| 1 |
709 |
jeremybenn |
;; ARM Cortex-R4 scheduling description.
|
| 2 |
|
|
;; Copyright (C) 2007, 2008 Free Software Foundation, Inc.
|
| 3 |
|
|
;; Contributed by CodeSourcery.
|
| 4 |
|
|
|
| 5 |
|
|
;; This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
;; GCC is free software; you can redistribute it and/or modify it
|
| 8 |
|
|
;; under the terms of the GNU General Public License as published
|
| 9 |
|
|
;; by the Free Software Foundation; either version 3, or (at your
|
| 10 |
|
|
;; option) any later version.
|
| 11 |
|
|
|
| 12 |
|
|
;; GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 13 |
|
|
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| 14 |
|
|
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
| 15 |
|
|
;; License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
;; You should have received a copy of the GNU General Public License
|
| 18 |
|
|
;; along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
;; .
|
| 20 |
|
|
|
| 21 |
|
|
(define_automaton "cortex_r4")
|
| 22 |
|
|
|
| 23 |
|
|
;; We approximate the dual-issue constraints of this core using four
|
| 24 |
|
|
;; "issue units" and a reservation matrix as follows. The numbers indicate
|
| 25 |
|
|
;; the instruction groups' preferences in order. Multiple entries for
|
| 26 |
|
|
;; the same numbered preference indicate units that must be reserved
|
| 27 |
|
|
;; together.
|
| 28 |
|
|
;;
|
| 29 |
|
|
;; Issue unit: A B C ALU
|
| 30 |
|
|
;;
|
| 31 |
|
|
;; ALU w/o reg shift 1st 2nd 1st and 2nd
|
| 32 |
|
|
;; ALU w/ reg shift 1st 2nd 2nd 1st and 2nd
|
| 33 |
|
|
;; Moves 1st 2nd 2nd
|
| 34 |
|
|
;; Multiplication 1st 1st
|
| 35 |
|
|
;; Division 1st 1st
|
| 36 |
|
|
;; Load/store single 1st 1st
|
| 37 |
|
|
;; Other load/store 1st 1st
|
| 38 |
|
|
;; Branches 1st
|
| 39 |
|
|
|
| 40 |
|
|
(define_cpu_unit "cortex_r4_issue_a" "cortex_r4")
|
| 41 |
|
|
(define_cpu_unit "cortex_r4_issue_b" "cortex_r4")
|
| 42 |
|
|
(define_cpu_unit "cortex_r4_issue_c" "cortex_r4")
|
| 43 |
|
|
(define_cpu_unit "cortex_r4_issue_alu" "cortex_r4")
|
| 44 |
|
|
|
| 45 |
|
|
(define_reservation "cortex_r4_alu"
|
| 46 |
|
|
"(cortex_r4_issue_a+cortex_r4_issue_alu)|\
|
| 47 |
|
|
(cortex_r4_issue_b+cortex_r4_issue_alu)")
|
| 48 |
|
|
(define_reservation "cortex_r4_alu_shift_reg"
|
| 49 |
|
|
"(cortex_r4_issue_a+cortex_r4_issue_alu)|\
|
| 50 |
|
|
(cortex_r4_issue_b+cortex_r4_issue_c+\
|
| 51 |
|
|
cortex_r4_issue_alu)")
|
| 52 |
|
|
(define_reservation "cortex_r4_mov"
|
| 53 |
|
|
"cortex_r4_issue_a|(cortex_r4_issue_b+\
|
| 54 |
|
|
cortex_r4_issue_alu)")
|
| 55 |
|
|
(define_reservation "cortex_r4_mul" "cortex_r4_issue_a+cortex_r4_issue_alu")
|
| 56 |
|
|
(define_reservation "cortex_r4_mul_2"
|
| 57 |
|
|
"(cortex_r4_issue_a+cortex_r4_issue_alu)*2")
|
| 58 |
|
|
;; Division instructions execute out-of-order with respect to the
|
| 59 |
|
|
;; rest of the pipeline and only require reservations on their first and
|
| 60 |
|
|
;; final cycles.
