OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [arm/] [cortex-a9.md] - Blame information for rev 750

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
;; ARM Cortex-A9 pipeline description
2
;; Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
3
;; Originally written by CodeSourcery for VFP.
4
;;
5
;; Rewritten by Ramana Radhakrishnan 
6
;; Integer Pipeline description contributed by ARM Ltd.
7
;; VFP Pipeline description rewritten and contributed by ARM Ltd.
8
 
9
;; This file is part of GCC.
10
;;
11
;; GCC is free software; you can redistribute it and/or modify it
12
;; under the terms of the GNU General Public License as published by
13
;; the Free Software Foundation; either version 3, or (at your option)
14
;; any later version.
15
;;
16
;; GCC is distributed in the hope that it will be useful, but
17
;; WITHOUT ANY WARRANTY; without even the implied warranty of
18
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
;; General Public License for more details.
20
;;
21
;; You should have received a copy of the GNU General Public License
22
;; along with GCC; see the file COPYING3.  If not see
23
;; .
24
 
25
(define_automaton "cortex_a9")
26
 
27
;; The Cortex-A9 core is modelled as a dual issue pipeline that has
28
;; the following components.
29
;; 1. 1 Load Store Pipeline.
30
;; 2. P0 / main pipeline for data processing instructions.
31
;; 3. P1 / Dual pipeline for Data processing instructions.
32
;; 4. MAC pipeline for multiply as well as multiply
33
;;    and accumulate instructions.
34
;; 5. 1 VFP and an optional Neon unit.
35
;; The Load/Store, VFP and Neon issue pipeline are multiplexed.
36
;; The P0 / main pipeline and M1 stage of the MAC pipeline are
37
;;   multiplexed.
38
;; The P1 / dual pipeline and M2 stage of the MAC pipeline are
39
;;   multiplexed.
40
;; There are only 4 integer register read ports and hence at any point of
41
;; time we can't have issue down the E1 and the E2 ports unless
42
;; of course there are bypass paths that get exercised.
43
;; Both P0 and P1 have 2 stages E1 and E2.
44
;; Data processing instructions issue to E1 or E2 depending on
45
;; whether they have an early shift or not.
46
 
47
(define_cpu_unit "ca9_issue_vfp_neon, cortex_a9_ls" "cortex_a9")
48
(define_cpu_unit "cortex_a9_p0_e1, cortex_a9_p0_e2" "cortex_a9")
49
(define_cpu_unit "cortex_a9_p1_e1, cortex_a9_p1_e2" "cortex_a9")
50
(define_cpu_unit "cortex_a9_p0_wb, cortex_a9_p1_wb" "cortex_a9")
51
(define_cpu_unit "cortex_a9_mac_m1, cortex_a9_mac_m2" "cortex_a9")
52
(define_cpu_unit "cortex_a9_branch, cortex_a9_issue_branch" "cortex_a9")
53
 
54
(define_reservation "cortex_a9_p0_default" "cortex_a9_p0_e2, cortex_a9_p0_wb")
55
(define_reservation "cortex_a9_p1_default" "cortex_a9_p1_e2, cortex_a9_p1_wb")
56
(define_reservation "cortex_a9_p0_shift" "cortex_a9_p0_e1, cortex_a9_p0_default")
57
(define_reservation "cortex_a9_p1_shift" "cortex_a9_p1_e1, cortex_a9_p1_default")
58
 
59
(define_reservation "cortex_a9_multcycle1"
60
  "cortex_a9_p0_e2 + cortex_a9_mac_m1 + cortex_a9_mac_m2 + \
61
cortex_a9_p1_e2 + cortex_a9_p0_e1 + cortex_a9_p1_e1")
62
 
