| 1 |
709 |
jeremybenn |
;; ARM 1020E & ARM 1022E Pipeline Description
|
| 2 |
|
|
;; Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
|
| 3 |
|
|
;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
|
| 4 |
|
|
;;
|
| 5 |
|
|
;; This file is part of GCC.
|
| 6 |
|
|
;;
|
| 7 |
|
|
;; GCC is free software; you can redistribute it and/or modify it
|
| 8 |
|
|
;; under the terms of the GNU General Public License as published by
|
| 9 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
| 10 |
|
|
;; any later version.
|
| 11 |
|
|
;;
|
| 12 |
|
|
;; GCC is distributed in the hope that it will be useful, but
|
| 13 |
|
|
;; WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 15 |
|
|
;; General Public License for more details.
|
| 16 |
|
|
;;
|
| 17 |
|
|
;; You should have received a copy of the GNU General Public License
|
| 18 |
|
|
;; along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
;; . */
|
| 20 |
|
|
|
| 21 |
|
|
;; These descriptions are based on the information contained in the
|
| 22 |
|
|
;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
|
| 23 |
|
|
;; Limited.
|
| 24 |
|
|
;;
|
| 25 |
|
|
|
| 26 |
|
|
;; This automaton provides a pipeline description for the ARM
|
| 27 |
|
|
;; 1020E core.
|
| 28 |
|
|
;;
|
| 29 |
|
|
;; The model given here assumes that the condition for all conditional
|
| 30 |
|
|
;; instructions is "true", i.e., that all of the instructions are
|
| 31 |
|
|
;; actually executed.
|
| 32 |
|
|
|
| 33 |
|
|
(define_automaton "arm1020e")
|
| 34 |
|
|
|
| 35 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 36 |
|
|
;; Pipelines
|
| 37 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 38 |
|
|
|
| 39 |
|
|
;; There are two pipelines:
|
| 40 |
|
|
;;
|
| 41 |
|
|
;; - An Arithmetic Logic Unit (ALU) pipeline.
|
| 42 |
|
|
;;
|
| 43 |
|
|
;; The ALU pipeline has fetch, issue, decode, execute, memory, and
|
| 44 |
|
|
;; write stages. We only need to model the execute, memory and write
|
| 45 |
|
|
;; stages.
|
| 46 |
|
|
;;
|
| 47 |
|
|
;; - A Load-Store Unit (LSU) pipeline.
|
| 48 |
|
|
;;
|
| 49 |
|
|
;; The LSU pipeline has decode, execute, memory, and write stages.
|
| 50 |
|
|
;; We only model the execute, memory and write stages.
|
| 51 |
|
|
|
| 52 |
|
|
(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
|
| 53 |
|
|
(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
|
| 54 |
|
|
|
| 55 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 56 |
|
|
;; ALU Instructions
|
| 57 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 58 |
|
|
|
| 59 |
|
|
;; ALU instructions require three cycles to execute, and use the ALU
|
| 60 |
|
|
;; pipeline in each of the three stages. The results are available
|
| 61 |
|
|
;; after the execute stage stage has finished.
|
| 62 |
|
|
;;
|
| 63 |
|
|
;; If the destination register is the PC, the pipelines are stalled
|
| 64 |
|
|
;; for several cycles. That case is not modeled here.
|
| 65 |
|
|
|
| 66 |
|
|
;; ALU operations with no shifted operand
|
| 67 |
|
|
(define_insn_reservation "1020alu_op" 1
|
| 68 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 69 |
|
|
(eq_attr "type" "alu"))
|
| 70 |
|
|
"1020a_e,1020a_m,1020a_w")
|
| 71 |
|
|
|
| 72 |
|
|
;; ALU operations with a shift-by-constant operand
|
| 73 |
|
|
(define_insn_reservation "1020alu_shift_op" 1
|
| 74 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 75 |
|
|
(eq_attr "type" "alu_shift"))
|
| 76 |
|
|
"1020a_e,1020a_m,1020a_w")
|
| 77 |
|
|
|
| 78 |
|
|
;; ALU operations with a shift-by-register operand
|
| 79 |
|
|
;; These really stall in the decoder, in order to read
|
| 80 |
|
|
;; the shift value in a second cycle. Pretend we take two cycles in
|
| 81 |
|
|
;; the execute stage.
