1 |
709 |
jeremybenn |
;; ARM Cortex-A5 pipeline description
|
2 |
|
|
;; Copyright (C) 2010 Free Software Foundation, Inc.
|
3 |
|
|
;; Contributed by CodeSourcery.
|
4 |
|
|
;;
|
5 |
|
|
;; This file is part of GCC.
|
6 |
|
|
;;
|
7 |
|
|
;; GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
;; under the terms of the GNU General Public License as published by
|
9 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
;; any later version.
|
11 |
|
|
;;
|
12 |
|
|
;; GCC is distributed in the hope that it will be useful, but
|
13 |
|
|
;; WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
|
|
;; General Public License for more details.
|
16 |
|
|
;;
|
17 |
|
|
;; You should have received a copy of the GNU General Public License
|
18 |
|
|
;; along with GCC; see the file COPYING3. If not see
|
19 |
|
|
;; .
|
20 |
|
|
|
21 |
|
|
(define_automaton "cortex_a5")
|
22 |
|
|
|
23 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
24 |
|
|
;; Functional units.
|
25 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
26 |
|
|
|
27 |
|
|
;; The integer (ALU) pipeline. There are five DPU pipeline
|
28 |
|
|
;; stages. However the decode/issue stages operate the same for all
|
29 |
|
|
;; instructions, so do not model them. We only need to model the
|
30 |
|
|
;; first execute stage because instructions always advance one stage
|
31 |
|
|
;; per cycle in order. Only branch instructions may dual-issue, so a
|
32 |
|
|
;; single unit covers all of the LS, ALU, MAC and FPU pipelines.
|
33 |
|
|
|
34 |
|
|
(define_cpu_unit "cortex_a5_ex1" "cortex_a5")
|
35 |
|
|
|
36 |
|
|
;; The branch pipeline. Branches can dual-issue with other instructions
|
37 |
|
|
;; (except when those instructions take multiple cycles to issue).
|
38 |
|
|
|
39 |
|
|
(define_cpu_unit "cortex_a5_branch" "cortex_a5")
|
40 |
|
|
|
41 |
|
|
;; Pseudo-unit for blocking the multiply pipeline when a double-precision
|
42 |
|
|
;; multiply is in progress.
|
43 |
|
|
|
44 |
|
|
(define_cpu_unit "cortex_a5_fpmul_pipe" "cortex_a5")
|
45 |
|
|
|
46 |
|
|
;; The floating-point add pipeline (ex1/f1 stage), used to model the usage
|
47 |
|
|
;; of the add pipeline by fmac instructions, etc.
|
48 |
|
|
|
49 |
|
|
(define_cpu_unit "cortex_a5_fpadd_pipe" "cortex_a5")
|
50 |
|
|
|
51 |
|
|
;; Floating-point div/sqrt (long latency, out-of-order completion).
|
52 |
|
|
|
53 |
|
|
(define_cpu_unit "cortex_a5_fp_div_sqrt" "cortex_a5")
|
54 |
|
|
|
55 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
56 |
|
|
;; ALU instructions.
|
57 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
58 |
|
|
|
59 |
|
|
(define_insn_reservation "cortex_a5_alu" 2
|
60 |
|
|
(and (eq_attr "tune" "cortexa5")
|
61 |
|
|
(eq_attr "type" "alu"))
|
62 |
|
|
"cortex_a5_ex1")
|
63 |
|
|
|
64 |
|
|
(define_insn_reservation "cortex_a5_alu_shift" 2
|
65 |
|
|
(and (eq_attr "tune" "cortexa5")
|
66 |
|
|
(eq_attr "type" "alu_shift,alu_shift_reg"))
|
67 |
|
|
"cortex_a5_ex1")
|
68 |
|
|
|
69 |
|
|
;; Forwarding path for unshifted operands.
|
70 |
|
|
|
71 |
|
|
(define_bypass 1 "cortex_a5_alu,cortex_a5_alu_shift"
|
72 |
|
|
"cortex_a5_alu")
|
73 |
|
|
|
74 |
|
|
(define_bypass 1 "cortex_a5_alu,cortex_a5_alu_shift"
|
75 |
|
|
"cortex_a5_alu_shift"
|
76 |
|
|
"arm_no_early_alu_shift_dep")
|
77 |
|
|
|
78 |
|
|
;; The multiplier pipeline can forward results from wr stage only so
|
79 |
|
|
;; there's no need to specify bypasses).