|
| 61 |
|
|
(define_reservation "cortex_r4_div_9"
|
| 62 |
|
|
"cortex_r4_issue_a+cortex_r4_issue_alu,\
|
| 63 |
|
|
nothing*7,\
|
| 64 |
|
|
cortex_r4_issue_a+cortex_r4_issue_alu")
|
| 65 |
|
|
(define_reservation "cortex_r4_div_10"
|
| 66 |
|
|
"cortex_r4_issue_a+cortex_r4_issue_alu,\
|
| 67 |
|
|
nothing*8,\
|
| 68 |
|
|
cortex_r4_issue_a+cortex_r4_issue_alu")
|
| 69 |
|
|
(define_reservation "cortex_r4_load_store"
|
| 70 |
|
|
"cortex_r4_issue_a+cortex_r4_issue_c")
|
| 71 |
|
|
(define_reservation "cortex_r4_load_store_2"
|
| 72 |
|
|
"(cortex_r4_issue_a+cortex_r4_issue_b)*2")
|
| 73 |
|
|
(define_reservation "cortex_r4_branch" "cortex_r4_issue_b")
|
| 74 |
|
|
|
| 75 |
|
|
;; We assume that all instructions are unconditional.
|
| 76 |
|
|
|
| 77 |
|
|
;; Data processing instructions. Moves without shifts are kept separate
|
| 78 |
|
|
;; for the purposes of the dual-issue constraints above.
|
| 79 |
|
|
(define_insn_reservation "cortex_r4_alu" 2
|
| 80 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 81 |
|
|
(and (eq_attr "type" "alu")
|
| 82 |
|
|
(not (eq_attr "insn" "mov"))))
|
| 83 |
|
|
"cortex_r4_alu")
|
| 84 |
|
|
|
| 85 |
|
|
(define_insn_reservation "cortex_r4_mov" 2
|
| 86 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 87 |
|
|
(and (eq_attr "type" "alu")
|
| 88 |
|
|
(eq_attr "insn" "mov")))
|
| 89 |
|
|
"cortex_r4_mov")
|
| 90 |
|
|
|
| 91 |
|
|
(define_insn_reservation "cortex_r4_alu_shift" 2
|
| 92 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 93 |
|
|
(eq_attr "type" "alu_shift"))
|
| 94 |
|
|
"cortex_r4_alu")
|
| 95 |
|
|
|
| 96 |
|
|
(define_insn_reservation "cortex_r4_alu_shift_reg" 2
|
| 97 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 98 |
|
|
(eq_attr "type" "alu_shift_reg"))
|
| 99 |
|
|
"cortex_r4_alu_shift_reg")
|
| 100 |
|
|
|
| 101 |
|
|
;; An ALU instruction followed by an ALU instruction with no early dep.
|
| 102 |
|
|
(define_bypass 1 "cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,\
|
| 103 |
|
|
cortex_r4_mov"
|
| 104 |
|
|
"cortex_r4_alu")
|
| 105 |
|
|
(define_bypass 1 "cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,\
|
| 106 |
|
|
cortex_r4_mov"
|
| 107 |
|
|
"cortex_r4_alu_shift"
|
| 108 |
|
|
"arm_no_early_alu_shift_dep")
|
| 109 |
|
|
(define_bypass 1 "cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,\
|
| 110 |
|
|
cortex_r4_mov"
|
| 111 |
|
|
"cortex_r4_alu_shift_reg"
|
| 112 |
|
|
"arm_no_early_alu_shift_value_dep")
|
| 113 |
|
|
|
| 114 |
|
|
;; In terms of availabilities, a consumer mov could theoretically be
|
| 115 |
|
|
;; issued together with a producer ALU instruction, without stalls.
