
|
|
else
|
11959 |
|
|
{
|
11960 |
|
|
rtx scratch_hi = gen_rtx_REG (HImode, REGNO (operands[2]));
|
11961 |
|
|
|
11962 |
|
|
/* Be conservative and copy OUTVAL into the scratch now,
|
11963 |
|
|
this should only be necessary if outval is a subreg
|
11964 |
|
|
of something larger than a word. */
|
11965 |
|
|
/* XXX Might this clobber base? I can't see how it can,
|
11966 |
|
|
since scratch is known to overlap with OUTVAL, and
|
11967 |
|
|
must be wider than a word. */
|
11968 |
|
|
emit_insn (gen_movhi (scratch_hi, outval));
|
11969 |
|
|
outval = scratch_hi;
|
11970 |
|
|
}
|
11971 |
|
|
}
|
11972 |
|
|
|
11973 |
|
|
emit_set_insn (base_plus, base);
|
11974 |
|
|
base = base_plus;
|
11975 |
|
|
}
|
11976 |
|
|
else if (GET_CODE (base) == PLUS)
|
11977 |
|
|
{
|
11978 |
|
|
/* The addend must be CONST_INT, or we would have dealt with it above. */
|
11979 |
|
|
HOST_WIDE_INT hi, lo;
|
11980 |
|
|
|
11981 |
|
|
offset += INTVAL (XEXP (base, 1));
|
11982 |
|
|
base = XEXP (base, 0);
|
11983 |
|
|
|
11984 |
|
|
/* Rework the address into a legal sequence of insns. */
|
11985 |
|
|
/* Valid range for lo is -4095 -> 4095 */
|
11986 |
|
|
lo = (offset >= 0
|
11987 |
|
|
? (offset & 0xfff)
|
11988 |
|
|
: -((-offset) & 0xfff));
|
11989 |
|
|
|
11990 |
|
|
/* Corner case, if lo is the max offset then we would be out of range
|
11991 |
|
|
once we have added the additional 1 below, so bump the msb into the
|
11992 |
|
|
pre-loading insn(s). */
|
11993 |
|
|
if (lo == 4095)
|
11994 |
|
|
lo &= 0x7ff;
|
11995 |
|
|
|
11996 |
|
|
hi = ((((offset - lo) & (HOST_WIDE_INT) 0xffffffff)
|
11997 |
|
|
^ (HOST_WIDE_INT) 0x80000000)
|
11998 |
|
|
- (HOST_WIDE_INT) 0x80000000);
|
11999 |
|
|
|
12000 |
|
|
gcc_assert (hi + lo == offset);
|
12001 |
|
|
|
12002 |
|
|
if (hi != 0)
|
12003 |
|
|
{
|
12004 |
|
|
rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
|
12005 |
|
|
|
12006 |
|
|
/* Be careful not to destroy OUTVAL. */
|
12007 |
|
|
if (reg_overlap_mentioned_p (base_plus, outval))
|
12008 |
|
|
{
|
12009 |
|
|
/* Updating base_plus might destroy outval, see if we
|
12010 |
|
|
can swap the scratch and base_plus. */
|
12011 |
|
|
if (!reg_overlap_mentioned_p (scratch, outval))
|
12012 |
|
|
{
|
12013 |
|
|
rtx tmp = scratch;
|
12014 |
|
|
scratch = base_plus;
|
12015 |
|
|
base_plus = tmp;
|
12016 |
|
|
}
|
12017 |
|
|
else
|
12018 |
|
|
{
|
12019 |
|
|
rtx scratch_hi = gen_rtx_REG (HImode, REGNO (operands[2]));
|
12020 |
|
|
|
12021 |
|
|
/* Be conservative and copy outval into scratch now,
|
12022 |
|
|
this should only be necessary if outval is a
|
12023 |
|
|
subreg of something larger than a word. */
|
12024 |
|
|
/* XXX Might this clobber base? I can't see how it
|
12025 |
|
|
can, since scratch is known to overlap with
|
12026 |
|
|
outval. */
|
12027 |
|
|
emit_insn (gen_movhi (scratch_hi, outval));
|
12028 |
|
|
outval = scratch_hi;
|
12029 |
|
|
}
|
12030 |
|
|
}
|
12031 |
|
|
|
12032 |
|
|
/* Get the base address; addsi3 knows how to handle constants
|
12033 |
|
|
that require more than one insn. */
|
12034 |
|
|
emit_insn (gen_addsi3 (base_plus, base, GEN_INT (hi)));
|
12035 |
|
|
base = base_plus;
|
12036 |
|
|
offset = lo;
|
12037 |
|
|
}
|
12038 |
|
|
}
|
12039 |
|
|
|
12040 |
|
|
if (BYTES_BIG_ENDIAN)
|
12041 |
|
|
{
|
12042 |
|
|
emit_insn (gen_movqi (gen_rtx_MEM (QImode,
|
12043 |
|
|
plus_constant (base, offset + 1)),
|
12044 |
|
|
gen_lowpart (QImode, outval)));
|
12045 |
|
|
emit_insn (gen_lshrsi3 (scratch,
|
12046 |
|
|
gen_rtx_SUBREG (SImode, outval, 0),
|
12047 |
|
|
GEN_INT (8)));
|
12048 |
|
|
emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (base, offset)),
|
12049 |
|
|
gen_lowpart (QImode, scratch)));
|
12050 |
|
|
}
|
12051 |
|
|
else
|
12052 |
|
|
{
|
12053 |
|
|
emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (base, offset)),
|
12054 |
|
|
gen_lowpart (QImode, outval)));
|
12055 |
|
|
emit_insn (gen_lshrsi3 (scratch,
|
12056 |
|
|
gen_rtx_SUBREG (SImode, outval, 0),
|
12057 |
|
|
GEN_INT (8)));
|
12058 |
|
|
emit_insn (gen_movqi (gen_rtx_MEM (QImode,
|
12059 |
|
|
plus_constant (base, offset + 1)),
|
12060 |
|
|
gen_lowpart (QImode, scratch)));
|
12061 |
|
|
}
|
12062 |
|
|
}
|
12063 |
|
|
|
12064 |
|
|
/* Return true if a type must be passed in memory. For AAPCS, small aggregates
|
12065 |
|
|
(padded to the size of a word) should be passed in a register. */
|
12066 |
|
|
|
12067 |
|
|
static bool
|
12068 |
|
|
arm_must_pass_in_stack (enum machine_mode mode, const_tree type)
|
12069 |
|
|
{
|
12070 |
|
|
if (TARGET_AAPCS_BASED)
|
12071 |
|
|
return must_pass_in_stack_var_size (mode, type);
|
12072 |
|
|
else
|
12073 |
|
|
return must_pass_in_stack_var_size_or_pad (mode, type);
|
12074 |
|
|
}
|
12075 |
|
|
|
12076 |
|
|
|
12077 |
|
|
/* For use by FUNCTION_ARG_PADDING (MODE, TYPE).
|
12078 |
|
|
Return true if an argument passed on the stack should be padded upwards,
|
12079 |
|
|
i.e. if the least-significant byte has useful data.
|
12080 |
|
|
For legacy APCS ABIs we use the default. For AAPCS based ABIs small
|
12081 |
|
|
aggregate types are placed in the lowest memory address. */
|
12082 |
|
|
|
12083 |
|
|
bool
|
12084 |
|
|
arm_pad_arg_upward (enum machine_mode mode ATTRIBUTE_UNUSED, const_tree type)
|
12085 |
|
|
{
|
12086 |
|
|
if (!TARGET_AAPCS_BASED)
|
12087 |
|
|
return DEFAULT_FUNCTION_ARG_PADDING(mode, type) == upward;
|
12088 |
|
|
|
12089 |
|
|
if (type && BYTES_BIG_ENDIAN && INTEGRAL_TYPE_P (type))
|
12090 |
|
|
return false;
|
12091 |
|
|
|
12092 |
|
|
return true;
|
12093 |
|
|
}
|
12094 |
|
|
|
12095 |
|
|
|
12096 |
|
|
/* Similarly, for use by BLOCK_REG_PADDING (MODE, TYPE, FIRST).
|
12097 |
|
|
Return !BYTES_BIG_ENDIAN if the least significant byte of the
|
12098 |
|
|
register has useful data, and return the opposite if the most
|
12099 |
|
|
significant byte does. */
|
12100 |
|
|
|
12101 |
|
|
bool
|
12102 |
|
|
arm_pad_reg_upward (enum machine_mode mode,
|
12103 |
|
|
tree type, int first ATTRIBUTE_UNUSED)
|
12104 |
|
|
{
|
12105 |
|
|
if (TARGET_AAPCS_BASED && BYTES_BIG_ENDIAN)
|
12106 |
|
|
{
|
12107 |
|
|
/* For AAPCS, small aggregates, small fixed-point types,
|
12108 |
|
|
and small complex types are always padded upwards. */
|
12109 |
|
|
if (type)
|
12110 |
|
|
{
|
12111 |
|
|
if ((AGGREGATE_TYPE_P (type)
|
12112 |
|
|
|| TREE_CODE (type) == COMPLEX_TYPE
|
12113 |
|
|
|| FIXED_POINT_TYPE_P (type))
|
12114 |
|
|
&& int_size_in_bytes (type) <= 4)
|
12115 |
|
|
return true;
|
12116 |
|
|
}
|
12117 |
|
|
else
|
12118 |
|
|
{
|
12119 |
|
|
if ((COMPLEX_MODE_P (mode) || ALL_FIXED_POINT_MODE_P (mode))
|
12120 |
|
|
&& GET_MODE_SIZE (mode) <= 4)
|
12121 |
|
|
return true;
|
12122 |
|
|
}
|
12123 |
|
|
}
|
12124 |
|
|
|
12125 |
|
|
/* Otherwise, use default padding. */
|
12126 |
|
|
return !BYTES_BIG_ENDIAN;
|
12127 |
|
|
}
|
12128 |
|
|
|
12129 |
|
|
|
12130 |
|
|
/* Print a symbolic form of X to the debug file, F. */
|
12131 |
|
|
static void
|
12132 |
|
|
arm_print_value (FILE *f, rtx x)
|
12133 |
|
|
{
|
12134 |
|
|
switch (GET_CODE (x))
|
12135 |
|
|
{
|
12136 |
|
|
case CONST_INT:
|
12137 |
|
|
fprintf (f, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
|
12138 |
|
|
return;
|
12139 |
|
|
|
12140 |
|
|
case CONST_DOUBLE:
|
12141 |
|
|
fprintf (f, "<0x%lx,0x%lx>", (long)XWINT (x, 2), (long)XWINT (x, 3));
|
12142 |
|
|
return;
|
12143 |
|
|
|
12144 |
|
|
case CONST_VECTOR:
|
12145 |
|
|
{
|
12146 |
|
|
int i;
|
12147 |
|
|
|
12148 |
|
|
fprintf (f, "<");
|
12149 |
|
|
for (i = 0; i < CONST_VECTOR_NUNITS (x); i++)
|
12150 |
|
|
{
|
12151 |
|
|
fprintf (f, HOST_WIDE_INT_PRINT_HEX, INTVAL (CONST_VECTOR_ELT (x, i)));
|
12152 |
|
|
if (i < (CONST_VECTOR_NUNITS (x) - 1))
|
12153 |
|
|
fputc (',', f);
|
12154 |
|
|
}
|
12155 |
|
|
fprintf (f, ">");
|
12156 |
|
|
}
|
12157 |
|
|
return;
|
12158 |
|
|
|
12159 |
|
|
case CONST_STRING:
|
12160 |
|
|
fprintf (f, "\"%s\"", XSTR (x, 0));
|
12161 |
|
|
return;
|
12162 |
|
|
|
12163 |
|
|
case SYMBOL_REF:
|
12164 |
|
|
fprintf (f, "`%s'", XSTR (x, 0));
|
12165 |
|
|
return;
|
12166 |
|
|
|
12167 |
|
|
case LABEL_REF:
|
12168 |
|
|
fprintf (f, "L%d", INSN_UID (XEXP (x, 0)));
|
12169 |
|
|
return;
|
12170 |
|
|
|
12171 |
|
|
case CONST:
|
12172 |
|
|
arm_print_value (f, XEXP (x, 0));
|
12173 |
|
|
return;
|
12174 |
|
|
|
12175 |
|
|
case PLUS:
|
12176 |
|
|
arm_print_value (f, XEXP (x, 0));
|
12177 |
|
|
fprintf (f, "+");
|
12178 |
|
|
arm_print_value (f, XEXP (x, 1));
|
12179 |
|
|
return;
|
12180 |
|
|
|
12181 |
|
|
case PC:
|
12182 |
|
|
fprintf (f, "pc");
|
12183 |
|
|
return;
|
12184 |
|
|
|
12185 |
|
|
default:
|
12186 |
|
|
fprintf (f, "????");
|
12187 |
|
|
return;
|
12188 |
|
|
}
|
12189 |
|
|
}
|
12190 |
|
|
|
12191 |
|
|
/* Routines for manipulation of the constant pool. */
|
12192 |
|
|
|
12193 |
|
|
/* Arm instructions cannot load a large constant directly into a
|
12194 |
|
|
register; they have to come from a pc relative load. The constant
|
12195 |
|
|
must therefore be placed in the addressable range of the pc
|
12196 |
|
|
relative load. Depending on the precise pc relative load
|
12197 |
|
|
instruction the range is somewhere between 256 bytes and 4k. This
|
12198 |
|
|
means that we often have to dump a constant inside a function, and
|
12199 |
|
|
generate code to branch around it.
|
12200 |
|
|
|
12201 |
|
|
It is important to minimize this, since the branches will slow
|
12202 |
|
|
things down and make the code larger.
|
12203 |
|
|
|
12204 |
|
|
Normally we can hide the table after an existing unconditional
|
12205 |
|
|
branch so that there is no interruption of the flow, but in the
|
12206 |
|
|
worst case the code looks like this:
|
12207 |
|
|
|
12208 |
|
|
ldr rn, L1
|
12209 |
|
|
...
|
12210 |
|
|
b L2
|
12211 |
|
|
align
|
12212 |
|
|
L1: .long value
|
12213 |
|
|
L2:
|
12214 |
|
|
...
|
12215 |
|
|
|
12216 |
|
|
ldr rn, L3
|
12217 |
|
|
...
|
12218 |
|
|
b L4
|
12219 |
|
|
align
|
12220 |
|
|
L3: .long value
|
12221 |
|
|
L4:
|
12222 |
|
|
...
|
12223 |
|
|
|
12224 |
|
|
We fix this by performing a scan after scheduling, which notices
|
12225 |
|
|
which instructions need to have their operands fetched from the
|
12226 |
|
|
constant table and builds the table.
|
12227 |
|
|
|
12228 |
|
|
The algorithm starts by building a table of all the constants that
|
12229 |
|
|
need fixing up and all the natural barriers in the function (places
|
12230 |
|
|
where a constant table can be dropped without breaking the flow).
|
12231 |
|
|
For each fixup we note how far the pc-relative replacement will be
|
12232 |
|
|
able to reach and the offset of the instruction into the function.
|
12233 |
|
|
|
12234 |
|
|
Having built the table we then group the fixes together to form
|
12235 |
|
|
tables that are as large as possible (subject to addressing
|
12236 |
|
|
constraints) and emit each table of constants after the last
|
12237 |
|
|
barrier that is within range of all the instructions in the group.
|
12238 |
|
|
If a group does not contain a barrier, then we forcibly create one
|
12239 |
|
|
by inserting a jump instruction into the flow. Once the table has
|
12240 |
|
|
been inserted, the insns are then modified to reference the
|
12241 |
|
|
relevant entry in the pool.
|
12242 |
|
|
|
12243 |
|
|
Possible enhancements to the algorithm (not implemented) are:
|
12244 |
|
|
|
12245 |
|
|
1) For some processors and object formats, there may be benefit in
|
12246 |
|
|
aligning the pools to the start of cache lines; this alignment
|
12247 |
|
|
would need to be taken into account when calculating addressability
|
12248 |
|
|
of a pool. */
|
12249 |
|
|
|
12250 |
|
|
/* These typedefs are located at the start of this file, so that
|
12251 |
|
|
they can be used in the prototypes there. This comment is to
|
12252 |
|
|
remind readers of that fact so that the following structures
|
12253 |
|
|
can be understood more easily.
|
12254 |
|
|
|
12255 |
|
|
typedef struct minipool_node Mnode;
|
12256 |
|
|
typedef struct minipool_fixup Mfix; */
|
12257 |
|
|
|
12258 |
|
|
struct minipool_node
|
12259 |
|
|
{
|
12260 |
|
|
/* Doubly linked chain of entries. */
|
12261 |
|
|
Mnode * next;
|
12262 |
|
|
Mnode * prev;
|
12263 |
|
|
/* The maximum offset into the code that this entry can be placed. While
|
12264 |
|
|
pushing fixes for forward references, all entries are sorted in order
|
12265 |
|
|
of increasing max_address. */
|
12266 |
|
|
HOST_WIDE_INT max_address;
|
12267 |
|
|
/* Similarly for an entry inserted for a backwards ref. */
|
12268 |
|
|
HOST_WIDE_INT min_address;
|
12269 |
|
|
/* The number of fixes referencing this entry. This can become zero
|
12270 |
|
|
if we "unpush" an entry. In this case we ignore the entry when we
|
12271 |
|
|
come to emit the code. */
|
12272 |
|
|
int refcount;
|
12273 |
|
|
/* The offset from the start of the minipool. */
|
12274 |
|
|
HOST_WIDE_INT offset;
|
12275 |
|
|
/* The value in table. */
|
12276 |
|
|
rtx value;
|
12277 |
|
|
/* The mode of value. */
|
12278 |
|
|
enum machine_mode mode;
|
12279 |
|
|
/* The size of the value. With iWMMXt enabled
|
12280 |
|
|
sizes > 4 also imply an alignment of 8-bytes. */
|
12281 |
|
|
int fix_size;
|
12282 |
|
|
};
|
12283 |
|
|
|
12284 |
|
|
struct minipool_fixup
|
12285 |
|
|
{
|
12286 |
|
|
Mfix * next;
|
12287 |
|
|
rtx insn;
|
12288 |
|
|
HOST_WIDE_INT address;
|
12289 |
|
|
rtx * loc;
|
12290 |
|
|
enum machine_mode mode;
|
12291 |
|
|
int fix_size;
|
12292 |
|
|
rtx value;
|
12293 |
|
|
Mnode * minipool;
|
12294 |
|
|
HOST_WIDE_INT forwards;
|
12295 |
|
|
HOST_WIDE_INT backwards;
|
12296 |
|
|
};
|
12297 |
|
|
|
12298 |
|
|
/* Fixes less than a word need padding out to a word boundary. */
|
12299 |
|
|
#define MINIPOOL_FIX_SIZE(mode) \
|
12300 |
|
|
(GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4)
|
12301 |
|
|
|
12302 |
|
|
static Mnode * minipool_vector_head;
|
12303 |
|
|
static Mnode * minipool_vector_tail;
|
12304 |
|
|
static rtx minipool_vector_label;
|
12305 |
|
|
static int minipool_pad;
|
12306 |
|
|
|
12307 |
|
|
/* The linked list of all minipool fixes required for this function. */
|
12308 |
|
|
Mfix * minipool_fix_head;
|
12309 |
|
|
Mfix * minipool_fix_tail;
|
12310 |
|
|
/* The fix entry for the current minipool, once it has been placed. */
|
12311 |
|
|
Mfix * minipool_barrier;
|
12312 |
|
|
|
12313 |
|
|
/* Determines if INSN is the start of a jump table. Returns the end
|
12314 |
|
|
of the TABLE or NULL_RTX. */
|
12315 |
|
|
static rtx
|
12316 |
|
|
is_jump_table (rtx insn)
|
12317 |
|
|
{
|
12318 |
|
|
rtx table;
|
12319 |
|
|
|
12320 |
|
|
if (jump_to_label_p (insn)
|
12321 |
|
|
&& ((table = next_real_insn (JUMP_LABEL (insn)))
|
12322 |
|
|
== next_real_insn (insn))
|
12323 |
|
|
&& table != NULL
|
12324 |
|
|
&& GET_CODE (table) == JUMP_INSN
|
12325 |
|
|
&& (GET_CODE (PATTERN (table)) == ADDR_VEC
|
12326 |
|
|
|| GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
|
12327 |
|
|
return table;
|
12328 |
|
|
|
12329 |
|
|
return NULL_RTX;
|
12330 |
|
|
}
|
12331 |
|
|
|
12332 |
|
|
#ifndef JUMP_TABLES_IN_TEXT_SECTION
|
12333 |
|
|
#define JUMP_TABLES_IN_TEXT_SECTION 0
|
12334 |
|
|
#endif
|
12335 |
|
|
|
12336 |
|
|
static HOST_WIDE_INT
|
12337 |
|
|
get_jump_table_size (rtx insn)
|
12338 |
|
|
{
|
12339 |
|
|
/* ADDR_VECs only take room if read-only data does into the text
|
12340 |
|
|
section. */
|
12341 |
|
|
if (JUMP_TABLES_IN_TEXT_SECTION || readonly_data_section == text_section)
|
12342 |
|
|
{
|
12343 |
|
|
rtx body = PATTERN (insn);
|
12344 |
|
|
int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0;
|
12345 |
|
|
HOST_WIDE_INT size;
|
12346 |
|
|
HOST_WIDE_INT modesize;
|
12347 |
|
|
|
12348 |
|
|
modesize = GET_MODE_SIZE (GET_MODE (body));
|
12349 |
|
|
size = modesize * XVECLEN (body, elt);
|
12350 |
|
|
switch (modesize)
|
12351 |
|
|
{
|
12352 |
|
|
case 1:
|
12353 |
|
|
/* Round up size of TBB table to a halfword boundary. */
|
12354 |
|
|
size = (size + 1) & ~(HOST_WIDE_INT)1;
|
12355 |
|
|
break;
|
12356 |
|
|
case 2:
|
12357 |
|
|
/* No padding necessary for TBH. */
|
12358 |
|
|
break;
|
12359 |
|
|
case 4:
|
12360 |
|
|
/* Add two bytes for alignment on Thumb. */
|
12361 |
|
|
if (TARGET_THUMB)
|
12362 |
|
|
size += 2;
|
12363 |
|
|
break;
|
12364 |
|
|
default:
|
12365 |
|
|
gcc_unreachable ();
|
12366 |
|
|
}
|
12367 |
|
|
return size;
|
12368 |
|
|
}
|
12369 |
|
|
|
12370 |
|
|
return 0;
|
12371 |
|
|
}
|
12372 |
|
|
|
12373 |
|
|
/* Return the maximum amount of padding that will be inserted before
|
12374 |
|
|
label LABEL. */
|
12375 |
|
|
|
12376 |
|
|
static HOST_WIDE_INT
|
12377 |
|
|
get_label_padding (rtx label)
|
12378 |
|
|
{
|
12379 |
|
|
HOST_WIDE_INT align, min_insn_size;
|
12380 |
|
|
|
12381 |
|
|
align = 1 << label_to_alignment (label);
|
12382 |
|
|
min_insn_size = TARGET_THUMB ? 2 : 4;
|
12383 |
|
|
return align > min_insn_size ? align - min_insn_size : 0;
|
12384 |
|
|
}
|
12385 |
|
|
|
12386 |
|
|
/* Move a minipool fix MP from its current location to before MAX_MP.
|
12387 |
|
|
If MAX_MP is NULL, then MP doesn't need moving, but the addressing
|
12388 |
|
|
constraints may need updating. */
|
12389 |
|
|
static Mnode *
|
12390 |
|
|
move_minipool_fix_forward_ref (Mnode *mp, Mnode *max_mp,
|
12391 |
|
|
HOST_WIDE_INT max_address)
|
12392 |
|
|
{
|
12393 |
|
|
/* The code below assumes these are different. */
|
12394 |
|
|
gcc_assert (mp != max_mp);
|
12395 |
|
|
|
12396 |
|
|
if (max_mp == NULL)
|
12397 |
|
|
{
|
12398 |
|
|
if (max_address < mp->max_address)
|
12399 |
|
|
mp->max_address = max_address;
|
12400 |
|
|
}
|
12401 |
|
|
else
|
12402 |
|
|
{
|
12403 |
|
|
if (max_address > max_mp->max_address - mp->fix_size)
|
12404 |
|
|
mp->max_address = max_mp->max_address - mp->fix_size;
|
12405 |
|
|
else
|
12406 |
|
|
mp->max_address = max_address;
|
12407 |
|
|
|
12408 |
|
|
/* Unlink MP from its current position. Since max_mp is non-null,
|
12409 |
|
|
mp->prev must be non-null. */
|
12410 |
|
|
mp->prev->next = mp->next;
|
12411 |
|
|
if (mp->next != NULL)
|
12412 |
|
|
mp->next->prev = mp->prev;
|
12413 |
|
|
else
|
12414 |
|
|
minipool_vector_tail = mp->prev;
|
12415 |
|
|
|
12416 |
|
|
/* Re-insert it before MAX_MP. */
|
12417 |
|
|
mp->next = max_mp;
|
12418 |
|
|
mp->prev = max_mp->prev;
|
12419 |
|
|
max_mp->prev = mp;
|
12420 |
|
|
|
12421 |
|
|
if (mp->prev != NULL)
|
12422 |
|
|
mp->prev->next = mp;
|
12423 |
|
|
else
|
12424 |
|
|
minipool_vector_head = mp;
|
12425 |
|
|
}
|
12426 |
|
|
|
12427 |
|
|
/* Save the new entry. */
|
12428 |
|
|
max_mp = mp;
|
12429 |
|
|
|
12430 |
|
|
/* Scan over the preceding entries and adjust their addresses as
|
12431 |
|
|
required. */
|
12432 |
|
|
while (mp->prev != NULL
|
12433 |
|
|
&& mp->prev->max_address > mp->max_address - mp->prev->fix_size)
|
12434 |
|
|
{
|
12435 |
|
|
mp->prev->max_address = mp->max_address - mp->prev->fix_size;
|
12436 |
|
|
mp = mp->prev;
|
12437 |
|
|
}
|
12438 |
|
|
|
12439 |
|
|
return max_mp;
|
12440 |
|
|
}
|
12441 |
|
|
|
12442 |
|
|
/* Add a constant to the minipool for a forward reference. Returns the
|
12443 |
|
|
node added or NULL if the constant will not fit in this pool. */
|
12444 |
|
|
static Mnode *
|
12445 |
|
|
add_minipool_forward_ref (Mfix *fix)
|
12446 |
|
|
{
|
12447 |
|
|
/* If set, max_mp is the first pool_entry that has a lower
|
12448 |
|
|
constraint than the one we are trying to add. */
|
12449 |
|
|
Mnode * max_mp = NULL;
|
12450 |
|
|
HOST_WIDE_INT max_address = fix->address + fix->forwards - minipool_pad;
|
12451 |
|
|
Mnode * mp;
|
12452 |
|
|
|
12453 |
|
|
/* If the minipool starts before the end of FIX->INSN then this FIX
|
12454 |
|
|
can not be placed into the current pool. Furthermore, adding the
|
12455 |
|
|
new constant pool entry may cause the pool to start FIX_SIZE bytes
|
12456 |
|
|
earlier. */
|
12457 |
|
|
if (minipool_vector_head &&
|
12458 |
|
|
(fix->address + get_attr_length (fix->insn)
|
12459 |
|
|
>= minipool_vector_head->max_address - fix->fix_size))
|
12460 |
|
|
return NULL;
|
12461 |
|
|
|
12462 |
|
|
/* Scan the pool to see if a constant with the same value has
|
12463 |
|
|
already been added. While we are doing this, also note the
|
12464 |
|
|
location where we must insert the constant if it doesn't already
|
12465 |
|
|
exist. */
|
12466 |
|
|
for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
|
12467 |
|
|
{
|
12468 |
|
|
if (GET_CODE (fix->value) == GET_CODE (mp->value)
|
12469 |
|
|
&& fix->mode == mp->mode
|
12470 |
|
|
&& (GET_CODE (fix->value) != CODE_LABEL
|
12471 |
|
|
|| (CODE_LABEL_NUMBER (fix->value)
|
12472 |
|
|
== CODE_LABEL_NUMBER (mp->value)))
|
12473 |
|
|
&& rtx_equal_p (fix->value, mp->value))
|
12474 |
|
|
{
|
12475 |
|
|
/* More than one fix references this entry. */
|
12476 |
|
|
mp->refcount++;
|
12477 |
|
|
return move_minipool_fix_forward_ref (mp, max_mp, max_address);
|
12478 |
|
|
}
|
12479 |
|
|
|
12480 |
|
|
/* Note the insertion point if necessary. */
|
12481 |
|
|
if (max_mp == NULL
|
12482 |
|
|
&& mp->max_address > max_address)
|
12483 |
|
|
max_mp = mp;
|
12484 |
|
|
|
12485 |
|
|
/* If we are inserting an 8-bytes aligned quantity and
|
12486 |
|
|
we have not already found an insertion point, then
|
12487 |
|
|
make sure that all such 8-byte aligned quantities are
|
12488 |
|
|
placed at the start of the pool. */
|
12489 |
|
|
if (ARM_DOUBLEWORD_ALIGN
|
12490 |
|
|
&& max_mp == NULL
|
12491 |
|
|
&& fix->fix_size >= 8
|
12492 |
|
|
&& mp->fix_size < 8)
|
12493 |
|
|
{
|
12494 |
|
|
max_mp = mp;
|
12495 |
|
|
max_address = mp->max_address;
|
12496 |
|
|
}
|
12497 |
|
|
}
|
12498 |
|
|
|
12499 |
|
|
/* The value is not currently in the minipool, so we need to create
|
12500 |
|
|
a new entry for it. If MAX_MP is NULL, the entry will be put on
|
12501 |
|
|
the end of the list since the placement is less constrained than
|
12502 |
|
|
any existing entry. Otherwise, we insert the new fix before
|
12503 |
|
|
MAX_MP and, if necessary, adjust the constraints on the other
|
12504 |
|
|
entries. */
|
12505 |
|
|
mp = XNEW (Mnode);
|
12506 |
|
|
mp->fix_size = fix->fix_size;
|
12507 |
|
|
mp->mode = fix->mode;
|
12508 |
|
|
mp->value = fix->value;
|
12509 |
|
|
mp->refcount = 1;
|
12510 |
|
|
/* Not yet required for a backwards ref. */
|
12511 |
|
|
mp->min_address = -65536;
|
12512 |
|
|
|
12513 |
|
|
if (max_mp == NULL)
|
12514 |
|
|
{
|
12515 |
|
|
mp->max_address = max_address;
|
12516 |
|
|
mp->next = NULL;
|
12517 |
|
|
mp->prev = minipool_vector_tail;
|
12518 |
|
|
|
12519 |
|
|
if (mp->prev == NULL)
|
12520 |
|
|
{
|
12521 |
|
|
minipool_vector_head = mp;
|
12522 |
|
|
minipool_vector_label = gen_label_rtx ();
|
12523 |
|
|
}
|
12524 |
|
|
else
|
12525 |
|
|
mp->prev->next = mp;
|
12526 |
|
|
|
12527 |
|
|
minipool_vector_tail = mp;
|
12528 |
|
|
}
|
12529 |
|
|
else
|
12530 |
|
|
{
|
12531 |
|
|
if (max_address > max_mp->max_address - mp->fix_size)
|
12532 |
|
|
mp->max_address = max_mp->max_address - mp->fix_size;
|
12533 |
|
|
else
|
12534 |
|
|
mp->max_address = max_address;
|
12535 |
|
|
|
12536 |
|
|
mp->next = max_mp;
|
12537 |
|
|
mp->prev = max_mp->prev;
|
12538 |
|
|
max_mp->prev = mp;
|
12539 |
|
|
if (mp->prev != NULL)
|
12540 |
|
|
mp->prev->next = mp;
|
12541 |
|
|
else
|
12542 |
|
|
minipool_vector_head = mp;
|
12543 |
|
|
}
|
12544 |
|
|
|
12545 |
|
|
/* Save the new entry. */
|
12546 |
|
|
max_mp = mp;
|
12547 |
|
|
|
12548 |
|
|
/* Scan over the preceding entries and adjust their addresses as
|
12549 |
|
|
required. */
|
12550 |
|
|
while (mp->prev != NULL
|
12551 |
|
|
&& mp->prev->max_address > mp->max_address - mp->prev->fix_size)
|
12552 |
|
|
{
|
12553 |
|
|
mp->prev->max_address = mp->max_address - mp->prev->fix_size;
|
12554 |
|
|
mp = mp->prev;
|
12555 |
|
|
}
|
12556 |
|
|
|
12557 |
|
|
return max_mp;
|
12558 |
|
|
}
|
12559 |
|
|
|
12560 |
|
|
static Mnode *
|
12561 |
|
|
move_minipool_fix_backward_ref (Mnode *mp, Mnode *min_mp,
|
12562 |
|
|
HOST_WIDE_INT min_address)
|
12563 |
|
|
{
|
12564 |
|
|
HOST_WIDE_INT offset;
|
12565 |
|
|
|
12566 |
|
|
/* The code below assumes these are different. */
|
12567 |
|
|
gcc_assert (mp != min_mp);
|
12568 |
|
|
|
12569 |
|
|
if (min_mp == NULL)
|
12570 |
|
|
{
|
12571 |
|
|
if (min_address > mp->min_address)
|
12572 |
|
|
mp->min_address = min_address;
|
12573 |
|
|
}
|
12574 |
|
|
else
|
12575 |
|
|
{
|
12576 |
|
|
/* We will adjust this below if it is too loose. */
|
12577 |
|
|
mp->min_address = min_address;
|
12578 |
|
|
|
12579 |
|
|
/* Unlink MP from its current position. Since min_mp is non-null,
|
12580 |
|
|
mp->next must be non-null. */
|
12581 |
|
|
mp->next->prev = mp->prev;
|
12582 |
|
|
if (mp->prev != NULL)
|
12583 |
|
|
mp->prev->next = mp->next;
|
12584 |
|
|
else
|
12585 |
|
|
minipool_vector_head = mp->next;
|
12586 |
|
|
|
12587 |
|
|
/* Reinsert it after MIN_MP. */
|
12588 |
|
|
mp->prev = min_mp;
|
12589 |
|
|
mp->next = min_mp->next;
|
12590 |
|
|
min_mp->next = mp;
|
12591 |
|
|
if (mp->next != NULL)
|
12592 |
|
|
mp->next->prev = mp;
|
12593 |
|
|
else
|
12594 |
|
|
minipool_vector_tail = mp;
|
12595 |
|
|
}
|
12596 |
|
|
|
12597 |
|
|
min_mp = mp;
|
12598 |
|
|
|
12599 |
|
|
offset = 0;
|
12600 |
|
|
for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
|
12601 |
|
|
{
|
12602 |
|
|
mp->offset = offset;
|
12603 |
|
|
if (mp->refcount > 0)
|
12604 |
|
|
offset += mp->fix_size;
|
12605 |
|
|
|
12606 |
|
|
if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size)
|
12607 |
|
|
mp->next->min_address = mp->min_address + mp->fix_size;
|
12608 |
|
|
}
|
12609 |
|
|
|
12610 |
|
|
return min_mp;
|
12611 |
|
|
}
|
12612 |
|
|
|
12613 |
|
|
/* Add a constant to the minipool for a backward reference. Returns the
|
12614 |
|
|
node added or NULL if the constant will not fit in this pool.
|
12615 |
|
|
|
12616 |
|
|
Note that the code for insertion for a backwards reference can be
|
12617 |
|
|
somewhat confusing because the calculated offsets for each fix do
|
12618 |
|
|
not take into account the size of the pool (which is still under
|
12619 |
|
|
construction. */
|
12620 |
|
|
static Mnode *
|
12621 |
|
|
add_minipool_backward_ref (Mfix *fix)
|
12622 |
|
|
{
|
12623 |
|
|
/* If set, min_mp is the last pool_entry that has a lower constraint
|
12624 |
|
|
than the one we are trying to add. */
|
12625 |
|
|
Mnode *min_mp = NULL;
|
12626 |
|
|
/* This can be negative, since it is only a constraint. */
|
12627 |
|
|
HOST_WIDE_INT min_address = fix->address - fix->backwards;
|
12628 |
|
|
Mnode *mp;
|
12629 |
|
|
|
12630 |
|
|
/* If we can't reach the current pool from this insn, or if we can't
|
12631 |
|
|
insert this entry at the end of the pool without pushing other
|
12632 |
|
|
fixes out of range, then we don't try. This ensures that we
|
12633 |
|
|
can't fail later on. */
|
12634 |
|
|
if (min_address >= minipool_barrier->address
|
12635 |
|
|
|| (minipool_vector_tail->min_address + fix->fix_size
|
12636 |
|
|
>= minipool_barrier->address))
|
12637 |
|
|
return NULL;
|
12638 |
|
|
|
12639 |
|
|
/* Scan the pool to see if a constant with the same value has
|
12640 |
|
|
already been added. While we are doing this, also note the
|
12641 |
|
|
location where we must insert the constant if it doesn't already
|
12642 |
|
|
exist. */
|
12643 |
|
|
for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev)
|
12644 |
|
|
{
|
12645 |
|
|
if (GET_CODE (fix->value) == GET_CODE (mp->value)
|
12646 |
|
|
&& fix->mode == mp->mode
|
12647 |
|
|
&& (GET_CODE (fix->value) != CODE_LABEL
|
12648 |
|
|
|| (CODE_LABEL_NUMBER (fix->value)
|
12649 |
|
|
== CODE_LABEL_NUMBER (mp->value)))
|
12650 |
|
|
&& rtx_equal_p (fix->value, mp->value)
|
12651 |
|
|
/* Check that there is enough slack to move this entry to the
|
12652 |
|
|
end of the table (this is conservative). */
|
12653 |
|
|
&& (mp->max_address
|
12654 |
|
|
> (minipool_barrier->address
|
12655 |
|
|
+ minipool_vector_tail->offset
|
12656 |
|
|
+ minipool_vector_tail->fix_size)))
|
12657 |
|
|
{
|
12658 |
|
|
mp->refcount++;
|
12659 |
|
|
return move_minipool_fix_backward_ref (mp, min_mp, min_address);
|
12660 |
|
|
}
|
12661 |
|
|
|
12662 |
|
|
if (min_mp != NULL)
|
12663 |
|
|
mp->min_address += fix->fix_size;
|
12664 |
|
|
else
|
12665 |
|
|
{
|
12666 |
|
|
/* Note the insertion point if necessary. */
|
12667 |
|
|
if (mp->min_address < min_address)
|
12668 |
|
|
{
|
12669 |
|
|
/* For now, we do not allow the insertion of 8-byte alignment
|
12670 |
|
|
requiring nodes anywhere but at the start of the pool. */
|
12671 |
|
|
if (ARM_DOUBLEWORD_ALIGN
|
12672 |
|
|
&& fix->fix_size >= 8 && mp->fix_size < 8)
|
12673 |
|
|
return NULL;
|
12674 |
|
|
else
|
12675 |
|
|
min_mp = mp;
|
12676 |
|
|
}
|
12677 |
|
|
else if (mp->max_address
|
12678 |
|
|
< minipool_barrier->address + mp->offset + fix->fix_size)
|
12679 |
|
|
{
|
12680 |
|
|
/* Inserting before this entry would push the fix beyond
|
12681 |
|
|
its maximum address (which can happen if we have
|
12682 |
|
|
re-located a forwards fix); force the new fix to come
|
12683 |
|
|
after it. */
|
12684 |
|
|
if (ARM_DOUBLEWORD_ALIGN
|
12685 |
|
|
&& fix->fix_size >= 8 && mp->fix_size < 8)
|
12686 |
|
|
return NULL;
|
12687 |
|
|
else
|
12688 |
|
|
{
|
12689 |
|
|
min_mp = mp;
|
12690 |
|
|
min_address = mp->min_address + fix->fix_size;
|
12691 |
|
|
}
|
12692 |
|
|
}
|
12693 |
|
|
/* Do not insert a non-8-byte aligned quantity before 8-byte
|
12694 |
|
|
aligned quantities. */
|
12695 |
|
|
else if (ARM_DOUBLEWORD_ALIGN
|
12696 |
|
|
&& fix->fix_size < 8
|
12697 |
|
|
&& mp->fix_size >= 8)
|
12698 |
|
|
{
|
12699 |
|
|
min_mp = mp;
|
12700 |
|
|
min_address = mp->min_address + fix->fix_size;
|
12701 |
|
|
}
|
12702 |
|
|
}
|
12703 |
|
|
}
|
12704 |
|
|
|
12705 |
|
|
/* We need to create a new entry. */
|
12706 |
|
|
mp = XNEW (Mnode);
|
12707 |
|
|
mp->fix_size = fix->fix_size;
|
12708 |
|
|
mp->mode = fix->mode;
|
12709 |
|
|
mp->value = fix->value;
|
12710 |
|
|
mp->refcount = 1;
|
12711 |
|
|
mp->max_address = minipool_barrier->address + 65536;
|
12712 |
|
|
|
12713 |
|
|
mp->min_address = min_address;
|
12714 |
|
|
|
12715 |
|
|
if (min_mp == NULL)
|
12716 |
|
|
{
|
12717 |
|
|
mp->prev = NULL;
|
12718 |
|
|
mp->next = minipool_vector_head;
|
12719 |
|
|
|
12720 |
|
|
if (mp->next == NULL)
|
12721 |
|
|
{
|
12722 |
|
|
minipool_vector_tail = mp;
|
12723 |
|
|
minipool_vector_label = gen_label_rtx ();
|
12724 |
|
|
}
|
12725 |
|
|
else
|
12726 |
|
|
mp->next->prev = mp;
|
12727 |
|
|
|
12728 |
|
|
minipool_vector_head = mp;
|
12729 |
|
|
}
|
12730 |
|
|
else
|
12731 |
|
|
{
|
12732 |
|
|
mp->next = min_mp->next;
|
12733 |
|
|
mp->prev = min_mp;
|
12734 |
|
|
min_mp->next = mp;
|
12735 |
|
|
|
12736 |
|
|
if (mp->next != NULL)
|
12737 |
|
|
mp->next->prev = mp;
|
12738 |
|
|
else
|
12739 |
|
|
minipool_vector_tail = mp;
|
12740 |
|
|
}
|
12741 |
|
|
|
12742 |
|
|
/* Save the new entry. */
|
12743 |
|
|
min_mp = mp;
|
12744 |
|
|
|
12745 |
|
|
if (mp->prev)
|
12746 |
|
|
mp = mp->prev;
|
12747 |
|
|
else
|
12748 |
|
|
mp->offset = 0;
|
12749 |
|
|
|
12750 |
|
|
/* Scan over the following entries and adjust their offsets. */
|
12751 |
|
|
while (mp->next != NULL)
|
12752 |
|
|
{
|
12753 |
|
|
if (mp->next->min_address < mp->min_address + mp->fix_size)
|
12754 |
|
|
mp->next->min_address = mp->min_address + mp->fix_size;
|
12755 |
|
|
|
12756 |
|
|
if (mp->refcount)
|
12757 |
|
|
mp->next->offset = mp->offset + mp->fix_size;
|
12758 |
|
|
else
|
12759 |
|
|
mp->next->offset = mp->offset;
|
12760 |
|
|
|
12761 |
|
|
mp = mp->next;
|
12762 |
|
|
}
|
12763 |
|
|
|
12764 |
|
|
return min_mp;
|
12765 |
|
|
}
|
12766 |
|
|
|
12767 |
|
|
static void
|
12768 |
|
|
assign_minipool_offsets (Mfix *barrier)
|
12769 |
|
|
{
|
12770 |
|
|
HOST_WIDE_INT offset = 0;
|
12771 |
|
|
Mnode *mp;
|
12772 |
|
|
|
12773 |
|
|
minipool_barrier = barrier;
|
12774 |
|
|
|
12775 |
|
|
for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
|
12776 |
|
|
{
|
12777 |
|
|
mp->offset = offset;
|
12778 |
|
|
|
12779 |
|
|
if (mp->refcount > 0)
|
12780 |
|
|
offset += mp->fix_size;
|
12781 |
|
|
}
|
12782 |
|
|
}
|
12783 |
|
|
|
12784 |
|
|
/* Output the literal table */
|
12785 |
|
|
static void
|
12786 |
|
|
dump_minipool (rtx scan)
|
12787 |
|
|
{
|
12788 |
|
|
Mnode * mp;
|
12789 |
|
|
Mnode * nmp;
|
12790 |
|
|
int align64 = 0;
|
12791 |
|
|
|
12792 |
|
|
if (ARM_DOUBLEWORD_ALIGN)
|
12793 |
|
|
for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
|
12794 |
|
|
if (mp->refcount > 0 && mp->fix_size >= 8)
|
12795 |
|
|
{
|
12796 |
|
|
align64 = 1;
|
12797 |
|
|
break;
|
12798 |
|
|
}
|
12799 |
|
|
|
12800 |
|
|
if (dump_file)
|
12801 |
|
|
fprintf (dump_file,
|
12802 |
|
|
";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n",
|
12803 |
|
|
INSN_UID (scan), (unsigned long) minipool_barrier->address, align64 ? 8 : 4);
|
12804 |
|
|
|
12805 |
|
|
scan = emit_label_after (gen_label_rtx (), scan);
|
12806 |
|
|
scan = emit_insn_after (align64 ? gen_align_8 () : gen_align_4 (), scan);
|
12807 |
|
|
scan = emit_label_after (minipool_vector_label, scan);
|
12808 |
|
|
|
12809 |
|
|
for (mp = minipool_vector_head; mp != NULL; mp = nmp)
|
12810 |
|
|
{
|
12811 |
|
|
if (mp->refcount > 0)
|
12812 |
|
|
{
|
12813 |
|
|
if (dump_file)
|
12814 |
|
|
{
|
12815 |
|
|
fprintf (dump_file,
|
12816 |
|
|
";; Offset %u, min %ld, max %ld ",
|
12817 |
|
|
(unsigned) mp->offset, (unsigned long) mp->min_address,
|
12818 |
|
|
(unsigned long) mp->max_address);
|
12819 |
|
|
arm_print_value (dump_file, mp->value);
|
12820 |
|
|
fputc ('\n', dump_file);
|
12821 |
|
|
}
|
12822 |
|
|
|
12823 |
|
|
switch (mp->fix_size)
|
12824 |
|
|
{
|
12825 |
|
|
#ifdef HAVE_consttable_1
|
12826 |
|
|
case 1:
|
12827 |
|
|
scan = emit_insn_after (gen_consttable_1 (mp->value), scan);
|
12828 |
|
|
break;
|
12829 |
|
|
|
12830 |
|
|
#endif
|
12831 |
|
|
#ifdef HAVE_consttable_2
|
12832 |
|
|
case 2:
|
12833 |
|
|
scan = emit_insn_after (gen_consttable_2 (mp->value), scan);
|
12834 |
|
|
break;
|
12835 |
|
|
|
12836 |
|
|
#endif
|
12837 |
|
|
#ifdef HAVE_consttable_4
|
12838 |
|
|
case 4:
|
12839 |
|
|
scan = emit_insn_after (gen_consttable_4 (mp->value), scan);
|
12840 |
|
|
break;
|
12841 |
|
|
|
12842 |
|
|
#endif
|
12843 |
|
|
#ifdef HAVE_consttable_8
|
12844 |
|
|
case 8:
|
12845 |
|
|
scan = emit_insn_after (gen_consttable_8 (mp->value), scan);
|
12846 |
|
|
break;
|
12847 |
|
|
|
12848 |
|
|
#endif
|
12849 |
|
|
#ifdef HAVE_consttable_16
|
12850 |
|
|
case 16:
|
12851 |
|
|
scan = emit_insn_after (gen_consttable_16 (mp->value), scan);
|
12852 |
|
|
break;
|
12853 |
|
|
|
12854 |
|
|
#endif
|
12855 |
|
|
default:
|
12856 |
|
|
gcc_unreachable ();
|
12857 |
|
|
}
|
12858 |
|
|
}
|
12859 |
|
|
|
12860 |
|
|
nmp = mp->next;
|
12861 |
|
|
free (mp);
|
12862 |
|
|
}
|
12863 |
|
|
|
12864 |
|
|
minipool_vector_head = minipool_vector_tail = NULL;
|
12865 |
|
|
scan = emit_insn_after (gen_consttable_end (), scan);
|
12866 |
|
|
scan = emit_barrier_after (scan);
|
12867 |
|
|
}
|
12868 |
|
|
|
12869 |
|
|
/* Return the cost of forcibly inserting a barrier after INSN. */
|
12870 |
|
|
static int
|
12871 |
|
|
arm_barrier_cost (rtx insn)
|
12872 |
|
|
{
|
12873 |
|
|
/* Basing the location of the pool on the loop depth is preferable,
|
12874 |
|
|
but at the moment, the basic block information seems to be
|
12875 |
|
|
corrupt by this stage of the compilation. */
|
12876 |
|
|
int base_cost = 50;
|
12877 |
|
|
rtx next = next_nonnote_insn (insn);
|
12878 |
|
|
|
12879 |
|
|
if (next != NULL && GET_CODE (next) == CODE_LABEL)
|
12880 |
|
|
base_cost -= 20;
|
12881 |
|
|
|
12882 |
|
|
switch (GET_CODE (insn))
|
12883 |
|
|
{
|
12884 |
|
|
case CODE_LABEL:
|
12885 |
|
|
/* It will always be better to place the table before the label, rather
|
12886 |
|
|
than after it. */
|
12887 |
|
|
return 50;
|
12888 |
|
|
|
12889 |
|
|
case INSN:
|
12890 |
|
|
case CALL_INSN:
|
12891 |
|
|
return base_cost;
|
12892 |
|
|
|
12893 |
|
|
case JUMP_INSN:
|
12894 |
|
|
return base_cost - 10;
|
12895 |
|
|
|
12896 |
|
|
default:
|
12897 |
|
|
return base_cost + 10;
|
12898 |
|
|
}
|
12899 |
|
|
}
|
12900 |
|
|
|
12901 |
|
|
/* Find the best place in the insn stream in the range
|
12902 |
|
|
(FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier.
|
12903 |
|
|
Create the barrier by inserting a jump and add a new fix entry for
|
12904 |
|
|
it. */
|
12905 |
|
|
static Mfix *
|
12906 |
|
|
create_fix_barrier (Mfix *fix, HOST_WIDE_INT max_address)
|
12907 |
|
|
{
|
12908 |
|
|
HOST_WIDE_INT count = 0;
|
12909 |
|
|
rtx barrier;
|
12910 |
|
|
rtx from = fix->insn;
|
12911 |
|
|
/* The instruction after which we will insert the jump. */
|
12912 |
|
|
rtx selected = NULL;
|
12913 |
|
|
int selected_cost;
|
12914 |
|
|
/* The address at which the jump instruction will be placed. */
|
12915 |
|
|
HOST_WIDE_INT selected_address;
|
12916 |
|
|
Mfix * new_fix;
|
12917 |
|
|
HOST_WIDE_INT max_count = max_address - fix->address;
|
12918 |
|
|
rtx label = gen_label_rtx ();
|
12919 |
|
|
|
12920 |
|
|
selected_cost = arm_barrier_cost (from);
|
12921 |
|
|
selected_address = fix->address;
|
12922 |
|
|
|
12923 |
|
|
while (from && count < max_count)
|
12924 |
|
|
{
|
12925 |
|
|
rtx tmp;
|
12926 |
|
|
int new_cost;
|
12927 |
|
|
|
12928 |
|
|
/* This code shouldn't have been called if there was a natural barrier
|
12929 |
|
|
within range. */
|
12930 |
|
|
gcc_assert (GET_CODE (from) != BARRIER);
|
12931 |
|
|
|
12932 |
|
|
/* Count the length of this insn. This must stay in sync with the
|
12933 |
|
|
code that pushes minipool fixes. */
|
12934 |
|
|
if (LABEL_P (from))
|
12935 |
|
|
count += get_label_padding (from);
|
12936 |
|
|
else
|
12937 |
|
|
count += get_attr_length (from);
|
12938 |
|
|
|
12939 |
|
|
/* If there is a jump table, add its length. */
|
12940 |
|
|
tmp = is_jump_table (from);
|
12941 |
|
|
if (tmp != NULL)
|
12942 |
|
|
{
|
12943 |
|
|
count += get_jump_table_size (tmp);
|
12944 |
|
|
|
12945 |
|
|
/* Jump tables aren't in a basic block, so base the cost on
|
12946 |
|
|
the dispatch insn. If we select this location, we will
|
12947 |
|
|
still put the pool after the table. */
|
12948 |
|
|
new_cost = arm_barrier_cost (from);
|
12949 |
|
|
|
12950 |
|
|
if (count < max_count
|
12951 |
|
|
&& (!selected || new_cost <= selected_cost))
|
12952 |
|
|
{
|
12953 |
|
|
selected = tmp;
|
12954 |
|
|
selected_cost = new_cost;
|
12955 |
|
|
selected_address = fix->address + count;
|
12956 |
|
|
}
|
12957 |
|
|
|
12958 |
|
|
/* Continue after the dispatch table. */
|
12959 |
|
|
from = NEXT_INSN (tmp);
|
12960 |
|
|
continue;
|
12961 |
|
|
}
|
12962 |
|
|
|
12963 |
|
|
new_cost = arm_barrier_cost (from);
|
12964 |
|
|
|
12965 |
|
|
if (count < max_count
|
12966 |
|
|
&& (!selected || new_cost <= selected_cost))
|
12967 |
|
|
{
|
12968 |
|
|
selected = from;
|
12969 |
|
|
selected_cost = new_cost;
|
12970 |
|
|
selected_address = fix->address + count;
|
12971 |
|
|
}
|
12972 |
|
|
|
12973 |
|
|
from = NEXT_INSN (from);
|
12974 |
|
|
}
|
12975 |
|
|
|
12976 |
|
|
/* Make sure that we found a place to insert the jump. */
|
12977 |
|
|
gcc_assert (selected);
|
12978 |
|
|
|
12979 |
|
|
/* Make sure we do not split a call and its corresponding
|
12980 |
|
|
CALL_ARG_LOCATION note. */
|
12981 |
|
|
if (CALL_P (selected))
|
12982 |
|
|
{
|
12983 |
|
|
rtx next = NEXT_INSN (selected);
|
12984 |
|
|
if (next && NOTE_P (next)
|
12985 |
|
|
&& NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
|
12986 |
|
|
selected = next;
|
12987 |
|
|
}
|
12988 |
|
|
|
12989 |
|
|
/* Create a new JUMP_INSN that branches around a barrier. */
|
12990 |
|
|
from = emit_jump_insn_after (gen_jump (label), selected);
|
12991 |
|
|
JUMP_LABEL (from) = label;
|
12992 |
|
|
barrier = emit_barrier_after (from);
|
12993 |
|
|
emit_label_after (label, barrier);
|
12994 |
|
|
|
12995 |
|
|
/* Create a minipool barrier entry for the new barrier. */
|
12996 |
|
|
new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* new_fix));
|
12997 |
|
|
new_fix->insn = barrier;
|
12998 |
|
|
new_fix->address = selected_address;
|
12999 |
|
|
new_fix->next = fix->next;
|
13000 |
|
|
fix->next = new_fix;
|
13001 |
|
|
|
13002 |
|
|
return new_fix;
|
13003 |
|
|
}
|
13004 |
|
|
|
13005 |
|
|
/* Record that there is a natural barrier in the insn stream at
|
13006 |
|
|
ADDRESS. */
|
13007 |
|
|
static void
|
13008 |
|
|
push_minipool_barrier (rtx insn, HOST_WIDE_INT address)
|
13009 |
|
|
{
|
13010 |
|
|
Mfix * fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* fix));
|
13011 |
|
|
|
13012 |
|
|
fix->insn = insn;
|
13013 |
|
|
fix->address = address;
|
13014 |
|
|
|
13015 |
|
|
fix->next = NULL;
|
13016 |
|
|
if (minipool_fix_head != NULL)
|
13017 |
|
|
minipool_fix_tail->next = fix;
|
13018 |
|
|
else
|
13019 |
|
|
minipool_fix_head = fix;
|
13020 |
|
|
|
13021 |
|
|
minipool_fix_tail = fix;
|
13022 |
|
|
}
|
13023 |
|
|
|
13024 |
|
|
/* Record INSN, which will need fixing up to load a value from the
|
13025 |
|
|
minipool. ADDRESS is the offset of the insn since the start of the
|
13026 |
|
|
function; LOC is a pointer to the part of the insn which requires
|
13027 |
|
|
fixing; VALUE is the constant that must be loaded, which is of type
|
13028 |
|
|
MODE. */
|
13029 |
|
|
static void
|
13030 |
|
|
push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx *loc,
|
13031 |
|
|
enum machine_mode mode, rtx value)
|
13032 |
|
|
{
|
13033 |
|
|
Mfix * fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* fix));
|
13034 |
|
|
|
13035 |
|
|
fix->insn = insn;
|
13036 |
|
|
fix->address = address;
|
13037 |
|
|
fix->loc = loc;
|
13038 |
|
|
fix->mode = mode;
|
13039 |
|
|
fix->fix_size = MINIPOOL_FIX_SIZE (mode);
|
13040 |
|
|
fix->value = value;
|
13041 |
|
|
fix->forwards = get_attr_pool_range (insn);
|
13042 |
|
|
fix->backwards = get_attr_neg_pool_range (insn);
|
13043 |
|
|
fix->minipool = NULL;
|
13044 |
|
|
|
13045 |
|
|
/* If an insn doesn't have a range defined for it, then it isn't
|
13046 |
|
|
expecting to be reworked by this code. Better to stop now than
|
13047 |
|
|
to generate duff assembly code. */
|
13048 |
|
|
gcc_assert (fix->forwards || fix->backwards);
|
13049 |
|
|
|
13050 |
|
|
/* If an entry requires 8-byte alignment then assume all constant pools
|
13051 |
|
|
require 4 bytes of padding. Trying to do this later on a per-pool
|
13052 |
|
|
basis is awkward because existing pool entries have to be modified. */
|
13053 |
|
|
if (ARM_DOUBLEWORD_ALIGN && fix->fix_size >= 8)
|
13054 |
|
|
minipool_pad = 4;
|
13055 |
|
|
|
13056 |
|
|
if (dump_file)
|
13057 |
|
|
{
|
13058 |
|
|
fprintf (dump_file,
|
13059 |
|
|
";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ",
|
13060 |
|
|
GET_MODE_NAME (mode),
|
13061 |
|
|
INSN_UID (insn), (unsigned long) address,
|
13062 |
|
|
-1 * (long)fix->backwards, (long)fix->forwards);
|
13063 |
|
|
arm_print_value (dump_file, fix->value);
|
13064 |
|
|
fprintf (dump_file, "\n");
|
13065 |
|
|
}
|
13066 |
|
|
|
13067 |
|
|
/* Add it to the chain of fixes. */
|
13068 |
|
|
fix->next = NULL;
|
13069 |
|
|
|
13070 |
|
|
if (minipool_fix_head != NULL)
|
13071 |
|
|
minipool_fix_tail->next = fix;
|
13072 |
|
|
else
|
13073 |
|
|
minipool_fix_head = fix;
|
13074 |
|
|
|
13075 |
|
|
minipool_fix_tail = fix;
|
13076 |
|
|
}
|
13077 |
|
|
|
13078 |
|
|
/* Return the cost of synthesizing a 64-bit constant VAL inline.
|
13079 |
|
|
Returns the number of insns needed, or 99 if we don't know how to
|
13080 |
|
|
do it. */
|
13081 |
|
|
int
|
13082 |
|
|
arm_const_double_inline_cost (rtx val)
|
13083 |
|
|
{
|
13084 |
|
|
rtx lowpart, highpart;
|
13085 |
|
|
enum machine_mode mode;
|
13086 |
|
|
|
13087 |
|
|
mode = GET_MODE (val);
|
13088 |
|
|
|
13089 |
|
|
if (mode == VOIDmode)
|
13090 |
|
|
mode = DImode;
|
13091 |
|
|
|
13092 |
|
|
gcc_assert (GET_MODE_SIZE (mode) == 8);
|
13093 |
|
|
|
13094 |
|
|
lowpart = gen_lowpart (SImode, val);
|
13095 |
|
|
highpart = gen_highpart_mode (SImode, mode, val);
|
13096 |
|
|
|
13097 |
|
|
gcc_assert (GET_CODE (lowpart) == CONST_INT);
|
13098 |
|
|
gcc_assert (GET_CODE (highpart) == CONST_INT);
|
13099 |
|
|
|
13100 |
|
|
return (arm_gen_constant (SET, SImode, NULL_RTX, INTVAL (lowpart),
|
13101 |
|
|
NULL_RTX, NULL_RTX, 0, 0)
|
13102 |
|
|
+ arm_gen_constant (SET, SImode, NULL_RTX, INTVAL (highpart),
|
13103 |
|
|
NULL_RTX, NULL_RTX, 0, 0));
|
13104 |
|
|
}
|
13105 |
|
|
|
13106 |
|
|
/* Return true if it is worthwhile to split a 64-bit constant into two
|
13107 |
|
|
32-bit operations. This is the case if optimizing for size, or
|
13108 |
|
|
if we have load delay slots, or if one 32-bit part can be done with
|
13109 |
|
|
a single data operation. */
|
13110 |
|
|
bool
|
13111 |
|
|
arm_const_double_by_parts (rtx val)
|
13112 |
|
|
{
|
13113 |
|
|
enum machine_mode mode = GET_MODE (val);
|
13114 |
|
|
rtx part;
|
13115 |
|
|
|
13116 |
|
|
if (optimize_size || arm_ld_sched)
|
13117 |
|
|
return true;
|
13118 |
|
|
|
13119 |
|
|
if (mode == VOIDmode)
|
13120 |
|
|
mode = DImode;
|
13121 |
|
|
|
13122 |
|
|
part = gen_highpart_mode (SImode, mode, val);
|
13123 |
|
|
|
13124 |
|
|
gcc_assert (GET_CODE (part) == CONST_INT);
|
13125 |
|
|
|
13126 |
|
|
if (const_ok_for_arm (INTVAL (part))
|
13127 |
|
|
|| const_ok_for_arm (~INTVAL (part)))
|
13128 |
|
|
return true;
|
13129 |
|
|
|
13130 |
|
|
part = gen_lowpart (SImode, val);
|
13131 |
|
|
|
13132 |
|
|
gcc_assert (GET_CODE (part) == CONST_INT);
|
13133 |
|
|
|
13134 |
|
|
if (const_ok_for_arm (INTVAL (part))
|
13135 |
|
|
|| const_ok_for_arm (~INTVAL (part)))
|
13136 |
|
|
return true;
|
13137 |
|
|
|
13138 |
|
|
return false;
|
13139 |
|
|
}
|
13140 |
|
|
|
13141 |
|
|
/* Return true if it is possible to inline both the high and low parts
|
13142 |
|
|
of a 64-bit constant into 32-bit data processing instructions. */
|
13143 |
|
|
bool
|
13144 |
|
|
arm_const_double_by_immediates (rtx val)
|
13145 |
|
|
{
|
13146 |
|
|
enum machine_mode mode = GET_MODE (val);
|
13147 |
|
|
rtx part;
|
13148 |
|
|
|
13149 |
|
|
if (mode == VOIDmode)
|
13150 |
|
|
mode = DImode;
|
13151 |
|
|
|
13152 |
|
|
part = gen_highpart_mode (SImode, mode, val);
|
13153 |
|
|
|
13154 |
|
|
gcc_assert (GET_CODE (part) == CONST_INT);
|
13155 |
|
|
|
13156 |
|
|
if (!const_ok_for_arm (INTVAL (part)))
|
13157 |
|
|
return false;
|
13158 |
|
|
|
13159 |
|
|
part = gen_lowpart (SImode, val);
|
13160 |
|
|
|
13161 |
|
|
gcc_assert (GET_CODE (part) == CONST_INT);
|
13162 |
|
|
|
13163 |
|
|
if (!const_ok_for_arm (INTVAL (part)))
|
13164 |
|
|
return false;
|
13165 |
|
|
|
13166 |
|
|
return true;
|
13167 |
|
|
}
|
13168 |
|
|
|
13169 |
|
|
/* Scan INSN and note any of its operands that need fixing.
|
13170 |
|
|
If DO_PUSHES is false we do not actually push any of the fixups
|
13171 |
|
|
needed. The function returns TRUE if any fixups were needed/pushed.
|
13172 |
|
|
This is used by arm_memory_load_p() which needs to know about loads
|
13173 |
|
|
of constants that will be converted into minipool loads. */
|
13174 |
|
|
static bool
|
13175 |
|
|
note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes)
|
13176 |
|
|
{
|
13177 |
|
|
bool result = false;
|
13178 |
|
|
int opno;
|
13179 |
|
|
|
13180 |
|
|
extract_insn (insn);
|
13181 |
|
|
|
13182 |
|
|
if (!constrain_operands (1))
|
13183 |
|
|
fatal_insn_not_found (insn);
|
13184 |
|
|
|
13185 |
|
|
if (recog_data.n_alternatives == 0)
|
13186 |
|
|
return false;
|
13187 |
|
|
|
13188 |
|
|
/* Fill in recog_op_alt with information about the constraints of
|
13189 |
|
|
this insn. */
|
13190 |
|
|
preprocess_constraints ();
|
13191 |
|
|
|
13192 |
|
|
for (opno = 0; opno < recog_data.n_operands; opno++)
|
13193 |
|
|
{
|
13194 |
|
|
/* Things we need to fix can only occur in inputs. */
|
13195 |
|
|
if (recog_data.operand_type[opno] != OP_IN)
|
13196 |
|
|
continue;
|
13197 |
|
|
|
13198 |
|
|
/* If this alternative is a memory reference, then any mention
|
13199 |
|
|
of constants in this alternative is really to fool reload
|
13200 |
|
|
into allowing us to accept one there. We need to fix them up
|
13201 |
|
|
now so that we output the right code. */
|
13202 |
|
|
if (recog_op_alt[opno][which_alternative].memory_ok)
|
13203 |
|
|
{
|
13204 |
|
|
rtx op = recog_data.operand[opno];
|
13205 |
|
|
|
13206 |
|
|
if (CONSTANT_P (op))
|
13207 |
|
|
{
|
13208 |
|
|
if (do_pushes)
|
13209 |
|
|
push_minipool_fix (insn, address, recog_data.operand_loc[opno],
|
13210 |
|
|
recog_data.operand_mode[opno], op);
|
13211 |
|
|
result = true;
|
13212 |
|
|
}
|
13213 |
|
|
else if (GET_CODE (op) == MEM
|
13214 |
|
|
&& GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|
13215 |
|
|
&& CONSTANT_POOL_ADDRESS_P (XEXP (op, 0)))
|
13216 |
|
|
{
|
13217 |
|
|
if (do_pushes)
|
13218 |
|
|
{
|
13219 |
|
|
rtx cop = avoid_constant_pool_reference (op);
|
13220 |
|
|
|
13221 |
|
|
/* Casting the address of something to a mode narrower
|
13222 |
|
|
than a word can cause avoid_constant_pool_reference()
|
13223 |
|
|
to return the pool reference itself. That's no good to
|
13224 |
|
|
us here. Lets just hope that we can use the
|
13225 |
|
|
constant pool value directly. */
|
13226 |
|
|
if (op == cop)
|
13227 |
|
|
cop = get_pool_constant (XEXP (op, 0));
|
13228 |
|
|
|
13229 |
|
|
push_minipool_fix (insn, address,
|
13230 |
|
|
recog_data.operand_loc[opno],
|
13231 |
|
|
recog_data.operand_mode[opno], cop);
|
13232 |
|
|
}
|
13233 |
|
|
|
13234 |
|
|
result = true;
|
13235 |
|
|
}
|
13236 |
|
|
}
|
13237 |
|
|
}
|
13238 |
|
|
|
13239 |
|
|
return result;
|
13240 |
|
|
}
|
13241 |
|
|
|
13242 |
|
|
/* Convert instructions to their cc-clobbering variant if possible, since
|
13243 |
|
|
that allows us to use smaller encodings. */
|
13244 |
|
|
|
13245 |
|
|
static void
|
13246 |
|
|
thumb2_reorg (void)
|
13247 |
|
|
{
|
13248 |
|
|
basic_block bb;
|
13249 |
|
|
regset_head live;
|
13250 |
|
|
|
13251 |
|
|
INIT_REG_SET (&live);
|
13252 |
|
|
|
13253 |
|
|
/* We are freeing block_for_insn in the toplev to keep compatibility
|
13254 |
|
|
with old MDEP_REORGS that are not CFG based. Recompute it now. */
|
13255 |
|
|
compute_bb_for_insn ();
|
13256 |
|
|
df_analyze ();
|
13257 |
|
|
|
13258 |
|
|
FOR_EACH_BB (bb)
|
13259 |
|
|
{
|
13260 |
|
|
rtx insn;
|
13261 |
|
|
|
13262 |
|
|
COPY_REG_SET (&live, DF_LR_OUT (bb));
|
13263 |
|
|
df_simulate_initialize_backwards (bb, &live);
|
13264 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
13265 |
|
|
{
|
13266 |
|
|
if (NONJUMP_INSN_P (insn)
|
13267 |
|
|
&& !REGNO_REG_SET_P (&live, CC_REGNUM))
|
13268 |
|
|
{
|
13269 |
|
|
rtx pat = PATTERN (insn);
|
13270 |
|
|
if (GET_CODE (pat) == SET
|
13271 |
|
|
&& low_register_operand (XEXP (pat, 0), SImode)
|
13272 |
|
|
&& thumb_16bit_operator (XEXP (pat, 1), SImode)
|
13273 |
|
|
&& low_register_operand (XEXP (XEXP (pat, 1), 0), SImode)
|
13274 |
|
|
&& low_register_operand (XEXP (XEXP (pat, 1), 1), SImode))
|
13275 |
|
|
{
|
13276 |
|
|
rtx dst = XEXP (pat, 0);
|
13277 |
|
|
rtx src = XEXP (pat, 1);
|
13278 |
|
|
rtx op0 = XEXP (src, 0);
|
13279 |
|
|
rtx op1 = (GET_RTX_CLASS (GET_CODE (src)) == RTX_COMM_ARITH
|
13280 |
|
|
? XEXP (src, 1) : NULL);
|
13281 |
|
|
|
13282 |
|
|
if (rtx_equal_p (dst, op0)
|
13283 |
|
|
|| GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
|
13284 |
|
|
{
|
13285 |
|
|
rtx ccreg = gen_rtx_REG (CCmode, CC_REGNUM);
|
13286 |
|
|
rtx clobber = gen_rtx_CLOBBER (VOIDmode, ccreg);
|
13287 |
|
|
rtvec vec = gen_rtvec (2, pat, clobber);
|
13288 |
|
|
|
13289 |
|
|
PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
|
13290 |
|
|
INSN_CODE (insn) = -1;
|
13291 |
|
|
}
|
13292 |
|
|
/* We can also handle a commutative operation where the
|
13293 |
|
|
second operand matches the destination. */
|
13294 |
|
|
else if (op1 && rtx_equal_p (dst, op1))
|
13295 |
|
|
{
|
13296 |
|
|
rtx ccreg = gen_rtx_REG (CCmode, CC_REGNUM);
|
13297 |
|
|
rtx clobber = gen_rtx_CLOBBER (VOIDmode, ccreg);
|
13298 |
|
|
rtvec vec;
|
13299 |
|
|
|
13300 |
|
|
src = copy_rtx (src);
|
13301 |
|
|
XEXP (src, 0) = op1;
|
13302 |
|
|
XEXP (src, 1) = op0;
|
13303 |
|
|
pat = gen_rtx_SET (VOIDmode, dst, src);
|
13304 |
|
|
vec = gen_rtvec (2, pat, clobber);
|
13305 |
|
|
PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
|
13306 |
|
|
INSN_CODE (insn) = -1;
|
13307 |
|
|
}
|
13308 |
|
|
}
|
13309 |
|
|
}
|
13310 |
|
|
|
13311 |
|
|
if (NONDEBUG_INSN_P (insn))
|
13312 |
|
|
df_simulate_one_insn_backwards (bb, insn, &live);
|
13313 |
|
|
}
|
13314 |
|
|
}
|
13315 |
|
|
|
13316 |
|
|
CLEAR_REG_SET (&live);
|
13317 |
|
|
}
|
13318 |
|
|
|
13319 |
|
|
/* Gcc puts the pool in the wrong place for ARM, since we can only
|
13320 |
|
|
load addresses a limited distance around the pc. We do some
|
13321 |
|
|
special munging to move the constant pool values to the correct
|
13322 |
|
|
point in the code. */
|
13323 |
|
|
static void
|
13324 |
|
|
arm_reorg (void)
|
13325 |
|
|
{
|
13326 |
|
|
rtx insn;
|
13327 |
|
|
HOST_WIDE_INT address = 0;
|
13328 |
|
|
Mfix * fix;
|
13329 |
|
|
|
13330 |
|
|
if (TARGET_THUMB2)
|
13331 |
|
|
thumb2_reorg ();
|
13332 |
|
|
|
13333 |
|
|
minipool_fix_head = minipool_fix_tail = NULL;
|
13334 |
|
|
|
13335 |
|
|
/* The first insn must always be a note, or the code below won't
|
13336 |
|
|
scan it properly. */
|
13337 |
|
|
insn = get_insns ();
|
13338 |
|
|
gcc_assert (GET_CODE (insn) == NOTE);
|
13339 |
|
|
minipool_pad = 0;
|
13340 |
|
|
|
13341 |
|
|
/* Scan all the insns and record the operands that will need fixing. */
|
13342 |
|
|
for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn))
|
13343 |
|
|
{
|
13344 |
|
|
if (TARGET_CIRRUS_FIX_INVALID_INSNS
|
13345 |
|
|
&& (arm_cirrus_insn_p (insn)
|
13346 |
|
|
|| GET_CODE (insn) == JUMP_INSN
|
13347 |
|
|
|| arm_memory_load_p (insn)))
|
13348 |
|
|
cirrus_reorg (insn);
|
13349 |
|
|
|
13350 |
|
|
if (GET_CODE (insn) == BARRIER)
|
13351 |
|
|
push_minipool_barrier (insn, address);
|
13352 |
|
|
else if (INSN_P (insn))
|
13353 |
|
|
{
|
13354 |
|
|
rtx table;
|
13355 |
|
|
|
13356 |
|
|
note_invalid_constants (insn, address, true);
|
13357 |
|
|
address += get_attr_length (insn);
|
13358 |
|
|
|
13359 |
|
|
/* If the insn is a vector jump, add the size of the table
|
13360 |
|
|
and skip the table. */
|
13361 |
|
|
if ((table = is_jump_table (insn)) != NULL)
|
13362 |
|
|
{
|
13363 |
|
|
address += get_jump_table_size (table);
|
13364 |
|
|
insn = table;
|
13365 |
|
|
}
|
13366 |
|
|
}
|
13367 |
|
|
else if (LABEL_P (insn))
|
13368 |
|
|
/* Add the worst-case padding due to alignment. We don't add
|
13369 |
|
|
the _current_ padding because the minipool insertions
|
13370 |
|
|
themselves might change it. */
|
13371 |
|
|
address += get_label_padding (insn);
|
13372 |
|
|
}
|
13373 |
|
|
|
13374 |
|
|
fix = minipool_fix_head;
|
13375 |
|
|
|
13376 |
|
|
/* Now scan the fixups and perform the required changes. */
|
13377 |
|
|
while (fix)
|
13378 |
|
|
{
|
13379 |
|
|
Mfix * ftmp;
|
13380 |
|
|
Mfix * fdel;
|
13381 |
|
|
Mfix * last_added_fix;
|
13382 |
|
|
Mfix * last_barrier = NULL;
|
13383 |
|
|
Mfix * this_fix;
|
13384 |
|
|
|
13385 |
|
|
/* Skip any further barriers before the next fix. */
|
13386 |
|
|
while (fix && GET_CODE (fix->insn) == BARRIER)
|
13387 |
|
|
fix = fix->next;
|
13388 |
|
|
|
13389 |
|
|
/* No more fixes. */
|
13390 |
|
|
if (fix == NULL)
|
13391 |
|
|
break;
|
13392 |
|
|
|
13393 |
|
|
last_added_fix = NULL;
|
13394 |
|
|
|
13395 |
|
|
for (ftmp = fix; ftmp; ftmp = ftmp->next)
|
13396 |
|
|
{
|
13397 |
|
|
if (GET_CODE (ftmp->insn) == BARRIER)
|
13398 |
|
|
{
|
13399 |
|
|
if (ftmp->address >= minipool_vector_head->max_address)
|
13400 |
|
|
break;
|
13401 |
|
|
|
13402 |
|
|
last_barrier = ftmp;
|
13403 |
|
|
}
|
13404 |
|
|
else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL)
|
13405 |
|
|
break;
|
13406 |
|
|
|
13407 |
|
|
last_added_fix = ftmp; /* Keep track of the last fix added. */
|
13408 |
|
|
}
|
13409 |
|
|
|
13410 |
|
|
/* If we found a barrier, drop back to that; any fixes that we
|
13411 |
|
|
could have reached but come after the barrier will now go in
|
13412 |
|
|
the next mini-pool. */
|
13413 |
|
|
if (last_barrier != NULL)
|
13414 |
|
|
{
|
13415 |
|
|
/* Reduce the refcount for those fixes that won't go into this
|
13416 |
|
|
pool after all. */
|
13417 |
|
|
for (fdel = last_barrier->next;
|
13418 |
|
|
fdel && fdel != ftmp;
|
13419 |
|
|
fdel = fdel->next)
|
13420 |
|
|
{
|
13421 |
|
|
fdel->minipool->refcount--;
|
13422 |
|
|
fdel->minipool = NULL;
|
13423 |
|
|
}
|
13424 |
|
|
|
13425 |
|
|
ftmp = last_barrier;
|
13426 |
|
|
}
|
13427 |
|
|
else
|
13428 |
|
|
{
|
13429 |
|
|
/* ftmp is first fix that we can't fit into this pool and
|
13430 |
|
|
there no natural barriers that we could use. Insert a
|
13431 |
|
|
new barrier in the code somewhere between the previous
|
13432 |
|
|
fix and this one, and arrange to jump around it. */
|
13433 |
|
|
HOST_WIDE_INT max_address;
|
13434 |
|
|
|
13435 |
|
|
/* The last item on the list of fixes must be a barrier, so
|
13436 |
|
|
we can never run off the end of the list of fixes without
|
13437 |
|
|
last_barrier being set. */
|
13438 |
|
|
gcc_assert (ftmp);
|
13439 |
|
|
|
13440 |
|
|
max_address = minipool_vector_head->max_address;
|
13441 |
|
|
/* Check that there isn't another fix that is in range that
|
13442 |
|
|
we couldn't fit into this pool because the pool was
|
13443 |
|
|
already too large: we need to put the pool before such an
|
13444 |
|
|
instruction. The pool itself may come just after the
|
13445 |
|
|
fix because create_fix_barrier also allows space for a
|
13446 |
|
|
jump instruction. */
|
13447 |
|
|
if (ftmp->address < max_address)
|
13448 |
|
|
max_address = ftmp->address + 1;
|
13449 |
|
|
|
13450 |
|
|
last_barrier = create_fix_barrier (last_added_fix, max_address);
|
13451 |
|
|
}
|
13452 |
|
|
|
13453 |
|
|
assign_minipool_offsets (last_barrier);
|
13454 |
|
|
|
13455 |
|
|
while (ftmp)
|
13456 |
|
|
{
|
13457 |
|
|
if (GET_CODE (ftmp->insn) != BARRIER
|
13458 |
|
|
&& ((ftmp->minipool = add_minipool_backward_ref (ftmp))
|
13459 |
|
|
== NULL))
|
13460 |
|
|
break;
|
13461 |
|
|
|
13462 |
|
|
ftmp = ftmp->next;
|
13463 |
|
|
}
|
13464 |
|
|
|
13465 |
|
|
/* Scan over the fixes we have identified for this pool, fixing them
|
13466 |
|
|
up and adding the constants to the pool itself. */
|
13467 |
|
|
for (this_fix = fix; this_fix && ftmp != this_fix;
|
13468 |
|
|
this_fix = this_fix->next)
|
13469 |
|
|
if (GET_CODE (this_fix->insn) != BARRIER)
|
13470 |
|
|
{
|
13471 |
|
|
rtx addr
|
13472 |
|
|
= plus_constant (gen_rtx_LABEL_REF (VOIDmode,
|
13473 |
|
|
minipool_vector_label),
|
13474 |
|
|
this_fix->minipool->offset);
|
13475 |
|
|
*this_fix->loc = gen_rtx_MEM (this_fix->mode, addr);
|
13476 |
|
|
}
|
13477 |
|
|
|
13478 |
|
|
dump_minipool (last_barrier->insn);
|
13479 |
|
|
fix = ftmp;
|
13480 |
|
|
}
|
13481 |
|
|
|
13482 |
|
|
/* From now on we must synthesize any constants that we can't handle
|
13483 |
|
|
directly. This can happen if the RTL gets split during final
|
13484 |
|
|
instruction generation. */
|
13485 |
|
|
after_arm_reorg = 1;
|
13486 |
|
|
|
13487 |
|
|
/* Free the minipool memory. */
|
13488 |
|
|
obstack_free (&minipool_obstack, minipool_startobj);
|
13489 |
|
|
}
|
13490 |
|
|
|
13491 |
|
|
/* Routines to output assembly language. */
|
13492 |
|
|
|
13493 |
|
|
/* If the rtx is the correct value then return the string of the number.
|
13494 |
|
|
In this way we can ensure that valid double constants are generated even
|
13495 |
|
|
when cross compiling. */
|
13496 |
|
|
const char *
|
13497 |
|
|
fp_immediate_constant (rtx x)
|
13498 |
|
|
{
|
13499 |
|
|
REAL_VALUE_TYPE r;
|
13500 |
|
|
int i;
|
13501 |
|
|
|
13502 |
|
|
if (!fp_consts_inited)
|
13503 |
|
|
init_fp_table ();
|
13504 |
|
|
|
13505 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
|
13506 |
|
|
for (i = 0; i < 8; i++)
|
13507 |
|
|
if (REAL_VALUES_EQUAL (r, values_fp[i]))
|
13508 |
|
|
return strings_fp[i];
|
13509 |
|
|
|
13510 |
|
|
gcc_unreachable ();
|
13511 |
|
|
}
|
13512 |
|
|
|
13513 |
|
|
/* As for fp_immediate_constant, but value is passed directly, not in rtx. */
|
13514 |
|
|
static const char *
|
13515 |
|
|
fp_const_from_val (REAL_VALUE_TYPE *r)
|
13516 |
|
|
{
|
13517 |
|
|
int i;
|
13518 |
|
|
|
13519 |
|
|
if (!fp_consts_inited)
|
13520 |
|
|
init_fp_table ();
|
13521 |
|
|
|
13522 |
|
|
for (i = 0; i < 8; i++)
|
13523 |
|
|
if (REAL_VALUES_EQUAL (*r, values_fp[i]))
|
13524 |
|
|
return strings_fp[i];
|
13525 |
|
|
|
13526 |
|
|
gcc_unreachable ();
|
13527 |
|
|
}
|
13528 |
|
|
|
13529 |
|
|
/* Output the operands of a LDM/STM instruction to STREAM.
|
13530 |
|
|
MASK is the ARM register set mask of which only bits 0-15 are important.
|
13531 |
|
|
REG is the base register, either the frame pointer or the stack pointer,
|
13532 |
|
|
INSTR is the possibly suffixed load or store instruction.
|
13533 |
|
|
RFE is nonzero if the instruction should also copy spsr to cpsr. */
|
13534 |
|
|
|
13535 |
|
|
static void
|
13536 |
|
|
print_multi_reg (FILE *stream, const char *instr, unsigned reg,
|
13537 |
|
|
unsigned long mask, int rfe)
|
13538 |
|
|
{
|
13539 |
|
|
unsigned i;
|
13540 |
|
|
bool not_first = FALSE;
|
13541 |
|
|
|
13542 |
|
|
gcc_assert (!rfe || (mask & (1 << PC_REGNUM)));
|
13543 |
|
|
fputc ('\t', stream);
|
13544 |
|
|
asm_fprintf (stream, instr, reg);
|
13545 |
|
|
fputc ('{', stream);
|
13546 |
|
|
|
13547 |
|
|
for (i = 0; i <= LAST_ARM_REGNUM; i++)
|
13548 |
|
|
if (mask & (1 << i))
|
13549 |
|
|
{
|
13550 |
|
|
if (not_first)
|
13551 |
|
|
fprintf (stream, ", ");
|
13552 |
|
|
|
13553 |
|
|
asm_fprintf (stream, "%r", i);
|
13554 |
|
|
not_first = TRUE;
|
13555 |
|
|
}
|
13556 |
|
|
|
13557 |
|
|
if (rfe)
|
13558 |
|
|
fprintf (stream, "}^\n");
|
13559 |
|
|
else
|
13560 |
|
|
fprintf (stream, "}\n");
|
13561 |
|
|
}
|
13562 |
|
|
|
13563 |
|
|
|
13564 |
|
|
/* Output a FLDMD instruction to STREAM.
|
13565 |
|
|
BASE if the register containing the address.
|
13566 |
|
|
REG and COUNT specify the register range.
|
13567 |
|
|
Extra registers may be added to avoid hardware bugs.
|
13568 |
|
|
|
13569 |
|
|
We output FLDMD even for ARMv5 VFP implementations. Although
|
13570 |
|
|
FLDMD is technically not supported until ARMv6, it is believed
|
13571 |
|
|
that all VFP implementations support its use in this context. */
|
13572 |
|
|
|
13573 |
|
|
static void
|
13574 |
|
|
vfp_output_fldmd (FILE * stream, unsigned int base, int reg, int count)
|
13575 |
|
|
{
|
13576 |
|
|
int i;
|
13577 |
|
|
|
13578 |
|
|
/* Workaround ARM10 VFPr1 bug. */
|
13579 |
|
|
if (count == 2 && !arm_arch6)
|
13580 |
|
|
{
|
13581 |
|
|
if (reg == 15)
|
13582 |
|
|
reg--;
|
13583 |
|
|
count++;
|
13584 |
|
|
}
|
13585 |
|
|
|
13586 |
|
|
/* FLDMD may not load more than 16 doubleword registers at a time. Split the
|
13587 |
|
|
load into multiple parts if we have to handle more than 16 registers. */
|
13588 |
|
|
if (count > 16)
|
13589 |
|
|
{
|
13590 |
|
|
vfp_output_fldmd (stream, base, reg, 16);
|
13591 |
|
|
vfp_output_fldmd (stream, base, reg + 16, count - 16);
|
13592 |
|
|
return;
|
13593 |
|
|
}
|
13594 |
|
|
|
13595 |
|
|
fputc ('\t', stream);
|
13596 |
|
|
asm_fprintf (stream, "fldmfdd\t%r!, {", base);
|
13597 |
|
|
|
13598 |
|
|
for (i = reg; i < reg + count; i++)
|
13599 |
|
|
{
|
13600 |
|
|
if (i > reg)
|
13601 |
|
|
fputs (", ", stream);
|
13602 |
|
|
asm_fprintf (stream, "d%d", i);
|
13603 |
|
|
}
|
13604 |
|
|
fputs ("}\n", stream);
|
13605 |
|
|
|
13606 |
|
|
}
|
13607 |
|
|
|
13608 |
|
|
|
13609 |
|
|
/* Output the assembly for a store multiple. */
|
13610 |
|
|
|
13611 |
|
|
const char *
|
13612 |
|
|
vfp_output_fstmd (rtx * operands)
|
13613 |
|
|
{
|
13614 |
|
|
char pattern[100];
|
13615 |
|
|
int p;
|
13616 |
|
|
int base;
|
13617 |
|
|
int i;
|
13618 |
|
|
|
13619 |
|
|
strcpy (pattern, "fstmfdd%?\t%m0!, {%P1");
|
13620 |
|
|
p = strlen (pattern);
|
13621 |
|
|
|
13622 |
|
|
gcc_assert (GET_CODE (operands[1]) == REG);
|
13623 |
|
|
|
13624 |
|
|
base = (REGNO (operands[1]) - FIRST_VFP_REGNUM) / 2;
|
13625 |
|
|
for (i = 1; i < XVECLEN (operands[2], 0); i++)
|
13626 |
|
|
{
|
13627 |
|
|
p += sprintf (&pattern[p], ", d%d", base + i);
|
13628 |
|
|
}
|
13629 |
|
|
strcpy (&pattern[p], "}");
|
13630 |
|
|
|
13631 |
|
|
output_asm_insn (pattern, operands);
|
13632 |
|
|
return "";
|
13633 |
|
|
}
|
13634 |
|
|
|
13635 |
|
|
|
13636 |
|
|
/* Emit RTL to save block of VFP register pairs to the stack. Returns the
|
13637 |
|
|
number of bytes pushed. */
|
13638 |
|
|
|
13639 |
|
|
static int
|
13640 |
|
|
vfp_emit_fstmd (int base_reg, int count)
|
13641 |
|
|
{
|
13642 |
|
|
rtx par;
|
13643 |
|
|
rtx dwarf;
|
13644 |
|
|
rtx tmp, reg;
|
13645 |
|
|
int i;
|
13646 |
|
|
|
13647 |
|
|
/* Workaround ARM10 VFPr1 bug. Data corruption can occur when exactly two
|
13648 |
|
|
register pairs are stored by a store multiple insn. We avoid this
|
13649 |
|
|
by pushing an extra pair. */
|
13650 |
|
|
if (count == 2 && !arm_arch6)
|
13651 |
|
|
{
|
13652 |
|
|
if (base_reg == LAST_VFP_REGNUM - 3)
|
13653 |
|
|
base_reg -= 2;
|
13654 |
|
|
count++;
|
13655 |
|
|
}
|
13656 |
|
|
|
13657 |
|
|
/* FSTMD may not store more than 16 doubleword registers at once. Split
|
13658 |
|
|
larger stores into multiple parts (up to a maximum of two, in
|
13659 |
|
|
practice). */
|
13660 |
|
|
if (count > 16)
|
13661 |
|
|
{
|
13662 |
|
|
int saved;
|
13663 |
|
|
/* NOTE: base_reg is an internal register number, so each D register
|
13664 |
|
|
counts as 2. */
|
13665 |
|
|
saved = vfp_emit_fstmd (base_reg + 32, count - 16);
|
13666 |
|
|
saved += vfp_emit_fstmd (base_reg, 16);
|
13667 |
|
|
return saved;
|
13668 |
|
|
}
|
13669 |
|
|
|
13670 |
|
|
par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
|
13671 |
|
|
dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (count + 1));
|
13672 |
|
|
|
13673 |
|
|
reg = gen_rtx_REG (DFmode, base_reg);
|
13674 |
|
|
base_reg += 2;
|
13675 |
|
|
|
13676 |
|
|
XVECEXP (par, 0, 0)
|
13677 |
|
|
= gen_rtx_SET (VOIDmode,
|
13678 |
|
|
gen_frame_mem
|
13679 |
|
|
(BLKmode,
|
13680 |
|
|
gen_rtx_PRE_MODIFY (Pmode,
|
13681 |
|
|
stack_pointer_rtx,
|
13682 |
|
|
plus_constant
|
13683 |
|
|
(stack_pointer_rtx,
|
13684 |
|
|
- (count * 8)))
|
13685 |
|
|
),
|
13686 |
|
|
gen_rtx_UNSPEC (BLKmode,
|
13687 |
|
|
gen_rtvec (1, reg),
|
13688 |
|
|
UNSPEC_PUSH_MULT));
|
13689 |
|
|
|
13690 |
|
|
tmp = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
13691 |
|
|
plus_constant (stack_pointer_rtx, -(count * 8)));
|
13692 |
|
|
RTX_FRAME_RELATED_P (tmp) = 1;
|
13693 |
|
|
XVECEXP (dwarf, 0, 0) = tmp;
|
13694 |
|
|
|
13695 |
|
|
tmp = gen_rtx_SET (VOIDmode,
|
13696 |
|
|
gen_frame_mem (DFmode, stack_pointer_rtx),
|
13697 |
|
|
reg);
|
13698 |
|
|
RTX_FRAME_RELATED_P (tmp) = 1;
|
13699 |
|
|
XVECEXP (dwarf, 0, 1) = tmp;
|
13700 |
|
|
|
13701 |
|
|
for (i = 1; i < count; i++)
|
13702 |
|
|
{
|
13703 |
|
|
reg = gen_rtx_REG (DFmode, base_reg);
|
13704 |
|
|
base_reg += 2;
|
13705 |
|
|
XVECEXP (par, 0, i) = gen_rtx_USE (VOIDmode, reg);
|
13706 |
|
|
|
13707 |
|
|
tmp = gen_rtx_SET (VOIDmode,
|
13708 |
|
|
gen_frame_mem (DFmode,
|
13709 |
|
|
plus_constant (stack_pointer_rtx,
|
13710 |
|
|
i * 8)),
|
13711 |
|
|
reg);
|
13712 |
|
|
RTX_FRAME_RELATED_P (tmp) = 1;
|
13713 |
|
|
XVECEXP (dwarf, 0, i + 1) = tmp;
|
13714 |
|
|
}
|
13715 |
|
|
|
13716 |
|
|
par = emit_insn (par);
|
13717 |
|
|
add_reg_note (par, REG_FRAME_RELATED_EXPR, dwarf);
|
13718 |
|
|
RTX_FRAME_RELATED_P (par) = 1;
|
13719 |
|
|
|
13720 |
|
|
return count * 8;
|
13721 |
|
|
}
|
13722 |
|
|
|
13723 |
|
|
/* Emit a call instruction with pattern PAT. ADDR is the address of
|
13724 |
|
|
the call target. */
|
13725 |
|
|
|
13726 |
|
|
void
|
13727 |
|
|
arm_emit_call_insn (rtx pat, rtx addr)
|
13728 |
|
|
{
|
13729 |
|
|
rtx insn;
|
13730 |
|
|
|
13731 |
|
|
insn = emit_call_insn (pat);
|
13732 |
|
|
|
13733 |
|
|
/* The PIC register is live on entry to VxWorks PIC PLT entries.
