OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [arm/] [neon-docgen.ml] - Blame information for rev 709

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
(* ARM NEON documentation generator.
2
 
3
   Copyright (C) 2006, 2007 Free Software Foundation, Inc.
4
   Contributed by CodeSourcery.
5
 
6
   This file is part of GCC.
7
 
8
   GCC is free software; you can redistribute it and/or modify it under
9
   the terms of the GNU General Public License as published by the Free
10
   Software Foundation; either version 3, or (at your option) any later
11
   version.
12
 
13
   GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
   WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
   for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with GCC; see the file COPYING3.  If not see
20
   .
21
 
22
   This is an O'Caml program.  The O'Caml compiler is available from:
23
 
24
     http://caml.inria.fr/
25
 
26
   Or from your favourite OS's friendly packaging system. Tested with version
27
   3.09.2, though other versions will probably work too.
28
 
29
   Compile with:
30
     ocamlc -c neon.ml
31
     ocamlc -o neon-docgen neon.cmo neon-docgen.ml
32
 
33
   Run with:
34
     /path/to/neon-docgen /path/to/gcc/doc/arm-neon-intrinsics.texi
35
*)
36
 
37
open Neon
38
 
39
(* The combined "ops" and "reinterp" table.  *)
40
let ops_reinterp = reinterp @ ops
41
 
42
(* Helper functions for extracting things from the "ops" table.  *)
43
let single_opcode desired_opcode () =
44
  List.fold_left (fun got_so_far ->
45
                  fun row ->
46
                    match row with
47
                      (opcode, _, _, _, _, _) ->
48
                        if opcode = desired_opcode then row :: got_so_far
49
                                                   else got_so_far
50
                 ) [] ops_reinterp
51
 
52
let multiple_opcodes desired_opcodes () =
53
  List.fold_left (fun got_so_far ->
54
                  fun desired_opcode ->
55
                    (single_opcode desired_opcode ()) @ got_so_far)
56
                 [] desired_opcodes
57
 
58
let ldx_opcode number () =
59
  List.fold_left (fun got_so_far ->
60
                  fun row ->
61
                    match row with
62
                      (opcode, _, _, _, _, _) ->
63
                        match opcode with
64
                          Vldx n | Vldx_lane n | Vldx_dup n when n = number ->
65
                            row :: got_so_far
66
                          | _ -> got_so_far
67
                 ) [] ops_reinterp
68
 
69
let stx_opcode number () =
70
  List.fold_left (fun got_so_far ->
71
                  fun row ->
72
                    match row with
73
                      (opcode, _, _, _, _, _) ->
74
                        match opcode with
75
                          Vstx n | Vstx_lane n when n = number ->
76
                            row :: got_so_far
77
                          | _ -> got_so_far
78
                 ) [] ops_reinterp
79
 
80
let tbl_opcode () =
81
  List.fold_left (fun got_so_far ->
82
                  fun row ->
83
                    match row with
84
                      (opcode, _, _, _, _, _) ->
85
                        match opcode with
86
                          Vtbl _ -> row :: got_so_far
87
                          | _ -> got_so_far
88
                 ) [] ops_reinterp
89
 
90
let tbx_opcode () =
91
  List.fold_left (fun got_so_far ->
92
                  fun row ->
93
                    match row with
94
                      (opcode, _, _, _, _, _) ->
95
                        match opcode with
96
                          Vtbx _ -> row :: got_so_far
97
                          | _ -> got_so_far
98
                 ) [] ops_reinterp
99
 