|
| 116 |
|
|
;; In practice this cannot happen because mov;add (in that order) is not
|
| 117 |
|
|
;; eligible for dual issue and furthermore dual issue is not permitted
|
| 118 |
|
|
;; when a dependency is involved. We therefore note it as latency one.
|
| 119 |
|
|
;; A mov followed by another of the same is also latency one.
|
| 120 |
|
|
(define_bypass 1 "cortex_r4_alu,cortex_r4_alu_shift,cortex_r4_alu_shift_reg,\
|
| 121 |
|
|
cortex_r4_mov"
|
| 122 |
|
|
"cortex_r4_mov")
|
| 123 |
|
|
|
| 124 |
|
|
;; qadd, qdadd, qsub and qdsub are not currently emitted, and neither are
|
| 125 |
|
|
;; media data processing instructions nor sad instructions.
|
| 126 |
|
|
|
| 127 |
|
|
;; Multiplication instructions.
|
| 128 |
|
|
|
| 129 |
|
|
(define_insn_reservation "cortex_r4_mul_4" 4
|
| 130 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 131 |
|
|
(eq_attr "insn" "mul,smmul"))
|
| 132 |
|
|
"cortex_r4_mul_2")
|
| 133 |
|
|
|
| 134 |
|
|
(define_insn_reservation "cortex_r4_mul_3" 3
|
| 135 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 136 |
|
|
(eq_attr "insn" "smulxy,smulwy,smuad,smusd"))
|
| 137 |
|
|
"cortex_r4_mul")
|
| 138 |
|
|
|
| 139 |
|
|
(define_insn_reservation "cortex_r4_mla_4" 4
|
| 140 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 141 |
|
|
(eq_attr "insn" "mla,smmla"))
|
| 142 |
|
|
"cortex_r4_mul_2")
|
| 143 |
|
|
|
| 144 |
|
|
(define_insn_reservation "cortex_r4_mla_3" 3
|
| 145 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 146 |
|
|
(eq_attr "insn" "smlaxy,smlawy,smlad,smlsd"))
|
| 147 |
|
|
"cortex_r4_mul")
|
| 148 |
|
|
|
| 149 |
|
|
(define_insn_reservation "cortex_r4_smlald" 3
|
| 150 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 151 |
|
|
(eq_attr "insn" "smlald,smlsld"))
|
| 152 |
|
|
"cortex_r4_mul")
|
| 153 |
|
|
|
| 154 |
|
|
(define_insn_reservation "cortex_r4_mull" 4
|
| 155 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 156 |
|
|
(eq_attr "insn" "smull,umull,umlal,umaal"))
|
| 157 |
|
|
"cortex_r4_mul_2")
|
| 158 |
|
|
|
| 159 |
|
|
;; A multiply or an MLA with a single-register result, followed by an
|
| 160 |
|
|
;; MLA with an accumulator dependency, has its result forwarded.
|
| 161 |
|
|
(define_bypass 2 "cortex_r4_mul_3,cortex_r4_mla_3"
|
| 162 |
|
|
"cortex_r4_mla_3,cortex_r4_mla_4"
|
| 163 |
|
|
"arm_mac_accumulator_is_mul_result")
|
| 164 |
|
|
|
| 165 |
|
|
(define_bypass 3 "cortex_r4_mul_4,cortex_r4_mla_4"
|
| 166 |
|
|
"cortex_r4_mla_3,cortex_r4_mla_4"
|
| 167 |
|
|
"arm_mac_accumulator_is_mul_result")
|
| 168 |
|
|
|
| 169 |
|
|
;; A multiply followed by an ALU instruction needing the multiply
|
| 170 |
|
|
;; result only at ALU has lower latency than one needing it at Shift.