63
(define_reservation "cortex_a9_mult16"
64
  "cortex_a9_mac_m1, cortex_a9_mac_m2, cortex_a9_p0_wb")
65
(define_reservation "cortex_a9_mac16"
66
  "cortex_a9_multcycle1, cortex_a9_mac_m2, cortex_a9_p0_wb")
67
(define_reservation "cortex_a9_mult"
68
  "cortex_a9_mac_m1*2, cortex_a9_mac_m2, cortex_a9_p0_wb")
69
(define_reservation "cortex_a9_mac"
70
  "cortex_a9_multcycle1*2 ,cortex_a9_mac_m2, cortex_a9_p0_wb")
71
(define_reservation "cortex_a9_mult_long"
72
  "cortex_a9_mac_m1*3, cortex_a9_mac_m2, cortex_a9_p0_wb")
73
 
74
;; Issue at the same time along the load store pipeline and
75
;; the VFP / Neon pipeline is not possible.
76
(exclusion_set "cortex_a9_ls" "ca9_issue_vfp_neon")
77
 
78
;; Default data processing instruction without any shift
79
;; The only exception to this is the mov instruction
80
;; which can go down E2 without any problem.
81
(define_insn_reservation "cortex_a9_dp" 2
82
  (and (eq_attr "tune" "cortexa9")
83
         (ior (and (eq_attr "type" "alu")
84
                        (eq_attr "neon_type" "none"))
85
              (and (and (eq_attr "type" "alu_shift_reg, alu_shift")
86
                        (eq_attr "insn" "mov"))
87
                 (eq_attr "neon_type" "none"))))
88
  "cortex_a9_p0_default|cortex_a9_p1_default")
89
 
90
;; An instruction using the shifter will go down E1.
91
(define_insn_reservation "cortex_a9_dp_shift" 3
92
   (and (eq_attr "tune" "cortexa9")
93
        (and (eq_attr "type" "alu_shift_reg, alu_shift")
94
             (not (eq_attr "insn" "mov"))))
95
   "cortex_a9_p0_shift | cortex_a9_p1_shift")
96
 
97
;; Loads have a latency of 4 cycles.
98
;; We don't model autoincrement instructions. These
99
;; instructions use the load store pipeline and 1 of
100
;; the E2 units to write back the result of the increment.
101
 
102
(define_insn_reservation "cortex_a9_load1_2" 4
103
  (and (eq_attr "tune" "cortexa9")
104
       (eq_attr "type" "load1, load2, load_byte, f_loads, f_loadd"))
105
  "cortex_a9_ls")
106
 
107
;; Loads multiples and store multiples can't be issued for 2 cycles in a
108
;; row. The description below assumes that addresses are 64 bit aligned.
109
;; If not, there is an extra cycle latency which is not modelled.
110
 
111
(define_insn_reservation "cortex_a9_load3_4" 5
112
  (and (eq_attr "tune" "cortexa9")
113
       (eq_attr "type" "load3, load4"))
114
  "cortex_a9_ls, cortex_a9_ls")
115
 
116
(define_insn_reservation "cortex_a9_store1_2" 0
117
  (and (eq_attr "tune" "cortexa9")
118
       (eq_attr "type" "store1, store2, f_stores, f_stored"))
119
  "cortex_a9_ls")
120
 
121
;; Almost all our store multiples use an auto-increment
122
;; form. Don't issue back to back load and store multiples
123
;; because the load store unit will stall.
124
 
125
(define_insn_reservation "cortex_a9_store3_4" 0
126
  (and (eq_attr "tune" "cortexa9")
127
       (eq_attr "type" "store3, store4"))
128
  "cortex_a9_ls+(cortex_a9_p0_default | cortex_a9_p1_default), cortex_a9_ls")
129
 
130
;; We get 16*16 multiply / mac results in 3 cycles.
131
(define_insn_reservation "cortex_a9_mult16" 3
132
  (and (eq_attr "tune" "cortexa9")
133
       (eq_attr "insn" "smulxy"))
134
       "cortex_a9_mult16")
135
 