|
13734 |
|
|
If the call might use such an entry, add a use of the PIC register
|
13735 |
|
|
to the instruction's CALL_INSN_FUNCTION_USAGE. */
|
13736 |
|
|
if (TARGET_VXWORKS_RTP
|
13737 |
|
|
&& flag_pic
|
13738 |
|
|
&& GET_CODE (addr) == SYMBOL_REF
|
13739 |
|
|
&& (SYMBOL_REF_DECL (addr)
|
13740 |
|
|
? !targetm.binds_local_p (SYMBOL_REF_DECL (addr))
|
13741 |
|
|
: !SYMBOL_REF_LOCAL_P (addr)))
|
13742 |
|
|
{
|
13743 |
|
|
require_pic_register ();
|
13744 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), cfun->machine->pic_reg);
|
13745 |
|
|
}
|
13746 |
|
|
}
|
13747 |
|
|
|
13748 |
|
|
/* Output a 'call' insn. */
|
13749 |
|
|
const char *
|
13750 |
|
|
output_call (rtx *operands)
|
13751 |
|
|
{
|
13752 |
|
|
gcc_assert (!arm_arch5); /* Patterns should call blx <reg> directly. */
|
13753 |
|
|
|
13754 |
|
|
/* Handle calls to lr using ip (which may be clobbered in subr anyway). */
|
13755 |
|
|
if (REGNO (operands[0]) == LR_REGNUM)
|
13756 |
|
|
{
|
13757 |
|
|
operands[0] = gen_rtx_REG (SImode, IP_REGNUM);
|
13758 |
|
|
output_asm_insn ("mov%?\t%0, %|lr", operands);
|
13759 |
|
|
}
|
13760 |
|
|
|
13761 |
|
|
output_asm_insn ("mov%?\t%|lr, %|pc", operands);
|
13762 |
|
|
|
13763 |
|
|
if (TARGET_INTERWORK || arm_arch4t)
|
13764 |
|
|
output_asm_insn ("bx%?\t%0", operands);
|
13765 |
|
|
else
|
13766 |
|
|
output_asm_insn ("mov%?\t%|pc, %0", operands);
|
13767 |
|
|
|
13768 |
|
|
return "";
|
13769 |
|
|
}
|
13770 |
|
|
|
13771 |
|
|
/* Output a 'call' insn that is a reference in memory. This is
|
13772 |
|
|
disabled for ARMv5 and we prefer a blx instead because otherwise
|
13773 |
|
|
there's a significant performance overhead. */
|
13774 |
|
|
const char *
|
13775 |
|
|
output_call_mem (rtx *operands)
|
13776 |
|
|
{
|
13777 |
|
|
gcc_assert (!arm_arch5);
|
13778 |
|
|
if (TARGET_INTERWORK)
|
13779 |
|
|
{
|
13780 |
|
|
output_asm_insn ("ldr%?\t%|ip, %0", operands);
|
13781 |
|
|
output_asm_insn ("mov%?\t%|lr, %|pc", operands);
|
13782 |
|
|
output_asm_insn ("bx%?\t%|ip", operands);
|
13783 |
|
|
}
|
13784 |
|
|
else if (regno_use_in (LR_REGNUM, operands[0]))
|
13785 |
|
|
{
|
13786 |
|
|
/* LR is used in the memory address. We load the address in the
|
13787 |
|
|
first instruction. It's safe to use IP as the target of the
|
13788 |
|
|
load since the call will kill it anyway. */
|
13789 |
|
|
output_asm_insn ("ldr%?\t%|ip, %0", operands);
|
13790 |
|
|
output_asm_insn ("mov%?\t%|lr, %|pc", operands);
|
13791 |
|
|
if (arm_arch4t)
|
13792 |
|
|
output_asm_insn ("bx%?\t%|ip", operands);
|
13793 |
|
|
else
|
13794 |
|
|
output_asm_insn ("mov%?\t%|pc, %|ip", operands);
|
13795 |
|
|
}
|
13796 |
|
|
else
|
13797 |
|
|
{
|
13798 |
|
|
output_asm_insn ("mov%?\t%|lr, %|pc", operands);
|
13799 |
|
|
output_asm_insn ("ldr%?\t%|pc, %0", operands);
|
13800 |
|
|
}
|
13801 |
|
|
|
13802 |
|
|
return "";
|
13803 |
|
|
}
|
13804 |
|
|
|
13805 |
|
|
|
13806 |
|
|
/* Output a move from arm registers to an fpa registers.
|
13807 |
|
|
OPERANDS[0] is an fpa register.
|
13808 |
|
|
OPERANDS[1] is the first registers of an arm register pair. */
|
13809 |
|
|
const char *
|
13810 |
|
|
output_mov_long_double_fpa_from_arm (rtx *operands)
|
13811 |
|
|
{
|
13812 |
|
|
int arm_reg0 = REGNO (operands[1]);
|
13813 |
|
|
rtx ops[3];
|
13814 |
|
|
|
13815 |
|
|
gcc_assert (arm_reg0 != IP_REGNUM);
|
13816 |
|
|
|
13817 |
|
|
ops[0] = gen_rtx_REG (SImode, arm_reg0);
|
13818 |
|
|
ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
|
13819 |
|
|
ops[2] = gen_rtx_REG (SImode, 2 + arm_reg0);
|
13820 |
|
|
|
13821 |
|
|
output_asm_insn ("stm%(fd%)\t%|sp!, {%0, %1, %2}", ops);
|
13822 |
|
|
output_asm_insn ("ldf%?e\t%0, [%|sp], #12", operands);
|
13823 |
|
|
|
13824 |
|
|
return "";
|
13825 |
|
|
}
|
13826 |
|
|
|
13827 |
|
|
/* Output a move from an fpa register to arm registers.
|
13828 |
|
|
OPERANDS[0] is the first registers of an arm register pair.
|
13829 |
|
|
OPERANDS[1] is an fpa register. */
|
13830 |
|
|
const char *
|
13831 |
|
|
output_mov_long_double_arm_from_fpa (rtx *operands)
|
13832 |
|
|
{
|
13833 |
|
|
int arm_reg0 = REGNO (operands[0]);
|
13834 |
|
|
rtx ops[3];
|
13835 |
|
|
|
13836 |
|
|
gcc_assert (arm_reg0 != IP_REGNUM);
|
13837 |
|
|
|
13838 |
|
|
ops[0] = gen_rtx_REG (SImode, arm_reg0);
|
13839 |
|
|
ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
|
13840 |
|
|
ops[2] = gen_rtx_REG (SImode, 2 + arm_reg0);
|
13841 |
|
|
|
13842 |
|
|
output_asm_insn ("stf%?e\t%1, [%|sp, #-12]!", operands);
|
13843 |
|
|
output_asm_insn ("ldm%(fd%)\t%|sp!, {%0, %1, %2}", ops);
|
13844 |
|
|
return "";
|
13845 |
|
|
}
|
13846 |
|
|
|
13847 |
|
|
/* Output a move from arm registers to arm registers of a long double
|
13848 |
|
|
OPERANDS[0] is the destination.
|
13849 |
|
|
OPERANDS[1] is the source. */
|
13850 |
|
|
const char *
|
13851 |
|
|
output_mov_long_double_arm_from_arm (rtx *operands)
|
13852 |
|
|
{
|
13853 |
|
|
/* We have to be careful here because the two might overlap. */
|
13854 |
|
|
int dest_start = REGNO (operands[0]);
|
13855 |
|
|
int src_start = REGNO (operands[1]);
|
13856 |
|
|
rtx ops[2];
|
13857 |
|
|
int i;
|
13858 |
|
|
|
13859 |
|
|
if (dest_start < src_start)
|
13860 |
|
|
{
|
13861 |
|
|
for (i = 0; i < 3; i++)
|
13862 |
|
|
{
|
13863 |
|
|
ops[0] = gen_rtx_REG (SImode, dest_start + i);
|
13864 |
|
|
ops[1] = gen_rtx_REG (SImode, src_start + i);
|
13865 |
|
|
output_asm_insn ("mov%?\t%0, %1", ops);
|
13866 |
|
|
}
|
13867 |
|
|
}
|
13868 |
|
|
else
|
13869 |
|
|
{
|
13870 |
|
|
for (i = 2; i >= 0; i--)
|
13871 |
|
|
{
|
13872 |
|
|
ops[0] = gen_rtx_REG (SImode, dest_start + i);
|
13873 |
|
|
ops[1] = gen_rtx_REG (SImode, src_start + i);
|
13874 |
|
|
output_asm_insn ("mov%?\t%0, %1", ops);
|
13875 |
|
|
}
|
13876 |
|
|
}
|
13877 |
|
|
|
13878 |
|
|
return "";
|
13879 |
|
|
}
|
13880 |
|
|
|
13881 |
|
|
void
|
13882 |
|
|
arm_emit_movpair (rtx dest, rtx src)
|
13883 |
|
|
{
|
13884 |
|
|
/* If the src is an immediate, simplify it. */
|
13885 |
|
|
if (CONST_INT_P (src))
|
13886 |
|
|
{
|
13887 |
|
|
HOST_WIDE_INT val = INTVAL (src);
|
13888 |
|
|
emit_set_insn (dest, GEN_INT (val & 0x0000ffff));
|
13889 |
|
|
if ((val >> 16) & 0x0000ffff)
|
13890 |
|
|
emit_set_insn (gen_rtx_ZERO_EXTRACT (SImode, dest, GEN_INT (16),
|
13891 |
|
|
GEN_INT (16)),
|
13892 |
|
|
GEN_INT ((val >> 16) & 0x0000ffff));
|
13893 |
|
|
return;
|
13894 |
|
|
}
|
13895 |
|
|
emit_set_insn (dest, gen_rtx_HIGH (SImode, src));
|
13896 |
|
|
emit_set_insn (dest, gen_rtx_LO_SUM (SImode, dest, src));
|
13897 |
|
|
}
|
13898 |
|
|
|
13899 |
|
|
/* Output a move from arm registers to an fpa registers.
|
13900 |
|
|
OPERANDS[0] is an fpa register.
|
13901 |
|
|
OPERANDS[1] is the first registers of an arm register pair. */
|
13902 |
|
|
const char *
|
13903 |
|
|
output_mov_double_fpa_from_arm (rtx *operands)
|
13904 |
|
|
{
|
13905 |
|
|
int arm_reg0 = REGNO (operands[1]);
|
13906 |
|
|
rtx ops[2];
|
13907 |
|
|
|
13908 |
|
|
gcc_assert (arm_reg0 != IP_REGNUM);
|
13909 |
|
|
|
13910 |
|
|
ops[0] = gen_rtx_REG (SImode, arm_reg0);
|
13911 |
|
|
ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
|
13912 |
|
|
output_asm_insn ("stm%(fd%)\t%|sp!, {%0, %1}", ops);
|
13913 |
|
|
output_asm_insn ("ldf%?d\t%0, [%|sp], #8", operands);
|
13914 |
|
|
return "";
|
13915 |
|
|
}
|
13916 |
|
|
|
13917 |
|
|
/* Output a move from an fpa register to arm registers.
|
13918 |
|
|
OPERANDS[0] is the first registers of an arm register pair.
|
13919 |
|
|
OPERANDS[1] is an fpa register. */
|
13920 |
|
|
const char *
|
13921 |
|
|
output_mov_double_arm_from_fpa (rtx *operands)
|
13922 |
|
|
{
|
13923 |
|
|
int arm_reg0 = REGNO (operands[0]);
|
13924 |
|
|
rtx ops[2];
|
13925 |
|
|
|
13926 |
|
|
gcc_assert (arm_reg0 != IP_REGNUM);
|
13927 |
|
|
|
13928 |
|
|
ops[0] = gen_rtx_REG (SImode, arm_reg0);
|
13929 |
|
|
ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
|
13930 |
|
|
output_asm_insn ("stf%?d\t%1, [%|sp, #-8]!", operands);
|
13931 |
|
|
output_asm_insn ("ldm%(fd%)\t%|sp!, {%0, %1}", ops);
|
13932 |
|
|
return "";
|
13933 |
|
|
}
|
13934 |
|
|
|
13935 |
|
|
/* Output a move between double words. It must be REG<-MEM
|
13936 |
|
|
or MEM<-REG. */
|
13937 |
|
|
const char *
|
13938 |
|
|
output_move_double (rtx *operands, bool emit, int *count)
|
13939 |
|
|
{
|
13940 |
|
|
enum rtx_code code0 = GET_CODE (operands[0]);
|
13941 |
|
|
enum rtx_code code1 = GET_CODE (operands[1]);
|
13942 |
|
|
rtx otherops[3];
|
13943 |
|
|
if (count)
|
13944 |
|
|
*count = 1;
|
13945 |
|
|
|
13946 |
|
|
/* The only case when this might happen is when
|
13947 |
|
|
you are looking at the length of a DImode instruction
|
13948 |
|
|
that has an invalid constant in it. */
|
13949 |
|
|
if (code0 == REG && code1 != MEM)
|
13950 |
|
|
{
|
13951 |
|
|
gcc_assert (!emit);
|
13952 |
|
|
*count = 2;
|
13953 |
|
|
return "";
|
13954 |
|
|
}
|
13955 |
|
|
|
13956 |
|
|
if (code0 == REG)
|
13957 |
|
|
{
|
13958 |
|
|
unsigned int reg0 = REGNO (operands[0]);
|
13959 |
|
|
|
13960 |
|
|
otherops[0] = gen_rtx_REG (SImode, 1 + reg0);
|
13961 |
|
|
|
13962 |
|
|
gcc_assert (code1 == MEM); /* Constraints should ensure this. */
|
13963 |
|
|
|
13964 |
|
|
switch (GET_CODE (XEXP (operands[1], 0)))
|
13965 |
|
|
{
|
13966 |
|
|
case REG:
|
13967 |
|
|
|
13968 |
|
|
if (emit)
|
13969 |
|
|
{
|
13970 |
|
|
if (TARGET_LDRD
|
13971 |
|
|
&& !(fix_cm3_ldrd && reg0 == REGNO(XEXP (operands[1], 0))))
|
13972 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%m1]", operands);
|
13973 |
|
|
else
|
13974 |
|
|
output_asm_insn ("ldm%(ia%)\t%m1, %M0", operands);
|
13975 |
|
|
}
|
13976 |
|
|
break;
|
13977 |
|
|
|
13978 |
|
|
case PRE_INC:
|
13979 |
|
|
gcc_assert (TARGET_LDRD);
|
13980 |
|
|
if (emit)
|
13981 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%m1, #8]!", operands);
|
13982 |
|
|
break;
|
13983 |
|
|
|
13984 |
|
|
case PRE_DEC:
|
13985 |
|
|
if (emit)
|
13986 |
|
|
{
|
13987 |
|
|
if (TARGET_LDRD)
|
13988 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%m1, #-8]!", operands);
|
13989 |
|
|
else
|
13990 |
|
|
output_asm_insn ("ldm%(db%)\t%m1!, %M0", operands);
|
13991 |
|
|
}
|
13992 |
|
|
break;
|
13993 |
|
|
|
13994 |
|
|
case POST_INC:
|
13995 |
|
|
if (emit)
|
13996 |
|
|
{
|
13997 |
|
|
if (TARGET_LDRD)
|
13998 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%m1], #8", operands);
|
13999 |
|
|
else
|
14000 |
|
|
output_asm_insn ("ldm%(ia%)\t%m1!, %M0", operands);
|
14001 |
|
|
}
|
14002 |
|
|
break;
|
14003 |
|
|
|
14004 |
|
|
case POST_DEC:
|
14005 |
|
|
gcc_assert (TARGET_LDRD);
|
14006 |
|
|
if (emit)
|
14007 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%m1], #-8", operands);
|
14008 |
|
|
break;
|
14009 |
|
|
|
14010 |
|
|
case PRE_MODIFY:
|
14011 |
|
|
case POST_MODIFY:
|
14012 |
|
|
/* Autoicrement addressing modes should never have overlapping
|
14013 |
|
|
base and destination registers, and overlapping index registers
|
14014 |
|
|
are already prohibited, so this doesn't need to worry about
|
14015 |
|
|
fix_cm3_ldrd. */
|
14016 |
|
|
otherops[0] = operands[0];
|
14017 |
|
|
otherops[1] = XEXP (XEXP (XEXP (operands[1], 0), 1), 0);
|
14018 |
|
|
otherops[2] = XEXP (XEXP (XEXP (operands[1], 0), 1), 1);
|
14019 |
|
|
|
14020 |
|
|
if (GET_CODE (XEXP (operands[1], 0)) == PRE_MODIFY)
|
14021 |
|
|
{
|
14022 |
|
|
if (reg_overlap_mentioned_p (otherops[0], otherops[2]))
|
14023 |
|
|
{
|
14024 |
|
|
/* Registers overlap so split out the increment. */
|
14025 |
|
|
if (emit)
|
14026 |
|
|
{
|
14027 |
|
|
output_asm_insn ("add%?\t%1, %1, %2", otherops);
|
14028 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%1] @split", otherops);
|
14029 |
|
|
}
|
14030 |
|
|
if (count)
|
14031 |
|
|
*count = 2;
|
14032 |
|
|
}
|
14033 |
|
|
else
|
14034 |
|
|
{
|
14035 |
|
|
/* Use a single insn if we can.
|
14036 |
|
|
FIXME: IWMMXT allows offsets larger than ldrd can
|
14037 |
|
|
handle, fix these up with a pair of ldr. */
|
14038 |
|
|
if (TARGET_THUMB2
|
14039 |
|
|
|| GET_CODE (otherops[2]) != CONST_INT
|
14040 |
|
|
|| (INTVAL (otherops[2]) > -256
|
14041 |
|
|
&& INTVAL (otherops[2]) < 256))
|
14042 |
|
|
{
|
14043 |
|
|
if (emit)
|
14044 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%1, %2]!", otherops);
|
14045 |
|
|
}
|
14046 |
|
|
else
|
14047 |
|
|
{
|
14048 |
|
|
if (emit)
|
14049 |
|
|
{
|
14050 |
|
|
output_asm_insn ("ldr%?\t%0, [%1, %2]!", otherops);
|
14051 |
|
|
output_asm_insn ("ldr%?\t%H0, [%1, #4]", otherops);
|
14052 |
|
|
}
|
14053 |
|
|
if (count)
|
14054 |
|
|
*count = 2;
|
14055 |
|
|
|
14056 |
|
|
}
|
14057 |
|
|
}
|
14058 |
|
|
}
|
14059 |
|
|
else
|
14060 |
|
|
{
|
14061 |
|
|
/* Use a single insn if we can.
|
14062 |
|
|
FIXME: IWMMXT allows offsets larger than ldrd can handle,
|
14063 |
|
|
fix these up with a pair of ldr. */
|
14064 |
|
|
if (TARGET_THUMB2
|
14065 |
|
|
|| GET_CODE (otherops[2]) != CONST_INT
|
14066 |
|
|
|| (INTVAL (otherops[2]) > -256
|
14067 |
|
|
&& INTVAL (otherops[2]) < 256))
|
14068 |
|
|
{
|
14069 |
|
|
if (emit)
|
14070 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%1], %2", otherops);
|
14071 |
|
|
}
|
14072 |
|
|
else
|
14073 |
|
|
{
|
14074 |
|
|
if (emit)
|
14075 |
|
|
{
|
14076 |
|
|
output_asm_insn ("ldr%?\t%H0, [%1, #4]", otherops);
|
14077 |
|
|
output_asm_insn ("ldr%?\t%0, [%1], %2", otherops);
|
14078 |
|
|
}
|
14079 |
|
|
if (count)
|
14080 |
|
|
*count = 2;
|
14081 |
|
|
}
|
14082 |
|
|
}
|
14083 |
|
|
break;
|
14084 |
|
|
|
14085 |
|
|
case LABEL_REF:
|
14086 |
|
|
case CONST:
|
14087 |
|
|
/* We might be able to use ldrd %0, %1 here. However the range is
|
14088 |
|
|
different to ldr/adr, and it is broken on some ARMv7-M
|
14089 |
|
|
implementations. */
|
14090 |
|
|
/* Use the second register of the pair to avoid problematic
|
14091 |
|
|
overlap. */
|
14092 |
|
|
otherops[1] = operands[1];
|
14093 |
|
|
if (emit)
|
14094 |
|
|
output_asm_insn ("adr%?\t%0, %1", otherops);
|
14095 |
|
|
operands[1] = otherops[0];
|
14096 |
|
|
if (emit)
|
14097 |
|
|
{
|
14098 |
|
|
if (TARGET_LDRD)
|
14099 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%1]", operands);
|
14100 |
|
|
else
|
14101 |
|
|
output_asm_insn ("ldm%(ia%)\t%1, %M0", operands);
|
14102 |
|
|
}
|
14103 |
|
|
|
14104 |
|
|
if (count)
|
14105 |
|
|
*count = 2;
|
14106 |
|
|
break;
|
14107 |
|
|
|
14108 |
|
|
/* ??? This needs checking for thumb2. */
|
14109 |
|
|
default:
|
14110 |
|
|
if (arm_add_operand (XEXP (XEXP (operands[1], 0), 1),
|
14111 |
|
|
GET_MODE (XEXP (XEXP (operands[1], 0), 1))))
|
14112 |
|
|
{
|
14113 |
|
|
otherops[0] = operands[0];
|
14114 |
|
|
otherops[1] = XEXP (XEXP (operands[1], 0), 0);
|
14115 |
|
|
otherops[2] = XEXP (XEXP (operands[1], 0), 1);
|
14116 |
|
|
|
14117 |
|
|
if (GET_CODE (XEXP (operands[1], 0)) == PLUS)
|
14118 |
|
|
{
|
14119 |
|
|
if (GET_CODE (otherops[2]) == CONST_INT && !TARGET_LDRD)
|
14120 |
|
|
{
|
14121 |
|
|
switch ((int) INTVAL (otherops[2]))
|
14122 |
|
|
{
|
14123 |
|
|
case -8:
|
14124 |
|
|
if (emit)
|
14125 |
|
|
output_asm_insn ("ldm%(db%)\t%1, %M0", otherops);
|
14126 |
|
|
return "";
|
14127 |
|
|
case -4:
|
14128 |
|
|
if (TARGET_THUMB2)
|
14129 |
|
|
break;
|
14130 |
|
|
if (emit)
|
14131 |
|
|
output_asm_insn ("ldm%(da%)\t%1, %M0", otherops);
|
14132 |
|
|
return "";
|
14133 |
|
|
case 4:
|
14134 |
|
|
if (TARGET_THUMB2)
|
14135 |
|
|
break;
|
14136 |
|
|
if (emit)
|
14137 |
|
|
output_asm_insn ("ldm%(ib%)\t%1, %M0", otherops);
|
14138 |
|
|
return "";
|
14139 |
|
|
}
|
14140 |
|
|
}
|
14141 |
|
|
otherops[0] = gen_rtx_REG(SImode, REGNO(operands[0]) + 1);
|
14142 |
|
|
operands[1] = otherops[0];
|
14143 |
|
|
if (TARGET_LDRD
|
14144 |
|
|
&& (GET_CODE (otherops[2]) == REG
|
14145 |
|
|
|| TARGET_THUMB2
|
14146 |
|
|
|| (GET_CODE (otherops[2]) == CONST_INT
|
14147 |
|
|
&& INTVAL (otherops[2]) > -256
|
14148 |
|
|
&& INTVAL (otherops[2]) < 256)))
|
14149 |
|
|
{
|
14150 |
|
|
if (reg_overlap_mentioned_p (operands[0],
|
14151 |
|
|
otherops[2]))
|
14152 |
|
|
{
|
14153 |
|
|
rtx tmp;
|
14154 |
|
|
/* Swap base and index registers over to
|
14155 |
|
|
avoid a conflict. */
|
14156 |
|
|
tmp = otherops[1];
|
14157 |
|
|
otherops[1] = otherops[2];
|
14158 |
|
|
otherops[2] = tmp;
|
14159 |
|
|
}
|
14160 |
|
|
/* If both registers conflict, it will usually
|
14161 |
|
|
have been fixed by a splitter. */
|
14162 |
|
|
if (reg_overlap_mentioned_p (operands[0], otherops[2])
|
14163 |
|
|
|| (fix_cm3_ldrd && reg0 == REGNO (otherops[1])))
|
14164 |
|
|
{
|
14165 |
|
|
if (emit)
|
14166 |
|
|
{
|
14167 |
|
|
output_asm_insn ("add%?\t%0, %1, %2", otherops);
|
14168 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%1]", operands);
|
14169 |
|
|
}
|
14170 |
|
|
if (count)
|
14171 |
|
|
*count = 2;
|
14172 |
|
|
}
|
14173 |
|
|
else
|
14174 |
|
|
{
|
14175 |
|
|
otherops[0] = operands[0];
|
14176 |
|
|
if (emit)
|
14177 |
|
|
output_asm_insn ("ldr%(d%)\t%0, [%1, %2]", otherops);
|
14178 |
|
|
}
|
14179 |
|
|
return "";
|
14180 |
|
|
}
|
14181 |
|
|
|
14182 |
|
|
if (GET_CODE (otherops[2]) == CONST_INT)
|
14183 |
|
|
{
|
14184 |
|
|
if (emit)
|
14185 |
|
|
{
|
14186 |
|
|
if (!(const_ok_for_arm (INTVAL (otherops[2]))))
|
14187 |
|
|
output_asm_insn ("sub%?\t%0, %1, #%n2", otherops);
|
14188 |
|
|
else
|
14189 |
|
|
output_asm_insn ("add%?\t%0, %1, %2", otherops);
|
14190 |
|
|
}
|
14191 |
|
|
}
|
14192 |
|
|
else
|
14193 |
|
|
{
|
14194 |
|
|
if (emit)
|
14195 |
|
|
output_asm_insn ("add%?\t%0, %1, %2", otherops);
|
14196 |
|
|
}
|
14197 |
|
|
}
|
14198 |
|
|
else
|
14199 |
|
|
{
|
14200 |
|
|
if (emit)
|
14201 |
|
|
output_asm_insn ("sub%?\t%0, %1, %2", otherops);
|
14202 |
|
|
}
|
14203 |
|
|
|
14204 |
|
|
if (count)
|
14205 |
|
|
*count = 2;
|
14206 |
|
|
|
14207 |
|
|
if (TARGET_LDRD)
|
14208 |
|
|
return "ldr%(d%)\t%0, [%1]";
|
14209 |
|
|
|
14210 |
|
|
return "ldm%(ia%)\t%1, %M0";
|
14211 |
|
|
}
|
14212 |
|
|
else
|
14213 |
|
|
{
|
14214 |
|
|
otherops[1] = adjust_address (operands[1], SImode, 4);
|
14215 |
|
|
/* Take care of overlapping base/data reg. */
|
14216 |
|
|
if (reg_mentioned_p (operands[0], operands[1]))
|
14217 |
|
|
{
|
14218 |
|
|
if (emit)
|
14219 |
|
|
{
|
14220 |
|
|
output_asm_insn ("ldr%?\t%0, %1", otherops);
|
14221 |
|
|
output_asm_insn ("ldr%?\t%0, %1", operands);
|
14222 |
|
|
}
|
14223 |
|
|
if (count)
|
14224 |
|
|
*count = 2;
|
14225 |
|
|
|
14226 |
|
|
}
|
14227 |
|
|
else
|
14228 |
|
|
{
|
14229 |
|
|
if (emit)
|
14230 |
|
|
{
|
14231 |
|
|
output_asm_insn ("ldr%?\t%0, %1", operands);
|
14232 |
|
|
output_asm_insn ("ldr%?\t%0, %1", otherops);
|
14233 |
|
|
}
|
14234 |
|
|
if (count)
|
14235 |
|
|
*count = 2;
|
14236 |
|
|
}
|
14237 |
|
|
}
|
14238 |
|
|
}
|
14239 |
|
|
}
|
14240 |
|
|
else
|
14241 |
|
|
{
|
14242 |
|
|
/* Constraints should ensure this. */
|
14243 |
|
|
gcc_assert (code0 == MEM && code1 == REG);
|
14244 |
|
|
gcc_assert (REGNO (operands[1]) != IP_REGNUM);
|
14245 |
|
|
|
14246 |
|
|
switch (GET_CODE (XEXP (operands[0], 0)))
|
14247 |
|
|
{
|
14248 |
|
|
case REG:
|
14249 |
|
|
if (emit)
|
14250 |
|
|
{
|
14251 |
|
|
if (TARGET_LDRD)
|
14252 |
|
|
output_asm_insn ("str%(d%)\t%1, [%m0]", operands);
|
14253 |
|
|
else
|
14254 |
|
|
output_asm_insn ("stm%(ia%)\t%m0, %M1", operands);
|
14255 |
|
|
}
|
14256 |
|
|
break;
|
14257 |
|
|
|
14258 |
|
|
case PRE_INC:
|
14259 |
|
|
gcc_assert (TARGET_LDRD);
|
14260 |
|
|
if (emit)
|
14261 |
|
|
output_asm_insn ("str%(d%)\t%1, [%m0, #8]!", operands);
|
14262 |
|
|
break;
|
14263 |
|
|
|
14264 |
|
|
case PRE_DEC:
|
14265 |
|
|
if (emit)
|
14266 |
|
|
{
|
14267 |
|
|
if (TARGET_LDRD)
|
14268 |
|
|
output_asm_insn ("str%(d%)\t%1, [%m0, #-8]!", operands);
|
14269 |
|
|
else
|
14270 |
|
|
output_asm_insn ("stm%(db%)\t%m0!, %M1", operands);
|
14271 |
|
|
}
|
14272 |
|
|
break;
|
14273 |
|
|
|
14274 |
|
|
case POST_INC:
|
14275 |
|
|
if (emit)
|
14276 |
|
|
{
|
14277 |
|
|
if (TARGET_LDRD)
|
14278 |
|
|
output_asm_insn ("str%(d%)\t%1, [%m0], #8", operands);
|
14279 |
|
|
else
|
14280 |
|
|
output_asm_insn ("stm%(ia%)\t%m0!, %M1", operands);
|
14281 |
|
|
}
|
14282 |
|
|
break;
|
14283 |
|
|
|
14284 |
|
|
case POST_DEC:
|
14285 |
|
|
gcc_assert (TARGET_LDRD);
|
14286 |
|
|
if (emit)
|
14287 |
|
|
output_asm_insn ("str%(d%)\t%1, [%m0], #-8", operands);
|
14288 |
|
|
break;
|
14289 |
|
|
|
14290 |
|
|
case PRE_MODIFY:
|
14291 |
|
|
case POST_MODIFY:
|
14292 |
|
|
otherops[0] = operands[1];
|
14293 |
|
|
otherops[1] = XEXP (XEXP (XEXP (operands[0], 0), 1), 0);
|
14294 |
|
|
otherops[2] = XEXP (XEXP (XEXP (operands[0], 0), 1), 1);
|
14295 |
|
|
|
14296 |
|
|
/* IWMMXT allows offsets larger than ldrd can handle,
|
14297 |
|
|
fix these up with a pair of ldr. */
|
14298 |
|
|
if (!TARGET_THUMB2
|
14299 |
|
|
&& GET_CODE (otherops[2]) == CONST_INT
|
14300 |
|
|
&& (INTVAL(otherops[2]) <= -256
|
14301 |
|
|
|| INTVAL(otherops[2]) >= 256))
|
14302 |
|
|
{
|
14303 |
|
|
if (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY)
|
14304 |
|
|
{
|
14305 |
|
|
if (emit)
|
14306 |
|
|
{
|
14307 |
|
|
output_asm_insn ("str%?\t%0, [%1, %2]!", otherops);
|
14308 |
|
|
output_asm_insn ("str%?\t%H0, [%1, #4]", otherops);
|
14309 |
|
|
}
|
14310 |
|
|
if (count)
|
14311 |
|
|
*count = 2;
|
14312 |
|
|
}
|
14313 |
|
|
else
|
14314 |
|
|
{
|
14315 |
|
|
if (emit)
|
14316 |
|
|
{
|
14317 |
|
|
output_asm_insn ("str%?\t%H0, [%1, #4]", otherops);
|
14318 |
|
|
output_asm_insn ("str%?\t%0, [%1], %2", otherops);
|
14319 |
|
|
}
|
14320 |
|
|
if (count)
|
14321 |
|
|
*count = 2;
|
14322 |
|
|
}
|
14323 |
|
|
}
|
14324 |
|
|
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY)
|
14325 |
|
|
{
|
14326 |
|
|
if (emit)
|
14327 |
|
|
output_asm_insn ("str%(d%)\t%0, [%1, %2]!", otherops);
|
14328 |
|
|
}
|
14329 |
|
|
else
|
14330 |
|
|
{
|
14331 |
|
|
if (emit)
|
14332 |
|
|
output_asm_insn ("str%(d%)\t%0, [%1], %2", otherops);
|
14333 |
|
|
}
|
14334 |
|
|
break;
|
14335 |
|
|
|
14336 |
|
|
case PLUS:
|
14337 |
|
|
otherops[2] = XEXP (XEXP (operands[0], 0), 1);
|
14338 |
|
|
if (GET_CODE (otherops[2]) == CONST_INT && !TARGET_LDRD)
|
14339 |
|
|
{
|
14340 |
|
|
switch ((int) INTVAL (XEXP (XEXP (operands[0], 0), 1)))
|
14341 |
|
|
{
|
14342 |
|
|
case -8:
|
14343 |
|
|
if (emit)
|
14344 |
|
|
output_asm_insn ("stm%(db%)\t%m0, %M1", operands);
|
14345 |
|
|
return "";
|
14346 |
|
|
|
14347 |
|
|
case -4:
|
14348 |
|
|
if (TARGET_THUMB2)
|
14349 |
|
|
break;
|
14350 |
|
|
if (emit)
|
14351 |
|
|
output_asm_insn ("stm%(da%)\t%m0, %M1", operands);
|
14352 |
|
|
return "";
|
14353 |
|
|
|
14354 |
|
|
case 4:
|
14355 |
|
|
if (TARGET_THUMB2)
|
14356 |
|
|
break;
|
14357 |
|
|
if (emit)
|
14358 |
|
|
output_asm_insn ("stm%(ib%)\t%m0, %M1", operands);
|
14359 |
|
|
return "";
|
14360 |
|
|
}
|
14361 |
|
|
}
|
14362 |
|
|
if (TARGET_LDRD
|
14363 |
|
|
&& (GET_CODE (otherops[2]) == REG
|
14364 |
|
|
|| TARGET_THUMB2
|
14365 |
|
|
|| (GET_CODE (otherops[2]) == CONST_INT
|
14366 |
|
|
&& INTVAL (otherops[2]) > -256
|
14367 |
|
|
&& INTVAL (otherops[2]) < 256)))
|
14368 |
|
|
{
|
14369 |
|
|
otherops[0] = operands[1];
|
14370 |
|
|
otherops[1] = XEXP (XEXP (operands[0], 0), 0);
|
14371 |
|
|
if (emit)
|
14372 |
|
|
output_asm_insn ("str%(d%)\t%0, [%1, %2]", otherops);
|
14373 |
|
|
return "";
|
14374 |
|
|
}
|
14375 |
|
|
/* Fall through */
|
14376 |
|
|
|
14377 |
|
|
default:
|
14378 |
|
|
otherops[0] = adjust_address (operands[0], SImode, 4);
|
14379 |
|
|
otherops[1] = operands[1];
|
14380 |
|
|
if (emit)
|
14381 |
|
|
{
|
14382 |
|
|
output_asm_insn ("str%?\t%1, %0", operands);
|
14383 |
|
|
output_asm_insn ("str%?\t%H1, %0", otherops);
|
14384 |
|
|
}
|
14385 |
|
|
if (count)
|
14386 |
|
|
*count = 2;
|
14387 |
|
|
}
|
14388 |
|
|
}
|
14389 |
|
|
|
14390 |
|
|
return "";
|
14391 |
|
|
}
|
14392 |
|
|
|
14393 |
|
|
/* Output a move, load or store for quad-word vectors in ARM registers. Only
|
14394 |
|
|
handles MEMs accepted by neon_vector_mem_operand with TYPE=1. */
|
14395 |
|
|
|
14396 |
|
|
const char *
|
14397 |
|
|
output_move_quad (rtx *operands)
|
14398 |
|
|
{
|
14399 |
|
|
if (REG_P (operands[0]))
|
14400 |
|
|
{
|
14401 |
|
|
/* Load, or reg->reg move. */
|
14402 |
|
|
|
14403 |
|
|
if (MEM_P (operands[1]))
|
14404 |
|
|
{
|
14405 |
|
|
switch (GET_CODE (XEXP (operands[1], 0)))
|
14406 |
|
|
{
|
14407 |
|
|
case REG:
|
14408 |
|
|
output_asm_insn ("ldm%(ia%)\t%m1, %M0", operands);
|
14409 |
|
|
break;
|
14410 |
|
|
|
14411 |
|
|
case LABEL_REF:
|
14412 |
|
|
case CONST:
|
14413 |
|
|
output_asm_insn ("adr%?\t%0, %1", operands);
|
14414 |
|
|
output_asm_insn ("ldm%(ia%)\t%0, %M0", operands);
|
14415 |
|
|
break;
|
14416 |
|
|
|
14417 |
|
|
default:
|
14418 |
|
|
gcc_unreachable ();
|
14419 |
|
|
}
|
14420 |
|
|
}
|
14421 |
|
|
else
|
14422 |
|
|
{
|
14423 |
|
|
rtx ops[2];
|
14424 |
|
|
int dest, src, i;
|
14425 |
|
|
|
14426 |
|
|
gcc_assert (REG_P (operands[1]));
|
14427 |
|
|
|
14428 |
|
|
dest = REGNO (operands[0]);
|
14429 |
|
|
src = REGNO (operands[1]);
|
14430 |
|
|
|
14431 |
|
|
/* This seems pretty dumb, but hopefully GCC won't try to do it
|
14432 |
|
|
very often. */
|
14433 |
|
|
if (dest < src)
|
14434 |
|
|
for (i = 0; i < 4; i++)
|
14435 |
|
|
{
|
14436 |
|
|
ops[0] = gen_rtx_REG (SImode, dest + i);
|
14437 |
|
|
ops[1] = gen_rtx_REG (SImode, src + i);
|
14438 |
|
|
output_asm_insn ("mov%?\t%0, %1", ops);
|
14439 |
|
|
}
|
14440 |
|
|
else
|
14441 |
|
|
for (i = 3; i >= 0; i--)
|
14442 |
|
|
{
|
14443 |
|
|
ops[0] = gen_rtx_REG (SImode, dest + i);
|
14444 |
|
|
ops[1] = gen_rtx_REG (SImode, src + i);
|
14445 |
|
|
output_asm_insn ("mov%?\t%0, %1", ops);
|
14446 |
|
|
}
|
14447 |
|
|
}
|
14448 |
|
|
}
|
14449 |
|
|
else
|
14450 |
|
|
{
|
14451 |
|
|
gcc_assert (MEM_P (operands[0]));
|
14452 |
|
|
gcc_assert (REG_P (operands[1]));
|
14453 |
|
|
gcc_assert (!reg_overlap_mentioned_p (operands[1], operands[0]));
|
14454 |
|
|
|
14455 |
|
|
switch (GET_CODE (XEXP (operands[0], 0)))
|
14456 |
|
|
{
|
14457 |
|
|
case REG:
|
14458 |
|
|
output_asm_insn ("stm%(ia%)\t%m0, %M1", operands);
|
14459 |
|
|
break;
|
14460 |
|
|
|
14461 |
|
|
default:
|
14462 |
|
|
gcc_unreachable ();
|
14463 |
|
|
}
|
14464 |
|
|
}
|
14465 |
|
|
|
14466 |
|
|
return "";
|
14467 |
|
|
}
|
14468 |
|
|
|
14469 |
|
|
/* Output a VFP load or store instruction. */
|
14470 |
|
|
|
14471 |
|
|
const char *
|
14472 |
|
|
output_move_vfp (rtx *operands)
|
14473 |
|
|
{
|
14474 |
|
|
rtx reg, mem, addr, ops[2];
|
14475 |
|
|
int load = REG_P (operands[0]);
|
14476 |
|
|
int dp = GET_MODE_SIZE (GET_MODE (operands[0])) == 8;
|
14477 |
|
|
int integer_p = GET_MODE_CLASS (GET_MODE (operands[0])) == MODE_INT;
|
14478 |
|
|
const char *templ;
|
14479 |
|
|
char buff[50];
|
14480 |
|
|
enum machine_mode mode;
|
14481 |
|
|
|
14482 |
|
|
reg = operands[!load];
|
14483 |
|
|
mem = operands[load];
|
14484 |
|
|
|
14485 |
|
|
mode = GET_MODE (reg);
|
14486 |
|
|
|
14487 |
|
|
gcc_assert (REG_P (reg));
|
14488 |
|
|
gcc_assert (IS_VFP_REGNUM (REGNO (reg)));
|
14489 |
|
|
gcc_assert (mode == SFmode
|
14490 |
|
|
|| mode == DFmode
|
14491 |
|
|
|| mode == SImode
|
14492 |
|
|
|| mode == DImode
|
14493 |
|
|
|| (TARGET_NEON && VALID_NEON_DREG_MODE (mode)));
|
14494 |
|
|
gcc_assert (MEM_P (mem));
|
14495 |
|
|
|
14496 |
|
|
addr = XEXP (mem, 0);
|
14497 |
|
|
|
14498 |
|
|
switch (GET_CODE (addr))
|
14499 |
|
|
{
|
14500 |
|
|
case PRE_DEC:
|
14501 |
|
|
templ = "f%smdb%c%%?\t%%0!, {%%%s1}%s";
|
14502 |
|
|
ops[0] = XEXP (addr, 0);
|
14503 |
|
|
ops[1] = reg;
|
14504 |
|
|
break;
|
14505 |
|
|
|
14506 |
|
|
case POST_INC:
|
14507 |
|
|
templ = "f%smia%c%%?\t%%0!, {%%%s1}%s";
|
14508 |
|
|
ops[0] = XEXP (addr, 0);
|
14509 |
|
|
ops[1] = reg;
|
14510 |
|
|
break;
|
14511 |
|
|
|
14512 |
|
|
default:
|
14513 |
|
|
templ = "f%s%c%%?\t%%%s0, %%1%s";
|
14514 |
|
|
ops[0] = reg;
|
14515 |
|
|
ops[1] = mem;
|
14516 |
|
|
break;
|
14517 |
|
|
}
|
14518 |
|
|
|
14519 |
|
|
sprintf (buff, templ,
|
14520 |
|
|
load ? "ld" : "st",
|
14521 |
|
|
dp ? 'd' : 's',
|
14522 |
|
|
dp ? "P" : "",
|
14523 |
|
|
integer_p ? "\t%@ int" : "");
|
14524 |
|
|
output_asm_insn (buff, ops);
|
14525 |
|
|
|
14526 |
|
|
return "";
|
14527 |
|
|
}
|
14528 |
|
|
|
14529 |
|
|
/* Output a Neon quad-word load or store, or a load or store for
|
14530 |
|
|
larger structure modes.
|
14531 |
|
|
|
14532 |
|
|
WARNING: The ordering of elements is weird in big-endian mode,
|
14533 |
|
|
because we use VSTM, as required by the EABI. GCC RTL defines
|
14534 |
|
|
element ordering based on in-memory order. This can be differ
|
14535 |
|
|
from the architectural ordering of elements within a NEON register.
|
14536 |
|
|
The intrinsics defined in arm_neon.h use the NEON register element
|
14537 |
|
|
ordering, not the GCC RTL element ordering.
|
14538 |
|
|
|
14539 |
|
|
For example, the in-memory ordering of a big-endian a quadword
|
14540 |
|
|
vector with 16-bit elements when stored from register pair {d0,d1}
|
14541 |
|
|
will be (lowest address first, d0[N] is NEON register element N):
|
14542 |
|
|
|
14543 |
|
|
[d0[3], d0[2], d0[1], d0[0], d1[7], d1[6], d1[5], d1[4]]
|
14544 |
|
|
|
14545 |
|
|
When necessary, quadword registers (dN, dN+1) are moved to ARM
|
14546 |
|
|
registers from rN in the order:
|
14547 |
|
|
|
14548 |
|
|
dN -> (rN+1, rN), dN+1 -> (rN+3, rN+2)
|
14549 |
|
|
|
14550 |
|
|
So that STM/LDM can be used on vectors in ARM registers, and the
|
14551 |
|
|
same memory layout will result as if VSTM/VLDM were used. */
|
14552 |
|
|
|
14553 |
|
|
const char *
|
14554 |
|
|
output_move_neon (rtx *operands)
|
14555 |
|
|
{
|
14556 |
|
|
rtx reg, mem, addr, ops[2];
|
14557 |
|
|
int regno, load = REG_P (operands[0]);
|
14558 |
|
|
const char *templ;
|
14559 |
|
|
char buff[50];
|
14560 |
|
|
enum machine_mode mode;
|
14561 |
|
|
|
14562 |
|
|
reg = operands[!load];
|
14563 |
|
|
mem = operands[load];
|
14564 |
|
|
|
14565 |
|
|
mode = GET_MODE (reg);
|
14566 |
|
|
|
14567 |
|
|
gcc_assert (REG_P (reg));
|
14568 |
|
|
regno = REGNO (reg);
|
14569 |
|
|
gcc_assert (VFP_REGNO_OK_FOR_DOUBLE (regno)
|
14570 |
|
|
|| NEON_REGNO_OK_FOR_QUAD (regno));
|
14571 |
|
|
gcc_assert (VALID_NEON_DREG_MODE (mode)
|
14572 |
|
|
|| VALID_NEON_QREG_MODE (mode)
|
14573 |
|
|
|| VALID_NEON_STRUCT_MODE (mode));
|
14574 |
|
|
gcc_assert (MEM_P (mem));
|
14575 |
|
|
|
14576 |
|
|
addr = XEXP (mem, 0);
|
14577 |
|
|
|
14578 |
|
|
/* Strip off const from addresses like (const (plus (...))). */
|
14579 |
|
|
if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS)
|
14580 |
|
|
addr = XEXP (addr, 0);
|
14581 |
|
|
|
14582 |
|
|
switch (GET_CODE (addr))
|
14583 |
|
|
{
|
14584 |
|
|
case POST_INC:
|
14585 |
|
|
templ = "v%smia%%?\t%%0!, %%h1";
|
14586 |
|
|
ops[0] = XEXP (addr, 0);
|
14587 |
|
|
ops[1] = reg;
|
14588 |
|
|
break;
|
14589 |
|
|
|
14590 |
|
|
case PRE_DEC:
|
14591 |
|
|
/* FIXME: We should be using vld1/vst1 here in BE mode? */
|
14592 |
|
|
templ = "v%smdb%%?\t%%0!, %%h1";
|
14593 |
|
|
ops[0] = XEXP (addr, 0);
|
14594 |
|
|
ops[1] = reg;
|
14595 |
|
|
break;
|
14596 |
|
|
|
14597 |
|
|
case POST_MODIFY:
|
14598 |
|
|
/* FIXME: Not currently enabled in neon_vector_mem_operand. */
|
14599 |
|
|
gcc_unreachable ();
|
14600 |
|
|
|
14601 |
|
|
case LABEL_REF:
|
14602 |
|
|
case PLUS:
|
14603 |
|
|
{
|
14604 |
|
|
int nregs = HARD_REGNO_NREGS (REGNO (reg), mode) / 2;
|
14605 |
|
|
int i;
|
14606 |
|
|
int overlap = -1;
|
14607 |
|
|
for (i = 0; i < nregs; i++)
|
14608 |
|
|
{
|
14609 |
|
|
/* We're only using DImode here because it's a convenient size. */
|
14610 |
|
|
ops[0] = gen_rtx_REG (DImode, REGNO (reg) + 2 * i);
|
14611 |
|
|
ops[1] = adjust_address (mem, DImode, 8 * i);
|
14612 |
|
|
if (reg_overlap_mentioned_p (ops[0], mem))
|
14613 |
|
|
{
|
14614 |
|
|
gcc_assert (overlap == -1);
|
14615 |
|
|
overlap = i;
|
14616 |
|
|
}
|
14617 |
|
|
else
|
14618 |
|
|
{
|
14619 |
|
|
sprintf (buff, "v%sr%%?\t%%P0, %%1", load ? "ld" : "st");
|
14620 |
|
|
output_asm_insn (buff, ops);
|
14621 |
|
|
}
|
14622 |
|
|
}
|
14623 |
|
|
if (overlap != -1)
|
14624 |
|
|
{
|
14625 |
|
|
ops[0] = gen_rtx_REG (DImode, REGNO (reg) + 2 * overlap);
|
14626 |
|
|
ops[1] = adjust_address (mem, SImode, 8 * overlap);
|
14627 |
|
|
sprintf (buff, "v%sr%%?\t%%P0, %%1", load ? "ld" : "st");
|
14628 |
|
|
output_asm_insn (buff, ops);
|
14629 |
|
|
}
|
14630 |
|
|
|
14631 |
|
|
return "";
|
14632 |
|
|
}
|
14633 |
|
|
|
14634 |
|
|
default:
|
14635 |
|
|
templ = "v%smia%%?\t%%m0, %%h1";
|
14636 |
|
|
ops[0] = mem;
|
14637 |
|
|
ops[1] = reg;
|
14638 |
|
|
}
|
14639 |
|
|
|
14640 |
|
|
sprintf (buff, templ, load ? "ld" : "st");
|
14641 |
|
|
output_asm_insn (buff, ops);
|
14642 |
|
|
|
14643 |
|
|
return "";
|
14644 |
|
|
}
|
14645 |
|
|
|
14646 |
|
|
/* Compute and return the length of neon_mov<mode>, where <mode> is
|
14647 |
|
|
one of VSTRUCT modes: EI, OI, CI or XI. */
|
14648 |
|
|
int
|
14649 |
|
|
arm_attr_length_move_neon (rtx insn)
|
14650 |
|
|
{
|
14651 |
|
|
rtx reg, mem, addr;
|
14652 |
|
|
int load;
|
14653 |
|
|
enum machine_mode mode;
|
14654 |
|
|
|
14655 |
|
|
extract_insn_cached (insn);
|
14656 |
|
|
|
14657 |
|
|
if (REG_P (recog_data.operand[0]) && REG_P (recog_data.operand[1]))
|
14658 |
|
|
{
|
14659 |
|
|
mode = GET_MODE (recog_data.operand[0]);
|
14660 |
|
|
switch (mode)
|
14661 |
|
|
{
|
14662 |
|
|
case EImode:
|
14663 |
|
|
case OImode:
|
14664 |
|
|
return 8;
|
14665 |
|
|
case CImode:
|
14666 |
|
|
return 12;
|
14667 |
|
|
case XImode:
|
14668 |
|
|
return 16;
|
14669 |
|
|
default:
|
14670 |
|
|
gcc_unreachable ();
|
14671 |
|
|
}
|
14672 |
|
|
}
|
14673 |
|
|
|
14674 |
|
|
load = REG_P (recog_data.operand[0]);
|
14675 |
|
|
reg = recog_data.operand[!load];
|
14676 |
|
|
mem = recog_data.operand[load];
|
14677 |
|
|
|
14678 |
|
|
gcc_assert (MEM_P (mem));
|
14679 |
|
|
|
14680 |
|
|
mode = GET_MODE (reg);
|
14681 |
|
|
addr = XEXP (mem, 0);
|
14682 |
|
|
|
14683 |
|
|
/* Strip off const from addresses like (const (plus (...))). */
|
14684 |
|
|
if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS)
|
14685 |
|
|
addr = XEXP (addr, 0);
|
14686 |
|
|
|
14687 |
|
|
if (GET_CODE (addr) == LABEL_REF || GET_CODE (addr) == PLUS)
|
14688 |
|
|
{
|
14689 |
|
|
int insns = HARD_REGNO_NREGS (REGNO (reg), mode) / 2;
|
14690 |
|
|
return insns * 4;
|
14691 |
|
|
}
|
14692 |
|
|
else
|
14693 |
|
|
return 4;
|
14694 |
|
|
}
|
14695 |
|
|
|
14696 |
|
|
/* Return nonzero if the offset in the address is an immediate. Otherwise,
|
14697 |
|
|
return zero. */
|
14698 |
|
|
|
14699 |
|
|
int
|
14700 |
|
|
arm_address_offset_is_imm (rtx insn)
|
14701 |
|
|
{
|
14702 |
|
|
rtx mem, addr;
|
14703 |
|
|
|
14704 |
|
|
extract_insn_cached (insn);
|
14705 |
|
|
|
14706 |
|
|
if (REG_P (recog_data.operand[0]))
|
14707 |
|
|
return 0;
|
14708 |
|
|
|
14709 |
|
|
mem = recog_data.operand[0];
|
14710 |
|
|
|
14711 |
|
|
gcc_assert (MEM_P (mem));
|
14712 |
|
|
|
14713 |
|
|
addr = XEXP (mem, 0);
|
14714 |
|
|
|
14715 |
|
|
if (GET_CODE (addr) == REG
|
14716 |
|
|
|| (GET_CODE (addr) == PLUS
|
14717 |
|
|
&& GET_CODE (XEXP (addr, 0)) == REG
|
14718 |
|
|
&& GET_CODE (XEXP (addr, 1)) == CONST_INT))
|
14719 |
|
|
return 1;
|
14720 |
|
|
else
|
14721 |
|
|
return 0;
|
14722 |
|
|
}
|
14723 |
|
|
|
14724 |
|
|
/* Output an ADD r, s, #n where n may be too big for one instruction.
|
14725 |
|
|
If adding zero to one register, output nothing. */
|
14726 |
|
|
const char *
|
14727 |
|
|
output_add_immediate (rtx *operands)
|
14728 |
|
|
{
|
14729 |
|
|
HOST_WIDE_INT n = INTVAL (operands[2]);
|
14730 |
|
|
|
14731 |
|
|
if (n != 0 || REGNO (operands[0]) != REGNO (operands[1]))
|
14732 |
|
|
{
|
14733 |
|
|
if (n < 0)
|
14734 |
|
|
output_multi_immediate (operands,
|
14735 |
|
|
"sub%?\t%0, %1, %2", "sub%?\t%0, %0, %2", 2,
|
14736 |
|
|
-n);
|
14737 |
|
|
else
|
14738 |
|
|
output_multi_immediate (operands,
|
14739 |
|
|
"add%?\t%0, %1, %2", "add%?\t%0, %0, %2", 2,
|
14740 |
|
|
n);
|
14741 |
|
|
}
|
14742 |
|
|
|
14743 |
|
|
return "";
|
14744 |
|
|
}
|
14745 |
|
|
|
14746 |
|
|
/* Output a multiple immediate operation.
|
14747 |
|
|
OPERANDS is the vector of operands referred to in the output patterns.
|
14748 |
|
|
INSTR1 is the output pattern to use for the first constant.
|
14749 |
|
|
INSTR2 is the output pattern to use for subsequent constants.
|
14750 |
|
|
IMMED_OP is the index of the constant slot in OPERANDS.
|
14751 |
|
|
N is the constant value. */
|
14752 |
|
|
static const char *
|
14753 |
|
|
output_multi_immediate (rtx *operands, const char *instr1, const char *instr2,
|
14754 |
|
|
int immed_op, HOST_WIDE_INT n)
|
14755 |
|
|
{
|
14756 |
|
|
#if HOST_BITS_PER_WIDE_INT > 32
|
14757 |
|
|
n &= 0xffffffff;
|
14758 |
|
|
#endif
|
14759 |
|
|
|
14760 |
|
|
if (n == 0)
|
14761 |
|
|
{
|
14762 |
|
|
/* Quick and easy output. */
|
14763 |
|
|
operands[immed_op] = const0_rtx;
|
14764 |
|
|
output_asm_insn (instr1, operands);
|
14765 |
|
|
}
|
14766 |
|
|
else
|
14767 |
|
|
{
|
14768 |
|
|
int i;
|
14769 |
|
|
const char * instr = instr1;
|
14770 |
|
|
|
14771 |
|
|
/* Note that n is never zero here (which would give no output). */
|
14772 |
|
|
for (i = 0; i < 32; i += 2)
|
14773 |
|
|
{
|
14774 |
|
|
if (n & (3 << i))
|
14775 |
|
|
{
|
14776 |
|
|
operands[immed_op] = GEN_INT (n & (255 << i));
|
14777 |
|
|
output_asm_insn (instr, operands);
|
14778 |
|
|
instr = instr2;
|
14779 |
|
|
i += 6;
|
14780 |
|
|
}
|
14781 |
|
|
}
|
14782 |
|
|
}
|
14783 |
|
|
|
14784 |
|
|
return "";
|
14785 |
|
|
}
|
14786 |
|
|
|
14787 |
|
|
/* Return the name of a shifter operation. */
|
14788 |
|
|
static const char *
|
14789 |
|
|
arm_shift_nmem(enum rtx_code code)
|
14790 |
|
|
{
|
14791 |
|
|
switch (code)
|
14792 |
|
|
{
|
14793 |
|
|
case ASHIFT:
|
14794 |
|
|
return ARM_LSL_NAME;
|
14795 |
|
|
|
14796 |
|
|
case ASHIFTRT:
|
14797 |
|
|
return "asr";
|
14798 |
|
|
|
14799 |
|
|
case LSHIFTRT:
|
14800 |
|
|
return "lsr";
|
14801 |
|
|
|
14802 |
|
|
case ROTATERT:
|
14803 |
|
|
return "ror";
|
14804 |
|
|
|
14805 |
|
|
default:
|
14806 |
|
|
abort();
|
14807 |
|
|
}
|
14808 |
|
|
}
|
14809 |
|
|
|
14810 |
|
|
/* Return the appropriate ARM instruction for the operation code.
|
14811 |
|
|
The returned result should not be overwritten. OP is the rtx of the
|
14812 |
|
|
operation. SHIFT_FIRST_ARG is TRUE if the first argument of the operator
|
14813 |
|
|
was shifted. */
|
14814 |
|
|
const char *
|
14815 |
|
|
arithmetic_instr (rtx op, int shift_first_arg)
|
14816 |
|
|
{
|
14817 |
|
|
switch (GET_CODE (op))
|
14818 |
|
|
{
|
14819 |
|
|
case PLUS:
|
14820 |
|
|
return "add";
|
14821 |
|
|
|
14822 |
|
|
case MINUS:
|
14823 |
|
|
return shift_first_arg ? "rsb" : "sub";
|
14824 |
|
|
|
14825 |
|
|
case IOR:
|
14826 |
|
|
return "orr";
|
14827 |
|
|
|
14828 |
|
|
case XOR:
|
14829 |
|
|
return "eor";
|
14830 |
|
|
|
14831 |
|
|
case AND:
|
14832 |
|
|
return "and";
|
14833 |
|
|
|
14834 |
|
|
case ASHIFT:
|
14835 |
|
|
case ASHIFTRT:
|
14836 |
|
|
case LSHIFTRT:
|
14837 |
|
|
case ROTATERT:
|
14838 |
|
|
return arm_shift_nmem(GET_CODE(op));
|
14839 |
|
|
|
14840 |
|
|
default:
|
14841 |
|
|
gcc_unreachable ();
|
14842 |
|
|
}
|
14843 |
|
|
}
|
14844 |
|
|
|
14845 |
|
|
/* Ensure valid constant shifts and return the appropriate shift mnemonic
|
14846 |
|
|
for the operation code. The returned result should not be overwritten.
|
14847 |
|
|
OP is the rtx code of the shift.
|
14848 |
|
|
On exit, *AMOUNTP will be -1 if the shift is by a register, or a constant
|
14849 |
|
|
shift. */
|
14850 |
|
|
static const char *
|
14851 |
|
|
shift_op (rtx op, HOST_WIDE_INT *amountp)
|
14852 |
|
|
{
|
14853 |
|
|
const char * mnem;
|
14854 |
|
|
enum rtx_code code = GET_CODE (op);
|
14855 |
|
|
|
14856 |
|
|
switch (GET_CODE (XEXP (op, 1)))
|
14857 |
|
|
{
|
14858 |
|
|
case REG:
|
14859 |
|
|
case SUBREG:
|
14860 |
|
|
*amountp = -1;
|
14861 |
|
|
break;
|
14862 |
|
|
|
14863 |
|
|
case CONST_INT:
|
14864 |
|
|
*amountp = INTVAL (XEXP (op, 1));
|
14865 |
|
|
break;
|
14866 |
|
|
|
14867 |
|
|
default:
|
14868 |
|
|
gcc_unreachable ();
|
14869 |
|
|
}
|
14870 |
|
|
|
14871 |
|
|
switch (code)
|
14872 |
|
|
{
|
14873 |
|
|
case ROTATE:
|
14874 |
|
|
gcc_assert (*amountp != -1);
|
14875 |
|
|
*amountp = 32 - *amountp;
|
14876 |
|
|
code = ROTATERT;
|
14877 |
|
|
|
14878 |
|
|
/* Fall through. */
|
14879 |
|
|
|
14880 |
|
|
case ASHIFT:
|
14881 |
|
|
case ASHIFTRT:
|
14882 |
|
|
case LSHIFTRT:
|
14883 |
|
|
case ROTATERT:
|
14884 |
|
|
mnem = arm_shift_nmem(code);
|
14885 |
|
|
break;
|
14886 |
|
|
|
14887 |
|
|
case MULT:
|
14888 |
|
|
/* We never have to worry about the amount being other than a
|
14889 |
|
|
power of 2, since this case can never be reloaded from a reg. */
|
14890 |
|
|
gcc_assert (*amountp != -1);
|
14891 |
|
|
*amountp = int_log2 (*amountp);
|
14892 |
|
|
return ARM_LSL_NAME;
|
14893 |
|
|
|
14894 |
|
|
default:
|
14895 |
|
|
gcc_unreachable ();
|
14896 |
|
|
}
|
14897 |
|
|
|
14898 |
|
|
if (*amountp != -1)
|
14899 |
|
|
{
|
14900 |
|
|
/* This is not 100% correct, but follows from the desire to merge
|
14901 |
|
|
multiplication by a power of 2 with the recognizer for a
|
14902 |
|
|
shift. >=32 is not a valid shift for "lsl", so we must try and
|
14903 |
|
|
output a shift that produces the correct arithmetical result.
|
14904 |
|
|
Using lsr #32 is identical except for the fact that the carry bit
|
14905 |
|
|
is not set correctly if we set the flags; but we never use the
|
14906 |
|
|
carry bit from such an operation, so we can ignore that. */
|
14907 |
|
|
if (code == ROTATERT)
|
14908 |
|
|
/* Rotate is just modulo 32. */
|
14909 |
|
|
*amountp &= 31;
|
14910 |
|
|
else if (*amountp != (*amountp & 31))
|
14911 |
|
|
{
|
14912 |
|
|
if (code == ASHIFT)
|
14913 |
|
|
mnem = "lsr";
|
14914 |
|
|
*amountp = 32;
|
14915 |
|
|
}
|
14916 |
|
|
|
14917 |
|
|
/* Shifts of 0 are no-ops. */
|
14918 |
|
|
if (*amountp == 0)
|
14919 |
|
|
return NULL;
|
14920 |
|
|
}
|
14921 |
|
|
|
14922 |
|
|
return mnem;
|
14923 |
|
|
}
|
14924 |
|
|
|
14925 |
|
|
/* Obtain the shift from the POWER of two. */
|
14926 |
|
|
|
14927 |
|
|
static HOST_WIDE_INT
|
14928 |
|
|
int_log2 (HOST_WIDE_INT power)
|
14929 |
|
|
{
|
14930 |
|
|
HOST_WIDE_INT shift = 0;
|
14931 |
|
|
|
14932 |
|
|
while ((((HOST_WIDE_INT) 1 << shift) & power) == 0)
|
14933 |
|
|
{
|
14934 |
|
|
gcc_assert (shift <= 31);
|
14935 |
|
|
shift++;
|
14936 |
|
|
}
|
14937 |
|
|
|
14938 |
|
|
return shift;
|
14939 |
|
|
}
|
14940 |
|
|
|
14941 |
|
|
/* Output a .ascii pseudo-op, keeping track of lengths. This is
|
14942 |
|
|
because /bin/as is horribly restrictive. The judgement about
|
14943 |
|
|
whether or not each character is 'printable' (and can be output as
|
14944 |
|
|
is) or not (and must be printed with an octal escape) must be made
|
14945 |
|
|
with reference to the *host* character set -- the situation is
|
14946 |
|
|
similar to that discussed in the comments above pp_c_char in
|
14947 |
|
|
c-pretty-print.c. */
|
14948 |
|
|
|
14949 |
|
|
#define MAX_ASCII_LEN 51
|
14950 |
|
|
|
14951 |
|
|
void
|
14952 |
|
|
output_ascii_pseudo_op (FILE *stream, const unsigned char *p, int len)
|
14953 |
|
|
{
|
14954 |
|
|
int i;
|
14955 |
|
|
int len_so_far = 0;
|
14956 |
|
|
|
14957 |
|
|
fputs ("\t.ascii\t\"", stream);
|
14958 |
|
|
|
14959 |
|
|
for (i = 0; i < len; i++)
|
14960 |
|
|
{
|
14961 |
|
|
int c = p[i];
|
14962 |
|
|
|
14963 |
|
|
if (len_so_far >= MAX_ASCII_LEN)
|
14964 |
|
|
{
|
14965 |
|
|
fputs ("\"\n\t.ascii\t\"", stream);
|
14966 |
|
|
len_so_far = 0;
|
14967 |
|
|
}
|
14968 |
|
|
|
14969 |
|
|
if (ISPRINT (c))
|
14970 |
|
|
{
|
14971 |
|
|
if (c == '\\' || c == '\"')
|
14972 |
|
|
{
|
14973 |
|
|
putc ('\\', stream);
|
14974 |
|
|
len_so_far++;
|
14975 |
|
|
}
|
14976 |
|
|
putc (c, stream);
|
14977 |
|
|
len_so_far++;
|
14978 |
|
|
}
|
14979 |
|
|
else
|
14980 |
|
|
{
|
14981 |
|
|
fprintf (stream, "\\%03o", c);
|
14982 |
|
|
len_so_far += 4;
|
14983 |
|
|
}
|
14984 |
|
|
}
|
14985 |
|
|
|
14986 |
|
|
fputs ("\"\n", stream);
|
14987 |
|
|
}
|
14988 |
|
|
|
14989 |
|
|
/* Compute the register save mask for registers 0 through 12
|
14990 |
|
|
inclusive. This code is used by arm_compute_save_reg_mask. */
|
14991 |
|
|
|
14992 |
|
|
static unsigned long
|
14993 |
|
|
arm_compute_save_reg0_reg12_mask (void)
|
14994 |
|
|
{
|
14995 |
|
|
unsigned long func_type = arm_current_func_type ();
|
14996 |
|
|
unsigned long save_reg_mask = 0;
|
14997 |
|
|
unsigned int reg;
|
14998 |
|
|
|
14999 |
|
|
if (IS_INTERRUPT (func_type))
|
15000 |
|
|
{
|
15001 |
|
|
unsigned int max_reg;
|
15002 |
|
|
/* Interrupt functions must not corrupt any registers,
|
15003 |
|
|
even call clobbered ones. If this is a leaf function
|
15004 |
|
|
we can just examine the registers used by the RTL, but
|
15005 |
|
|
otherwise we have to assume that whatever function is
|
15006 |
|
|
called might clobber anything, and so we have to save
|
15007 |
|
|
all the call-clobbered registers as well. */
|
15008 |
|
|
if (ARM_FUNC_TYPE (func_type) == ARM_FT_FIQ)
|
15009 |
|
|
/* FIQ handlers have registers r8 - r12 banked, so
|
15010 |
|
|
we only need to check r0 - r7, Normal ISRs only
|
15011 |
|
|
bank r14 and r15, so we must check up to r12.
|
15012 |
|
|
r13 is the stack pointer which is always preserved,
|
15013 |
|
|
so we do not need to consider it here. */
|
15014 |
|
|
max_reg = 7;
|
15015 |
|
|
else
|
15016 |
|
|
max_reg = 12;
|
15017 |
|
|
|
15018 |
|
|
for (reg = 0; reg <= max_reg; reg++)
|
15019 |
|
|
if (df_regs_ever_live_p (reg)
|
15020 |
|
|
|| (! current_function_is_leaf && call_used_regs[reg]))
|
15021 |
|
|
save_reg_mask |= (1 << reg);
|
15022 |
|
|
|
15023 |
|
|
/* Also save the pic base register if necessary. */
|
15024 |
|
|
if (flag_pic
|
15025 |
|
|
&& !TARGET_SINGLE_PIC_BASE
|
15026 |
|
|
&& arm_pic_register != INVALID_REGNUM
|
15027 |
|
|
&& crtl->uses_pic_offset_table)
|
15028 |
|
|
save_reg_mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
|
15029 |
|
|
}
|
15030 |
|
|
else if (IS_VOLATILE(func_type))
|
15031 |
|
|
{
|
15032 |
|
|
/* For noreturn functions we historically omitted register saves
|
15033 |
|
|
altogether. However this really messes up debugging. As a
|
15034 |
|
|
compromise save just the frame pointers. Combined with the link
|
15035 |
|
|
register saved elsewhere this should be sufficient to get
|
15036 |
|
|
a backtrace. */
|
15037 |
|
|
if (frame_pointer_needed)
|
15038 |
|
|
save_reg_mask |= 1 << HARD_FRAME_POINTER_REGNUM;
|
15039 |
|
|
if (df_regs_ever_live_p (ARM_HARD_FRAME_POINTER_REGNUM))
|
15040 |
|
|
save_reg_mask |= 1 << ARM_HARD_FRAME_POINTER_REGNUM;
|
15041 |
|
|
if (df_regs_ever_live_p (THUMB_HARD_FRAME_POINTER_REGNUM))
|
15042 |
|
|
save_reg_mask |= 1 << THUMB_HARD_FRAME_POINTER_REGNUM;
|
15043 |
|
|
}
|
15044 |
|
|
else
|
15045 |
|
|
{
|
15046 |
|
|
/* In the normal case we only need to save those registers
|
15047 |
|
|
which are call saved and which are used by this function. */
|
15048 |
|
|
for (reg = 0; reg <= 11; reg++)
|
15049 |
|
|
if (df_regs_ever_live_p (reg) && ! call_used_regs[reg])
|
15050 |
|
|
save_reg_mask |= (1 << reg);
|
15051 |
|
|
|
15052 |
|
|
/* Handle the frame pointer as a special case. */
|
15053 |
|
|
if (frame_pointer_needed)
|
15054 |
|
|
save_reg_mask |= 1 << HARD_FRAME_POINTER_REGNUM;
|
15055 |
|
|
|
15056 |
|
|
/* If we aren't loading the PIC register,
|
15057 |
|
|
don't stack it even though it may be live. */
|
15058 |
|
|
if (flag_pic
|
15059 |
|
|
&& !TARGET_SINGLE_PIC_BASE
|
15060 |
|
|
&& arm_pic_register != INVALID_REGNUM
|
15061 |
|
|
&& (df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM)
|
15062 |
|
|
|| crtl->uses_pic_offset_table))
|
15063 |
|
|
save_reg_mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
|
15064 |
|
|
|
15065 |
|
|
/* The prologue will copy SP into R0, so save it. */
|
15066 |
|
|
if (IS_STACKALIGN (func_type))
|
15067 |
|
|
save_reg_mask |= 1;
|
15068 |
|
|
}
|
15069 |
|
|
|
15070 |
|
|
/* Save registers so the exception handler can modify them. */
|
15071 |
|
|
if (crtl->calls_eh_return)
|
15072 |
|
|
{
|
15073 |
|
|
unsigned int i;
|
15074 |
|
|
|
15075 |
|
|
for (i = 0; ; i++)
|
15076 |
|
|
{
|
15077 |
|
|
reg = EH_RETURN_DATA_REGNO (i);
|
15078 |
|
|
if (reg == INVALID_REGNUM)
|
15079 |
|
|
break;
|
15080 |
|
|
save_reg_mask |= 1 << reg;
|
15081 |
|
|
}
|
15082 |
|
|
}
|
15083 |
|
|
|
15084 |
|
|
return save_reg_mask;
|
15085 |
|
|
}
|
15086 |
|
|
|
15087 |
|
|
|
15088 |
|
|
/* Compute the number of bytes used to store the static chain register on the
|
15089 |
|
|
stack, above the stack frame. We need to know this accurately to get the
|
15090 |
|
|
alignment of the rest of the stack frame correct. */
|
15091 |
|
|
|
15092 |
|
|
static int arm_compute_static_chain_stack_bytes (void)
|
15093 |
|
|
{
|
15094 |
|
|
unsigned long func_type = arm_current_func_type ();
|
15095 |
|
|
int static_chain_stack_bytes = 0;
|
15096 |
|
|
|
15097 |
|
|
if (TARGET_APCS_FRAME && frame_pointer_needed && TARGET_ARM &&
|
15098 |
|
|
IS_NESTED (func_type) &&
|
15099 |
|
|
df_regs_ever_live_p (3) && crtl->args.pretend_args_size == 0)
|
15100 |
|
|
static_chain_stack_bytes = 4;
|
15101 |
|
|
|
15102 |
|
|
return static_chain_stack_bytes;
|
15103 |
|
|
}
|
15104 |
|
|
|
15105 |
|
|
|
15106 |
|
|
/* Compute a bit mask of which registers need to be
|
15107 |
|
|
saved on the stack for the current function.
|
15108 |
|
|
This is used by arm_get_frame_offsets, which may add extra registers. */
|
15109 |
|
|
|
15110 |
|
|
static unsigned long
|
15111 |
|
|
arm_compute_save_reg_mask (void)
|
15112 |
|
|
{
|
15113 |
|
|
unsigned int save_reg_mask = 0;
|
15114 |
|
|
unsigned long func_type = arm_current_func_type ();
|
15115 |
|
|
unsigned int reg;
|
15116 |
|
|
|
15117 |
|
|
if (IS_NAKED (func_type))
|
15118 |
|
|
/* This should never really happen. */
|
15119 |
|
|
return 0;
|
15120 |
|
|
|
15121 |
|
|
/* If we are creating a stack frame, then we must save the frame pointer,
|
15122 |
|
|
IP (which will hold the old stack pointer), LR and the PC. */
|
15123 |
|
|
if (TARGET_APCS_FRAME && frame_pointer_needed && TARGET_ARM)
|
15124 |
|
|
save_reg_mask |=
|
15125 |
|
|
(1 << ARM_HARD_FRAME_POINTER_REGNUM)
|
15126 |
|
|
| (1 << IP_REGNUM)
|
15127 |
|
|
| (1 << LR_REGNUM)
|
15128 |
|
|
| (1 << PC_REGNUM);
|
15129 |
|
|
|
15130 |
|
|
save_reg_mask |= arm_compute_save_reg0_reg12_mask ();
|
15131 |
|
|
|
15132 |
|
|
/* Decide if we need to save the link register.
|
15133 |
|
|
Interrupt routines have their own banked link register,
|
15134 |
|
|
so they never need to save it.
|
15135 |
|
|
Otherwise if we do not use the link register we do not need to save
|
15136 |
|
|
it. If we are pushing other registers onto the stack however, we
|
15137 |
|
|
can save an instruction in the epilogue by pushing the link register
|
15138 |
|
|
now and then popping it back into the PC. This incurs extra memory
|
15139 |
|
|
accesses though, so we only do it when optimizing for size, and only
|
15140 |
|
|
if we know that we will not need a fancy return sequence. */
|
15141 |
|
|
if (df_regs_ever_live_p (LR_REGNUM)
|
15142 |
|
|
|| (save_reg_mask
|
15143 |
|
|
&& optimize_size
|
15144 |
|
|
&& ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
|
15145 |
|
|
&& !crtl->calls_eh_return))
|
15146 |
|
|
save_reg_mask |= 1 << LR_REGNUM;
|
15147 |
|
|
|
15148 |
|
|
if (cfun->machine->lr_save_eliminated)
|
15149 |
|
|
save_reg_mask &= ~ (1 << LR_REGNUM);
|
15150 |
|
|
|
15151 |
|
|
if (TARGET_REALLY_IWMMXT
|
15152 |
|
|
&& ((bit_count (save_reg_mask)
|
15153 |
|
|
+ ARM_NUM_INTS (crtl->args.pretend_args_size +
|
15154 |
|
|
arm_compute_static_chain_stack_bytes())
|
15155 |
|
|
) % 2) != 0)
|
15156 |
|
|
{
|
15157 |
|
|
/* The total number of registers that are going to be pushed
|
15158 |
|
|
onto the stack is odd. We need to ensure that the stack
|
15159 |
|
|
is 64-bit aligned before we start to save iWMMXt registers,
|
15160 |
|
|
and also before we start to create locals. (A local variable
|
15161 |
|
|
might be a double or long long which we will load/store using
|
15162 |
|
|
an iWMMXt instruction). Therefore we need to push another
|
15163 |
|
|
ARM register, so that the stack will be 64-bit aligned. We
|
15164 |
|
|
try to avoid using the arg registers (r0 -r3) as they might be
|
15165 |
|
|
used to pass values in a tail call. */
|
15166 |
|
|
for (reg = 4; reg <= 12; reg++)
|
15167 |
|
|
if ((save_reg_mask & (1 << reg)) == 0)
|
15168 |
|
|
break;
|
15169 |
|
|
|
15170 |
|
|
if (reg <= 12)
|
15171 |
|
|
save_reg_mask |= (1 << reg);
|
15172 |
|
|
else
|
15173 |
|
|
{
|
15174 |
|
|
cfun->machine->sibcall_blocked = 1;
|
15175 |
|
|
save_reg_mask |= (1 << 3);
|
15176 |
|
|
}
|
15177 |
|
|
}
|
15178 |
|
|
|
15179 |
|
|
/* We may need to push an additional register for use initializing the
|
15180 |
|
|
PIC base register. */
|
15181 |
|
|
if (TARGET_THUMB2 && IS_NESTED (func_type) && flag_pic
|
15182 |
|
|
&& (save_reg_mask & THUMB2_WORK_REGS) == 0)
|
15183 |
|
|
{
|
15184 |
|
|
reg = thumb_find_work_register (1 << 4);
|
15185 |
|
|
if (!call_used_regs[reg])
|
15186 |
|
|
save_reg_mask |= (1 << reg);
|
15187 |
|
|
}
|
15188 |
|
|
|
15189 |
|
|
return save_reg_mask;
|
15190 |
|
|
}
|
15191 |
|
|
|
15192 |
|
|
|
15193 |
|
|
/* Compute a bit mask of which registers need to be
|
15194 |
|
|
saved on the stack for the current function. */
|
15195 |
|
|
static unsigned long
|
15196 |
|
|
thumb1_compute_save_reg_mask (void)
|
15197 |
|
|
{
|
15198 |
|
|
unsigned long mask;
|
15199 |
|
|
unsigned reg;
|
15200 |
|
|
|
15201 |
|
|
mask = 0;
|
15202 |
|
|
for (reg = 0; reg < 12; reg ++)
|
15203 |
|
|
if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
|
15204 |
|
|
mask |= 1 << reg;
|
15205 |
|
|
|
15206 |
|
|
if (flag_pic
|
15207 |
|
|
&& !TARGET_SINGLE_PIC_BASE
|
15208 |
|
|
&& arm_pic_register != INVALID_REGNUM
|
15209 |
|
|
&& crtl->uses_pic_offset_table)
|
15210 |
|
|
mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
|
15211 |
|
|
|
15212 |
|
|
/* See if we might need r11 for calls to _interwork_r11_call_via_rN(). */
|
15213 |
|
|
if (!frame_pointer_needed && CALLER_INTERWORKING_SLOT_SIZE > 0)
|
15214 |
|
|
mask |= 1 << ARM_HARD_FRAME_POINTER_REGNUM;
|
15215 |
|
|
|
15216 |
|
|
/* LR will also be pushed if any lo regs are pushed. */
|
15217 |
|
|
if (mask & 0xff || thumb_force_lr_save ())
|
15218 |
|
|
mask |= (1 << LR_REGNUM);
|
15219 |
|
|
|
15220 |
|
|
/* Make sure we have a low work register if we need one.
|
15221 |
|
|
We will need one if we are going to push a high register,
|
15222 |
|
|
but we are not currently intending to push a low register. */
|
15223 |
|
|
if ((mask & 0xff) == 0
|
15224 |
|
|
&& ((mask & 0x0f00) || TARGET_BACKTRACE))
|
15225 |
|
|
{
|
15226 |
|
|
/* Use thumb_find_work_register to choose which register
|
15227 |
|
|
we will use. If the register is live then we will
|
15228 |
|
|
have to push it. Use LAST_LO_REGNUM as our fallback
|
15229 |
|
|
choice for the register to select. */
|
15230 |
|
|
reg = thumb_find_work_register (1 << LAST_LO_REGNUM);
|
15231 |
|
|
/* Make sure the register returned by thumb_find_work_register is
|
15232 |
|
|
not part of the return value. */
|
15233 |
|
|
if (reg * UNITS_PER_WORD <= (unsigned) arm_size_return_regs ())
|
15234 |
|
|
reg = LAST_LO_REGNUM;
|
15235 |
|
|
|
15236 |
|
|
if (! call_used_regs[reg])
|
15237 |
|
|
mask |= 1 << reg;
|
15238 |
|
|
}
|
15239 |
|
|
|
15240 |
|
|
/* The 504 below is 8 bytes less than 512 because there are two possible
|
15241 |
|
|
alignment words. We can't tell here if they will be present or not so we
|
15242 |
|
|
have to play it safe and assume that they are. */
|
15243 |
|
|
if ((CALLER_INTERWORKING_SLOT_SIZE +
|
15244 |
|
|
ROUND_UP_WORD (get_frame_size ()) +
|
15245 |
|
|
crtl->outgoing_args_size) >= 504)
|
15246 |
|
|
{
|
15247 |
|
|
/* This is the same as the code in thumb1_expand_prologue() which
|
15248 |
|
|
determines which register to use for stack decrement. */
|
15249 |
|
|
for (reg = LAST_ARG_REGNUM + 1; reg <= LAST_LO_REGNUM; reg++)
|
15250 |
|
|
if (mask & (1 << reg))
|
15251 |
|
|
break;
|
15252 |
|
|
|
15253 |
|
|
if (reg > LAST_LO_REGNUM)
|
15254 |
|
|
{
|
15255 |
|
|
/* Make sure we have a register available for stack decrement. */
|
15256 |
|
|
mask |= 1 << LAST_LO_REGNUM;
|
15257 |
|
|
}
|
15258 |
|
|
}
|
15259 |
|
|
|
15260 |
|
|
return mask;
|
15261 |
|
|
}
|
15262 |
|
|
|
15263 |
|
|
|
15264 |
|
|
/* Return the number of bytes required to save VFP registers. */
|
15265 |
|
|
static int
|
15266 |
|
|
arm_get_vfp_saved_size (void)
|
15267 |
|
|
{
|
15268 |
|
|
unsigned int regno;
|
15269 |
|
|
int count;
|
15270 |
|
|
int saved;
|
15271 |
|
|
|
15272 |
|
|
saved = 0;
|
15273 |
|
|
/* Space for saved VFP registers. */
|
15274 |
|
|
if (TARGET_HARD_FLOAT && TARGET_VFP)
|
15275 |
|
|
{
|
15276 |
|
|
count = 0;
|
15277 |
|
|
for (regno = FIRST_VFP_REGNUM;
|
15278 |
|
|
regno < LAST_VFP_REGNUM;
|
15279 |
|
|
regno += 2)
|
15280 |
|
|
{
|
15281 |
|
|
if ((!df_regs_ever_live_p (regno) || call_used_regs[regno])
|
15282 |
|
|
&& (!df_regs_ever_live_p (regno + 1) || call_used_regs[regno + 1]))
|
15283 |
|
|
{
|
15284 |
|
|
if (count > 0)
|
15285 |
|
|
{
|
15286 |
|
|
/* Workaround ARM10 VFPr1 bug. */
|
15287 |
|
|
if (count == 2 && !arm_arch6)
|
15288 |
|
|
count++;
|
15289 |
|
|
saved += count * 8;
|
15290 |
|
|
}
|
15291 |
|
|
count = 0;
|
15292 |
|
|
}
|
15293 |
|
|
else
|
15294 |
|
|
count++;
|
15295 |
|
|
}
|
15296 |
|
|
if (count > 0)
|
15297 |
|
|
{
|
15298 |
|
|
if (count == 2 && !arm_arch6)
|
15299 |
|
|
count++;
|
15300 |
|
|
saved += count * 8;
|
15301 |
|
|
}
|
15302 |
|
|
}
|
15303 |
|
|
return saved;
|
15304 |
|
|
}
|
15305 |
|
|
|
15306 |
|
|
|
15307 |
|
|
/* Generate a function exit sequence. If REALLY_RETURN is false, then do
|
15308 |
|
|
everything bar the final return instruction. */
|
15309 |
|
|
const char *
|
15310 |
|
|
output_return_instruction (rtx operand, int really_return, int reverse)
|
15311 |
|
|
{
|
15312 |
|
|
char conditional[10];
|
15313 |
|
|
char instr[100];
|
15314 |
|
|
unsigned reg;
|
15315 |
|
|
unsigned long live_regs_mask;
|
15316 |
|
|
unsigned long func_type;
|
15317 |
|
|
arm_stack_offsets *offsets;
|
15318 |
|
|
|
15319 |
|
|
func_type = arm_current_func_type ();
|
15320 |
|
|
|
15321 |
|
|
if (IS_NAKED (func_type))
|
15322 |
|
|
return "";
|
15323 |
|
|
|
15324 |
|
|
if (IS_VOLATILE (func_type) && TARGET_ABORT_NORETURN)
|
15325 |
|
|
{
|
15326 |
|
|
/* If this function was declared non-returning, and we have
|
15327 |
|
|
found a tail call, then we have to trust that the called
|
15328 |
|
|
function won't return. */
|
15329 |
|
|
if (really_return)
|
15330 |
|
|
{
|
15331 |
|
|
rtx ops[2];
|
15332 |
|
|
|
15333 |
|
|
/* Otherwise, trap an attempted return by aborting. */
|
15334 |
|
|
ops[0] = operand;
|
15335 |
|
|
ops[1] = gen_rtx_SYMBOL_REF (Pmode, NEED_PLT_RELOC ? "abort(PLT)"
|
15336 |
|
|
: "abort");
|
15337 |
|
|
assemble_external_libcall (ops[1]);
|
15338 |
|
|
output_asm_insn (reverse ? "bl%D0\t%a1" : "bl%d0\t%a1", ops);
|
15339 |
|
|
}
|
15340 |
|
|
|
15341 |
|
|
return "";
|
15342 |
|
|
}
|
15343 |
|
|
|
15344 |
|
|
gcc_assert (!cfun->calls_alloca || really_return);
|
15345 |
|
|
|
15346 |
|
|
sprintf (conditional, "%%?%%%c0", reverse ? 'D' : 'd');
|
15347 |
|
|
|
15348 |
|
|
cfun->machine->return_used_this_function = 1;
|
15349 |
|
|
|
15350 |
|
|
offsets = arm_get_frame_offsets ();
|
15351 |
|
|
live_regs_mask = offsets->saved_regs_mask;
|
15352 |
|
|
|
15353 |
|
|
if (live_regs_mask)
|
15354 |
|
|
{
|
15355 |
|
|
const char * return_reg;
|
15356 |
|
|
|
15357 |
|
|
/* If we do not have any special requirements for function exit
|
15358 |
|
|
(e.g. interworking) then we can load the return address
|
15359 |
|
|
directly into the PC. Otherwise we must load it into LR. */
|
15360 |
|
|
if (really_return
|
15361 |
|
|
&& (IS_INTERRUPT (func_type) || !TARGET_INTERWORK))
|
15362 |
|
|
return_reg = reg_names[PC_REGNUM];
|
15363 |
|
|
else
|
15364 |
|
|
return_reg = reg_names[LR_REGNUM];
|
15365 |
|
|
|
15366 |
|
|
if ((live_regs_mask & (1 << IP_REGNUM)) == (1 << IP_REGNUM))
|
15367 |
|
|
{
|
15368 |
|
|
/* There are three possible reasons for the IP register
|
15369 |
|
|
being saved. 1) a stack frame was created, in which case
|
15370 |
|
|
IP contains the old stack pointer, or 2) an ISR routine
|
15371 |
|
|
corrupted it, or 3) it was saved to align the stack on
|
15372 |
|
|
iWMMXt. In case 1, restore IP into SP, otherwise just
|
15373 |
|
|
restore IP. */
|
15374 |
|
|
if (frame_pointer_needed)
|
15375 |
|
|
{
|
15376 |
|
|
live_regs_mask &= ~ (1 << IP_REGNUM);
|
15377 |
|
|
live_regs_mask |= (1 << SP_REGNUM);
|
15378 |
|
|
}
|
15379 |
|
|
else
|
15380 |
|
|
gcc_assert (IS_INTERRUPT (func_type) || TARGET_REALLY_IWMMXT);
|
15381 |
|
|
}
|
15382 |
|
|
|
15383 |
|
|
/* On some ARM architectures it is faster to use LDR rather than
|
15384 |
|
|
LDM to load a single register. On other architectures, the
|
15385 |
|
|
cost is the same. In 26 bit mode, or for exception handlers,
|
15386 |
|
|
we have to use LDM to load the PC so that the CPSR is also
|
15387 |
|
|
restored. */
|
15388 |
|
|
for (reg = 0; reg <= LAST_ARM_REGNUM; reg++)
|
15389 |
|
|
if (live_regs_mask == (1U << reg))
|
15390 |
|
|
break;
|
15391 |
|
|
|
15392 |
|
|
if (reg <= LAST_ARM_REGNUM
|
15393 |
|
|
&& (reg != LR_REGNUM
|
15394 |
|
|
|| ! really_return
|
15395 |
|
|
|| ! IS_INTERRUPT (func_type)))
|
15396 |
|
|
{
|
15397 |
|
|
sprintf (instr, "ldr%s\t%%|%s, [%%|sp], #4", conditional,
|
15398 |
|
|
(reg == LR_REGNUM) ? return_reg : reg_names[reg]);
|
15399 |
|
|
}
|
15400 |
|
|
else
|
15401 |
|
|
{
|
15402 |
|
|
char *p;
|
15403 |
|
|
int first = 1;
|
15404 |
|
|
|
15405 |
|
|
/* Generate the load multiple instruction to restore the
|
15406 |
|
|
registers. Note we can get here, even if
|
15407 |
|
|
frame_pointer_needed is true, but only if sp already
|
15408 |
|
|
points to the base of the saved core registers. */
|
15409 |
|
|
if (live_regs_mask & (1 << SP_REGNUM))
|
15410 |
|
|
{
|
15411 |
|
|
unsigned HOST_WIDE_INT stack_adjust;
|
15412 |
|
|
|
15413 |
|
|
stack_adjust = offsets->outgoing_args - offsets->saved_regs;
|
15414 |
|
|
gcc_assert (stack_adjust == 0 || stack_adjust == 4);
|
15415 |
|
|
|
15416 |
|
|
if (stack_adjust && arm_arch5 && TARGET_ARM)
|
15417 |
|
|
if (TARGET_UNIFIED_ASM)
|
15418 |
|
|
sprintf (instr, "ldmib%s\t%%|sp, {", conditional);
|
15419 |
|
|
else
|
15420 |
|
|
sprintf (instr, "ldm%sib\t%%|sp, {", conditional);
|
15421 |
|
|
else
|
15422 |
|
|
{
|
15423 |
|
|
/* If we can't use ldmib (SA110 bug),
|
15424 |
|
|
then try to pop r3 instead. */
|
15425 |
|
|
if (stack_adjust)
|
15426 |
|
|
live_regs_mask |= 1 << 3;
|
15427 |
|
|
|
15428 |
|
|
if (TARGET_UNIFIED_ASM)
|
15429 |
|
|
sprintf (instr, "ldmfd%s\t%%|sp, {", conditional);
|
15430 |
|
|
else
|
15431 |
|
|
sprintf (instr, "ldm%sfd\t%%|sp, {", conditional);
|
15432 |
|
|
}
|
15433 |
|
|
}
|
15434 |
|
|
else
|
15435 |
|
|
if (TARGET_UNIFIED_ASM)
|
15436 |
|
|
sprintf (instr, "pop%s\t{", conditional);
|
15437 |
|
|
else
|
15438 |
|
|
sprintf (instr, "ldm%sfd\t%%|sp!, {", conditional);
|
15439 |
|
|
|
15440 |
|
|
p = instr + strlen (instr);
|
15441 |
|
|
|
15442 |
|
|
for (reg = 0; reg <= SP_REGNUM; reg++)
|
15443 |
|
|
if (live_regs_mask & (1 << reg))
|
15444 |
|
|
{
|
15445 |
|
|
int l = strlen (reg_names[reg]);
|
15446 |
|
|
|
15447 |
|
|
if (first)
|
15448 |
|
|
first = 0;
|
15449 |
|
|
else
|
15450 |
|
|
{
|
15451 |
|
|
memcpy (p, ", ", 2);
|
15452 |
|
|
p += 2;
|
15453 |
|
|
}
|
15454 |
|
|
|
15455 |
|
|
memcpy (p, "%|", 2);
|
15456 |
|
|
memcpy (p + 2, reg_names[reg], l);
|
15457 |
|
|
p += l + 2;
|
15458 |
|
|
}
|
15459 |
|
|
|
15460 |
|
|
if (live_regs_mask & (1 << LR_REGNUM))
|
15461 |
|
|
{
|
15462 |
|
|
sprintf (p, "%s%%|%s}", first ? "" : ", ", return_reg);
|
15463 |
|
|
/* If returning from an interrupt, restore the CPSR. */
|
15464 |
|
|
if (IS_INTERRUPT (func_type))
|
15465 |
|
|
strcat (p, "^");
|
15466 |
|
|
}
|
15467 |
|
|
else
|
15468 |
|
|
strcpy (p, "}");
|
15469 |
|
|
}
|
15470 |
|
|
|
15471 |
|
|
output_asm_insn (instr, & operand);
|
15472 |
|
|
|
15473 |
|
|
/* See if we need to generate an extra instruction to
|
15474 |
|
|
perform the actual function return. */
|
15475 |
|
|
if (really_return
|
15476 |
|
|
&& func_type != ARM_FT_INTERWORKED
|
15477 |
|
|
&& (live_regs_mask & (1 << LR_REGNUM)) != 0)
|
15478 |
|
|
{
|
15479 |
|
|
/* The return has already been handled
|
15480 |
|
|
by loading the LR into the PC. */
|
15481 |
|
|
really_return = 0;
|
15482 |
|
|
}
|
15483 |
|
|
}
|
15484 |
|
|
|
15485 |
|
|
if (really_return)
|
15486 |
|
|
{
|
15487 |
|
|
switch ((int) ARM_FUNC_TYPE (func_type))
|
15488 |
|
|
{
|
15489 |
|
|
case ARM_FT_ISR:
|
15490 |
|
|
case ARM_FT_FIQ:
|
15491 |
|
|
/* ??? This is wrong for unified assembly syntax. */
|
15492 |
|
|
sprintf (instr, "sub%ss\t%%|pc, %%|lr, #4", conditional);
|
15493 |
|
|
break;
|
15494 |
|
|
|
15495 |
|
|
case ARM_FT_INTERWORKED:
|
15496 |
|
|
sprintf (instr, "bx%s\t%%|lr", conditional);
|
15497 |
|
|
break;
|
15498 |
|
|
|
15499 |
|
|
case ARM_FT_EXCEPTION:
|
15500 |
|
|
/* ??? This is wrong for unified assembly syntax. */
|
15501 |
|
|
sprintf (instr, "mov%ss\t%%|pc, %%|lr", conditional);
|
15502 |
|
|
break;
|
15503 |
|
|
|
15504 |
|
|
default:
|
15505 |
|
|
/* Use bx if it's available. */
|
15506 |
|
|
if (arm_arch5 || arm_arch4t)
|
15507 |
|
|
sprintf (instr, "bx%s\t%%|lr", conditional);
|
15508 |
|
|
else
|
15509 |
|
|
sprintf (instr, "mov%s\t%%|pc, %%|lr", conditional);
|
15510 |
|
|
break;
|
15511 |
|
|
}
|
15512 |
|
|
|
15513 |
|
|
output_asm_insn (instr, & operand);
|
15514 |
|
|
}
|
15515 |
|
|
|
15516 |
|
|
return "";
|
15517 |
|
|
}
|
15518 |
|
|
|
15519 |
|
|
/* Write the function name into the code section, directly preceding
|
15520 |
|
|
the function prologue.
|
15521 |
|
|
|
15522 |
|
|
Code will be output similar to this:
|
15523 |
|
|
t0
|
15524 |
|
|
.ascii "arm_poke_function_name", 0
|
15525 |
|
|
.align
|
15526 |
|
|
t1
|
15527 |
|
|
.word 0xff000000 + (t1 - t0)
|
15528 |
|
|
arm_poke_function_name
|
15529 |
|
|
mov ip, sp
|
15530 |
|
|
stmfd sp!, {fp, ip, lr, pc}
|
15531 |
|
|
sub fp, ip, #4
|
15532 |
|
|
|
15533 |
|
|
When performing a stack backtrace, code can inspect the value
|
15534 |
|
|
of 'pc' stored at 'fp' + 0. If the trace function then looks
|
15535 |
|
|
at location pc - 12 and the top 8 bits are set, then we know
|
15536 |
|
|
that there is a function name embedded immediately preceding this
|
15537 |
|
|
location and has length ((pc[-3]) & 0xff000000).