|
| 171 |
|
|
(define_bypass 2 "cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald"
|
| 172 |
|
|
"cortex_r4_alu")
|
| 173 |
|
|
(define_bypass 2 "cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald"
|
| 174 |
|
|
"cortex_r4_alu_shift"
|
| 175 |
|
|
"arm_no_early_alu_shift_dep")
|
| 176 |
|
|
(define_bypass 2 "cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald"
|
| 177 |
|
|
"cortex_r4_alu_shift_reg"
|
| 178 |
|
|
"arm_no_early_alu_shift_value_dep")
|
| 179 |
|
|
(define_bypass 3 "cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull"
|
| 180 |
|
|
"cortex_r4_alu")
|
| 181 |
|
|
(define_bypass 3 "cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull"
|
| 182 |
|
|
"cortex_r4_alu_shift"
|
| 183 |
|
|
"arm_no_early_alu_shift_dep")
|
| 184 |
|
|
(define_bypass 3 "cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull"
|
| 185 |
|
|
"cortex_r4_alu_shift_reg"
|
| 186 |
|
|
"arm_no_early_alu_shift_value_dep")
|
| 187 |
|
|
|
| 188 |
|
|
;; A multiply followed by a mov has one cycle lower latency again.
|
| 189 |
|
|
(define_bypass 1 "cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald"
|
| 190 |
|
|
"cortex_r4_mov")
|
| 191 |
|
|
(define_bypass 2 "cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull"
|
| 192 |
|
|
"cortex_r4_mov")
|
| 193 |
|
|
|
| 194 |
|
|
;; We guess that division of A/B using sdiv or udiv, on average,
|
| 195 |
|
|
;; is performed with B having ten more leading zeros than A.
|
| 196 |
|
|
;; This gives a latency of nine for udiv and ten for sdiv.
|
| 197 |
|
|
(define_insn_reservation "cortex_r4_udiv" 9
|
| 198 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 199 |
|
|
(eq_attr "insn" "udiv"))
|
| 200 |
|
|
"cortex_r4_div_9")
|
| 201 |
|
|
|
| 202 |
|
|
(define_insn_reservation "cortex_r4_sdiv" 10
|
| 203 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 204 |
|
|
(eq_attr "insn" "sdiv"))
|
| 205 |
|
|
"cortex_r4_div_10")
|
| 206 |
|
|
|
| 207 |
|
|
;; Branches. We assume correct prediction.
|
| 208 |
|
|
|
| 209 |
|
|
(define_insn_reservation "cortex_r4_branch" 0
|
| 210 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 211 |
|
|
(eq_attr "type" "branch"))
|
| 212 |
|
|
"cortex_r4_branch")
|
| 213 |
|
|
|
| 214 |
|
|
;; Call latencies are not predictable. A semi-arbitrary very large
|
| 215 |
|
|
;; number is used as "positive infinity" so that everything should be
|
| 216 |
|
|
;; finished by the time of return.
|
| 217 |
|
|
(define_insn_reservation "cortex_r4_call" 32
|
| 218 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 219 |
|
|
(eq_attr "type" "call"))
|
| 220 |
|
|
"nothing")
|
| 221 |
|
|
|
| 222 |
|
|
;; Status register access instructions are not currently emitted.
|
| 223 |
|
|
|
| 224 |
|
|
;; Load instructions.
|
| 225 |
|
|
;; We do not model the "addr_md_3cycle" cases and assume that
|
| 226 |
|
|
;; accesses following are correctly aligned.
|
| 227 |
|
|
|
| 228 |
|
|
(define_insn_reservation "cortex_r4_load_1_2" 3
|
| 229 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 230 |
|
|
(eq_attr "type" "load1,load2"))
|
| 231 |
|
|
"cortex_r4_load_store")
|
| 232 |
|
|
|
| 233 |
|
|
(define_insn_reservation "cortex_r4_load_3_4" 4
|
| 234 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 235 |
|
|
(eq_attr "type" "load3,load4"))
|
| 236 |
|
|
"cortex_r4_load_store_2")
|
| 237 |
|
|
|
| 238 |
|
|
;; If a producing load is followed by an instruction consuming only
|
| 239 |
|
|
;; as a Normal Reg, there is one fewer cycle of latency.