|
| 82 |
|
|
(define_insn_reservation "1020alu_shift_reg_op" 2
|
| 83 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 84 |
|
|
(eq_attr "type" "alu_shift_reg"))
|
| 85 |
|
|
"1020a_e*2,1020a_m,1020a_w")
|
| 86 |
|
|
|
| 87 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 88 |
|
|
;; Multiplication Instructions
|
| 89 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 90 |
|
|
|
| 91 |
|
|
;; Multiplication instructions loop in the execute stage until the
|
| 92 |
|
|
;; instruction has been passed through the multiplier array enough
|
| 93 |
|
|
;; times.
|
| 94 |
|
|
|
| 95 |
|
|
;; The result of the "smul" and "smulw" instructions is not available
|
| 96 |
|
|
;; until after the memory stage.
|
| 97 |
|
|
(define_insn_reservation "1020mult1" 2
|
| 98 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 99 |
|
|
(eq_attr "insn" "smulxy,smulwy"))
|
| 100 |
|
|
"1020a_e,1020a_m,1020a_w")
|
| 101 |
|
|
|
| 102 |
|
|
;; The "smlaxy" and "smlawx" instructions require two iterations through
|
| 103 |
|
|
;; the execute stage; the result is available immediately following
|
| 104 |
|
|
;; the execute stage.
|
| 105 |
|
|
(define_insn_reservation "1020mult2" 2
|
| 106 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 107 |
|
|
(eq_attr "insn" "smlaxy,smlalxy,smlawx"))
|
| 108 |
|
|
"1020a_e*2,1020a_m,1020a_w")
|
| 109 |
|
|
|
| 110 |
|
|
;; The "smlalxy", "mul", and "mla" instructions require two iterations
|
| 111 |
|
|
;; through the execute stage; the result is not available until after
|
| 112 |
|
|
;; the memory stage.
|
| 113 |
|
|
(define_insn_reservation "1020mult3" 3
|
| 114 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 115 |
|
|
(eq_attr "insn" "smlalxy,mul,mla"))
|
| 116 |
|
|
"1020a_e*2,1020a_m,1020a_w")
|
| 117 |
|
|
|
| 118 |
|
|
;; The "muls" and "mlas" instructions loop in the execute stage for
|
| 119 |
|
|
;; four iterations in order to set the flags. The value result is
|
| 120 |
|
|
;; available after three iterations.
|
| 121 |
|
|
(define_insn_reservation "1020mult4" 3
|
| 122 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 123 |
|
|
(eq_attr "insn" "muls,mlas"))
|
| 124 |
|
|
"1020a_e*4,1020a_m,1020a_w")
|
| 125 |
|
|
|
| 126 |
|
|
;; Long multiply instructions that produce two registers of
|
| 127 |
|
|
;; output (such as umull) make their results available in two cycles;
|
| 128 |
|
|
;; the least significant word is available before the most significant
|
| 129 |
|
|
;; word. That fact is not modeled; instead, the instructions are
|
| 130 |
|
|
;; described.as if the entire result was available at the end of the
|
| 131 |
|
|
;; cycle in which both words are available.
|
| 132 |
|
|
|
| 133 |
|
|
;; The "umull", "umlal", "smull", and "smlal" instructions all take
|
| 134 |
|
|
;; three iterations through the execute cycle, and make their results
|
| 135 |
|
|
;; available after the memory cycle.
|
| 136 |
|
|
(define_insn_reservation "1020mult5" 4
|
| 137 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 138 |
|
|
(eq_attr "insn" "umull,umlal,smull,smlal"))
|
| 139 |
|
|
"1020a_e*3,1020a_m,1020a_w")
|
| 140 |
|
|
|
| 141 |
|
|
;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
|
| 142 |
|
|
;; the execute stage for five iterations in order to set the flags.
|
| 143 |
|
|
;; The value result is available after four iterations.
|
| 144 |
|
|
(define_insn_reservation "1020mult6" 4
|
| 145 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 146 |
|
|
(eq_attr "insn" "umulls,umlals,smulls,smlals"))
|
| 147 |
|
|
"1020a_e*5,1020a_m,1020a_w")
|
| 148 |
|
|
|
| 149 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 150 |
|
|
;; Load/Store Instructions
|
| 151 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 152 |
|
|
|
| 153 |
|
|
;; The models for load/store instructions do not accurately describe
|
| 154 |
|
|
;; the difference between operations with a base register writeback
|
| 155 |
|
|
;; (such as "ldm!"). These models assume that all memory references
|
| 156 |
|
|
;; hit in dcache.