|
15538 |
|
|
|
15539 |
|
|
We assume that pc is declared as a pointer to an unsigned long.
|
15540 |
|
|
|
15541 |
|
|
It is of no benefit to output the function name if we are assembling
|
15542 |
|
|
a leaf function. These function types will not contain a stack
|
15543 |
|
|
backtrace structure, therefore it is not possible to determine the
|
15544 |
|
|
function name. */
|
15545 |
|
|
void
|
15546 |
|
|
arm_poke_function_name (FILE *stream, const char *name)
|
15547 |
|
|
{
|
15548 |
|
|
unsigned long alignlength;
|
15549 |
|
|
unsigned long length;
|
15550 |
|
|
rtx x;
|
15551 |
|
|
|
15552 |
|
|
length = strlen (name) + 1;
|
15553 |
|
|
alignlength = ROUND_UP_WORD (length);
|
15554 |
|
|
|
15555 |
|
|
ASM_OUTPUT_ASCII (stream, name, length);
|
15556 |
|
|
ASM_OUTPUT_ALIGN (stream, 2);
|
15557 |
|
|
x = GEN_INT ((unsigned HOST_WIDE_INT) 0xff000000 + alignlength);
|
15558 |
|
|
assemble_aligned_integer (UNITS_PER_WORD, x);
|
15559 |
|
|
}
|
15560 |
|
|
|
15561 |
|
|
/* Place some comments into the assembler stream
|
15562 |
|
|
describing the current function. */
|
15563 |
|
|
static void
|
15564 |
|
|
arm_output_function_prologue (FILE *f, HOST_WIDE_INT frame_size)
|
15565 |
|
|
{
|
15566 |
|
|
unsigned long func_type;
|
15567 |
|
|
|
15568 |
|
|
/* ??? Do we want to print some of the below anyway? */
|
15569 |
|
|
if (TARGET_THUMB1)
|
15570 |
|
|
return;
|
15571 |
|
|
|
15572 |
|
|
/* Sanity check. */
|
15573 |
|
|
gcc_assert (!arm_ccfsm_state && !arm_target_insn);
|
15574 |
|
|
|
15575 |
|
|
func_type = arm_current_func_type ();
|
15576 |
|
|
|
15577 |
|
|
switch ((int) ARM_FUNC_TYPE (func_type))
|
15578 |
|
|
{
|
15579 |
|
|
default:
|
15580 |
|
|
case ARM_FT_NORMAL:
|
15581 |
|
|
break;
|
15582 |
|
|
case ARM_FT_INTERWORKED:
|
15583 |
|
|
asm_fprintf (f, "\t%@ Function supports interworking.\n");
|
15584 |
|
|
break;
|
15585 |
|
|
case ARM_FT_ISR:
|
15586 |
|
|
asm_fprintf (f, "\t%@ Interrupt Service Routine.\n");
|
15587 |
|
|
break;
|
15588 |
|
|
case ARM_FT_FIQ:
|
15589 |
|
|
asm_fprintf (f, "\t%@ Fast Interrupt Service Routine.\n");
|
15590 |
|
|
break;
|
15591 |
|
|
case ARM_FT_EXCEPTION:
|
15592 |
|
|
asm_fprintf (f, "\t%@ ARM Exception Handler.\n");
|
15593 |
|
|
break;
|
15594 |
|
|
}
|
15595 |
|
|
|
15596 |
|
|
if (IS_NAKED (func_type))
|
15597 |
|
|
asm_fprintf (f, "\t%@ Naked Function: prologue and epilogue provided by programmer.\n");
|
15598 |
|
|
|
15599 |
|
|
if (IS_VOLATILE (func_type))
|
15600 |
|
|
asm_fprintf (f, "\t%@ Volatile: function does not return.\n");
|
15601 |
|
|
|
15602 |
|
|
if (IS_NESTED (func_type))
|
15603 |
|
|
asm_fprintf (f, "\t%@ Nested: function declared inside another function.\n");
|
15604 |
|
|
if (IS_STACKALIGN (func_type))
|
15605 |
|
|
asm_fprintf (f, "\t%@ Stack Align: May be called with mis-aligned SP.\n");
|
15606 |
|
|
|
15607 |
|
|
asm_fprintf (f, "\t%@ args = %d, pretend = %d, frame = %wd\n",
|
15608 |
|
|
crtl->args.size,
|
15609 |
|
|
crtl->args.pretend_args_size, frame_size);
|
15610 |
|
|
|
15611 |
|
|
asm_fprintf (f, "\t%@ frame_needed = %d, uses_anonymous_args = %d\n",
|
15612 |
|
|
frame_pointer_needed,
|
15613 |
|
|
cfun->machine->uses_anonymous_args);
|
15614 |
|
|
|
15615 |
|
|
if (cfun->machine->lr_save_eliminated)
|
15616 |
|
|
asm_fprintf (f, "\t%@ link register save eliminated.\n");
|
15617 |
|
|
|
15618 |
|
|
if (crtl->calls_eh_return)
|
15619 |
|
|
asm_fprintf (f, "\t@ Calls __builtin_eh_return.\n");
|
15620 |
|
|
|
15621 |
|
|
}
|
15622 |
|
|
|
15623 |
|
|
const char *
|
15624 |
|
|
arm_output_epilogue (rtx sibling)
|
15625 |
|
|
{
|
15626 |
|
|
int reg;
|
15627 |
|
|
unsigned long saved_regs_mask;
|
15628 |
|
|
unsigned long func_type;
|
15629 |
|
|
/* Floats_offset is the offset from the "virtual" frame. In an APCS
|
15630 |
|
|
frame that is $fp + 4 for a non-variadic function. */
|
15631 |
|
|
int floats_offset = 0;
|
15632 |
|
|
rtx operands[3];
|
15633 |
|
|
FILE * f = asm_out_file;
|
15634 |
|
|
unsigned int lrm_count = 0;
|
15635 |
|
|
int really_return = (sibling == NULL);
|
15636 |
|
|
int start_reg;
|
15637 |
|
|
arm_stack_offsets *offsets;
|
15638 |
|
|
|
15639 |
|
|
/* If we have already generated the return instruction
|
15640 |
|
|
then it is futile to generate anything else. */
|
15641 |
|
|
if (use_return_insn (FALSE, sibling) &&
|
15642 |
|
|
(cfun->machine->return_used_this_function != 0))
|
15643 |
|
|
return "";
|
15644 |
|
|
|
15645 |
|
|
func_type = arm_current_func_type ();
|
15646 |
|
|
|
15647 |
|
|
if (IS_NAKED (func_type))
|
15648 |
|
|
/* Naked functions don't have epilogues. */
|
15649 |
|
|
return "";
|
15650 |
|
|
|
15651 |
|
|
if (IS_VOLATILE (func_type) && TARGET_ABORT_NORETURN)
|
15652 |
|
|
{
|
15653 |
|
|
rtx op;
|
15654 |
|
|
|
15655 |
|
|
/* A volatile function should never return. Call abort. */
|
15656 |
|
|
op = gen_rtx_SYMBOL_REF (Pmode, NEED_PLT_RELOC ? "abort(PLT)" : "abort");
|
15657 |
|
|
assemble_external_libcall (op);
|
15658 |
|
|
output_asm_insn ("bl\t%a0", &op);
|
15659 |
|
|
|
15660 |
|
|
return "";
|
15661 |
|
|
}
|
15662 |
|
|
|
15663 |
|
|
/* If we are throwing an exception, then we really must be doing a
|
15664 |
|
|
return, so we can't tail-call. */
|
15665 |
|
|
gcc_assert (!crtl->calls_eh_return || really_return);
|
15666 |
|
|
|
15667 |
|
|
offsets = arm_get_frame_offsets ();
|
15668 |
|
|
saved_regs_mask = offsets->saved_regs_mask;
|
15669 |
|
|
|
15670 |
|
|
if (TARGET_IWMMXT)
|
15671 |
|
|
lrm_count = bit_count (saved_regs_mask);
|
15672 |
|
|
|
15673 |
|
|
floats_offset = offsets->saved_args;
|
15674 |
|
|
/* Compute how far away the floats will be. */
|
15675 |
|
|
for (reg = 0; reg <= LAST_ARM_REGNUM; reg++)
|
15676 |
|
|
if (saved_regs_mask & (1 << reg))
|
15677 |
|
|
floats_offset += 4;
|
15678 |
|
|
|
15679 |
|
|
if (TARGET_APCS_FRAME && frame_pointer_needed && TARGET_ARM)
|
15680 |
|
|
{
|
15681 |
|
|
/* This variable is for the Virtual Frame Pointer, not VFP regs. */
|
15682 |
|
|
int vfp_offset = offsets->frame;
|
15683 |
|
|
|
15684 |
|
|
if (TARGET_FPA_EMU2)
|
15685 |
|
|
{
|
15686 |
|
|
for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
|
15687 |
|
|
if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
|
15688 |
|
|
{
|
15689 |
|
|
floats_offset += 12;
|
15690 |
|
|
asm_fprintf (f, "\tldfe\t%r, [%r, #-%d]\n",
|
15691 |
|
|
reg, FP_REGNUM, floats_offset - vfp_offset);
|
15692 |
|
|
}
|
15693 |
|
|
}
|
15694 |
|
|
else
|
15695 |
|
|
{
|
15696 |
|
|
start_reg = LAST_FPA_REGNUM;
|
15697 |
|
|
|
15698 |
|
|
for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
|
15699 |
|
|
{
|
15700 |
|
|
if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
|
15701 |
|
|
{
|
15702 |
|
|
floats_offset += 12;
|
15703 |
|
|
|
15704 |
|
|
/* We can't unstack more than four registers at once. */
|
15705 |
|
|
if (start_reg - reg == 3)
|
15706 |
|
|
{
|
15707 |
|
|
asm_fprintf (f, "\tlfm\t%r, 4, [%r, #-%d]\n",
|
15708 |
|
|
reg, FP_REGNUM, floats_offset - vfp_offset);
|
15709 |
|
|
start_reg = reg - 1;
|
15710 |
|
|
}
|
15711 |
|
|
}
|
15712 |
|
|
else
|
15713 |
|
|
{
|
15714 |
|
|
if (reg != start_reg)
|
15715 |
|
|
asm_fprintf (f, "\tlfm\t%r, %d, [%r, #-%d]\n",
|
15716 |
|
|
reg + 1, start_reg - reg,
|
15717 |
|
|
FP_REGNUM, floats_offset - vfp_offset);
|
15718 |
|
|
start_reg = reg - 1;
|
15719 |
|
|
}
|
15720 |
|
|
}
|
15721 |
|
|
|
15722 |
|
|
/* Just in case the last register checked also needs unstacking. */
|
15723 |
|
|
if (reg != start_reg)
|
15724 |
|
|
asm_fprintf (f, "\tlfm\t%r, %d, [%r, #-%d]\n",
|
15725 |
|
|
reg + 1, start_reg - reg,
|
15726 |
|
|
FP_REGNUM, floats_offset - vfp_offset);
|
15727 |
|
|
}
|
15728 |
|
|
|
15729 |
|
|
if (TARGET_HARD_FLOAT && TARGET_VFP)
|
15730 |
|
|
{
|
15731 |
|
|
int saved_size;
|
15732 |
|
|
|
15733 |
|
|
/* The fldmd insns do not have base+offset addressing
|
15734 |
|
|
modes, so we use IP to hold the address. */
|
15735 |
|
|
saved_size = arm_get_vfp_saved_size ();
|
15736 |
|
|
|
15737 |
|
|
if (saved_size > 0)
|
15738 |
|
|
{
|
15739 |
|
|
floats_offset += saved_size;
|
15740 |
|
|
asm_fprintf (f, "\tsub\t%r, %r, #%d\n", IP_REGNUM,
|
15741 |
|
|
FP_REGNUM, floats_offset - vfp_offset);
|
15742 |
|
|
}
|
15743 |
|
|
start_reg = FIRST_VFP_REGNUM;
|
15744 |
|
|
for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
|
15745 |
|
|
{
|
15746 |
|
|
if ((!df_regs_ever_live_p (reg) || call_used_regs[reg])
|
15747 |
|
|
&& (!df_regs_ever_live_p (reg + 1) || call_used_regs[reg + 1]))
|
15748 |
|
|
{
|
15749 |
|
|
if (start_reg != reg)
|
15750 |
|
|
vfp_output_fldmd (f, IP_REGNUM,
|
15751 |
|
|
(start_reg - FIRST_VFP_REGNUM) / 2,
|
15752 |
|
|
(reg - start_reg) / 2);
|
15753 |
|
|
start_reg = reg + 2;
|
15754 |
|
|
}
|
15755 |
|
|
}
|
15756 |
|
|
if (start_reg != reg)
|
15757 |
|
|
vfp_output_fldmd (f, IP_REGNUM,
|
15758 |
|
|
(start_reg - FIRST_VFP_REGNUM) / 2,
|
15759 |
|
|
(reg - start_reg) / 2);
|
15760 |
|
|
}
|
15761 |
|
|
|
15762 |
|
|
if (TARGET_IWMMXT)
|
15763 |
|
|
{
|
15764 |
|
|
/* The frame pointer is guaranteed to be non-double-word aligned.
|
15765 |
|
|
This is because it is set to (old_stack_pointer - 4) and the
|
15766 |
|
|
old_stack_pointer was double word aligned. Thus the offset to
|
15767 |
|
|
the iWMMXt registers to be loaded must also be non-double-word
|
15768 |
|
|
sized, so that the resultant address *is* double-word aligned.
|
15769 |
|
|
We can ignore floats_offset since that was already included in
|
15770 |
|
|
the live_regs_mask. */
|
15771 |
|
|
lrm_count += (lrm_count % 2 ? 2 : 1);
|
15772 |
|
|
|
15773 |
|
|
for (reg = LAST_IWMMXT_REGNUM; reg >= FIRST_IWMMXT_REGNUM; reg--)
|
15774 |
|
|
if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
|
15775 |
|
|
{
|
15776 |
|
|
asm_fprintf (f, "\twldrd\t%r, [%r, #-%d]\n",
|
15777 |
|
|
reg, FP_REGNUM, lrm_count * 4);
|
15778 |
|
|
lrm_count += 2;
|
15779 |
|
|
}
|
15780 |
|
|
}
|
15781 |
|
|
|
15782 |
|
|
/* saved_regs_mask should contain the IP, which at the time of stack
|
15783 |
|
|
frame generation actually contains the old stack pointer. So a
|
15784 |
|
|
quick way to unwind the stack is just pop the IP register directly
|
15785 |
|
|
into the stack pointer. */
|
15786 |
|
|
gcc_assert (saved_regs_mask & (1 << IP_REGNUM));
|
15787 |
|
|
saved_regs_mask &= ~ (1 << IP_REGNUM);
|
15788 |
|
|
saved_regs_mask |= (1 << SP_REGNUM);
|
15789 |
|
|
|
15790 |
|
|
/* There are two registers left in saved_regs_mask - LR and PC. We
|
15791 |
|
|
only need to restore the LR register (the return address), but to
|
15792 |
|
|
save time we can load it directly into the PC, unless we need a
|
15793 |
|
|
special function exit sequence, or we are not really returning. */
|
15794 |
|
|
if (really_return
|
15795 |
|
|
&& ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
|
15796 |
|
|
&& !crtl->calls_eh_return)
|
15797 |
|
|
/* Delete the LR from the register mask, so that the LR on
|
15798 |
|
|
the stack is loaded into the PC in the register mask. */
|
15799 |
|
|
saved_regs_mask &= ~ (1 << LR_REGNUM);
|
15800 |
|
|
else
|
15801 |
|
|
saved_regs_mask &= ~ (1 << PC_REGNUM);
|
15802 |
|
|
|
15803 |
|
|
/* We must use SP as the base register, because SP is one of the
|
15804 |
|
|
registers being restored. If an interrupt or page fault
|
15805 |
|
|
happens in the ldm instruction, the SP might or might not
|
15806 |
|
|
have been restored. That would be bad, as then SP will no
|
15807 |
|
|
longer indicate the safe area of stack, and we can get stack
|
15808 |
|
|
corruption. Using SP as the base register means that it will
|
15809 |
|
|
be reset correctly to the original value, should an interrupt
|
15810 |
|
|
occur. If the stack pointer already points at the right
|
15811 |
|
|
place, then omit the subtraction. */
|
15812 |
|
|
if (offsets->outgoing_args != (1 + (int) bit_count (saved_regs_mask))
|
15813 |
|
|
|| cfun->calls_alloca)
|
15814 |
|
|
asm_fprintf (f, "\tsub\t%r, %r, #%d\n", SP_REGNUM, FP_REGNUM,
|
15815 |
|
|
4 * bit_count (saved_regs_mask));
|
15816 |
|
|
print_multi_reg (f, "ldmfd\t%r, ", SP_REGNUM, saved_regs_mask, 0);
|
15817 |
|
|
|
15818 |
|
|
if (IS_INTERRUPT (func_type))
|
15819 |
|
|
/* Interrupt handlers will have pushed the
|
15820 |
|
|
IP onto the stack, so restore it now. */
|
15821 |
|
|
print_multi_reg (f, "ldmfd\t%r!, ", SP_REGNUM, 1 << IP_REGNUM, 0);
|
15822 |
|
|
}
|
15823 |
|
|
else
|
15824 |
|
|
{
|
15825 |
|
|
/* This branch is executed for ARM mode (non-apcs frames) and
|
15826 |
|
|
Thumb-2 mode. Frame layout is essentially the same for those
|
15827 |
|
|
cases, except that in ARM mode frame pointer points to the
|
15828 |
|
|
first saved register, while in Thumb-2 mode the frame pointer points
|
15829 |
|
|
to the last saved register.
|
15830 |
|
|
|
15831 |
|
|
It is possible to make frame pointer point to last saved
|
15832 |
|
|
register in both cases, and remove some conditionals below.
|
15833 |
|
|
That means that fp setup in prologue would be just "mov fp, sp"
|
15834 |
|
|
and sp restore in epilogue would be just "mov sp, fp", whereas
|
15835 |
|
|
now we have to use add/sub in those cases. However, the value
|
15836 |
|
|
of that would be marginal, as both mov and add/sub are 32-bit
|
15837 |
|
|
in ARM mode, and it would require extra conditionals
|
15838 |
|
|
in arm_expand_prologue to distingish ARM-apcs-frame case
|
15839 |
|
|
(where frame pointer is required to point at first register)
|
15840 |
|
|
and ARM-non-apcs-frame. Therefore, such change is postponed
|
15841 |
|
|
until real need arise. */
|
15842 |
|
|
unsigned HOST_WIDE_INT amount;
|
15843 |
|
|
int rfe;
|
15844 |
|
|
/* Restore stack pointer if necessary. */
|
15845 |
|
|
if (TARGET_ARM && frame_pointer_needed)
|
15846 |
|
|
{
|
15847 |
|
|
operands[0] = stack_pointer_rtx;
|
15848 |
|
|
operands[1] = hard_frame_pointer_rtx;
|
15849 |
|
|
|
15850 |
|
|
operands[2] = GEN_INT (offsets->frame - offsets->saved_regs);
|
15851 |
|
|
output_add_immediate (operands);
|
15852 |
|
|
}
|
15853 |
|
|
else
|
15854 |
|
|
{
|
15855 |
|
|
if (frame_pointer_needed)
|
15856 |
|
|
{
|
15857 |
|
|
/* For Thumb-2 restore sp from the frame pointer.
|
15858 |
|
|
Operand restrictions mean we have to incrememnt FP, then copy
|
15859 |
|
|
to SP. */
|
15860 |
|
|
amount = offsets->locals_base - offsets->saved_regs;
|
15861 |
|
|
operands[0] = hard_frame_pointer_rtx;
|
15862 |
|
|
}
|
15863 |
|
|
else
|
15864 |
|
|
{
|
15865 |
|
|
unsigned long count;
|
15866 |
|
|
operands[0] = stack_pointer_rtx;
|
15867 |
|
|
amount = offsets->outgoing_args - offsets->saved_regs;
|
15868 |
|
|
/* pop call clobbered registers if it avoids a
|
15869 |
|
|
separate stack adjustment. */
|
15870 |
|
|
count = offsets->saved_regs - offsets->saved_args;
|
15871 |
|
|
if (optimize_size
|
15872 |
|
|
&& count != 0
|
15873 |
|
|
&& !crtl->calls_eh_return
|
15874 |
|
|
&& bit_count(saved_regs_mask) * 4 == count
|
15875 |
|
|
&& !IS_INTERRUPT (func_type)
|
15876 |
|
|
&& !IS_STACKALIGN (func_type)
|
15877 |
|
|
&& !crtl->tail_call_emit)
|
15878 |
|
|
{
|
15879 |
|
|
unsigned long mask;
|
15880 |
|
|
/* Preserve return values, of any size. */
|
15881 |
|
|
mask = (1 << ((arm_size_return_regs() + 3) / 4)) - 1;
|
15882 |
|
|
mask ^= 0xf;
|
15883 |
|
|
mask &= ~saved_regs_mask;
|
15884 |
|
|
reg = 0;
|
15885 |
|
|
while (bit_count (mask) * 4 > amount)
|
15886 |
|
|
{
|
15887 |
|
|
while ((mask & (1 << reg)) == 0)
|
15888 |
|
|
reg++;
|
15889 |
|
|
mask &= ~(1 << reg);
|
15890 |
|
|
}
|
15891 |
|
|
if (bit_count (mask) * 4 == amount) {
|
15892 |
|
|
amount = 0;
|
15893 |
|
|
saved_regs_mask |= mask;
|
15894 |
|
|
}
|
15895 |
|
|
}
|
15896 |
|
|
}
|
15897 |
|
|
|
15898 |
|
|
if (amount)
|
15899 |
|
|
{
|
15900 |
|
|
operands[1] = operands[0];
|
15901 |
|
|
operands[2] = GEN_INT (amount);
|
15902 |
|
|
output_add_immediate (operands);
|
15903 |
|
|
}
|
15904 |
|
|
if (frame_pointer_needed)
|
15905 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n",
|
15906 |
|
|
SP_REGNUM, HARD_FRAME_POINTER_REGNUM);
|
15907 |
|
|
}
|
15908 |
|
|
|
15909 |
|
|
if (TARGET_FPA_EMU2)
|
15910 |
|
|
{
|
15911 |
|
|
for (reg = FIRST_FPA_REGNUM; reg <= LAST_FPA_REGNUM; reg++)
|
15912 |
|
|
if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
|
15913 |
|
|
asm_fprintf (f, "\tldfe\t%r, [%r], #12\n",
|
15914 |
|
|
reg, SP_REGNUM);
|
15915 |
|
|
}
|
15916 |
|
|
else
|
15917 |
|
|
{
|
15918 |
|
|
start_reg = FIRST_FPA_REGNUM;
|
15919 |
|
|
|
15920 |
|
|
for (reg = FIRST_FPA_REGNUM; reg <= LAST_FPA_REGNUM; reg++)
|
15921 |
|
|
{
|
15922 |
|
|
if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
|
15923 |
|
|
{
|
15924 |
|
|
if (reg - start_reg == 3)
|
15925 |
|
|
{
|
15926 |
|
|
asm_fprintf (f, "\tlfmfd\t%r, 4, [%r]!\n",
|
15927 |
|
|
start_reg, SP_REGNUM);
|
15928 |
|
|
start_reg = reg + 1;
|
15929 |
|
|
}
|
15930 |
|
|
}
|
15931 |
|
|
else
|
15932 |
|
|
{
|
15933 |
|
|
if (reg != start_reg)
|
15934 |
|
|
asm_fprintf (f, "\tlfmfd\t%r, %d, [%r]!\n",
|
15935 |
|
|
start_reg, reg - start_reg,
|
15936 |
|
|
SP_REGNUM);
|
15937 |
|
|
|
15938 |
|
|
start_reg = reg + 1;
|
15939 |
|
|
}
|
15940 |
|
|
}
|
15941 |
|
|
|
15942 |
|
|
/* Just in case the last register checked also needs unstacking. */
|
15943 |
|
|
if (reg != start_reg)
|
15944 |
|
|
asm_fprintf (f, "\tlfmfd\t%r, %d, [%r]!\n",
|
15945 |
|
|
start_reg, reg - start_reg, SP_REGNUM);
|
15946 |
|
|
}
|
15947 |
|
|
|
15948 |
|
|
if (TARGET_HARD_FLOAT && TARGET_VFP)
|
15949 |
|
|
{
|
15950 |
|
|
int end_reg = LAST_VFP_REGNUM + 1;
|
15951 |
|
|
|
15952 |
|
|
/* Scan the registers in reverse order. We need to match
|
15953 |
|
|
any groupings made in the prologue and generate matching
|
15954 |
|
|
pop operations. */
|
15955 |
|
|
for (reg = LAST_VFP_REGNUM - 1; reg >= FIRST_VFP_REGNUM; reg -= 2)
|
15956 |
|
|
{
|
15957 |
|
|
if ((!df_regs_ever_live_p (reg) || call_used_regs[reg])
|
15958 |
|
|
&& (!df_regs_ever_live_p (reg + 1)
|
15959 |
|
|
|| call_used_regs[reg + 1]))
|
15960 |
|
|
{
|
15961 |
|
|
if (end_reg > reg + 2)
|
15962 |
|
|
vfp_output_fldmd (f, SP_REGNUM,
|
15963 |
|
|
(reg + 2 - FIRST_VFP_REGNUM) / 2,
|
15964 |
|
|
(end_reg - (reg + 2)) / 2);
|
15965 |
|
|
end_reg = reg;
|
15966 |
|
|
}
|
15967 |
|
|
}
|
15968 |
|
|
if (end_reg > reg + 2)
|
15969 |
|
|
vfp_output_fldmd (f, SP_REGNUM, 0,
|
15970 |
|
|
(end_reg - (reg + 2)) / 2);
|
15971 |
|
|
}
|
15972 |
|
|
|
15973 |
|
|
if (TARGET_IWMMXT)
|
15974 |
|
|
for (reg = FIRST_IWMMXT_REGNUM; reg <= LAST_IWMMXT_REGNUM; reg++)
|
15975 |
|
|
if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
|
15976 |
|
|
asm_fprintf (f, "\twldrd\t%r, [%r], #8\n", reg, SP_REGNUM);
|
15977 |
|
|
|
15978 |
|
|
/* If we can, restore the LR into the PC. */
|
15979 |
|
|
if (ARM_FUNC_TYPE (func_type) != ARM_FT_INTERWORKED
|
15980 |
|
|
&& (TARGET_ARM || ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL)
|
15981 |
|
|
&& !IS_STACKALIGN (func_type)
|
15982 |
|
|
&& really_return
|
15983 |
|
|
&& crtl->args.pretend_args_size == 0
|
15984 |
|
|
&& saved_regs_mask & (1 << LR_REGNUM)
|
15985 |
|
|
&& !crtl->calls_eh_return)
|
15986 |
|
|
{
|
15987 |
|
|
saved_regs_mask &= ~ (1 << LR_REGNUM);
|
15988 |
|
|
saved_regs_mask |= (1 << PC_REGNUM);
|
15989 |
|
|
rfe = IS_INTERRUPT (func_type);
|
15990 |
|
|
}
|
15991 |
|
|
else
|
15992 |
|
|
rfe = 0;
|
15993 |
|
|
|
15994 |
|
|
/* Load the registers off the stack. If we only have one register
|
15995 |
|
|
to load use the LDR instruction - it is faster. For Thumb-2
|
15996 |
|
|
always use pop and the assembler will pick the best instruction.*/
|
15997 |
|
|
if (TARGET_ARM && saved_regs_mask == (1 << LR_REGNUM)
|
15998 |
|
|
&& !IS_INTERRUPT(func_type))
|
15999 |
|
|
{
|
16000 |
|
|
asm_fprintf (f, "\tldr\t%r, [%r], #4\n", LR_REGNUM, SP_REGNUM);
|
16001 |
|
|
}
|
16002 |
|
|
else if (saved_regs_mask)
|
16003 |
|
|
{
|
16004 |
|
|
if (saved_regs_mask & (1 << SP_REGNUM))
|
16005 |
|
|
/* Note - write back to the stack register is not enabled
|
16006 |
|
|
(i.e. "ldmfd sp!..."). We know that the stack pointer is
|
16007 |
|
|
in the list of registers and if we add writeback the
|
16008 |
|
|
instruction becomes UNPREDICTABLE. */
|
16009 |
|
|
print_multi_reg (f, "ldmfd\t%r, ", SP_REGNUM, saved_regs_mask,
|
16010 |
|
|
rfe);
|
16011 |
|
|
else if (TARGET_ARM)
|
16012 |
|
|
print_multi_reg (f, "ldmfd\t%r!, ", SP_REGNUM, saved_regs_mask,
|
16013 |
|
|
rfe);
|
16014 |
|
|
else
|
16015 |
|
|
print_multi_reg (f, "pop\t", SP_REGNUM, saved_regs_mask, 0);
|
16016 |
|
|
}
|
16017 |
|
|
|
16018 |
|
|
if (crtl->args.pretend_args_size)
|
16019 |
|
|
{
|
16020 |
|
|
/* Unwind the pre-pushed regs. */
|
16021 |
|
|
operands[0] = operands[1] = stack_pointer_rtx;
|
16022 |
|
|
operands[2] = GEN_INT (crtl->args.pretend_args_size);
|
16023 |
|
|
output_add_immediate (operands);
|
16024 |
|
|
}
|
16025 |
|
|
}
|
16026 |
|
|
|
16027 |
|
|
/* We may have already restored PC directly from the stack. */
|
16028 |
|
|
if (!really_return || saved_regs_mask & (1 << PC_REGNUM))
|
16029 |
|
|
return "";
|
16030 |
|
|
|
16031 |
|
|
/* Stack adjustment for exception handler. */
|
16032 |
|
|
if (crtl->calls_eh_return)
|
16033 |
|
|
asm_fprintf (f, "\tadd\t%r, %r, %r\n", SP_REGNUM, SP_REGNUM,
|
16034 |
|
|
ARM_EH_STACKADJ_REGNUM);
|
16035 |
|
|
|
16036 |
|
|
/* Generate the return instruction. */
|
16037 |
|
|
switch ((int) ARM_FUNC_TYPE (func_type))
|
16038 |
|
|
{
|
16039 |
|
|
case ARM_FT_ISR:
|
16040 |
|
|
case ARM_FT_FIQ:
|
16041 |
|
|
asm_fprintf (f, "\tsubs\t%r, %r, #4\n", PC_REGNUM, LR_REGNUM);
|
16042 |
|
|
break;
|
16043 |
|
|
|
16044 |
|
|
case ARM_FT_EXCEPTION:
|
16045 |
|
|
asm_fprintf (f, "\tmovs\t%r, %r\n", PC_REGNUM, LR_REGNUM);
|
16046 |
|
|
break;
|
16047 |
|
|
|
16048 |
|
|
case ARM_FT_INTERWORKED:
|
16049 |
|
|
asm_fprintf (f, "\tbx\t%r\n", LR_REGNUM);
|
16050 |
|
|
break;
|
16051 |
|
|
|
16052 |
|
|
default:
|
16053 |
|
|
if (IS_STACKALIGN (func_type))
|
16054 |
|
|
{
|
16055 |
|
|
/* See comment in arm_expand_prologue. */
|
16056 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, 0);
|
16057 |
|
|
}
|
16058 |
|
|
if (arm_arch5 || arm_arch4t)
|
16059 |
|
|
asm_fprintf (f, "\tbx\t%r\n", LR_REGNUM);
|
16060 |
|
|
else
|
16061 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n", PC_REGNUM, LR_REGNUM);
|
16062 |
|
|
break;
|
16063 |
|
|
}
|
16064 |
|
|
|
16065 |
|
|
return "";
|
16066 |
|
|
}
|
16067 |
|
|
|
16068 |
|
|
static void
|
16069 |
|
|
arm_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
|
16070 |
|
|
HOST_WIDE_INT frame_size ATTRIBUTE_UNUSED)
|
16071 |
|
|
{
|
16072 |
|
|
arm_stack_offsets *offsets;
|
16073 |
|
|
|
16074 |
|
|
if (TARGET_THUMB1)
|
16075 |
|
|
{
|
16076 |
|
|
int regno;
|
16077 |
|
|
|
16078 |
|
|
/* Emit any call-via-reg trampolines that are needed for v4t support
|
16079 |
|
|
of call_reg and call_value_reg type insns. */
|
16080 |
|
|
for (regno = 0; regno < LR_REGNUM; regno++)
|
16081 |
|
|
{
|
16082 |
|
|
rtx label = cfun->machine->call_via[regno];
|
16083 |
|
|
|
16084 |
|
|
if (label != NULL)
|
16085 |
|
|
{
|
16086 |
|
|
switch_to_section (function_section (current_function_decl));
|
16087 |
|
|
targetm.asm_out.internal_label (asm_out_file, "L",
|
16088 |
|
|
CODE_LABEL_NUMBER (label));
|
16089 |
|
|
asm_fprintf (asm_out_file, "\tbx\t%r\n", regno);
|
16090 |
|
|
}
|
16091 |
|
|
}
|
16092 |
|
|
|
16093 |
|
|
/* ??? Probably not safe to set this here, since it assumes that a
|
16094 |
|
|
function will be emitted as assembly immediately after we generate
|
16095 |
|
|
RTL for it. This does not happen for inline functions. */
|
16096 |
|
|
cfun->machine->return_used_this_function = 0;
|
16097 |
|
|
}
|
16098 |
|
|
else /* TARGET_32BIT */
|
16099 |
|
|
{
|
16100 |
|
|
/* We need to take into account any stack-frame rounding. */
|
16101 |
|
|
offsets = arm_get_frame_offsets ();
|
16102 |
|
|
|
16103 |
|
|
gcc_assert (!use_return_insn (FALSE, NULL)
|
16104 |
|
|
|| (cfun->machine->return_used_this_function != 0)
|
16105 |
|
|
|| offsets->saved_regs == offsets->outgoing_args
|
16106 |
|
|
|| frame_pointer_needed);
|
16107 |
|
|
|
16108 |
|
|
/* Reset the ARM-specific per-function variables. */
|
16109 |
|
|
after_arm_reorg = 0;
|
16110 |
|
|
}
|
16111 |
|
|
}
|
16112 |
|
|
|
16113 |
|
|
/* Generate and emit an insn that we will recognize as a push_multi.
|
16114 |
|
|
Unfortunately, since this insn does not reflect very well the actual
|
16115 |
|
|
semantics of the operation, we need to annotate the insn for the benefit
|
16116 |
|
|
of DWARF2 frame unwind information. */
|
16117 |
|
|
static rtx
|
16118 |
|
|
emit_multi_reg_push (unsigned long mask)
|
16119 |
|
|
{
|
16120 |
|
|
int num_regs = 0;
|
16121 |
|
|
int num_dwarf_regs;
|
16122 |
|
|
int i, j;
|
16123 |
|
|
rtx par;
|
16124 |
|
|
rtx dwarf;
|
16125 |
|
|
int dwarf_par_index;
|
16126 |
|
|
rtx tmp, reg;
|
16127 |
|
|
|
16128 |
|
|
for (i = 0; i <= LAST_ARM_REGNUM; i++)
|
16129 |
|
|
if (mask & (1 << i))
|
16130 |
|
|
num_regs++;
|
16131 |
|
|
|
16132 |
|
|
gcc_assert (num_regs && num_regs <= 16);
|
16133 |
|
|
|
16134 |
|
|
/* We don't record the PC in the dwarf frame information. */
|
16135 |
|
|
num_dwarf_regs = num_regs;
|
16136 |
|
|
if (mask & (1 << PC_REGNUM))
|
16137 |
|
|
num_dwarf_regs--;
|
16138 |
|
|
|
16139 |
|
|
/* For the body of the insn we are going to generate an UNSPEC in
|
16140 |
|
|
parallel with several USEs. This allows the insn to be recognized
|
16141 |
|
|
by the push_multi pattern in the arm.md file.
|
16142 |
|
|
|
16143 |
|
|
The body of the insn looks something like this:
|
16144 |
|
|
|
16145 |
|
|
(parallel [
|
16146 |
|
|
(set (mem:BLK (pre_modify:SI (reg:SI sp)
|
16147 |
|
|
(const_int:SI <num>)))
|
16148 |
|
|
(unspec:BLK [(reg:SI r4)] UNSPEC_PUSH_MULT))
|
16149 |
|
|
(use (reg:SI XX))
|
16150 |
|
|
(use (reg:SI YY))
|
16151 |
|
|
...
|
16152 |
|
|
])
|
16153 |
|
|
|
16154 |
|
|
For the frame note however, we try to be more explicit and actually
|
16155 |
|
|
show each register being stored into the stack frame, plus a (single)
|
16156 |
|
|
decrement of the stack pointer. We do it this way in order to be
|
16157 |
|
|
friendly to the stack unwinding code, which only wants to see a single
|
16158 |
|
|
stack decrement per instruction. The RTL we generate for the note looks
|
16159 |
|
|
something like this:
|
16160 |
|
|
|
16161 |
|
|
(sequence [
|
16162 |
|
|
(set (reg:SI sp) (plus:SI (reg:SI sp) (const_int -20)))
|
16163 |
|
|
(set (mem:SI (reg:SI sp)) (reg:SI r4))
|
16164 |
|
|
(set (mem:SI (plus:SI (reg:SI sp) (const_int 4))) (reg:SI XX))
|
16165 |
|
|
(set (mem:SI (plus:SI (reg:SI sp) (const_int 8))) (reg:SI YY))
|
16166 |
|
|
...
|
16167 |
|
|
])
|
16168 |
|
|
|
16169 |
|
|
FIXME:: In an ideal world the PRE_MODIFY would not exist and
|
16170 |
|
|
instead we'd have a parallel expression detailing all
|
16171 |
|
|
the stores to the various memory addresses so that debug
|
16172 |
|
|
information is more up-to-date. Remember however while writing
|
16173 |
|
|
this to take care of the constraints with the push instruction.
|
16174 |
|
|
|
16175 |
|
|
Note also that this has to be taken care of for the VFP registers.
|
16176 |
|
|
|
16177 |
|
|
For more see PR43399. */
|
16178 |
|
|
|
16179 |
|
|
par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_regs));
|
16180 |
|
|
dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (num_dwarf_regs + 1));
|
16181 |
|
|
dwarf_par_index = 1;
|
16182 |
|
|
|
16183 |
|
|
for (i = 0; i <= LAST_ARM_REGNUM; i++)
|
16184 |
|
|
{
|
16185 |
|
|
if (mask & (1 << i))
|
16186 |
|
|
{
|
16187 |
|
|
reg = gen_rtx_REG (SImode, i);
|
16188 |
|
|
|
16189 |
|
|
XVECEXP (par, 0, 0)
|
16190 |
|
|
= gen_rtx_SET (VOIDmode,
|
16191 |
|
|
gen_frame_mem
|
16192 |
|
|
(BLKmode,
|
16193 |
|
|
gen_rtx_PRE_MODIFY (Pmode,
|
16194 |
|
|
stack_pointer_rtx,
|
16195 |
|
|
plus_constant
|
16196 |
|
|
(stack_pointer_rtx,
|
16197 |
|
|
-4 * num_regs))
|
16198 |
|
|
),
|
16199 |
|
|
gen_rtx_UNSPEC (BLKmode,
|
16200 |
|
|
gen_rtvec (1, reg),
|
16201 |
|
|
UNSPEC_PUSH_MULT));
|
16202 |
|
|
|
16203 |
|
|
if (i != PC_REGNUM)
|
16204 |
|
|
{
|
16205 |
|
|
tmp = gen_rtx_SET (VOIDmode,
|
16206 |
|
|
gen_frame_mem (SImode, stack_pointer_rtx),
|
16207 |
|
|
reg);
|
16208 |
|
|
RTX_FRAME_RELATED_P (tmp) = 1;
|
16209 |
|
|
XVECEXP (dwarf, 0, dwarf_par_index) = tmp;
|
16210 |
|
|
dwarf_par_index++;
|
16211 |
|
|
}
|
16212 |
|
|
|
16213 |
|
|
break;
|
16214 |
|
|
}
|
16215 |
|
|
}
|
16216 |
|
|
|
16217 |
|
|
for (j = 1, i++; j < num_regs; i++)
|
16218 |
|
|
{
|
16219 |
|
|
if (mask & (1 << i))
|
16220 |
|
|
{
|
16221 |
|
|
reg = gen_rtx_REG (SImode, i);
|
16222 |
|
|
|
16223 |
|
|
XVECEXP (par, 0, j) = gen_rtx_USE (VOIDmode, reg);
|
16224 |
|
|
|
16225 |
|
|
if (i != PC_REGNUM)
|
16226 |
|
|
{
|
16227 |
|
|
tmp
|
16228 |
|
|
= gen_rtx_SET (VOIDmode,
|
16229 |
|
|
gen_frame_mem
|
16230 |
|
|
(SImode,
|
16231 |
|
|
plus_constant (stack_pointer_rtx,
|
16232 |
|
|
4 * j)),
|
16233 |
|
|
reg);
|
16234 |
|
|
RTX_FRAME_RELATED_P (tmp) = 1;
|
16235 |
|
|
XVECEXP (dwarf, 0, dwarf_par_index++) = tmp;
|
16236 |
|
|
}
|
16237 |
|
|
|
16238 |
|
|
j++;
|
16239 |
|
|
}
|
16240 |
|
|
}
|
16241 |
|
|
|
16242 |
|
|
par = emit_insn (par);
|
16243 |
|
|
|
16244 |
|
|
tmp = gen_rtx_SET (VOIDmode,
|
16245 |
|
|
stack_pointer_rtx,
|
16246 |
|
|
plus_constant (stack_pointer_rtx, -4 * num_regs));
|
16247 |
|
|
RTX_FRAME_RELATED_P (tmp) = 1;
|
16248 |
|
|
XVECEXP (dwarf, 0, 0) = tmp;
|
16249 |
|
|
|
16250 |
|
|
add_reg_note (par, REG_FRAME_RELATED_EXPR, dwarf);
|
16251 |
|
|
|
16252 |
|
|
return par;
|
16253 |
|
|
}
|
16254 |
|
|
|
16255 |
|
|
/* Calculate the size of the return value that is passed in registers. */
|
16256 |
|
|
static unsigned
|
16257 |
|
|
arm_size_return_regs (void)
|
16258 |
|
|
{
|
16259 |
|
|
enum machine_mode mode;
|
16260 |
|
|
|
16261 |
|
|
if (crtl->return_rtx != 0)
|
16262 |
|
|
mode = GET_MODE (crtl->return_rtx);
|
16263 |
|
|
else
|
16264 |
|
|
mode = DECL_MODE (DECL_RESULT (current_function_decl));
|
16265 |
|
|
|
16266 |
|
|
return GET_MODE_SIZE (mode);
|
16267 |
|
|
}
|
16268 |
|
|
|
16269 |
|
|
static rtx
|
16270 |
|
|
emit_sfm (int base_reg, int count)
|
16271 |
|
|
{
|
16272 |
|
|
rtx par;
|
16273 |
|
|
rtx dwarf;
|
16274 |
|
|
rtx tmp, reg;
|
16275 |
|
|
int i;
|
16276 |
|
|
|
16277 |
|
|
par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
|
16278 |
|
|
dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (count + 1));
|
16279 |
|
|
|
16280 |
|
|
reg = gen_rtx_REG (XFmode, base_reg++);
|
16281 |
|
|
|
16282 |
|
|
XVECEXP (par, 0, 0)
|
16283 |
|
|
= gen_rtx_SET (VOIDmode,
|
16284 |
|
|
gen_frame_mem
|
16285 |
|
|
(BLKmode,
|
16286 |
|
|
gen_rtx_PRE_MODIFY (Pmode,
|
16287 |
|
|
stack_pointer_rtx,
|
16288 |
|
|
plus_constant
|
16289 |
|
|
(stack_pointer_rtx,
|
16290 |
|
|
-12 * count))
|
16291 |
|
|
),
|
16292 |
|
|
gen_rtx_UNSPEC (BLKmode,
|
16293 |
|
|
gen_rtvec (1, reg),
|
16294 |
|
|
UNSPEC_PUSH_MULT));
|
16295 |
|
|
tmp = gen_rtx_SET (VOIDmode,
|
16296 |
|
|
gen_frame_mem (XFmode, stack_pointer_rtx), reg);
|
16297 |
|
|
RTX_FRAME_RELATED_P (tmp) = 1;
|
16298 |
|
|
XVECEXP (dwarf, 0, 1) = tmp;
|
16299 |
|
|
|
16300 |
|
|
for (i = 1; i < count; i++)
|
16301 |
|
|
{
|
16302 |
|
|
reg = gen_rtx_REG (XFmode, base_reg++);
|
16303 |
|
|
XVECEXP (par, 0, i) = gen_rtx_USE (VOIDmode, reg);
|
16304 |
|
|
|
16305 |
|
|
tmp = gen_rtx_SET (VOIDmode,
|
16306 |
|
|
gen_frame_mem (XFmode,
|
16307 |
|
|
plus_constant (stack_pointer_rtx,
|
16308 |
|
|
i * 12)),
|
16309 |
|
|
reg);
|
16310 |
|
|
RTX_FRAME_RELATED_P (tmp) = 1;
|
16311 |
|
|
XVECEXP (dwarf, 0, i + 1) = tmp;
|
16312 |
|
|
}
|
16313 |
|
|
|
16314 |
|
|
tmp = gen_rtx_SET (VOIDmode,
|
16315 |
|
|
stack_pointer_rtx,
|
16316 |
|
|
plus_constant (stack_pointer_rtx, -12 * count));
|
16317 |
|
|
|
16318 |
|
|
RTX_FRAME_RELATED_P (tmp) = 1;
|
16319 |
|
|
XVECEXP (dwarf, 0, 0) = tmp;
|
16320 |
|
|
|
16321 |
|
|
par = emit_insn (par);
|
16322 |
|
|
add_reg_note (par, REG_FRAME_RELATED_EXPR, dwarf);
|
16323 |
|
|
|
16324 |
|
|
return par;
|
16325 |
|
|
}
|
16326 |
|
|
|
16327 |
|
|
|
16328 |
|
|
/* Return true if the current function needs to save/restore LR. */
|
16329 |
|
|
|
16330 |
|
|
static bool
|
16331 |
|
|
thumb_force_lr_save (void)
|
16332 |
|
|
{
|
16333 |
|
|
return !cfun->machine->lr_save_eliminated
|
16334 |
|
|
&& (!leaf_function_p ()
|
16335 |
|
|
|| thumb_far_jump_used_p ()
|
16336 |
|
|
|| df_regs_ever_live_p (LR_REGNUM));
|
16337 |
|
|
}
|
16338 |
|
|
|
16339 |
|
|
|
16340 |
|
|
/* Return true if r3 is used by any of the tail call insns in the
|
16341 |
|
|
current function. */
|
16342 |
|
|
|
16343 |
|
|
static bool
|
16344 |
|
|
any_sibcall_uses_r3 (void)
|
16345 |
|
|
{
|
16346 |
|
|
edge_iterator ei;
|
16347 |
|
|
edge e;
|
16348 |
|
|
|
16349 |
|
|
if (!crtl->tail_call_emit)
|
16350 |
|
|
return false;
|
16351 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
16352 |
|
|
if (e->flags & EDGE_SIBCALL)
|
16353 |
|
|
{
|
16354 |
|
|
rtx call = BB_END (e->src);
|
16355 |
|
|
if (!CALL_P (call))
|
16356 |
|
|
call = prev_nonnote_nondebug_insn (call);
|
16357 |
|
|
gcc_assert (CALL_P (call) && SIBLING_CALL_P (call));
|
16358 |
|
|
if (find_regno_fusage (call, USE, 3))
|
16359 |
|
|
return true;
|
16360 |
|
|
}
|
16361 |
|
|
return false;
|
16362 |
|
|
}
|
16363 |
|
|
|
16364 |
|
|
|
16365 |
|
|
/* Compute the distance from register FROM to register TO.
|
16366 |
|
|
These can be the arg pointer (26), the soft frame pointer (25),
|
16367 |
|
|
the stack pointer (13) or the hard frame pointer (11).
|
16368 |
|
|
In thumb mode r7 is used as the soft frame pointer, if needed.
|
16369 |
|
|
Typical stack layout looks like this:
|
16370 |
|
|
|
16371 |
|
|
old stack pointer -> | |
|
16372 |
|
|
----
|
16373 |
|
|
| | \
|
16374 |
|
|
| | saved arguments for
|
16375 |
|
|
| | vararg functions
|
16376 |
|
|
| | /
|
16377 |
|
|
--
|
16378 |
|
|
hard FP & arg pointer -> | | \
|
16379 |
|
|
| | stack
|
16380 |
|
|
| | frame
|
16381 |
|
|
| | /
|
16382 |
|
|
--
|
16383 |
|
|
| | \
|
16384 |
|
|
| | call saved
|
16385 |
|
|
| | registers
|
16386 |
|
|
soft frame pointer -> | | /
|
16387 |
|
|
--
|
16388 |
|
|
| | \
|
16389 |
|
|
| | local
|
16390 |
|
|
| | variables
|
16391 |
|
|
locals base pointer -> | | /
|
16392 |
|
|
--
|
16393 |
|
|
| | \
|
16394 |
|
|
| | outgoing
|
16395 |
|
|
| | arguments
|
16396 |
|
|
current stack pointer -> | | /
|
16397 |
|
|
--
|
16398 |
|
|
|
16399 |
|
|
For a given function some or all of these stack components
|
16400 |
|
|
may not be needed, giving rise to the possibility of
|
16401 |
|
|
eliminating some of the registers.
|
16402 |
|
|
|
16403 |
|
|
The values returned by this function must reflect the behavior
|
16404 |
|
|
of arm_expand_prologue() and arm_compute_save_reg_mask().
|
16405 |
|
|
|
16406 |
|
|
The sign of the number returned reflects the direction of stack
|
16407 |
|
|
growth, so the values are positive for all eliminations except
|
16408 |
|
|
from the soft frame pointer to the hard frame pointer.
|
16409 |
|
|
|
16410 |
|
|
SFP may point just inside the local variables block to ensure correct
|
16411 |
|
|
alignment. */
|
16412 |
|
|
|
16413 |
|
|
|
16414 |
|
|
/* Calculate stack offsets. These are used to calculate register elimination
|
16415 |
|
|
offsets and in prologue/epilogue code. Also calculates which registers
|
16416 |
|
|
should be saved. */
|
16417 |
|
|
|
16418 |
|
|
static arm_stack_offsets *
|
16419 |
|
|
arm_get_frame_offsets (void)
|
16420 |
|
|
{
|
16421 |
|
|
struct arm_stack_offsets *offsets;
|
16422 |
|
|
unsigned long func_type;
|
16423 |
|
|
int leaf;
|
16424 |
|
|
int saved;
|
16425 |
|
|
int core_saved;
|
16426 |
|
|
HOST_WIDE_INT frame_size;
|
16427 |
|
|
int i;
|
16428 |
|
|
|
16429 |
|
|
offsets = &cfun->machine->stack_offsets;
|
16430 |
|
|
|
16431 |
|
|
/* We need to know if we are a leaf function. Unfortunately, it
|
16432 |
|
|
is possible to be called after start_sequence has been called,
|
16433 |
|
|
which causes get_insns to return the insns for the sequence,
|
16434 |
|
|
not the function, which will cause leaf_function_p to return
|
16435 |
|
|
the incorrect result.
|
16436 |
|
|
|
16437 |
|
|
to know about leaf functions once reload has completed, and the
|
16438 |
|
|
frame size cannot be changed after that time, so we can safely
|
16439 |
|
|
use the cached value. */
|
16440 |
|
|
|
16441 |
|
|
if (reload_completed)
|
16442 |
|
|
return offsets;
|
16443 |
|
|
|
16444 |
|
|
/* Initially this is the size of the local variables. It will translated
|
16445 |
|
|
into an offset once we have determined the size of preceding data. */
|
16446 |
|
|
frame_size = ROUND_UP_WORD (get_frame_size ());
|
16447 |
|
|
|
16448 |
|
|
leaf = leaf_function_p ();
|
16449 |
|
|
|
16450 |
|
|
/* Space for variadic functions. */
|
16451 |
|
|
offsets->saved_args = crtl->args.pretend_args_size;
|
16452 |
|
|
|
16453 |
|
|
/* In Thumb mode this is incorrect, but never used. */
|
16454 |
|
|
offsets->frame = offsets->saved_args + (frame_pointer_needed ? 4 : 0) +
|
16455 |
|
|
arm_compute_static_chain_stack_bytes();
|
16456 |
|
|
|
16457 |
|
|
if (TARGET_32BIT)
|
16458 |
|
|
{
|
16459 |
|
|
unsigned int regno;
|
16460 |
|
|
|
16461 |
|
|
offsets->saved_regs_mask = arm_compute_save_reg_mask ();
|
16462 |
|
|
core_saved = bit_count (offsets->saved_regs_mask) * 4;
|
16463 |
|
|
saved = core_saved;
|
16464 |
|
|
|
16465 |
|
|
/* We know that SP will be doubleword aligned on entry, and we must
|
16466 |
|
|
preserve that condition at any subroutine call. We also require the
|
16467 |
|
|
soft frame pointer to be doubleword aligned. */
|
16468 |
|
|
|
16469 |
|
|
if (TARGET_REALLY_IWMMXT)
|
16470 |
|
|
{
|
16471 |
|
|
/* Check for the call-saved iWMMXt registers. */
|
16472 |
|
|
for (regno = FIRST_IWMMXT_REGNUM;
|
16473 |
|
|
regno <= LAST_IWMMXT_REGNUM;
|
16474 |
|
|
regno++)
|
16475 |
|
|
if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
|
16476 |
|
|
saved += 8;
|
16477 |
|
|
}
|
16478 |
|
|
|
16479 |
|
|
func_type = arm_current_func_type ();
|
16480 |
|
|
if (! IS_VOLATILE (func_type))
|
16481 |
|
|
{
|
16482 |
|
|
/* Space for saved FPA registers. */
|
16483 |
|
|
for (regno = FIRST_FPA_REGNUM; regno <= LAST_FPA_REGNUM; regno++)
|
16484 |
|
|
if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
|
16485 |
|
|
saved += 12;
|
16486 |
|
|
|
16487 |
|
|
/* Space for saved VFP registers. */
|
16488 |
|
|
if (TARGET_HARD_FLOAT && TARGET_VFP)
|
16489 |
|
|
saved += arm_get_vfp_saved_size ();
|
16490 |
|
|
}
|
16491 |
|
|
}
|
16492 |
|
|
else /* TARGET_THUMB1 */
|
16493 |
|
|
{
|
16494 |
|
|
offsets->saved_regs_mask = thumb1_compute_save_reg_mask ();
|
16495 |
|
|
core_saved = bit_count (offsets->saved_regs_mask) * 4;
|
16496 |
|
|
saved = core_saved;
|
16497 |
|
|
if (TARGET_BACKTRACE)
|
16498 |
|
|
saved += 16;
|
16499 |
|
|
}
|
16500 |
|
|
|
16501 |
|
|
/* Saved registers include the stack frame. */
|
16502 |
|
|
offsets->saved_regs = offsets->saved_args + saved +
|
16503 |
|
|
arm_compute_static_chain_stack_bytes();
|
16504 |
|
|
offsets->soft_frame = offsets->saved_regs + CALLER_INTERWORKING_SLOT_SIZE;
|
16505 |
|
|
/* A leaf function does not need any stack alignment if it has nothing
|
16506 |
|
|
on the stack. */
|
16507 |
|
|
if (leaf && frame_size == 0
|
16508 |
|
|
/* However if it calls alloca(), we have a dynamically allocated
|
16509 |
|
|
block of BIGGEST_ALIGNMENT on stack, so still do stack alignment. */
|
16510 |
|
|
&& ! cfun->calls_alloca)
|
16511 |
|
|
{
|
16512 |
|
|
offsets->outgoing_args = offsets->soft_frame;
|
16513 |
|
|
offsets->locals_base = offsets->soft_frame;
|
16514 |
|
|
return offsets;
|
16515 |
|
|
}
|
16516 |
|
|
|
16517 |
|
|
/* Ensure SFP has the correct alignment. */
|
16518 |
|
|
if (ARM_DOUBLEWORD_ALIGN
|
16519 |
|
|
&& (offsets->soft_frame & 7))
|
16520 |
|
|
{
|
16521 |
|
|
offsets->soft_frame += 4;
|
16522 |
|
|
/* Try to align stack by pushing an extra reg. Don't bother doing this
|
16523 |
|
|
when there is a stack frame as the alignment will be rolled into
|
16524 |
|
|
the normal stack adjustment. */
|
16525 |
|
|
if (frame_size + crtl->outgoing_args_size == 0)
|
16526 |
|
|
{
|
16527 |
|
|
int reg = -1;
|
16528 |
|
|
|
16529 |
|
|
/* If it is safe to use r3, then do so. This sometimes
|
16530 |
|
|
generates better code on Thumb-2 by avoiding the need to
|
16531 |
|
|
use 32-bit push/pop instructions. */
|
16532 |
|
|
if (! any_sibcall_uses_r3 ()
|
16533 |
|
|
&& arm_size_return_regs () <= 12
|
16534 |
|
|
&& (offsets->saved_regs_mask & (1 << 3)) == 0)
|
16535 |
|
|
{
|
16536 |
|
|
reg = 3;
|
16537 |
|
|
}
|
16538 |
|
|
else
|
16539 |
|
|
for (i = 4; i <= (TARGET_THUMB1 ? LAST_LO_REGNUM : 11); i++)
|
16540 |
|
|
{
|
16541 |
|
|
if ((offsets->saved_regs_mask & (1 << i)) == 0)
|
16542 |
|
|
{
|
16543 |
|
|
reg = i;
|
16544 |
|
|
break;
|
16545 |
|
|
}
|
16546 |
|
|
}
|
16547 |
|
|
|
16548 |
|
|
if (reg != -1)
|
16549 |
|
|
{
|
16550 |
|
|
offsets->saved_regs += 4;
|
16551 |
|
|
offsets->saved_regs_mask |= (1 << reg);
|
16552 |
|
|
}
|
16553 |
|
|
}
|
16554 |
|
|
}
|
16555 |
|
|
|
16556 |
|
|
offsets->locals_base = offsets->soft_frame + frame_size;
|
16557 |
|
|
offsets->outgoing_args = (offsets->locals_base
|
16558 |
|
|
+ crtl->outgoing_args_size);
|
16559 |
|
|
|
16560 |
|
|
if (ARM_DOUBLEWORD_ALIGN)
|
16561 |
|
|
{
|
16562 |
|
|
/* Ensure SP remains doubleword aligned. */
|
16563 |
|
|
if (offsets->outgoing_args & 7)
|
16564 |
|
|
offsets->outgoing_args += 4;
|
16565 |
|
|
gcc_assert (!(offsets->outgoing_args & 7));
|
16566 |
|
|
}
|
16567 |
|
|
|
16568 |
|
|
return offsets;
|
16569 |
|
|
}
|
16570 |
|
|
|
16571 |
|
|
|
16572 |
|
|
/* Calculate the relative offsets for the different stack pointers. Positive
|
16573 |
|
|
offsets are in the direction of stack growth. */
|
16574 |
|
|
|
16575 |
|
|
HOST_WIDE_INT
|
16576 |
|
|
arm_compute_initial_elimination_offset (unsigned int from, unsigned int to)
|
16577 |
|
|
{
|
16578 |
|
|
arm_stack_offsets *offsets;
|
16579 |
|
|
|
16580 |
|
|
offsets = arm_get_frame_offsets ();
|
16581 |
|
|
|
16582 |
|
|
/* OK, now we have enough information to compute the distances.
|
16583 |
|
|
There must be an entry in these switch tables for each pair
|
16584 |
|
|
of registers in ELIMINABLE_REGS, even if some of the entries
|
16585 |
|
|
seem to be redundant or useless. */
|
16586 |
|
|
switch (from)
|
16587 |
|
|
{
|
16588 |
|
|
case ARG_POINTER_REGNUM:
|
16589 |
|
|
switch (to)
|
16590 |
|
|
{
|
16591 |
|
|
case THUMB_HARD_FRAME_POINTER_REGNUM:
|
16592 |
|
|
return 0;
|
16593 |
|
|
|
16594 |
|
|
case FRAME_POINTER_REGNUM:
|
16595 |
|
|
/* This is the reverse of the soft frame pointer
|
16596 |
|
|
to hard frame pointer elimination below. */
|
16597 |
|
|
return offsets->soft_frame - offsets->saved_args;
|
16598 |
|
|
|
16599 |
|
|
case ARM_HARD_FRAME_POINTER_REGNUM:
|
16600 |
|
|
/* This is only non-zero in the case where the static chain register
|
16601 |
|
|
is stored above the frame. */
|
16602 |
|
|
return offsets->frame - offsets->saved_args - 4;
|
16603 |
|
|
|
16604 |
|
|
case STACK_POINTER_REGNUM:
|
16605 |
|
|
/* If nothing has been pushed on the stack at all
|
16606 |
|
|
then this will return -4. This *is* correct! */
|
16607 |
|
|
return offsets->outgoing_args - (offsets->saved_args + 4);
|
16608 |
|
|
|
16609 |
|
|
default:
|
16610 |
|
|
gcc_unreachable ();
|
16611 |
|
|
}
|
16612 |
|
|
gcc_unreachable ();
|
16613 |
|
|
|
16614 |
|
|
case FRAME_POINTER_REGNUM:
|
16615 |
|
|
switch (to)
|
16616 |
|
|
{
|
16617 |
|
|
case THUMB_HARD_FRAME_POINTER_REGNUM:
|
16618 |
|
|
return 0;
|
16619 |
|
|
|
16620 |
|
|
case ARM_HARD_FRAME_POINTER_REGNUM:
|
16621 |
|
|
/* The hard frame pointer points to the top entry in the
|
16622 |
|
|
stack frame. The soft frame pointer to the bottom entry
|
16623 |
|
|
in the stack frame. If there is no stack frame at all,
|
16624 |
|
|
then they are identical. */
|
16625 |
|
|
|
16626 |
|
|
return offsets->frame - offsets->soft_frame;
|
16627 |
|
|
|
16628 |
|
|
case STACK_POINTER_REGNUM:
|
16629 |
|
|
return offsets->outgoing_args - offsets->soft_frame;
|
16630 |
|
|
|
16631 |
|
|
default:
|
16632 |
|
|
gcc_unreachable ();
|
16633 |
|
|
}
|
16634 |
|
|
gcc_unreachable ();
|
16635 |
|
|
|
16636 |
|
|
default:
|
16637 |
|
|
/* You cannot eliminate from the stack pointer.
|
16638 |
|
|
In theory you could eliminate from the hard frame
|
16639 |
|
|
pointer to the stack pointer, but this will never
|
16640 |
|
|
happen, since if a stack frame is not needed the
|
16641 |
|
|
hard frame pointer will never be used. */
|
16642 |
|
|
gcc_unreachable ();
|
16643 |
|
|
}
|
16644 |
|
|
}
|
16645 |
|
|
|
16646 |
|
|
/* Given FROM and TO register numbers, say whether this elimination is
|
16647 |
|
|
allowed. Frame pointer elimination is automatically handled.
|
16648 |
|
|
|
16649 |
|
|
All eliminations are permissible. Note that ARG_POINTER_REGNUM and
|
16650 |
|
|
HARD_FRAME_POINTER_REGNUM are in fact the same thing. If we need a frame
|
16651 |
|
|
pointer, we must eliminate FRAME_POINTER_REGNUM into
|
16652 |
|
|
HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM or
|
16653 |
|
|
ARG_POINTER_REGNUM. */
|
16654 |
|
|
|
16655 |
|
|
bool
|
16656 |
|
|
arm_can_eliminate (const int from, const int to)
|
16657 |
|
|
{
|
16658 |
|
|
return ((to == FRAME_POINTER_REGNUM && from == ARG_POINTER_REGNUM) ? false :
|
16659 |
|
|
(to == STACK_POINTER_REGNUM && frame_pointer_needed) ? false :
|
16660 |
|
|
(to == ARM_HARD_FRAME_POINTER_REGNUM && TARGET_THUMB) ? false :
|
16661 |
|
|
(to == THUMB_HARD_FRAME_POINTER_REGNUM && TARGET_ARM) ? false :
|
16662 |
|
|
true);
|
16663 |
|
|
}
|
16664 |
|
|
|
16665 |
|
|
/* Emit RTL to save coprocessor registers on function entry. Returns the
|
16666 |
|
|
number of bytes pushed. */
|
16667 |
|
|
|
16668 |
|
|
static int
|
16669 |
|
|
arm_save_coproc_regs(void)
|
16670 |
|
|
{
|
16671 |
|
|
int saved_size = 0;
|
16672 |
|
|
unsigned reg;
|
16673 |
|
|
unsigned start_reg;
|
16674 |
|
|
rtx insn;
|
16675 |
|
|
|
16676 |
|
|
for (reg = LAST_IWMMXT_REGNUM; reg >= FIRST_IWMMXT_REGNUM; reg--)
|
16677 |
|
|
if (df_regs_ever_live_p (reg) && ! call_used_regs[reg])
|
16678 |
|
|
{
|
16679 |
|
|
insn = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
|
16680 |
|
|
insn = gen_rtx_MEM (V2SImode, insn);
|
16681 |
|
|
insn = emit_set_insn (insn, gen_rtx_REG (V2SImode, reg));
|
16682 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16683 |
|
|
saved_size += 8;
|
16684 |
|
|
}
|
16685 |
|
|
|
16686 |
|
|
/* Save any floating point call-saved registers used by this
|
16687 |
|
|
function. */
|
16688 |
|
|
if (TARGET_FPA_EMU2)
|
16689 |
|
|
{
|
16690 |
|
|
for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
|
16691 |
|
|
if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
|
16692 |
|
|
{
|
16693 |
|
|
insn = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
|
16694 |
|
|
insn = gen_rtx_MEM (XFmode, insn);
|
16695 |
|
|
insn = emit_set_insn (insn, gen_rtx_REG (XFmode, reg));
|
16696 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16697 |
|
|
saved_size += 12;
|
16698 |
|
|
}
|
16699 |
|
|
}
|
16700 |
|
|
else
|
16701 |
|
|
{
|
16702 |
|
|
start_reg = LAST_FPA_REGNUM;
|
16703 |
|
|
|
16704 |
|
|
for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
|
16705 |
|
|
{
|
16706 |
|
|
if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
|
16707 |
|
|
{
|
16708 |
|
|
if (start_reg - reg == 3)
|
16709 |
|
|
{
|
16710 |
|
|
insn = emit_sfm (reg, 4);
|
16711 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16712 |
|
|
saved_size += 48;
|
16713 |
|
|
start_reg = reg - 1;
|
16714 |
|
|
}
|
16715 |
|
|
}
|
16716 |
|
|
else
|
16717 |
|
|
{
|
16718 |
|
|
if (start_reg != reg)
|
16719 |
|
|
{
|
16720 |
|
|
insn = emit_sfm (reg + 1, start_reg - reg);
|
16721 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16722 |
|
|
saved_size += (start_reg - reg) * 12;
|
16723 |
|
|
}
|
16724 |
|
|
start_reg = reg - 1;
|
16725 |
|
|
}
|
16726 |
|
|
}
|
16727 |
|
|
|
16728 |
|
|
if (start_reg != reg)
|
16729 |
|
|
{
|
16730 |
|
|
insn = emit_sfm (reg + 1, start_reg - reg);
|
16731 |
|
|
saved_size += (start_reg - reg) * 12;
|
16732 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16733 |
|
|
}
|
16734 |
|
|
}
|
16735 |
|
|
if (TARGET_HARD_FLOAT && TARGET_VFP)
|
16736 |
|
|
{
|
16737 |
|
|
start_reg = FIRST_VFP_REGNUM;
|
16738 |
|
|
|
16739 |
|
|
for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
|
16740 |
|
|
{
|
16741 |
|
|
if ((!df_regs_ever_live_p (reg) || call_used_regs[reg])
|
16742 |
|
|
&& (!df_regs_ever_live_p (reg + 1) || call_used_regs[reg + 1]))
|
16743 |
|
|
{
|
16744 |
|
|
if (start_reg != reg)
|
16745 |
|
|
saved_size += vfp_emit_fstmd (start_reg,
|
16746 |
|
|
(reg - start_reg) / 2);
|
16747 |
|
|
start_reg = reg + 2;
|
16748 |
|
|
}
|
16749 |
|
|
}
|
16750 |
|
|
if (start_reg != reg)
|
16751 |
|
|
saved_size += vfp_emit_fstmd (start_reg,
|
16752 |
|
|
(reg - start_reg) / 2);
|
16753 |
|
|
}
|
16754 |
|
|
return saved_size;
|
16755 |
|
|
}
|
16756 |
|
|
|
16757 |
|
|
|
16758 |
|
|
/* Set the Thumb frame pointer from the stack pointer. */
|
16759 |
|
|
|
16760 |
|
|
static void
|
16761 |
|
|
thumb_set_frame_pointer (arm_stack_offsets *offsets)
|
16762 |
|
|
{
|
16763 |
|
|
HOST_WIDE_INT amount;
|
16764 |
|
|
rtx insn, dwarf;
|
16765 |
|
|
|
16766 |
|
|
amount = offsets->outgoing_args - offsets->locals_base;
|
16767 |
|
|
if (amount < 1024)
|
16768 |
|
|
insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
|
16769 |
|
|
stack_pointer_rtx, GEN_INT (amount)));
|
16770 |
|
|
else
|
16771 |
|
|
{
|
16772 |
|
|
emit_insn (gen_movsi (hard_frame_pointer_rtx, GEN_INT (amount)));
|
16773 |
|
|
/* Thumb-2 RTL patterns expect sp as the first input. Thumb-1
|
16774 |
|
|
expects the first two operands to be the same. */
|
16775 |
|
|
if (TARGET_THUMB2)
|
16776 |
|
|
{
|
16777 |
|
|
insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
|
16778 |
|
|
stack_pointer_rtx,
|
16779 |
|
|
hard_frame_pointer_rtx));
|
16780 |
|
|
}
|
16781 |
|
|
else
|
16782 |
|
|
{
|
16783 |
|
|
insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
|
16784 |
|
|
hard_frame_pointer_rtx,
|
16785 |
|
|
stack_pointer_rtx));
|
16786 |
|
|
}
|
16787 |
|
|
dwarf = gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
|
16788 |
|
|
plus_constant (stack_pointer_rtx, amount));
|
16789 |
|
|
RTX_FRAME_RELATED_P (dwarf) = 1;
|
16790 |
|
|
add_reg_note (insn, REG_FRAME_RELATED_EXPR, dwarf);
|
16791 |
|
|
}
|
16792 |
|
|
|
16793 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16794 |
|
|
}
|
16795 |
|
|
|
16796 |
|
|
/* Generate the prologue instructions for entry into an ARM or Thumb-2
|
16797 |
|
|
function. */
|
16798 |
|
|
void
|
16799 |
|
|
arm_expand_prologue (void)
|
16800 |
|
|
{
|
16801 |
|
|
rtx amount;
|
16802 |
|
|
rtx insn;
|
16803 |
|
|
rtx ip_rtx;
|
16804 |
|
|
unsigned long live_regs_mask;
|
16805 |
|
|
unsigned long func_type;
|
16806 |
|
|
int fp_offset = 0;
|
16807 |
|
|
int saved_pretend_args = 0;
|
16808 |
|
|
int saved_regs = 0;
|
16809 |
|
|
unsigned HOST_WIDE_INT args_to_push;
|
16810 |
|
|
arm_stack_offsets *offsets;
|
16811 |
|
|
|
16812 |
|
|
func_type = arm_current_func_type ();
|
16813 |
|
|
|
16814 |
|
|
/* Naked functions don't have prologues. */
|
16815 |
|
|
if (IS_NAKED (func_type))
|
16816 |
|
|
return;
|
16817 |
|
|
|
16818 |
|
|
/* Make a copy of c_f_p_a_s as we may need to modify it locally. */
|
16819 |
|
|
args_to_push = crtl->args.pretend_args_size;
|
16820 |
|
|
|
16821 |
|
|
/* Compute which register we will have to save onto the stack. */
|
16822 |
|
|
offsets = arm_get_frame_offsets ();
|
16823 |
|
|
live_regs_mask = offsets->saved_regs_mask;
|
16824 |
|
|
|
16825 |
|
|
ip_rtx = gen_rtx_REG (SImode, IP_REGNUM);
|
16826 |
|
|
|
16827 |
|
|
if (IS_STACKALIGN (func_type))
|
16828 |
|
|
{
|
16829 |
|
|
rtx r0, r1;
|
16830 |
|
|
|
16831 |
|
|
/* Handle a word-aligned stack pointer. We generate the following:
|
16832 |
|
|
|
16833 |
|
|
mov r0, sp
|
16834 |
|
|
bic r1, r0, #7
|
16835 |
|
|
mov sp, r1
|
16836 |
|
|
<save and restore r0 in normal prologue/epilogue>
|
16837 |
|
|
mov sp, r0
|
16838 |
|
|
bx lr
|
16839 |
|
|
|
16840 |
|
|
The unwinder doesn't need to know about the stack realignment.
|
16841 |
|
|
Just tell it we saved SP in r0. */
|
16842 |
|
|
gcc_assert (TARGET_THUMB2 && !arm_arch_notm && args_to_push == 0);
|
16843 |
|
|
|
16844 |
|
|
r0 = gen_rtx_REG (SImode, 0);
|
16845 |
|
|
r1 = gen_rtx_REG (SImode, 1);
|
16846 |
|
|
|
16847 |
|
|
insn = emit_insn (gen_movsi (r0, stack_pointer_rtx));
|
16848 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16849 |
|
|
add_reg_note (insn, REG_CFA_REGISTER, NULL);
|
16850 |
|
|
|
16851 |
|
|
emit_insn (gen_andsi3 (r1, r0, GEN_INT (~(HOST_WIDE_INT)7)));
|
16852 |
|
|
|
16853 |
|
|
/* ??? The CFA changes here, which may cause GDB to conclude that it
|
16854 |
|
|
has entered a different function. That said, the unwind info is
|
16855 |
|
|
correct, individually, before and after this instruction because
|
16856 |
|
|
we've described the save of SP, which will override the default
|
16857 |
|
|
handling of SP as restoring from the CFA. */
|
16858 |
|
|
emit_insn (gen_movsi (stack_pointer_rtx, r1));
|
16859 |
|
|
}
|
16860 |
|
|
|
16861 |
|
|
/* For APCS frames, if IP register is clobbered
|
16862 |
|
|
when creating frame, save that register in a special
|
16863 |
|
|
way. */
|
16864 |
|
|
if (TARGET_APCS_FRAME && frame_pointer_needed && TARGET_ARM)
|
16865 |
|
|
{
|
16866 |
|
|
if (IS_INTERRUPT (func_type))
|
16867 |
|
|
{
|
16868 |
|
|
/* Interrupt functions must not corrupt any registers.
|
16869 |
|
|
Creating a frame pointer however, corrupts the IP
|
16870 |
|
|
register, so we must push it first. */
|
16871 |
|
|
emit_multi_reg_push (1 << IP_REGNUM);
|
16872 |
|
|
|
16873 |
|
|
/* Do not set RTX_FRAME_RELATED_P on this insn.
|
16874 |
|
|
The dwarf stack unwinding code only wants to see one
|
16875 |
|
|
stack decrement per function, and this is not it. If
|
16876 |
|
|
this instruction is labeled as being part of the frame
|
16877 |
|
|
creation sequence then dwarf2out_frame_debug_expr will
|
16878 |
|
|
die when it encounters the assignment of IP to FP
|
16879 |
|
|
later on, since the use of SP here establishes SP as
|
16880 |
|
|
the CFA register and not IP.
|
16881 |
|
|
|
16882 |
|
|
Anyway this instruction is not really part of the stack
|
16883 |
|
|
frame creation although it is part of the prologue. */
|
16884 |
|
|
}
|
16885 |
|
|
else if (IS_NESTED (func_type))
|
16886 |
|
|
{
|
16887 |
|
|
/* The Static chain register is the same as the IP register
|
16888 |
|
|
used as a scratch register during stack frame creation.
|
16889 |
|
|
To get around this need to find somewhere to store IP
|
16890 |
|
|
whilst the frame is being created. We try the following
|
16891 |
|
|
places in order:
|
16892 |
|
|
|
16893 |
|
|
1. The last argument register.
|
16894 |
|
|
2. A slot on the stack above the frame. (This only
|
16895 |
|
|
works if the function is not a varargs function).
|
16896 |
|
|
3. Register r3, after pushing the argument registers
|
16897 |
|
|
onto the stack.
|
16898 |
|
|
|
16899 |
|
|
Note - we only need to tell the dwarf2 backend about the SP
|
16900 |
|
|
adjustment in the second variant; the static chain register
|
16901 |
|
|
doesn't need to be unwound, as it doesn't contain a value
|
16902 |
|
|
inherited from the caller. */
|
16903 |
|
|
|
16904 |
|
|
if (df_regs_ever_live_p (3) == false)
|
16905 |
|
|
insn = emit_set_insn (gen_rtx_REG (SImode, 3), ip_rtx);
|
16906 |
|
|
else if (args_to_push == 0)
|
16907 |
|
|
{
|
16908 |
|
|
rtx dwarf;
|
16909 |
|
|
|
16910 |
|
|
gcc_assert(arm_compute_static_chain_stack_bytes() == 4);
|
16911 |
|
|
saved_regs += 4;
|
16912 |
|
|
|
16913 |
|
|
insn = gen_rtx_PRE_DEC (SImode, stack_pointer_rtx);
|
16914 |
|
|
insn = emit_set_insn (gen_frame_mem (SImode, insn), ip_rtx);
|
16915 |
|
|
fp_offset = 4;
|
16916 |
|
|
|
16917 |
|
|
/* Just tell the dwarf backend that we adjusted SP. */
|
16918 |
|
|
dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
16919 |
|
|
plus_constant (stack_pointer_rtx,
|
16920 |
|
|
-fp_offset));
|
16921 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16922 |
|
|
add_reg_note (insn, REG_FRAME_RELATED_EXPR, dwarf);
|
16923 |
|
|
}
|
16924 |
|
|
else
|
16925 |
|
|
{
|
16926 |
|
|
/* Store the args on the stack. */
|
16927 |
|
|
if (cfun->machine->uses_anonymous_args)
|
16928 |
|
|
insn = emit_multi_reg_push
|
16929 |
|
|
((0xf0 >> (args_to_push / 4)) & 0xf);
|
16930 |
|
|
else
|
16931 |
|
|
insn = emit_insn
|
16932 |
|
|
(gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
16933 |
|
|
GEN_INT (- args_to_push)));
|
16934 |
|
|
|
16935 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16936 |
|
|
|
16937 |
|
|
saved_pretend_args = 1;
|
16938 |
|
|
fp_offset = args_to_push;
|
16939 |
|
|
args_to_push = 0;
|
16940 |
|
|
|
16941 |
|
|
/* Now reuse r3 to preserve IP. */
|
16942 |
|
|
emit_set_insn (gen_rtx_REG (SImode, 3), ip_rtx);
|
16943 |
|
|
}
|
16944 |
|
|
}
|
16945 |
|
|
|
16946 |
|
|
insn = emit_set_insn (ip_rtx,
|
16947 |
|
|
plus_constant (stack_pointer_rtx, fp_offset));
|
16948 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16949 |
|
|
}
|
16950 |
|
|
|
16951 |
|
|
if (args_to_push)
|
16952 |
|
|
{
|
16953 |
|
|
/* Push the argument registers, or reserve space for them. */
|
16954 |
|
|
if (cfun->machine->uses_anonymous_args)
|
16955 |
|
|
insn = emit_multi_reg_push
|
16956 |
|
|
((0xf0 >> (args_to_push / 4)) & 0xf);
|
16957 |
|
|
else
|
16958 |
|
|
insn = emit_insn
|
16959 |
|
|
(gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
16960 |
|
|
GEN_INT (- args_to_push)));
|
16961 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
16962 |
|
|
}
|
16963 |
|
|
|
16964 |
|
|
/* If this is an interrupt service routine, and the link register
|
16965 |
|
|
is going to be pushed, and we're not generating extra
|
16966 |
|
|
push of IP (needed when frame is needed and frame layout if apcs),
|
16967 |
|
|
subtracting four from LR now will mean that the function return
|
16968 |
|
|
can be done with a single instruction. */
|
16969 |
|
|
if ((func_type == ARM_FT_ISR || func_type == ARM_FT_FIQ)
|
16970 |
|
|
&& (live_regs_mask & (1 << LR_REGNUM)) != 0
|
16971 |
|
|
&& !(frame_pointer_needed && TARGET_APCS_FRAME)
|
16972 |
|
|
&& TARGET_ARM)
|
16973 |
|
|
{
|
16974 |
|
|
rtx lr = gen_rtx_REG (SImode, LR_REGNUM);
|
16975 |
|
|
|
16976 |
|
|
emit_set_insn (lr, plus_constant (lr, -4));
|
16977 |
|
|
}
|
16978 |
|
|
|
16979 |
|
|
if (live_regs_mask)
|
16980 |
|
|
{
|
16981 |
|
|
saved_regs += bit_count (live_regs_mask) * 4;
|
16982 |
|
|
if (optimize_size && !frame_pointer_needed
|
16983 |
|
|
&& saved_regs == offsets->saved_regs - offsets->saved_args)
|
16984 |
|
|
{
|
16985 |
|
|
/* If no coprocessor registers are being pushed and we don't have
|
16986 |
|
|
to worry about a frame pointer then push extra registers to
|
16987 |
|
|
create the stack frame. This is done is a way that does not
|
16988 |
|
|
alter the frame layout, so is independent of the epilogue. */
|
16989 |
|
|
int n;
|
16990 |
|
|
int frame;
|
16991 |
|
|
n = 0;
|
16992 |
|
|
while (n < 8 && (live_regs_mask & (1 << n)) == 0)
|
16993 |
|
|
n++;
|
16994 |
|
|
frame = offsets->outgoing_args - (offsets->saved_args + saved_regs);
|
16995 |
|
|
if (frame && n * 4 >= frame)
|
16996 |
|
|
{
|
16997 |
|
|
n = frame / 4;
|
16998 |
|
|
live_regs_mask |= (1 << n) - 1;
|
16999 |
|
|
saved_regs += frame;
|
17000 |
|
|
}
|
17001 |
|
|
}
|
17002 |
|
|
insn = emit_multi_reg_push (live_regs_mask);
|
17003 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
17004 |
|
|
}
|
17005 |
|
|
|
17006 |
|
|
if (! IS_VOLATILE (func_type))
|
17007 |
|
|
saved_regs += arm_save_coproc_regs ();
|
17008 |
|
|
|
17009 |
|
|
if (frame_pointer_needed && TARGET_ARM)
|
17010 |
|
|
{
|
17011 |
|
|
/* Create the new frame pointer. */
|
17012 |
|
|
if (TARGET_APCS_FRAME)
|
17013 |
|
|
{
|
17014 |
|
|
insn = GEN_INT (-(4 + args_to_push + fp_offset));
|
17015 |
|
|
insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx, ip_rtx, insn));
|
17016 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
17017 |
|
|
|
17018 |
|
|
if (IS_NESTED (func_type))
|
17019 |
|
|
{
|
17020 |
|
|
/* Recover the static chain register. */
|
17021 |
|
|
if (!df_regs_ever_live_p (3)
|
17022 |
|
|
|| saved_pretend_args)
|
17023 |
|
|
insn = gen_rtx_REG (SImode, 3);
|
17024 |
|
|
else /* if (crtl->args.pretend_args_size == 0) */
|
17025 |
|
|
{
|
17026 |
|
|
insn = plus_constant (hard_frame_pointer_rtx, 4);
|
17027 |
|
|
insn = gen_frame_mem (SImode, insn);
|
17028 |
|
|
}
|
17029 |
|
|
emit_set_insn (ip_rtx, insn);
|
17030 |
|
|
/* Add a USE to stop propagate_one_insn() from barfing. */
|
17031 |
|
|
emit_insn (gen_prologue_use (ip_rtx));
|
17032 |
|
|
}
|
17033 |
|
|
}
|
17034 |
|
|
else
|
17035 |
|
|
{
|
17036 |
|
|
insn = GEN_INT (saved_regs - 4);
|
17037 |
|
|
insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
|
17038 |
|
|
stack_pointer_rtx, insn));
|
17039 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
17040 |
|
|
}
|
17041 |
|
|
}
|
17042 |
|
|
|
17043 |
|
|
if (flag_stack_usage_info)
|
17044 |
|
|
current_function_static_stack_size
|
17045 |
|
|
= offsets->outgoing_args - offsets->saved_args;
|
17046 |
|
|
|
17047 |
|
|
if (offsets->outgoing_args != offsets->saved_args + saved_regs)
|
17048 |
|
|
{
|
17049 |
|
|
/* This add can produce multiple insns for a large constant, so we
|
17050 |
|
|
need to get tricky. */
|
17051 |
|
|
rtx last = get_last_insn ();
|
17052 |
|
|
|
17053 |
|
|
amount = GEN_INT (offsets->saved_args + saved_regs
|
17054 |
|
|
- offsets->outgoing_args);
|
17055 |
|
|
|
17056 |
|
|
insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
17057 |
|
|
amount));
|
17058 |
|
|
do
|
17059 |
|
|
{
|
17060 |
|
|
last = last ? NEXT_INSN (last) : get_insns ();
|
17061 |
|
|
RTX_FRAME_RELATED_P (last) = 1;
|
17062 |
|
|
}
|
17063 |
|
|
while (last != insn);
|
17064 |
|
|
|
17065 |
|
|
/* If the frame pointer is needed, emit a special barrier that
|
17066 |
|
|
will prevent the scheduler from moving stores to the frame
|
17067 |
|
|
before the stack adjustment. */
|
17068 |
|
|
if (frame_pointer_needed)
|
17069 |
|
|
insn = emit_insn (gen_stack_tie (stack_pointer_rtx,
|
17070 |
|
|
hard_frame_pointer_rtx));
|
17071 |
|
|
}
|
17072 |
|
|
|
17073 |
|
|
|
17074 |
|
|
if (frame_pointer_needed && TARGET_THUMB2)
|
17075 |
|
|
thumb_set_frame_pointer (offsets);
|
17076 |
|
|
|
17077 |
|
|
if (flag_pic && arm_pic_register != INVALID_REGNUM)
|
17078 |
|
|
{
|
17079 |
|
|
unsigned long mask;
|
17080 |
|
|
|
17081 |
|
|
mask = live_regs_mask;
|
17082 |
|
|
mask &= THUMB2_WORK_REGS;
|
17083 |
|
|
if (!IS_NESTED (func_type))
|
17084 |
|
|
mask |= (1 << IP_REGNUM);
|
17085 |
|
|
arm_load_pic_register (mask);
|
17086 |
|
|
}
|
17087 |
|
|
|
17088 |
|
|
/* If we are profiling, make sure no instructions are scheduled before
|
17089 |
|
|
the call to mcount. Similarly if the user has requested no
|
17090 |
|
|
scheduling in the prolog. Similarly if we want non-call exceptions
|
17091 |
|
|
using the EABI unwinder, to prevent faulting instructions from being
|
17092 |
|
|
swapped with a stack adjustment. */
|
17093 |
|
|
if (crtl->profile || !TARGET_SCHED_PROLOG
|
17094 |
|
|
|| (arm_except_unwind_info (&global_options) == UI_TARGET
|
17095 |
|
|
&& cfun->can_throw_non_call_exceptions))
|
17096 |
|
|
emit_insn (gen_blockage ());
|
17097 |
|
|
|
17098 |
|
|
/* If the link register is being kept alive, with the return address in it,
|
17099 |
|
|
then make sure that it does not get reused by the ce2 pass. */
|
17100 |
|
|
if ((live_regs_mask & (1 << LR_REGNUM)) == 0)
|
17101 |
|
|
cfun->machine->lr_save_eliminated = 1;
|
17102 |
|
|
}
|
17103 |
|
|
|
17104 |
|
|
/* Print condition code to STREAM. Helper function for arm_print_operand. */
|
17105 |
|
|
static void
|
17106 |
|
|
arm_print_condition (FILE *stream)
|
17107 |
|
|
{
|
17108 |
|
|
if (arm_ccfsm_state == 3 || arm_ccfsm_state == 4)
|
17109 |
|
|
{
|
17110 |
|
|
/* Branch conversion is not implemented for Thumb-2. */
|
17111 |
|
|
if (TARGET_THUMB)
|
17112 |
|
|
{
|
17113 |
|
|
output_operand_lossage ("predicated Thumb instruction");
|
17114 |
|
|
return;
|
17115 |
|
|
}
|
17116 |
|
|
if (current_insn_predicate != NULL)
|
17117 |
|
|
{
|
17118 |
|
|
output_operand_lossage
|
17119 |
|
|
("predicated instruction in conditional sequence");
|
17120 |
|
|
return;
|
17121 |
|
|
}
|
17122 |
|
|
|
17123 |
|
|
fputs (arm_condition_codes[arm_current_cc], stream);
|
17124 |
|
|
}
|
17125 |
|
|
else if (current_insn_predicate)
|
17126 |
|
|
{
|
17127 |
|
|
enum arm_cond_code code;
|
17128 |
|
|
|
17129 |
|
|
if (TARGET_THUMB1)
|
17130 |
|
|
{
|
17131 |
|
|
output_operand_lossage ("predicated Thumb instruction");
|
17132 |
|
|
return;
|
17133 |
|
|
}
|
17134 |
|
|
|
17135 |
|
|
code = get_arm_condition_code (current_insn_predicate);
|
17136 |
|
|
fputs (arm_condition_codes[code], stream);
|
17137 |
|
|
}
|
17138 |
|
|
}
|
17139 |
|
|
|
17140 |
|
|
|
17141 |
|
|
/* If CODE is 'd', then the X is a condition operand and the instruction
|
17142 |
|
|
should only be executed if the condition is true.
|
17143 |
|
|
if CODE is 'D', then the X is a condition operand and the instruction
|
17144 |
|
|
should only be executed if the condition is false: however, if the mode
|
17145 |
|
|
of the comparison is CCFPEmode, then always execute the instruction -- we
|
17146 |
|
|
do this because in these circumstances !GE does not necessarily imply LT;
|
17147 |
|
|
in these cases the instruction pattern will take care to make sure that
|
17148 |
|
|
an instruction containing %d will follow, thereby undoing the effects of
|
17149 |
|
|
doing this instruction unconditionally.
|
17150 |
|
|
If CODE is 'N' then X is a floating point operand that must be negated
|
17151 |
|
|
before output.
|
17152 |
|
|
If CODE is 'B' then output a bitwise inverted value of X (a const int).
|
17153 |
|
|
If X is a REG and CODE is `M', output a ldm/stm style multi-reg. */
|
17154 |
|
|
static void
|
17155 |
|
|
arm_print_operand (FILE *stream, rtx x, int code)
|
17156 |
|
|
{
|
17157 |
|
|
switch (code)
|
17158 |
|
|
{
|
17159 |
|
|
case '@':
|
17160 |
|
|
fputs (ASM_COMMENT_START, stream);
|
17161 |
|
|
return;
|
17162 |
|
|
|
17163 |
|
|
case '_':
|
17164 |
|
|
fputs (user_label_prefix, stream);
|
17165 |
|
|
return;
|
17166 |
|
|
|
17167 |
|
|
case '|':
|
17168 |
|
|
fputs (REGISTER_PREFIX, stream);
|
17169 |
|
|
return;
|
17170 |
|
|
|
17171 |
|
|
case '?':
|
17172 |
|
|
arm_print_condition (stream);
|
17173 |
|
|
return;
|
17174 |
|
|
|
17175 |
|
|
case '(':
|
17176 |
|
|
/* Nothing in unified syntax, otherwise the current condition code. */
|
17177 |
|
|
if (!TARGET_UNIFIED_ASM)
|
17178 |
|
|
arm_print_condition (stream);
|
17179 |
|
|
break;
|
17180 |
|
|
|
17181 |
|
|
case ')':
|
17182 |
|
|
/* The current condition code in unified syntax, otherwise nothing. */
|
17183 |
|
|
if (TARGET_UNIFIED_ASM)
|
17184 |
|
|
arm_print_condition (stream);
|
17185 |
|
|
break;
|
17186 |
|
|
|
17187 |
|
|
case '.':
|
17188 |
|
|
/* The current condition code for a condition code setting instruction.
|
17189 |
|
|
Preceded by 's' in unified syntax, otherwise followed by 's'. */
|
17190 |
|
|
if (TARGET_UNIFIED_ASM)
|
17191 |
|
|
{
|
17192 |
|
|
fputc('s', stream);
|
17193 |
|
|
arm_print_condition (stream);
|
17194 |
|
|
}
|
17195 |
|
|
else
|
17196 |
|
|
{
|
17197 |
|
|
arm_print_condition (stream);
|
17198 |
|
|
fputc('s', stream);
|
17199 |
|
|
}
|
17200 |
|
|
return;
|
17201 |
|
|
|
17202 |
|
|
case '!':
|
17203 |
|
|
/* If the instruction is conditionally executed then print
|
17204 |
|
|
the current condition code, otherwise print 's'. */
|
17205 |
|
|
gcc_assert (TARGET_THUMB2 && TARGET_UNIFIED_ASM);
|
17206 |
|
|
if (current_insn_predicate)
|
17207 |
|
|
arm_print_condition (stream);
|
17208 |
|
|
else
|
17209 |
|
|
fputc('s', stream);
|
17210 |
|
|
break;
|
17211 |
|
|
|
17212 |
|
|
/* %# is a "break" sequence. It doesn't output anything, but is used to
|
17213 |
|
|
separate e.g. operand numbers from following text, if that text consists
|
17214 |
|
|
of further digits which we don't want to be part of the operand
|
17215 |
|
|
number. */
|
17216 |
|
|
case '#':
|
17217 |
|
|
return;
|
17218 |
|
|
|
17219 |
|
|
case 'N':
|
17220 |
|
|
{
|
17221 |
|
|
REAL_VALUE_TYPE r;
|
17222 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
|
17223 |
|
|
r = real_value_negate (&r);
|
17224 |
|
|
fprintf (stream, "%s", fp_const_from_val (&r));
|
17225 |
|
|
}
|
17226 |
|
|
return;
|
17227 |
|
|
|
17228 |
|
|
/* An integer or symbol address without a preceding # sign. */
|
17229 |
|
|
case 'c':
|
17230 |
|
|
switch (GET_CODE (x))
|
17231 |
|
|
{
|
17232 |
|
|
case CONST_INT:
|
17233 |
|
|
fprintf (stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
|
17234 |
|
|
break;
|
17235 |
|
|
|
17236 |
|
|
case SYMBOL_REF:
|
17237 |
|
|
output_addr_const (stream, x);
|
17238 |
|
|
break;
|
17239 |
|
|
|
17240 |
|
|
case CONST:
|
17241 |
|
|
if (GET_CODE (XEXP (x, 0)) == PLUS
|
17242 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
|
17243 |
|
|
{
|
17244 |
|
|
output_addr_const (stream, x);
|
17245 |
|
|
break;
|
17246 |
|
|
}
|
17247 |
|
|
/* Fall through. */
|
17248 |
|
|
|
17249 |
|
|
default:
|
17250 |
|
|
output_operand_lossage ("Unsupported operand for code '%c'", code);
|
17251 |
|
|
}
|
17252 |
|
|
return;
|
17253 |
|
|
|
17254 |
|
|
case 'B':
|
17255 |
|
|
if (GET_CODE (x) == CONST_INT)
|
17256 |
|
|
{
|
17257 |
|
|
HOST_WIDE_INT val;
|
17258 |
|
|
val = ARM_SIGN_EXTEND (~INTVAL (x));
|
17259 |
|
|
fprintf (stream, HOST_WIDE_INT_PRINT_DEC, val);
|
17260 |
|
|
}
|
17261 |
|
|
else
|
17262 |
|
|
{
|
17263 |
|
|
putc ('~', stream);
|
17264 |
|
|
output_addr_const (stream, x);
|
17265 |
|
|
}
|
17266 |
|
|
return;
|
17267 |
|
|
|
17268 |
|
|
case 'L':
|
17269 |
|
|
/* The low 16 bits of an immediate constant. */
|
17270 |
|
|
fprintf (stream, HOST_WIDE_INT_PRINT_DEC, INTVAL(x) & 0xffff);
|
17271 |
|
|
return;
|
17272 |
|
|
|
17273 |
|
|
case 'i':
|
17274 |
|
|
fprintf (stream, "%s", arithmetic_instr (x, 1));
|
17275 |
|
|
return;
|
17276 |
|
|
|
17277 |
|
|
/* Truncate Cirrus shift counts. */
|
17278 |
|
|
case 's':
|
17279 |
|
|
if (GET_CODE (x) == CONST_INT)
|
17280 |
|
|
{
|
17281 |
|
|
fprintf (stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0x3f);
|
17282 |
|
|
return;
|
17283 |
|
|
}
|
17284 |
|
|
arm_print_operand (stream, x, 0);
|
17285 |
|
|
return;
|
17286 |
|
|
|
17287 |
|
|
case 'I':
|
17288 |
|
|
fprintf (stream, "%s", arithmetic_instr (x, 0));
|
17289 |
|
|
return;
|
17290 |
|
|
|
17291 |
|
|
case 'S':
|
17292 |
|
|
{
|
17293 |
|
|
HOST_WIDE_INT val;
|
17294 |
|
|
const char *shift;
|
17295 |
|
|
|
17296 |
|
|
if (!shift_operator (x, SImode))
|
17297 |
|
|
{
|
17298 |
|
|
output_operand_lossage ("invalid shift operand");
|
17299 |
|
|
break;
|
17300 |
|
|
}
|
17301 |
|
|
|
17302 |
|
|
shift = shift_op (x, &val);
|
17303 |
|
|
|
17304 |
|
|
if (shift)
|
17305 |
|
|
{
|
17306 |
|
|
fprintf (stream, ", %s ", shift);
|
17307 |
|
|
if (val == -1)
|
17308 |
|
|
arm_print_operand (stream, XEXP (x, 1), 0);
|
17309 |
|
|
else
|
17310 |
|
|
fprintf (stream, "#" HOST_WIDE_INT_PRINT_DEC, val);
|
17311 |
|
|
}
|
17312 |
|
|
}
|
17313 |
|
|
return;
|
17314 |
|
|
|
17315 |
|
|
/* An explanation of the 'Q', 'R' and 'H' register operands:
|
17316 |
|
|
|
17317 |
|
|
In a pair of registers containing a DI or DF value the 'Q'
|
17318 |
|
|
operand returns the register number of the register containing
|
17319 |
|
|
the least significant part of the value. The 'R' operand returns
|
17320 |
|
|
the register number of the register containing the most
|
17321 |
|
|
significant part of the value.