136
;; The 16*16 mac is slightly different that it
137
;; reserves M1 and M2 in the same cycle.
138
(define_insn_reservation "cortex_a9_mac16" 3
139
  (and (eq_attr "tune" "cortexa9")
140
       (eq_attr "insn" "smlaxy"))
141
  "cortex_a9_mac16")
142
 
143
(define_insn_reservation "cortex_a9_multiply" 4
144
  (and (eq_attr "tune" "cortexa9")
145
       (eq_attr "insn" "mul,smmul,smmulr"))
146
       "cortex_a9_mult")
147
 
148
(define_insn_reservation "cortex_a9_mac" 4
149
  (and (eq_attr "tune" "cortexa9")
150
       (eq_attr "insn" "mla,smmla"))
151
       "cortex_a9_mac")
152
 
153
(define_insn_reservation "cortex_a9_multiply_long" 5
154
  (and (eq_attr "tune" "cortexa9")
155
       (eq_attr "insn" "smull,umull,smulls,umulls,smlal,smlals,umlal,umlals"))
156
       "cortex_a9_mult_long")
157
 
158
;; An instruction with a result in E2 can be forwarded
159
;; to E2 or E1 or M1 or the load store unit in the next cycle.
160
 
161
(define_bypass 1 "cortex_a9_dp"
162
                 "cortex_a9_dp_shift, cortex_a9_multiply,
163
 cortex_a9_load1_2, cortex_a9_dp, cortex_a9_store1_2,
164
 cortex_a9_mult16, cortex_a9_mac16, cortex_a9_mac, cortex_a9_store3_4, cortex_a9_load3_4,
165
 cortex_a9_multiply_long")
166
 
167
(define_bypass 2 "cortex_a9_dp_shift"
168
                 "cortex_a9_dp_shift, cortex_a9_multiply,
169
 cortex_a9_load1_2, cortex_a9_dp, cortex_a9_store1_2,
170
 cortex_a9_mult16, cortex_a9_mac16, cortex_a9_mac, cortex_a9_store3_4, cortex_a9_load3_4,
171
 cortex_a9_multiply_long")
172
 
173
;; An instruction in the load store pipeline can provide
174
;; read access to a DP instruction in the P0 default pipeline
175
;; before the writeback stage.
176
 
177
(define_bypass 3 "cortex_a9_load1_2" "cortex_a9_dp, cortex_a9_load1_2,
178
cortex_a9_store3_4, cortex_a9_store1_2")
179
 
180
(define_bypass 4 "cortex_a9_load3_4" "cortex_a9_dp, cortex_a9_load1_2,
181
cortex_a9_store3_4, cortex_a9_store1_2,  cortex_a9_load3_4")
182
 
183
;; Calls and branches.
184
 
185
;; Branch instructions
186
 
187
(define_insn_reservation "cortex_a9_branch" 0
188
  (and (eq_attr "tune" "cortexa9")
189
       (eq_attr "type" "branch"))
190
  "cortex_a9_branch")
191
 
192
;; Call latencies are essentially 0 but make sure
193
;; dual issue doesn't happen i.e the next instruction
194
;; starts at the next cycle.
195
(define_insn_reservation "cortex_a9_call"  0
196
  (and (eq_attr "tune" "cortexa9")
197
       (eq_attr "type" "call"))
198
  "cortex_a9_issue_branch + cortex_a9_multcycle1 + cortex_a9_ls + ca9_issue_vfp_neon")
199
 
200
 
201
;; Pipelining for VFP instructions.
202
;; Issue happens either along load store unit or the VFP / Neon unit.
203
;; Pipeline   Instruction Classification.
204
;; FPS - fcpys, ffariths, ffarithd,r_2_f,f_2_r
205
;; FP_ADD   - fadds, faddd, fcmps (1)
206
;; FPMUL   - fmul{s,d}, fmac{s,d}
207
;; FPDIV - fdiv{s,d}
208
(define_cpu_unit "ca9fps" "cortex_a9")
209
(define_cpu_unit "ca9fp_add1, ca9fp_add2, ca9fp_add3, ca9fp_add4" "cortex_a9")
210
(define_cpu_unit "ca9fp_mul1, ca9fp_mul2 , ca9fp_mul3, ca9fp_mul4" "cortex_a9")
211
(define_cpu_unit "ca9fp_ds1" "cortex_a9")
212
 