|
| 157 |
|
|
|
| 158 |
|
|
;; LSU instructions require six cycles to execute. They use the ALU
|
| 159 |
|
|
;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
|
| 160 |
|
|
;; three through six.
|
| 161 |
|
|
;; Loads and stores which use a scaled register offset or scaled
|
| 162 |
|
|
;; register pre-indexed addressing mode take three cycles EXCEPT for
|
| 163 |
|
|
;; those that are base + offset with LSL of 0 or 2, or base - offset
|
| 164 |
|
|
;; with LSL of zero. The remainder take 1 cycle to execute.
|
| 165 |
|
|
;; For 4byte loads there is a bypass from the load stage
|
| 166 |
|
|
|
| 167 |
|
|
(define_insn_reservation "1020load1_op" 2
|
| 168 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 169 |
|
|
(eq_attr "type" "load_byte,load1"))
|
| 170 |
|
|
"1020a_e+1020l_e,1020l_m,1020l_w")
|
| 171 |
|
|
|
| 172 |
|
|
(define_insn_reservation "1020store1_op" 0
|
| 173 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 174 |
|
|
(eq_attr "type" "store1"))
|
| 175 |
|
|
"1020a_e+1020l_e,1020l_m,1020l_w")
|
| 176 |
|
|
|
| 177 |
|
|
;; A load's result can be stored by an immediately following store
|
| 178 |
|
|
(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
|
| 179 |
|
|
|
| 180 |
|
|
;; On a LDM/STM operation, the LSU pipeline iterates until all of the
|
| 181 |
|
|
;; registers have been processed.
|
| 182 |
|
|
;;
|
| 183 |
|
|
;; The time it takes to load the data depends on whether or not the
|
| 184 |
|
|
;; base address is 64-bit aligned; if it is not, an additional cycle
|
| 185 |
|
|
;; is required. This model assumes that the address is always 64-bit
|
| 186 |
|
|
;; aligned. Because the processor can load two registers per cycle,
|
| 187 |
|
|
;; that assumption means that we use the same instruction reservations
|
| 188 |
|
|
;; for loading 2k and 2k - 1 registers.
|
| 189 |
|
|
;;
|
| 190 |
|
|
;; The ALU pipeline is decoupled after the first cycle unless there is
|
| 191 |
|
|
;; a register dependency; the dependency is cleared as soon as the LDM/STM
|
| 192 |
|
|
;; has dealt with the corresponding register. So for example,
|
| 193 |
|
|
;; stmia sp, {r0-r3}
|
| 194 |
|
|
;; add r0, r0, #4
|
| 195 |
|
|
;; will have one fewer stalls than
|
| 196 |
|
|
;; stmia sp, {r0-r3}
|
| 197 |
|
|
;; add r3, r3, #4
|
| 198 |
|
|
;;
|
| 199 |
|
|
;; As with ALU operations, if one of the destination registers is the
|
| 200 |
|
|
;; PC, there are additional stalls; that is not modeled.
|
| 201 |
|
|
|
| 202 |
|
|
(define_insn_reservation "1020load2_op" 2
|
| 203 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 204 |
|
|
(eq_attr "type" "load2"))
|
| 205 |
|
|
"1020a_e+1020l_e,1020l_m,1020l_w")
|
| 206 |
|
|
|
| 207 |
|
|
(define_insn_reservation "1020store2_op" 0
|
| 208 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 209 |
|
|
(eq_attr "type" "store2"))
|
| 210 |
|
|
"1020a_e+1020l_e,1020l_m,1020l_w")
|
| 211 |
|
|
|
| 212 |
|
|
(define_insn_reservation "1020load34_op" 3
|
| 213 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 214 |
|
|
(eq_attr "type" "load3,load4"))
|
| 215 |
|
|
"1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
|
| 216 |
|
|
|
| 217 |
|
|
(define_insn_reservation "1020store34_op" 0
|
| 218 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 219 |
|
|
(eq_attr "type" "store3,store4"))
|
| 220 |
|
|
"1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
|
| 221 |
|
|
|
| 222 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 223 |
|
|
;; Branch and Call Instructions
|
| 224 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 225 |
|
|
|
| 226 |
|
|
;; Branch instructions are difficult to model accurately. The ARM
|
| 227 |
|
|
;; core can predict most branches. If the branch is predicted
|
| 228 |
|
|
;; correctly, and predicted early enough, the branch can be completely
|
| 229 |
|
|
;; eliminated from the instruction stream. Some branches can
|
| 230 |
|
|
;; therefore appear to require zero cycles to execute. We assume that
|
| 231 |
|
|
;; all branches are predicted correctly, and that the latency is
|
| 232 |
|
|
;; therefore the minimum value.