|
17322 |
|
|
|
17323 |
|
|
The 'H' operand returns the higher of the two register numbers.
|
17324 |
|
|
On a run where WORDS_BIG_ENDIAN is true the 'H' operand is the
|
17325 |
|
|
same as the 'Q' operand, since the most significant part of the
|
17326 |
|
|
value is held in the lower number register. The reverse is true
|
17327 |
|
|
on systems where WORDS_BIG_ENDIAN is false.
|
17328 |
|
|
|
17329 |
|
|
The purpose of these operands is to distinguish between cases
|
17330 |
|
|
where the endian-ness of the values is important (for example
|
17331 |
|
|
when they are added together), and cases where the endian-ness
|
17332 |
|
|
is irrelevant, but the order of register operations is important.
|
17333 |
|
|
For example when loading a value from memory into a register
|
17334 |
|
|
pair, the endian-ness does not matter. Provided that the value
|
17335 |
|
|
from the lower memory address is put into the lower numbered
|
17336 |
|
|
register, and the value from the higher address is put into the
|
17337 |
|
|
higher numbered register, the load will work regardless of whether
|
17338 |
|
|
the value being loaded is big-wordian or little-wordian. The
|
17339 |
|
|
order of the two register loads can matter however, if the address
|
17340 |
|
|
of the memory location is actually held in one of the registers
|
17341 |
|
|
being overwritten by the load.
|
17342 |
|
|
|
17343 |
|
|
The 'Q' and 'R' constraints are also available for 64-bit
|
17344 |
|
|
constants. */
|
17345 |
|
|
case 'Q':
|
17346 |
|
|
if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
|
17347 |
|
|
{
|
17348 |
|
|
rtx part = gen_lowpart (SImode, x);
|
17349 |
|
|
fprintf (stream, "#" HOST_WIDE_INT_PRINT_DEC, INTVAL (part));
|
17350 |
|
|
return;
|
17351 |
|
|
}
|
17352 |
|
|
|
17353 |
|
|
if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
|
17354 |
|
|
{
|
17355 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17356 |
|
|
return;
|
17357 |
|
|
}
|
17358 |
|
|
|
17359 |
|
|
asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 1 : 0));
|
17360 |
|
|
return;
|
17361 |
|
|
|
17362 |
|
|
case 'R':
|
17363 |
|
|
if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
|
17364 |
|
|
{
|
17365 |
|
|
enum machine_mode mode = GET_MODE (x);
|
17366 |
|
|
rtx part;
|
17367 |
|
|
|
17368 |
|
|
if (mode == VOIDmode)
|
17369 |
|
|
mode = DImode;
|
17370 |
|
|
part = gen_highpart_mode (SImode, mode, x);
|
17371 |
|
|
fprintf (stream, "#" HOST_WIDE_INT_PRINT_DEC, INTVAL (part));
|
17372 |
|
|
return;
|
17373 |
|
|
}
|
17374 |
|
|
|
17375 |
|
|
if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
|
17376 |
|
|
{
|
17377 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17378 |
|
|
return;
|
17379 |
|
|
}
|
17380 |
|
|
|
17381 |
|
|
asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 0 : 1));
|
17382 |
|
|
return;
|
17383 |
|
|
|
17384 |
|
|
case 'H':
|
17385 |
|
|
if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
|
17386 |
|
|
{
|
17387 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17388 |
|
|
return;
|
17389 |
|
|
}
|
17390 |
|
|
|
17391 |
|
|
asm_fprintf (stream, "%r", REGNO (x) + 1);
|
17392 |
|
|
return;
|
17393 |
|
|
|
17394 |
|
|
case 'J':
|
17395 |
|
|
if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
|
17396 |
|
|
{
|
17397 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17398 |
|
|
return;
|
17399 |
|
|
}
|
17400 |
|
|
|
17401 |
|
|
asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 3 : 2));
|
17402 |
|
|
return;
|
17403 |
|
|
|
17404 |
|
|
case 'K':
|
17405 |
|
|
if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
|
17406 |
|
|
{
|
17407 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17408 |
|
|
return;
|
17409 |
|
|
}
|
17410 |
|
|
|
17411 |
|
|
asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 2 : 3));
|
17412 |
|
|
return;
|
17413 |
|
|
|
17414 |
|
|
case 'm':
|
17415 |
|
|
asm_fprintf (stream, "%r",
|
17416 |
|
|
GET_CODE (XEXP (x, 0)) == REG
|
17417 |
|
|
? REGNO (XEXP (x, 0)) : REGNO (XEXP (XEXP (x, 0), 0)));
|
17418 |
|
|
return;
|
17419 |
|
|
|
17420 |
|
|
case 'M':
|
17421 |
|
|
asm_fprintf (stream, "{%r-%r}",
|
17422 |
|
|
REGNO (x),
|
17423 |
|
|
REGNO (x) + ARM_NUM_REGS (GET_MODE (x)) - 1);
|
17424 |
|
|
return;
|
17425 |
|
|
|
17426 |
|
|
/* Like 'M', but writing doubleword vector registers, for use by Neon
|
17427 |
|
|
insns. */
|
17428 |
|
|
case 'h':
|
17429 |
|
|
{
|
17430 |
|
|
int regno = (REGNO (x) - FIRST_VFP_REGNUM) / 2;
|
17431 |
|
|
int numregs = ARM_NUM_REGS (GET_MODE (x)) / 2;
|
17432 |
|
|
if (numregs == 1)
|
17433 |
|
|
asm_fprintf (stream, "{d%d}", regno);
|
17434 |
|
|
else
|
17435 |
|
|
asm_fprintf (stream, "{d%d-d%d}", regno, regno + numregs - 1);
|
17436 |
|
|
}
|
17437 |
|
|
return;
|
17438 |
|
|
|
17439 |
|
|
case 'd':
|
17440 |
|
|
/* CONST_TRUE_RTX means always -- that's the default. */
|
17441 |
|
|
if (x == const_true_rtx)
|
17442 |
|
|
return;
|
17443 |
|
|
|
17444 |
|
|
if (!COMPARISON_P (x))
|
17445 |
|
|
{
|
17446 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17447 |
|
|
return;
|
17448 |
|
|
}
|
17449 |
|
|
|
17450 |
|
|
fputs (arm_condition_codes[get_arm_condition_code (x)],
|
17451 |
|
|
stream);
|
17452 |
|
|
return;
|
17453 |
|
|
|
17454 |
|
|
case 'D':
|
17455 |
|
|
/* CONST_TRUE_RTX means not always -- i.e. never. We shouldn't ever
|
17456 |
|
|
want to do that. */
|
17457 |
|
|
if (x == const_true_rtx)
|
17458 |
|
|
{
|
17459 |
|
|
output_operand_lossage ("instruction never executed");
|
17460 |
|
|
return;
|
17461 |
|
|
}
|
17462 |
|
|
if (!COMPARISON_P (x))
|
17463 |
|
|
{
|
17464 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17465 |
|
|
return;
|
17466 |
|
|
}
|
17467 |
|
|
|
17468 |
|
|
fputs (arm_condition_codes[ARM_INVERSE_CONDITION_CODE
|
17469 |
|
|
(get_arm_condition_code (x))],
|
17470 |
|
|
stream);
|
17471 |
|
|
return;
|
17472 |
|
|
|
17473 |
|
|
/* Cirrus registers can be accessed in a variety of ways:
|
17474 |
|
|
single floating point (f)
|
17475 |
|
|
double floating point (d)
|
17476 |
|
|
32bit integer (fx)
|
17477 |
|
|
64bit integer (dx). */
|
17478 |
|
|
case 'W': /* Cirrus register in F mode. */
|
17479 |
|
|
case 'X': /* Cirrus register in D mode. */
|
17480 |
|
|
case 'Y': /* Cirrus register in FX mode. */
|
17481 |
|
|
case 'Z': /* Cirrus register in DX mode. */
|
17482 |
|
|
gcc_assert (GET_CODE (x) == REG
|
17483 |
|
|
&& REGNO_REG_CLASS (REGNO (x)) == CIRRUS_REGS);
|
17484 |
|
|
|
17485 |
|
|
fprintf (stream, "mv%s%s",
|
17486 |
|
|
code == 'W' ? "f"
|
17487 |
|
|
: code == 'X' ? "d"
|
17488 |
|
|
: code == 'Y' ? "fx" : "dx", reg_names[REGNO (x)] + 2);
|
17489 |
|
|
|
17490 |
|
|
return;
|
17491 |
|
|
|
17492 |
|
|
/* Print cirrus register in the mode specified by the register's mode. */
|
17493 |
|
|
case 'V':
|
17494 |
|
|
{
|
17495 |
|
|
int mode = GET_MODE (x);
|
17496 |
|
|
|
17497 |
|
|
if (GET_CODE (x) != REG || REGNO_REG_CLASS (REGNO (x)) != CIRRUS_REGS)
|
17498 |
|
|
{
|
17499 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17500 |
|
|
return;
|
17501 |
|
|
}
|
17502 |
|
|
|
17503 |
|
|
fprintf (stream, "mv%s%s",
|
17504 |
|
|
mode == DFmode ? "d"
|
17505 |
|
|
: mode == SImode ? "fx"
|
17506 |
|
|
: mode == DImode ? "dx"
|
17507 |
|
|
: "f", reg_names[REGNO (x)] + 2);
|
17508 |
|
|
|
17509 |
|
|
return;
|
17510 |
|
|
}
|
17511 |
|
|
|
17512 |
|
|
case 'U':
|
17513 |
|
|
if (GET_CODE (x) != REG
|
17514 |
|
|
|| REGNO (x) < FIRST_IWMMXT_GR_REGNUM
|
17515 |
|
|
|| REGNO (x) > LAST_IWMMXT_GR_REGNUM)
|
17516 |
|
|
/* Bad value for wCG register number. */
|
17517 |
|
|
{
|
17518 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17519 |
|
|
return;
|
17520 |
|
|
}
|
17521 |
|
|
|
17522 |
|
|
else
|
17523 |
|
|
fprintf (stream, "%d", REGNO (x) - FIRST_IWMMXT_GR_REGNUM);
|
17524 |
|
|
return;
|
17525 |
|
|
|
17526 |
|
|
/* Print an iWMMXt control register name. */
|
17527 |
|
|
case 'w':
|
17528 |
|
|
if (GET_CODE (x) != CONST_INT
|
17529 |
|
|
|| INTVAL (x) < 0
|
17530 |
|
|
|| INTVAL (x) >= 16)
|
17531 |
|
|
/* Bad value for wC register number. */
|
17532 |
|
|
{
|
17533 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17534 |
|
|
return;
|
17535 |
|
|
}
|
17536 |
|
|
|
17537 |
|
|
else
|
17538 |
|
|
{
|
17539 |
|
|
static const char * wc_reg_names [16] =
|
17540 |
|
|
{
|
17541 |
|
|
"wCID", "wCon", "wCSSF", "wCASF",
|
17542 |
|
|
"wC4", "wC5", "wC6", "wC7",
|
17543 |
|
|
"wCGR0", "wCGR1", "wCGR2", "wCGR3",
|
17544 |
|
|
"wC12", "wC13", "wC14", "wC15"
|
17545 |
|
|
};
|
17546 |
|
|
|
17547 |
|
|
fprintf (stream, wc_reg_names [INTVAL (x)]);
|
17548 |
|
|
}
|
17549 |
|
|
return;
|
17550 |
|
|
|
17551 |
|
|
/* Print the high single-precision register of a VFP double-precision
|
17552 |
|
|
register. */
|
17553 |
|
|
case 'p':
|
17554 |
|
|
{
|
17555 |
|
|
int mode = GET_MODE (x);
|
17556 |
|
|
int regno;
|
17557 |
|
|
|
17558 |
|
|
if (GET_MODE_SIZE (mode) != 8 || GET_CODE (x) != REG)
|
17559 |
|
|
{
|
17560 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17561 |
|
|
return;
|
17562 |
|
|
}
|
17563 |
|
|
|
17564 |
|
|
regno = REGNO (x);
|
17565 |
|
|
if (!VFP_REGNO_OK_FOR_DOUBLE (regno))
|
17566 |
|
|
{
|
17567 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17568 |
|
|
return;
|
17569 |
|
|
}
|
17570 |
|
|
|
17571 |
|
|
fprintf (stream, "s%d", regno - FIRST_VFP_REGNUM + 1);
|
17572 |
|
|
}
|
17573 |
|
|
return;
|
17574 |
|
|
|
17575 |
|
|
/* Print a VFP/Neon double precision or quad precision register name. */
|
17576 |
|
|
case 'P':
|
17577 |
|
|
case 'q':
|
17578 |
|
|
{
|
17579 |
|
|
int mode = GET_MODE (x);
|
17580 |
|
|
int is_quad = (code == 'q');
|
17581 |
|
|
int regno;
|
17582 |
|
|
|
17583 |
|
|
if (GET_MODE_SIZE (mode) != (is_quad ? 16 : 8))
|
17584 |
|
|
{
|
17585 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17586 |
|
|
return;
|
17587 |
|
|
}
|
17588 |
|
|
|
17589 |
|
|
if (GET_CODE (x) != REG
|
17590 |
|
|
|| !IS_VFP_REGNUM (REGNO (x)))
|
17591 |
|
|
{
|
17592 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17593 |
|
|
return;
|
17594 |
|
|
}
|
17595 |
|
|
|
17596 |
|
|
regno = REGNO (x);
|
17597 |
|
|
if ((is_quad && !NEON_REGNO_OK_FOR_QUAD (regno))
|
17598 |
|
|
|| (!is_quad && !VFP_REGNO_OK_FOR_DOUBLE (regno)))
|
17599 |
|
|
{
|
17600 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17601 |
|
|
return;
|
17602 |
|
|
}
|
17603 |
|
|
|
17604 |
|
|
fprintf (stream, "%c%d", is_quad ? 'q' : 'd',
|
17605 |
|
|
(regno - FIRST_VFP_REGNUM) >> (is_quad ? 2 : 1));
|
17606 |
|
|
}
|
17607 |
|
|
return;
|
17608 |
|
|
|
17609 |
|
|
/* These two codes print the low/high doubleword register of a Neon quad
|
17610 |
|
|
register, respectively. For pair-structure types, can also print
|
17611 |
|
|
low/high quadword registers. */
|
17612 |
|
|
case 'e':
|
17613 |
|
|
case 'f':
|
17614 |
|
|
{
|
17615 |
|
|
int mode = GET_MODE (x);
|
17616 |
|
|
int regno;
|
17617 |
|
|
|
17618 |
|
|
if ((GET_MODE_SIZE (mode) != 16
|
17619 |
|
|
&& GET_MODE_SIZE (mode) != 32) || GET_CODE (x) != REG)
|
17620 |
|
|
{
|
17621 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17622 |
|
|
return;
|
17623 |
|
|
}
|
17624 |
|
|
|
17625 |
|
|
regno = REGNO (x);
|
17626 |
|
|
if (!NEON_REGNO_OK_FOR_QUAD (regno))
|
17627 |
|
|
{
|
17628 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17629 |
|
|
return;
|
17630 |
|
|
}
|
17631 |
|
|
|
17632 |
|
|
if (GET_MODE_SIZE (mode) == 16)
|
17633 |
|
|
fprintf (stream, "d%d", ((regno - FIRST_VFP_REGNUM) >> 1)
|
17634 |
|
|
+ (code == 'f' ? 1 : 0));
|
17635 |
|
|
else
|
17636 |
|
|
fprintf (stream, "q%d", ((regno - FIRST_VFP_REGNUM) >> 2)
|
17637 |
|
|
+ (code == 'f' ? 1 : 0));
|
17638 |
|
|
}
|
17639 |
|
|
return;
|
17640 |
|
|
|
17641 |
|
|
/* Print a VFPv3 floating-point constant, represented as an integer
|
17642 |
|
|
index. */
|
17643 |
|
|
case 'G':
|
17644 |
|
|
{
|
17645 |
|
|
int index = vfp3_const_double_index (x);
|
17646 |
|
|
gcc_assert (index != -1);
|
17647 |
|
|
fprintf (stream, "%d", index);
|
17648 |
|
|
}
|
17649 |
|
|
return;
|
17650 |
|
|
|
17651 |
|
|
/* Print bits representing opcode features for Neon.
|
17652 |
|
|
|
17653 |
|
|
Bit 0 is 1 for signed, 0 for unsigned. Floats count as signed
|
17654 |
|
|
and polynomials as unsigned.
|
17655 |
|
|
|
17656 |
|
|
Bit 1 is 1 for floats and polynomials, 0 for ordinary integers.
|
17657 |
|
|
|
17658 |
|
|
Bit 2 is 1 for rounding functions, 0 otherwise. */
|
17659 |
|
|
|
17660 |
|
|
/* Identify the type as 's', 'u', 'p' or 'f'. */
|
17661 |
|
|
case 'T':
|
17662 |
|
|
{
|
17663 |
|
|
HOST_WIDE_INT bits = INTVAL (x);
|
17664 |
|
|
fputc ("uspf"[bits & 3], stream);
|
17665 |
|
|
}
|
17666 |
|
|
return;
|
17667 |
|
|
|
17668 |
|
|
/* Likewise, but signed and unsigned integers are both 'i'. */
|
17669 |
|
|
case 'F':
|
17670 |
|
|
{
|
17671 |
|
|
HOST_WIDE_INT bits = INTVAL (x);
|
17672 |
|
|
fputc ("iipf"[bits & 3], stream);
|
17673 |
|
|
}
|
17674 |
|
|
return;
|
17675 |
|
|
|
17676 |
|
|
/* As for 'T', but emit 'u' instead of 'p'. */
|
17677 |
|
|
case 't':
|
17678 |
|
|
{
|
17679 |
|
|
HOST_WIDE_INT bits = INTVAL (x);
|
17680 |
|
|
fputc ("usuf"[bits & 3], stream);
|
17681 |
|
|
}
|
17682 |
|
|
return;
|
17683 |
|
|
|
17684 |
|
|
/* Bit 2: rounding (vs none). */
|
17685 |
|
|
case 'O':
|
17686 |
|
|
{
|
17687 |
|
|
HOST_WIDE_INT bits = INTVAL (x);
|
17688 |
|
|
fputs ((bits & 4) != 0 ? "r" : "", stream);
|
17689 |
|
|
}
|
17690 |
|
|
return;
|
17691 |
|
|
|
17692 |
|
|
/* Memory operand for vld1/vst1 instruction. */
|
17693 |
|
|
case 'A':
|
17694 |
|
|
{
|
17695 |
|
|
rtx addr;
|
17696 |
|
|
bool postinc = FALSE;
|
17697 |
|
|
unsigned align, memsize, align_bits;
|
17698 |
|
|
|
17699 |
|
|
gcc_assert (GET_CODE (x) == MEM);
|
17700 |
|
|
addr = XEXP (x, 0);
|
17701 |
|
|
if (GET_CODE (addr) == POST_INC)
|
17702 |
|
|
{
|
17703 |
|
|
postinc = 1;
|
17704 |
|
|
addr = XEXP (addr, 0);
|
17705 |
|
|
}
|
17706 |
|
|
asm_fprintf (stream, "[%r", REGNO (addr));
|
17707 |
|
|
|
17708 |
|
|
/* We know the alignment of this access, so we can emit a hint in the
|
17709 |
|
|
instruction (for some alignments) as an aid to the memory subsystem
|
17710 |
|
|
of the target. */
|
17711 |
|
|
align = MEM_ALIGN (x) >> 3;
|
17712 |
|
|
memsize = MEM_SIZE (x);
|
17713 |
|
|
|
17714 |
|
|
/* Only certain alignment specifiers are supported by the hardware. */
|
17715 |
|
|
if (memsize == 16 && (align % 32) == 0)
|
17716 |
|
|
align_bits = 256;
|
17717 |
|
|
else if (memsize == 16 && (align % 16) == 0)
|
17718 |
|
|
align_bits = 128;
|
17719 |
|
|
else if (memsize >= 8 && (align % 8) == 0)
|
17720 |
|
|
align_bits = 64;
|
17721 |
|
|
else
|
17722 |
|
|
align_bits = 0;
|
17723 |
|
|
|
17724 |
|
|
if (align_bits != 0)
|
17725 |
|
|
asm_fprintf (stream, ":%d", align_bits);
|
17726 |
|
|
|
17727 |
|
|
asm_fprintf (stream, "]");
|
17728 |
|
|
|
17729 |
|
|
if (postinc)
|
17730 |
|
|
fputs("!", stream);
|
17731 |
|
|
}
|
17732 |
|
|
return;
|
17733 |
|
|
|
17734 |
|
|
case 'C':
|
17735 |
|
|
{
|
17736 |
|
|
rtx addr;
|
17737 |
|
|
|
17738 |
|
|
gcc_assert (GET_CODE (x) == MEM);
|
17739 |
|
|
addr = XEXP (x, 0);
|
17740 |
|
|
gcc_assert (GET_CODE (addr) == REG);
|
17741 |
|
|
asm_fprintf (stream, "[%r]", REGNO (addr));
|
17742 |
|
|
}
|
17743 |
|
|
return;
|
17744 |
|
|
|
17745 |
|
|
/* Translate an S register number into a D register number and element index. */
|
17746 |
|
|
case 'y':
|
17747 |
|
|
{
|
17748 |
|
|
int mode = GET_MODE (x);
|
17749 |
|
|
int regno;
|
17750 |
|
|
|
17751 |
|
|
if (GET_MODE_SIZE (mode) != 4 || GET_CODE (x) != REG)
|
17752 |
|
|
{
|
17753 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17754 |
|
|
return;
|
17755 |
|
|
}
|
17756 |
|
|
|
17757 |
|
|
regno = REGNO (x);
|
17758 |
|
|
if (!VFP_REGNO_OK_FOR_SINGLE (regno))
|
17759 |
|
|
{
|
17760 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17761 |
|
|
return;
|
17762 |
|
|
}
|
17763 |
|
|
|
17764 |
|
|
regno = regno - FIRST_VFP_REGNUM;
|
17765 |
|
|
fprintf (stream, "d%d[%d]", regno / 2, regno % 2);
|
17766 |
|
|
}
|
17767 |
|
|
return;
|
17768 |
|
|
|
17769 |
|
|
case 'v':
|
17770 |
|
|
gcc_assert (GET_CODE (x) == CONST_DOUBLE);
|
17771 |
|
|
fprintf (stream, "#%d", vfp3_const_double_for_fract_bits (x));
|
17772 |
|
|
return;
|
17773 |
|
|
|
17774 |
|
|
/* Register specifier for vld1.16/vst1.16. Translate the S register
|
17775 |
|
|
number into a D register number and element index. */
|
17776 |
|
|
case 'z':
|
17777 |
|
|
{
|
17778 |
|
|
int mode = GET_MODE (x);
|
17779 |
|
|
int regno;
|
17780 |
|
|
|
17781 |
|
|
if (GET_MODE_SIZE (mode) != 2 || GET_CODE (x) != REG)
|
17782 |
|
|
{
|
17783 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17784 |
|
|
return;
|
17785 |
|
|
}
|
17786 |
|
|
|
17787 |
|
|
regno = REGNO (x);
|
17788 |
|
|
if (!VFP_REGNO_OK_FOR_SINGLE (regno))
|
17789 |
|
|
{
|
17790 |
|
|
output_operand_lossage ("invalid operand for code '%c'", code);
|
17791 |
|
|
return;
|
17792 |
|
|
}
|
17793 |
|
|
|
17794 |
|
|
regno = regno - FIRST_VFP_REGNUM;
|
17795 |
|
|
fprintf (stream, "d%d[%d]", regno/2, ((regno % 2) ? 2 : 0));
|
17796 |
|
|
}
|
17797 |
|
|
return;
|
17798 |
|
|
|
17799 |
|
|
default:
|
17800 |
|
|
if (x == 0)
|
17801 |
|
|
{
|
17802 |
|
|
output_operand_lossage ("missing operand");
|
17803 |
|
|
return;
|
17804 |
|
|
}
|
17805 |
|
|
|
17806 |
|
|
switch (GET_CODE (x))
|
17807 |
|
|
{
|
17808 |
|
|
case REG:
|
17809 |
|
|
asm_fprintf (stream, "%r", REGNO (x));
|
17810 |
|
|
break;
|
17811 |
|
|
|
17812 |
|
|
case MEM:
|
17813 |
|
|
output_memory_reference_mode = GET_MODE (x);
|
17814 |
|
|
output_address (XEXP (x, 0));
|
17815 |
|
|
break;
|
17816 |
|
|
|
17817 |
|
|
case CONST_DOUBLE:
|
17818 |
|
|
if (TARGET_NEON)
|
17819 |
|
|
{
|
17820 |
|
|
char fpstr[20];
|
17821 |
|
|
real_to_decimal (fpstr, CONST_DOUBLE_REAL_VALUE (x),
|
17822 |
|
|
sizeof (fpstr), 0, 1);
|
17823 |
|
|
fprintf (stream, "#%s", fpstr);
|
17824 |
|
|
}
|
17825 |
|
|
else
|
17826 |
|
|
fprintf (stream, "#%s", fp_immediate_constant (x));
|
17827 |
|
|
break;
|
17828 |
|
|
|
17829 |
|
|
default:
|
17830 |
|
|
gcc_assert (GET_CODE (x) != NEG);
|
17831 |
|
|
fputc ('#', stream);
|
17832 |
|
|
if (GET_CODE (x) == HIGH)
|
17833 |
|
|
{
|
17834 |
|
|
fputs (":lower16:", stream);
|
17835 |
|
|
x = XEXP (x, 0);
|
17836 |
|
|
}
|
17837 |
|
|
|
17838 |
|
|
output_addr_const (stream, x);
|
17839 |
|
|
break;
|
17840 |
|
|
}
|
17841 |
|
|
}
|
17842 |
|
|
}
|
17843 |
|
|
|
17844 |
|
|
/* Target hook for printing a memory address. */
|
17845 |
|
|
static void
|
17846 |
|
|
arm_print_operand_address (FILE *stream, rtx x)
|
17847 |
|
|
{
|
17848 |
|
|
if (TARGET_32BIT)
|
17849 |
|
|
{
|
17850 |
|
|
int is_minus = GET_CODE (x) == MINUS;
|
17851 |
|
|
|
17852 |
|
|
if (GET_CODE (x) == REG)
|
17853 |
|
|
asm_fprintf (stream, "[%r, #0]", REGNO (x));
|
17854 |
|
|
else if (GET_CODE (x) == PLUS || is_minus)
|
17855 |
|
|
{
|
17856 |
|
|
rtx base = XEXP (x, 0);
|
17857 |
|
|
rtx index = XEXP (x, 1);
|
17858 |
|
|
HOST_WIDE_INT offset = 0;
|
17859 |
|
|
if (GET_CODE (base) != REG
|
17860 |
|
|
|| (GET_CODE (index) == REG && REGNO (index) == SP_REGNUM))
|
17861 |
|
|
{
|
17862 |
|
|
/* Ensure that BASE is a register. */
|
17863 |
|
|
/* (one of them must be). */
|
17864 |
|
|
/* Also ensure the SP is not used as in index register. */
|
17865 |
|
|
rtx temp = base;
|
17866 |
|
|
base = index;
|
17867 |
|
|
index = temp;
|
17868 |
|
|
}
|
17869 |
|
|
switch (GET_CODE (index))
|
17870 |
|
|
{
|
17871 |
|
|
case CONST_INT:
|
17872 |
|
|
offset = INTVAL (index);
|
17873 |
|
|
if (is_minus)
|
17874 |
|
|
offset = -offset;
|
17875 |
|
|
asm_fprintf (stream, "[%r, #%wd]",
|
17876 |
|
|
REGNO (base), offset);
|
17877 |
|
|
break;
|
17878 |
|
|
|
17879 |
|
|
case REG:
|
17880 |
|
|
asm_fprintf (stream, "[%r, %s%r]",
|
17881 |
|
|
REGNO (base), is_minus ? "-" : "",
|
17882 |
|
|
REGNO (index));
|
17883 |
|
|
break;
|
17884 |
|
|
|
17885 |
|
|
case MULT:
|
17886 |
|
|
case ASHIFTRT:
|
17887 |
|
|
case LSHIFTRT:
|
17888 |
|
|
case ASHIFT:
|
17889 |
|
|
case ROTATERT:
|
17890 |
|
|
{
|
17891 |
|
|
asm_fprintf (stream, "[%r, %s%r",
|
17892 |
|
|
REGNO (base), is_minus ? "-" : "",
|
17893 |
|
|
REGNO (XEXP (index, 0)));
|
17894 |
|
|
arm_print_operand (stream, index, 'S');
|
17895 |
|
|
fputs ("]", stream);
|
17896 |
|
|
break;
|
17897 |
|
|
}
|
17898 |
|
|
|
17899 |
|
|
default:
|
17900 |
|
|
gcc_unreachable ();
|
17901 |
|
|
}
|
17902 |
|
|
}
|
17903 |
|
|
else if (GET_CODE (x) == PRE_INC || GET_CODE (x) == POST_INC
|
17904 |
|
|
|| GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_DEC)
|
17905 |
|
|
{
|
17906 |
|
|
extern enum machine_mode output_memory_reference_mode;
|
17907 |
|
|
|
17908 |
|
|
gcc_assert (GET_CODE (XEXP (x, 0)) == REG);
|
17909 |
|
|
|
17910 |
|
|
if (GET_CODE (x) == PRE_DEC || GET_CODE (x) == PRE_INC)
|
17911 |
|
|
asm_fprintf (stream, "[%r, #%s%d]!",
|
17912 |
|
|
REGNO (XEXP (x, 0)),
|
17913 |
|
|
GET_CODE (x) == PRE_DEC ? "-" : "",
|
17914 |
|
|
GET_MODE_SIZE (output_memory_reference_mode));
|
17915 |
|
|
else
|
17916 |
|
|
asm_fprintf (stream, "[%r], #%s%d",
|
17917 |
|
|
REGNO (XEXP (x, 0)),
|
17918 |
|
|
GET_CODE (x) == POST_DEC ? "-" : "",
|
17919 |
|
|
GET_MODE_SIZE (output_memory_reference_mode));
|
17920 |
|
|
}
|
17921 |
|
|
else if (GET_CODE (x) == PRE_MODIFY)
|
17922 |
|
|
{
|
17923 |
|
|
asm_fprintf (stream, "[%r, ", REGNO (XEXP (x, 0)));
|
17924 |
|
|
if (GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT)
|
17925 |
|
|
asm_fprintf (stream, "#%wd]!",
|
17926 |
|
|
INTVAL (XEXP (XEXP (x, 1), 1)));
|
17927 |
|
|
else
|
17928 |
|
|
asm_fprintf (stream, "%r]!",
|
17929 |
|
|
REGNO (XEXP (XEXP (x, 1), 1)));
|
17930 |
|
|
}
|
17931 |
|
|
else if (GET_CODE (x) == POST_MODIFY)
|
17932 |
|
|
{
|
17933 |
|
|
asm_fprintf (stream, "[%r], ", REGNO (XEXP (x, 0)));
|
17934 |
|
|
if (GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT)
|
17935 |
|
|
asm_fprintf (stream, "#%wd",
|
17936 |
|
|
INTVAL (XEXP (XEXP (x, 1), 1)));
|
17937 |
|
|
else
|
17938 |
|
|
asm_fprintf (stream, "%r",
|
17939 |
|
|
REGNO (XEXP (XEXP (x, 1), 1)));
|
17940 |
|
|
}
|
17941 |
|
|
else output_addr_const (stream, x);
|
17942 |
|
|
}
|
17943 |
|
|
else
|
17944 |
|
|
{
|
17945 |
|
|
if (GET_CODE (x) == REG)
|
17946 |
|
|
asm_fprintf (stream, "[%r]", REGNO (x));
|
17947 |
|
|
else if (GET_CODE (x) == POST_INC)
|
17948 |
|
|
asm_fprintf (stream, "%r!", REGNO (XEXP (x, 0)));
|
17949 |
|
|
else if (GET_CODE (x) == PLUS)
|
17950 |
|
|
{
|
17951 |
|
|
gcc_assert (GET_CODE (XEXP (x, 0)) == REG);
|
17952 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
17953 |
|
|
asm_fprintf (stream, "[%r, #%wd]",
|
17954 |
|
|
REGNO (XEXP (x, 0)),
|
17955 |
|
|
INTVAL (XEXP (x, 1)));
|
17956 |
|
|
else
|
17957 |
|
|
asm_fprintf (stream, "[%r, %r]",
|
17958 |
|
|
REGNO (XEXP (x, 0)),
|
17959 |
|
|
REGNO (XEXP (x, 1)));
|
17960 |
|
|
}
|
17961 |
|
|
else
|
17962 |
|
|
output_addr_const (stream, x);
|
17963 |
|
|
}
|
17964 |
|
|
}
|
17965 |
|
|
|
17966 |
|
|
/* Target hook for indicating whether a punctuation character for
|
17967 |
|
|
TARGET_PRINT_OPERAND is valid. */
|
17968 |
|
|
static bool
|
17969 |
|
|
arm_print_operand_punct_valid_p (unsigned char code)
|
17970 |
|
|
{
|
17971 |
|
|
return (code == '@' || code == '|' || code == '.'
|
17972 |
|
|
|| code == '(' || code == ')' || code == '#'
|
17973 |
|
|
|| (TARGET_32BIT && (code == '?'))
|
17974 |
|
|
|| (TARGET_THUMB2 && (code == '!'))
|
17975 |
|
|
|| (TARGET_THUMB && (code == '_')));
|
17976 |
|
|
}
|
17977 |
|
|
|
17978 |
|
|
/* Target hook for assembling integer objects. The ARM version needs to
|
17979 |
|
|
handle word-sized values specially. */
|
17980 |
|
|
static bool
|
17981 |
|
|
arm_assemble_integer (rtx x, unsigned int size, int aligned_p)
|
17982 |
|
|
{
|
17983 |
|
|
enum machine_mode mode;
|
17984 |
|
|
|
17985 |
|
|
if (size == UNITS_PER_WORD && aligned_p)
|
17986 |
|
|
{
|
17987 |
|
|
fputs ("\t.word\t", asm_out_file);
|
17988 |
|
|
output_addr_const (asm_out_file, x);
|
17989 |
|
|
|
17990 |
|
|
/* Mark symbols as position independent. We only do this in the
|
17991 |
|
|
.text segment, not in the .data segment. */
|
17992 |
|
|
if (NEED_GOT_RELOC && flag_pic && making_const_table &&
|
17993 |
|
|
(GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF))
|
17994 |
|
|
{
|
17995 |
|
|
/* See legitimize_pic_address for an explanation of the
|
17996 |
|
|
TARGET_VXWORKS_RTP check. */
|
17997 |
|
|
if (TARGET_VXWORKS_RTP
|
17998 |
|
|
|| (GET_CODE (x) == SYMBOL_REF && !SYMBOL_REF_LOCAL_P (x)))
|
17999 |
|
|
fputs ("(GOT)", asm_out_file);
|
18000 |
|
|
else
|
18001 |
|
|
fputs ("(GOTOFF)", asm_out_file);
|
18002 |
|
|
}
|
18003 |
|
|
fputc ('\n', asm_out_file);
|
18004 |
|
|
return true;
|
18005 |
|
|
}
|
18006 |
|
|
|
18007 |
|
|
mode = GET_MODE (x);
|
18008 |
|
|
|
18009 |
|
|
if (arm_vector_mode_supported_p (mode))
|
18010 |
|
|
{
|
18011 |
|
|
int i, units;
|
18012 |
|
|
|
18013 |
|
|
gcc_assert (GET_CODE (x) == CONST_VECTOR);
|
18014 |
|
|
|
18015 |
|
|
units = CONST_VECTOR_NUNITS (x);
|
18016 |
|
|
size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
18017 |
|
|
|
18018 |
|
|
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
|
18019 |
|
|
for (i = 0; i < units; i++)
|
18020 |
|
|
{
|
18021 |
|
|
rtx elt = CONST_VECTOR_ELT (x, i);
|
18022 |
|
|
assemble_integer
|
18023 |
|
|
(elt, size, i == 0 ? BIGGEST_ALIGNMENT : size * BITS_PER_UNIT, 1);
|
18024 |
|
|
}
|
18025 |
|
|
else
|
18026 |
|
|
for (i = 0; i < units; i++)
|
18027 |
|
|
{
|
18028 |
|
|
rtx elt = CONST_VECTOR_ELT (x, i);
|
18029 |
|
|
REAL_VALUE_TYPE rval;
|
18030 |
|
|
|
18031 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (rval, elt);
|
18032 |
|
|
|
18033 |
|
|
assemble_real
|
18034 |
|
|
(rval, GET_MODE_INNER (mode),
|
18035 |
|
|
i == 0 ? BIGGEST_ALIGNMENT : size * BITS_PER_UNIT);
|
18036 |
|
|
}
|
18037 |
|
|
|
18038 |
|
|
return true;
|
18039 |
|
|
}
|
18040 |
|
|
|
18041 |
|
|
return default_assemble_integer (x, size, aligned_p);
|
18042 |
|
|
}
|
18043 |
|
|
|
18044 |
|
|
static void
|
18045 |
|
|
arm_elf_asm_cdtor (rtx symbol, int priority, bool is_ctor)
|
18046 |
|
|
{
|
18047 |
|
|
section *s;
|
18048 |
|
|
|
18049 |
|
|
if (!TARGET_AAPCS_BASED)
|
18050 |
|
|
{
|
18051 |
|
|
(is_ctor ?
|
18052 |
|
|
default_named_section_asm_out_constructor
|
18053 |
|
|
: default_named_section_asm_out_destructor) (symbol, priority);
|
18054 |
|
|
return;
|
18055 |
|
|
}
|
18056 |
|
|
|
18057 |
|
|
/* Put these in the .init_array section, using a special relocation. */
|
18058 |
|
|
if (priority != DEFAULT_INIT_PRIORITY)
|
18059 |
|
|
{
|
18060 |
|
|
char buf[18];
|
18061 |
|
|
sprintf (buf, "%s.%.5u",
|
18062 |
|
|
is_ctor ? ".init_array" : ".fini_array",
|
18063 |
|
|
priority);
|
18064 |
|
|
s = get_section (buf, SECTION_WRITE, NULL_TREE);
|
18065 |
|
|
}
|
18066 |
|
|
else if (is_ctor)
|
18067 |
|
|
s = ctors_section;
|
18068 |
|
|
else
|
18069 |
|
|
s = dtors_section;
|
18070 |
|
|
|
18071 |
|
|
switch_to_section (s);
|
18072 |
|
|
assemble_align (POINTER_SIZE);
|
18073 |
|
|
fputs ("\t.word\t", asm_out_file);
|
18074 |
|
|
output_addr_const (asm_out_file, symbol);
|
18075 |
|
|
fputs ("(target1)\n", asm_out_file);
|
18076 |
|
|
}
|
18077 |
|
|
|
18078 |
|
|
/* Add a function to the list of static constructors. */
|
18079 |
|
|
|
18080 |
|
|
static void
|
18081 |
|
|
arm_elf_asm_constructor (rtx symbol, int priority)
|
18082 |
|
|
{
|
18083 |
|
|
arm_elf_asm_cdtor (symbol, priority, /*is_ctor=*/true);
|
18084 |
|
|
}
|
18085 |
|
|
|
18086 |
|
|
/* Add a function to the list of static destructors. */
|
18087 |
|
|
|
18088 |
|
|
static void
|
18089 |
|
|
arm_elf_asm_destructor (rtx symbol, int priority)
|
18090 |
|
|
{
|
18091 |
|
|
arm_elf_asm_cdtor (symbol, priority, /*is_ctor=*/false);
|
18092 |
|
|
}
|
18093 |
|
|
|
18094 |
|
|
/* A finite state machine takes care of noticing whether or not instructions
|
18095 |
|
|
can be conditionally executed, and thus decrease execution time and code
|
18096 |
|
|
size by deleting branch instructions. The fsm is controlled by
|
18097 |
|
|
final_prescan_insn, and controls the actions of ASM_OUTPUT_OPCODE. */
|
18098 |
|
|
|
18099 |
|
|
/* The state of the fsm controlling condition codes are:
|
18100 |
|
|
0: normal, do nothing special
|
18101 |
|
|
1: make ASM_OUTPUT_OPCODE not output this instruction
|
18102 |
|
|
2: make ASM_OUTPUT_OPCODE not output this instruction
|
18103 |
|
|
3: make instructions conditional
|
18104 |
|
|
4: make instructions conditional
|
18105 |
|
|
|
18106 |
|
|
State transitions (state->state by whom under condition):
|
18107 |
|
|
|
18108 |
|
|
|
18109 |
|
|
1 -> 3 ASM_OUTPUT_OPCODE after not having output the conditional branch
|
18110 |
|
|
2 -> 4 ASM_OUTPUT_OPCODE after not having output the conditional branch
|
18111 |
|
|
3 -> 0 (*targetm.asm_out.internal_label) if the `target' label is reached
|
18112 |
|
|
(the target label has CODE_LABEL_NUMBER equal to arm_target_label).
|
18113 |
|
|
4 -> 0 final_prescan_insn if the `target' unconditional branch is reached
|
18114 |
|
|
(the target insn is arm_target_insn).
|
18115 |
|
|
|
18116 |
|
|
If the jump clobbers the conditions then we use states 2 and 4.
|
18117 |
|
|
|
18118 |
|
|
A similar thing can be done with conditional return insns.
|
18119 |
|
|
|
18120 |
|
|
XXX In case the `target' is an unconditional branch, this conditionalising
|
18121 |
|
|
of the instructions always reduces code size, but not always execution
|
18122 |
|
|
time. But then, I want to reduce the code size to somewhere near what
|
18123 |
|
|
/bin/cc produces. */
|
18124 |
|
|
|
18125 |
|
|
/* In addition to this, state is maintained for Thumb-2 COND_EXEC
|
18126 |
|
|
instructions. When a COND_EXEC instruction is seen the subsequent
|
18127 |
|
|
instructions are scanned so that multiple conditional instructions can be
|
18128 |
|
|
combined into a single IT block. arm_condexec_count and arm_condexec_mask
|
18129 |
|
|
specify the length and true/false mask for the IT block. These will be
|
18130 |
|
|
decremented/zeroed by arm_asm_output_opcode as the insns are output. */
|
18131 |
|
|
|
18132 |
|
|
/* Returns the index of the ARM condition code string in
|
18133 |
|
|
`arm_condition_codes', or ARM_NV if the comparison is invalid.
|
18134 |
|
|
COMPARISON should be an rtx like `(eq (...) (...))'. */
|
18135 |
|
|
|
18136 |
|
|
enum arm_cond_code
|
18137 |
|
|
maybe_get_arm_condition_code (rtx comparison)
|
18138 |
|
|
{
|
18139 |
|
|
enum machine_mode mode = GET_MODE (XEXP (comparison, 0));
|
18140 |
|
|
enum arm_cond_code code;
|
18141 |
|
|
enum rtx_code comp_code = GET_CODE (comparison);
|
18142 |
|
|
|
18143 |
|
|
if (GET_MODE_CLASS (mode) != MODE_CC)
|
18144 |
|
|
mode = SELECT_CC_MODE (comp_code, XEXP (comparison, 0),
|
18145 |
|
|
XEXP (comparison, 1));
|
18146 |
|
|
|
18147 |
|
|
switch (mode)
|
18148 |
|
|
{
|
18149 |
|
|
case CC_DNEmode: code = ARM_NE; goto dominance;
|
18150 |
|
|
case CC_DEQmode: code = ARM_EQ; goto dominance;
|
18151 |
|
|
case CC_DGEmode: code = ARM_GE; goto dominance;
|
18152 |
|
|
case CC_DGTmode: code = ARM_GT; goto dominance;
|
18153 |
|
|
case CC_DLEmode: code = ARM_LE; goto dominance;
|
18154 |
|
|
case CC_DLTmode: code = ARM_LT; goto dominance;
|
18155 |
|
|
case CC_DGEUmode: code = ARM_CS; goto dominance;
|
18156 |
|
|
case CC_DGTUmode: code = ARM_HI; goto dominance;
|
18157 |
|
|
case CC_DLEUmode: code = ARM_LS; goto dominance;
|
18158 |
|
|
case CC_DLTUmode: code = ARM_CC;
|
18159 |
|
|
|
18160 |
|
|
dominance:
|
18161 |
|
|
if (comp_code == EQ)
|
18162 |
|
|
return ARM_INVERSE_CONDITION_CODE (code);
|
18163 |
|
|
if (comp_code == NE)
|
18164 |
|
|
return code;
|
18165 |
|
|
return ARM_NV;
|
18166 |
|
|
|
18167 |
|
|
case CC_NOOVmode:
|
18168 |
|
|
switch (comp_code)
|
18169 |
|
|
{
|
18170 |
|
|
case NE: return ARM_NE;
|
18171 |
|
|
case EQ: return ARM_EQ;
|
18172 |
|
|
case GE: return ARM_PL;
|
18173 |
|
|
case LT: return ARM_MI;
|
18174 |
|
|
default: return ARM_NV;
|
18175 |
|
|
}
|
18176 |
|
|
|
18177 |
|
|
case CC_Zmode:
|
18178 |
|
|
switch (comp_code)
|
18179 |
|
|
{
|
18180 |
|
|
case NE: return ARM_NE;
|
18181 |
|
|
case EQ: return ARM_EQ;
|
18182 |
|
|
default: return ARM_NV;
|
18183 |
|
|
}
|
18184 |
|
|
|
18185 |
|
|
case CC_Nmode:
|
18186 |
|
|
switch (comp_code)
|
18187 |
|
|
{
|
18188 |
|
|
case NE: return ARM_MI;
|
18189 |
|
|
case EQ: return ARM_PL;
|
18190 |
|
|
default: return ARM_NV;
|
18191 |
|
|
}
|
18192 |
|
|
|
18193 |
|
|
case CCFPEmode:
|
18194 |
|
|
case CCFPmode:
|
18195 |
|
|
/* These encodings assume that AC=1 in the FPA system control
|
18196 |
|
|
byte. This allows us to handle all cases except UNEQ and
|
18197 |
|
|
LTGT. */
|
18198 |
|
|
switch (comp_code)
|
18199 |
|
|
{
|
18200 |
|
|
case GE: return ARM_GE;
|
18201 |
|
|
case GT: return ARM_GT;
|
18202 |
|
|
case LE: return ARM_LS;
|
18203 |
|
|
case LT: return ARM_MI;
|
18204 |
|
|
case NE: return ARM_NE;
|
18205 |
|
|
case EQ: return ARM_EQ;
|
18206 |
|
|
case ORDERED: return ARM_VC;
|
18207 |
|
|
case UNORDERED: return ARM_VS;
|
18208 |
|
|
case UNLT: return ARM_LT;
|
18209 |
|
|
case UNLE: return ARM_LE;
|
18210 |
|
|
case UNGT: return ARM_HI;
|
18211 |
|
|
case UNGE: return ARM_PL;
|
18212 |
|
|
/* UNEQ and LTGT do not have a representation. */
|
18213 |
|
|
case UNEQ: /* Fall through. */
|
18214 |
|
|
case LTGT: /* Fall through. */
|
18215 |
|
|
default: return ARM_NV;
|
18216 |
|
|
}
|
18217 |
|
|
|
18218 |
|
|
case CC_SWPmode:
|
18219 |
|
|
switch (comp_code)
|
18220 |
|
|
{
|
18221 |
|
|
case NE: return ARM_NE;
|
18222 |
|
|
case EQ: return ARM_EQ;
|
18223 |
|
|
case GE: return ARM_LE;
|
18224 |
|
|
case GT: return ARM_LT;
|
18225 |
|
|
case LE: return ARM_GE;
|
18226 |
|
|
case LT: return ARM_GT;
|
18227 |
|
|
case GEU: return ARM_LS;
|
18228 |
|
|
case GTU: return ARM_CC;
|
18229 |
|
|
case LEU: return ARM_CS;
|
18230 |
|
|
case LTU: return ARM_HI;
|
18231 |
|
|
default: return ARM_NV;
|
18232 |
|
|
}
|
18233 |
|
|
|
18234 |
|
|
case CC_Cmode:
|
18235 |
|
|
switch (comp_code)
|
18236 |
|
|
{
|
18237 |
|
|
case LTU: return ARM_CS;
|
18238 |
|
|
case GEU: return ARM_CC;
|
18239 |
|
|
default: return ARM_NV;
|
18240 |
|
|
}
|
18241 |
|
|
|
18242 |
|
|
case CC_CZmode:
|
18243 |
|
|
switch (comp_code)
|
18244 |
|
|
{
|
18245 |
|
|
case NE: return ARM_NE;
|
18246 |
|
|
case EQ: return ARM_EQ;
|
18247 |
|
|
case GEU: return ARM_CS;
|
18248 |
|
|
case GTU: return ARM_HI;
|
18249 |
|
|
case LEU: return ARM_LS;
|
18250 |
|
|
case LTU: return ARM_CC;
|
18251 |
|
|
default: return ARM_NV;
|
18252 |
|
|
}
|
18253 |
|
|
|
18254 |
|
|
case CC_NCVmode:
|
18255 |
|
|
switch (comp_code)
|
18256 |
|
|
{
|
18257 |
|
|
case GE: return ARM_GE;
|
18258 |
|
|
case LT: return ARM_LT;
|
18259 |
|
|
case GEU: return ARM_CS;
|
18260 |
|
|
case LTU: return ARM_CC;
|
18261 |
|
|
default: return ARM_NV;
|
18262 |
|
|
}
|
18263 |
|
|
|
18264 |
|
|
case CCmode:
|
18265 |
|
|
switch (comp_code)
|
18266 |
|
|
{
|
18267 |
|
|
case NE: return ARM_NE;
|
18268 |
|
|
case EQ: return ARM_EQ;
|
18269 |
|
|
case GE: return ARM_GE;
|
18270 |
|
|
case GT: return ARM_GT;
|
18271 |
|
|
case LE: return ARM_LE;
|
18272 |
|
|
case LT: return ARM_LT;
|
18273 |
|
|
case GEU: return ARM_CS;
|
18274 |
|
|
case GTU: return ARM_HI;
|
18275 |
|
|
case LEU: return ARM_LS;
|
18276 |
|
|
case LTU: return ARM_CC;
|
18277 |
|
|
default: return ARM_NV;
|
18278 |
|
|
}
|
18279 |
|
|
|
18280 |
|
|
default: gcc_unreachable ();
|
18281 |
|
|
}
|
18282 |
|
|
}
|
18283 |
|
|
|
18284 |
|
|
/* Like maybe_get_arm_condition_code, but never return ARM_NV. */
|
18285 |
|
|
static enum arm_cond_code
|
18286 |
|
|
get_arm_condition_code (rtx comparison)
|
18287 |
|
|
{
|
18288 |
|
|
enum arm_cond_code code = maybe_get_arm_condition_code (comparison);
|
18289 |
|
|
gcc_assert (code != ARM_NV);
|
18290 |
|
|
return code;
|
18291 |
|
|
}
|
18292 |
|
|
|
18293 |
|
|
/* Tell arm_asm_output_opcode to output IT blocks for conditionally executed
|
18294 |
|
|
instructions. */
|
18295 |
|
|
void
|
18296 |
|
|
thumb2_final_prescan_insn (rtx insn)
|
18297 |
|
|
{
|
18298 |
|
|
rtx first_insn = insn;
|
18299 |
|
|
rtx body = PATTERN (insn);
|
18300 |
|
|
rtx predicate;
|
18301 |
|
|
enum arm_cond_code code;
|
18302 |
|
|
int n;
|
18303 |
|
|
int mask;
|
18304 |
|
|
|
18305 |
|
|
/* Remove the previous insn from the count of insns to be output. */
|
18306 |
|
|
if (arm_condexec_count)
|
18307 |
|
|
arm_condexec_count--;
|
18308 |
|
|
|
18309 |
|
|
/* Nothing to do if we are already inside a conditional block. */
|
18310 |
|
|
if (arm_condexec_count)
|
18311 |
|
|
return;
|
18312 |
|
|
|
18313 |
|
|
if (GET_CODE (body) != COND_EXEC)
|
18314 |
|
|
return;
|
18315 |
|
|
|
18316 |
|
|
/* Conditional jumps are implemented directly. */
|
18317 |
|
|
if (GET_CODE (insn) == JUMP_INSN)
|
18318 |
|
|
return;
|
18319 |
|
|
|
18320 |
|
|
predicate = COND_EXEC_TEST (body);
|
18321 |
|
|
arm_current_cc = get_arm_condition_code (predicate);
|
18322 |
|
|
|
18323 |
|
|
n = get_attr_ce_count (insn);
|
18324 |
|
|
arm_condexec_count = 1;
|
18325 |
|
|
arm_condexec_mask = (1 << n) - 1;
|
18326 |
|
|
arm_condexec_masklen = n;
|
18327 |
|
|
/* See if subsequent instructions can be combined into the same block. */
|
18328 |
|
|
for (;;)
|
18329 |
|
|
{
|
18330 |
|
|
insn = next_nonnote_insn (insn);
|
18331 |
|
|
|
18332 |
|
|
/* Jumping into the middle of an IT block is illegal, so a label or
|
18333 |
|
|
barrier terminates the block. */
|
18334 |
|
|
if (GET_CODE (insn) != INSN && GET_CODE(insn) != JUMP_INSN)
|
18335 |
|
|
break;
|
18336 |
|
|
|
18337 |
|
|
body = PATTERN (insn);
|
18338 |
|
|
/* USE and CLOBBER aren't really insns, so just skip them. */
|
18339 |
|
|
if (GET_CODE (body) == USE
|
18340 |
|
|
|| GET_CODE (body) == CLOBBER)
|
18341 |
|
|
continue;
|
18342 |
|
|
|
18343 |
|
|
/* ??? Recognize conditional jumps, and combine them with IT blocks. */
|
18344 |
|
|
if (GET_CODE (body) != COND_EXEC)
|
18345 |
|
|
break;
|
18346 |
|
|
/* Allow up to 4 conditionally executed instructions in a block. */
|
18347 |
|
|
n = get_attr_ce_count (insn);
|
18348 |
|
|
if (arm_condexec_masklen + n > 4)
|
18349 |
|
|
break;
|
18350 |
|
|
|
18351 |
|
|
predicate = COND_EXEC_TEST (body);
|
18352 |
|
|
code = get_arm_condition_code (predicate);
|
18353 |
|
|
mask = (1 << n) - 1;
|
18354 |
|
|
if (arm_current_cc == code)
|
18355 |
|
|
arm_condexec_mask |= (mask << arm_condexec_masklen);
|
18356 |
|
|
else if (arm_current_cc != ARM_INVERSE_CONDITION_CODE(code))
|
18357 |
|
|
break;
|
18358 |
|
|
|
18359 |
|
|
arm_condexec_count++;
|
18360 |
|
|
arm_condexec_masklen += n;
|
18361 |
|
|
|
18362 |
|
|
/* A jump must be the last instruction in a conditional block. */
|
18363 |
|
|
if (GET_CODE(insn) == JUMP_INSN)
|
18364 |
|
|
break;
|
18365 |
|
|
}
|
18366 |
|
|
/* Restore recog_data (getting the attributes of other insns can
|
18367 |
|
|
destroy this array, but final.c assumes that it remains intact
|
18368 |
|
|
across this call). */
|
18369 |
|
|
extract_constrain_insn_cached (first_insn);
|
18370 |
|
|
}
|
18371 |
|
|
|
18372 |
|
|
void
|
18373 |
|
|
arm_final_prescan_insn (rtx insn)
|
18374 |
|
|
{
|
18375 |
|
|
/* BODY will hold the body of INSN. */
|
18376 |
|
|
rtx body = PATTERN (insn);
|
18377 |
|
|
|
18378 |
|
|
/* This will be 1 if trying to repeat the trick, and things need to be
|
18379 |
|
|
reversed if it appears to fail. */
|
18380 |
|
|
int reverse = 0;
|
18381 |
|
|
|
18382 |
|
|
/* If we start with a return insn, we only succeed if we find another one. */
|
18383 |
|
|
int seeking_return = 0;
|
18384 |
|
|
enum rtx_code return_code = UNKNOWN;
|
18385 |
|
|
|
18386 |
|
|
/* START_INSN will hold the insn from where we start looking. This is the
|
18387 |
|
|
first insn after the following code_label if REVERSE is true. */
|
18388 |
|
|
rtx start_insn = insn;
|
18389 |
|
|
|
18390 |
|
|
/* If in state 4, check if the target branch is reached, in order to
|
18391 |
|
|
change back to state 0. */
|
18392 |
|
|
if (arm_ccfsm_state == 4)
|
18393 |
|
|
{
|
18394 |
|
|
if (insn == arm_target_insn)
|
18395 |
|
|
{
|
18396 |
|
|
arm_target_insn = NULL;
|
18397 |
|
|
arm_ccfsm_state = 0;
|
18398 |
|
|
}
|
18399 |
|
|
return;
|
18400 |
|
|
}
|
18401 |
|
|
|
18402 |
|
|
/* If in state 3, it is possible to repeat the trick, if this insn is an
|
18403 |
|
|
unconditional branch to a label, and immediately following this branch
|
18404 |
|
|
is the previous target label which is only used once, and the label this
|
18405 |
|
|
branch jumps to is not too far off. */
|
18406 |
|
|
if (arm_ccfsm_state == 3)
|
18407 |
|
|
{
|
18408 |
|
|
if (simplejump_p (insn))
|
18409 |
|
|
{
|
18410 |
|
|
start_insn = next_nonnote_insn (start_insn);
|
18411 |
|
|
if (GET_CODE (start_insn) == BARRIER)
|
18412 |
|
|
{
|
18413 |
|
|
/* XXX Isn't this always a barrier? */
|
18414 |
|
|
start_insn = next_nonnote_insn (start_insn);
|
18415 |
|
|
}
|
18416 |
|
|
if (GET_CODE (start_insn) == CODE_LABEL
|
18417 |
|
|
&& CODE_LABEL_NUMBER (start_insn) == arm_target_label
|
18418 |
|
|
&& LABEL_NUSES (start_insn) == 1)
|
18419 |
|
|
reverse = TRUE;
|
18420 |
|
|
else
|
18421 |
|
|
return;
|
18422 |
|
|
}
|
18423 |
|
|
else if (ANY_RETURN_P (body))
|
18424 |
|
|
{
|
18425 |
|
|
start_insn = next_nonnote_insn (start_insn);
|
18426 |
|
|
if (GET_CODE (start_insn) == BARRIER)
|
18427 |
|
|
start_insn = next_nonnote_insn (start_insn);
|
18428 |
|
|
if (GET_CODE (start_insn) == CODE_LABEL
|
18429 |
|
|
&& CODE_LABEL_NUMBER (start_insn) == arm_target_label
|
18430 |
|
|
&& LABEL_NUSES (start_insn) == 1)
|
18431 |
|
|
{
|
18432 |
|
|
reverse = TRUE;
|
18433 |
|
|
seeking_return = 1;
|
18434 |
|
|
return_code = GET_CODE (body);
|
18435 |
|
|
}
|
18436 |
|
|
else
|
18437 |
|
|
return;
|
18438 |
|
|
}
|
18439 |
|
|
else
|
18440 |
|
|
return;
|
18441 |
|
|
}
|
18442 |
|
|
|
18443 |
|
|
gcc_assert (!arm_ccfsm_state || reverse);
|
18444 |
|
|
if (GET_CODE (insn) != JUMP_INSN)
|
18445 |
|
|
return;
|
18446 |
|
|
|
18447 |
|
|
/* This jump might be paralleled with a clobber of the condition codes
|
18448 |
|
|
the jump should always come first */
|
18449 |
|
|
if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
|
18450 |
|
|
body = XVECEXP (body, 0, 0);
|
18451 |
|
|
|
18452 |
|
|
if (reverse
|
18453 |
|
|
|| (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == PC
|
18454 |
|
|
&& GET_CODE (SET_SRC (body)) == IF_THEN_ELSE))
|
18455 |
|
|
{
|
18456 |
|
|
int insns_skipped;
|
18457 |
|
|
int fail = FALSE, succeed = FALSE;
|
18458 |
|
|
/* Flag which part of the IF_THEN_ELSE is the LABEL_REF. */
|
18459 |
|
|
int then_not_else = TRUE;
|
18460 |
|
|
rtx this_insn = start_insn, label = 0;
|
18461 |
|
|
|
18462 |
|
|
/* Register the insn jumped to. */
|
18463 |
|
|
if (reverse)
|
18464 |
|
|
{
|
18465 |
|
|
if (!seeking_return)
|
18466 |
|
|
label = XEXP (SET_SRC (body), 0);
|
18467 |
|
|
}
|
18468 |
|
|
else if (GET_CODE (XEXP (SET_SRC (body), 1)) == LABEL_REF)
|
18469 |
|
|
label = XEXP (XEXP (SET_SRC (body), 1), 0);
|
18470 |
|
|
else if (GET_CODE (XEXP (SET_SRC (body), 2)) == LABEL_REF)
|
18471 |
|
|
{
|
18472 |
|
|
label = XEXP (XEXP (SET_SRC (body), 2), 0);
|
18473 |
|
|
then_not_else = FALSE;
|
18474 |
|
|
}
|
18475 |
|
|
else if (ANY_RETURN_P (XEXP (SET_SRC (body), 1)))
|
18476 |
|
|
{
|
18477 |
|
|
seeking_return = 1;
|
18478 |
|
|
return_code = GET_CODE (XEXP (SET_SRC (body), 1));
|
18479 |
|
|
}
|
18480 |
|
|
else if (ANY_RETURN_P (XEXP (SET_SRC (body), 2)))
|
18481 |
|
|
{
|
18482 |
|
|
seeking_return = 1;
|
18483 |
|
|
return_code = GET_CODE (XEXP (SET_SRC (body), 2));
|
18484 |
|
|
then_not_else = FALSE;
|
18485 |
|
|
}
|
18486 |
|
|
else
|
18487 |
|
|
gcc_unreachable ();
|
18488 |
|
|
|
18489 |
|
|
/* See how many insns this branch skips, and what kind of insns. If all
|
18490 |
|
|
insns are okay, and the label or unconditional branch to the same
|
18491 |
|
|
label is not too far away, succeed. */
|
18492 |
|
|
for (insns_skipped = 0;
|
18493 |
|
|
!fail && !succeed && insns_skipped++ < max_insns_skipped;)
|
18494 |
|
|
{
|
18495 |
|
|
rtx scanbody;
|
18496 |
|
|
|
18497 |
|
|
this_insn = next_nonnote_insn (this_insn);
|
18498 |
|
|
if (!this_insn)
|
18499 |
|
|
break;
|
18500 |
|
|
|
18501 |
|
|
switch (GET_CODE (this_insn))
|
18502 |
|
|
{
|
18503 |
|
|
case CODE_LABEL:
|
18504 |
|
|
/* Succeed if it is the target label, otherwise fail since
|
18505 |
|
|
control falls in from somewhere else. */
|
18506 |
|
|
if (this_insn == label)
|
18507 |
|
|
{
|
18508 |
|
|
arm_ccfsm_state = 1;
|
18509 |
|
|
succeed = TRUE;
|
18510 |
|
|
}
|
18511 |
|
|
else
|
18512 |
|
|
fail = TRUE;
|
18513 |
|
|
break;
|
18514 |
|
|
|
18515 |
|
|
case BARRIER:
|
18516 |
|
|
/* Succeed if the following insn is the target label.
|
18517 |
|
|
Otherwise fail.
|
18518 |
|
|
If return insns are used then the last insn in a function
|
18519 |
|
|
will be a barrier. */
|
18520 |
|
|
this_insn = next_nonnote_insn (this_insn);
|
18521 |
|
|
if (this_insn && this_insn == label)
|
18522 |
|
|
{
|
18523 |
|
|
arm_ccfsm_state = 1;
|
18524 |
|
|
succeed = TRUE;
|
18525 |
|
|
}
|
18526 |
|
|
else
|
18527 |
|
|
fail = TRUE;
|
18528 |
|
|
break;
|
18529 |
|
|
|
18530 |
|
|
case CALL_INSN:
|
18531 |
|
|
/* The AAPCS says that conditional calls should not be
|
18532 |
|
|
used since they make interworking inefficient (the
|
18533 |
|
|
linker can't transform BL<cond> into BLX). That's
|
18534 |
|
|
only a problem if the machine has BLX. */
|
18535 |
|
|
if (arm_arch5)
|
18536 |
|
|
{
|
18537 |
|
|
fail = TRUE;
|
18538 |
|
|
break;
|
18539 |
|
|
}
|
18540 |
|
|
|
18541 |
|
|
/* Succeed if the following insn is the target label, or
|
18542 |
|
|
if the following two insns are a barrier and the
|
18543 |
|
|
target label. */
|
18544 |
|
|
this_insn = next_nonnote_insn (this_insn);
|
18545 |
|
|
if (this_insn && GET_CODE (this_insn) == BARRIER)
|
18546 |
|
|
this_insn = next_nonnote_insn (this_insn);
|
18547 |
|
|
|
18548 |
|
|
if (this_insn && this_insn == label
|
18549 |
|
|
&& insns_skipped < max_insns_skipped)
|
18550 |
|
|
{
|
18551 |
|
|
arm_ccfsm_state = 1;
|
18552 |
|
|
succeed = TRUE;
|
18553 |
|
|
}
|
18554 |
|
|
else
|
18555 |
|
|
fail = TRUE;
|
18556 |
|
|
break;
|
18557 |
|
|
|
18558 |
|
|
case JUMP_INSN:
|
18559 |
|
|
/* If this is an unconditional branch to the same label, succeed.
|
18560 |
|
|
If it is to another label, do nothing. If it is conditional,
|
18561 |
|
|
fail. */
|
18562 |
|
|
/* XXX Probably, the tests for SET and the PC are
|
18563 |
|
|
unnecessary. */
|
18564 |
|
|
|
18565 |
|
|
scanbody = PATTERN (this_insn);
|
18566 |
|
|
if (GET_CODE (scanbody) == SET
|
18567 |
|
|
&& GET_CODE (SET_DEST (scanbody)) == PC)
|
18568 |
|
|
{
|
18569 |
|
|
if (GET_CODE (SET_SRC (scanbody)) == LABEL_REF
|
18570 |
|
|
&& XEXP (SET_SRC (scanbody), 0) == label && !reverse)
|
18571 |
|
|
{
|
18572 |
|
|
arm_ccfsm_state = 2;
|
18573 |
|
|
succeed = TRUE;
|
18574 |
|
|
}
|
18575 |
|
|
else if (GET_CODE (SET_SRC (scanbody)) == IF_THEN_ELSE)
|
18576 |
|
|
fail = TRUE;
|
18577 |
|
|
}
|
18578 |
|
|
/* Fail if a conditional return is undesirable (e.g. on a
|
18579 |
|
|
StrongARM), but still allow this if optimizing for size. */
|
18580 |
|
|
else if (GET_CODE (scanbody) == return_code
|
18581 |
|
|
&& !use_return_insn (TRUE, NULL)
|
18582 |
|
|
&& !optimize_size)
|
18583 |
|
|
fail = TRUE;
|
18584 |
|
|
else if (GET_CODE (scanbody) == return_code)
|
18585 |
|
|
{
|
18586 |
|
|
arm_ccfsm_state = 2;
|
18587 |
|
|
succeed = TRUE;
|
18588 |
|
|
}
|
18589 |
|
|
else if (GET_CODE (scanbody) == PARALLEL)
|
18590 |
|
|
{
|
18591 |
|
|
switch (get_attr_conds (this_insn))
|
18592 |
|
|
{
|
18593 |
|
|
case CONDS_NOCOND:
|
18594 |
|
|
break;
|
18595 |
|
|
default:
|
18596 |
|
|
fail = TRUE;
|
18597 |
|
|
break;
|
18598 |
|
|
}
|
18599 |
|
|
}
|
18600 |
|
|
else
|
18601 |
|
|
fail = TRUE; /* Unrecognized jump (e.g. epilogue). */
|
18602 |
|
|
|
18603 |
|
|
break;
|
18604 |
|
|
|
18605 |
|
|
case INSN:
|
18606 |
|
|
/* Instructions using or affecting the condition codes make it
|
18607 |
|
|
fail. */
|
18608 |
|
|
scanbody = PATTERN (this_insn);
|
18609 |
|
|
if (!(GET_CODE (scanbody) == SET
|
18610 |
|
|
|| GET_CODE (scanbody) == PARALLEL)
|
18611 |
|
|
|| get_attr_conds (this_insn) != CONDS_NOCOND)
|
18612 |
|
|
fail = TRUE;
|
18613 |
|
|
|
18614 |
|
|
/* A conditional cirrus instruction must be followed by
|
18615 |
|
|
a non Cirrus instruction. However, since we
|
18616 |
|
|
conditionalize instructions in this function and by
|
18617 |
|
|
the time we get here we can't add instructions
|
18618 |
|
|
(nops), because shorten_branches() has already been
|
18619 |
|
|
called, we will disable conditionalizing Cirrus
|
18620 |
|
|
instructions to be safe. */
|
18621 |
|
|
if (GET_CODE (scanbody) != USE
|
18622 |
|
|
&& GET_CODE (scanbody) != CLOBBER
|
18623 |
|
|
&& get_attr_cirrus (this_insn) != CIRRUS_NOT)
|
18624 |
|
|
fail = TRUE;
|
18625 |
|
|
break;
|
18626 |
|
|
|
18627 |
|
|
default:
|
18628 |
|
|
break;
|
18629 |
|
|
}
|
18630 |
|
|
}
|
18631 |
|
|
if (succeed)
|
18632 |
|
|
{
|
18633 |
|
|
if ((!seeking_return) && (arm_ccfsm_state == 1 || reverse))
|
18634 |
|
|
arm_target_label = CODE_LABEL_NUMBER (label);
|
18635 |
|
|
else
|
18636 |
|
|
{
|
18637 |
|
|
gcc_assert (seeking_return || arm_ccfsm_state == 2);
|
18638 |
|
|
|
18639 |
|
|
while (this_insn && GET_CODE (PATTERN (this_insn)) == USE)
|
18640 |
|
|
{
|
18641 |
|
|
this_insn = next_nonnote_insn (this_insn);
|
18642 |
|
|
gcc_assert (!this_insn
|
18643 |
|
|
|| (GET_CODE (this_insn) != BARRIER
|
18644 |
|
|
&& GET_CODE (this_insn) != CODE_LABEL));
|
18645 |
|
|
}
|
18646 |
|
|
if (!this_insn)
|
18647 |
|
|
{
|
18648 |
|
|
/* Oh, dear! we ran off the end.. give up. */
|
18649 |
|
|
extract_constrain_insn_cached (insn);
|
18650 |
|
|
arm_ccfsm_state = 0;
|
18651 |
|
|
arm_target_insn = NULL;
|
18652 |
|
|
return;
|
18653 |
|
|
}
|
18654 |
|
|
arm_target_insn = this_insn;
|
18655 |
|
|
}
|
18656 |
|
|
|
18657 |
|
|
/* If REVERSE is true, ARM_CURRENT_CC needs to be inverted from
|
18658 |
|
|
what it was. */
|
18659 |
|
|
if (!reverse)
|
18660 |
|
|
arm_current_cc = get_arm_condition_code (XEXP (SET_SRC (body), 0));
|
18661 |
|
|
|
18662 |
|
|
if (reverse || then_not_else)
|
18663 |
|
|
arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
|
18664 |
|
|
}
|
18665 |
|
|
|
18666 |
|
|
/* Restore recog_data (getting the attributes of other insns can
|
18667 |
|
|
destroy this array, but final.c assumes that it remains intact
|
18668 |
|
|
across this call. */
|
18669 |
|
|
extract_constrain_insn_cached (insn);
|
18670 |
|
|
}
|
18671 |
|
|
}
|
18672 |
|
|
|
18673 |
|
|
/* Output IT instructions. */
|
18674 |
|
|
void
|
18675 |
|
|
thumb2_asm_output_opcode (FILE * stream)
|
18676 |
|
|
{
|
18677 |
|
|
char buff[5];
|
18678 |
|
|
int n;
|
18679 |
|
|
|
18680 |
|
|
if (arm_condexec_mask)
|
18681 |
|
|
{
|
18682 |
|
|
for (n = 0; n < arm_condexec_masklen; n++)
|
18683 |
|
|
buff[n] = (arm_condexec_mask & (1 << n)) ? 't' : 'e';
|
18684 |
|
|
buff[n] = 0;
|
18685 |
|
|
asm_fprintf(stream, "i%s\t%s\n\t", buff,
|
18686 |
|
|
arm_condition_codes[arm_current_cc]);
|
18687 |
|
|
arm_condexec_mask = 0;
|
18688 |
|
|
}
|
18689 |
|
|
}
|
18690 |
|
|
|
18691 |
|
|
/* Returns true if REGNO is a valid register
|
18692 |
|
|
for holding a quantity of type MODE. */
|
18693 |
|
|
int
|
18694 |
|
|
arm_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
|
18695 |
|
|
{
|
18696 |
|
|
if (GET_MODE_CLASS (mode) == MODE_CC)
|
18697 |
|
|
return (regno == CC_REGNUM
|
18698 |
|
|
|| (TARGET_HARD_FLOAT && TARGET_VFP
|
18699 |
|
|
&& regno == VFPCC_REGNUM));
|
18700 |
|
|
|
18701 |
|
|
if (TARGET_THUMB1)
|
18702 |
|
|
/* For the Thumb we only allow values bigger than SImode in
|
18703 |
|
|
registers 0 - 6, so that there is always a second low
|
18704 |
|
|
register available to hold the upper part of the value.
|
18705 |
|
|
We probably we ought to ensure that the register is the
|
18706 |
|
|
start of an even numbered register pair. */
|
18707 |
|
|
return (ARM_NUM_REGS (mode) < 2) || (regno < LAST_LO_REGNUM);
|
18708 |
|
|
|
18709 |
|
|
if (TARGET_HARD_FLOAT && TARGET_MAVERICK
|
18710 |
|
|
&& IS_CIRRUS_REGNUM (regno))
|
18711 |
|
|
/* We have outlawed SI values in Cirrus registers because they
|
18712 |
|
|
reside in the lower 32 bits, but SF values reside in the
|
18713 |
|
|
upper 32 bits. This causes gcc all sorts of grief. We can't
|
18714 |
|
|
even split the registers into pairs because Cirrus SI values
|
18715 |
|
|
get sign extended to 64bits-- aldyh. */
|
18716 |
|
|
return (GET_MODE_CLASS (mode) == MODE_FLOAT) || (mode == DImode);
|
18717 |
|
|
|
18718 |
|
|
if (TARGET_HARD_FLOAT && TARGET_VFP
|
18719 |
|
|
&& IS_VFP_REGNUM (regno))
|
18720 |
|
|
{
|
18721 |
|
|
if (mode == SFmode || mode == SImode)
|
18722 |
|
|
return VFP_REGNO_OK_FOR_SINGLE (regno);
|
18723 |
|
|
|
18724 |
|
|
if (mode == DFmode)
|
18725 |
|
|
return VFP_REGNO_OK_FOR_DOUBLE (regno);
|
18726 |
|
|
|
18727 |
|
|
/* VFP registers can hold HFmode values, but there is no point in
|
18728 |
|
|
putting them there unless we have hardware conversion insns. */
|
18729 |
|
|
if (mode == HFmode)
|
18730 |
|
|
return TARGET_FP16 && VFP_REGNO_OK_FOR_SINGLE (regno);
|
18731 |
|
|
|
18732 |
|
|
if (TARGET_NEON)
|
18733 |
|
|
return (VALID_NEON_DREG_MODE (mode) && VFP_REGNO_OK_FOR_DOUBLE (regno))
|
18734 |
|
|
|| (VALID_NEON_QREG_MODE (mode)
|
18735 |
|
|
&& NEON_REGNO_OK_FOR_QUAD (regno))
|
18736 |
|
|
|| (mode == TImode && NEON_REGNO_OK_FOR_NREGS (regno, 2))
|
18737 |
|
|
|| (mode == EImode && NEON_REGNO_OK_FOR_NREGS (regno, 3))
|
18738 |
|
|
|| (mode == OImode && NEON_REGNO_OK_FOR_NREGS (regno, 4))
|
18739 |
|
|
|| (mode == CImode && NEON_REGNO_OK_FOR_NREGS (regno, 6))
|
18740 |
|
|
|| (mode == XImode && NEON_REGNO_OK_FOR_NREGS (regno, 8));
|
18741 |
|
|
|
18742 |
|
|
return FALSE;
|
18743 |
|
|
}
|
18744 |
|
|
|
18745 |
|
|
if (TARGET_REALLY_IWMMXT)
|
18746 |
|
|
{
|
18747 |
|
|
if (IS_IWMMXT_GR_REGNUM (regno))
|
18748 |
|
|
return mode == SImode;
|
18749 |
|
|
|
18750 |
|
|
if (IS_IWMMXT_REGNUM (regno))
|
18751 |
|
|
return VALID_IWMMXT_REG_MODE (mode);
|
18752 |
|
|
}
|
18753 |
|
|
|
18754 |
|
|
/* We allow almost any value to be stored in the general registers.
|
18755 |
|
|
Restrict doubleword quantities to even register pairs so that we can
|
18756 |
|
|
use ldrd. Do not allow very large Neon structure opaque modes in
|
18757 |
|
|
general registers; they would use too many. */
|
18758 |
|
|
if (regno <= LAST_ARM_REGNUM)
|
18759 |
|
|
return !(TARGET_LDRD && GET_MODE_SIZE (mode) > 4 && (regno & 1) != 0)
|
18760 |
|
|
&& ARM_NUM_REGS (mode) <= 4;
|
18761 |
|
|
|
18762 |
|
|
if (regno == FRAME_POINTER_REGNUM
|
18763 |
|
|
|| regno == ARG_POINTER_REGNUM)
|
18764 |
|
|
/* We only allow integers in the fake hard registers. */
|
18765 |
|
|
return GET_MODE_CLASS (mode) == MODE_INT;
|
18766 |
|
|
|
18767 |
|
|
/* The only registers left are the FPA registers
|
18768 |
|
|
which we only allow to hold FP values. */
|
18769 |
|
|
return (TARGET_HARD_FLOAT && TARGET_FPA
|
18770 |
|
|
&& GET_MODE_CLASS (mode) == MODE_FLOAT
|
18771 |
|
|
&& regno >= FIRST_FPA_REGNUM
|
18772 |
|
|
&& regno <= LAST_FPA_REGNUM);
|
18773 |
|
|
}
|
18774 |
|
|
|
18775 |
|
|
/* Implement MODES_TIEABLE_P. */
|
18776 |
|
|
|
18777 |
|
|
bool
|
18778 |
|
|
arm_modes_tieable_p (enum machine_mode mode1, enum machine_mode mode2)
|
18779 |
|
|
{
|
18780 |
|
|
if (GET_MODE_CLASS (mode1) == GET_MODE_CLASS (mode2))
|
18781 |
|
|
return true;
|
18782 |
|
|
|
18783 |
|
|
/* We specifically want to allow elements of "structure" modes to
|
18784 |
|
|
be tieable to the structure. This more general condition allows
|
18785 |
|
|
other rarer situations too. */
|
18786 |
|
|
if (TARGET_NEON
|
18787 |
|
|
&& (VALID_NEON_DREG_MODE (mode1)
|
18788 |
|
|
|| VALID_NEON_QREG_MODE (mode1)
|
18789 |
|
|
|| VALID_NEON_STRUCT_MODE (mode1))
|
18790 |
|
|
&& (VALID_NEON_DREG_MODE (mode2)
|
18791 |
|
|
|| VALID_NEON_QREG_MODE (mode2)
|
18792 |
|
|
|| VALID_NEON_STRUCT_MODE (mode2)))
|
18793 |
|
|
return true;
|
18794 |
|
|
|
18795 |
|
|
return false;
|
18796 |
|
|
}
|
18797 |
|
|
|
18798 |
|
|
/* For efficiency and historical reasons LO_REGS, HI_REGS and CC_REGS are
|
18799 |
|
|
not used in arm mode. */
|
18800 |
|
|
|
18801 |
|
|
enum reg_class
|
18802 |
|
|
arm_regno_class (int regno)
|
18803 |
|
|
{
|
18804 |
|
|
if (TARGET_THUMB1)
|
18805 |
|
|
{
|
18806 |
|
|
if (regno == STACK_POINTER_REGNUM)
|
18807 |
|
|
return STACK_REG;
|
18808 |
|
|
if (regno == CC_REGNUM)
|
18809 |
|
|
return CC_REG;
|
18810 |
|
|
if (regno < 8)
|
18811 |
|
|
return LO_REGS;
|
18812 |
|
|
return HI_REGS;
|
18813 |
|
|
}
|
18814 |
|
|
|
18815 |
|
|
if (TARGET_THUMB2 && regno < 8)
|
18816 |
|
|
return LO_REGS;
|
18817 |
|
|
|
18818 |
|
|
if ( regno <= LAST_ARM_REGNUM
|
18819 |
|
|
|| regno == FRAME_POINTER_REGNUM
|
18820 |
|
|
|| regno == ARG_POINTER_REGNUM)
|
18821 |
|
|
return TARGET_THUMB2 ? HI_REGS : GENERAL_REGS;
|
18822 |
|
|
|
18823 |
|
|
if (regno == CC_REGNUM || regno == VFPCC_REGNUM)
|
18824 |
|
|
return TARGET_THUMB2 ? CC_REG : NO_REGS;
|
18825 |
|
|
|
18826 |
|
|
if (IS_CIRRUS_REGNUM (regno))
|
18827 |
|
|
return CIRRUS_REGS;
|
18828 |
|
|
|
18829 |
|
|
if (IS_VFP_REGNUM (regno))
|
18830 |
|
|
{
|
18831 |
|
|
if (regno <= D7_VFP_REGNUM)
|
18832 |
|
|
return VFP_D0_D7_REGS;
|
18833 |
|
|
else if (regno <= LAST_LO_VFP_REGNUM)
|
18834 |
|
|
return VFP_LO_REGS;
|
18835 |
|
|
else
|
18836 |
|
|
return VFP_HI_REGS;
|
18837 |
|
|
}
|
18838 |
|
|
|
18839 |
|
|
if (IS_IWMMXT_REGNUM (regno))
|
18840 |
|
|
return IWMMXT_REGS;
|
18841 |
|
|
|
18842 |
|
|
if (IS_IWMMXT_GR_REGNUM (regno))
|
18843 |
|
|
return IWMMXT_GR_REGS;
|
18844 |
|
|
|
18845 |
|
|
return FPA_REGS;
|
18846 |
|
|
}
|
18847 |
|
|
|
18848 |
|
|
/* Handle a special case when computing the offset
|
18849 |
|
|
of an argument from the frame pointer. */
|
18850 |
|
|
int
|
18851 |
|
|
arm_debugger_arg_offset (int value, rtx addr)
|
18852 |
|
|
{
|
18853 |
|
|
rtx insn;
|
18854 |
|
|
|
18855 |
|
|
/* We are only interested if dbxout_parms() failed to compute the offset. */
|
18856 |
|
|
if (value != 0)
|
18857 |
|
|
return 0;
|
18858 |
|
|
|
18859 |
|
|
/* We can only cope with the case where the address is held in a register. */
|
18860 |
|
|
if (GET_CODE (addr) != REG)
|
18861 |
|
|
return 0;
|
18862 |
|
|
|
18863 |
|
|
/* If we are using the frame pointer to point at the argument, then
|
18864 |
|
|
an offset of 0 is correct. */
|
18865 |
|
|
if (REGNO (addr) == (unsigned) HARD_FRAME_POINTER_REGNUM)
|
18866 |
|
|
return 0;
|
18867 |
|
|
|
18868 |
|
|
/* If we are using the stack pointer to point at the
|
18869 |
|
|
argument, then an offset of 0 is correct. */
|
18870 |
|
|
/* ??? Check this is consistent with thumb2 frame layout. */
|
18871 |
|
|
if ((TARGET_THUMB || !frame_pointer_needed)
|
18872 |
|
|
&& REGNO (addr) == SP_REGNUM)
|
18873 |
|
|
return 0;
|
18874 |
|
|
|
18875 |
|
|
/* Oh dear. The argument is pointed to by a register rather
|
18876 |
|
|
than being held in a register, or being stored at a known
|
18877 |
|
|
offset from the frame pointer. Since GDB only understands
|
18878 |
|
|
those two kinds of argument we must translate the address
|
18879 |
|
|
held in the register into an offset from the frame pointer.
|
18880 |
|
|
We do this by searching through the insns for the function
|
18881 |
|
|
looking to see where this register gets its value. If the
|
18882 |
|
|
register is initialized from the frame pointer plus an offset
|
18883 |
|
|
then we are in luck and we can continue, otherwise we give up.
|
18884 |
|
|
|
18885 |
|
|
This code is exercised by producing debugging information
|
18886 |
|
|
for a function with arguments like this:
|
18887 |
|
|
|
18888 |
|
|
double func (double a, double b, int c, double d) {return d;}
|
18889 |
|
|
|
18890 |
|
|
Without this code the stab for parameter 'd' will be set to
|
18891 |
|
|
an offset of 0 from the frame pointer, rather than 8. */
|
18892 |
|
|
|
18893 |
|
|
/* The if() statement says:
|
18894 |
|
|
|
18895 |
|
|
If the insn is a normal instruction
|
18896 |
|
|
and if the insn is setting the value in a register
|
18897 |
|
|
and if the register being set is the register holding the address of the argument
|
18898 |
|
|
and if the address is computing by an addition
|
18899 |
|
|
that involves adding to a register
|
18900 |
|
|
which is the frame pointer
|
18901 |
|
|
a constant integer
|
18902 |
|
|
|
18903 |
|
|
then... */
|
18904 |
|
|
|
18905 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
18906 |
|
|
{
|
18907 |
|
|
if ( GET_CODE (insn) == INSN
|
18908 |
|
|
&& GET_CODE (PATTERN (insn)) == SET
|
18909 |
|
|
&& REGNO (XEXP (PATTERN (insn), 0)) == REGNO (addr)
|
18910 |
|
|
&& GET_CODE (XEXP (PATTERN (insn), 1)) == PLUS
|
18911 |
|
|
&& GET_CODE (XEXP (XEXP (PATTERN (insn), 1), 0)) == REG
|
18912 |
|
|
&& REGNO (XEXP (XEXP (PATTERN (insn), 1), 0)) == (unsigned) HARD_FRAME_POINTER_REGNUM
|
18913 |
|
|
&& GET_CODE (XEXP (XEXP (PATTERN (insn), 1), 1)) == CONST_INT
|
18914 |
|
|
)
|
18915 |
|
|
{
|
18916 |
|
|
value = INTVAL (XEXP (XEXP (PATTERN (insn), 1), 1));
|
18917 |
|
|
|
18918 |
|
|
break;
|
18919 |
|
|
}
|
18920 |
|
|
}
|
18921 |
|
|
|
18922 |
|
|
if (value == 0)
|
18923 |
|
|
{
|
18924 |
|
|
debug_rtx (addr);
|
18925 |
|
|
warning (0, "unable to compute real location of stacked parameter");
|
18926 |
|
|
value = 8; /* XXX magic hack */
|
18927 |
|
|
}
|
18928 |
|
|
|
18929 |
|
|
return value;
|
18930 |
|
|
}
|
18931 |
|
|
|
18932 |
|
|
typedef enum {
|
18933 |
|
|
T_V8QI,
|
18934 |
|
|
T_V4HI,
|
18935 |
|
|
T_V2SI,
|
18936 |
|
|
T_V2SF,
|
18937 |
|
|
T_DI,
|
18938 |
|
|
T_V16QI,
|
18939 |
|
|
T_V8HI,
|
18940 |
|
|
T_V4SI,
|
18941 |
|
|
T_V4SF,
|
18942 |
|
|
T_V2DI,
|
18943 |
|
|
T_TI,
|
18944 |
|
|
T_EI,
|
18945 |
|
|
T_OI,
|
18946 |
|
|
T_MAX /* Size of enum. Keep last. */
|
18947 |
|
|
} neon_builtin_type_mode;
|
18948 |
|
|
|
18949 |
|
|
#define TYPE_MODE_BIT(X) (1 << (X))
|
18950 |
|
|
|
18951 |
|
|
#define TB_DREG (TYPE_MODE_BIT (T_V8QI) | TYPE_MODE_BIT (T_V4HI) \
|
18952 |
|
|
| TYPE_MODE_BIT (T_V2SI) | TYPE_MODE_BIT (T_V2SF) \
|
18953 |
|
|
| TYPE_MODE_BIT (T_DI))
|
18954 |
|
|
#define TB_QREG (TYPE_MODE_BIT (T_V16QI) | TYPE_MODE_BIT (T_V8HI) \
|
18955 |
|
|
| TYPE_MODE_BIT (T_V4SI) | TYPE_MODE_BIT (T_V4SF) \
|
18956 |
|
|
| TYPE_MODE_BIT (T_V2DI) | TYPE_MODE_BIT (T_TI))
|
18957 |
|
|
|
18958 |
|
|
#define v8qi_UP T_V8QI
|
18959 |
|
|
#define v4hi_UP T_V4HI
|
18960 |
|
|
#define v2si_UP T_V2SI
|
18961 |
|
|
#define v2sf_UP T_V2SF
|
18962 |
|
|
#define di_UP T_DI
|
18963 |
|
|
#define v16qi_UP T_V16QI
|
18964 |
|
|
#define v8hi_UP T_V8HI
|
18965 |
|
|
#define v4si_UP T_V4SI
|
18966 |
|
|
#define v4sf_UP T_V4SF
|
18967 |
|
|
#define v2di_UP T_V2DI
|
18968 |
|
|
#define ti_UP T_TI
|
18969 |
|
|
#define ei_UP T_EI
|
18970 |
|
|
#define oi_UP T_OI
|
18971 |
|
|
|
18972 |
|
|
#define UP(X) X##_UP
|
18973 |
|
|
|
18974 |
|
|
typedef enum {
|
18975 |
|
|
NEON_BINOP,
|
18976 |
|
|
NEON_TERNOP,
|
18977 |
|
|
NEON_UNOP,
|
18978 |
|
|
NEON_GETLANE,
|
18979 |
|
|
NEON_SETLANE,
|
18980 |
|
|
NEON_CREATE,
|
18981 |
|
|
NEON_DUP,
|
18982 |
|
|
NEON_DUPLANE,
|
18983 |
|
|
NEON_COMBINE,
|
18984 |
|
|
NEON_SPLIT,
|
18985 |
|
|
NEON_LANEMUL,
|
18986 |
|
|
NEON_LANEMULL,
|
18987 |
|
|
NEON_LANEMULH,
|
18988 |
|
|
NEON_LANEMAC,
|
18989 |
|
|
NEON_SCALARMUL,
|
18990 |
|
|
NEON_SCALARMULL,
|
18991 |
|
|
NEON_SCALARMULH,
|
18992 |
|
|
NEON_SCALARMAC,
|
18993 |
|
|
NEON_CONVERT,
|
18994 |
|
|
NEON_FIXCONV,
|
18995 |
|
|
NEON_SELECT,
|
18996 |
|
|
NEON_RESULTPAIR,
|
18997 |
|
|
NEON_REINTERP,
|
18998 |
|
|
NEON_VTBL,
|
18999 |
|
|
NEON_VTBX,
|
19000 |
|
|
NEON_LOAD1,
|
19001 |
|
|
NEON_LOAD1LANE,
|
19002 |
|
|
NEON_STORE1,
|
19003 |
|
|
NEON_STORE1LANE,
|
19004 |
|
|
NEON_LOADSTRUCT,
|
19005 |
|
|
NEON_LOADSTRUCTLANE,
|
19006 |
|
|
NEON_STORESTRUCT,
|
19007 |
|
|
NEON_STORESTRUCTLANE,
|
19008 |
|
|
NEON_LOGICBINOP,
|
19009 |
|
|
NEON_SHIFTINSERT,
|
19010 |
|
|
NEON_SHIFTIMM,
|
19011 |
|
|
NEON_SHIFTACC
|
19012 |
|
|
} neon_itype;
|
19013 |
|
|
|
19014 |
|
|
typedef struct {
|
19015 |
|
|
const char *name;
|
19016 |
|
|
const neon_itype itype;
|
19017 |
|
|
const neon_builtin_type_mode mode;
|
19018 |
|
|
const enum insn_code code;
|
19019 |
|
|
unsigned int fcode;
|
19020 |
|
|
} neon_builtin_datum;
|
19021 |
|
|
|
19022 |
|
|
#define CF(N,X) CODE_FOR_neon_##N##X
|
19023 |
|
|
|
19024 |
|
|
#define VAR1(T, N, A) \
|
19025 |
|
|
{#N, NEON_##T, UP (A), CF (N, A), 0}
|
19026 |
|
|
#define VAR2(T, N, A, B) \
|
19027 |
|
|
VAR1 (T, N, A), \
|
19028 |
|
|
{#N, NEON_##T, UP (B), CF (N, B), 0}
|
19029 |
|
|
#define VAR3(T, N, A, B, C) \
|
19030 |
|
|
VAR2 (T, N, A, B), \
|
19031 |
|
|
{#N, NEON_##T, UP (C), CF (N, C), 0}
|
19032 |
|
|
#define VAR4(T, N, A, B, C, D) \
|
19033 |
|
|
VAR3 (T, N, A, B, C), \
|
19034 |
|
|
{#N, NEON_##T, UP (D), CF (N, D), 0}
|
19035 |
|
|
#define VAR5(T, N, A, B, C, D, E) \
|
19036 |
|
|
VAR4 (T, N, A, B, C, D), \
|
19037 |
|
|
{#N, NEON_##T, UP (E), CF (N, E), 0}
|
19038 |
|
|
#define VAR6(T, N, A, B, C, D, E, F) \
|
19039 |
|
|
VAR5 (T, N, A, B, C, D, E), \
|
19040 |
|
|
{#N, NEON_##T, UP (F), CF (N, F), 0}
|
19041 |
|
|
#define VAR7(T, N, A, B, C, D, E, F, G) \
|
19042 |
|
|
VAR6 (T, N, A, B, C, D, E, F), \
|
19043 |
|
|
{#N, NEON_##T, UP (G), CF (N, G), 0}
|
19044 |
|
|
#define VAR8(T, N, A, B, C, D, E, F, G, H) \
|
19045 |
|
|
VAR7 (T, N, A, B, C, D, E, F, G), \
|
19046 |
|
|
{#N, NEON_##T, UP (H), CF (N, H), 0}
|
19047 |
|
|
#define VAR9(T, N, A, B, C, D, E, F, G, H, I) \
|
19048 |
|
|
VAR8 (T, N, A, B, C, D, E, F, G, H), \
|
19049 |
|
|
{#N, NEON_##T, UP (I), CF (N, I), 0}
|
19050 |
|
|
#define VAR10(T, N, A, B, C, D, E, F, G, H, I, J) \
|
19051 |
|
|
VAR9 (T, N, A, B, C, D, E, F, G, H, I), \
|
19052 |
|
|
{#N, NEON_##T, UP (J), CF (N, J), 0}
|
19053 |
|
|
|
19054 |
|
|
/* The mode entries in the following table correspond to the "key" type of the
|
19055 |
|
|
instruction variant, i.e. equivalent to that which would be specified after
|
19056 |
|
|
the assembler mnemonic, which usually refers to the last vector operand.