|
80 |
|
|
|
81 |
|
|
(define_insn_reservation "cortex_a5_mul" 2
|
82 |
|
|
(and (eq_attr "tune" "cortexa5")
|
83 |
|
|
(eq_attr "type" "mult"))
|
84 |
|
|
"cortex_a5_ex1")
|
85 |
|
|
|
86 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
87 |
|
|
;; Load/store instructions.
|
88 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
89 |
|
|
|
90 |
|
|
;; Address-generation happens in the issue stage, which is one stage behind
|
91 |
|
|
;; the ex1 stage (the first stage we care about for scheduling purposes). The
|
92 |
|
|
;; dc1 stage is parallel with ex1, dc2 with ex2 and rot with wr.
|
93 |
|
|
|
94 |
|
|
(define_insn_reservation "cortex_a5_load1" 2
|
95 |
|
|
(and (eq_attr "tune" "cortexa5")
|
96 |
|
|
(eq_attr "type" "load_byte,load1"))
|
97 |
|
|
"cortex_a5_ex1")
|
98 |
|
|
|
99 |
|
|
(define_insn_reservation "cortex_a5_store1" 0
|
100 |
|
|
(and (eq_attr "tune" "cortexa5")
|
101 |
|
|
(eq_attr "type" "store1"))
|
102 |
|
|
"cortex_a5_ex1")
|
103 |
|
|
|
104 |
|
|
(define_insn_reservation "cortex_a5_load2" 3
|
105 |
|
|
(and (eq_attr "tune" "cortexa5")
|
106 |
|
|
(eq_attr "type" "load2"))
|
107 |
|
|
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
|
108 |
|
|
|
109 |
|
|
(define_insn_reservation "cortex_a5_store2" 0
|
110 |
|
|
(and (eq_attr "tune" "cortexa5")
|
111 |
|
|
(eq_attr "type" "store2"))
|
112 |
|
|
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
|
113 |
|
|
|
114 |
|
|
(define_insn_reservation "cortex_a5_load3" 4
|
115 |
|
|
(and (eq_attr "tune" "cortexa5")
|
116 |
|
|
(eq_attr "type" "load3"))
|
117 |
|
|
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
|
118 |
|
|
cortex_a5_ex1")
|
119 |
|
|
|
120 |
|
|
(define_insn_reservation "cortex_a5_store3" 0
|
121 |
|
|
(and (eq_attr "tune" "cortexa5")
|
122 |
|
|
(eq_attr "type" "store3"))
|
123 |
|
|
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
|
124 |
|
|
cortex_a5_ex1")
|
125 |
|
|
|
126 |
|
|
(define_insn_reservation "cortex_a5_load4" 5
|
127 |
|
|
(and (eq_attr "tune" "cortexa5")
|
128 |
|
|
(eq_attr "type" "load3"))
|
129 |
|
|
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
|
130 |
|
|
cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
|
131 |
|
|
|
132 |
|
|
(define_insn_reservation "cortex_a5_store4" 0
|
133 |
|
|
(and (eq_attr "tune" "cortexa5")
|
134 |
|
|
(eq_attr "type" "store3"))
|
135 |
|
|
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
|
136 |
|
|
cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
|
137 |
|
|
|
138 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
139 |
|
|
;; Branches.
|
140 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
141 |
|
|
|
142 |
|
|
;; Direct branches are the only instructions we can dual-issue (also IT and
|
143 |
|
|
;; nop, but those aren't very interesting for scheduling). (The latency here
|
144 |
|
|
;; is meant to represent when the branch actually takes place, but may not be
|
145 |
|
|
;; entirely correct.)
|
146 |
|
|
|
147 |
|
|
(define_insn_reservation "cortex_a5_branch" 3
|
148 |
|
|
(and (eq_attr "tune" "cortexa5")
|
149 |
|
|
(eq_attr "type" "branch,call"))
|
150 |
|
|
"cortex_a5_branch")
|
151 |
|
|
|
152 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
153 |
|
|
;; Floating-point arithmetic.