|
| 233 |
|
|
|
| 234 |
|
|
(define_insn_reservation "1020branch_op" 0
|
| 235 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 236 |
|
|
(eq_attr "type" "branch"))
|
| 237 |
|
|
"1020a_e")
|
| 238 |
|
|
|
| 239 |
|
|
;; The latency for a call is not predictable. Therefore, we use 32 as
|
| 240 |
|
|
;; roughly equivalent to positive infinity.
|
| 241 |
|
|
|
| 242 |
|
|
(define_insn_reservation "1020call_op" 32
|
| 243 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
| 244 |
|
|
(eq_attr "type" "call"))
|
| 245 |
|
|
"1020a_e*32")
|
| 246 |
|
|
|
| 247 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 248 |
|
|
;; VFP
|
| 249 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
| 250 |
|
|
|
| 251 |
|
|
(define_cpu_unit "v10_fmac" "arm1020e")
|
| 252 |
|
|
|
| 253 |
|
|
(define_cpu_unit "v10_ds" "arm1020e")
|
| 254 |
|
|
|
| 255 |
|
|
(define_cpu_unit "v10_fmstat" "arm1020e")
|
| 256 |
|
|
|
| 257 |
|
|
(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
|
| 258 |
|
|
|
| 259 |
|
|
;; fmstat is a serializing instruction. It will stall the core until
|
| 260 |
|
|
;; the mac and ds units have completed.
|
| 261 |
|
|
(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
|
| 262 |
|
|
|
| 263 |
|
|
(define_attr "vfp10" "yes,no"
|
| 264 |
|
|
(const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
|
| 265 |
|
|
(eq_attr "fpu" "vfp"))
|
| 266 |
|
|
(const_string "yes") (const_string "no"))))
|
| 267 |
|
|
|
| 268 |
|
|
;; Note, no instruction can issue to the VFP if the core is stalled in the
|
| 269 |
|
|
;; first execute state. We model this by using 1020a_e in the first cycle.
|
| 270 |
|
|
(define_insn_reservation "v10_ffarith" 5
|
| 271 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 272 |
|
|
(eq_attr "type" "fcpys,ffariths,ffarithd,fcmps,fcmpd"))
|
| 273 |
|
|
"1020a_e+v10_fmac")
|
| 274 |
|
|
|
| 275 |
|
|
(define_insn_reservation "v10_farith" 5
|
| 276 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 277 |
|
|
(eq_attr "type" "faddd,fadds"))
|
| 278 |
|
|
"1020a_e+v10_fmac")
|
| 279 |
|
|
|
| 280 |
|
|
(define_insn_reservation "v10_cvt" 5
|
| 281 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 282 |
|
|
(eq_attr "type" "f_cvt"))
|
| 283 |
|
|
"1020a_e+v10_fmac")
|
| 284 |
|
|
|
| 285 |
|
|
(define_insn_reservation "v10_fmul" 6
|
| 286 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 287 |
|
|
(eq_attr "type" "fmuls,fmacs,fmuld,fmacd"))
|
| 288 |
|
|
"1020a_e+v10_fmac*2")
|
| 289 |
|
|
|
| 290 |
|
|
(define_insn_reservation "v10_fdivs" 18
|
| 291 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 292 |
|
|
(eq_attr "type" "fdivs"))
|
| 293 |
|
|
"1020a_e+v10_ds*14")
|
| 294 |
|
|
|
| 295 |
|
|
(define_insn_reservation "v10_fdivd" 32
|
| 296 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 297 |
|
|
(eq_attr "type" "fdivd"))
|
| 298 |
|
|
"1020a_e+v10_fmac+v10_ds*28")
|
| 299 |
|
|
|
| 300 |
|
|
(define_insn_reservation "v10_floads" 4
|
| 301 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 302 |
|
|
(eq_attr "type" "f_loads"))
|
| 303 |
|
|
"1020a_e+1020l_e+v10_ls1,v10_ls2")
|
| 304 |
|
|
|
| 305 |
|
|
;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
|
| 306 |
|
|
;; This gives the correct mix between single-and double loads where a flds
|
| 307 |
|
|
;; followed by and fldd will stall for one cycle, but two back-to-back fldd
|
| 308 |
|
|
;; insns stall for two cycles.