|
19057 |
|
|
(Signed/unsigned/polynomial types are not differentiated between though, and
|
19058 |
|
|
are all mapped onto the same mode for a given element size.) The modes
|
19059 |
|
|
listed per instruction should be the same as those defined for that
|
19060 |
|
|
instruction's pattern in neon.md. */
|
19061 |
|
|
|
19062 |
|
|
static neon_builtin_datum neon_builtin_data[] =
|
19063 |
|
|
{
|
19064 |
|
|
VAR10 (BINOP, vadd,
|
19065 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19066 |
|
|
VAR3 (BINOP, vaddl, v8qi, v4hi, v2si),
|
19067 |
|
|
VAR3 (BINOP, vaddw, v8qi, v4hi, v2si),
|
19068 |
|
|
VAR6 (BINOP, vhadd, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19069 |
|
|
VAR8 (BINOP, vqadd, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19070 |
|
|
VAR3 (BINOP, vaddhn, v8hi, v4si, v2di),
|
19071 |
|
|
VAR8 (BINOP, vmul, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19072 |
|
|
VAR8 (TERNOP, vmla, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19073 |
|
|
VAR3 (TERNOP, vmlal, v8qi, v4hi, v2si),
|
19074 |
|
|
VAR8 (TERNOP, vmls, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19075 |
|
|
VAR3 (TERNOP, vmlsl, v8qi, v4hi, v2si),
|
19076 |
|
|
VAR4 (BINOP, vqdmulh, v4hi, v2si, v8hi, v4si),
|
19077 |
|
|
VAR2 (TERNOP, vqdmlal, v4hi, v2si),
|
19078 |
|
|
VAR2 (TERNOP, vqdmlsl, v4hi, v2si),
|
19079 |
|
|
VAR3 (BINOP, vmull, v8qi, v4hi, v2si),
|
19080 |
|
|
VAR2 (SCALARMULL, vmull_n, v4hi, v2si),
|
19081 |
|
|
VAR2 (LANEMULL, vmull_lane, v4hi, v2si),
|
19082 |
|
|
VAR2 (SCALARMULL, vqdmull_n, v4hi, v2si),
|
19083 |
|
|
VAR2 (LANEMULL, vqdmull_lane, v4hi, v2si),
|
19084 |
|
|
VAR4 (SCALARMULH, vqdmulh_n, v4hi, v2si, v8hi, v4si),
|
19085 |
|
|
VAR4 (LANEMULH, vqdmulh_lane, v4hi, v2si, v8hi, v4si),
|
19086 |
|
|
VAR2 (BINOP, vqdmull, v4hi, v2si),
|
19087 |
|
|
VAR8 (BINOP, vshl, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19088 |
|
|
VAR8 (BINOP, vqshl, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19089 |
|
|
VAR8 (SHIFTIMM, vshr_n, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19090 |
|
|
VAR3 (SHIFTIMM, vshrn_n, v8hi, v4si, v2di),
|
19091 |
|
|
VAR3 (SHIFTIMM, vqshrn_n, v8hi, v4si, v2di),
|
19092 |
|
|
VAR3 (SHIFTIMM, vqshrun_n, v8hi, v4si, v2di),
|
19093 |
|
|
VAR8 (SHIFTIMM, vshl_n, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19094 |
|
|
VAR8 (SHIFTIMM, vqshl_n, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19095 |
|
|
VAR8 (SHIFTIMM, vqshlu_n, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19096 |
|
|
VAR3 (SHIFTIMM, vshll_n, v8qi, v4hi, v2si),
|
19097 |
|
|
VAR8 (SHIFTACC, vsra_n, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19098 |
|
|
VAR10 (BINOP, vsub,
|
19099 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19100 |
|
|
VAR3 (BINOP, vsubl, v8qi, v4hi, v2si),
|
19101 |
|
|
VAR3 (BINOP, vsubw, v8qi, v4hi, v2si),
|
19102 |
|
|
VAR8 (BINOP, vqsub, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19103 |
|
|
VAR6 (BINOP, vhsub, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19104 |
|
|
VAR3 (BINOP, vsubhn, v8hi, v4si, v2di),
|
19105 |
|
|
VAR8 (BINOP, vceq, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19106 |
|
|
VAR8 (BINOP, vcge, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19107 |
|
|
VAR6 (BINOP, vcgeu, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19108 |
|
|
VAR8 (BINOP, vcgt, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19109 |
|
|
VAR6 (BINOP, vcgtu, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19110 |
|
|
VAR2 (BINOP, vcage, v2sf, v4sf),
|
19111 |
|
|
VAR2 (BINOP, vcagt, v2sf, v4sf),
|
19112 |
|
|
VAR6 (BINOP, vtst, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19113 |
|
|
VAR8 (BINOP, vabd, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19114 |
|
|
VAR3 (BINOP, vabdl, v8qi, v4hi, v2si),
|
19115 |
|
|
VAR6 (TERNOP, vaba, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19116 |
|
|
VAR3 (TERNOP, vabal, v8qi, v4hi, v2si),
|
19117 |
|
|
VAR8 (BINOP, vmax, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19118 |
|
|
VAR8 (BINOP, vmin, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19119 |
|
|
VAR4 (BINOP, vpadd, v8qi, v4hi, v2si, v2sf),
|
19120 |
|
|
VAR6 (UNOP, vpaddl, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19121 |
|
|
VAR6 (BINOP, vpadal, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19122 |
|
|
VAR4 (BINOP, vpmax, v8qi, v4hi, v2si, v2sf),
|
19123 |
|
|
VAR4 (BINOP, vpmin, v8qi, v4hi, v2si, v2sf),
|
19124 |
|
|
VAR2 (BINOP, vrecps, v2sf, v4sf),
|
19125 |
|
|
VAR2 (BINOP, vrsqrts, v2sf, v4sf),
|
19126 |
|
|
VAR8 (SHIFTINSERT, vsri_n, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19127 |
|
|
VAR8 (SHIFTINSERT, vsli_n, v8qi, v4hi, v2si, di, v16qi, v8hi, v4si, v2di),
|
19128 |
|
|
VAR8 (UNOP, vabs, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19129 |
|
|
VAR6 (UNOP, vqabs, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19130 |
|
|
VAR8 (UNOP, vneg, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19131 |
|
|
VAR6 (UNOP, vqneg, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19132 |
|
|
VAR6 (UNOP, vcls, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19133 |
|
|
VAR6 (UNOP, vclz, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19134 |
|
|
VAR2 (UNOP, vcnt, v8qi, v16qi),
|
19135 |
|
|
VAR4 (UNOP, vrecpe, v2si, v2sf, v4si, v4sf),
|
19136 |
|
|
VAR4 (UNOP, vrsqrte, v2si, v2sf, v4si, v4sf),
|
19137 |
|
|
VAR6 (UNOP, vmvn, v8qi, v4hi, v2si, v16qi, v8hi, v4si),
|
19138 |
|
|
/* FIXME: vget_lane supports more variants than this! */
|
19139 |
|
|
VAR10 (GETLANE, vget_lane,
|
19140 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19141 |
|
|
VAR10 (SETLANE, vset_lane,
|
19142 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19143 |
|
|
VAR5 (CREATE, vcreate, v8qi, v4hi, v2si, v2sf, di),
|
19144 |
|
|
VAR10 (DUP, vdup_n,
|
19145 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19146 |
|
|
VAR10 (DUPLANE, vdup_lane,
|
19147 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19148 |
|
|
VAR5 (COMBINE, vcombine, v8qi, v4hi, v2si, v2sf, di),
|
19149 |
|
|
VAR5 (SPLIT, vget_high, v16qi, v8hi, v4si, v4sf, v2di),
|
19150 |
|
|
VAR5 (SPLIT, vget_low, v16qi, v8hi, v4si, v4sf, v2di),
|
19151 |
|
|
VAR3 (UNOP, vmovn, v8hi, v4si, v2di),
|
19152 |
|
|
VAR3 (UNOP, vqmovn, v8hi, v4si, v2di),
|
19153 |
|
|
VAR3 (UNOP, vqmovun, v8hi, v4si, v2di),
|
19154 |
|
|
VAR3 (UNOP, vmovl, v8qi, v4hi, v2si),
|
19155 |
|
|
VAR6 (LANEMUL, vmul_lane, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19156 |
|
|
VAR6 (LANEMAC, vmla_lane, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19157 |
|
|
VAR2 (LANEMAC, vmlal_lane, v4hi, v2si),
|
19158 |
|
|
VAR2 (LANEMAC, vqdmlal_lane, v4hi, v2si),
|
19159 |
|
|
VAR6 (LANEMAC, vmls_lane, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19160 |
|
|
VAR2 (LANEMAC, vmlsl_lane, v4hi, v2si),
|
19161 |
|
|
VAR2 (LANEMAC, vqdmlsl_lane, v4hi, v2si),
|
19162 |
|
|
VAR6 (SCALARMUL, vmul_n, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19163 |
|
|
VAR6 (SCALARMAC, vmla_n, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19164 |
|
|
VAR2 (SCALARMAC, vmlal_n, v4hi, v2si),
|
19165 |
|
|
VAR2 (SCALARMAC, vqdmlal_n, v4hi, v2si),
|
19166 |
|
|
VAR6 (SCALARMAC, vmls_n, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19167 |
|
|
VAR2 (SCALARMAC, vmlsl_n, v4hi, v2si),
|
19168 |
|
|
VAR2 (SCALARMAC, vqdmlsl_n, v4hi, v2si),
|
19169 |
|
|
VAR10 (BINOP, vext,
|
19170 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19171 |
|
|
VAR8 (UNOP, vrev64, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19172 |
|
|
VAR4 (UNOP, vrev32, v8qi, v4hi, v16qi, v8hi),
|
19173 |
|
|
VAR2 (UNOP, vrev16, v8qi, v16qi),
|
19174 |
|
|
VAR4 (CONVERT, vcvt, v2si, v2sf, v4si, v4sf),
|
19175 |
|
|
VAR4 (FIXCONV, vcvt_n, v2si, v2sf, v4si, v4sf),
|
19176 |
|
|
VAR10 (SELECT, vbsl,
|
19177 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19178 |
|
|
VAR1 (VTBL, vtbl1, v8qi),
|
19179 |
|
|
VAR1 (VTBL, vtbl2, v8qi),
|
19180 |
|
|
VAR1 (VTBL, vtbl3, v8qi),
|
19181 |
|
|
VAR1 (VTBL, vtbl4, v8qi),
|
19182 |
|
|
VAR1 (VTBX, vtbx1, v8qi),
|
19183 |
|
|
VAR1 (VTBX, vtbx2, v8qi),
|
19184 |
|
|
VAR1 (VTBX, vtbx3, v8qi),
|
19185 |
|
|
VAR1 (VTBX, vtbx4, v8qi),
|
19186 |
|
|
VAR8 (RESULTPAIR, vtrn, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19187 |
|
|
VAR8 (RESULTPAIR, vzip, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19188 |
|
|
VAR8 (RESULTPAIR, vuzp, v8qi, v4hi, v2si, v2sf, v16qi, v8hi, v4si, v4sf),
|
19189 |
|
|
VAR5 (REINTERP, vreinterpretv8qi, v8qi, v4hi, v2si, v2sf, di),
|
19190 |
|
|
VAR5 (REINTERP, vreinterpretv4hi, v8qi, v4hi, v2si, v2sf, di),
|
19191 |
|
|
VAR5 (REINTERP, vreinterpretv2si, v8qi, v4hi, v2si, v2sf, di),
|
19192 |
|
|
VAR5 (REINTERP, vreinterpretv2sf, v8qi, v4hi, v2si, v2sf, di),
|
19193 |
|
|
VAR5 (REINTERP, vreinterpretdi, v8qi, v4hi, v2si, v2sf, di),
|
19194 |
|
|
VAR5 (REINTERP, vreinterpretv16qi, v16qi, v8hi, v4si, v4sf, v2di),
|
19195 |
|
|
VAR5 (REINTERP, vreinterpretv8hi, v16qi, v8hi, v4si, v4sf, v2di),
|
19196 |
|
|
VAR5 (REINTERP, vreinterpretv4si, v16qi, v8hi, v4si, v4sf, v2di),
|
19197 |
|
|
VAR5 (REINTERP, vreinterpretv4sf, v16qi, v8hi, v4si, v4sf, v2di),
|
19198 |
|
|
VAR5 (REINTERP, vreinterpretv2di, v16qi, v8hi, v4si, v4sf, v2di),
|
19199 |
|
|
VAR10 (LOAD1, vld1,
|
19200 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19201 |
|
|
VAR10 (LOAD1LANE, vld1_lane,
|
19202 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19203 |
|
|
VAR10 (LOAD1, vld1_dup,
|
19204 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19205 |
|
|
VAR10 (STORE1, vst1,
|
19206 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19207 |
|
|
VAR10 (STORE1LANE, vst1_lane,
|
19208 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19209 |
|
|
VAR9 (LOADSTRUCT,
|
19210 |
|
|
vld2, v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf),
|
19211 |
|
|
VAR7 (LOADSTRUCTLANE, vld2_lane,
|
19212 |
|
|
v8qi, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19213 |
|
|
VAR5 (LOADSTRUCT, vld2_dup, v8qi, v4hi, v2si, v2sf, di),
|
19214 |
|
|
VAR9 (STORESTRUCT, vst2,
|
19215 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf),
|
19216 |
|
|
VAR7 (STORESTRUCTLANE, vst2_lane,
|
19217 |
|
|
v8qi, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19218 |
|
|
VAR9 (LOADSTRUCT,
|
19219 |
|
|
vld3, v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf),
|
19220 |
|
|
VAR7 (LOADSTRUCTLANE, vld3_lane,
|
19221 |
|
|
v8qi, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19222 |
|
|
VAR5 (LOADSTRUCT, vld3_dup, v8qi, v4hi, v2si, v2sf, di),
|
19223 |
|
|
VAR9 (STORESTRUCT, vst3,
|
19224 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf),
|
19225 |
|
|
VAR7 (STORESTRUCTLANE, vst3_lane,
|
19226 |
|
|
v8qi, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19227 |
|
|
VAR9 (LOADSTRUCT, vld4,
|
19228 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf),
|
19229 |
|
|
VAR7 (LOADSTRUCTLANE, vld4_lane,
|
19230 |
|
|
v8qi, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19231 |
|
|
VAR5 (LOADSTRUCT, vld4_dup, v8qi, v4hi, v2si, v2sf, di),
|
19232 |
|
|
VAR9 (STORESTRUCT, vst4,
|
19233 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf),
|
19234 |
|
|
VAR7 (STORESTRUCTLANE, vst4_lane,
|
19235 |
|
|
v8qi, v4hi, v2si, v2sf, v8hi, v4si, v4sf),
|
19236 |
|
|
VAR10 (LOGICBINOP, vand,
|
19237 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19238 |
|
|
VAR10 (LOGICBINOP, vorr,
|
19239 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19240 |
|
|
VAR10 (BINOP, veor,
|
19241 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19242 |
|
|
VAR10 (LOGICBINOP, vbic,
|
19243 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di),
|
19244 |
|
|
VAR10 (LOGICBINOP, vorn,
|
19245 |
|
|
v8qi, v4hi, v2si, v2sf, di, v16qi, v8hi, v4si, v4sf, v2di)
|
19246 |
|
|
};
|
19247 |
|
|
|
19248 |
|
|
#undef CF
|
19249 |
|
|
#undef VAR1
|
19250 |
|
|
#undef VAR2
|
19251 |
|
|
#undef VAR3
|
19252 |
|
|
#undef VAR4
|
19253 |
|
|
#undef VAR5
|
19254 |
|
|
#undef VAR6
|
19255 |
|
|
#undef VAR7
|
19256 |
|
|
#undef VAR8
|
19257 |
|
|
#undef VAR9
|
19258 |
|
|
#undef VAR10
|
19259 |
|
|
|
19260 |
|
|
/* Neon defines builtins from ARM_BUILTIN_MAX upwards, though they don't have
|
19261 |
|
|
symbolic names defined here (which would require too much duplication).
|
19262 |
|
|
FIXME? */
|
19263 |
|
|
enum arm_builtins
|
19264 |
|
|
{
|
19265 |
|
|
ARM_BUILTIN_GETWCX,
|
19266 |
|
|
ARM_BUILTIN_SETWCX,
|
19267 |
|
|
|
19268 |
|
|
ARM_BUILTIN_WZERO,
|
19269 |
|
|
|
19270 |
|
|
ARM_BUILTIN_WAVG2BR,
|
19271 |
|
|
ARM_BUILTIN_WAVG2HR,
|
19272 |
|
|
ARM_BUILTIN_WAVG2B,
|
19273 |
|
|
ARM_BUILTIN_WAVG2H,
|
19274 |
|
|
|
19275 |
|
|
ARM_BUILTIN_WACCB,
|
19276 |
|
|
ARM_BUILTIN_WACCH,
|
19277 |
|
|
ARM_BUILTIN_WACCW,
|
19278 |
|
|
|
19279 |
|
|
ARM_BUILTIN_WMACS,
|
19280 |
|
|
ARM_BUILTIN_WMACSZ,
|
19281 |
|
|
ARM_BUILTIN_WMACU,
|
19282 |
|
|
ARM_BUILTIN_WMACUZ,
|
19283 |
|
|
|
19284 |
|
|
ARM_BUILTIN_WSADB,
|
19285 |
|
|
ARM_BUILTIN_WSADBZ,
|
19286 |
|
|
ARM_BUILTIN_WSADH,
|
19287 |
|
|
ARM_BUILTIN_WSADHZ,
|
19288 |
|
|
|
19289 |
|
|
ARM_BUILTIN_WALIGN,
|
19290 |
|
|
|
19291 |
|
|
ARM_BUILTIN_TMIA,
|
19292 |
|
|
ARM_BUILTIN_TMIAPH,
|
19293 |
|
|
ARM_BUILTIN_TMIABB,
|
19294 |
|
|
ARM_BUILTIN_TMIABT,
|
19295 |
|
|
ARM_BUILTIN_TMIATB,
|
19296 |
|
|
ARM_BUILTIN_TMIATT,
|
19297 |
|
|
|
19298 |
|
|
ARM_BUILTIN_TMOVMSKB,
|
19299 |
|
|
ARM_BUILTIN_TMOVMSKH,
|
19300 |
|
|
ARM_BUILTIN_TMOVMSKW,
|
19301 |
|
|
|
19302 |
|
|
ARM_BUILTIN_TBCSTB,
|
19303 |
|
|
ARM_BUILTIN_TBCSTH,
|
19304 |
|
|
ARM_BUILTIN_TBCSTW,
|
19305 |
|
|
|
19306 |
|
|
ARM_BUILTIN_WMADDS,
|
19307 |
|
|
ARM_BUILTIN_WMADDU,
|
19308 |
|
|
|
19309 |
|
|
ARM_BUILTIN_WPACKHSS,
|
19310 |
|
|
ARM_BUILTIN_WPACKWSS,
|
19311 |
|
|
ARM_BUILTIN_WPACKDSS,
|
19312 |
|
|
ARM_BUILTIN_WPACKHUS,
|
19313 |
|
|
ARM_BUILTIN_WPACKWUS,
|
19314 |
|
|
ARM_BUILTIN_WPACKDUS,
|
19315 |
|
|
|
19316 |
|
|
ARM_BUILTIN_WADDB,
|
19317 |
|
|
ARM_BUILTIN_WADDH,
|
19318 |
|
|
ARM_BUILTIN_WADDW,
|
19319 |
|
|
ARM_BUILTIN_WADDSSB,
|
19320 |
|
|
ARM_BUILTIN_WADDSSH,
|
19321 |
|
|
ARM_BUILTIN_WADDSSW,
|
19322 |
|
|
ARM_BUILTIN_WADDUSB,
|
19323 |
|
|
ARM_BUILTIN_WADDUSH,
|
19324 |
|
|
ARM_BUILTIN_WADDUSW,
|
19325 |
|
|
ARM_BUILTIN_WSUBB,
|
19326 |
|
|
ARM_BUILTIN_WSUBH,
|
19327 |
|
|
ARM_BUILTIN_WSUBW,
|
19328 |
|
|
ARM_BUILTIN_WSUBSSB,
|
19329 |
|
|
ARM_BUILTIN_WSUBSSH,
|
19330 |
|
|
ARM_BUILTIN_WSUBSSW,
|
19331 |
|
|
ARM_BUILTIN_WSUBUSB,
|
19332 |
|
|
ARM_BUILTIN_WSUBUSH,
|
19333 |
|
|
ARM_BUILTIN_WSUBUSW,
|
19334 |
|
|
|
19335 |
|
|
ARM_BUILTIN_WAND,
|
19336 |
|
|
ARM_BUILTIN_WANDN,
|
19337 |
|
|
ARM_BUILTIN_WOR,
|
19338 |
|
|
ARM_BUILTIN_WXOR,
|
19339 |
|
|
|
19340 |
|
|
ARM_BUILTIN_WCMPEQB,
|
19341 |
|
|
ARM_BUILTIN_WCMPEQH,
|
19342 |
|
|
ARM_BUILTIN_WCMPEQW,
|
19343 |
|
|
ARM_BUILTIN_WCMPGTUB,
|
19344 |
|
|
ARM_BUILTIN_WCMPGTUH,
|
19345 |
|
|
ARM_BUILTIN_WCMPGTUW,
|
19346 |
|
|
ARM_BUILTIN_WCMPGTSB,
|
19347 |
|
|
ARM_BUILTIN_WCMPGTSH,
|
19348 |
|
|
ARM_BUILTIN_WCMPGTSW,
|
19349 |
|
|
|
19350 |
|
|
ARM_BUILTIN_TEXTRMSB,
|
19351 |
|
|
ARM_BUILTIN_TEXTRMSH,
|
19352 |
|
|
ARM_BUILTIN_TEXTRMSW,
|
19353 |
|
|
ARM_BUILTIN_TEXTRMUB,
|
19354 |
|
|
ARM_BUILTIN_TEXTRMUH,
|
19355 |
|
|
ARM_BUILTIN_TEXTRMUW,
|
19356 |
|
|
ARM_BUILTIN_TINSRB,
|
19357 |
|
|
ARM_BUILTIN_TINSRH,
|
19358 |
|
|
ARM_BUILTIN_TINSRW,
|
19359 |
|
|
|
19360 |
|
|
ARM_BUILTIN_WMAXSW,
|
19361 |
|
|
ARM_BUILTIN_WMAXSH,
|
19362 |
|
|
ARM_BUILTIN_WMAXSB,
|
19363 |
|
|
ARM_BUILTIN_WMAXUW,
|
19364 |
|
|
ARM_BUILTIN_WMAXUH,
|
19365 |
|
|
ARM_BUILTIN_WMAXUB,
|
19366 |
|
|
ARM_BUILTIN_WMINSW,
|
19367 |
|
|
ARM_BUILTIN_WMINSH,
|
19368 |
|
|
ARM_BUILTIN_WMINSB,
|
19369 |
|
|
ARM_BUILTIN_WMINUW,
|
19370 |
|
|
ARM_BUILTIN_WMINUH,
|
19371 |
|
|
ARM_BUILTIN_WMINUB,
|
19372 |
|
|
|
19373 |
|
|
ARM_BUILTIN_WMULUM,
|
19374 |
|
|
ARM_BUILTIN_WMULSM,
|
19375 |
|
|
ARM_BUILTIN_WMULUL,
|
19376 |
|
|
|
19377 |
|
|
ARM_BUILTIN_PSADBH,
|
19378 |
|
|
ARM_BUILTIN_WSHUFH,
|
19379 |
|
|
|
19380 |
|
|
ARM_BUILTIN_WSLLH,
|
19381 |
|
|
ARM_BUILTIN_WSLLW,
|
19382 |
|
|
ARM_BUILTIN_WSLLD,
|
19383 |
|
|
ARM_BUILTIN_WSRAH,
|
19384 |
|
|
ARM_BUILTIN_WSRAW,
|
19385 |
|
|
ARM_BUILTIN_WSRAD,
|
19386 |
|
|
ARM_BUILTIN_WSRLH,
|
19387 |
|
|
ARM_BUILTIN_WSRLW,
|
19388 |
|
|
ARM_BUILTIN_WSRLD,
|
19389 |
|
|
ARM_BUILTIN_WRORH,
|
19390 |
|
|
ARM_BUILTIN_WRORW,
|
19391 |
|
|
ARM_BUILTIN_WRORD,
|
19392 |
|
|
ARM_BUILTIN_WSLLHI,
|
19393 |
|
|
ARM_BUILTIN_WSLLWI,
|
19394 |
|
|
ARM_BUILTIN_WSLLDI,
|
19395 |
|
|
ARM_BUILTIN_WSRAHI,
|
19396 |
|
|
ARM_BUILTIN_WSRAWI,
|
19397 |
|
|
ARM_BUILTIN_WSRADI,
|
19398 |
|
|
ARM_BUILTIN_WSRLHI,
|
19399 |
|
|
ARM_BUILTIN_WSRLWI,
|
19400 |
|
|
ARM_BUILTIN_WSRLDI,
|
19401 |
|
|
ARM_BUILTIN_WRORHI,
|
19402 |
|
|
ARM_BUILTIN_WRORWI,
|
19403 |
|
|
ARM_BUILTIN_WRORDI,
|
19404 |
|
|
|
19405 |
|
|
ARM_BUILTIN_WUNPCKIHB,
|
19406 |
|
|
ARM_BUILTIN_WUNPCKIHH,
|
19407 |
|
|
ARM_BUILTIN_WUNPCKIHW,
|
19408 |
|
|
ARM_BUILTIN_WUNPCKILB,
|
19409 |
|
|
ARM_BUILTIN_WUNPCKILH,
|
19410 |
|
|
ARM_BUILTIN_WUNPCKILW,
|
19411 |
|
|
|
19412 |
|
|
ARM_BUILTIN_WUNPCKEHSB,
|
19413 |
|
|
ARM_BUILTIN_WUNPCKEHSH,
|
19414 |
|
|
ARM_BUILTIN_WUNPCKEHSW,
|
19415 |
|
|
ARM_BUILTIN_WUNPCKEHUB,
|
19416 |
|
|
ARM_BUILTIN_WUNPCKEHUH,
|
19417 |
|
|
ARM_BUILTIN_WUNPCKEHUW,
|
19418 |
|
|
ARM_BUILTIN_WUNPCKELSB,
|
19419 |
|
|
ARM_BUILTIN_WUNPCKELSH,
|
19420 |
|
|
ARM_BUILTIN_WUNPCKELSW,
|
19421 |
|
|
ARM_BUILTIN_WUNPCKELUB,
|
19422 |
|
|
ARM_BUILTIN_WUNPCKELUH,
|
19423 |
|
|
ARM_BUILTIN_WUNPCKELUW,
|
19424 |
|
|
|
19425 |
|
|
ARM_BUILTIN_THREAD_POINTER,
|
19426 |
|
|
|
19427 |
|
|
ARM_BUILTIN_NEON_BASE,
|
19428 |
|
|
|
19429 |
|
|
ARM_BUILTIN_MAX = ARM_BUILTIN_NEON_BASE + ARRAY_SIZE (neon_builtin_data)
|
19430 |
|
|
};
|
19431 |
|
|
|
19432 |
|
|
static GTY(()) tree arm_builtin_decls[ARM_BUILTIN_MAX];
|
19433 |
|
|
|
19434 |
|
|
static void
|
19435 |
|
|
arm_init_neon_builtins (void)
|
19436 |
|
|
{
|
19437 |
|
|
unsigned int i, fcode;
|
19438 |
|
|
tree decl;
|
19439 |
|
|
|
19440 |
|
|
tree neon_intQI_type_node;
|
19441 |
|
|
tree neon_intHI_type_node;
|
19442 |
|
|
tree neon_polyQI_type_node;
|
19443 |
|
|
tree neon_polyHI_type_node;
|
19444 |
|
|
tree neon_intSI_type_node;
|
19445 |
|
|
tree neon_intDI_type_node;
|
19446 |
|
|
tree neon_float_type_node;
|
19447 |
|
|
|
19448 |
|
|
tree intQI_pointer_node;
|
19449 |
|
|
tree intHI_pointer_node;
|
19450 |
|
|
tree intSI_pointer_node;
|
19451 |
|
|
tree intDI_pointer_node;
|
19452 |
|
|
tree float_pointer_node;
|
19453 |
|
|
|
19454 |
|
|
tree const_intQI_node;
|
19455 |
|
|
tree const_intHI_node;
|
19456 |
|
|
tree const_intSI_node;
|
19457 |
|
|
tree const_intDI_node;
|
19458 |
|
|
tree const_float_node;
|
19459 |
|
|
|
19460 |
|
|
tree const_intQI_pointer_node;
|
19461 |
|
|
tree const_intHI_pointer_node;
|
19462 |
|
|
tree const_intSI_pointer_node;
|
19463 |
|
|
tree const_intDI_pointer_node;
|
19464 |
|
|
tree const_float_pointer_node;
|
19465 |
|
|
|
19466 |
|
|
tree V8QI_type_node;
|
19467 |
|
|
tree V4HI_type_node;
|
19468 |
|
|
tree V2SI_type_node;
|
19469 |
|
|
tree V2SF_type_node;
|
19470 |
|
|
tree V16QI_type_node;
|
19471 |
|
|
tree V8HI_type_node;
|
19472 |
|
|
tree V4SI_type_node;
|
19473 |
|
|
tree V4SF_type_node;
|
19474 |
|
|
tree V2DI_type_node;
|
19475 |
|
|
|
19476 |
|
|
tree intUQI_type_node;
|
19477 |
|
|
tree intUHI_type_node;
|
19478 |
|
|
tree intUSI_type_node;
|
19479 |
|
|
tree intUDI_type_node;
|
19480 |
|
|
|
19481 |
|
|
tree intEI_type_node;
|
19482 |
|
|
tree intOI_type_node;
|
19483 |
|
|
tree intCI_type_node;
|
19484 |
|
|
tree intXI_type_node;
|
19485 |
|
|
|
19486 |
|
|
tree V8QI_pointer_node;
|
19487 |
|
|
tree V4HI_pointer_node;
|
19488 |
|
|
tree V2SI_pointer_node;
|
19489 |
|
|
tree V2SF_pointer_node;
|
19490 |
|
|
tree V16QI_pointer_node;
|
19491 |
|
|
tree V8HI_pointer_node;
|
19492 |
|
|
tree V4SI_pointer_node;
|
19493 |
|
|
tree V4SF_pointer_node;
|
19494 |
|
|
tree V2DI_pointer_node;
|
19495 |
|
|
|
19496 |
|
|
tree void_ftype_pv8qi_v8qi_v8qi;
|
19497 |
|
|
tree void_ftype_pv4hi_v4hi_v4hi;
|
19498 |
|
|
tree void_ftype_pv2si_v2si_v2si;
|
19499 |
|
|
tree void_ftype_pv2sf_v2sf_v2sf;
|
19500 |
|
|
tree void_ftype_pdi_di_di;
|
19501 |
|
|
tree void_ftype_pv16qi_v16qi_v16qi;
|
19502 |
|
|
tree void_ftype_pv8hi_v8hi_v8hi;
|
19503 |
|
|
tree void_ftype_pv4si_v4si_v4si;
|
19504 |
|
|
tree void_ftype_pv4sf_v4sf_v4sf;
|
19505 |
|
|
tree void_ftype_pv2di_v2di_v2di;
|
19506 |
|
|
|
19507 |
|
|
tree reinterp_ftype_dreg[5][5];
|
19508 |
|
|
tree reinterp_ftype_qreg[5][5];
|
19509 |
|
|
tree dreg_types[5], qreg_types[5];
|
19510 |
|
|
|
19511 |
|
|
/* Create distinguished type nodes for NEON vector element types,
|
19512 |
|
|
and pointers to values of such types, so we can detect them later. */
|
19513 |
|
|
neon_intQI_type_node = make_signed_type (GET_MODE_PRECISION (QImode));
|
19514 |
|
|
neon_intHI_type_node = make_signed_type (GET_MODE_PRECISION (HImode));
|
19515 |
|
|
neon_polyQI_type_node = make_signed_type (GET_MODE_PRECISION (QImode));
|
19516 |
|
|
neon_polyHI_type_node = make_signed_type (GET_MODE_PRECISION (HImode));
|
19517 |
|
|
neon_intSI_type_node = make_signed_type (GET_MODE_PRECISION (SImode));
|
19518 |
|
|
neon_intDI_type_node = make_signed_type (GET_MODE_PRECISION (DImode));
|
19519 |
|
|
neon_float_type_node = make_node (REAL_TYPE);
|
19520 |
|
|
TYPE_PRECISION (neon_float_type_node) = FLOAT_TYPE_SIZE;
|
19521 |
|
|
layout_type (neon_float_type_node);
|
19522 |
|
|
|
19523 |
|
|
/* Define typedefs which exactly correspond to the modes we are basing vector
|
19524 |
|
|
types on. If you change these names you'll need to change
|
19525 |
|
|
the table used by arm_mangle_type too. */
|
19526 |
|
|
(*lang_hooks.types.register_builtin_type) (neon_intQI_type_node,
|
19527 |
|
|
"__builtin_neon_qi");
|
19528 |
|
|
(*lang_hooks.types.register_builtin_type) (neon_intHI_type_node,
|
19529 |
|
|
"__builtin_neon_hi");
|
19530 |
|
|
(*lang_hooks.types.register_builtin_type) (neon_intSI_type_node,
|
19531 |
|
|
"__builtin_neon_si");
|
19532 |
|
|
(*lang_hooks.types.register_builtin_type) (neon_float_type_node,
|
19533 |
|
|
"__builtin_neon_sf");
|
19534 |
|
|
(*lang_hooks.types.register_builtin_type) (neon_intDI_type_node,
|
19535 |
|
|
"__builtin_neon_di");
|
19536 |
|
|
(*lang_hooks.types.register_builtin_type) (neon_polyQI_type_node,
|
19537 |
|
|
"__builtin_neon_poly8");
|
19538 |
|
|
(*lang_hooks.types.register_builtin_type) (neon_polyHI_type_node,
|
19539 |
|
|
"__builtin_neon_poly16");
|
19540 |
|
|
|
19541 |
|
|
intQI_pointer_node = build_pointer_type (neon_intQI_type_node);
|
19542 |
|
|
intHI_pointer_node = build_pointer_type (neon_intHI_type_node);
|
19543 |
|
|
intSI_pointer_node = build_pointer_type (neon_intSI_type_node);
|
19544 |
|
|
intDI_pointer_node = build_pointer_type (neon_intDI_type_node);
|
19545 |
|
|
float_pointer_node = build_pointer_type (neon_float_type_node);
|
19546 |
|
|
|
19547 |
|
|
/* Next create constant-qualified versions of the above types. */
|
19548 |
|
|
const_intQI_node = build_qualified_type (neon_intQI_type_node,
|
19549 |
|
|
TYPE_QUAL_CONST);
|
19550 |
|
|
const_intHI_node = build_qualified_type (neon_intHI_type_node,
|
19551 |
|
|
TYPE_QUAL_CONST);
|
19552 |
|
|
const_intSI_node = build_qualified_type (neon_intSI_type_node,
|
19553 |
|
|
TYPE_QUAL_CONST);
|
19554 |
|
|
const_intDI_node = build_qualified_type (neon_intDI_type_node,
|
19555 |
|
|
TYPE_QUAL_CONST);
|
19556 |
|
|
const_float_node = build_qualified_type (neon_float_type_node,
|
19557 |
|
|
TYPE_QUAL_CONST);
|
19558 |
|
|
|
19559 |
|
|
const_intQI_pointer_node = build_pointer_type (const_intQI_node);
|
19560 |
|
|
const_intHI_pointer_node = build_pointer_type (const_intHI_node);
|
19561 |
|
|
const_intSI_pointer_node = build_pointer_type (const_intSI_node);
|
19562 |
|
|
const_intDI_pointer_node = build_pointer_type (const_intDI_node);
|
19563 |
|
|
const_float_pointer_node = build_pointer_type (const_float_node);
|
19564 |
|
|
|
19565 |
|
|
/* Now create vector types based on our NEON element types. */
|
19566 |
|
|
/* 64-bit vectors. */
|
19567 |
|
|
V8QI_type_node =
|
19568 |
|
|
build_vector_type_for_mode (neon_intQI_type_node, V8QImode);
|
19569 |
|
|
V4HI_type_node =
|
19570 |
|
|
build_vector_type_for_mode (neon_intHI_type_node, V4HImode);
|
19571 |
|
|
V2SI_type_node =
|
19572 |
|
|
build_vector_type_for_mode (neon_intSI_type_node, V2SImode);
|
19573 |
|
|
V2SF_type_node =
|
19574 |
|
|
build_vector_type_for_mode (neon_float_type_node, V2SFmode);
|
19575 |
|
|
/* 128-bit vectors. */
|
19576 |
|
|
V16QI_type_node =
|
19577 |
|
|
build_vector_type_for_mode (neon_intQI_type_node, V16QImode);
|
19578 |
|
|
V8HI_type_node =
|
19579 |
|
|
build_vector_type_for_mode (neon_intHI_type_node, V8HImode);
|
19580 |
|
|
V4SI_type_node =
|
19581 |
|
|
build_vector_type_for_mode (neon_intSI_type_node, V4SImode);
|
19582 |
|
|
V4SF_type_node =
|
19583 |
|
|
build_vector_type_for_mode (neon_float_type_node, V4SFmode);
|
19584 |
|
|
V2DI_type_node =
|
19585 |
|
|
build_vector_type_for_mode (neon_intDI_type_node, V2DImode);
|
19586 |
|
|
|
19587 |
|
|
/* Unsigned integer types for various mode sizes. */
|
19588 |
|
|
intUQI_type_node = make_unsigned_type (GET_MODE_PRECISION (QImode));
|
19589 |
|
|
intUHI_type_node = make_unsigned_type (GET_MODE_PRECISION (HImode));
|
19590 |
|
|
intUSI_type_node = make_unsigned_type (GET_MODE_PRECISION (SImode));
|
19591 |
|
|
intUDI_type_node = make_unsigned_type (GET_MODE_PRECISION (DImode));
|
19592 |
|
|
|
19593 |
|
|
(*lang_hooks.types.register_builtin_type) (intUQI_type_node,
|
19594 |
|
|
"__builtin_neon_uqi");
|
19595 |
|
|
(*lang_hooks.types.register_builtin_type) (intUHI_type_node,
|
19596 |
|
|
"__builtin_neon_uhi");
|
19597 |
|
|
(*lang_hooks.types.register_builtin_type) (intUSI_type_node,
|
19598 |
|
|
"__builtin_neon_usi");
|
19599 |
|
|
(*lang_hooks.types.register_builtin_type) (intUDI_type_node,
|
19600 |
|
|
"__builtin_neon_udi");
|
19601 |
|
|
|
19602 |
|
|
/* Opaque integer types for structures of vectors. */
|
19603 |
|
|
intEI_type_node = make_signed_type (GET_MODE_PRECISION (EImode));
|
19604 |
|
|
intOI_type_node = make_signed_type (GET_MODE_PRECISION (OImode));
|
19605 |
|
|
intCI_type_node = make_signed_type (GET_MODE_PRECISION (CImode));
|
19606 |
|
|
intXI_type_node = make_signed_type (GET_MODE_PRECISION (XImode));
|
19607 |
|
|
|
19608 |
|
|
(*lang_hooks.types.register_builtin_type) (intTI_type_node,
|
19609 |
|
|
"__builtin_neon_ti");
|
19610 |
|
|
(*lang_hooks.types.register_builtin_type) (intEI_type_node,
|
19611 |
|
|
"__builtin_neon_ei");
|
19612 |
|
|
(*lang_hooks.types.register_builtin_type) (intOI_type_node,
|
19613 |
|
|
"__builtin_neon_oi");
|
19614 |
|
|
(*lang_hooks.types.register_builtin_type) (intCI_type_node,
|
19615 |
|
|
"__builtin_neon_ci");
|
19616 |
|
|
(*lang_hooks.types.register_builtin_type) (intXI_type_node,
|
19617 |
|
|
"__builtin_neon_xi");
|
19618 |
|
|
|
19619 |
|
|
/* Pointers to vector types. */
|
19620 |
|
|
V8QI_pointer_node = build_pointer_type (V8QI_type_node);
|
19621 |
|
|
V4HI_pointer_node = build_pointer_type (V4HI_type_node);
|
19622 |
|
|
V2SI_pointer_node = build_pointer_type (V2SI_type_node);
|
19623 |
|
|
V2SF_pointer_node = build_pointer_type (V2SF_type_node);
|
19624 |
|
|
V16QI_pointer_node = build_pointer_type (V16QI_type_node);
|
19625 |
|
|
V8HI_pointer_node = build_pointer_type (V8HI_type_node);
|
19626 |
|
|
V4SI_pointer_node = build_pointer_type (V4SI_type_node);
|
19627 |
|
|
V4SF_pointer_node = build_pointer_type (V4SF_type_node);
|
19628 |
|
|
V2DI_pointer_node = build_pointer_type (V2DI_type_node);
|
19629 |
|
|
|
19630 |
|
|
/* Operations which return results as pairs. */
|
19631 |
|
|
void_ftype_pv8qi_v8qi_v8qi =
|
19632 |
|
|
build_function_type_list (void_type_node, V8QI_pointer_node, V8QI_type_node,
|
19633 |
|
|
V8QI_type_node, NULL);
|
19634 |
|
|
void_ftype_pv4hi_v4hi_v4hi =
|
19635 |
|
|
build_function_type_list (void_type_node, V4HI_pointer_node, V4HI_type_node,
|
19636 |
|
|
V4HI_type_node, NULL);
|
19637 |
|
|
void_ftype_pv2si_v2si_v2si =
|
19638 |
|
|
build_function_type_list (void_type_node, V2SI_pointer_node, V2SI_type_node,
|
19639 |
|
|
V2SI_type_node, NULL);
|
19640 |
|
|
void_ftype_pv2sf_v2sf_v2sf =
|
19641 |
|
|
build_function_type_list (void_type_node, V2SF_pointer_node, V2SF_type_node,
|
19642 |
|
|
V2SF_type_node, NULL);
|
19643 |
|
|
void_ftype_pdi_di_di =
|
19644 |
|
|
build_function_type_list (void_type_node, intDI_pointer_node,
|
19645 |
|
|
neon_intDI_type_node, neon_intDI_type_node, NULL);
|
19646 |
|
|
void_ftype_pv16qi_v16qi_v16qi =
|
19647 |
|
|
build_function_type_list (void_type_node, V16QI_pointer_node,
|
19648 |
|
|
V16QI_type_node, V16QI_type_node, NULL);
|
19649 |
|
|
void_ftype_pv8hi_v8hi_v8hi =
|
19650 |
|
|
build_function_type_list (void_type_node, V8HI_pointer_node, V8HI_type_node,
|
19651 |
|
|
V8HI_type_node, NULL);
|
19652 |
|
|
void_ftype_pv4si_v4si_v4si =
|
19653 |
|
|
build_function_type_list (void_type_node, V4SI_pointer_node, V4SI_type_node,
|
19654 |
|
|
V4SI_type_node, NULL);
|
19655 |
|
|
void_ftype_pv4sf_v4sf_v4sf =
|
19656 |
|
|
build_function_type_list (void_type_node, V4SF_pointer_node, V4SF_type_node,
|
19657 |
|
|
V4SF_type_node, NULL);
|
19658 |
|
|
void_ftype_pv2di_v2di_v2di =
|
19659 |
|
|
build_function_type_list (void_type_node, V2DI_pointer_node, V2DI_type_node,
|
19660 |
|
|
V2DI_type_node, NULL);
|
19661 |
|
|
|
19662 |
|
|
dreg_types[0] = V8QI_type_node;
|
19663 |
|
|
dreg_types[1] = V4HI_type_node;
|
19664 |
|
|
dreg_types[2] = V2SI_type_node;
|
19665 |
|
|
dreg_types[3] = V2SF_type_node;
|
19666 |
|
|
dreg_types[4] = neon_intDI_type_node;
|
19667 |
|
|
|
19668 |
|
|
qreg_types[0] = V16QI_type_node;
|
19669 |
|
|
qreg_types[1] = V8HI_type_node;
|
19670 |
|
|
qreg_types[2] = V4SI_type_node;
|
19671 |
|
|
qreg_types[3] = V4SF_type_node;
|
19672 |
|
|
qreg_types[4] = V2DI_type_node;
|
19673 |
|
|
|
19674 |
|
|
for (i = 0; i < 5; i++)
|
19675 |
|
|
{
|
19676 |
|
|
int j;
|
19677 |
|
|
for (j = 0; j < 5; j++)
|
19678 |
|
|
{
|
19679 |
|
|
reinterp_ftype_dreg[i][j]
|
19680 |
|
|
= build_function_type_list (dreg_types[i], dreg_types[j], NULL);
|
19681 |
|
|
reinterp_ftype_qreg[i][j]
|
19682 |
|
|
= build_function_type_list (qreg_types[i], qreg_types[j], NULL);
|
19683 |
|
|
}
|
19684 |
|
|
}
|
19685 |
|
|
|
19686 |
|
|
for (i = 0, fcode = ARM_BUILTIN_NEON_BASE;
|
19687 |
|
|
i < ARRAY_SIZE (neon_builtin_data);
|
19688 |
|
|
i++, fcode++)
|
19689 |
|
|
{
|
19690 |
|
|
neon_builtin_datum *d = &neon_builtin_data[i];
|
19691 |
|
|
|
19692 |
|
|
const char* const modenames[] = {
|
19693 |
|
|
"v8qi", "v4hi", "v2si", "v2sf", "di",
|
19694 |
|
|
"v16qi", "v8hi", "v4si", "v4sf", "v2di",
|
19695 |
|
|
"ti", "ei", "oi"
|
19696 |
|
|
};
|
19697 |
|
|
char namebuf[60];
|
19698 |
|
|
tree ftype = NULL;
|
19699 |
|
|
int is_load = 0, is_store = 0;
|
19700 |
|
|
|
19701 |
|
|
gcc_assert (ARRAY_SIZE (modenames) == T_MAX);
|
19702 |
|
|
|
19703 |
|
|
d->fcode = fcode;
|
19704 |
|
|
|
19705 |
|
|
switch (d->itype)
|
19706 |
|
|
{
|
19707 |
|
|
case NEON_LOAD1:
|
19708 |
|
|
case NEON_LOAD1LANE:
|
19709 |
|
|
case NEON_LOADSTRUCT:
|
19710 |
|
|
case NEON_LOADSTRUCTLANE:
|
19711 |
|
|
is_load = 1;
|
19712 |
|
|
/* Fall through. */
|
19713 |
|
|
case NEON_STORE1:
|
19714 |
|
|
case NEON_STORE1LANE:
|
19715 |
|
|
case NEON_STORESTRUCT:
|
19716 |
|
|
case NEON_STORESTRUCTLANE:
|
19717 |
|
|
if (!is_load)
|
19718 |
|
|
is_store = 1;
|
19719 |
|
|
/* Fall through. */
|
19720 |
|
|
case NEON_UNOP:
|
19721 |
|
|
case NEON_BINOP:
|
19722 |
|
|
case NEON_LOGICBINOP:
|
19723 |
|
|
case NEON_SHIFTINSERT:
|
19724 |
|
|
case NEON_TERNOP:
|
19725 |
|
|
case NEON_GETLANE:
|
19726 |
|
|
case NEON_SETLANE:
|
19727 |
|
|
case NEON_CREATE:
|
19728 |
|
|
case NEON_DUP:
|
19729 |
|
|
case NEON_DUPLANE:
|
19730 |
|
|
case NEON_SHIFTIMM:
|
19731 |
|
|
case NEON_SHIFTACC:
|
19732 |
|
|
case NEON_COMBINE:
|
19733 |
|
|
case NEON_SPLIT:
|
19734 |
|
|
case NEON_CONVERT:
|
19735 |
|
|
case NEON_FIXCONV:
|
19736 |
|
|
case NEON_LANEMUL:
|
19737 |
|
|
case NEON_LANEMULL:
|
19738 |
|
|
case NEON_LANEMULH:
|
19739 |
|
|
case NEON_LANEMAC:
|
19740 |
|
|
case NEON_SCALARMUL:
|
19741 |
|
|
case NEON_SCALARMULL:
|
19742 |
|
|
case NEON_SCALARMULH:
|
19743 |
|
|
case NEON_SCALARMAC:
|
19744 |
|
|
case NEON_SELECT:
|
19745 |
|
|
case NEON_VTBL:
|
19746 |
|
|
case NEON_VTBX:
|
19747 |
|
|
{
|
19748 |
|
|
int k;
|
19749 |
|
|
tree return_type = void_type_node, args = void_list_node;
|
19750 |
|
|
|
19751 |
|
|
/* Build a function type directly from the insn_data for
|
19752 |
|
|
this builtin. The build_function_type() function takes
|
19753 |
|
|
care of removing duplicates for us. */
|
19754 |
|
|
for (k = insn_data[d->code].n_generator_args - 1; k >= 0; k--)
|
19755 |
|
|
{
|
19756 |
|
|
tree eltype;
|
19757 |
|
|
|
19758 |
|
|
if (is_load && k == 1)
|
19759 |
|
|
{
|
19760 |
|
|
/* Neon load patterns always have the memory
|
19761 |
|
|
operand in the operand 1 position. */
|
19762 |
|
|
gcc_assert (insn_data[d->code].operand[k].predicate
|
19763 |
|
|
== neon_struct_operand);
|
19764 |
|
|
|
19765 |
|
|
switch (d->mode)
|
19766 |
|
|
{
|
19767 |
|
|
case T_V8QI:
|
19768 |
|
|
case T_V16QI:
|
19769 |
|
|
eltype = const_intQI_pointer_node;
|
19770 |
|
|
break;
|
19771 |
|
|
|
19772 |
|
|
case T_V4HI:
|
19773 |
|
|
case T_V8HI:
|
19774 |
|
|
eltype = const_intHI_pointer_node;
|
19775 |
|
|
break;
|
19776 |
|
|
|
19777 |
|
|
case T_V2SI:
|
19778 |
|
|
case T_V4SI:
|
19779 |
|
|
eltype = const_intSI_pointer_node;
|
19780 |
|
|
break;
|
19781 |
|
|
|
19782 |
|
|
case T_V2SF:
|
19783 |
|
|
case T_V4SF:
|
19784 |
|
|
eltype = const_float_pointer_node;
|
19785 |
|
|
break;
|
19786 |
|
|
|
19787 |
|
|
case T_DI:
|
19788 |
|
|
case T_V2DI:
|
19789 |
|
|
eltype = const_intDI_pointer_node;
|
19790 |
|
|
break;
|
19791 |
|
|
|
19792 |
|
|
default: gcc_unreachable ();
|
19793 |
|
|
}
|
19794 |
|
|
}
|
19795 |
|
|
else if (is_store && k == 0)
|
19796 |
|
|
{
|
19797 |
|
|
/* Similarly, Neon store patterns use operand 0 as
|
19798 |
|
|
the memory location to store to. */
|
19799 |
|
|
gcc_assert (insn_data[d->code].operand[k].predicate
|
19800 |
|
|
== neon_struct_operand);
|
19801 |
|
|
|
19802 |
|
|
switch (d->mode)
|
19803 |
|
|
{
|
19804 |
|
|
case T_V8QI:
|
19805 |
|
|
case T_V16QI:
|
19806 |
|
|
eltype = intQI_pointer_node;
|
19807 |
|
|
break;
|
19808 |
|
|
|
19809 |
|
|
case T_V4HI:
|
19810 |
|
|
case T_V8HI:
|
19811 |
|
|
eltype = intHI_pointer_node;
|
19812 |
|
|
break;
|
19813 |
|
|
|
19814 |
|
|
case T_V2SI:
|
19815 |
|
|
case T_V4SI:
|
19816 |
|
|
eltype = intSI_pointer_node;
|
19817 |
|
|
break;
|
19818 |
|
|
|
19819 |
|
|
case T_V2SF:
|
19820 |
|
|
case T_V4SF:
|
19821 |
|
|
eltype = float_pointer_node;
|
19822 |
|
|
break;
|
19823 |
|
|
|
19824 |
|
|
case T_DI:
|
19825 |
|
|
case T_V2DI:
|
19826 |
|
|
eltype = intDI_pointer_node;
|
19827 |
|
|
break;
|
19828 |
|
|
|
19829 |
|
|
default: gcc_unreachable ();
|
19830 |
|
|
}
|
19831 |
|
|
}
|
19832 |
|
|
else
|
19833 |
|
|
{
|
19834 |
|
|
switch (insn_data[d->code].operand[k].mode)
|
19835 |
|
|
{
|
19836 |
|
|
case VOIDmode: eltype = void_type_node; break;
|
19837 |
|
|
/* Scalars. */
|
19838 |
|
|
case QImode: eltype = neon_intQI_type_node; break;
|
19839 |
|
|
case HImode: eltype = neon_intHI_type_node; break;
|
19840 |
|
|
case SImode: eltype = neon_intSI_type_node; break;
|
19841 |
|
|
case SFmode: eltype = neon_float_type_node; break;
|
19842 |
|
|
case DImode: eltype = neon_intDI_type_node; break;
|
19843 |
|
|
case TImode: eltype = intTI_type_node; break;
|
19844 |
|
|
case EImode: eltype = intEI_type_node; break;
|
19845 |
|
|
case OImode: eltype = intOI_type_node; break;
|
19846 |
|
|
case CImode: eltype = intCI_type_node; break;
|
19847 |
|
|
case XImode: eltype = intXI_type_node; break;
|
19848 |
|
|
/* 64-bit vectors. */
|
19849 |
|
|
case V8QImode: eltype = V8QI_type_node; break;
|
19850 |
|
|
case V4HImode: eltype = V4HI_type_node; break;
|
19851 |
|
|
case V2SImode: eltype = V2SI_type_node; break;
|
19852 |
|
|
case V2SFmode: eltype = V2SF_type_node; break;
|
19853 |
|
|
/* 128-bit vectors. */
|
19854 |
|
|
case V16QImode: eltype = V16QI_type_node; break;
|
19855 |
|
|
case V8HImode: eltype = V8HI_type_node; break;
|
19856 |
|
|
case V4SImode: eltype = V4SI_type_node; break;
|
19857 |
|
|
case V4SFmode: eltype = V4SF_type_node; break;
|
19858 |
|
|
case V2DImode: eltype = V2DI_type_node; break;
|
19859 |
|
|
default: gcc_unreachable ();
|
19860 |
|
|
}
|
19861 |
|
|
}
|
19862 |
|
|
|
19863 |
|
|
if (k == 0 && !is_store)
|
19864 |
|
|
return_type = eltype;
|
19865 |
|
|
else
|
19866 |
|
|
args = tree_cons (NULL_TREE, eltype, args);
|
19867 |
|
|
}
|
19868 |
|
|
|
19869 |
|
|
ftype = build_function_type (return_type, args);
|
19870 |
|
|
}
|
19871 |
|
|
break;
|
19872 |
|
|
|
19873 |
|
|
case NEON_RESULTPAIR:
|
19874 |
|
|
{
|
19875 |
|
|
switch (insn_data[d->code].operand[1].mode)
|
19876 |
|
|
{
|
19877 |
|
|
case V8QImode: ftype = void_ftype_pv8qi_v8qi_v8qi; break;
|
19878 |
|
|
case V4HImode: ftype = void_ftype_pv4hi_v4hi_v4hi; break;
|
19879 |
|
|
case V2SImode: ftype = void_ftype_pv2si_v2si_v2si; break;
|
19880 |
|
|
case V2SFmode: ftype = void_ftype_pv2sf_v2sf_v2sf; break;
|
19881 |
|
|
case DImode: ftype = void_ftype_pdi_di_di; break;
|
19882 |
|
|
case V16QImode: ftype = void_ftype_pv16qi_v16qi_v16qi; break;
|
19883 |
|
|
case V8HImode: ftype = void_ftype_pv8hi_v8hi_v8hi; break;
|
19884 |
|
|
case V4SImode: ftype = void_ftype_pv4si_v4si_v4si; break;
|
19885 |
|
|
case V4SFmode: ftype = void_ftype_pv4sf_v4sf_v4sf; break;
|
19886 |
|
|
case V2DImode: ftype = void_ftype_pv2di_v2di_v2di; break;
|
19887 |
|
|
default: gcc_unreachable ();
|
19888 |
|
|
}
|
19889 |
|
|
}
|
19890 |
|
|
break;
|
19891 |
|
|
|
19892 |
|
|
case NEON_REINTERP:
|
19893 |
|
|
{
|
19894 |
|
|
/* We iterate over 5 doubleword types, then 5 quadword
|
19895 |
|
|
types. */
|
19896 |
|
|
int rhs = d->mode % 5;
|
19897 |
|
|
switch (insn_data[d->code].operand[0].mode)
|
19898 |
|
|
{
|
19899 |
|
|
case V8QImode: ftype = reinterp_ftype_dreg[0][rhs]; break;
|
19900 |
|
|
case V4HImode: ftype = reinterp_ftype_dreg[1][rhs]; break;
|
19901 |
|
|
case V2SImode: ftype = reinterp_ftype_dreg[2][rhs]; break;
|
19902 |
|
|
case V2SFmode: ftype = reinterp_ftype_dreg[3][rhs]; break;
|
19903 |
|
|
case DImode: ftype = reinterp_ftype_dreg[4][rhs]; break;
|
19904 |
|
|
case V16QImode: ftype = reinterp_ftype_qreg[0][rhs]; break;
|
19905 |
|
|
case V8HImode: ftype = reinterp_ftype_qreg[1][rhs]; break;
|
19906 |
|
|
case V4SImode: ftype = reinterp_ftype_qreg[2][rhs]; break;
|
19907 |
|
|
case V4SFmode: ftype = reinterp_ftype_qreg[3][rhs]; break;
|
19908 |
|
|
case V2DImode: ftype = reinterp_ftype_qreg[4][rhs]; break;
|
19909 |
|
|
default: gcc_unreachable ();
|
19910 |
|
|
}
|
19911 |
|
|
}
|
19912 |
|
|
break;
|
19913 |
|
|
|
19914 |
|
|
default:
|
19915 |
|
|
gcc_unreachable ();
|
19916 |
|
|
}
|
19917 |
|
|
|
19918 |
|
|
gcc_assert (ftype != NULL);
|
19919 |
|
|
|
19920 |
|
|
sprintf (namebuf, "__builtin_neon_%s%s", d->name, modenames[d->mode]);
|
19921 |
|
|
|
19922 |
|
|
decl = add_builtin_function (namebuf, ftype, fcode, BUILT_IN_MD, NULL,
|
19923 |
|
|
NULL_TREE);
|
19924 |
|
|
arm_builtin_decls[fcode] = decl;
|
19925 |
|
|
}
|
19926 |
|
|
}
|
19927 |
|
|
|
19928 |
|
|
#define def_mbuiltin(MASK, NAME, TYPE, CODE) \
|
19929 |
|
|
do \
|
19930 |
|
|
{ \
|
19931 |
|
|
if ((MASK) & insn_flags) \
|
19932 |
|
|
{ \
|
19933 |
|
|
tree bdecl; \
|
19934 |
|
|
bdecl = add_builtin_function ((NAME), (TYPE), (CODE), \
|
19935 |
|
|
BUILT_IN_MD, NULL, NULL_TREE); \
|
19936 |
|
|
arm_builtin_decls[CODE] = bdecl; \
|
19937 |
|
|
} \
|
19938 |
|
|
} \
|
19939 |
|
|
while (0)
|
19940 |
|
|
|
19941 |
|
|
struct builtin_description
|
19942 |
|
|
{
|
19943 |
|
|
const unsigned int mask;
|
19944 |
|
|
const enum insn_code icode;
|
19945 |
|
|
const char * const name;
|
19946 |
|
|
const enum arm_builtins code;
|
19947 |
|
|
const enum rtx_code comparison;
|
19948 |
|
|
const unsigned int flag;
|
19949 |
|
|
};
|
19950 |
|
|
|
19951 |
|
|
static const struct builtin_description bdesc_2arg[] =
|
19952 |
|
|
{
|
19953 |
|
|
#define IWMMXT_BUILTIN(code, string, builtin) \
|
19954 |
|
|
{ FL_IWMMXT, CODE_FOR_##code, "__builtin_arm_" string, \
|
19955 |
|
|
ARM_BUILTIN_##builtin, UNKNOWN, 0 },
|
19956 |
|
|
|
19957 |
|
|
IWMMXT_BUILTIN (addv8qi3, "waddb", WADDB)
|
19958 |
|
|
IWMMXT_BUILTIN (addv4hi3, "waddh", WADDH)
|
19959 |
|
|
IWMMXT_BUILTIN (addv2si3, "waddw", WADDW)
|
19960 |
|
|
IWMMXT_BUILTIN (subv8qi3, "wsubb", WSUBB)
|
19961 |
|
|
IWMMXT_BUILTIN (subv4hi3, "wsubh", WSUBH)
|
19962 |
|
|
IWMMXT_BUILTIN (subv2si3, "wsubw", WSUBW)
|
19963 |
|
|
IWMMXT_BUILTIN (ssaddv8qi3, "waddbss", WADDSSB)
|
19964 |
|
|
IWMMXT_BUILTIN (ssaddv4hi3, "waddhss", WADDSSH)
|
19965 |
|
|
IWMMXT_BUILTIN (ssaddv2si3, "waddwss", WADDSSW)
|
19966 |
|
|
IWMMXT_BUILTIN (sssubv8qi3, "wsubbss", WSUBSSB)
|
19967 |
|
|
IWMMXT_BUILTIN (sssubv4hi3, "wsubhss", WSUBSSH)
|
19968 |
|
|
IWMMXT_BUILTIN (sssubv2si3, "wsubwss", WSUBSSW)
|
19969 |
|
|
IWMMXT_BUILTIN (usaddv8qi3, "waddbus", WADDUSB)
|
19970 |
|
|
IWMMXT_BUILTIN (usaddv4hi3, "waddhus", WADDUSH)
|
19971 |
|
|
IWMMXT_BUILTIN (usaddv2si3, "waddwus", WADDUSW)
|
19972 |
|
|
IWMMXT_BUILTIN (ussubv8qi3, "wsubbus", WSUBUSB)
|
19973 |
|
|
IWMMXT_BUILTIN (ussubv4hi3, "wsubhus", WSUBUSH)
|
19974 |
|
|
IWMMXT_BUILTIN (ussubv2si3, "wsubwus", WSUBUSW)
|
19975 |
|
|
IWMMXT_BUILTIN (mulv4hi3, "wmulul", WMULUL)
|
19976 |
|
|
IWMMXT_BUILTIN (smulv4hi3_highpart, "wmulsm", WMULSM)
|
19977 |
|
|
IWMMXT_BUILTIN (umulv4hi3_highpart, "wmulum", WMULUM)
|
19978 |
|
|
IWMMXT_BUILTIN (eqv8qi3, "wcmpeqb", WCMPEQB)
|
19979 |
|
|
IWMMXT_BUILTIN (eqv4hi3, "wcmpeqh", WCMPEQH)
|
19980 |
|
|
IWMMXT_BUILTIN (eqv2si3, "wcmpeqw", WCMPEQW)
|
19981 |
|
|
IWMMXT_BUILTIN (gtuv8qi3, "wcmpgtub", WCMPGTUB)
|
19982 |
|
|
IWMMXT_BUILTIN (gtuv4hi3, "wcmpgtuh", WCMPGTUH)
|
19983 |
|
|
IWMMXT_BUILTIN (gtuv2si3, "wcmpgtuw", WCMPGTUW)
|
19984 |
|
|
IWMMXT_BUILTIN (gtv8qi3, "wcmpgtsb", WCMPGTSB)
|
19985 |
|
|
IWMMXT_BUILTIN (gtv4hi3, "wcmpgtsh", WCMPGTSH)
|
19986 |
|
|
IWMMXT_BUILTIN (gtv2si3, "wcmpgtsw", WCMPGTSW)
|
19987 |
|
|
IWMMXT_BUILTIN (umaxv8qi3, "wmaxub", WMAXUB)
|
19988 |
|
|
IWMMXT_BUILTIN (smaxv8qi3, "wmaxsb", WMAXSB)
|
19989 |
|
|
IWMMXT_BUILTIN (umaxv4hi3, "wmaxuh", WMAXUH)
|
19990 |
|
|
IWMMXT_BUILTIN (smaxv4hi3, "wmaxsh", WMAXSH)
|
19991 |
|
|
IWMMXT_BUILTIN (umaxv2si3, "wmaxuw", WMAXUW)
|
19992 |
|
|
IWMMXT_BUILTIN (smaxv2si3, "wmaxsw", WMAXSW)
|
19993 |
|
|
IWMMXT_BUILTIN (uminv8qi3, "wminub", WMINUB)
|
19994 |
|
|
IWMMXT_BUILTIN (sminv8qi3, "wminsb", WMINSB)
|
19995 |
|
|
IWMMXT_BUILTIN (uminv4hi3, "wminuh", WMINUH)
|
19996 |
|
|
IWMMXT_BUILTIN (sminv4hi3, "wminsh", WMINSH)
|
19997 |
|
|
IWMMXT_BUILTIN (uminv2si3, "wminuw", WMINUW)
|
19998 |
|
|
IWMMXT_BUILTIN (sminv2si3, "wminsw", WMINSW)
|
19999 |
|
|
IWMMXT_BUILTIN (iwmmxt_anddi3, "wand", WAND)
|
20000 |
|
|
IWMMXT_BUILTIN (iwmmxt_nanddi3, "wandn", WANDN)
|
20001 |
|
|
IWMMXT_BUILTIN (iwmmxt_iordi3, "wor", WOR)
|
20002 |
|
|
IWMMXT_BUILTIN (iwmmxt_xordi3, "wxor", WXOR)
|
20003 |
|
|
IWMMXT_BUILTIN (iwmmxt_uavgv8qi3, "wavg2b", WAVG2B)
|
20004 |
|
|
IWMMXT_BUILTIN (iwmmxt_uavgv4hi3, "wavg2h", WAVG2H)
|
20005 |
|
|
IWMMXT_BUILTIN (iwmmxt_uavgrndv8qi3, "wavg2br", WAVG2BR)
|
20006 |
|
|
IWMMXT_BUILTIN (iwmmxt_uavgrndv4hi3, "wavg2hr", WAVG2HR)
|
20007 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckilb, "wunpckilb", WUNPCKILB)
|
20008 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckilh, "wunpckilh", WUNPCKILH)
|
20009 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckilw, "wunpckilw", WUNPCKILW)
|
20010 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckihb, "wunpckihb", WUNPCKIHB)
|
20011 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckihh, "wunpckihh", WUNPCKIHH)
|
20012 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckihw, "wunpckihw", WUNPCKIHW)
|
20013 |
|
|
IWMMXT_BUILTIN (iwmmxt_wmadds, "wmadds", WMADDS)
|
20014 |
|
|
IWMMXT_BUILTIN (iwmmxt_wmaddu, "wmaddu", WMADDU)
|
20015 |
|
|
|
20016 |
|
|
#define IWMMXT_BUILTIN2(code, builtin) \
|
20017 |
|
|
{ FL_IWMMXT, CODE_FOR_##code, NULL, ARM_BUILTIN_##builtin, UNKNOWN, 0 },
|
20018 |
|
|
|
20019 |
|
|
IWMMXT_BUILTIN2 (iwmmxt_wpackhss, WPACKHSS)
|
20020 |
|
|
IWMMXT_BUILTIN2 (iwmmxt_wpackwss, WPACKWSS)
|
20021 |
|
|
IWMMXT_BUILTIN2 (iwmmxt_wpackdss, WPACKDSS)
|
20022 |
|
|
IWMMXT_BUILTIN2 (iwmmxt_wpackhus, WPACKHUS)
|
20023 |
|
|
IWMMXT_BUILTIN2 (iwmmxt_wpackwus, WPACKWUS)
|
20024 |
|
|
IWMMXT_BUILTIN2 (iwmmxt_wpackdus, WPACKDUS)
|
20025 |
|
|
IWMMXT_BUILTIN2 (ashlv4hi3_di, WSLLH)
|
20026 |
|
|
IWMMXT_BUILTIN2 (ashlv4hi3_iwmmxt, WSLLHI)
|
20027 |
|
|
IWMMXT_BUILTIN2 (ashlv2si3_di, WSLLW)
|
20028 |
|
|
IWMMXT_BUILTIN2 (ashlv2si3_iwmmxt, WSLLWI)
|
20029 |
|
|
IWMMXT_BUILTIN2 (ashldi3_di, WSLLD)
|
20030 |
|
|
IWMMXT_BUILTIN2 (ashldi3_iwmmxt, WSLLDI)
|
20031 |
|
|
IWMMXT_BUILTIN2 (lshrv4hi3_di, WSRLH)
|
20032 |
|
|
IWMMXT_BUILTIN2 (lshrv4hi3_iwmmxt, WSRLHI)
|
20033 |
|
|
IWMMXT_BUILTIN2 (lshrv2si3_di, WSRLW)
|
20034 |
|
|
IWMMXT_BUILTIN2 (lshrv2si3_iwmmxt, WSRLWI)
|
20035 |
|
|
IWMMXT_BUILTIN2 (lshrdi3_di, WSRLD)
|
20036 |
|
|
IWMMXT_BUILTIN2 (lshrdi3_iwmmxt, WSRLDI)
|
20037 |
|
|
IWMMXT_BUILTIN2 (ashrv4hi3_di, WSRAH)
|
20038 |
|
|
IWMMXT_BUILTIN2 (ashrv4hi3_iwmmxt, WSRAHI)
|
20039 |
|
|
IWMMXT_BUILTIN2 (ashrv2si3_di, WSRAW)
|
20040 |
|
|
IWMMXT_BUILTIN2 (ashrv2si3_iwmmxt, WSRAWI)
|
20041 |
|
|
IWMMXT_BUILTIN2 (ashrdi3_di, WSRAD)
|
20042 |
|
|
IWMMXT_BUILTIN2 (ashrdi3_iwmmxt, WSRADI)
|
20043 |
|
|
IWMMXT_BUILTIN2 (rorv4hi3_di, WRORH)
|
20044 |
|
|
IWMMXT_BUILTIN2 (rorv4hi3, WRORHI)
|
20045 |
|
|
IWMMXT_BUILTIN2 (rorv2si3_di, WRORW)
|
20046 |
|
|
IWMMXT_BUILTIN2 (rorv2si3, WRORWI)
|
20047 |
|
|
IWMMXT_BUILTIN2 (rordi3_di, WRORD)
|
20048 |
|
|
IWMMXT_BUILTIN2 (rordi3, WRORDI)
|
20049 |
|
|
IWMMXT_BUILTIN2 (iwmmxt_wmacuz, WMACUZ)
|
20050 |
|
|
IWMMXT_BUILTIN2 (iwmmxt_wmacsz, WMACSZ)
|
20051 |
|
|
};
|
20052 |
|
|
|
20053 |
|
|
static const struct builtin_description bdesc_1arg[] =
|
20054 |
|
|
{
|
20055 |
|
|
IWMMXT_BUILTIN (iwmmxt_tmovmskb, "tmovmskb", TMOVMSKB)
|
20056 |
|
|
IWMMXT_BUILTIN (iwmmxt_tmovmskh, "tmovmskh", TMOVMSKH)
|
20057 |
|
|
IWMMXT_BUILTIN (iwmmxt_tmovmskw, "tmovmskw", TMOVMSKW)
|
20058 |
|
|
IWMMXT_BUILTIN (iwmmxt_waccb, "waccb", WACCB)
|
20059 |
|
|
IWMMXT_BUILTIN (iwmmxt_wacch, "wacch", WACCH)
|
20060 |
|
|
IWMMXT_BUILTIN (iwmmxt_waccw, "waccw", WACCW)
|
20061 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckehub, "wunpckehub", WUNPCKEHUB)
|
20062 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckehuh, "wunpckehuh", WUNPCKEHUH)
|
20063 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckehuw, "wunpckehuw", WUNPCKEHUW)
|
20064 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckehsb, "wunpckehsb", WUNPCKEHSB)
|
20065 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckehsh, "wunpckehsh", WUNPCKEHSH)
|
20066 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckehsw, "wunpckehsw", WUNPCKEHSW)
|
20067 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckelub, "wunpckelub", WUNPCKELUB)
|
20068 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckeluh, "wunpckeluh", WUNPCKELUH)
|
20069 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckeluw, "wunpckeluw", WUNPCKELUW)
|
20070 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckelsb, "wunpckelsb", WUNPCKELSB)
|
20071 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckelsh, "wunpckelsh", WUNPCKELSH)
|
20072 |
|
|
IWMMXT_BUILTIN (iwmmxt_wunpckelsw, "wunpckelsw", WUNPCKELSW)
|
20073 |
|
|
};
|
20074 |
|
|
|
20075 |
|
|
/* Set up all the iWMMXt builtins. This is not called if
|
20076 |
|
|
TARGET_IWMMXT is zero. */
|
20077 |
|
|
|
20078 |
|
|
static void
|
20079 |
|
|
arm_init_iwmmxt_builtins (void)
|
20080 |
|
|
{
|
20081 |
|
|
const struct builtin_description * d;
|
20082 |
|
|
size_t i;
|
20083 |
|
|
|
20084 |
|
|
tree V2SI_type_node = build_vector_type_for_mode (intSI_type_node, V2SImode);
|
20085 |
|
|
tree V4HI_type_node = build_vector_type_for_mode (intHI_type_node, V4HImode);
|
20086 |
|
|
tree V8QI_type_node = build_vector_type_for_mode (intQI_type_node, V8QImode);
|
20087 |
|
|
|
20088 |
|
|
tree int_ftype_int
|
20089 |
|
|
= build_function_type_list (integer_type_node,
|
20090 |
|
|
integer_type_node, NULL_TREE);
|
20091 |
|
|
tree v8qi_ftype_v8qi_v8qi_int
|
20092 |
|
|
= build_function_type_list (V8QI_type_node,
|
20093 |
|
|
V8QI_type_node, V8QI_type_node,
|
20094 |
|
|
integer_type_node, NULL_TREE);
|
20095 |
|
|
tree v4hi_ftype_v4hi_int
|
20096 |
|
|
= build_function_type_list (V4HI_type_node,
|
20097 |
|
|
V4HI_type_node, integer_type_node, NULL_TREE);
|
20098 |
|
|
tree v2si_ftype_v2si_int
|
20099 |
|
|
= build_function_type_list (V2SI_type_node,
|
20100 |
|
|
V2SI_type_node, integer_type_node, NULL_TREE);
|
20101 |
|
|
tree v2si_ftype_di_di
|
20102 |
|
|
= build_function_type_list (V2SI_type_node,
|
20103 |
|
|
long_long_integer_type_node,
|
20104 |
|
|
long_long_integer_type_node,
|
20105 |
|
|
NULL_TREE);
|
20106 |
|
|
tree di_ftype_di_int
|
20107 |
|
|
= build_function_type_list (long_long_integer_type_node,
|
20108 |
|
|
long_long_integer_type_node,
|
20109 |
|
|
integer_type_node, NULL_TREE);
|
20110 |
|
|
tree di_ftype_di_int_int
|
20111 |
|
|
= build_function_type_list (long_long_integer_type_node,
|
20112 |
|
|
long_long_integer_type_node,
|
20113 |
|
|
integer_type_node,
|
20114 |
|
|
integer_type_node, NULL_TREE);
|
20115 |
|
|
tree int_ftype_v8qi
|
20116 |
|
|
= build_function_type_list (integer_type_node,
|
20117 |
|
|
V8QI_type_node, NULL_TREE);
|
20118 |
|
|
tree int_ftype_v4hi
|
20119 |
|
|
= build_function_type_list (integer_type_node,
|
20120 |
|
|
V4HI_type_node, NULL_TREE);
|
20121 |
|
|
tree int_ftype_v2si
|
20122 |
|
|
= build_function_type_list (integer_type_node,
|
20123 |
|
|
V2SI_type_node, NULL_TREE);
|
20124 |
|
|
tree int_ftype_v8qi_int
|
20125 |
|
|
= build_function_type_list (integer_type_node,
|
20126 |
|
|
V8QI_type_node, integer_type_node, NULL_TREE);
|
20127 |
|
|
tree int_ftype_v4hi_int
|
20128 |
|
|
= build_function_type_list (integer_type_node,
|
20129 |
|
|
V4HI_type_node, integer_type_node, NULL_TREE);
|
20130 |
|
|
tree int_ftype_v2si_int
|
20131 |
|
|
= build_function_type_list (integer_type_node,
|
20132 |
|
|
V2SI_type_node, integer_type_node, NULL_TREE);
|
20133 |
|
|
tree v8qi_ftype_v8qi_int_int
|
20134 |
|
|
= build_function_type_list (V8QI_type_node,
|
20135 |
|
|
V8QI_type_node, integer_type_node,
|
20136 |
|
|
integer_type_node, NULL_TREE);
|
20137 |
|
|
tree v4hi_ftype_v4hi_int_int
|
20138 |
|
|
= build_function_type_list (V4HI_type_node,
|
20139 |
|
|
V4HI_type_node, integer_type_node,
|
20140 |
|
|
integer_type_node, NULL_TREE);
|
20141 |
|
|
tree v2si_ftype_v2si_int_int
|
20142 |
|
|
= build_function_type_list (V2SI_type_node,
|
20143 |
|
|
V2SI_type_node, integer_type_node,
|
20144 |
|
|
integer_type_node, NULL_TREE);
|
20145 |
|
|
/* Miscellaneous. */
|
20146 |
|
|
tree v8qi_ftype_v4hi_v4hi
|
20147 |
|
|
= build_function_type_list (V8QI_type_node,
|
20148 |
|
|
V4HI_type_node, V4HI_type_node, NULL_TREE);
|
20149 |
|
|
tree v4hi_ftype_v2si_v2si
|
20150 |
|
|
= build_function_type_list (V4HI_type_node,
|
20151 |
|
|
V2SI_type_node, V2SI_type_node, NULL_TREE);
|
20152 |
|
|
tree v2si_ftype_v4hi_v4hi
|
20153 |
|
|
= build_function_type_list (V2SI_type_node,
|
20154 |
|
|
V4HI_type_node, V4HI_type_node, NULL_TREE);
|
20155 |
|
|
tree v2si_ftype_v8qi_v8qi
|
20156 |
|
|
= build_function_type_list (V2SI_type_node,
|
20157 |
|
|
V8QI_type_node, V8QI_type_node, NULL_TREE);
|
20158 |
|
|
tree v4hi_ftype_v4hi_di
|
20159 |
|
|
= build_function_type_list (V4HI_type_node,
|
20160 |
|
|
V4HI_type_node, long_long_integer_type_node,
|
20161 |
|
|
NULL_TREE);
|
20162 |
|
|
tree v2si_ftype_v2si_di
|
20163 |
|
|
= build_function_type_list (V2SI_type_node,
|
20164 |
|
|
V2SI_type_node, long_long_integer_type_node,
|
20165 |
|
|
NULL_TREE);
|
20166 |
|
|
tree void_ftype_int_int
|
20167 |
|
|
= build_function_type_list (void_type_node,
|
20168 |
|
|
integer_type_node, integer_type_node,
|
20169 |
|
|
NULL_TREE);
|
20170 |
|
|
tree di_ftype_void
|
20171 |
|
|
= build_function_type_list (long_long_unsigned_type_node, NULL_TREE);
|
20172 |
|
|
tree di_ftype_v8qi
|
20173 |
|
|
= build_function_type_list (long_long_integer_type_node,
|
20174 |
|
|
V8QI_type_node, NULL_TREE);
|
20175 |
|
|
tree di_ftype_v4hi
|
20176 |
|
|
= build_function_type_list (long_long_integer_type_node,
|
20177 |
|
|
V4HI_type_node, NULL_TREE);
|
20178 |
|
|
tree di_ftype_v2si
|
20179 |
|
|
= build_function_type_list (long_long_integer_type_node,
|
20180 |
|
|
V2SI_type_node, NULL_TREE);
|
20181 |
|
|
tree v2si_ftype_v4hi
|
20182 |
|
|
= build_function_type_list (V2SI_type_node,
|
20183 |
|
|
V4HI_type_node, NULL_TREE);
|
20184 |
|
|
tree v4hi_ftype_v8qi
|
20185 |
|
|
= build_function_type_list (V4HI_type_node,
|
20186 |
|
|
V8QI_type_node, NULL_TREE);
|
20187 |
|
|
|
20188 |
|
|
tree di_ftype_di_v4hi_v4hi
|
20189 |
|
|
= build_function_type_list (long_long_unsigned_type_node,
|
20190 |
|
|
long_long_unsigned_type_node,
|
20191 |
|
|
V4HI_type_node, V4HI_type_node,
|
20192 |
|
|
NULL_TREE);
|
20193 |
|
|
|
20194 |
|
|
tree di_ftype_v4hi_v4hi
|
20195 |
|
|
= build_function_type_list (long_long_unsigned_type_node,
|
20196 |
|
|
V4HI_type_node,V4HI_type_node,
|
20197 |
|
|
NULL_TREE);
|
20198 |
|
|
|
20199 |
|
|
/* Normal vector binops. */
|
20200 |
|
|
tree v8qi_ftype_v8qi_v8qi
|
20201 |
|
|
= build_function_type_list (V8QI_type_node,
|
20202 |
|
|
V8QI_type_node, V8QI_type_node, NULL_TREE);
|
20203 |
|
|
tree v4hi_ftype_v4hi_v4hi
|
20204 |
|
|
= build_function_type_list (V4HI_type_node,
|
20205 |
|
|
V4HI_type_node,V4HI_type_node, NULL_TREE);
|
20206 |
|
|
tree v2si_ftype_v2si_v2si
|
20207 |
|
|
= build_function_type_list (V2SI_type_node,
|
20208 |
|
|
V2SI_type_node, V2SI_type_node, NULL_TREE);
|
20209 |
|
|
tree di_ftype_di_di
|
20210 |
|
|
= build_function_type_list (long_long_unsigned_type_node,
|
20211 |
|
|
long_long_unsigned_type_node,
|
20212 |
|
|
long_long_unsigned_type_node,
|
20213 |
|
|
NULL_TREE);
|
20214 |
|
|
|
20215 |
|
|
/* Add all builtins that are more or less simple operations on two
|
20216 |
|
|
operands. */
|
20217 |
|
|
for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
|
20218 |
|
|
{
|
20219 |
|
|
/* Use one of the operands; the target can have a different mode for
|
20220 |
|
|
mask-generating compares. */
|
20221 |
|
|
enum machine_mode mode;
|
20222 |
|
|
tree type;
|
20223 |
|
|
|
20224 |
|
|
if (d->name == 0)
|
20225 |
|
|
continue;
|
20226 |
|
|
|
20227 |
|
|
mode = insn_data[d->icode].operand[1].mode;
|
20228 |
|
|
|
20229 |
|
|
switch (mode)
|
20230 |
|
|
{
|
20231 |
|
|
case V8QImode:
|
20232 |
|
|
type = v8qi_ftype_v8qi_v8qi;
|
20233 |
|
|
break;
|
20234 |
|
|
case V4HImode:
|
20235 |
|
|
type = v4hi_ftype_v4hi_v4hi;
|
20236 |
|
|
break;
|
20237 |
|
|
case V2SImode:
|
20238 |
|
|
type = v2si_ftype_v2si_v2si;
|
20239 |
|
|
break;
|
20240 |
|
|
case DImode:
|
20241 |
|
|
type = di_ftype_di_di;
|
20242 |
|
|
break;
|
20243 |
|
|
|
20244 |
|
|
default:
|
20245 |
|
|
gcc_unreachable ();
|
20246 |
|
|
}
|
20247 |
|
|
|
20248 |
|
|
def_mbuiltin (d->mask, d->name, type, d->code);
|
20249 |
|
|
}
|
20250 |
|
|
|
20251 |
|
|
/* Add the remaining MMX insns with somewhat more complicated types. */
|
20252 |
|
|
#define iwmmx_mbuiltin(NAME, TYPE, CODE) \
|
20253 |
|
|
def_mbuiltin (FL_IWMMXT, "__builtin_arm_" NAME, (TYPE), \
|
20254 |
|
|
ARM_BUILTIN_ ## CODE)
|
20255 |
|
|
|
20256 |
|
|
iwmmx_mbuiltin ("wzero", di_ftype_void, WZERO);
|
20257 |
|
|
iwmmx_mbuiltin ("setwcx", void_ftype_int_int, SETWCX);
|
20258 |
|
|
iwmmx_mbuiltin ("getwcx", int_ftype_int, GETWCX);
|
20259 |
|
|
|
20260 |
|
|
iwmmx_mbuiltin ("wsllh", v4hi_ftype_v4hi_di, WSLLH);
|
20261 |
|
|
iwmmx_mbuiltin ("wsllw", v2si_ftype_v2si_di, WSLLW);
|
20262 |
|
|
iwmmx_mbuiltin ("wslld", di_ftype_di_di, WSLLD);
|
20263 |
|
|
iwmmx_mbuiltin ("wsllhi", v4hi_ftype_v4hi_int, WSLLHI);
|
20264 |
|
|
iwmmx_mbuiltin ("wsllwi", v2si_ftype_v2si_int, WSLLWI);
|
20265 |
|
|
iwmmx_mbuiltin ("wslldi", di_ftype_di_int, WSLLDI);
|
20266 |
|
|
|
20267 |
|
|
iwmmx_mbuiltin ("wsrlh", v4hi_ftype_v4hi_di, WSRLH);
|
20268 |
|
|
iwmmx_mbuiltin ("wsrlw", v2si_ftype_v2si_di, WSRLW);
|
20269 |
|
|
iwmmx_mbuiltin ("wsrld", di_ftype_di_di, WSRLD);
|
20270 |
|
|
iwmmx_mbuiltin ("wsrlhi", v4hi_ftype_v4hi_int, WSRLHI);
|
20271 |
|
|
iwmmx_mbuiltin ("wsrlwi", v2si_ftype_v2si_int, WSRLWI);
|
20272 |
|
|
iwmmx_mbuiltin ("wsrldi", di_ftype_di_int, WSRLDI);
|
20273 |
|
|
|
20274 |
|
|
iwmmx_mbuiltin ("wsrah", v4hi_ftype_v4hi_di, WSRAH);
|
20275 |
|
|
iwmmx_mbuiltin ("wsraw", v2si_ftype_v2si_di, WSRAW);
|
20276 |
|
|
iwmmx_mbuiltin ("wsrad", di_ftype_di_di, WSRAD);
|
20277 |
|
|
iwmmx_mbuiltin ("wsrahi", v4hi_ftype_v4hi_int, WSRAHI);
|
20278 |
|
|
iwmmx_mbuiltin ("wsrawi", v2si_ftype_v2si_int, WSRAWI);
|
20279 |
|
|
iwmmx_mbuiltin ("wsradi", di_ftype_di_int, WSRADI);
|
20280 |
|
|
|
20281 |
|
|
iwmmx_mbuiltin ("wrorh", v4hi_ftype_v4hi_di, WRORH);
|
20282 |
|
|
iwmmx_mbuiltin ("wrorw", v2si_ftype_v2si_di, WRORW);
|
20283 |
|
|
iwmmx_mbuiltin ("wrord", di_ftype_di_di, WRORD);
|
20284 |
|
|
iwmmx_mbuiltin ("wrorhi", v4hi_ftype_v4hi_int, WRORHI);
|
20285 |
|
|
iwmmx_mbuiltin ("wrorwi", v2si_ftype_v2si_int, WRORWI);
|
20286 |
|
|
iwmmx_mbuiltin ("wrordi", di_ftype_di_int, WRORDI);
|
20287 |
|
|
|
20288 |
|
|
iwmmx_mbuiltin ("wshufh", v4hi_ftype_v4hi_int, WSHUFH);
|
20289 |
|
|
|
20290 |
|
|
iwmmx_mbuiltin ("wsadb", v2si_ftype_v8qi_v8qi, WSADB);
|
20291 |
|
|
iwmmx_mbuiltin ("wsadh", v2si_ftype_v4hi_v4hi, WSADH);
|
20292 |
|
|
iwmmx_mbuiltin ("wsadbz", v2si_ftype_v8qi_v8qi, WSADBZ);
|
20293 |
|
|
iwmmx_mbuiltin ("wsadhz", v2si_ftype_v4hi_v4hi, WSADHZ);
|
20294 |
|
|
|
20295 |
|
|
iwmmx_mbuiltin ("textrmsb", int_ftype_v8qi_int, TEXTRMSB);
|
20296 |
|
|
iwmmx_mbuiltin ("textrmsh", int_ftype_v4hi_int, TEXTRMSH);
|
20297 |
|
|
iwmmx_mbuiltin ("textrmsw", int_ftype_v2si_int, TEXTRMSW);
|
20298 |
|
|
iwmmx_mbuiltin ("textrmub", int_ftype_v8qi_int, TEXTRMUB);
|
20299 |
|
|
iwmmx_mbuiltin ("textrmuh", int_ftype_v4hi_int, TEXTRMUH);
|
20300 |
|
|
iwmmx_mbuiltin ("textrmuw", int_ftype_v2si_int, TEXTRMUW);
|
20301 |
|
|
iwmmx_mbuiltin ("tinsrb", v8qi_ftype_v8qi_int_int, TINSRB);
|
20302 |
|
|
iwmmx_mbuiltin ("tinsrh", v4hi_ftype_v4hi_int_int, TINSRH);
|
20303 |
|
|
iwmmx_mbuiltin ("tinsrw", v2si_ftype_v2si_int_int, TINSRW);
|
20304 |
|
|
|
20305 |
|
|
iwmmx_mbuiltin ("waccb", di_ftype_v8qi, WACCB);
|
20306 |
|
|
iwmmx_mbuiltin ("wacch", di_ftype_v4hi, WACCH);
|
20307 |
|
|
iwmmx_mbuiltin ("waccw", di_ftype_v2si, WACCW);
|
20308 |
|
|
|
20309 |
|
|
iwmmx_mbuiltin ("tmovmskb", int_ftype_v8qi, TMOVMSKB);
|
20310 |
|
|
iwmmx_mbuiltin ("tmovmskh", int_ftype_v4hi, TMOVMSKH);
|
20311 |
|
|
iwmmx_mbuiltin ("tmovmskw", int_ftype_v2si, TMOVMSKW);
|
20312 |
|
|
|
20313 |
|
|
iwmmx_mbuiltin ("wpackhss", v8qi_ftype_v4hi_v4hi, WPACKHSS);
|
20314 |
|
|
iwmmx_mbuiltin ("wpackhus", v8qi_ftype_v4hi_v4hi, WPACKHUS);
|
20315 |
|
|
iwmmx_mbuiltin ("wpackwus", v4hi_ftype_v2si_v2si, WPACKWUS);
|
20316 |
|
|
iwmmx_mbuiltin ("wpackwss", v4hi_ftype_v2si_v2si, WPACKWSS);
|
20317 |
|
|
iwmmx_mbuiltin ("wpackdus", v2si_ftype_di_di, WPACKDUS);
|
20318 |
|
|
iwmmx_mbuiltin ("wpackdss", v2si_ftype_di_di, WPACKDSS);
|
20319 |
|
|
|
20320 |
|
|
iwmmx_mbuiltin ("wunpckehub", v4hi_ftype_v8qi, WUNPCKEHUB);
|
20321 |
|
|
iwmmx_mbuiltin ("wunpckehuh", v2si_ftype_v4hi, WUNPCKEHUH);
|
20322 |
|
|
iwmmx_mbuiltin ("wunpckehuw", di_ftype_v2si, WUNPCKEHUW);
|
20323 |
|
|
iwmmx_mbuiltin ("wunpckehsb", v4hi_ftype_v8qi, WUNPCKEHSB);
|
20324 |
|
|
iwmmx_mbuiltin ("wunpckehsh", v2si_ftype_v4hi, WUNPCKEHSH);
|
20325 |
|
|
iwmmx_mbuiltin ("wunpckehsw", di_ftype_v2si, WUNPCKEHSW);
|
20326 |
|
|
iwmmx_mbuiltin ("wunpckelub", v4hi_ftype_v8qi, WUNPCKELUB);
|
20327 |
|
|
iwmmx_mbuiltin ("wunpckeluh", v2si_ftype_v4hi, WUNPCKELUH);
|
20328 |
|
|
iwmmx_mbuiltin ("wunpckeluw", di_ftype_v2si, WUNPCKELUW);
|
20329 |
|
|
iwmmx_mbuiltin ("wunpckelsb", v4hi_ftype_v8qi, WUNPCKELSB);
|
20330 |
|
|
iwmmx_mbuiltin ("wunpckelsh", v2si_ftype_v4hi, WUNPCKELSH);
|
20331 |
|
|
iwmmx_mbuiltin ("wunpckelsw", di_ftype_v2si, WUNPCKELSW);
|
20332 |
|
|
|
20333 |
|
|
iwmmx_mbuiltin ("wmacs", di_ftype_di_v4hi_v4hi, WMACS);
|
20334 |
|
|
iwmmx_mbuiltin ("wmacsz", di_ftype_v4hi_v4hi, WMACSZ);
|
20335 |
|
|
iwmmx_mbuiltin ("wmacu", di_ftype_di_v4hi_v4hi, WMACU);
|
20336 |
|
|
iwmmx_mbuiltin ("wmacuz", di_ftype_v4hi_v4hi, WMACUZ);
|
20337 |
|
|
|
20338 |
|
|
iwmmx_mbuiltin ("walign", v8qi_ftype_v8qi_v8qi_int, WALIGN);
|
20339 |
|
|
iwmmx_mbuiltin ("tmia", di_ftype_di_int_int, TMIA);
|
20340 |
|
|
iwmmx_mbuiltin ("tmiaph", di_ftype_di_int_int, TMIAPH);
|
20341 |
|
|
iwmmx_mbuiltin ("tmiabb", di_ftype_di_int_int, TMIABB);
|
20342 |
|
|
iwmmx_mbuiltin ("tmiabt", di_ftype_di_int_int, TMIABT);
|
20343 |
|
|
iwmmx_mbuiltin ("tmiatb", di_ftype_di_int_int, TMIATB);
|
20344 |
|
|
iwmmx_mbuiltin ("tmiatt", di_ftype_di_int_int, TMIATT);
|
20345 |
|
|
|
20346 |
|
|
#undef iwmmx_mbuiltin
|
20347 |
|
|
}
|
20348 |
|
|
|
20349 |
|
|
static void
|
20350 |
|
|
arm_init_tls_builtins (void)
|
20351 |
|
|
{
|
20352 |
|
|
tree ftype, decl;
|
20353 |
|
|
|
20354 |
|
|
ftype = build_function_type (ptr_type_node, void_list_node);
|
20355 |
|
|
decl = add_builtin_function ("__builtin_thread_pointer", ftype,
|
20356 |
|
|
ARM_BUILTIN_THREAD_POINTER, BUILT_IN_MD,
|
20357 |
|
|
NULL, NULL_TREE);
|
20358 |
|
|
TREE_NOTHROW (decl) = 1;
|
20359 |
|
|
TREE_READONLY (decl) = 1;
|
20360 |
|
|
arm_builtin_decls[ARM_BUILTIN_THREAD_POINTER] = decl;
|
20361 |
|
|
}
|
20362 |
|
|
|
20363 |
|
|
static void
|
20364 |
|
|
arm_init_fp16_builtins (void)
|
20365 |
|
|
{
|
20366 |
|
|
tree fp16_type = make_node (REAL_TYPE);
|
20367 |
|
|
TYPE_PRECISION (fp16_type) = 16;
|
20368 |
|
|
layout_type (fp16_type);
|
20369 |
|
|
(*lang_hooks.types.register_builtin_type) (fp16_type, "__fp16");
|
20370 |
|
|
}
|
20371 |
|
|
|
20372 |
|
|
static void
|
20373 |
|
|
arm_init_builtins (void)
|
20374 |
|
|
{
|
20375 |
|
|
arm_init_tls_builtins ();
|
20376 |
|
|
|
20377 |
|
|
if (TARGET_REALLY_IWMMXT)
|
20378 |
|
|
arm_init_iwmmxt_builtins ();
|
20379 |
|
|
|
20380 |
|
|
if (TARGET_NEON)
|
20381 |
|
|
arm_init_neon_builtins ();
|
20382 |
|
|
|
20383 |
|
|
if (arm_fp16_format)
|
20384 |
|
|
arm_init_fp16_builtins ();
|
20385 |
|
|
}
|
20386 |
|
|
|
20387 |
|
|
/* Return the ARM builtin for CODE. */
|
20388 |
|
|
|
20389 |
|
|
static tree
|
20390 |
|
|
arm_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
|
20391 |
|
|
{
|
20392 |
|
|
if (code >= ARM_BUILTIN_MAX)
|
20393 |
|
|
return error_mark_node;
|
20394 |
|
|
|
20395 |
|
|
return arm_builtin_decls[code];
|
20396 |
|
|
}
|
20397 |
|
|
|
20398 |
|
|
/* Implement TARGET_INVALID_PARAMETER_TYPE. */
|
20399 |
|
|
|
20400 |
|
|
static const char *
|
20401 |
|
|
arm_invalid_parameter_type (const_tree t)
|
20402 |
|
|
{
|
20403 |
|
|
if (SCALAR_FLOAT_TYPE_P (t) && TYPE_PRECISION (t) == 16)
|
20404 |
|
|
return N_("function parameters cannot have __fp16 type");
|
20405 |
|
|
return NULL;
|
20406 |
|
|
}
|
20407 |
|
|
|
20408 |
|
|
/* Implement TARGET_INVALID_PARAMETER_TYPE. */
|
20409 |
|
|
|
20410 |
|
|
static const char *
|
20411 |
|
|
arm_invalid_return_type (const_tree t)
|
20412 |
|
|
{
|
20413 |
|
|
if (SCALAR_FLOAT_TYPE_P (t) && TYPE_PRECISION (t) == 16)
|
20414 |
|
|
return N_("functions cannot return __fp16 type");
|
20415 |
|
|
return NULL;
|
20416 |
|
|
}
|
20417 |
|
|
|
20418 |
|
|
/* Implement TARGET_PROMOTED_TYPE. */
|
20419 |
|
|
|
20420 |
|
|
static tree
|
20421 |
|
|
arm_promoted_type (const_tree t)
|
20422 |
|
|
{
|
20423 |
|
|
if (SCALAR_FLOAT_TYPE_P (t) && TYPE_PRECISION (t) == 16)
|
20424 |
|
|
return float_type_node;
|
20425 |
|
|
return NULL_TREE;
|
20426 |
|
|
}
|
20427 |
|
|
|
20428 |
|
|
/* Implement TARGET_CONVERT_TO_TYPE.