|
| 240 |
|
|
|
| 241 |
|
|
(define_bypass 2 "cortex_r4_load_1_2"
|
| 242 |
|
|
"cortex_r4_alu")
|
| 243 |
|
|
(define_bypass 2 "cortex_r4_load_1_2"
|
| 244 |
|
|
"cortex_r4_alu_shift"
|
| 245 |
|
|
"arm_no_early_alu_shift_dep")
|
| 246 |
|
|
(define_bypass 2 "cortex_r4_load_1_2"
|
| 247 |
|
|
"cortex_r4_alu_shift_reg"
|
| 248 |
|
|
"arm_no_early_alu_shift_value_dep")
|
| 249 |
|
|
|
| 250 |
|
|
(define_bypass 3 "cortex_r4_load_3_4"
|
| 251 |
|
|
"cortex_r4_alu")
|
| 252 |
|
|
(define_bypass 3 "cortex_r4_load_3_4"
|
| 253 |
|
|
"cortex_r4_alu_shift"
|
| 254 |
|
|
"arm_no_early_alu_shift_dep")
|
| 255 |
|
|
(define_bypass 3 "cortex_r4_load_3_4"
|
| 256 |
|
|
"cortex_r4_alu_shift_reg"
|
| 257 |
|
|
"arm_no_early_alu_shift_value_dep")
|
| 258 |
|
|
|
| 259 |
|
|
;; If a producing load is followed by an instruction consuming only
|
| 260 |
|
|
;; as a Late Reg, there are two fewer cycles of latency. Such consumer
|
| 261 |
|
|
;; instructions are moves and stores.
|
| 262 |
|
|
|
| 263 |
|
|
(define_bypass 1 "cortex_r4_load_1_2"
|
| 264 |
|
|
"cortex_r4_mov,cortex_r4_store_1_2,cortex_r4_store_3_4")
|
| 265 |
|
|
(define_bypass 2 "cortex_r4_load_3_4"
|
| 266 |
|
|
"cortex_r4_mov,cortex_r4_store_1_2,cortex_r4_store_3_4")
|
| 267 |
|
|
|
| 268 |
|
|
;; If a producer's result is required as the base or offset of a load,
|
| 269 |
|
|
;; there is an extra cycle latency.
|
| 270 |
|
|
|
| 271 |
|
|
(define_bypass 3 "cortex_r4_alu,cortex_r4_mov,cortex_r4_alu_shift,\
|
| 272 |
|
|
cortex_r4_alu_shift_reg"
|
| 273 |
|
|
"cortex_r4_load_1_2,cortex_r4_load_3_4")
|
| 274 |
|
|
|
| 275 |
|
|
(define_bypass 4 "cortex_r4_mul_3,cortex_r4_mla_3,cortex_r4_smlald"
|
| 276 |
|
|
"cortex_r4_load_1_2,cortex_r4_load_3_4")
|
| 277 |
|
|
|
| 278 |
|
|
(define_bypass 5 "cortex_r4_mul_4,cortex_r4_mla_4,cortex_r4_mull"
|
| 279 |
|
|
"cortex_r4_load_1_2,cortex_r4_load_3_4")
|
| 280 |
|
|
|
| 281 |
|
|
;; Store instructions.
|
| 282 |
|
|
|
| 283 |
|
|
(define_insn_reservation "cortex_r4_store_1_2" 0
|
| 284 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 285 |
|
|
(eq_attr "type" "store1,store2"))
|
| 286 |
|
|
"cortex_r4_load_store")
|
| 287 |
|
|
|
| 288 |
|
|
(define_insn_reservation "cortex_r4_store_3_4" 0
|
| 289 |
|
|
(and (eq_attr "tune_cortexr4" "yes")
|
| 290 |
|
|
(eq_attr "type" "store3,store4"))
|
| 291 |
|
|
"cortex_r4_load_store_2")
|
| 292 |
|
|
|