|
154 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
155 |
|
|
|
156 |
|
|
(define_insn_reservation "cortex_a5_fpalu" 4
|
157 |
|
|
(and (eq_attr "tune" "cortexa5")
|
158 |
|
|
(eq_attr "type" "ffariths, fadds, ffarithd, faddd, fcpys, fmuls, f_cvt,\
|
159 |
|
|
fcmps, fcmpd"))
|
160 |
|
|
"cortex_a5_ex1+cortex_a5_fpadd_pipe")
|
161 |
|
|
|
162 |
|
|
;; For fconsts and fconstd, 8-bit immediate data is passed directly from
|
163 |
|
|
;; f1 to f3 (which I think reduces the latency by one cycle).
|
164 |
|
|
|
165 |
|
|
(define_insn_reservation "cortex_a5_fconst" 3
|
166 |
|
|
(and (eq_attr "tune" "cortexa5")
|
167 |
|
|
(eq_attr "type" "fconsts,fconstd"))
|
168 |
|
|
"cortex_a5_ex1+cortex_a5_fpadd_pipe")
|
169 |
|
|
|
170 |
|
|
;; We should try not to attempt to issue a single-precision multiplication in
|
171 |
|
|
;; the middle of a double-precision multiplication operation (the usage of
|
172 |
|
|
;; cortex_a5_fpmul_pipe).
|
173 |
|
|
|
174 |
|
|
(define_insn_reservation "cortex_a5_fpmuls" 4
|
175 |
|
|
(and (eq_attr "tune" "cortexa5")
|
176 |
|
|
(eq_attr "type" "fmuls"))
|
177 |
|
|
"cortex_a5_ex1+cortex_a5_fpmul_pipe")
|
178 |
|
|
|
179 |
|
|
;; For single-precision multiply-accumulate, the add (accumulate) is issued
|
180 |
|
|
;; whilst the multiply is in F4. The multiply result can then be forwarded
|
181 |
|
|
;; from F5 to F1. The issue unit is only used once (when we first start
|
182 |
|
|
;; processing the instruction), but the usage of the FP add pipeline could
|
183 |
|
|
;; block other instructions attempting to use it simultaneously. We try to
|
184 |
|
|
;; avoid that using cortex_a5_fpadd_pipe.
|
185 |
|
|
|
186 |
|
|
(define_insn_reservation "cortex_a5_fpmacs" 8
|
187 |
|
|
(and (eq_attr "tune" "cortexa5")
|
188 |
|
|
(eq_attr "type" "fmacs"))
|
189 |
|
|
"cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe")
|
190 |
|
|
|
191 |
|
|
;; Non-multiply instructions can issue in the middle two instructions of a
|
192 |
|
|
;; double-precision multiply. Note that it isn't entirely clear when a branch
|
193 |
|
|
;; can dual-issue when a multi-cycle multiplication is in progress; we ignore
|
194 |
|
|
;; that for now though.
|
195 |
|
|
|
196 |
|
|
(define_insn_reservation "cortex_a5_fpmuld" 7
|
197 |
|
|
(and (eq_attr "tune" "cortexa5")
|
198 |
|
|
(eq_attr "type" "fmuld"))
|
199 |
|
|
"cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,\
|
200 |
|
|
cortex_a5_ex1+cortex_a5_fpmul_pipe")
|
201 |
|
|
|
202 |
|
|
(define_insn_reservation "cortex_a5_fpmacd" 11
|
203 |
|
|
(and (eq_attr "tune" "cortexa5")
|
204 |
|
|
(eq_attr "type" "fmacd"))
|
205 |
|
|
"cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,\
|
206 |
|
|
cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe")
|
207 |
|
|
|
208 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
209 |
|
|
;; Floating-point divide/square root instructions.
|
210 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
211 |
|
|
|
212 |
|
|
;; ??? Not sure if the 14 cycles taken for single-precision divide to complete
|
213 |
|
|
;; includes the time taken for the special instruction used to collect the
|
214 |
|
|
;; result to travel down the multiply pipeline, or not. Assuming so. (If
|
215 |
|
|
;; that's wrong, the latency should be increased by a few cycles.)
|
216 |
|
|
|
217 |
|
|
;; fsqrt takes one cycle less, but that is not modelled, nor is the use of the
|
218 |
|
|
;; multiply pipeline to collect the divide/square-root result.