|
20429 |
|
|
Specifically, this hook implements the peculiarity of the ARM
|
20430 |
|
|
half-precision floating-point C semantics that requires conversions between
|
20431 |
|
|
__fp16 to or from double to do an intermediate conversion to float. */
|
20432 |
|
|
|
20433 |
|
|
static tree
|
20434 |
|
|
arm_convert_to_type (tree type, tree expr)
|
20435 |
|
|
{
|
20436 |
|
|
tree fromtype = TREE_TYPE (expr);
|
20437 |
|
|
if (!SCALAR_FLOAT_TYPE_P (fromtype) || !SCALAR_FLOAT_TYPE_P (type))
|
20438 |
|
|
return NULL_TREE;
|
20439 |
|
|
if ((TYPE_PRECISION (fromtype) == 16 && TYPE_PRECISION (type) > 32)
|
20440 |
|
|
|| (TYPE_PRECISION (type) == 16 && TYPE_PRECISION (fromtype) > 32))
|
20441 |
|
|
return convert (type, convert (float_type_node, expr));
|
20442 |
|
|
return NULL_TREE;
|
20443 |
|
|
}
|
20444 |
|
|
|
20445 |
|
|
/* Implement TARGET_SCALAR_MODE_SUPPORTED_P.
|
20446 |
|
|
This simply adds HFmode as a supported mode; even though we don't
|
20447 |
|
|
implement arithmetic on this type directly, it's supported by
|
20448 |
|
|
optabs conversions, much the way the double-word arithmetic is
|
20449 |
|
|
special-cased in the default hook. */
|
20450 |
|
|
|
20451 |
|
|
static bool
|
20452 |
|
|
arm_scalar_mode_supported_p (enum machine_mode mode)
|
20453 |
|
|
{
|
20454 |
|
|
if (mode == HFmode)
|
20455 |
|
|
return (arm_fp16_format != ARM_FP16_FORMAT_NONE);
|
20456 |
|
|
else if (ALL_FIXED_POINT_MODE_P (mode))
|
20457 |
|
|
return true;
|
20458 |
|
|
else
|
20459 |
|
|
return default_scalar_mode_supported_p (mode);
|
20460 |
|
|
}
|
20461 |
|
|
|
20462 |
|
|
/* Errors in the source file can cause expand_expr to return const0_rtx
|
20463 |
|
|
where we expect a vector. To avoid crashing, use one of the vector
|
20464 |
|
|
clear instructions. */
|
20465 |
|
|
|
20466 |
|
|
static rtx
|
20467 |
|
|
safe_vector_operand (rtx x, enum machine_mode mode)
|
20468 |
|
|
{
|
20469 |
|
|
if (x != const0_rtx)
|
20470 |
|
|
return x;
|
20471 |
|
|
x = gen_reg_rtx (mode);
|
20472 |
|
|
|
20473 |
|
|
emit_insn (gen_iwmmxt_clrdi (mode == DImode ? x
|
20474 |
|
|
: gen_rtx_SUBREG (DImode, x, 0)));
|
20475 |
|
|
return x;
|
20476 |
|
|
}
|
20477 |
|
|
|
20478 |
|
|
/* Subroutine of arm_expand_builtin to take care of binop insns. */
|
20479 |
|
|
|
20480 |
|
|
static rtx
|
20481 |
|
|
arm_expand_binop_builtin (enum insn_code icode,
|
20482 |
|
|
tree exp, rtx target)
|
20483 |
|
|
{
|
20484 |
|
|
rtx pat;
|
20485 |
|
|
tree arg0 = CALL_EXPR_ARG (exp, 0);
|
20486 |
|
|
tree arg1 = CALL_EXPR_ARG (exp, 1);
|
20487 |
|
|
rtx op0 = expand_normal (arg0);
|
20488 |
|
|
rtx op1 = expand_normal (arg1);
|
20489 |
|
|
enum machine_mode tmode = insn_data[icode].operand[0].mode;
|
20490 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
20491 |
|
|
enum machine_mode mode1 = insn_data[icode].operand[2].mode;
|
20492 |
|
|
|
20493 |
|
|
if (VECTOR_MODE_P (mode0))
|
20494 |
|
|
op0 = safe_vector_operand (op0, mode0);
|
20495 |
|
|
if (VECTOR_MODE_P (mode1))
|
20496 |
|
|
op1 = safe_vector_operand (op1, mode1);
|
20497 |
|
|
|
20498 |
|
|
if (! target
|
20499 |
|
|
|| GET_MODE (target) != tmode
|
20500 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
|
20501 |
|
|
target = gen_reg_rtx (tmode);
|
20502 |
|
|
|
20503 |
|
|
gcc_assert (GET_MODE (op0) == mode0 && GET_MODE (op1) == mode1);
|
20504 |
|
|
|
20505 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
|
20506 |
|
|
op0 = copy_to_mode_reg (mode0, op0);
|
20507 |
|
|
if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
|
20508 |
|
|
op1 = copy_to_mode_reg (mode1, op1);
|
20509 |
|
|
|
20510 |
|
|
pat = GEN_FCN (icode) (target, op0, op1);
|
20511 |
|
|
if (! pat)
|
20512 |
|
|
return 0;
|
20513 |
|
|
emit_insn (pat);
|
20514 |
|
|
return target;
|
20515 |
|
|
}
|
20516 |
|
|
|
20517 |
|
|
/* Subroutine of arm_expand_builtin to take care of unop insns. */
|
20518 |
|
|
|
20519 |
|
|
static rtx
|
20520 |
|
|
arm_expand_unop_builtin (enum insn_code icode,
|
20521 |
|
|
tree exp, rtx target, int do_load)
|
20522 |
|
|
{
|
20523 |
|
|
rtx pat;
|
20524 |
|
|
tree arg0 = CALL_EXPR_ARG (exp, 0);
|
20525 |
|
|
rtx op0 = expand_normal (arg0);
|
20526 |
|
|
enum machine_mode tmode = insn_data[icode].operand[0].mode;
|
20527 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
20528 |
|
|
|
20529 |
|
|
if (! target
|
20530 |
|
|
|| GET_MODE (target) != tmode
|
20531 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
|
20532 |
|
|
target = gen_reg_rtx (tmode);
|
20533 |
|
|
if (do_load)
|
20534 |
|
|
op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
|
20535 |
|
|
else
|
20536 |
|
|
{
|
20537 |
|
|
if (VECTOR_MODE_P (mode0))
|
20538 |
|
|
op0 = safe_vector_operand (op0, mode0);
|
20539 |
|
|
|
20540 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
|
20541 |
|
|
op0 = copy_to_mode_reg (mode0, op0);
|
20542 |
|
|
}
|
20543 |
|
|
|
20544 |
|
|
pat = GEN_FCN (icode) (target, op0);
|
20545 |
|
|
if (! pat)
|
20546 |
|
|
return 0;
|
20547 |
|
|
emit_insn (pat);
|
20548 |
|
|
return target;
|
20549 |
|
|
}
|
20550 |
|
|
|
20551 |
|
|
typedef enum {
|
20552 |
|
|
NEON_ARG_COPY_TO_REG,
|
20553 |
|
|
NEON_ARG_CONSTANT,
|
20554 |
|
|
NEON_ARG_MEMORY,
|
20555 |
|
|
NEON_ARG_STOP
|
20556 |
|
|
} builtin_arg;
|
20557 |
|
|
|
20558 |
|
|
#define NEON_MAX_BUILTIN_ARGS 5
|
20559 |
|
|
|
20560 |
|
|
/* EXP is a pointer argument to a Neon load or store intrinsic. Derive
|
20561 |
|
|
and return an expression for the accessed memory.
|
20562 |
|
|
|
20563 |
|
|
The intrinsic function operates on a block of registers that has
|
20564 |
|
|
mode REG_MODE. This block contains vectors of type TYPE_MODE.
|
20565 |
|
|
The function references the memory at EXP in mode MEM_MODE;
|
20566 |
|
|
this mode may be BLKmode if no more suitable mode is available. */
|
20567 |
|
|
|
20568 |
|
|
static tree
|
20569 |
|
|
neon_dereference_pointer (tree exp, enum machine_mode mem_mode,
|
20570 |
|
|
enum machine_mode reg_mode,
|
20571 |
|
|
neon_builtin_type_mode type_mode)
|
20572 |
|
|
{
|
20573 |
|
|
HOST_WIDE_INT reg_size, vector_size, nvectors, nelems;
|
20574 |
|
|
tree elem_type, upper_bound, array_type;
|
20575 |
|
|
|
20576 |
|
|
/* Work out the size of the register block in bytes. */
|
20577 |
|
|
reg_size = GET_MODE_SIZE (reg_mode);
|
20578 |
|
|
|
20579 |
|
|
/* Work out the size of each vector in bytes. */
|
20580 |
|
|
gcc_assert (TYPE_MODE_BIT (type_mode) & (TB_DREG | TB_QREG));
|
20581 |
|
|
vector_size = (TYPE_MODE_BIT (type_mode) & TB_QREG ? 16 : 8);
|
20582 |
|
|
|
20583 |
|
|
/* Work out how many vectors there are. */
|
20584 |
|
|
gcc_assert (reg_size % vector_size == 0);
|
20585 |
|
|
nvectors = reg_size / vector_size;
|
20586 |
|
|
|
20587 |
|
|
/* Work out how many elements are being loaded or stored.
|
20588 |
|
|
MEM_MODE == REG_MODE implies a one-to-one mapping between register
|
20589 |
|
|
and memory elements; anything else implies a lane load or store. */
|
20590 |
|
|
if (mem_mode == reg_mode)
|
20591 |
|
|
nelems = vector_size * nvectors;
|
20592 |
|
|
else
|
20593 |
|
|
nelems = nvectors;
|
20594 |
|
|
|
20595 |
|
|
/* Work out the type of each element. */
|
20596 |
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (exp)));
|
20597 |
|
|
elem_type = TREE_TYPE (TREE_TYPE (exp));
|
20598 |
|
|
|
20599 |
|
|
/* Create a type that describes the full access. */
|
20600 |
|
|
upper_bound = build_int_cst (size_type_node, nelems - 1);
|
20601 |
|
|
array_type = build_array_type (elem_type, build_index_type (upper_bound));
|
20602 |
|
|
|
20603 |
|
|
/* Dereference EXP using that type. */
|
20604 |
|
|
exp = convert (build_pointer_type (array_type), exp);
|
20605 |
|
|
return fold_build2 (MEM_REF, array_type, exp,
|
20606 |
|
|
build_int_cst (TREE_TYPE (exp), 0));
|
20607 |
|
|
}
|
20608 |
|
|
|
20609 |
|
|
/* Expand a Neon builtin. */
|
20610 |
|
|
static rtx
|
20611 |
|
|
arm_expand_neon_args (rtx target, int icode, int have_retval,
|
20612 |
|
|
neon_builtin_type_mode type_mode,
|
20613 |
|
|
tree exp, ...)
|
20614 |
|
|
{
|
20615 |
|
|
va_list ap;
|
20616 |
|
|
rtx pat;
|
20617 |
|
|
tree arg[NEON_MAX_BUILTIN_ARGS];
|
20618 |
|
|
rtx op[NEON_MAX_BUILTIN_ARGS];
|
20619 |
|
|
enum machine_mode tmode = insn_data[icode].operand[0].mode;
|
20620 |
|
|
enum machine_mode mode[NEON_MAX_BUILTIN_ARGS];
|
20621 |
|
|
enum machine_mode other_mode;
|
20622 |
|
|
int argc = 0;
|
20623 |
|
|
int opno;
|
20624 |
|
|
|
20625 |
|
|
if (have_retval
|
20626 |
|
|
&& (!target
|
20627 |
|
|
|| GET_MODE (target) != tmode
|
20628 |
|
|
|| !(*insn_data[icode].operand[0].predicate) (target, tmode)))
|
20629 |
|
|
target = gen_reg_rtx (tmode);
|
20630 |
|
|
|
20631 |
|
|
va_start (ap, exp);
|
20632 |
|
|
|
20633 |
|
|
for (;;)
|
20634 |
|
|
{
|
20635 |
|
|
builtin_arg thisarg = (builtin_arg) va_arg (ap, int);
|
20636 |
|
|
|
20637 |
|
|
if (thisarg == NEON_ARG_STOP)
|
20638 |
|
|
break;
|
20639 |
|
|
else
|
20640 |
|
|
{
|
20641 |
|
|
opno = argc + have_retval;
|
20642 |
|
|
mode[argc] = insn_data[icode].operand[opno].mode;
|
20643 |
|
|
arg[argc] = CALL_EXPR_ARG (exp, argc);
|
20644 |
|
|
if (thisarg == NEON_ARG_MEMORY)
|
20645 |
|
|
{
|
20646 |
|
|
other_mode = insn_data[icode].operand[1 - opno].mode;
|
20647 |
|
|
arg[argc] = neon_dereference_pointer (arg[argc], mode[argc],
|
20648 |
|
|
other_mode, type_mode);
|
20649 |
|
|
}
|
20650 |
|
|
op[argc] = expand_normal (arg[argc]);
|
20651 |
|
|
|
20652 |
|
|
switch (thisarg)
|
20653 |
|
|
{
|
20654 |
|
|
case NEON_ARG_COPY_TO_REG:
|
20655 |
|
|
/*gcc_assert (GET_MODE (op[argc]) == mode[argc]);*/
|
20656 |
|
|
if (!(*insn_data[icode].operand[opno].predicate)
|
20657 |
|
|
(op[argc], mode[argc]))
|
20658 |
|
|
op[argc] = copy_to_mode_reg (mode[argc], op[argc]);
|
20659 |
|
|
break;
|
20660 |
|
|
|
20661 |
|
|
case NEON_ARG_CONSTANT:
|
20662 |
|
|
/* FIXME: This error message is somewhat unhelpful. */
|
20663 |
|
|
if (!(*insn_data[icode].operand[opno].predicate)
|
20664 |
|
|
(op[argc], mode[argc]))
|
20665 |
|
|
error ("argument must be a constant");
|
20666 |
|
|
break;
|
20667 |
|
|
|
20668 |
|
|
case NEON_ARG_MEMORY:
|
20669 |
|
|
gcc_assert (MEM_P (op[argc]));
|
20670 |
|
|
PUT_MODE (op[argc], mode[argc]);
|
20671 |
|
|
/* ??? arm_neon.h uses the same built-in functions for signed
|
20672 |
|
|
and unsigned accesses, casting where necessary. This isn't
|
20673 |
|
|
alias safe. */
|
20674 |
|
|
set_mem_alias_set (op[argc], 0);
|
20675 |
|
|
if (!(*insn_data[icode].operand[opno].predicate)
|
20676 |
|
|
(op[argc], mode[argc]))
|
20677 |
|
|
op[argc] = (replace_equiv_address
|
20678 |
|
|
(op[argc], force_reg (Pmode, XEXP (op[argc], 0))));
|
20679 |
|
|
break;
|
20680 |
|
|
|
20681 |
|
|
case NEON_ARG_STOP:
|
20682 |
|
|
gcc_unreachable ();
|
20683 |
|
|
}
|
20684 |
|
|
|
20685 |
|
|
argc++;
|
20686 |
|
|
}
|
20687 |
|
|
}
|
20688 |
|
|
|
20689 |
|
|
va_end (ap);
|
20690 |
|
|
|
20691 |
|
|
if (have_retval)
|
20692 |
|
|
switch (argc)
|
20693 |
|
|
{
|
20694 |
|
|
case 1:
|
20695 |
|
|
pat = GEN_FCN (icode) (target, op[0]);
|
20696 |
|
|
break;
|
20697 |
|
|
|
20698 |
|
|
case 2:
|
20699 |
|
|
pat = GEN_FCN (icode) (target, op[0], op[1]);
|
20700 |
|
|
break;
|
20701 |
|
|
|
20702 |
|
|
case 3:
|
20703 |
|
|
pat = GEN_FCN (icode) (target, op[0], op[1], op[2]);
|
20704 |
|
|
break;
|
20705 |
|
|
|
20706 |
|
|
case 4:
|
20707 |
|
|
pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3]);
|
20708 |
|
|
break;
|
20709 |
|
|
|
20710 |
|
|
case 5:
|
20711 |
|
|
pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3], op[4]);
|
20712 |
|
|
break;
|
20713 |
|
|
|
20714 |
|
|
default:
|
20715 |
|
|
gcc_unreachable ();
|
20716 |
|
|
}
|
20717 |
|
|
else
|
20718 |
|
|
switch (argc)
|
20719 |
|
|
{
|
20720 |
|
|
case 1:
|
20721 |
|
|
pat = GEN_FCN (icode) (op[0]);
|
20722 |
|
|
break;
|
20723 |
|
|
|
20724 |
|
|
case 2:
|
20725 |
|
|
pat = GEN_FCN (icode) (op[0], op[1]);
|
20726 |
|
|
break;
|
20727 |
|
|
|
20728 |
|
|
case 3:
|
20729 |
|
|
pat = GEN_FCN (icode) (op[0], op[1], op[2]);
|
20730 |
|
|
break;
|
20731 |
|
|
|
20732 |
|
|
case 4:
|
20733 |
|
|
pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
|
20734 |
|
|
break;
|
20735 |
|
|
|
20736 |
|
|
case 5:
|
20737 |
|
|
pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3], op[4]);
|
20738 |
|
|
break;
|
20739 |
|
|
|
20740 |
|
|
default:
|
20741 |
|
|
gcc_unreachable ();
|
20742 |
|
|
}
|
20743 |
|
|
|
20744 |
|
|
if (!pat)
|
20745 |
|
|
return 0;
|
20746 |
|
|
|
20747 |
|
|
emit_insn (pat);
|
20748 |
|
|
|
20749 |
|
|
return target;
|
20750 |
|
|
}
|
20751 |
|
|
|
20752 |
|
|
/* Expand a Neon builtin. These are "special" because they don't have symbolic
|
20753 |
|
|
constants defined per-instruction or per instruction-variant. Instead, the
|
20754 |
|
|
required info is looked up in the table neon_builtin_data. */
|
20755 |
|
|
static rtx
|
20756 |
|
|
arm_expand_neon_builtin (int fcode, tree exp, rtx target)
|
20757 |
|
|
{
|
20758 |
|
|
neon_builtin_datum *d = &neon_builtin_data[fcode - ARM_BUILTIN_NEON_BASE];
|
20759 |
|
|
neon_itype itype = d->itype;
|
20760 |
|
|
enum insn_code icode = d->code;
|
20761 |
|
|
neon_builtin_type_mode type_mode = d->mode;
|
20762 |
|
|
|
20763 |
|
|
switch (itype)
|
20764 |
|
|
{
|
20765 |
|
|
case NEON_UNOP:
|
20766 |
|
|
case NEON_CONVERT:
|
20767 |
|
|
case NEON_DUPLANE:
|
20768 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20769 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT, NEON_ARG_STOP);
|
20770 |
|
|
|
20771 |
|
|
case NEON_BINOP:
|
20772 |
|
|
case NEON_SETLANE:
|
20773 |
|
|
case NEON_SCALARMUL:
|
20774 |
|
|
case NEON_SCALARMULL:
|
20775 |
|
|
case NEON_SCALARMULH:
|
20776 |
|
|
case NEON_SHIFTINSERT:
|
20777 |
|
|
case NEON_LOGICBINOP:
|
20778 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20779 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT,
|
20780 |
|
|
NEON_ARG_STOP);
|
20781 |
|
|
|
20782 |
|
|
case NEON_TERNOP:
|
20783 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20784 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG,
|
20785 |
|
|
NEON_ARG_CONSTANT, NEON_ARG_STOP);
|
20786 |
|
|
|
20787 |
|
|
case NEON_GETLANE:
|
20788 |
|
|
case NEON_FIXCONV:
|
20789 |
|
|
case NEON_SHIFTIMM:
|
20790 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20791 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT, NEON_ARG_CONSTANT,
|
20792 |
|
|
NEON_ARG_STOP);
|
20793 |
|
|
|
20794 |
|
|
case NEON_CREATE:
|
20795 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20796 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_STOP);
|
20797 |
|
|
|
20798 |
|
|
case NEON_DUP:
|
20799 |
|
|
case NEON_SPLIT:
|
20800 |
|
|
case NEON_REINTERP:
|
20801 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20802 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_STOP);
|
20803 |
|
|
|
20804 |
|
|
case NEON_COMBINE:
|
20805 |
|
|
case NEON_VTBL:
|
20806 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20807 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_STOP);
|
20808 |
|
|
|
20809 |
|
|
case NEON_RESULTPAIR:
|
20810 |
|
|
return arm_expand_neon_args (target, icode, 0, type_mode, exp,
|
20811 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG,
|
20812 |
|
|
NEON_ARG_STOP);
|
20813 |
|
|
|
20814 |
|
|
case NEON_LANEMUL:
|
20815 |
|
|
case NEON_LANEMULL:
|
20816 |
|
|
case NEON_LANEMULH:
|
20817 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20818 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT,
|
20819 |
|
|
NEON_ARG_CONSTANT, NEON_ARG_STOP);
|
20820 |
|
|
|
20821 |
|
|
case NEON_LANEMAC:
|
20822 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20823 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG,
|
20824 |
|
|
NEON_ARG_CONSTANT, NEON_ARG_CONSTANT, NEON_ARG_STOP);
|
20825 |
|
|
|
20826 |
|
|
case NEON_SHIFTACC:
|
20827 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20828 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT,
|
20829 |
|
|
NEON_ARG_CONSTANT, NEON_ARG_STOP);
|
20830 |
|
|
|
20831 |
|
|
case NEON_SCALARMAC:
|
20832 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20833 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG,
|
20834 |
|
|
NEON_ARG_CONSTANT, NEON_ARG_STOP);
|
20835 |
|
|
|
20836 |
|
|
case NEON_SELECT:
|
20837 |
|
|
case NEON_VTBX:
|
20838 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20839 |
|
|
NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG, NEON_ARG_COPY_TO_REG,
|
20840 |
|
|
NEON_ARG_STOP);
|
20841 |
|
|
|
20842 |
|
|
case NEON_LOAD1:
|
20843 |
|
|
case NEON_LOADSTRUCT:
|
20844 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20845 |
|
|
NEON_ARG_MEMORY, NEON_ARG_STOP);
|
20846 |
|
|
|
20847 |
|
|
case NEON_LOAD1LANE:
|
20848 |
|
|
case NEON_LOADSTRUCTLANE:
|
20849 |
|
|
return arm_expand_neon_args (target, icode, 1, type_mode, exp,
|
20850 |
|
|
NEON_ARG_MEMORY, NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT,
|
20851 |
|
|
NEON_ARG_STOP);
|
20852 |
|
|
|
20853 |
|
|
case NEON_STORE1:
|
20854 |
|
|
case NEON_STORESTRUCT:
|
20855 |
|
|
return arm_expand_neon_args (target, icode, 0, type_mode, exp,
|
20856 |
|
|
NEON_ARG_MEMORY, NEON_ARG_COPY_TO_REG, NEON_ARG_STOP);
|
20857 |
|
|
|
20858 |
|
|
case NEON_STORE1LANE:
|
20859 |
|
|
case NEON_STORESTRUCTLANE:
|
20860 |
|
|
return arm_expand_neon_args (target, icode, 0, type_mode, exp,
|
20861 |
|
|
NEON_ARG_MEMORY, NEON_ARG_COPY_TO_REG, NEON_ARG_CONSTANT,
|
20862 |
|
|
NEON_ARG_STOP);
|
20863 |
|
|
}
|
20864 |
|
|
|
20865 |
|
|
gcc_unreachable ();
|
20866 |
|
|
}
|
20867 |
|
|
|
20868 |
|
|
/* Emit code to reinterpret one Neon type as another, without altering bits. */
|
20869 |
|
|
void
|
20870 |
|
|
neon_reinterpret (rtx dest, rtx src)
|
20871 |
|
|
{
|
20872 |
|
|
emit_move_insn (dest, gen_lowpart (GET_MODE (dest), src));
|
20873 |
|
|
}
|
20874 |
|
|
|
20875 |
|
|
/* Emit code to place a Neon pair result in memory locations (with equal
|
20876 |
|
|
registers). */
|
20877 |
|
|
void
|
20878 |
|
|
neon_emit_pair_result_insn (enum machine_mode mode,
|
20879 |
|
|
rtx (*intfn) (rtx, rtx, rtx, rtx), rtx destaddr,
|
20880 |
|
|
rtx op1, rtx op2)
|
20881 |
|
|
{
|
20882 |
|
|
rtx mem = gen_rtx_MEM (mode, destaddr);
|
20883 |
|
|
rtx tmp1 = gen_reg_rtx (mode);
|
20884 |
|
|
rtx tmp2 = gen_reg_rtx (mode);
|
20885 |
|
|
|
20886 |
|
|
emit_insn (intfn (tmp1, op1, op2, tmp2));
|
20887 |
|
|
|
20888 |
|
|
emit_move_insn (mem, tmp1);
|
20889 |
|
|
mem = adjust_address (mem, mode, GET_MODE_SIZE (mode));
|
20890 |
|
|
emit_move_insn (mem, tmp2);
|
20891 |
|
|
}
|
20892 |
|
|
|
20893 |
|
|
/* Set up OPERANDS for a register copy from SRC to DEST, taking care
|
20894 |
|
|
not to early-clobber SRC registers in the process.
|
20895 |
|
|
|
20896 |
|
|
We assume that the operands described by SRC and DEST represent a
|
20897 |
|
|
decomposed copy of OPERANDS[1] into OPERANDS[0]. COUNT is the
|
20898 |
|
|
number of components into which the copy has been decomposed. */
|
20899 |
|
|
void
|
20900 |
|
|
neon_disambiguate_copy (rtx *operands, rtx *dest, rtx *src, unsigned int count)
|
20901 |
|
|
{
|
20902 |
|
|
unsigned int i;
|
20903 |
|
|
|
20904 |
|
|
if (!reg_overlap_mentioned_p (operands[0], operands[1])
|
20905 |
|
|
|| REGNO (operands[0]) < REGNO (operands[1]))
|
20906 |
|
|
{
|
20907 |
|
|
for (i = 0; i < count; i++)
|
20908 |
|
|
{
|
20909 |
|
|
operands[2 * i] = dest[i];
|
20910 |
|
|
operands[2 * i + 1] = src[i];
|
20911 |
|
|
}
|
20912 |
|
|
}
|
20913 |
|
|
else
|
20914 |
|
|
{
|
20915 |
|
|
for (i = 0; i < count; i++)
|
20916 |
|
|
{
|
20917 |
|
|
operands[2 * i] = dest[count - i - 1];
|
20918 |
|
|
operands[2 * i + 1] = src[count - i - 1];
|
20919 |
|
|
}
|
20920 |
|
|
}
|
20921 |
|
|
}
|
20922 |
|
|
|
20923 |
|
|
/* Split operands into moves from op[1] + op[2] into op[0]. */
|
20924 |
|
|
|
20925 |
|
|
void
|
20926 |
|
|
neon_split_vcombine (rtx operands[3])
|
20927 |
|
|
{
|
20928 |
|
|
unsigned int dest = REGNO (operands[0]);
|
20929 |
|
|
unsigned int src1 = REGNO (operands[1]);
|
20930 |
|
|
unsigned int src2 = REGNO (operands[2]);
|
20931 |
|
|
enum machine_mode halfmode = GET_MODE (operands[1]);
|
20932 |
|
|
unsigned int halfregs = HARD_REGNO_NREGS (src1, halfmode);
|
20933 |
|
|
rtx destlo, desthi;
|
20934 |
|
|
|
20935 |
|
|
if (src1 == dest && src2 == dest + halfregs)
|
20936 |
|
|
{
|
20937 |
|
|
/* No-op move. Can't split to nothing; emit something. */
|
20938 |
|
|
emit_note (NOTE_INSN_DELETED);
|
20939 |
|
|
return;
|
20940 |
|
|
}
|
20941 |
|
|
|
20942 |
|
|
/* Preserve register attributes for variable tracking. */
|
20943 |
|
|
destlo = gen_rtx_REG_offset (operands[0], halfmode, dest, 0);
|
20944 |
|
|
desthi = gen_rtx_REG_offset (operands[0], halfmode, dest + halfregs,
|
20945 |
|
|
GET_MODE_SIZE (halfmode));
|
20946 |
|
|
|
20947 |
|
|
/* Special case of reversed high/low parts. Use VSWP. */
|
20948 |
|
|
if (src2 == dest && src1 == dest + halfregs)
|
20949 |
|
|
{
|
20950 |
|
|
rtx x = gen_rtx_SET (VOIDmode, destlo, operands[1]);
|
20951 |
|
|
rtx y = gen_rtx_SET (VOIDmode, desthi, operands[2]);
|
20952 |
|
|
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x, y)));
|
20953 |
|
|
return;
|
20954 |
|
|
}
|
20955 |
|
|
|
20956 |
|
|
if (!reg_overlap_mentioned_p (operands[2], destlo))
|
20957 |
|
|
{
|
20958 |
|
|
/* Try to avoid unnecessary moves if part of the result
|
20959 |
|
|
is in the right place already. */
|
20960 |
|
|
if (src1 != dest)
|
20961 |
|
|
emit_move_insn (destlo, operands[1]);
|
20962 |
|
|
if (src2 != dest + halfregs)
|
20963 |
|
|
emit_move_insn (desthi, operands[2]);
|
20964 |
|
|
}
|
20965 |
|
|
else
|
20966 |
|
|
{
|
20967 |
|
|
if (src2 != dest + halfregs)
|
20968 |
|
|
emit_move_insn (desthi, operands[2]);
|
20969 |
|
|
if (src1 != dest)
|
20970 |
|
|
emit_move_insn (destlo, operands[1]);
|
20971 |
|
|
}
|
20972 |
|
|
}
|
20973 |
|
|
|
20974 |
|
|
/* Expand an expression EXP that calls a built-in function,
|
20975 |
|
|
with result going to TARGET if that's convenient
|
20976 |
|
|
(and in mode MODE if that's convenient).
|
20977 |
|
|
SUBTARGET may be used as the target for computing one of EXP's operands.
|
20978 |
|
|
IGNORE is nonzero if the value is to be ignored. */
|
20979 |
|
|
|
20980 |
|
|
static rtx
|
20981 |
|
|
arm_expand_builtin (tree exp,
|
20982 |
|
|
rtx target,
|
20983 |
|
|
rtx subtarget ATTRIBUTE_UNUSED,
|
20984 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
20985 |
|
|
int ignore ATTRIBUTE_UNUSED)
|
20986 |
|
|
{
|
20987 |
|
|
const struct builtin_description * d;
|
20988 |
|
|
enum insn_code icode;
|
20989 |
|
|
tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
|
20990 |
|
|
tree arg0;
|
20991 |
|
|
tree arg1;
|
20992 |
|
|
tree arg2;
|
20993 |
|
|
rtx op0;
|
20994 |
|
|
rtx op1;
|
20995 |
|
|
rtx op2;
|
20996 |
|
|
rtx pat;
|
20997 |
|
|
int fcode = DECL_FUNCTION_CODE (fndecl);
|
20998 |
|
|
size_t i;
|
20999 |
|
|
enum machine_mode tmode;
|
21000 |
|
|
enum machine_mode mode0;
|
21001 |
|
|
enum machine_mode mode1;
|
21002 |
|
|
enum machine_mode mode2;
|
21003 |
|
|
|
21004 |
|
|
if (fcode >= ARM_BUILTIN_NEON_BASE)
|
21005 |
|
|
return arm_expand_neon_builtin (fcode, exp, target);
|
21006 |
|
|
|
21007 |
|
|
switch (fcode)
|
21008 |
|
|
{
|
21009 |
|
|
case ARM_BUILTIN_TEXTRMSB:
|
21010 |
|
|
case ARM_BUILTIN_TEXTRMUB:
|
21011 |
|
|
case ARM_BUILTIN_TEXTRMSH:
|
21012 |
|
|
case ARM_BUILTIN_TEXTRMUH:
|
21013 |
|
|
case ARM_BUILTIN_TEXTRMSW:
|
21014 |
|
|
case ARM_BUILTIN_TEXTRMUW:
|
21015 |
|
|
icode = (fcode == ARM_BUILTIN_TEXTRMSB ? CODE_FOR_iwmmxt_textrmsb
|
21016 |
|
|
: fcode == ARM_BUILTIN_TEXTRMUB ? CODE_FOR_iwmmxt_textrmub
|
21017 |
|
|
: fcode == ARM_BUILTIN_TEXTRMSH ? CODE_FOR_iwmmxt_textrmsh
|
21018 |
|
|
: fcode == ARM_BUILTIN_TEXTRMUH ? CODE_FOR_iwmmxt_textrmuh
|
21019 |
|
|
: CODE_FOR_iwmmxt_textrmw);
|
21020 |
|
|
|
21021 |
|
|
arg0 = CALL_EXPR_ARG (exp, 0);
|
21022 |
|
|
arg1 = CALL_EXPR_ARG (exp, 1);
|
21023 |
|
|
op0 = expand_normal (arg0);
|
21024 |
|
|
op1 = expand_normal (arg1);
|
21025 |
|
|
tmode = insn_data[icode].operand[0].mode;
|
21026 |
|
|
mode0 = insn_data[icode].operand[1].mode;
|
21027 |
|
|
mode1 = insn_data[icode].operand[2].mode;
|
21028 |
|
|
|
21029 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
|
21030 |
|
|
op0 = copy_to_mode_reg (mode0, op0);
|
21031 |
|
|
if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
|
21032 |
|
|
{
|
21033 |
|
|
/* @@@ better error message */
|
21034 |
|
|
error ("selector must be an immediate");
|
21035 |
|
|
return gen_reg_rtx (tmode);
|
21036 |
|
|
}
|
21037 |
|
|
if (target == 0
|
21038 |
|
|
|| GET_MODE (target) != tmode
|
21039 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
|
21040 |
|
|
target = gen_reg_rtx (tmode);
|
21041 |
|
|
pat = GEN_FCN (icode) (target, op0, op1);
|
21042 |
|
|
if (! pat)
|
21043 |
|
|
return 0;
|
21044 |
|
|
emit_insn (pat);
|
21045 |
|
|
return target;
|
21046 |
|
|
|
21047 |
|
|
case ARM_BUILTIN_TINSRB:
|
21048 |
|
|
case ARM_BUILTIN_TINSRH:
|
21049 |
|
|
case ARM_BUILTIN_TINSRW:
|
21050 |
|
|
icode = (fcode == ARM_BUILTIN_TINSRB ? CODE_FOR_iwmmxt_tinsrb
|
21051 |
|
|
: fcode == ARM_BUILTIN_TINSRH ? CODE_FOR_iwmmxt_tinsrh
|
21052 |
|
|
: CODE_FOR_iwmmxt_tinsrw);
|
21053 |
|
|
arg0 = CALL_EXPR_ARG (exp, 0);
|
21054 |
|
|
arg1 = CALL_EXPR_ARG (exp, 1);
|
21055 |
|
|
arg2 = CALL_EXPR_ARG (exp, 2);
|
21056 |
|
|
op0 = expand_normal (arg0);
|
21057 |
|
|
op1 = expand_normal (arg1);
|
21058 |
|
|
op2 = expand_normal (arg2);
|
21059 |
|
|
tmode = insn_data[icode].operand[0].mode;
|
21060 |
|
|
mode0 = insn_data[icode].operand[1].mode;
|
21061 |
|
|
mode1 = insn_data[icode].operand[2].mode;
|
21062 |
|
|
mode2 = insn_data[icode].operand[3].mode;
|
21063 |
|
|
|
21064 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
|
21065 |
|
|
op0 = copy_to_mode_reg (mode0, op0);
|
21066 |
|
|
if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
|
21067 |
|
|
op1 = copy_to_mode_reg (mode1, op1);
|
21068 |
|
|
if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
|
21069 |
|
|
{
|
21070 |
|
|
/* @@@ better error message */
|
21071 |
|
|
error ("selector must be an immediate");
|
21072 |
|
|
return const0_rtx;
|
21073 |
|
|
}
|
21074 |
|
|
if (target == 0
|
21075 |
|
|
|| GET_MODE (target) != tmode
|
21076 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
|
21077 |
|
|
target = gen_reg_rtx (tmode);
|
21078 |
|
|
pat = GEN_FCN (icode) (target, op0, op1, op2);
|
21079 |
|
|
if (! pat)
|
21080 |
|
|
return 0;
|
21081 |
|
|
emit_insn (pat);
|
21082 |
|
|
return target;
|
21083 |
|
|
|
21084 |
|
|
case ARM_BUILTIN_SETWCX:
|
21085 |
|
|
arg0 = CALL_EXPR_ARG (exp, 0);
|
21086 |
|
|
arg1 = CALL_EXPR_ARG (exp, 1);
|
21087 |
|
|
op0 = force_reg (SImode, expand_normal (arg0));
|
21088 |
|
|
op1 = expand_normal (arg1);
|
21089 |
|
|
emit_insn (gen_iwmmxt_tmcr (op1, op0));
|
21090 |
|
|
return 0;
|
21091 |
|
|
|
21092 |
|
|
case ARM_BUILTIN_GETWCX:
|
21093 |
|
|
arg0 = CALL_EXPR_ARG (exp, 0);
|
21094 |
|
|
op0 = expand_normal (arg0);
|
21095 |
|
|
target = gen_reg_rtx (SImode);
|
21096 |
|
|
emit_insn (gen_iwmmxt_tmrc (target, op0));
|
21097 |
|
|
return target;
|
21098 |
|
|
|
21099 |
|
|
case ARM_BUILTIN_WSHUFH:
|
21100 |
|
|
icode = CODE_FOR_iwmmxt_wshufh;
|
21101 |
|
|
arg0 = CALL_EXPR_ARG (exp, 0);
|
21102 |
|
|
arg1 = CALL_EXPR_ARG (exp, 1);
|
21103 |
|
|
op0 = expand_normal (arg0);
|
21104 |
|
|
op1 = expand_normal (arg1);
|
21105 |
|
|
tmode = insn_data[icode].operand[0].mode;
|
21106 |
|
|
mode1 = insn_data[icode].operand[1].mode;
|
21107 |
|
|
mode2 = insn_data[icode].operand[2].mode;
|
21108 |
|
|
|
21109 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (op0, mode1))
|
21110 |
|
|
op0 = copy_to_mode_reg (mode1, op0);
|
21111 |
|
|
if (! (*insn_data[icode].operand[2].predicate) (op1, mode2))
|
21112 |
|
|
{
|
21113 |
|
|
/* @@@ better error message */
|
21114 |
|
|
error ("mask must be an immediate");
|
21115 |
|
|
return const0_rtx;
|
21116 |
|
|
}
|
21117 |
|
|
if (target == 0
|
21118 |
|
|
|| GET_MODE (target) != tmode
|
21119 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
|
21120 |
|
|
target = gen_reg_rtx (tmode);
|
21121 |
|
|
pat = GEN_FCN (icode) (target, op0, op1);
|
21122 |
|
|
if (! pat)
|
21123 |
|
|
return 0;
|
21124 |
|
|
emit_insn (pat);
|
21125 |
|
|
return target;
|
21126 |
|
|
|
21127 |
|
|
case ARM_BUILTIN_WSADB:
|
21128 |
|
|
return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadb, exp, target);
|
21129 |
|
|
case ARM_BUILTIN_WSADH:
|
21130 |
|
|
return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadh, exp, target);
|
21131 |
|
|
case ARM_BUILTIN_WSADBZ:
|
21132 |
|
|
return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadbz, exp, target);
|
21133 |
|
|
case ARM_BUILTIN_WSADHZ:
|
21134 |
|
|
return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadhz, exp, target);
|
21135 |
|
|
|
21136 |
|
|
/* Several three-argument builtins. */
|
21137 |
|
|
case ARM_BUILTIN_WMACS:
|
21138 |
|
|
case ARM_BUILTIN_WMACU:
|
21139 |
|
|
case ARM_BUILTIN_WALIGN:
|
21140 |
|
|
case ARM_BUILTIN_TMIA:
|
21141 |
|
|
case ARM_BUILTIN_TMIAPH:
|
21142 |
|
|
case ARM_BUILTIN_TMIATT:
|
21143 |
|
|
case ARM_BUILTIN_TMIATB:
|
21144 |
|
|
case ARM_BUILTIN_TMIABT:
|
21145 |
|
|
case ARM_BUILTIN_TMIABB:
|
21146 |
|
|
icode = (fcode == ARM_BUILTIN_WMACS ? CODE_FOR_iwmmxt_wmacs
|
21147 |
|
|
: fcode == ARM_BUILTIN_WMACU ? CODE_FOR_iwmmxt_wmacu
|
21148 |
|
|
: fcode == ARM_BUILTIN_TMIA ? CODE_FOR_iwmmxt_tmia
|
21149 |
|
|
: fcode == ARM_BUILTIN_TMIAPH ? CODE_FOR_iwmmxt_tmiaph
|
21150 |
|
|
: fcode == ARM_BUILTIN_TMIABB ? CODE_FOR_iwmmxt_tmiabb
|
21151 |
|
|
: fcode == ARM_BUILTIN_TMIABT ? CODE_FOR_iwmmxt_tmiabt
|
21152 |
|
|
: fcode == ARM_BUILTIN_TMIATB ? CODE_FOR_iwmmxt_tmiatb
|
21153 |
|
|
: fcode == ARM_BUILTIN_TMIATT ? CODE_FOR_iwmmxt_tmiatt
|
21154 |
|
|
: CODE_FOR_iwmmxt_walign);
|
21155 |
|
|
arg0 = CALL_EXPR_ARG (exp, 0);
|
21156 |
|
|
arg1 = CALL_EXPR_ARG (exp, 1);
|
21157 |
|
|
arg2 = CALL_EXPR_ARG (exp, 2);
|
21158 |
|
|
op0 = expand_normal (arg0);
|
21159 |
|
|
op1 = expand_normal (arg1);
|
21160 |
|
|
op2 = expand_normal (arg2);
|
21161 |
|
|
tmode = insn_data[icode].operand[0].mode;
|
21162 |
|
|
mode0 = insn_data[icode].operand[1].mode;
|
21163 |
|
|
mode1 = insn_data[icode].operand[2].mode;
|
21164 |
|
|
mode2 = insn_data[icode].operand[3].mode;
|
21165 |
|
|
|
21166 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
|
21167 |
|
|
op0 = copy_to_mode_reg (mode0, op0);
|
21168 |
|
|
if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
|
21169 |
|
|
op1 = copy_to_mode_reg (mode1, op1);
|
21170 |
|
|
if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
|
21171 |
|
|
op2 = copy_to_mode_reg (mode2, op2);
|
21172 |
|
|
if (target == 0
|
21173 |
|
|
|| GET_MODE (target) != tmode
|
21174 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
|
21175 |
|
|
target = gen_reg_rtx (tmode);
|
21176 |
|
|
pat = GEN_FCN (icode) (target, op0, op1, op2);
|
21177 |
|
|
if (! pat)
|
21178 |
|
|
return 0;
|
21179 |
|
|
emit_insn (pat);
|
21180 |
|
|
return target;
|
21181 |
|
|
|
21182 |
|
|
case ARM_BUILTIN_WZERO:
|
21183 |
|
|
target = gen_reg_rtx (DImode);
|
21184 |
|
|
emit_insn (gen_iwmmxt_clrdi (target));
|
21185 |
|
|
return target;
|
21186 |
|
|
|
21187 |
|
|
case ARM_BUILTIN_THREAD_POINTER:
|
21188 |
|
|
return arm_load_tp (target);
|
21189 |
|
|
|
21190 |
|
|
default:
|
21191 |
|
|
break;
|
21192 |
|
|
}
|
21193 |
|
|
|
21194 |
|
|
for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
|
21195 |
|
|
if (d->code == (const enum arm_builtins) fcode)
|
21196 |
|
|
return arm_expand_binop_builtin (d->icode, exp, target);
|
21197 |
|
|
|
21198 |
|
|
for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
|
21199 |
|
|
if (d->code == (const enum arm_builtins) fcode)
|
21200 |
|
|
return arm_expand_unop_builtin (d->icode, exp, target, 0);
|
21201 |
|
|
|
21202 |
|
|
/* @@@ Should really do something sensible here. */
|
21203 |
|
|
return NULL_RTX;
|
21204 |
|
|
}
|
21205 |
|
|
|
21206 |
|
|
/* Return the number (counting from 0) of
|
21207 |
|
|
the least significant set bit in MASK. */
|
21208 |
|
|
|
21209 |
|
|
inline static int
|
21210 |
|
|
number_of_first_bit_set (unsigned mask)
|
21211 |
|
|
{
|
21212 |
|
|
return ctz_hwi (mask);
|
21213 |
|
|
}
|
21214 |
|
|
|
21215 |
|
|
/* Like emit_multi_reg_push, but allowing for a different set of
|
21216 |
|
|
registers to be described as saved. MASK is the set of registers
|
21217 |
|
|
to be saved; REAL_REGS is the set of registers to be described as
|
21218 |
|
|
saved. If REAL_REGS is 0, only describe the stack adjustment. */
|
21219 |
|
|
|
21220 |
|
|
static rtx
|
21221 |
|
|
thumb1_emit_multi_reg_push (unsigned long mask, unsigned long real_regs)
|
21222 |
|
|
{
|
21223 |
|
|
unsigned long regno;
|
21224 |
|
|
rtx par[10], tmp, reg, insn;
|
21225 |
|
|
int i, j;
|
21226 |
|
|
|
21227 |
|
|
/* Build the parallel of the registers actually being stored. */
|
21228 |
|
|
for (i = 0; mask; ++i, mask &= mask - 1)
|
21229 |
|
|
{
|
21230 |
|
|
regno = ctz_hwi (mask);
|
21231 |
|
|
reg = gen_rtx_REG (SImode, regno);
|
21232 |
|
|
|
21233 |
|
|
if (i == 0)
|
21234 |
|
|
tmp = gen_rtx_UNSPEC (BLKmode, gen_rtvec (1, reg), UNSPEC_PUSH_MULT);
|
21235 |
|
|
else
|
21236 |
|
|
tmp = gen_rtx_USE (VOIDmode, reg);
|
21237 |
|
|
|
21238 |
|
|
par[i] = tmp;
|
21239 |
|
|
}
|
21240 |
|
|
|
21241 |
|
|
tmp = plus_constant (stack_pointer_rtx, -4 * i);
|
21242 |
|
|
tmp = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, tmp);
|
21243 |
|
|
tmp = gen_frame_mem (BLKmode, tmp);
|
21244 |
|
|
tmp = gen_rtx_SET (VOIDmode, tmp, par[0]);
|
21245 |
|
|
par[0] = tmp;
|
21246 |
|
|
|
21247 |
|
|
tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (i, par));
|
21248 |
|
|
insn = emit_insn (tmp);
|
21249 |
|
|
|
21250 |
|
|
/* Always build the stack adjustment note for unwind info. */
|
21251 |
|
|
tmp = plus_constant (stack_pointer_rtx, -4 * i);
|
21252 |
|
|
tmp = gen_rtx_SET (VOIDmode, stack_pointer_rtx, tmp);
|
21253 |
|
|
par[0] = tmp;
|
21254 |
|
|
|
21255 |
|
|
/* Build the parallel of the registers recorded as saved for unwind. */
|
21256 |
|
|
for (j = 0; real_regs; ++j, real_regs &= real_regs - 1)
|
21257 |
|
|
{
|
21258 |
|
|
regno = ctz_hwi (real_regs);
|
21259 |
|
|
reg = gen_rtx_REG (SImode, regno);
|
21260 |
|
|
|
21261 |
|
|
tmp = plus_constant (stack_pointer_rtx, j * 4);
|
21262 |
|
|
tmp = gen_frame_mem (SImode, tmp);
|
21263 |
|
|
tmp = gen_rtx_SET (VOIDmode, tmp, reg);
|
21264 |
|
|
RTX_FRAME_RELATED_P (tmp) = 1;
|
21265 |
|
|
par[j + 1] = tmp;
|
21266 |
|
|
}
|
21267 |
|
|
|
21268 |
|
|
if (j == 0)
|
21269 |
|
|
tmp = par[0];
|
21270 |
|
|
else
|
21271 |
|
|
{
|
21272 |
|
|
RTX_FRAME_RELATED_P (par[0]) = 1;
|
21273 |
|
|
tmp = gen_rtx_SEQUENCE (VOIDmode, gen_rtvec_v (j + 1, par));
|
21274 |
|
|
}
|
21275 |
|
|
|
21276 |
|
|
add_reg_note (insn, REG_FRAME_RELATED_EXPR, tmp);
|
21277 |
|
|
|
21278 |
|
|
return insn;
|
21279 |
|
|
}
|
21280 |
|
|
|
21281 |
|
|
/* Emit code to push or pop registers to or from the stack. F is the
|
21282 |
|
|
assembly file. MASK is the registers to pop. */
|
21283 |
|
|
static void
|
21284 |
|
|
thumb_pop (FILE *f, unsigned long mask)
|
21285 |
|
|
{
|
21286 |
|
|
int regno;
|
21287 |
|
|
int lo_mask = mask & 0xFF;
|
21288 |
|
|
int pushed_words = 0;
|
21289 |
|
|
|
21290 |
|
|
gcc_assert (mask);
|
21291 |
|
|
|
21292 |
|
|
if (lo_mask == 0 && (mask & (1 << PC_REGNUM)))
|
21293 |
|
|
{
|
21294 |
|
|
/* Special case. Do not generate a POP PC statement here, do it in
|
21295 |
|
|
thumb_exit() */
|
21296 |
|
|
thumb_exit (f, -1);
|
21297 |
|
|
return;
|
21298 |
|
|
}
|
21299 |
|
|
|
21300 |
|
|
fprintf (f, "\tpop\t{");
|
21301 |
|
|
|
21302 |
|
|
/* Look at the low registers first. */
|
21303 |
|
|
for (regno = 0; regno <= LAST_LO_REGNUM; regno++, lo_mask >>= 1)
|
21304 |
|
|
{
|
21305 |
|
|
if (lo_mask & 1)
|
21306 |
|
|
{
|
21307 |
|
|
asm_fprintf (f, "%r", regno);
|
21308 |
|
|
|
21309 |
|
|
if ((lo_mask & ~1) != 0)
|
21310 |
|
|
fprintf (f, ", ");
|
21311 |
|
|
|
21312 |
|
|
pushed_words++;
|
21313 |
|
|
}
|
21314 |
|
|
}
|
21315 |
|
|
|
21316 |
|
|
if (mask & (1 << PC_REGNUM))
|
21317 |
|
|
{
|
21318 |
|
|
/* Catch popping the PC. */
|
21319 |
|
|
if (TARGET_INTERWORK || TARGET_BACKTRACE
|
21320 |
|
|
|| crtl->calls_eh_return)
|
21321 |
|
|
{
|
21322 |
|
|
/* The PC is never poped directly, instead
|
21323 |
|
|
it is popped into r3 and then BX is used. */
|
21324 |
|
|
fprintf (f, "}\n");
|
21325 |
|
|
|
21326 |
|
|
thumb_exit (f, -1);
|
21327 |
|
|
|
21328 |
|
|
return;
|
21329 |
|
|
}
|
21330 |
|
|
else
|
21331 |
|
|
{
|
21332 |
|
|
if (mask & 0xFF)
|
21333 |
|
|
fprintf (f, ", ");
|
21334 |
|
|
|
21335 |
|
|
asm_fprintf (f, "%r", PC_REGNUM);
|
21336 |
|
|
}
|
21337 |
|
|
}
|
21338 |
|
|
|
21339 |
|
|
fprintf (f, "}\n");
|
21340 |
|
|
}
|
21341 |
|
|
|
21342 |
|
|
/* Generate code to return from a thumb function.
|
21343 |
|
|
If 'reg_containing_return_addr' is -1, then the return address is
|
21344 |
|
|
actually on the stack, at the stack pointer. */
|
21345 |
|
|
static void
|
21346 |
|
|
thumb_exit (FILE *f, int reg_containing_return_addr)
|
21347 |
|
|
{
|
21348 |
|
|
unsigned regs_available_for_popping;
|
21349 |
|
|
unsigned regs_to_pop;
|
21350 |
|
|
int pops_needed;
|
21351 |
|
|
unsigned available;
|
21352 |
|
|
unsigned required;
|
21353 |
|
|
int mode;
|
21354 |
|
|
int size;
|
21355 |
|
|
int restore_a4 = FALSE;
|
21356 |
|
|
|
21357 |
|
|
/* Compute the registers we need to pop. */
|
21358 |
|
|
regs_to_pop = 0;
|
21359 |
|
|
pops_needed = 0;
|
21360 |
|
|
|
21361 |
|
|
if (reg_containing_return_addr == -1)
|
21362 |
|
|
{
|
21363 |
|
|
regs_to_pop |= 1 << LR_REGNUM;
|
21364 |
|
|
++pops_needed;
|
21365 |
|
|
}
|
21366 |
|
|
|
21367 |
|
|
if (TARGET_BACKTRACE)
|
21368 |
|
|
{
|
21369 |
|
|
/* Restore the (ARM) frame pointer and stack pointer. */
|
21370 |
|
|
regs_to_pop |= (1 << ARM_HARD_FRAME_POINTER_REGNUM) | (1 << SP_REGNUM);
|
21371 |
|
|
pops_needed += 2;
|
21372 |
|
|
}
|
21373 |
|
|
|
21374 |
|
|
/* If there is nothing to pop then just emit the BX instruction and
|
21375 |
|
|
return. */
|
21376 |
|
|
if (pops_needed == 0)
|
21377 |
|
|
{
|
21378 |
|
|
if (crtl->calls_eh_return)
|
21379 |
|
|
asm_fprintf (f, "\tadd\t%r, %r\n", SP_REGNUM, ARM_EH_STACKADJ_REGNUM);
|
21380 |
|
|
|
21381 |
|
|
asm_fprintf (f, "\tbx\t%r\n", reg_containing_return_addr);
|
21382 |
|
|
return;
|
21383 |
|
|
}
|
21384 |
|
|
/* Otherwise if we are not supporting interworking and we have not created
|
21385 |
|
|
a backtrace structure and the function was not entered in ARM mode then
|
21386 |
|
|
just pop the return address straight into the PC. */
|
21387 |
|
|
else if (!TARGET_INTERWORK
|
21388 |
|
|
&& !TARGET_BACKTRACE
|
21389 |
|
|
&& !is_called_in_ARM_mode (current_function_decl)
|
21390 |
|
|
&& !crtl->calls_eh_return)
|
21391 |
|
|
{
|
21392 |
|
|
asm_fprintf (f, "\tpop\t{%r}\n", PC_REGNUM);
|
21393 |
|
|
return;
|
21394 |
|
|
}
|
21395 |
|
|
|
21396 |
|
|
/* Find out how many of the (return) argument registers we can corrupt. */
|
21397 |
|
|
regs_available_for_popping = 0;
|
21398 |
|
|
|
21399 |
|
|
/* If returning via __builtin_eh_return, the bottom three registers
|
21400 |
|
|
all contain information needed for the return. */
|
21401 |
|
|
if (crtl->calls_eh_return)
|
21402 |
|
|
size = 12;
|
21403 |
|
|
else
|
21404 |
|
|
{
|
21405 |
|
|
/* If we can deduce the registers used from the function's
|
21406 |
|
|
return value. This is more reliable that examining
|
21407 |
|
|
df_regs_ever_live_p () because that will be set if the register is
|
21408 |
|
|
ever used in the function, not just if the register is used
|
21409 |
|
|
to hold a return value. */
|
21410 |
|
|
|
21411 |
|
|
if (crtl->return_rtx != 0)
|
21412 |
|
|
mode = GET_MODE (crtl->return_rtx);
|
21413 |
|
|
else
|
21414 |
|
|
mode = DECL_MODE (DECL_RESULT (current_function_decl));
|
21415 |
|
|
|
21416 |
|
|
size = GET_MODE_SIZE (mode);
|
21417 |
|
|
|
21418 |
|
|
if (size == 0)
|
21419 |
|
|
{
|
21420 |
|
|
/* In a void function we can use any argument register.
|
21421 |
|
|
In a function that returns a structure on the stack
|
21422 |
|
|
we can use the second and third argument registers. */
|
21423 |
|
|
if (mode == VOIDmode)
|
21424 |
|
|
regs_available_for_popping =
|
21425 |
|
|
(1 << ARG_REGISTER (1))
|
21426 |
|
|
| (1 << ARG_REGISTER (2))
|
21427 |
|
|
| (1 << ARG_REGISTER (3));
|
21428 |
|
|
else
|
21429 |
|
|
regs_available_for_popping =
|
21430 |
|
|
(1 << ARG_REGISTER (2))
|
21431 |
|
|
| (1 << ARG_REGISTER (3));
|
21432 |
|
|
}
|
21433 |
|
|
else if (size <= 4)
|
21434 |
|
|
regs_available_for_popping =
|
21435 |
|
|
(1 << ARG_REGISTER (2))
|
21436 |
|
|
| (1 << ARG_REGISTER (3));
|
21437 |
|
|
else if (size <= 8)
|
21438 |
|
|
regs_available_for_popping =
|
21439 |
|
|
(1 << ARG_REGISTER (3));
|
21440 |
|
|
}
|
21441 |
|
|
|
21442 |
|
|
/* Match registers to be popped with registers into which we pop them. */
|
21443 |
|
|
for (available = regs_available_for_popping,
|
21444 |
|
|
required = regs_to_pop;
|
21445 |
|
|
required != 0 && available != 0;
|
21446 |
|
|
available &= ~(available & - available),
|
21447 |
|
|
required &= ~(required & - required))
|
21448 |
|
|
-- pops_needed;
|
21449 |
|
|
|
21450 |
|
|
/* If we have any popping registers left over, remove them. */
|
21451 |
|
|
if (available > 0)
|
21452 |
|
|
regs_available_for_popping &= ~available;
|
21453 |
|
|
|
21454 |
|
|
/* Otherwise if we need another popping register we can use
|
21455 |
|
|
the fourth argument register. */
|
21456 |
|
|
else if (pops_needed)
|
21457 |
|
|
{
|
21458 |
|
|
/* If we have not found any free argument registers and
|
21459 |
|
|
reg a4 contains the return address, we must move it. */
|
21460 |
|
|
if (regs_available_for_popping == 0
|
21461 |
|
|
&& reg_containing_return_addr == LAST_ARG_REGNUM)
|
21462 |
|
|
{
|
21463 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM, LAST_ARG_REGNUM);
|
21464 |
|
|
reg_containing_return_addr = LR_REGNUM;
|
21465 |
|
|
}
|
21466 |
|
|
else if (size > 12)
|
21467 |
|
|
{
|
21468 |
|
|
/* Register a4 is being used to hold part of the return value,
|
21469 |
|
|
but we have dire need of a free, low register. */
|
21470 |
|
|
restore_a4 = TRUE;
|
21471 |
|
|
|
21472 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n",IP_REGNUM, LAST_ARG_REGNUM);
|
21473 |
|
|
}
|
21474 |
|
|
|
21475 |
|
|
if (reg_containing_return_addr != LAST_ARG_REGNUM)
|
21476 |
|
|
{
|
21477 |
|
|
/* The fourth argument register is available. */
|
21478 |
|
|
regs_available_for_popping |= 1 << LAST_ARG_REGNUM;
|
21479 |
|
|
|
21480 |
|
|
--pops_needed;
|
21481 |
|
|
}
|
21482 |
|
|
}
|
21483 |
|
|
|
21484 |
|
|
/* Pop as many registers as we can. */
|
21485 |
|
|
thumb_pop (f, regs_available_for_popping);
|
21486 |
|
|
|
21487 |
|
|
/* Process the registers we popped. */
|
21488 |
|
|
if (reg_containing_return_addr == -1)
|
21489 |
|
|
{
|
21490 |
|
|
/* The return address was popped into the lowest numbered register. */
|
21491 |
|
|
regs_to_pop &= ~(1 << LR_REGNUM);
|
21492 |
|
|
|
21493 |
|
|
reg_containing_return_addr =
|
21494 |
|
|
number_of_first_bit_set (regs_available_for_popping);
|
21495 |
|
|
|
21496 |
|
|
/* Remove this register for the mask of available registers, so that
|
21497 |
|
|
the return address will not be corrupted by further pops. */
|
21498 |
|
|
regs_available_for_popping &= ~(1 << reg_containing_return_addr);
|
21499 |
|
|
}
|
21500 |
|
|
|
21501 |
|
|
/* If we popped other registers then handle them here. */
|
21502 |
|
|
if (regs_available_for_popping)
|
21503 |
|
|
{
|
21504 |
|
|
int frame_pointer;
|
21505 |
|
|
|
21506 |
|
|
/* Work out which register currently contains the frame pointer. */
|
21507 |
|
|
frame_pointer = number_of_first_bit_set (regs_available_for_popping);
|
21508 |
|
|
|
21509 |
|
|
/* Move it into the correct place. */
|
21510 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n",
|
21511 |
|
|
ARM_HARD_FRAME_POINTER_REGNUM, frame_pointer);
|
21512 |
|
|
|
21513 |
|
|
/* (Temporarily) remove it from the mask of popped registers. */
|
21514 |
|
|
regs_available_for_popping &= ~(1 << frame_pointer);
|
21515 |
|
|
regs_to_pop &= ~(1 << ARM_HARD_FRAME_POINTER_REGNUM);
|
21516 |
|
|
|
21517 |
|
|
if (regs_available_for_popping)
|
21518 |
|
|
{
|
21519 |
|
|
int stack_pointer;
|
21520 |
|
|
|
21521 |
|
|
/* We popped the stack pointer as well,
|
21522 |
|
|
find the register that contains it. */
|
21523 |
|
|
stack_pointer = number_of_first_bit_set (regs_available_for_popping);
|
21524 |
|
|
|
21525 |
|
|
/* Move it into the stack register. */
|
21526 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, stack_pointer);
|
21527 |
|
|
|
21528 |
|
|
/* At this point we have popped all necessary registers, so
|
21529 |
|
|
do not worry about restoring regs_available_for_popping
|
21530 |
|
|
to its correct value:
|
21531 |
|
|
|
21532 |
|
|
assert (pops_needed == 0)
|
21533 |
|
|
assert (regs_available_for_popping == (1 << frame_pointer))
|
21534 |
|
|
assert (regs_to_pop == (1 << STACK_POINTER)) */
|
21535 |
|
|
}
|
21536 |
|
|
else
|
21537 |
|
|
{
|
21538 |
|
|
/* Since we have just move the popped value into the frame
|
21539 |
|
|
pointer, the popping register is available for reuse, and
|
21540 |
|
|
we know that we still have the stack pointer left to pop. */
|
21541 |
|
|
regs_available_for_popping |= (1 << frame_pointer);
|
21542 |
|
|
}
|
21543 |
|
|
}
|
21544 |
|
|
|
21545 |
|
|
/* If we still have registers left on the stack, but we no longer have
|
21546 |
|
|
any registers into which we can pop them, then we must move the return
|
21547 |
|
|
address into the link register and make available the register that
|
21548 |
|
|
contained it. */
|
21549 |
|
|
if (regs_available_for_popping == 0 && pops_needed > 0)
|
21550 |
|
|
{
|
21551 |
|
|
regs_available_for_popping |= 1 << reg_containing_return_addr;
|
21552 |
|
|
|
21553 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM,
|
21554 |
|
|
reg_containing_return_addr);
|
21555 |
|
|
|
21556 |
|
|
reg_containing_return_addr = LR_REGNUM;
|
21557 |
|
|
}
|
21558 |
|
|
|
21559 |
|
|
/* If we have registers left on the stack then pop some more.
|
21560 |
|
|
We know that at most we will want to pop FP and SP. */
|
21561 |
|
|
if (pops_needed > 0)
|
21562 |
|
|
{
|
21563 |
|
|
int popped_into;
|
21564 |
|
|
int move_to;
|
21565 |
|
|
|
21566 |
|
|
thumb_pop (f, regs_available_for_popping);
|
21567 |
|
|
|
21568 |
|
|
/* We have popped either FP or SP.
|
21569 |
|
|
Move whichever one it is into the correct register. */
|
21570 |
|
|
popped_into = number_of_first_bit_set (regs_available_for_popping);
|
21571 |
|
|
move_to = number_of_first_bit_set (regs_to_pop);
|
21572 |
|
|
|
21573 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n", move_to, popped_into);
|
21574 |
|
|
|
21575 |
|
|
regs_to_pop &= ~(1 << move_to);
|
21576 |
|
|
|
21577 |
|
|
--pops_needed;
|
21578 |
|
|
}
|
21579 |
|
|
|
21580 |
|
|
/* If we still have not popped everything then we must have only
|
21581 |
|
|
had one register available to us and we are now popping the SP. */
|
21582 |
|
|
if (pops_needed > 0)
|
21583 |
|
|
{
|
21584 |
|
|
int popped_into;
|
21585 |
|
|
|
21586 |
|
|
thumb_pop (f, regs_available_for_popping);
|
21587 |
|
|
|
21588 |
|
|
popped_into = number_of_first_bit_set (regs_available_for_popping);
|
21589 |
|
|
|
21590 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, popped_into);
|
21591 |
|
|
/*
|
21592 |
|
|
assert (regs_to_pop == (1 << STACK_POINTER))
|
21593 |
|
|
assert (pops_needed == 1)
|
21594 |
|
|
*/
|
21595 |
|
|
}
|
21596 |
|
|
|
21597 |
|
|
/* If necessary restore the a4 register. */
|
21598 |
|
|
if (restore_a4)
|
21599 |
|
|
{
|
21600 |
|
|
if (reg_containing_return_addr != LR_REGNUM)
|
21601 |
|
|
{
|
21602 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM, LAST_ARG_REGNUM);
|
21603 |
|
|
reg_containing_return_addr = LR_REGNUM;
|
21604 |
|
|
}
|
21605 |
|
|
|
21606 |
|
|
asm_fprintf (f, "\tmov\t%r, %r\n", LAST_ARG_REGNUM, IP_REGNUM);
|
21607 |
|
|
}
|
21608 |
|
|
|
21609 |
|
|
if (crtl->calls_eh_return)
|
21610 |
|
|
asm_fprintf (f, "\tadd\t%r, %r\n", SP_REGNUM, ARM_EH_STACKADJ_REGNUM);
|
21611 |
|
|
|
21612 |
|
|
/* Return to caller. */
|
21613 |
|
|
asm_fprintf (f, "\tbx\t%r\n", reg_containing_return_addr);
|
21614 |
|
|
}
|
21615 |
|
|
|
21616 |
|
|
/* Scan INSN just before assembler is output for it.
|
21617 |
|
|
For Thumb-1, we track the status of the condition codes; this
|
21618 |
|
|
information is used in the cbranchsi4_insn pattern. */
|
21619 |
|
|
void
|
21620 |
|
|
thumb1_final_prescan_insn (rtx insn)
|
21621 |
|
|
{
|
21622 |
|
|
if (flag_print_asm_name)
|
21623 |
|
|
asm_fprintf (asm_out_file, "%@ 0x%04x\n",
|
21624 |
|
|
INSN_ADDRESSES (INSN_UID (insn)));
|
21625 |
|
|
/* Don't overwrite the previous setter when we get to a cbranch. */
|
21626 |
|
|
if (INSN_CODE (insn) != CODE_FOR_cbranchsi4_insn)
|
21627 |
|
|
{
|
21628 |
|
|
enum attr_conds conds;
|
21629 |
|
|
|
21630 |
|
|
if (cfun->machine->thumb1_cc_insn)
|
21631 |
|
|
{
|
21632 |
|
|
if (modified_in_p (cfun->machine->thumb1_cc_op0, insn)
|
21633 |
|
|
|| modified_in_p (cfun->machine->thumb1_cc_op1, insn))
|
21634 |
|
|
CC_STATUS_INIT;
|
21635 |
|
|
}
|
21636 |
|
|
conds = get_attr_conds (insn);
|
21637 |
|
|
if (conds == CONDS_SET)
|
21638 |
|
|
{
|
21639 |
|
|
rtx set = single_set (insn);
|
21640 |
|
|
cfun->machine->thumb1_cc_insn = insn;
|
21641 |
|
|
cfun->machine->thumb1_cc_op0 = SET_DEST (set);
|
21642 |
|
|
cfun->machine->thumb1_cc_op1 = const0_rtx;
|
21643 |
|
|
cfun->machine->thumb1_cc_mode = CC_NOOVmode;
|
21644 |
|
|
if (INSN_CODE (insn) == CODE_FOR_thumb1_subsi3_insn)
|
21645 |
|
|
{
|
21646 |
|
|
rtx src1 = XEXP (SET_SRC (set), 1);
|
21647 |
|
|
if (src1 == const0_rtx)
|
21648 |
|
|
cfun->machine->thumb1_cc_mode = CCmode;
|
21649 |
|
|
}
|
21650 |
|
|
}
|
21651 |
|
|
else if (conds != CONDS_NOCOND)
|
21652 |
|
|
cfun->machine->thumb1_cc_insn = NULL_RTX;
|
21653 |
|
|
}
|
21654 |
|
|
}
|
21655 |
|
|
|
21656 |
|
|
int
|
21657 |
|
|
thumb_shiftable_const (unsigned HOST_WIDE_INT val)
|
21658 |
|
|
{
|
21659 |
|
|
unsigned HOST_WIDE_INT mask = 0xff;
|
21660 |
|
|
int i;
|
21661 |
|
|
|
21662 |
|
|
val = val & (unsigned HOST_WIDE_INT)0xffffffffu;
|
21663 |
|
|
if (val == 0) /* XXX */
|
21664 |
|
|
return 0;
|
21665 |
|
|
|
21666 |
|
|
for (i = 0; i < 25; i++)
|
21667 |
|
|
if ((val & (mask << i)) == val)
|
21668 |
|
|
return 1;
|
21669 |
|
|
|
21670 |
|
|
return 0;
|
21671 |
|
|
}
|
21672 |
|
|
|
21673 |
|
|
/* Returns nonzero if the current function contains,
|
21674 |
|
|
or might contain a far jump. */
|
21675 |
|
|
static int
|
21676 |
|
|
thumb_far_jump_used_p (void)
|
21677 |
|
|
{
|
21678 |
|
|
rtx insn;
|
21679 |
|
|
|
21680 |
|
|
/* This test is only important for leaf functions. */
|
21681 |
|
|
/* assert (!leaf_function_p ()); */
|
21682 |
|
|
|
21683 |
|
|
/* If we have already decided that far jumps may be used,
|
21684 |
|
|
do not bother checking again, and always return true even if
|
21685 |
|
|
it turns out that they are not being used. Once we have made
|
21686 |
|
|
the decision that far jumps are present (and that hence the link
|
21687 |
|
|
register will be pushed onto the stack) we cannot go back on it. */
|
21688 |
|
|
if (cfun->machine->far_jump_used)
|
21689 |
|
|
return 1;
|
21690 |
|
|
|
21691 |
|
|
/* If this function is not being called from the prologue/epilogue
|
21692 |
|
|
generation code then it must be being called from the
|
21693 |
|
|
INITIAL_ELIMINATION_OFFSET macro. */
|
21694 |
|
|
if (!(ARM_DOUBLEWORD_ALIGN || reload_completed))
|
21695 |
|
|
{
|
21696 |
|
|
/* In this case we know that we are being asked about the elimination
|
21697 |
|
|
of the arg pointer register. If that register is not being used,
|
21698 |
|
|
then there are no arguments on the stack, and we do not have to
|
21699 |
|
|
worry that a far jump might force the prologue to push the link
|
21700 |
|
|
register, changing the stack offsets. In this case we can just
|
21701 |
|
|
return false, since the presence of far jumps in the function will
|
21702 |
|
|
not affect stack offsets.
|
21703 |
|
|
|
21704 |
|
|
If the arg pointer is live (or if it was live, but has now been
|
21705 |
|
|
eliminated and so set to dead) then we do have to test to see if
|
21706 |
|
|
the function might contain a far jump. This test can lead to some
|
21707 |
|
|
false negatives, since before reload is completed, then length of
|
21708 |
|
|
branch instructions is not known, so gcc defaults to returning their
|
21709 |
|
|
longest length, which in turn sets the far jump attribute to true.
|
21710 |
|
|
|
21711 |
|
|
A false negative will not result in bad code being generated, but it
|
21712 |
|
|
will result in a needless push and pop of the link register. We
|
21713 |
|
|
hope that this does not occur too often.
|
21714 |
|
|
|
21715 |
|
|
If we need doubleword stack alignment this could affect the other
|
21716 |
|
|
elimination offsets so we can't risk getting it wrong. */
|
21717 |
|
|
if (df_regs_ever_live_p (ARG_POINTER_REGNUM))
|
21718 |
|
|
cfun->machine->arg_pointer_live = 1;
|
21719 |
|
|
else if (!cfun->machine->arg_pointer_live)
|
21720 |
|
|
return 0;
|
21721 |
|
|
}
|
21722 |
|
|
|
21723 |
|
|
/* Check to see if the function contains a branch
|
21724 |
|
|
insn with the far jump attribute set. */
|
21725 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
21726 |
|
|
{
|
21727 |
|
|
if (GET_CODE (insn) == JUMP_INSN
|
21728 |
|
|
/* Ignore tablejump patterns. */
|
21729 |
|
|
&& GET_CODE (PATTERN (insn)) != ADDR_VEC
|
21730 |
|
|
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
|
21731 |
|
|
&& get_attr_far_jump (insn) == FAR_JUMP_YES
|
21732 |
|
|
)
|
21733 |
|
|
{
|
21734 |
|
|
/* Record the fact that we have decided that
|
21735 |
|
|
the function does use far jumps. */
|
21736 |
|
|
cfun->machine->far_jump_used = 1;
|
21737 |
|
|
return 1;
|
21738 |
|
|
}
|
21739 |
|
|
}
|
21740 |
|
|
|
21741 |
|
|
return 0;
|
21742 |
|
|
}
|
21743 |
|
|
|
21744 |
|
|
/* Return nonzero if FUNC must be entered in ARM mode. */
|
21745 |
|
|
int
|
21746 |
|
|
is_called_in_ARM_mode (tree func)
|
21747 |
|
|
{
|
21748 |
|
|
gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
|
21749 |
|
|
|
21750 |
|
|
/* Ignore the problem about functions whose address is taken. */
|
21751 |
|
|
if (TARGET_CALLEE_INTERWORKING && TREE_PUBLIC (func))
|
21752 |
|
|
return TRUE;
|
21753 |
|
|
|
21754 |
|
|
#ifdef ARM_PE
|
21755 |
|
|
return lookup_attribute ("interfacearm", DECL_ATTRIBUTES (func)) != NULL_TREE;
|
21756 |
|
|
#else
|
21757 |
|
|
return FALSE;
|
21758 |
|
|
#endif
|
21759 |
|
|
}
|
21760 |
|
|
|
21761 |
|
|
/* Given the stack offsets and register mask in OFFSETS, decide how
|
21762 |
|
|
many additional registers to push instead of subtracting a constant
|
21763 |
|
|
from SP. For epilogues the principle is the same except we use pop.
|
21764 |
|
|
FOR_PROLOGUE indicates which we're generating. */
|
21765 |
|
|
static int
|
21766 |
|
|
thumb1_extra_regs_pushed (arm_stack_offsets *offsets, bool for_prologue)
|
21767 |
|
|
{
|
21768 |
|
|
HOST_WIDE_INT amount;
|
21769 |
|
|
unsigned long live_regs_mask = offsets->saved_regs_mask;
|
21770 |
|
|
/* Extract a mask of the ones we can give to the Thumb's push/pop
|
21771 |
|
|
instruction. */
|
21772 |
|
|
unsigned long l_mask = live_regs_mask & (for_prologue ? 0x40ff : 0xff);
|
21773 |
|
|
/* Then count how many other high registers will need to be pushed. */
|
21774 |
|
|
unsigned long high_regs_pushed = bit_count (live_regs_mask & 0x0f00);
|
21775 |
|
|
int n_free, reg_base;
|
21776 |
|
|
|
21777 |
|
|
if (!for_prologue && frame_pointer_needed)
|
21778 |
|
|
amount = offsets->locals_base - offsets->saved_regs;
|
21779 |
|
|
else
|
21780 |
|
|
amount = offsets->outgoing_args - offsets->saved_regs;
|
21781 |
|
|
|
21782 |
|
|
/* If the stack frame size is 512 exactly, we can save one load
|
21783 |
|
|
instruction, which should make this a win even when optimizing
|
21784 |
|
|
for speed. */
|
21785 |
|
|
if (!optimize_size && amount != 512)
|
21786 |
|
|
return 0;
|
21787 |
|
|
|
21788 |
|
|
/* Can't do this if there are high registers to push. */
|
21789 |
|
|
if (high_regs_pushed != 0)
|
21790 |
|
|
return 0;
|
21791 |
|
|
|
21792 |
|
|
/* Shouldn't do it in the prologue if no registers would normally
|
21793 |
|
|
be pushed at all. In the epilogue, also allow it if we'll have
|
21794 |
|
|
a pop insn for the PC. */
|
21795 |
|
|
if (l_mask == 0
|
21796 |
|
|
&& (for_prologue
|
21797 |
|
|
|| TARGET_BACKTRACE
|
21798 |
|
|
|| (live_regs_mask & 1 << LR_REGNUM) == 0
|
21799 |
|
|
|| TARGET_INTERWORK
|
21800 |
|
|
|| crtl->args.pretend_args_size != 0))
|
21801 |
|
|
return 0;
|
21802 |
|
|
|
21803 |
|
|
/* Don't do this if thumb_expand_prologue wants to emit instructions
|
21804 |
|
|
between the push and the stack frame allocation. */
|
21805 |
|
|
if (for_prologue
|
21806 |
|
|
&& ((flag_pic && arm_pic_register != INVALID_REGNUM)
|
21807 |
|
|
|| (!frame_pointer_needed && CALLER_INTERWORKING_SLOT_SIZE > 0)))
|
21808 |
|
|
return 0;
|
21809 |
|
|
|
21810 |
|
|
reg_base = 0;
|
21811 |
|
|
n_free = 0;
|
21812 |
|
|
if (!for_prologue)
|
21813 |
|
|
{
|
21814 |
|
|
reg_base = arm_size_return_regs () / UNITS_PER_WORD;
|
21815 |
|
|
live_regs_mask >>= reg_base;
|
21816 |
|
|
}
|
21817 |
|
|
|
21818 |
|
|
while (reg_base + n_free < 8 && !(live_regs_mask & 1)
|
21819 |
|
|
&& (for_prologue || call_used_regs[reg_base + n_free]))
|
21820 |
|
|
{
|
21821 |
|
|
live_regs_mask >>= 1;
|
21822 |
|
|
n_free++;
|
21823 |
|
|
}
|
21824 |
|
|
|
21825 |
|
|
if (n_free == 0)
|
21826 |
|
|
return 0;
|
21827 |
|
|
gcc_assert (amount / 4 * 4 == amount);
|
21828 |
|
|
|
21829 |
|
|
if (amount >= 512 && (amount - n_free * 4) < 512)
|
21830 |
|
|
return (amount - 508) / 4;
|
21831 |
|
|
if (amount <= n_free * 4)
|
21832 |
|
|
return amount / 4;
|
21833 |
|
|
return 0;
|
21834 |
|
|
}
|
21835 |
|
|
|
21836 |
|
|
/* The bits which aren't usefully expanded as rtl. */
|
21837 |
|
|
const char *
|
21838 |
|
|
thumb_unexpanded_epilogue (void)
|
21839 |
|
|
{
|
21840 |
|
|
arm_stack_offsets *offsets;
|
21841 |
|
|
int regno;
|
21842 |
|
|
unsigned long live_regs_mask = 0;
|
21843 |
|
|
int high_regs_pushed = 0;
|
21844 |
|
|
int extra_pop;
|
21845 |
|
|
int had_to_push_lr;
|
21846 |
|
|
int size;
|
21847 |
|
|
|
21848 |
|
|
if (cfun->machine->return_used_this_function != 0)
|
21849 |
|
|
return "";
|
21850 |
|
|
|
21851 |
|
|
if (IS_NAKED (arm_current_func_type ()))
|
21852 |
|
|
return "";
|
21853 |
|
|
|
21854 |
|
|
offsets = arm_get_frame_offsets ();
|
21855 |
|
|
live_regs_mask = offsets->saved_regs_mask;
|
21856 |
|
|
high_regs_pushed = bit_count (live_regs_mask & 0x0f00);
|
21857 |
|
|
|
21858 |
|
|
/* If we can deduce the registers used from the function's return value.
|
21859 |
|
|
This is more reliable that examining df_regs_ever_live_p () because that
|
21860 |
|
|
will be set if the register is ever used in the function, not just if
|
21861 |
|
|
the register is used to hold a return value. */
|
21862 |
|
|
size = arm_size_return_regs ();
|
21863 |
|
|
|
21864 |
|
|
extra_pop = thumb1_extra_regs_pushed (offsets, false);
|
21865 |
|
|
if (extra_pop > 0)
|
21866 |
|
|
{
|
21867 |
|
|
unsigned long extra_mask = (1 << extra_pop) - 1;
|
21868 |
|
|
live_regs_mask |= extra_mask << ((size + UNITS_PER_WORD - 1)
|
21869 |
|
|
/ UNITS_PER_WORD);
|
21870 |
|
|
}
|
21871 |
|
|
|
21872 |
|
|
/* The prolog may have pushed some high registers to use as
|
21873 |
|
|
work registers. e.g. the testsuite file:
|
21874 |
|
|
gcc/testsuite/gcc/gcc.c-torture/execute/complex-2.c
|
21875 |
|
|
compiles to produce:
|
21876 |
|
|
push {r4, r5, r6, r7, lr}
|
21877 |
|
|
mov r7, r9
|
21878 |
|
|
mov r6, r8
|
21879 |
|
|
push {r6, r7}
|
21880 |
|
|
as part of the prolog. We have to undo that pushing here. */
|
21881 |
|
|
|
21882 |
|
|
if (high_regs_pushed)
|
21883 |
|
|
{
|
21884 |
|
|
unsigned long mask = live_regs_mask & 0xff;
|
21885 |
|
|
int next_hi_reg;
|
21886 |
|
|
|
21887 |
|
|
/* The available low registers depend on the size of the value we are
|
21888 |
|
|
returning. */
|
21889 |
|
|
if (size <= 12)
|
21890 |
|
|
mask |= 1 << 3;
|
21891 |
|
|
if (size <= 8)
|
21892 |
|
|
mask |= 1 << 2;
|
21893 |
|
|
|
21894 |
|
|
if (mask == 0)
|
21895 |
|
|
/* Oh dear! We have no low registers into which we can pop
|
21896 |
|
|
high registers! */
|
21897 |
|
|
internal_error
|
21898 |
|
|
("no low registers available for popping high registers");
|
21899 |
|
|
|
21900 |
|
|
for (next_hi_reg = 8; next_hi_reg < 13; next_hi_reg++)
|
21901 |
|
|
if (live_regs_mask & (1 << next_hi_reg))
|
21902 |
|
|
break;
|
21903 |
|
|
|
21904 |
|
|
while (high_regs_pushed)
|
21905 |
|
|
{
|
21906 |
|
|
/* Find lo register(s) into which the high register(s) can
|
21907 |
|
|
be popped. */
|
21908 |
|
|
for (regno = 0; regno <= LAST_LO_REGNUM; regno++)
|
21909 |
|
|
{
|
21910 |
|
|
if (mask & (1 << regno))
|
21911 |
|
|
high_regs_pushed--;
|
21912 |
|
|
if (high_regs_pushed == 0)
|
21913 |
|
|
break;
|
21914 |
|
|
}
|
21915 |
|
|
|
21916 |
|
|
mask &= (2 << regno) - 1; /* A noop if regno == 8 */
|
21917 |
|
|
|
21918 |
|
|
/* Pop the values into the low register(s). */
|
21919 |
|
|
thumb_pop (asm_out_file, mask);
|
21920 |
|
|
|
21921 |
|
|
/* Move the value(s) into the high registers. */
|
21922 |
|
|
for (regno = 0; regno <= LAST_LO_REGNUM; regno++)
|
21923 |
|
|
{
|
21924 |
|
|
if (mask & (1 << regno))
|
21925 |
|
|
{
|
21926 |
|
|
asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", next_hi_reg,
|
21927 |
|
|
regno);
|
21928 |
|
|
|
21929 |
|
|
for (next_hi_reg++; next_hi_reg < 13; next_hi_reg++)
|
21930 |
|
|
if (live_regs_mask & (1 << next_hi_reg))
|
21931 |
|
|
break;
|
21932 |
|
|
}
|
21933 |
|
|
}
|
21934 |
|
|
}
|
21935 |
|
|
live_regs_mask &= ~0x0f00;
|
21936 |
|
|
}
|
21937 |
|
|
|
21938 |
|
|
had_to_push_lr = (live_regs_mask & (1 << LR_REGNUM)) != 0;
|
21939 |
|
|
live_regs_mask &= 0xff;
|
21940 |
|
|
|
21941 |
|
|
if (crtl->args.pretend_args_size == 0 || TARGET_BACKTRACE)
|
21942 |
|
|
{
|
21943 |
|
|
/* Pop the return address into the PC. */
|
21944 |
|
|
if (had_to_push_lr)
|
21945 |
|
|
live_regs_mask |= 1 << PC_REGNUM;
|
21946 |
|
|
|
21947 |
|
|
/* Either no argument registers were pushed or a backtrace
|
21948 |
|
|
structure was created which includes an adjusted stack
|
21949 |
|
|
pointer, so just pop everything. */
|
21950 |
|
|
if (live_regs_mask)
|
21951 |
|
|
thumb_pop (asm_out_file, live_regs_mask);
|
21952 |
|
|
|
21953 |
|
|
/* We have either just popped the return address into the
|
21954 |
|
|
PC or it is was kept in LR for the entire function.