100
(* The groups of intrinsics.  *)
101
let intrinsic_groups =
102
  [ "Addition", single_opcode Vadd;
103
    "Multiplication", single_opcode Vmul;
104
    "Multiply-accumulate", single_opcode Vmla;
105
    "Multiply-subtract", single_opcode Vmls;
106
    "Subtraction", single_opcode Vsub;
107
    "Comparison (equal-to)", single_opcode Vceq;
108
    "Comparison (greater-than-or-equal-to)", single_opcode Vcge;
109
    "Comparison (less-than-or-equal-to)", single_opcode Vcle;
110
    "Comparison (greater-than)", single_opcode Vcgt;
111
    "Comparison (less-than)", single_opcode Vclt;
112
    "Comparison (absolute greater-than-or-equal-to)", single_opcode Vcage;
113
    "Comparison (absolute less-than-or-equal-to)", single_opcode Vcale;
114
    "Comparison (absolute greater-than)", single_opcode Vcagt;
115
    "Comparison (absolute less-than)", single_opcode Vcalt;
116
    "Test bits", single_opcode Vtst;
117
    "Absolute difference", single_opcode Vabd;
118
    "Absolute difference and accumulate", single_opcode Vaba;
119
    "Maximum", single_opcode Vmax;
120
    "Minimum", single_opcode Vmin;
121
    "Pairwise add", single_opcode Vpadd;
122
    "Pairwise add, single_opcode widen and accumulate", single_opcode Vpada;
123
    "Folding maximum", single_opcode Vpmax;
124
    "Folding minimum", single_opcode Vpmin;
125
    "Reciprocal step", multiple_opcodes [Vrecps; Vrsqrts];
126
    "Vector shift left", single_opcode Vshl;
127
    "Vector shift left by constant", single_opcode Vshl_n;
128
    "Vector shift right by constant", single_opcode Vshr_n;
129
    "Vector shift right by constant and accumulate", single_opcode Vsra_n;
130
    "Vector shift right and insert", single_opcode Vsri;
131
    "Vector shift left and insert", single_opcode Vsli;
132
    "Absolute value", single_opcode Vabs;
133
    "Negation", single_opcode Vneg;
134
    "Bitwise not", single_opcode Vmvn;
135
    "Count leading sign bits", single_opcode Vcls;
136
    "Count leading zeros", single_opcode Vclz;
137
    "Count number of set bits", single_opcode Vcnt;
138
    "Reciprocal estimate", single_opcode Vrecpe;
139
    "Reciprocal square-root estimate", single_opcode Vrsqrte;
140
    "Get lanes from a vector", single_opcode Vget_lane;
141
    "Set lanes in a vector", single_opcode Vset_lane;
142
    "Create vector from literal bit pattern", single_opcode Vcreate;
143
    "Set all lanes to the same value",
144
      multiple_opcodes [Vdup_n; Vmov_n; Vdup_lane];
145
    "Combining vectors", single_opcode Vcombine;
146
    "Splitting vectors", multiple_opcodes [Vget_high; Vget_low];
147
    "Conversions", multiple_opcodes [Vcvt; Vcvt_n];
148
    "Move, single_opcode narrowing", single_opcode Vmovn;
149
    "Move, single_opcode long", single_opcode Vmovl;
150
    "Table lookup", tbl_opcode;
151
    "Extended table lookup", tbx_opcode;
152
    "Multiply, lane", single_opcode Vmul_lane;
153
    "Long multiply, lane", single_opcode Vmull_lane;
154
    "Saturating doubling long multiply, lane", single_opcode Vqdmull_lane;
155
    "Saturating doubling multiply high, lane", single_opcode Vqdmulh_lane;
156
    "Multiply-accumulate, lane", single_opcode Vmla_lane;
157
    "Multiply-subtract, lane", single_opcode Vmls_lane;
158
    "Vector multiply by scalar", single_opcode Vmul_n;
159
    "Vector long multiply by scalar", single_opcode Vmull_n;
160
    "Vector saturating doubling long multiply by scalar",
161
      single_opcode Vqdmull_n;
162
    "Vector saturating doubling multiply high by scalar",
163
      single_opcode Vqdmulh_n;
164
    "Vector multiply-accumulate by scalar", single_opcode Vmla_n;
165
    "Vector multiply-subtract by scalar", single_opcode Vmls_n;
166
    "Vector extract", single_opcode Vext;
167
    "Reverse elements", multiple_opcodes [Vrev64; Vrev32; Vrev16];
168
    "Bit selection", single_opcode Vbsl;
169
    "Transpose elements", single_opcode Vtrn;
170
    "Zip elements", single_opcode Vzip;
171
    "Unzip elements", single_opcode Vuzp;
172
    "Element/structure loads, VLD1 variants", ldx_opcode 1;
173
    "Element/structure stores, VST1 variants", stx_opcode 1;
174
    "Element/structure loads, VLD2 variants", ldx_opcode 2;
175
    "Element/structure stores, VST2 variants", stx_opcode 2;
176
    "Element/structure loads, VLD3 variants", ldx_opcode 3;
177
    "Element/structure stores, VST3 variants", stx_opcode 3;
178
    "Element/structure loads, VLD4 variants", ldx_opcode 4;
179
    "Element/structure stores, VST4 variants", stx_opcode 4;
180
    "Logical operations (AND)", single_opcode Vand;
181
    "Logical operations (OR)", single_opcode Vorr;
182
    "Logical operations (exclusive OR)", single_opcode Veor;
183
    "Logical operations (AND-NOT)", single_opcode Vbic;
184
    "Logical operations (OR-NOT)", single_opcode Vorn;
185
    "Reinterpret casts", single_opcode Vreinterp ]
186
 