213
 
214
;; fmrs, fmrrd, fmstat and fmrx - The data is available after 1 cycle.
215
(define_insn_reservation "cortex_a9_fps" 2
216
 (and (eq_attr "tune" "cortexa9")
217
      (eq_attr "type" "fcpys, fconsts, fconstd, ffariths, ffarithd, r_2_f, f_2_r, f_flag"))
218
 "ca9_issue_vfp_neon + ca9fps")
219
 
220
(define_bypass 1
221
  "cortex_a9_fps"
222
  "cortex_a9_fadd, cortex_a9_fps, cortex_a9_fcmp, cortex_a9_dp, cortex_a9_dp_shift, cortex_a9_multiply, cortex_a9_multiply_long")
223
 
224
;; Scheduling on the FP_ADD pipeline.
225
(define_reservation "ca9fp_add" "ca9_issue_vfp_neon + ca9fp_add1, ca9fp_add2, ca9fp_add3, ca9fp_add4")
226
 
227
(define_insn_reservation "cortex_a9_fadd" 4
228
  (and (eq_attr "tune" "cortexa9")
229
       (eq_attr "type" "fadds, faddd, f_cvt"))
230
  "ca9fp_add")
231
 
232
(define_insn_reservation "cortex_a9_fcmp" 1
233
  (and (eq_attr "tune" "cortexa9")
234
      (eq_attr "type" "fcmps, fcmpd"))
235
 "ca9_issue_vfp_neon + ca9fp_add1")
236
 
237
;; Scheduling for the Multiply and MAC instructions.
238
(define_reservation "ca9fmuls"
239
  "ca9fp_mul1 + ca9_issue_vfp_neon, ca9fp_mul2, ca9fp_mul3, ca9fp_mul4")
240
 
241
(define_reservation "ca9fmuld"
242
  "ca9fp_mul1 + ca9_issue_vfp_neon, (ca9fp_mul1 + ca9fp_mul2), ca9fp_mul2, ca9fp_mul3, ca9fp_mul4")
243
 
244
(define_insn_reservation "cortex_a9_fmuls" 4
245
  (and (eq_attr "tune" "cortexa9")
246
       (eq_attr "type" "fmuls"))
247
  "ca9fmuls")
248
 
249
(define_insn_reservation "cortex_a9_fmuld" 5
250
  (and (eq_attr "tune" "cortexa9")
251
       (eq_attr "type" "fmuld"))
252
  "ca9fmuld")
253
 
254
(define_insn_reservation "cortex_a9_fmacs" 8
255
  (and (eq_attr "tune" "cortexa9")
256
       (eq_attr "type" "fmacs"))
257
  "ca9fmuls, ca9fp_add")
258
 
259
(define_insn_reservation "cortex_a9_fmacd" 9
260
  (and (eq_attr "tune" "cortexa9")
261
       (eq_attr "type" "fmacd"))
262
  "ca9fmuld, ca9fp_add")
263
 
264
;; Division pipeline description.
265
(define_insn_reservation "cortex_a9_fdivs" 15
266
  (and (eq_attr "tune" "cortexa9")
267
       (eq_attr "type" "fdivs"))
268
  "ca9fp_ds1 + ca9_issue_vfp_neon, nothing*14")
269
 
270
(define_insn_reservation "cortex_a9_fdivd" 25
271
  (and (eq_attr "tune" "cortexa9")
272
       (eq_attr "type" "fdivd"))
273
  "ca9fp_ds1 + ca9_issue_vfp_neon, nothing*24")
274
 
275
;; Include Neon pipeline description
276
(include "cortex-a9-neon.md")

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.