|
21955 |
|
|
Note that thumb_pop has already called thumb_exit if the
|
21956 |
|
|
PC was in the list. */
|
21957 |
|
|
if (!had_to_push_lr)
|
21958 |
|
|
thumb_exit (asm_out_file, LR_REGNUM);
|
21959 |
|
|
}
|
21960 |
|
|
else
|
21961 |
|
|
{
|
21962 |
|
|
/* Pop everything but the return address. */
|
21963 |
|
|
if (live_regs_mask)
|
21964 |
|
|
thumb_pop (asm_out_file, live_regs_mask);
|
21965 |
|
|
|
21966 |
|
|
if (had_to_push_lr)
|
21967 |
|
|
{
|
21968 |
|
|
if (size > 12)
|
21969 |
|
|
{
|
21970 |
|
|
/* We have no free low regs, so save one. */
|
21971 |
|
|
asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", IP_REGNUM,
|
21972 |
|
|
LAST_ARG_REGNUM);
|
21973 |
|
|
}
|
21974 |
|
|
|
21975 |
|
|
/* Get the return address into a temporary register. */
|
21976 |
|
|
thumb_pop (asm_out_file, 1 << LAST_ARG_REGNUM);
|
21977 |
|
|
|
21978 |
|
|
if (size > 12)
|
21979 |
|
|
{
|
21980 |
|
|
/* Move the return address to lr. */
|
21981 |
|
|
asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", LR_REGNUM,
|
21982 |
|
|
LAST_ARG_REGNUM);
|
21983 |
|
|
/* Restore the low register. */
|
21984 |
|
|
asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", LAST_ARG_REGNUM,
|
21985 |
|
|
IP_REGNUM);
|
21986 |
|
|
regno = LR_REGNUM;
|
21987 |
|
|
}
|
21988 |
|
|
else
|
21989 |
|
|
regno = LAST_ARG_REGNUM;
|
21990 |
|
|
}
|
21991 |
|
|
else
|
21992 |
|
|
regno = LR_REGNUM;
|
21993 |
|
|
|
21994 |
|
|
/* Remove the argument registers that were pushed onto the stack. */
|
21995 |
|
|
asm_fprintf (asm_out_file, "\tadd\t%r, %r, #%d\n",
|
21996 |
|
|
SP_REGNUM, SP_REGNUM,
|
21997 |
|
|
crtl->args.pretend_args_size);
|
21998 |
|
|
|
21999 |
|
|
thumb_exit (asm_out_file, regno);
|
22000 |
|
|
}
|
22001 |
|
|
|
22002 |
|
|
return "";
|
22003 |
|
|
}
|
22004 |
|
|
|
22005 |
|
|
/* Functions to save and restore machine-specific function data. */
|
22006 |
|
|
static struct machine_function *
|
22007 |
|
|
arm_init_machine_status (void)
|
22008 |
|
|
{
|
22009 |
|
|
struct machine_function *machine;
|
22010 |
|
|
machine = ggc_alloc_cleared_machine_function ();
|
22011 |
|
|
|
22012 |
|
|
#if ARM_FT_UNKNOWN != 0
|
22013 |
|
|
machine->func_type = ARM_FT_UNKNOWN;
|
22014 |
|
|
#endif
|
22015 |
|
|
return machine;
|
22016 |
|
|
}
|
22017 |
|
|
|
22018 |
|
|
/* Return an RTX indicating where the return address to the
|
22019 |
|
|
calling function can be found. */
|
22020 |
|
|
rtx
|
22021 |
|
|
arm_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
|
22022 |
|
|
{
|
22023 |
|
|
if (count != 0)
|
22024 |
|
|
return NULL_RTX;
|
22025 |
|
|
|
22026 |
|
|
return get_hard_reg_initial_val (Pmode, LR_REGNUM);
|
22027 |
|
|
}
|
22028 |
|
|
|
22029 |
|
|
/* Do anything needed before RTL is emitted for each function. */
|
22030 |
|
|
void
|
22031 |
|
|
arm_init_expanders (void)
|
22032 |
|
|
{
|
22033 |
|
|
/* Arrange to initialize and mark the machine per-function status. */
|
22034 |
|
|
init_machine_status = arm_init_machine_status;
|
22035 |
|
|
|
22036 |
|
|
/* This is to stop the combine pass optimizing away the alignment
|
22037 |
|
|
adjustment of va_arg. */
|
22038 |
|
|
/* ??? It is claimed that this should not be necessary. */
|
22039 |
|
|
if (cfun)
|
22040 |
|
|
mark_reg_pointer (arg_pointer_rtx, PARM_BOUNDARY);
|
22041 |
|
|
}
|
22042 |
|
|
|
22043 |
|
|
|
22044 |
|
|
/* Like arm_compute_initial_elimination offset. Simpler because there
|
22045 |
|
|
isn't an ABI specified frame pointer for Thumb. Instead, we set it
|
22046 |
|
|
to point at the base of the local variables after static stack
|
22047 |
|
|
space for a function has been allocated. */
|
22048 |
|
|
|
22049 |
|
|
HOST_WIDE_INT
|
22050 |
|
|
thumb_compute_initial_elimination_offset (unsigned int from, unsigned int to)
|
22051 |
|
|
{
|
22052 |
|
|
arm_stack_offsets *offsets;
|
22053 |
|
|
|
22054 |
|
|
offsets = arm_get_frame_offsets ();
|
22055 |
|
|
|
22056 |
|
|
switch (from)
|
22057 |
|
|
{
|
22058 |
|
|
case ARG_POINTER_REGNUM:
|
22059 |
|
|
switch (to)
|
22060 |
|
|
{
|
22061 |
|
|
case STACK_POINTER_REGNUM:
|
22062 |
|
|
return offsets->outgoing_args - offsets->saved_args;
|
22063 |
|
|
|
22064 |
|
|
case FRAME_POINTER_REGNUM:
|
22065 |
|
|
return offsets->soft_frame - offsets->saved_args;
|
22066 |
|
|
|
22067 |
|
|
case ARM_HARD_FRAME_POINTER_REGNUM:
|
22068 |
|
|
return offsets->saved_regs - offsets->saved_args;
|
22069 |
|
|
|
22070 |
|
|
case THUMB_HARD_FRAME_POINTER_REGNUM:
|
22071 |
|
|
return offsets->locals_base - offsets->saved_args;
|
22072 |
|
|
|
22073 |
|
|
default:
|
22074 |
|
|
gcc_unreachable ();
|
22075 |
|
|
}
|
22076 |
|
|
break;
|
22077 |
|
|
|
22078 |
|
|
case FRAME_POINTER_REGNUM:
|
22079 |
|
|
switch (to)
|
22080 |
|
|
{
|
22081 |
|
|
case STACK_POINTER_REGNUM:
|
22082 |
|
|
return offsets->outgoing_args - offsets->soft_frame;
|
22083 |
|
|
|
22084 |
|
|
case ARM_HARD_FRAME_POINTER_REGNUM:
|
22085 |
|
|
return offsets->saved_regs - offsets->soft_frame;
|
22086 |
|
|
|
22087 |
|
|
case THUMB_HARD_FRAME_POINTER_REGNUM:
|
22088 |
|
|
return offsets->locals_base - offsets->soft_frame;
|
22089 |
|
|
|
22090 |
|
|
default:
|
22091 |
|
|
gcc_unreachable ();
|
22092 |
|
|
}
|
22093 |
|
|
break;
|
22094 |
|
|
|
22095 |
|
|
default:
|
22096 |
|
|
gcc_unreachable ();
|
22097 |
|
|
}
|
22098 |
|
|
}
|
22099 |
|
|
|
22100 |
|
|
/* Generate the function's prologue. */
|
22101 |
|
|
|
22102 |
|
|
void
|
22103 |
|
|
thumb1_expand_prologue (void)
|
22104 |
|
|
{
|
22105 |
|
|
rtx insn;
|
22106 |
|
|
|
22107 |
|
|
HOST_WIDE_INT amount;
|
22108 |
|
|
arm_stack_offsets *offsets;
|
22109 |
|
|
unsigned long func_type;
|
22110 |
|
|
int regno;
|
22111 |
|
|
unsigned long live_regs_mask;
|
22112 |
|
|
unsigned long l_mask;
|
22113 |
|
|
unsigned high_regs_pushed = 0;
|
22114 |
|
|
|
22115 |
|
|
func_type = arm_current_func_type ();
|
22116 |
|
|
|
22117 |
|
|
/* Naked functions don't have prologues. */
|
22118 |
|
|
if (IS_NAKED (func_type))
|
22119 |
|
|
return;
|
22120 |
|
|
|
22121 |
|
|
if (IS_INTERRUPT (func_type))
|
22122 |
|
|
{
|
22123 |
|
|
error ("interrupt Service Routines cannot be coded in Thumb mode");
|
22124 |
|
|
return;
|
22125 |
|
|
}
|
22126 |
|
|
|
22127 |
|
|
if (is_called_in_ARM_mode (current_function_decl))
|
22128 |
|
|
emit_insn (gen_prologue_thumb1_interwork ());
|
22129 |
|
|
|
22130 |
|
|
offsets = arm_get_frame_offsets ();
|
22131 |
|
|
live_regs_mask = offsets->saved_regs_mask;
|
22132 |
|
|
|
22133 |
|
|
/* Extract a mask of the ones we can give to the Thumb's push instruction. */
|
22134 |
|
|
l_mask = live_regs_mask & 0x40ff;
|
22135 |
|
|
/* Then count how many other high registers will need to be pushed. */
|
22136 |
|
|
high_regs_pushed = bit_count (live_regs_mask & 0x0f00);
|
22137 |
|
|
|
22138 |
|
|
if (crtl->args.pretend_args_size)
|
22139 |
|
|
{
|
22140 |
|
|
rtx x = GEN_INT (-crtl->args.pretend_args_size);
|
22141 |
|
|
|
22142 |
|
|
if (cfun->machine->uses_anonymous_args)
|
22143 |
|
|
{
|
22144 |
|
|
int num_pushes = ARM_NUM_INTS (crtl->args.pretend_args_size);
|
22145 |
|
|
unsigned long mask;
|
22146 |
|
|
|
22147 |
|
|
mask = 1ul << (LAST_ARG_REGNUM + 1);
|
22148 |
|
|
mask -= 1ul << (LAST_ARG_REGNUM + 1 - num_pushes);
|
22149 |
|
|
|
22150 |
|
|
insn = thumb1_emit_multi_reg_push (mask, 0);
|
22151 |
|
|
}
|
22152 |
|
|
else
|
22153 |
|
|
{
|
22154 |
|
|
insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
|
22155 |
|
|
stack_pointer_rtx, x));
|
22156 |
|
|
}
|
22157 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
22158 |
|
|
}
|
22159 |
|
|
|
22160 |
|
|
if (TARGET_BACKTRACE)
|
22161 |
|
|
{
|
22162 |
|
|
HOST_WIDE_INT offset = 0;
|
22163 |
|
|
unsigned work_register;
|
22164 |
|
|
rtx work_reg, x, arm_hfp_rtx;
|
22165 |
|
|
|
22166 |
|
|
/* We have been asked to create a stack backtrace structure.
|
22167 |
|
|
The code looks like this:
|
22168 |
|
|
|
22169 |
|
|
|
22170 |
|
|
|
22171 |
|
|
|
22172 |
|
|
2 push {R7} Push low registers.
|
22173 |
|
|
4 add R7, SP, #20 Get the stack pointer before the push.
|
22174 |
|
|
6 str R7, [SP, #8] Store the stack pointer
|
22175 |
|
|
(before reserving the space).
|
22176 |
|
|
8 mov R7, PC Get hold of the start of this code + 12.
|
22177 |
|
|
10 str R7, [SP, #16] Store it.
|
22178 |
|
|
12 mov R7, FP Get hold of the current frame pointer.
|
22179 |
|
|
14 str R7, [SP, #4] Store it.
|
22180 |
|
|
16 mov R7, LR Get hold of the current return address.
|
22181 |
|
|
18 str R7, [SP, #12] Store it.
|
22182 |
|
|
20 add R7, SP, #16 Point at the start of the
|
22183 |
|
|
backtrace structure.
|
22184 |
|
|
22 mov FP, R7 Put this value into the frame pointer. */
|
22185 |
|
|
|
22186 |
|
|
work_register = thumb_find_work_register (live_regs_mask);
|
22187 |
|
|
work_reg = gen_rtx_REG (SImode, work_register);
|
22188 |
|
|
arm_hfp_rtx = gen_rtx_REG (SImode, ARM_HARD_FRAME_POINTER_REGNUM);
|
22189 |
|
|
|
22190 |
|
|
insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
|
22191 |
|
|
stack_pointer_rtx, GEN_INT (-16)));
|
22192 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
22193 |
|
|
|
22194 |
|
|
if (l_mask)
|
22195 |
|
|
{
|
22196 |
|
|
insn = thumb1_emit_multi_reg_push (l_mask, l_mask);
|
22197 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
22198 |
|
|
|
22199 |
|
|
offset = bit_count (l_mask) * UNITS_PER_WORD;
|
22200 |
|
|
}
|
22201 |
|
|
|
22202 |
|
|
x = GEN_INT (offset + 16 + crtl->args.pretend_args_size);
|
22203 |
|
|
emit_insn (gen_addsi3 (work_reg, stack_pointer_rtx, x));
|
22204 |
|
|
|
22205 |
|
|
x = plus_constant (stack_pointer_rtx, offset + 4);
|
22206 |
|
|
x = gen_frame_mem (SImode, x);
|
22207 |
|
|
emit_move_insn (x, work_reg);
|
22208 |
|
|
|
22209 |
|
|
/* Make sure that the instruction fetching the PC is in the right place
|
22210 |
|
|
to calculate "start of backtrace creation code + 12". */
|
22211 |
|
|
/* ??? The stores using the common WORK_REG ought to be enough to
|
22212 |
|
|
prevent the scheduler from doing anything weird. Failing that
|
22213 |
|
|
we could always move all of the following into an UNSPEC_VOLATILE. */
|
22214 |
|
|
if (l_mask)
|
22215 |
|
|
{
|
22216 |
|
|
x = gen_rtx_REG (SImode, PC_REGNUM);
|
22217 |
|
|
emit_move_insn (work_reg, x);
|
22218 |
|
|
|
22219 |
|
|
x = plus_constant (stack_pointer_rtx, offset + 12);
|
22220 |
|
|
x = gen_frame_mem (SImode, x);
|
22221 |
|
|
emit_move_insn (x, work_reg);
|
22222 |
|
|
|
22223 |
|
|
emit_move_insn (work_reg, arm_hfp_rtx);
|
22224 |
|
|
|
22225 |
|
|
x = plus_constant (stack_pointer_rtx, offset);
|
22226 |
|
|
x = gen_frame_mem (SImode, x);
|
22227 |
|
|
emit_move_insn (x, work_reg);
|
22228 |
|
|
}
|
22229 |
|
|
else
|
22230 |
|
|
{
|
22231 |
|
|
emit_move_insn (work_reg, arm_hfp_rtx);
|
22232 |
|
|
|
22233 |
|
|
x = plus_constant (stack_pointer_rtx, offset);
|
22234 |
|
|
x = gen_frame_mem (SImode, x);
|
22235 |
|
|
emit_move_insn (x, work_reg);
|
22236 |
|
|
|
22237 |
|
|
x = gen_rtx_REG (SImode, PC_REGNUM);
|
22238 |
|
|
emit_move_insn (work_reg, x);
|
22239 |
|
|
|
22240 |
|
|
x = plus_constant (stack_pointer_rtx, offset + 12);
|
22241 |
|
|
x = gen_frame_mem (SImode, x);
|
22242 |
|
|
emit_move_insn (x, work_reg);
|
22243 |
|
|
}
|
22244 |
|
|
|
22245 |
|
|
x = gen_rtx_REG (SImode, LR_REGNUM);
|
22246 |
|
|
emit_move_insn (work_reg, x);
|
22247 |
|
|
|
22248 |
|
|
x = plus_constant (stack_pointer_rtx, offset + 8);
|
22249 |
|
|
x = gen_frame_mem (SImode, x);
|
22250 |
|
|
emit_move_insn (x, work_reg);
|
22251 |
|
|
|
22252 |
|
|
x = GEN_INT (offset + 12);
|
22253 |
|
|
emit_insn (gen_addsi3 (work_reg, stack_pointer_rtx, x));
|
22254 |
|
|
|
22255 |
|
|
emit_move_insn (arm_hfp_rtx, work_reg);
|
22256 |
|
|
}
|
22257 |
|
|
/* Optimization: If we are not pushing any low registers but we are going
|
22258 |
|
|
to push some high registers then delay our first push. This will just
|
22259 |
|
|
be a push of LR and we can combine it with the push of the first high
|
22260 |
|
|
register. */
|
22261 |
|
|
else if ((l_mask & 0xff) != 0
|
22262 |
|
|
|| (high_regs_pushed == 0 && l_mask))
|
22263 |
|
|
{
|
22264 |
|
|
unsigned long mask = l_mask;
|
22265 |
|
|
mask |= (1 << thumb1_extra_regs_pushed (offsets, true)) - 1;
|
22266 |
|
|
insn = thumb1_emit_multi_reg_push (mask, mask);
|
22267 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
22268 |
|
|
}
|
22269 |
|
|
|
22270 |
|
|
if (high_regs_pushed)
|
22271 |
|
|
{
|
22272 |
|
|
unsigned pushable_regs;
|
22273 |
|
|
unsigned next_hi_reg;
|
22274 |
|
|
|
22275 |
|
|
for (next_hi_reg = 12; next_hi_reg > LAST_LO_REGNUM; next_hi_reg--)
|
22276 |
|
|
if (live_regs_mask & (1 << next_hi_reg))
|
22277 |
|
|
break;
|
22278 |
|
|
|
22279 |
|
|
pushable_regs = l_mask & 0xff;
|
22280 |
|
|
|
22281 |
|
|
if (pushable_regs == 0)
|
22282 |
|
|
pushable_regs = 1 << thumb_find_work_register (live_regs_mask);
|
22283 |
|
|
|
22284 |
|
|
while (high_regs_pushed > 0)
|
22285 |
|
|
{
|
22286 |
|
|
unsigned long real_regs_mask = 0;
|
22287 |
|
|
|
22288 |
|
|
for (regno = LAST_LO_REGNUM; regno >= 0; regno --)
|
22289 |
|
|
{
|
22290 |
|
|
if (pushable_regs & (1 << regno))
|
22291 |
|
|
{
|
22292 |
|
|
emit_move_insn (gen_rtx_REG (SImode, regno),
|
22293 |
|
|
gen_rtx_REG (SImode, next_hi_reg));
|
22294 |
|
|
|
22295 |
|
|
high_regs_pushed --;
|
22296 |
|
|
real_regs_mask |= (1 << next_hi_reg);
|
22297 |
|
|
|
22298 |
|
|
if (high_regs_pushed)
|
22299 |
|
|
{
|
22300 |
|
|
for (next_hi_reg --; next_hi_reg > LAST_LO_REGNUM;
|
22301 |
|
|
next_hi_reg --)
|
22302 |
|
|
if (live_regs_mask & (1 << next_hi_reg))
|
22303 |
|
|
break;
|
22304 |
|
|
}
|
22305 |
|
|
else
|
22306 |
|
|
{
|
22307 |
|
|
pushable_regs &= ~((1 << regno) - 1);
|
22308 |
|
|
break;
|
22309 |
|
|
}
|
22310 |
|
|
}
|
22311 |
|
|
}
|
22312 |
|
|
|
22313 |
|
|
/* If we had to find a work register and we have not yet
|
22314 |
|
|
saved the LR then add it to the list of regs to push. */
|
22315 |
|
|
if (l_mask == (1 << LR_REGNUM))
|
22316 |
|
|
{
|
22317 |
|
|
pushable_regs |= l_mask;
|
22318 |
|
|
real_regs_mask |= l_mask;
|
22319 |
|
|
l_mask = 0;
|
22320 |
|
|
}
|
22321 |
|
|
|
22322 |
|
|
insn = thumb1_emit_multi_reg_push (pushable_regs, real_regs_mask);
|
22323 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
22324 |
|
|
}
|
22325 |
|
|
}
|
22326 |
|
|
|
22327 |
|
|
/* Load the pic register before setting the frame pointer,
|
22328 |
|
|
so we can use r7 as a temporary work register. */
|
22329 |
|
|
if (flag_pic && arm_pic_register != INVALID_REGNUM)
|
22330 |
|
|
arm_load_pic_register (live_regs_mask);
|
22331 |
|
|
|
22332 |
|
|
if (!frame_pointer_needed && CALLER_INTERWORKING_SLOT_SIZE > 0)
|
22333 |
|
|
emit_move_insn (gen_rtx_REG (Pmode, ARM_HARD_FRAME_POINTER_REGNUM),
|
22334 |
|
|
stack_pointer_rtx);
|
22335 |
|
|
|
22336 |
|
|
if (flag_stack_usage_info)
|
22337 |
|
|
current_function_static_stack_size
|
22338 |
|
|
= offsets->outgoing_args - offsets->saved_args;
|
22339 |
|
|
|
22340 |
|
|
amount = offsets->outgoing_args - offsets->saved_regs;
|
22341 |
|
|
amount -= 4 * thumb1_extra_regs_pushed (offsets, true);
|
22342 |
|
|
if (amount)
|
22343 |
|
|
{
|
22344 |
|
|
if (amount < 512)
|
22345 |
|
|
{
|
22346 |
|
|
insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
22347 |
|
|
GEN_INT (- amount)));
|
22348 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
22349 |
|
|
}
|
22350 |
|
|
else
|
22351 |
|
|
{
|
22352 |
|
|
rtx reg, dwarf;
|
22353 |
|
|
|
22354 |
|
|
/* The stack decrement is too big for an immediate value in a single
|
22355 |
|
|
insn. In theory we could issue multiple subtracts, but after
|
22356 |
|
|
three of them it becomes more space efficient to place the full
|
22357 |
|
|
value in the constant pool and load into a register. (Also the
|
22358 |
|
|
ARM debugger really likes to see only one stack decrement per
|
22359 |
|
|
function). So instead we look for a scratch register into which
|
22360 |
|
|
we can load the decrement, and then we subtract this from the
|
22361 |
|
|
stack pointer. Unfortunately on the thumb the only available
|
22362 |
|
|
scratch registers are the argument registers, and we cannot use
|
22363 |
|
|
these as they may hold arguments to the function. Instead we
|
22364 |
|
|
attempt to locate a call preserved register which is used by this
|
22365 |
|
|
function. If we can find one, then we know that it will have
|
22366 |
|
|
been pushed at the start of the prologue and so we can corrupt
|
22367 |
|
|
it now. */
|
22368 |
|
|
for (regno = LAST_ARG_REGNUM + 1; regno <= LAST_LO_REGNUM; regno++)
|
22369 |
|
|
if (live_regs_mask & (1 << regno))
|
22370 |
|
|
break;
|
22371 |
|
|
|
22372 |
|
|
gcc_assert(regno <= LAST_LO_REGNUM);
|
22373 |
|
|
|
22374 |
|
|
reg = gen_rtx_REG (SImode, regno);
|
22375 |
|
|
|
22376 |
|
|
emit_insn (gen_movsi (reg, GEN_INT (- amount)));
|
22377 |
|
|
|
22378 |
|
|
insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
|
22379 |
|
|
stack_pointer_rtx, reg));
|
22380 |
|
|
|
22381 |
|
|
dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
22382 |
|
|
plus_constant (stack_pointer_rtx,
|
22383 |
|
|
-amount));
|
22384 |
|
|
add_reg_note (insn, REG_FRAME_RELATED_EXPR, dwarf);
|
22385 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
22386 |
|
|
}
|
22387 |
|
|
}
|
22388 |
|
|
|
22389 |
|
|
if (frame_pointer_needed)
|
22390 |
|
|
thumb_set_frame_pointer (offsets);
|
22391 |
|
|
|
22392 |
|
|
/* If we are profiling, make sure no instructions are scheduled before
|
22393 |
|
|
the call to mcount. Similarly if the user has requested no
|
22394 |
|
|
scheduling in the prolog. Similarly if we want non-call exceptions
|
22395 |
|
|
using the EABI unwinder, to prevent faulting instructions from being
|
22396 |
|
|
swapped with a stack adjustment. */
|
22397 |
|
|
if (crtl->profile || !TARGET_SCHED_PROLOG
|
22398 |
|
|
|| (arm_except_unwind_info (&global_options) == UI_TARGET
|
22399 |
|
|
&& cfun->can_throw_non_call_exceptions))
|
22400 |
|
|
emit_insn (gen_blockage ());
|
22401 |
|
|
|
22402 |
|
|
cfun->machine->lr_save_eliminated = !thumb_force_lr_save ();
|
22403 |
|
|
if (live_regs_mask & 0xff)
|
22404 |
|
|
cfun->machine->lr_save_eliminated = 0;
|
22405 |
|
|
}
|
22406 |
|
|
|
22407 |
|
|
|
22408 |
|
|
void
|
22409 |
|
|
thumb1_expand_epilogue (void)
|
22410 |
|
|
{
|
22411 |
|
|
HOST_WIDE_INT amount;
|
22412 |
|
|
arm_stack_offsets *offsets;
|
22413 |
|
|
int regno;
|
22414 |
|
|
|
22415 |
|
|
/* Naked functions don't have prologues. */
|
22416 |
|
|
if (IS_NAKED (arm_current_func_type ()))
|
22417 |
|
|
return;
|
22418 |
|
|
|
22419 |
|
|
offsets = arm_get_frame_offsets ();
|
22420 |
|
|
amount = offsets->outgoing_args - offsets->saved_regs;
|
22421 |
|
|
|
22422 |
|
|
if (frame_pointer_needed)
|
22423 |
|
|
{
|
22424 |
|
|
emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));
|
22425 |
|
|
amount = offsets->locals_base - offsets->saved_regs;
|
22426 |
|
|
}
|
22427 |
|
|
amount -= 4 * thumb1_extra_regs_pushed (offsets, false);
|
22428 |
|
|
|
22429 |
|
|
gcc_assert (amount >= 0);
|
22430 |
|
|
if (amount)
|
22431 |
|
|
{
|
22432 |
|
|
emit_insn (gen_blockage ());
|
22433 |
|
|
|
22434 |
|
|
if (amount < 512)
|
22435 |
|
|
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
22436 |
|
|
GEN_INT (amount)));
|
22437 |
|
|
else
|
22438 |
|
|
{
|
22439 |
|
|
/* r3 is always free in the epilogue. */
|
22440 |
|
|
rtx reg = gen_rtx_REG (SImode, LAST_ARG_REGNUM);
|
22441 |
|
|
|
22442 |
|
|
emit_insn (gen_movsi (reg, GEN_INT (amount)));
|
22443 |
|
|
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, reg));
|
22444 |
|
|
}
|
22445 |
|
|
}
|
22446 |
|
|
|
22447 |
|
|
/* Emit a USE (stack_pointer_rtx), so that
|
22448 |
|
|
the stack adjustment will not be deleted. */
|
22449 |
|
|
emit_insn (gen_prologue_use (stack_pointer_rtx));
|
22450 |
|
|
|
22451 |
|
|
if (crtl->profile || !TARGET_SCHED_PROLOG)
|
22452 |
|
|
emit_insn (gen_blockage ());
|
22453 |
|
|
|
22454 |
|
|
/* Emit a clobber for each insn that will be restored in the epilogue,
|
22455 |
|
|
so that flow2 will get register lifetimes correct. */
|
22456 |
|
|
for (regno = 0; regno < 13; regno++)
|
22457 |
|
|
if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
|
22458 |
|
|
emit_clobber (gen_rtx_REG (SImode, regno));
|
22459 |
|
|
|
22460 |
|
|
if (! df_regs_ever_live_p (LR_REGNUM))
|
22461 |
|
|
emit_use (gen_rtx_REG (SImode, LR_REGNUM));
|
22462 |
|
|
}
|
22463 |
|
|
|
22464 |
|
|
/* Implementation of insn prologue_thumb1_interwork. This is the first
|
22465 |
|
|
"instruction" of a function called in ARM mode. Swap to thumb mode. */
|
22466 |
|
|
|
22467 |
|
|
const char *
|
22468 |
|
|
thumb1_output_interwork (void)
|
22469 |
|
|
{
|
22470 |
|
|
const char * name;
|
22471 |
|
|
FILE *f = asm_out_file;
|
22472 |
|
|
|
22473 |
|
|
gcc_assert (GET_CODE (DECL_RTL (current_function_decl)) == MEM);
|
22474 |
|
|
gcc_assert (GET_CODE (XEXP (DECL_RTL (current_function_decl), 0))
|
22475 |
|
|
== SYMBOL_REF);
|
22476 |
|
|
name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
|
22477 |
|
|
|
22478 |
|
|
/* Generate code sequence to switch us into Thumb mode. */
|
22479 |
|
|
/* The .code 32 directive has already been emitted by
|
22480 |
|
|
ASM_DECLARE_FUNCTION_NAME. */
|
22481 |
|
|
asm_fprintf (f, "\torr\t%r, %r, #1\n", IP_REGNUM, PC_REGNUM);
|
22482 |
|
|
asm_fprintf (f, "\tbx\t%r\n", IP_REGNUM);
|
22483 |
|
|
|
22484 |
|
|
/* Generate a label, so that the debugger will notice the
|
22485 |
|
|
change in instruction sets. This label is also used by
|
22486 |
|
|
the assembler to bypass the ARM code when this function
|
22487 |
|
|
is called from a Thumb encoded function elsewhere in the
|
22488 |
|
|
same file. Hence the definition of STUB_NAME here must
|
22489 |
|
|
agree with the definition in gas/config/tc-arm.c. */
|
22490 |
|
|
|
22491 |
|
|
#define STUB_NAME ".real_start_of"
|
22492 |
|
|
|
22493 |
|
|
fprintf (f, "\t.code\t16\n");
|
22494 |
|
|
#ifdef ARM_PE
|
22495 |
|
|
if (arm_dllexport_name_p (name))
|
22496 |
|
|
name = arm_strip_name_encoding (name);
|
22497 |
|
|
#endif
|
22498 |
|
|
asm_fprintf (f, "\t.globl %s%U%s\n", STUB_NAME, name);
|
22499 |
|
|
fprintf (f, "\t.thumb_func\n");
|
22500 |
|
|
asm_fprintf (f, "%s%U%s:\n", STUB_NAME, name);
|
22501 |
|
|
|
22502 |
|
|
return "";
|
22503 |
|
|
}
|
22504 |
|
|
|
22505 |
|
|
/* Handle the case of a double word load into a low register from
|
22506 |
|
|
a computed memory address. The computed address may involve a
|
22507 |
|
|
register which is overwritten by the load. */
|
22508 |
|
|
const char *
|
22509 |
|
|
thumb_load_double_from_address (rtx *operands)
|
22510 |
|
|
{
|
22511 |
|
|
rtx addr;
|
22512 |
|
|
rtx base;
|
22513 |
|
|
rtx offset;
|
22514 |
|
|
rtx arg1;
|
22515 |
|
|
rtx arg2;
|
22516 |
|
|
|
22517 |
|
|
gcc_assert (GET_CODE (operands[0]) == REG);
|
22518 |
|
|
gcc_assert (GET_CODE (operands[1]) == MEM);
|
22519 |
|
|
|
22520 |
|
|
/* Get the memory address. */
|
22521 |
|
|
addr = XEXP (operands[1], 0);
|
22522 |
|
|
|
22523 |
|
|
/* Work out how the memory address is computed. */
|
22524 |
|
|
switch (GET_CODE (addr))
|
22525 |
|
|
{
|
22526 |
|
|
case REG:
|
22527 |
|
|
operands[2] = adjust_address (operands[1], SImode, 4);
|
22528 |
|
|
|
22529 |
|
|
if (REGNO (operands[0]) == REGNO (addr))
|
22530 |
|
|
{
|
22531 |
|
|
output_asm_insn ("ldr\t%H0, %2", operands);
|
22532 |
|
|
output_asm_insn ("ldr\t%0, %1", operands);
|
22533 |
|
|
}
|
22534 |
|
|
else
|
22535 |
|
|
{
|
22536 |
|
|
output_asm_insn ("ldr\t%0, %1", operands);
|
22537 |
|
|
output_asm_insn ("ldr\t%H0, %2", operands);
|
22538 |
|
|
}
|
22539 |
|
|
break;
|
22540 |
|
|
|
22541 |
|
|
case CONST:
|
22542 |
|
|
/* Compute <address> + 4 for the high order load. */
|
22543 |
|
|
operands[2] = adjust_address (operands[1], SImode, 4);
|
22544 |
|
|
|
22545 |
|
|
output_asm_insn ("ldr\t%0, %1", operands);
|
22546 |
|
|
output_asm_insn ("ldr\t%H0, %2", operands);
|
22547 |
|
|
break;
|
22548 |
|
|
|
22549 |
|
|
case PLUS:
|
22550 |
|
|
arg1 = XEXP (addr, 0);
|
22551 |
|
|
arg2 = XEXP (addr, 1);
|
22552 |
|
|
|
22553 |
|
|
if (CONSTANT_P (arg1))
|
22554 |
|
|
base = arg2, offset = arg1;
|
22555 |
|
|
else
|
22556 |
|
|
base = arg1, offset = arg2;
|
22557 |
|
|
|
22558 |
|
|
gcc_assert (GET_CODE (base) == REG);
|
22559 |
|
|
|
22560 |
|
|
/* Catch the case of <address> = <reg> + <reg> */
|
22561 |
|
|
if (GET_CODE (offset) == REG)
|
22562 |
|
|
{
|
22563 |
|
|
int reg_offset = REGNO (offset);
|
22564 |
|
|
int reg_base = REGNO (base);
|
22565 |
|
|
int reg_dest = REGNO (operands[0]);
|
22566 |
|
|
|
22567 |
|
|
/* Add the base and offset registers together into the
|
22568 |
|
|
higher destination register. */
|
22569 |
|
|
asm_fprintf (asm_out_file, "\tadd\t%r, %r, %r",
|
22570 |
|
|
reg_dest + 1, reg_base, reg_offset);
|
22571 |
|
|
|
22572 |
|
|
/* Load the lower destination register from the address in
|
22573 |
|
|
the higher destination register. */
|
22574 |
|
|
asm_fprintf (asm_out_file, "\tldr\t%r, [%r, #0]",
|
22575 |
|
|
reg_dest, reg_dest + 1);
|
22576 |
|
|
|
22577 |
|
|
/* Load the higher destination register from its own address
|
22578 |
|
|
plus 4. */
|
22579 |
|
|
asm_fprintf (asm_out_file, "\tldr\t%r, [%r, #4]",
|
22580 |
|
|
reg_dest + 1, reg_dest + 1);
|
22581 |
|
|
}
|
22582 |
|
|
else
|
22583 |
|
|
{
|
22584 |
|
|
/* Compute <address> + 4 for the high order load. */
|
22585 |
|
|
operands[2] = adjust_address (operands[1], SImode, 4);
|
22586 |
|
|
|
22587 |
|
|
/* If the computed address is held in the low order register
|
22588 |
|
|
then load the high order register first, otherwise always
|
22589 |
|
|
load the low order register first. */
|
22590 |
|
|
if (REGNO (operands[0]) == REGNO (base))
|
22591 |
|
|
{
|
22592 |
|
|
output_asm_insn ("ldr\t%H0, %2", operands);
|
22593 |
|
|
output_asm_insn ("ldr\t%0, %1", operands);
|
22594 |
|
|
}
|
22595 |
|
|
else
|
22596 |
|
|
{
|
22597 |
|
|
output_asm_insn ("ldr\t%0, %1", operands);
|
22598 |
|
|
output_asm_insn ("ldr\t%H0, %2", operands);
|
22599 |
|
|
}
|
22600 |
|
|
}
|
22601 |
|
|
break;
|
22602 |
|
|
|
22603 |
|
|
case LABEL_REF:
|
22604 |
|
|
/* With no registers to worry about we can just load the value
|
22605 |
|
|
directly. */
|
22606 |
|
|
operands[2] = adjust_address (operands[1], SImode, 4);
|
22607 |
|
|
|
22608 |
|
|
output_asm_insn ("ldr\t%H0, %2", operands);
|
22609 |
|
|
output_asm_insn ("ldr\t%0, %1", operands);
|
22610 |
|
|
break;
|
22611 |
|
|
|
22612 |
|
|
default:
|
22613 |
|
|
gcc_unreachable ();
|
22614 |
|
|
}
|
22615 |
|
|
|
22616 |
|
|
return "";
|
22617 |
|
|
}
|
22618 |
|
|
|
22619 |
|
|
const char *
|
22620 |
|
|
thumb_output_move_mem_multiple (int n, rtx *operands)
|
22621 |
|
|
{
|
22622 |
|
|
rtx tmp;
|
22623 |
|
|
|
22624 |
|
|
switch (n)
|
22625 |
|
|
{
|
22626 |
|
|
case 2:
|
22627 |
|
|
if (REGNO (operands[4]) > REGNO (operands[5]))
|
22628 |
|
|
{
|
22629 |
|
|
tmp = operands[4];
|
22630 |
|
|
operands[4] = operands[5];
|
22631 |
|
|
operands[5] = tmp;
|
22632 |
|
|
}
|
22633 |
|
|
output_asm_insn ("ldmia\t%1!, {%4, %5}", operands);
|
22634 |
|
|
output_asm_insn ("stmia\t%0!, {%4, %5}", operands);
|
22635 |
|
|
break;
|
22636 |
|
|
|
22637 |
|
|
case 3:
|
22638 |
|
|
if (REGNO (operands[4]) > REGNO (operands[5]))
|
22639 |
|
|
{
|
22640 |
|
|
tmp = operands[4];
|
22641 |
|
|
operands[4] = operands[5];
|
22642 |
|
|
operands[5] = tmp;
|
22643 |
|
|
}
|
22644 |
|
|
if (REGNO (operands[5]) > REGNO (operands[6]))
|
22645 |
|
|
{
|
22646 |
|
|
tmp = operands[5];
|
22647 |
|
|
operands[5] = operands[6];
|
22648 |
|
|
operands[6] = tmp;
|
22649 |
|
|
}
|
22650 |
|
|
if (REGNO (operands[4]) > REGNO (operands[5]))
|
22651 |
|
|
{
|
22652 |
|
|
tmp = operands[4];
|
22653 |
|
|
operands[4] = operands[5];
|
22654 |
|
|
operands[5] = tmp;
|
22655 |
|
|
}
|
22656 |
|
|
|
22657 |
|
|
output_asm_insn ("ldmia\t%1!, {%4, %5, %6}", operands);
|
22658 |
|
|
output_asm_insn ("stmia\t%0!, {%4, %5, %6}", operands);
|
22659 |
|
|
break;
|
22660 |
|
|
|
22661 |
|
|
default:
|
22662 |
|
|
gcc_unreachable ();
|
22663 |
|
|
}
|
22664 |
|
|
|
22665 |
|
|
return "";
|
22666 |
|
|
}
|
22667 |
|
|
|
22668 |
|
|
/* Output a call-via instruction for thumb state. */
|
22669 |
|
|
const char *
|
22670 |
|
|
thumb_call_via_reg (rtx reg)
|
22671 |
|
|
{
|
22672 |
|
|
int regno = REGNO (reg);
|
22673 |
|
|
rtx *labelp;
|
22674 |
|
|
|
22675 |
|
|
gcc_assert (regno < LR_REGNUM);
|
22676 |
|
|
|
22677 |
|
|
/* If we are in the normal text section we can use a single instance
|
22678 |
|
|
per compilation unit. If we are doing function sections, then we need
|
22679 |
|
|
an entry per section, since we can't rely on reachability. */
|
22680 |
|
|
if (in_section == text_section)
|
22681 |
|
|
{
|
22682 |
|
|
thumb_call_reg_needed = 1;
|
22683 |
|
|
|
22684 |
|
|
if (thumb_call_via_label[regno] == NULL)
|
22685 |
|
|
thumb_call_via_label[regno] = gen_label_rtx ();
|
22686 |
|
|
labelp = thumb_call_via_label + regno;
|
22687 |
|
|
}
|
22688 |
|
|
else
|
22689 |
|
|
{
|
22690 |
|
|
if (cfun->machine->call_via[regno] == NULL)
|
22691 |
|
|
cfun->machine->call_via[regno] = gen_label_rtx ();
|
22692 |
|
|
labelp = cfun->machine->call_via + regno;
|
22693 |
|
|
}
|
22694 |
|
|
|
22695 |
|
|
output_asm_insn ("bl\t%a0", labelp);
|
22696 |
|
|
return "";
|
22697 |
|
|
}
|
22698 |
|
|
|
22699 |
|
|
/* Routines for generating rtl. */
|
22700 |
|
|
void
|
22701 |
|
|
thumb_expand_movmemqi (rtx *operands)
|
22702 |
|
|
{
|
22703 |
|
|
rtx out = copy_to_mode_reg (SImode, XEXP (operands[0], 0));
|
22704 |
|
|
rtx in = copy_to_mode_reg (SImode, XEXP (operands[1], 0));
|
22705 |
|
|
HOST_WIDE_INT len = INTVAL (operands[2]);
|
22706 |
|
|
HOST_WIDE_INT offset = 0;
|
22707 |
|
|
|
22708 |
|
|
while (len >= 12)
|
22709 |
|
|
{
|
22710 |
|
|
emit_insn (gen_movmem12b (out, in, out, in));
|
22711 |
|
|
len -= 12;
|
22712 |
|
|
}
|
22713 |
|
|
|
22714 |
|
|
if (len >= 8)
|
22715 |
|
|
{
|
22716 |
|
|
emit_insn (gen_movmem8b (out, in, out, in));
|
22717 |
|
|
len -= 8;
|
22718 |
|
|
}
|
22719 |
|
|
|
22720 |
|
|
if (len >= 4)
|
22721 |
|
|
{
|
22722 |
|
|
rtx reg = gen_reg_rtx (SImode);
|
22723 |
|
|
emit_insn (gen_movsi (reg, gen_rtx_MEM (SImode, in)));
|
22724 |
|
|
emit_insn (gen_movsi (gen_rtx_MEM (SImode, out), reg));
|
22725 |
|
|
len -= 4;
|
22726 |
|
|
offset += 4;
|
22727 |
|
|
}
|
22728 |
|
|
|
22729 |
|
|
if (len >= 2)
|
22730 |
|
|
{
|
22731 |
|
|
rtx reg = gen_reg_rtx (HImode);
|
22732 |
|
|
emit_insn (gen_movhi (reg, gen_rtx_MEM (HImode,
|
22733 |
|
|
plus_constant (in, offset))));
|
22734 |
|
|
emit_insn (gen_movhi (gen_rtx_MEM (HImode, plus_constant (out, offset)),
|
22735 |
|
|
reg));
|
22736 |
|
|
len -= 2;
|
22737 |
|
|
offset += 2;
|
22738 |
|
|
}
|
22739 |
|
|
|
22740 |
|
|
if (len)
|
22741 |
|
|
{
|
22742 |
|
|
rtx reg = gen_reg_rtx (QImode);
|
22743 |
|
|
emit_insn (gen_movqi (reg, gen_rtx_MEM (QImode,
|
22744 |
|
|
plus_constant (in, offset))));
|
22745 |
|
|
emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (out, offset)),
|
22746 |
|
|
reg));
|
22747 |
|
|
}
|
22748 |
|
|
}
|
22749 |
|
|
|
22750 |
|
|
void
|
22751 |
|
|
thumb_reload_out_hi (rtx *operands)
|
22752 |
|
|
{
|
22753 |
|
|
emit_insn (gen_thumb_movhi_clobber (operands[0], operands[1], operands[2]));
|
22754 |
|
|
}
|
22755 |
|
|
|
22756 |
|
|
/* Handle reading a half-word from memory during reload. */
|
22757 |
|
|
void
|
22758 |
|
|
thumb_reload_in_hi (rtx *operands ATTRIBUTE_UNUSED)
|
22759 |
|
|
{
|
22760 |
|
|
gcc_unreachable ();
|
22761 |
|
|
}
|
22762 |
|
|
|
22763 |
|
|
/* Return the length of a function name prefix
|
22764 |
|
|
that starts with the character 'c'. */
|
22765 |
|
|
static int
|
22766 |
|
|
arm_get_strip_length (int c)
|
22767 |
|
|
{
|
22768 |
|
|
switch (c)
|
22769 |
|
|
{
|
22770 |
|
|
ARM_NAME_ENCODING_LENGTHS
|
22771 |
|
|
default: return 0;
|
22772 |
|
|
}
|
22773 |
|
|
}
|
22774 |
|
|
|
22775 |
|
|
/* Return a pointer to a function's name with any
|
22776 |
|
|
and all prefix encodings stripped from it. */
|
22777 |
|
|
const char *
|
22778 |
|
|
arm_strip_name_encoding (const char *name)
|
22779 |
|
|
{
|
22780 |
|
|
int skip;
|
22781 |
|
|
|
22782 |
|
|
while ((skip = arm_get_strip_length (* name)))
|
22783 |
|
|
name += skip;
|
22784 |
|
|
|
22785 |
|
|
return name;
|
22786 |
|
|
}
|
22787 |
|
|
|
22788 |
|
|
/* If there is a '*' anywhere in the name's prefix, then
|
22789 |
|
|
emit the stripped name verbatim, otherwise prepend an
|
22790 |
|
|
underscore if leading underscores are being used. */
|
22791 |
|
|
void
|
22792 |
|
|
arm_asm_output_labelref (FILE *stream, const char *name)
|
22793 |
|
|
{
|
22794 |
|
|
int skip;
|
22795 |
|
|
int verbatim = 0;
|
22796 |
|
|
|
22797 |
|
|
while ((skip = arm_get_strip_length (* name)))
|
22798 |
|
|
{
|
22799 |
|
|
verbatim |= (*name == '*');
|
22800 |
|
|
name += skip;
|
22801 |
|
|
}
|
22802 |
|
|
|
22803 |
|
|
if (verbatim)
|
22804 |
|
|
fputs (name, stream);
|
22805 |
|
|
else
|
22806 |
|
|
asm_fprintf (stream, "%U%s", name);
|
22807 |
|
|
}
|
22808 |
|
|
|
22809 |
|
|
static void
|
22810 |
|
|
arm_file_start (void)
|
22811 |
|
|
{
|
22812 |
|
|
int val;
|
22813 |
|
|
|
22814 |
|
|
if (TARGET_UNIFIED_ASM)
|
22815 |
|
|
asm_fprintf (asm_out_file, "\t.syntax unified\n");
|
22816 |
|
|
|
22817 |
|
|
if (TARGET_BPABI)
|
22818 |
|
|
{
|
22819 |
|
|
const char *fpu_name;
|
22820 |
|
|
if (arm_selected_arch)
|
22821 |
|
|
asm_fprintf (asm_out_file, "\t.arch %s\n", arm_selected_arch->name);
|
22822 |
|
|
else if (strncmp (arm_selected_cpu->name, "generic", 7) == 0)
|
22823 |
|
|
asm_fprintf (asm_out_file, "\t.arch %s\n", arm_selected_cpu->name + 8);
|
22824 |
|
|
else
|
22825 |
|
|
asm_fprintf (asm_out_file, "\t.cpu %s\n", arm_selected_cpu->name);
|
22826 |
|
|
|
22827 |
|
|
if (TARGET_SOFT_FLOAT)
|
22828 |
|
|
{
|
22829 |
|
|
if (TARGET_VFP)
|
22830 |
|
|
fpu_name = "softvfp";
|
22831 |
|
|
else
|
22832 |
|
|
fpu_name = "softfpa";
|
22833 |
|
|
}
|
22834 |
|
|
else
|
22835 |
|
|
{
|
22836 |
|
|
fpu_name = arm_fpu_desc->name;
|
22837 |
|
|
if (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
|
22838 |
|
|
{
|
22839 |
|
|
if (TARGET_HARD_FLOAT)
|
22840 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_HardFP_use, 27, 3);
|
22841 |
|
|
if (TARGET_HARD_FLOAT_ABI)
|
22842 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_VFP_args, 28, 1);
|
22843 |
|
|
}
|
22844 |
|
|
}
|
22845 |
|
|
asm_fprintf (asm_out_file, "\t.fpu %s\n", fpu_name);
|
22846 |
|
|
|
22847 |
|
|
/* Some of these attributes only apply when the corresponding features
|
22848 |
|
|
are used. However we don't have any easy way of figuring this out.
|
22849 |
|
|
Conservatively record the setting that would have been used. */
|
22850 |
|
|
|
22851 |
|
|
if (flag_rounding_math)
|
22852 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_FP_rounding, 19, 1);
|
22853 |
|
|
|
22854 |
|
|
if (!flag_unsafe_math_optimizations)
|
22855 |
|
|
{
|
22856 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_FP_denormal, 20, 1);
|
22857 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_FP_exceptions, 21, 1);
|
22858 |
|
|
}
|
22859 |
|
|
if (flag_signaling_nans)
|
22860 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_FP_user_exceptions, 22, 1);
|
22861 |
|
|
|
22862 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_FP_number_model, 23,
|
22863 |
|
|
flag_finite_math_only ? 1 : 3);
|
22864 |
|
|
|
22865 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_align8_needed, 24, 1);
|
22866 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_align8_preserved, 25, 1);
|
22867 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_enum_size, 26, flag_short_enums ? 1 : 2);
|
22868 |
|
|
|
22869 |
|
|
/* Tag_ABI_optimization_goals. */
|
22870 |
|
|
if (optimize_size)
|
22871 |
|
|
val = 4;
|
22872 |
|
|
else if (optimize >= 2)
|
22873 |
|
|
val = 2;
|
22874 |
|
|
else if (optimize)
|
22875 |
|
|
val = 1;
|
22876 |
|
|
else
|
22877 |
|
|
val = 6;
|
22878 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_optimization_goals, 30, val);
|
22879 |
|
|
|
22880 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_CPU_unaligned_access, 34, unaligned_access);
|
22881 |
|
|
|
22882 |
|
|
if (arm_fp16_format)
|
22883 |
|
|
EMIT_EABI_ATTRIBUTE (Tag_ABI_FP_16bit_format, 38, (int) arm_fp16_format);
|
22884 |
|
|
|
22885 |
|
|
if (arm_lang_output_object_attributes_hook)
|
22886 |
|
|
arm_lang_output_object_attributes_hook();
|
22887 |
|
|
}
|
22888 |
|
|
|
22889 |
|
|
default_file_start ();
|
22890 |
|
|
}
|
22891 |
|
|
|
22892 |
|
|
static void
|
22893 |
|
|
arm_file_end (void)
|
22894 |
|
|
{
|
22895 |
|
|
int regno;
|
22896 |
|
|
|
22897 |
|
|
if (NEED_INDICATE_EXEC_STACK)
|
22898 |
|
|
/* Add .note.GNU-stack. */
|
22899 |
|
|
file_end_indicate_exec_stack ();
|
22900 |
|
|
|
22901 |
|
|
if (! thumb_call_reg_needed)
|
22902 |
|
|
return;
|
22903 |
|
|
|
22904 |
|
|
switch_to_section (text_section);
|
22905 |
|
|
asm_fprintf (asm_out_file, "\t.code 16\n");
|
22906 |
|
|
ASM_OUTPUT_ALIGN (asm_out_file, 1);
|
22907 |
|
|
|
22908 |
|
|
for (regno = 0; regno < LR_REGNUM; regno++)
|
22909 |
|
|
{
|
22910 |
|
|
rtx label = thumb_call_via_label[regno];
|
22911 |
|
|
|
22912 |
|
|
if (label != 0)
|
22913 |
|
|
{
|
22914 |
|
|
targetm.asm_out.internal_label (asm_out_file, "L",
|
22915 |
|
|
CODE_LABEL_NUMBER (label));
|
22916 |
|
|
asm_fprintf (asm_out_file, "\tbx\t%r\n", regno);
|
22917 |
|
|
}
|
22918 |
|
|
}
|
22919 |
|
|
}
|
22920 |
|
|
|
22921 |
|
|
#ifndef ARM_PE
|
22922 |
|
|
/* Symbols in the text segment can be accessed without indirecting via the
|
22923 |
|
|
constant pool; it may take an extra binary operation, but this is still
|
22924 |
|
|
faster than indirecting via memory. Don't do this when not optimizing,
|
22925 |
|
|
since we won't be calculating al of the offsets necessary to do this
|
22926 |
|
|
simplification. */
|
22927 |
|
|
|
22928 |
|
|
static void
|
22929 |
|
|
arm_encode_section_info (tree decl, rtx rtl, int first)
|
22930 |
|
|
{
|
22931 |
|
|
if (optimize > 0 && TREE_CONSTANT (decl))
|
22932 |
|
|
SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
|
22933 |
|
|
|
22934 |
|
|
default_encode_section_info (decl, rtl, first);
|
22935 |
|
|
}
|
22936 |
|
|
#endif /* !ARM_PE */
|
22937 |
|
|
|
22938 |
|
|
static void
|
22939 |
|
|
arm_internal_label (FILE *stream, const char *prefix, unsigned long labelno)
|
22940 |
|
|
{
|
22941 |
|
|
if (arm_ccfsm_state == 3 && (unsigned) arm_target_label == labelno
|
22942 |
|
|
&& !strcmp (prefix, "L"))
|
22943 |
|
|
{
|
22944 |
|
|
arm_ccfsm_state = 0;
|
22945 |
|
|
arm_target_insn = NULL;
|
22946 |
|
|
}
|
22947 |
|
|
default_internal_label (stream, prefix, labelno);
|
22948 |
|
|
}
|
22949 |
|
|
|
22950 |
|
|
/* Output code to add DELTA to the first argument, and then jump
|
22951 |
|
|
to FUNCTION. Used for C++ multiple inheritance. */
|
22952 |
|
|
static void
|
22953 |
|
|
arm_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
|
22954 |
|
|
HOST_WIDE_INT delta,
|
22955 |
|
|
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
|
22956 |
|
|
tree function)
|
22957 |
|
|
{
|
22958 |
|
|
static int thunk_label = 0;
|
22959 |
|
|
char label[256];
|
22960 |
|
|
char labelpc[256];
|
22961 |
|
|
int mi_delta = delta;
|
22962 |
|
|
const char *const mi_op = mi_delta < 0 ? "sub" : "add";
|
22963 |
|
|
int shift = 0;
|
22964 |
|
|
int this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)
|
22965 |
|
|
? 1 : 0);
|
22966 |
|
|
if (mi_delta < 0)
|
22967 |
|
|
mi_delta = - mi_delta;
|
22968 |
|
|
|
22969 |
|
|
if (TARGET_THUMB1)
|
22970 |
|
|
{
|
22971 |
|
|
int labelno = thunk_label++;
|
22972 |
|
|
ASM_GENERATE_INTERNAL_LABEL (label, "LTHUMBFUNC", labelno);
|
22973 |
|
|
/* Thunks are entered in arm mode when avaiable. */
|
22974 |
|
|
if (TARGET_THUMB1_ONLY)
|
22975 |
|
|
{
|
22976 |
|
|
/* push r3 so we can use it as a temporary. */
|
22977 |
|
|
/* TODO: Omit this save if r3 is not used. */
|
22978 |
|
|
fputs ("\tpush {r3}\n", file);
|
22979 |
|
|
fputs ("\tldr\tr3, ", file);
|
22980 |
|
|
}
|
22981 |
|
|
else
|
22982 |
|
|
{
|
22983 |
|
|
fputs ("\tldr\tr12, ", file);
|
22984 |
|
|
}
|
22985 |
|
|
assemble_name (file, label);
|
22986 |
|
|
fputc ('\n', file);
|
22987 |
|
|
if (flag_pic)
|
22988 |
|
|
{
|
22989 |
|
|
/* If we are generating PIC, the ldr instruction below loads
|
22990 |
|
|
"(target - 7) - .LTHUNKPCn" into r12. The pc reads as
|
22991 |
|
|
the address of the add + 8, so we have:
|
22992 |
|
|
|
22993 |
|
|
r12 = (target - 7) - .LTHUNKPCn + (.LTHUNKPCn + 8)
|
22994 |
|
|
= target + 1.
|
22995 |
|
|
|
22996 |
|
|
Note that we have "+ 1" because some versions of GNU ld
|
22997 |
|
|
don't set the low bit of the result for R_ARM_REL32
|
22998 |
|
|
relocations against thumb function symbols.
|
22999 |
|
|
On ARMv6M this is +4, not +8. */
|
23000 |
|
|
ASM_GENERATE_INTERNAL_LABEL (labelpc, "LTHUNKPC", labelno);
|
23001 |
|
|
assemble_name (file, labelpc);
|
23002 |
|
|
fputs (":\n", file);
|
23003 |
|
|
if (TARGET_THUMB1_ONLY)
|
23004 |
|
|
{
|
23005 |
|
|
/* This is 2 insns after the start of the thunk, so we know it
|
23006 |
|
|
is 4-byte aligned. */
|
23007 |
|
|
fputs ("\tadd\tr3, pc, r3\n", file);
|
23008 |
|
|
fputs ("\tmov r12, r3\n", file);
|
23009 |
|
|
}
|
23010 |
|
|
else
|
23011 |
|
|
fputs ("\tadd\tr12, pc, r12\n", file);
|
23012 |
|
|
}
|
23013 |
|
|
else if (TARGET_THUMB1_ONLY)
|
23014 |
|
|
fputs ("\tmov r12, r3\n", file);
|
23015 |
|
|
}
|
23016 |
|
|
if (TARGET_THUMB1_ONLY)
|
23017 |
|
|
{
|
23018 |
|
|
if (mi_delta > 255)
|
23019 |
|
|
{
|
23020 |
|
|
fputs ("\tldr\tr3, ", file);
|
23021 |
|
|
assemble_name (file, label);
|
23022 |
|
|
fputs ("+4\n", file);
|
23023 |
|
|
asm_fprintf (file, "\t%s\t%r, %r, r3\n",
|
23024 |
|
|
mi_op, this_regno, this_regno);
|
23025 |
|
|
}
|
23026 |
|
|
else if (mi_delta != 0)
|
23027 |
|
|
{
|
23028 |
|
|
asm_fprintf (file, "\t%s\t%r, %r, #%d\n",
|
23029 |
|
|
mi_op, this_regno, this_regno,
|
23030 |
|
|
mi_delta);
|
23031 |
|
|
}
|
23032 |
|
|
}
|
23033 |
|
|
else
|
23034 |
|
|
{
|
23035 |
|
|
/* TODO: Use movw/movt for large constants when available. */
|
23036 |
|
|
while (mi_delta != 0)
|
23037 |
|
|
{
|
23038 |
|
|
if ((mi_delta & (3 << shift)) == 0)
|
23039 |
|
|
shift += 2;
|
23040 |
|
|
else
|
23041 |
|
|
{
|
23042 |
|
|
asm_fprintf (file, "\t%s\t%r, %r, #%d\n",
|
23043 |
|
|
mi_op, this_regno, this_regno,
|
23044 |
|
|
mi_delta & (0xff << shift));
|
23045 |
|
|
mi_delta &= ~(0xff << shift);
|
23046 |
|
|
shift += 8;
|
23047 |
|
|
}
|
23048 |
|
|
}
|
23049 |
|
|
}
|
23050 |
|
|
if (TARGET_THUMB1)
|
23051 |
|
|
{
|
23052 |
|
|
if (TARGET_THUMB1_ONLY)
|
23053 |
|
|
fputs ("\tpop\t{r3}\n", file);
|
23054 |
|
|
|
23055 |
|
|
fprintf (file, "\tbx\tr12\n");
|
23056 |
|
|
ASM_OUTPUT_ALIGN (file, 2);
|
23057 |
|
|
assemble_name (file, label);
|
23058 |
|
|
fputs (":\n", file);
|
23059 |
|
|
if (flag_pic)
|
23060 |
|
|
{
|
23061 |
|
|
/* Output ".word .LTHUNKn-7-.LTHUNKPCn". */
|
23062 |
|
|
rtx tem = XEXP (DECL_RTL (function), 0);
|
23063 |
|
|
tem = gen_rtx_PLUS (GET_MODE (tem), tem, GEN_INT (-7));
|
23064 |
|
|
tem = gen_rtx_MINUS (GET_MODE (tem),
|
23065 |
|
|
tem,
|
23066 |
|
|
gen_rtx_SYMBOL_REF (Pmode,
|
23067 |
|
|
ggc_strdup (labelpc)));
|
23068 |
|
|
assemble_integer (tem, 4, BITS_PER_WORD, 1);
|
23069 |
|
|
}
|
23070 |
|
|
else
|
23071 |
|
|
/* Output ".word .LTHUNKn". */
|
23072 |
|
|
assemble_integer (XEXP (DECL_RTL (function), 0), 4, BITS_PER_WORD, 1);
|
23073 |
|
|
|
23074 |
|
|
if (TARGET_THUMB1_ONLY && mi_delta > 255)
|
23075 |
|
|
assemble_integer (GEN_INT(mi_delta), 4, BITS_PER_WORD, 1);
|
23076 |
|
|
}
|
23077 |
|
|
else
|
23078 |
|
|
{
|
23079 |
|
|
fputs ("\tb\t", file);
|
23080 |
|
|
assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
|
23081 |
|
|
if (NEED_PLT_RELOC)
|
23082 |
|
|
fputs ("(PLT)", file);
|
23083 |
|
|
fputc ('\n', file);
|
23084 |
|
|
}
|
23085 |
|
|
}
|
23086 |
|
|
|
23087 |
|
|
int
|
23088 |
|
|
arm_emit_vector_const (FILE *file, rtx x)
|
23089 |
|
|
{
|
23090 |
|
|
int i;
|
23091 |
|
|
const char * pattern;
|
23092 |
|
|
|
23093 |
|
|
gcc_assert (GET_CODE (x) == CONST_VECTOR);
|
23094 |
|
|
|
23095 |
|
|
switch (GET_MODE (x))
|
23096 |
|
|
{
|
23097 |
|
|
case V2SImode: pattern = "%08x"; break;
|
23098 |
|
|
case V4HImode: pattern = "%04x"; break;
|
23099 |
|
|
case V8QImode: pattern = "%02x"; break;
|
23100 |
|
|
default: gcc_unreachable ();
|
23101 |
|
|
}
|
23102 |
|
|
|
23103 |
|
|
fprintf (file, "0x");
|
23104 |
|
|
for (i = CONST_VECTOR_NUNITS (x); i--;)
|
23105 |
|
|
{
|
23106 |
|
|
rtx element;
|
23107 |
|
|
|
23108 |
|
|
element = CONST_VECTOR_ELT (x, i);
|
23109 |
|
|
fprintf (file, pattern, INTVAL (element));
|
23110 |
|
|
}
|
23111 |
|
|
|
23112 |
|
|
return 1;
|
23113 |
|
|
}
|
23114 |
|
|
|
23115 |
|
|
/* Emit a fp16 constant appropriately padded to occupy a 4-byte word.
|
23116 |
|
|
HFmode constant pool entries are actually loaded with ldr. */
|
23117 |
|
|
void
|
23118 |
|
|
arm_emit_fp16_const (rtx c)
|
23119 |
|
|
{
|
23120 |
|
|
REAL_VALUE_TYPE r;
|
23121 |
|
|
long bits;
|
23122 |
|
|
|
23123 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r, c);
|
23124 |
|
|
bits = real_to_target (NULL, &r, HFmode);
|
23125 |
|
|
if (WORDS_BIG_ENDIAN)
|
23126 |
|
|
assemble_zeros (2);
|
23127 |
|
|
assemble_integer (GEN_INT (bits), 2, BITS_PER_WORD, 1);
|
23128 |
|
|
if (!WORDS_BIG_ENDIAN)
|
23129 |
|
|
assemble_zeros (2);
|
23130 |
|
|
}
|
23131 |
|
|
|
23132 |
|
|
const char *
|
23133 |
|
|
arm_output_load_gr (rtx *operands)
|
23134 |
|
|
{
|
23135 |
|
|
rtx reg;
|
23136 |
|
|
rtx offset;
|
23137 |
|
|
rtx wcgr;
|
23138 |
|
|
rtx sum;
|
23139 |
|
|
|
23140 |
|
|
if (GET_CODE (operands [1]) != MEM
|
23141 |
|
|
|| GET_CODE (sum = XEXP (operands [1], 0)) != PLUS
|
23142 |
|
|
|| GET_CODE (reg = XEXP (sum, 0)) != REG
|
23143 |
|
|
|| GET_CODE (offset = XEXP (sum, 1)) != CONST_INT
|
23144 |
|
|
|| ((INTVAL (offset) < 1024) && (INTVAL (offset) > -1024)))
|
23145 |
|
|
return "wldrw%?\t%0, %1";
|
23146 |
|
|
|
23147 |
|
|
/* Fix up an out-of-range load of a GR register. */
|
23148 |
|
|
output_asm_insn ("str%?\t%0, [sp, #-4]!\t@ Start of GR load expansion", & reg);
|
23149 |
|
|
wcgr = operands[0];
|
23150 |
|
|
operands[0] = reg;
|
23151 |
|
|
output_asm_insn ("ldr%?\t%0, %1", operands);
|
23152 |
|
|
|
23153 |
|
|
operands[0] = wcgr;
|
23154 |
|
|
operands[1] = reg;
|
23155 |
|
|
output_asm_insn ("tmcr%?\t%0, %1", operands);
|
23156 |
|
|
output_asm_insn ("ldr%?\t%0, [sp], #4\t@ End of GR load expansion", & reg);
|
23157 |
|
|
|
23158 |
|
|
return "";
|
23159 |
|
|
}
|
23160 |
|
|
|
23161 |
|
|
/* Worker function for TARGET_SETUP_INCOMING_VARARGS.
|
23162 |
|
|
|
23163 |
|
|
On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
|
23164 |
|
|
named arg and all anonymous args onto the stack.
|
23165 |
|
|
XXX I know the prologue shouldn't be pushing registers, but it is faster
|
23166 |
|
|
that way. */
|
23167 |
|
|
|
23168 |
|
|
static void
|
23169 |
|
|
arm_setup_incoming_varargs (cumulative_args_t pcum_v,
|
23170 |
|
|
enum machine_mode mode,
|
23171 |
|
|
tree type,
|
23172 |
|
|
int *pretend_size,
|
23173 |
|
|
int second_time ATTRIBUTE_UNUSED)
|
23174 |
|
|
{
|
23175 |
|
|
CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v);
|
23176 |
|
|
int nregs;
|
23177 |
|
|
|
23178 |
|
|
cfun->machine->uses_anonymous_args = 1;
|
23179 |
|
|
if (pcum->pcs_variant <= ARM_PCS_AAPCS_LOCAL)
|
23180 |
|
|
{
|
23181 |
|
|
nregs = pcum->aapcs_ncrn;
|
23182 |
|
|
if ((nregs & 1) && arm_needs_doubleword_align (mode, type))
|
23183 |
|
|
nregs++;
|
23184 |
|
|
}
|
23185 |
|
|
else
|
23186 |
|
|
nregs = pcum->nregs;
|
23187 |
|
|
|
23188 |
|
|
if (nregs < NUM_ARG_REGS)
|
23189 |
|
|
*pretend_size = (NUM_ARG_REGS - nregs) * UNITS_PER_WORD;
|
23190 |
|
|
}
|
23191 |
|
|
|
23192 |
|
|
/* Return nonzero if the CONSUMER instruction (a store) does not need
|
23193 |
|
|
PRODUCER's value to calculate the address. */
|
23194 |
|
|
|
23195 |
|
|
int
|
23196 |
|
|
arm_no_early_store_addr_dep (rtx producer, rtx consumer)
|
23197 |
|
|
{
|
23198 |
|
|
rtx value = PATTERN (producer);
|
23199 |
|
|
rtx addr = PATTERN (consumer);
|
23200 |
|
|
|
23201 |
|
|
if (GET_CODE (value) == COND_EXEC)
|
23202 |
|
|
value = COND_EXEC_CODE (value);
|
23203 |
|
|
if (GET_CODE (value) == PARALLEL)
|
23204 |
|
|
value = XVECEXP (value, 0, 0);
|
23205 |
|
|
value = XEXP (value, 0);
|
23206 |
|
|
if (GET_CODE (addr) == COND_EXEC)
|
23207 |
|
|
addr = COND_EXEC_CODE (addr);
|
23208 |
|
|
if (GET_CODE (addr) == PARALLEL)
|
23209 |
|
|
addr = XVECEXP (addr, 0, 0);
|
23210 |
|
|
addr = XEXP (addr, 0);
|
23211 |
|
|
|
23212 |
|
|
return !reg_overlap_mentioned_p (value, addr);
|
23213 |
|
|
}
|
23214 |
|
|
|
23215 |
|
|
/* Return nonzero if the CONSUMER instruction (a store) does need
|
23216 |
|
|
PRODUCER's value to calculate the address. */
|
23217 |
|
|
|
23218 |
|
|
int
|
23219 |
|
|
arm_early_store_addr_dep (rtx producer, rtx consumer)
|
23220 |
|
|
{
|
23221 |
|
|
return !arm_no_early_store_addr_dep (producer, consumer);
|
23222 |
|
|
}
|
23223 |
|
|
|
23224 |
|
|
/* Return nonzero if the CONSUMER instruction (a load) does need
|
23225 |
|
|
PRODUCER's value to calculate the address. */
|
23226 |
|
|
|
23227 |
|
|
int
|
23228 |
|
|
arm_early_load_addr_dep (rtx producer, rtx consumer)
|
23229 |
|
|
{
|
23230 |
|
|
rtx value = PATTERN (producer);
|
23231 |
|
|
rtx addr = PATTERN (consumer);
|
23232 |
|
|
|
23233 |
|
|
if (GET_CODE (value) == COND_EXEC)
|
23234 |
|
|
value = COND_EXEC_CODE (value);
|
23235 |
|
|
if (GET_CODE (value) == PARALLEL)
|
23236 |
|
|
value = XVECEXP (value, 0, 0);
|
23237 |
|
|
value = XEXP (value, 0);
|
23238 |
|
|
if (GET_CODE (addr) == COND_EXEC)
|
23239 |
|
|
addr = COND_EXEC_CODE (addr);
|
23240 |
|
|
if (GET_CODE (addr) == PARALLEL)
|
23241 |
|
|
addr = XVECEXP (addr, 0, 0);
|
23242 |
|
|
addr = XEXP (addr, 1);
|
23243 |
|
|
|
23244 |
|
|
return reg_overlap_mentioned_p (value, addr);
|
23245 |
|
|
}
|
23246 |
|
|
|
23247 |
|
|
/* Return nonzero if the CONSUMER instruction (an ALU op) does not
|
23248 |
|
|
have an early register shift value or amount dependency on the
|
23249 |
|
|
result of PRODUCER. */
|
23250 |
|
|
|
23251 |
|
|
int
|
23252 |
|
|
arm_no_early_alu_shift_dep (rtx producer, rtx consumer)
|
23253 |
|
|
{
|
23254 |
|
|
rtx value = PATTERN (producer);
|
23255 |
|
|
rtx op = PATTERN (consumer);
|
23256 |
|
|
rtx early_op;
|
23257 |
|
|
|
23258 |
|
|
if (GET_CODE (value) == COND_EXEC)
|
23259 |
|
|
value = COND_EXEC_CODE (value);
|
23260 |
|
|
if (GET_CODE (value) == PARALLEL)
|
23261 |
|
|
value = XVECEXP (value, 0, 0);
|
23262 |
|
|
value = XEXP (value, 0);
|
23263 |
|
|
if (GET_CODE (op) == COND_EXEC)
|
23264 |
|
|
op = COND_EXEC_CODE (op);
|
23265 |
|
|
if (GET_CODE (op) == PARALLEL)
|
23266 |
|
|
op = XVECEXP (op, 0, 0);
|
23267 |
|
|
op = XEXP (op, 1);
|
23268 |
|
|
|
23269 |
|
|
early_op = XEXP (op, 0);
|
23270 |
|
|
/* This is either an actual independent shift, or a shift applied to
|
23271 |
|
|
the first operand of another operation. We want the whole shift
|
23272 |
|
|
operation. */
|
23273 |
|
|
if (GET_CODE (early_op) == REG)
|
23274 |
|
|
early_op = op;
|
23275 |
|
|
|
23276 |
|
|
return !reg_overlap_mentioned_p (value, early_op);
|
23277 |
|
|
}
|
23278 |
|
|
|
23279 |
|
|
/* Return nonzero if the CONSUMER instruction (an ALU op) does not
|
23280 |
|
|
have an early register shift value dependency on the result of
|
23281 |
|
|
PRODUCER. */
|
23282 |
|
|
|
23283 |
|
|
int
|
23284 |
|
|
arm_no_early_alu_shift_value_dep (rtx producer, rtx consumer)
|
23285 |
|
|
{
|
23286 |
|
|
rtx value = PATTERN (producer);
|
23287 |
|
|
rtx op = PATTERN (consumer);
|
23288 |
|
|
rtx early_op;
|
23289 |
|
|
|
23290 |
|
|
if (GET_CODE (value) == COND_EXEC)
|
23291 |
|
|
value = COND_EXEC_CODE (value);
|
23292 |
|
|
if (GET_CODE (value) == PARALLEL)
|
23293 |
|
|
value = XVECEXP (value, 0, 0);
|
23294 |
|
|
value = XEXP (value, 0);
|
23295 |
|
|
if (GET_CODE (op) == COND_EXEC)
|
23296 |
|
|
op = COND_EXEC_CODE (op);
|
23297 |
|
|
if (GET_CODE (op) == PARALLEL)
|
23298 |
|
|
op = XVECEXP (op, 0, 0);
|
23299 |
|
|
op = XEXP (op, 1);
|
23300 |
|
|
|
23301 |
|
|
early_op = XEXP (op, 0);
|
23302 |
|
|
|
23303 |
|
|
/* This is either an actual independent shift, or a shift applied to
|
23304 |
|
|
the first operand of another operation. We want the value being
|
23305 |
|
|
shifted, in either case. */
|
23306 |
|
|
if (GET_CODE (early_op) != REG)
|
23307 |
|
|
early_op = XEXP (early_op, 0);
|
23308 |
|
|
|
23309 |
|
|
return !reg_overlap_mentioned_p (value, early_op);
|
23310 |
|
|
}
|
23311 |
|
|
|
23312 |
|
|
/* Return nonzero if the CONSUMER (a mul or mac op) does not
|
23313 |
|
|
have an early register mult dependency on the result of
|
23314 |
|
|
PRODUCER. */
|
23315 |
|
|
|
23316 |
|
|
int
|
23317 |
|
|
arm_no_early_mul_dep (rtx producer, rtx consumer)
|
23318 |
|
|
{
|
23319 |
|
|
rtx value = PATTERN (producer);
|
23320 |
|
|
rtx op = PATTERN (consumer);
|
23321 |
|
|
|
23322 |
|
|
if (GET_CODE (value) == COND_EXEC)
|
23323 |
|
|
value = COND_EXEC_CODE (value);
|
23324 |
|
|
if (GET_CODE (value) == PARALLEL)
|
23325 |
|
|
value = XVECEXP (value, 0, 0);
|
23326 |
|
|
value = XEXP (value, 0);
|
23327 |
|
|
if (GET_CODE (op) == COND_EXEC)
|
23328 |
|
|
op = COND_EXEC_CODE (op);
|
23329 |
|
|
if (GET_CODE (op) == PARALLEL)
|
23330 |
|
|
op = XVECEXP (op, 0, 0);
|
23331 |
|
|
op = XEXP (op, 1);
|
23332 |
|
|
|
23333 |
|
|
if (GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
|
23334 |
|
|
{
|
23335 |
|
|
if (GET_CODE (XEXP (op, 0)) == MULT)
|
23336 |
|
|
return !reg_overlap_mentioned_p (value, XEXP (op, 0));
|
23337 |
|
|
else
|
23338 |
|
|
return !reg_overlap_mentioned_p (value, XEXP (op, 1));
|
23339 |
|
|
}
|
23340 |
|
|
|
23341 |
|
|
return 0;
|
23342 |
|
|
}
|
23343 |
|
|
|
23344 |
|
|
/* We can't rely on the caller doing the proper promotion when
|
23345 |
|
|
using APCS or ATPCS. */
|
23346 |
|
|
|
23347 |
|
|
static bool
|
23348 |
|
|
arm_promote_prototypes (const_tree t ATTRIBUTE_UNUSED)
|
23349 |
|
|
{
|
23350 |
|
|
return !TARGET_AAPCS_BASED;
|
23351 |
|
|
}
|
23352 |
|
|
|
23353 |
|
|
static enum machine_mode
|
23354 |
|
|
arm_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
|
23355 |
|
|
enum machine_mode mode,
|
23356 |
|
|
int *punsignedp ATTRIBUTE_UNUSED,
|
23357 |
|
|
const_tree fntype ATTRIBUTE_UNUSED,
|
23358 |
|
|
int for_return ATTRIBUTE_UNUSED)
|
23359 |
|
|
{
|
23360 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT
|
23361 |
|
|
&& GET_MODE_SIZE (mode) < 4)
|
23362 |
|
|
return SImode;
|
23363 |
|
|
|
23364 |
|
|
return mode;
|
23365 |
|
|
}
|
23366 |
|
|
|
23367 |
|
|
/* AAPCS based ABIs use short enums by default. */
|
23368 |
|
|
|
23369 |
|
|
static bool
|
23370 |
|
|
arm_default_short_enums (void)
|
23371 |
|
|
{
|
23372 |
|
|
return TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX;
|
23373 |
|
|
}
|
23374 |
|
|
|
23375 |
|
|
|
23376 |
|
|
/* AAPCS requires that anonymous bitfields affect structure alignment. */
|
23377 |
|
|
|
23378 |
|
|
static bool
|
23379 |
|
|
arm_align_anon_bitfield (void)
|
23380 |
|
|
{
|
23381 |
|
|
return TARGET_AAPCS_BASED;
|
23382 |
|
|
}
|
23383 |
|
|
|
23384 |
|
|
|
23385 |
|
|
/* The generic C++ ABI says 64-bit (long long). The EABI says 32-bit. */
|
23386 |
|
|
|
23387 |
|
|
static tree
|
23388 |
|
|
arm_cxx_guard_type (void)
|
23389 |
|
|
{
|
23390 |
|
|
return TARGET_AAPCS_BASED ? integer_type_node : long_long_integer_type_node;
|
23391 |
|
|
}
|
23392 |
|
|
|
23393 |
|
|
/* Return non-zero if the consumer (a multiply-accumulate instruction)
|
23394 |
|
|
has an accumulator dependency on the result of the producer (a
|
23395 |
|
|
multiplication instruction) and no other dependency on that result. */
|
23396 |
|
|
int
|
23397 |
|
|
arm_mac_accumulator_is_mul_result (rtx producer, rtx consumer)
|
23398 |
|
|
{
|
23399 |
|
|
rtx mul = PATTERN (producer);
|
23400 |
|
|
rtx mac = PATTERN (consumer);
|
23401 |
|
|
rtx mul_result;
|
23402 |
|
|
rtx mac_op0, mac_op1, mac_acc;
|
23403 |
|
|
|
23404 |
|
|
if (GET_CODE (mul) == COND_EXEC)
|
23405 |
|
|
mul = COND_EXEC_CODE (mul);
|
23406 |
|
|
if (GET_CODE (mac) == COND_EXEC)
|
23407 |
|
|
mac = COND_EXEC_CODE (mac);
|
23408 |
|
|
|
23409 |
|
|
/* Check that mul is of the form (set (...) (mult ...))
|
23410 |
|
|
and mla is of the form (set (...) (plus (mult ...) (...))). */
|
23411 |
|
|
if ((GET_CODE (mul) != SET || GET_CODE (XEXP (mul, 1)) != MULT)
|
23412 |
|
|
|| (GET_CODE (mac) != SET || GET_CODE (XEXP (mac, 1)) != PLUS
|
23413 |
|
|
|| GET_CODE (XEXP (XEXP (mac, 1), 0)) != MULT))
|
23414 |
|
|
return 0;
|
23415 |
|
|
|
23416 |
|
|
mul_result = XEXP (mul, 0);
|
23417 |
|
|
mac_op0 = XEXP (XEXP (XEXP (mac, 1), 0), 0);
|
23418 |
|
|
mac_op1 = XEXP (XEXP (XEXP (mac, 1), 0), 1);
|
23419 |
|
|
mac_acc = XEXP (XEXP (mac, 1), 1);
|
23420 |
|
|
|
23421 |
|
|
return (reg_overlap_mentioned_p (mul_result, mac_acc)
|
23422 |
|
|
&& !reg_overlap_mentioned_p (mul_result, mac_op0)
|
23423 |
|
|
&& !reg_overlap_mentioned_p (mul_result, mac_op1));
|
23424 |
|
|
}
|
23425 |
|
|
|
23426 |
|
|
|
23427 |
|
|
/* The EABI says test the least significant bit of a guard variable. */
|
23428 |
|
|
|
23429 |
|
|
static bool
|
23430 |
|
|
arm_cxx_guard_mask_bit (void)
|
23431 |
|
|
{
|
23432 |
|
|
return TARGET_AAPCS_BASED;
|
23433 |
|
|
}
|
23434 |
|
|
|
23435 |
|
|
|
23436 |
|
|
/* The EABI specifies that all array cookies are 8 bytes long. */
|
23437 |
|
|
|
23438 |
|
|
static tree
|
23439 |
|
|
arm_get_cookie_size (tree type)
|
23440 |
|
|
{
|
23441 |
|
|
tree size;
|
23442 |
|
|
|
23443 |
|
|
if (!TARGET_AAPCS_BASED)
|
23444 |
|
|
return default_cxx_get_cookie_size (type);
|
23445 |
|
|
|
23446 |
|
|
size = build_int_cst (sizetype, 8);
|
23447 |
|
|
return size;
|
23448 |
|
|
}
|
23449 |
|
|
|
23450 |
|
|
|
23451 |
|
|
/* The EABI says that array cookies should also contain the element size. */
|
23452 |
|
|
|
23453 |
|
|
static bool
|
23454 |
|
|
arm_cookie_has_size (void)
|
23455 |
|
|
{
|
23456 |
|
|
return TARGET_AAPCS_BASED;
|
23457 |
|
|
}
|
23458 |
|
|
|
23459 |
|
|
|
23460 |
|
|
/* The EABI says constructors and destructors should return a pointer to
|
23461 |
|
|
the object constructed/destroyed. */
|
23462 |
|
|
|
23463 |
|
|
static bool
|
23464 |
|
|
arm_cxx_cdtor_returns_this (void)
|
23465 |
|
|
{
|
23466 |
|
|
return TARGET_AAPCS_BASED;
|
23467 |
|
|
}
|
23468 |
|
|
|
23469 |
|
|
/* The EABI says that an inline function may never be the key
|
23470 |
|
|
method. */
|
23471 |
|
|
|
23472 |
|
|
static bool
|
23473 |
|
|
arm_cxx_key_method_may_be_inline (void)
|
23474 |
|
|
{
|
23475 |
|
|
return !TARGET_AAPCS_BASED;
|
23476 |
|
|
}
|
23477 |
|
|
|
23478 |
|
|
static void
|
23479 |
|
|
arm_cxx_determine_class_data_visibility (tree decl)
|
23480 |
|
|
{
|
23481 |
|
|
if (!TARGET_AAPCS_BASED
|
23482 |
|
|
|| !TARGET_DLLIMPORT_DECL_ATTRIBUTES)
|
23483 |
|
|
return;
|
23484 |
|
|
|
23485 |
|
|
/* In general, \S 3.2.5.5 of the ARM EABI requires that class data
|
23486 |
|
|
is exported. However, on systems without dynamic vague linkage,
|
23487 |
|
|
\S 3.2.5.6 says that COMDAT class data has hidden linkage. */
|
23488 |
|
|
if (!TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P && DECL_COMDAT (decl))
|
23489 |
|
|
DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
|
23490 |
|
|
else
|
23491 |
|
|
DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
|
23492 |
|
|
DECL_VISIBILITY_SPECIFIED (decl) = 1;
|
23493 |
|
|
}
|
23494 |
|
|
|
23495 |
|
|
static bool
|
23496 |
|
|
arm_cxx_class_data_always_comdat (void)
|
23497 |
|
|
{
|
23498 |
|
|
/* \S 3.2.5.4 of the ARM C++ ABI says that class data only have
|
23499 |
|
|
vague linkage if the class has no key function. */
|
23500 |
|
|
return !TARGET_AAPCS_BASED;
|
23501 |
|
|
}
|
23502 |
|
|
|
23503 |
|
|
|
23504 |
|
|
/* The EABI says __aeabi_atexit should be used to register static
|
23505 |
|
|
destructors. */
|
23506 |
|
|
|
23507 |
|
|
static bool
|
23508 |
|
|
arm_cxx_use_aeabi_atexit (void)
|
23509 |
|
|
{
|
23510 |
|
|
return TARGET_AAPCS_BASED;
|
23511 |
|
|
}
|
23512 |
|
|
|
23513 |
|
|
|
23514 |
|
|
void
|
23515 |
|
|
arm_set_return_address (rtx source, rtx scratch)
|
23516 |
|
|
{
|
23517 |
|
|
arm_stack_offsets *offsets;
|
23518 |
|
|
HOST_WIDE_INT delta;
|
23519 |
|
|
rtx addr;
|
23520 |
|
|
unsigned long saved_regs;
|
23521 |
|
|
|
23522 |
|
|
offsets = arm_get_frame_offsets ();
|
23523 |
|
|
saved_regs = offsets->saved_regs_mask;
|
23524 |
|
|
|
23525 |
|
|
if ((saved_regs & (1 << LR_REGNUM)) == 0)
|
23526 |
|
|
emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
|
23527 |
|
|
else
|
23528 |
|
|
{
|
23529 |
|
|
if (frame_pointer_needed)
|
23530 |
|
|
addr = plus_constant(hard_frame_pointer_rtx, -4);
|
23531 |
|
|
else
|
23532 |
|
|
{
|
23533 |
|
|
/* LR will be the first saved register. */
|
23534 |
|
|
delta = offsets->outgoing_args - (offsets->frame + 4);
|
23535 |
|
|
|
23536 |
|
|
|
23537 |
|
|
if (delta >= 4096)
|
23538 |
|
|
{
|
23539 |
|
|
emit_insn (gen_addsi3 (scratch, stack_pointer_rtx,
|
23540 |
|
|
GEN_INT (delta & ~4095)));
|
23541 |
|
|
addr = scratch;
|
23542 |
|
|
delta &= 4095;
|
23543 |
|
|
}
|
23544 |
|
|
else
|
23545 |
|
|
addr = stack_pointer_rtx;
|
23546 |
|
|
|
23547 |
|
|
addr = plus_constant (addr, delta);
|
23548 |
|
|
}
|
23549 |
|
|
emit_move_insn (gen_frame_mem (Pmode, addr), source);
|
23550 |
|
|
}
|
23551 |
|
|
}
|
23552 |
|
|
|
23553 |
|
|
|
23554 |
|
|
void
|
23555 |
|
|
thumb_set_return_address (rtx source, rtx scratch)
|
23556 |
|
|
{
|
23557 |
|
|
arm_stack_offsets *offsets;
|
23558 |
|
|
HOST_WIDE_INT delta;
|
23559 |
|
|
HOST_WIDE_INT limit;
|
23560 |
|
|
int reg;
|
23561 |
|
|
rtx addr;
|
23562 |
|
|
unsigned long mask;
|
23563 |
|
|
|
23564 |
|
|
emit_use (source);
|
23565 |
|
|
|
23566 |
|
|
offsets = arm_get_frame_offsets ();
|
23567 |
|
|
mask = offsets->saved_regs_mask;
|
23568 |
|
|
if (mask & (1 << LR_REGNUM))
|
23569 |
|
|
{
|
23570 |
|
|
limit = 1024;
|
23571 |
|
|
/* Find the saved regs. */
|
23572 |
|
|
if (frame_pointer_needed)
|
23573 |
|
|
{
|
23574 |
|
|
delta = offsets->soft_frame - offsets->saved_args;
|
23575 |
|
|
reg = THUMB_HARD_FRAME_POINTER_REGNUM;
|
23576 |
|
|
if (TARGET_THUMB1)
|
23577 |
|
|
limit = 128;
|
23578 |
|
|
}
|
23579 |
|
|
else
|
23580 |
|
|
{
|
23581 |
|
|
delta = offsets->outgoing_args - offsets->saved_args;
|
23582 |
|
|
reg = SP_REGNUM;
|
23583 |
|
|
}
|
23584 |
|
|
/* Allow for the stack frame. */
|
23585 |
|
|
if (TARGET_THUMB1 && TARGET_BACKTRACE)
|
23586 |
|
|
delta -= 16;
|
23587 |
|
|
/* The link register is always the first saved register. */
|
23588 |
|
|
delta -= 4;
|
23589 |
|
|
|
23590 |
|
|
/* Construct the address. */
|
23591 |
|
|
addr = gen_rtx_REG (SImode, reg);
|
23592 |
|
|
if (delta > limit)
|
23593 |
|
|
{
|
23594 |
|
|
emit_insn (gen_movsi (scratch, GEN_INT (delta)));
|
23595 |
|
|
emit_insn (gen_addsi3 (scratch, scratch, stack_pointer_rtx));
|
23596 |
|
|
addr = scratch;
|
23597 |
|
|
}
|
23598 |
|
|
else
|
23599 |
|
|
addr = plus_constant (addr, delta);
|
23600 |
|
|
|
23601 |
|
|
emit_move_insn (gen_frame_mem (Pmode, addr), source);
|
23602 |
|
|
}
|
23603 |
|
|
else
|
23604 |
|
|
emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
|
23605 |
|
|
}
|
23606 |
|
|
|
23607 |
|
|
/* Implements target hook vector_mode_supported_p. */
|
23608 |
|
|
bool
|
23609 |
|
|
arm_vector_mode_supported_p (enum machine_mode mode)
|
23610 |
|
|
{
|
23611 |
|
|
/* Neon also supports V2SImode, etc. listed in the clause below. */
|
23612 |
|
|
if (TARGET_NEON && (mode == V2SFmode || mode == V4SImode || mode == V8HImode
|
23613 |
|
|
|| mode == V16QImode || mode == V4SFmode || mode == V2DImode))
|
23614 |
|
|
return true;
|
23615 |
|
|
|
23616 |
|
|
if ((TARGET_NEON || TARGET_IWMMXT)
|
23617 |
|
|
&& ((mode == V2SImode)
|
23618 |
|
|
|| (mode == V4HImode)
|
23619 |
|
|
|| (mode == V8QImode)))
|
23620 |
|
|
return true;
|
23621 |
|
|
|
23622 |
|
|
if (TARGET_INT_SIMD && (mode == V4UQQmode || mode == V4QQmode
|
23623 |
|
|
|| mode == V2UHQmode || mode == V2HQmode || mode == V2UHAmode
|
23624 |
|
|
|| mode == V2HAmode))
|
23625 |
|
|
return true;
|
23626 |
|
|
|
23627 |
|
|
return false;
|
23628 |
|
|
}
|
23629 |
|
|
|
23630 |
|
|
/* Implements target hook array_mode_supported_p. */
|
23631 |
|
|
|
23632 |
|
|
static bool
|
23633 |
|
|
arm_array_mode_supported_p (enum machine_mode mode,
|
23634 |
|
|
unsigned HOST_WIDE_INT nelems)
|
23635 |
|
|
{
|
23636 |
|
|
if (TARGET_NEON
|
23637 |
|
|
&& (VALID_NEON_DREG_MODE (mode) || VALID_NEON_QREG_MODE (mode))
|
23638 |
|
|
&& (nelems >= 2 && nelems <= 4))
|
23639 |
|
|
return true;
|
23640 |
|
|
|
23641 |
|
|
return false;
|
23642 |
|
|
}
|
23643 |
|
|
|
23644 |
|
|
/* Use the option -mvectorize-with-neon-double to override the use of quardword
|
23645 |
|
|
registers when autovectorizing for Neon, at least until multiple vector
|
23646 |
|
|
widths are supported properly by the middle-end. */
|
23647 |
|
|
|
23648 |
|
|
static enum machine_mode
|
23649 |
|
|
arm_preferred_simd_mode (enum machine_mode mode)
|
23650 |
|
|
{
|
23651 |
|
|
if (TARGET_NEON)
|
23652 |
|
|
switch (mode)
|
23653 |
|
|
{
|
23654 |
|
|
case SFmode:
|
23655 |
|
|
return TARGET_NEON_VECTORIZE_DOUBLE ? V2SFmode : V4SFmode;
|
23656 |
|
|
case SImode:
|
23657 |
|
|
return TARGET_NEON_VECTORIZE_DOUBLE ? V2SImode : V4SImode;
|
23658 |
|
|
case HImode:
|
23659 |
|
|
return TARGET_NEON_VECTORIZE_DOUBLE ? V4HImode : V8HImode;
|
23660 |
|
|
case QImode:
|
23661 |
|
|
return TARGET_NEON_VECTORIZE_DOUBLE ? V8QImode : V16QImode;
|
23662 |
|
|
case DImode:
|
23663 |
|
|
if (!TARGET_NEON_VECTORIZE_DOUBLE)
|
23664 |
|
|
return V2DImode;
|
23665 |
|
|
break;
|
23666 |
|
|
|
23667 |
|
|
default:;
|
23668 |
|
|
}
|
23669 |
|
|
|
23670 |
|
|
if (TARGET_REALLY_IWMMXT)
|
23671 |
|
|
switch (mode)
|
23672 |
|
|
{
|
23673 |
|
|
case SImode:
|
23674 |
|
|
return V2SImode;
|
23675 |
|
|
case HImode:
|
23676 |
|
|
return V4HImode;
|
23677 |
|
|
case QImode:
|
23678 |
|
|
return V8QImode;
|
23679 |
|
|
|
23680 |
|
|
default:;
|
23681 |
|
|
}
|
23682 |
|
|
|
23683 |
|
|
return word_mode;
|
23684 |
|
|
}
|
23685 |
|
|
|
23686 |
|
|
/* Implement TARGET_CLASS_LIKELY_SPILLED_P.
|
23687 |
|
|
|
23688 |
|
|
We need to define this for LO_REGS on Thumb-1. Otherwise we can end up
|
23689 |
|
|
using r0-r4 for function arguments, r7 for the stack frame and don't have
|
23690 |
|
|
enough left over to do doubleword arithmetic. For Thumb-2 all the
|
23691 |
|
|
potentially problematic instructions accept high registers so this is not
|
23692 |
|
|
necessary. Care needs to be taken to avoid adding new Thumb-2 patterns
|
23693 |
|
|
that require many low registers. */
|
23694 |
|
|
static bool
|
23695 |
|
|
arm_class_likely_spilled_p (reg_class_t rclass)
|
23696 |
|
|
{
|
23697 |
|
|
if ((TARGET_THUMB1 && rclass == LO_REGS)
|
23698 |
|
|
|| rclass == CC_REG)
|
23699 |
|
|
return true;
|
23700 |
|
|
|
23701 |
|
|
return false;
|
23702 |
|
|
}
|
23703 |
|
|
|
23704 |
|
|
/* Implements target hook small_register_classes_for_mode_p. */
|
23705 |
|
|
bool
|
23706 |
|
|
arm_small_register_classes_for_mode_p (enum machine_mode mode ATTRIBUTE_UNUSED)
|
23707 |
|
|
{
|
23708 |
|
|
return TARGET_THUMB1;
|
23709 |
|
|
}
|
23710 |
|
|
|
23711 |
|
|
/* Implement TARGET_SHIFT_TRUNCATION_MASK. SImode shifts use normal
|
23712 |
|
|
ARM insns and therefore guarantee that the shift count is modulo 256.
|
23713 |
|
|
DImode shifts (those implemented by lib1funcs.S or by optabs.c)
|
23714 |
|
|
guarantee no particular behavior for out-of-range counts. */
|
23715 |
|
|
|
23716 |
|
|
static unsigned HOST_WIDE_INT
|
23717 |
|
|
arm_shift_truncation_mask (enum machine_mode mode)
|
23718 |
|
|
{
|
23719 |
|
|
return mode == SImode ? 255 : 0;
|
23720 |
|
|
}
|
23721 |
|
|
|
23722 |
|
|
|
23723 |
|
|
/* Map internal gcc register numbers to DWARF2 register numbers. */
|
23724 |
|
|
|
23725 |
|
|
unsigned int
|
23726 |
|
|
arm_dbx_register_number (unsigned int regno)
|
23727 |
|
|
{
|
23728 |
|
|
if (regno < 16)
|
23729 |
|
|
return regno;
|
23730 |
|
|
|
23731 |
|
|
/* TODO: Legacy targets output FPA regs as registers 16-23 for backwards
|
23732 |
|
|
compatibility. The EABI defines them as registers 96-103. */
|
23733 |
|
|
if (IS_FPA_REGNUM (regno))
|
23734 |
|
|
return (TARGET_AAPCS_BASED ? 96 : 16) + regno - FIRST_FPA_REGNUM;
|
23735 |
|
|
|
23736 |
|
|
if (IS_VFP_REGNUM (regno))
|
23737 |
|
|
{
|
23738 |
|
|
/* See comment in arm_dwarf_register_span. */
|
23739 |
|
|
if (VFP_REGNO_OK_FOR_SINGLE (regno))
|
23740 |
|
|
return 64 + regno - FIRST_VFP_REGNUM;
|
23741 |
|
|
else
|
23742 |
|
|
return 256 + (regno - FIRST_VFP_REGNUM) / 2;
|
23743 |
|
|
}
|
23744 |
|
|
|
23745 |
|
|
if (IS_IWMMXT_GR_REGNUM (regno))
|
23746 |
|
|
return 104 + regno - FIRST_IWMMXT_GR_REGNUM;
|
23747 |
|
|
|
23748 |
|
|
if (IS_IWMMXT_REGNUM (regno))
|
23749 |
|
|
return 112 + regno - FIRST_IWMMXT_REGNUM;
|
23750 |
|
|
|
23751 |
|
|
gcc_unreachable ();
|
23752 |
|
|
}
|
23753 |
|
|
|
23754 |
|
|
/* Dwarf models VFPv3 registers as 32 64-bit registers.
|
23755 |
|
|
GCC models tham as 64 32-bit registers, so we need to describe this to
|
23756 |
|
|
the DWARF generation code. Other registers can use the default. */
|
23757 |
|
|
static rtx
|
23758 |
|
|
arm_dwarf_register_span (rtx rtl)
|
23759 |
|
|
{
|
23760 |
|
|
unsigned regno;
|
23761 |
|
|
int nregs;
|
23762 |
|
|
int i;
|
23763 |
|
|
rtx p;
|
23764 |
|
|
|
23765 |
|
|
regno = REGNO (rtl);
|
23766 |
|
|
if (!IS_VFP_REGNUM (regno))
|
23767 |
|
|
return NULL_RTX;
|
23768 |
|
|
|
23769 |
|
|
/* XXX FIXME: The EABI defines two VFP register ranges:
|
23770 |
|
|
64-95: Legacy VFPv2 numbering for S0-S31 (obsolescent)
|
23771 |
|
|
256-287: D0-D31
|
23772 |
|
|
The recommended encoding for S0-S31 is a DW_OP_bit_piece of the
|
23773 |
|
|
corresponding D register. Until GDB supports this, we shall use the
|
23774 |
|
|
legacy encodings. We also use these encodings for D0-D15 for
|
23775 |
|
|
compatibility with older debuggers. */
|
23776 |
|
|
if (VFP_REGNO_OK_FOR_SINGLE (regno))
|
23777 |
|
|
return NULL_RTX;
|
23778 |
|
|
|
23779 |
|
|
nregs = GET_MODE_SIZE (GET_MODE (rtl)) / 8;
|
23780 |
|
|
p = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs));
|
23781 |
|
|
regno = (regno - FIRST_VFP_REGNUM) / 2;
|
23782 |
|
|
for (i = 0; i < nregs; i++)
|
23783 |
|
|
XVECEXP (p, 0, i) = gen_rtx_REG (DImode, 256 + regno + i);
|
23784 |
|
|
|
23785 |
|
|
return p;
|
23786 |
|
|
}
|
23787 |
|
|
|
23788 |
|
|
#if ARM_UNWIND_INFO
|
23789 |
|
|
/* Emit unwind directives for a store-multiple instruction or stack pointer
|
23790 |
|
|
push during alignment.