187
(* Given an intrinsic shape, produce a string to document the corresponding
188
   operand shapes.  *)
189
let rec analyze_shape shape =
190
  let rec n_things n thing =
191
    match n with
192
 
193
    | n -> thing :: (n_things (n - 1) thing)
194
  in
195
  let rec analyze_shape_elt reg_no elt =
196
    match elt with
197
      Dreg -> "@var{d" ^ (string_of_int reg_no) ^ "}"
198
    | Qreg -> "@var{q" ^ (string_of_int reg_no) ^ "}"
199
    | Corereg -> "@var{r" ^ (string_of_int reg_no) ^ "}"
200
    | Immed -> "#@var{0}"
201
    | VecArray (1, elt) ->
202
        let elt_regexp = analyze_shape_elt 0 elt in
203
          "@{" ^ elt_regexp ^ "@}"
204
    | VecArray (n, elt) ->
205
      let rec f m =
206
        match m with
207
 
208
        | m -> (analyze_shape_elt (m - 1) elt) :: (f (m - 1))
209
      in
210
      let ops = List.rev (f n) in
211
        "@{" ^ (commas (fun x -> x) ops "") ^ "@}"
212
    | (PtrTo elt | CstPtrTo elt) ->
213
      "[" ^ (analyze_shape_elt reg_no elt) ^ "]"
214
    | Element_of_dreg -> (analyze_shape_elt reg_no Dreg) ^ "[@var{0}]"
215
    | Element_of_qreg -> (analyze_shape_elt reg_no Qreg) ^ "[@var{0}]"
216
    | All_elements_of_dreg -> (analyze_shape_elt reg_no Dreg) ^ "[]"
217
    | Alternatives alts -> (analyze_shape_elt reg_no (List.hd alts))
218
  in
219
    match shape with
220
      All (n, elt) -> commas (analyze_shape_elt 0) (n_things n elt) ""
221
    | Long -> (analyze_shape_elt 0 Qreg) ^ ", " ^ (analyze_shape_elt 0 Dreg) ^
222
              ", " ^ (analyze_shape_elt 0 Dreg)
223
    | Long_noreg elt -> (analyze_shape_elt 0 elt) ^ ", " ^
224
              (analyze_shape_elt 0 elt)
225
    | Wide -> (analyze_shape_elt 0 Qreg) ^ ", " ^ (analyze_shape_elt 0 Qreg) ^
226
              ", " ^ (analyze_shape_elt 0 Dreg)
227
    | Wide_noreg elt -> analyze_shape (Long_noreg elt)
228
    | Narrow -> (analyze_shape_elt 0 Dreg) ^ ", " ^ (analyze_shape_elt 0 Qreg) ^
229
                ", " ^ (analyze_shape_elt 0 Qreg)
230
    | Use_operands elts -> commas (analyze_shape_elt 0) (Array.to_list elts) ""
231
    | By_scalar Dreg ->
232
        analyze_shape (Use_operands [| Dreg; Dreg; Element_of_dreg |])
233
    | By_scalar Qreg ->
234
        analyze_shape (Use_operands [| Qreg; Qreg; Element_of_dreg |])
235
    | By_scalar _ -> assert false
236
    | Wide_lane ->
237
        analyze_shape (Use_operands [| Qreg; Dreg; Element_of_dreg |])
238
    | Wide_scalar ->
239
        analyze_shape (Use_operands [| Qreg; Dreg; Element_of_dreg |])
240
    | Pair_result elt ->
241
      let elt_regexp = analyze_shape_elt 0 elt in
242
      let elt_regexp' = analyze_shape_elt 1 elt in
243
        elt_regexp ^ ", " ^ elt_regexp'
244
    | Unary_scalar _ -> "FIXME Unary_scalar"
245
    | Binary_imm elt -> analyze_shape (Use_operands [| elt; elt; Immed |])
246
    | Narrow_imm -> analyze_shape (Use_operands [| Dreg; Qreg; Immed |])
247
    | Long_imm -> analyze_shape (Use_operands [| Qreg; Dreg; Immed |])
248
 