|
| 309 |
|
|
(define_insn_reservation "v10_floadd" 5
|
| 310 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 311 |
|
|
(eq_attr "type" "f_loadd"))
|
| 312 |
|
|
"1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
|
| 313 |
|
|
|
| 314 |
|
|
;; Moves to/from arm regs also use the load/store pipeline.
|
| 315 |
|
|
|
| 316 |
|
|
(define_insn_reservation "v10_c2v" 4
|
| 317 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 318 |
|
|
(eq_attr "type" "r_2_f"))
|
| 319 |
|
|
"1020a_e+1020l_e+v10_ls1,v10_ls2")
|
| 320 |
|
|
|
| 321 |
|
|
(define_insn_reservation "v10_fstores" 1
|
| 322 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 323 |
|
|
(eq_attr "type" "f_stores"))
|
| 324 |
|
|
"1020a_e+1020l_e+v10_ls1,v10_ls2")
|
| 325 |
|
|
|
| 326 |
|
|
(define_insn_reservation "v10_fstored" 1
|
| 327 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 328 |
|
|
(eq_attr "type" "f_stored"))
|
| 329 |
|
|
"1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
|
| 330 |
|
|
|
| 331 |
|
|
(define_insn_reservation "v10_v2c" 1
|
| 332 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 333 |
|
|
(eq_attr "type" "f_2_r"))
|
| 334 |
|
|
"1020a_e+1020l_e,1020l_m,1020l_w")
|
| 335 |
|
|
|
| 336 |
|
|
(define_insn_reservation "v10_to_cpsr" 2
|
| 337 |
|
|
(and (eq_attr "vfp10" "yes")
|
| 338 |
|
|
(eq_attr "type" "f_flag"))
|
| 339 |
|
|
"1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
|
| 340 |
|
|
|
| 341 |
|
|
;; VFP bypasses
|
| 342 |
|
|
|
| 343 |
|
|
;; There are bypasses for most operations other than store
|
| 344 |
|
|
|
| 345 |
|
|
(define_bypass 3
|
| 346 |
|
|
"v10_c2v,v10_floads"
|
| 347 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
|
| 348 |
|
|
|
| 349 |
|
|
(define_bypass 4
|
| 350 |
|
|
"v10_floadd"
|
| 351 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
| 352 |
|
|
|
| 353 |
|
|
;; Arithmetic to other arithmetic saves a cycle due to forwarding
|
| 354 |
|
|
(define_bypass 4
|
| 355 |
|
|
"v10_ffarith,v10_farith"
|
| 356 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
| 357 |
|
|
|
| 358 |
|
|
(define_bypass 5
|
| 359 |
|
|
"v10_fmul"
|
| 360 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
| 361 |
|
|
|
| 362 |
|
|
(define_bypass 17
|
| 363 |
|
|
"v10_fdivs"
|
| 364 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
| 365 |
|
|
|
| 366 |
|
|
(define_bypass 31
|
| 367 |
|
|
"v10_fdivd"
|
| 368 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
| 369 |
|
|
|
| 370 |
|
|
;; VFP anti-dependencies.
|
| 371 |
|
|
|
| 372 |
|
|
;; There is one anti-dependence in the following case (not yet modelled):
|
| 373 |
|
|
;; - After a store: one extra cycle for both fsts and fstd
|
| 374 |
|
|
;; Note, back-to-back fstd instructions will overload the load/store datapath
|
| 375 |
|
|
;; causing a two-cycle stall.
|