|
219 |
|
|
|
220 |
|
|
(define_insn_reservation "cortex_a5_fdivs" 14
|
221 |
|
|
(and (eq_attr "tune" "cortexa5")
|
222 |
|
|
(eq_attr "type" "fdivs"))
|
223 |
|
|
"cortex_a5_ex1, cortex_a5_fp_div_sqrt * 13")
|
224 |
|
|
|
225 |
|
|
;; ??? Similarly for fdivd.
|
226 |
|
|
|
227 |
|
|
(define_insn_reservation "cortex_a5_fdivd" 29
|
228 |
|
|
(and (eq_attr "tune" "cortexa5")
|
229 |
|
|
(eq_attr "type" "fdivd"))
|
230 |
|
|
"cortex_a5_ex1, cortex_a5_fp_div_sqrt * 28")
|
231 |
|
|
|
232 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
233 |
|
|
;; VFP to/from core transfers.
|
234 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
235 |
|
|
|
236 |
|
|
;; FP loads take data from wr/rot/f3.
|
237 |
|
|
|
238 |
|
|
;; Core-to-VFP transfers use the multiply pipeline.
|
239 |
|
|
|
240 |
|
|
(define_insn_reservation "cortex_a5_r2f" 4
|
241 |
|
|
(and (eq_attr "tune" "cortexa5")
|
242 |
|
|
(eq_attr "type" "r_2_f"))
|
243 |
|
|
"cortex_a5_ex1")
|
244 |
|
|
|
245 |
|
|
(define_insn_reservation "cortex_a5_f2r" 2
|
246 |
|
|
(and (eq_attr "tune" "cortexa5")
|
247 |
|
|
(eq_attr "type" "f_2_r"))
|
248 |
|
|
"cortex_a5_ex1")
|
249 |
|
|
|
250 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
251 |
|
|
;; VFP flag transfer.
|
252 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
253 |
|
|
|
254 |
|
|
;; ??? The flag forwarding from fmstat to the ex2 stage of the second
|
255 |
|
|
;; instruction is not modeled at present.
|
256 |
|
|
|
257 |
|
|
(define_insn_reservation "cortex_a5_f_flags" 4
|
258 |
|
|
(and (eq_attr "tune" "cortexa5")
|
259 |
|
|
(eq_attr "type" "f_flag"))
|
260 |
|
|
"cortex_a5_ex1")
|
261 |
|
|
|
262 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
263 |
|
|
;; VFP load/store.
|
264 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
265 |
|
|
|
266 |
|
|
(define_insn_reservation "cortex_a5_f_loads" 4
|
267 |
|
|
(and (eq_attr "tune" "cortexa5")
|
268 |
|
|
(eq_attr "type" "f_loads"))
|
269 |
|
|
"cortex_a5_ex1")
|
270 |
|
|
|
271 |
|
|
(define_insn_reservation "cortex_a5_f_loadd" 5
|
272 |
|
|
(and (eq_attr "tune" "cortexa5")
|
273 |
|
|
(eq_attr "type" "f_loadd"))
|
274 |
|
|
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
|
275 |
|
|
|
276 |
|
|
(define_insn_reservation "cortex_a5_f_stores" 0
|
277 |
|
|
(and (eq_attr "tune" "cortexa5")
|
278 |
|
|
(eq_attr "type" "f_stores"))
|
279 |
|
|
"cortex_a5_ex1")
|
280 |
|
|
|
281 |
|
|
(define_insn_reservation "cortex_a5_f_stored" 0
|
282 |
|
|
(and (eq_attr "tune" "cortexa5")
|
283 |
|
|
(eq_attr "type" "f_stored"))
|
284 |
|
|
"cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
|
285 |
|
|
|
286 |
|
|
;; Load-to-use for floating-point values has a penalty of one cycle,
|
287 |
|
|
;; i.e. a latency of two.
|
288 |
|
|
|
289 |
|
|
(define_bypass 2 "cortex_a5_f_loads"
|
290 |
|
|
"cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,\
|
291 |
|
|
cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,\
|
292 |
|
|
cortex_a5_f2r")
|
293 |
|
|
|
294 |
|
|
(define_bypass 3 "cortex_a5_f_loadd"
|
295 |
|
|
"cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,\
|
296 |
|
|
cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,\
|
297 |
|
|
cortex_a5_f2r")
|