249
(* Document a single intrinsic.  *)
250
let describe_intrinsic first chan
251
                       (elt_ty, (_, features, shape, name, munge, _)) =
252
  let c_arity, new_elt_ty = munge shape elt_ty in
253
  let c_types = strings_of_arity c_arity in
254
  Printf.fprintf chan "@itemize @bullet\n";
255
  let item_code = if first then "@item" else "@itemx" in
256
    Printf.fprintf chan "%s %s %s_%s (" item_code (List.hd c_types)
257
                   (intrinsic_name name) (string_of_elt elt_ty);
258
    Printf.fprintf chan "%s)\n" (commas (fun ty -> ty) (List.tl c_types) "");
259
    if not (List.exists (fun feature -> feature = No_op) features) then
260
    begin
261
      let print_one_insn name =
262
        Printf.fprintf chan "@code{";
263
        let no_suffix = (new_elt_ty = NoElts) in
264
        let name_with_suffix =
265
          if no_suffix then name
266
          else name ^ "." ^ (string_of_elt_dots new_elt_ty)
267
        in
268
        let possible_operands = analyze_all_shapes features shape
269
                                                   analyze_shape
270
        in
271
        let rec print_one_possible_operand op =
272
          Printf.fprintf chan "%s %s}" name_with_suffix op
273
        in
274
          (* If the intrinsic expands to multiple instructions, we assume
275
             they are all of the same form.  *)
276
          print_one_possible_operand (List.hd possible_operands)
277
      in
278
      let rec print_insns names =
279
        match names with
280
          [] -> ()
281
        | [name] -> print_one_insn name
282
        | name::names -> (print_one_insn name;
283
                          Printf.fprintf chan " @emph{or} ";
284
                          print_insns names)
285
      in
286
      let insn_names = get_insn_names features name in
287
        Printf.fprintf chan "@*@emph{Form of expected instruction(s):} ";
288
        print_insns insn_names;
289
        Printf.fprintf chan "\n"
290
    end;
291
    Printf.fprintf chan "@end itemize\n";
292
    Printf.fprintf chan "\n\n"
293
 
294
(* Document a group of intrinsics.  *)
295
let document_group chan (group_title, group_extractor) =
296
  (* Extract the rows in question from the ops table and then turn them
297
     into a list of intrinsics.  *)
298
  let intrinsics =
299
    List.fold_left (fun got_so_far ->
300
                    fun row ->
301
                      match row with
302
                        (_, _, _, _, _, elt_tys) ->
303
                          List.fold_left (fun got_so_far' ->
304
                                          fun elt_ty ->
305
                                            (elt_ty, row) :: got_so_far')
306
                                         got_so_far elt_tys
307
                   ) [] (group_extractor ())
308
  in
309
    (* Emit the title for this group.  *)
310
    Printf.fprintf chan "@subsubsection %s\n\n" group_title;
311
    (* Emit a description of each intrinsic.  *)
312
    List.iter (describe_intrinsic true chan) intrinsics;
313
    (* Close this group.  *)
314
    Printf.fprintf chan "\n\n"
315
 
316
let gnu_header chan =
317
  List.iter (fun s -> Printf.fprintf chan "%s\n" s) [
318
  "@c Copyright (C) 2006 Free Software Foundation, Inc.";
319
  "@c This is part of the GCC manual.";
320
  "@c For copying conditions, see the file gcc.texi.";
321
  "";
322
  "@c This file is generated automatically using gcc/config/arm/neon-docgen.ml";
323
  "@c Please do not edit manually."]
324
 
325
(* Program entry point.  *)
326
let _ =
327
  if Array.length Sys.argv <> 2 then
328
    failwith "Usage: neon-docgen "
329
  else
330
  let file = Sys.argv.(1) in
331
    try
332
      let chan = open_out file in
333
        gnu_header chan;
334
        List.iter (document_group chan) intrinsic_groups;
335
        close_out chan
336
    with Sys_error sys ->
337
      failwith ("Could not create output file " ^ file ^ ": " ^ sys)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.