|
23791 |
|
|
These should only ever be generated by the function prologue code, so
|
23792 |
|
|
expect them to have a particular form. */
|
23793 |
|
|
|
23794 |
|
|
static void
|
23795 |
|
|
arm_unwind_emit_sequence (FILE * asm_out_file, rtx p)
|
23796 |
|
|
{
|
23797 |
|
|
int i;
|
23798 |
|
|
HOST_WIDE_INT offset;
|
23799 |
|
|
HOST_WIDE_INT nregs;
|
23800 |
|
|
int reg_size;
|
23801 |
|
|
unsigned reg;
|
23802 |
|
|
unsigned lastreg;
|
23803 |
|
|
rtx e;
|
23804 |
|
|
|
23805 |
|
|
e = XVECEXP (p, 0, 0);
|
23806 |
|
|
if (GET_CODE (e) != SET)
|
23807 |
|
|
abort ();
|
23808 |
|
|
|
23809 |
|
|
/* First insn will adjust the stack pointer. */
|
23810 |
|
|
if (GET_CODE (e) != SET
|
23811 |
|
|
|| GET_CODE (XEXP (e, 0)) != REG
|
23812 |
|
|
|| REGNO (XEXP (e, 0)) != SP_REGNUM
|
23813 |
|
|
|| GET_CODE (XEXP (e, 1)) != PLUS)
|
23814 |
|
|
abort ();
|
23815 |
|
|
|
23816 |
|
|
offset = -INTVAL (XEXP (XEXP (e, 1), 1));
|
23817 |
|
|
nregs = XVECLEN (p, 0) - 1;
|
23818 |
|
|
|
23819 |
|
|
reg = REGNO (XEXP (XVECEXP (p, 0, 1), 1));
|
23820 |
|
|
if (reg < 16)
|
23821 |
|
|
{
|
23822 |
|
|
/* The function prologue may also push pc, but not annotate it as it is
|
23823 |
|
|
never restored. We turn this into a stack pointer adjustment. */
|
23824 |
|
|
if (nregs * 4 == offset - 4)
|
23825 |
|
|
{
|
23826 |
|
|
fprintf (asm_out_file, "\t.pad #4\n");
|
23827 |
|
|
offset -= 4;
|
23828 |
|
|
}
|
23829 |
|
|
reg_size = 4;
|
23830 |
|
|
fprintf (asm_out_file, "\t.save {");
|
23831 |
|
|
}
|
23832 |
|
|
else if (IS_VFP_REGNUM (reg))
|
23833 |
|
|
{
|
23834 |
|
|
reg_size = 8;
|
23835 |
|
|
fprintf (asm_out_file, "\t.vsave {");
|
23836 |
|
|
}
|
23837 |
|
|
else if (reg >= FIRST_FPA_REGNUM && reg <= LAST_FPA_REGNUM)
|
23838 |
|
|
{
|
23839 |
|
|
/* FPA registers are done differently. */
|
23840 |
|
|
asm_fprintf (asm_out_file, "\t.save %r, %wd\n", reg, nregs);
|
23841 |
|
|
return;
|
23842 |
|
|
}
|
23843 |
|
|
else
|
23844 |
|
|
/* Unknown register type. */
|
23845 |
|
|
abort ();
|
23846 |
|
|
|
23847 |
|
|
/* If the stack increment doesn't match the size of the saved registers,
|
23848 |
|
|
something has gone horribly wrong. */
|
23849 |
|
|
if (offset != nregs * reg_size)
|
23850 |
|
|
abort ();
|
23851 |
|
|
|
23852 |
|
|
offset = 0;
|
23853 |
|
|
lastreg = 0;
|
23854 |
|
|
/* The remaining insns will describe the stores. */
|
23855 |
|
|
for (i = 1; i <= nregs; i++)
|
23856 |
|
|
{
|
23857 |
|
|
/* Expect (set (mem <addr>) (reg)).
|
23858 |
|
|
Where <addr> is (reg:SP) or (plus (reg:SP) (const_int)). */
|
23859 |
|
|
e = XVECEXP (p, 0, i);
|
23860 |
|
|
if (GET_CODE (e) != SET
|
23861 |
|
|
|| GET_CODE (XEXP (e, 0)) != MEM
|
23862 |
|
|
|| GET_CODE (XEXP (e, 1)) != REG)
|
23863 |
|
|
abort ();
|
23864 |
|
|
|
23865 |
|
|
reg = REGNO (XEXP (e, 1));
|
23866 |
|
|
if (reg < lastreg)
|
23867 |
|
|
abort ();
|
23868 |
|
|
|
23869 |
|
|
if (i != 1)
|
23870 |
|
|
fprintf (asm_out_file, ", ");
|
23871 |
|
|
/* We can't use %r for vfp because we need to use the
|
23872 |
|
|
double precision register names. */
|
23873 |
|
|
if (IS_VFP_REGNUM (reg))
|
23874 |
|
|
asm_fprintf (asm_out_file, "d%d", (reg - FIRST_VFP_REGNUM) / 2);
|
23875 |
|
|
else
|
23876 |
|
|
asm_fprintf (asm_out_file, "%r", reg);
|
23877 |
|
|
|
23878 |
|
|
#ifdef ENABLE_CHECKING
|
23879 |
|
|
/* Check that the addresses are consecutive. */
|
23880 |
|
|
e = XEXP (XEXP (e, 0), 0);
|
23881 |
|
|
if (GET_CODE (e) == PLUS)
|
23882 |
|
|
{
|
23883 |
|
|
offset += reg_size;
|
23884 |
|
|
if (GET_CODE (XEXP (e, 0)) != REG
|
23885 |
|
|
|| REGNO (XEXP (e, 0)) != SP_REGNUM
|
23886 |
|
|
|| GET_CODE (XEXP (e, 1)) != CONST_INT
|
23887 |
|
|
|| offset != INTVAL (XEXP (e, 1)))
|
23888 |
|
|
abort ();
|
23889 |
|
|
}
|
23890 |
|
|
else if (i != 1
|
23891 |
|
|
|| GET_CODE (e) != REG
|
23892 |
|
|
|| REGNO (e) != SP_REGNUM)
|
23893 |
|
|
abort ();
|
23894 |
|
|
#endif
|
23895 |
|
|
}
|
23896 |
|
|
fprintf (asm_out_file, "}\n");
|
23897 |
|
|
}
|
23898 |
|
|
|
23899 |
|
|
/* Emit unwind directives for a SET. */
|
23900 |
|
|
|
23901 |
|
|
static void
|
23902 |
|
|
arm_unwind_emit_set (FILE * asm_out_file, rtx p)
|
23903 |
|
|
{
|
23904 |
|
|
rtx e0;
|
23905 |
|
|
rtx e1;
|
23906 |
|
|
unsigned reg;
|
23907 |
|
|
|
23908 |
|
|
e0 = XEXP (p, 0);
|
23909 |
|
|
e1 = XEXP (p, 1);
|
23910 |
|
|
switch (GET_CODE (e0))
|
23911 |
|
|
{
|
23912 |
|
|
case MEM:
|
23913 |
|
|
/* Pushing a single register. */
|
23914 |
|
|
if (GET_CODE (XEXP (e0, 0)) != PRE_DEC
|
23915 |
|
|
|| GET_CODE (XEXP (XEXP (e0, 0), 0)) != REG
|
23916 |
|
|
|| REGNO (XEXP (XEXP (e0, 0), 0)) != SP_REGNUM)
|
23917 |
|
|
abort ();
|
23918 |
|
|
|
23919 |
|
|
asm_fprintf (asm_out_file, "\t.save ");
|
23920 |
|
|
if (IS_VFP_REGNUM (REGNO (e1)))
|
23921 |
|
|
asm_fprintf(asm_out_file, "{d%d}\n",
|
23922 |
|
|
(REGNO (e1) - FIRST_VFP_REGNUM) / 2);
|
23923 |
|
|
else
|
23924 |
|
|
asm_fprintf(asm_out_file, "{%r}\n", REGNO (e1));
|
23925 |
|
|
break;
|
23926 |
|
|
|
23927 |
|
|
case REG:
|
23928 |
|
|
if (REGNO (e0) == SP_REGNUM)
|
23929 |
|
|
{
|
23930 |
|
|
/* A stack increment. */
|
23931 |
|
|
if (GET_CODE (e1) != PLUS
|
23932 |
|
|
|| GET_CODE (XEXP (e1, 0)) != REG
|
23933 |
|
|
|| REGNO (XEXP (e1, 0)) != SP_REGNUM
|
23934 |
|
|
|| GET_CODE (XEXP (e1, 1)) != CONST_INT)
|
23935 |
|
|
abort ();
|
23936 |
|
|
|
23937 |
|
|
asm_fprintf (asm_out_file, "\t.pad #%wd\n",
|
23938 |
|
|
-INTVAL (XEXP (e1, 1)));
|
23939 |
|
|
}
|
23940 |
|
|
else if (REGNO (e0) == HARD_FRAME_POINTER_REGNUM)
|
23941 |
|
|
{
|
23942 |
|
|
HOST_WIDE_INT offset;
|
23943 |
|
|
|
23944 |
|
|
if (GET_CODE (e1) == PLUS)
|
23945 |
|
|
{
|
23946 |
|
|
if (GET_CODE (XEXP (e1, 0)) != REG
|
23947 |
|
|
|| GET_CODE (XEXP (e1, 1)) != CONST_INT)
|
23948 |
|
|
abort ();
|
23949 |
|
|
reg = REGNO (XEXP (e1, 0));
|
23950 |
|
|
offset = INTVAL (XEXP (e1, 1));
|
23951 |
|
|
asm_fprintf (asm_out_file, "\t.setfp %r, %r, #%wd\n",
|
23952 |
|
|
HARD_FRAME_POINTER_REGNUM, reg,
|
23953 |
|
|
offset);
|
23954 |
|
|
}
|
23955 |
|
|
else if (GET_CODE (e1) == REG)
|
23956 |
|
|
{
|
23957 |
|
|
reg = REGNO (e1);
|
23958 |
|
|
asm_fprintf (asm_out_file, "\t.setfp %r, %r\n",
|
23959 |
|
|
HARD_FRAME_POINTER_REGNUM, reg);
|
23960 |
|
|
}
|
23961 |
|
|
else
|
23962 |
|
|
abort ();
|
23963 |
|
|
}
|
23964 |
|
|
else if (GET_CODE (e1) == REG && REGNO (e1) == SP_REGNUM)
|
23965 |
|
|
{
|
23966 |
|
|
/* Move from sp to reg. */
|
23967 |
|
|
asm_fprintf (asm_out_file, "\t.movsp %r\n", REGNO (e0));
|
23968 |
|
|
}
|
23969 |
|
|
else if (GET_CODE (e1) == PLUS
|
23970 |
|
|
&& GET_CODE (XEXP (e1, 0)) == REG
|
23971 |
|
|
&& REGNO (XEXP (e1, 0)) == SP_REGNUM
|
23972 |
|
|
&& GET_CODE (XEXP (e1, 1)) == CONST_INT)
|
23973 |
|
|
{
|
23974 |
|
|
/* Set reg to offset from sp. */
|
23975 |
|
|
asm_fprintf (asm_out_file, "\t.movsp %r, #%d\n",
|
23976 |
|
|
REGNO (e0), (int)INTVAL(XEXP (e1, 1)));
|
23977 |
|
|
}
|
23978 |
|
|
else
|
23979 |
|
|
abort ();
|
23980 |
|
|
break;
|
23981 |
|
|
|
23982 |
|
|
default:
|
23983 |
|
|
abort ();
|
23984 |
|
|
}
|
23985 |
|
|
}
|
23986 |
|
|
|
23987 |
|
|
|
23988 |
|
|
/* Emit unwind directives for the given insn. */
|
23989 |
|
|
|
23990 |
|
|
static void
|
23991 |
|
|
arm_unwind_emit (FILE * asm_out_file, rtx insn)
|
23992 |
|
|
{
|
23993 |
|
|
rtx note, pat;
|
23994 |
|
|
bool handled_one = false;
|
23995 |
|
|
|
23996 |
|
|
if (arm_except_unwind_info (&global_options) != UI_TARGET)
|
23997 |
|
|
return;
|
23998 |
|
|
|
23999 |
|
|
if (!(flag_unwind_tables || crtl->uses_eh_lsda)
|
24000 |
|
|
&& (TREE_NOTHROW (current_function_decl)
|
24001 |
|
|
|| crtl->all_throwers_are_sibcalls))
|
24002 |
|
|
return;
|
24003 |
|
|
|
24004 |
|
|
if (NOTE_P (insn) || !RTX_FRAME_RELATED_P (insn))
|
24005 |
|
|
return;
|
24006 |
|
|
|
24007 |
|
|
for (note = REG_NOTES (insn); note ; note = XEXP (note, 1))
|
24008 |
|
|
{
|
24009 |
|
|
pat = XEXP (note, 0);
|
24010 |
|
|
switch (REG_NOTE_KIND (note))
|
24011 |
|
|
{
|
24012 |
|
|
case REG_FRAME_RELATED_EXPR:
|
24013 |
|
|
goto found;
|
24014 |
|
|
|
24015 |
|
|
case REG_CFA_REGISTER:
|
24016 |
|
|
if (pat == NULL)
|
24017 |
|
|
{
|
24018 |
|
|
pat = PATTERN (insn);
|
24019 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
24020 |
|
|
pat = XVECEXP (pat, 0, 0);
|
24021 |
|
|
}
|
24022 |
|
|
|
24023 |
|
|
/* Only emitted for IS_STACKALIGN re-alignment. */
|
24024 |
|
|
{
|
24025 |
|
|
rtx dest, src;
|
24026 |
|
|
unsigned reg;
|
24027 |
|
|
|
24028 |
|
|
src = SET_SRC (pat);
|
24029 |
|
|
dest = SET_DEST (pat);
|
24030 |
|
|
|
24031 |
|
|
gcc_assert (src == stack_pointer_rtx);
|
24032 |
|
|
reg = REGNO (dest);
|
24033 |
|
|
asm_fprintf (asm_out_file, "\t.unwind_raw 0, 0x%x @ vsp = r%d\n",
|
24034 |
|
|
reg + 0x90, reg);
|
24035 |
|
|
}
|
24036 |
|
|
handled_one = true;
|
24037 |
|
|
break;
|
24038 |
|
|
|
24039 |
|
|
case REG_CFA_DEF_CFA:
|
24040 |
|
|
case REG_CFA_EXPRESSION:
|
24041 |
|
|
case REG_CFA_ADJUST_CFA:
|
24042 |
|
|
case REG_CFA_OFFSET:
|
24043 |
|
|
/* ??? Only handling here what we actually emit. */
|
24044 |
|
|
gcc_unreachable ();
|
24045 |
|
|
|
24046 |
|
|
default:
|
24047 |
|
|
break;
|
24048 |
|
|
}
|
24049 |
|
|
}
|
24050 |
|
|
if (handled_one)
|
24051 |
|
|
return;
|
24052 |
|
|
pat = PATTERN (insn);
|
24053 |
|
|
found:
|
24054 |
|
|
|
24055 |
|
|
switch (GET_CODE (pat))
|
24056 |
|
|
{
|
24057 |
|
|
case SET:
|
24058 |
|
|
arm_unwind_emit_set (asm_out_file, pat);
|
24059 |
|
|
break;
|
24060 |
|
|
|
24061 |
|
|
case SEQUENCE:
|
24062 |
|
|
/* Store multiple. */
|
24063 |
|
|
arm_unwind_emit_sequence (asm_out_file, pat);
|
24064 |
|
|
break;
|
24065 |
|
|
|
24066 |
|
|
default:
|
24067 |
|
|
abort();
|
24068 |
|
|
}
|
24069 |
|
|
}
|
24070 |
|
|
|
24071 |
|
|
|
24072 |
|
|
/* Output a reference from a function exception table to the type_info
|
24073 |
|
|
object X. The EABI specifies that the symbol should be relocated by
|
24074 |
|
|
an R_ARM_TARGET2 relocation. */
|
24075 |
|
|
|
24076 |
|
|
static bool
|
24077 |
|
|
arm_output_ttype (rtx x)
|
24078 |
|
|
{
|
24079 |
|
|
fputs ("\t.word\t", asm_out_file);
|
24080 |
|
|
output_addr_const (asm_out_file, x);
|
24081 |
|
|
/* Use special relocations for symbol references. */
|
24082 |
|
|
if (GET_CODE (x) != CONST_INT)
|
24083 |
|
|
fputs ("(TARGET2)", asm_out_file);
|
24084 |
|
|
fputc ('\n', asm_out_file);
|
24085 |
|
|
|
24086 |
|
|
return TRUE;
|
24087 |
|
|
}
|
24088 |
|
|
|
24089 |
|
|
/* Implement TARGET_ASM_EMIT_EXCEPT_PERSONALITY. */
|
24090 |
|
|
|
24091 |
|
|
static void
|
24092 |
|
|
arm_asm_emit_except_personality (rtx personality)
|
24093 |
|
|
{
|
24094 |
|
|
fputs ("\t.personality\t", asm_out_file);
|
24095 |
|
|
output_addr_const (asm_out_file, personality);
|
24096 |
|
|
fputc ('\n', asm_out_file);
|
24097 |
|
|
}
|
24098 |
|
|
|
24099 |
|
|
/* Implement TARGET_ASM_INITIALIZE_SECTIONS. */
|
24100 |
|
|
|
24101 |
|
|
static void
|
24102 |
|
|
arm_asm_init_sections (void)
|
24103 |
|
|
{
|
24104 |
|
|
exception_section = get_unnamed_section (0, output_section_asm_op,
|
24105 |
|
|
"\t.handlerdata");
|
24106 |
|
|
}
|
24107 |
|
|
#endif /* ARM_UNWIND_INFO */
|
24108 |
|
|
|
24109 |
|
|
/* Output unwind directives for the start/end of a function. */
|
24110 |
|
|
|
24111 |
|
|
void
|
24112 |
|
|
arm_output_fn_unwind (FILE * f, bool prologue)
|
24113 |
|
|
{
|
24114 |
|
|
if (arm_except_unwind_info (&global_options) != UI_TARGET)
|
24115 |
|
|
return;
|
24116 |
|
|
|
24117 |
|
|
if (prologue)
|
24118 |
|
|
fputs ("\t.fnstart\n", f);
|
24119 |
|
|
else
|
24120 |
|
|
{
|
24121 |
|
|
/* If this function will never be unwound, then mark it as such.
|
24122 |
|
|
The came condition is used in arm_unwind_emit to suppress
|
24123 |
|
|
the frame annotations. */
|
24124 |
|
|
if (!(flag_unwind_tables || crtl->uses_eh_lsda)
|
24125 |
|
|
&& (TREE_NOTHROW (current_function_decl)
|
24126 |
|
|
|| crtl->all_throwers_are_sibcalls))
|
24127 |
|
|
fputs("\t.cantunwind\n", f);
|
24128 |
|
|
|
24129 |
|
|
fputs ("\t.fnend\n", f);
|
24130 |
|
|
}
|
24131 |
|
|
}
|
24132 |
|
|
|
24133 |
|
|
static bool
|
24134 |
|
|
arm_emit_tls_decoration (FILE *fp, rtx x)
|
24135 |
|
|
{
|
24136 |
|
|
enum tls_reloc reloc;
|
24137 |
|
|
rtx val;
|
24138 |
|
|
|
24139 |
|
|
val = XVECEXP (x, 0, 0);
|
24140 |
|
|
reloc = (enum tls_reloc) INTVAL (XVECEXP (x, 0, 1));
|
24141 |
|
|
|
24142 |
|
|
output_addr_const (fp, val);
|
24143 |
|
|
|
24144 |
|
|
switch (reloc)
|
24145 |
|
|
{
|
24146 |
|
|
case TLS_GD32:
|
24147 |
|
|
fputs ("(tlsgd)", fp);
|
24148 |
|
|
break;
|
24149 |
|
|
case TLS_LDM32:
|
24150 |
|
|
fputs ("(tlsldm)", fp);
|
24151 |
|
|
break;
|
24152 |
|
|
case TLS_LDO32:
|
24153 |
|
|
fputs ("(tlsldo)", fp);
|
24154 |
|
|
break;
|
24155 |
|
|
case TLS_IE32:
|
24156 |
|
|
fputs ("(gottpoff)", fp);
|
24157 |
|
|
break;
|
24158 |
|
|
case TLS_LE32:
|
24159 |
|
|
fputs ("(tpoff)", fp);
|
24160 |
|
|
break;
|
24161 |
|
|
case TLS_DESCSEQ:
|
24162 |
|
|
fputs ("(tlsdesc)", fp);
|
24163 |
|
|
break;
|
24164 |
|
|
default:
|
24165 |
|
|
gcc_unreachable ();
|
24166 |
|
|
}
|
24167 |
|
|
|
24168 |
|
|
switch (reloc)
|
24169 |
|
|
{
|
24170 |
|
|
case TLS_GD32:
|
24171 |
|
|
case TLS_LDM32:
|
24172 |
|
|
case TLS_IE32:
|
24173 |
|
|
case TLS_DESCSEQ:
|
24174 |
|
|
fputs (" + (. - ", fp);
|
24175 |
|
|
output_addr_const (fp, XVECEXP (x, 0, 2));
|
24176 |
|
|
/* For DESCSEQ the 3rd operand encodes thumbness, and is added */
|
24177 |
|
|
fputs (reloc == TLS_DESCSEQ ? " + " : " - ", fp);
|
24178 |
|
|
output_addr_const (fp, XVECEXP (x, 0, 3));
|
24179 |
|
|
fputc (')', fp);
|
24180 |
|
|
break;
|
24181 |
|
|
default:
|
24182 |
|
|
break;
|
24183 |
|
|
}
|
24184 |
|
|
|
24185 |
|
|
return TRUE;
|
24186 |
|
|
}
|
24187 |
|
|
|
24188 |
|
|
/* ARM implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
|
24189 |
|
|
|
24190 |
|
|
static void
|
24191 |
|
|
arm_output_dwarf_dtprel (FILE *file, int size, rtx x)
|
24192 |
|
|
{
|
24193 |
|
|
gcc_assert (size == 4);
|
24194 |
|
|
fputs ("\t.word\t", file);
|
24195 |
|
|
output_addr_const (file, x);
|
24196 |
|
|
fputs ("(tlsldo)", file);
|
24197 |
|
|
}
|
24198 |
|
|
|
24199 |
|
|
/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
|
24200 |
|
|
|
24201 |
|
|
static bool
|
24202 |
|
|
arm_output_addr_const_extra (FILE *fp, rtx x)
|
24203 |
|
|
{
|
24204 |
|
|
if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS)
|
24205 |
|
|
return arm_emit_tls_decoration (fp, x);
|
24206 |
|
|
else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_PIC_LABEL)
|
24207 |
|
|
{
|
24208 |
|
|
char label[256];
|
24209 |
|
|
int labelno = INTVAL (XVECEXP (x, 0, 0));
|
24210 |
|
|
|
24211 |
|
|
ASM_GENERATE_INTERNAL_LABEL (label, "LPIC", labelno);
|
24212 |
|
|
assemble_name_raw (fp, label);
|
24213 |
|
|
|
24214 |
|
|
return TRUE;
|
24215 |
|
|
}
|
24216 |
|
|
else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_GOTSYM_OFF)
|
24217 |
|
|
{
|
24218 |
|
|
assemble_name (fp, "_GLOBAL_OFFSET_TABLE_");
|
24219 |
|
|
if (GOT_PCREL)
|
24220 |
|
|
fputs ("+.", fp);
|
24221 |
|
|
fputs ("-(", fp);
|
24222 |
|
|
output_addr_const (fp, XVECEXP (x, 0, 0));
|
24223 |
|
|
fputc (')', fp);
|
24224 |
|
|
return TRUE;
|
24225 |
|
|
}
|
24226 |
|
|
else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_SYMBOL_OFFSET)
|
24227 |
|
|
{
|
24228 |
|
|
output_addr_const (fp, XVECEXP (x, 0, 0));
|
24229 |
|
|
if (GOT_PCREL)
|
24230 |
|
|
fputs ("+.", fp);
|
24231 |
|
|
fputs ("-(", fp);
|
24232 |
|
|
output_addr_const (fp, XVECEXP (x, 0, 1));
|
24233 |
|
|
fputc (')', fp);
|
24234 |
|
|
return TRUE;
|
24235 |
|
|
}
|
24236 |
|
|
else if (GET_CODE (x) == CONST_VECTOR)
|
24237 |
|
|
return arm_emit_vector_const (fp, x);
|
24238 |
|
|
|
24239 |
|
|
return FALSE;
|
24240 |
|
|
}
|
24241 |
|
|
|
24242 |
|
|
/* Output assembly for a shift instruction.
|
24243 |
|
|
SET_FLAGS determines how the instruction modifies the condition codes.
|
24244 |
|
|
|
24245 |
|
|
1 - Set condition codes.
|
24246 |
|
|
2 - Use smallest instruction. */
|
24247 |
|
|
const char *
|
24248 |
|
|
arm_output_shift(rtx * operands, int set_flags)
|
24249 |
|
|
{
|
24250 |
|
|
char pattern[100];
|
24251 |
|
|
static const char flag_chars[3] = {'?', '.', '!'};
|
24252 |
|
|
const char *shift;
|
24253 |
|
|
HOST_WIDE_INT val;
|
24254 |
|
|
char c;
|
24255 |
|
|
|
24256 |
|
|
c = flag_chars[set_flags];
|
24257 |
|
|
if (TARGET_UNIFIED_ASM)
|
24258 |
|
|
{
|
24259 |
|
|
shift = shift_op(operands[3], &val);
|
24260 |
|
|
if (shift)
|
24261 |
|
|
{
|
24262 |
|
|
if (val != -1)
|
24263 |
|
|
operands[2] = GEN_INT(val);
|
24264 |
|
|
sprintf (pattern, "%s%%%c\t%%0, %%1, %%2", shift, c);
|
24265 |
|
|
}
|
24266 |
|
|
else
|
24267 |
|
|
sprintf (pattern, "mov%%%c\t%%0, %%1", c);
|
24268 |
|
|
}
|
24269 |
|
|
else
|
24270 |
|
|
sprintf (pattern, "mov%%%c\t%%0, %%1%%S3", c);
|
24271 |
|
|
output_asm_insn (pattern, operands);
|
24272 |
|
|
return "";
|
24273 |
|
|
}
|
24274 |
|
|
|
24275 |
|
|
/* Output a Thumb-1 casesi dispatch sequence. */
|
24276 |
|
|
const char *
|
24277 |
|
|
thumb1_output_casesi (rtx *operands)
|
24278 |
|
|
{
|
24279 |
|
|
rtx diff_vec = PATTERN (next_real_insn (operands[0]));
|
24280 |
|
|
|
24281 |
|
|
gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);
|
24282 |
|
|
|
24283 |
|
|
switch (GET_MODE(diff_vec))
|
24284 |
|
|
{
|
24285 |
|
|
case QImode:
|
24286 |
|
|
return (ADDR_DIFF_VEC_FLAGS (diff_vec).offset_unsigned ?
|
24287 |
|
|
"bl\t%___gnu_thumb1_case_uqi" : "bl\t%___gnu_thumb1_case_sqi");
|
24288 |
|
|
case HImode:
|
24289 |
|
|
return (ADDR_DIFF_VEC_FLAGS (diff_vec).offset_unsigned ?
|
24290 |
|
|
"bl\t%___gnu_thumb1_case_uhi" : "bl\t%___gnu_thumb1_case_shi");
|
24291 |
|
|
case SImode:
|
24292 |
|
|
return "bl\t%___gnu_thumb1_case_si";
|
24293 |
|
|
default:
|
24294 |
|
|
gcc_unreachable ();
|
24295 |
|
|
}
|
24296 |
|
|
}
|
24297 |
|
|
|
24298 |
|
|
/* Output a Thumb-2 casesi instruction. */
|
24299 |
|
|
const char *
|
24300 |
|
|
thumb2_output_casesi (rtx *operands)
|
24301 |
|
|
{
|
24302 |
|
|
rtx diff_vec = PATTERN (next_real_insn (operands[2]));
|
24303 |
|
|
|
24304 |
|
|
gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);
|
24305 |
|
|
|
24306 |
|
|
output_asm_insn ("cmp\t%0, %1", operands);
|
24307 |
|
|
output_asm_insn ("bhi\t%l3", operands);
|
24308 |
|
|
switch (GET_MODE(diff_vec))
|
24309 |
|
|
{
|
24310 |
|
|
case QImode:
|
24311 |
|
|
return "tbb\t[%|pc, %0]";
|
24312 |
|
|
case HImode:
|
24313 |
|
|
return "tbh\t[%|pc, %0, lsl #1]";
|
24314 |
|
|
case SImode:
|
24315 |
|
|
if (flag_pic)
|
24316 |
|
|
{
|
24317 |
|
|
output_asm_insn ("adr\t%4, %l2", operands);
|
24318 |
|
|
output_asm_insn ("ldr\t%5, [%4, %0, lsl #2]", operands);
|
24319 |
|
|
output_asm_insn ("add\t%4, %4, %5", operands);
|
24320 |
|
|
return "bx\t%4";
|
24321 |
|
|
}
|
24322 |
|
|
else
|
24323 |
|
|
{
|
24324 |
|
|
output_asm_insn ("adr\t%4, %l2", operands);
|
24325 |
|
|
return "ldr\t%|pc, [%4, %0, lsl #2]";
|
24326 |
|
|
}
|
24327 |
|
|
default:
|
24328 |
|
|
gcc_unreachable ();
|
24329 |
|
|
}
|
24330 |
|
|
}
|
24331 |
|
|
|
24332 |
|
|
/* Most ARM cores are single issue, but some newer ones can dual issue.
|
24333 |
|
|
The scheduler descriptions rely on this being correct. */
|
24334 |
|
|
static int
|
24335 |
|
|
arm_issue_rate (void)
|
24336 |
|
|
{
|
24337 |
|
|
switch (arm_tune)
|
24338 |
|
|
{
|
24339 |
|
|
case cortexa15:
|
24340 |
|
|
return 3;
|
24341 |
|
|
|
24342 |
|
|
case cortexr4:
|
24343 |
|
|
case cortexr4f:
|
24344 |
|
|
case cortexr5:
|
24345 |
|
|
case genericv7a:
|
24346 |
|
|
case cortexa5:
|
24347 |
|
|
case cortexa8:
|
24348 |
|
|
case cortexa9:
|
24349 |
|
|
case fa726te:
|
24350 |
|
|
return 2;
|
24351 |
|
|
|
24352 |
|
|
default:
|
24353 |
|
|
return 1;
|
24354 |
|
|
}
|
24355 |
|
|
}
|
24356 |
|
|
|
24357 |
|
|
/* A table and a function to perform ARM-specific name mangling for
|
24358 |
|
|
NEON vector types in order to conform to the AAPCS (see "Procedure
|
24359 |
|
|
Call Standard for the ARM Architecture", Appendix A). To qualify
|
24360 |
|
|
for emission with the mangled names defined in that document, a
|
24361 |
|
|
vector type must not only be of the correct mode but also be
|
24362 |
|
|
composed of NEON vector element types (e.g. __builtin_neon_qi). */
|
24363 |
|
|
typedef struct
|
24364 |
|
|
{
|
24365 |
|
|
enum machine_mode mode;
|
24366 |
|
|
const char *element_type_name;
|
24367 |
|
|
const char *aapcs_name;
|
24368 |
|
|
} arm_mangle_map_entry;
|
24369 |
|
|
|
24370 |
|
|
static arm_mangle_map_entry arm_mangle_map[] = {
|
24371 |
|
|
/* 64-bit containerized types. */
|
24372 |
|
|
{ V8QImode, "__builtin_neon_qi", "15__simd64_int8_t" },
|
24373 |
|
|
{ V8QImode, "__builtin_neon_uqi", "16__simd64_uint8_t" },
|
24374 |
|
|
{ V4HImode, "__builtin_neon_hi", "16__simd64_int16_t" },
|
24375 |
|
|
{ V4HImode, "__builtin_neon_uhi", "17__simd64_uint16_t" },
|
24376 |
|
|
{ V2SImode, "__builtin_neon_si", "16__simd64_int32_t" },
|
24377 |
|
|
{ V2SImode, "__builtin_neon_usi", "17__simd64_uint32_t" },
|
24378 |
|
|
{ V2SFmode, "__builtin_neon_sf", "18__simd64_float32_t" },
|
24379 |
|
|
{ V8QImode, "__builtin_neon_poly8", "16__simd64_poly8_t" },
|
24380 |
|
|
{ V4HImode, "__builtin_neon_poly16", "17__simd64_poly16_t" },
|
24381 |
|
|
/* 128-bit containerized types. */
|
24382 |
|
|
{ V16QImode, "__builtin_neon_qi", "16__simd128_int8_t" },
|
24383 |
|
|
{ V16QImode, "__builtin_neon_uqi", "17__simd128_uint8_t" },
|
24384 |
|
|
{ V8HImode, "__builtin_neon_hi", "17__simd128_int16_t" },
|
24385 |
|
|
{ V8HImode, "__builtin_neon_uhi", "18__simd128_uint16_t" },
|
24386 |
|
|
{ V4SImode, "__builtin_neon_si", "17__simd128_int32_t" },
|
24387 |
|
|
{ V4SImode, "__builtin_neon_usi", "18__simd128_uint32_t" },
|
24388 |
|
|
{ V4SFmode, "__builtin_neon_sf", "19__simd128_float32_t" },
|
24389 |
|
|
{ V16QImode, "__builtin_neon_poly8", "17__simd128_poly8_t" },
|
24390 |
|
|
{ V8HImode, "__builtin_neon_poly16", "18__simd128_poly16_t" },
|
24391 |
|
|
{ VOIDmode, NULL, NULL }
|
24392 |
|
|
};
|
24393 |
|
|
|
24394 |
|
|
const char *
|
24395 |
|
|
arm_mangle_type (const_tree type)
|
24396 |
|
|
{
|
24397 |
|
|
arm_mangle_map_entry *pos = arm_mangle_map;
|
24398 |
|
|
|
24399 |
|
|
/* The ARM ABI documents (10th October 2008) say that "__va_list"
|
24400 |
|
|
has to be managled as if it is in the "std" namespace. */
|
24401 |
|
|
if (TARGET_AAPCS_BASED
|
24402 |
|
|
&& lang_hooks.types_compatible_p (CONST_CAST_TREE (type), va_list_type))
|
24403 |
|
|
{
|
24404 |
|
|
static bool warned;
|
24405 |
|
|
if (!warned && warn_psabi && !in_system_header)
|
24406 |
|
|
{
|
24407 |
|
|
warned = true;
|
24408 |
|
|
inform (input_location,
|
24409 |
|
|
"the mangling of %<va_list%> has changed in GCC 4.4");
|
24410 |
|
|
}
|
24411 |
|
|
return "St9__va_list";
|
24412 |
|
|
}
|
24413 |
|
|
|
24414 |
|
|
/* Half-precision float. */
|
24415 |
|
|
if (TREE_CODE (type) == REAL_TYPE && TYPE_PRECISION (type) == 16)
|
24416 |
|
|
return "Dh";
|
24417 |
|
|
|
24418 |
|
|
if (TREE_CODE (type) != VECTOR_TYPE)
|
24419 |
|
|
return NULL;
|
24420 |
|
|
|
24421 |
|
|
/* Check the mode of the vector type, and the name of the vector
|
24422 |
|
|
element type, against the table. */
|
24423 |
|
|
while (pos->mode != VOIDmode)
|
24424 |
|
|
{
|
24425 |
|
|
tree elt_type = TREE_TYPE (type);
|
24426 |
|
|
|
24427 |
|
|
if (pos->mode == TYPE_MODE (type)
|
24428 |
|
|
&& TREE_CODE (TYPE_NAME (elt_type)) == TYPE_DECL
|
24429 |
|
|
&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (elt_type))),
|
24430 |
|
|
pos->element_type_name))
|
24431 |
|
|
return pos->aapcs_name;
|
24432 |
|
|
|
24433 |
|
|
pos++;
|
24434 |
|
|
}
|
24435 |
|
|
|
24436 |
|
|
/* Use the default mangling for unrecognized (possibly user-defined)
|
24437 |
|
|
vector types. */
|
24438 |
|
|
return NULL;
|
24439 |
|
|
}
|
24440 |
|
|
|
24441 |
|
|
/* Order of allocation of core registers for Thumb: this allocation is
|
24442 |
|
|
written over the corresponding initial entries of the array
|
24443 |
|
|
initialized with REG_ALLOC_ORDER. We allocate all low registers
|
24444 |
|
|
first. Saving and restoring a low register is usually cheaper than
|
24445 |
|
|
using a call-clobbered high register. */
|
24446 |
|
|
|
24447 |
|
|
static const int thumb_core_reg_alloc_order[] =
|
24448 |
|
|
{
|
24449 |
|
|
3, 2, 1, 0, 4, 5, 6, 7,
|
24450 |
|
|
14, 12, 8, 9, 10, 11, 13, 15
|
24451 |
|
|
};
|
24452 |
|
|
|
24453 |
|
|
/* Adjust register allocation order when compiling for Thumb. */
|
24454 |
|
|
|
24455 |
|
|
void
|
24456 |
|
|
arm_order_regs_for_local_alloc (void)
|
24457 |
|
|
{
|
24458 |
|
|
const int arm_reg_alloc_order[] = REG_ALLOC_ORDER;
|
24459 |
|
|
memcpy(reg_alloc_order, arm_reg_alloc_order, sizeof (reg_alloc_order));
|
24460 |
|
|
if (TARGET_THUMB)
|
24461 |
|
|
memcpy (reg_alloc_order, thumb_core_reg_alloc_order,
|
24462 |
|
|
sizeof (thumb_core_reg_alloc_order));
|
24463 |
|
|
}
|
24464 |
|
|
|
24465 |
|
|
/* Implement TARGET_FRAME_POINTER_REQUIRED. */
|
24466 |
|
|
|
24467 |
|
|
bool
|
24468 |
|
|
arm_frame_pointer_required (void)
|
24469 |
|
|
{
|
24470 |
|
|
return (cfun->has_nonlocal_label
|
24471 |
|
|
|| SUBTARGET_FRAME_POINTER_REQUIRED
|
24472 |
|
|
|| (TARGET_ARM && TARGET_APCS_FRAME && ! leaf_function_p ()));
|
24473 |
|
|
}
|
24474 |
|
|
|
24475 |
|
|
/* Only thumb1 can't support conditional execution, so return true if
|
24476 |
|
|
the target is not thumb1. */
|
24477 |
|
|
static bool
|
24478 |
|
|
arm_have_conditional_execution (void)
|
24479 |
|
|
{
|
24480 |
|
|
return !TARGET_THUMB1;
|
24481 |
|
|
}
|
24482 |
|
|
|
24483 |
|
|
static unsigned int
|
24484 |
|
|
arm_autovectorize_vector_sizes (void)
|
24485 |
|
|
{
|
24486 |
|
|
return TARGET_NEON_VECTORIZE_DOUBLE ? 0 : (16 | 8);
|
24487 |
|
|
}
|
24488 |
|
|
|
24489 |
|
|
static bool
|
24490 |
|
|
arm_vector_alignment_reachable (const_tree type, bool is_packed)
|
24491 |
|
|
{
|
24492 |
|
|
/* Vectors which aren't in packed structures will not be less aligned than
|
24493 |
|
|
the natural alignment of their element type, so this is safe. */
|
24494 |
|
|
if (TARGET_NEON && !BYTES_BIG_ENDIAN)
|
24495 |
|
|
return !is_packed;
|
24496 |
|
|
|
24497 |
|
|
return default_builtin_vector_alignment_reachable (type, is_packed);
|
24498 |
|
|
}
|
24499 |
|
|
|
24500 |
|
|
static bool
|
24501 |
|
|
arm_builtin_support_vector_misalignment (enum machine_mode mode,
|
24502 |
|
|
const_tree type, int misalignment,
|
24503 |
|
|
bool is_packed)
|
24504 |
|
|
{
|
24505 |
|
|
if (TARGET_NEON && !BYTES_BIG_ENDIAN)
|
24506 |
|
|
{
|
24507 |
|
|
HOST_WIDE_INT align = TYPE_ALIGN_UNIT (type);
|
24508 |
|
|
|
24509 |
|
|
if (is_packed)
|
24510 |
|
|
return align == 1;
|
24511 |
|
|
|
24512 |
|
|
/* If the misalignment is unknown, we should be able to handle the access
|
24513 |
|
|
so long as it is not to a member of a packed data structure. */
|
24514 |
|
|
if (misalignment == -1)
|
24515 |
|
|
return true;
|
24516 |
|
|
|
24517 |
|
|
/* Return true if the misalignment is a multiple of the natural alignment
|
24518 |
|
|
of the vector's element type. This is probably always going to be
|
24519 |
|
|
true in practice, since we've already established that this isn't a
|
24520 |
|
|
packed access. */
|
24521 |
|
|
return ((misalignment % align) == 0);
|
24522 |
|
|
}
|
24523 |
|
|
|
24524 |
|
|
return default_builtin_support_vector_misalignment (mode, type, misalignment,
|
24525 |
|
|
is_packed);
|
24526 |
|
|
}
|
24527 |
|
|
|
24528 |
|
|
static void
|
24529 |
|
|
arm_conditional_register_usage (void)
|
24530 |
|
|
{
|
24531 |
|
|
int regno;
|
24532 |
|
|
|
24533 |
|
|
if (TARGET_SOFT_FLOAT || TARGET_THUMB1 || !TARGET_FPA)
|
24534 |
|
|
{
|
24535 |
|
|
for (regno = FIRST_FPA_REGNUM;
|
24536 |
|
|
regno <= LAST_FPA_REGNUM; ++regno)
|
24537 |
|
|
fixed_regs[regno] = call_used_regs[regno] = 1;
|
24538 |
|
|
}
|
24539 |
|
|
|
24540 |
|
|
if (TARGET_THUMB1 && optimize_size)
|
24541 |
|
|
{
|
24542 |
|
|
/* When optimizing for size on Thumb-1, it's better not
|
24543 |
|
|
to use the HI regs, because of the overhead of
|
24544 |
|
|
stacking them. */
|
24545 |
|
|
for (regno = FIRST_HI_REGNUM;
|
24546 |
|
|
regno <= LAST_HI_REGNUM; ++regno)
|
24547 |
|
|
fixed_regs[regno] = call_used_regs[regno] = 1;
|
24548 |
|
|
}
|
24549 |
|
|
|
24550 |
|
|
/* The link register can be clobbered by any branch insn,
|
24551 |
|
|
but we have no way to track that at present, so mark
|
24552 |
|
|
it as unavailable. */
|
24553 |
|
|
if (TARGET_THUMB1)
|
24554 |
|
|
fixed_regs[LR_REGNUM] = call_used_regs[LR_REGNUM] = 1;
|
24555 |
|
|
|
24556 |
|
|
if (TARGET_32BIT && TARGET_HARD_FLOAT)
|
24557 |
|
|
{
|
24558 |
|
|
if (TARGET_MAVERICK)
|
24559 |
|
|
{
|
24560 |
|
|
for (regno = FIRST_FPA_REGNUM;
|
24561 |
|
|
regno <= LAST_FPA_REGNUM; ++ regno)
|
24562 |
|
|
fixed_regs[regno] = call_used_regs[regno] = 1;
|
24563 |
|
|
for (regno = FIRST_CIRRUS_FP_REGNUM;
|
24564 |
|
|
regno <= LAST_CIRRUS_FP_REGNUM; ++ regno)
|
24565 |
|
|
{
|
24566 |
|
|
fixed_regs[regno] = 0;
|
24567 |
|
|
call_used_regs[regno] = regno < FIRST_CIRRUS_FP_REGNUM + 4;
|
24568 |
|
|
}
|
24569 |
|
|
}
|
24570 |
|
|
if (TARGET_VFP)
|
24571 |
|
|
{
|
24572 |
|
|
/* VFPv3 registers are disabled when earlier VFP
|
24573 |
|
|
versions are selected due to the definition of
|
24574 |
|
|
LAST_VFP_REGNUM. */
|
24575 |
|
|
for (regno = FIRST_VFP_REGNUM;
|
24576 |
|
|
regno <= LAST_VFP_REGNUM; ++ regno)
|
24577 |
|
|
{
|
24578 |
|
|
fixed_regs[regno] = 0;
|
24579 |
|
|
call_used_regs[regno] = regno < FIRST_VFP_REGNUM + 16
|
24580 |
|
|
|| regno >= FIRST_VFP_REGNUM + 32;
|
24581 |
|
|
}
|
24582 |
|
|
}
|
24583 |
|
|
}
|
24584 |
|
|
|
24585 |
|
|
if (TARGET_REALLY_IWMMXT)
|
24586 |
|
|
{
|
24587 |
|
|
regno = FIRST_IWMMXT_GR_REGNUM;
|
24588 |
|
|
/* The 2002/10/09 revision of the XScale ABI has wCG0
|
24589 |
|
|
and wCG1 as call-preserved registers. The 2002/11/21
|
24590 |
|
|
revision changed this so that all wCG registers are
|
24591 |
|
|
scratch registers. */
|
24592 |
|
|
for (regno = FIRST_IWMMXT_GR_REGNUM;
|
24593 |
|
|
regno <= LAST_IWMMXT_GR_REGNUM; ++ regno)
|
24594 |
|
|
fixed_regs[regno] = 0;
|
24595 |
|
|
/* The XScale ABI has wR0 - wR9 as scratch registers,
|
24596 |
|
|
the rest as call-preserved registers. */
|
24597 |
|
|
for (regno = FIRST_IWMMXT_REGNUM;
|
24598 |
|
|
regno <= LAST_IWMMXT_REGNUM; ++ regno)
|
24599 |
|
|
{
|
24600 |
|
|
fixed_regs[regno] = 0;
|
24601 |
|
|
call_used_regs[regno] = regno < FIRST_IWMMXT_REGNUM + 10;
|
24602 |
|
|
}
|
24603 |
|
|
}
|
24604 |
|
|
|
24605 |
|
|
if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
|
24606 |
|
|
{
|
24607 |
|
|
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
|
24608 |
|
|
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
|
24609 |
|
|
}
|
24610 |
|
|
else if (TARGET_APCS_STACK)
|
24611 |
|
|
{
|
24612 |
|
|
fixed_regs[10] = 1;
|
24613 |
|
|
call_used_regs[10] = 1;
|
24614 |
|
|
}
|
24615 |
|
|
/* -mcaller-super-interworking reserves r11 for calls to
|
24616 |
|
|
_interwork_r11_call_via_rN(). Making the register global
|
24617 |
|
|
is an easy way of ensuring that it remains valid for all
|
24618 |
|
|
calls. */
|
24619 |
|
|
if (TARGET_APCS_FRAME || TARGET_CALLER_INTERWORKING
|
24620 |
|
|
|| TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME)
|
24621 |
|
|
{
|
24622 |
|
|
fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;
|
24623 |
|
|
call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;
|
24624 |
|
|
if (TARGET_CALLER_INTERWORKING)
|
24625 |
|
|
global_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1;
|
24626 |
|
|
}
|
24627 |
|
|
SUBTARGET_CONDITIONAL_REGISTER_USAGE
|
24628 |
|
|
}
|
24629 |
|
|
|
24630 |
|
|
static reg_class_t
|
24631 |
|
|
arm_preferred_rename_class (reg_class_t rclass)
|
24632 |
|
|
{
|
24633 |
|
|
/* Thumb-2 instructions using LO_REGS may be smaller than instructions
|
24634 |
|
|
using GENERIC_REGS. During register rename pass, we prefer LO_REGS,
|
24635 |
|
|
and code size can be reduced. */
|
24636 |
|
|
if (TARGET_THUMB2 && rclass == GENERAL_REGS)
|
24637 |
|
|
return LO_REGS;
|
24638 |
|
|
else
|
24639 |
|
|
return NO_REGS;
|
24640 |
|
|
}
|
24641 |
|
|
|
24642 |
|
|
/* Compute the atrribute "length" of insn "*push_multi".
|
24643 |
|
|
So this function MUST be kept in sync with that insn pattern. */
|
24644 |
|
|
int
|
24645 |
|
|
arm_attr_length_push_multi(rtx parallel_op, rtx first_op)
|
24646 |
|
|
{
|
24647 |
|
|
int i, regno, hi_reg;
|
24648 |
|
|
int num_saves = XVECLEN (parallel_op, 0);
|
24649 |
|
|
|
24650 |
|
|
/* ARM mode. */
|
24651 |
|
|
if (TARGET_ARM)
|
24652 |
|
|
return 4;
|
24653 |
|
|
/* Thumb1 mode. */
|
24654 |
|
|
if (TARGET_THUMB1)
|
24655 |
|
|
return 2;
|
24656 |
|
|
|
24657 |
|
|
/* Thumb2 mode. */
|
24658 |
|
|
regno = REGNO (first_op);
|
24659 |
|
|
hi_reg = (REGNO_REG_CLASS (regno) == HI_REGS) && (regno != LR_REGNUM);
|
24660 |
|
|
for (i = 1; i < num_saves && !hi_reg; i++)
|
24661 |
|
|
{
|
24662 |
|
|
regno = REGNO (XEXP (XVECEXP (parallel_op, 0, i), 0));
|
24663 |
|
|
hi_reg |= (REGNO_REG_CLASS (regno) == HI_REGS) && (regno != LR_REGNUM);
|
24664 |
|
|
}
|
24665 |
|
|
|
24666 |
|
|
if (!hi_reg)
|
24667 |
|
|
return 2;
|
24668 |
|
|
return 4;
|
24669 |
|
|
}
|
24670 |
|
|
|
24671 |
|
|
/* Compute the number of instructions emitted by output_move_double. */
|
24672 |
|
|
int
|
24673 |
|
|
arm_count_output_move_double_insns (rtx *operands)
|
24674 |
|
|
{
|
24675 |
|
|
int count;
|
24676 |
|
|
rtx ops[2];
|
24677 |
|
|
/* output_move_double may modify the operands array, so call it
|
24678 |
|
|
here on a copy of the array. */
|
24679 |
|
|
ops[0] = operands[0];
|
24680 |
|
|
ops[1] = operands[1];
|
24681 |
|
|
output_move_double (ops, false, &count);
|
24682 |
|
|
return count;
|
24683 |
|
|
}
|
24684 |
|
|
|
24685 |
|
|
int
|
24686 |
|
|
vfp3_const_double_for_fract_bits (rtx operand)
|
24687 |
|
|
{
|
24688 |
|
|
REAL_VALUE_TYPE r0;
|
24689 |
|
|
|
24690 |
|
|
if (GET_CODE (operand) != CONST_DOUBLE)
|
24691 |
|
|
return 0;
|
24692 |
|
|
|
24693 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r0, operand);
|
24694 |
|
|
if (exact_real_inverse (DFmode, &r0))
|
24695 |
|
|
{
|
24696 |
|
|
if (exact_real_truncate (DFmode, &r0))
|
24697 |
|
|
{
|
24698 |
|
|
HOST_WIDE_INT value = real_to_integer (&r0);
|
24699 |
|
|
value = value & 0xffffffff;
|
24700 |
|
|
if ((value != 0) && ( (value & (value - 1)) == 0))
|
24701 |
|
|
return int_log2 (value);
|
24702 |
|
|
}
|
24703 |
|
|
}
|
24704 |
|
|
return 0;
|
24705 |
|
|
}
|
24706 |
|
|
|
24707 |
|
|
/* Emit a memory barrier around an atomic sequence according to MODEL. */
|
24708 |
|
|
|
24709 |
|
|
static void
|
24710 |
|
|
arm_pre_atomic_barrier (enum memmodel model)
|
24711 |
|
|
{
|
24712 |
|
|
switch (model)
|
24713 |
|
|
{
|
24714 |
|
|
case MEMMODEL_RELAXED:
|
24715 |
|
|
case MEMMODEL_CONSUME:
|
24716 |
|
|
case MEMMODEL_ACQUIRE:
|
24717 |
|
|
break;
|
24718 |
|
|
case MEMMODEL_RELEASE:
|
24719 |
|
|
case MEMMODEL_ACQ_REL:
|
24720 |
|
|
case MEMMODEL_SEQ_CST:
|
24721 |
|
|
emit_insn (gen_memory_barrier ());
|
24722 |
|
|
break;
|
24723 |
|
|
default:
|
24724 |
|
|
gcc_unreachable ();
|
24725 |
|
|
}
|
24726 |
|
|
}
|
24727 |
|
|
|
24728 |
|
|
static void
|
24729 |
|
|
arm_post_atomic_barrier (enum memmodel model)
|
24730 |
|
|
{
|
24731 |
|
|
switch (model)
|
24732 |
|
|
{
|
24733 |
|
|
case MEMMODEL_RELAXED:
|
24734 |
|
|
case MEMMODEL_CONSUME:
|
24735 |
|
|
case MEMMODEL_RELEASE:
|
24736 |
|
|
break;
|
24737 |
|
|
case MEMMODEL_ACQUIRE:
|
24738 |
|
|
case MEMMODEL_ACQ_REL:
|
24739 |
|
|
case MEMMODEL_SEQ_CST:
|
24740 |
|
|
emit_insn (gen_memory_barrier ());
|
24741 |
|
|
break;
|
24742 |
|
|
default:
|
24743 |
|
|
gcc_unreachable ();
|
24744 |
|
|
}
|
24745 |
|
|
}
|
24746 |
|
|
|
24747 |
|
|
/* Emit the load-exclusive and store-exclusive instructions. */
|
24748 |
|
|
|
24749 |
|
|
static void
|
24750 |
|
|
arm_emit_load_exclusive (enum machine_mode mode, rtx rval, rtx mem)
|
24751 |
|
|
{
|
24752 |
|
|
rtx (*gen) (rtx, rtx);
|
24753 |
|
|
|
24754 |
|
|
switch (mode)
|
24755 |
|
|
{
|
24756 |
|
|
case QImode: gen = gen_arm_load_exclusiveqi; break;
|
24757 |
|
|
case HImode: gen = gen_arm_load_exclusivehi; break;
|
24758 |
|
|
case SImode: gen = gen_arm_load_exclusivesi; break;
|
24759 |
|
|
case DImode: gen = gen_arm_load_exclusivedi; break;
|
24760 |
|
|
default:
|
24761 |
|
|
gcc_unreachable ();
|
24762 |
|
|
}
|
24763 |
|
|
|
24764 |
|
|
emit_insn (gen (rval, mem));
|
24765 |
|
|
}
|
24766 |
|
|
|
24767 |
|
|
static void
|
24768 |
|
|
arm_emit_store_exclusive (enum machine_mode mode, rtx bval, rtx rval, rtx mem)
|
24769 |
|
|
{
|
24770 |
|
|
rtx (*gen) (rtx, rtx, rtx);
|
24771 |
|
|
|
24772 |
|
|
switch (mode)
|
24773 |
|
|
{
|
24774 |
|
|
case QImode: gen = gen_arm_store_exclusiveqi; break;
|
24775 |
|
|
case HImode: gen = gen_arm_store_exclusivehi; break;
|
24776 |
|
|
case SImode: gen = gen_arm_store_exclusivesi; break;
|
24777 |
|
|
case DImode: gen = gen_arm_store_exclusivedi; break;
|
24778 |
|
|
default:
|
24779 |
|
|
gcc_unreachable ();
|
24780 |
|
|
}
|
24781 |
|
|
|
24782 |
|
|
emit_insn (gen (bval, rval, mem));
|
24783 |
|
|
}
|
24784 |
|
|
|
24785 |
|
|
/* Mark the previous jump instruction as unlikely. */
|
24786 |
|
|
|
24787 |
|
|
static void
|
24788 |
|
|
emit_unlikely_jump (rtx insn)
|
24789 |
|
|
{
|
24790 |
|
|
rtx very_unlikely = GEN_INT (REG_BR_PROB_BASE / 100 - 1);
|
24791 |
|
|
|
24792 |
|
|
insn = emit_jump_insn (insn);
|
24793 |
|
|
add_reg_note (insn, REG_BR_PROB, very_unlikely);
|
24794 |
|
|
}
|
24795 |
|
|
|
24796 |
|
|
/* Expand a compare and swap pattern. */
|
24797 |
|
|
|
24798 |
|
|
void
|
24799 |
|
|
arm_expand_compare_and_swap (rtx operands[])
|
24800 |
|
|
{
|
24801 |
|
|
rtx bval, rval, mem, oldval, newval, is_weak, mod_s, mod_f, x;
|
24802 |
|
|
enum machine_mode mode;
|
24803 |
|
|
rtx (*gen) (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
|
24804 |
|
|
|
24805 |
|
|
bval = operands[0];
|
24806 |
|
|
rval = operands[1];
|
24807 |
|
|
mem = operands[2];
|
24808 |
|
|
oldval = operands[3];
|
24809 |
|
|
newval = operands[4];
|
24810 |
|
|
is_weak = operands[5];
|
24811 |
|
|
mod_s = operands[6];
|
24812 |
|
|
mod_f = operands[7];
|
24813 |
|
|
mode = GET_MODE (mem);
|
24814 |
|
|
|
24815 |
|
|
switch (mode)
|
24816 |
|
|
{
|
24817 |
|
|
case QImode:
|
24818 |
|
|
case HImode:
|
24819 |
|
|
/* For narrow modes, we're going to perform the comparison in SImode,
|
24820 |
|
|
so do the zero-extension now. */
|
24821 |
|
|
rval = gen_reg_rtx (SImode);
|
24822 |
|
|
oldval = convert_modes (SImode, mode, oldval, true);
|
24823 |
|
|
/* FALLTHRU */
|
24824 |
|
|
|
24825 |
|
|
case SImode:
|
24826 |
|
|
/* Force the value into a register if needed. We waited until after
|
24827 |
|
|
the zero-extension above to do this properly. */
|
24828 |
|
|
if (!arm_add_operand (oldval, mode))
|
24829 |
|
|
oldval = force_reg (mode, oldval);
|
24830 |
|
|
break;
|
24831 |
|
|
|
24832 |
|
|
case DImode:
|
24833 |
|
|
if (!cmpdi_operand (oldval, mode))
|
24834 |
|
|
oldval = force_reg (mode, oldval);
|
24835 |
|
|
break;
|
24836 |
|
|
|
24837 |
|
|
default:
|
24838 |
|
|
gcc_unreachable ();
|
24839 |
|
|
}
|
24840 |
|
|
|
24841 |
|
|
switch (mode)
|
24842 |
|
|
{
|
24843 |
|
|
case QImode: gen = gen_atomic_compare_and_swapqi_1; break;
|
24844 |
|
|
case HImode: gen = gen_atomic_compare_and_swaphi_1; break;
|
24845 |
|
|
case SImode: gen = gen_atomic_compare_and_swapsi_1; break;
|
24846 |
|
|
case DImode: gen = gen_atomic_compare_and_swapdi_1; break;
|
24847 |
|
|
default:
|
24848 |
|
|
gcc_unreachable ();
|
24849 |
|
|
}
|
24850 |
|
|
|
24851 |
|
|
emit_insn (gen (rval, mem, oldval, newval, is_weak, mod_s, mod_f));
|
24852 |
|
|
|
24853 |
|
|
if (mode == QImode || mode == HImode)
|
24854 |
|
|
emit_move_insn (operands[1], gen_lowpart (mode, rval));
|
24855 |
|
|
|
24856 |
|
|
/* In all cases, we arrange for success to be signaled by Z set.
|
24857 |
|
|
This arrangement allows for the boolean result to be used directly
|
24858 |
|
|
in a subsequent branch, post optimization. */
|
24859 |
|
|
x = gen_rtx_REG (CCmode, CC_REGNUM);
|
24860 |
|
|
x = gen_rtx_EQ (SImode, x, const0_rtx);
|
24861 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, bval, x));
|
24862 |
|
|
}
|
24863 |
|
|
|
24864 |
|
|
/* Split a compare and swap pattern. It is IMPLEMENTATION DEFINED whether
|
24865 |
|
|
another memory store between the load-exclusive and store-exclusive can
|
24866 |
|
|
reset the monitor from Exclusive to Open state. This means we must wait
|
24867 |
|
|
until after reload to split the pattern, lest we get a register spill in
|
24868 |
|
|
the middle of the atomic sequence. */
|
24869 |
|
|
|
24870 |
|
|
void
|
24871 |
|
|
arm_split_compare_and_swap (rtx operands[])
|
24872 |
|
|
{
|
24873 |
|
|
rtx rval, mem, oldval, newval, scratch;
|
24874 |
|
|
enum machine_mode mode;
|
24875 |
|
|
enum memmodel mod_s, mod_f;
|
24876 |
|
|
bool is_weak;
|
24877 |
|
|
rtx label1, label2, x, cond;
|
24878 |
|
|
|
24879 |
|
|
rval = operands[0];
|
24880 |
|
|
mem = operands[1];
|
24881 |
|
|
oldval = operands[2];
|
24882 |
|
|
newval = operands[3];
|
24883 |
|
|
is_weak = (operands[4] != const0_rtx);
|
24884 |
|
|
mod_s = (enum memmodel) INTVAL (operands[5]);
|
24885 |
|
|
mod_f = (enum memmodel) INTVAL (operands[6]);
|
24886 |
|
|
scratch = operands[7];
|
24887 |
|
|
mode = GET_MODE (mem);
|
24888 |
|
|
|
24889 |
|
|
arm_pre_atomic_barrier (mod_s);
|
24890 |
|
|
|
24891 |
|
|
label1 = NULL_RTX;
|
24892 |
|
|
if (!is_weak)
|
24893 |
|
|
{
|
24894 |
|
|
label1 = gen_label_rtx ();
|
24895 |
|
|
emit_label (label1);
|
24896 |
|
|
}
|
24897 |
|
|
label2 = gen_label_rtx ();
|
24898 |
|
|
|
24899 |
|
|
arm_emit_load_exclusive (mode, rval, mem);
|
24900 |
|
|
|
24901 |
|
|
cond = arm_gen_compare_reg (NE, rval, oldval, scratch);
|
24902 |
|
|
x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
|
24903 |
|
|
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
|
24904 |
|
|
gen_rtx_LABEL_REF (Pmode, label2), pc_rtx);
|
24905 |
|
|
emit_unlikely_jump (gen_rtx_SET (VOIDmode, pc_rtx, x));
|
24906 |
|
|
|
24907 |
|
|
arm_emit_store_exclusive (mode, scratch, mem, newval);
|
24908 |
|
|
|
24909 |
|
|
/* Weak or strong, we want EQ to be true for success, so that we
|
24910 |
|
|
match the flags that we got from the compare above. */
|
24911 |
|
|
cond = gen_rtx_REG (CCmode, CC_REGNUM);
|
24912 |
|
|
x = gen_rtx_COMPARE (CCmode, scratch, const0_rtx);
|
24913 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, cond, x));
|
24914 |
|
|
|
24915 |
|
|
if (!is_weak)
|
24916 |
|
|
{
|
24917 |
|
|
x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
|
24918 |
|
|
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x,
|
24919 |
|
|
gen_rtx_LABEL_REF (Pmode, label1), pc_rtx);
|
24920 |
|
|
emit_unlikely_jump (gen_rtx_SET (VOIDmode, pc_rtx, x));
|
24921 |
|
|
}
|
24922 |
|
|
|
24923 |
|
|
if (mod_f != MEMMODEL_RELAXED)
|
24924 |
|
|
emit_label (label2);
|
24925 |
|
|
|
24926 |
|
|
arm_post_atomic_barrier (mod_s);
|
24927 |
|
|
|
24928 |
|
|
if (mod_f == MEMMODEL_RELAXED)
|
24929 |
|
|
emit_label (label2);
|
24930 |
|
|
}
|
24931 |
|
|
|
24932 |
|
|
void
|
24933 |
|
|
arm_split_atomic_op (enum rtx_code code, rtx old_out, rtx new_out, rtx mem,
|
24934 |
|
|
rtx value, rtx model_rtx, rtx cond)
|
24935 |
|
|
{
|
24936 |
|
|
enum memmodel model = (enum memmodel) INTVAL (model_rtx);
|
24937 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
24938 |
|
|
enum machine_mode wmode = (mode == DImode ? DImode : SImode);
|
24939 |
|
|
rtx label, x;
|
24940 |
|
|
|
24941 |
|
|
arm_pre_atomic_barrier (model);
|
24942 |
|
|
|
24943 |
|
|
label = gen_label_rtx ();
|
24944 |
|
|
emit_label (label);
|
24945 |
|
|
|
24946 |
|
|
if (new_out)
|
24947 |
|
|
new_out = gen_lowpart (wmode, new_out);
|
24948 |
|
|
if (old_out)
|
24949 |
|
|
old_out = gen_lowpart (wmode, old_out);
|
24950 |
|
|
else
|
24951 |
|
|
old_out = new_out;
|
24952 |
|
|
value = simplify_gen_subreg (wmode, value, mode, 0);
|
24953 |
|
|
|
24954 |
|
|
arm_emit_load_exclusive (mode, old_out, mem);
|
24955 |
|
|
|
24956 |
|
|
switch (code)
|
24957 |
|
|
{
|
24958 |
|
|
case SET:
|
24959 |
|
|
new_out = value;
|
24960 |
|
|
break;
|
24961 |
|
|
|
24962 |
|
|
case NOT:
|
24963 |
|
|
x = gen_rtx_AND (wmode, old_out, value);
|
24964 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, new_out, x));
|
24965 |
|
|
x = gen_rtx_NOT (wmode, new_out);
|
24966 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, new_out, x));
|
24967 |
|
|
break;
|
24968 |
|
|
|
24969 |
|
|
case MINUS:
|
24970 |
|
|
if (CONST_INT_P (value))
|
24971 |
|
|
{
|
24972 |
|
|
value = GEN_INT (-INTVAL (value));
|
24973 |
|
|
code = PLUS;
|
24974 |
|
|
}
|
24975 |
|
|
/* FALLTHRU */
|
24976 |
|
|
|
24977 |
|
|
case PLUS:
|
24978 |
|
|
if (mode == DImode)
|
24979 |
|
|
{
|
24980 |
|
|
/* DImode plus/minus need to clobber flags. */
|
24981 |
|
|
/* The adddi3 and subdi3 patterns are incorrectly written so that
|
24982 |
|
|
they require matching operands, even when we could easily support
|
24983 |
|
|
three operands. Thankfully, this can be fixed up post-splitting,
|
24984 |
|
|
as the individual add+adc patterns do accept three operands and
|
24985 |
|
|
post-reload cprop can make these moves go away. */
|
24986 |
|
|
emit_move_insn (new_out, old_out);
|
24987 |
|
|
if (code == PLUS)
|
24988 |
|
|
x = gen_adddi3 (new_out, new_out, value);
|
24989 |
|
|
else
|
24990 |
|
|
x = gen_subdi3 (new_out, new_out, value);
|
24991 |
|
|
emit_insn (x);
|
24992 |
|
|
break;
|
24993 |
|
|
}
|
24994 |
|
|
/* FALLTHRU */
|
24995 |
|
|
|
24996 |
|
|
default:
|
24997 |
|
|
x = gen_rtx_fmt_ee (code, wmode, old_out, value);
|
24998 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, new_out, x));
|
24999 |
|
|
break;
|
25000 |
|
|
}
|
25001 |
|
|
|
25002 |
|
|
arm_emit_store_exclusive (mode, cond, mem, gen_lowpart (mode, new_out));
|
25003 |
|
|
|
25004 |
|
|
x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
|
25005 |
|
|
emit_unlikely_jump (gen_cbranchsi4 (x, cond, const0_rtx, label));
|
25006 |
|
|
|
25007 |
|
|
arm_post_atomic_barrier (model);
|
25008 |
|
|
}
|
25009 |
|
|
|
25010 |
|
|
#define MAX_VECT_LEN 16
|
25011 |
|
|
|
25012 |
|
|
struct expand_vec_perm_d
|
25013 |
|
|
{
|
25014 |
|
|
rtx target, op0, op1;
|
25015 |
|
|
unsigned char perm[MAX_VECT_LEN];
|
25016 |
|
|
enum machine_mode vmode;
|
25017 |
|
|
unsigned char nelt;
|
25018 |
|
|
bool one_vector_p;
|
25019 |
|
|
bool testing_p;
|
25020 |
|
|
};
|
25021 |
|
|
|
25022 |
|
|
/* Generate a variable permutation. */
|
25023 |
|
|
|
25024 |
|
|
static void
|
25025 |
|
|
arm_expand_vec_perm_1 (rtx target, rtx op0, rtx op1, rtx sel)
|
25026 |
|
|
{
|
25027 |
|
|
enum machine_mode vmode = GET_MODE (target);
|
25028 |
|
|
bool one_vector_p = rtx_equal_p (op0, op1);
|
25029 |
|
|
|
25030 |
|
|
gcc_checking_assert (vmode == V8QImode || vmode == V16QImode);
|
25031 |
|
|
gcc_checking_assert (GET_MODE (op0) == vmode);
|
25032 |
|
|
gcc_checking_assert (GET_MODE (op1) == vmode);
|
25033 |
|
|
gcc_checking_assert (GET_MODE (sel) == vmode);
|
25034 |
|
|
gcc_checking_assert (TARGET_NEON);
|
25035 |
|
|
|
25036 |
|
|
if (one_vector_p)
|
25037 |
|
|
{
|
25038 |
|
|
if (vmode == V8QImode)
|
25039 |
|
|
emit_insn (gen_neon_vtbl1v8qi (target, op0, sel));
|
25040 |
|
|
else
|
25041 |
|
|
emit_insn (gen_neon_vtbl1v16qi (target, op0, sel));
|
25042 |
|
|
}
|
25043 |
|
|
else
|
25044 |
|
|
{
|
25045 |
|
|
rtx pair;
|
25046 |
|
|
|
25047 |
|
|
if (vmode == V8QImode)
|
25048 |
|
|
{
|
25049 |
|
|
pair = gen_reg_rtx (V16QImode);
|
25050 |
|
|
emit_insn (gen_neon_vcombinev8qi (pair, op0, op1));
|
25051 |
|
|
pair = gen_lowpart (TImode, pair);
|
25052 |
|
|
emit_insn (gen_neon_vtbl2v8qi (target, pair, sel));
|
25053 |
|
|
}
|
25054 |
|
|
else
|
25055 |
|
|
{
|
25056 |
|
|
pair = gen_reg_rtx (OImode);
|
25057 |
|
|
emit_insn (gen_neon_vcombinev16qi (pair, op0, op1));
|
25058 |
|
|
emit_insn (gen_neon_vtbl2v16qi (target, pair, sel));
|
25059 |
|
|
}
|
25060 |
|
|
}
|
25061 |
|
|
}
|
25062 |
|
|
|
25063 |
|
|
void
|
25064 |
|
|
arm_expand_vec_perm (rtx target, rtx op0, rtx op1, rtx sel)
|
25065 |
|
|
{
|
25066 |
|
|
enum machine_mode vmode = GET_MODE (target);
|
25067 |
|
|
unsigned int i, nelt = GET_MODE_NUNITS (vmode);
|
25068 |
|
|
bool one_vector_p = rtx_equal_p (op0, op1);
|
25069 |
|
|
rtx rmask[MAX_VECT_LEN], mask;
|
25070 |
|
|
|
25071 |
|
|
/* TODO: ARM's VTBL indexing is little-endian. In order to handle GCC's
|
25072 |
|
|
numbering of elements for big-endian, we must reverse the order. */
|
25073 |
|
|
gcc_checking_assert (!BYTES_BIG_ENDIAN);
|
25074 |
|
|
|
25075 |
|
|
/* The VTBL instruction does not use a modulo index, so we must take care
|
25076 |
|
|
of that ourselves. */
|
25077 |
|
|
mask = GEN_INT (one_vector_p ? nelt - 1 : 2 * nelt - 1);
|
25078 |
|
|
for (i = 0; i < nelt; ++i)
|
25079 |
|
|
rmask[i] = mask;
|
25080 |
|
|
mask = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rmask));
|
25081 |
|
|
sel = expand_simple_binop (vmode, AND, sel, mask, NULL, 0, OPTAB_LIB_WIDEN);
|
25082 |
|
|
|
25083 |
|
|
arm_expand_vec_perm_1 (target, op0, op1, sel);
|
25084 |
|
|
}
|
25085 |
|
|
|
25086 |
|
|
/* Generate or test for an insn that supports a constant permutation. */
|
25087 |
|
|
|
25088 |
|
|
/* Recognize patterns for the VUZP insns. */
|
25089 |
|
|
|
25090 |
|
|
static bool
|
25091 |
|
|
arm_evpc_neon_vuzp (struct expand_vec_perm_d *d)
|
25092 |
|
|
{
|
25093 |
|
|
unsigned int i, odd, mask, nelt = d->nelt;
|
25094 |
|
|
rtx out0, out1, in0, in1, x;
|
25095 |
|
|
rtx (*gen)(rtx, rtx, rtx, rtx);
|
25096 |
|
|
|
25097 |
|
|
if (GET_MODE_UNIT_SIZE (d->vmode) >= 8)
|
25098 |
|
|
return false;
|
25099 |
|
|
|
25100 |
|
|
/* Note that these are little-endian tests. Adjust for big-endian later. */
|
25101 |
|
|
if (d->perm[0] == 0)
|
25102 |
|
|
odd = 0;
|
25103 |
|
|
else if (d->perm[0] == 1)
|
25104 |
|
|
odd = 1;
|
25105 |
|
|
else
|
25106 |
|
|
return false;
|
25107 |
|
|
mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);
|
25108 |
|
|
|
25109 |
|
|
for (i = 0; i < nelt; i++)
|
25110 |
|
|
{
|
25111 |
|
|
unsigned elt = (i * 2 + odd) & mask;
|
25112 |
|
|
if (d->perm[i] != elt)
|
25113 |
|
|
return false;
|
25114 |
|
|
}
|
25115 |
|
|
|
25116 |
|
|
/* Success! */
|
25117 |
|
|
if (d->testing_p)
|
25118 |
|
|
return true;
|
25119 |
|
|
|
25120 |
|
|
switch (d->vmode)
|
25121 |
|
|
{
|
25122 |
|
|
case V16QImode: gen = gen_neon_vuzpv16qi_internal; break;
|
25123 |
|
|
case V8QImode: gen = gen_neon_vuzpv8qi_internal; break;
|
25124 |
|
|
case V8HImode: gen = gen_neon_vuzpv8hi_internal; break;
|
25125 |
|
|
case V4HImode: gen = gen_neon_vuzpv4hi_internal; break;
|
25126 |
|
|
case V4SImode: gen = gen_neon_vuzpv4si_internal; break;
|
25127 |
|
|
case V2SImode: gen = gen_neon_vuzpv2si_internal; break;
|
25128 |
|
|
case V2SFmode: gen = gen_neon_vuzpv2sf_internal; break;
|
25129 |
|
|
case V4SFmode: gen = gen_neon_vuzpv4sf_internal; break;
|
25130 |
|
|
default:
|
25131 |
|
|
gcc_unreachable ();
|
25132 |
|
|
}
|
25133 |
|
|
|
25134 |
|
|
in0 = d->op0;
|
25135 |
|
|
in1 = d->op1;
|
25136 |
|
|
if (BYTES_BIG_ENDIAN)
|
25137 |
|
|
{
|
25138 |
|
|
x = in0, in0 = in1, in1 = x;
|
25139 |
|
|
odd = !odd;
|
25140 |
|
|
}
|
25141 |
|
|
|
25142 |
|
|
out0 = d->target;
|
25143 |
|
|
out1 = gen_reg_rtx (d->vmode);
|
25144 |
|
|
if (odd)
|
25145 |
|
|
x = out0, out0 = out1, out1 = x;
|
25146 |
|
|
|
25147 |
|
|
emit_insn (gen (out0, in0, in1, out1));
|
25148 |
|
|
return true;
|
25149 |
|
|
}
|
25150 |
|
|
|
25151 |
|
|
/* Recognize patterns for the VZIP insns. */
|
25152 |
|
|
|
25153 |
|
|
static bool
|
25154 |
|
|
arm_evpc_neon_vzip (struct expand_vec_perm_d *d)
|
25155 |
|
|
{
|
25156 |
|
|
unsigned int i, high, mask, nelt = d->nelt;
|
25157 |
|
|
rtx out0, out1, in0, in1, x;
|
25158 |
|
|
rtx (*gen)(rtx, rtx, rtx, rtx);
|
25159 |
|
|
|
25160 |
|
|
if (GET_MODE_UNIT_SIZE (d->vmode) >= 8)
|
25161 |
|
|
return false;
|
25162 |
|
|
|
25163 |
|
|
/* Note that these are little-endian tests. Adjust for big-endian later. */
|
25164 |
|
|
high = nelt / 2;
|
25165 |
|
|
if (d->perm[0] == high)
|
25166 |
|
|
;
|
25167 |
|
|
else if (d->perm[0] == 0)
|
25168 |
|
|
high = 0;
|
25169 |
|
|
else
|
25170 |
|
|
return false;
|
25171 |
|
|
mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);
|
25172 |
|
|
|
25173 |
|
|
for (i = 0; i < nelt / 2; i++)
|
25174 |
|
|
{
|
25175 |
|
|
unsigned elt = (i + high) & mask;
|
25176 |
|
|
if (d->perm[i * 2] != elt)
|
25177 |
|
|
return false;
|
25178 |
|
|
elt = (elt + nelt) & mask;
|
25179 |
|
|
if (d->perm[i * 2 + 1] != elt)
|
25180 |
|
|
return false;
|
25181 |
|
|
}
|
25182 |
|
|
|
25183 |
|
|
/* Success! */
|
25184 |
|
|
if (d->testing_p)
|
25185 |
|
|
return true;
|
25186 |
|
|
|
25187 |
|
|
switch (d->vmode)
|
25188 |
|
|
{
|
25189 |
|
|
case V16QImode: gen = gen_neon_vzipv16qi_internal; break;
|
25190 |
|
|
case V8QImode: gen = gen_neon_vzipv8qi_internal; break;
|
25191 |
|
|
case V8HImode: gen = gen_neon_vzipv8hi_internal; break;
|
25192 |
|
|
case V4HImode: gen = gen_neon_vzipv4hi_internal; break;
|
25193 |
|
|
case V4SImode: gen = gen_neon_vzipv4si_internal; break;
|
25194 |
|
|
case V2SImode: gen = gen_neon_vzipv2si_internal; break;
|
25195 |
|
|
case V2SFmode: gen = gen_neon_vzipv2sf_internal; break;
|
25196 |
|
|
case V4SFmode: gen = gen_neon_vzipv4sf_internal; break;
|
25197 |
|
|
default:
|
25198 |
|
|
gcc_unreachable ();
|
25199 |
|
|
}
|
25200 |
|
|
|
25201 |
|
|
in0 = d->op0;
|
25202 |
|
|
in1 = d->op1;
|
25203 |
|
|
if (BYTES_BIG_ENDIAN)
|
25204 |
|
|
{
|
25205 |
|
|
x = in0, in0 = in1, in1 = x;
|
25206 |
|
|
high = !high;
|
25207 |
|
|
}
|
25208 |
|
|
|
25209 |
|
|
out0 = d->target;
|
25210 |
|
|
out1 = gen_reg_rtx (d->vmode);
|
25211 |
|
|
if (high)
|
25212 |
|
|
x = out0, out0 = out1, out1 = x;
|
25213 |
|
|
|
25214 |
|
|
emit_insn (gen (out0, in0, in1, out1));
|
25215 |
|
|
return true;
|
25216 |
|
|
}
|
25217 |
|
|
|
25218 |
|
|
/* Recognize patterns for the VREV insns. */
|
25219 |
|
|
|
25220 |
|
|
static bool
|
25221 |
|
|
arm_evpc_neon_vrev (struct expand_vec_perm_d *d)
|
25222 |
|
|
{
|
25223 |
|
|
unsigned int i, j, diff, nelt = d->nelt;
|
25224 |
|
|
rtx (*gen)(rtx, rtx, rtx);
|
25225 |
|
|
|
25226 |
|
|
if (!d->one_vector_p)
|
25227 |
|
|
return false;
|
25228 |
|
|
|
25229 |
|
|
diff = d->perm[0];
|
25230 |
|
|
switch (diff)
|
25231 |
|
|
{
|
25232 |
|
|
case 7:
|
25233 |
|
|
switch (d->vmode)
|
25234 |
|
|
{
|
25235 |
|
|
case V16QImode: gen = gen_neon_vrev64v16qi; break;
|
25236 |
|
|
case V8QImode: gen = gen_neon_vrev64v8qi; break;
|
25237 |
|
|
default:
|
25238 |
|
|
return false;
|
25239 |
|
|
}
|
25240 |
|
|
break;
|
25241 |
|
|
case 3:
|
25242 |
|
|
switch (d->vmode)
|
25243 |
|
|
{
|
25244 |
|
|
case V16QImode: gen = gen_neon_vrev32v16qi; break;
|
25245 |
|
|
case V8QImode: gen = gen_neon_vrev32v8qi; break;
|
25246 |
|
|
case V8HImode: gen = gen_neon_vrev64v8hi; break;
|
25247 |
|
|
case V4HImode: gen = gen_neon_vrev64v4hi; break;
|
25248 |
|
|
default:
|
25249 |
|
|
return false;
|
25250 |
|
|
}
|
25251 |
|
|
break;
|
25252 |
|
|
case 1:
|
25253 |
|
|
switch (d->vmode)
|
25254 |
|
|
{
|
25255 |
|
|
case V16QImode: gen = gen_neon_vrev16v16qi; break;
|
25256 |
|
|
case V8QImode: gen = gen_neon_vrev16v8qi; break;
|
25257 |
|
|
case V8HImode: gen = gen_neon_vrev32v8hi; break;
|
25258 |
|
|
case V4HImode: gen = gen_neon_vrev32v4hi; break;
|
25259 |
|
|
case V4SImode: gen = gen_neon_vrev64v4si; break;
|
25260 |
|
|
case V2SImode: gen = gen_neon_vrev64v2si; break;
|
25261 |
|
|
case V4SFmode: gen = gen_neon_vrev64v4sf; break;
|
25262 |
|
|
case V2SFmode: gen = gen_neon_vrev64v2sf; break;
|
25263 |
|
|
default:
|
25264 |
|
|
return false;
|
25265 |
|
|
}
|
25266 |
|
|
break;
|
25267 |
|
|
default:
|
25268 |
|
|
return false;
|
25269 |
|
|
}
|
25270 |
|
|
|
25271 |
|
|
for (i = 0; i < nelt; i += diff)
|
25272 |
|
|
for (j = 0; j <= diff; j += 1)
|
25273 |
|
|
if (d->perm[i + j] != i + diff - j)
|
25274 |
|
|
return false;
|
25275 |
|
|
|
25276 |
|
|
/* Success! */
|
25277 |
|
|
if (d->testing_p)
|
25278 |
|
|
return true;
|
25279 |
|
|
|
25280 |
|
|
/* ??? The third operand is an artifact of the builtin infrastructure
|
25281 |
|
|
and is ignored by the actual instruction. */
|
25282 |
|
|
emit_insn (gen (d->target, d->op0, const0_rtx));
|
25283 |
|
|
return true;
|
25284 |
|
|
}
|
25285 |
|
|
|
25286 |
|
|
/* Recognize patterns for the VTRN insns. */
|
25287 |
|
|
|
25288 |
|
|
static bool
|
25289 |
|
|
arm_evpc_neon_vtrn (struct expand_vec_perm_d *d)
|
25290 |
|
|
{
|
25291 |
|
|
unsigned int i, odd, mask, nelt = d->nelt;
|
25292 |
|
|
rtx out0, out1, in0, in1, x;
|
25293 |
|
|
rtx (*gen)(rtx, rtx, rtx, rtx);
|
25294 |
|
|
|
25295 |
|
|
if (GET_MODE_UNIT_SIZE (d->vmode) >= 8)
|
25296 |
|
|
return false;
|
25297 |
|
|
|
25298 |
|
|
/* Note that these are little-endian tests. Adjust for big-endian later. */
|
25299 |
|
|
if (d->perm[0] == 0)
|
25300 |
|
|
odd = 0;
|
25301 |
|
|
else if (d->perm[0] == 1)
|
25302 |
|
|
odd = 1;
|
25303 |
|
|
else
|
25304 |
|
|
return false;
|
25305 |
|
|
mask = (d->one_vector_p ? nelt - 1 : 2 * nelt - 1);
|
25306 |
|
|
|
25307 |
|
|
for (i = 0; i < nelt; i += 2)
|
25308 |
|
|
{
|
25309 |
|
|
if (d->perm[i] != i + odd)
|
25310 |
|
|
return false;
|
25311 |
|
|
if (d->perm[i + 1] != ((i + nelt + odd) & mask))
|
25312 |
|
|
return false;
|
25313 |
|
|
}
|
25314 |
|
|
|
25315 |
|
|
/* Success! */
|
25316 |
|
|
if (d->testing_p)
|
25317 |
|
|
return true;
|
25318 |
|
|
|
25319 |
|
|
switch (d->vmode)
|
25320 |
|
|
{
|
25321 |
|
|
case V16QImode: gen = gen_neon_vtrnv16qi_internal; break;
|
25322 |
|
|
case V8QImode: gen = gen_neon_vtrnv8qi_internal; break;
|
25323 |
|
|
case V8HImode: gen = gen_neon_vtrnv8hi_internal; break;
|
25324 |
|
|
case V4HImode: gen = gen_neon_vtrnv4hi_internal; break;
|
25325 |
|
|
case V4SImode: gen = gen_neon_vtrnv4si_internal; break;
|
25326 |
|
|
case V2SImode: gen = gen_neon_vtrnv2si_internal; break;
|
25327 |
|
|
case V2SFmode: gen = gen_neon_vtrnv2sf_internal; break;
|
25328 |
|
|
case V4SFmode: gen = gen_neon_vtrnv4sf_internal; break;
|
25329 |
|
|
default:
|
25330 |
|
|
gcc_unreachable ();
|
25331 |
|
|
}
|
25332 |
|
|
|
25333 |
|
|
in0 = d->op0;
|
25334 |
|
|
in1 = d->op1;
|
25335 |
|
|
if (BYTES_BIG_ENDIAN)
|
25336 |
|
|
{
|
25337 |
|
|
x = in0, in0 = in1, in1 = x;
|
25338 |
|
|
odd = !odd;
|
25339 |
|
|
}
|
25340 |
|
|
|
25341 |
|
|
out0 = d->target;
|
25342 |
|
|
out1 = gen_reg_rtx (d->vmode);
|
25343 |
|
|
if (odd)
|
25344 |
|
|
x = out0, out0 = out1, out1 = x;
|
25345 |
|
|
|
25346 |
|
|
emit_insn (gen (out0, in0, in1, out1));
|
25347 |
|
|
return true;
|
25348 |
|
|
}
|
25349 |
|
|
|
25350 |
|
|
/* The NEON VTBL instruction is a fully variable permuation that's even
|
25351 |
|
|
stronger than what we expose via VEC_PERM_EXPR. What it doesn't do
|
25352 |
|
|
is mask the index operand as VEC_PERM_EXPR requires. Therefore we
|
25353 |
|
|
can do slightly better by expanding this as a constant where we don't
|
25354 |
|
|
have to apply a mask. */
|
25355 |
|
|
|
25356 |
|
|
static bool
|
25357 |
|
|
arm_evpc_neon_vtbl (struct expand_vec_perm_d *d)
|
25358 |
|
|
{
|
25359 |
|
|
rtx rperm[MAX_VECT_LEN], sel;
|
25360 |
|
|
enum machine_mode vmode = d->vmode;
|
25361 |
|
|
unsigned int i, nelt = d->nelt;
|
25362 |
|
|
|
25363 |
|
|
/* TODO: ARM's VTBL indexing is little-endian. In order to handle GCC's
|
25364 |
|
|
numbering of elements for big-endian, we must reverse the order. */
|
25365 |
|
|
if (BYTES_BIG_ENDIAN)
|
25366 |
|
|
return false;
|
25367 |
|
|
|
25368 |
|
|
if (d->testing_p)
|
25369 |
|
|
return true;
|
25370 |
|
|
|
25371 |
|
|
/* Generic code will try constant permutation twice. Once with the
|
25372 |
|
|
original mode and again with the elements lowered to QImode.
|
25373 |
|
|
So wait and don't do the selector expansion ourselves. */
|
25374 |
|
|
if (vmode != V8QImode && vmode != V16QImode)
|
25375 |
|
|
return false;
|
25376 |
|
|
|
25377 |
|
|
for (i = 0; i < nelt; ++i)
|
25378 |
|
|
rperm[i] = GEN_INT (d->perm[i]);
|
25379 |
|
|
sel = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rperm));
|
25380 |
|
|
sel = force_reg (vmode, sel);
|
25381 |
|
|
|
25382 |
|
|
arm_expand_vec_perm_1 (d->target, d->op0, d->op1, sel);
|
25383 |
|
|
return true;
|
25384 |
|
|
}
|
25385 |
|
|
|
25386 |
|
|
static bool
|
25387 |
|
|
arm_expand_vec_perm_const_1 (struct expand_vec_perm_d *d)
|
25388 |
|
|
{
|
25389 |
|
|
/* The pattern matching functions above are written to look for a small
|
25390 |
|
|
number to begin the sequence (0, 1, N/2). If we begin with an index
|
25391 |
|
|
from the second operand, we can swap the operands. */
|
25392 |
|
|
if (d->perm[0] >= d->nelt)
|
25393 |
|
|
{
|
25394 |
|
|
unsigned i, nelt = d->nelt;
|
25395 |
|
|
rtx x;
|
25396 |
|
|
|
25397 |
|
|
for (i = 0; i < nelt; ++i)
|
25398 |
|
|
d->perm[i] = (d->perm[i] + nelt) & (2 * nelt - 1);
|
25399 |
|
|
|
25400 |
|
|
x = d->op0;
|
25401 |
|
|
d->op0 = d->op1;
|
25402 |
|
|
d->op1 = x;
|
25403 |
|
|
}
|
25404 |
|
|
|
25405 |
|
|
if (TARGET_NEON)
|
25406 |
|
|
{
|
25407 |
|
|
if (arm_evpc_neon_vuzp (d))
|
25408 |
|
|
return true;
|
25409 |
|
|
if (arm_evpc_neon_vzip (d))
|
25410 |
|
|
return true;
|
25411 |
|
|
if (arm_evpc_neon_vrev (d))
|
25412 |
|
|
return true;
|
25413 |
|
|
if (arm_evpc_neon_vtrn (d))
|
25414 |
|
|
return true;
|
25415 |
|
|
return arm_evpc_neon_vtbl (d);
|
25416 |
|
|
}
|
25417 |
|
|
return false;
|
25418 |
|
|
}
|
25419 |
|
|
|
25420 |
|
|
/* Expand a vec_perm_const pattern. */
|
25421 |
|
|
|
25422 |
|
|
bool
|
25423 |
|
|
arm_expand_vec_perm_const (rtx target, rtx op0, rtx op1, rtx sel)
|
25424 |
|
|
{
|
25425 |
|
|
struct expand_vec_perm_d d;
|
25426 |
|
|
int i, nelt, which;
|
25427 |
|
|
|
25428 |
|
|
d.target = target;
|
25429 |
|
|
d.op0 = op0;
|
25430 |
|
|
d.op1 = op1;
|
25431 |
|
|
|
25432 |
|
|
d.vmode = GET_MODE (target);
|
25433 |
|
|
gcc_assert (VECTOR_MODE_P (d.vmode));
|
25434 |
|
|
d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
|
25435 |
|
|
d.testing_p = false;
|
25436 |
|
|
|
25437 |
|
|
for (i = which = 0; i < nelt; ++i)
|
25438 |
|
|
{
|
25439 |
|
|
rtx e = XVECEXP (sel, 0, i);
|
25440 |
|
|
int ei = INTVAL (e) & (2 * nelt - 1);
|
25441 |
|
|
which |= (ei < nelt ? 1 : 2);
|
25442 |
|
|
d.perm[i] = ei;
|
25443 |
|
|
}
|
25444 |
|
|
|
25445 |
|
|
switch (which)
|
25446 |
|
|
{
|
25447 |
|
|
default:
|
25448 |
|
|
gcc_unreachable();
|
25449 |
|
|
|
25450 |
|
|
case 3:
|
25451 |
|
|
d.one_vector_p = false;
|
25452 |
|
|
if (!rtx_equal_p (op0, op1))
|
25453 |
|
|
break;
|
25454 |
|
|
|
25455 |
|
|
/* The elements of PERM do not suggest that only the first operand
|
25456 |
|
|
is used, but both operands are identical. Allow easier matching
|
25457 |
|
|
of the permutation by folding the permutation into the single
|
25458 |
|
|
input vector. */
|
25459 |
|
|
/* FALLTHRU */
|
25460 |
|
|
case 2:
|
25461 |
|
|
for (i = 0; i < nelt; ++i)
|
25462 |
|
|
d.perm[i] &= nelt - 1;
|
25463 |
|
|
d.op0 = op1;
|
25464 |
|
|
d.one_vector_p = true;
|
25465 |
|
|
break;
|
25466 |
|
|
|
25467 |
|
|
case 1:
|
25468 |
|
|
d.op1 = op0;
|
25469 |
|
|
d.one_vector_p = true;
|
25470 |
|
|
break;
|
25471 |
|
|
}
|
25472 |
|
|
|
25473 |
|
|
return arm_expand_vec_perm_const_1 (&d);
|
25474 |
|
|
}
|
25475 |
|
|
|
25476 |
|
|
/* Implement TARGET_VECTORIZE_VEC_PERM_CONST_OK. */
|
25477 |
|
|
|
25478 |
|
|
static bool
|
25479 |
|
|
arm_vectorize_vec_perm_const_ok (enum machine_mode vmode,
|
25480 |
|
|
const unsigned char *sel)
|
25481 |
|
|
{
|
25482 |
|
|
struct expand_vec_perm_d d;
|
25483 |
|
|
unsigned int i, nelt, which;
|
25484 |
|
|
bool ret;
|
25485 |
|
|
|
25486 |
|
|
d.vmode = vmode;
|
25487 |
|
|
d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
|
25488 |
|
|
d.testing_p = true;
|
25489 |
|
|
memcpy (d.perm, sel, nelt);
|
25490 |
|
|
|
25491 |
|
|
/* Categorize the set of elements in the selector. */
|
25492 |
|
|
for (i = which = 0; i < nelt; ++i)
|
25493 |
|
|
{
|
25494 |
|
|
unsigned char e = d.perm[i];
|
25495 |
|
|
gcc_assert (e < 2 * nelt);
|
25496 |
|
|
which |= (e < nelt ? 1 : 2);
|
25497 |
|
|
}
|
25498 |
|
|
|
25499 |
|
|
/* For all elements from second vector, fold the elements to first. */
|
25500 |
|
|
if (which == 2)
|
25501 |
|
|
for (i = 0; i < nelt; ++i)
|
25502 |
|
|
d.perm[i] -= nelt;
|
25503 |
|
|
|
25504 |
|
|
/* Check whether the mask can be applied to the vector type. */
|
25505 |
|
|
d.one_vector_p = (which != 3);
|
25506 |
|
|
|
25507 |
|
|
d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1);
|
25508 |
|
|
d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2);
|
25509 |
|
|
if (!d.one_vector_p)
|
25510 |
|
|
d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3);
|
25511 |
|
|
|
25512 |
|
|
start_sequence ();
|
25513 |
|
|
ret = arm_expand_vec_perm_const_1 (&d);
|
25514 |
|
|
end_sequence ();
|
25515 |
|
|
|
25516 |
|
|
return ret;
|
25517 |
|
|
}
|
25518 |
|
|
|
25519 |
|
|
|
25520 |
|
|
#include "gt-arm.h"
|